
Master’s Thesis

Comparison of different 256-bit Elliptic
Curves for Low-Resource Devices

Wolfgang Wieser

0831773

Graz, 2014

Institute for Applied Information Processing and Communications
Graz University of Technology

IAIK

Assessor: Karl-Christian Posch

Advisor: Michael Hutter

Abstract

Elliptic Curve Cryptography has gained increasing interest in the last decade, especially
in the context of low-resource devices such as embedded systems, smartcards, and RFID
devices. Its advantage can be found in the efficient implementation and the possibility of
using short keys.

Many elliptic-curve types have been published in the past decades. They mainly differ in
the underlying finite-field, the form, and recommended curve parameters such as the prime
modulus, the prime order, curve coefficients, or the base point. The question of which curve
type is the most suitable one for highly restricted environments is in fact an open research
question. While there exist many publications that present single implementations of
various elliptic curves, a comparison of those solutions is not only missing but also largely
unfeasible. This is because each implementation was made using different design tools,
techniques, security levels, and process technologies. A fair comparison of state of the art
elliptic curve types in terms of efficiency is therefore highly demanded not only by industry
but also by different standardization bodies and related organizations.

In this work, we propose a generic hardware architecture that allows efficient implemen-
tations of various elliptic curves. We explore the design space of low-area implementations
of three commonly used curves, i.e., NIST P256, Brainpool P256r1, and Curve25519. All
of these curves share a security level of 128 bits and are thus comparable. Furthermore,
we used the same tools and techniques to allow the fair evaluation of area, power, and
speed. For each curve, we applied optimization techniques to reduce the area and power
footprint and propose a novel method on efficient multi-precision multiplication for this
type of hardware architecture.

We synthesized all implementations using a 0.13-µm low leakage CMOS process tech-
nology. The results show that all three curves can be implemented with less than 7 000 GEs
(without considering RAM). Curve25519 showed to be the most performant curve. It needs
877 339 cycles for a random point scalar multiplication while NIST P256 needs 1 718 398
cycles and Brainpool P256r1 needs 3 043 325 cycles. Our smallest design needs 5 192 GEs.
The power consumption for all designs is between 78 and 284µW.

Keywords: elliptic curve cryptography, low-resource device, Curve25519, NIST P256,
Brainpool P256r1, CMOS, evaluation

Zusammenfassung

Elliptische-Kurven-Kryptographie hat in den letzten zehn Jahren zunehmendes Interesse
erfahren, besonders in Verbindung mit Geräten mit beschränkten Ressourcen, wie einge-
bettete Systeme, Chipkarten und RFID Geräten. Sie hat den Vorteil, dass sie effizient im-
plementiert werden kann und die Verwendung kurze kryptografischer Schlüssel ermöglicht.

In den letzten Jahrzehnten wurden viele Arten elliptischer Kurven veröffentlicht. Diese
unterscheiden sich hauptsächlich im verwendeten endlichen Körper, der Kurvengleichung
und den empfohlenen Kurven-Parametern, wie etwa dem Modulo, der Ordnung, den Ko-
effizienten oder dem Generatorpunkt. Es ist eine offene Frage welche Art von elliptis-
chen Kurven sich am besten für stark eingeschränkte Geräte eignet. Es wurden zwar in
vielen Publikationen einzelne Implementierungen von verschiedenen Kurven vorgestellt,
aber es fehlt ein Vergleich dieser Vorschläge. Dieser ist auch nur schwer möglich. Das
liegt daran, dass jede Implementierung mit unterschiedlichen Tools, Techniken, Sicher-
heitslevels und Prozess-Technologien erstellt wurde. Ein gerechter Vergleich der Effizienz
von aktuellen Arten von elliptischen Kurven wird daher von der Industrie, verschiedenen
Standardisierungsgremien und ähnlichen Organisationen stark nachgefragt.

In dieser Arbeit schlagen wir eine generische Hardware-Architektur vor, die ein ef-
fizientes Implementieren von elliptischen Kurven erlaubt. Dabei loten wir die Möglichkeiten
eines Designs mit einer kleinen Fläche für drei elliptische Kurven aus, nämlich NIST P256,
Brainpool P256r1 und Curve25519. Diese drei Kurven bieten alle ein Sicherheitslevel von
128 Bits und sind daher direkt miteinander vergleichbar. Außerdem haben wir für alle drei
Kurven dieselben Tools und Techniken verwendet um einen fairen Vergleich der Fläche, des
Stromverbrauchs und der Geschwindigkeit zu ermöglichen. Für jede Kurve haben wir Op-
timierungen angewandt, um die Fläche und den Stromverbrauch zu reduzieren. Zusätzlich
schlagen wir eine neue Methode für Langzahlmultiplikation für diesen Typ von Hardware
vor.

Alle Varianten wurden mit einer 0.13-µm CMOS Technologie synthetisiert. Dabei kon-
nten alle drei Kurven mit einer Fläche kleiner als 7 000 GEs (ohne RAM) implementiert
werden. Das Design für Curve25519 ist schneller und kleiner als das der anderen Kur-
ven. Curve25519 benötigt 877 339 Takte für eine Skalarmultiplikation mit einem zufälligen
Punkt, während die schnellsten Varianten von NIST P256 (1 718 398 Takte) und Brain-
pool P256r1 (3 043 325 Takte) eine deutlich längere Laufzeit haben. Unser kleinstes Design
braucht 5 192 GE. Der Stromverbrauch für alle Varianten liegt zwischen 78 und 284µW.

Schlüsselwörter: Elliptische-Kurven-Kryptographie, Geräte mit beschränkten Ressourcen,
Curve25519, NIST P256, Brainpool P256r1, CMOS, Vergleich

Acknowledgements

At first, I would like to thank Michael Hutter to guide me through many telematics masters
lectures, exercises, projects and finally my masters thesis. I would like to thank him
for many ideas, hints, and showing me different exciting aspects of cryptography and
designing hardware. Many thanks also to Karl Christian Posch, who taught me the basics of
designing hardware in his lecture “Rechnerorganisation”. Working three years as teaching
assistant for this lecture, allowed me to acquire more in-depth knowledge and gave me some
interesting experiences. Equally, I would like to thank my family for their support. I also
would like to thank my fellow students for making the studying pleasant even in stressful
times and supporting me in group works and learning for exams. Last but not least, I want
to thank my girlfriend Fabia for supporting and pushing me to finish my second thesis and
her big understanding in all the stressful times.

Contents

1 Introduction 1

2 Arithmetical Background 3
2.1 Multiple Precision Arithmetic . 3

2.1.1 Addition and Subtraction . 3
2.1.2 Multiplication . 4

2.2 Modular Arithmetic . 6
2.2.1 Barrett Reduction . 8
2.2.2 Montgomery Multiplication . 9
2.2.3 Reduction for Pseudo-Mersenne Primes 9

2.3 Introduction to Finite Fields . 10
2.3.1 Prime Fields . 10
2.3.2 Binary Fields . 11

2.4 Field Inversion in Prime Fields . 12
2.4.1 Extended Euclidean Algorithm . 12
2.4.2 Binary GCD Algorithm . 12
2.4.3 Fermat’s Little Theorem . 13

3 Elliptic Curve Cryptography 15
3.1 The Elliptic Curve Discrete Logarithm Problem 15
3.2 Elliptic Curves . 15

3.2.1 Weierstrass Curve . 16
3.2.2 Montgomery Curve . 18
3.2.3 Twisted Edwards Curve . 19

3.3 Point-Multiplication Algorithms . 19
3.3.1 Binary Method . 20
3.3.2 Montgomery’s Method . 21
3.3.3 Fixed-Base Comb Method . 21

3.4 Cryptographic Protocols . 22
3.4.1 Elliptic Curve Diffie-Hellman . 22
3.4.2 Elliptic Curve Digital Signature Algorithm 23
3.4.3 Elliptic Curve Integrated Encryption Scheme 24

3.5 Attacks and Countermeasures . 24
3.5.1 Side-Channel Attacks . 25
3.5.2 Fault Attacks and Probing Attacks 26

4 Efficient Implementation of ECC 28
4.0.3 Brainpool P256r1 . 28
4.0.4 NIST P-256 . 29
4.0.5 Curve25519 . 29

i

5 Efficient 32-Bit Elliptic Curve Processor 34
5.1 Related Work . 34
5.2 Architecture Overview . 36
5.3 Memory . 36
5.4 Controller . 38
5.5 Arithmetic Logic Unit . 42

5.5.1 Core Adder . 45
5.6 Machine Code . 47
5.7 Machine Programs of Point-Multiplication 48

6 Implementation Results 53
6.1 Evaluation Setup . 53
6.2 NIST P-256 . 53
6.3 Brainpool P256r1 . 55
6.4 Curve25519 . 55
6.5 Comparison of Curves . 61
6.6 Comparison with Related Work . 63
6.7 Evaluation of Costs . 63

7 Conclusions 66

References 68

A Examples to Algorithms 75

B Machine Code Examples 78

ii

1 Introduction

Cryptography has experienced a rapid progress in the last hundred years. Nowadays, in
developed countries almost everyone uses it – often without noticing it. Cryptography is ap-
plied in car keys, television, wireless networks, mobile phones, debit cards, online banking,
passports, and many other applications. Thereby, cryptography can guarantee attributes
like confidentiality, data integrity, authenticity, or non-repudiation. Since processing units
keep getting faster, the length of cryptographic keys must extend to guarantee a constant
level of security. As a result, calculation time, needed memory, and needed bandwidth
increase. Thus, elliptic curve cryptography becomes more popular, because it can provide
the same level of security as former algorithms using a significant shorter key length than
for example RSA. This is because up to now it takes much longer to break elliptic curve
cryptography than breaking RSA with the same key length. Smaller parameters lead to
significant advantages in power consumption and requirements in computing power and
memory. This makes cryptography with adequate level of security feasible for low-resource
devices such as embedded systems, smart cards, and RFID tags. We are using these devices
constantly and in near future in the “Internet of things” RFID tags will be attached to ev-
erything. They will interact with each other and may exchange sensitive data. Therefore,
they must provide reasonable cryptographic functions to guarantee a secure communica-
tion. As a result, it is very important to work on small and fast implementations having
low power consumption. In this work, we describe a highly efficient architecture for elliptic
curve cryptography. To find the most efficient elliptic curve parameters and algorithms,
we implement three different curves in several variants and compare them with each other.

Operations on elliptic curves use digits with several hundred bits. If the used hardware
cannot work on such large numbers, they must be divided into a number of words and
handled one by one. This so called “multiple precision arithmetic” divides an operation
into several partial operations. As a result, it is slower than if the value can be handled
at once. To keep the number of partial operations small and thus ensure a sufficient level
of efficiency, it is important that the words are as large as possible. Common CPUs are
able to work on 64 or even 128 bits. In the last years some CPUs and GPUs were released
which are even able to work on 256 or even 512-bit words, but they are not very common
yet. To support operations on large words much area is necessary. Thus, arithmetical units
for low-resource devices such as chip cards typically have a much smaller word size. They
provide typically only operations on 8, 16, or 32 bits. In this work, we present an efficient
32-bit architecture for 256-bit elliptic curves, which can be used on strongly limited systems
too.

Cryptographic protocols based on elliptic curves consist of several layers. On the very
top, there is the service. It defines the purpose of the used cryptography. As men-
tioned before, it can be used to ensure confidentiality, data integrity, authenticity, or
non-repudiation. The second layer is the protocol, which defines how many messages must
be exchanged between the involved entities. The number of the messages also depends
on the next layer, the scheme. Schemes provide a set of cryptographic operations which
are typically combined within a protocol. Common schemes are key-agreement schemes,

1

identification schemes, encryption schemes, or signature schemes. The next layer defines
how the point-multiplication is performed. Like for a common multiplication of two num-
bers, there are several algorithms for calculation. Point-multiplication uses point doubling
and point-addition operations. They are defined in the fifth layer and are based on the
geometrical structure of the used curve. Therefore, the operations differ for different types
of curves and point representations. Finally, the last layer implements the finite field arith-
metic. There exist several finite fields, but in this work, we just focus on elliptic curves
based on a prime field. To find the most efficient algorithms for point multiplication, we
implement several variants for each curve. Therefore we use state-of-the-art formulas for
the curves NIST P256 and Brainpool P256r1 and propose new formulas for Curve25519.
We also describe a new algorithm for efficient multiple precision multiplication, the so
called zigzag product-scanning multiplication method.

The reminder of this work is organized as follows. In Chapter 2, we illustrate how
modular multiple precision arithmetic works and explain finite fields. Chapter 3 gives
a summary about elliptic curves, common algorithms for point-multiplication, and widely
used protocols based on elliptic curves. Additionally, we give an overview of feasible attacks
and possible countermeasures. Then, in Chapter 4, we describe the used curves with their
parameters. Afterwards, in Chapter 5, we give details of our hardware architecture. In
Chapter 6, we discuss the results of all of our variants for all implemented curves and
evaluate the costs of several components. Finally, in Chapter 7 we give a conclusion of the
work.

2

2 Arithmetical Background

In this chapter, we discuss the mathematical background, which is needed to use elliptic
curves for cryptographic purposes. Finite field arithmetic is used in many cryptographic
areas. For instance, the two very common encryption standards AES and RSA use finite
field arithmetic. It also forms the base for elliptic curve cryptography. All operations
on elliptic curves are done using arithmetic on the underlying field. Furthermore, finite
field arithmetic uses modular arithmetic which often uses multiple precision arithmetic to
handle big numbers. In this chapter, we explain multiple precision arithmetic, modular
arithmetic, finite field arithmetic and inversion in finite fields.

2.1 Multiple Precision Arithmetic

The size of a number a CPU can handle at once is limited. Modern CPUs in personal
computers typically support operations on values with a length of 64 bits. For CPUs in
embedded systems, smartcards, or RFID tags, word sizes of even only 8, 16, or 32 bits
are quite common. To provide a sufficient level of security, numbers in the cryptographic
context are often are many times larger. Therefore, the values must be divided into several
words, with a word size w. Several programming languages like Java, C#, or Python
have built-in support to relieve the programmer from this task. Hardware designers either
must create a CPU with an appropriate word size or they must use multiple precision
arithmetic. In the following subsections we describe algorithms for multiple precision
addition, subtraction, and multiplication.

2.1.1 Addition and Subtraction

Given two n-bit numbers a, b, and the word size w, the addition with multiple precision
arithmetic works as follows. The two numbers are divided into q = dn/we words, so that
a = {aq−1, ..., a1, a0}, b = {bq−1, ..., b1, b0}. Starting with index 0, all corresponding pairs
of words {ai, bi} must be added. If these partial sums are larger than the word size, the
additional bits are used as carry for the addition of the next pair. A detailed description
of the algorithm can be found in Algorithm 1. The length of the total result can be n+ 1.
The result of the algorithm is given in {carry, c}.

Signed values typically are represented using two’s complement. In this representation
the most significant bit (MSB) indicates the sign of the value. If it is 1, the number is
negative. A number with n bits can represent integers in the range from −2n−1 to 2n−1−1.
To negate a number, all bits must be inverted and the value 1 must be added. The concept
is demonstrated in the following example.

Example 1. Calculating 14− 12 at word size w = 5:

• −12 = −0b01100 = 0b10011 + 1 = 0b10100

• 14− 12 = 14 + (−12) = 0b01110 + 0b10100 = 0b00010 = 2 (5-bit result)

3

If numbers are represented in two’s complement, multiple precision subtraction works the
same way as for addition.

2.1.2 Multiplication

There are many algorithms for multiple precision multiplication. They differ in the number
of necessary load and store operations, depending on how the operands are processed. In
this thesis, we only consider algorithms with quadratic complexity. For those algorithms,
each word of a must be multiplied with each word of b. As a consequence, for the most
methods the same operands must be loaded multiple times or must be kept in registers.
Thus, either the number of memory operations is high or many registers are necessary.

Operand-scanning multiplication. This method is also known as schoolbook or row-
wise multiplication method. Thereby, one word of a is loaded and multiplied with all words
of b. This is done for all words of a. The partial products are added to the intermediate
result with an offset (i + j) · w/2 defined by the indices i, j of the operands. A detailed
description can be found in Algorithm 2. Figure 1a illustrates the sequence of partial
products. The advantage of this method is, that each word of a is used only once.

Algorithm 1: Multiple precision addition

Input: a = {aq−1, ..., a1, a0}, b = {bq−1, ..., b1, b0}, w, q
Output: carry, c = {cq−1, ..., c1, c0} = a+ b

1 carry = 0
2 for i = 0 to q − 1 do
3 t = ai + bi + carry
4 carry = t/2w

5 ci = t− carry · 2w

6 return carry, c

Algorithm 2: Operand-scanning multiplication

Input: a = {aq−1, ..., a1, a0}, b = {bq−1, ..., b1, b0}, w, q
Output: c = a · b

1 c = 0
2 for i = 0 to q − 1 do
3 opA = ai
4 for j = 0 to q − 1 do
5 opB = bj
6 c = c+ (opA · opB) · 2(i+j)·w/2

7 return c

4

Product-scanning multiplication. This method is also known as column-wise mul-
tiplication method. There, the partial products are calculated sorted after their offset –
column wise. Thereby, the result can be calculated word wise. Thus, it is possible to hold
the intermediate result in an accumulating register so that they do not have to be stored or
loaded during the calculations. Additionally, the handling of carry values is simpler than
for the operand-scanning method. In return, the algorithm is more complicated and for
each partial product the index of both operands changes. A detailed description can be
found in Algorithm 3. Figure 1b illustrates the sequence of partial products.

Zigzag product-scanning multiplication. In our work, we propose a new variant of
the product-scanning multiplication. Thereby, two columns are calculated simultaneously
in a zigzag pattern as shown in Figure 1c. This has the advantage that for each partial
product only the index of one operand changes and the result is calculated almost word-
wise. Thus, less memory operations are necessary. Therefore, this algorithm allows a
multiplication in two cycles even if only one operand can be loaded per cycle. In the first
cycle the next operand is loaded and in the second one the result is written to the RAM.
However, the algorithm is more complex than the other ones and the accumulator must be
bigger. Algorithm 4 gives a detailed description. Instead of calculating x, y it is easier to
precalculate them for certain a number of words q.

Wenger and Werner presented in [WW11] another zigzag product-scanning multiplica-
tion method. However, they calculate only one column at once. Thus, in their method
both operands change for most of the 32-bit multiplications. Therefore, in our architecture
their method has no advantage compared to the classical product-scanning multiplication

Algorithm 3: Product-scanning multiplication

Input: a = {aq−1, ..., a1, a0}, b = {bq−1, ..., b1, b0}, w, q
Output: c = a · b

1 c = 0
2 for e = 0 to q − 1 do
3 for d = 0 to e− 1 do
4 opA = ae−d−1

5 opB = bd
6 c = c+ (opA · opB) · 2(e)·w/2

7 for e = 0 to q − 2 do
8 for d = 0 to w − 2− e do
9 opA = aw−1−d

10 opB = be+1+d

11 c = c+ (opA · opB) · 2(e+2)·w/2

12 return c

5

a0 a1 a2 a3 a4 a5 a6 a7

b0

b1

b2

b3

b4

b5

b6

b7

(a) Operand-scanning

a0 a1 a2 a3 a4 a5 a6 a7

b0

b1

b2

b3

b4

b5

b6

b7

(b) Product-scanning

a0 a1 a2 a3 a4 a5 a6 a7

b0

b1

b2

b3

b4

b5

b6

b7

(c) Zigzag variant

Figure 1: Comparison of three multiplications methods

algorithm.

More variants and details can be found in [HW11]. All presented methods have to
calculate n2 partial products. Thus, they have a running time of O(n2). Beside the
presented methods, there exist more multiple precision multiplication algorithms. However,
some of them need less multiplications and thus are faster but they are considered to be too
complex for an implementation on a low-resource device. Two examples are the Karatsuba
algorithm [KO63] with a running time of O(nlog2(3)) and Fürer’s algorithm [Für09] using
fast Fourier transformation to achieve a running time of O(n log(n) log(log(n))).

2.2 Modular Arithmetic

In modular arithmetic, numbers wrap around when they reach a certain value, which is
called the modulus. If two numbers are multiplied, the result can be twice as long. Thus,
in many cryptographic algorithms the result is reduced to keep the length constantly at
the size of the modulus m. If a number b = a + k · m, a is congruent to b. Thereby k
can be any negative or positive number. This is written as a ≡ b (mod m) and b can
be seen as reminder by the integer division of b/m. In modular arithmetic, a and b are
equivalent, thus all arithmetical operations on them have the same reduced result as shown
in following example.

Example 2. Modular arithmetic with 16 = 16 + 2 · 23 ≡ 62 (mod 23):

• Adding 9: 16 + 9 = 25 = 2 + 1 · 23 ≡ 2 (mod 23),
62 + 9 = 71 = 2 + 3 · 23 ≡ 2 (mod 23)

• Multiply with 19: 16 · 19 = 304 = 5 + 13 · 23 ≡ 5 (mod 23),
62 · 19 = 1178 = 5 + 51 · 23 ≡ 5 (mod 23)

6

Algorithm 4: Combined multiplication method

Input: a = {aq−1, ..., a1, a0}, b = {bq−1, ..., b1, b0}, w, q
Output: c = a · b

1 x = −1; y = 0; s = −1;m = −1; c = 0; opA = a1; opB = 0
2 for e = 0 to q − 1 do
3 if e is even then
4 x = x+ 2
5 y = y + s

6 else
7 y = y + 2
8 x = x+ s

9 m = m− 4 · s
10 for d = 0 to m do
11 if e is even then
12 if d is even then
13 y = y − s
14 opB = by

15 else
16 x = x+ s
17 opA = ax

18 else
19 if d is even then
20 x = x− s
21 opA = ax

22 else
23 y = y + s
24 opB = by

25 if s < 0 then
26 c = c+ (opA · opB) · 2(2·c+(d+1 (mod 2)))·w/2

27 else
28 c = c+ (opA · opB) · 2(2·c+(d (mod 2)))·w/2

29 if c+ 1 = n/2 then
30 t = x
31 x = y
32 y = t
33 x = x− 1
34 m = m+ 2

35 return c

7

The result of adding two n-bit numbers can have (n+ 1) bits. In this case it is sufficient to
subtract the modulus when the (n + 1)th bit is set, as used in Algorithm 1. However, the
result of a multiplication can have 2n bits. In worst case it would take 2n steps to reduce
the result by subtracting the modulus. Another possibility is to use division, but division
is typically a very expensive operation. Thus other methods must be used. Some of them
are presented in the following subsections.

2.2.1 Barrett Reduction

This algorithm was published by Paul Barrett in 1986 [Bar87]. The basic principle behind
this algorithm is shown in following equation:

a (mod m) = a−
⌊ a
m

⌋
·m (1)

If the modulus m is constant, some values can be precalculated to speed up the calculation.
The equation above can be extended as follows [DV11]:

a (mod m) = a−

⌊
a

bn−1 · b
2·k

m

bn+1

⌋
·m = a−

⌊ a
bn−1 · µ
bn+1

⌋
·m, (2)

where b typically is chosen as a multiple of the word size. Thereby, µ = b2·k

m
can be

precalculated, since it depends only on the modulus. Division by powers of two are simple
shifting operations. Thus, if b is a multiple of two, divisions by bn−1 and bn+1 can be done
very fast. n is the number of bits of the modulus. Because of the shifting operations, only
two partial multi-precision multiplications are needed. The complete description can be
found in Algorithm 5. If the values are calculated with an appropriate precision, Line 3 to 6
are not necessary. Then, the running time of the algorithm is independent from the input.

Algorithm 5: Barrett reduction

Input: m, b ≥ 3, k = blog2(m)c+ 1, 0 ≤ a < b2·k, µ = bb2·k/mc
Output: a (mod m)

1 q =
⌊
bz/bk−1c · µ/bk+1

⌋
2 r = (a (mod bk+1))− (q ·m (mod bk+1))
3 if r < 0 then
4 r = r + bk+q

5 while r ≥ m do
6 r = r −m
7 return r

8

2.2.2 Montgomery Multiplication

The algorithm was introduced in 1985 by Peter Montgomery [Mon85]. In contrast to the
Barrett reduction, this algorithm includes the multiplication. Therefore, the input data is
transformed into the Montgomery form, which makes modulo operations easier. Then, one
or more multiplications with an additional Montgomery reduction are performed. Finally,
the result is converted back to normal form. Let R > m and gcd(R,m) = 1, so that the
modulus of R is easy to calculate. Thus, R typically is a multiple of the word size w. To
transform a number a to its Montgomery form ā, it is multiplied with R. Then the result
of the multiplication can be calculated as follows:

a ·R (mod m) · b ·R (mod m) = ā · b̄ = c̄ ·R = c ·RR (3)

As one can see in this equation, the result of the multiplication must be divided by R
to get the Montgomery form. To convert it back to normal form it must be divided a
second time. This division can be replaced by the Montgomery reduction operation. The
complete algorithm can be found in Algorithm 6. Despite of simplified reduction, because
of the additional conversations, this method is generally less efficient than a naive multi-
plication and reduction. This method is only advantageous if a sequence of multiplications
is performed, as instance for modular exponentiation.

2.2.3 Reduction for Pseudo-Mersenne Primes

Mersenne primes are all prime numbers which can be written as 2n − 1, for instance
127 = 27 − 1. However, Pseudo-Mersenne primes are all prime numbers which can be
written as 2n − q, whereby 0 < |q| < 2bn/2c [Sol11].

Assuming the prime number is p = 2255 − 19, then 2256 ≡ 38 (mod p), 2257 = 2 · 2256 ≡
2 · 38 (mod p) and so on. Thus, for this prime number, the reduction of a 512-bit number
c can be done as follows:

c = {c256−511, c0−255} (mod p) ≡ c0−255 + c256−511 · 38 (4)

The result can still be bigger than p. Thus, this step must be repeated twice and finally p
must be subtracted for a complete reduction. This prime is used in Curve25519.

Algorithm 6: Montgomery multiplication

Input: a, b,m,R, β = −N−1 (mod R)
Output: c = a · b (mod m)

1 ā = a ·R (mod N)
2 b̄ = b ·R (mod N)
3 p = ā · b̄
4 c̄ = (p+ (p · β (mod R)) ·m)/R
5 c = (c̄+ (c̄ · β (mod R)) ·m)/R
6 return c

9

It works similar also for more complex prime numbers, as long as their coefficients are
powers of 2. For instance, NIST P-256 uses the modulus p = 2256 − 2224 + 2192 + 296 − 1.
Let c be a 512-bit number, which can be written as c = {c15, ..., c01, c00}, whereby ci are
32-bit numbers. Then reduction of c is defined by [GFD09]

c ≡ c′ (mod p) = s0 + 2 · s1 + 2 · s2 + s3 + s4 − s5 − s6 − s7 − s8, (5)

where si is a 256-bit number and is given by one of following equations.

s0 = {c07, c06, c05, c04, c03, c02, c01, c00}
s1 = {c15, c14, c13, c12, c11, 0, 0, 0}
s2 = { 0, c15, c14, c13, c12, 0, 0, 0}
s3 = {c15, c14, 0, 0, 0, c10, c09, c08}
s4 = {c08, c13, c15, c14, c13, c11, c10, c09}
s5 = {c10, c08, 0, 0, 0, c13, c12, c11}
s6 = {c11, c09, 0, 0, c15, c14, c13, c12}
s7 = {c12, 0, c10, c09, c08, c15, c14, c13}
s8 = {c13, 0, c11, c10, c09, 0, c15, c14}

(6)

2.3 Introduction to Finite Fields

A finite field is also called Galois field and it is a set that contains a finite number of
elements and defines operations addition (denoted by +) and multiplication (denoted by ·)
on these elements. Additionally, it has the following arithmetic properties [HVM04]:

• The result of an operation must also be an element of the group.

• (F,+) is an abelian group with (additive) identity denoted by 0.

• (F \ {0}, ·) is an abelian group with (multiplicative) identity denoted by 1.

• The distributive law holds: (a+ b) · c = a · c+ b · c for all a, b, c ∈ F.

The notation of a finite field is Fpm or GF (pm). Thereby p is a prime number called
the characteristic of the field and m is a positive integer. For every combination of p and
m, there exists a finite field containing pm elements. Moreover, two finite fields with the
same number of elements are isomorphic. If p = 2, it is called binary field (F2m), and if
m = 1, it is called a prime field (Fp).

2.3.1 Prime Fields

A prime field Fp consists of p numbers {0, 1, 2, ...p− 1}. Thereby, additions and multipli-
cations are performed modulo p. This means that if a result r is not within [0, p− 1], it is
reduced so that r ≡ r′ = r − k · p, 0 ≤ r′ ≤ p− 1, where k is an integer.

10

Example 3. Arithmetic operations on prime field F11:

• Addition: 7 + 10 ≡ 6 (mod 11), since 7 + 10 = 17, 17− 1 · 11 = 6

• Subtraction: 7− 10 ≡ 8 (mod 11), since 7− 10 = −3, −3 + 1 · 11 = 8

• Multiplication: 7 · 10 ≡ 4 (mod 11), since 7 · 10 = 70, 70− 6 · 11 = 4

• Inversion: 7−1 ≡ 8 (mod 11), since 7 · 8 = 56, 56− 5 · 11 = 1

2.3.2 Binary Fields

A binary field F2m can be constructed from a polynomial base. Then it can be written as
F2m = {am1 · zm1 + am2 · zm2 + ... + a2 · z2 + a1 · z1 + a0 · z0}. Thereby ai ∈ {0, 1} and
f(z) is an irreducible binary polynomial of degree m. An irreducible polynomial cannot be
factored as a product of two binary polynomials each of degree less than m. On arithmetic
operations each coefficient is calculated separately and modulo 2. Thus, addition and
subtraction lead to the same result and correspond to a boolean XOR operation [HVM04].

To reduce results of multiplication, which are larger than f(x), long division is used.

Example 4. All elements of F24 :

{a3, a2, a1, a0} f(z) {a3, a2, a1, a0} f(z)
0000 0 1000 z3

0001 1 1001 z3 + 1
0010 z 1010 z3 + z
0011 z + 1 1011 z3 + z + 1
0100 z2 1100 z3 + z2

0101 z2 + 1 1101 z3 + z2 + 1
0110 z2 + z 1110 z3 + z2 + z
0111 z2 + z + 1 1111 z3 + z2 + z + 1

Example 5. Arithmetic operation on F24 with f(z) = z4 + z2 + 1:

• Addition: (z3 + z2) + (z3 + z1 + z0) = (z2 + z1 + z0), since 11002 ⊕ 10112 = 01112

• Subtraction: (z3 + z2)− (z3 + z1 + z0) = (z2 + z1 + z0), since 11002 ⊕ 10112 = 01112

• Multiplication : (z3 + z2) · (z3 + z1 + z0) = (z6 + z4 +��z3 + z5 +��z3 + z2) = (z3 + z1),
since the remainder of 11101002 (mod 101012) is 10102

⊕ 10101
0100000
⊕ 10101

001010

• Inversion : (z3 + z2)−1 = (z1 + z0), since (z3 + z2) · (z1 + z0) = (z0)

11

2.4 Field Inversion in Prime Fields

The inverse x of a in Fp is the unique element so that a · x ≡ 1 (mod p). In this section
we present three algorithms which can be used to find the inverse element. Beside the
presented algorithms there exist, for instance, several adaptations of the Euclidean algo-
rithms [Knu05, MVOV96], algorithms using the Chinese reminder theorem [MVOV96], the
almost inverse algorithm [SOOS95] or methods based on Itoh and Tsujiis inversion [IT88].

2.4.1 Extended Euclidean Algorithm

The Extended Euclidean Algorithm can be used to calculate the inverse of numbers in
prime fields. Let a and b be two integers, where a 6= 0, b 6= 0, b ≥ a and b = q · a+ r. Then
the greatest common divisor of a and b is the largest integer d = gcd(a, b) that divides
a and b. Moreover, a and b can be written as a = a′ · d and b = b′ · d. Furthermore,
gcd(a, b) = gcd(b − c · a, a), since b − c · a = b′ · d − c · a′ · d = d · (b′ − c · a′). Combining
the facts that b = q · a + r and gcd(a, b) = gcd(b − c · a, a), it can be concluded that
gcd(a, b) = gcd(r, a), where (r, a) < (a, b). In the Euclidean Algorithm this step is repeated
until one of the factors is zero. Then the other factor must be d, since the result of
gcd(a, b) = gcd(r, a) = ... = gcd(0, d) still must be d. The algorithm determines, because
the values are strictly decreasing. In the following, u and v represent the intermediate
values of gcd(a, b) = gcd(u, v) = d during the calculation.

The Euclidean Algorithm can be extended that it maintains x1, y1, x2, y2 so that a ·
x1 + b · y1 = u and a · x2 + b · y2 = v in each iteration. Remember that the algorithm
determines if u = 0 and v = gcd(a, b). If b is a prime and 0 < a ≤ b, gcd(a, b) = v = 1.
Thus, in the last iteration 1 = a · x2 + b · y2 ≡ a · x2 (mod b), since b · y2 ≡ 0 (mod b). As
a result of a · x2 ≡ 1 (mod b), x2 = a−1 (mod b). Thereby, y1 and y2 are not relevant for
the result. These observations lead to the Extended Euclidean Algorithm, as described in
Algorithm 7 [HVM04]. In the algorithm, we check u 6= 1, because we swap the values of
u and v at the end of the iteration to prepare them for the next iteration. An example to
this algorithm can be found in Example 6.

2.4.2 Binary GCD Algorithm

The disadvantage of Algorithm 7 is that it needs a division in Line 6. In the binary GCD
algorithm this problem is solved by replacing the division by a right shift (division by 2)
and subtraction. The complete description can be found in Algorithm 8. Looking at the
algorithm, it is clear that at the start and the end of each iteration at least one of u and v
are even. Thus, at least one of u and v are divided by two. Therefore, the total number of
iterations is at most 2n, where n is the maximum length of a and b [HVM04]. An example
to this algorithm can be found in Example 7 in the appendix.

12

Algorithm 7: Extended Euclidean algorithm

Input: Prime p, a ∈ [1, p− 1]
Output: a−1 (mod p)

1 u = a
2 v = p
3 x1 = 1
4 x2 = 0
5 while u 6= 1 do
6 q = bv/uc
7 r = v − q · u
8 x = x2 − q · x1

9 v = u
10 u = r
11 x2 = x1

12 x1 = x

13 return x1 (mod p)

2.4.3 Fermat’s Little Theorem

Fermat’s little theorem states that if p is a prime ap ≡ a (mod p) for any integer a. It can
be concluded that if a < p, ap−1 ≡ 1 (mod p) and further ap−2 = ap− 1/a ≡ a−1 [Fer].
Algorithm 9 is a very generic variant using Fermat’s little theorem. It can be optimized
for some special primes, especially for Mersenne or Pseudo-Mersenne primes. Optimized
variants for the implemented curves are discussed in Section 4. An example for an optimized
variant of the algorithm can be found in Example 8. For a random prime number, the
algorithm needs about 3/2 · n multiplications and reductions because on average half of
the bits are one.

13

Algorithm 8: Binary GCD Algorithm

Input: Prime p, a ∈ [1, p− 1]
Output: a−1 (mod p)

1 u = a
2 v = p
3 x1 = 1
4 x2 = 0
5 while v 6= 1 do
6 while u is even do
7 u = u� 1
8 if x1 is odd then
9 x1 = x1 + p //without reduction

10 x1 = x1 � 1

11 while v is even do
12 v = v � 1
13 if x2 is odd then
14 x2 = x2 + p //without reduction

15 x2 = x2 � 1

16 if u ≥ v then
17 u = u− v; x1 = x1 − x2

18 else
19 v = v − u; x2 = x2 − x1

20 return x2 (mod p)

Algorithm 9: Inversion using Fermat’s little theorem

Input: Prime p, n = dlog2(p)e, a ∈ [1, p− 1]
Output: a−1 (modp)

1 q = p− 2
2 r = a
3 for i = n− 2 downto 0 do
4 r = r · r (mod p)
5 if qi = 1 then
6 r = r · a (mod p)

7 return r

14

3 Elliptic Curve Cryptography

Elliptic curves have been studied by mathematicians for several hundred years [Hew05].
Though, their usage for cryptography was first proposed in 1985 by Neal Koblitz [Kob87]
and Victor Miller [Mil86] independently. The advantage of elliptic curve cryptography is
the short key length. For n bits of security, the key in ECC must have a length of at
least 2n while for integer-factorization cryptography (RSA) the key length must be much
longer. Comparing the runtime of software implementations of 256-bit ECC / 3072-bit
RSA security level, ECC is 20 to 60 times faster [Cry04]. Thus, in the last decade elliptic
curve cryptography has become more and more important. Many different elliptic curves
have been defined and several algorithms for point-multiplication have been developed to
improve the speed and the security of the calculations.

In Section 3.1, we will explain the elliptic curve discrete logarithm problem, which is
essential for the security of cryptography based on elliptic curves. Then, in Section 3.2 we
give an overview over three common elliptic curves: the Weierstrass Curve, the Montgomery
Curve, and the twisted Edward’s Curve. Afterwards, in Section 3.3 we explain often
used algorithms for point-multiplication. Common cryptographic protocols using elliptic
curves for key-agreement, encryption, and the creation of digital signature are presented
in Section 3.4. Finally, in Section 3.5, we describe possible attacks and countermeasures.

3.1 The Elliptic Curve Discrete Logarithm Problem

The security of elliptic curve cryptography depends on the hardness of solving the elliptic
curve discrete logarithm problem (ECDLP). This problem is defined as: given an elliptic
curve E defined over a finite field Fq, two points P,Q ∈ E(Fq) find k ∈ [0, n − 1] ∈ N
such that Q = k · P . Then k is called the discrete logarithm of Q to the base P [HVM04].
The most naive way to search k is to compute P, 2P, 3P, ... until the result is Q. The
running time of this algorithm is n/2 on average and n in the worst case. Advanced
attacks have a running time of O(

√
p), where p is the largest prime divisor of n. Therefore,

n should be selected sufficiently large, so that this algorithm requires an infeasible amount
of computation. However, there is no proof that no efficient algorithm for solving the
ECDLP can be found. Nevertheless, the problem has been extensively studied in the last
30 years, but so far no subexponential-time algorithm was found[HVM04].

Table 1 compares the key lengths of integer-factorization cryptography (IFC) with
elliptic curve cryptography (ECC) for several levels of security. One can see that the ratio
between both key lengths decreases with an increasing level of security.

3.2 Elliptic Curves

Elliptic curves are algebraic curves of third order on which a geometrical defined operations
can be performed. In the last thirty years several, different curves have been proposed
for cryptographic usage. Some of them have special properties, which allow to do faster
calculations. Elliptic curves find also application in an integer factorization algorithm of

15

Table 1: Comparing key lengths of IFC and ECC [BBB+12]

Bits of security IFC ECC ECC/IFC
80 1024 160 15,63 %

112 2048 224 10,94 %
128 3072 256 8,33 %
192 7680 384 5,00 %
256 15360 >512 >3,33 %

Lenstra ([LJ87]) and a primality proving algorithm by Goldwasser and Kilian ([GK86]).
In this section we describe the Weierstrass Curve, the Montgomery Curve, and the twisted
Edward Curve. More curves than described in following sections can be found in [BL14].

3.2.1 Weierstrass Curve

An elliptic curve E over a field K is a set of points (x, y) ∈ K×K satisfying the Weierstrass
equation:

y2 + a1 · x · y + a3 · y = x3 + a2 · x2 + a4 · x+ a6, (7)

where a1, a2, a3, a4, a6 ∈ K and the discriminant ∆ must not be zero to ensure that the
curve is smooth. If the characteristic of the field K is not equal to 2 or 3, E can be
transformed to

y2 = x3 + a · x+ b (8)

This variant is called the short Weierstrass form. The discriminant of this curve is ∆ =
16 · (4 · a3 + 27 · b2). Thus, for ∆ 6= 0, 4 · a3 6= 27 · b2 must be fulfilled.

All points satisfying Formula 8 form a group. For being a group, they also have to meet
four properties. First, the result of an operation on one or two points on the curve must
also be an element of the group. Additionally the associative property must hold for all
points ((P +Q) +R = P + (Q+R)). Furthermore, there must be a neutral element O, so
that P +O = P . Finally, for every element P there must exist a negative element −P , so
that P +−P = O.

The group operation is called point addition. The geometrical addition of two points
P + Q = R is done by drawing a line through P and Q. This line intersects with the
curve in a third point, which must be reflected in the x-axis. The result is unambiguous,
because a line can have at most three intersections with an elliptic curve. Formally, the
result of P +Q = R, where P = (x1, y1), Q = (x2, y2), and R = (x3, y3), can be calculated
as follows:

x3 =

(
y2 − y1

x2 − x1

)2

− x1 − x2, y3 =

(
y2 − y1

x2 − x1

)
(x1 − x3)− y1 (9)

This formula cannot be used to calculate P +P = 2P = R, called point doubling. Instead
of the line through two points, for point doubling, the tangent to the curve at that point

16

is used. Therefore, the result can be calculated with following formula:

x3 =

(
3 · x2

1 + a

2 · y1

)2

− 2 · x1, y3 =

(
3 · x2

1 + a

2 · y1

)
(x1 − x3)− y1 (10)

An illustration of the principle behind these two operations can be found in Figure 2.
To complete the properties of the group, the neutral element O must be defined. This
element can be calculated by adding a point to its negative equivalent. However, the line
connecting these two points is vertical. Looking at Formula 8, it is clear that there is no
third intersection with the curve for a vertical line. Therefore, the neutral point is defined
to be infinitely far away and thus is mathematically above every point. As a result, every
vertical line hits the neutral point.

As one can see in Formulas 9 and 10, these calculations need divisions and thus a field
inversion (x

y
= x · y−1). An inversion on a finite field consists of several multiplications

and thus is much more expensive than a single multiplication. Therefore often alternative
formulas are used in which the inversion is traded by some additional multiplications. This
can be done using projective instead of affine point coordinates. In the projective formulas
x and y are substituted by X/Zc and Y/Zd, where c and d are constants and depend on
the used projective coordinate systems. Thus, the divisor of the resulting formulas can be
stored in Z and division is only necessary for conversion back to affine coordinates. The
projective form of the Weierstrass equation is

Y 2 · Z + a1 ·X · Y · Z + a3 · Y · Z2 = X3 + a2 ·X2 · Z + a4 ·X · Z2 + a6 · Z3 (11)

(a) Point addition P +Q (b) Point doubling 2 · P

Figure 2: Arithmetic operations on elliptic curves

17

If the characteristic of the field K is not equal to 2 or 3, E can be transformed to

Y 2 · Z = X3 + a ·X · Z2 + b · Z3. (12)

Comparing this formula with the affine Weierstrass equation in Formula 8, one can see that
they are equal for Z = 1. Thus, the projective point (X : Y : 1) corresponds with the affine
point (x, y). Furthermore, every projective point can be converted to its affine equivalent
by (X : Y : Z) = (X/Zc : Y/Zd : 1) = (x, y). This conversion must be done only if affine
coordinates are needed, typically at the end of the point-multiplication. The values of c
and d depend on the used coordinates systems. For standard projective coordinates, c = 1
and d = 1. Using this representation, the neutral point is at (0 : 1 : 0). Beside standard
projective coordinates there exist other representations. For instance, Jacobian projective
coordinates, where c = 2, d = 3, and O = (1 : 1 : 0). Different representations lead to
different formulas for point addition and doubling. Depending on the implementation, one
representation can be more efficient than others [HVM04].

A plot of an exemplary Weierstrass curve can be found in Figure 3a. The parameters
a = −4, b = 4 for the shown example are chosen in a way, that all values can be represented
by a single curve. It exist also parameters for which the values lie on two distinct curves, for
instance a = −4, b = 3. Then the curve looks similar to the example for the Montgomery
curve in Figure 3b.

3.2.2 Montgomery Curve

Peter L. Montgomery introduced a new elliptic curve in 1987 [Mon87]. The Montgomery
curve is defined by

b · y2 = x3 + a · x2 + x, (13)

where b · (a2 − 4) 6= 0 must be fulfilled. This equation can be transformed to the short
Weierstrass form by dividing it by b3 and substituting x by x/b and y by y/b. Thus, every
Montgomery curve can be mapped to a Weierstrass curve; they are birationally equivalent.

The formulas for point addition are given by

x3 =
b · (y2 − y1)2

(x2 − x1)2
−a−x1−x2, y3 =

(2 · x1 + x2 + a) · (y2 − y1)

(x2 − x1)
− b · (y2 − y1)3

(x2 − x1)3
−y1 (14)

The result of point doubling can be calculated as follows:

x3 =
b · (3 · x2

1 + 2 · a · x1 + 1)2

(2 · b · y1)2
− a− 2 · x1,

y3 =
(3 · x1 + a) · (3 · x2

1 + 2 · a · x1 + 1)

2 · b · y1

− b · (3 · x2
1 + 2 · a · x1 + 1)3

(2 · b · y1)3
− y1

(15)

A point P on this curve can be represented by projective Montgomery coordinates P =
(X : Z), without using Y . Thus, there is no distinction between the affine points (x, y)
and (x,−y), because they are both given by (X : Z). Thus, an implementation using

18

Montgomery coordinates has to store only two instead of three projective coordinates.
Additionally, state of the art formulas using projective coordinates for Montgomery curves
require less arithmetic operations for point addition and point doubling than formulas
for Weierstrass curves [BL14]. Curve25519 uses this type of curve and is discussed in
Section 4.0.5. A plot of an exemplary Montgomery curve can be found in Figure 3b.

3.2.3 Twisted Edwards Curve

Harold Edwards proposed a new elliptic curve in 2007 [Edw07]. It has the following
equation:

x2 + y2 = c2 · (1 + x2 · y2). (16)

Daniel J. Bernstein and Tanja Lange founded its usage in cryptography and pointed out
several advantages compared to the Weierstrass form. They generalized the formula above
to

x2 + y2 = c2 · (1 + d · x2 · y2), (17)

where c · d · (1− d · c4) 6= 0. This form is called twisted Edwards curve and is birationally
equivalent to an elliptic curve in Montgomery form.

The result of a point addition can be calculated by

x3 =
x1 · y2 + y1 · x2

c · (1 + d · x1 · x2 · y1 · y2)
, y3 =

y1 · y2 − x1 · x2

c · (1 + d · x1 · x2 · y1 · y2)
. (18)

The formulas for point doubling are given as

x3 =
2 · x1 · y1 · c
x2

1 + y2
1

, y3 =
(y2

1 − x2
1) · c

2 · c2 − (x2
1 + y2

1)
. (19)

More details and an extensive comparison with other curves can be found in [BL07]. A
plot of an exemplary Edward’s curve can be found in Figure 3c.

3.3 Point-Multiplication Algorithms

Cryptographic algorithms based on elliptic curves typically multiply a point P on the curve
with an integer k. This operation is called point-multiplication or scalar multiplication. To
calculate k ·P , point addition and point doubling operations are used. Since k typically has
more than hundred binary digits (n), the point-multiplication is a computationally very
intensive operation. The number of necessary point operations either is constant for secure
implementations or depends on the number of ones in k. Thus, there exist algorithms
which converts k in an alternative, more convenient representation, for instance the non-
adjacent form (NAF). However, in this section, we present only algorithms we used in our
work. Some more can be found in [HVM04].

19

3.3.1 Binary Method

The most straight forward way to implement point-multiplication is using the binary
method. One of the most common variants is double-and-add. It is shown in Algorithm 10.
Starting with the most significant bit (MSB) of k the intermediate result Q is doubled in
each round. Additionally it adds P to the intermediate result if the bit ki is one. Since the
loop starts at the MSB, this variant is called left-to-right double-and-add. A right-to-left

Algorithm 10: Left-to-right binary method for point-multiplication

Input: k = (kn−1, ..., k1, k0)2, P
Output: kP

1 Q = O
2 for i = n− 1 downto 0 do
3 Q = 2Q
4 if ki = 1 then
5 Q = Q+ P

6 return Q

variant of this algorithm exists too. However, doing it right-to-left requires two variables.
Therefore, the left-to-right variant is more common, because it needs only one variable.

Since on average the number of ones in k is n/2, the expected runtime for this algorithm
is n · (A/2 +D), where A denotes the point addition and D the point doubling operation.
Thereby, P keeps constant during the whole computation. Thus P can be stored in affine
coordinates, while Q is in projective coordinates. Some formulas can take advantage of

(a) Weierstrass curve
(a = −4, b = 4)

(b) Montgomery curve
(a = 4, b = 2)

(c) Edward’s curve
(c = 2)

Figure 3: Comparison of different elliptic curves

20

these mixed coordinates and are faster than pure projective coordinates [HVM04]. To
demonstrate this algorithm, Example 9 uses it for a integer multiplication.

3.3.2 Montgomery’s Method

This algorithm was first proposed by Peter L. Montomery [Mon87] and is also known as the
Montgomery (powering) ladder. Meanwhile there exist various variants of the algorithm.
A basic variant is shown in Algorithm 11. The advantage of this algorithm is that each

Algorithm 11: Montgomery ladder

Input: k = (kn−1, ..., k1, k0)2, P
Output: kP

1 R0 = O
2 R1 = P
3 for i = n− 1 downto 0 do
4 if ki = 1 then
5 R0 = R0 +R1

6 R1 = 2 ·R1

7 else
8 R1 = R0 +R1

9 R0 = 2 ·R0

10 return R0

iteration needs one addition and one doubling independent of the value of k. This makes
Montgomery’s method more resistant against implementation attacks (for more details
see Section 3.5). However, the expected runtime is n · (A + D). Thus it is on average
A · n/2 slower than the binary method. Another advantage is that the point addition and
doubling can be calculated independently. Thus, these Lines 5 and 6 or rather 8 and 9 can
be calculated in parallel to speed up the whole multiplication [JY03]. To demonstrate this
algorithm, Example 10 uses it for a integer multiplication.

3.3.3 Fixed-Base Comb Method

Sometimes P has a predefined value, for instance for the elliptic curve digital signature
algorithm (see section 3.4.2). Therefore, some multiples of P can be precomputed and
stored in a lookup table. As a result, the point-multiplication itself can be accelerated. In
the former methods, P is added to Q, when ki = 1. Here, several bits of k are handled
at once. Therefore, k is sliced into blocks of length w. In the phase of precomputation,
all values of f · P , for 0 ≤ f ≤ 2w − 1 are stored in a lookup table. During the actual
computation, the slices of k are used as index for the lookup table. With this variant, a
speedup of w can be achieved. The runtime is determined by m/w · (A + D). Additional

21

speedup can be achieved, if the values in the lookup table are stored in affine form. Then,
they have a projective representation of (X : Y : 1). Considering, that on Z-coordinate is
1, the formulas for point addition can be optimized. Thus, addition using so called mixed
coordinates, is typically faster than pure projective coordinates [HVM04]. A description of
the fixed-base comb method can be found in Algorithm 12. To demonstrate this algorithm,
Example 11 uses it for a integer multiplication.

Algorithm 12: Fixed-base comb method

Input: Window width w, d = dn/we, k = (kn−1, ..., k1, k0)2, P
Output: kP

1 T = 2P
2 LUT [0] = O
3 LUT [1] = P
4 LUT [2] = T
5 for f = 3 to 2w − 1 do
6 T = T + P
7 LUT [i] = T

8 Q = O
9 for i = d− 1 downto 0 do

10 t = [ki·w+w−1, ..., ki·w]
11 for j = 0 to w − 1 do
12 Q = 2 ·Q
13 Q = Q+ LUT [t]

14 return Q

3.4 Cryptographic Protocols

Cryptographic protocols are based on hard mathematical problems. This section describes
protocols based on the elliptic curve discrete logarithm problem. It can be combined with
the DiffieHellman problem (DHP) to implement a key agreement protocol (ECDH). The
Elliptic Curve Digital Signature Algorithm (ECDSA), which is variant of the Digital Signa-
ture Algorithm (DSA), can be used to generate digital signatures. With the Elliptic Curve
Integrated Encryption Scheme (ECIES), a variant of the ElGamal public-key encryption
scheme, data can be encrypted. In the following we describe these three algorithms.

3.4.1 Elliptic Curve Diffie-Hellman

In cryptography it can be distinguished between symmetric- and asymmetric-key algo-
rithms. In symmetric-key algorithms the same key for both encryption and decryption is
used. Thus, all parties must have access to the same key. Therefore, the key must be

22

transmitted over a secure channel or it is generated with a key agreement protocol. For
such protocols asymmetric-key algorithms are used. They are called asymmetric-key algo-
rithms, because they use two different keys, a private (secret) and a public one. The public
key is used for encryption or to verify a digital signature, while the private key is used for
decryption or to create a digital signature. Therefore, these two keys must be the inverse
of the other somehow. However, it must be very hard to derive the private key from the
public key. Thus, asymmetric-key algorithms are based on hard mathematical problems
like integer factorization or the discrete logarithm. In contrast, symmetric-key algorithms
can use easier algorithms, because the used key is private. Thus, symmetric-key algorithms
are typically faster than asymmetric-key algorithms.

Common key agreement protocols are based on the Diffie-Hellman problem, first pro-
posed by Whitfield Diffie and Martin Hellman [DH76]. The Elliptic Curve Diffie-Hellman
protocol is based on this problem. Therefore, each participant must have an elliptic
curve public-private key pair (d,Q), where Q = d · G and G is a generator. If Al-
ice (dA, QA) wants to establish a shared key with Bob (dB, QB), then both compute
(xd, yd) = d · Q doing a point-multiplication. Then the shared key is xd. This works,
because kA ·QB = dA · dB ·G = dB · dA ·G = dB ·QA [BJS07].

3.4.2 Elliptic Curve Digital Signature Algorithm

To proof the authenticity and integrity of a digital message or document it can be signed
digitally. Therefore, the Elliptic Curve Digital Signature Algorithm can be used. It is
the most widely standardized elliptic curve-based signature scheme, first standardized
in [Ser05]. To create a digital signature of message m the following steps are necessary:

• Calculate h = HASH(m), where HASH is a cryptographic hash function
• Let z be the log2(n) leftmost bits of h
• Select a random integer k from [1, n− 1], where n is the order of G
• Calculate (x1, y1) = k ·G
• Calculate r = x1 (mod n), restart if r = 0
• Calculate s = k−1(z + r · d) (mod n), where d is the private key, restart if s = 0
• The signature consists of the tuple (r, s)

The following steps are necessary to verify a digital signature:

• Verify r and s are integers in [1, n-1]
• Calculate h = HASH(m)
• Let z be the ld(n) leftmost bits of h
• Calculate w = s−1 (mod n)
• Calculate u1 = z · w (mod n), u2 = r · w (mod n)
• Calculate (x1, y1) = u1 ·G+ u2 ·QA

• If r ≡ x1 (mod n), the signature is valid

23

3.4.3 Elliptic Curve Integrated Encryption Scheme

ECIES is an encryption standard ([Ser01]) based on a proposal of Bellare and Rog-
away [ABR99], which is a variant of the ElGamal public-key encryption scheme [ElG85].
The ElGamal encryption scheme has similarities to the Diffie-Hellman key agreement pro-
tocol. ECIES is a hybrid encryption scheme which uses a public-key and a symmetric-key
crypto-system as well. The first key is responsible to encapsulate the second key, which
is used to encrypt the data. Thus, the user must provide an elliptic curve public-private
key pair (d,Q), where Q = d · G and G is a generator. This scheme also provides seman-
tic security, so that it is not possible to reveal information about the plain text from the
content and length of the cipher text. Therefore, ECIES uses a key derivation function
(KDF) and a message authentication code (MAC). A key derivation function can derive a
key with an arbitrary length from an input. A message authentication code can be used
to authenticate a message and allows the detection of message changes. For encryption,
the public key Q of the receiver is used:

• Select a random integer k from [1, n− 1], where n is the order of G

• Calculate (x1, y1) = k ·G, (x2, y2) = h · k ·Q, where h = |E(Fq)|
n

• Calculate the keys k1||k2 = KDF(x2)
• Calculate C = Ek1(m), T = MACk2(C)
• Send (R,C, T)

To decrypt the cipher (R,C, T), the private key d of the receiver must be used, whereby
nobody else can decrypt it:

• Calculate (x2, y2) = h · d ·R
• Calculate the keys k1||k2 = KDF(x2)
• Check if T = MACk2(C)
• Calculate m = Dk1(C)

3.5 Attacks and Countermeasures

Modern cryptographic algorithms are designed in a way that they are secure, even if
the adversary has a complete description of the algorithm, and knows all public keys.
Furthermore, the security must be given if she can read all messages and even if she can
send her own messages. The only thing she does not know is the secret key. Thus, nowadays
an attacker has two possibilities to break the security of such systems. In the first type
of attacks, some additional informations about the system are collected. Therefore she
can use side-channel attacks, fault attacks and probing attacks, which are presented in the
following subsections.

Second, she can use several algorithms to calculate the discrete logarithm of Q =
k · P . The only possibility to prevent such attacks is to use a key with an adequate
length. Some examples are the Pohlig-Hellman algorithm [PH78], Pollard’s rho algorithm
for logarithms [Pol78] and Shanks baby step-giant step algorithm [Sha71]. These algorithms

24

have a runtime ofO(
√
p). Therefore, the key in ECC must be twice as long as the needed bit

security. The current record for the longest broken discrete logarithm is held by Wenger
and Wolfger. They broke a 113-bit elliptic curve in extrapolated 24 days [WW14]. In
future, it may be possible to break much larger keys by using quantum computers. To
break a 256-bit elliptic curve about 1800 qubits are necessary to break them in 6 · 109

1-qubit additions [PZ03]. The actual biggest commercially available quantum computer
D-Wave Two has a 512-qubit CPU [DW14].

3.5.1 Side-Channel Attacks

Side-channel attacks are passive attacks in which the calculation time or physical properties
such as the power consumption or the electro-magnetic emanation of a device are exploited.
These attacks consist of two phases. First, side-channel information is measured. Then,
in the second phase one calculates expected values for a guessed key. These values are
compared with the measured values. If the measured values match the calculated ones,
the guessed key is correct. This technique can only be used if the measured values depend
at least partially on the used secret key [HVM04].

Timing analysis. This method uses the fact that the execution time often depends
on the processed values. It was first published by Paul C. Kocher [Koc96]. With re-
gard to elliptic curve cryptography, an attacker can measure the running time of a point-
multiplication. If the implementation uses the binary method, the runtime depends among
other things on the number of 1s in the key. Additionally, the duration of a reduction after
an integer multiplication may depend on the length of the result and thus on the input
values. Repeated executions with different input but the same key can be used to perform
statistical correlation analysis of timing information to recover the secret key.

To protect against such attacks, the running time of the implementation must be
completely independent of the values of all inputs and keys. Thus, for instance, it is
recommended to use rather Montgomery’s method than the binary method for point-
multiplication. Nonetheless, it is often hard to make an implementation completely time-
invariant, especially if it is a software implementation. This is because the time it takes
to load data from memory depends on if it was recently used and still in the cache or
not. The small time difference between loading data from cache or not can also be used
to reveal the secret. A detailed description for a cache-timing attack against AES can be
found in [Ber05].

Power analysis. In power analysis the attacker measures the power consumption of a
cryptographic hardware device and was first published in 1998 [KJJ99]. Therefore, the
attacker must have physical access to the device. The actual power consumption depends
on the actually executed instruction and data. This is because for different instructions
different parts of the hardware are active. Additionally, the power consumption of a tran-
sistor is higher if it changes its value than if it stays at the same value. Thus, conclusions
on the values can be drawn from the power consumption.

25

In a simple power analysis, information is deduced directly by examining the power
trace from a single execution. With regard to elliptic curve cryptography, an attacker is
able to distinguish between a point doubling and point addition operation. If the binary
method for point-multiplication is used, the key could be directly read from the power
trace, if a typical power profile of both operations is known.

Differential power analysis, exploits the fact that the power consumption is related to
the current values. Since these variations are typically much smaller than those used for
simple power analysis, statistical methods must be used. Therefore, the power trace of
several executions must be collected. Then, the attacker makes iteratively guesses for each
bit of the key and partitions the power traces into two groups according to the predicted
value of the bit. If the guess is correct, the difference in the power consumption between
two groups is larger than for false guesses.

Similar to timing attacks, a countermeasure against this attack is to make the execution
of an algorithm independent from the data. Another countermeasure is to randomize the
intermediate values [Cor99], the register usage, or the instruction execution [MMS01]. For
instance, it is possible to calculate k · (P ·R) and divide it at the end by R to get the result
of the point-multiplication k · P . Another possibility is to use a workflow which reduces
the information leakage through side channels as described in [TV03, TV05].

Electro-magnetic analysis. Electro-magnetic emanations are caused by the flow of
current through a CMOS device and can be collected by placing a sensor close to the
device. Measuring electro-magnetic emanations is more sensitive than measuring the power
consumption. Therefore, the attacker must have very close access to the devices and the
target component must be isolated the other components. The signals of different gates
have different characteristics and thus can be separated and analysed individually. This is
the advantage compared to power analysis, where only the combined power of all active
units can be measured. For measurement typically a coiled copper wire of outer diameters
varying between 150 and 500 microns is placed directly above the target component. Once,
data is recorded, similar methods as for power analysis can be applied to gather secret
information [GMO01].

One possible countermeasure is to make the program execution independent from the
processed data. Furthermore, additional layers of aluminium or copper can be added to
dam the electro-magnetic emanations, because they are not good ferromagnetic metals.
Sensitive parts of the chip can even surrounded with a Faraday cage. There exist also
several technologies with very low power consumption and thus a reduced electro-magnetic
emanation. More details can be found in [QS01].

3.5.2 Fault Attacks and Probing Attacks

In the former presented methods the attacker is passive and uses information the device
provides anyway. The attacks in the techniques described in this section are active. This
means that the adversary must interfere the conditions of execution, the execution itself,
or open the hardware to get information she would not get otherwise.

26

Fault attacks. In contrast to side-channel analysis, in fault attacks the behavior of the
device is influenced. Thereby, a fault is injected intentionally to gain erroneous computation
results. Based on the result, it is possible to reveal information about the secret key. Such
errors may be introduced by an adversary who has physical access to the device [BDL97].

One example is the safe-error attack, which can be applied to implementations achiev-
ing a constant running time with dummy operations. Typically, the result of these dummy
operations has no influence on the real result. Thus, if an error is induced while a par-
ticular operation is executed and the result remains the same, the attacker knows that
that operation was a dummy operation. The binary method for point-multiplication can
be secured against side-channel attacks by doing a dummy point addition when the actual
bit of the key is zero. This variant is called double-and-add-always. If the adversary can
execute this algorithm several times with the same secret key and interfere a single point
addition operation, she can learn the value of a single bit of the key. Doing this for all bits
of the secret key, she can deduce the complete key.

A possible countermeasure is to perform crucial parts redundant on multiple places of
the chip maybe in different ways. It is harder to manipulate several parts of the chip at
once. If the results of the different calculations are different the calculations must have
been manipulated. Then the execution can be stopped. Additionally error-detection codes
can be used. More details can be found in [MSY06].

Probing attacks. While fault attacks try to manipulate the device, probing attacks aim
to spy on intermediate values directly on the chip. Therefore, the attacker places a metal
needle on a wire of interest and measures the value carried along that wire during the
computations. Thus, the chip must be opened to place a probe at the wire. The advantage
of this method is that it allows access directly to the values inside the chip. In return it is
quite expensive.

It is very hard to protect the chip against this kind of attack. One possibility is to
use light-sensitive photodiodes and seismometers to detect if the chip is opened [ABCS06].
Another possibility is to distribute the computations into several areas of the chip, so
that the whole secret is never at one place. Thus, more probes must be performed, which
increases the complexity and costs. A further possibility is to use randomized circuits as
proposed in [ISW03].

27

4 Efficient Implementation of ECC

An elliptic curve is defined by a set of domain parameters. It starts with the underlying
field, which is a prime field for all of our implemented curves. However, all of them use a
different prime p. Furthermore, they use different curve parameters (a, b) or even different
equations. They also use different base points G = (Gx, Gy) as generator.

There is a vast number of ways to calculate point doubling and addition for each
curve. The right choice depends on several properties. For each set of formulas following
characteristics can be defined:

• M ... number of needed multiplications
• S ... number of needed squaring operations
• A ... number of needed additions
• Mx ... number of needed multiplications with the constant x
• R ... number of needed registers

To get a rating of the formulas, these values can be weighted and accumulated. Thereby,
the weights depend on the architecture. For instance, it is possible to do a squaring faster
than a multiplication. Thus, a common weighting is 1S = 0.8M . However, to keep our
implementation as small as possible, we did not implement an extra squaring operation.
Thus, squaring operations are done using multiplication and so 1S = 1M . Additions are
typically much faster than multiplications. Thereby, multiplications with small constants
can be implemented as a series of additions. For a small implementation the number of
registers is also a crucial factor.

In the following sections, we give more details of the three implemented curves and the
used formulas.

4.0.3 Brainpool P256r1

In 2005, the working group ECC-Brainpool has published elliptic curves with 160 up to 512
bits. They chose all parameters pseudo-randomly to prevent attacks against a certain class
of parameters and patent violations. For 256 bits they chose following parameters [LM10]:

• y2 = (x3 + a · x+ b) (mod p) (short Weierstrass curve)
• a = 0x7D5A0975FC2C3057EEF67530417AFFE7FB8055C126DC5C6CE94A4B44F330B5D9

• b = 0x26DC5C6CE94A4B44F330B5D9BBD77CBF958416295CF7E1CE6BCCDC18FF8C07B6

• p = 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377

• Gx = 0x8BD2AEB9CB7E57CB2C4B482FFC81B7AFB9DE27E1E3BD23C23A4453BD9ACE3262

• Gy = 0x547EF835C3DAC4FD97F8461A14611DC9C27745132DED8E545C1D54C72F046997

In our implementation we use the Montgomery’s method for point-multiplication and
point representation with a common Z-coordinate, where x = X/Z, y = Y/Z [HJS11].
The formulas have costs of 11M + 4S + 1Ma + 1M4b + 14A; (7 +X0, Y0)R, where M4b is a
multiplication with 4 · b. For some protocols X0 and Y0 are constant and can be stored in a
ROM instead of register. Therefore, the costs for them are stated explicitly. The explicit

28

formulas to calculate X1′ = X1 +X2, X2′ = 2 ·X2 can be found in Algorithm 13. In the
evaluation this algorithms is referred as CoZ1. To recover the y-coordinate Algorithm 16
must be used after the scalar multiplication. Their costs are 8M + 2S + 1Ma + 1M4b +
8A; (7 +X0, Y0)R.

We also implemented faster variants of these formulas, which need fewer multiplications
but more registers. The variant CoZ2 has costs of 9M+5S+1Ma+1M4b+14A; (8+X0, Y0)R.
For these formulas the same algorithm for recovery can be used as for CoZ1. A full
description can be found in Algorithm 14.

The fastest variant of these formulas reuses results from the former iteration and is
referred as CoZ3. Therefore, additional registers are necessary to store these values. For
the first iteration, these values must be initialized as follows: Ta = a · Z1, T b = 4b · Z2,
and TD = X0 · Z. In return, they need fewer multiplications and have costs of 10M +
5S + 13A; 10R. The according formulas for point doubling and addition can be found in
Algorithm 15. A list of the formulas to recover the y-coordinate is given in Algorithm 17.

4.0.4 NIST P-256

In 2000, the National Institute of Standards and Technology (NIST) has published ellip-
tic curves over prime fields with 192 up to 521 bits. For 256 bits they chose following
parameters [GFD09]:

• y2 = (x3 + a · x+ b) (mod p) (short Weierstrass curve)
• a = -0x3

• b = 0x5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B

• p = 2256− 2224 + 2192 + 296− 1
= 0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff

• Gx = 0xDE2444BEBC8D36E682EDD27E0F271508617519B3221A8FA0B77CAB3989DA97C9

• Gy = 0xC093AE7FF36E5380FC01A5AAD1E66659702DE80F53CEC576B6350B243042A256

Because this curve is the same type as the curve of Brainpool, we use the same formulas
for point doubling and addition. However, the given choice of a and p allows two speed
ups compared to random values. Since p is a Pseudo-Mersenne prime, fast reduction is
possible. The second advantage is that Ma can be done by two additions. As a result the
same formulas as for the Brainpool curve can be implemented faster.

Additionally, we also implemented a variant using the fixed-base comb method. There-
fore we cannot use the same formulas as for Montgomery’s method. The used formulas
can be found in Algorithm 18 and 19. In these formulas the coordinates are represented
as Jacobian coordinates, where x = X/Z2, y = Y/Z3. The values in the look-up table are
stored as affine coordinates, with Z = 1. With this fact the formulas for the addition are
faster than general ones.

4.0.5 Curve25519

In 2006 Daniel J. Berstein proposed Curve25519 based on an elliptic curve with the
Montgomery-Form. It uses [Ber06]:

29

• b · y2 = (x3 + a · x+ x) (mod p) (Montgomery curve)
• a = 0x76d06

• b = 0x1

• p = 2255 − 19
= 0x7fffed

• Gx = 0x9

Compared to the two former curves, the prime of this curve has only 255 bits. This
curve only uses the x-coordinate and the parameters allow fast arithmetic.

In our implementation we optimized the X-coordinate double-and-add formulas, where
x = X/Z given in [Ber06]. They have costs of 5M + 4S + Ma24 + 8A; (6 + X0)R, where
a24 = (a+ 2)/4. The explicit formulas can be found in Algorithm 20.

Since the most efficient formulas for Weierstrass curves use a common Z-coordinate,
we tried to search such a variant for Curve25519. A naive approach to convert the
XZ-coordinates into CoZ representation is to multiply both Z-coordinates and each X-
coordinates with the other Z-coordinate:

X1 = X1 · Z2

X2 = X2 · Z1

Z = Z1 · Z2

(20)

Thus, the naive approach requires three additional multiplications. In return storing the
coordinates requires only three registers. However, our best result needs 8M + 5S+ 1Ma +
7A; (6 + X0)R (see Algorithm 21). Maybe this can be explained by the fact that in the
original formulas only few coefficients are multiplied by both Z1 and Z2, which can be
simplified by Z1 = Z2.

Algorithm 13: CoZ-coordinate double-and-add formulas for short Weierstrass
curves, variant 1 with costs of 11M + 4S + 1Ma + 1M4b + 14A; (7 +X0, Y0)R:
(X1, Z1)′ = (X1, Z1) + (X2, Z2), (X2, Z2)′ = 2 · (X2, Z2), Z = Z1 = Z2

1 R1 = X1 ∗X2;
2 R3 = Z ∗ Z;
3 R4 = Z ∗R3;
4 R2 = R3 ∗ a;
5 R1 = R1 +R2;
6 X1 = X1 +X2;
7 R3 = X1 ∗R1;
8 X1 = X1−X2;
9 X1 = X1−X2;

10 R1 = b4 ∗R4;
11 R4 = X1 ∗X1;

12 X1 = R4 ∗ Z;
13 R3 = R3 +R3;
14 R3 = R3 +R1;
15 Z = X2 ∗R4;
16 R4 = R1 ∗X2;
17 R1 = X2 ∗X2;
18 R2 = R1 +R2;
19 R1 = R1 +R1;
20 X2 = X0 ∗X1;
21 R3 = R3−X2;
22 X2 = R1 ∗R2;

23 X2 = X2 +X2;
24 R2 = R2−R1;
25 R1 = R4 +R4;
26 R4 = X2 +R4;
27 X2 = R2 ∗R2;
28 R1 = X2−R1;
29 X2 = R1 ∗ Z;
30 Z = X1 ∗R4;
31 X1 = R3 ∗R4;

30

Algorithm 14: CoZ-coordinate double-and-add formulas for short Weierstrass
curves, variant 2 with costs of 9M + 5S + 1Ma + 1M4b + 14A; (8 +X0, Y0)R:
(X1, Z1)′ = (X1, Z1) + (X2, Z2), (X2, Z2)′ = 2 · (X2, Z2), Z = Z1 = Z2

1 R2 = Z ∗ Z;
2 R3 = R2 ∗ a;
3 R1 = Z ∗R2;
4 R2 = B4 ∗R1;
5 R1 = X2 ∗X2;
6 R5 = R1−R3;
7 R4 = R5 ∗R5;
8 R1 = R1 +R3;
9 R5 = X2 ∗R1;

10 R5 = R5 +R5;

11 R5 = R5 +R5;
12 R5 = R5 +R2;
13 R1 = R1 +R3;
14 R3 = X1 ∗X1;
15 R1 = R1 +R3;
16 X1 = X1−X2;
17 X2 = X2 +X2;
18 R3 = X2 ∗R2;
19 R4 = R4−R3;
20 R3 = X1 ∗X1;

21 R1 = R1−R3;
22 X1 = X1 +X2;
23 X2 = X1 ∗R1;
24 X2 = X2 +R2;
25 R2 = Z ∗R3;
26 Z = X0 ∗R2;
27 X2 = X2− Z;
28 X1 = R5 ∗X2;
29 X2 = R3 ∗R4;
30 Z = R2 ∗R5;

Algorithm 15: CoZ-coordinate double-and-add formulas for short Weierstrass
curves, variant 3 with costs of 10M + 5S + 13A; 10R:
(X1, Z1)′ = (X1, Z1) + (X2, Z2), (X2, Z2)′ = 2 · (X2, Z2), Z = Z1 = Z2

1 R2 = X1−X2;
2 R1 = R2 ∗R2;
3 R2 = X2 ∗X2;
4 R3 = R2− Ta;
5 R4 = R3 ∗R3;
6 R5 = X2 +X2;
7 R3 = R5 ∗ Tb;
8 R4 = R4−R3;
9 R5 = R5 +R5;

10 R2 = R2 + Ta;

11 R3 = R5 ∗R2;
12 R3 = R3 + Tb;
13 R5 = X1 +X2;
14 R2 = R2 + Ta;
15 R2 = R2−R1;
16 X2 = X1 ∗X1;
17 R2 = R2 +X2;
18 X2 = R5 ∗R2;
19 X2 = X2 + Tb;
20 X1 = R3 ∗X2;

21 X2 = R1 ∗R4;
22 R2 = R1 ∗R3;
23 R3 = R2 ∗ Tb;
24 R4 = R2 ∗R2;
25 R1 = TD ∗R2;
26 R2 = Ta ∗R4;
27 Tb = R3 ∗R4;
28 X1 = X1−R1;
29 TD = R1;
30 Ta = R2;

Algorithm 16: (X, Y,Z)-recovery from CoZ-coordinate for short Weierstrass curve
for variant 1,2 with costs of 8M + 2S + 1Ma + 1M4b + 8A; (7 +X0, Y0)R:
(X, Y, Z)′ = recover(X1, X2, Z)

1 R1 = X0 ∗ Z;
2 R2 = X1−R1;
3 R3 = R2 ∗R2;
4 R4 = R3 ∗X2;
5 R2 = R1 ∗X1;
6 R1 = X1 +R1;
7 X2 = Z ∗ Z;

8 R3 = X2 ∗ a;
9 R2 = R2 +R3;

10 R3 = R2 ∗R1;
11 R3 = R3−R4;
12 R3 = R3 +R3;
13 R1 = Y 0 + Y 0;
14 R1 = R1 +R1;

15 R2 = R1 ∗X1;
16 X1 = R2 ∗X2;
17 R2 = X2 ∗ Z;
18 Z = R2 ∗R1;
19 R4 = B4 ∗R2;
20 X2 = R4 +R3;

31

Algorithm 17: (X, Y,Z)-recovery from CoZ-coordinate for short Weierstrass curve
for variant 1,2 with costs of 10M + 3S + 8A; (9 +X0, Y0)R:
(X, Y, Z)′ = recover(X1, X2, Z, TD, Ta, T b)

1 R1 = TD ∗X1;
2 R2 = R1 + Ta;
3 R3 = X1 + TD;
4 R4 = R2 ∗R3;
5 R3 = X1− TD;
6 R2 = R3 ∗R3;
7 R3 = R2 ∗X2;

8 R4 = R4−R3;
9 R4 = R4 +R4;

10 R4 = R4 + Tb;
11 R2 = TD ∗ TD;
12 R3 = X1 ∗R2;
13 R1 = X0 ∗R3;
14 R3 = yd+ yd;

15 R3 = R3 +R3;
16 X = R3 ∗R1;
17 R1 = R2 ∗ TD;
18 Z = R3 ∗R1;
19 R2 = X0 ∗X0;
20 R3 = R2 ∗X0;
21 Y = R3 ∗R4;

Algorithm 18: Point doubling for short Weierstrass curve where a = −3 in Jacobian
coordinates with costs of 3M + 5S + 26A; 7R:
(X1, Y 1, Z1)′ = 2 · (X1, Y 1, Z1)

1 R1 = Z1 ∗ Z1;
2 R2 = Y 1 ∗ Y 1;
3 R3 = Y 1 + Z1;
4 R4 = R3 ∗R3;
5 R3 = R4−R2;
6 Z1 = R3−R1;
7 R3 = X1−R1;
8 R4 = X1 +R1;
9 R1 = R3 ∗R4;

10 R3 = X1 ∗R2;
11 Y 1 = R1 +R1;
12 R4 = R1 + Y 1;
13 R1 = R4 ∗R4;
14 Y 1 = R3 +R3;
15 X1 = Y 1 + Y 1;
16 Y 1 = X1 +X1;
17 X1 = R1− Y 1;
18 R1 = R3 +R3;

19 R3 = R1 +R1;
20 Y 1 = R3−X1;
21 R1 = R2 ∗R2;
22 R3 = R1 +R1;
23 R1 = R3 +R3;
24 R3 = R1 +R1;
25 R2 = R4 ∗ Y 1;
26 Y 1 = R2−R3;

Algorithm 19: Point addition for short Weierstrass curve with a = −3, Z2 = 1 in
Jacobian coordinate with costs of 7M + 4S + 14A; 7R:
(X1, Y 1, Z1)′ = (X1, Y 1, Z1) + (X2, Y 2, 1)

1 R1 = Z1 ∗ Z1;
2 R4 = Z1 ∗R1;
3 R2 = X2 ∗R1;
4 R3 = Y 2 ∗R4;
5 R4 = R3− Y 1;
6 R4 = R4 +R4;
7 R3 = R2−X1;
8 R2 = Z1 +R3;
9 Z1 = R2 ∗R2;

10 R2 = R3 ∗R3;
11 R1 = Z1−R1;
12 Z1 = R1−R2;
13 R1 = R2 +R2;
14 R2 = R1 +R1;
15 R1 = X1 ∗R2;
16 X1 = R3 ∗R2;
17 R2 = R1 +R1;
18 R3 = Y 1 ∗X1;

19 Y 1 = R3 +R3;
20 R3 = R4 ∗R4;
21 R3 = R3−X1;
22 X1 = R3−R2;
23 R2 = R1−X1;
24 R1 = R4 ∗R2;
25 Y 1 = R1− Y 1;

32

Algorithm 20: X-coordinate double-and-add formulas for Curve25519 where
a24 = (a+ 2)/4 with costs of 5M + 4S + 1Ma24 + 8A; (6 +X0)R:
(X1, Z1)′ = 2 · (X1, Z1), (X2, Z2)′ = (X1, Z1) + (X2 + Z2)

1 R1 = X2 + Z2;
2 X2 = X2− Z2;
3 Z2 = X1 + Z1;
4 X1 = X1− Z1;
5 R1 = R1 ∗X1;
6 X2 = X2 ∗ Z2;

7 Z2 = Z2 ∗ Z2;
8 X1 = X1 ∗X1;
9 R2 = Z2−X1;

10 Z1 = R2 ∗ a24;
11 Z1 = Z1 +X1;
12 Z1 = R2 ∗ Z1;

13 X1 = Z2 ∗X1;
14 Z2 = R1−X2;
15 Z2 = Z2 ∗ Z2;
16 Z2 = Z2 ∗X0;
17 X2 = R1 +X2;
18 X2 = X2 ∗X2;

Algorithm 21: CoZ double-and-add formulas for Curve25519 with costs
of 8M + 5S + 1Ma + 7A; (6 +X0)R:
X1, Z)′ = 2 · (X1, Z), (X2, Z2)′ = (X1, Z1) + (X2 + Z2), Z = Z1 = Z2

1 R1 = Z ∗ Z;
2 R2 = X1 ∗ Z;
3 R3 = X1 ∗X2;
4 X1 = X2 ∗ Z;
5 Z = X2 ∗X2;
6 R3 = R3−R1;
7 X2 = R3 ∗R3;

8 R3 = R2−X1;
9 R2 = R3 ∗R3;

10 R3 = X0 ∗R2;
11 R2 = Z −R1;
12 R1 = Z +R1;
13 Z = R2 ∗R2;
14 R2 = X1 ∗ a;

15 R1 = R1 +R2;
16 R2 = X1 +X1;
17 X1 = R2 +R2;
18 R2 = X1 ∗R1;
19 X1 = X2 ∗R2;
20 X2 = Z ∗R3;
21 Z = R3 ∗R2;

33

5 Efficient 32-Bit Elliptic Curve Processor

Our life becomes more and more digital. Devices like computers and smart phones and
in a near future smart glasses and smart watches are used extensively for communication
and are integrated in our daily routine. Thus, they “know” many things about us, even
things we do not want to share with the world. These devices know private data like
our passwords and have access to our pictures, mails, and bank accounting. Furthermore,
the producers of such devices or the used software try to gather as many information
about us to adapt their products to our habits and requirements, so that we feel more
comfortable with their products. This data must be protected. As a result, all smart
devices must provide some cryptographic primitives. This also applies for smart cards like
debit cards and our Austrian e-cards. Cryptography is not only used to ensure data privacy,
but also to guarantee data integrity, authenticity, or non-repudiation. For instance, after
signing a digital contract, it should be impossible to alter the content. Furthermore, all
contracting partners must be identifiable and must not have any possibility to deny his
signature. However, smart phones and smart cards are devices with a very limited amount
of resources. Their computational power and their power supply as well are limited. Thus,
it is important to implement the cryptographic primitives as efficiently as possible.

In this chapter we present our architecture of an efficient elliptic curve processor. The
given architecture can be also used to implement other cryptographic primitives like hash
functions. Thus, it is possible to implement a complete cryptographic system using this
architecture.

5.1 Related Work

In the last years, several implementations for CPUs, GPUs, microcontroller, and sen-
sor nodes were published. Since they have other restrictions and conditions, we will not
compare our results with them. In our work, we will only compare with other hardware im-
plementations. Most of the published implementations are for 192 bits. Since, the needed
area and running time increase non-linearly with increasing key size, we will furthermore
compare only with hardware implementations of 256-bit elliptic curves. Nonetheless, other
hardware implementations use similar concepts and thus were used as guides for our im-
plementation [OP01, KP06, SBM+06, HFP10, WFF10, WH11, HFW11, WH12].

There are many implementations for field-programmable gate arrays (FPGAs) support-
ing 256-bit elliptic curves. The two most notable implementations are from Verbauwhede
et al. [SDMPV06] and Güneysu and Paar [GP08]. However, FPGA implementations are
quite hard to compare with ASIC implementations. Table 2 gives an overview of ASIC
implementations supporting 256-bit elliptic curves. The table lists the used CMOS tech-
nologies, supported curve types, and the used word sizes. Moreover, it shows the area and
needed cycles, calculation time and power consumption for the point-multiplication of the
implementations. Most of these architectures of these implementations are designed for
high-speed scalar multiplication and most of them also support binary-field curves. Some
of them are compatible with the IEEE 1363 standard (see [iee00]). All listed implemen-

34

tations only support curves using the short Weierstrass equation, thus they cannot run
Curve25519.

Table 2: Hardware implementations of 256-bit elliptic curves

Technology Curves Word size Area Cycles Time Power
[bit] [GE] [ms] [mW]

Satoh [ST03] 0.13-µm any

8 19 935 9 385 000 28,0 n.a
16 25 051 2 711 000 11,6 n.a
32 43 521 880 000 5,4 n.a
64 106 659 340 000 2,7 n.a

Wolkerstorfer [Wol04] 0.35-µm any ∈ GF (p256) 256 14 763 1 175 451 17,2 n.a
Chen [CBC07] 0.13-µm any ∈ GF (p256) n.a 122 000 562 000 1,0 n.a
Lai [LH09] 0.13-µm IEEE 1363 32 197 028 252 067 1,2 n.a
Muthukumar [MJ10] 0.13-µm IEEE 1363 256 184 000 54 568 0,4 68.4

Wolkerstorfer ([Wol04]) implemented an elliptic-curve processor for low area and low
power consumption. His design supports ECDSA signatures, but he did not implement a
hash function and a random number generator. It uses a dual field arithmetic unit and
supports curves from 192 to 256 bits. Arithmetic operations are performed in the Mont-
gomery domain doing bit-serial multiplication with interleaved modular reduction. For
point-multiplication projective Jacobian coordinates are used with Montgomery algorithm
for modular multiplication.

Lai and Huang ([LH09]) use the addition-subtraction (see [WHGH+08]) method for the
point scalar multiplication and Jacobian’s projective coordinates. They store all interme-
diate values in a register file, which consists of seven 256-bit buffers. The arithmetic unit
consists of four parallel 32-bit word-based multipliers and four 64-bit word-based adders.
The controller decomposes the equations into a sequence of atomic operations of single
additions and multiplications. Thereby, the Montgomery algorithm for modular multipli-
cation is used. All curve parameters (a, b, p,G) are input parameters to the arithmetic unit.
To reduce the length of the critical path, the output of the multipliers produce a redundant
carry-save representation. The adders are implemented by two carry-save adders and one
carry-propagation adder (see Section 5.5.1).

In contrast to the other implementations, Chen, Bai, and Chen [CBC07] use a systolic
network for the arithmetic operations. They also use the Montgomery algorithm for mod-
ular multiplication. A scheduling algorithm for modular reduction selects the operations
depending on the values. The systolic network also implements modular division. Thus,
they use affine coordinates instead of projective coordinates.

Muthukumar and Jeevananthan ([MJ10]) use Jacobian’s projective coordinates in their
implementation. Multiplication is done with Montgomery modular multiplication algo-
rithm. The arithmetic unit consists of four parallel and serial 32-bit adders and a 32-bit
multiplier. The 32-bit multiplier internally uses four 16-bit multiplier. All intermediate
values are stored in the register file, which consists of seven 256-bit buffers. They use
a power management scheduler, which controls the power consumption and adjusts the

35

clock frequency when the power consumption reaches a threshold value. This mechanism
controls also the number of active addition units in the arithmetic unit.

The implementation of Satoh and Takano ([ST03]) supports elliptic curves from 160
up to 256 bits in binary and prime fields. Additionally, they can set their word of 8 up
to 64 bits. Their results show that the computation time grows more than quadratically
with the prime size. Additionally, the computation time and needed area strongly depend
on the word size. For the finite-field multiplication Montgomery multiplication and for
squaring Montgomery squaring is used. The point-multiplication is done by using a binary
method. For higher speed, the controller can skip the operations for null bits in the key.
The arithmetic unit consists of a Wallace tree (see [Wal64]) and a carry propagation adder
for multiplication. The memory is divided into two parts to provide both operands of the
multiplication at the same time.

A comparison of different architectures can be found in [TCW+05].

5.2 Architecture Overview

Our goal was to design a small architecture which is still fast and flexible enough to use
different curves. It should be even possible to implement other cryptographic primitives
on the same architecture. To meet these contrary goals, we optimized our architecture
to perform multiple precision multiplications as fast as possible with as few resources as
possible. We decided to use a word size of 32 bits, because the running time for 16 bits
would be four times as long. This is reasonable, because most of the running time is
required for these multiplications. In this section, we describe how we make a tradeoff
between speed and area to create a high efficient implementation which also can be used
for limited devices like RFID chips. Additionally, we describe our machine code programs
for the different curves.

Figure 4 shows a high-level block diagram of our architecture. Our design consists of
three parts: The memory, a controller, and the arithmetic unit. The memory contains a
random access memory (RAM), a read only memory with needed constants (ROM) and
map, which maps the address at the input to the addresses of the RAM and ROM. In the
controller multiple ROMs and counter are used. Furthermore, it contains a call stack and
an optional multiplication controller. The arithmetic logic unit (ALU) consists of an input
buffer to store one or more operands, a rotation logic, several adders, and an accumulator.

5.3 Memory

Our memory consists of a RAM, a ROM, and some logic to map the addresses and swap
pairs of registers. A detailed overlook of the memory can be found in Figure 5.

RAM. In the most arithmetic operations two operands are necessary. Therefore, a mem-
ory with two outputs providing both operands at the same time would be comfortable.
However, a dual-ported RAM needs two address and data busses. Thus it needs more
area than a single-ported RAM. To save area, we only use a single-ported RAM in our

36

Memory

RAM

ROM

Map

Controller
Program Counter Program ROM

Repeat Counter Repeat ROM

Loop Counter Adder-Conf. ROM

Base Address Address ROM

Call Stack

Multiplication
Controller

Instruction
Decoder

ALU

Input
Buffer

Rotation
Logic

Core/Accu
Adder

Accumulator

Figure 4: High-level block diagram of our architecture

architecture. To use still two operands at the same time, the ALU needs an input buffer.
Additionally, the RAM provides the data from requested address at the next clock cycle.
This makes it necessary to fetch data from RAM one cycle in advance. The RAM consists
of R 256-bit registers, which consists of eight separately addressable 32-bit words.

ROM and address map. Since registers are very expensive in terms of area, we tried
to keep their number as low as possible. Thus, all constants like a, b, and p are stored in a
ROM. Nevertheless, it must be possible to access these constants in the same way as values
from the registers to use them in the point operations. Therefore we map the ROM values
in the address space directly behind the registers from the RAM. This makes it necessary
to calculate the address in the ROM from the address. Additionally, a multiplexer is
required to provide either the values from the RAM or the ROM on the output of the
memory. In contrast to a RAM, a ROM provides the data from requested address at the
same clock cycle. To make it behaving like the RAM, the ROM address must be delayed
and the multiplexer on output must switch with a delay of one cycle. Using p during a
reduction, it is clear that this value comes from ROM. To speed up the reduction, we added
the possibility to read data from ROM without the artificial delay described above. This
option can be selected by the rom mode flag. The ROM consists of C 256-bit registers,
which consists of eight separately readable 32-bit words.

Swapping registers. Looking at the Montgomery ladder for point-multiplication (see
Algorithm 11), it is necessary to swap the content of two registers depending on a bit
of the key. Exchanging the values from two registers needs many operations and thus

37

RAM

ROM

Address
Logic

Output
Logic

address

write enable
data in

rom mode
swap1
swap0

data out

RAM

address

ROM

address

RAM

data

ROM

data

Figure 5: Detailed block diagram of the memory

increases the running time noticeably. Thus, we added a swapping functionality to the
address map. This allows to exchange the address mapping of one or two register pairs in
one cycle. From outside, the memory looks as if the registers had swapped their values.
For a constant power consumption it possible to perform a dummy (swap0) instead a real
swapping operation (swap1).

Support for comb method. The Comb Method for point-multiplication uses a look-up
table with precomputed values. Thereby, bits from the key define the index in the table.
Thus, it must be possible to create an address dynamically depending on a certain value.
Therefore, the controller provides the needed index and the address logic uses them to
generate the address for the ROM.

5.4 Controller

Our controller mainly consists of a ROM containing machine code, an instruction decoder
to generate the control signals, a call stack, and some counters to represent the program
flow. Figure 6 gives an overview over the structure of the controller. Compared to the
implementations presented in related work, we do not use scheduling algorithms, but the
sequence of instructions is predetermined.

Program counter and program ROM. Every elliptic curve algorithm is different.
Especially the formulas for point operations and the algorithms for modular arithmetic
differ. Thus, the architecture must be flexible and must allow various algorithms. To
achieve this, the algorithms are not fixed state machines but we use a machine code (see
Section 5.6). This machine code is stored in a program ROM and the program counter
indicates the index of the current instruction. Since the program ROM contains several
hundred instructions and thus is quite complex, it takes a noticeable time that the output
reacts on changes of the input. In addition it takes time for the signals to go through

38

the instruction decoder to the ALU to choose the right values and more time to do the
operations on these values. To reduce this signal running time, the instruction is buffered
and executed in the next cycle. As a result, the program counter points to one instruction
ahead.

Call logic and call stack. Typically, this counter increases by one after executing an
instruction. However, for point-multiplication some operations are repeated in a loop n
times. For this purpose, it also must be possible to set the program counter on a predefined
value instead of incrementing it. This mechanism can be used for calling subroutines as
well. After executing a subroutine, the program must be continued at the instruction after
the one which is called the subroutine. Therefore, this address is stored in the call stack.
In our implementation the call stack consists of a ring buffer to allow calls to the top of a
loop, which will not return without wasting slots. The instructions must be buffered before
they are executed and we use no additional hardware to predict calls. Thus, it needs one
extra cycle to buffer the first instruction of the subroutine after each call. Furthermore,
also after returning from a subroutine the first instruction must be buffered. Therefore,
each call and return cause a delay of one instruction. Table 3 shows an exemplary time
line with a call and return instruction.

Table 3: Example for sequence of executed instruction with delay after CALL and RET

Cycle 1 2 3 4 5 6 7 8 9
PC 0 1 2 3 17 17 18 3 4
ROM[PC] ADD SUB CALL 17 ROL32 MUL RET NOP ROL32 SUB

Instruction ADD SUB CALL 17 MUL RET ROL32

Loop counter and skip logic. The loop for the point-multiplication must be iterated
from LC = n−1 to 0. To leave the loop counter, the value of LC is compared with 0. The
instruction for comparison is followed by the instruction to call the top of the loop again.
Thus, this instruction must be skipped if LC = 0. In this case the program counter must
be increased by two.

Base address and address logic. To reduce the length of the machine code instruc-
tion, it is only possible to address four 256-bit entries in the memory at a time. These four
entries are defined by the base-address in the base-address ROM. To use more registers,
it is possible to change the index of this ROM. This mechanism has the advantage that
subroutines can be called with different base addresses to work on different registers. This
is comparable with parameters in function calls. The entries in the base-address table are
freely configurable to allow all possible necessary combinations of register usage. Addition-
ally, in the Montgomery ladder it is necessary to swap values from registers depending on
kLC . Thus, it must be possible to load the corresponding word from the memory and the
higher bits of the LC are used in the address.

39

Program
Counter Program

ROM
Instruction

Decoder

Mult. Controller Multiplexer

Base Address Logic

Address Logic

Loop Counter

Call Logic

Repeat Logic Skip Logic

Call Stack

ctrl ALU

ram address

Figure 6: Detailed block diagram of the controller

Multiplication controller. As mentioned before, it is only possible to load one value
from memory per cycle. Additionally, the result is first available at the next cycle. This
produces an additional overhead to operations like multiplying two values. Since it is very
important to make multiplications as fast as possible an optional multiplication controller
can be used. This executes a 256-bit multiplication in an optimized way and preloads the
operands for next 32-bit multiplication. In total, the architecture support three different
data flow variants during a 256-bit multiplication. For the first variant, no multiplication
controller is used. Therefore, the loading of the operands, the 32-bit multiplications and
the writing of the results must be written in machine code (see Figure 7a). For the other
variants the multiplication controller does the complete 256-bit multiplication using the
product-scanning algorithm. If a 32-bit multiplication needs at least three cycles, the
controller can use these three cycles to store the previous result and preload the next
operands. For high-speed implementations, the 32-bit multiplication can be done in two
cycles (compare Figure 7b). Then, it is no longer possible to load two operands for each 32-
bit multiplication. Thus, in this case the zigzag product-scanning multiplication algorithm
is used (see Figure 7c). A comparison of this three variants shows that multiplications with
the additional controller needs no intermediate loading phase and thus is much faster. Using
the multiplication controller instead of doing the multiplication with machine code reduces
the code length. However, the additional control logic increases the area of the controller.
Additionally, a multiplexer is necessary to select either the controlling signals from the
multiplication controller or from the main controller. The costs for the multiplication
controller will be discussed more detailed in Section 6.7.

40

(a) Multiplication without multiplication controller within 3 cycles

(b) Multiplication with multiplication controller within 3 cycles

(c) Multiplication with multiplication controller within 2 cycles

Figure 7: Dataflow during 256-bit multiplications

Repeat logic. An additional mechanism to reduce the code length is the repeat logic.
This logic allows to repeat instructions for a constant number of iterations. The number
of iterations can be different for different instructions and is stored in the repeat ROM. If
the repeated instruction is a call of a subroutine, several instructions can be executed in a
loop. This is useful to implement modular inversion with Fermat’s little theorem. If this
algorithm is optimized for a certain prime number, it contains sequences of multiplications
using the same parameters. Those sequences can be implemented with fewer instructions
using the repeat logic.

41

5.5 Arithmetic Logic Unit

We implemented an arithmetic logic unit (ALU), which can be modified by a set of con-
stants. This makes our architecture very flexible and allows to adopt it for different needs.
An overview can be found in Figure 8. In this section, we describe all components of the
ALU and explain two different types of adder.

Input buffer. As mentioned earlier, the input buffer is used to provide both operands
at the same time. This at least includes a register to buffer data in for in B, since the
memory can not provide in A and in B at the same time. For the high-speed variant, this
unit contains four buffers to store both input values for the current and the next operation.

Core adder. This unit consists of several adders, depending on the constant which
defines the number of cycles for a 32-bit multiplication (NUM CY CLES). The adders are
connected in series and shifted by one bit each. This structure allows to use them as a digit-
serial multiplier. More details about their structure can be found in Section 5.5.1. Thus,
it can be used to multiply inB with a (d32/NUM CY CLESe)-bit number. This number
either is one of {in ANUM CY CLES−1, ..., in A1, in A0} or set by the instruction. The former
possibility is used in the 32-bit multiplications, the latter one for other arithmetic and logic
operations. Using the same unit for multiplication and other arithmetic operations reduces
the area.

Accumulator and rotation logic. To use the ALU for multiplication, the partial sums
from the core adder must be summed up. Therefore the value of the accumulator must
be rotated to the right for (d32/NUM CY CLESe) bits, added to the output of the core
adder and stored into the accumulator.

The rotation logic can be used to rotate the value of the accumulator for any other
value. For a 256-bit multiplication the accumulator must be able to store the result of 8

Input
Buffer

Core
Adder

Rotation
Logic

Multiplexer

Accu
Adder

Accumulator
Carry
Unit

data in
data out

in B

in A

accu

Figure 8: Detailed block diagram of the ALU

42

32-bit multiplications. Thus, the size of the accumulator typically is 2 · 32 + 3 bits. When
NUM CY CLES = 2, it is not possible to load two operands for each 32-bit multiplication.
Thus, in this case the proposed zigzag product-scanning multiplication algorithm is used.
Therefore, it is necessary to increase the size of the accumulator to 3 · n + 3 bits. When
doing a 256-bit addition or subtraction, for each 32-bit operation, the carry bit of the
former one must added. This can be achieved by shifting the result 32 bits before adding
the next one. Since the accumulator is circular and allows only rotation, the low part
must be set to zero to achieve the same behavior. In the following, the high 32-bit part of
the accumulator is denoted by ACCU32. This part is used to store the result of a 32-bit
addition, subtraction, or logic operation. If the additional 3 bits for carry should be used,
it is denoted by ACCU35.

Accu-adder and multiplexer. This adder is used to add the result of the core adder
to the accumulator. During a multiplication, the value of the accumulator can be stored
rotated. Thus, this adder must be circular. This means that the highest carry bit is used
as carry in at the least significant bit to guarantee that the addition is performed correctly.
To allow the addition or subtraction of in A and in B it must be possible to use in A
instead of accu in the accu-adder. Thus, a multiplexer is necessary at its second input.

Dynamic logic. It may be necessary to perform logic operations with in A and in B.
Thus, the part of the accu-adder, which has calculated the result for ACCU32, also sup-
ports logic operations. Therefore, we created a dynamic logic circuit which extends the
functionality of a fulladder by OR, XOR, and AND. Table 4 shows the output values of
these functions for all possible input combinations in a and b. A fulladder can be used
to generate the sum and the carry bit of two input bits and an input carry. Section 5.5.1
shows how multi-bit values can be added using fulladders. Figure 9 compares a classic
fulladder with our dynamic logic. The little circles in the figure symbolize an inversion of
the signal. The additional circuit mainly uses NAND-gates which can be built in hardware
especially small. Setting the control signals right, it can be chosen between OR, XOR,
AND, or the functionality of a fulladder. For AND, in B must be inverted.

Table 4: Truth tables of some logic functions and a fulladder

b a OR XOR AND NAND
0 0 0 0 0 1
0 1 1 1 0 1
1 0 1 1 0 1
1 1 1 0 1 0

cin b a sum cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

43

Figure 9: Schematic of a fulladder and a dynamic logic cell

Carry unit. After a 256-bit addition, it depends on the carry bit if the prime number
must be subtracted or not. However, for a secure implementation, in both cases the same
operations must be done. Thus, in one case the prime number is subtracted, in the other
case zero is subtracted using the same instructions. In order to achieve this, the carry bit
is stored in a secure buffer, which will be described below. If carry = 1, the first adder in
the core adder is active and the prime number is subtracted. Otherwise, the first adder is
inactive and nothing is subtracted. The procedure for reduction after a 256-bit subtraction
is similar.

In the NIST-reduction, it is even possible to have two carry bits. Additionally, they
can be positive or negative. Thus, in this case an extended secure buffer with three bits
is used. The overflow buffer can be used in the same way as the carry buffer. Besides, it
is possible to decrement the overflow value depending if it was negative or positive. This
can be achieved with the instruction UPDOF. If the value stored in the overflow buffer is
zero, again the first adder in the adder core is inactive during adding the prime number.
Otherwise, the prime number is added or subtracted, depending if the value in the overflow
buffer is negative or positive.

LC-Bit. In point-multiplication, the operations depend on the key. Thus, it is necessary
to extract one or more bits from the key depending on the loop counter. Therefore the
controller generates the address for the according word from the register holding the key.
This 32-bit word is loaded into the buffer for in B. Then, a multiplexer chooses the bit or
bits respectively depending on the loop counter. These values are used in the controller to
decide if registers must be swapped or not.

Secure buffer. The secure buffer is used to store values which depend on the key and
thus may not leak the device. It has a buffer B1 to store the actual value and a dummy
buffer B2 which changes its value, the value in the real buffer does not change. In this
way in any case one value changes to ensure a constant power consumption. However,

44

the synthesizer removes all elements which have no influence on other parts of the design.
Thus, the output of the B2 must be connected with the output of B1 to avoid that it is
removed. To not influence to output of B1, the output of the B2 is kept constant. Therefore
we use two registers, whereby one of them is one and the other is zero. Thus the result
of connecting them with an XOR-gate is constantly one. For reasons of symmetry B1 also
must consists of two registers. Table 5 shows all possible states and transitions of the
secure buffer. Figure 10 shows the schematic. This buffer is also used to store the carry
and overflow bits.

Table 5: Truth tables of the secure buffer

set B2 B1 B′2 B′1 out′

0 10 01 01 01 0
0 01 01 10 01 0
0 10 10 01 10 0
0 01 10 10 01 0
1 10 01 10 10 1
1 01 01 01 10 1
1 10 10 10 01 1
1 01 10 01 01 1

Figure 10: Schematic of the secure buffer

5.5.1 Core Adder

In our work, we use a 32-bit digit serial multiplication algorithm. As we showed in [WH14],
is the most efficient one in terms of area and power this type of multiplier In this algorithm,
operand b is multiplied with each single bit of operand a. Multiplication with a single bit
is a very simple operation, because the result either can be b or 0. The partial results are
shifted and accumulated. Figure 11 shows the principle behind this algorithm. In a digit-
serial multiplier, NA such 1-bit multiplications are done in parallel, whereby NA stands for

45

“number of additions”. In our architecture NA can be between 2 and 16. For NA parallel
1-bit multiplications NA−1 n-bit adder are necessary to calculate the partial sum and one
2n-bit adder to add it to the intermediate result in the accumulator. In our work, we used
two different structures, which are presented in the following two sections. To keep them
understandable, we pretend that all adders are active. In our implementation some adders
have an additional AND-gate which defines if the adder is active or not.

b

b

b

b

b

b

. .
.

b

sum

×
×
×
×
×
×

×

a0

a1

a2

a3

a4

a5

...
an−1

Figure 11: Principle of digit serial multiplier

Carry-Ripple Adder Chain The easiest way to build an n-bit adder from n full adder
is to connect them in series as shown in Figure 12. This type of adder is called carry-ripple
adder. It can calculate the sum of two n-bit number a, b, and an input carry. The result
including the output carry has n+ 1 bits. To calculate the last bit, the carry bits must be
propagated through all full adders. Since, they need some time to react on changes of the
input, they have some delay d. Thus, the total calculation has a total delay of n · d.

FA FA FA FAcarry in

a0 b0

s0

c0

a1 b1

s1

c1

a2 b2

s2

c2

an−1 bn−1

sn−1

carry out

Figure 12: n-bit carry-ripple adder

Figure 13 shows how we used three such adders in series to build a core adder with
NA = 4. All adders are connected in series, hence the carry must propagate through all
adders. As a result, the ripple-carry adder is quite slow with a total delay of (NA−1) ·n ·d.
In return the layout of such an adder is simple, and thus has a short design time.

Carry-Save Adder Tree To improve the running time for such a big adder, carry-
save adder (CSA) can be used. In contrast to the carry-ripple adder, the carry does not
propagates through all adder instances. This can be achieved by representing the output

46

FA FA FA FA

FA FA FA FA

FA FA FA FAb0

carry in

b1 b0 b2 b1 b3 b2 0 bn−1

b0 b0 bn−2 0 bn−1

b0 bn−3 bn−2 0 bn−1

s0 s1 s2 s3 sn−1 sn sn+1

carry out

Figure 13: n-bit ripple adder

of each adder as a 2-bit number. Therefore the fulladders are disjoint and consume three
input bits and a 2-bit output. This representation is used until the final result is needed.
Figure 14 shows an n-bit carry-save adder [WE93]. The delay of this adder is d.

FA FA FA FAcarry in

c′0

c0 a0 b0

s0 c′1

c1 a1 b1

s1 c′2

c2 a2 b2

s2 c′n−1

c3 an−1 bn−1

sn−1

carry out

Figure 14: n-bit carry-safe adder

For the core-adder, we use NA− 1 CSA and connect them in a tree structure to reduce
the longest path. Figure 13 shows how we built a core adder with NA = 4. Only the
final adder uses the carry-ripple mode to convert the 2-bit representation from the CSA to
normal binary representation. The advantage of this structure is the short delay of about
2 · log2(NA) + n. In return, due to the irregular structure it is harder to design.

5.6 Machine Code

All instructions have nine bits, which results in 29 = 512 possibilities. Nevertheless, we
have not implemented 512 different instructions. We provide two types of instructions:
instructions without address and instructions with an address. Thereby the length of the
address can be up to six bits.

If instructions are especially often used before operations which require values from
memory, it is useful to load these values during these instructions. Thereby, two bits of

47

FA

FA FAFA

FA FA FAFAFAFA FAcarry in carry in

b0 0 b1 b2 bn−1 0bn−2 bn−1

b2 b1 b0 bn−2 bn−3bn−1

b3 b2 b1

b0

s0 s1 s2 s3 s4 s5 s6

Figure 15: n-bit ripple adder

the machine code specify the address from the base address entry. Additionally, three bits
define which 32-bit word from the 256-bit value should be loaded from the memory. Thus,
in this case five bits are reserved for the address. This reduces the number of possible
instructions, but improves speed because values can be loaded for the next instruction.
In other instructions, the address can also define the index of one of the ROMs in the
controller. For instance, the address at the instruction REPEAT defines the index of the
repeat constant in the repeat ROM.

Tables 6 and 7 list all implemented instructions. Their first column shows the instruc-
tion name and a possible address parameter. To improve the readability, we write for
instance simply RC instead “the value of the repeat ROM at the index RC”. A descrip-
tion of the instruction can be found in the last column. Table 6 has an additional column
with the maximal address size.

In the following we make remarks to the notation and some special instructions. The
structure of the adder chain allows to add or subtract multiples of inB to inA or the
accumulator. Thereby, the active adder can be selected by the parameter AS. To determine
the LC-bit, it is necessary to load the word containing it from the memory, which can be
done with the instruction FLC. For multi-precision subtraction it is important that all high
bits share the value of the sign. The high bits are stored in the low part of the accumulator.
To set them to the correct value after rotation, the instruction SETSGN can be used. To
use MUL256, the multiplication controller must be added to the design. The result of
the 256-bit multiplication has 512 bits. The low half of this results is stored in the third
register defined by the base address (BA[2]), the high half is stored in the fourth register
(BA[3]). As operand registers one (BA[0]) and two (BA[1]) are used.

5.7 Machine Programs of Point-Multiplication

We implemented the point-multiplication in various ways, but all machine programs consist
of four parts: initialization, a loop for the point multiplication, modular inversion in the

48

Table 6: List of instructions with address

Mnemonic Max. address Description

NOP A 32 fetches word with address A from memory
FLC A 32 fetches A[LC] from memory
ROL32 A 32 rotates ACCU 32 bits to left, fetches address A from memory
BUFALU A 32 loads A (must be in ROM) directly into input buffer
BUF A 32 save current output of memory into input buffer, fetches A
RST A 32 resets the complete ACCU, fetches A
RSTL A 32 resets the low part of the ACCU, fetches A
SETSGN A 32 sets the low part of the ACCU to current sign, fetches A
WR A 32 writes low part of the ACCU into the memory at address A
WRROR A 32 writes ACCU32 to A, rotates ACCU (32−NA) bits to the right
ADD AS 8 calculates inA + inB·AS
ADDC AS 8 calculates inA + inB·AS + carry
SUB AS 8 calculates inA – inB·AS
SUBC AS 8 calculates inA – inB·AS + carry
ADDAE AS 8 calculates ACCU32 + inB·AS
SUBAE AS 8 calculates ACCU32 – inB·AS
SUBH AS 8 calculates ACCU35 – inB·AS
CALL CT 16 sets program counter to CT
SETBA BA 64 sets base address to BA
CMPI SC 4 skips next instruction when LC-bit = SC, increments LC
CMPD SC 4 skips next instruction when LC-bit = SC, decrements LC
REPEAT RC 16 repeats following instruction RC times

finite-field, and subroutines for modular arithmetic. Several machine code examples can
be found in the Appendix B.

For all programs, we varied the number of cycles for the multiplication from two to
sixteen. Additionally, we implemented all of them with and without multiplication con-
troller. This controller needs additional area, but the 256-bit multiplication needs fewer
cycles and must not be written in machine code. This saves 209 instructions and thus
area for a smaller program ROM. Using a multiplication controller, the machine code on
average has a total length of 647 instructions. Thereby, the length of the machine code
strongly depends on the reduction algorithm. For Brainpool P256r1, more than the half
of the machine code is used for the code to perform the reductions after multiplication,
addition, and subtraction. Another quarter of the code defines the arithmetic operations
itself. The rest is the code for the initialization and the loop for the point-multiplication.
If the multiplication controller is not used, it needs only a small area to control the 32-bit
multiplication. Not every implementation needs the whole instruction set. To safe area,
the parts for the unused instructions are removed from the design by the synthesizer.

49

Table 7: List of instructions without address

Mnemonic Description

ROL8 rotates ACCU NA bits to left
ROR8 rotates ACCU NA bits to right
ROL16 rotates ACCU (32− 2 ·NA) bits to left
ROL24 rotates ACCU (32−NA) bits to left
ROR24 rotates ACCU (32−NA) bits to right
SUBACC calculates inB – ACCU32
LDCOMB load the needed comb-constant from the ROM
RED calculates inA±inB depending on overflow
REDC calculates inA±inB + carry depending on overflow
AND calculates inA AND not inB
OR calculates inA OR inB
XOR calculates inA XOR inB
MUL calculates ACCU + inA·inB
MULNEG calculates ACCU – inA·inB
MUL256 256-bit multiplication ({BA[3]BA[2]} = BA[0]·BA[1])
RET sets program counter to top value of call stack + 1
INCBA increments base address
DECBA decrements base address
SWAP0 swap state becomes 0, register are no longer swapped
SWAP1 swap state becomes 1, register are swapped
SWAPLC swap state is XORed with LC-bit
SKIPB skips next instruction when LC-bit = 1
INCLC increments LC
DECLC decrements LC
HLT stops execution
SAVEC saves carry
SAVECI saves inverted carry
SAVECX saves old carry XORed with actual carry
SAVEOF saves overflow
UPDOF updates overflow

Initialization. The first part of the programs initializes the memory with values like
0, 1, P, or2P , depending on the curve and the used algorithm. For Curve25519 it is also nec-
essary to perform masking operations on the key. In total the initialization for Curve25519
needs 77 instructions and cycles. For NIST P256 and Brainpool P256r1 it is necessary to
calculate 2P doing a point addition. Therefore, the initialization for these curves includes
several calls of subroutines and need much longer, but still less than one percent of the
total running time.

Loop for point-multiplication. We designed our implementation in a way to protect
it against basic cryptographic attacks. Therefore, it is most important to choose the right

50

Table 8: Costs of implemented formulas

Curve Algorithm Costs
Brainpool, CoZ1 - diff. dbl & add [HJS11] 11M + 4S + 1Ma + 1M4b + 14A; (7 +X0, Y0)R
NIST CoZ2 - diff. dbl & add [HJS11] 9M + 5S + 1Ma + 1M4b + 14A; (8 +X0, Y0)R

CoZ3 - diff. dbl & add [HJS11] 10M + 5S + 13A; 10R
Curve25519 XZ - diff. dbl & add (Sec.4.0.5) 5M + 4S + 1Ma24 + 8A; (6 +X0)R
Brainpool, CoZ1, CoZ2 - Y-recovery [HJS11] 8M + 2S + 1Ma + 1M4b + 8A; (7 +X0, Y0)R
NIST CoZ3 - Y-recovery [HJS11] 10M + 3S + 8A; (9 +X0, Y0)R

NIST
COMB - double [BL14] 3M + 5S + 26A; 7R
COMB - add [BL14] 7M + 4S + 14A; 7R

algorithms, the algorithms must need the same time for any input. In our programs, we use
the Montgomery ladder. To see how much the point-multiplication could be sped up we
also implemented a modified comb method. We had to modify the comb method, because
for the used formulas no neutral element O exists. Thus, we use a dummy variable Q0 when
we should add O when t = 0. In our modified comb method is shown in Algorithm 22.
The protection is not perfect, but his algorithm is only used to see how fast the point-
multiplication could be.

Both, the Montgomery ladder and the modified comb method, need a loop to iterate
over all bits of the key. In this loop we implement the formulas for the point addition
and doubling operations. Therefore, it calls the subroutines for modular arithmetic several
times with different base addresses. This loop causes about 90 percent of the total running
time. A comparison of the costs of the implemented formulas can be found in Table 8. We
need one register to store the high half of the 256-bit multiplications, additionally to the
listed number of registers.

Modular inversion in the finite-field. After calculating the result in projective co-
ordinates, it must be converted back to affine coordinates. Therefore, the inverse of the
Z-coordinate must be calculated. For the calculation, we use Fermat’s little theorem. This
can be implemented by iterating over all bits of p − 2, where p is the prime of the curve
and causes almost ten percent of the running time.

Subroutines for modular arithmetic The previous parts of the programs need mod-
ular addition, subtraction and multiplication. These functions are written in subroutines.
So, they can be called with different base addresses to operate on different entries in the
memory. The instructions for these functions are responsible for a major part of the pro-
gram size. Thereby, the length depends heavily on the used reduction algorithms. The
reductions for Curve25519 and NIST P256 fast reduction methods can be applied, Brain-
pool P256r1 requires a Barrett reduction after the multiplication. A detailed comparison
of the costs for reduction can be found in Section 6.7.

It is important to mention, that all reduction algorithms are performed in constant
time. To reduce the result of an addition or subtraction the prime number must be add

51

Algorithm 22: Modified Fixed-base comb method

Input: Window width w, d = dt/we, k = (kt−1, ..., k1, k0)2, P
Output: kP

1 T = 2P
2 LUT [0] = P
3 LUT [1] = P
4 LUT [2] = T
5 for f = 3 to 2w − 1 do
6 T = T + P
7 LUT [i] = T

8 Q0 = P
9 Q1 = LUT [kd·w−1, ..., k(d−1)·w]

10 for i = d− 2 downto 0 do
11 t = [ki·w+w−1, ..., ki·w]
12 for j = 0 to w − 1 do
13 Q1 = 2 ·Q1

14 if t = 0 then
15 Q0 = Q0 + LUT [t]

16 else
17 Q1 = Q1 + LUT [t]

18 return Q1

or subtract only if the result is negative or higher than the prime number. Otherwise we
do the same operations, but without subtracting or adding the prime number. This can
be achieved by storing the carry bit and disabling all adders depending on this bit.

52

6 Implementation Results

In this chapter, we compare different implementations of elliptic curve cryptography with
a 128-bit security. For a fair comparison, we created a generic platform and used the same
tools and workflow for all variants.

The first section describes the setup of our evaluation. In the Sections 6.2 to 6.4,
we present the results in time, area and power of the three curves separately. Then, in
Section 6.5, we compare these results with each other. In Section 6.6, compare our results
with the implementations presented in the related work (see Section 5.1). Finally, in
Section 6.7, we evaluate the costs of several components of the implementations.

6.1 Evaluation Setup

Table 9 explains the used abbreviations in this section. In our work, we implemented
the finite field inversion using Fermat’s little Theorem. As mentioned in Section 2.4.3,
the algorithm can be optimized for Pseudo-Mersenne primes as used by NIST P256 and
Curve25519. To evaluate the impact of the optimization on performance we implemented
the inversion in three variants. First variant is the unoptimized variant as shown in Al-
gorithm 9. For the second variant (FI1), we list the necessary multiplications for the
optimized variant in the machine code without a loop. Since, for Curve25519 this contains
up to 99 identical multiplications in a row, in the third variant (FI2), we do some loops to
reduce the length of the machine code. The list does not show the value of all parts of the
design. Thus, the sum for the ALU, controller, and memory are not only the sum of the
listed values but the actual total area. For the evaluation we stored a fixed base point in
the ROM and a variable key in the RAM.

Many systems already have a RAM and thus no additional costs would arise. If a
system does not have a RAM, it could be implemented with standard cells or RAM macros.
Thereby, the total area does not include the area for the RAM. Thus, we have not added
the area for the RAM to the total area of the design. However, a standard-cell-based RAM
is considered for the evaluation of the total power consumption.

The hardware results were generated for a frequency of 1 MHz using the following tools:

• Faraday UMC 0.13um 1.2V/3.3V 1P8M LL Logic Process (5.12µm2/GE) [Far03]

• Cadence R© Encounter RTL Compiler v08.10-s238 1

• Cadence R© First Encounter 08.10-s273 1 (64 bit)

6.2 NIST P-256

For the NIST curve, we implemented the Montgomery ladder and a fixed-base comb
method. The implementations using the comb method need a larger ROM to store the
precalculated values. Additionally, more registers are necessary to store the X-, Y-, Z-
coordinates of the point coordinates of the dummy value. Moreover, four temporary
registers and one register to store the high half of the result of the multiplication are

53

Table 9: Abbreviations

• Alg. . . . used algorithm
• MC . . . number of cycles for 32-bit multiplication
• FM . . . 1 if MUL256 is used
• FI . . . 1 or 2 if fast inversion is used
• CS . . . comb size
• Cycles . . . number of total cycles for point-multiplication
• RAM . . . area for RAM [GE]
• ROM . . . area for ROM [GE]
• MCtrl . . . area for memory controller [GE]
• Map . . . area for address map [GE]
• Mem . . . total area for memory without RAM [GE]
• Buffer . . . area for input buffer
• Adder . . . area for core and accu adder [GE]
• Rot . . . area for rotation logic [GE]
• Accu . . . area for accumulator [GE]
• ALU . . . total area for ALU [GE]
• PROM . . . area for program ROM [GE]
• Mult . . . area for multiplication controller [GE]
• Ctrl . . . total area for controller [GE]
• Total . . . total area for the ECC-core without RAM [GE]
• P-Mem . . . power consumption of memory [nW]
• P-ALU . . . power consumption of ALU [nW]
• P-Ctrl . . . power consumption of the controller [nW]
• P-Total . . . total power consumption of the ECC-core [nW]
• At . . . area-time product (area without RAM) [GE / 109]
• AtP . . . area-time-power product (area without RAM) [GE nW / 1012]
• Ins . . . number of required instructions in machine code

necessary. COMB2 handles two bits of the key per iteration, COMB4 even four bits per
iteration. Thus, COMB2 stores four and COMB4 sixteen precalculated values as X- and
Y-coordinates each. In return fewer point additions are necessary, because only one is done
per iteration. COMB2 needs only half of point additions, COMB4 even only a quarter.

Table 10 shows all values of the implementations using the Montgomery ladder, Ta-
ble 11 contains the values of the implementations using the comb method. The smallest
implementation uses CoZ1 and requires 16 cycles for a multiplication without a multi-
plication controller. The fastest design with Montgomery’s method uses CoZ3, but only
requires two cycles for multiplication and uses a multiplication controller. It is more than
three times faster but needs 80% more area than the smallest implementation. The power
consumption is 125% higher. The fastest implementation using the comb method is even
18% faster than the fastest variant using the Montgomery ladder. Additionally, it needs

54

17% more area, but the power consumption is reduced by 38%. The implementation which
uses CoZ1 and a multiplication controller calculating 32-bit multiplications in four cycles
has the lowest power consumption has . Looking at the At and AtP metrics, implementa-
tions which need three cycles for a multiplication are the best. Thus, for NIST curves it
seems to be most efficient to do multiplication 3, 4, or 8 cycles using ten adder in the core
adder. Thereby, the design with MC = 3 and CoZ1 has the best AtP product.

6.3 Brainpool P256r1

For the Brainpool curve we only used the Montgomery ladder for point-multiplication since
the speedup with the comb method is similar as for the NIST curves. Table 12 shows all
results. The smallest implementation uses CoZ3, needs 16 cycles, a 32-bit multiplication
and does not use a multiplication controller. The fastest design is 354% faster but needs
only 66% more area. This design only needs two cycles for a 32-bit multiplication, uses a
multiplication controller and CoZ3. Looking at the At and AtP metrics, implementations
which need two cycles for a multiplication are the best. The design which uses CoZ3 and a
multiplication controller doing 32-bit multiplications in eight cycles has the smallest power
consumption.

6.4 Curve25519

For Curve25519 we implemented only one formula for point-multiplication but used three
different methods for integer inversion. The first is used identically for the other curves, the
second one uses an optimized algorithm without loops, and the third variant uses loops in
the machine code for the optimized variant. The fastest variant with fast inversion is seven
percent faster than the same variant without fast inversion. This variant only needs five
percent more area for the longer machine code but needs even five percent less power due
to the shorter runtime. The variants using the optimized algorithm with loop counter have
a shorter machine code but need some additional cycles caused by the loop. Additionally
we implemented some of the variants with carry-save adder instead of carry-ripple adder.
These implementations need at maximum only 80 GEs more area. Also the difference in
the power consumption is below two percent.

For the reduction, in Curve25519, the high bits must be multiplied with 36 as described
in Section 2.2.3. This only can be done in one step if at least six adders are used. Thus,
for the small design more steps are necessary and the runtime increases disproportionately.
The implementation with the lowest power consumption does not use fast inversion and
multiplication controller and needs two cycles for a 32-bit multiplication. The smallest
implementation is very similar but needs sixteen cycles for a 32-bit multiplication. The
fastest implementation is completely contrary. It uses the fast inversion without loops and
a multiplication controller which needs two cycles per multiplication. This design also has
the best rating at the AtP metric. The design with the best value at the At metric uses
the fast inversion with loops and needs three cycles for a multiplication.

55

Table 10: All results for NIST P256 using the Montgomery ladder
Alg. MC FM Cycles RAM ROM MCtrl Map Mem Buffer Adder Rot Accu ALU

CoZ1

2 2867899 18286 304 164 45 512 226 3888 546 472 5601
3 3171003 18286 304 164 45 512 226 2775 487 472 4383
4 3474107 18286 304 164 45 512 226 2115 384 472 3619
8 4686523 18286 304 164 45 512 226 1235 384 472 2739

16 7111355 18286 304 164 45 512 226 792 384 472 2296

CoZ1

2

1

2228539 18277 304 164 45 513 1191 4064 806 698 7343
3 2498491 18277 304 164 45 513 1191 2775 487 472 5348
4 2801595 18277 304 164 45 513 1191 2115 384 472 4584
8 4014011 18277 304 164 45 513 1191 1235 384 472 3704

16 6438843 18277 304 164 45 513 1191 792 384 472 3261

CoZ2

2 2729689 20200 304 162 45 511 226 3888 546 472 5601
3 3016473 20200 304 162 45 511 226 2775 487 472 4383
4 3303257 20200 304 162 45 511 226 2115 384 472 3619
8 4450393 20200 304 162 45 511 226 1235 384 472 2739

16 6744665 20200 304 162 45 511 226 792 384 472 3039

CoZ2

2

1

2129235 20200 304 162 42 508 821 4064 806 698 6973
3 2384652 20200 304 162 42 508 821 2775 487 472 4978
4 2671436 20200 304 162 42 508 1119 2115 384 472 4512
8 3818572 20200 304 162 42 508 1119 1235 384 472 3632

16 6112844 20200 304 162 42 508 1119 792 253 472 3189

CoZ3

2 2595499 24439 304 157 45 506 226 3888 546 472 5601
3 2866347 24439 304 157 45 506 226 2775 487 472 4383
4 3137195 24439 304 157 45 506 226 2115 384 472 3619
8 4220587 24439 304 157 45 506 226 1235 384 472 2739

16 6387371 24439 304 157 45 506 226 792 384 472 2296

CoZ3

2

1

2024179 24197 304 157 45 506 1191 4064 806 698 7344
3 2265403 24197 304 157 45 506 1191 2775 487 472 5348
4 2536251 24197 304 157 45 506 1191 2115 384 472 4584
8 3619643 24197 304 157 45 506 1191 1235 384 472 3704

16 5786427 24197 304 157 45 506 1191 792 384 472 3261

Alg. MC FM PROM Mult Ctrl Total P-Mem P-ALU P-Ctrl P-Total At AtP

CoZ1

2 1476 309 3022 9136 50237 4917 47184 102338 26,2 2681
3 1476 348 3066 7962 48157 4976 84886 138019 25,2 3478
4 1476 342 3060 7191 48157 4900 84584 137641 25,0 3441
8 1476 354 3068 6320 58671 4157 71049 133877 29,6 3963

16 1476 362 3074 5883 37539 4200 79208 120947 41,8 5056

CoZ1

2

1

1003 354 2621 10477 49614 91976 44740 186330 23,3 4341
3 1003 379 2640 8501 31981 22271 25445 79697 21,2 1690
4 1003 366 2628 7725 31981 21385 25460 78826 21,6 1703
8 1003 389 2655 6872 49114 33623 32865 115602 27,6 3191

16 1003 394 2660 6434 49998 44574 38079 132651 41,4 5492

CoZ2

2 1413 309 2986 9097 62414 3968 88782 155164 24,8 3848
3 1413 348 3026 7919 50676 4794 65350 120820 23,9 2888
4 1413 342 3019 7149 50668 4717 65131 120516 23,6 2844
8 1413 354 3035 6284 59973 4817 97290 162080 28,0 4538

16 1413 362 3039 6588 41564 6723 66012 114299 44,4 5075

CoZ2

2

1

922 361 2537 10018 63506 16578 59474 139558 21,3 2973
3 922 363 2534 8020 36295 55535 29474 121304 19,1 2317
4 922 366 2533 7553 39395 14852 49107 103354 20,2 2088
8 922 392 2569 6709 62411 16585 65772 144768 25,6 3706

16 922 395 2568 6264 56807 19786 52427 129020 38,3 4941

CoZ3

2 1631 309 3214 9321 72861 43487 99320 215668 24,2 5219
3 1631 348 3254 8143 67228 21577 123722 212527 23,3 4952
4 1631 342 3247 7372 67227 9883 122598 199708 23,1 4613
8 1631 354 3265 6510 52474 10553 53622 116649 27,5 3208

16 1631 362 3273 6075 79339 4580 86098 170017 38,8 6597

CoZ3

2

1

1054 354 2706 10556 66678 146985 59121 272784 21,4 5838
3 1054 379 2729 8583 52629 27696 65904 146229 19,4 2837
4 1054 366 2717 7806 52628 27094 65984 145706 19,8 2885
8 1054 389 2738 6948 67384 44837 57790 170011 25,1 4267

16 1054 394 2744 6511 42232 23713 43129 109074 37,7 4112

56

Table 11: All results for NIST P256 using comb method
CS MC FM Cycles RAM ROM MCtrl Map Mem Buffer Adder Rot Accu ALU

2

2 2606336 24439 628 171 42 845 226 3888 546 472 5596
3 2850496 24439 628 171 42 845 226 2775 487 472 4378
4 3094656 24439 628 171 42 845 226 2115 384 472 3613
8 4071296 24439 628 171 42 845 226 1235 384 472 2734

16 6024576 24439 628 171 42 845 226 792 384 472 2291

2

2

1

2095126 24439 629 171 42 845 821 4064 806 698 6969
3 2312581 24439 629 171 42 845 821 2775 487 472 4973
4 2556741 24439 629 171 42 845 1119 2115 384 472 4507
8 3533381 24439 628 171 42 845 1119 1235 384 472 3627

16 5486661 24439 628 171 42 845 1119 792 384 472 3184

4

2 2133128 24439 2257 203 42 2510 226 3888 546 472 5647
3 2331208 24439 2256 203 42 2510 226 2775 487 472 4429
4 2529288 24439 2256 203 42 2510 226 2115 384 472 3665
8 3321608 24439 2257 202 42 2510 226 1235 384 472 2785

16 4906248 24439 2259 202 42 2512 226 792 384 226 2342

4

2

1

1718398 24439 2257 204 42 2512 821 4064 806 698 7020
3 1894813 24439 2256 203 42 2510 821 2775 487 472 5024
4 2092893 24439 2257 203 42 2511 1119 2115 384 472 4558
8 2885213 24439 2256 202 42 2509 1119 1235 384 472 3678

16 4469853 24439 2259 202 42 2512 1119 792 384 472 3235

CS MC FM PROM Mult Ctrl Total P-Mem P-ALU P-Ctrl P-Total At AtP

2

2 1585 326 3222 9663 87376 4547 33673 125596 25,2 3165
3 1585 351 3247 8470 73456 4988 43180 121624 24,1 2931
4 1585 341 3237 7696 73446 4912 42974 121332 23,8 2888
8 1585 356 3247 6826 97190 3693 68987 169870 27,8 4722

16 1585 371 3267 6403 99123 4747 56575 160445 38,6 6193

2

2

1

1096 361 2775 10589 104199 23030 66887 194116 22,2 4309
3 1096 341 2752 8570 89509 93029 83708 266246 19,8 5272
4 1096 351 2763 8115 68466 17742 53591 139799 20,7 2894
8 1096 362 2773 7245 72178 18203 14026 104407 25,6 2673

16 1096 375 2785 6814 92493 29880 80162 202535 37,4 7575

4

2 1481 328 3179 11336 99159 31414 63644 194217 24,2 4700
3 1481 351 3202 10141 122581 5457 83220 211258 23,6 4986
4 1481 341 3193 9368 122626 5381 83000 211007 23,7 5001
8 1481 356 3207 8502 116543 5769 67656 189968 28,2 5357

16 1481 371 3222 8076 137056 48552 98731 284339 39,6 11260

4

2

1

1060 362 2808 12340 92829 24756 51553 169138 21,2 3586
3 1060 363 2809 10343 137842 26952 64276 229070 19,6 4490
4 1060 366 2810 9879 94681 21425 41442 157548 20,7 3261
8 1060 392 2836 9023 115664 21187 71207 208058 26,0 5410

16 1060 395 2838 8586 140268 36140 65950 242358 38,4 9307

57

Table 12: All results for Brainpool P256r1
Alg. MC FM Cycles RAM ROM MCtrl Map Mem Buffer Adder Rot Accu ALU

CoZ1

2 3677949 20200 561 154 45 760 226 3883 546 472 5471
3 4412029 20200 561 154 45 760 226 2793 487 472 4277
4 5146109 20200 561 154 45 760 226 2149 384 472 3529
8 8082429 20200 561 154 45 760 226 1288 384 472 2669

16 13955069 20200 561 154 45 760 226 856 384 472 2236

CoZ1

2

1

3043325 20200 561 154 45 760 821 4059 806 698 6845
3 3744253 20200 561 154 45 760 821 2793 487 472 4872
4 4478333 20200 561 154 45 760 1119 2149 384 472 4423
8 7414653 20200 561 154 45 760 1119 1288 384 472 3562

16 13287293 20200 561 154 45 760 1119 856 384 472 3129

CoZ2

2 3499959 22171 561 159 45 765 226 3883 546 472 5471
3 4194514 22171 561 159 45 765 226 2793 487 472 4277
4 4889069 22171 561 159 45 765 226 2149 384 472 3634
8 7667289 22171 561 159 45 765 226 1288 384 472 2669

16 13223729 22171 561 159 45 765 226 856 384 472 2236

CoZ2

2

1

2899505 22171 561 159 45 765 821 4059 806 698 6845
3 3562693 22171 561 159 45 765 821 2793 487 472 4872
4 4257248 22171 561 159 45 765 1119 2149 384 472 4423
8 7035468 22171 561 159 45 765 1119 1288 384 472 3562

16 11905480 22171 561 159 45 765 1119 856 384 472 3129

CoZ3

2 3318752 26223 561 157 45 763 226 3883 546 472 5471
3 3974712 26223 561 157 45 763 226 2793 487 472 4277
4 4630672 26223 561 157 45 763 226 2149 384 472 3529
8 7254512 26223 561 157 45 763 226 1288 384 472 2669

16 12502192 26223 561 157 45 763 226 856 384 472 2236

CoZ3

2

1

2751664 26231 561 157 45 762 821 4059 806 698 6844
3 3378000 26231 561 157 45 762 821 2793 487 472 4872
4 4033960 26231 561 157 45 762 1119 2149 384 472 4423
8 6657800 26231 561 157 45 762 1119 1288 384 472 3562

16 11905480 26231 561 157 45 762 1119 856 384 472 3129

Alg. MC FM PROM Mult Ctrl Total P-Mem P-ALU P-Ctrl P-Total At AtP

CoZ1

2 2072 309 3581 9812 95182 65552 77191 237925 36,1 8589
3 2072 348 3620 8656 75960 47100 91200 214260 38,2 8185
4 2072 342 3613 7902 75809 44794 90913 211516 40,7 8609
8 2072 354 3626 7054 59399 44645 48350 152394 57,0 8686

16 2072 362 3633 6629 94045 88101 79567 261713 92,5 24208

CoZ1

2

1

1733 361 3316 10920 56539 14342 37673 108554 33,2 3604
3 1733 341 3294 8926 64846 63231 82147 210224 33,4 7021
4 1733 351 3308 8490 85098 33377 97950 216425 38,0 8224
8 1733 362 3318 7639 76654 24621 74636 175911 56,6 9957

16 1733 376 3333 7222 68897 30854 87434 187185 96,0 17970

CoZ2

2 2092 328 3628 9863 38473 40562 48632 127667 34,5 4405
3 2092 352 3645 8686 55570 90993 73009 219572 36,4 7992
4 2092 341 3634 8033 42889 44581 72672 160142 39,3 6294
8 2092 356 3652 7085 85132 65591 53537 204260 54,3 11091

16 2092 371 3667 6668 49184 66106 88775 204065 88,2 17999

CoZ2

2

1

1777 362 3366 10975 52081 16800 79221 148102 31,8 4710
3 1777 341 3340 8977 59532 64443 116529 240504 32,0 7696
4 1777 351 3366 8553 60986 19199 96398 176583 36,4 6428
8 1777 362 3366 7692 49428 11749 65214 126391 54,1 6838

16 1777 376 3381 7275 47331 16416 88351 152098 86,6 13172

CoZ3

2 2009 328 3584 9817 96418 41064 54037 191519 32,6 6244
3 2009 352 3606 8645 75552 21256 31904 128712 34,4 4428
4 2009 341 3595 7887 75493 21063 31720 128276 36,5 4682
8 2009 356 3606 7037 48795 65748 62510 177053 51,1 9047

16 2009 371 3624 6623 74662 66366 93913 234941 82,8 19453

CoZ3

2

1

1739 361 3377 10983 56334 18709 95758 170801 30,2 5158
3 1739 363 3381 9015 72631 109866 69458 251955 30,5 7685
4 1739 366 3376 8561 71395 16986 81916 170297 34,5 5875
8 1739 392 3403 7727 46692 12961 46936 106589 51,4 5479

16 1739 395 3407 7299 47331 16416 88351 152098 86,9 13217

58

Table 13: All results for Curve25519
MC FM FI Cycles RAM ROM MCtrl Map Mem Buffer Adder Rot Accu ALU

2 1286977 16355 98 128 46 272 226 3745 546 472 5288
3 1482625 16355 97 128 46 271 226 2674 487 472 4150
4 1678273 16355 97 128 46 271 226 2037 384 472 3410
8 2552575 16355 98 128 46 272 226 1188 431 472 2608

16 4178899 16355 98 128 46 272 226 760 487 472 2236
2

1

877339 16355 98 128 46 272 821 3924 806 698 6665
3 1051588 16355 97 128 46 271 821 2674 487 472 4746
4 1247236 16355 97 128 46 271 1119 2037 384 472 4303
8 2121538 16355 98 128 46 272 1119 1188 431 472 3501

16 3747862 16355 98 128 46 272 1119 759 487 472 3129
2

1

1194511 16355 95 135 46 276 226 3745 546 472 5288
3 1374735 16355 95 135 46 276 226 2674 487 472 4150
4 1554959 16355 95 135 46 276 226 2037 384 472 3410
8 2360335 16355 95 135 46 276 226 1188 431 472 2608

16 3858447 16355 95 135 46 276 226 760 487 250 2236
2

1 1

817167 16225 95 135 46 275 821 3924 806 698 6666
3 977679 16225 95 135 46 275 821 2674 487 472 4746
4 1157903 16225 95 135 46 275 1119 2037 384 472 4303
8 1963279 16225 95 135 46 275 1119 1188 431 472 3502

16 3461391 16225 95 135 46 275 1119 759 487 472 3129
2

2

1195102 16355 95 135 46 276 226 3745 546 472 5288
3 1375326 16355 95 135 46 276 226 2674 487 472 4150
4 1555550 16355 95 135 46 276 226 2037 384 472 3410
8 2360926 16355 95 135 46 276 226 1188 431 472 2608

16 3859038 16355 95 135 46 276 226 760 487 472 2236
2

1 2

817758 16225 95 135 46 275 821 3924 806 698 6666
3 978270 16225 95 135 46 275 821 2674 487 472 4746
4 1158494 16225 95 135 46 275 1119 2037 384 472 4303
8 1963870 16225 95 135 46 275 1119 1188 431 472 3502

16 3461982 16225 95 135 46 275 1119 759 487 472 3129

MC FM FI PROM Mult Ctrl Total P-Mem P-ALU P-Ctrl P-Total At AtP
2 1437 309 2694 8252 38990 3104 67332 109426 10,6 1160
3 1437 348 2734 7154 38990 3030 66824 108844 10,8 1176
4 1437 343 2728 6408 60930 2905 81475 145310 14,5 2107
8 1492 356 2812 5692 42254 3435 61531 107220 21,7 2327

16 1355 371 2685 5192 50973 14551 42033 107557 7,9 850
2

1

788 341 2093 9029 56186 29184 78983 164353 7,5 1233
3 788 341 2090 7106 60988 17813 77506 156307 8,3 1297
4 788 351 2096 6670 40145 13610 63708 117463 13,0 1527
8 1067 364 2374 6146 60482 14047 56960 131489 21,2 2788

16 942 377 2259 5659 42610 3057 80203 125870 10,3 1296
2

1

1707 327 3050 8613 62903 2820 75260 140983 10,3 1452
3 1707 353 3076 7501 62903 2746 74837 140486 10,5 1475
4 1707 341 3064 6749 51572 2543 54508 108623 13,6 1477
8 1519 356 2895 5778 54667 3061 61471 119199 21,0 2503

16 1556 371 2939 5451 30951 13934 56454 101339 7,7 780
2

1 1

1171 357 2537 9478 48938 17195 79642 145775 7,4 1079
3 1171 362 2538 7558 33018 15906 69458 118382 8,2 971
4 1171 366 2544 7121 44224 14800 45506 104530 12,8 1338
8 1333 393 2726 6503 42803 13855 40002 96660 21,3 2059

16 1344 395 2746 6150 63489 3060 76600 143149 10,1 1446
2

2

1511 327 2876 8439 61283 68737 88955 218975 10,1 2212
3 1511 353 2903 7328 61283 65376 88465 215124 10,2 2194
4 1511 341 2891 6576 42613 66469 72512 181594 13,4 2433
8 1379 356 2778 5661 52205 47946 44458 144609 20,8 3008

16 1454 371 2867 5378 49166 18040 84587 151793 7,7 1169
2

1 2

1089 357 2454 9396 43214 15571 74457 133242 7,3 973
3 1089 362 2461 7482 32364 13707 65225 111296 8,2 913
4 1089 366 2471 7049 44156 14800 47689 106645 12,7 1354
8 1232 393 2680 6457 42809 13855 35813 92477 21,0 1942

16 1228 395 2670 6074 39463 2881 48956 91300 10,7 977

59

(a) Comparison of needed cycles (b) Comparison of area

(c) Comparison of power consumption (d) Comparison of area-time product

(e) comparison of area-time-power product

Figure 16: Comparison of implemented curves for different metrics

60

6.5 Comparison of Curves

For this comparison, the comb method are not considered. Figure 16 compares the values
of the best implementations of all curves at area, cycles, power, At and AtP. Figure 16a
shows the needed cycles for a point-multiplication of the best implementations of all curves
in these five categories. In each case, Curve25519 needs the smallest number of cycles for
the point-multiplication. The reason for this is that the formulas for Curve25519 need fewer
multiplications and the reduction can be done faster. Figure 16b compares the needed area
of the best implementations. This shows that in the category lowest power consumption
and best AtP the best designs of the other curves are partially smaller than the one of
Curve25519. However, the areas of all curves are quite similar, because they mainly differ
in the length of the machine code and the size of the ROM. In Figure 16c one can see the
power consumption of the top implementations. Thereby, NIST P256 has a lower power
consumption in the categories power, At and AtP. In area and time the implementations
of Curve2559 have the lowest power consumption. The comparison of the At metric is
also dominated by Curve25519 as shown in Figure 16d. Also comparing the values the
AtP metric Curve25519 has the best values in all categories. Summarizing it can be said
that Curve25519 dominates the most metrics, only the power consumption of some NIST
implementations is lower. Partially, Brainpool has much higher values compared to the
other curves partially.

Figures 17 to 19 compare the proportioning of the components in the smallest and
fastest implementation of all curves. The legend for the used colors is shown in Figure 20.
Table 14 lists the corresponding values. In the fastest variants, the core- and accu-adder
are responsible for more than a third of the area. In contrast, the PROM needs the most
area in the smallest implementations. The share of the area for the memory controller is
twice as large in the fast implementations as in the small ones.

Table 14: Shares of area of smallest and fastest variants
Alg Metric Parameter ROM MCtrl Map Mem PROM Mult Ctrl
Curve25519 smallest MC=16, FI=0, FI=0 1,89% 2,47% 0,89% 5,24% 26,10% 7,15% 51,71%
NIST P256 smallest CoZ1, MC=16, FM=0 5,17% 2,79% 0,76% 8,70% 25,09% 6,15% 52,25%
Brainpool P256r1 smallest CoZ3, MC=16, FM=0 8,47% 2,37% 0,68% 11,52% 30,33% 5,60% 54,72%
Curve25519 fastest MC=02, FM=1, FI=1 1,00% 1,42% 0,49% 2,90% 12,35% 3,77% 26,77%
NIST P256 fastest CoZ3, MC=02, FM=1 2,88% 1,49% 0,43% 4,79% 9,98% 3,35% 25,63%
Brainpool P256r1 fastest CoZ3, MC=02, FM=0 5,11% 1,43% 0,41% 6,94% 15,83% 3,29% 30,75%

Alg Metric Parameter Buffer Adder Rot Accu ALU
Curve25519 smallest MC=16, FI=0, FI=0 4,35% 14,64% 9,38% 9,09% 43,07%
NIST P256 smallest CoZ1, MC=16, FM=0 3,84% 13,46% 6,53% 8,02% 39,03%
Brainpool P256r1 smallest CoZ3, MC=16, FM=0 3,41% 12,92% 5,80% 7,13% 33,76%
Curve25519 fastest MC=02, FM=1, FI=1 8,66% 41,40% 8,50% 7,36% 70,33%
NIST P256 fastest CoZ3, MC=02, FM=1 11,28% 38,50% 7,64% 6,61% 69,57%
Brainpool P256r1 fastest CoZ3, MC=02, FM=0 7,48% 36,96% 7,34% 6,36% 62,31%

61

(a) Smallest variant (CoZ1,MC = 16, FM = 0) (b) Fastest variant (CoZ3,MC = 02, FM = 1)

Figure 17: Shares of area of smallest and fastest variants for NIST P256

(a) Smallest variant (CoZ1,MC = 16, FM = 0) (b) Fastest variant (CoZ3,MC = 02, FM = 1)

Figure 18: Shares of area of smallest and fastest variants for Brainpool P256r1

(a) Smallest variant (MC = 16, FM = 0) (b) Fastest variant (MC = 02, FM = 1, FI=1)

Figure 19: Shares of area of smallest and fastest variants for Curve25519

Figure 20: Legend

62

6.6 Comparison with Related Work

In Table 15, we compare the results of the related work with our designs. Since, the
power consumption is not given for their implementations, we can only compare the area
and running time. Area for the RAM is not included. All designs except the one from
Wolkerstorfer use a 0.13-µm technology and implement a 256-bit elliptic curve over a prime
field and thus are fairly comparable. A comparison of the results of Satoh shows that a
word size of 64 bits has the best At-product. However, it is only slightly better than the
32-bit implementation, which needs much less area. Thus, a 32-bit implementation seems
to be a quite good compromise between speed and area.

The area of all of our implementations is significantly smaller than the smallest design
from the related work. However, the running time is longer in many cases, because our
design is primarily designed for small area and low power and not high-speed. Totally,
our Curve25519 implementations have the best At-product of all compared designs. Our
designs for the NIST curve have a bigger At-product than the implementation of Muthuku-
mar. This is due to much higher running time which is caused by our generic design without
dedicated reduction structure in the ALU.

Table 15: Comparison of 256-Bit implementations

Curves Word size Area Cycles At
[bit] [GE] [GE/109]

Satoh [ST03] any

8 19 935 9 385 000 187,09
16 25 051 2 711 000 67,91
32 43 521 880 000 38,30
64 106 659 340 000 36,26

Wolkerstorfer [Wol04] any∈ GF (p256) 256 14 763 1 175 451 17,35
Chen [CBC07] any∈ GF (p256) n.a 122 000 562 000 68,56
Lai [LH09] IEEE 1363 32 197 028 252 067 49,66
Muthukumar [MJ10] IEEE 1363 256 184 000 54 568 10,04
Smallest Curve25519 design Curve25519 32 5 192 4 178 899 21,70
Fastest Curve25519 design Curve25519 32 9 478 817 167 7,75
Smallest At Curve25519 design Curve25519 32 7 482 978 270 7,32
Smallest NIST P256 design NIST P256 32 5 883 7 111 355 41,84
Fastest NIST P256 design (w/o comb) NIST P256 32 10 556 2 024 179 21,37
Fastest NIST P256 design (comb) NIST P256 32 12 340 1 718 398 21,21
Smallest At NIST P256 design NIST P256 32 8 020 2 384 652 19,12

6.7 Evaluation of Costs

In Table 16 we evaluate the costs of the elements with a major share on area and calculation
time. Thereby the costs for the needed cycles are related to the whole point-multiplication.
The area is only an estimation, because the growth of the area is not linear. The table shows
that the same effort in additional hardware has different impact on different curves. For

63

instance, adding the multiplication controller saves 630 000 cycles for NIST (up to 3,5%)
and Brainpool (up to 4,8%) curves, but it saves only 400 000 cycles at Curve25519 (up to
2,1%). Reducing MC has more influence on Brainpool than on the other curves, because
the reduction after a 256-bit multiplication also uses 32-bit multiplications. In contrast to
the other curves, if MC becomes greater than four at Curve25519, the size of the PROM
even increases. This is because at the reduction of Curve25519 the high part of the result
must be multiplied with 38. If the number of adders in the core-adder decreases below six,
the multiplication with 38 is no longer possible within one step. Then, the multiplication
must be done in more than one step which requires additional instructions. Sometimes
the size of the PROM shrinks if the number of instructions is increased. For instance, the
reduction after multiplication for Curve25519 withMC ≤ 4 needs 93 instructions, while the
reduction with MC = 8 requires 123 instructions. However, removing the 93 instructions
in the first case reduces the area by 314GE, while removing the 130 instructions in the
second case reduces the area only by 130GE. This seems to be the case, if the number
of instructions after increasing is slightly above a power of two. Then the synthesizer
can optimize the size of the ROM better. The table shows also a main reason why the
curves of NIST and Brainpool are much slower than Curve25519: Their running time is
strongly influenced by the reduction after the 256-bit multiplication. The running time for
pure multiplication is comparable and the running time of other arithmetic operations is
negligible.

64

Table 16: Comparison of costs in time and area

Description Ins Area Cycles
[GE]

Addition/Subtraction with reduction - Curve25519 (FI) 131 354 267 240
Addition/Subtraction with reduction - NIST (CoZ3) 165 836 550 440
Addition/Subtraction with reduction - Brainpool (CoZ3) 199 -169 663 864
Pure multiplication - Curve25519 (FI) 210 22 410 990 +MC · 180 160
Pure multiplication - NIST (CoZ3) 210 -919 618 748 +MC · 271 232
Pure multiplication - Brainpool (CoZ3) 210 -175 618 748 +MC · 271 232
Multiplication-reduction - Curve25519 (FI, 2 ≤MC ≤ 4) 93 314 261 795
Multiplication-reduction - Curve25519 (FI, MC = 8) 123 130 346 245
Multiplication-reduction - Curve25519 (FI, MC = 16) 143 156 402 545
Multiplication-reduction - NIST (CoZ3) 263 577 1 114 594
Multiplication-reduction - Brainpool (CoZ3) 326 1 042 995 930 +MC · 385 658
Multiplication controller for FM - Curve25519 (MC = 2) -209 1 341 −409 638
Multiplication controller for FM - Curve25519 (MC > 2) -209 539 −431 037
Multiplication controller for FM - NIST (MC = 2) -209 1 341 −639 360
Multiplication controller for FM - NIST (MC > 2) -209 539 −672 512
Multiplication controller for FM - Brainpool (MC = 2) -209 1 341 −634 624
Multiplication controller for FM - Brainpool (MC > 2) -209 539 −667 776
Using fast inversion (FI) - Curve25519 (MC = 2) 482 1845 −92 466
Using fast inversion (FI2) - Curve25519 (MC = 2) 277 954 −91 875
Fast inversion with REPEAT - Curve25519 (MC = 2) 270 1603 −91 946
ALU with MC=8 instead of MC=16 - Curve25519 (FI) -20 372 −1 498 112
ALU with MC=4 instead of MC=16 - Curve25519 (FI) -50 1 174 −2 303 488
ALU with MC=3 instead of MC=16 - Curve25519 (FI) -50 1 914 −2 483 712
ALU with MC=2 instead of MC=16 - Curve25519 (FI) -50 3 052 −2 644 224
ALU with MC=8 instead of MC=16 - NIST (CoZ3) 0 372 −2 166 784
ALU with MC=4 instead of MC=16 - NIST (CoZ3) 0 1 174 −3 250 176
ALU with MC=3 instead of MC=16 - NIST (CoZ3) 0 1 914 −3 521 024
ALU with MC=2 instead of MC=16 - NIST (CoZ3) 0 3 052 −3 791 872
ALU with MC=8 instead of MC=16 - Brainpool (CoZ3) 0 414 −5 247 680
ALU with MC=4 instead of MC=16 - Brainpool (CoZ3) 0 1 264 −7 871 520
ALU with MC=3 instead of MC=16 - Brainpool (CoZ3) 0 2 022 −8 527 480
ALU with MC=2 instead of MC=16 - Brainpool (CoZ3) 0 3 194 −9 183 440
Additional register in RAM - 1 971 -
Additional register in ROM - 136 -

65

7 Conclusions

In this work, we presented a dynamic platform to compare three different frequently used
256-bit elliptic curves. The architecture is very flexible and allows very small designs.
This is due to several facts. First, we try to reuse the components in the arithmetic
unit as much as possible. For instance, we have no separated addition and multiplication
unit. Furthermore, we use a 9-bit machine code to reduce the size of the program ROM.
Additionally, we use only a single-ported RAM which is smaller than a dual-ported RAM
for a further reduction of the area requirements.

We implemented three different elliptic curves: NIST P256, Brainpool P256r1, and
Curve25519. Then, we compared their calculation time, area, power consumption, their
area-time product, and their area-time-power product. For NIST P256 and Brainpool
P256r1 we used a common projective Z-coordinate representation to reduce the memory
requirements. In order to evaluate different configurations, three different formulas (CoZ1,
CoZ2, and CoZ3) were implemented. These formulas differ in the number of required
operations and registers. For Curve25519, we presented new explicit formulas in XZ-
coordinate representation. These formulas need only six multiplications and fewer registers
than previous published formulas.

In our architecture, the number of needed clock cycles for a 32-bit multiplication can
be varied from 2 to 16. For high-speed implementations, an additional multiplication
controller can be used. It can perform a 256-bit multiplication in an optimized way.
Typically, it uses the classic product-scanning multiplication algorithm. To perform a
32-bit multiplication in only two cycles, in the high-speed variant, it uses our proposed
zigzag product-scanning multiplication algorithm. This reduces the running time from 5%
(Brainpool P256r1 with MC = 16) up to 46% (Curve25519 with MC = 2).

For the point-multiplication we used the Montgomery ladder and for NIST P256 addi-
tionally the fixed-base comb method. The fastest implementation using the comb method
is 18% faster than the fastest variant using the Montgomery ladder. Additionally it needs
17% more area, but the power consumption is reduced by 38%. The variants with the
comb method have slightly better values at the At and AtP metrics than for the others.

For Curve25519, we additionally implemented two optimized variants for modular in-
version in the finite field. The machine code for the first one, defines each multiplication
separately. Since the code contains up to 99 identical multiplications in a row, the second
variant uses loops for a shorter machine code. The fastest variant with fast inversion is
seven percent faster than the same variant without fast inversion. Additionally it needs
five percent less power due to the shorter runtime. In return this variant needs five percent
more area, caused by the longer machine code.

The fastest implementation of Curve25519 needs 817167 cycles for the point-multiplication.
The fastest implementations for NIST P256 and Brainpool P256r1 are much slower. To
get designs with a small area, it is possible to reduce the number of used adders from
sixteen to two. In return, the number of needed cycles for the multiplication increases.
All three curves can be implemented in fewer than 7000 GE without RAM. Additionally,
one can choose between carry-ripple and carry-safe adder for a shorter critical path. The

66

area and power consumption of both variants are almost the same. Looking at the best
implementations at the At and AtP metrics, they all use a multiplication controller and
need two or three cycles for the 32-bit multiplication. Thus, the additional area for fast
multiplication seems to be compensated by the faster calculation.

The generic instruction set allows the implementation of any elliptic curve and even
other algorithms. Thus the functionality of the proposed design can be extended to imple-
ment almost any cryptographic protocol. For protection against basic side-channel attacks,
all algorithms have a constant runtime.

As future work our design can be tested against side-channel attacks to find and fix vul-
nerable points to improve the security. Moreover, additional functions can be implemented
to provide a complete cryptographic system.

67

References

[ABCS06] Ross Anderson, Mike Bond, Jolyon Clulow, and Sergei Skorobogatov. Cryp-
tographic processors-a survey. Proceedings of the IEEE, 94(2):357–369, 2006.

[ABR99] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. DHAES: An encryption
scheme based on the Diffie-Hellman problem. Available at citeseer. ist. psu.
edu/abdalla99dhaes. html, 1999.

[Bar87] Paul Barrett. Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor. In Advances in
cryptologyCRYPTO86, pages 311–323. Springer, 1987.

[BBB+12] Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid.
NIST Special Publication 800-57: Recommendation for Key Management -
Part 1, 2012.

[BDL97] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the importance
of checking cryptographic protocols for faults. In Advances in CryptologyEU-
ROCRYPT97, pages 37–51. Springer, 1997.

[Ber05] Daniel J Bernstein. Cache-timing attacks on AES, 2005.

[Ber06] Daniel J Bernstein. Curve25519: new diffie-hellman speed records. In Public
Key Cryptography-PKC 2006, pages 207–228. Springer, 2006.

[BJS07] Elaine Barker, Don Johnson, and Miles Smid. NIST Special Publication
800-56A: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography, 2007.

[BL07] Daniel J Bernstein and Tanja Lange. Faster addition and doubling on elliptic
curves. In Advances in cryptology–ASIACRYPT 2007, pages 29–50. Springer,
2007.

[BL14] Daniel J Bernstein and Tanja Lange. Hyperelliptic - explicit-formulas
database, 2014. http://hyperelliptic.org/EFD/index.html.

[CBC07] Gang Chen, Guoqiang Bai, and Hongyi Chen. A high-performance ellip-
tic curve cryptographic processor for general curves over GF(p) based on
a systolic arithmetic unit. Circuits and Systems II: Express Briefs, IEEE
Transactions on, 54(5):412–416, 2007.

[Cor99] Jean-Sébastien Coron. Resistance against differential power analysis for ellip-
tic curve cryptosystems. In Cryptographic Hardware and Embedded Systems,
pages 292–302. Springer, 1999.

68

[Cry04] Elliptic Curve Cryptography. The advantages of elliptic curve cryptography
for wireless security. IEEE Wireless Communications, page 63, 2004.

[DH76] Whitfield Diffie and Martin E Hellman. New directions in cryptography.
Information Theory, IEEE Transactions on, 22(6):644–654, 1976.

[DV11] Vincent Dupaquis and Alexandre Venelli. Redundant Modular Reduction
Algorithms. In Smart Card Research and Advanced Applications, volume
7079 of Lecture Notes in Computer Science, pages 102–114. 2011.

[DW14] D-Wave. Quantum computing, 2014.

[Edw07] Harold Edwards. A normal form for elliptic curves. Bulletin of the American
Mathematical Society, 44(3):393–422, 2007.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In Advances in Cryptology, pages 10–18. Springer, 1985.

[Far03] Faraday. 0.13µm low leakage high density standard cells - fsc0l d core cell,
December 2003.

[Fer] Pierre de Fermat. letter to Frénicle de Bessy (1640-10-18).
https://web.archive.org/web/20061222105104/http://www.cs.

utexas.edu/users/wzhao/fermat2.pdf.

[Für09] Martin Fürer. Faster integer multiplication. SIAM Journal on Computing,
39(3):979–1005, 2009.

[GFD09] Patrick Gallagher, Deputy Director Foreword, and Cita Furlani Director.
FIPS PUB 186-3 federal Information processing Standards Publication Dig-
ital Signature Standard (DSS), 2009.

[GK86] Shafi Goldwasser and Joe Kilian. Almost all primes can be quickly certi-
fied. In Proceedings of the eighteenth annual ACM symposium on Theory of
computing, pages 316–329. ACM, 1986.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
analysis: Concrete results. In Cryptographic Hardware and Embedded Sys-
temsCHES 2001, pages 251–261. Springer, 2001.

[GP08] Tim Güneysu and Christof Paar. Ultra high performance ECC over NIST
primes on commercial FPGAs. In Cryptographic Hardware and Embedded
Systems–CHES 2008, pages 62–78. Springer, 2008.

[Hew05] Paul Hewitt. A brief history of elliptic curves, 2005.

69

[HFP10] Michael Hutter, Martin Feldhofer, and Thomas Plos. An ECDSA processor
for RFID authentication. In Radio Frequency Identification: Security and
Privacy Issues, pages 189–202. Springer, 2010.

[HFW11] Michael Hutter, Martin Feldhofer, and Johannes Wolkerstorfer. A crypto-
graphic processor for low-resource devices: canning ECDSA and AES like
sardines. In Information Security Theory and Practice. Security and Pri-
vacy of Mobile Devices in Wireless Communication, pages 144–159. Springer,
2011.

[HJS11] Michael Hutter, Marc Joye, and Yannick Sierra. Memory-constrained imple-
mentations of elliptic curve cryptography in co-Z coordinate representation.
In Progress in Cryptology–AFRICACRYPT 2011, pages 170–187. Springer,
2011.

[HVM04] Darrel Hankerson, Scott Vanstone, and Alfred J Menezes. Guide to elliptic
curve cryptography. Springer, 2004.

[HW11] Michael Hutter and Erich Wenger. Fast multi-precision multiplication for
public-key cryptography on embedded microprocessors. In Cryptographic
Hardware and Embedded Systems–CHES 2011, pages 459–474. Springer,
2011.

[iee00] IEEE Standard Specifications for Public-Key Cryptography. IEEE Std 1363-
2000, 2000.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hard-
ware against probing attacks. In Advances in Cryptology-CRYPTO 2003,
pages 463–481. Springer, 2003.

[IT88] Toshiya Itoh and Shigeo Tsujii. A fast algorithm for computing multiplica-
tive inverses in GF(2m) using normal bases. Information and computation,
78(3):171–177, 1988.

[JY03] Marc Joye and Sung-Ming Yen. The montgomery powering ladder. In
Cryptographic Hardware and Embedded Systems-CHES 2002, pages 291–302.
Springer, 2003.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Advances in CryptologyCRYPTO99, pages 388–397. Springer, 1999.

[Knu05] Donald Ervin Knuth. The art of computer programming. Pearson Education,
2005.

[KO63] Anatolii Karatsuba and Yu Ofman. Multiplication of multidigit numbers on
automata. In Soviet physics doklady, volume 7, page 595, 1963.

70

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computation,
48(177):203–209, 1987.

[Koc96] Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Advances in CryptologyCRYPTO96, pages 104–
113. Springer, 1996.

[KP06] Sandeep Kumar and Christof Paar. Are standards compliant elliptic curve
cryptosystems feasible on RFID. In Workshop on RFID Security, pages 12–
14, 2006.

[LH09] Jyu-Yuan Lai and Chih-Tsun Huang. A highly efficient cipher processor
for dual-field elliptic curve cryptography. Circuits and Systems II: Express
Briefs, IEEE Transactions on, 56(5):394–398, 2009.

[LJ87] Hendrik W Lenstra Jr. Factoring integers with elliptic curves. Annals of
mathematics, pages 649–673, 1987.

[LM10] M. Lochter and J. Merkle. RFC 5639: Elliptic Curve Cryptography (ECC)
Brainpool Standard Curves and Curve Generation. Technical report, March
2010.

[Mil86] Victor S Miller. Use of elliptic curves in cryptography. In Advances in
CryptologyCRYPTO85 Proceedings, pages 417–426. Springer, 1986.

[MJ10] B Muthukumar and S Jeevananthan. High speed hardware implementation of
an elliptic curve cryptography (ECC) co-processor. In Trendz in Information
Sciences & Computing (TISC), 2010, pages 176–180. IEEE, 2010.

[MMS01] David May, Henk L Muller, and Nigel P Smart. Random register renaming
to foil DPA. In Cryptographic Hardware and Embedded SystemsCHES 2001,
pages 28–38. Springer, 2001.

[Mon85] Peter L Montgomery. Modular multiplication without trial division. Mathe-
matics of computation, 44(170):519–521, 1985.

[Mon87] Peter L Montgomery. Speeding the pollard and elliptic curve methods of
factorization. Mathematics of computation, 48(177):243–264, 1987.

[MSY06] Tal G Malkin, François-Xavier Standaert, and Moti Yung. A comparative
cost/security analysis of fault attack countermeasures. In Fault Diagnosis
and Tolerance in Cryptography, pages 159–172. Springer, 2006.

[MVOV96] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook
of applied cryptography. CRC press, 1996.

71

[OP01] Gerardo Orlando and Christof Paar. A scalable GF(p) elliptic curve processor
architecture for programmable hardware. In Cryptographic Hardware and
Embedded SystemsCHES 2001, pages 348–363. Springer, 2001.

[PH78] Stephen C Pohlig and Martin E Hellman. An improved algorithm for comput-
ing logarithms over and its cryptographic significance (corresp.). Information
Theory, IEEE Transactions on, 24(1):106–110, 1978.

[Pol78] John M Pollard. Monte carlo methods for index computation (). Mathematics
of computation, 32(143):918–924, 1978.

[PZ03] John Proos and Christof Zalka. Shor’s discrete logarithm quantum algorithm
for elliptic curves. arXiv preprint quant-ph/0301141, 2003.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis
(ema): Measures and counter-measures for smart cards. In Smart Card Pro-
gramming and Security, pages 200–210. Springer, 2001.

[SBM+06] Kazuo Sakiyama, Lejla Batina, Nele Mentens, Bart Preneel, and Ingrid Ver-
bauwhede. Small-footprint ALU for public-key processors for pervasive secu-
rity. In Workshop on RFID Security, volume 12, 2006.

[SDMPV06] Kazuo Sakiyama, Elke De Mulder, Bart Preneel, and Ingrid Verbauwhede.
A parallel processing hardware architecture for elliptic curve cryptosystems.
In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings.
2006 IEEE International Conference on, volume 3, pages III–III. IEEE, 2006.

[Ser01] American National Standards Institute Standards Committee Financial Ser-
vices. Public Key Cryptography for the Financial Services Industry - Key
Agreement and Key Transport Using Elliptic Curve Cryptography: ANSI
American National Standard for Financial Services, X9.63-2001. American
national standard / ANSI. Accredited Standards Committee X9, Incorpo-
rated, 2001.

[Ser05] American National Standards Institute Standards Committee Financial Ser-
vices. Public Key Cryptography for the Financial Services Industry - the
Elliptic Curve Digital Signature Algorithm (ECDSA): ANSI American Na-
tional Standard for Financial Services, ANS X9.62-2005. American national
standard / ANSI. Accredited Standards Committee X9, Incorporated, 2005.

[Sha71] Daniel Shanks. Class number, a theory of factorization, and genera. In Proc.
Symp. Pure Math, volume 20, pages 415–440, 1971.

[Sol11] Jerome A Solinas. Pseudo-mersenne prime. In Encyclopedia of Cryptography
and Security, pages 992–992. Springer, 2011.

72

[SOOS95] Richard Schroeppel, Hilarie Orman, Sean OMalley, and Oliver Spatscheck.
Fast key exchange with elliptic curve systems. Springer, 1995.

[ST03] Akashi Satoh and Kohji Takano. A scalable dual-field elliptic curve crypto-
graphic processor. Computers, IEEE Transactions on, 52(4):449–460, 2003.

[TCW+05] Timothy J Todman, George A Constantinides, Steven JE Wilton, Oscar
Mencer, Wayne Luk, and Peter YK Cheung. Reconfigurable computing:
architectures and design methods. IEE Proceedings-Computers and Digital
Techniques, 152(2):193–207, 2005.

[TV03] Kris Tiri and Ingrid Verbauwhede. Securing encryption algorithms against
DPA at the logic level. In Cryptographic Hardware and Embedded Systems-
CHES 2003, pages 125–136. Springer, 2003.

[TV05] Kris Tiri and Ingrid Verbauwhede. A VLSI design flow for secure side-channel
attack resistant ICs. In Proceedings of the conference on Design, Automation
and Test in Europe-Volume 3, pages 58–63. IEEE Computer Society, 2005.

[Wal64] Christopher S Wallace. A suggestion for a fast multiplier. Electronic Com-
puters, IEEE Transactions on, (1):14–17, 1964.

[WE93] Neil HE Weste and Kamran Eshraghian. Principles of CMOS VLSI design,
volume 2. Addison-Wesley Reading, MA, 1993.

[WFF10] Erich Wenger, Martin Feldhofer, and Norbert Felber. A 16-Bit Microproces-
sor Chip for Cryptographic Operations on Low-Resource Devices. In J. Sturm
C. Zhang M. Köberle M. Ley, E. Ofner, editor, Austrochip 2010, pages 55 –
60. Fachhochschule Kärnten, 2010.

[WH11] Erich Wenger and Michael Hutter. A hardware processor supporting ellip-
tic curve cryptography for less than 9 kGEs. In Smart Card Research and
Advanced Applications, pages 182–198. Springer, 2011.

[WH12] Erich Wenger and Michael Hutter. Exploring the design space of prime field
vs. binary field ECC-hardware implementations. In Information Security
Technology for Applications, pages 256–271. Springer, 2012.

[WH14] Wolfgang Wieser and Michael Hutter. Efficient Multiplication on Low-
Resource Devices. In IEEE Computer Society, editor, Euromicro Conference
on Digital System Design Architectures, Methods and Tools – DSD 2014,
2014, Proceedings. IEEE Computer Society, 2014.

[WHGH+08] William Whyte, Nick Howgrave-Graham, Jeffrey Hoffstein, Jill Pipher,
Joseph H. Silverman, and Philip S. Hirschhorn. IEEE P1363 Draft 9:
Standard Specifications for Public Key Cryptography - Annex A, Number-
Theoretic Background. IACR Cryptology ePrint Archive, 2008.

73

[Wol04] Johannes Wolkerstorfer. Hardware Aspects of Elliptic Curve Cryptography.
PhD thesis, 2004.

[WW11] Erich Wenger and Mario Werner. Evaluating 16-bit Processors for Elliptic
Curve Cryptography. In Emmanuel Prouff, editor, Smart Card Research and
Advanced Applications, volume 7079 of Lecture Notes in Computer Science,
pages 166 – 181. Springer, 2011.

[WW14] Erich Wenger and Paul Wolfger. Solving the Discrete Logarithm of a 113-bit
Koblitz Curve with an FPGA Cluster. 2014.

74

A Examples to Algorithms

In this chapter, we show examples of previously described algorithms.

Field Inversion

Example 6. : Inverting a = 212 in Fp, where p = 28 − 24 − 1 = 239 using the extended
euclidean algorithm.

u v x1 x2 q u′ v′ x′1 x′2
1 212 239 1 0 → 1 27 212 -1 1
2 27 212 -1 1 → 7 23 27 8 -1
3 23 27 8 -1 → 1 4 23 -9 8
4 4 23 -9 8 → 5 3 4 53 -9
5 3 4 53 -9 → 1 1 3 -62 53

→ a−1 = x′1 (mod p) = −62 (mod 239) ≡ 177

Example 7. : Inverting a = 212 in Fp, where p = 28 − 24 − 1 = 239 using the binary gcd
algorithm.

Calculation steps
1.1 u = u� 1 = 106, x1 = (x1 + p)� 2 = 120
1.2 u = u� 1 = 53, x1 = x1 � 2 = 60
1.3 v = v − u = 186, x2 = x2 − x1 = −60
2.1 v = v � 1 = 93, x2 = x2 � 2 = −30
2.2 v = v − u = 40, x2 = x2 − x1 = −90
3.1 v = v � 1 = 20, x2 = x2 � 2 = −45
3.2 v = v � 1 = 10, x2 = (x2 + p)� 2 = 97
3.3 v = v � 1 = 5, x2 = (x2 + p)� 2 = 168
3.4 u = u− v = 48, x1 = x1 − x2 = −108
4.1 u = u� 1 = 24, x1 = x1 � 2 = −54
4.2 u = u� 1 = 12, x1 = x1 � 2 = −27
4.3 u = u� 1 = 6, x1 = (x1 + p)� 2 = 106
4.4 u = u� 1 = 3, x1 = x1 � 2 = 53
4.5 v = v − u = 2, x2 = x2 − x1 = 115
5.1 v = v � 1 = 1, x2 = (x2 + p)� 2 = 177
5.2 u = u− v = 2, x1 = x1 − x2 = −124

→ a−1 = x′2 (mod p) = 177 (mod 239) ≡ 177

75

Example 8. : Inverting a = 212 in Fp, where p = 28 − 24 − 1 = 239 using Fermat’s little
theorem. The optimized variant can be used only for given prime and reuses intermediate
results. Thus, the optimized variant needs one multiplication less. Though, it needs two
additional variables to store the intermediate results.

#
Calculation steps

Algorithm 9 Optimized

1 r = r · r = 12 r = a · a = 12 a21

2 r = r · a = 154 r = r · a = 154 a22−20

3 r = r · r = 55 s = r · r = 55 a23−21

4 r = r · a = 188 t = s · a = 188 a23−20

5 r = r · r = 211 r = t · t = 211 a24−21

6 r = r · r = 67 r = r · r = 67 a25−22

7 r = r · a = 103 r = r · r = 187 a26−23

8 r = r · r = 93 r = r · r = 75 a27−24

9 r = r · a = 118 r = r · r = 128 a28−25

10 r = r · r = 62 r = r · t = 164 a28−25+23−20

11 r = r · r = 20 r = r · s = 177 a28−25+23−20+23−21 = p− 2
12 r = r · a = 177

Point-Multiplication

Example 9. : Using binary method to multiply k = 0x10011101 by P = 11010010.

i ki Calculation steps
7 1 Q = 00000000000000002 · 2 + 110100102 = 00000000110100102

6 0 Q = 00000000110100102 · 2 = 00000001101001002

5 0 Q = 00000001101001002 · 2 = 00000011010010002

4 1 Q = 00000011010010002 · 2 + 110100102 = 00000111011000102

3 1 Q = 00000111011000102 · 2 + 110100102 = 00001111100101102

2 1 Q = 00001111100101102 · 2 + 110100102 = 00011111111111102

1 0 Q = 00011111111111102 · 2 = 00111111111111002

0 1 Q = 00111111111111002 · 2 + 110100102 = 10000000110010102

76

Example 10. : Using Montgomery’s method to multiply k = 0x10011101 by P =
11010010.

i ki Calculation steps
7 1 R0 = R0 +R1 = 00000000110100102; R1 = 2 ·R1 = 00000001101001002

6 0 R1 = R0 +R1 = 00000010011101102; R0 = 2 ·R0 = 00000001101001002

5 0 R1 = R0 +R1 = 00000100000110102; R0 = 2 ·R0 = 00000011010010002

4 1 R0 = R0 +R1 = 00000111011000102; R1 = 2 ·R1 = 00001000001101002

3 1 R0 = R0 +R1 = 00001111100101102; R1 = 2 ·R1 = 00010000011010002

2 1 R0 = R0 +R1 = 00011111111111102; R1 = 2 ·R1 = 00100000110100002

1 0 R1 = R0 +R1 = 01000000110011102; R0 = 2 ·R0 = 00111111111111002

0 1 R0 = R0 +R1 = 10000000110010102; R1 = 2 ·R1 = 10000001100111002

Example 11. : Using fixed-base comb method to multiply k = 0x10011101 by P =
11010010.

i t Calculation steps
LUT [0] = 00000000002

LUT [1] = 00110100102

LUT [2] = 01101001002

LUT [3] = 10011101102

3 102 Q = 00000000000000002 · 2 + 01101001002 = 00000001101001002

2 012 Q = 00000001101001002 · 2 + 00110100102 = 00000111011000102

1 112 Q = 00000111011000102 · 2 + 10011101102 = 00011111111111102

0 012 Q = 00011111111111102 · 2 + 00110100102 = 10000000110010102

77

B Machine Code Examples

In this chapter, we give some examples for the machine code. The real machine code only
contains the index of the used parameter. To keep the following examples understandable,
we define the parameter directly in the code. Thus, the following examples are written in
some kind of pseudo code. The actually used entry of the base-address-ROM is denoted
by a USE statement. Then, for instance the third word of the first register given in this
statement can be addressed by V0[2].

Copy a 32-bit value. To copy a 32-bit value to another register, the value first must
be loaded into the buffer. In the next step it is added to the accumulator so that it finally
can be written into another memory location.

USE R0 , R1 , R2 , R3
RST V0 [0]
BUF
ADDAE 1
WRROR V1 [0]

To add R0[0] to a value stored in the accumulator, the instruction in the first line must
be replaced by a NOP to avoid the deletion of the value of the accumulator.

Adding two 32-bit values. The following code stores the sum of the least 32 bits of
R0 and R1 into R2. Instead of parameter 1 at ADD another value q can be used to calculate
R2[0] = q · R0[0] + R1[0]. This functionality for instance can be used in the reduction
for Curve25519.

USE R0 , R1 , R2 , R3
RST V0 [0]
BUF V1 [0]
ADD 1
WRROR V2 [0]

To subtract, multiply, or do logical operations the instruction ADD must be replaced by
SUB, MUL, AND, OR, or XOR respectively.

Using carry bit from the previous 32-bit addition. To add values larger than 32
bit, it is necessary to do several 32-bit additions sequentially. Thereby, the carry bit of the
previous addition must be used. The following code can be used to calculate
R2[1] = R0[1] + R1[1] + c, whereby c is the carry bit from the former example.

RSTL V0 [1]
BUF V1 [1]
ADDC 1
WRROR V2 [1]

78

May add a value depending on the carry bit. For the reduction it is necessary to
add or subtract the prime (P) only if the carry bit is set after the last addition. Therefore
the carry bit can be stored and used to enable or disable the adder. This is indicated by
using 0 at ADD or SUB.

USE R0 , R1 , R2 , P
SAVEC
RST P [0]
BUF V2 [0]
SUBC 0
WRROR V2 [0]

Doing a loop from 255 to 0. For the point-multiplication it is necessary to perform a
loop from 255 to 0. This can be done by reducing the value loop counter and jump back
to the top of the loop until the value of the loop counter is zero.

DECLC
Loop :

// i n s t r u c t i o n s in loop
CMPD 0
CALL Loop
// i n s t r u c t i o n s a f t e r loop

Calculate the sum of two multiplications. For 256-bit multiplications using the
product-scanning method, the results of several multiplications must be accumulated.
Therefore the value in the accumulator must be rotated between the single multiplica-
tions. The following example shows how to calculate R2[1] = R0[0] · R1[1] + R0[1] ·
R1[0].

USE R0 , R1 , R2 , R3
RSTL V0 [0]
BUF V1 [1]
MUL
ROL32 V0 [1]
BUF V1 [0]
MUL
WR V2 [1]

79

256-bit product-scanning multiplication. Based on the code in the previous example
the code for a full 256-bit multiplication {R3,R2} = R0 · R1 looks as follows. It has the
same behavior as MUL256.

USE R0 , R1 , R2 , R3 RSTL V0 [0]
RST V0 [0] BUF V1 [4]
BUF V1 [0] MUL
MUL ROL32 V0 [1]
WR V2 [0] BUF V1 [3]

MUL
RSTL V0 [0] ROL32 V0 [2]
BUF V1 [1] BUF V1 [2]
MUL MUL
ROL32 V0 [1] ROL32 V0 [3]
BUF V1 [0] BUF V1 [1]
MUL MUL
WR V2 [1] ROL32 V0 [4]

BUF V1 [0]
RSTL V0 [0] MUL
BUF V1 [2] WR V2 [4]
MUL
ROL32 V0 [1] RSTL V0 [0]
BUF V1 [1] BUF V1 [5]
MUL MUL
ROL32 V0 [2] ROL32 V0 [1]
BUF V1 [0] BUF V1 [4]
MUL MUL
WR V2 [2] ROL32 V0 [2]

BUF V1 [3]
RSTL V0 [0] MUL
BUF V1 [3] ROL32 V0 [3]
MUL BUF V1 [2]
ROL32 V0 [1] MUL
BUF V1 [2] ROL32 V0 [4]
MUL BUF V1 [1]
ROL32 V0 [2] MUL
BUF V1 [1] ROL32 V0 [5]
MUL BUF V1 [0]
ROL32 V0 [3] MUL
BUF V1 [0] WR V2 [5]
MUL
WR V2 [3]

80

RSTL V0 [0] MUL
BUF V1 [6] ROL32 V0 [7]
MUL BUF V1 [0]
ROL32 V0 [1] MUL
BUF V1 [5] WR V2 [7]
MUL
ROL32 V0 [2] RSTL V0 [1]
BUF V1 [4] BUF V1 [7]
MUL MUL
ROL32 V0 [3] ROL32 V0 [2]
BUF V1 [3] BUF V1 [6]
MUL MUL
ROL32 V0 [4] ROL32 V0 [3]
BUF V1 [2] BUF V1 [5]
MUL MUL
ROL32 V0 [5] ROL32 V0 [4]
BUF V1 [1] BUF V1 [4]
MUL MUL
ROL32 V0 [6] ROL32 V0 [5]
BUF V1 [0] BUF V1 [3]
MUL MUL
WR V2 [6] ROL32 V0 [6]

BUF V1 [2]
RSTL V0 [0] MUL
BUF V1 [7] ROL32 V0 [7]
MUL BUF V1 [1]
ROL32 V0 [1] MUL
BUF V1 [6] WR V3 [0]
MUL
ROL32 V0 [2] RSTL V0 [2]
BUF V1 [5] BUF V1 [7]
MUL MUL
ROL32 V0 [3] ROL32 V0 [3]
BUF V1 [4] BUF V1 [6]
MUL MUL
ROL32 V0 [4] ROL32 V0 [4]
BUF V1 [3] BUF V1 [5]
MUL MUL
ROL32 V0 [5] ROL32 V0 [5]
BUF V1 [2] BUF V1 [4]
MUL MUL
ROL32 V0 [6] ROL32 V0 [6]
BUF V1 [1] BUF V1 [3]

81

MUL ROL32 V0 [7]
ROL32 V0 [7] BUF V1 [4]
BUF V1 [2] MUL
MUL WR V3 [3]
WR V3 [1]

RSTL V0 [5]
RSTL V0 [3] BUF V1 [7]
BUF V1 [7] MUL
MUL ROL32 V0 [6]
ROL32 V0 [4] BUF V1 [6]
BUF V1 [6] MUL
MUL ROL32 V0 [7]
ROL32 V0 [5] BUF V1 [5]
BUF V1 [5] MUL
MUL WR V3 [4]
ROL32 V0 [6]
BUF V1 [4] RSTL V0 [6]
MUL BUF V1 [7]
ROL32 V0 [7] MUL
BUF V1 [3] ROL32 V0 [7]
MUL BUF V1 [6]
WR V3 [2] MUL

WR V3 [5]
RSTL V0 [4]
BUF V1 [7] RSTL V0 [7]
MUL BUF V1 [7]
ROL32 V0 [5] MUL
BUF V1 [6] WR V3 [6]
MUL
ROL32 V0 [6] ROR24
BUF V1 [5] ROR8
MUL WR V3 [7]

Curve25519 reduction after multiplication. After the multiplication the result can
have up to 512 bits. Thus it must be reduced. Thereby, the reduction for Curve25519 is
the most simplex one, because therefore only the upper half must be multiplied with 38
and added to the lower half. This must be repeated a second time to reduce the result of
this addition, too. Finally, a single possible carry bit must be added to the first 32-bit word
of the result. These three steps to calculate R0 = reduce({R3,R2}) can be implemented
as follows.

82

USE R0 , R1 , R2 , R3 ADDAE 1
RST V3 [0] WRROR V3 [5]
BUF V2 [0]
ADD 38 RSTL V3 [6]
WRROR V3 [0] ROR8

BUF V2 [6]
RSTL V3 [1] ADDAE 38
ROR8 BUF
BUF V2 [1] ADDAE 1
ADDAE 38 WRROR V3 [6]
BUF
ADDAE 1 RSTL V3 [7]
WRROR V3 [1] ROR8

BUF V2 [7]
RSTL V3 [2] ADDAE 38
ROR8 BUF
BUF V2 [2] ADDAE 1
ADDAE 38 WRROR V3 [7]
BUF
ADDAE 1 −−−−−−−− REDUCE2 −−−−−−−
WRROR V3 [2]

ROR8
RSTL V3 [3] WRROR V1 [0]
ROR8
BUF V2 [3] RST V0 [0]
ADDAE 38 BUF V3 [0]
BUF ADD 38
ADDAE 1 WRROR V0 [0]
WRROR V3 [3]

RSTL V3 [1]
RSTL V3 [4] BUF
ROR8 ADDAE 1
BUF V2 [4] WRROR V0 [1]
ADDAE 38
BUF RSTL V3 [2]
ADDAE 1 BUF
WRROR V3 [4] ADDAE 1

WRROR V0 [2]
RSTL V3 [5]
ROR8 RSTL V3 [3]
BUF V2 [5] BUF
ADDAE 38 ADDAE 1
BUF WRROR V0 [3]

83

RSTL V3 [4] RSTL V3 [7]
BUF BUF
ADDAE 1 ADDAE 1
WRROR V0 [4] WRROR V0 [7]

RSTL V3 [5] −−−−−−−− REDUCE3 −−−−−−−
BUF
ADDAE 1 ROR8
WRROR V0 [5] WRROR V1 [0]

RSTL V3 [6] RST V0 [0]
BUF BUF V0 [0]
ADDAE 1 ADD 38
WRROR V0 [6] WRROR V0 [0]

NIST P256 reduction after multiplication. The reduction for NIST P256 is more
complex than the reduction for Curve25519. In a first step several words must be added
as defined in Section 2.2.3. The result of this addition can be positive and negative and
can have up to two carry bits. These bits are stored in the overflow-buffer in a signed
representation. Depending on them either the prime must be added or subtracted until
the overflow is zero. Therefore REDUCE1 must be repeated three times. The complete
reduction to calculate R0 = reduce({R3,R2}) can be implemented as follows.

USE R0 , P, R2 , R3 ADDAE 1
RST V2 [0] BUF V3 [2]
BUF V3 [0] ADDAE 1
ADD 1 BUF V3 [4]
NOP V3 [1] ADDAE 1
BUF V3 [3] BUF V3 [5]
ADDAE 1 SUBH 1
BUF V3 [4] BUF V3 [6]
SUBH 1 SUBH 1
BUF V3 [5] BUF V3 [7]
SUBH 1 SUBH 1
BUF V3 [6] BUF
SUBH 1 SUBH 1
BUF WRROR V2 [1]
SUBH 1
WRROR V2 [0] SETSGN V2 [2]

ROR8
SETSGN V2 [1] BUF V3 [2]
ROR8 ADDAE 1
BUF V3 [1] BUF V3 [3]

84

ADDAE 1 WRROR V2 [4]
BUF V3 [5] SETSGN V2 [5]
ADDAE 1 ROR8
BUF V3 [6] BUF V3 [5]
SUBH 1 ADDAE 1
BUF V3 [7] BUF V3 [6]
SUBH 1 ADDAE 2
BUF BUF V3 [7]
SUBH 1 ADDAE 2
WRROR V2 [2] BUF V3 [2]

ADDAE 1
SETSGN V2 [3] BUF V3 [3]
ROR8 SUBH 1
BUF V3 [3] BUF
ADDAE 1 SUBH 1
BUF V3 [4] WRROR V2 [5]
ADDAE 2
BUF V3 [5] SETSGN V2 [6]
ADDAE 2 ROR8
BUF V3 [7] BUF V3 [6]
ADDAE 1 ADDAE 1
BUF V3 [0] BUF V3 [7]
SUBH 1 ADDAE 2
BUF V3 [1] BUF V3 [6]
SUBH 1 ADDAE 2
BUF BUF V3 [5]
SUBH 1 ADDAE 1
WRROR V2 [3] BUF V3 [0]

ADDAE 1
SETSGN V2 [4] BUF V3 [1]
ROR8 SUBH 1
BUF V3 [4] BUF
ADDAE 1 SUBH 1
BUF V3 [5] WRROR V2 [6]
ADDAE 2
BUF V3 [6] SETSGN V2 [7]
ADDAE 2 ROR8
BUF V3 [1] BUF V3 [7]
ADDAE 1 ADDAE 1
BUF V3 [2] BUF V3 [7]
SUBH 1 ADDAE 2
BUF BUF V3 [0]
SUBH 1 ADDAE 1

85

BUF V3 [2] REDC
ADDAE 1 WRROR V0 [2]
BUF V3 [3]
SUBH 1 RSTL V1 [3]
BUF V3 [4] BUF V3 [3]
SUBH 1 REDC
BUF V3 [5] WRROR V0 [3]
SUBH 1
BUF RSTL V1 [4]
SUBH 1 BUF V3 [4]
WRROR V2 [7] REDC

WRROR V0 [4]
SAVEOF
INCBA RSTL V1 [5]

BUF V3 [5]
−−−−−−−− REDUCE1 −−−−−−− REDC

WRROR V0 [5]
RST V1 [0]
BUF V3 [0] RSTL V1 [6]
RED BUF V3 [6]
WRROR V0 [0] REDC

WRROR V0 [6]
RSTL V1 [1]
BUF V3 [1] RSTL V1 [7]
REDC BUF V3 [7]
WRROR V0 [1] REDC

WRROR V0 [7]
RSTL V1 [2]
BUF V3 [2] UPDOF

Brainpool P256r1 reduction after multiplication. After the multiplication at Brain-
pool P256r1 we do a Barrett reduction. First, we have to calculate a partial 256-bit product
of the result of the multiplication {R3,R2} and a constant M. However, this constant has
more than 256 bits. Thus, we must store it into two registers in the ROM. To reduce the
number of switches between these two registers, MH contains also some values of ML.
ML = 0xA1C55B7EBB73ABA8322A7BF29B4F54A0FF6A2FA9B62AE6301180DD0C6B117C94,

MH = 0x00000001818C1131A1C55B7EBB73ABA8322A7BF29B4F54A0FF6A2FA9B62AE630.

In a second step we multiply this product with P and subtract it from the R2. For this
code we need three entries in the address-base-ROM, thus the USE statement is longer.
To switch between these entries the instructions INCBA and DECBA are used. The complete
reduction to calculate R0 = reduce({R3,R2}) can be implemented as follows.

86

USE R1 , ML, R2 , R3 ; MUL
R1 , MH, R2 , R3 ; BUFALU V1 [4]
P, R1 , R2 , R0 ROL32 V3 [4]

BUFALU V1 [0] MUL
RST V3 [7] BUFALU V1 [5]
MUL ROL32 V3 [3]
BUFALU V1 [1] MUL
ROL32 V3 [6] BUFALU V1 [6]
MUL ROL32 V3 [2]
BUFALU V1 [2] MUL
ROL32 V3 [5] BUFALU V1 [7]
MUL ROL32 V3 [1]
BUFALU V1 [3] MUL
ROL32 V3 [4] INCBA
MUL BUFALU V1 [6]
BUFALU V1 [4] ROL32 V3 [0]
ROL32 V3 [3] MUL
MUL BUFALU V1 [7]
BUFALU V1 [5] ROL32 V2 [7]
ROL32 V3 [2] MUL
MUL BUFALU V1 [0]
BUFALU V1 [6] RSTL V3 [7]
ROL32 V3 [1] MUL
MUL BUFALU V1 [1]
BUFALU V1 [7] ROL32 V3 [6]
ROL32 V3 [0] MUL
MUL BUFALU V1 [2]
INCBA ROL32 V3 [5]
BUFALU V1 [6] MUL
ROL32 V2 [7] BUFALU V1 [3]
MUL ROL32 V3 [4]
BUFALU V1 [7] MUL
ROL32 V2 [6] BUFALU V1 [4]
MUL ROL32 V3 [3]
DECBA MUL
BUFALU V1 [1] BUFALU V1 [5]
RSTL V3 [7] ROL32 V3 [2]
MUL MUL
BUFALU V1 [2] BUFALU V1 [6]
ROL32 V3 [6] ROL32 V3 [1]
MUL MUL
BUFALU V1 [3] BUFALU V1 [7]
ROL32 V3 [5] ROL32 V3 [0]

87

MUL ROL32 V3 [2]
WR V0 [0] MUL

WR V0 [2]
BUFALU V1 [1]
RSTL V3 [7] BUFALU V1 [3]
MUL RSTL V3 [7]
BUFALU V1 [2] MUL
ROL32 V3 [6] BUFALU V1 [4]
MUL ROL32 V3 [6]
BUFALU V1 [3] MUL
ROL32 V3 [5] BUFALU V1 [5]
MUL ROL32 V3 [5]
BUFALU V1 [4] MUL
ROL32 V3 [4] BUFALU V1 [6]
MUL ROL32 V3 [4]
BUFALU V1 [5] MUL
ROL32 V3 [3] BUFALU V1 [7]
MUL ROL32 V3 [3]
BUFALU V1 [6] MUL
ROL32 V3 [2] WR V0 [3]
MUL
BUFALU V1 [7] BUFALU V1 [4]
ROL32 V3 [1] RSTL V3 [7]
MUL MUL
WR V0 [1] BUFALU V1 [5]

ROL32 V3 [6]
BUFALU V1 [2] MUL
RSTL V3 [7] BUFALU V1 [6]
MUL ROL32 V3 [5]
BUFALU V1 [3] MUL
ROL32 V3 [6] BUFALU V1 [7]
MUL ROL32 V3 [4]
BUFALU V1 [4] MUL
ROL32 V3 [5] WR V0 [4]
MUL
BUFALU V1 [5] BUFALU V1 [5]
ROL32 V3 [4] RSTL V3 [7]
MUL MUL
BUFALU V1 [6] BUFALU V1 [6]
ROL32 V3 [3] ROL32 V3 [6]
MUL MUL
BUFALU V1 [7] BUFALU V1 [7]

88

ROL32 V3 [5] BUFALU V0 [1]
MUL ROL32 V1 [1]
WR V0 [5] MULNEG

BUFALU V0 [0]
BUFALU V1 [6] ROL32 V1 [2]
RSTL V3 [7] MULNEG
MUL NOP V2 [2]
BUFALU V1 [7] BUF V2 [2]
ROL32 V3 [6] ROL24
MUL ADDAE 1
WR V0 [6] WRROR V3 [2]

BUFALU V1 [7] BUFALU V0 [3]
RSTL V3 [7] SETSGN V1 [0]
MUL MULNEG
WR V0 [7] BUFALU V0 [2]

ROL32 V1 [1]
INCBA MULNEG

BUFALU V0 [1]
BUFALU V0 [0] ROL32 V1 [2]
RST V1 [0] MULNEG
MULNEG BUFALU V0 [0]
NOP V2 [0] ROL32 V1 [3]
BUF V2 [0] MULNEG
ROL24 NOP V2 [3]
ADDAE 1 BUF V2 [3]
WRROR V3 [0] ROL24

ADDAE 1
BUFALU V0 [1] WRROR V3 [3]
SETSGN V1 [0]
MULNEG BUFALU V0 [4]
BUFALU V0 [0] SETSGN V1 [0]
ROL32 V1 [1] MULNEG
MULNEG BUFALU V0 [3]
NOP V2 [1] ROL32 V1 [1]
BUF V2 [1] MULNEG
ROL24 BUFALU V0 [2]
ADDAE 1 ROL32 V1 [2]
WRROR V3 [1] MULNEG

BUFALU V0 [1]
BUFALU V0 [2] ROL32 V1 [3]
SETSGN V1 [0] MULNEG
MULNEG BUFALU V0 [0]

89

ROL32 V1 [4] MULNEG
MULNEG BUFALU V0 [2]
NOP V2 [4] ROL32 V1 [4]
BUF V2 [4] MULNEG
ROL24 BUFALU V0 [1]
ADDAE 1 ROL32 V1 [5]
WRROR V3 [4] MULNEG

BUFALU V0 [0]
BUFALU V0 [5] ROL32 V1 [6]
SETSGN V1 [0] MULNEG
MULNEG NOP V2 [6]
BUFALU V0 [4] BUF V2 [6]
ROL32 V1 [1] ROL24
MULNEG ADDAE 1
BUFALU V0 [3] WRROR V3 [6]
ROL32 V1 [2]
MULNEG BUFALU V0 [7]
BUFALU V0 [2] SETSGN V1 [0]
ROL32 V1 [3] MULNEG
MULNEG BUFALU V0 [6]
BUFALU V0 [1] ROL32 V1 [1]
ROL32 V1 [4] MULNEG
MULNEG BUFALU V0 [5]
BUFALU V0 [0] ROL32 V1 [2]
ROL32 V1 [5] MULNEG
MULNEG BUFALU V0 [4]
NOP V2 [5] ROL32 V1 [3]
BUF V2 [5] MULNEG
ROL24 BUFALU V0 [3]
ADDAE 1 ROL32 V1 [4]
WRROR V3 [5] MULNEG

BUFALU V0 [2]
BUFALU V0 [6] ROL32 V1 [5]
SETSGN V1 [0] MULNEG
MULNEG BUFALU V0 [1]
BUFALU V0 [5] ROL32 V1 [6]
ROL32 V1 [1] MULNEG
MULNEG BUFALU V0 [0]
BUFALU V0 [4] ROL32 V1 [7]
ROL32 V1 [2] MULNEG
MULNEG NOP V2 [7]
BUFALU V0 [3] BUF V2 [7]
ROL32 V1 [3] ROL24

90

ADDAE 1 WRROR V3 [7]

Curve25519 reduction after addition and subtraction. The reduction after addi-
tions and subtractions are shorter, because only a single bit must be reduced. Following
code shows the reduction for Curve25519. Therefore the carry bit must be multiplied with
38. Following code shows the reduction R0 = reduce({R1}) after a 256-bit addition.

USE R0 , R1 , C, P ADDC 1
SAVEC WRROR V0 [3]
RST V2 [0] //0 x26 RSTL V1 [4]
BUF V1 [0] ADDC 1
ADD 0 WRROR V0 [4]
WRROR V0 [0] RSTL V1 [5]
RSTL V2 [1] ADDC 1
BUF V1 [1] WRROR V0 [5]
ADDC 1 RSTL V1 [6]
WRROR V0 [1] ADDC 1
RSTL V1 [2] WRROR V0 [6]
ADDC 1 RSTL V1 [7]
WRROR V0 [2] ADDC 1
RSTL V1 [3] WRROR V0 [7]

In the reduction after subtraction the carry bit must be reduced a second time.

USE R0 , R1 , C, P SUBIAC
SAVECI WRROR V0 [4]
RST V2 [1] //0V25 RSTL V1 [5]
BUF V1 [0] BUF
SUBC 0 SUBIAC
WRROR V0 [0] WRROR V0 [5]
RSTL V1 [1] RSTL V1 [6]
BUF BUF
SUBIAC SUBIAC
WRROR V0 [1] WRROR V0 [6]
RSTL V1 [2] RSTL V1 [7]
BUF BUF
SUBIAC SUBIAC
WRROR V0 [2] WRROR V0 [7]
RSTL V1 [3]
BUF SAVECX
SUBIAC RST V2 [2]
WRROR V0 [3] BUF V0 [0]
RSTL V1 [4] SUBC 0
BUF WRROR V0 [0]

91

NIST and Brainpool reduction after addition and subtraction. The reduction
after addition works identically for the curves from NIST and Brainpool. Therefore the
prime must be subtracted when the carry bit is set. For Brainpool this reduction must be
repeated a second time, because the prime is much smaller.

USE R0 , R1 , R2 , P WRROR V0 [3]
SAVEC BUFALU V3 [4]
BUFALU V3 [0] RSTL V1 [4]
RSTL V1 [0] SUBC 0
SUBC 0 WRROR V0 [4]
WRROR V0 [0] BUFALU V3 [5]
BUFALU V3 [1] RSTL V1 [5]
RSTL V1 [1] SUBC 0
SUBC 0 WRROR V0 [5]
WRROR V0 [1] BUFALU V3 [6]
BUFALU V3 [2] RSTL V1 [6]
RSTL V1 [2] SUBC 0
SUBC 0 WRROR V0 [6]
WRROR V0 [2] BUFALU V3 [7]
BUFALU V3 [3] RSTL V1 [7]
RSTL V1 [3] SUBC 0
SUBC 0 WRROR V0 [7]

The code for the reduction after a subtraction looks as follows. For the subtraction of both
curves this code must be repeated a second time. Thereby the first instruction must be
replaced by a SAVECX, since a second reduction is only necessary if the first one created a
carry bit.

USE R0 , R1 , R2 , P WRROR V0 [3]
SAVECI BUFALU V3 [4]
BUFALU V3 [0] RSTL V1 [4]
RSTL V1 [0] ADDC 0
ADD 0 WRROR V0 [4]
WRROR V0 [0] BUFALU V3 [5]
BUFALU V3 [1] RSTL V1 [5]
RSTL V1 [1] ADDC 0
ADDC 0 WRROR V0 [5]
WRROR V0 [1] BUFALU V3 [6]
BUFALU V3 [2] RSTL V1 [6]
RSTL V1 [2] ADDC 0
ADDC 0 WRROR V0 [6]
WRROR V0 [2] BUFALU V3 [7]
BUFALU V3 [3] RSTL V1 [7]
RSTL V1 [3] ADDC 0
ADDC 0 WRROR V0 [7]

92

