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Abstract

Isolation of security-relevant components is critical on modern computer systems, because we use our

computers for many purposes with different security requirements at the same time. To protect valuable

information, several methods exist to isolate security-critical parts from the rest of the system. ARM

TrustZone is an isolation technology for security purposes. It splits the CPU into two virtual worlds, the

secure world, and the normal world. In both worlds independent operating systems and applications can

run. The secure world system has full control over the hardware and can restrict the access of the normal

world system to security-relevant resources.

For the secure world of an ARM TrustZone system, the academic ANDIX operating system was

developed. ANDIX sets up the TrustZone and can execute so-called Trusted Applications, which provide

functions to normal world applications via a Remote Procedure Call (RPC) interface. Trusted Applications

are written in the C programming language and can use a cryptographic library and a conventional C

runtime library. However, in C, programming errors tend to create security flaws, which could be used to

compromise the security of a Trusted Application.

In this thesis, we provide a managed runtime environment for Trusted Applications on ANDIX. A

managed runtime environment provides several advantages for security-critical applications, such as

type-safety and high-level programming. Therefore, programming errors in managed code are less likely

to breach the system’s security. We choose the open-source Common Language Runtime (CLR) Mono for

this project. To fulfil the requirements of the Mono managed runtime, we enhance the ANDIX operating

system by adding multi-threading, signals, and system timing. We port the Mono runtime to the ANDIX

operating system, and evaluate it using Mono’s test suite. We demonstrate the goals of this project by

writing an example managed trusted application, which provides RSA cryptographic services, and secures

private cryptographic keys in the ARM TrustZone. Finally, we show an example use case that employs

our RSA managed Trusted Application to secure a SSL web server’s private keys.





Kurzfassung

Die Isolation von sicherheitsrelevanten Komponenten in modernen Computersystemen ist kritisch, weil

wir unsere Computer gleichzeitig für eine Vielzahl von verschiedenen Zwecken mit verschieden Sicher-

heitsanforderungen einsetzen. Um wertvolle Informationen zu schützen, gibt es einige Methoden, die

sicherheitsrelevante Teile vom Rest des Systems isolieren. ARM TrustZone ist eine Isolierungstechnologie

für Sicherheitszwecke. Die CPU wird in zwei virtuelle Welten geteilt, eine sichere Welt und eine normale

Welt. In beiden Welten laufen unabhängige Betriebssysteme und Anwendungen. Die sichere Welt hat

die volle Kontrolle über die Hardware und kann die Zugriffe der normalen Welt auf sicherheitsrelevante

Resourcen einschränken.

Für die sichere Welt eines ARM TrustZone Systems wurde zu Forschungszwecken das ANDIX

Betriebssystem entwickelt. ANDIX konfiguriert die TrustZone und kann sogenannte vertrauenswürdige

Anwendungen ausführen. Diese bieten Anwendungen in der normalen Welt den Aufruf von Funktionen

über eine Schnittstelle an. Vertrauenswürdige Anwendungen werden in der C Programmiersprache

geschrieben und können eine krypografische Bibliothek sowie eine konventionelle C Laufzeit Bibliothek

nutzen. Jedoch neigen Programmierfehler in C dazu Sicherheitsprobleme zu verursachen, welche dazu

benutzt werden könnten, eine vertrauenswürdigen Anwendung zu kompromitieren.

In dieser Diplomarbeit stellen wir eine verwaltete Laufzeitumgebung für vertrauenswürdige An-

wendungen auf ANDIX zur Verfügung. Eine verwaltete Laufzeitumgebung bietet viele Vorteile für

sicherheitskritische Anwendungen, wie zum Beispiel Typensicherheit und höhere Programmiersprachen.

Dadurch führen Programmierfehler in verwalteten Programmen weniger häufig zu einer Lücke in der

Sicherheit des Systems. Wir verwenden in diesem Projekt die quelloffene Mono Laufzeitumgebung. Um

die Anforderungen der Mono Laufzeitumgebung zu erfüllen, erweitern wir das Betriebssystem ANDIX um

mehrfache Ausführungstränge, Signale und Systemzeit. Dann portieren wir die Mono Laufzeitumgebung

auf das ANDIX Betriebssystem und evaluieren es mit den Mono Testprogrammmen. Wir demonstrie-

ren das Ziel dieses Projekts indem wir eine beispielhafte verwaltete vertrauenswürdige Anwendung

schreiben. Diese bietet RSA Kryptographie an und schützt ihre privaten kryptografischen Schlüssel mit

ARM TrustZone. Schließlich zeigen wir einen beispielhaften Anwendungsfall, in dem unsere verwaltete,

vertrauenswürdige RSA Anwendung eingesetzt wird, um die privaten Schlüssel eine SSL Web Servers zu

schützen.
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Chapter 1

Introduction

Considering a smartphone, or a personal computer we see that it contains different software components

for many different purposes. Each program has specific security requirements and the value of each

program’s assets differs significantly. For example, we would value the credits earned in an online game

much less than the value of payment credentials. We do not not want the game to access the payment

credentials, although we are using them on the same device. We want these pieces of software to be

strongly separated from each other.

1.1 Motivation

A common method to improve data confidentiality is called isolation. Decades ago operating systems

started to isolate processes from each other, employing a hardware component called the Memory

Management Unit (MMU). This process isolation prevents access to another process’ memory. Similar

access restrictions exist for data at rest, such as files.

However, software contains bugs [Misra and Bhavsar, 2003] and so do operating systems [Chou et al.,

2001]. A bug in the operating system could allow an attacker to circumvent all isolation methods provided

by the operating system. Therefore, for applications with increased security requirements stronger means

of isolation are needed.

One option is to execute security-critical operations and store sensitive data, such as cryptographic

keys, on an isolated, dedicated computer system with very reduced functionality and a higher security

level than the rest of the system. An example for this option is a smartcard attached to a general purpose

device, such as the SIM card in a mobile phone or the Austrian Buergerkarte [Leitold, Posch and Hollosi,

2002] connected to a personal computer. One disadvantage is obvious: Additional hardware is required,

adding cost and complexity.

To reduce the need for additional (external) hardware, ARM introduced an isolation technology called

TrustZone [ARM Limited, 2009]. It extends the ARM Central Processing Unit (CPU) [ARM Limited,

2012] by an additional isolated secure mode. In the secure processor mode — the so-called secure world

— a security kernel manages access to system resources and executes security-relevant applications. In the

normal processor mode — the so-called normal world — a commodity rich operating system such as

1



2 1. Introduction

Android or Linux provides the usual functionality to the user. Applications in the rich operating system

can split off small security critical parts and execute them in the isolated secure world.

In a TrustZone system the secure world operating system is in full control. Both modes are strongly

isolated by hardware features. The isolation includes memory, interrupts, and peripherals. All additional

functionality is integrated in the System on Chip (SOC), thus, no external hardware is required.

In his recent Master’s Thesis, Andreas Fitzek [2014] developed a small-footprint operating system for

the secure mode called ANDIX OS. ANDIX OS provides basic operating system features, a persistent file

system emulation, multi-tasking, and a communication interface with the normal-mode rich operating

system, which is compatible to the Trusted Execution Environment (TEE) standard of GlobalPlatform

[2010b]. Application programmers can write programs to run in the secure mode user space, the so called

trusted applications, as specified by GlobalPlatform [2010b]. These Trusted Applications can use a C

runtime library based on “newlib”1 and the “TropicSSL”2 cryptography library, as well as the (partially

available) TEE Internal API [GlobalPlatform, 2011], including the above mentioned communication

interface.

The existing ANDIX OS system sets tight limits on the security application programmer. Trusted

applications can only use basic C library functions and some cryptographic functions and they can only

be written in the C programming language or in ARM assembler. In C programs, programming errors

often lead to security vulnerabilities, because C does not provide any automatic type safety or bounds

checking [Seacord, 2013]. Therefore, flaws introduced by an unaware programmer, for example a wrong

cast, an unhandled integer overrun, or a missing check of the input data length can lead to undetected

memory corruption. Attackers can use errors like these to manipulate the software and cause the program

to do something unintended, such as revealing a secret or simply crash [AlephOne, 1996]. Generally, a

system which suffers from vulnerabilities like these, can be attacked using an exploit based on a simple

programming flaw.

To reduce the risk of these vulnerabilities and thus increase the security of a system that runs ANDIX

OS, a managed runtime for Trusted Applications is promising. A managed runtime controls the executing

code in such a way that it can detect and prevent violations of access permissions, memory boundaries,

and security policies. Two examples for existing managed runtimes are the Java Virtual Machine (JVM)

and the Common Language Runtime (CLR) of the Microsoft .NET Framework.

In this project we use a CLR as our managed runtime environment. The JVM and the CLR are

similar in many aspects [Singer, 2003], but the JVM does not provide any code isolation equivalent to

Applications Domains (AppDomains). Furthermore, the JVM’s policy system is less fine-grained and less

suited to provide fail-safe defaults [Nathanael Paul and David Evans, 2006].

The specification of the CLR is public and standardised [Ecma, 2012; ISO, 2012]. The public standard

enabled the Mono3 project to create an open-source implementation of the .NET framework. Mono

consists of the runtime environment, the Base Class Library (BCL), and a C# compiler.

From a security point of view executing managed code has several advantages.

1available at http://sourceware.org/newlib/
2available at https://gitorious.org/tropicssl
3http://www.mono-project.com/

http://sourceware.org/newlib/
https://gitorious.org/tropicssl
http://www.mono-project.com/


1.2. Contribution 3

Type-checking Before just-in-time compiling and executing the Intermediate Language (IL) code

the CLR verifies its behaviour (see Figure 2.8. Code that passes this verification is said to be type-safe.

This prevents common programming errors such as buffer overflows, integer over/underruns, misuse of

pointers, wrong casts, and similar problems [Pfenning, 2004]. Especially for security relevant code this

reduces the attack surface significantly.

Policies The CLR allows the specification of policies which describe the permissions the running code

uses. For example, policies can restrict the access to files, input devices, or allow only authenticated code.

Violations of this policy are prevented. This mitigates the risk of successful exploits against buggy Trusted

Applications, because the manipulated behaviour of an exploited application shall violate a well defined

policy. This violation will be detected and prevented [Singer, 2003].

Isolation The type-checked code is executed in containers called Applications Domains (AppDomains).

AppDomains are strongly isolated from each other, similar to processes in an operating system [Gunnerson

and Wienholt, 2012]. Each Trusted Application can be run securely in its own isolated AppDomain

without the need for multiple processes in the underlying operating system, thus saving performance and

requiring less OS features. Communication between AppDomain is possible in a strictly controlled way

through specified proxies.

Flexibility Running Trusted Applications in a managed runtime increases flexibility. Assemblies are

a collection of IL code, metadata, policies, and more. They can be loaded and executed by the CLR.

Each Trusted Application can be compiled into a seperate assembly and then executed in an isolated

AppDomain. This allows adding and removing of Trusted Applications at runtime, but this feature is

currently not implemented. Assemblies can be authenticated by a digital signature before execution.

Programming Convenience Along with the CLR comes a feature-rich Base Class Library (BCL).

In addition to the inherent advantages of managed languages — like C# — the BCL simplifies the

development of Trusted Applications. For common purposes, programmers can use the functionality

provided by the well-tested BCL just as they do in other CLR programs. Convenience and productivity of

Trusted Application programmers increase, compared to a purely C-based programming environment.

Additional features can easily be provided to Trusted Applications by extending the library.

1.2 Contribution

In this thesis we port Mono to the TrustZone-aware ANDIX OS, to improve security and convenience

for the programmer of the security-critical Trusted Application. Running the Trusted Applications in a

managed runtime reduces the risk of vulnerabilities due to programming errors, which could be exploited

by an adversary with full control over the normal world.

These advantages come at the cost of increasing complexity. We extend the ANDIX OS with the Mono

managed runtime and we add the required classes from the BCL to the Trusted Applications. Furthermore,

we extend the operating system and its corresponding C userspace library by the features required to run
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Mono. These additions increase the size and complexity of the Trusted Computing Base (TCB) (see

Section 2.2), but we accept this downside, because it is necessary to achieve our goal of providing a

managed runtime.

In this thesis we present the steps required to execute the Mono runtime in an ANDIX userspace

process. Mono is designed to run on a full-featured operating system that is compatible with the Portable

Operating System Interface (POSIX) standard, for example Linux, Mac OSX, or Unix. Thus, Mono

makes excessive use of POSIX features, some of which are hard to provide in a small-footprint operating

system like ANDIX. Therefore, our strategy is twofold. On the one hand, we extend ANDIX OS and the

C runtime library with the necessary features. On the other hand, we patch, configure, and port Mono to

reduce the number of required features and reduce dependencies on POSIX-specific behaviour.

We add new features to the operating system kernel and the corresponding C library. In its original

state ANDIX only supported single-threaded processes, so-called tasks. Mono requires a large part of

the POSIX thread (pthread) specification. The pthread standard defines an Application Programming

Interface (API) for running multiple threads in one process as well as many related features, such as locks,

synchronisation, communication, and Thread Local Storage (TLS).

POSIX signals specify a way of sending information from either the operating system or a userspace

process to another userspace process. A signal can have several effects. The most common is that a

handler function is executed by the receiver of the signal. Mono uses signals to detect program exceptions,

like memory access violations or arithmetic exceptions, and for communication between threads. The

POSIX signal specification is very complex and extensive. Thus, we add only a necessary subset of it to

ANDIX.

Furthermore, we add system time keeping to ANDIX, including several functions for userspace

programs to retrieve the time and suspend for a given amount of time.

We describe the changes we applied to the source code of the Mono runtime and the problems we

encountered while porting Mono to a completely new operating system. The Mono runtime (excluding

other components, such as the BCL) consists of more than 350.000 lines of C code.

The Mono build system is based on GNU autotools. This suite of tools for building software

automatically detects and configures the source tree for a predefined platform. Mono can be built for a

wide range of POSIX-style platforms. Note that in this context a platform is a combination of a CPU type

and and operating system. In our case the CPU type is ARM and the operating system is something yet

unknown to the Mono source. Mono has already been ported to other ARM-based systems. Therefore,

CPU specific code is already available, most notably the just-in-time compiler for ARM already exists.

We start with a new platform configuration, which includes evaluating and choosing a variety of possible

configurations for the source modules making up the runtime.

Changes to Mono are required to deal with the limited capabilities of ANDIX in the areas of filesystem,

processes, and memory management. We develop ANDIX-specific code and configurations in many

different areas. In the Mono BCL we added support for the ANDIX serial console.

To make use of the Mono runtime, we embed it in a secure-world process, along with an assembly

and its dependencies. A small wrapper program initialises the runtime, loads, and starts the bundled

assemblies. We use this concept to evaluate the quality of our runtime port by running the test suite which
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is part of the Mono source.

Then, we develop an interface between managed code running in Mono and the TEE communication

interface for Trusted Applications. This is necessary for a trusted application running in Mono to provide

services via the C-based interface implemented by ANDIX.

1.3 Evaluation

Putting it all together, we can present a demonstration Trusted Application implemented in C# which

provides RSA cryptographic services, including key creation and storage. The recently discovered

Heartbleed bug (CVE-2014-0160) of the OpenSSL cryptographic library allowed an attacker to extract

any data in the memory of a web service process. We present a use case for this RSA managed Trusted

Application which shows how to secure a Secure Socket Layer (SSL) web server (apache2) against private

key disclosure. Our concept isolates all RSA private key operations in the TrustZone secure world. Thus,

bugs like Heartbleed can not disclose the private key.

To evaluate our port of the Mono runtime on ANDIX OS, we run the test suite that is part of the

Mono sources. The default test suite consists of 422 tests. To summarise the results, 71 tests fail, because

they require a feature, which is currently not available on ANDIX OS, such as full file system access. A

total of 23 tests can be summarised as real failures. These tests cause a crash of the user process, or the

operating system, or cause an infinite loop. Solving the problems that cause the test case failures is subject

to ongoing and future work. As a comparison, we run the same test suite on our Linux host PC. Seven

tests fail on this system.

1.4 Outline

The remainder of this thesis is structured as follows.

• Preliminaries (Chapter 2) introduces background topics.

• Related Work (Chapter 3) presents closely related publications and research and compares them

with our approach.

• Architecture (Chapter 4) presents the architecture of our system. The goal of our architecture is to

support the Mono runtime.

• ANDIX Multi-Threading (Chapter 5) describes the extension of ANDIX OS and its user space

runtime library to enable multi-threaded processes.

• POSIX Signals for ANDIX (Chapter 6) describes our POSIX signal implementation for ANDIX.

• ANDIX System Timing (Chapter 7) shows the basic system timing features, that we added to ANDIX.

• Porting Mono (Chapter 8) shows how we have ported mono to a completely new platform. Fur-

thermore, we describe how we embed managed code in a secure-world user space process, and we

evaluate the runtime port with it’s test suite.
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• Managed Trusted applications (Chapter 9) describes the interface for managed Trusted Applications.

presents a use-case demonstration, a Trusted Application which provides RSA.

• Use Case: RSA Managed Trusted Application (Chapter 10) presents a use-case demonstration. We

presesnt a Trusted Application which provides RSA and show how to use it to protect a web server’s

SSL authentication keys.

• Development Tools (Chapter 11) introduces the development tools, compiler, and test programs that

we used and created in the course of this work.

• And finally, Chapter 12 concludes this work.

• In the appendices we list the detailed results of the Mono runtime test suite (Appendix A), we show

the patches we developed for the Mono runtime (Appendix C), and we show selected source code

listings of ANDIX, and our Trusted Applications as a reference (Appendix B, Appendix D).



Chapter 2

Preliminaries

This chapter introduces topics and concepts that are required to embed our work. First, we give an

overview about Trusted Computing.Then we introduce technical methods for trusted systems, isolation

techniques, and the ARM TrustZone. Then, we introduce relevant operating system concepts, present the

ANDIX operating system, and give an introduction to managed runtime environments.

2.1 Trusted Computing

Since decades the question whether we can trust a computing system arises whenever sensitive, valuable,

or classified information is stored or processed. According to a standard document of the Department of

Defense of the United States of America [Latham, 1985] — called the “Orange Book” – in 1967 a task

force was assembled to research the protection of classified information in computer systems.

While in this early age of computing only government and military organisations were interested in

trusted computing, today an ever growing number of devices carries sensitive information. Many of them

are connected to a world-wide network – the Internet – and, therefore, are remote-accessible. Most of

them are owned by average people. Therefore, trusted computing has become a topic of public interest.

Sensitive information is no longer restricted to classified military documents, but spans from personal

login credentials, pictures, emails, contacts over payment authentication to cryptographic keys for

signatures, authentication, or encryption. This information can be stored and processed on a wide variety

of devices, for example smartcards, mobile phones, hard disks, and USB flash memory.

The definition of “trust” among different areas of research is manifold [Gollmann, 2006]. For the area

of computer security The Internet Security Glossary (RFC4949) [Shirey, 2007] defines trust as “a feeling

of certainty” that a system will behave as expected and will not fail. This feeling must be based on real

facts of technical measures applied in the system and administrative procedures that regulate the usage of

the system.

However, establishing trust is not trivial. In his famous article Thompson [1984] describes a scenario,

where a so called “Trojan Horse”-code is added to the C compiler. Such that, whenever this modified

compiler binary compiles its own unmodified source, it adds the malicious code to the output binary. It

regenerates itself from an unmodified source and is therefore not detectable by source code inspection.

7
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The purpose of the “Trojan Horse” in the compiler is to detect when the login program is compiled and

to modify it to allow unauthenticated logins for an attacker. A system infected with such a Trojan Horse is

clearly not trustworthy, but the challenge is to detect this particular state of a system. In this work we

concentrate on the technical measures that trust can be based upon.

2.2 The Trusted Computing Base

The “Orange Book” [Latham, 1985] defines the Trusted Computing Base (TCB).

“Trusted Computing Base (TCB): The totality of protection mechanisms within a com-

puter system – including hardware, firmware, and software – the combination of which is

responsible for enforcing a security policy.”

This definition was also adopted by The Internet Security Glossary (RFC4949) [Shirey, 2007]. To

recap it, the Trusted Computing Base (TCB) includes every component of a system which is necessary to

maintain the security of the system. This in turn means that every single part of the TCB must work as

intended at all times to have a secure system (which works as intended) and is, therefore, trustworthy. In

contrast, if components which are not part of the TCB fail, the system shall not be compromised due to

this failure.

It follows that the designers of software that is part of the TCB must keep the number of errors – bugs

– as small as possible, because every bug could potentially breach the security of the complete system.

Research studies [Misra and Bhavsar, 2003] show that the number of bugs in a program correlates

with the program’s size and complexity. It follows that large programs on the average contain a higher

absolute number of bugs and are therefore more likely to cause a system security failure, if they are part

of the TCB. Common methods to reduce the number of programming errors, such as review and testing

are both only feasible and reliable for relatively small programs. Likewise, automatic debugging and

verification, such as presented by Bloem et al. [2013], are currently only applicable to relatively small

programs.

Thus, a small and less complex TCB should reduce the likelihood for critical bugs, and therefore

improve its reliability.

2.3 The Trusted Computing Group’s Trusted Computing

The Trusted Computing Group (TCG) defines itself on its website1:

“The Trusted Computing Group (TCG) is a not-for-profit organization formed to develop,

define and promote open, vendor-neutral, global industry standards, supportive of a hardware-

based root of trust, for interoperable trusted computing platforms.”

The TCG is an industry consortium, which publishes standards and specifications for Trusted Comput-

ing primitives. Most notably, the TCG specified the Trusted Platform Module (TPM) [TCG, 2011a; TCG,
1http://www.trustedcomputinggroup.org/

http://www.trustedcomputinggroup.org/
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2011b; TCG, 2011c], a tamper-resilient hardware chip that is physically bound to a computer, and serves

as a hardware anchor of trust. Typically it is soldered onto a personal computer’s mainboard, but the TPM

is an independent chip, and can therefore be integrated into other systems as well.

The TPM key concept is to improve the security properties of the system at relatively low cost.

Although the TPM is tamper-resilient, Winter [2014] showed that especially the LPC bus connection

between the TPM and the rest of the system can be compromised with relatively cheap equipment,

breaking many TPM security concepts.

Using the TPM, software can provide a hardware-based chain of trust by step-by-step measuring

next-level software before it is executed, assuming that there is a static root of trust providing an initial

measurement. Measuring in this context means to accumulate a value that represents the current system

state. This can be used to guarantee that only trusted software is executed. Typically, one component

measures the next component as it loads it, and only passes control if the measurement returns a valid

result. Repeating this step, a chain of trust is built.

To facilitate measurements, the TPM features a set of Platform Configuration Registers (PCRs). The

corresponding PCRs can only be reset at the beginning of a chain of trust, for example at system boot, or

at the beginning of a late-launch in Intel’s Trusted Execution Technology (refer to Section 3.1.4). Then,

for each measurement in the chain, the PCR is extended. Extending a PCR is a one-way process. The

hash sum x of the measured code is sent to the TPM. The TPM concatenates it with the current content of

the PCR, and updates the PCR with the SHA-1 hash of the concatenation; PCRt+1
i = SHA-1(PCRt

i||x).
Thus, the current value of a PCR always represents the complete measured chain up to the current point,

and can therefore guarantee the state of the executing software.

The TPM can store cryptographic keys and seal them. Sealing means binding a key to a specific

platform state and only unseal it, when the platform is in the required state. The platform state is

represented by a set of PCRs, with their value depending on previous measurements of the chains of trust.

A sealed key guarantees that the key can only be used when the system is in a trusted state.

The TPM stores asymmetric cryptographic keys bound to several entities, such as the TPM chip itself,

and the TPM owner. These keys can be used to sign a set of PCR values and thus attest the current

platform state to a remote entity.

2.4 Isolation for Security and Stability

Hardware-based isolation has been integrated in computer processors since time-sharing operating systems

were invented. Time-sharing systems can virtually execute more than one program at the same time

by sharing the Central Processing Unit (CPU) time and having the operating system switch between

processes. On early systems without isolation mechanisms this meant that for the complete system to

work as intended, every single program had to work as intended. Considering the scope of the TCB (see

Section 2.2), this would result in the TCB of one program to include all other programs as well, because

no program can work as intended if not all others do so, too.

To improve stability and security it became important to isolate programs from each other, in order to

prevent faulty or malicious programs to access and manipulate the data of other programs or the operating
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system (Section 2.4.1). This concept was further extended to allow virtualisation of the whole system

hardware (Section 2.4.2). Similar virtualisation technologies can be used to provide additional isolation

for security such as realised in ARM TrustZone (Section 2.5).

With the advent of language virtual machines and just-in-time compilation, such as Java or the

Common Language Runtime (CLR) of the .NET Framework, a software-based form of isolation appeared

(Section 2.4.3). The following sections give an overview of exiting isolation techniques.

2.4.1 Memory Isolation

To prevent a faulty program from influencing other programs or the operating system, memory isolation

was invented. A dedicated hardware component called the Memory Management Unit (MMU) provides a

separate virtual address space to each instance of a program, which is then called a process. The MMU

maps from the virtual addresses of a process to the physical addresses in the computer’s memory. The

configuration of the MMU is only accessible for code running in a privileged mode of the CPU, which is

usually only the operating system kernel. Therefore, a process can not access and manipulate another

process’s memory without the operating system explicitly granting access [Tanenbaum, 2007]. Figure 2.1

depicts an operating system kernel and processes in virtual address spaces.

User Space Processes

OS Kernel

Isolated
virtual
address
spaces

Figure 2.1: Memory Isolation in a modern operating system. Each process has its own virtual
address space.

2.4.2 Virtualisation

Virtualisation extends the concept of isolation. It presents a complete virtual system – a virtual machine –

to each instance of software system. Every virtual machine runs it’s own operating system and userspace

applications. Additional hardware features are provided by modern CPUs to enable and simplify virtuali-

sation [Tanenbaum, 2007]. A so-called hypervisor runs in a higher-privileged mode than the operating
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User Space Processes [0]

OS Kernel [0]

User Space Processes [1]

OS Kernel [1]

User Space Processes [n]

OS Kernel [n]

Hypervisor

Figure 2.2: Virtualisation. Virtual machines run their independent operating system. Resources and
hardware virtualisation are controlled by the hypervisor.

systems. The hypervisor manages the abstraction of real hardware to the virtualised hardware, as well as

allocation of hardware resources to the virtual machines. Flexible allocation of hardware resources is a

major advantage of this concept. Additionally, the system does not completely fail if one of the operating

systems fails. Although, it does fail if the hypervisor is faulty, but this critical part is usually much less

complex than an operating system kernel. Figure 2.2 illustrates this concept. ARM TrustZone is a special

form of virtualisation, especially for security purposes.

2.4.3 Isolation of Managed Code

In the Common Language Runtime (CLR) all managed code is executed in an Application Domain

(AppDomain). An AppDomain2 is an isolated code execution environment. It can have its own security

configuration and access permissions. It can be terminated on failure without affecting other AppDomains

[LaMacchia, 2002]. A single process can contain many AppDomains which in turn can contain many

threads. Although in a single process every AppDomain is executing in the same virtual address space

they are strongly isolated from each other.

Before running managed code the CLR verifies that the code is type-safe and does not violate any

permissions or security restrictions. Verified code is then guaranteed to not violate given restrictions. The

CLR can therefore prevent any access to objects across AppDomain borders, except explicitly allowed

2Implemented in the System.AppDomain class
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communication mechanisms. Refer to Section 2.8.2 for details on type safety.

An AppDomain can be compared to the isolation of processes by the MMU. The difference is that

the isolation is enforced by verifying the code before it is executed in an AppDomain. In contrast, illegal

access is detected by the MMU hardware at the moment it happens and causes a hardware exception that

has to be handled by the operating system.

User Space Process

OS Kernel

Managed Runtime

Application Domains

Figure 2.3: Isolation of managed code in AppDomains. A single process executes the managed
runtime, which can run many isolated execution domains.

2.5 ARM TrustZone

ARM TrustZone [ARM Limited, 2009; ARM Limited, 2012; ARM Limited, 2007; Sloss, Symes and

Wright, 2004] is the name for a set of features which implement security by isolation in the hardware

of ARM-based Systems on Chips (SOCs). TrustZone aims to provide two isolated execution environ-

ments that protect confidentiality and integrity of assets in the trusted environment from the untrusted

environment. It extends the ARM CPU and other core components such as the interrupt controller, the bus

interface, and the address space controller by a secure mode [ARM Limited, 2009]. In their whitepaper,

ARM Limited [2009] also present a TrustZone Application Programming Interface (TZAPI). However,

this software is not publicly available. In this work the term TrustZone only refers to hardware aspects.

An ARM TrustZone system can either be in the secure mode or in the normal mode. It is partitioned

into the so-called secure world and normal world. This world split complements the existing privilege

levels that usually isolate the operating system from the user space. Figure 2.4 illustrates the TrustZone

concept.

Both worlds execute independent software and have their own operating system. A single-core

system can time-slice between the two worlds. Secure and normal code both execute at full CPU speed.

Security-critical registers and components are only accessible by the secure world or are under its strict

control. The system boots in secure mode allowing the secure world software to configure the access
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PL1: Secure Monitor Mode

Secure World Normal World

PL1: Supervisor, System,
Abort, FIQ, IRQ Modes

PL0: User Mode

PL1: Supervisor, System,
Abort, FIQ, IRQ Modes

PL0: User Mode

Secure World Kernel Normal World Kernel

Figure 2.4: ARM TrustZone scheme. The dashed and dotted lines symbolise different hardware-
based isolation mechanisms. The horizontal lines separate privilege levels PL0, PL1,
and the Secure Monitor Mode, which actually runs on PL1 in the secure mode. The
left and the right half illustrate the secure and the normal world. The processes in PL0:
User Mode in both worlds have isolated virtual memory.

permissions before handing over control to the normal world for the first time. Note that a secure boot

process is not part of ARM TrustZone. The integrity and authenticity of the secure world code has to be

verified by other means, such as a TPM-based chain of trust.

To augment the world split of the CPU, the TrustZone-aware interconnection bus (AMBA AXI) of

the SOC additionally signals the world (secure or normal), from which a bus cycle originates. Thus,

TrustZone-aware peripherals can use this information, and can be set up to be accessible only by the

secure world.

A special Secure Monitor Mode controls the transitions and transactions between secure and normal

world. It is entered by executing a Secure Monitor Call (SMC) instruction from either secure-world

or normal-world privileged operating modes. Furthermore, when access to a resource is denied for the

normal world, it traps into Secure Monitor Mode, and the secure-world software can handle the exception.

Depending on the configuration of the interrupt controller, IRQ- and FIQ-type interrupts can be sent to

Secure Monitor Mode, and then be forwarded to secure or normal world.

The major design goal of ARM TrustZone systems is to reduce the contents of the secure world to a

minimum and, therefore, reduce the scope of the TCB to a minimum, by using hardware-based isolation.
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Thus, the functionality of the secure-world operating system should only span a small, necessary set.

Similary, an application should be split in a small security-critical part which is running in the secure

world and the complex uncritical part which is hosted by the normal-world OS.

2.6 Operating System Concepts

This section introduces operating system related to this work.

2.6.1 Processes and Threads

We briefly define the terms process and thread.

Process A process can be described as an execution container on a CPU. Many processes can share

one CPU. Each process runs a program. The operating system — utilising the hardware MMU — gives

each process its own virtual address space. The operating system can switch between processes. During

this switch, the current state of the CPU is saved, and the next process state is restored. Thus, a process can

safely ignore the fact, that there is more than one process per CPU. A process holds a set of resources, such

as the virtual address space, open file descriptors, the signal configuration, the owner, runtime statistics.

Thread To run a program a process must contain at least one thread of execution. A thread represents

the current control flow state of the CPU (program counter, registers, stack, state). Each thread executes

on its own stack. A thread always belongs to exactly one process. From a process’ point of view each

has its own CPU, although only a single (or more) CPU exists in reality. Sometimes it is desirable to

have more than one thread in a process, all sharing the same address space, file descriptors, etc. This is

called multi-threading. For example, if a program uses some blocking operation, like reading a file from a

disk, but still should react to user input during that time, the programming model is very easy using two

threads, one for the blocking file operation and another for handling user input events. All threads run

pseudo-parallel, sharing the CPU.

2.6.2 Scheduling

The procedure of finding the next thread to run and switching over is called scheduling and context

switch, respectively. A thread is the scheduling entity, while processes group resources together. We can

distinguish two forms of scheduling.

• Cooperative and

• Preemptive.

With cooperativ scheduling, the next thread is only granted the CPU when the current thread yields, that

means deliberately releases the CPU. With preemptive scheduling, the operating system can interrupt a

thread at virtually any time to run the next one. Co-operative scheduling requires “good behaviour” of all

threads, otherwise the system could be blocked forever by a thread which never yields. ANDIX currently

only supports cooperative scheduling.
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2.6.3 Threading Models

Multithreading support can be implemented in user space or in the kernel. Hybrid approaches are also

possible [Tanenbaum, 2007].

User Space Threads User space threading implementations do not require any support from the

operating system. They can thus be realised on existing operating systems without threading support. The

operating system sees only single-threaded processes. Thread switches are implemented purely in user

space, without system calls into the operating system kernel. Thread switches without system calls cause

less overhead.

However, user space threading creates several problems. A threading runtime, including a scheduler,

is required in user space. The scheduler can only be activated by the running thread, this means only

cooperative scheduling is possible. More problems arise when blocking calls to the kernel are used. The

kernel sees only a single-threaded process, hence it suspends all threads in a process if one of them blocks.

This can only be circumvented with non-blocking system call workarounds. Anyways, blocking syscalls

is one major use-case for multiple threads.

Kernel Supported Threads With kernel supported threading, the operating system manages all

threads and scheduling. System calls are required for creation and destruction of threads, causing

overhead, compared to a pure user space implementation.

2.6.4 Thread Local Storage

Thread Local Storage (TLS) is a compiler-assisted feature to support thread-specific variables in C and

C++ programs [Drepper, 2013]. Alternatively, the POSIX thread (pthread) specification [IEEE, 2008]

also defines functions for storing a pointer separate for each thread. pthread’s dictionary interface requires

the creation of keys and provides simple get/set access to one single void * per key (refer to Section 5.6).

It is thus less flexible than TLS. Drepper [2013] defines four TLS access models from very general to very

specific, optimised for dynamic linking and performance in different use-cases.

The

• General Dynamic Model,

• Local Dynamic Model,

• Initial Exec Model, and

• Local Exec Model.

The Local Exec Model is the most restricted and most optimised. It is restricted to code and variables

in one executable. Dynamic linking and loading is not supported in this model. This means that all

variables can be addressed with link-time defined immediate offsets inside a single per-thread TLS block.

For TLS, C and C++ compilers are extended with the __thread keyword, which can be added to a

static variable declaration, and consequently marks this variable as thread-local, such that an independent
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instance exists for each thread. Listing 2.1 shows an example declaration. To the programmer, thread-local

variables appear like normal variables. The address-of operator returns a different value in different

threads. The compiler automatically creates the necessary code.

1 static __thread int tlsbss, tlsdata = 42;

Listing 2.1: Example for initialised and uninitialised variables in TLS.

2.6.5 POSIX Threads

The history of UNIX [Tanenbaum, 2007] [Salus, 1994] started at the AT&T labs in 1969 where Ken

Thompson created it’s original version. In the following years several organisations developed their own

UNIX versions, each incompatible to the other. To allow programs to run on all UNIX variants, the Institute

of Electrical and Electronics Engineers (IEEE) created a standard for UNIX called Portable Operating

System Interface (POSIX) [IEEE, 2008]. The POSIX standard includes an Application Programming

Interface (API) for multithreading known as pthread. Today, several operating systems are compatible to

the POSIX standard, most notably GNU/Linux, Mac OSX, and of course UNIX.

2.6.6 POSIX Signals

POSIX Signals [IEEE, 2008] are an asynchronous communication method between processes, threads,

and the operating system. A signal can be sent to a process or a specific thread inside the process. The

signal can be generated either by the kernel or by a user space process. A signal is said to be delivered to

a process, when the action configured for this signal has been triggered. Between sending and delivery a

signal is pending. Signals are identified by an integer number bound to a name with C macros, for instance

SIGSEGV or SIGUSR1. The signal definitions give the signal numbers a meaning. Each signal has a default

configuration, which depends on the meaning associated with it. The basic specification defines valid

signals from 1 to 31. However, this range is extended by real-time signals, which provide further features.

Signals can be masked. Each thread has a signal mask. Masked signals are stored as pending and

delivered, as soon as the signal is unmasked. A process-wide configuration determines what action is

taken when a signal is delivered. This is called the signal disposition. Each signal has a default disposition.

Specified default dispositions are:

• Terminate: Terminate the thread,

• Core dump: Terminate the thread, and write a core dump,

• Stop: Suspend the current process or thread,

• Continue: Continue a suspended thread, and

• Ignore: Signal has no effect.

A process can set the action for a signal to one of the following values:
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• SIG_DFL: Reset the default disposition,

• SIG_IGN: Ignore the signal, and

• Pointer to a handler function: The specified function will be called when the signal is delivered.

Note, that this setup exists once for all threads in a process, but when a signal is delivered the action

only affects the destination thread. For example, when a handler function is installed for a signal, the

function is executed in the destination thread’s context. Or when the default disposition is Stop, only the

destination thread is stopped. It is not possible to configure different actions for different threads. Threads

have their own signal masks, though.

2.7 ANDIX OS

In his Master’s Thesis, Andreas Fitzek [2014] developed ANDIX OS, an operating system for the secure-

world in an ARM TrustZone system. It can currently run on the iMX53 Quick Start Board from Freescale

and on the QEMU ARM emulator with TrustZone support [Winter et al., 2011]. As a normal-world

operating system Linux and Android can be loaded [Fitzek, 2014].

Figure 2.5 shows the basic components of ANDIX OS, as well as the related components in the

normal world. The following section introduces the main parts of ANDIX.

2.7.1 Boot

A TrustZone system boots in the secure mode. To boot ANDIX OS, the system’s bootloader loads a

system image similar to a Linux boot image for ARM. For ANDIX, this image contains the ANDIX

kernel and several payloads. These payloads are the normal world Linux kernel and zero or more statically

linked Trusted Applications. The ANDIX boot process is compatible with Linux, thus a standard boot

loader can be used. To guarantee a trusted system, a trusted bootloader must verify the secure-world

operating system before it passes control. In the current state such a secure boot concept is not available

on our development platform.

The bootloader passes a set of parameters – so-called ATAGS – to the kernel, including the available

physical memory. After the bootloader hands over control to the ANDIX kernel, it starts its initialisation

sequence. The kernel sets up the TrustZone configuration such that the secure-world memory is isolated

from the normal-world. After the operating system initialised, it starts kernel tasks for the communication

with the normal world. If the payload contains static trusted applications, these are started as well at boot

time. Finally, the normal world kernel is loaded from the embedded payload. The ANDIX kernel simulates

a standard boot loader, thus the Linux kernel boot procedure is unmodified. ANDIX passes a modified

memory map to the Linux kernel in its boot parameters (ATAGS), removing the entries corresponding to

the secure-world memory.

At this point ANDIX switches to the normal world via the Secure Monitor Mode and passes control

to the Linux kernel. Linux then boots as normal. In its current state ANDIX is non-preemtive. It stays

passively in the background until the normal-world actively sends a request to the secure-world and enters

Secure Monitor Mode.
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Figure 2.5: The components of ANDIX OS and the related normal-world parts [Fitzek, 2014]. The
horizontal dashed lines distinguish operating modes of the CPU, while the vertical
dashed line separates the secure mode and the normal mode of the ARM TrustZone
system.
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2.7.2 Interaction with the Secure World

For the interaction between the Trusted Applications in the secure world and their clients in the normal

world, ANDIX implements a sub-set of the Trusted Execution Environment (TEE) specification by

GlobalPlatform [2010b]. The specification defines a mechanism for a normal-world application to access

security-critical parts in a Trusted Application. The Trusted Application is then executed in the secure

world. Both parts communicate via remote procedure calls. Data can be exchanged either in simple

integer register values, or in shared memory regions.

The interface for Trusted Applications is called the TEE Internal API [GlobalPlatform, 2011]. It

specifies a set of entry points that the Trusted Application has to provide, and an API that the Trusted

Application can use. These functions are partially implemented in ANDIX. For the normal-world

application, GlobalPlatform [2010b] defines the TEE Client API [GlobalPlatform, 2010a]. It defines a set

of functions necessary to make use of the services provided by a Trusted Application. The API hides all

the internals of the world communication.

Because they follow these specifications [GlobalPlatform, 2010b; GlobalPlatform, 2011; GlobalPlat-

form, 2010a], trusted applications for ANDIX, as well as their normal world clients should be source code

compatible with other implementations of the Trusted Execution Environment (TEE).

On an ARM TrustZone system, the only possible way to switch between secure and normal world

is via the Secure Monitor Mode. This dedicated operating mode is entered by executing the special

smc instruction. Only privileged code (level PL1) is allowed to execute this instruction. Thus, only the

operating system kernel, which runs on this privilege level, can initiate a world switch.

2.7.3 World Communication

On an ANDIX system, to send a request to a secure-world trusted application, the normal-world client

writes the request data to a Linux pseudo-character device at /dev/andixtee0. ANDIX comes with a

Linux kernel driver which creates this character device for communication with user space programs. The

driver takes the request and initiates a world switch. Figure 2.6 illustrates the communication scheme.

World switches are only possible in a dedicated CPU mode – the Secure Monitor Mode. The code

running in this mode is part of the ANDIX OS. The Linux kernel module executes the smc instruction,

switching the CPU to Secure Monitor Mode; the ANDIX kernel takes over, and saves the current CPU

context. It copies the input data, finds the target Trusted Application, and activates it, passing the

appropriate parameters. The Trusted Application processes the request and returns control back to the

ANDIX kernel. Secure-world user space and kernel interact via system calls. The kernel switches

to Secure Monitor Mode, saves the current context, copies the output data back to the corresponding

normal-world memory, and finally restores the normal-world’s context and the system returns to normal

mode. In the normal-world, the ANDIX Linux kernel driver finds the finished request data and returns to

the normal-world client application.
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Figure 2.6: ANDIX World Communication Scheme. The user of the TEE libraries sees the high-
level communication path (dotted line). The actual implementation of the communi-
cation is illustrated by the solid lines. World switches are only possible in a dedicated
CPU mode – the Secure Monitor Mode. The code running in this mode is part of the
ANDIX OS [Fitzek, 2014].
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2.7.4 Normal-World Clients

From the normal-world client application’s view the complete communication procedure is hidden behind

a single call to the TEEC_InvokeCommand function [Fitzek, 2014]. The TEE Client API [GlobalPlatform,

2010a] specifies a remote procedure call interface with enumerated commands and input/output parameters.

The parameters can either be integer values or shared memory regions. A client application prepares the

input parameters, and invokes the command. After the command is completed the invoke function returns.

The client can then evaluate the output values.

Trusted applications are identified by an Universally Unique Identifier (UUID). To initiate an inter-

action with a Trusted Application, the normal-world client has to open a session, specifying the target

Trusted Application by its UUID. Subsequently, the client can invoke commands which are bound to this

session, and finally close the session to release all related resources.

2.7.5 Trusted Applications

Trusted applications run inside a secure-world user space process. They are isolated from other Trusted

Applications in their MMU-based virtual address space. Unlike a common C program, Trusted Applica-

tions do not have a main function as a single entry point. The TEE Internal API [GlobalPlatform, 2011]

defines a set of entry points for trusted applications. These functions are called by the TEE implementation

when

• the Trusted Application is created, or destroyed,

• a session is opened, or closed, or

• a command is invoked.

Each Trusted Application has an UUID. Clients initiate sessions to trusted applications based on

their UUID. The ANDIX TEE implementation keeps a list of available Trusted Application and their

corresponding UUID, and can thus send a request for a new session to the target Trusted Application.

Furthermore, the ANDIX TEE implementation maintains a list of open sessions to dispatch a command

invokation to the corresponding target and pass the corresponding session identifier to the Trusted

Application. Trusted applications can use session identifiers to keep data associated with the session, for

instance a cryptograhpic key, which was loaded in advance.

Trusted application implementations can call the functions of three libraries of the ANDIX system,

as illustrated in Figure 2.5. The C runtime library is based on newlib.3 The newlib is an open-source

implementation of a C runtime library. It is tailored for embedded systems and can be used on several

different platforms. For ANDIX, newlib is built without any platform specific parts, except a small syscall

interface to support the system calls of the ANDIX kernel. On top of newlib, the TEE Library implements

a sub-set of the TEE Internal API of GlobalPlatform [2011].

TropicSSL is available in the ANDIX user space. It provides cryptograhpic functions to the Trusted

Applications. TropicSSL is a compact open-source Secure Socket Layer (SSL) implementation with no

3available at http://sourceware.org/newlib/

http://sourceware.org/newlib/
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dependencies on other libraries [Fitzek, 2014]. It contains many commonly used cryptograhpic algorithms

and protocols.

2.7.6 File System

ANDIX includes a simple file system emulation called “persistence system” [Fitzek, 2014]. ANDIX can

not actually access any non-volatile memory. For reasons of keeping the kernel – and the TCB – small, it

does not contain block device or file system drivers. Furthermore, access interference with the normal

world would be hard to prevent, when both would use the same non-volatile memory device. Thus, the

file system emulation handles file data by encrypting it and sending it over to the normal world, where the

TrustZone Service Daemon writes the encrypted data in the Linux file system. Figure 2.7 illustrates the

data flow.

A file is split into fixed-size blocks. A per-block Keyed-Hash Message Authentication Code (HMAC)

ensures the block’s integrity and authenticity. To keep the data of Trusted Applications confidential, each

block is encrypted with the Advanced Encryption Standard (AES) block cipher. Only encrypted data

leaves the secure world [Fitzek, 2014]. When a file read or write operation is requested, the ANDIX

kernel places a request and the data in a designated memory region, which is then shared with the normal

world. In the normal-world Linux kernel, the ANDIX TZ kernel driver module makes the data available to

the user space via a pseudo-character device at /dev/andixtee0. In the normal world user space the

TrustZone Service Daemon (tzsd) polls the device file and eventually reads incoming requests. Data is

transfered via shared memory regions. The encrypted file data is stored in a dedicated directory, typically

/mnt/sdcard/tz/. For each Trusted Application a sub-directory is created. The directory and file

names are SHA-2 hashed and therefore do not disclose their original values.

In the current ANDIX implementation the keys for the file data encryption are derived from a password,

which the user has to enter at boot-time, and a unique platform identifier of the system. The Password

Based Key Derivation Function 2 (PBKDF2) processes this two inputs and generates a key for the AES

algorithm. The ANDIX kernel includes TropicSSL to make use of these cryptograhpic primitives.

For the present work it is important to note that the ANDIX “persistence system” emulates only a

very small sub-set of the standard C file functions. Only basic read and write, open and close operations

are available. For instance, there is no support for directories, or for listing existing files, and most file

access modes are ignored. These limitations become important when we try to run existing programs on

ANDIX, especially when porting the Mono runtime.

2.8 Managed Runtime Environment

A Managed Runtime Environment is a software Virtual Machine which executes a program represented in

an intermediate language. It typically runs inside a process of an operating system. Well known examples

are the Java Virtual Machine (JVM) and the Common Language Runtime (CLR) of the Microsoft .NET

Framework. Both are relatively similar virtual machines [Singer, 2003], built on a stack-based architecture

and have built-in heap memory management with automatic garbage collection. The Java Virtual Machine

can load, verify, and execute Java Bytecode which is stored in so-called class-files. It was designed
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Figure 2.7: ANDIX secure world file system emulation. File data is encrypted by the ANDIX kernel
and sent to the normal world, where the TrustZone Service Daemon reads it from the
Linux Kernel Module’s pseudo character device, and stores the files onto the Linux file
system.
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to run only programs compiled from Java source code, although several other programming languages

use the JVM as their execution platform (for example Scala, Jython, JRuby). The Common Language

Runtime works on so-called assemblies which contain the intermediate language code and metadata.

It was designed as a language independent execution platform [Meijer and Gough, 2001]. There are

compilers for several languages, such as C# and Visual Basic .NET. In the present work we use the CLR,

hence, this section concentrates on the CLR and mentions the JVM only for comparison.

In contrast to a native compiler, which translates source code to native machine code for the target

platform, virtual machine-hosted languages split this process into two parts. First a compiler generates

intermediate language code which is bundled and deployed. This intermediate language can be seen as

the machine code of the virtual machine. At the time of execution of the program the virtual machine

either interprets the intermediate language or translates it to machine code for the target platform before

execution. This means that there is no dependency on the type of target machine until the program is

actually executed. The deployed program is therefore platform independent and can be used on every

target machine that has a virtual machine implementation available. Components and libraries are stored

in the intermediate language, which simplifies inter-operability between different programming languages

and library versions, because all the parts necessary for a program are bound at runtime.

The intermediate languages of both, the JVM and the CLR, are much more “high-level” than typical

machine code. For example, these languages have a concept of objects and process metadata which

describes the objects along with the intermediate language. They have built-in memory management and

garbage collection. This combination enables features such as introspection and type-safety. Introspection

is the ability to explore an object at runtime, for example search for a method. In Java and C# (and others)

introspection is extended by the possibility to manipulate the objects and is then called Reflection.

2.8.1 Managed Heap

In managed runtimes, objects are stored on a garbage-collected heap. The heap is a dynamically allocated

memory region. In a managed runtime the heap is fully controlled by the virtual machine. Every object

allocation and de-allocation is recorded and checked. The garbage collector tracks references to objects

and destroys objects which are no longer reachable. The garbage collector can also move objects on the

heap to reduce memory fragmentation, updating existing references.

In conventional programming languages, such as C, memory management errors often lead to security

problems [Seacord, 2013]. A prominent example is “use-after-free”, where a pointer is still used in the

program after the corresponding memory was freed. Other examples are wrong allocated size, double free,

invalid free, or the corruption of heap metadata. The latter is most likely caused by out-of-bounds writes

which overwrite the metadata header of a heap block. This metadata is used by the memory manager (for

example malloc) to track memory chunks. These memory errors can at least crash the program and can

potentially be exploited to manipulate the program [Seacord, 2013].

A managed heap removes the burden of memory management from the programmer, who no longer

has to care about freeing unused memory and can rely on automatic range checks. Hence, programming

errors related to memory management are no longer possible; these problems are effectively prevented by

the CLR and the JVM virtual machines.
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2.8.2 Verification and Type-Safety

When the CLR executes a piece of code it has to pass a verification procedure. This verification consists

of static checking at the time of loading and of runtime checks, which are inserted by the just-in-time

compiler [Meijer and Gough, 2001]. The verification does not rely on trusting the producer of the code, it

is solely based on analysis of the program code itself. The goal of the verification is to guarantee that the

program is memory safe and type safe.

A program is memory safe if it is guaranteed that it does not [Pfenning, 2004]

• use memory that is uninitialised,

• use memory that is not correctly allocated,

• write or read out of bounds, or

• perform invalid or double frees.

Type safety refers to the types of referenced objects. Type safety guarantees that no illegal references

are possible. All references are verified to refer to objects that fulfil the corresponding requirements

[Pfenning, 2004], for example, that an object is from a derived class of the reference’s type. Cases that

can not be checked statically are covered by runtime tests. The Just-in-Time (JIT) compiler adds runtime

checks to the statically verified code. Array bounds checks are an intuitive example for a runtime check.

The actual size of an input or the index into an array is often only known at runtime and is therefore

protected by a runtime check. Furthermore, runtime checks are employed to prevent integer overflows and

throw an appropriate exception in this case. The verification must also guarantee the consistence of the

control flow. Branches, function-, and method calls must only target valid locations [Meijer and Gough,

2001; N. Paul and D. Evans, 2004].

Type safety forbids arbitrary numbers to be used as an object reference, like it is possible with pointers

in the C programming language. As an example consider a void * in C. It is basically some number that

is interpreted as the memory address of anything, and is therefore not type-safe at all. Pointers and pointer

arithmetic are critical in type-safe code.

Note that in contrast to the JVM the CLR is also able to run type-unsafe code [Singer, 2003]. In

this mode pointers are available without restrictions and type verification is disabled. Unsafe code is

enclosed in an unsafe {...} block [Gunnerson and Wienholt, 2012]. This can be used when performance

improvements are relevant or the operation can not be accomplished with type-safe code. Unsafe code

is only executed by the runtime if a special permission is granted. Permissions are introduced in the

following section.

If any verification fails, the runtime generates an appropriate exception and refuses to execute the code.

The exception can be caught by the caller, for example the code which tried to load to assembly, or it will

cause the termination of the current execution entity (the current AppDomain). Figure 2.8 illustrates the

verification process.
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Figure 2.8: Code verification in the .NET CLR. An Assembly has to pass the verification before its
code is executed by the CLR [N. Paul and D. Evans, 2004].

2.8.3 Permissions and Policies

The safety mechanisms described above allow the managed runtime to enforce a policy on a specified

piece of code, while it is executing. A policy is a set of permissions associated with an entity of code. In

the CLR this entity is called an assembly. The resulting policy for an assembly is the intersection of the

contents of four policy levels from very general (Enterprise level) to very specific (AppDomain level)

[Singer, 2003].

A policy specifies which operations the executing code is allowed to perform. Permissions regulate

access to system resources like files or the display, but also define, for example, whether it is allowed to

execute unsafe code (see Section 2.8.2).

Policies can be used to restrict access of untrusted code which is for example loaded from the Internet,

but also to restrict trusted code to its minimal requirements. Thus, if an attacker could exploit a bug in

security-critical trusted code, the impact of the attack can be significantly reduced by the enforcement of

the associated policy, and can cause the exploit to fail, because of violating the policy. Whenever a policy

violation is detected, the runtime interrupts the execution and throws a security exception.

2.8.4 The Microsoft .NET Framework and C#

The Microsoft .NET Framework basically consists of the .NET CLR and the Base Class Library (BCL).

The C# programming language was designed to make all the features of the .NET Framework available to

programmers [Gunnerson and Wienholt, 2012]. A C# compiler creates code to be executed on the CLR.

Microsoft’s C# compiler and the .NET Framework are both only available for the Microsoft Windows

platform.

The core components of the .NET Framework as well as the C# programming language are stan-

dardised by the International Organization for Standardization (ISO) [ISO, 2012; ISO, 2006] and the

ECMA (the former European Computer Manufacturers Association) [Ecma, 2012; Ecma, 2006]. The

standardisation allows developers to create alternative compatible software. For example, compilers for

other languages to target the CLR, or alternative implementations of the .NET Framework.
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2.8.5 Mono

Mono4 is an open-source implementation of the .NET Framework, based on the Ecma standards [Ecma,

2012; Ecma, 2006]. The project consists of an implementation of the CLR, a C# compiler, and the

BCL. Programs built with Mono are compatible with the .NET Framework, because both are built on the

standardised Common Language Infrastructure [Ecma, 2012]. The .NET C# compiler can therefore create

code that runs on the Mono CLR and vice-versa. Mono was designed to run on POSIX operating systems,

such as Linux, Mac OSX, BSD, or UNIX. It can also be built for Microsoft Windows. It is available for

many CPU architectures, including x86 and ARM.

2.8.6 Base Class Library

An extensive Base Class Library (BCL) is part of the .NET Framework and Mono. It provides imple-

mentations for common functionality, such as number formatting, string manipulation, date and time,

parsing, input and output, serialisation, data structures, and much more [Gunnerson and Wienholt, 2012].

This standardised library allows programs which use it, to run on other compatible CLRs. It encourages

programmers to use the library classes for common tasks, and therefore increases productivity and reduces

the chance for bugs, because the library classes are widely used and evaluated. The library classes are

stored in assemblies, typically on the system’s hard disk. When the CLR loads an assembly, the included

metadata describes dependencies on other classes, which the CLR then loads automatically.

4see http://www.mono-project.com

http://www.mono-project.com
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Chapter 3

Related Work

This chapter presents published work related to this thesis. We first introduce isolation technologies for

security, comparable to ARM TrustZone, then we look for TrustZone applications and operating systems,

and finally we find out if there are already other managed runtimes in the TrustZone’s secure world.

3.1 Isolation for Security

Isolation of programs on a computer system has long been used to improve stability and security (see

Section 2.4). ARM TrustZone is an isolation technology specifically for security purposes. This section

briefly describes other isolation concepts for security.

3.1.1 Sandboxing

Sandboxing isolates untrusted code inside a process, such that it can only access a controlled set of system

resources and call only allowed functions. Figure 3.1 illustrates the concept. Sandboxing is for instance

used in modern web browsers. Google’s Native Client [Yee et al., 2009] implements a sandbox in which

web applications can execute native-code inside the web browser process. This increases the performance

of web applications compared to, for example, JavaScript code, but still restricts the untrusted applications

appropriately to prevent access, for example, to the user’s local files. Native code has to follow a set

of rules which are verified before execution by the Native Client implementation on x86-32. Sehr et al.

[2010] of Google also presented Software Fault Isolation (SFI) for Native Client which reduces the

sandboxing overhead and enables the technology on ARM and x86 32 bit and 64 bit architectures.

Belay et al. [2012] developed a sandbox-like isolation concept called Dune. It uses the virtualisation

extensions of modern x86 CPUs to give a Linux process access to CPU protection mechanisms which are

usually only accessible to the operating system kernel, such as privilege rings, and page tables. Due to the

employed virtualisation features this does not interfere with the operating system. The Dune-process can

then use hardware mechanisms to create a sandbox for untrusted code.

Sandboxing locks untrusted code inside an isolated environment, restricting access to the rest of the

system. In our TrustZone- and ANDIX-based concept, we isolate trusted applications inside their TEE

and restrict access from the rest of the world. However, considering the isolation of code inside .NET

29
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AppDomains (see Section 2.4.3), we can designate the AppDomain as a sandbox, because it strictly

controls the code and data it contains.
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Figure 3.1: Sandboxed untrusted code runs inside a normal process. All accesses to outside of the
sandbox are restricted.

3.1.2 Terra, TrustVisor, and Flicker

Garfinkel et al. [2003] presented a virtual machine-based platform for trusted computing, called Terra. It

uses virtualisation on commodity computing systems, to create isolated virtual machines. These virtual

machines are managed by the Trusted Virtual Machine Monitor (TVMM). The TVMM must be measured

at boot utilising a TPM to proof its trusted state. The TVMM supports “open-box” and “closed-box”

virtual machines. “Open-box” machines can be used without restrictions by the “platform user”, while

“closed-box” machines are strictly regulated by the TVMM. Terra prevents tampering with the “closed-box”

machines and provides methods to attest their state to the “platform owner”, who is for instance the

publisher of an online game, who wants to prevent cheating. Terra requires several virtualisation and

trusted computing hardware features, such as a TPM. Every box contains a full operating system instance.

Therefore, with Terra the TCB is relatively large.

McCune, Y. Li et al. [2010] designed a similar system called called TrustVisor. TrustVisor also builds

on virtualisation and trusted computing features of modern x86 systems. It uses hardware features like

Virtual Machine Control Blocks and Nested Page Tables to create isolated containers for a so-called

Piece of Application Logic (PAL). These PALs are critical parts of an application which are extracted

to run in an isolated environment. PALs can be registered to the TrustVisor and are then verified and

protected in the PAL execution environment. TrustVisor utilises an internal µTPM small-footprint software

implementation of selected TPM functions to measure PALs, and thus increase speed, compared to a

hardware TPM. To measure the TrustVisor itself at boot, a hardware TPM is required.
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TrustVisor [McCune, Y. Li et al., 2010] can be seen as an advancement of Flicker [McCune, Parno

et al., 2008], which provides similar functionality at a lower performance, most notably because Flicker

uses the hardware TPM for all PAL measurements. Both designs aim to reduce the size of the TCB as

much as possible. The TCB consists only of the virtual machine monitor (TrustVisor or Flicker) and

the PAL itself. TCB-sizes are orders of magnitudes below commodity operating systems, 250 lines of

TCB-code for Flicker [McCune, Parno et al., 2008] and around 6K lines for TrustVisor [McCune, Y. Li

et al., 2010].

The isolation concepts of Terra [Garfinkel et al., 2003], TrustVisor [McCune, Y. Li et al., 2010], and

Flicker [McCune, Parno et al., 2008] are similar to ARM TrustZone, but they target the x86 platform and

use its features. In comparison to our work, the very small TCB of TrustVisor an Flicker is remarkable.

However, in these designs, PALs can not build on any runtime environment except the bare hardware. In

our work, we actually extend the TCB to provide a feature-rich runtime environment in order to increase

the reliability of the Trusted Applications, which are equivalent to the PALs.

3.1.3 Microsoft’s Next-Generation Secure Computing Base (NGSCB)

Microsoft [2003] proposed the NGSCB as a trusted computing concept for the Microsoft Windows family

of operating systems. The system is divided in a “standard space” and a “nexus space”. In the isolated

“nexus space” a security kernel called Nexus executes so-called Nexus Computing Agents (NCA). The

concept relies on a hardware TPM as a root of trust. The NGSCB concept is similar to the ARM TrustZone.

As far as the authors of this work found out no implementation of the NGSCB was ever published until

the time of writing.

3.1.4 Hardware-based Dynamic Root of Trust

Founded on the TPM (see Section 2.3), AMD [2005] (AMD Secure Virtual Machine) and Intel [2012]

(Intel Trusted Execution Technology) have extended their x86-style CPUs with a mechanism to switch to a

trusted state without a reboot. A special CPU instruction initiates the so-called late-launch. Authenticated

microcode, which is embedded in the CPU, executes the late-launch. The CPU and the chipset lock down,

DMA memory access is no longer possible for other devices. The reserved PCRs 17-22 of the TPM

are used to measure the fresh chain of trust, a Measured Launch Environment (MLE) is built, based on

policies stored in the TPM.

This method no longer requires a measured reboot to establish a chain of trust, which is more user-

friendly and flexible. Furthermore, the dynamic root of trust takes the BIOS out of the chain-of-trust. The

BIOS is relatively vulnerable to manipulation compared to authenticated CPU microcode.

Pirker, Toegl and Gissing [2010] used Intel’s TXT and the TPM in a Linux-based architecture to

run a verified system, allow updates to this system, and restrict access to data and services to trusted

configurations.

Intel TXT, and AMD SVM provide a hardware-based mechanism to create an isolated execution

environment, similar to ARM TrustZone. However, they are only available on x86-based systems and

strongly depend on the TPM.
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3.2 TrustZone related

Academic work on ARM TrustZone was constrained by the lack of openly available development platforms

and documentation. Available development boards required reverse-engineering to make use of their

TrustZone implementation [Winter, 2012]. As an alternative, Winter et al. [2011] created open-source

development tools based on the QEMU1 platform emulator. Their patches2 extend the the ARM emulation

of QEMU with TrustZone features. Though it does not include every aspect of TrustZone technology –

for instance the TrustZone-aware interrupt controller is not yet available – their work provides a solid

foundation for software development. Purchasing expensive developer boards is not necessary. In our

work, we use this emulated ARM TrustZone platform to develop and test our software.

Along with the QEMU extension, Winter et al. [2011] presented a light-weight secure-world kernel

prototype called umonitor. It handles the switch between secure and normal world and enables simple

secure-world user space applications.

In an earlier paper, Winter [2008] introduced Trusted Computing building blocks for embedded

systems with ARM TrustZone. Following a design of the TCG for mobile trusted platforms, they

developed a virtualisation solution with a modified Linux kernel as the secure-world kernel, and a

conventional Linux operating system in the normal world. The secure-world system can verify and

run Mobile Trusted Modules. The secure-world Linux kernel receives calls from the normal world via

a Secure Monitor Mode interface and dispatches them to the “TrustZone VM supervisor”. This VM

supervisor is a secure-world user space process which handles all incoming requests from the normal

world and relays them to the target Mobile Trusted Modules. This design minimises TrustZone-specific

code in the Linux kernel, and instead moves the functionality to the secure-world user space. This design

has the major disadvantage that it requires a complete Linux system in the secure world, which uses a lot

of system resources and results in a significant TCB.

Pirker and Slamanig [2012] presented an application for TrustZone technology in mobile devices. They

describe a framework for privacy-preserving mobile payments utilising TrustZone isolation mechanisms

to protect payment credentials from malicious software or in the case of device theft.

In their paper, Feng et al. [2013] described a Trusted Execution Environment Module (TEEM). The

TEEM emulates several TPMs in software on an ARM SOC, and is connected to a PC host via USB. It is

designed to run in the secure world of an ARM TrustZone SOC.

Gilad, Herzberg and Trachtenberg [2014] presented µTCB for smartphones, which is activated

explicitly by pressing a designated key on the phone. The system then enters a TrustZone-based secure

mode, the Micro Trusted Computing Base (µTCB). The µTCB provides an API for secure services.

Liu and Cox [2014] introduced an idea of attested login, called VeriUI. It aims to secure remote logins

by running the authentication in a TrustZone-isolated, limited web browser. VeriUI improves the security

of login credentials on smartphones with a secure user interface. ANDIX OS currently does not provide a

secure graphical user interface, but it provides a secure IO channel via a serial line.

DroidVault is a smartphone concept by X. Li et al. [2014]. It uses ARM TrustZone to isolate a small

TCB of 12000 lines of code on Android devices. DroidVault provides a secure data vault. Furthermore,
1see http://www.qemu.org
2https://github.com/jowinter/qemu-trustzone

http://www.qemu.org
https://github.com/jowinter/qemu-trustzone
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the design also contains a module for secure input and output to a display. Similar to ANDIX OS, a

so-called “bridge module” manages the interaction with the normal world, and stores encrypted data on

the normal worlds file system.

3.2.1 TrustZone Operating Systems

Information about TrustZone-aware operating systems is relatively scarce. Detailed information is only

available for ANDIX [Fitzek, 2014] which is an open, research-oriented implementation and serves as a

foundation for this work. See Section 2.7 for a detailed description.

The industry joint-venture Trustonic3 offers a Trusted Execution Environment (TEE) product. Details

about the kernel and how to develop and deploy trusted applications are not publicly available [Fitzek,

2014].

Open Virtualization4 is an open-source operating system for ARM TrustZone. It is also available as a

commercial product with more features. The open-source variant is stripped down and lacks features such

as user space process isolation, kernel/user space isolation, and multitasking. Hardware support is limited

to the expensive “Versatile Express” board [Fitzek, 2014].

3.2.2 A Managed Runtime in the TrustZone

In their recent paper, Santos et al. [2014] present the Trusted Language Runtime (TLR), “a system for

developing and running trusted applications on a smartphone” [Santos et al., 2014]. The TLR consists of

secure-world and normal-world components. It uses ARM TrustZone’s isolation features to provide an

execution environment for small, security-sensitive application parts, called Trustlets. Applications written

for the Microsoft .NET framework can separate their security critical functionality in a Trustlet class,

which is executed in the secure world. The remaining application can use the Trustlet class transparently

through a proxy class. The TLR manages the communication using secure procedure calls. Figure 3.2

illustrates the TLR design.

The secure-world runtime of the TLR is based on the .NET MicroFramework5, an implementation

of the .NET Framework for resource-constrained devices. The .NET MicroFramework was designed

to run on very small micro-controllers, requiring only 64KB of RAM and 256KB of Flash memory

[.NET Micro Framework Porting Kit 2009]. In can run on bare metal, that means it does not require an

underlying operating system. Due to its optimisation for tiny devices without operating systems, the

.NET MicroFramework lacks several important features. Most notably, there is no just-in-time compiler

available, and several more complex language features and parts of the BCL are not available.

The TLR uses the .NET MicroFramework as a secure-world runtime. At boot-time the TLR reserves

a fixed amount of system RAM for the secure-world and sets up the TrustZone hardware protection. The

TLR offers isolated containers, called Trustboxes, which protect the code of a Trustlet running inside.

Trustboxes are built on .NET AppDomains.

3https://www.trustonic.com/products-services/trusted-execution-environment
4http://www.openvirtualization.org/
5http://www.netmf.com

https://www.trustonic.com/products-services/trusted-execution-environment
http://www.openvirtualization.org/
http://www.netmf.com
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Figure 3.2: Components and communication paths of the Trusted Language Runtime. The dotted
line represents a high-level secure procedure call from a proxy class to Trustlet class.
The solid lines depict the actual communication path [Santos et al., 2014].

A persistent, encrypted storage system, called seal/unseal data, is available. Data is to be encrypted

(sealed) using a platform-specific and Trustlet-specific asymmetric key pair, and is thus bound to the

device and the Trustlet. Encrypted data is stored by the normal world operating system on its file system.

Sealed data can only be de-crypted (unsealed) with the platform’s private key, which shall never leave the

secure world. The TLR’s seal/unseal concept is very similar to the file system emulation of ANDIX OS.

A Trustlet for the TLR is created by enclosing the sensitive functionality in a single class, which

derives from a TLR-provided base class. After compiling it into an assembly, a post-processor creates a

Trustlet manifest. This manifest is then deployed into a freshly created Trustbox to the secure world. The

Trustbox verifies the code and starts the Trustlet.

Public functions of the Trustlet are made available via the secure procedure call interface. In the

normal world, the TLR creates a so-called entrypoint class, which exposes the same public functions

as the Trustlet, and can therefore be transparently used by the normal-world application. The TLR also

consists of a normal-world user space library and a kernel driver. For a secure procedure call, the TLR

passes the arguments via the CPU’s Secure Monitor Mode to the secure-world, where the procedure is

executed and the return value is sent back.

The TLR [Santos et al., 2014] follows very similar ideas compared to our work. Like our design, it

relies on .NET AppDomains to isolate trusted applications from each other inside the secure world. In
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contrast to our design, the TLR builds upon the stripped-down .NET MicroFramework as a secure-world

runtime, while we use the full-featured Mono. We considered the .NET MicroFramework as a basis for

our secure-world runtime, too. The .NET MicroFramework was initiated by Microsoft, targeting small 32

bit micro-controller platforms. Its source code is open-source, but the development has almost stalled in

the last years. Its development environment is strongly concentrated on the Windows platform.

We decided to use Mono, because the effort for porting the .NET MicroFramework from bare-metal to

the ANDIX OS was hard to estimate. Due to the .NET MicroFramework’s lack of just-in-time compilation

we expect a massive performance penalty, especially for cryptographic operations. Mono is in comparison

much larger in code size, which increases the size of the TCB, but in contrast its source code is much

more alive and widely used.
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Chapter 4

Architecture

Before going into the details of our design in the following chapters, we introduce our overall architecture.

Figure 4.1 illustrates the main components of our architecture.

Our work extends the ANDIX OS without breaking existing functionality. The Mono runtime is built

as a library and linked into a user space program, together with the existing TEE Library and newlib. The

C runtime library, based on newlib, is extended by pthread-related features and POSIX signal functions.

In addition, some minor changes make newlib thread-safe.

In the original ANDIX system, TropicSSL provided crypthographic functions. With our upgrade,

TropicSSL can be relinquished, because the Mono Base Class Library (BCL) provides crypthographic

functions as well. Legacy Trusted Applications can of course still use TropicSSL.

ANDIX does not support shared libraries, dynamic linking, or shared code among processes. Each

user space application is statically linked and contains all its dependencies in one executable image. This

implies that if more than one process uses the same libraries, which is always the case for the C runtime

library, these are duplicated in memory, and require a multiple of the necessary space in memory. The

effect of this limitation becomes more noticeable with increasing library size. For example, the mono

runtime library uses several megabytes of memory. If multiple processes would use it, this would waste a

significant amount of RAM in the original architecture.

Our design works around this limitation with a single-process approach. Trusted applications can only

consist of managed code assemblies, and can therefore be isolated in Applications Domains (AppDo-

mains), instead of relying on the processes isolation of the operating system. Thus, all managed Trusted

Applications actually run in a single process, and therefore only require one copy of the native libraries.

Furthermore, the dynamic creation and destruction of AppDomains is also implemented in the managed

runtime. This single-process design does not require dynamic linking and loading from the operating

system. Dynamic process creation and destruction is not required to provide dynamically loadable Trusted

Applications.

A managed Trusted Application can either be integrated into the ANDIX kernel image or loaded

dynamically from the normal world. In the present work, we only implemented the first variant. Along

with the Trusted Applications, all their dependencies, including those in the BCL, are bundled and loaded.

Managed Trusted Applications have to be usable via the C-based TEE library. Thus, an adapter
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between the Common Language Runtime (CLR) code and the TEE library is required. Our TEE Binding

classes wrap the necessary functions and marshal the input and output parameters to present a type-safe

and easy-to-use interface to the managed Trusted Application.

Finally, we develop a managed Trusted Application that provides RSA crypthography, and present an

example use case. The following chapters describe the realisation of our architecture in detail.

ANDIX Kernel

Linux Kernel

ANDIX Secure Monitor

Secure World Normal World

Managed Trusted Applications

Secure
Monitor
Mode

Normal Applications

newlib

TEE
Library

RSA [0] [n]

glibc
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TZ Kernel
Module

Other Libraries
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Kernel
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Native Code

Class Library
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Binding

pthreads signals

Figure 4.1: Architecture overview, emphasising our contribution. The Mono runtime executes a
number of managed Trusted Application in a single process. The trusted applications
are isolated by AppDomains from each other.



Chapter 5

ANDIX Multi-Threading

Mono extensively uses multithreading through the POSIX thread (pthread) Application Programming

Interface (API). For example, Mono always runs the garbage collector in a separate thread. To run Mono,

we add the pthread features required by Mono to ANDIX. Our implementation provides all key features

of pthread in an elegant and efficient way, but does not support details, which are not used by Mono. This

chapter documents the enhancements we build into the ANDIX kernel and the newlib-based C runtime

library to enable POSIX threads in ANDIX user space processes.

5.1 ANDIX Kernel

In its original state, the ANDIX OS supported only single-threaded processes, called “tasks”. In this work,

we chose to implement a fully kernel based multithreading scheme (refer to Section 2.6.3). With kernel

scheduling we only have to implement scheduling and task switching once, in the kernel. Nevertheless,

it is necessary to provide a user space library for programs to access the kernel functions through the

pthread user space API specification (refer to Section 2.6.5).

5.1.1 Thread, User Thread, User Process

In our first steps towards multithreading support we restructure the existing “task” concept into processes

and threads. We also distinguish between kernel threads and user threads.

A kernel thread runs entirely in kernel space; it is not contained in a process, but executes only in

kernel memory. Therefore, a kernel thread requires less information to save. A user thread (Listing 5.2) is

an extension of a kernel thread (Listing 5.1). In object-oriented parlance, user thread is derived from

thread. A struct user_thread_t’s first member is the base struct thread_t. Thus, the pointer types

are compatible, which gives us a breeze of polymorphism in C. The value of the thread’s process pointer

decides whether the struct thread_t is actually a struct user_thread_t. It is non-NULL only for

user threads.

Each user thread can execute in kernel space or in user space and has two separate stacks. Each user

thread is contained in exactly one process. Figure 5.1 illustrates the hierarchy of threads and processes.

Figure 5.2 shows the address space layout of our ANDIX user process.
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1 struct thread_t {
2 core_reg context; // saved/restored at monitor

calls
3 mon_sys_context_t sys_context; // saved/restored on task switch
4 EXEC_CONTEXT_t exec_context; // secure or normal world
5 tid_t tid; // Task/thread ID
6 thread_state_t state; // RUNNING, READY, ..
7 struct stack_info_t kernel_stack; // kernel stack info
8 struct stack_info_t user_stack; // user stack info
9 uint8_t *thread_pointer; // thread block in user space

10 struct user_process_t *process; // NULL for kernel threads
11 int intr_flag; // set to interrupt a syscall
12 };

Listing 5.1: The thread structure struct thread_t represents a kernel thread. User threads have
additional members.

1 struct user_thread_t {
2 struct thread_t thread; // kernel thread, allows polymorphism
3 void *tls_start; // location of TLS block
4 uint32_t tls_size; // TLS block size
5 void *retval; // pthread return value
6 struct user_thread_t *joiner; // joining thread
7 uint32_t attr; // thread attributes
8 spinlock_t sync_lock; // lock for thread interaction
9 void (*cancel_cleanup)(void); // pthread user space cleanup

function
10 sigset_t sigmask; // signal mask
11 sigset_t sigpending; // pending signals
12 core_reg *ret_ctx; // return context for signal handlers
13 struct stack_info_t sig_stack; // alternate signal stack info
14 };

Listing 5.2: The user thread structure struct user_thread_t represents a user space thread.
Due to having a struct thread_t as the first member, kernel and user thread
pointers are compatible.
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1 struct user_process_t{
2 char name[TASKNAME_SIZE];
3 tid_t pid; // process ID
4 uint32_t membitmap[800]; // page bitmap for userspace
5 locked_list files; // containing *task_file_handle_t
6 locked_list threads; // containing thread_t
7
8 uint32_t userPD; // physical user page directory
9 uint32_t vuserPD; // virtual user page directory

10 uint32_t vheap; // current heap break
11
12 struct elf_TLS_segment_t { // TLS template, stored by elf

parser
13 uint32_t start;
14 uint32_t filesz, memsz;
15 } tls_template;
16
17 struct tee_context_t { // for TEE and Trustlets
18 TASK_UUID uuid; // TEE UUID
19 TRUSTLET_STATE trustlet_state; // Life cycle state
20 uintptr_t tee_rpc; // RPC data structure
21 struct thread_t *tee_handler; // Thread to wake up on TEE

requests
22 } tee_context;
23
24 // signal related
25 sigdispo_t sigdisp[SIGNUM_MAX]; // current signal disposition
26 struct ksigaction_t sigactions[SIGNUM_MAX]; // signal handlers
27 sigretfunc_t sigretfunc; // signal return function
28 };

Listing 5.3: The user process structure. Contains all data bound to a process.
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Figure 5.1: Relationship of threads, user threads, processes, and the scheduler in our implementation.
The scheduler has references to threads. A process has user threads. The standalone
threads are kernel threads, which are not bound to a process.

5.1.2 Context Switch

All thread switching in ANDIX is handled by the Secure Monitor Mode code. Even for thread-switches in

the secure world, a Secure Monitor Call (smc) is executed, trapping into the same handler function, that

handles smcs from the normal world.

At the entry of the Secure Monitor Service Routine, the Central Processing Unit (CPU) context is

saved for all available operating modes. The NS (non-secure) bit of the SCR (Secure Configuration

Register) tells whether the call comes from the normal world or the secure world. If the call originates

from a Trusted Execution Environment (TEE) procedure call, the target trusted application is searched.

On a conventional thread switch, the scheduler is called to decide which thread to run next.

A thread has a flag to define whether it belongs to the secure- or the normal world (exec_context).

The value of this flags determines into which world the CPU returns from the Secure Monitor Call,

after restoring the complete CPU context from the next threads data structure. Actually, only a single

normal-world kernel thread is used to represent the complete normal-world system. In this structure, the

context of the normal world is saved.

5.1.3 The Kernel Scheduler

The ANDIX scheduler is a simple round-robin scheduler. The scheduler keeps a linked list of all threads

in the system. Whenever a new thread is to be scheduled it walks the list until a ready thread is found.

Threads can have several states, as shown in Listing 5.4. However, the scheduler only distinguishes

between READY, RUNNING, and all other states. A READY thread is ready to run, but not currently active,

while the RUNNING thread is currently active. All other states, are not ready to run, but have significance in

the thread life cycle and when a thread is suspended. Consequently, in our single-core system, only one

thread can have the state RUNNING. The scheduler just has to find the next READY thread. In ANDIX there
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Figure 5.2: Multithread process memory layout. Kernel memory is in the upper half of the address
space, above 0x80000000. A program’s memory always starts at 0x00008000.
Thread blocks (details in Figure 5.3) start at 0x60000000. The TEE shared memory
block can be used to map shared memory from the normal world for TEE calls to
Trusted Applications.

is no idle thread, which is always ready and prevents the disastrous condition that occurs when there is

no thread to schedule. The normal-world thread takes this role. It is scheduled when the secure-world

is done. Thus, secure-world software decides when control is passed back to the normal world, but the

secure world can not interrupt the normal world, because ANDIX currently is non-preemptive.

5.1.4 Thread Life Cycle

A thread’s life cycle starts with the creation and ends either with an exit or with a cancel initiated by

another thread. We recall that Listing 5.1 and Listing 5.2 show that an ANDIX thread’s data structure has

a kernel and a user space part. The same holds for a thread’s life cycle. Pure kernel threads can only run

in kernel space.

1 typedef enum {
2 READY = 0, // ready to run
3 RUNNING, // currently active
4 BLOCKED, // blocked by some kernel operation
5 SLEEPING, // sleeping for a specified time
6 STOPPED, // execution stopped by a signal
7 WAIT_FOR_SIG, // waiting for a signal
8 TO_JOIN, // terminated, but waiting to be joined
9 DEAD // terminated, all resources ready to release

10 } thread_state_t;

Listing 5.4: Thread states in our design.
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Figure 5.3: Per-thread memory block in user space. At its base is the TLS block, its size does not
change after thread creation. The stack starts at the upper end and grows downwards.
Between Stack and TLS, and between thread blocks, there is a guard page. Figure 5.2
shows how thread blocks placed in the process address space.

Create

Kernel Thread To create a thread, first kernel memory for the struct thread_t or struct user_

thread_t is allocated, which is then initialised to zero. The kernel part of the thread is initialised first. On

the kernel heap a stack block is allocated, the new thread gets a thread number, and its context is set to

default values. For a pure kernel thread, its entry function has to be set, it is added to scheduler, and is

then ready to run.

User Thread For a user thread, the initialisation continues with the components which only user

threads have. In user space, all threads of a process share the same virtual address space. However, each

thread requires a private block of memory. In our implementation, this thread block contains the thread’s

stack and the Thread Local Storage (TLS) block. TLS is a block of memory where a thread-specific data

is stored. It is described in detail in Section 5.2. The per-thread memory blocks have a fixed (compile-time

adjustable) spacing. We set it to 64 pages. With 4096 byte pages this requires 256KB of virtual address

space per thread. Only required pages are actually mapped to physical memory. The user space thread

stack has a default size of 8 pages, currently. Additional pages could be added to the stack within the

bounds of the thread memory block. However, mapping additional pages is currently not implemented.

The stack starts at the high-address part of the thread block and grows towards lower addresses. While

on the opposite side, the TLS block is located. The TLS block’s size is fixed at compile time and is

determined by the size of the thread-local variables. The stack and the TLS block, as well as the thread

blocks are separated by guard pages. These are never-mapped pages which cause an exception in the

CPU, if they are accessed. Thus, the operating system can detect stack or buffer overruns. Figure 5.3

shows the layout of a thread block.
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Destroy

As detailed in Section 5.3, a thread’s termination can either be triggered by itself or by a cancellation

request placed by another thread. For the kernel it is important that a thread always terminates gracefully.

This means that it is not stopped at an arbitrary point, where it might hold kernel resources, but always

terminates in a deterministic way. This is only an issue if a thread is cancelled, but not when it terminates

itself by calling an exit function. In our ANDIX implementation a cancel request from another user thread

sets a flag to indicate that the target thread is to be cancelled at the next cancellation point. The only

currently implemented cancellation points are at the entry and before returning from a syscall.

If a thread encounters a cancellation request, it does never return normally from that syscall. Instead,

the thread’s context is manipulated such that it returns to a special cancel handler function in user space.

This function implements functionality required by pthread (see Section 5.5 and Section 5.4), and finally

exits the thread, calling pthread_exit, exactly as if the thread would have chosen to terminate itself.

Therefore, at this point cancel and exit are the same. After giving other threads the chance to join

(see Section 5.3), the thread is ultimately destroyed in a two-stage process, when it it is in the state DEAD.

The user space thread block, containing the threads user space stack and the TLS, can be immediately

released, and is unmapped from the process’ memory. However, the kernel memory, including the kernel

stack associated with the thread, must be kept, because the thread is still using its kernel stack. Thus,

whenever the kernel switches threads, it checks if the thread that is switched out is in DEAD state, and frees

the associated kernel resources in this case. At this point it is safe to release the kernel resources, because

the context switch is executed in Secure Monitor Mode; and this CPU mode has its own stack.

5.2 Thread Local Storage

We implement Thread Local Storage (TLS) for ANDIX OS user space programs. ANDIX OS does not

support dynamic linking or loading. All variables are in the current executable and known at link-time.

Therefore, we choose the relatively simple Local Exec TLS Model (see Section 2.6.4). In the Local Exec

TLS Model all TLS variables are addressed by an immediate offset inside a per-thread memory block.

In this work we use the GCC compiler in version 4.8.2 (see Chapter 11), which fully supports TLS,

and is configured to use the Local Exec TLS Model. Mono requires TLS. In addition, TLS allows us

to providing thread-safety to the C runtime library. For example, the errno variable is defined to be

thread-local, this can easily be realised with TLS.

5.2.1 Kernel TLS Setup

The Executable and Linkable Format (ELF) is used for ANDIX user space programs. ELF is used

on many POSIX-compatible platforms to store executables, libraries, and object files. In an ELF file,

statically-allocated variables reside in the sections .data or .bss for variables with initial values and for

uninitialised variables, respectively. For thread-local variables they are placed in the sections .tdata and

.tbss. The .bss and .tbss sections do not contain any data, because these variables do not have initial

values [Drepper, 2013]. They are typically, but not mandatorily, set to zero before a program starts. The

.data section contains the variables with their initial values, it can be used directly by the program. In
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contrast, the .tdata section can not be used directly. At runtime, it is kept as a template, which is used to

initialise the newly allocated TLS block, whenever a thread is created. This TLS initialisation image has a

corresponding entry in the ELF file’s program headers, which describes its location and size (ELF type

PT_TLS).

When the ANDIX kernel starts a new process, it loads it from an ELF image, which is a payload of

the kernel image. The ANDIX ELF loader scans all program headers of the ELF image and processes all

entries with the ELF type PT_LOAD. The loader allocates the necessary physical memory, maps it to the

new process, copies all code and initialised data (.data section), and sets the remaining memory to zero

(.bss section). The TLS initialisation image is included in one of the PT_LOAD entries, and is therefore

copied into the new process’ memory in this step.

We enhanced the ANDIX ELF loader such that when scanning the ELF program headers, it also looks

for an entry of the type PT_TLS. In our setup, only one entry of this type can occur. It designates the

location of the TLS initialisation image in the process’ memory. The loader stores

• the location,

• the size of the initialisation image,

• and the size of the TLS block.

in the corresponding variables of the process data structure (struct user_process_t, Listing 5.3).

Afterwards, whenever a thread is created (note that this includes the initial thread), a new thread block

(illustrated in Figure 5.3) is allocated. The thread block exists separately for each thread and contains

space for TLS memory. The TLS memory is initialised with a copy of the TLS initialisation image. The

uninitialised variables in the TLS memory are set to zero.

5.2.2 User Space TLS References

In the ELF image, thread-local variables are described by their offset from the origin of the TLS memory

block. When a C program references a TLS variable, the compiler has to figure out where the current

thread’s TLS memory block is located and reference the variable using its offset.

The method that the compiler uses to determine the origin of the TLS block differs, depending on

the target CPU architecture. In this project we use GCC 4.8.2 for ARM (see Chapter 11). With the most

basic ARM configuration the compiler generates a function call to __aeabi_read_tp for this purpose. A

platform specific implementation of this function must then be provided by the runtime library.

However, ARMv7 CPUs have a “TPIDRURO, User Read-Only Thread ID Register” [ARM Limited,

2012], which is designed to provide a pointer to a thread’s memory. The register is writeable for the

operating system and read-only for the user space. The GCC compiler uses this register to determine

the thread block’s origin, if it is configured to create code for ARMv7 CPUs. Therefore, we add

“-mcpu=cortex-a8” to the compiler flags, and thus specify the target architecture precisely. Consequently,

the compiler creates a single instruction “MRC p15, 0, %0, c13, c0, 3” to read the thread register and

address thread-local variables relative to this value. To support this method, the kernel has to update the
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1 mrc 15, 0, r2, cr13, cr0, {3} ; load thread pointer from CP15 to r2
2 ldr r3, [pc, #40] ; load offset of variable to r3
3 ldr r3, [r2, r3] ; load value of variable to r3

Listing 5.5: Code generated by the compiler to load a TLS variable. Addressing is based on the
thread pointer. Each variable is identified by its offset from the thread pointer. The
compiler places all used offsets at the end of a function.

thread register on each thread-switch and keep its value in the thread data structure. Listing 5.5 shows a

part of a disassembled function which loads the value of a TLS variable.

5.3 A User Space Thread’s Life

A POSIX thread is identified by a value of type pthread_t, unique in a process. All references to threads

use this identifier. A user space thread’s life cycle is managed by four operations, specified by pthread

[IEEE, 2008]. This section descries how we implement these operations.

Create

Starts a new thread, with optional configuration attributes. These optional attributes are currently not

supported by our implementation. The new threads starts executing a specified function immediately.

The entry function can take one argument, which is also specified when creating the thread. When a

thread returns from its entry function, this shall be equal to exiting the thread by calling pthread_exit,

according to POSIX [IEEE, 2008]. To ensure this, in our implementation, the user space execution of the

thread actually starts in a wrapper function, which initialises the thread’s user space descriptor, and in turn

calls the entry function, and – should the entry function ever return – calls pthread_exit with the return

value from the entry function.

Exit

The thread exits deliberately by calling pthread_exit or by returning from its entry function. Both

methods deliver a return value to an optional receiver.

Cancel

A thread can request the cancellation of another thread, which is then stopped and killed. Cancellation

imposes some problems to the implementer, because no assumption can be made about what state the

current thread is in, and whether is is currently in a system call. To support resource release in user space

in the case of cancellation, pthread specifies cleanup handlers (see Section 5.5).

Three cancellation modes are specified by POSIX [IEEE, 2008], deferred, disabled, and asynchronous.

This modes can be configured with a pthread function. Asynchronous cancellation requires the thread to

be cancelled immediately, which introduces problems with resource release, as the thread might currently

use, for instance, an operating system resource. Deferred cancellation allows the thread to continue to
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execute until it reaches a cancellation point. Cancellation points are designated points, where a threads

execution ends, when cancellation was requested. Threads with cancellation state disabled can not be

cancelled until the state changes.

In our implementation for ANDIX, cancellation points are the entries and the returns from syscalls,

because at this designated points the operating system can relatively easy handle the cancellation. Our

implementation supports deferred and disabled, but does not support asynchronous cancellation.

Join

A thread can wait for another thread to terminate. It is then said to join the other thread. The joining

thread is suspended until the joined thread terminates. The reason of its termination – exit or cancellation

– is not important. According to the POSIX specification [IEEE, 2008], a thread can only be joined by

one thread. When the joined thread eventually terminates, the joining thread is resumed and a return

value of the terminating thread is delivered. When a thread was cancelled, the return value is the constant

PTHREAD_CANCELED. A thread can have the detached attribute, which can be set with a pthread function.

In this case, no join is possible an no return value is available. When a detached thread terminates, all

resources are immediately released.

When a non-detached thread terminates, the pthread runtime has to keep records about that thread,

including its return value, in order to allow another thread to join the already terminated thread. In this

case the join function returns immediately with the return value, and all resources of the terminated thread

are released.

Our implementation defines two thread states (Listing 5.4) to realise this behaviour. When a non-

detached thread terminates, it changes to TO_JOIN state, with its return value recorded in the kernel data

structure. When a thread joins a target thread which is not in TO_JOIN state, it is registered as a “joiner” in

the target thread’s data structure and suspends until the thread terminates. The joiner then wakes up and

finds the thread in TO_JOIN state, retrieves its return value and the join function returns. The terminated

thread now changes to DEAD state, which causes all of its resources to be released by the kernel

5.3.1 Thread User Space Descriptor

For each thread a descriptor in user space exists to support our implementation of pthread features. The

contents of the descriptor are shown in Listing 5.6. The thread descriptor is located in TLS and is therefore

automatically unique for each thread. It is initialised by the thread entry wrapper function, or for the

main thread, by the start-up code, before executing main. The descriptor stores the thread identifier of

the current thread, as assigned by the kernel. The remaining members of the descriptor are used for the

locking implementation.

5.4 Locking Primitives

In a multi-threaded process all threads share the same address space and can therefore access the same

objects in memory. Thread switches can occur at any time and leave modified shared objects in an
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1 struct pthread_descr {
2 pthread_t tid;
3 struct pthread_descr *next_waiter;
4 int resume_count;
5 void (*atcancel)(void *);
6 void *atcancel_data;
7 };

Listing 5.6: Contents of theThread User Space Descriptor

undefined intermediate state. If the scheduler interrupts a thread that is currently updating data in memory,

other threads will find this data in a partially changed undefined state. To prevent such an undeterministic

condition, locking mechanisms regulate access to such shared data in order to prevent undefined behaviour.

The pthread standard [IEEE, 2008] specifies three types of high-level locking primitives, which are all

used by Mono.

• Mutex: a mutual exclusion lock, allowing access for one thread at a time,

• Semaphore: a protected counter, allowing only a fixed number of threads, and

• Condition Variable: Threads can wait for a condition that is broadcasted by another thread.

5.4.1 ARM Exclusive Monitors

High-level locking mechanisms require hardware support from the CPU. To implement a lock some kind

of atomic test-and-set sequence must be used as a basic building block. Atomic means that this sequence

must not be interrupted in any case. No interrupt or exception shall be able to interrupt the sequence, and

therefore potentially manipulate data between test and set.

From ARMv7 onwards [ARM Limited, 2012], hardware support is provided with Exclusive Monitors.

Three families (for different data sizes) of atomic instructions exist to use Exclusive Monitors:

• LDREX: Loads a word from memory and tags the corresponding memory location in the Exclusive

Monitor.

• STREX: Writes a word to memory only if no more recent store was performed to this address. The

STREX instruction checks the tag bit. Only if it is still set the operation succeeds and resets the tag

bit. Otherwise, no write to memory is performed. The instruction returns a status bit to indicate

whether the store operation was successful, or not.

• CLREX: Clears the tag, invalidating the monitor.

Using these hardware features we implement atomic increment and decrement functions, and a

spinlock for ANDIX. These can be used both in the kernel and in user space. The source code can be

found in Listing D.1.

In principle Exclusive Monitors are used as follows. A value is loaded into a register using LDREX.

The monitor is set for the corresponding address. The value is then checked and manipulated. Finally,
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STREX attempts to update the value in memory. When no write occured to this memory since the monitor

was set with LDREX, the instruction updates the memory and returns success. In this case the sequence is

completed and no invalid access was possible. In contrast, when any other access occured between the

LDREX and the corresponding STREX, the STREX instruction finds the Exclusive Monitor cleared, refuses

to write to memory and returns failure. In this case, a re-try is necessary, starting with LDREX, because

the value in the register is no longer consistent with the value in memory. LDREX and STREX should be as

close to each other as possible in order to minimise the chance of an interrupt between them. Whenever

the operating system performs a context switch or a world switch it must clear the monitor with CLREX to

prevent false positives.

5.4.2 Spinlock

Based on ARM Exclusive Monitors, we implemented a basic locking building block called a Spinlock. It

is further used to implement pthread’s locking API, and to protect internal shared resources in the user

space runtime library, as well as in the kernel.

The Spinlock provides mutual exclusion to shared resources. It can either be locked or unlocked.

When a thread wants to access a shared resource it locks the Spinlock. If it is unlocked, the lock-function

returns leaving the Spinlock in locked state. Otherwise the thread “spins”, that means, actively polls the

lock (and yields to allow other threads to continue), until the lock is unlocked by the current owner. The

spinning thread then locks it and the function returns. It is crucial, that the locking procedure is atomic.

The Spinlock data structure would only require one bit, which tells whether the lock is locked. We actually

use an integer for that.

The implementation of locking primitives also has to account for the data cache of the ARM CPU.

It is required to execute a DMB (Data Memory Barrier) instruction before accessing a resource that is

protected against concurrent access. The Data Memory Barrier ensures that the cached resource is actually

consistent with the protected resource in memory. Additionally, before releasing a protected resource

another Data Memory Barrier has to be inserted to ensure the cached resource is written back to memory

before releasing the lock.

Our Spinlock is not part of the pthread specification. It serves as a building block for more complex

locking structures. One disadvantage is obvious. The busy polling of threads which wait for the lock to

be freed wastes CPU time. It only makes sense to protect very short access to critical sections with a

Spinlock, such that the probability that a thread has to “spin” is low anyways.

5.4.3 Mutex

A pthread Mutex allows multiple threads to serialise their access to shared data. It provides mutual

exclusion [IEEE, 2008]. Our ANDIX Mutex implementation resides entirely in user space. It is based on

the Spinlock.

Like a Spinlock, a Mutex can also be either locked or unlocked. However, when a thread tries to lock

a locked Mutex, it has to be suspended and is said to wait for the Mutex. The owner of the Mutex is the

thread which currently has successfully locked it, and is therefore allowed to use the resource associated
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1 struct _pthread_corelock {
2 int val; // lock value. 0: locked; >0: unlocked
3 int spinlock; // Spinlock to protect the other members
4 struct pthread_descr *waiter; // wait queue head
5 };

Listing 5.7: Core Mutex. This class implements the core Mutex functionality.

with the Mutex. When the owner unlocks the Mutex, the next waiting thread has to be resumed, and can

then re-try to lock the Mutex and become the new owner.

Wait Queue

To implement this behaviour, we use a wait queue, a linked-list of waiting threads on each Mutex. The

elements of the linked-list are the thread descriptors (Listing 5.6), as presented above. Recall that each

thread has an instance of this descriptor structure in its TLS. A thread can never wait for more than one

lock at a time, thus this one-instance per thread descriptor is sufficient to implement the waiter list. The

Mutex has a pointer to the head of this list, which is a pointer to a thread descriptor. When a thread

wants to lock a Mutex and finds it locked, it inserts itself at the head of the list, setting the head-pointer

of the Mutex to its own thread descriptor, and setting the previous head pointer of the Mutex to its own

next-pointer. The thread then suspends itself.

When a thread unlocks the Mutex, it checks the wait queue, traverses it until the end, removes the last

thread from the queue, and resumes it. Thus, the thread which entered the wait queue first is resumed first.

The resumed thread locks the Mutex and can continue.

Special precaution is necessary with thread cancellation. When a thread is cancelled it is possible

that it is currently registered in a wait queue. After the thread is terminated, the queue would contain a

dangling pointer to a no longer available object. In the case of cancellation, it is thus necessary to remove

a thread from any wait queue before it is actually terminated. To solve this problem, a cleanup function

searches the wait queue and remove the thread before it is destroyed. For this purpose the thread descriptor

(Listing 5.6) contains a pointer to an optional cleanup function and an argument for it. When the user

space cancel handler is executed after a cancel request (refer to Section 5.1.4 for details) it executes this

function, if it is registered. When a thread places itself in a wait queue, it sets the cleanup function pointer

and the argument, pointing to the Mutex the thread waits for. Thus, when the thread is cancelled, the

cancel handler passes a pointer to the Mutex to the function, which then removes the thread from the

Mutex’ queue.

All this functionality is provided by a core Mutex, whose members are shown in Listing 5.7. It also

serves as a common basis for pthread’s Mutex and Semaphore. The core Mutex contains a Spinlock,

which protects all members against concurrent access.
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Pthread Mutex

The pthread Mutex specification [IEEE, 2008] specifies several attributes for a Mutex which modify its

detailed behaviour. We implemented only those special features that are required by Mono. When calling

the init-function of a pthread Mutex a set of attributes can be passed in a separate attribute object.

Our implementation supports the recursive mode. A recursive Mutex keeps track of its current owner

– which is the thread which has locked it – and allows this owner to re-lock the Mutex without suspending

the owner. When the owner tries to lock a conventional Mutex a second time, this results in a deadlock.

A recursive Mutex records its owner and counts how many times the owner locks the Mutex. Every

unlock decrements that counter, such that the Mutex is only really unlocked when the number of lock-

and unlock-operations is equal.

According to the Pthread specification [IEEE, 2008] we implement a try-lock function, which never

suspends the thread, but instead returns an error if the lock is already locked.

Furthermore, pthread requires a timed-lock function, which suspends a thread only until a specified

timeout expires, causing the function to return with an error value, indicating the timeout, if the lock did

not become available before the timeout expired. This function requires timing features of the operating

system. Their implementation is described in Chapter 7.

5.4.4 Semaphore

A Semaphore essentially supports two operations, wait and post. It is initialised with an integer value.

When a thread calls the wait-function on a Semaphore the value is decremented and the function returns

successfully, as long as the value is greater than zero. When the value is zero, further wait-calls suspend

the corresponding threads exactly like the lock-function of a Mutex.

The post-function increments the counter, and if threads are on the Semaphore’s wait queue, resumes

one thread, which can then retry the wait-operation. Due to this similar behaviour, we implemented

the Semaphore on top of the core Mutex, which is described above, with the only difference that the

Semaphore can have values other than locked and unlocked.

5.4.5 Condition Variable

A pthread Condition Variable provides a mechanism of waiting for an event to occur related to a resource

which is protected by a Mutex. A thread can wait for this event to occur, passing a Condition Variable and

the locked Mutex associated with the resource to the wait-function. Then, the thread is atomically blocked

on the Condition Variable and the Mutex is released. A Condition Variable contains a wait queue, exactly

like a Mutex. The same issues with cancellation occur with this wait queue and are solved in the same way.

The waiting thread registers on the Condition Variable’s wait queue and suspends. When the event occurs

the thread is resumed and the wait-function returns with the Mutex locked and owned by the thread.

To notify that the event occurred, there is a signal and a broadcast function. Calling signal wakes one

thread from the wait queue, which returns from the wait-function as described above. Calling broadcast

resumes all threads on the wait queue, which then contend on the Mutex, because the wait-function can
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1 #define pthread_cleanup_push(_routine, _arg) \
2 do { \
3 struct _pthread_cleanup_context _pthread_clup_ctx; \
4 _pthread_cleanup_push(&_pthread_clup_ctx, (_routine), (_arg))
5
6 #define pthread_cleanup_pop(_execute) \
7 _pthread_cleanup_pop(&_pthread_clup_ctx, (_execute)); \
8 } while (0)

Listing 5.8: Cleanup function macros.

only return with the Mutex locked. Thus, all threads except one will block on the Mutex. The scheduling

policy decides which thread will succeed.

Furthermore, a timedwait function is required by the pthread specification [IEEE, 2008] that only

waits for the condition until a specified time is over, and then returns with an appropriate error code.

5.5 Cleanup Functions

To allow the programmer to release allocated resources when a thread is cancelled, pthread specifies a way

to register cleanup functions which are called in case a thread is cancelled, before it is actually terminated.

The cleanup functions are organised like a stack. A push and a pop function is specified. When a

thread terminates by calling pthread_exit or is cancelled, all cleanup functions currently on the stack

shall be executed. This means that between a push and a pop spans a scope in which the function shall

be called, in case of thread termination. The two operations are implemented as macros, as shown in

Listing 5.8. The push macro opens a do-while loop and creates a local _pthread_cleanup_context

variable in that scope, which is used to store cleanup function pointer and an argument for the function.

The do-while loop is closed in the pop macro, which removes the function from the stack again, and

optionally executes it. Due to the do-while loop, the two macros can only occur pair-wise, otherwise they

cause a compiler error.

Our implementation realises the storage of the cleanup functions with a linked list. Each thread has a

thread-local pointer (a variable in TLS) to the top of the cleanup stack. If the thread is terminated, all

functions on the stack are executed by the implementation of pthread_exit. Recall that if a thread is

cancelled, this ultimately leads to a call to pthread_exit as well (refer to Section 5.1.4 and Section 5.3

for details). A push adds a _pthread_cleanup_context instance to the top of the stack, by adding it to

the linked-list, updating the stack top pointer. A pop removes the top stack element, and can optionally

execute the registered cleanup function.

5.6 Thread Specific Storage

Pthread specifies [IEEE, 2008] a mechanism to store data specific to a thread, which means that each thread

can store a different value for this data, without interfering with each other (compare with Section 5.2).

A value can only be stored to a registered key. The available keys exist in the whole process, such that
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all threads can use the same key, while the value associated with a specific key is thread-specific. The API

defines a function to create a key. A key is referenced by an integer identifier. At the creation, a destructor

function can be registered for each key. This function shall be called when a thread is terminated (cancel

or exit) as a means to eventually release resources associated with the value of the key. To access the

values of already created keys, threads can use get and set functions to store a single value of type void *

per key.

Our implementation is based on TLS. It supports a fixed number of possible keys, which are managed

in a process-wide static array, where a 4-byte integer per key is used to encode the state of the key and

the destructor function. Currently, the number of keys is set to 256. It follows, that 1KB of memory

per process and another 1KB per thread is required for this feature. Listing 5.9 shows the storage array

declarations.

1 static __pthread_key pthread_keys[PTHREAD_KEYS_MAX];

2 static __thread void *pthread_specific_data[PTHREAD_KEYS_MAX];

Listing 5.9: Pthread specific data storage. Keys are stored in a process-wide static array, while
values are stored in a thread-local static array, based on TLS.

Each thread has a thread-local static array of values in its TLS, which are accessed by the get and

set functions. When a thread terminates for any reason, it ultimately executes pthread_exit (refer to

Section 5.1.4 and Section 5.3 for details), which iterates over all registered keys, and, if available, executes

the destructor function, passing the thread-local void * value as an argument.

The pthread standard requires the repeated invocation of destructor functions until no stored value is

non-NULL. However, this has the risk of starting an endless loop. Therefore, pthread specifies an upper

limit of re-tries. For the sake of simplicity, our implementation calls the destructor only once per key.

5.7 Re-entrancy in newlib

In a multi-threaded process, our newlib C runtime library (as well as all other libraries) faces the problem

that multiple threads could call the same functions virtually at the same time. The use of static variables is

then problematic, because they are shared among all threads. A function which can be called by multiple

threads without causing problems is said to be re-entrant.

Our build configuration for newlib assumes that all ANDIX syscalls are re-entrant. To support

re-entrancy for newlib functions, a thread-specific reent data structure is kept and passed to internal

functions. For instance, the errno variable is prominent member of reent. It delivers the last error code

that occured in the C library to the caller. It has to be thread-specific, because otherwise concurrent calls

of other threads would influence the error number too.

For our ANDIX port of newlib, this reent structure is declared in TLS. Therefore, it is automatically

unique for each thread. Our thread initialisation code calls the newlib’s initialisation function for the

re-entrancy mechanism. It is important to set the compiler flags for the newlib build such that the

generated code uses the method of accessing TLS memory, that is supported by our implementation (refer

to Section 5.2).
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1 typedef pthread_mutex_t _LOCK_T;
2 typedef struct { pthread_mutex_t real; } _LOCK_RECURSIVE_T; // create

a different type to prevent mix-up
3
4 #define __LOCK_INIT(class,lock) class _LOCK_T lock =

PTHREAD_MUTEX_INITIALIZER;
5 #define __LOCK_INIT_RECURSIVE(class,lock) class _LOCK_RECURSIVE_T lock =

{ PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP };
6 #define __lock_init(lock) pthread_mutex_init(&lock, NULL)
7 #define __lock_init_recursive(lock) do { \
8 pthread_mutexattr_t __attr; \
9 pthread_mutexattr_init (&__attr); \

10 pthread_mutexattr_settype (&__attr, PTHREAD_MUTEX_RECURSIVE);
\

11 pthread_mutex_init (&lock.real, &__attr); \
12 pthread_mutexattr_destroy (&__attr); \
13 } while (0)
14 #define __lock_close(lock) pthread_mutex_destroy(&lock)
15 #define __lock_close_recursive(lock) pthread_mutex_destroy(&lock.real)
16 #define __lock_acquire(lock) pthread_mutex_lock(&lock)
17 #define __lock_acquire_recursive(lock) pthread_mutex_lock(&lock.real)
18 #define __lock_try_acquire(lock) pthread_mutex_trylock(&lock)
19 #define __lock_try_acquire_recursive(lock) pthread_mutex_trylock(&lock.

real)
20 #define __lock_release(lock) pthread_mutex_unlock(&lock)
21 #define __lock_release_recursive(lock) pthread_mutex_unlock(&lock.real)

Listing 5.10: Newlib locking macros with their ANDIX-specfic implementation, using our
pthread Mutex.

In a multi-threaded process, several parts of newlib require locking to protect resources against

concurrent access, most notably, the heap manager, and the standard input/output streams with their

buffers. If, for instance, multiple threads use the heap’s malloc and free functions without locking,

undefined intermediate states of the heap data structures could occur. Newlib already calls locking

functions to protect critical sections. These locking functions just need to be defined by the platform port.

Our ANDIX implementation uses the pthread Mutex, described in Section 5.4.3, in the Mutex’ normal

mode and the recursive mode to provide all required locking functions for newlib. Listing 5.10 shows the

definition of the newlib locking macros.
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Chapter 6

POSIX Signals for ANDIX

To run Mono, we implement POSIX Signals for ANDIX. An introduction to the specification is given in

Section 2.6.6. Mono only requires a sub-set of the rather complex POSIX Signals specification [IEEE,

2008]. We provide a generally useable, efficient implementation, which fulfils Mono’s requirements, but

not the complete POSIX specification. This chapter describes our implementation.

6.1 Signal Usage

Mono uses signals on the one hand to detect runtime exceptions like address space violations, and

arithmetic exceptions. In these cases the operating system shall send a SIGSEGV (segmentation violation)

or a SIGFPE (floating point exception), respectively, to the thread that caused the exception, and the Mono

runtime handles these signals and throws an exception in the managed code. On the other hand, Mono

uses signals internally to suspend and resume threads inside the Mono process, for example when the

garbage collector has to “halt the world”.

Our implementation does not support signals addressed to a process (as required by POSIX), rather a

signal must always be addressed to a specific thread. POSIX real-time signals are not supported by our

implementation.

6.2 ANDIX Signal Delivery

Combining the default dispositions and the configurable actions (see Section 2.6.6), one of the following

effects of a signal can occur, whenever a signal is delivered. Note that, if a signal is currently masked in

the destination thread’s signal mask, the delivery is deferred until the signal is unmasked. Signal delivery

can have one of the following effects:

• thread is terminated,

• thread is suspended,

• thread is resumed,

57
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• signal is ignored, or

• a signal handler function is invoked.

We can easily implement the first four effects in ANDIX, however invoking handler functions is more

sophisticated. When a signal is delivered, the handler function should be invoked virtually immediately.

This can occur at any time. The operating system has to interrupt the flow of control of the destination

thread, run the handler function, and return to where it left off. The handler function is executed on the

stack of the destination thread. However, optionally, with the sigaltstack function, the process can set

a separate stack for signal handlers. This is used by Mono to allow the execution of a signal handler in

case of a stack overrun. In this case, the operating system would send a SIGSEGV to the thread, but the

handler would trigger another stack overrun, because the thread’s stack is already full. On a separate

signal handler stack this case can be handled easily, though. Thus, we add both options to ANDIX.

Our implementation distinguishes between synchronous and asynchronous signals. A synchronous

signal is caused by the current thread and targets the current thread, such as a SIGSEGV caused by a

memory violation. An asynchronous signal is sent to the target thread by a different thread. In this case,

no assumption can be made about in what state the target thread currently is. Thus, when an asynchronous

signal is delivered to a thread, which is currently in the kernel, we do not execute the handler immediately,

to prevent unforeseen consequences that could occur when we interrupt a system call. Instead, we set the

signal pending, such that it is delivered as soon as the thread returns to user space. However, when the

thread is currently in user space, we deliver the signal immediately.

When a signal is not ignored and it can not be delivered immediately, because the thread is in a system

call or the signal is masked, we store the signal as pending for the destination thread. When the signal

mask is updated or whenever a thread leaves a system call, we deliver pending signals. In this situation

the current thread is the receiver thread, regardless of where the signal was sent from. It is therefore a

synchronous signal.

6.2.1 Signal Handler Invocation

To invoke a signal handler function, the kernel has to manipulate the target thread’s user space context. In

case of a synchronous signal, this is the user space context of the current thread, which is stored on the

kernel stack at system call entry. In case of an asynchronous signal, this is the user space context of a

currently inactive thread, which is saved in the thread’s data structure.

The signal handler function can be of one of the following two types:

• void (*sa_handler)(int), or

• void (*sa_sigaction)(int, siginfo_t *, void *).

The desired type is set when the signal handler is installed. Both variants get the signal number as the first

argument. The second variant is called with more information about the signal passed in the siginfo_t.

Our implementation only passes the address that caused the signal in the siginfo_t, although the POSIX

standard would require many more fields in this structure [IEEE, 2008], because it is sufficient for Mono.

The third and last argument is a pointer to a ucontext_t (cast to void *). The ucontext_t structure is
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1 typedef struct {
2 uint32_t scr;
3 uint32_t r[13];
4 uint32_t pc;
5 uint32_t cpsr;
6 } core_reg;

Listing 6.1: ANDIX thread context structure. It contains the Secure Configuration Register
(SCR), all CPU registers, the saved program counter, an the current status register.
The stack pointer is not included.

an architecture-specific type that contains all information about the thread’s context at the time it was

interrupted to invoke the signal handler. Mono uses this to determine the reason for a signal and which

part of a program caused it, and thus generate the appropriate exception. The ucontext_t is platform

specific. For Mono to use the ANDIX implementation, we apply a corresponding patch. Listing 6.1 shows

the structure, in which a thread context is saved.

Saving the Return Context

Signal handlers can be invoked recursively with virtually unbounded depth, because a signal handler can

cause another signal which interrupts the signal handler to execute another signal handler. Thus, whenever

a signal handler returns, the control flow must continue from where it was interrupted, regardless if this

was a signal handler too. Our implementation saves the return context, that is the context where the

handler interrupted the previous control flow, on the user space stack of the target thread. Before a signal

handler is invoked, that particular signal is masked for the target thread, in order to prevent recursive

invocation of the same handler function, as demanded by POSIX.

However, our implementation allows an alternate signal stack (with sigaltstack as described above).

In this case the alternate signal stack is used to save the return context. When the first signal handler is

invoked, we switch the user space stack to the alternate stack. For all following recursive signal handlers

the alternate stack is used, until the last signal handler returns. Then we must restore the original thread

stack.

Before invoking a signal handler function our implementation pushes the following data on the active

user space stack:

• The thread context, as shown in Listing 6.1,

• the current user space stack pointer,

• the current user space link register,

• the current signal mask, and

• the siginfo_t structure to be passed as a parameter to the signal handler function.
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Context Manipulation

After the return context is saved, the target thread’s context must be manipulated. The kernel adapts the

user space stack pointer, to account for the return context saved on the stack. The CPU registers r0, r1,

r2 are used to pass the arguments to the handler function, according to the C calling convention for our

platform. The saved program counter is set to the handler function pointer. The user space link register

(contains the return address of a function call) is set to a special signal return function in user space, which

must be executed when the signal handler returns. Finally, the operating system switches back to user

space and the destination thread executes the signal handler. In case the signal handler causes another

signal, this procedure is repeated recursively.

Restoring the Return Context

A signal handler is an ordinary C function, which eventually returns. The compiler generates the same

instructions as if the function would return to its caller. However, the situation is different when a signal

handler returns. At the end of a signal handler the kernel must take over control and restore the saved

return context, such that the thread can continue to execute where it was interrupted.

On ARM CPUs, the link register (LR) holds the return address at a function call. The return instruction

jumps to the address in the link register. Our implementation has a small assembler function, the signal

return function, in the user space runtime library, which only triggers a system call to pass control back to

the kernel to restore the original context.

1 _signalreturn:

2 movw r12, #SWI_SIG_RETURN ; Load the system call number into r12

3 svc #0 ; Execute the system call

It is important that this function is implemented in assembler, because it must not manipulate the stack

pointer, which is what all C functions do when they save registers on the stack or for make room local

variables. The function never returns, an thus it can not remove its stack frame. A correct stack pointer is

important for the kernel, because the context to restore is saved on the user space stack.

When the kernel sets up the context to execute the signal handler, it sets the user space link register to

the signal return function (as described above). Thus, when the signal handler returns, it jumps to this

function, which executes a system call. The kernel then restores the signal context from the stack and

returns to user space to continue the normal program flow or execute another signal handler.

6.2.2 Signals sent by the Kernel

In our implementation the kernel sends a signal to a thread when it causes a memory exception. On

ARM, this can either be a Prefetch Abort, when an instruction fetch failed, or a Data Abort, when an

operand fetch failed. Both can be caused by accessing unmapped memory, or by violating memory access

constraints. If such a failure occurs, the hardware switches to Abort Mode, and runs a handler function of

the ANDIX kernel.
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The kernel handler function examines the cause of the abort. If it was caused by a user space thread,

the kernel generates a signal SIGSEGV and sends it to the current thread, thus it is a synchronous signal.

The default disposition for SIGSEGV is to terminate the thread. However, if a handler function is installed,

the abort handler immediately returns to the user space handler function, which can try to solve the

problem. If the handler function returns, the instruction that caused the abort is re-executed, resulting in

another abort, or in successful continuation of the thread.

6.2.3 Signals during Blocking System Calls

POSIX [IEEE, 2008] specifies that the delivery of a signal should interrupt “slow” blocking system calls.

That means, that if a thread is blocked on such a system call, it should immediately resume, leaving

the system call undone and return an error value EINTR. All other (non-“slow”) system calls are always

completed, delaying signal delivery.

An example for “slow” system calls on a typical system are hard disk IO operations, however POSIX

does not explicitly specify which system calls are “slow” and shall be interruptable. Furthermore, POSIX

specifies a mechanism to resume interrupted system calls. In our implementation the only interruptable

system calls are the sleep-functions, presented in Section 7.3.

6.3 The Signal API

This section introduces the functions that our implementation provides to user space programs to use

signals. This is only a subset of the functions specified by the POSIX standard [IEEE, 2008], but it is

sufficient to run Mono.

• int sigaction(int signum, const struct sigaction *act,

struct sigaction *oldact)

Configures the action to be taken when the signal with number signum is delivered. The sigaction

specifies the action, the previous configuration is saved to oldact. Listing 6.2 shows the sigaction

structure of our implementation. Our implementation supports none of the sa_flags defined by

POSIX, except SA_SIGINFO, which defines whether the first or the second form of the signal handler

function is used (see Section 6.2.1). All others are never used by Mono. The sa_handler field can

be set either to SIG_DFL, SIG_IGN, or the handler function pointer (refer to Section 6.2.1).

• int pthread_kill(pthread_t thread, int sig)

Sends a signal to a thread within the same process.

• int pthread_sigmask(int how, const sigset_t *set, sigset_t *oldset)

Sets the signal mask for a thread, specifying a mode (how). The mode can either be to block the

specified signals, unblock them, or set the mask to the passed value. The previous value can be

retrieved.

• int sigprocmask(int how, const sigset_t *set, sigset_t *oldset)
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According to the POSIX standard [IEEE, 2008], this function is undefined in a multi-threaded

process, but Mono uses it. In our implementation it is equal to pthread_sigmask.

• int sigpending(sigset_t *pend)

Gets pending signals.

• int sigsuspend(const sigset_t *mask)

Suspends the current thread until a signal is received, setting the signal mask to mask for the time of

waiting. The original mask is restored after the thread resumes.

• int sigaltstack(const stack_t *restrict ss, stack_t *restrict oss)

Sets up an alternate stack for signal handlers. The concept is explained in Section 6.2. The caller

has to allocate memory for the alternate stack. The stack_t contains a pointer and the size of the

stack. The previous stack can be retrieved.

1 struct sigaction {
2 int sa_flags; // Special flags to affect behavior of signal
3 sigset_t sa_mask; // Additional set of signals to be blocked
4 // during execution of signal-catching
5 // function. */
6 union {
7 void (*_handler)(int); // SIG_DFL, SIG_IGN, or pointer to a function
8 void (*_sigaction)( int, siginfo_t *, void * );
9 } _signal_handlers;

10 };
11 #define sa_handler _signal_handlers._handler
12 #define sa_sigaction _signal_handlers._sigaction

Listing 6.2: Structure to specify the action on signal delivery.
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ANDIX System Timing

Mono requires system timing functions in user space. It requires a function that suspends a thread for a

given time (nanosleep) and a function to retrieve the current absolute time (gettimeofday). We only

provide the absolute time since system boot, often referred to as uptime, because ANDIX OS has no Real

Time Clock (RTC) available.

In the original version, ANDIX OS has a driver for a timer of the Freescale iMX53 System on Chip

(SOC). On our QEMU platform this device is not available.

7.1 ARM Timer Hardware

When we choose a timer hardware to use in ANDIX, we have to consider whether the normal world

operating system is going to use the same hardware device as well. This would lead to access and

configuration conflicts, and security problems, and must be avoided.

The ARMv7 architecture features the “Generic Timer”, which is a free running timer with at least

56 bit. On TrustZone systems a separate instance of the Generic Timer exists for each of the two worlds

[ARM Limited, 2012]. It would perfectly fulfil our requirements, but it is not available on our QEMU

platform, and the enhancement of QEMU is out of scope for this project.

Thus, we choose the SP804 timer [ARM Limited, 2004]. One unit contains two down counting 16 or

32 bit timers and can generate interrupts. Two SP804 units exist on the “Versatile Express” board, which

is the hardware that QEMU emulates, and are thus available on our emulated platform. The SP804 is not

TrustZone-aware, but the normal world Linux operating system uses only one of the two units. Thus, it is

safe for ANDIX to use the second SP804, in our experimental setup.

7.2 SP804 Driver

The ANDIX kernel has a Hardware Abstraction Layer (HAL) which provides a basic framework for

writing drivers [Fitzek, 2014]. A device configuration map provides the information about available

devices on the current platform and how to address them. From the QEMU source code, we retrieve the

63
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1 [6] = {
2 .name = "VE_TIMER01",
3 .base = 0x10011000,
4 .size = 0x1000,
5 .driver = "sp804",
6 .id = 0,
7 .flags = 0,
8 },
9 [7] = {

10 .name = "VE_TIMER23",
11 .base = 0x10012000,
12 .size = 0x1000,
13 .driver = "sp804",
14 .id = 0,
15 .flags = 0,
16 }

Listing 7.1: ANDIX kernel platform device map entries for the two SP804 instances.

necessary information to register the two SP804 instances (Listing 7.1) to the ANDIX platform device

map.

A driver for ANDIX shall implement functions for probe, release, read, write, and ioctl. The

probe function sets up the hardware timer. Our preferred configuration would be 16 bit mode with an

interrupt on each wrap-around. However, the QEMU platform [Winter et al., 2011] does not emulate

a TrustZone-aware interrupt controller. The normal world Linux operating system uses the available

interrupt controller. Thus, using it in ANDIX would interfere with the normal world and is not an option.

In a future project, implementing the TrustZone interrupt controller for QEMU would be promising.

For this project we accept that we can not use interrupts and configure the SP804 timer to generate no

interrupts, and run in 32 bit mode with the maximum available prescaler. In this configuration it overruns

in more than 12 days. The counter value can therefore be used to represent the time since boot in our

experimental setup.

After probe initialised the timer, its raw value can be retrieved using the read function. However,

the SP804 is down-counting, and all existing timing functions expect the time to run forward. Thus, our

ioctl implementation converts the raw value to an up-counting value. Furthermore, we provide an ioctl

to retrieve the timer frequency.

7.3 Timer functions

Based on the timer value and frequency, the gettimeofday function provides an absolute time value to

user space in a format, that does not depend on the timer frequency, according to POSIX [IEEE, 2008].

The functions nanosleep, usleep, and sleep suspend the current thread for a specified amount of

time. Because of the limitation that no timer interrupts are available, the thread can not actually be

suspended. Instead, our sleep implementation polls the timer value and yields to other threads until the

timer reaches the thread’s wake-up time. Of course this implementation is inefficient, but it is the only
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way to realise the specified behaviour without the use of hardware interrupts.

The sleep function can be interrupted by a signal. When the thread receives a signal, it wakes up

immediately, executes an optional signal handler, and then resumes execution returning from the sleep

call, even if the sleep time has not yet expired. Sleep functions return the remaining sleep time. This

behaviour is required by POSIX [IEEE, 2008].
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Chapter 8

Porting Mono

This chapter describes the adaption of Mono for ANDIX. We port Mono to a new platform with limited

features compared to fully POSIX-compatible systems. Note that in this context a platform is a combina-

tion of a CPU type and an operating system. We port Mono to a new operating system, but Mono has

already been ported to other ARM-based systems. Therefore, CPU specific code is already available, most

notably the just-in-time compiler for ARM already exists.

The Mono runtime (excluding other components, such as the BCL) consists of more than 350.000

lines of C code1. The top level configuration file of GNU autotools (configure.in) has more than 3500

lines. The first step towards a port of the Mono for ANDIX is to figure out a suitable configuration for the

new platform, which disables many components we do not actually need.

8.1 Platform Configuration

The Mono build system is based on GNU autotools. This suite of tools for building software automatically

detects available features of the platform and configures the source build for a predefined target platform

[Calcote, 2010]. Mono can be built for a wide range of POSIX-style platforms. For each supported

platform, a set of configuration values is set. On the one hand, these values influence the build configuration

itself, by activating or deactivating features, modules, and tools. On the other hand, the configuration

directly switches conditional code blocks in the source files on or off, by setting C macros, which can

then be evaluated (with #ifdef).

GNU autotools comprise many different tools which process several files spread across the source tree.

In this thesis, we only present our configuration. For information on GNU autotools we recommend the

book by Calcote [2010]. The autotools configuration is anchored in the top-level configure.in file. By

inspecting this file, we learned about the configuration choices for existing platforms and experimentally

worked out a configuration for our new platform. Our ANDIX configuration disables all features not

necessary in our usage scenario, to minimise the porting effort and the size of the runtime library.

The following list presents the configuration values we set to adapt the default configuration.

1Examined with the cloc tool. http://cloc.sourceforge.net/
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• --prefix \$INSTALLDIR

Sets the installation directory for the built files.

• --with-tls=__thread

Enables TLS using the __thread key word (see Section 5.2). This could also be set to use pthread

specific storage (see Section 5.6). However, not all parts of the Mono runtime respect this value,

and therefore, Mono actually requires pthread specific storage and TLS.

• --enable-small-config=yes

Optimise for small systems. For instace, no more than 4GB of memory can be used with this option.

Reduces runtime code size.

• --enable-minimal=aot,profiler,debug,large_code,com,portability,attach,full_messages,

soft_debug,shared_perfcounters,disable_remoting,shadowcopy

Disable many optional features to reduce runtime size and porting effort.

– aot: Disable ahead-of-time compilation. This feature creates native code in advance and

caches it on disk to reduce start-up time, because an assembly does not have to be just-in-time

compiled before execution. AOT requires a file system and disk space.

– profiler,debug,soft_debug,shared_perfcounters: Disable Mono code profiling and

debugging features. Both are not supported in the secure world.

– large_code: Limit assembly size to reduce the runtime library size.

– com,disable_remoting: Disable the Component Object Model (COM), a remote-procedure-

call mechanism.

– portability: Disable a source code module which tries to mimic Windows file system

behaviour on all supported platforms.

– attach: This feature allows a Mono process to attach to another for inter-process communica-

tion using UNIX sockets. Not supported on ANDIX OS.

– full_messages: Disable full error messages to reduce the runtime size.

– shadowcopy: Disable caching of assemblies on the disk.

• --with-ikvm-native=no: Disable a Java Virtual Machine (JVM) for Mono.

• --with-moonlight=no: Disable the moonlight browser plugin build. Moonlight is a Mono-based

replacement for the Microsoft Silverlight web browser plugin.

• --disable-shared-memory: ANDIX does not support shared memory.

• --disable-system-aot: Another switch to disable ahead-of-time compilation (see above).

• --disable-parallel-mark: Disable parallel garbage collection features, we only support single-

core systems at the moment.

• --with-sgen=yes --disable-boehm --with-gc=sgen

Mono contains two garbage collectors. The older “boehm”-type is an external project used by
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the Mono project before they implemented their own “sgen” garbage collector. The default build

contains both. We want to minimise the runtime size and the porting effort and therefore, we choose

“sgen” and disable “boehm”.

• --with-x=no

Disable support for graphics output using the X Window system. ANDIX OS has no graphical user

interface.

• --with-libgdiplus=no

Disable support for graphics output using libgdiplus. ANDIX OS has no graphical user interface.

• --with-sigaltstack=yes

Enable alternate signal handler stacks (see Section 6.2).

• --with-http=off --with-html=off --with-ftp=off

Disable networking features. ANDIX OS does not support networking at the moment.

• --host=arm-none-eabi --with-crosspkgdir=TOOLCHAINROOT/usr/share/pkgconfig

Specify the toolchain to use and enable cross compilation.

• --with-shared_mono=yes --with-static_mono=yes --disable-executables

Specify what to build. This combination produces a statically linked library, although the names of

the configuration flags do not make this completely clear.

The values listed above are passed to the main configuration script. This script also requires some

modifications to suit our build. Most notably, some compiler checks had to be disabled in case of cross-

compilation. GNU autoconf occasionally runs the compiler with some test program and then tries to

execute the result. However, our build produces ARM code, which can not be executed by the x86-based

build system. We give full list of patches in Appendix C.

8.2 Mono Runtime Patches

Our patches for the Mono runtime source code concentrate on disabling dependencies that ANDIX OS

can not fulfil. At the beginning of this project, our patches where applied on top of the mono-3.2.4

branch. Towards the end of the development, we rebased them to mono-3.2.8 without problems. Our

toolchain is configured to define the __andix__ macro, which is used throughout the Mono source to

enable ANDIX specific behaviour. For reference, our patches are included in Appendix C. These patches

can be summarised in the following three groups.

Process and File System Limitations Due to the limitations of the ANDIX file system (refer to

Section 2.7.6), all directory related functions have to be patched to return an appropriate error code or a

dummy result. Process hierarchy and inter-process communication are not supported on ANDIX.
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Signals The ANDIX implementation of POSIX signals (see Chapter 6) is not complete, but contains

all features that Mono requires. Thus, our signal-related patches just have to add ANDIX specific code for

processing the signal context. As described in Section 6.2.1, signal handler functions can receive a pointer

to a ucontext_t structure, which contains the thread’s context, when it was interrupted by the signal

delivery. When a signal was caused by a memory exception, Mono uses the information about the context

to investigate the reason for a signal, and generate an exception in the managed runtime. An example for

this scenario is a NULL-pointer, which causes the operating system to send a signal SIGSEGV. A signal

handler of Mono is invoked, checks the reason for the signal and generates a NullPointerException

in the managed runtime for the code that caused the error. The garbage collector also uses the thread

context to detect what a thread was doing when it was stopped by the garbage collection. Our patch

defines ANDIX-specific macros which Mono uses to extract information from the ucontext_t.

Malloc The Mono “sgen” garbage collector requires 16KB-aligned blocks of memory for its operation.

Typically, Mono uses mmap to request a chunk of memory at a specific address from the operating system.

However, ANDIX does not support mmap. Thus, we provide a heap-based implementation. The newlib

malloc implementation provides a function for allocating aligned memory blocks (memalign). Our patch

disables all mmap related functions and uses memalign to allocate the required blocks.

8.3 Class Library Patches

The Mono BCL only contains managed code which is executed by the runtime and is therefore virtually

platform independent. However, one patch to the system library was necessary.

Mono supports several types of text consoles for input and output in console-based applications.

Sophisticated terminal programs support many features apart from just printing output and reading input.

One example is setting the cursor to an arbitrary position. On our platform, the console is connected to

the emulated system via a simple serial connection, and can thus only send and receive characters. Mono

always assumes a Linux-like console, and therefore sends control characters to the ANDIX console which

are not supported, and disturb the output.

Nevertheless, after debugging this issue we found that Mono does support simple (“dumb”) terminals

as well, but this feature is never used. Thus, our patch simply activates the “dumb” terminal mode in the

System class library as a fallback, if no capabilities of the terminal could be detected. We believe that this

should be the default behaviour.

8.4 Running Mono Assemblies, Bundling, Loading

After applying the above described adaptions, we are able to build the Mono managed runtime for our

platform. The output of the build is a statically linked library.
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8.4.1 Loading Assemblies on ANDIX

To actually run managed code we have to embed the Mono runtime in an ANDIX process, and provide

the assembly to run in the CLR and its dependencies.

Typically, assemblies are stored in files on the disk. However, to avoid depending on the limited

ANDIX file system, we choose to embed all required assemblies in the binary image of our ANDIX

process. Recall from Section 2.7 that ELF images for ANDIX user space processes can be statically linked

into the ANDIX kernel binary image, and that the ANDIX file system emulation depends on the normal

world operating system to write encrypted data on the disk. Thus, when all assemblies are included in the

process image, they are loaded along with the kernel at boot time, and do not depend on any files or on

normal world services.

8.4.2 Bundling Assemblies into Executables

Mono features a tool called mkbundle, which is well suited to embed the required assemblies into our

process image. Originally, mkbundle was created to build independent ELF executables with the Mono

runtime and all required assemblies embedded. Such that this single file can be deployed and started on a

system which does not have the Mono runtime and the BCL installed.

The mkbundle tool takes one or more assemblies as an input. One of them must contain a Main

function which is the entry point for a CLR program. mkbundle then analyses the input assemblies to

resolve their dependencies and collects a list of required assemblies from the class library. For example,

all CLR programs depend on mscorlib.dll. All items on the requirements list are then written in binary

format into a byte array in an assembler source file. The assembler is then called to process the binary

arrays into an object file, which is then linked into an executable together with the Mono runtime library.

For our use-case, we configure mkbundle such that it does not create the complete executable, but

only the object file containing the binary assemblies and a C header file which declares the variables that

contain the binary data. We create a C main function, which is where the ANDIX process starts. The

main function calls some initialisation functions and defines the assembly to be executed. The Mono

runtime library supports bundled assemblies. At initialisation time the available bundles are registered to

the runtime. Then, whenever an assembly shall be loaded, the runtime first searches the registered bundles,

and then tries to find the assembly in the libraries on the file system. The C main function finally passes

control to the managed runtime which then executes the C# Main function. Listing 8.1 shows an example.

8.4.3 Hello World

Using the concept of embedding all components into an ANDIX process, we can demonstrate a Hello-

World program. Figure 8.1 shows the steps and tools involved to eventually create the process image

hello.bin. First, the Hello-World C# source file, as shown in Listing 8.2, is compiled into an assembly

with the Mono C# complier mcs. The assembly hello.exe is processed by mkbundle which resolves its

dependencies (in this case only mscorlib.dll) and creates an assembler source file with the assemblies

contained in byte arrays. In addition, mkbundle creates a C header file, hello.h, which contains the

declaration for the bundles. Our custom built GCC toolchain for ARM provides the other required tools,
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1 #include <mono/metadata/mono-config.h>
2 #include <mono/metadata/assembly.h>
3 #include <mono/jit/jit.h>
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <unistd.h>
7 #include <pthread.h>
8
9 #include "helloandix.h"

10
11 int main(void) {
12 mono_mkbundle_init();
13 MonoDomain *domain = mono_jit_init("hello_domain");
14 MonoAssembly *assembly = mono_domain_assembly_open(domain, image_name

);
15 char *argv[] = { "/monoman" };
16 int argc = 1;
17 int ret = mono_jit_exec(domain, assembly, argc, argv);
18 mono_jit_cleanup(domain);
19 return ret;
20 }

Listing 8.1: Example C main function to initialise the Mono runtime and bundled assemblies.
Error handling is deliberately ommited in this example.

1 using System;
2
3 class Program
4 {
5 static void Main()
6 {
7 Console.WriteLine("Hello, world! This is mono on Andix!

Everything is awesome!");
8 }

Listing 8.2: “Hello World” in C# for ANDIX.

such as gcc and as. The GNU C compiler gcc produces main.o. The GNU assembler for ARM produces

hello.o. Together with the Mono managed runtime library and the ANDIX C runtime library the object

files are linked into the final ELF executable image hello.bin. This file is then included in the ANDIX

kernel image and loaded at boot time. As soon as the process is started, the Mono runtime initialises and

runs our Hello-World.

8.5 Evaluation with the Mono Runtime Test Suite

The Mono sources contain a test suite for the runtime which consists of approximately 400 test cases to

evaluate the Mono managed runtime. Note that there exists a separate test suite for the Mono BCL. To

evaluate the quality of our Mono runtime on ANDIX, we run this test suite. We use the same concept of

bundling all components as described above in Section 8.4.2 and illustrated in Figure 8.1. Each test case
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Figure 8.1: Embedding the Mono runtime, a Main assembly and its dependencies into an ANDIX
process image for the example Hello-World program.

is compiled into a single assembly. The ANDIX tester (refer to Section 11.3) has a function to run Mono

tests which can either run single assemblies or execute all available tests in batch mode and record the

results.

We choose to run the default test set that is run with make check. This set consists of 422 tests. For

comparison, on our Linux ubuntu PC system, 7 tests fail.

On our Mono runtime port on ANDIX OS, 311 of the total 422 tests pass. For our ARM target

configuration, 17 tests are not built and are therefore not available. A total of 94 tests fail. We analysed

the failures to get an overview of the remaining issues of our port. From these 94 failing tests, 25 fail due

to the lack of a file system and 17 fail, because they must load an external library from the file system,

which is not possible either. Another 19 tests fail because no default security configuration, the default

Evidence, is available without a file system. Another 10 tests fail because they require a feature that is

not available on ANDIX OS. This affects thread pools and COM interaction.

We can summarise that 71 tests fail, because they require a feature that is not currently available on

ANDIX OS. The remaining 23 failures are due to memory access violations (Data Abort or Prefetch

Abort), or the test programs do not finish within a reasonable time (freeze, or cause a infinite loop). The

reasons for these failures are subject to ongoing and future work. All the detailed results are listed in

Appendix A. Figure 8.2 shows an overview.
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Figure 8.2: Summary of the Mono runtime test results.

8.6 Limitations

Compared to the Mono runtime on a Linux system, our ANDIX version of Mono has several limitations.

These are caused by the lack of features of the ANDIX system. While in this work, we added many

features, we also decided to disable several functions, to keep the effort in a reasonable range and reduce

the runtime code size and memory consumption.

File System

The limitations of the ANDIX file system influence the Mono runtime in several ways. First, Mono usually

loads config files, policies, and all BCL assemblies from the file system.

The ANDIX file system does not support directories at all. No features were added to it in this project.

In our ANDIX system, we do not store anything other than trusted application data in the emulated file

system. Thus, all these features are not available.

Second, the Mono runtime can cache pre-compiled (ahead-of-time, AOT) native code in the file

system, to improve the performance. This cache is also disabled, because emulated file system access is

relatively slow, and file system features are limited. Hence, caching is not effective. It follows that each

assembly has to be just-in-time compiled before execution in our system.

Finally, the file system functions that are exposed to the managed code through the runtime are limited

as well. Thus, when the managed application uses file system related functions which are not supported

correctly by our underlying operating system, errors and exceptions will occur that would not occur on

a commodity operating system like Linux. The features of the ANDIX file system are improved in an

ongoing project.

Communication

Communication functions on ANDIX are limited. No networking is available. Thus, managed code that

tries to use any of these will fail. Networking could be provided to ANDIX Trusted Applications via an

emulation layer similar to the file system. Encrypted network communication could be sent to the normal

world, where a service daemon would create the actual network connection based on the normal-world

operating system. The Global Platform TEE API [GlobalPlatform, 2011] does not specify networking

features. It is not decided whether networking support will be added to ANDIX.
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Mono features thread pools, a concept of spreading tasks among threads for improved performance. A

thread pool has a number of threads which are kept to execute incoming tasks. When a task is done, the

thread stays alive and waits for the next task. To manage the tasks in thread pools and communicate with

the threads, Mono requires support from the underlying operating system. At source code configuration

time, an available mechanism (epoll, poll, or sockets) is searched and configured. ANDIX supports none

of the possible mechanisms. Thus, thread pools do not work. However, thread pools are typically used in

networking applications, where the threads process incoming requests. We decided that the use cases of

our system will not require thread pools at the moment. However, the required features could be added to

the ANDIX kernel in a future project.

Default Configuration

Newly created AppDomains start with the so-called default Evidence, if the caller does not pass an

Evidence object to the AppDomain constructor. The Evidence object contains the security configuration

for an AppDomain. It is based on a configuration file that is not available in our setup due to the lack of a

file system. This problem can be avoided by passing an Evidence object to the AppDomain constructor,

and thus not rely on the default Evidence. We use this approach in our managed Trusted Applications.

Furthermore, in future extensions, we consider a mechanism for providing a default Evidence on ANDIX

OS.
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Chapter 9

Managed Trusted applications

This chapter describes how we expose the C-based Trusted Application interface of ANDIX to Common

Language Runtime (CLR) programs. This is a prerequisite for managed Trusted Applications, which have

to be accessible through the existing Trusted Execution Environment (TEE)-compatible interface.

9.1 A Trusted Application Interface for the CLR

On the original ANDIX system, Trusted Applications are written in C. They can use the newlib C

runtime library and the TEE Internal Application Programming Interface (API) [GlobalPlatform, 2011].

ANDIX Trusted Applications are introduced in Section 2.7.5. Unlike a normal C program, TEE Trusted

Applications do not have a single entry point, but implement several functions which are called by the

ANDIX TEE implementation, whenever the corresponding event occurs (see Section 2.7.5).

To realise this behaviour, each Trusted Application is linked with a small “trusted application main

function” which calls the Trusted Application initialisation function TA_CreateEntryPoint and then

waits to retrieve a Remote Procedure Call (RPC) request from the operating system with a system call via

the __ta_get_secure_request function. The operating system then suspends the process, until a request

arrives through the TEE RPC mechanism.

9.1.1 Interfacing with a C library

We provide similar semantics to managed Trusted Applications. For managed Trusted Applications we

implement a TAInterface class. Each managed Trusted Application has to create a TAInterface object

and specify the methods that shall be called when a request arrives to

• open a session,

• invoke a command, or

• close a session.

The TAInterface tries to cover as much functionality as possible in the managed runtime. It is written

completely in C#, however it has to call the external C function __ta_get_secure_request. The CLR
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1 typedef union { // Overlayed type for ..
2 struct {
3 void* buffer; // .. shared memory ..
4 size_t size;
5 } memref;
6 struct {
7 uint32_t a; // .. and two integer parameters.
8 uint32_t b;
9 } value;

10 } TEE_Param;
11
12 typedef __uint32_t_ ta_rpc_command;
13
14 typedef struct {
15 ta_rpc_command operation; // Operation (open, close, invoke,..)
16 __uint32_t_ commandID; // Command in case of invoke.
17 __uint32_t_ paramTypes; // Defines the meaning of tee_param.
18 void* sessionContext; // Context identifier.
19 TEE_Param tee_param[4]; // The actual parameters.
20 __uint32_t_ result; // Return value
21 } TA_RPC;

Listing 9.1: The C TA_RPC object contains all request data and has to be processed by the managed
runtime.

provides powerful interoperability features to access external functions [Gunnerson and Wienholt, 2012].

Access to external functions is not allowed for managed Trusted Applications, but it is required for the

TAInterface library class.

The translation of managed data into data for external functions and vice-versa is called marshalling.

Accessing an external function is simple, it is only requires to declare it with a DllImport attribute.

This attribute instructs the managed runtime to search for a symbol with the given name and bind it to a

managed method reference. Typically, this is used to call functions from dynamically loaded libraries.

However, on ANDIX we only have one statically linked Executable and Linkable Format (ELF) image,

which does not provide symbol lookup facilities like a shared object. Thus, the function has to be explicitly

registered to the managed runtime as a statically linked symbol at initialisation time, such that it can be

looked up later.

The adaptation of C structures is more sophisticated. The __ta_get_secure_request function takes

a pointer to a TA_RPC structure as an argument, which is then filled with the request data. For the C

structure to be compatible with the C# structure, we must ensure that the layout in memory is equal.

Then the CLR automatic marshalling can pass a compatible pointer to the C function. Listing 9.1 and

Listing 9.2 show the structures in both languages for comparison.

As RPC parameters, the TEE allows simple integer values and shared memory (see Section 2.7.5).

The paramTypes member in the TA_RPC structure defines what the values of the following four integer

tuples actually mean. In case of integer input/output, the values are directly contained in the integer tuple

and can immediately be used by the managed Trusted Application.
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1 private struct TA_RPC
2 {
3 public uint operation; // Operation (open, close, invoke,..)
4 public uint commandID; // Command in case of invoke.
5 public uint paramTypes; // Defines the meaning of tee_param.
6 public uint sessionContext; // Context identifier.
7 // arrays are harder to marshal,
8 // thus the parameters are represented as a set of integers.
9 public uint a0, b0, a1, b1, a2, b2, a3, b3;

10 public int result; // Return value
11 }

Listing 9.2: The C# TA_RPC must have the same memory layout as in C. It does not use arrays,
because C# arrays a more sophisticated, and can not be translated into a sequence of
values directly.

In case of shared memory, each tuple represents a pointer to a memory block and its length. In

order to allow managed code to use this memory block safely, we have to convert it to a managed byte

array (byte []). The CLR’s marshalling functions, available in System.Runtime.InteropServices,

allow an array to be initialised from an arbitrary memory block, as well as to copy an array’s data to any

memory. However, this involves copying the data from the shared memory block to the managed heap,

and eventually, after processing, back from the managed heap to the shared memory block.

We found no way that would allow us to present the shared memory in a managed array to the

managed Trusted Application without these two memory copy operations. Nevertheless, it is important

to encapsulate the data in a managed object, and thus not to allow managed Trusted Applications to use

plain memory pointers, because allowing unsafe memory access would circumvent our security goals of

enforcing type-safety in Trusted Applications. Consequently, these additional memory copy operations

are required to provide type-safety.

9.1.2 Managed RPC

Depending on the paramTypes member, the TAInterface translates the raw input into an array of

TARPCValue or TARPCMem objects. Both types derive from TARPCParam. A high-level TARPCRequest

object, shown in Listing 9.3, is then passed to the managed Trusted Application, which processes it. The

managed Trusted Application can not misinterpret the parameters. Finally, the TAInterface translates

the parameters back to the C structure, and the ANDIX TEE implementation returns the finished request

to the normal world caller. For reference, refer to Listing B.1.
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1 public struct TARPCRequest {
2 public uint operation; // Operation (open, close, invoke,..)
3 public uint commandID; // Command in case of invoke.
4 public uint sessionContext; // Context identifier.
5 public TARPCParam[] param; // Marshalled parameters safe types
6 }

Listing 9.3: RPC request as presented to the managed trusted application by the TAInterface.
The TARPCParam array can contain zero or more TARPCValue and TARPCMem objects.



Chapter 10

Use Case: RSA Managed Trusted Ap-
plication

Using the TAInterface we can now implement a managed Trusted Application that provides RSA

cryptography via a TEE-compatible interface.

10.1 Use Case

The RSA asymmetric cryptosystem [Rivest, Shamir and Adleman, 1978] can be used for encryption and

signing. An RSA key consists of public key parameters and private key parameters. For the security

of RSA, it is crucial, that the private key is kept secret. For example, a typical signature application of

RSA is the authentication of a web server using the Secure Socket Layer (SSL) protocol. The server uses

its private key to create a signature which proves the servers identity, and thus authenticates the server

to the client. When the private key of a server is compromised, any entity that has the private key can

impersonate the server.

A recent security incident, called the Heartbleed bug (CVE-2014-0160), demonstrated that the

disclosure of secret key material can be caused by small, unnoticed bugs. In this case, a bug in the widely

used OpenSSL cryptographic library allowed the attacker to read random memory regions of the attacked

process. A typical Linux-based SSL web server uses the OpenSSL library together with the apache2 web

server software. During SSL authentication, the web server has to create a signature. Thus, the OpenSSL

library has to load the RSA private key into memory, where it can potentially be disclosed through the

Heartbleed vulnerability.

Here, we present an SSL web server concept using our managed Trusted Application, which is not

vulnerable to potential private key disclosure based on the Heartbleed bug. We create a Trusted Application

which provides RSA via the TEE interface. All Trusted Application data is hardware-protected by ARM

TrustZone. RSA key pairs are created by the Trusted Application. The public key parameters can be

retrieved by normal world applications, but the private key never leaves the secure world. Our concept

provides integrity and confidentiality, even if an adversary has full control over the normal world. However,

it can not provide availability, because the secure world requires normal world services. Furthermore, it
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does not provide authenticity, because the normal world can sign any data with the secure-world RSA

service.

OpenSSL Engine

We write a so-called dynamic engine for OpenSSL1 to make the RSA Trusted Application’s functions

available to normal world clients. OpenSSL provides an interface for external engines, which is designed

to support the use of external cryptographic devices, such as smartcards. A dynamic engine is a shared

library which is loaded at runtime by OpenSSL. It can provide implementations of cryptographic functions,

which are then used instead of their default implementations. Our TZ RSA dynamic engine provides RSA

private key operations to OpenSSL. Furthermore, it can create and load keys, and retrieve public key

parameters. It allows all applications that use OpenSSL, such as the apache2 web server or the OpenVPN

virtual private network server, to use our TrustZone-secured RSA services .

Web Server Integration

Using our OpenSSL engine, the apache2 web server only requires small modifications to use our RSA

Trusted Application for its SSL authentication. We develop a small patch for apache2, which adds an

option to choose an OpenSSL engine to the web server configuration files. With OpenSSL’s tools, we can

create a X.509 server certificate using a RSA key pair of our Trusted Application.

RSA Trusted Application

We wrote the OpenSSL engine and the apache2 integration, as well as a RSA Trusted Application for

the original ANDIX OS in the C programming language during an earlier project. This RSA Trusted

Application uses the cryptographic functions of the TropicSSL library to provide RSA. It serves as a

comparison.

10.2 RSA Managed Trusted Application

Here, we present an RSA managed Trusted Application, which runs in the Mono managed runtime, and

provides an interface compatible with the earlier RSA Trusted Application. Our OpenSSL engine can

therefore use it in the same way.

Our RSA managed Trusted Application uses the RSA implementation of the Mono Base Class

Library (BCL) (in System.Security.Cryptography). It can create a key pair, store and load it, encrypt

and decrypt, and deliver the public key parameters to the normal world. For key storage the RSA

Trusted Application creates a XML string from the key parameters and writes it to a file. All required

features are already implemented in the BCL. The implementation uses only 137 lines of C# code2. Our

implementation of the same functionality in C on the original ANDIX system with TropicSSL used 347

1http://www.openssl.org/
2Examined with the cloc tool. http://cloc.sourceforge.net/

http://www.openssl.org/
http://cloc.sourceforge.net/
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lines of C code2. These figures reflect the goal of this project. Writing Trusted Application becomes easier

and safer. For reference, both implementations are shown in Listing B.2 and Listing B.3.

The RSA Trusted Application provides five commands which can be invoked by a normal world

client:

1. Create and store a new RSA key pair,

2. Load an existing RSA key by name,

3. Retrieve the public key parameters,

4. Encrypt or verify a signature with the public key, and

5. Decrypt or create a signature with the private key.

To access the RSA Trusted Application we use a Linux client application which we have developed in

an earlier project. It provides a command line interface to all commands and can encrypt and decrypt

on standard IO streams. However, the in our demonstration use case, the functions of the RSA managed

Trusted Application are called by our OpenSSL engine. Figure 10.1 gives an overview of the system.

OpenSSL

TZ RSA engine

LinuxANDIX

Mono Runtime

RSA
managed
Trusted

Application

Key

Normal WorldSecure World

apache2
web server

Figure 10.1: Illustration of our TrustZone-secured web server. All RSA private key operations are
done by RSA managed Trusted Applications. The private keys never leave the secure
world.
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Chapter 11

Development Tools

This chapter describes the tools we used and created during the development of this project. The

description servers as a documentation to reproduce our software.

11.1 GCC Toolchain

For building all secure world programs, including the kernel, user space programs, and the Mono runtime,

we use the GNU Compiler Collection (GCC) in version 4.8.2. We build it from source with a custom

configuration, which optimises the build for using newlib as a C runtime library. We build a so-called bare-

metal cross-compiler toolchain for the arm-none-eabi target. It is important to configure the toolchain

such that it generates code for our Thread Local Storage (TLS) access model, the Local Exec TLS Model

(see Section 2.6.4 and Section 5.2). All GCC programs are configured with GNU autotools [Calcote,

2010]. Their configuration flags are passed to the configure script. All builds require that the host system

has the necessary build programs installed. The source can be retrieved from http://gcc.gnu.org/.

Binutils

First, we have to build the binutils package. It contains the ARM assembler, linker, and several ELF file

tools, for instance objdump. The Binutils build is configured and built as follows:

1 ./configure --target=arm-none-eabi --prefix=$ROOT/toolchain

2 make

3 make install

C Compiler

The GNU C compiler is configured and built as follows:

1 ./configure --target=arm-none-eabi --enable-interwork --prefix=$ROOT/

toolchain --with-newlib --with-headers=$ROOT/extern/newlib-2.1.0/

newlib/libc/include --enable-languages=c,c++
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2 make all-gcc all-target

3 make install-gcc install-target

Debugger

The GNU debugger (GDB) is not required to build the software. However, it is useful to debug operating

system and user space by attaching it to QEMU. The QEMU GDB stub gives the debugger full control

over the emulated machine The GNU debugger is configured and built as follows.

1 ./configure --target=arm-none-eabi --enable-interwork --prefix=$ROOT/

toolchain

2 make

3 make install

11.2 Emulator

Our software was developed and tested on the ARM QEMU emulator1, with TrustZone support patches

by Winter et al. [2011], as described in Section 3.2. The sources are available at https://github.com/

jowinter/qemu-trustzone.git. QEMU is configured with ARM support only.

1 ./configure --target-list=arm-softmmu --prefix=$ROOT/qemu

2 make

3 make install

Several options are passed to the emulator at start-up. In our setup, we provide a root file system to

the normal world Linux kernel via the Network File System (NFS). The emulator is launched with the

following command.

1 $ANDIX_ROOT/qemu/bin/qemu-system-arm -M vexpress-a9 -kernel $ANDIX_DEPLOY

/tz/kernel/andix_qemu.bin -nographic -m 1024 -append "console=ttyAMA0

root=/dev/nfs rootwait nfsrootdebug ip

=172.20.0.2::172.20.0.1:255.255.0.0:qemu nfsroot=172.20.0.1:$ROOTFS,

tcp,v3 mem=768M verbose andix:bootmode= andix:passphrase=x andix:

loglevel=4,mon=2" -net bridge,br=br0 -s

• -M vexpress-a9 -kernel $ANDIX_DEPLOY/tz/kernel/andix_qemu.bin -nographic

-m 1024

Configure the emulated board, the kernel image to load, disable graphic output (console only), and

set RAM size to 1024MB.

• -append "console=ttyAMA0 root=/dev/nfs rootwait nfsrootdebug ip=172.20.0.2::172.20.0.1:255.255.0.0:qemu

nfsroot=172.20.0.1:$ROOTFS,tcp,v3 mem=768M verbose andix:bootmode=

1see http://www.qemu.org

https://github.com/jowinter/qemu-trustzone.git
https://github.com/jowinter/qemu-trustzone.git
http://www.qemu.org
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andix:passphrase=x andix:loglevel=4,mon=2"

Command line to pass to the ANDIX kernel. The ANDIX kernel forwards all parameters except

those starting with andix: to the Linux kernel. The Linux command line sets up the serial console

and the NFS root file system. The ANDIX parameters are for convenience, they save some typing

at boot time.

• -net bridge,br=br0 -net nic

Optionally configure QEMU to provide a bridged network interface in the emulated system. This

requires the bridge device br0 to exist on the host system.

• -s [-S]

Activate the GDB stub for debugging. GDB can connect at localhost:1234 via TCP. Optionally, halt

the emulation until a debugger connects.

11.3 ANDIX Tester

In parallel with the development of new features for ANDIX , we developed a test program which tests

each new feature by using it in a secure world user space program. The ANDIX tester is started as secure

world user space process. It operates without a normal world system. The test program features a simple

command shell to launch one of the 40 individual tests. The “mono” command initialises a Mono runtime

with another simple command interpreter written in C#, which can launch one of the tests that come with

the Mono runtime. Approximately 400 tests for the Mono runtime are available, which can also be run in

a batch mode. Mono runtime test results are described in Section 8.5 and listed in Appendix A.

11.4 libdummyTA

The libdummyTA is a small Linux shared library, which we used to develop the TAInterface class

and the RSA managed Trusted Application. It simulates a Trusted Application interface by passing

pre-programmed RPC requests to the caller. The managed code for Trusted Application can thus be tested

on the host platform without requiring to boot the ANDIX system. The library can be injected into the

Mono runtime by the Linux dynamic loader.

1 % LD_PRELOAD=./libdummyta.so mono bin/Debug/monoman.exe
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Chapter 12

Concluding Remarks

In this thesis, we added a managed runtime to the secure-world user space of a TrustZone operating system.

We port the Mono Common Language Runtime (CLR) implementation to ANDIX. The Mono CLR

enables managed Trusted Applications on the ANDIX operating system. It can be used on all hardware

platforms supported by ANDIX. We provide the advantages of a managed runtime environment (garbage

collection, safe memory, type-safety, extensive Base Class Library (BCL), high-level programming

language support) to Trusted Applications, to reduce the likelihood of programming errors and exploitable

bugs. Furthermore, the managed runtime eases the development of Trusted Applications. Developers can

use high-level languages such as C#, rely on the safety features of the runtime environment, and have a

feature-rich BCL available.

However, adding this functionality to the secure world significantly increases the size of the Trusted

Computing Base (TCB). The operating system and the C runtime library grow in size and features,

and the Mono runtime and some parts of the BCL become part of the TCB as well. Although it is

generally desirable to keep the TCB as small as possible, we accept this caveat, because this part of the

TCB is developed once by the system developers, and then provides safety and simplicity to all Trusted

Applications ever to be developed for this system. Furthermore, we try to keep the Mono runtime as small

as possible by disabling many features in the build configuration. Although the overall TCB size increases,

the Trusted Applications, which are also part of the TCB, significantly reduce in size and complexity, as

shown by our sample application.

We evaluated our version of the Mono runtime on ANDIX using the test suite that is part of the Mono

source code. Compared to a fully POSIX-compatible platform, our Mono runtime on ANDIX has several

limitations, due to the limited features of the underlying operating system. Most limitations trace back to

the lack of a file system.

We created a TAInterface wrapper class for managed Trusted Applications that maps the C-based

Trusted Application API of GlobalPlatform [2011] to a transparent, object-oriented, type-safe interface

for CLR programs. Normal-world clients can access managed Trusted Applications using the same client

C-API of GlobalPlatform [2010a] that is available to access conventional Trusted Applications written in

C. To simplify access to Trusted Application services for managed normal-world clients, we consider a

managed Remote Procedure Call (RPC) interface for a future project. Such a managed RPC mechanism

would transparently pass method calls of a normal-world proxy object to the actual secure-world object,
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provided by a managed Trusted Applications, and thus simplify the split of a managed application into a

secure and a normal part. A similar concept was already presented by Santos et al. [2014] (see Related

Work, Section 3.2.2).

In Chapter 10 we presented an example managed Trusted Application, which is implemented in C#

and provides RSA cryptographic functions through the TEE Trusted Application interface of ANDIX.

The Trusted Application uses the RSA implementation of the Mono BCL. It demonstrates the main

goal of this project by showing a compact and simple trusted application using 137 lines of C# code

which are executed in a managed, type-safe runtime environment. Providing the same functionality

with a C implementation on the original ANDIX system took 347 lines of C code in a more error-prone

programming environment.

In an example use case, we employed our RSA managed Trusted Application to secure the private

keys of an SSL web server. We used a dynamic engine for the OpenSSL crypto library to make the

Trusted Application’s RSA services available to an apache2 web server. In this setup, the RSA private

key that the web server uses to authenticate to its clients, is always secured inside the TrustZone secure

world. Therefore, it is safe against key disclosure through vulnerabilities like the recent Heartbleed bug

(CVE-2014-0160) of the OpenSSL library.
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BIOS Basic Input Output System
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Appendix A

Mono Runtime Test Results

The following Table A.1 shows the names of 422 Mono runtime test cases and their result. The set of tests

is equal to the set of tests that is executed by default on our x86-64 PC system, when we run make check.

As a comparison, on this Linux ubuntu PC system, 7 tests fail. Those are listed in Table A.2

Table A.1: Mono runtime test results on ANDIX.

Test Result Comment
ackermann Pass.

allow-synchronous-major Pass.

anonarray.2 Pass.

appdomain1 Fail. No default Evidence available.1

appdomain2 Fail. No default Evidence available.1

appdomain-async-invoke Fail. No default Evidence available.1

appdomain-client Pass.

appdomain Fail. No default Evidence available.1

appdomain-exit Fail. No default Evidence available.1

appdomain-thread-abort Fail. No default Evidence available.1

appdomain-unload-callback Fail. No default Evidence available.1

appdomain-unload-doesnot-raise-pending-events Fail. No default Evidence available.1

appdomain-unload Fail. No default Evidence available.1

array3 Pass.

array-cast Pass.

array-enumerator-ifaces.2 Pass.

array Pass.

array-init Pass.

array-invoke Pass.

arraylist-clone Pass.

Continued on next page
1Failing AppDomain tests expect a default Evidence (a security configuration object). This is not available on our system,

because we have no config files.
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Table A.1 – continued from previous page
Test Result Comment

arraylist Pass.

array_load_exception Pass.

array-subtype-attr Pass.

array-vt Pass.

assembly_append_ordering Pass.

assemblyresolve_event2.2 Pass.

assemblyresolve_event3 Pass.

assemblyresolve_event Pass.

assignable-tests Pass.

async-exc-compilation Pass.

async_read Not available.

async-with-cb-throws Fail. Freezes.

base-definition Pass.

bitconverter Pass.

block_guard_restore_aligment_on_exit Fail.

bound Pass.

box Pass.

bug-10127 Fail.

bug-1147 Pass.

bug-27420 Pass.

bug-2907 Pass.

bug-29859 Pass.

bug-318677 Pass.

bug-322722_dyn_method_throw.2 Pass.

bug-322722_patch_bx.2 Pass.

bug-323114 Pass. Freezes while unloading AppDomain.

bug-324535 Pass.

bug-325283.2 Pass.

bug-327438.2 Pass.

bug-333798.2 Pass.

bug-333798-tb.2 Pass.

bug-335131.2 Fail. Requires a file system.

bug-340662_bug Pass.

bug-349190.2 Fail. Requires a file system.

bug-382986 Pass.

bug-387274.2 Pass.

bug-389886-2 Pass.

bug-389886-3 Pass.

bug-389886-sre-generic-interface-instances Pass.

Continued on next page
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Table A.1 – continued from previous page
Test Result Comment

bug-3903 Pass.

bug-400716 Pass.

bug-415577 Fail. No default Evidence available.

bug-42136 Pass.

bug-426309.2 Pass.

bug-431413.2 Pass.

bug445361 Pass.

bug457574 Pass.

bug-459285.2 Pass.

bug-461198.2 Pass.

bug-461261 Pass.

bug-461867 Pass.

bug-461941 Pass.

bug-462592 Fail. Requires a file system.

bug-463303 Not available.

bug-467456 Pass.

bug-46781 Pass.

bug469742.2 Pass.

bug-472600.2 Pass.

bug-472692.2 Pass.

bug-47295 Pass.

bug-473482.2 Pass.

bug-473999.2 Pass.

bug-479763.2 Pass.

bug-48015 Pass.

bug-481403 Pass.

bug-508538 Pass.

bug-515884 Fail. Requires a file system.

bug-528055 Pass.

bug-544446 Pass.

bug-561239 Pass.

bug-562150 Pass.

bug-575941 Pass.

bug-59286 Pass.

bug-599469 Pass.

bug-6148 Pass.

bug-616463 Pass.

bug-633291 Pass.

bug-666008 Pass.

Continued on next page
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Table A.1 – continued from previous page
Test Result Comment

bug-685908 Pass.

bug-696593 Pass.

bug-705140 Pass.

bug-70561 Pass.

bug-77127 Pass.

bug-78311 Pass.

bug-78431.2 Pass.

bug-78549 Fail. Requires a file system.

bug-78653 Pass.

bug-78656 Pass.

bug-79215.2 Fail. Requires a file system.

bug-79684.2 Pass.

bug-79956.2 Fail. Requires a file system.

bug-80307 Fail. Requires a file system.

bug-80392.2 Fail. Freezes.

bug-81466 Pass.

bug-81673 Pass.

bug-81691 Fail. Requires a file system.

bug-82022 Fail. Requires a file system.

bug-82194.2 Pass.

bug-bxc-795 Pass.

bug-Xamarin-5278 Fail. Requires external library.

calliTest Pass.

call_missing_class Pass.

call_missing_method Pass.

catch-generics.2 Pass.

cattr-compile Pass.

cattr-field Pass.

cattr-object Pass.

char-isnumber Pass.

checked Pass.

ckfiniteTest Fail. Requires a file system.

classinit2 Pass.

classinit Pass.

cominterop Fail. Requires a disabled feature.

console Pass.

constraints-load Pass.

context-static Pass.

cpblkTest Pass.

Continued on next page



103

Table A.1 – continued from previous page
Test Result Comment

create-instance Pass.

cross-domain Fail. No default Evidence available.

custom-attr Pass.

custom-modifiers.2 Pass.

dbnull-missing Pass.

decimal-array Pass.

decimal Pass.

delegate1 Fail. Freezes.

delegate2 Fail. Freezes.

delegate3 Fail. Freezes.

delegate5 Fail. Freezes.

delegate6 Pass.

delegate7 Pass.

delegate8 Fail. Freezes.

delegate9 Fail. No default Evidence available.

delegate-async-exit Fail. Freeze

delegate-delegate-exit Fail. Infinite loop.

delegate Pass.

delegate-exit Fail. Freeze.

delegate-with-null-target Pass.

desweak Pass.

double-cast Pass.

dynamic-method-access.2 Fail. JIT compiler assertion.

dynamic-method-finalize.2 Fail. JIT compiler assertion.

dynamic-method-resurrection Fail. JIT compiler assertion.

enum2 Pass.

enumcast Pass.

enum Pass.

enum_types Pass.

even-odd Pass.

event-get.2 Fail. Requires a file system.

exception10 Pass.

exception11 Pass.

exception12 Pass.

exception13 Pass.

exception14 Pass.

exception15 Pass.

exception16 Pass.

exception17 Pass.

Continued on next page
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Table A.1 – continued from previous page
Test Result Comment

exception2 Pass.

exception3 Pass.

exception4 Pass.

exception5 Pass.

exception6 Pass.

exception7 Pass.

exception8 Pass.

exception Fail. Data Abortin JIT compiled code.

exists Pass.

fault-handler Fail. Requires a file system.

fib Pass.

field-access Pass.

field-layout Pass.

filter-bug Fail. Requires a file system.

filter-stack Pass.

finalize-parent Pass.

finalizer-abort Fail. Data Abort.

finalizer-exception Fail. Data Abort.

finalizer-exit Fail. Data Abort.

finalizer-thread Fail. Data Abort.

finally_block_ending_in_dead_bb Pass. Unsure what result is correct here.

find-method.2 Pass.

float-pop Pass.

gc-altstack Fail. Data Abort.

gchandles Pass.

generic-array-exc.2 Pass.

generic-array-iface-set.2 Pass.

generic-array-type.2 Pass.

generic-constrained.2 Pass.

generic-delegate.2 Pass.

generic-delegate-ctor.2 Pass.

generic-exceptions.2 Pass.

generic-getgenericarguments.2 Pass.

generic-initobj.2 Pass.

generic-inlining.2 Pass.

generic-interface-methods.2 Pass.

generic-ldobj.2 Pass.

generic-ldtoken.2 Pass.

generic-ldtoken-field.2 Not available.

Continued on next page
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Table A.1 – continued from previous page
Test Result Comment

generic-ldtoken-method.2 Not available.

generic-marshalbyref.2 Not available.

generic-method-patching.2 Pass.

generic-mkrefany.2 Not available.

generic-null-call.2 Fail. Data Abort.

generic-refanyval.2 Not available.

generic-sealed-virtual.2 Pass.

generic-signature-compare.2 Pass.

generics-invoke-byref.2 Pass.

generic-sizeof.2 Pass.

generic-special.2 Pass.

generics-sharing.2 Fail. Data Abort

generics-sharing-other-exc.2 Pass.

generic-stack-traces2.2 Pass.

generic-stack-traces.2 Fail. Data Abort

generic-static-methods.2 Pass.

generic-synchronized.2 Pass.

generic-system-arrays.2 Pass.

generic-tailcall2.2 Pass.

generic-tailcall.2 Pass.

generic-type-builder.2 Pass.

generic-typedef.2 Pass.

generic_type_definition.2 Pass.

generic_type_definition_encoding.2 Pass.

generic-type-load-exception.2 Pass.

generic-unloading.2 Fail. No default Evidence available.

generic-unloading-sub.2 Pass.

generic-valuetype-interface.2 Pass.

generic-valuetype-newobj2.2 Pass.

generic-valuetype-newobj.2 Pass.

generic-virtual2.2 Pass.

generic-virtual.2 Pass.

generic-virtual-invoke.2 Pass.

generic-xdomain.2 Fail. No default Evidence available.

gsharing-valuetype-layout Pass.

handleref Fail. Requires external library.

hashcode Pass.

hash-table Pass.

ienumerator-interfaces.2 Pass.

Continued on next page
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Table A.1 – continued from previous page
Test Result Comment

iface2 Pass.

iface3 Pass.

iface4 Pass.

iface6 Pass.

iface7 Pass.

iface Pass.

iface-large Pass.

imt_big_iface_test Fail. Data Abort

inctest Pass.

indexer Pass.

initblkTest Fail. Requires a file system.

interface1 Pass.

interfacecast Pass.

interface Pass.

interface-with-static-method Fail. Requires a file system.

interlocked-2.2 Pass.

interlocked-3 Pass.

interlocked-4.2 Pass.

interlocked Pass.

intptrcast Pass.

invalid_generic_instantiation Fail. Requires a file system.

invalid-token Fail. Requires a file system.

invoke2 Pass.

invoke Pass.

invoke-string-ctors Pass.

ipaddress Pass.

isvaluetype Pass.

jit-float Pass.

jit-int Pass.

jit-long Pass.

jit-uint Pass.

jit-ulong Pass.

largeexp2 Pass.

largeexp Pass.

large-gc-bitmap Pass.

ldfld_missing_class Pass.

ldfld_missing_field Pass.

ldftn-access Pass.

ldtoken_with_byref_typespec.2 Pass.

Continued on next page
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Table A.1 – continued from previous page
Test Result Comment

loader Fail. 1 of 3 tests in this program failed.

locallocTest Fail. Requires a file system.

long Pass.

main-exit Fail. Exiting processes not supported.

main-returns-abort-resetabort Pass.

main-returns-background-abort-resetabort Pass.

main-returns-background-change Pass.

main-returns-background Pass.

main-returns-background-resetabort Pass.

main-returns Pass.

many-locals Pass.

marshal1 Pass.

marshal2 Pass.

marshal3 Pass.

marshal5 Fail. Requires external library.

marshal6 Pass.

marshal7 Pass.

marshal8 Pass.

marshal9 Fail. Requires external library.

marshalbool Pass.

marshalbyref1 Pass.

marshal Fail. Requires external library.

marshal-valuetypes Fail. Requires external library.

method-access Pass.

module-cctor-loader.2 Not available. Requires a file system.

modules Fail.

monitor Fail. No default Evidence available.

mono-path Fail. Requires a file system.

nested-loops Pass.

newobj-valuetype Pass.

nullable_boxing.2 Pass.

obj Pass.

outparm Pass.

pack-bug Pass.

pack-layout Pass.

params Pass.

pinvoke11 Fail. Requires loading a dynamic library.

pinvoke13 Fail. Requires loading a dynamic library.

pinvoke17 Fail. Requires loading a dynamic library.

Continued on next page
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Table A.1 – continued from previous page
Test Result Comment

pinvoke-2.2 Fail. Requires loading a dynamic library.

pinvoke2 Fail. Requires loading a dynamic library.

pinvoke3 Fail. Requires loading a dynamic library.

pinvoke Fail. Requires loading a dynamic library.

pointer Pass. Requires loading a dynamic library.

pop Pass.

property Pass.

qt-instance Pass.

random Pass.

recursive-generics.2 Pass.

reflection4 Pass.

reflection5 Pass.

reflection-const-field Pass.

reflection-enum Pass.

reflection Pass.

reflection-prop Pass.

reinit Pass.

reload-at-bb-end Fail. Requires a file system.

remoting1 Pass.

remoting2 Pass.

remoting3 Pass.

remoting4 Fail. No default Evidence available.

remoting5 Pass.

resolve_field_bug.2 Fail. Requires a file system.

resolve_method_bug.2 Fail. Requires a file system.

resolve_type_bug.2 Fail. Requires a file system.

runtime-invoke Pass.

runtime-invoke.gen Pass.

safehandle.2 Fail. Requires loading a library.

setenv Pass.

sgen-long-vtype Pass.

shared-generic-methods.2 Pass.

shared-generic-synchronized.2 Pass.

shift Pass.

sieve Pass.

soft-float-tests Pass.

stackframes-async.2 Fail. Freezes.

static-constructor Pass.

static-ctor Pass.

Continued on next page
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Table A.1 – continued from previous page
Test Result Comment

static-fields-nonconst Fail. Requires a file system.

stream Fail. Requires a file system.

stringbuilder Pass.

string-compare Pass.

string Pass.

struct Pass.

subthread-exit Fail. Prefetch Abort

switch Pass.

synchronized Pass.

test-arr Pass.

test-byval-in-struct Pass.

test-dup-mp Pass.

test-enum-indstoreil Pass.

test-inline-call-stack Pass.

test-ops Pass.

test-prime Pass.

test-type-ctor Pass.

thread5 Pass.

thread6 Fail. Terminates before finishing.

thread Pass.

thread-exit Fail. Prefetch Abortduring cancel.

threadpool1 Fail. Not supported on ANDIX.

threadpool-exceptions1 Fail. Not supported on ANDIX.

threadpool-exceptions2 Fail. Not supported on ANDIX.

threadpool-exceptions3 Fail. Not supported on ANDIX.

threadpool-exceptions4 Fail. Not supported on ANDIX.

threadpool-exceptions5 Fail. Not supported on ANDIX.

threadpool-exceptions6 Fail. Not supported on ANDIX.

threadpool-exceptions7 Fail. Not supported on ANDIX.

threadpool Fail. Not supported on ANDIX.

thread-static Pass.

thread_static_gc_layout Pass.

thread-static-init Pass.

thunks Fail. Requires external library.

tight-loop Pass.

time Pass.

transparentproxy Fail. Data Abort

typeload-unaligned Pass.

typeof-ptr Pass.

Continued on next page
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Table A.1 – continued from previous page
Test Result Comment

unload-appdomain-on-shutdown Fail. No default Evidence available.

valuetype-equals Pass.

valuetype-gettype Pass.

vararg2 Pass.

vararg Pass.

vbinterface Pass.

virtual-method Pass.

vt-sync-method Pass.

vtype Pass.

w32message Pass.

winx64structs Fail. Requires external library.

xdomain-threads Fail. No default Evidence available.

Table A.2: Failing 7 of 422 Mono runtime tests on our Linux PC system.
Test Result

appdomain-unload-doesnot-raise-pending-events Fail.
bug-80307 Fail.
bug-Xamarin-5278 Fail.
cominterop Fail.
event-get.2 Fail.
imt_big_iface_test Fail.
stackframes-async.2 Fail.



Appendix B

Managed Trusted Application Sources

This part shows source code listings for reference.

B.1 Managed Trusted Applications Interface

This class provides a binding to the C Trusted Application interface for managed Trusted Application

running in the CLR.

Listing B.1: TAInterface.cs
0 using System;

using System.Runtime.InteropServices;

2
namespace monoman

4 {

public class TAInterface

6 {

public delegate int TAOpenD (out uint sessionID, TARPCParam[] param);

8 public delegate int TACloseD (uint sessionID);

10 public delegate int TAInvokeD (uint sessionID, uint cmd, TARPCParam[] param);

12 TAOpenD TAOpen;

TACloseD TAClose;

14 TAInvokeD TAInvoke;

16 int DoNothing (out uint sessionID, TARPCParam[] param)

{

18 sessionID = 0;

return -1;

20 }

22 int DoNothing (uint sessionID)

{

24 return -1;

}

26
int DoNothing (uint sessionID, uint cmd, TARPCParam[] param)

28 {

return -1;

30 }

32 public TAInterface (TAOpenD tAOpen, TACloseD tAClose, TAInvokeD tAInvoke)

{

34 this.TAOpen = tAOpen;

this.TAClose = tAClose;

36 this.TAInvoke = tAInvoke;

}

38
public TAInterface ()

111
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40 {

this.TAOpen = DoNothing;

42 this.TAClose = DoNothing;

this.TAInvoke = DoNothing;

44 }

46 public void runTA ()

{

48 TA_RPC rpc = new TA_RPC ();

50 while (true) {

__ta_get_secure_request (ref rpc);

52 Console.WriteLine ("rpc.operation is {0}, .paramTypes {1:X}", rpc.operation, rpc.paramTypes);

54 TARPCParam[] param;

TAOperation op = (TAOperation)rpc.operation;

56 switch (op) {

case TAOperation.TA_OPEN_SESSION:

58 param = createParams (rpc);

rpc.result = this.TAOpen (out rpc.sessionContext, param);

60 break;

case TAOperation.TA_CLOSE_SESSION:

62 rpc.result = this.TAClose (rpc.sessionContext);

break;

64 case TAOperation.TA_INVOKE:

param = createParams (rpc);

66 rpc.result = this.TAInvoke (rpc.sessionContext, rpc.commandID, param);

returnParams (param, ref rpc);

68 break;

case TAOperation.TA_CREATE:

70 break;

case TAOperation.TA_DESTROY:

72 return;

default:

74 break;

}

76 if (rpc.result != 0)

Console.Error.WriteLine ("returned {0}", rpc.result);

78 }

}

80
//[DllImport ("__Internal")]

82 [DllImport ("static")]

static private extern void __ta_get_secure_request (ref TA_RPC rpc);

84
private static TARPCParam[] createParams (TA_RPC crpc)

86 {

// this is a little awkward in C#, arrays are hard to marshal, so we do this by hand.

88 TARPCParam[] par = new TARPCParam[4];

par [0] = translateParamIn (decodeTEEParamTypes (crpc.paramTypes, 0), crpc.a0, crpc.b0);

90 par [1] = translateParamIn (decodeTEEParamTypes (crpc.paramTypes, 1), crpc.a1, crpc.b1);

par [2] = translateParamIn (decodeTEEParamTypes (crpc.paramTypes, 2), crpc.a2, crpc.b2);

92 par [3] = translateParamIn (decodeTEEParamTypes (crpc.paramTypes, 3), crpc.a3, crpc.b3);

return par;

94 }

96 private static TARPCParam translateParamIn (TAParamTypes t, uint a, uint b)

{

98 TARPCParam p;

100 switch (t) {

case TAParamTypes.TEEC_VALUE_INOUT:

102 case TAParamTypes.TEEC_VALUE_INPUT:

case TAParamTypes.TEEC_VALUE_OUTPUT:

104 p = new TARPCValue (a, b);

break;

106
case TAParamTypes.TEEC_MEMREF_PARTIAL_INOUT:

108 case TAParamTypes.TEEC_MEMREF_PARTIAL_INPUT:

case TAParamTypes.TEEC_MEMREF_PARTIAL_OUTPUT:

110 case TAParamTypes.TEEC_MEMREF_TEMP_INOUT:

case TAParamTypes.TEEC_MEMREF_TEMP_INPUT:

112 case TAParamTypes.TEEC_MEMREF_TEMP_OUTPUT:

case TAParamTypes.TEEC_MEMREF_WHOLE:

114 p = new TARPCMem (a, b);

break;

116
case TAParamTypes.TEEC_NONE:

118 default:

p = null;

120 break;
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}

122
return p;

124 }

126 private static void returnParams (TARPCParam[] par, ref TA_RPC crpc)

{

128 if (par[0] != null)

par [0].output (ref crpc.a0, ref crpc.b0);

130 if (par[1] != null)

par [1].output (ref crpc.a1, ref crpc.b1);

132 if (par[2] != null)

par [2].output (ref crpc.a2, ref crpc.b2);

134 if (par[3] != null)

par [3].output (ref crpc.a3, ref crpc.b3);

136 }

138 private struct TA_RPC

{

140 public uint operation;

public uint commandID;

142 public uint paramTypes;

public uint sessionContext;

144 public uint a0, b0, a1, b1, a2, b2, a3, b3;

// arrays are harder to marshal

146 public int result;

}

148
public static uint encodeTEEParamTypes (TAParamTypes t0, TAParamTypes t1, TAParamTypes t2, TAParamTypes t3)

150 {

return (((uint)t0) | (((uint)t1) << 4) | (((uint)t2) << 8) | (((uint)t3) << 12));

152 }

154 public static TAParamTypes decodeTEEParamTypes (uint enc, uint i)

{

156 return (TAParamTypes)(((enc) >> ((int)i * 4)) & 0xF);

}

158
public enum TAOperation

160 {

TA_INVALID = 0,

162 TA_CREATE = 1,

TA_DESTROY = 2,

164 TA_OPEN_SESSION = 3,

TA_CLOSE_SESSION = 4,

166 TA_INVOKE = 5

}

168
public enum TAParamTypes

170 {

TEEC_NONE = 0x00000000,

172 TEEC_VALUE_INPUT = 0x00000001,

TEEC_VALUE_OUTPUT = 0x00000002,

174 TEEC_VALUE_INOUT = 0x00000003,

TEEC_MEMREF_TEMP_INPUT = 0x00000005,

176 TEEC_MEMREF_TEMP_OUTPUT = 0x00000006,

TEEC_MEMREF_TEMP_INOUT = 0x00000007,

178 TEEC_MEMREF_WHOLE = 0x0000000C,

TEEC_MEMREF_PARTIAL_INPUT = 0x0000000D,

180 TEEC_MEMREF_PARTIAL_OUTPUT = 0x0000000E,

TEEC_MEMREF_PARTIAL_INOUT = 0x0000000F

182 }

184 public const int

TEE_SUCCESS = 0x00000000,

186 // unchecked trick is required to prevent overflow detection..

//public enum TAErrors : int{

188 TEE_ERROR_GENERIC = unchecked ((int) 0xFFFF0000),

TEE_ERROR_ACCESS_DENIED = unchecked ((int) 0xFFFF0001),

190 TEE_ERROR_CANCEL = unchecked ((int) 0xFFFF0002),

TEE_ERROR_ACCESS_CONFLICT = unchecked ((int) 0xFFFF0003),

192 TEE_ERROR_EXCESS_DATA = unchecked ((int) 0xFFFF0004),

TEE_ERROR_BAD_FORMAT = unchecked ((int) 0xFFFF0005),

194 TEE_ERROR_BAD_PARAMETERS = unchecked ((int) 0xFFFF0006),

TEE_ERROR_BAD_STATE = unchecked ((int) 0xFFFF0007),

196 TEE_ERROR_ITEM_NOT_FOUND = unchecked ((int) 0xFFFF0008),

TEE_ERROR_NOT_IMPLEMENTED = unchecked ((int) 0xFFFF0009),

198 TEE_ERROR_NOT_SUPPORTED = unchecked ((int) 0xFFFF000A),

TEE_ERROR_NO_DATA = unchecked ((int) 0xFFFF000B),

200 TEE_ERROR_OUT_OF_MEMORY = unchecked ((int) 0xFFFF000C),

TEE_ERROR_BUSY = unchecked ((int) 0xFFFF000D),
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202 TEE_ERROR_COMMUNICATION = unchecked ((int) 0xFFFF000E),

TEE_ERROR_SECURITY = unchecked ((int) 0xFFFF000F),

204 TEE_ERROR_SHORT_BUFFER = unchecked ((int) 0xFFFF0010),

TEE_PENDING = unchecked ((int) 0xFFFF2000),

206 TEE_ERROR_TIMEOUT = unchecked ((int) 0xFFFF3001),

TEE_ERROR_OVERFLOW = unchecked ((int) 0xFFFF300F),

208 TEE_ERROR_TARGET_DEAD = unchecked ((int) 0xFFFF3024),

TEE_ERROR_STORAGE_NO_SPACE = unchecked ((int) 0xFFFF3041),

210 TEE_ERROR_MAC_INVALID = unchecked ((int) 0xFFFF3071),

TEE_ERROR_SIGNATURE_INVALID = unchecked ((int) 0xFFFF3072),

212 TEE_ERROR_TIME_NOT_SET = unchecked ((int) 0xFFFF5000),

TEE_ERROR_TIME_NEEDS_RESET = unchecked ((int) 0xFFFF5001);

214
}

216
public struct TARPCRequest {

218 public uint operation;

public uint commandID;

220 public uint sessionContext;

public TARPCParam[] param;

222 }

224 public interface TARPCParam {

void output (ref uint a, ref uint b);

226 }

228 public class TARPCValue : TARPCParam {

public TARPCValue (uint a, uint b)

230 {

this.a = (int) a;

232 this.b = (int) b;

}

234 public void output (ref uint a, ref uint b)

{

236 a = (uint) this.a;

b = (uint) this.b;

238 }

public int a, b;

240 }

242 public class TARPCMem : TARPCParam {

public TARPCMem (uint a, uint b)

244 {

IntPtr ptr = new IntPtr(a);

246 byte[] m = new byte[b];

Marshal.Copy (ptr, m, 0, (int) b);

248 this.mem = m;

this.len = (int)b;

250 }

public void output (ref uint a, ref uint b)

252 {

IntPtr ptr = new IntPtr(a);

254 Console.WriteLine ("copying buffer back {0}", this.mem.GetHashCode());

if (len != mem.Length)

256 Console.Error.WriteLine ("Warning: Output memory size doesn’t match buffer size. {0} != {1}", len, mem.

Length);

Marshal.Copy (this.mem, 0, ptr,

258 this.mem.Length < (int) b ? this.mem.Length : (int) b);

}

260
public byte[] mem { get; set; }

262 public int len { get; private set; }

}

264 }

B.2 RSA Managed Trusted Application

Implementation of the RSA Managed Trusted Application in C#. It consists of 137 lines of code.

Listing B.2: RSATrustlet.cs
0 using System;

using System.Text;

2 using System.Collections.Generic;
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using System.Security.Cryptography;

4
using monoman;

6 using System.IO;

8 namespace RSATrustlet

{

10 public class RSATrustlet

{

12 TAInterface tai;

Dictionary<uint, RSASession> sessions;

14 uint lastSID;

16 public RSATrustlet ()

{

18 tai = new TAInterface (sessionCreate, sessionClose, invokeCmd);

sessions = new Dictionary<uint, RSASession>();

20 lastSID = 0;

}

22
int sessionCreate (out uint sessionID, TARPCParam[] param) {

24 sessions.Add (++lastSID, new RSASession());

sessionID = lastSID;

26 return TAInterface.TEE_SUCCESS;

}

28
int sessionClose(uint sessionID) {

30 return sessions.Remove (sessionID) ?

TAInterface.TEE_SUCCESS : TAInterface.TEE_ERROR_ITEM_NOT_FOUND;

32
}

34
int invokeCmd(uint sessionID, uint cmd, TARPCParam[] param) {

36 if (!sessions.ContainsKey (sessionID))

return TAInterface.TEE_ERROR_BAD_STATE;

38 return sessions [sessionID].invoke(cmd, param);

}

40
public void run() {

42 tai.runTA();

}

44
public enum cmds : uint {

46 TZ_RSA_NEW_KEY = (0x1),

TZ_RSA_LOAD_KEY = (0x2),

48 TZ_RSA_GET_PUBLIC_KEY = (0x3),

TZ_RSA_PUBLIC = (0x11),

50 TZ_RSA_PRIVATE = (0x21),

TZ_RSA_CAT_KEY = (0x41)

52 }

54
}

56
internal class RSASession {

58 public RSASession() {

rsa = null;

60 keyname = null;

}

62 RSA rsa;

public string keyname { get; private set; }

64
public int invoke(uint cmd, TARPCParam[] param) {

66
try {

68 switch ((RSATrustlet.cmds) cmd) {

case RSATrustlet.cmds.TZ_RSA_NEW_KEY:

70 return createKey(param);

case RSATrustlet.cmds.TZ_RSA_LOAD_KEY:

72 return loadKey(param);

case RSATrustlet.cmds.TZ_RSA_GET_PUBLIC_KEY:

74 return getPubKey(param);

case RSATrustlet.cmds.TZ_RSA_PUBLIC:

76 return applyPublic(param);

case RSATrustlet.cmds.TZ_RSA_PRIVATE:

78 return applyPrivate(param);

default:

80 return TAInterface.TEE_ERROR_NOT_SUPPORTED;

}

82 } catch (System.InvalidCastException ex) {

Console.Error.WriteLine (ex);
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84 Console.Error.WriteLine (ex.StackTrace);

return TAInterface.TEE_ERROR_BAD_PARAMETERS;

86 } catch (Exception ex) {

Console.Error.WriteLine (ex);

88 Console.Error.WriteLine (ex.StackTrace);

return TAInterface.TEE_ERROR_GENERIC;

90 }

}

92
int createKey(TARPCParam[] param) {

94 TARPCMem nm;

TARPCValue keylen;

96 nm = (TARPCMem) param [0];

keylen = (TARPCValue)param [1];

98 string name = "keytest"; //Encoding.ASCII.GetString (nm.mem);

StreamWriter fw = File.CreateText (name);

100 rsa = new RSACryptoServiceProvider (keylen.a);

string keyxml = rsa.ToXmlString (true);

102 fw.Write (keyxml);

fw.Close ();

104 return TAInterface.TEE_SUCCESS;

}

106
int loadKey(TARPCParam[] param) {

108 TARPCMem nm;

TARPCValue keylen;

110 nm = (TARPCMem) param [0];

keylen = (TARPCValue)param [1];

112 string name = "keytest"; // Encoding.ASCII.GetString (nm.mem);

string keyxml;

114 StreamReader fr = File.OpenText (name);

keyxml = fr.ReadToEnd();

116 fr.Close ();

rsa = new RSACryptoServiceProvider ();

118 rsa.FromXmlString(keyxml);

keylen.a = rsa.KeySize / 8;

120 return TAInterface.TEE_SUCCESS;

}

122

124 int getPubKey (TARPCParam[] param) {

if (rsa == null)

126 return TAInterface.TEE_ERROR_BAD_STATE;

TARPCMem n, e;

128 e = (TARPCMem)param [0];

n = (TARPCMem)param [1];

130 RSAParameters rsap = rsa.ExportParameters (false);

rsap.Exponent.CopyTo (e.mem, 0);

132 rsap.Modulus.CopyTo (n.mem, 0);

return TAInterface.TEE_SUCCESS;

134 }

136 int applyPrivate (TARPCParam[] param) {

if (rsa == null)

138 return TAInterface.TEE_ERROR_BAD_STATE;

TARPCMem i, o;

140 i = (TARPCMem)param [0];

o = (TARPCMem)param [1];

142 o.mem = rsa.DecryptValue (i.mem);

return TAInterface.TEE_SUCCESS;

144 }

146 int applyPublic (TARPCParam[] param) {

if (rsa == null)

148 return TAInterface.TEE_ERROR_BAD_STATE;

TARPCMem i, o;

150 i = (TARPCMem)param [0];

o = (TARPCMem)param [1];

152 o.mem = rsa.EncryptValue (i.mem);

return TAInterface.TEE_SUCCESS;

154 }

}

156 }

For comparison, we show the implementation of the same functionality in C using TropicSSL

cryptographic functions, which uses 347 lines of code.
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Listing B.3: rsa_trustlet/main.c
0 #include <trustlets/rsa_trustlet.h>

#include <tee_internal_api.h>

2 #include <tropicssl/rsa.h>

#include <tropicssl/pbkdf2.h>

4 #include <tropicssl/sha2.h>

//#include <rsa_internal.h>

6 #include <fcntl.h>

#include <swi.h>

8 #include <andix.h>

#include <client_constants.h>

10 #include <andix/entropy.h>

#include <string.h>

12 #include <stdlib.h>

#include <unistd.h>

14 #include <errno.h>

16 #define MSG_ERROR "RSA Trustlet Error: "

#define MSG_INFO "RSA Trustlet Info: "

18 #define MSG_TROPIC_ERR "RSA Trustlet TropicSSL error "

20 enum keyselect {PRIVATE, PUBLIC};

22 // In contrast to polarSSL, tropicSSL expects this kind of RNG function.

static int f_rng_tropic_wrapper(void *in){

24 int out;

size_t olen;

26 // FIXME: Incorrect if platform_pseudo_entropy fails ...

platform_pseudo_entropy(in, (unsigned char *)&out, sizeof(out), &olen);

28 return out;

}

30
static TEE_Result write_mpi_fd(mpi *m, int fd) {

32 int len = mpi_size(m) * 2 + 3;

char linebuf[len];

34 int ret = mpi_write_string(m, 16, linebuf, &len);

if (ret) {

36 printf(MSG_TROPIC_ERR "mpi_write_string -%x len %d\n", -ret, len);

return TEE_ERROR_BAD_FORMAT;

38 }

if (*(linebuf + len - 1) != ’\0’) { // check libraries behaviour

40 printf(MSG_ERROR "String not 0 terminated\n");

return TEE_ERROR_BAD_FORMAT;

42 }

ssize_t written = 0;

44 while (written < len) {

ret = write(fd, linebuf + written, len);

46 if (ret < 0) {

printf(MSG_ERROR "write() failed %d: %s\n", ret, strerror(errno));

48 return TEE_ERROR_GENERIC;

}

50 written += ret;

}

52 return TEE_SUCCESS;

}

54 static TEE_Result writeKey(rsa_context *rsa, const char *name) {

int ret;

56 int fd = open(name, O_CREAT | O_WRONLY);

if (fd < 0) {

58 printf(MSG_ERROR "failed to open output file! %s\n", strerror(errno));

return TEE_ERROR_ITEM_NOT_FOUND;

60 }

62 if ((ret = write_mpi_fd(&(rsa->N), fd )) ||

(ret = write_mpi_fd(&(rsa->E), fd )) ||

64 (ret = write_mpi_fd(&(rsa->D), fd )) ||

(ret = write_mpi_fd(&(rsa->P), fd )) ||

66 (ret = write_mpi_fd(&(rsa->Q), fd )) ||

(ret = write_mpi_fd(&(rsa->DP), fd )) ||

68 (ret = write_mpi_fd(&(rsa->DQ), fd)) ||

(ret = write_mpi_fd(&(rsa->QP), fd ))) {

70 printf(MSG_TROPIC_ERR "mpi_write_fd -%x\n", -ret);

printf(MSG_ERROR "failed to write to output file!\n");

72 close(fd);

return TEE_ERROR_GENERIC;

74 }

close(fd);

76 return TEE_SUCCESS;

}

78
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static TEE_Result read_mpi_buf(mpi *m, char **p, char *end) {

80 char *eos = *p + strlen(*p) + 1;

if (eos >= end) {

82 printf(MSG_ERROR "Buffer underrun!\n");

return TEE_ERROR_BAD_FORMAT;

84 }

int ret = mpi_read_string(m, 16, *p);

86 if (ret) {

printf(MSG_TROPIC_ERR "mpi_read_string -%x\n", -ret);

88 return TEE_ERROR_BAD_FORMAT;

}

90 *p = eos;

return TEE_SUCCESS;

92 }

94 static TEE_Result readKey(rsa_context *rsa, const char *name) {

int ret;

96 struct stat stat;

int fd = open(name, O_RDONLY);

98 if (fd < 0) {

printf(MSG_ERROR "failed to open input file! %s\n", strerror(errno));

100 return TEE_ERROR_ITEM_NOT_FOUND;

}

102 ret = fstat(fd, &stat);

if (ret) {

104 printf(MSG_ERROR "failed to stat input file %d! %s\n", ret, strerror(errno));

ret = TEE_ERROR_ITEM_NOT_FOUND;

106 goto close;

}

108 printf(MSG_INFO "file size %s %ld\n", name, stat.st_size);

if (stat.st_size == 0) {

110 printf(MSG_ERROR "Empty files suck!\n");

ret = TEE_ERROR_NO_DATA;

112 goto close;

}

114
char *filebuf = malloc(stat.st_size + 1);

116 char *filebufend = filebuf + stat.st_size + 1;

ssize_t rlen = read(fd, filebuf, stat.st_size);

118 if (rlen != stat.st_size) {

printf(MSG_ERROR "failed to read input file! %d\n", rlen);

120 ret = TEE_ERROR_NO_DATA;

goto free;

122 }

124 char *p = filebuf; // is advanced mpi-by-mpi

if ((ret = read_mpi_buf(&(rsa->N), &p, filebufend)) ||

126 (ret = read_mpi_buf(&(rsa->E), &p, filebufend)) ||

(ret = read_mpi_buf(&(rsa->D), &p, filebufend)) ||

128 (ret = read_mpi_buf(&(rsa->P), &p, filebufend)) ||

(ret = read_mpi_buf(&(rsa->Q), &p, filebufend)) ||

130 (ret = read_mpi_buf(&(rsa->DP), &p, filebufend)) ||

(ret = read_mpi_buf(&(rsa->DQ), &p, filebufend)) ||

132 (ret = read_mpi_buf(&(rsa->QP), &p, filebufend))) {

134 printf(MSG_ERROR "failed to read from input file!\n");

ret = TEE_ERROR_GENERIC;

136 goto free;

}

138 rsa->len = mpi_size(&(rsa->N));

ret = TEE_SUCCESS;

140
free:

142 free(filebuf);

close:

144 close(fd);

return ret;

146 }

148 static TEE_Result createKeyPair(rsa_context *rsa, const char *name, unsigned int nbits, int pub_exponent) {

int ret;

150 ret = rsa_gen_key(rsa, nbits, pub_exponent);

if (ret) {

152 printf(MSG_TROPIC_ERR "rsa_gen_key -%x\n", -ret);

return TEE_ERROR_GENERIC;

154 }

ret = rsa_check_privkey(rsa);

156 if (ret) {

printf(MSG_TROPIC_ERR "rsa_check_privkey -%x\n", -ret);

158 return TEE_ERROR_GENERIC;

}
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160 return writeKey(rsa, name);

}

162
static TEE_Result TA_createKeyPair(void* sessionContext, uint32_t paramTypes, TEE_Param params[4]) {

164 if (paramTypes != TEE_PARAM_TYPES(

TEEC_MEMREF_TEMP_INPUT,

166 TEEC_VALUE_INPUT,

TEEC_VALUE_INPUT,

168 TEEC_NONE)) {

printf(MSG_ERROR "Bad Parameters\n");

170 return TEE_ERROR_BAD_PARAMETERS;

}

172 rsa_context *rsa = sessionContext;

const char *name = params[0].memref.buffer;

174 unsigned int nbits = params[1].value.a;

int pub_expo = params[2].value.a;

176
printf(MSG_INFO "Creating new key in file ’%s’\n", name);

178 return createKeyPair(rsa, name, nbits, pub_expo);

}

180
static TEE_Result TA_readKeyPair(void* sessionContext, uint32_t paramTypes, TEE_Param params[4]) {

182 if (paramTypes != TEE_PARAM_TYPES(

TEEC_MEMREF_TEMP_INPUT,

184 TEEC_VALUE_OUTPUT,

TEEC_NONE,

186 TEEC_NONE)) {

printf(MSG_ERROR "Bad Parameters\n");

188 return TEE_ERROR_BAD_PARAMETERS;

}

190 rsa_context *rsa = sessionContext;

const char *name = params[0].memref.buffer;

192
int ret = readKey(rsa, name);

194 if (ret)

return ret;

196 ret = rsa_check_privkey(rsa);

if (ret) {

198 printf(MSG_TROPIC_ERR "rsa_check_privkey -%x\n", -ret);

return TEE_ERROR_BAD_FORMAT;

200 }

params[1].value.a = mpi_size(&(rsa->N));

202 return TEE_SUCCESS;

}

204
static TEE_Result TA_getPubKey(void* sessionContext, uint32_t paramTypes, TEE_Param params[4]) {

206 if (paramTypes != TEE_PARAM_TYPES(

TEEC_MEMREF_TEMP_OUTPUT,

208 TEEC_MEMREF_TEMP_OUTPUT,

TEEC_NONE,

210 TEEC_NONE)) {

printf(MSG_ERROR "Bad Parameters\n");

212 return TEE_ERROR_BAD_PARAMETERS;

}

214 rsa_context *rsa = sessionContext;

if (rsa->len == 0) { // no key loaded

216 printf(MSG_ERROR "No key loaded in context!\n");

return TEE_ERROR_BAD_STATE;

218 }

unsigned char *Ebuf = params[0].memref.buffer,

220 *Nbuf = params[1].memref.buffer;

size_t Elen = params[0].memref.size,

222 Nlen = params[1].memref.size;

224 if (mpi_write_binary(&(rsa->E), Ebuf, Elen) ||

mpi_write_binary(&(rsa->N), Nbuf, Nlen)) {

226 printf(MSG_ERROR "Destination buffer too small!\n");

return TEE_ERROR_SHORT_BUFFER;

228 }

return TEE_SUCCESS;

230 }

232 static TEE_Result TA_applyRSAKey(enum keyselect key, void* sessionContext, uint32_t paramTypes, TEE_Param params[4]) {

if (paramTypes != TEE_PARAM_TYPES(

234 TEEC_MEMREF_TEMP_INPUT,

TEEC_MEMREF_TEMP_OUTPUT,

236 TEEC_NONE,

TEEC_NONE)) {

238 printf(MSG_ERROR "Bad Parameters\n");

return TEE_ERROR_BAD_PARAMETERS;

240 }
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rsa_context *rsa = sessionContext;

242 if (rsa->len == 0) { // no key loaded

printf(MSG_ERROR "No key loaded in context!\n");

244 return TEE_ERROR_BAD_STATE;

}

246 unsigned char *ibuf = params[0].memref.buffer,

*obuf = params[1].memref.buffer;

248 size_t ilen = params[0].memref.size,

olen = params[1].memref.size;

250 if (ilen < rsa->len || olen < rsa->len) {

printf(MSG_ERROR "Destination buffer too small!\n");

252 return TEE_ERROR_SHORT_BUFFER;

}

254
int ret;

256 switch (key) {

case PRIVATE:

258 ret = rsa_private(rsa, ibuf, obuf);

break;

260 case PUBLIC:

ret = rsa_public(rsa, ibuf, obuf);

262 break;

default:

264 return TEE_ERROR_BAD_PARAMETERS;

}

266 if (ret) {

printf(MSG_TROPIC_ERR "rsa_(public|private) -%x\n", -ret);

268 return TEE_ERROR_GENERIC;

}

270 return TEE_SUCCESS;

}

272
#ifdef INSECURE

274 #warning "The function TA_catKeyFile is enabled and reveals the private key! For testing purposes only!"

static TEE_Result TA_catKeyFile(void* sessionContext, uint32_t paramTypes, TEE_Param params[4]) {

276 char buf[64];

ssize_t n;

278 if (paramTypes != TEE_PARAM_TYPES(

TEEC_MEMREF_TEMP_INPUT,

280 TEEC_NONE,

TEEC_NONE,

282 TEEC_NONE)) {

printf(MSG_ERROR "Bad Parameters\n");

284 /* Bad parameter types */

return TEE_ERROR_BAD_PARAMETERS;

286 }

288 const char *name = params[0].memref.buffer;

int fd = open(name, O_RDONLY);

290 if (fd < 0) {

printf(MSG_ERROR "failed to open input file!\n");

292 return TEE_ERROR_ITEM_NOT_FOUND;

}

294
while ((n = read(fd, buf, sizeof(buf))) > 0) {

296 write(1, buf, n);

}

298 close(fd);

printf(MSG_ERROR "read returned %d: %s\n", n, strerror(errno));

300 if (n == 0)

return TEE_SUCCESS;

302 if (n < 0) {

}

304 return TEE_ERROR_GENERIC;

}

306 #endif

308 TEE_Result TA_CreateEntryPoint() {

printf(MSG_INFO "Started\n");

310 return TEE_SUCCESS;

}

312
void TA_DestroyEntryPoint() {

314 printf(MSG_INFO "Destroyed\n");

}

316
TEE_Result TA_OpenSessionEntryPoint(uint32_t paramTypes, TEE_Param params[4],

318 void** sessionContext) {

// rsa_context *rsa = TEE_Malloc(sizeof(rsa_context), 0); ///TODO seems like incompletely implemented.

320 rsa_context *rsa = malloc(sizeof(rsa_context));

if (rsa == NULL) {
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322 printf(MSG_ERROR "malloc failed!\n");

return TEE_ERROR_OUT_OF_MEMORY;

324 }

rsa_init(rsa, RSA_PKCS_V15, 0, f_rng_tropic_wrapper, NULL);

326 *sessionContext = rsa;

printf(MSG_INFO "SESSION OPENED!\n");

328 return TEE_SUCCESS;

}

330
void TA_CloseSessionEntryPoint(void* sessionContext) {

332 rsa_free(sessionContext);

// TEE_Free(sessionContext);

334 free(sessionContext);

printf(MSG_INFO "SESSION CLOSED!\n");

336 }

338 static const char *cmd2string(uint32_t commandID) {

switch (commandID) {

340 case TZ_RSA_NEW_KEY:

return TZ_RSA_NEW_KEY_STRING;

342 case TZ_RSA_LOAD_KEY:

return TZ_RSA_LOAD_KEY_STRING;

344 case TZ_RSA_GET_PUBLIC_KEY:

return TZ_RSA_GET_PUBLIC_KEY_STRING;

346 case TZ_RSA_PRIVATE:

return TZ_RSA_PRIVATE_STRING;

348 case TZ_RSA_PUBLIC:

return TZ_RSA_PUBLIC_STRING;

350 #ifdef INSECURE

case TZ_RSA_CAT_KEY:

352 return TZ_RSA_CAT_KEY_STRING;

#endif

354 default:

return "no string known for this command!";

356 }

}

358 TEE_Result TA_InvokeCommandEntryPoint(void* sessionContext,

uint32_t commandID, uint32_t paramTypes, TEE_Param params[4]) {

360
printf(MSG_INFO "Parameter Types 0x%x\n", (unsigned) paramTypes);

362 printf(MSG_INFO "Command invoked 0x%x %s\n", (unsigned) commandID, cmd2string(commandID));

switch (commandID) {

364 case TZ_RSA_NEW_KEY:

return TA_createKeyPair(sessionContext, paramTypes, params);

366 case TZ_RSA_LOAD_KEY:

return TA_readKeyPair(sessionContext, paramTypes, params);

368 case TZ_RSA_GET_PUBLIC_KEY:

return TA_getPubKey(sessionContext, paramTypes, params);

370 case TZ_RSA_PRIVATE:

return TA_applyRSAKey(PRIVATE, sessionContext, paramTypes, params);

372 case TZ_RSA_PUBLIC:

return TA_applyRSAKey(PUBLIC, sessionContext, paramTypes, params);

374 #ifdef INSECURE

case TZ_RSA_CAT_KEY:

376 return TA_catKeyFile(sessionContext, paramTypes, params);

#endif

378 default:

return TEE_ERROR_NOT_SUPPORTED;

380 }

}

B.3 C Start-Up Program for the Managed Runtime

The following C main function initialises the Mono runtime in an ANDIX user space process and passes

control to the managed code.

Listing B.4: monoman.c
0 /**

* @file monoman.c

2 * @brief

* Created on: Apr 30, 2014

4 * @author Florian Achleitner <florian.achleitner@student.tugraz.at>
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*/

6 #include <mono/metadata/mono-config.h>

#include <mono/metadata/assembly.h>

8 #include <mono/jit/jit.h>

#include <mono/utils/mono-embed.h>

10 #include <stdio.h>

#include <stdlib.h>

12 #include <unistd.h>

#include <pthread.h>

14
#include "helloandix.h"

16
void __ta_get_secure_request();

18
static MonoDlMapping static_libs[] = {

20 { "__ta_get_secure_request", __ta_get_secure_request },

{ NULL, NULL }

22 };

24 int main(void) {

printf("monoman T%d\nPress any key to init mono!\n", pthread_self());

26 char c;

// read(STDIN_FILENO, &c, 1);

28 mono_mkbundle_init();

mono_dl_register_library("static", static_libs);

30 MonoDomain *domain = mono_jit_init("hello_domain");

MonoAssembly *assembly = mono_domain_assembly_open(domain, image_name);

32 if (!assembly) {

printf("Oh no, mono assembly not loaded.\n");

34 return -1;

}

36 printf("monoman T%d\nPress any key to pass control to mono!\n", pthread_self());

// read(STDIN_FILENO, &c, 1);

38
char *argv[] = { "/monoman" };

40 int argc = 1;

int ret = mono_jit_exec(domain, assembly, argc, argv);

42 printf("mono Main returned %d\n", ret);

mono_jit_cleanup(domain);

44 printf("mono_jit_cleanup finished\n");

46 return ret;

}



Appendix C

Mono Patches

0 From 2123015c645f67fe30fbba61bf713b40690a94b7 Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Thu, 24 Apr 2014 18:35:47 +0200

Subject: [PATCH 01/29] Enable out-of-tree build

4
by adding some explicit paths.

6 ---

autogen.sh | 10 +++++++---

8 1 file changed, 7 insertions(+), 3 deletions(-)

10 diff --git a/autogen.sh b/autogen.sh

index a576ed6..672e72f 100755

12 --- a/autogen.sh

+++ b/autogen.sh

14 @@ -5,6 +5,7 @@

DIE=0

16
srcdir=‘dirname $0‘

18 +rundir=‘pwd‘

test -z "$srcdir" && srcdir=.

20
if [ -n "$MONO_PATH" ]; then

22 @@ -94,8 +95,9 @@ xlc )

am_opt=--include-deps;;

24 esac

26 +cd $srcdir

28 -if grep "^AM_PROG_LIBTOOL" configure.in >/dev/null; then

+if grep "^AM_PROG_LIBTOOL" $srcdir/configure.in >/dev/null; then

30 if test -z "$NO_LIBTOOLIZE" ; then

echo "Running libtoolize..."

32 ${LIBTOOL}ize --force --copy

@@ -122,8 +124,8 @@ if test x$has_ext_mod = xtrue; then

34 sh ./prepare-repo.sh $ext_mod_args || exit 1

popd

36 else

- cat mono/mini/Makefile.am.in > mono/mini/Makefile.am

38 - cat mono/metadata/Makefile.am.in > mono/metadata/Makefile.am

+ cat $srcdir/mono/mini/Makefile.am.in > $srcdir/mono/mini/Makefile.am

40 + cat $srcdir/mono/metadata/Makefile.am.in > $srcdir/mono/metadata/Makefile.am

fi

42

44 @@ -149,6 +151,8 @@ automake --add-missing --gnu -Wno-portability -Wno-obsolete $am_opt ||

echo "Running autoconf ..."

46 autoconf || { echo "**Error**: autoconf failed."; exit 1; }

48 +cd $rundir

+

50 if test -d $srcdir/libgc; then

echo Running libgc/autogen.sh ...

52 (cd $srcdir/libgc ; NOCONFIGURE=1 ./autogen.sh "$@")

--

54 1.9.1

123
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0 From 83a008b96c919de3e6f7f82f2449e62678af5b42 Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Thu, 24 Apr 2014 18:37:11 +0200

Subject: [PATCH 02/29] Deactivate file system functions in eglib

4
return dummy or error values.

6 ---

eglib/src/gdir-unix.c | 26 ++++++++++++++++++++++++++

8 eglib/src/gfile-posix.c | 6 ++++--

2 files changed, 30 insertions(+), 2 deletions(-)

10
diff --git a/eglib/src/gdir-unix.c b/eglib/src/gdir-unix.c

12 index abca22f..7cefab7 100644

--- a/eglib/src/gdir-unix.c

14 +++ b/eglib/src/gdir-unix.c

@@ -32,7 +32,12 @@

16 #include <sys/types.h>

#include <sys/stat.h>

18 #include <unistd.h>

+

20 +#ifdef __andix__

+typedef int DIR;

22 +#else

#include <dirent.h>

24 +#endif

26 struct _GDir {

DIR *dir;

28 @@ -44,6 +49,9 @@ struct _GDir {

GDir *
30 g_dir_open (const gchar *path, guint flags, GError **error)

{

32 +#ifdef __andix__

+ return NULL;

34 +#else

GDir *dir;

36
g_return_val_if_fail (path != NULL, NULL);

38 @@ -64,11 +72,15 @@ g_dir_open (const gchar *path, guint flags, GError **error)

dir->path = g_strdup (path);

40 #endif

return dir;

42 +#endif

}

44
const gchar *

46 g_dir_read_name (GDir *dir)

{

48 +#ifdef __andix__

+ return NULL;

50 +#else

struct dirent *entry;

52
g_return_val_if_fail (dir != NULL && dir->dir != NULL, NULL);

54 @@ -79,11 +91,15 @@ g_dir_read_name (GDir *dir)

} while ((strcmp (entry->d_name, ".") == 0) || (strcmp (entry->d_name, "..") == 0));

56
return entry->d_name;

58 +#endif

}

60
void

62 g_dir_rewind (GDir *dir)

{

64 +#ifdef __andix__

+ return;

66 +#else

g_return_if_fail (dir != NULL && dir->dir != NULL);

68 #ifndef HAVE_REWINDDIR

closedir (dir->dir);

70 @@ -91,11 +107,15 @@ g_dir_rewind (GDir *dir)

#else

72 rewinddir (dir->dir);

#endif

74 +#endif

}

76
void

78 g_dir_close (GDir *dir)

{
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80 +#ifdef __andix__

+ return;

82 +#else

g_return_if_fail (dir != NULL && dir->dir != 0);

84 closedir (dir->dir);

#ifndef HAVE_REWINDDIR

86 @@ -103,11 +123,16 @@ g_dir_close (GDir *dir)

#endif

88 dir->dir = NULL;

g_free (dir);

90 +#endif

}

92
int

94 g_mkdir_with_parents (const gchar *pathname, int mode)

{

96 +#ifdef __andix__

+ errno = EINVAL;

98 + return -1;

+#else

100 char *path, *d;

int rv;

102
@@ -143,4 +168,5 @@ g_mkdir_with_parents (const gchar *pathname, int mode)

104 g_free (path);

106 return 0;

+#endif

108 }

diff --git a/eglib/src/gfile-posix.c b/eglib/src/gfile-posix.c

110 index 49ee58a..040240b 100644

--- a/eglib/src/gfile-posix.c

112 +++ b/eglib/src/gfile-posix.c

@@ -161,7 +161,9 @@ g_get_current_dir (void)

114 } else {

buffer = g_strdup(".");

116 }

- return buffer;

118 +#elif defined(__andix__)

+ char *buffer;

120 + buffer = g_strdup(".");

#else

122 int s = 32;

char *buffer = NULL, *r;

124 @@ -180,6 +182,6 @@ g_get_current_dir (void)

* but the top 32-bits of r have overflown to 0xffffffff (seriously wtf getcwd

126 * so we return the buffer here since it has a pointer to the valid string

*/

128 - return buffer;

#endif

130 + return buffer;

}

132 --

1.9.1

0 From 2054b2197c1ac056901421aeeaa488bd0a029d84 Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Fri, 25 Apr 2014 08:49:37 +0200

Subject: [PATCH 03/29] Disable process related functions

4
Andix only supports static processes by now

6 ---

eglib/src/gspawn.c | 6 ++++++

8 mono/io-layer/handles.c | 2 +-

mono/io-layer/processes.c | 14 ++++++++++++++

10 3 files changed, 21 insertions(+), 1 deletion(-)

12 diff --git a/eglib/src/gspawn.c b/eglib/src/gspawn.c

index 4f4e5be..ddb3761 100644

14 --- a/eglib/src/gspawn.c

+++ b/eglib/src/gspawn.c

16 @@ -216,6 +216,9 @@ g_spawn_command_line_sync (const gchar *command_line,

gint *exit_status,

18 GError **error)

{

20 +#ifdef __andix__

+ return FALSE;

22 +#endif

#ifdef G_OS_WIN32
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24 #else

pid_t pid;

26 @@ -312,6 +315,9 @@ g_spawn_async_with_pipes (const gchar *working_directory,

gint *standard_error,

28 GError **error)

{

30 +#ifdef __andix__

+ return FALSE;

32 +#endif

#ifdef G_OS_WIN32

34 #else

pid_t pid;

36 diff --git a/mono/io-layer/handles.c b/mono/io-layer/handles.c

index e64a437..8734138 100644

38 --- a/mono/io-layer/handles.c

+++ b/mono/io-layer/handles.c

40 @@ -1764,7 +1764,7 @@ gboolean _wapi_handle_get_or_set_share (dev_t device, ino_t inode,

*/

42 static void _wapi_handle_check_share_by_pid (struct _WapiFileShare *share_info)

{

44 -#if defined(__native_client__)

+#if defined(__native_client__) || defined(__andix__)

46 g_assert_not_reached ();

#else

48 if (kill (share_info->opened_by_pid, 0) == -1 &&

diff --git a/mono/io-layer/processes.c b/mono/io-layer/processes.c

50 index 3fbff35..56bfe3f 100644

--- a/mono/io-layer/processes.c

52 +++ b/mono/io-layer/processes.c

@@ -1438,6 +1438,12 @@ gboolean EnumProcesses (guint32 *pids, guint32 len, guint32 *needed)

54
return TRUE;

56 }

+#elif defined(__andix__)

58 +gboolean EnumProcesses (guint32 *pids, guint32 len, guint32 *needed)

+{

60 + return FALSE;

+}

62 +

#else

64 gboolean EnumProcesses (guint32 *pids, guint32 len, guint32 *needed)

{

66 @@ -1928,7 +1934,11 @@ static GSList *load_modules (FILE *fp)

continue;

68 }

70 +#if defined(__andix__)

+ device = 0;

72 +#else

device = makedev ((int)maj_dev, (int)min_dev);

74 +#endif

if ((device == 0) &&

76 (inode == 0)) {

continue;

78 @@ -2833,6 +2843,10 @@ process_close (gpointer handle, gpointer data)

80 #if HAVE_SIGACTION

MONO_SIGNAL_HANDLER_FUNC (static, mono_sigchld_signal_handler, (int _dummy, siginfo_t *info, void *context))

82 +#if defined(__andix__)

+mono_sigchld_signal_handler (int _dummy)

84 +#else

+#endif

86 {

int status;

88 int pid;

--

90 1.9.1

0 From 070d35ef9a19fa93e2ccd7d892c8fa94f2d146e0 Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Fri, 25 Apr 2014 08:52:38 +0200

Subject: [PATCH 04/29] Enable some posix threading for andix

4
---

6 mono/utils/mono-threads-posix.c | 2 +-

mono/utils/mono-threads.h | 2 +-

8 2 files changed, 2 insertions(+), 2 deletions(-)

10 diff --git a/mono/utils/mono-threads-posix.c b/mono/utils/mono-threads-posix.c
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index 8dba68f..ff71a86 100644

12 --- a/mono/utils/mono-threads-posix.c

+++ b/mono/utils/mono-threads-posix.c

14 @@ -21,7 +21,7 @@

extern int tkill (pid_t tid, int signal);

16 #endif

18 -#if defined(_POSIX_VERSION) || defined(__native_client__)

+#if defined(_POSIX_VERSION) || defined(__native_client__) || defined(__andix__)

20 #include <signal.h>

22 typedef struct {

diff --git a/mono/utils/mono-threads.h b/mono/utils/mono-threads.h

24 index e54ec61..ceac447 100644

--- a/mono/utils/mono-threads.h

26 +++ b/mono/utils/mono-threads.h

@@ -111,7 +111,7 @@ typedef struct {

28 MonoSemType resume_semaphore;

30 /* only needed by the posix backend */

-#if (defined(_POSIX_VERSION) || defined(__native_client__)) && !defined (__MACH__)

32 +#if (defined(_POSIX_VERSION) || defined(__native_client__) || defined(__andix__)) && !defined (__MACH__)

MonoSemType begin_suspend_semaphore;

34 gboolean syscall_break_signal;

gboolean suspend_can_continue;

36 --

1.9.1

0 From 8b628e298903edec0c53a1997f43f67690fe358d Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Fri, 25 Apr 2014 08:52:54 +0200

Subject: [PATCH 05/29] Disable signal features in mini

4
---

6 mono/mini/mini-arm.h | 4 ++--

1 file changed, 2 insertions(+), 2 deletions(-)

8
diff --git a/mono/mini/mini-arm.h b/mono/mini/mini-arm.h

10 index 9fcd654..ba862f8 100644

--- a/mono/mini/mini-arm.h

12 +++ b/mono/mini/mini-arm.h

@@ -220,7 +220,7 @@ typedef struct MonoCompileArch {

14
#define MONO_ARCH_USE_SIGACTION 1

16
-#if defined(__native_client__)

18 +#if defined(__native_client__) || defined(__andix__)

#undef MONO_ARCH_USE_SIGACTION

20 #endif

22 @@ -259,7 +259,7 @@ typedef struct MonoCompileArch {

#define MONO_ARCH_HAVE_OPCODE_NEEDS_EMULATION 1

24 #define MONO_ARCH_HAVE_OBJC_GET_SELECTOR 1

26 -#if defined(__native_client__)

+#if defined(__native_client__) || defined(__andix__)

28 #undef MONO_ARCH_SOFT_DEBUG_SUPPORTED

#undef MONO_ARCH_HAVE_SIGCTX_TO_MONOCTX

30 #undef MONO_ARCH_HAVE_CONTEXT_SET_INT_REG

--

32 1.9.1

0 From 2413afa7c07ffcd648890d2505161121bc3c5c59 Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Fri, 25 Apr 2014 08:55:03 +0200

Subject: [PATCH 06/29] Check for DISABLE_AOT configuration option wherever it

4 was missing.

6 Some functions are not available without aot, but still called.

---

8 mono/mini/mini-generic-sharing.c | 2 ++

mono/mini/mini.c | 6 ++++++

10 2 files changed, 8 insertions(+)

12 diff --git a/mono/mini/mini-generic-sharing.c b/mono/mini/mini-generic-sharing.c

index ac7d9ea..79aef6e 100644

14 --- a/mono/mini/mini-generic-sharing.c
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+++ b/mono/mini/mini-generic-sharing.c

16 @@ -1179,9 +1179,11 @@ mini_get_gsharedvt_wrapper (gboolean gsharedvt_in, gpointer addr, MonoMethodSign

addr = tramp_addr;

18 }

20 +#ifndef DISABLE_AOT

if (mono_aot_only)

22 addr = mono_aot_get_gsharedvt_arg_trampoline (info, addr);

else

24 +#endif

addr = mono_arch_get_gsharedvt_arg_trampoline (mono_domain_get (), info, addr);

26
num_trampolines ++;

28 diff --git a/mono/mini/mini.c b/mono/mini/mini.c

index 3ea1289..9ef81c1 100644

30 --- a/mono/mini/mini.c

+++ b/mono/mini/mini.c

32 @@ -5910,9 +5910,11 @@ mono_jit_compile_method_inner (MonoMethod *method, MonoDomain *target_domain, in

* works.

34 * FIXME: The caller signature doesn’t match the callee, which might cause problems on some platforms

*/

36 +#ifndef DISABLE_AOT

if (mono_aot_only)

38 mono_aot_get_trampoline_full (is_in ? "gsharedvt_trampoline" : "gsharedvt_out_trampoline", &tinfo);

else

40 +#endif

mono_arch_get_gsharedvt_trampoline (&tinfo, FALSE);

42 jinfo = create_jit_info_for_trampoline (method, tinfo);

mono_jit_info_table_add (mono_get_root_domain (), jinfo);

44 @@ -7249,9 +7251,11 @@ mini_init (const char *filename, const char *runtime_version)

mono_install_get_class_from_name (mono_aot_get_class_from_name);

46 mono_install_jit_info_find_in_aot (mono_aot_find_jit_info);

48 +#ifndef DISABLE_AOT

if (debug_options.collect_pagefault_stats) {

50 mono_aot_set_make_unreadable (TRUE);

}

52 +#endif

54 if (runtime_version)

domain = mono_init_version (filename, runtime_version);

56 @@ -7648,7 +7652,9 @@ mini_cleanup (MonoDomain *domain)

mono_llvm_cleanup ();

58 #endif

60 +#ifndef DISABLE_AOT

mono_aot_cleanup ();

62 +#endif

64 mono_trampolines_cleanup ();

66 --

1.9.1

0 From 14cc0dd6aaad046054a9c96681a7c8ff8d7704ac Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Fri, 25 Apr 2014 08:56:16 +0200

Subject: [PATCH 07/29] Include sched.h where necessary

4
sched_yield() seems to be defined by some other means on other

6 platforms.

---

8 mono/io-layer/events.c | 1 +

mono/metadata/sgen-stw.c | 2 ++

10 mono/metadata/threads.c | 1 +

mono/utils/mono-threads.c | 1 +

12 4 files changed, 5 insertions(+)

14 diff --git a/mono/io-layer/events.c b/mono/io-layer/events.c

index fa3ae9d..574edcd 100644

16 --- a/mono/io-layer/events.c

+++ b/mono/io-layer/events.c

18 @@ -11,6 +11,7 @@

#include <glib.h>

20 #include <pthread.h>

#include <string.h>

22 +#include <sched.h>

24 #include <mono/io-layer/wapi.h>
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#include <mono/io-layer/wapi-private.h>

26 diff --git a/mono/metadata/sgen-stw.c b/mono/metadata/sgen-stw.c

index 54dc218..9cfc341 100755

28 --- a/mono/metadata/sgen-stw.c

+++ b/mono/metadata/sgen-stw.c

30 @@ -24,6 +24,8 @@

* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

32 */

34 +#include <sched.h>

+

36 #include "config.h"

#ifdef HAVE_SGEN_GC

38
diff --git a/mono/metadata/threads.c b/mono/metadata/threads.c

40 index 1b421c4..b0f461f 100755

--- a/mono/metadata/threads.c

42 +++ b/mono/metadata/threads.c

@@ -16,6 +16,7 @@

44 #include <glib.h>

#include <signal.h>

46 #include <string.h>

+#include <sched.h>

48
#if defined(__OpenBSD__) || defined(__FreeBSD__)

50 #include <pthread.h>

diff --git a/mono/utils/mono-threads.c b/mono/utils/mono-threads.c

52 index cf2c519..34b71ee 100644

--- a/mono/utils/mono-threads.c

54 +++ b/mono/utils/mono-threads.c

@@ -16,6 +16,7 @@

56 #include <mono/utils/mono-memory-model.h>

#include <mono/metadata/appdomain.h>

58 #include <mono/metadata/domain-internals.h>

+#include <sched.h>

60
#include <errno.h>

62
--

64 1.9.1

0 From afbd76cc8ac55536848f2a279d16bfdbb13c2576 Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Fri, 25 Apr 2014 08:58:05 +0200

Subject: [PATCH 08/29] Include dirent.h only if HAVE_DIRENT_H is set, some

4 where missing

6 ---

mono/io-layer/io.c | 2 ++

8 mono/io-layer/wapi_glob.c | 2 ++

2 files changed, 4 insertions(+)

10
diff --git a/mono/io-layer/io.c b/mono/io-layer/io.c

12 index 37166fa..ceeb258 100755

--- a/mono/io-layer/io.c

14 +++ b/mono/io-layer/io.c

@@ -27,7 +27,9 @@

16 #include <sys/mount.h>

#endif

18 #include <sys/types.h>

+#ifdef HAVE_DIRENT_H

20 #include <dirent.h>

+#endif

22 #include <fnmatch.h>

#include <stdio.h>

24 #include <utime.h>

diff --git a/mono/io-layer/wapi_glob.c b/mono/io-layer/wapi_glob.c

26 index bd5006d..bcbb9f9 100644

--- a/mono/io-layer/wapi_glob.c

28 +++ b/mono/io-layer/wapi_glob.c

@@ -44,7 +44,9 @@

30
#include <glib.h>

32 #include <ctype.h>

+#ifdef HAVE_DIRENT_H

34 #include <dirent.h>

+#endif

36 #include <errno.h>

#include <stdio.h>
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38 #include <stdlib.h>

--

40 1.9.1

0 From 32efd8b1098344024350c6d655752e2fdc19dec6 Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Fri, 25 Apr 2014 08:58:28 +0200

Subject: [PATCH 09/29] Some filesystem limitations

4
---

6 mono/io-layer/io.c | 4 ++--

1 file changed, 2 insertions(+), 2 deletions(-)

8
diff --git a/mono/io-layer/io.c b/mono/io-layer/io.c

10 index ceeb258..79a2b53 100755

--- a/mono/io-layer/io.c

12 +++ b/mono/io-layer/io.c

@@ -3296,7 +3296,7 @@ extern guint32 GetCurrentDirectory (guint32 length, gunichar2 *buffer)

14 glong count;

gsize bytes;

16
-#ifdef __native_client__

18 +#if defined(__native_client__) || defined (__andix__)

gchar *path = g_get_current_dir ();

20 if (length < strlen(path) + 1 || path == NULL)

return 0;

22 @@ -4298,7 +4298,7 @@ get_fstypename (gchar *utfpath)

}

24
/* Linux has struct statfs which has a different layout */

26 -#if defined (PLATFORM_MACOSX) || defined (__linux__) || defined(PLATFORM_BSD) || defined(__native_client__)

+#if defined (PLATFORM_MACOSX) || defined (__linux__) || defined(PLATFORM_BSD) || defined(__native_client__) || defined(

__andix__)

28 gboolean

GetVolumeInformation (const gunichar2 *path, gunichar2 *volumename, int volumesize, int *outserial, int *maxcomp, int *
fsflags, gunichar2 *fsbuffer, int fsbuffersize)

30 {

--

32 1.9.1

0 From 817170bc25a49f91d90241d8438adf8a22f931ca Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Fri, 25 Apr 2014 08:59:19 +0200

Subject: [PATCH 10/29] Fix type glitches to match prototypes

4
---

6 mono/metadata/mono-cq.h | 2 +-

mono/metadata/sgen-gc.h | 2 +-

8 mono/mini/jit-icalls.c | 4 ++--

3 files changed, 4 insertions(+), 4 deletions(-)

10
diff --git a/mono/metadata/mono-cq.h b/mono/metadata/mono-cq.h

12 index 26e1642..f7a76b0 100644

--- a/mono/metadata/mono-cq.h

14 +++ b/mono/metadata/mono-cq.h

@@ -12,7 +12,7 @@ typedef struct _MonoCQ MonoCQ;

16
MonoCQ *mono_cq_create (void) MONO_INTERNAL;

18 void mono_cq_destroy (MonoCQ *cq) MONO_INTERNAL;

-gint mono_cq_count (MonoCQ *cq) MONO_INTERNAL;

20 +gint32 mono_cq_count (MonoCQ *cq) MONO_INTERNAL;

void mono_cq_enqueue (MonoCQ *cq, MonoObject *obj) MONO_INTERNAL;

22 gboolean mono_cq_dequeue (MonoCQ *cq, MonoObject **result) MONO_INTERNAL;

24 diff --git a/mono/metadata/sgen-gc.h b/mono/metadata/sgen-gc.h

index 15afdbc..185a681 100644

26 --- a/mono/metadata/sgen-gc.h

+++ b/mono/metadata/sgen-gc.h

28 @@ -980,7 +980,7 @@ extern gboolean sgen_try_free_some_memory;

30 extern LOCK_DECLARE (gc_mutex);

32 -extern int do_pin_stats;

+extern gboolean do_pin_stats;

34
/* Nursery helpers. */

36
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diff --git a/mono/mini/jit-icalls.c b/mono/mini/jit-icalls.c

38 index 45c7689..59cf3f7 100644

--- a/mono/mini/jit-icalls.c

40 +++ b/mono/mini/jit-icalls.c

@@ -472,13 +472,13 @@ mono_fconv_r4 (double a)

42 }

44 double

-mono_conv_to_r8 (int a)

46 +mono_conv_to_r8 (gint32 a)

{

48 return (double)a;

}

50
double

52 -mono_conv_to_r4 (int a)

+mono_conv_to_r4 (gint32 a)

54 {

return (double)(float)a;

56 }

--

58 1.9.1

0 From 0526b78b458cb7033579282d85b3b0ddb17a67d1 Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Fri, 25 Apr 2014 09:00:26 +0200

Subject: [PATCH 11/29] Signal features for Andix

4
Add macros to interpret the Andix signal context.

6 ---

mono/io-layer/processes.c | 13 +++++++++++--

8 mono/metadata/sgen-os-posix.c | 6 +++++-

mono/utils/mono-sigcontext.h | 33 +++++++++++++++++++++++++++++++++

10 3 files changed, 49 insertions(+), 3 deletions(-)

12 diff --git a/mono/io-layer/processes.c b/mono/io-layer/processes.c

index 56bfe3f..14278a3 100644

14 --- a/mono/io-layer/processes.c

+++ b/mono/io-layer/processes.c

16 @@ -2852,9 +2852,13 @@ mono_sigchld_signal_handler (int _dummy)

int pid;

18 struct MonoProcess *p;

20 -#if DEBUG

+#if DEBUG

22 +#if defined(__andix__)

+ fprintf (stdout, "SIG CHILD handler\n");

24 +#else

fprintf (stdout, "SIG CHILD handler for pid: %i\n", info->si_pid);

26 #endif

+#endif

28
InterlockedIncrement (&mono_processes_read_lock);

30
@@ -2895,9 +2899,14 @@ static void process_add_sigchld_handler (void)

32 #if HAVE_SIGACTION

struct sigaction sa;

34
- sa.sa_sigaction = mono_sigchld_signal_handler;

36 sigemptyset (&sa.sa_mask);

+#if defined(__andix__)

38 + sa.sa_handler = mono_sigchld_signal_handler;

+ sa.sa_flags = 0;

40 +#else

+ sa.sa_sigaction = mono_sigchld_signal_handler;

42 sa.sa_flags = SA_NOCLDSTOP | SA_SIGINFO;

+#endif

44 g_assert (sigaction (SIGCHLD, &sa, &previous_chld_sa) != -1);

DEBUG ("Added SIGCHLD handler");

46 #endif

diff --git a/mono/metadata/sgen-os-posix.c b/mono/metadata/sgen-os-posix.c

48 index b0270c0..2027b6d 100644

--- a/mono/metadata/sgen-os-posix.c

50 +++ b/mono/metadata/sgen-os-posix.c

@@ -36,7 +36,7 @@

52 #include "metadata/object-internals.h"

#include "utils/mono-signal-handler.h"

54
-#if defined(__APPLE__) || defined(__OpenBSD__) || defined(__FreeBSD__)
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56 +#if defined(__APPLE__) || defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__andix__)

const static int suspend_signal_num = SIGXFSZ;

58 #else

const static int suspend_signal_num = SIGPWR;

60 @@ -212,7 +212,11 @@ sgen_os_init (void)

MONO_SEM_INIT (&suspend_ack_semaphore, 0);

62
sigfillset (&sinfo.sa_mask);

64 +#ifdef __andix__

+ sinfo.sa_flags = SA_SIGINFO;

66 +#else

sinfo.sa_flags = SA_RESTART | SA_SIGINFO;

68 +#endif

sinfo.sa_sigaction = suspend_handler;

70 if (sigaction (suspend_signal_num, &sinfo, NULL) != 0) {

g_error ("failed sigaction");

72 diff --git a/mono/utils/mono-sigcontext.h b/mono/utils/mono-sigcontext.h

index 03247cf..f1d2284 100644

74 --- a/mono/utils/mono-sigcontext.h

+++ b/mono/utils/mono-sigcontext.h

76 @@ -354,7 +354,40 @@ typedef struct ucontext {

#define UCONTEXT_REG_R11(ctx) (((arm_ucontext*)(ctx))->sig_ctx.arm_fp)

78 #define UCONTEXT_REG_R12(ctx) (((arm_ucontext*)(ctx))->sig_ctx.arm_ip)

#define UCONTEXT_REG_CPSR(ctx) (((arm_ucontext*)(ctx))->sig_ctx.arm_cpsr)

80 +

+#elif defined(__andix__)

82 + typedef struct {

+ unsigned int scr;

84 + unsigned int r[13];

+ unsigned int pc;

86 + unsigned int cpsr;

+ } core_reg;

88 + struct signalrestore_stack_t {

+ core_reg svc_ctx;

90 + unsigned int usr_sp, usr_lr, sigmask;

+ };

92 + typedef struct signalrestore_stack_t arm_ucontext;

+

94 +#define UCONTEXT_REG_PC(ctx) (((arm_ucontext*)(ctx))->svc_ctx.pc)

+#define UCONTEXT_REG_SP(ctx) (((arm_ucontext*)(ctx))->usr_sp)

96 +#define UCONTEXT_REG_LR(ctx) (((arm_ucontext*)(ctx))->usr_lr)

+#define UCONTEXT_REG_R0(ctx) (((arm_ucontext*)(ctx))->svc_ctx.r[0])

98 +#define UCONTEXT_REG_R1(ctx) (((arm_ucontext*)(ctx))->svc_ctx.r[1])

+#define UCONTEXT_REG_R2(ctx) (((arm_ucontext*)(ctx))->svc_ctx.r[2])

100 +#define UCONTEXT_REG_R3(ctx) (((arm_ucontext*)(ctx))->svc_ctx.r[3])

+#define UCONTEXT_REG_R4(ctx) (((arm_ucontext*)(ctx))->svc_ctx.r[4])

102 +#define UCONTEXT_REG_R5(ctx) (((arm_ucontext*)(ctx))->svc_ctx.r[5])

+#define UCONTEXT_REG_R6(ctx) (((arm_ucontext*)(ctx))->svc_ctx.r[6])

104 +#define UCONTEXT_REG_R7(ctx) (((arm_ucontext*)(ctx))->svc_ctx.r[7])

+#define UCONTEXT_REG_R8(ctx) (((arm_ucontext*)(ctx))->svc_ctx.r[8])

106 +#define UCONTEXT_REG_R9(ctx) (((arm_ucontext*)(ctx))->svc_ctx.r[9])

+#define UCONTEXT_REG_R10(ctx) (((arm_ucontext*)(ctx))->svc_ctx.r[10])

108 +#define UCONTEXT_REG_R11(ctx) (((arm_ucontext*)(ctx))->svc_ctx.r[11])

+#define UCONTEXT_REG_R12(ctx) (((arm_ucontext*)(ctx))->svc_ctx.r[12])

110 +#define UCONTEXT_REG_CPSR(ctx) (((arm_ucontext*)(ctx))->svc_ctx.cpsr)

+

112 #endif

+

114 #elif defined(__mips__)

116 # if HAVE_UCONTEXT_H

--

118 1.9.1

0 From 0d8fee22fd987c0acb6c72d7ce9be2e27b0e2d63 Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Fri, 25 Apr 2014 09:00:41 +0200

Subject: [PATCH 12/29] Disable mmap in built-in malloc

4
---

6 mono/utils/dlmalloc.c | 2 +-

1 file changed, 1 insertion(+), 1 deletion(-)

8
diff --git a/mono/utils/dlmalloc.c b/mono/utils/dlmalloc.c

10 index f83272f..340e0cc 100644

--- a/mono/utils/dlmalloc.c

12 +++ b/mono/utils/dlmalloc.c

@@ -484,7 +484,7 @@ DEFAULT_MMAP_THRESHOLD default: 256K

14 #endif /* HAVE_MORECORE */



133

#endif /* DARWIN */

16
-#if defined(__native_client__)

18 +#if defined(__native_client__) || defined(__andix__)

#undef HAVE_MMAP

20 #undef HAVE_MREMAP

#define HAVE_MMAP 0

22 --

1.9.1

0 From 03a4dbe0b347d235393cc06e4491758f3b3e2841 Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Fri, 25 Apr 2014 09:01:13 +0200

Subject: [PATCH 13/29] Configure random number provider to read from

4 /dev/urandom on Andix

6 ---

mono/metadata/rand.c | 12 ++++++++++--

8 1 file changed, 10 insertions(+), 2 deletions(-)

10 diff --git a/mono/metadata/rand.c b/mono/metadata/rand.c

index 4ed1203..9e8d227 100644

12 --- a/mono/metadata/rand.c

+++ b/mono/metadata/rand.c

14 @@ -27,9 +27,12 @@

#include <mono/metadata/exception.h>

16
#if !defined(__native_client__) && !defined(HOST_WIN32)

18 +#include <errno.h>

+#endif

20 +

+#if !defined(__native_client__) && !defined(HOST_WIN32) && !defined(__andix__)

22 #include <sys/socket.h>

#include <sys/un.h>

24 -#include <errno.h>

26 static void

get_entropy_from_server (const char *path, guchar *buf, int len)

28 @@ -256,10 +259,12 @@ ves_icall_System_Security_Cryptography_RNGCryptoServiceProvider_RngOpen (void)

file = open (NAME_DEV_RANDOM, O_RDONLY);

30 #endif

32 +#if !defined(__andix__)

if (file < 0) {

34 const char *socket_path = g_getenv("MONO_EGD_SOCKET");

egd = (socket_path != NULL);

36 }

+#endif

38
/* TRUE == Global handle for randomness */

40 return TRUE;

@@ -279,6 +284,7 @@ ves_icall_System_Security_Cryptography_RNGCryptoServiceProvider_RngGetBytes (gpo

42 guint32 len = mono_array_length (arry);

guchar *buf = mono_array_addr (arry, guchar, 0);

44
+#if !defined(__andix__)

46 if (egd) {

const char *socket_path = g_getenv ("MONO_EGD_SOCKET");

48 /* exception will be thrown in managed code */

@@ -286,7 +292,9 @@ ves_icall_System_Security_Cryptography_RNGCryptoServiceProvider_RngGetBytes (gpo

50 return NULL;

get_entropy_from_server (socket_path, mono_array_addr (arry, guchar, 0), mono_array_length (arry));

52 return (gpointer) -1;

- } else {

54 + } else

+#endif

56 + {

/* Read until the buffer is filled. This may block if using NAME_DEV_RANDOM. */

58 gint count = 0;

gint err;

60 --

1.9.1

0 From 212cbe6268f17dcc51224034f5f247f8e16b9431 Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Fri, 25 Apr 2014 09:02:03 +0200

Subject: [PATCH 14/29] Activate dummy profiler options for Andix
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4
’profiler’ is disalbed in the config, but we need the stubs.

6 ---

mono/mini/mini-posix.c | 2 +-

8 1 file changed, 1 insertion(+), 1 deletion(-)

10 diff --git a/mono/mini/mini-posix.c b/mono/mini/mini-posix.c

index 6759577..26cc785 100644

12 --- a/mono/mini/mini-posix.c

+++ b/mono/mini/mini-posix.c

14 @@ -65,7 +65,7 @@

16 #include "jit-icalls.h"

18 -#if defined(__native_client__)

+#if defined(__native_client__) || defined(__andix__)

20
void

22 mono_runtime_setup_stat_profiler (void)

--

24 1.9.1

0 From 55966b1cfbd080614430709e705219ab9651e99b Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Fri, 25 Apr 2014 09:02:40 +0200

Subject: [PATCH 15/29] Activate the mono’s sem_timedwait emulation for Andix

4
---

6 mono/utils/mono-semaphore.c | 10 +++++-----

1 file changed, 5 insertions(+), 5 deletions(-)

8
diff --git a/mono/utils/mono-semaphore.c b/mono/utils/mono-semaphore.c

10 index 68ff7db..6479c1d 100644

--- a/mono/utils/mono-semaphore.c

12 +++ b/mono/utils/mono-semaphore.c

@@ -22,10 +22,10 @@

14 # ifdef USE_MACH_SEMA

# define TIMESPEC mach_timespec_t

16 # define WAIT_BLOCK(a,b) semaphore_timedwait (*(a), *(b))

-# elif defined(__native_client__) && defined(USE_NEWLIB)

18 +# elif (defined(__native_client__) && defined(USE_NEWLIB))

# define TIMESPEC struct timespec

20 # define WAIT_BLOCK(a, b) sem_trywait(a)

-# elif defined(__OpenBSD__)

22 +# elif defined(__OpenBSD__) || defined(__andix__)

# define TIMESPEC struct timespec

24 # define WAIT_BLOCK(a) sem_trywait(a)

# else

26 @@ -43,7 +43,7 @@ mono_sem_timedwait (MonoSemType *sem, guint32 timeout_ms, gboolean alertable)

TIMESPEC ts, copy;

28 struct timeval t;

int res = 0;

30 -#if defined(__OpenBSD__)

+#if defined(__OpenBSD__) || defined(__andix__)

32 int timeout;

#endif

34
@@ -54,7 +54,7 @@ mono_sem_timedwait (MonoSemType *sem, guint32 timeout_ms, gboolean alertable)

36 if (timeout_ms == (guint32) 0xFFFFFFFF)

return mono_sem_wait (sem, alertable);

38
-#ifdef USE_MACH_SEMA

40 +#if defined(USE_MACH_SEMA) || defined(__andix__)

memset (&t, 0, sizeof (TIMESPEC));

42 #else

gettimeofday (&t, NULL);

44 @@ -65,7 +65,7 @@ mono_sem_timedwait (MonoSemType *sem, guint32 timeout_ms, gboolean alertable)

ts.tv_nsec -= NSEC_PER_SEC;

46 ts.tv_sec++;

}

48 -#if defined(__OpenBSD__)

+#if defined(__OpenBSD__) || defined(__andix__)

50 timeout = ts.tv_sec;

while (timeout) {

52 if ((res = WAIT_BLOCK (sem)) == 0)

--

54 1.9.1
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0 From c71d364f056615138076d4505db4827519f9abbc Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Fri, 25 Apr 2014 09:03:40 +0200

Subject: [PATCH 16/29] Let the autoMakefile accept the non-existence of the

4 boehm GC

6 .. in our config.

---

8 mono/mini/Makefile.am.in | 3 ++-

1 file changed, 2 insertions(+), 1 deletion(-)

10
diff --git a/mono/mini/Makefile.am.in b/mono/mini/Makefile.am.in

12 index 8be85bc..55afe66 100755

--- a/mono/mini/Makefile.am.in

14 +++ b/mono/mini/Makefile.am.in

@@ -100,10 +100,11 @@ endif

16 #The mono uses sgen, while libmono remains boehm

if SUPPORT_SGEN

18 mono_bin_suffix = sgen

+libmono_suffix = sgen

20 else

mono_bin_suffix = boehm

22 -endif

libmono_suffix = boehm

24 +endif

26 if DISABLE_EXECUTABLES

else

28 --

1.9.1

0 From 4cbe591e9f23d093b21f21af4ec7a44dc71cbea7 Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Fri, 25 Apr 2014 09:04:30 +0200

Subject: [PATCH 17/29] Disable console-unix.c in favor of console-null.c

4
The UNIX variant uses a lot of features we don’t have on Andix.

6 ---

mono/metadata/Makefile.am.in | 4 ++++

8 1 file changed, 4 insertions(+)

10 diff --git a/mono/metadata/Makefile.am.in b/mono/metadata/Makefile.am.in

index 0b47ca6..f9b9550 100644

12 --- a/mono/metadata/Makefile.am.in

+++ b/mono/metadata/Makefile.am.in

14 @@ -22,11 +22,15 @@ else

16 assembliesdir = $(exec_prefix)/lib

confdir = $(sysconfdir)

18 +if HOST_OTHER

+platform_sources = $(null_sources)

20 +else

unix_sources = \

22 console-unix.c

24 platform_sources = $(unix_sources)

endif

26 +endif

28 if SHARED_MONO

if SUPPORT_BOEHM

30 --

1.9.1

0 From 24b9e97c4d58a76d0496a20d62882e0833f1ee4f Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Fri, 25 Apr 2014 09:09:00 +0200

Subject: [PATCH 18/29] Adapt configure.in for Andix

4
This should be done by creating a new target like arm-andix-eabi.

6 To work around this, we abuse the "other" arm-none-eabi target and add

our andix specific stuff there.

8 - add HOST_OTHER to disable console-unix in the autoMakefile

- actually active the DISABLE_AOT flag. The already present

10 DISABLE_AOT_COMPILER is used nowhere.

- Disable several compile-and-run checks if cross-compiling (we can’t

12 run the arm code easily ;)
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---

14 configure.in | 24 ++++++++++++++++++++++--

1 file changed, 22 insertions(+), 2 deletions(-)

16
diff --git a/configure.in b/configure.in

18 index 493f671..3f548a1 100644

--- a/configure.in

20 +++ b/configure.in

@@ -96,6 +96,7 @@ case "$host" in

22 esac

24 host_win32=no

+host_other=no

26 target_win32=no

platform_android=no

28 platform_darwin=no

@@ -341,6 +342,9 @@ case "$host" in

30 AC_MSG_WARN([*** Please add $host to configure.in checks!])

host_win32=no

32 libdl="-ldl"

+ host_other=yes

34 + use_sigposix=yes

+ AC_DEFINE(PLATFORM_NO_SYMLINKS,1,[This platform does not support symlinks])

36 ;;

esac

38 AC_MSG_RESULT(ok)

@@ -351,6 +355,7 @@ fi

40
AC_SUBST(extra_runtime_ldflags)

42 AM_CONDITIONAL(HOST_WIN32, test x$host_win32 = xyes)

+AM_CONDITIONAL(HOST_OTHER, test x$host_other = xyes)

44 AM_CONDITIONAL(TARGET_WIN32, test x$target_win32 = xyes)

AM_CONDITIONAL(PLATFORM_LINUX, echo x$target_os | grep -q linux)

46 AM_CONDITIONAL(PLATFORM_DARWIN, test x$platform_darwin = xyes)

@@ -768,6 +773,7 @@ AC_DEFINE_UNQUOTED(DISABLED_FEATURES, "$DISABLED_FEATURES", [String of disabled

48
if test "x$mono_feature_disable_aot" = "xyes"; then

50 AC_DEFINE(DISABLE_AOT_COMPILER, 1, [Disable AOT Compiler])

+ AC_DEFINE(DISABLE_AOT, 1, [Disable AOT Compiler])

52 AC_MSG_NOTICE([Disabled AOT compiler])

fi

54
@@ -1580,7 +1586,7 @@ if test x$target_win32 = xno; then

56 AC_MSG_RESULT(ok)

], [

58 AC_MSG_RESULT(no)

- AC_ERROR(Posix system lacks support for recursive mutexes)

60 + AC_MSG_WARN(Posix system lacks support for recursive mutexes)

])

62 AC_CHECK_FUNCS(pthread_attr_setstacksize)

AC_CHECK_FUNCS(pthread_attr_getstack pthread_attr_getstacksize)

64 @@ -1638,6 +1644,9 @@ if test x$target_win32 = xno; then

], [

66 AC_MSG_RESULT(no)

with_tls=pthread

68 + ], [

+

70 + AC_MSG_RESULT(yes, cross-compiling)

])

72 fi

74 @@ -1750,6 +1759,8 @@ if test x$target_win32 = xno; then

], [

76 with_sigaltstack=no

AC_MSG_RESULT(no)

78 + ], [

+ AC_MSG_RESULT(yes, cross-compiling)

80 ])

fi

82
@@ -1786,7 +1797,7 @@ if test x$target_win32 = xno; then

84 if test $ac_cv_var_timezone = yes; then

AC_DEFINE(HAVE_TIMEZONE, 1, [Have timezone variable])

86 else

- AC_ERROR(unable to find a way to determine timezone)

88 + AC_MSG_WARN(unable to find a way to determine timezone)

fi

90 fi

92 @@ -2656,6 +2667,15 @@ case "$host" in

AOT_SUPPORTED="yes"
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94 CPPFLAGS="$CPPFLAGS -D__ARM_EABI__"

;;

96 + arm*-none*)

+ TARGET=ARM;

98 + arch_target=arm;

+ ACCESS_UNALIGNED="no"

100 + JIT_SUPPORTED=yes

+ sgen_supported=true

102 + AOT_SUPPORTED="no"

+ CPPFLAGS="$CPPFLAGS -D__ARM_EABI__"

104 + ;;

# TODO: make proper support for NaCl host.

106 # arm*-*nacl)

# TARGET=ARM;

108 --

1.9.1

0 From 2776df992ea2d0d8903d10432f878a187893c28e Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Fri, 25 Apr 2014 09:10:46 +0200

Subject: [PATCH 19/29] Add my cool build script to document the configuration

4
run it out of tree in, e.g. _build_arm.

6 then make, pray, make install, and pray.

---

8 _flo_build.sh | 32 ++++++++++++++++++++++++++++++++

1 file changed, 32 insertions(+)

10 create mode 100644 _flo_build.sh

12 diff --git a/_flo_build.sh b/_flo_build.sh

new file mode 100644

14 index 0000000..05ed10f

--- /dev/null

16 +++ b/_flo_build.sh

@@ -0,0 +1,32 @@

18 +PROOT=/home/flo/workspace/masterprojekt

+TOOLCHAINROOT=$PROOT/andix/toolchain

20 +MONODIR=$PROOT/mono

+mkdir -p $MONODIR/_install_arm

22 +CPPFLAGS="-I$PROOT/andix/prebuild/newlib2/arm-none-eabi/include" \

+LDFLAGS="-L$ANDIX_DEPLOY/tz/lib -nostdlib" \

24 +LIBS="-landixC" \

+CFLAGS="-D__andix__ -mcpu=cortex-a8 -mfloat-abi=soft -DDISABLE_SOCKETS" \

26 +$MONODIR/autogen.sh \

+ --prefix $MONODIR/_install_arm \

28 + --with-tls=__thread \

+ --enable-small-config=yes \

30 + --enable-minimal=aot,profiler,debug,large_code,com,portability,attach,full_messages,soft_debug,shared_perfcounters,

disable_remoting \

+ --with-ikvm-native=no \

32 + --with-moonlight=no \

+ --disable-shared-memory \

34 + --disable-system-aot \

+ --disable-parallel-mark \

36 + --with-sgen=yes \

+ --disable-boehm \

38 + --with-gc=sgen \

+ --with-x=no \

40 + --with-libgdiplus=no \

+ --with-sigaltstack=yes \

42 + --with-http=off \

+ --with-html=off \

44 + --with-ftp=off \

+ --host=arm-none-eabi \

46 + --with-crosspkgdir=$TOOLCHAINROOT/usr/share/pkgconfig \

+ --with-shared_mono=yes \

48 + --with-static_mono=yes \

+ --disable-executables

50 --

1.9.1

0 From f5cf535e811577eb923f029c7524b35ca2cd1efe Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Fri, 25 Apr 2014 09:12:22 +0200

Subject: [PATCH 20/29] Revert "Disable signal features in mini"

4
This reverts commit 036185294198769b75b51c7fe3971899b6b373ec.
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6 The features are available now!

---

8 mono/mini/mini-arm.h | 4 ++--

1 file changed, 2 insertions(+), 2 deletions(-)

10
diff --git a/mono/mini/mini-arm.h b/mono/mini/mini-arm.h

12 index ba862f8..9fcd654 100644

--- a/mono/mini/mini-arm.h

14 +++ b/mono/mini/mini-arm.h

@@ -220,7 +220,7 @@ typedef struct MonoCompileArch {

16
#define MONO_ARCH_USE_SIGACTION 1

18
-#if defined(__native_client__) || defined(__andix__)

20 +#if defined(__native_client__)

#undef MONO_ARCH_USE_SIGACTION

22 #endif

24 @@ -259,7 +259,7 @@ typedef struct MonoCompileArch {

#define MONO_ARCH_HAVE_OPCODE_NEEDS_EMULATION 1

26 #define MONO_ARCH_HAVE_OBJC_GET_SELECTOR 1

28 -#if defined(__native_client__) || defined(__andix__)

+#if defined(__native_client__)

30 #undef MONO_ARCH_SOFT_DEBUG_SUPPORTED

#undef MONO_ARCH_HAVE_SIGCTX_TO_MONOCTX

32 #undef MONO_ARCH_HAVE_CONTEXT_SET_INT_REG

--

34 1.9.1

0 From 33482e2c6832563c741b85bf42cc1a0641fe2421 Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Fri, 2 May 2014 20:30:32 +0200

Subject: [PATCH 21/29] Disable shadowcopy, and what should already be disabled

4
---

6 _flo_build.sh | 2 +-

mono/mini/mini-arm.h | 4 ++++

8 mono/mini/mini.c | 2 ++

3 files changed, 7 insertions(+), 1 deletion(-)

10
diff --git a/_flo_build.sh b/_flo_build.sh

12 index 05ed10f..fbd54d2 100644

--- a/_flo_build.sh

14 +++ b/_flo_build.sh

@@ -10,7 +10,7 @@ $MONODIR/autogen.sh \

16 --prefix $MONODIR/_install_arm \

--with-tls=__thread \

18 --enable-small-config=yes \

- --enable-minimal=aot,profiler,debug,large_code,com,portability,attach,full_messages,soft_debug,shared_perfcounters,

disable_remoting \

20 + --enable-minimal=aot,profiler,debug,large_code,com,portability,attach,full_messages,soft_debug,shared_perfcounters,

disable_remoting,shadowcopy \

--with-ikvm-native=no \

22 --with-moonlight=no \

--disable-shared-memory \

24 diff --git a/mono/mini/mini-arm.h b/mono/mini/mini-arm.h

index 9fcd654..e307f4a 100644

26 --- a/mono/mini/mini-arm.h

+++ b/mono/mini/mini-arm.h

28 @@ -265,6 +265,10 @@ typedef struct MonoCompileArch {

#undef MONO_ARCH_HAVE_CONTEXT_SET_INT_REG

30 #endif

32 +#if defined(__andix__)

+#undef MONO_ARCH_SOFT_DEBUG_SUPPORTED

34 +#endif

+

36 /* Matches the HAVE_AEABI_READ_TP define in mini-arm.c */

#if defined(__ARM_EABI__) && defined(__linux__) && !defined(TARGET_ANDROID) && !defined(__native_client__)

38 #define MONO_ARCH_HAVE_TLS_GET 1

diff --git a/mono/mini/mini.c b/mono/mini/mini.c

40 index 9ef81c1..508742f 100644

--- a/mono/mini/mini.c

42 +++ b/mono/mini/mini.c

@@ -6724,11 +6724,13 @@ SIG_HANDLER_FUNC (, mono_sigsegv_signal_handler)

44
#if !defined(HOST_WIN32) && defined(HAVE_SIG_INFO)

46 fault_addr = info->si_addr;
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+#ifndef DISABLE_AOT

48 if (mono_aot_is_pagefault (info->si_addr)) {

mono_aot_handle_pagefault (info->si_addr);

50 return;

}

52 #endif

+#endif

54
/* The thread might no be registered with the runtime */

56 if (!mono_domain_get () || !jit_tls) {

--

58 1.9.1

0 From 8465189bfe0a43fd43ce64d3cd2b903eacbec6fe Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Fri, 2 May 2014 20:32:25 +0200

Subject: [PATCH 22/29] Configure mono_valloc_aligned for andix

4
We don’t have mmap, so the default config is not active. Let’s use

6 mono’s implementation.

But we have to disable the partial free() calls. Newlib’s malloc only

8 supports free’ing junks as a whole, otherwise it doesn’t find its header

and crashes

10 ---

mono/utils/mono-mmap.c | 5 +++++

12 1 file changed, 5 insertions(+)

14 diff --git a/mono/utils/mono-mmap.c b/mono/utils/mono-mmap.c

index b2e2451..efdb671 100644

16 --- a/mono/utils/mono-mmap.c

+++ b/mono/utils/mono-mmap.c

18 @@ -458,6 +458,7 @@ mono_valloc (void *addr, size_t length, int flags)

return malloc (length);

20 }

22 +#ifndef __andix__

void*
24 mono_valloc_aligned (size_t length, size_t alignment, int flags)

{

26 @@ -465,6 +466,7 @@ mono_valloc_aligned (size_t length, size_t alignment, int flags)

}

28
#define HAVE_VALLOC_ALIGNED

30 +#endif

32 int

mono_vfree (void *addr, size_t length)

34 @@ -720,10 +722,13 @@ mono_valloc_aligned (size_t size, size_t alignment, int flags)

36 aligned = aligned_address (mem, size, alignment);

38 + // newlib on andix can not free parts of malloced blocks

+#ifndef __andix__

40 if (aligned > mem)

mono_vfree (mem, aligned - mem);

42 if (aligned + size < mem + size + alignment)

mono_vfree (aligned + size, (mem + size + alignment) - (aligned + size));

44 +#endif

46 return aligned;

}

48 --

1.9.1

0 From 8370bbdebe5639957b80a2129664308aab663447 Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Sat, 3 May 2014 16:20:07 +0200

Subject: [PATCH 23/29] Don’t use fcntl on Andix for std* files

4
---

6 mono/io-layer/posix.c | 2 +-

1 file changed, 1 insertion(+), 1 deletion(-)

8
diff --git a/mono/io-layer/posix.c b/mono/io-layer/posix.c

10 index b51c1ad..62bc1a0 100644

--- a/mono/io-layer/posix.c

12 +++ b/mono/io-layer/posix.c
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@@ -64,7 +64,7 @@ gpointer _wapi_stdhandle_create (int fd, const gchar *name)

14 DEBUG("%s: creating standard handle type %s, fd %d", __func__,

name, fd);

16
-#if !defined(__native_client__)

18 +#if !( defined(__native_client__) || defined(__andix__) )

/* Check if fd is valid */

20 do {

flags=fcntl(fd, F_GETFL);

22 --

1.9.1

0 From 20bc7912f24a853557670335dbd78377f722c91e Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Mon, 5 May 2014 10:38:06 +0200

Subject: [PATCH 24/29] Re-work signal handler patch.

4
---

6 mono/io-layer/processes.c | 12 ++----------

1 file changed, 2 insertions(+), 10 deletions(-)

8
diff --git a/mono/io-layer/processes.c b/mono/io-layer/processes.c

10 index 14278a3..ea1f713 100644

--- a/mono/io-layer/processes.c

12 +++ b/mono/io-layer/processes.c

@@ -2843,22 +2843,14 @@ process_close (gpointer handle, gpointer data)

14
#if HAVE_SIGACTION

16 MONO_SIGNAL_HANDLER_FUNC (static, mono_sigchld_signal_handler, (int _dummy, siginfo_t *info, void *context))

-#if defined(__andix__)

18 -mono_sigchld_signal_handler (int _dummy)

-#else

20 -#endif

{

22 int status;

int pid;

24 struct MonoProcess *p;

26 #if DEBUG

-#if defined(__andix__)

28 - fprintf (stdout, "SIG CHILD handler\n");

-#else

30 fprintf (stdout, "SIG CHILD handler for pid: %i\n", info->si_pid);

#endif

32 -#endif

34 InterlockedIncrement (&mono_processes_read_lock);

36 @@ -2901,8 +2893,8 @@ static void process_add_sigchld_handler (void)

38 sigemptyset (&sa.sa_mask);

#if defined(__andix__)

40 - sa.sa_handler = mono_sigchld_signal_handler;

- sa.sa_flags = 0;

42 + sa.sa_sigaction = mono_sigchld_signal_handler;

+ sa.sa_flags = SA_SIGINFO;

44 #else

sa.sa_sigaction = mono_sigchld_signal_handler;

46 sa.sa_flags = SA_NOCLDSTOP | SA_SIGINFO;

--

48 1.9.1

0 From b84b07884dc91a3d19259630c2c5d8367d83b794 Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Tue, 6 May 2014 17:00:10 +0200

Subject: [PATCH 25/29] seperate install path for 3.2.8

4
---

6 _flo_build.sh | 5 +++--

1 file changed, 3 insertions(+), 2 deletions(-)

8
diff --git a/_flo_build.sh b/_flo_build.sh

10 index fbd54d2..4cf48fc 100644

--- a/_flo_build.sh

12 +++ b/_flo_build.sh

@@ -1,13 +1,14 @@

14 PROOT=/home/flo/workspace/masterprojekt
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TOOLCHAINROOT=$PROOT/andix/toolchain

16 MONODIR=$PROOT/mono

-mkdir -p $MONODIR/_install_arm

18 +INSTALLDIR=$MONODIR/_install_arm328

+mkdir -p $INSTALLDIR

20 CPPFLAGS="-I$PROOT/andix/prebuild/newlib2/arm-none-eabi/include" \

LDFLAGS="-L$ANDIX_DEPLOY/tz/lib -nostdlib" \

22 LIBS="-landixC" \

CFLAGS="-D__andix__ -mcpu=cortex-a8 -mfloat-abi=soft -DDISABLE_SOCKETS" \

24 $MONODIR/autogen.sh \

- --prefix $MONODIR/_install_arm \

26 + --prefix $INSTALLDIR \

--with-tls=__thread \

28 --enable-small-config=yes \

--enable-minimal=aot,profiler,debug,large_code,com,portability,attach,full_messages,soft_debug,shared_perfcounters,

disable_remoting,shadowcopy \

30 --

1.9.1

0 From b007221989d8714fea6573092c67b6661e047260 Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Fri, 9 May 2014 13:34:53 +0200

Subject: [PATCH 26/29] System.Console: Load NullConsoleDriver on unknown

4 Terminals

6 Better fall back to NullConsoleDriver it no terminfo can be found.

We are probably on Andix ;)

8 ---

mcs/class/corlib/System/ConsoleDriver.cs | 3 ++-

10 mcs/class/corlib/System/TermInfoDriver.cs | 2 +-

2 files changed, 3 insertions(+), 2 deletions(-)

12
diff --git a/mcs/class/corlib/System/ConsoleDriver.cs b/mcs/class/corlib/System/ConsoleDriver.cs

14 index cf1faa8..dc0dabb 100644

--- a/mcs/class/corlib/System/ConsoleDriver.cs

16 +++ b/mcs/class/corlib/System/ConsoleDriver.cs

@@ -47,10 +47,11 @@ namespace System {

18 driver = CreateWindowsConsoleDriver ();

} else {

20 string term = Environment.GetEnvironmentVariable ("TERM");

+ string terminfo = TermInfoDriver.SearchTerminfo (term);

22
// Perhaps we should let the Terminfo driver return a

24 // success/failure flag based on the terminal properties

- if (term == "dumb"){

26 + if (term == "dumb" || terminfo == null) {

is_console = false;

28 driver = CreateNullConsoleDriver ();

} else

30 diff --git a/mcs/class/corlib/System/TermInfoDriver.cs b/mcs/class/corlib/System/TermInfoDriver.cs

index e14f712..f2e5504 100644

32 --- a/mcs/class/corlib/System/TermInfoDriver.cs

+++ b/mcs/class/corlib/System/TermInfoDriver.cs

34 @@ -98,7 +98,7 @@ namespace System {

StreamWriter logger;

36 #endif

38 - static string SearchTerminfo (string term)

+ public static string SearchTerminfo (string term)

40 {

if (term == null || term == String.Empty)

42 return null;

--

44 1.9.1

0 From 9b494a5309a149c5bb970989e5eb3c4a2560d685 Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Thu, 15 May 2014 10:12:10 +0200

Subject: [PATCH 27/29] Revert "seperate install path for 3.2.8"

4
This reverts commit b84b07884dc91a3d19259630c2c5d8367d83b794.

6 but keeps the INSTALLDIR variable.

8 Conflicts:

_flo_build.sh

10 ---

_flo_build.sh | 2 +-
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12 1 file changed, 1 insertion(+), 1 deletion(-)

14 diff --git a/_flo_build.sh b/_flo_build.sh

index 4cf48fc..6a48162 100644

16 --- a/_flo_build.sh

+++ b/_flo_build.sh

18 @@ -1,7 +1,7 @@

PROOT=/home/flo/workspace/masterprojekt

20 TOOLCHAINROOT=$PROOT/andix/toolchain

MONODIR=$PROOT/mono

22 -INSTALLDIR=$MONODIR/_install_arm328

+INSTALLDIR=$MONODIR/_install_arm

24 mkdir -p $INSTALLDIR

CPPFLAGS="-I$PROOT/andix/prebuild/newlib2/arm-none-eabi/include" \

26 LDFLAGS="-L$ANDIX_DEPLOY/tz/lib -nostdlib" \

--

28 1.9.1

0 From 0d72d74eda153e98eda5ebf32b5aff93813b64f7 Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Thu, 15 May 2014 17:37:12 +0200

Subject: [PATCH 28/29] Revert workaround "Configure mono_valloc_aligned for

4 andix"

6 This reverts commit 8465189bfe0a43fd43ce64d3cd2b903eacbec6fe.

which was a workaround, wastig a lot of memory

8 ---

mono/utils/mono-mmap.c | 5 -----

10 1 file changed, 5 deletions(-)

12 diff --git a/mono/utils/mono-mmap.c b/mono/utils/mono-mmap.c

index efdb671..b2e2451 100644

14 --- a/mono/utils/mono-mmap.c

+++ b/mono/utils/mono-mmap.c

16 @@ -458,7 +458,6 @@ mono_valloc (void *addr, size_t length, int flags)

return malloc (length);

18 }

20 -#ifndef __andix__

void*
22 mono_valloc_aligned (size_t length, size_t alignment, int flags)

{

24 @@ -466,7 +465,6 @@ mono_valloc_aligned (size_t length, size_t alignment, int flags)

}

26
#define HAVE_VALLOC_ALIGNED

28 -#endif

30 int

mono_vfree (void *addr, size_t length)

32 @@ -722,13 +720,10 @@ mono_valloc_aligned (size_t size, size_t alignment, int flags)

34 aligned = aligned_address (mem, size, alignment);

36 - // newlib on andix can not free parts of malloced blocks

-#ifndef __andix__

38 if (aligned > mem)

mono_vfree (mem, aligned - mem);

40 if (aligned + size < mem + size + alignment)

mono_vfree (aligned + size, (mem + size + alignment) - (aligned + size));

42 -#endif

44 return aligned;

}

46 --

1.9.1

0 From 744ad5727ad1a9fc970f7c6b99800333354ddaef Mon Sep 17 00:00:00 2001

From: Florian Achleitner <florian.achleitner@student.tugraz.at>

2 Date: Thu, 15 May 2014 17:40:55 +0200

Subject: [PATCH 29/29] Provide an andix-specific mono_valloc_aligned

4
mono’s SGEN wants 16KB aligned memory blocks, which are hard to get from

6 malloc(). It usually uses mmap, which andix doesn’t have.

But newlib’s heap manager supports memalign(), which delivers the

8 aligned junk, without wasting memory.

---
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10 mono/utils/mono-mmap.c | 17 +++++++++++++++++

1 file changed, 17 insertions(+)

12
diff --git a/mono/utils/mono-mmap.c b/mono/utils/mono-mmap.c

14 index b2e2451..8862b83 100644

--- a/mono/utils/mono-mmap.c

16 +++ b/mono/utils/mono-mmap.c

@@ -458,11 +458,13 @@ mono_valloc (void *addr, size_t length, int flags)

18 return malloc (length);

}

20
+#ifndef __andix__

22 void*
mono_valloc_aligned (size_t length, size_t alignment, int flags)

24 {

g_assert_not_reached ();

26 }

+#endif

28
#define HAVE_VALLOC_ALIGNED

30
@@ -707,6 +709,21 @@ mono_shared_area_instances (void **array, int count)

32
#endif // HOST_WIN32

34
+#ifdef __andix__

36 +#include <malloc.h>

+void*
38 +mono_valloc_aligned (size_t size, size_t alignment, int flags)

+{

40 + char *aligned_block, *align_check;

+ aligned_block = memalign(alignment, size);

42 +

+ align_check = aligned_address(aligned_block, size, alignment);

44 + g_assert(align_check == aligned_block);

+ return aligned_block;

46 +}

+#define HAVE_VALLOC_ALIGNED

48 +#endif

+

50 #ifndef HAVE_VALLOC_ALIGNED

void*
52 mono_valloc_aligned (size_t size, size_t alignment, int flags)

--

54 1.9.1
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Appendix D

ANDIX Selected Source Files

D.1 ARM Locking Primitves

Implementation of a simple Spinlock, atomic increment, and decrement functions using ARM Exclusive

Monitors for user space and kernel.

Listing D.1: lock.h
0

typedef int spinlock_t;

2 typedef int spinsem_t;

4 #define LOCKED 1

#define UNLOCKED 0

6
// define for other things to do for spinning.

8 #ifndef _DO_SPINNING

// forward decl. for every usecase :)

10 void yield(void);

#define _DO_SPINNING yield

12 #endif

14 /*

* Mutex using exclusive monitor instructions based on:

16 * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dht0008a/ch01s03s02.html

* It is important, that everything that can run between LDREX and STREX clears

18 * the monitor with CLREX to force a retry. Otherwise the operation is not save.

*
20 * GCC inline asm-adapted. GCC optimizes this quite well (try -O1).

*/

22
inline static void spinlock_init(spinlock_t *m) {

24 *m = UNLOCKED;

}

26
inline static void spinlock_aquire(spinlock_t *m) {

28 spinlock_t val;

int retry;

30
while (1) { // (1) and break below gives slightly better asm output (one cmp instruction less :) because

continue has no conditon to check)

32 asm volatile (

"LDREX %0, [%1] \n"

34 : "=r" (val)

: "r" (m)

36 : "memory");

if (val == LOCKED) {

38 _DO_SPINNING();

continue;

40 }

asm volatile (

42 "STREX %0, %2, [%1] \n"

145
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: "=&r" (retry)

44 : "r" (m), "r" (LOCKED)

: "memory"

46 );

if (!retry)

48 break;

}

50
asm volatile ("DMB \n" // Data Memory Barrier required for consistent memory view.

52 ::: "memory");

}

54
// The thread must hold the mutex, therefore it is save to use a non-exclusive str.

56 // The str invalidates an exclusive monitor for this address.

inline static void spinlock_release(spinlock_t *m) {

58 asm volatile ("DMB \n"

::: "memory");

60 *m = UNLOCKED;

}

62

64 inline static void spinsem_init(spinsem_t *s, spinsem_t val) {

*s = val;

66 }

68 inline static void spinsem_dec(spinsem_t *s) {

spinsem_t val;

70 int retry;

72 while (1) {

asm volatile (

74 "LDREX %0, [%1] \n"

: "=r" (val)

76 : "r" (s)

: "memory");

78 if (val == 0) {

_DO_SPINNING();

80 continue;

}

82 val--;

asm volatile (

84 "STREX %0, %2, [%1] \n"

: "=&r" (retry)

86 : "r" (s), "r" (val)

: "memory"

88 );

if (!retry)

90 break;

}

92
asm volatile ("DMB \n"

94 ::: "Memory");

}

96
inline static void spinsem_inc(spinsem_t *s) {

98 spinsem_t val;

int retry;

100
asm volatile ("DMB \n"

102 ::: "Memory");

while (1) {

104 asm volatile (

"LDREX %0, [%1] \n"

106 : "=r" (val)

: "r" (s)

108 : "memory");

val++;

110 asm volatile (

"STREX %0, %2, [%1] \n"

112 : "=&r" (retry)

: "r" (s), "r" (val)

114 : "memory"

);

116 if (!retry)

break;

118 }

}

120
inline static int atomic_inc(int* lock) {

122 int result, modified;

result = 0;
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124 modified = 0;

126 asm volatile ("1:LDREX %0,[%1]\n"

"ADD %0,%0,#1\n"

128 "STREX %2,%0,[%1]\n"

"CMP %2,#0\n"

130 "BNE 1b"

: "=&r" (result)

132 : "r" (lock), "r" (modified)

: "cc", "memory"

134 );

136 return result;

}

138
inline static int atomic_dec(int* lock) {

140 int result, modified;

result = 0;

142 modified = 0;

144 asm volatile ("1:LDREX %0,[%1]\n"

"SUB %0,%0,#1\n"

146 "STREX %2,%0,[%1]\n"

"CMP %2,#0\n"

148 "BNE 1b"

: "=&r" (result)

150 : "r" (lock), "r" (modified)

: "cc", "memory"

152 );

154 return result;

}

D.2 Threading

Listing D.2: pthread.c, C library pthread functions.
0 /**

* @file pthread.c

2 * @brief

* Created on: Feb 3, 2014

4 * @author Florian Achleitner <florian.achleitner@student.tugraz.at>

*/

6

8 #include <pthread.h>

#include <sys/types.h>

10 #include <andix_syscall.h>

#include <swi.h>

12 #include <errno.h>

#include <reent.h>

14 #include <string.h>

#include <limits.h>

16
#define _DO_SPINNING pthread_yield

18 #include <lock.h>

20 int sleep_until_ts(const struct timespec *ts, struct timespec *woken);

22 static __thread struct _pthread_cleanup_context *cleanup_head;

24 struct pthread_descr {

pthread_t tid;

26 struct pthread_descr *next_waiter;

int resume_count;

28 void (*atcancel)(void *);

void *atcancel_data;

30 };

32 static __thread struct pthread_descr self_descr;

34 #define PTHREAD_KEYS_MAX 256

#define PTHREAD_KEY_FREE (__pthread_key)(-1)

36 #define PTHREAD_KEY_INUSE (__pthread_key)(-2)
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#define PTHREAD_KEY_DESTRADDR_MAX ((pthread_destr_f) 0x10000000)

38 /*

* The entries define the MSB -1 as "not in use".

40 * Everything else means in use. If the key value is an

* address in userspace (below PTHREAD_KEY_DESTR_MAX),

42 * it is seen as a function pointer.

*/

44 typedef unsigned int __pthread_key;

typedef void (*pthread_destr_f)(void *);

46 static __pthread_key pthread_keys[PTHREAD_KEYS_MAX];

static spinlock_t pthread_keys_lock;

48 static __thread void *pthread_specific_data[PTHREAD_KEYS_MAX];

50 static inline int pthread_key_isfree(pthread_key_t k) {

return pthread_keys[k] == PTHREAD_KEY_FREE;

52 }

54 static inline pthread_destr_f pthread_key_get_destr(pthread_key_t k) {

return pthread_keys[k] < PTHREAD_KEY_DESTRADDR_MAX ?

56 (pthread_destr_f) pthread_keys[k] : NULL;

}

58
void proc_init(void) {

60 int i;

for (i = 0; i < PTHREAD_KEYS_MAX; i++)

62 pthread_keys[i] = PTHREAD_KEY_FREE;

spinlock_init(&pthread_keys_lock);

64 }

66 void thread_init(pthread_t tid) {

cleanup_head = NULL;

68 self_descr.tid = tid;

self_descr.next_waiter = NULL;

70 self_descr.resume_count = 0;

self_descr.atcancel = NULL;

72 self_descr.atcancel_data = NULL;

reent_init();

74 int i;

for (i = 0; i < PTHREAD_KEYS_MAX; i++)

76 pthread_specific_data[i] = NULL;

}

78
static void thread_entry(void * (*thread_func)(void *), void *arg, pthread_t tid) {

80 thread_init(tid);

pthread_exit(thread_func(arg));

82 for (;;); // never to be reached!

}

84
static void cancel_cleanup(void) {

86 if (self_descr.atcancel)

self_descr.atcancel(self_descr.atcancel_data);

88 pthread_exit(PTHREAD_CANCELED);

}

90
void _pthread_cleanup_push(struct _pthread_cleanup_context *context,

92 void (*routine)(void *), void *arg) {

context->_routine = routine;

94 context->_arg = arg;

context->_canceltype = 0; // not used here

96 context->_previous = cleanup_head;

cleanup_head = context;

98 }

100 void _pthread_cleanup_pop(struct _pthread_cleanup_context *context,

int execute) {

102 if (execute)

context->_routine(context->_arg);

104 cleanup_head = context->_previous;

}

106

108 int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

void *(*start_routine) (void *), void *arg) {

110 if (attr) {

if (!attr->is_initialized)

112 return EINVAL;

}

114 struct thread_startup_info info = {

.tid = thread,

116 .thread_entry = thread_entry,

.thread_func = start_routine,



D.2. Threading 149

118 .arg = arg,

.cancel_cleanup = cancel_cleanup

120 };

return __swi_1(SWI_THREAD_CREATE, &info);

122 }

124 void pthread_exit(void *retval) {

while (cleanup_head) {

126 cleanup_head->_routine(cleanup_head->_arg);

cleanup_head = cleanup_head->_previous;

128 }

pthread_key_t i;

130 /*

* The pthread spec requires this to run multiple times, if there

132 * are still non-NULL values. We ignore that and hope it doesn’t matter :)

*/

134 for (i = 0; i < PTHREAD_KEYS_MAX; i++) {

pthread_destr_f terminator = pthread_key_get_destr(i);

136 if (terminator && pthread_specific_data[i])

terminator(pthread_specific_data[i]);

138 }

__swi_1(SWI_THREAD_EXIT, retval);

140 }

142 int pthread_cancel(pthread_t thread) {

return __swi_1(SWI_THREAD_CANCEL, thread);

144 }

146 int pthread_join(pthread_t thread, void **retval) {

return __swi_2(SWI_THREAD_JOIN, thread, retval);

148 }

150 int pthread_detach(pthread_t thread) {

return __swi_1(SWI_THREAD_DETACH, thread);

152 }

154 pthread_t pthread_self(void) {

return self_descr.tid;

156 }

158 void _yield(void);

void pthread_yield(void) {

160 _yield();

}

162
int sched_yield(void) {

164 _yield();

return 0;

166 }

168 int pthread_attr_init(pthread_attr_t *attr) {

attr->is_initialized = 1;

170 attr->detachstate = 0;

attr->stackaddr = NULL;

172 attr->stacksize = 0;

return 0;

174 }

176 int pthread_attr_destroy(pthread_attr_t *attr) {

attr->is_initialized = 0;

178 return 0;

}

180
int pthread_mutexattr_init(pthread_mutexattr_t *attr) {

182 attr->is_initialized = 1;

attr->recursive = 0;

184 return 0;

}

186 int pthread_mutexattr_destroy(pthread_mutexattr_t *attr) {

attr->is_initialized = 0;

188 return 0;

}

190
int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type) {

192 if (!attr->is_initialized)

return EINVAL;

194 *type = attr->recursive ? PTHREAD_MUTEX_RECURSIVE : PTHREAD_MUTEX_DEFAULT;

return 0;

196 }

198 int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type) {
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if (!attr->is_initialized)

200 return EINVAL;

switch (type) {

202 case PTHREAD_MUTEX_DEFAULT:

attr->recursive = 0;

204 return 0;

case PTHREAD_MUTEX_RECURSIVE:

206 attr->recursive = 1;

return 0;

208 default:

return EINVAL;

210 }

}

212
int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr) {

214 mutex->lock_count = 0;

mutex->owner = NULL;

216 mutex->lock.val = 1;

mutex->lock.spinlock = 0;

218 mutex->lock.waiter = NULL;

if (attr && attr->is_initialized)

220 mutex->recursive = attr->recursive;

else

222 mutex->recursive = 0;

return 0;

224 }

226 int pthread_mutex_destroy(pthread_mutex_t *mutex) {

if (mutex->lock.val < 1)

228 return EBUSY;

return 0;

230 }

int sem_init(sem_t *sem, int pshared, unsigned int value) {

232 if (pshared)

return ENOSYS;

234 if (value > INT_MAX)

return EINVAL;

236 sem->lock.val = value;

sem->lock.spinlock = 0;

238 sem->lock.waiter = NULL;

return 0;

240 }

242 int sem_destroy(sem_t *sem) {

return 0;

244 }

246 static void _thread_resume(struct pthread_descr *thd) {

if (atomic_inc(&thd->resume_count) >= 0) {

248 _resume(thd->tid);

}

250 }

252 static int _thread_suspend(const struct timespec *abs_timeout) {

int to = 0;

254 struct pthread_descr *thd = &self_descr;

if (atomic_dec(&thd->resume_count) < 0) {

256 do {

if (abs_timeout) {

258 to = !sleep_until_ts(abs_timeout, NULL);

if (to)

260 atomic_inc(&thd->resume_count);

} else

262 _suspend();

} while (thd->resume_count < 0);

264 }

return to;

266 }

268 static void _queue_remove(struct pthread_descr **head, struct pthread_descr *which) {

struct pthread_descr *thd = *head, **referer = head;

270 if (thd == NULL)

return;

272
for (; thd && thd->next_waiter; referer = &thd->next_waiter, thd = thd->next_waiter) {

274 if (thd == which)

break;

276 }

if (thd == which) {

278 *referer = thd->next_waiter;

which->next_waiter = NULL;
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280 } else {

printf("_lock_queue WARNING: thread to remove %d not found in queue\n", which->tid);

282 }

}

284
static void _lock_queue_remove(void *data) {

286 struct _pthread_corelock *lock = data;

spinlock_aquire(&lock->spinlock);

288 _queue_remove(&lock->waiter, &self_descr);

spinlock_release(&lock->spinlock);

290 }

292 static int _lock_lock(struct _pthread_corelock *lock, const struct timespec *abs_timeout) {

int to = 0;

294 while (1) {

spinlock_aquire(&lock->spinlock);

296 if (lock->val < 1) { // locked

self_descr.next_waiter = lock->waiter;

298 lock->waiter = &self_descr;

spinlock_release(&lock->spinlock);

300 self_descr.atcancel = _lock_queue_remove;

self_descr.atcancel_data = lock;

302 to = _thread_suspend(abs_timeout);

self_descr.atcancel = NULL;

304 self_descr.atcancel_data = NULL;

_lock_queue_remove(lock);

306 if (to) {// timeout

break;

308 }

} else { // not locked

310 lock->val--;

break;

312 }

}

314 spinlock_release(&lock->spinlock);

return to;

316 }

318 int pthread_mutex_timedlock(pthread_mutex_t *mutex,

const struct timespec *abs_timeout) {

320 switch (mutex->recursive) {

case 1:

322 if (mutex->owner &&

mutex->owner->tid == self_descr.tid) {

324 mutex->lock_count++;

return 0;

326 }

if (_lock_lock(&mutex->lock, abs_timeout)) // timeout

328 return ETIMEDOUT;

mutex->owner = &self_descr;

330 mutex->lock_count = 0;

return 0;

332 case 0:

if (mutex->owner &&

334 mutex->owner->tid == self_descr.tid) // the standard says this is only for ERRORCHECK

return EDEADLK; // I say, it makes sense.

336 if (_lock_lock(&mutex->lock, abs_timeout))

return ETIMEDOUT;

338 mutex->owner = &self_descr;

return 0;

340 default:

return EINVAL;

342 }

}

344
int pthread_mutex_lock(pthread_mutex_t *mutex) {

346 return pthread_mutex_timedlock(mutex, NULL);

}

348
int sem_wait(sem_t *sem) {

350 _lock_lock(&sem->lock, NULL);

return 0;

352 }

354 static int _lock_trylock(struct _pthread_corelock *lock) {

int ret;

356 spinlock_aquire(&lock->spinlock);

if (lock->val < 1) { // locked

358 ret = EBUSY;

} else { // not locked

360 lock->val--;
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ret = 0;

362 }

spinlock_release(&lock->spinlock);

364 return ret;

}

366
int pthread_mutex_trylock(pthread_mutex_t *mutex) {

368 switch (mutex->recursive) {

case 1:

370 if (mutex->owner &&

mutex->owner->tid == self_descr.tid) {

372 mutex->lock_count++;

return 0;

374 }

int ret = _lock_trylock(&mutex->lock);

376 if (ret == 0) {

mutex->owner = &self_descr;

378 mutex->lock_count = 0;

}

380 return ret;

case 0:

382 if (mutex->owner &&

mutex->owner->tid == self_descr.tid)

384 return EDEADLK;

ret = _lock_trylock(&mutex->lock);

386 if (ret == 0)

mutex->owner = &self_descr;

388 return ret;

default:

390 return EINVAL;

}

392 }

394 int sem_trywait(sem_t *sem) {

return _lock_trylock(&sem->lock);

396 }

398 static void _lock_unlock(struct _pthread_corelock *lock) {

spinlock_aquire(&lock->spinlock);

400 lock->val++;

struct pthread_descr *thd = lock->waiter, **referer = &lock->waiter;

402 if (thd) {

for (; thd->next_waiter; referer = &thd->next_waiter, thd = thd->next_waiter) ;

404 *referer = NULL;

}

406 spinlock_release(&lock->spinlock);

if (thd) _thread_resume(thd);

408 }

410 int pthread_mutex_unlock(pthread_mutex_t *mutex) {

switch (mutex->recursive) {

412 case 1:

if (mutex->owner &&

414 mutex->owner->tid != self_descr.tid)

return EPERM;

416 if (mutex->lock_count > 0) {

mutex->lock_count--;

418 return 0;

}

420 mutex->owner = NULL;

_lock_unlock(&mutex->lock);

422 return 0;

case 0:

424 if (mutex->owner &&

mutex->owner->tid != self_descr.tid)

426 return EPERM;

mutex->owner = NULL;

428 _lock_unlock(&mutex->lock);

return 0;

430 default:

return EINVAL;

432 }

}

434
int sem_post(sem_t *sem) {

436 _lock_unlock(&sem->lock);

return 0;

438 }

440 int pthread_cond_destroy(pthread_cond_t *cond) {

if (cond->waiter)
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442 return EBUSY;

return 0;

444 }

446 int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr) {

if (attr) // we don’t support attrs currently

448 return EINVAL;

cond->waiter = NULL;

450 cond->spinlock = 0;

return 0;

452 }

454 static void _cond_queue_remove(void *data) {

pthread_cond_t *cond = data;

456 spinlock_aquire(&cond->spinlock);

_queue_remove(&cond->waiter, &self_descr);

458 spinlock_release(&cond->spinlock);

}

460
int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,

462 const struct timespec *abstime)

{

464 if (mutex->owner != &self_descr)

return EINVAL;

466 spinlock_aquire(&cond->spinlock);

self_descr.next_waiter = cond->waiter;

468 cond->waiter = &self_descr;

spinlock_release(&cond->spinlock);

470 self_descr.atcancel = _cond_queue_remove;

self_descr.atcancel_data = cond;

472
pthread_mutex_unlock(mutex);

474 int to = _thread_suspend(abstime);

self_descr.atcancel = NULL;

476 self_descr.atcancel_data = NULL;

_cond_queue_remove(cond);

478 if (to) {

return ETIMEDOUT;

480 }

pthread_mutex_lock(mutex);

482 return 0;

}

484
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex) {

486 return pthread_cond_timedwait(cond, mutex, NULL);

}

488
int pthread_cond_broadcast(pthread_cond_t *cond) {

490 spinlock_aquire(&cond->spinlock);

struct pthread_descr *thd = cond->waiter, **referer = &cond->waiter;

492 // resume all thread in the queue

for (; thd; referer = &thd->next_waiter, thd = thd->next_waiter) {

494 *referer = NULL;

_thread_resume(thd);

496 }

spinlock_release(&cond->spinlock);

498 return 0;

}

500
int pthread_cond_signal(pthread_cond_t *cond) {

502 spinlock_aquire(&cond->spinlock);

struct pthread_descr *thd = cond->waiter, **referer = &cond->waiter;

504 if (thd) {

// resume last thread in the queue

506 for (; thd->next_waiter; referer = &thd->next_waiter, thd = thd->next_waiter) ;

*referer = NULL;

508 _thread_resume(thd);

}

510
spinlock_release(&cond->spinlock);

512 return 0;

}

514
int pthread_key_create(pthread_key_t *key, void (*destructor)(void*)) {

516 pthread_key_t i;

if (destructor > PTHREAD_KEY_DESTRADDR_MAX)

518 destructor = NULL; //silently ignore illegal destructors (not in userspace)

spinlock_aquire(&pthread_keys_lock);

520 for (i = 0; i < PTHREAD_KEYS_MAX; i++) {

if (pthread_key_isfree(i)) {

522 pthread_keys[i] = destructor ? (__pthread_key) destructor : PTHREAD_KEY_INUSE;
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spinlock_release(&pthread_keys_lock);

524 *key = i;

return 0;

526 }

}

528 spinlock_release(&pthread_keys_lock);

return EAGAIN;

530 }

532 void *pthread_getspecific(pthread_key_t key) {

if (key >= PTHREAD_KEYS_MAX || pthread_key_isfree(key))

534 return NULL;

return pthread_specific_data[key];

536 }

538 int pthread_setspecific(pthread_key_t key, const void *value) {

if (key >= PTHREAD_KEYS_MAX || pthread_key_isfree(key))

540 return EINVAL;

pthread_specific_data[key] = (void*) value;

542 return 0;

}

544
int pthread_key_delete(pthread_key_t key) {

546 spinlock_aquire(&pthread_keys_lock);

if (key >= PTHREAD_KEYS_MAX || pthread_key_isfree(key)) {

548 spinlock_release(&pthread_keys_lock);

return EINVAL;

550 }

pthread_keys[key] = PTHREAD_KEY_FREE;

552 spinlock_release(&pthread_keys_lock);

return 0;

554 }

556 int pthread_setcancelstate(int state, int *oldstate) {

int new, old, ret;

558 switch (state) {

case PTHREAD_CANCEL_ENABLE:

560 new = 1;

break;

562 case PTHREAD_CANCEL_DISABLE:

new = 0;

564 break;

default:

566 return EINVAL;

}

568 ret = __swi_2(SWI_THREAD_SET_CANCEL, new, &old);

*oldstate = old ? PTHREAD_CANCEL_ENABLE : PTHREAD_CANCEL_DISABLE;

570 return ret;

}

572
int pthread_setcanceltype(int type, int *oldtype) {

574 return ENOTSUP;

}

576
int pthread_equal(pthread_t t1, pthread_t t2) {

578 return t1 == t2;

}

Listing D.3: thread.c, kernel thread.
0 /**

* @file thread.c

2 * @brief

* Created on: Jan 22, 2014

4 * @author Florian Achleitner <florian.achleitner@student.tugraz.at>

*/

6
#include <platform/vector_debug.h>

8 #include <task/thread.h>

#include <scheduler.h>

10 #include <mm/mm.h>

#include <errnodefs.h>

12 #include <signal.h>

14 static uint32_t current_tid = 1;

16 struct thread_t *create_kernel_thread(uint32_t mode, EXEC_CONTEXT_t world) {

return create_kernel_thread_at(NULL, mode, world);
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18 }

20 struct thread_t *create_kernel_thread_at(struct thread_t *loc, uint32_t mode,

EXEC_CONTEXT_t world) {

22 struct thread_t *thread = loc ? loc : (struct thread_t*) kmalloc(sizeof(struct thread_t));

24 if (thread == NULL ) {

task_error("Failed to allocate memory for new thread!");

26 return thread;

}

28
// clear all

30 memset(thread, 0, sizeof(struct thread_t));

32 if (world == SECURE) {

thread->context.scr = SCR_EA;

34 // we need a stack if we run in the secure context

thread->kernel_stack.base = map_stack_mem(KERNEL_STACK_SIZE);

36 thread->kernel_stack.sp = thread->kernel_stack.base;

thread->kernel_stack.limit = thread->kernel_stack.base - KERNEL_STACK_SIZE;

38 } else {

thread->context.scr = SCR_NS | SCR_EA | SCR_FW | SCR_FIQ | SCR_AW; //

40 }

42 thread->tid = ++current_tid;

thread->exec_context = world;

44 thread->context.cpsr = mode | PSR_F | PSR_I | PSR_A;

thread->state = READY;

46
thread->sys_context.svc_spsr = mode | PSR_F | PSR_I | PSR_A;

48 thread->sys_context.abt_spsr = mode | PSR_F | PSR_I | PSR_A;

thread->sys_context.und_spsr = mode | PSR_F | PSR_I | PSR_A;

50 thread->sys_context.irq_spsr = mode | PSR_F | PSR_I | PSR_A;

thread->sys_context.fiq_spsr = mode | PSR_F | PSR_I | PSR_A;

52 thread->sys_context.abt_sp = getABTSP();

// TODO: create thread mode stack pointer ....

54
task_debug("new thread created: %d @ 0x%x", thread->tid, thread);

56
return thread;

58 }

60 static void *find_free_thread_block(__unused struct user_process_t *process) {

virt_addr_t p = THREAD_VMEM_START;

62 for (; p < THREAD_VMEM_END; p += THREAD_LOCAL_PAGES_SPACING * SMALL_PAGE_SIZE) {

// iterate over all available thread local memory blocks

64 // p points to the start of the block, while the stacks starts at it’s end (minus guard page).

// So we have to check the end, to see if this block is in use.

66 void *first_stack_page = (void *) (p + (THREAD_LOCAL_PAGES_SPACING - 2) * SMALL_PAGE_SIZE);

if (!mmu_translate(first_stack_page, NULL)) { // not translateable, so let’s say not mapped.

68 return (void *) p;

}

70 }

return NULL; // Sorry sir, nohave! ;)

72 }

74 static void release_thread_block(struct user_process_t *process, void *base) {

uint8_t *p = (void*)((uint32_t)base & ~0x0000fffU);

76 uint32_t pa;

for (int i = 0; i < THREAD_LOCAL_PAGES_SPACING; i++) {

78 // for each possibly mapped page, try to unmap.

pa = unmap_memory_from_pd((uint32_t) p, (uintptr_t) process->vuserPD);

80 if (pa)

pmm_free_page((uintptr_t) pa);

82 p += SMALL_PAGE_SIZE;

}

84 }

86 struct user_thread_t *create_user_thread(struct user_process_t *process) {

void *base = find_free_thread_block(process);

88 if (base == NULL) {

task_error("No free space for new thread!");

90 return NULL;

}

92
struct user_thread_t *thread = (struct user_thread_t *) kmalloc(sizeof(struct user_thread_t));

94 if (thread == NULL) {

release_thread_block(process, base);

96 return NULL;

}

98
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memset(thread, 0, sizeof(struct user_thread_t));

100
if (create_kernel_thread_at(&thread->thread, USR_MODE, SECURE) == NULL) {

102 task_error("failed to create kernel part of user thread");

kfree(thread);

104 release_thread_block(process, base);

return NULL;

106 }

thread->joiner = NULL;

108 thread->attr = 0;

thread->tls_size = 0;

110 thread->tls_start = NULL;

spinlock_init(&thread->sync_lock);

112
kernel_mem_info_t info;

114 info.ap = AP_SVC_RW_USR_RW;

info.execute = EXEC_NON;

116 info.bufferable = 1;

info.cacheable = 1;

118 info.nonsecure = 0;

info.shareable = 0;

120 info.type = SMALL_PAGE;

122
void *stack_limit = base;

124 thread->thread.thread_pointer = base - THREAD_POINTER_TLS_OFFSET;

// allocate the TLS block for the thread and fill it.

126 if (process->tls_template.start && process->tls_template.memsz) {

uint32_t size = process->tls_template.memsz;

128 uint32_t pages = needed_pages(0, size);

for (uint32_t i = 0; i < pages; i++) {

130 info.paddr = (uint32_t)pmm_allocate_page();

if (info.paddr == 0) {

132 kfree(thread);

release_thread_block(process, base);

134 return NULL;

}

136 info.vaddr = (virt_addr_t) (base + i * SMALL_PAGE_SIZE);

map_user_memory((uintptr_t) process->vuserPD, &info);

138 }

140 stack_limit += (pages + 1) * SMALL_PAGE_SIZE; // the stack can grow towards the tls until it reaches the

guard page.

thread->tls_start = base;

142 thread->tls_size = size;

memcpy(thread->tls_start, (void *) process->tls_template.start,

144 process->tls_template.filesz); // copy TLS template

memset(thread->tls_start + process->tls_template.filesz, 0,

146 pages * SMALL_PAGE_SIZE - process->tls_template.filesz); // clear the rest.

task_debug("Mapped TLS at %x size %x", base, size);

148 }

150 // stack upper end (full descending stack), 1 guard page

// the sp actually points to the beginning of the guard page, it is decremented before pushing (full stack).

152 // Stacks have to be 8-byte aligned, see http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka4127.html

void *stack_base = base + (THREAD_LOCAL_PAGES_SPACING -1) * SMALL_PAGE_SIZE;

154 void *first_page = stack_base - DEFAULT_USER_STACK_PAGES * SMALL_PAGE_SIZE;

for (uint32_t i = 0; i < DEFAULT_USER_STACK_PAGES; i++) {

156 info.paddr = (uint32_t)pmm_allocate_page();

if (info.paddr == 0) {

158 kfree(thread);

release_thread_block(process, base);

160 return NULL;

}

162 info.vaddr = (virt_addr_t) (first_page + i * SMALL_PAGE_SIZE);

map_user_memory((uintptr_t) process->vuserPD, &info);

164 }

// clear stack

166 memset(first_page, 0, DEFAULT_USER_STACK_PAGES * SMALL_PAGE_SIZE);

168 thread->thread.user_stack.base = stack_base;

thread->thread.user_stack.limit = stack_limit;

170 thread->thread.user_stack.sp = stack_base;

task_debug("Mapping thread stack from %x to %x.", stack_base, first_page);

172
thread->thread.process = process;

174 thread->thread.state = READY;

if (!locked_list_add(&process->threads, thread)) {

176 task_error("Failed to add thread to list, hopeless!");

kpanic();

178 }
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return thread;

180 }

182 void cleanup_user_thread(struct user_thread_t *thread) {

release_thread_block(thread->thread.process, thread->thread.thread_pointer + THREAD_POINTER_TLS_OFFSET);

184 }

186 void cleanup_kernel_thread(struct thread_t *thread) {

// This may not be run by the thread actually being destroyed.

188 // Run from monitor mode instead while switching threads.

free_stack_mem(thread->kernel_stack.base, KERNEL_STACK_SIZE);

190 memset(thread, 0, sizeof(struct thread_t)); // zero it to catch use after free errors

kfree(thread);

192 }

194 int join_thread(struct user_thread_t *joining, tid_t to_joinid, void **retval) {

struct user_thread_t *to_join = (struct user_thread_t *)

196 get_thread_by_id(joining->thread.process, to_joinid);

if (to_join == NULL)

198 return ESRCH;

spinlock_aquire(&to_join->sync_lock);

200 if (to_join->thread.state == DEAD || to_join->joiner ||

(to_join->attr & THREAD_ATTR_DETACHED))

202 return EINVAL;

204 while (to_join->thread.state != TO_JOIN) {

to_join->joiner = joining;

206 spinlock_release(&to_join->sync_lock);

joining->thread.state = BLOCKED;

208 yield();

spinlock_aquire(&to_join->sync_lock);

210 }

if (retval)

212 *retval = to_join->retval;

to_join->thread.state = DEAD;

214 spinlock_release(&to_join->sync_lock);

sched_rm_thread(userthread_to_thread(to_join));

216 cleanup_user_thread(to_join);

return 0;

218 }

220 void exit_thread(struct user_thread_t *thread, void *retval) {

if (thread->attr & THREAD_ATTR_DETACHED) { // join not possible

222 thread->thread.state = DEAD;

sched_rm_thread(userthread_to_thread(thread));

224 cleanup_user_thread(thread);

return;

226 }

thread->retval = retval;

228 spinlock_aquire(&thread->sync_lock);

thread->thread.state = TO_JOIN;

230 if (thread->joiner) {

thread->joiner->thread.state = READY;

232 }

spinlock_release(&thread->sync_lock);

234 yield();

}

236
void cancel_thread(struct user_thread_t *thread, struct user_thread_t *to_cancel) {

238 if (to_cancel == NULL)

return;

240 spinlock_aquire(&to_cancel->sync_lock);

to_cancel->attr |= THREAD_ATTR_CANCEL_REQUEST;

242 if ((to_cancel->attr & THREAD_ATTR_CANCEL_RESUME) &&

to_cancel->thread.state == STOPPED)

244 to_cancel->thread.state = READY;

spinlock_release(&to_cancel->sync_lock);

246 // a thread executing in user space could be cancelled immediately, if

// it’s cancelablity state is asynchronous.

248 if ((to_cancel->attr & THREAD_ATTR_CANCEL_ASYNC) &&

thread_get_cpu_mode(&to_cancel->thread) == USR_MODE) {

250 thread_cancel_checkpoint((struct thread_t *) to_cancel);

}

252 return;

}

254
int thread_cancel_checkpoint(struct thread_t *th){

256 if (!is_user_thread(th))

return 0;

258 struct user_thread_t *thread = (struct user_thread_t *) th;

spinlock_aquire(&thread->sync_lock);
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260 if ((thread->attr & THREAD_ATTR_CANCEL_REQUEST) &&

!(thread->attr & THREAD_ATTR_CANCEL_DISABLED)) {

262 thread->attr &= ~THREAD_ATTR_CANCEL_REQUEST;

spinlock_release(&thread->sync_lock);

264 task_debug("cancel thread %d", thread->thread.tid);

/*
266 * This is quite fragile. We need to force userspace to execute the cleanup

* function. The link register (lr) contains the address to return to after

268 * the exception is handled. It is stored on the stack in swi_entry.

*/

270
thread->ret_ctx->pc = (uint32_t) thread->cancel_cleanup;

272 return 1;

}

274 spinlock_release(&thread->sync_lock);

return 0;

276 }

278 void thread_set_entry(struct thread_t *thread, void *entry) {

thread->context.pc = (uint32_t) entry;

280 }

282 int is_user_thread(struct thread_t *thread) {

return thread->process != NULL;

284 }

286 char* thread_state_str(thread_state_t state) {

switch (state) {

288 case READY:

return "READY";

290 case RUNNING:

return "RUNNING";

292 case BLOCKED:

return "BLOCKED";

294 case SLEEPING:

return "SLEEPING";

296 case STOPPED:

return "STOPPED";

298 case WAIT_FOR_SIG:

return "WAIT_FOR_SIG";

300 case TO_JOIN:

return "TO_JOIN";

302 case DEAD:

return "DEAD";

304 default:

return "UNKOWN";

306 }

}

308
int print_thread(struct thread_t *thread, __unused void *none) {

310 if (thread == NULL)

return -1;

312 task_info("T %d [%d - (%s)]", thread->tid, thread->state, thread_state_str(thread->state));

if (thread->process) {

314 task_info("\tP %d %s", thread->process->pid, thread->process->name);

TASK_UUID *uuid = &thread->process->tee_context.uuid;

316 if (!is_uuid_empty(uuid)) {

task_info("\tUUID %x-%x-%x-%x%x-%x%x%x%x%x%x", uuid->timeLow, uuid->timeMid, uuid->timeHiAndVersion,

318 uuid->clockSeqAndNode[7], uuid->clockSeqAndNode[6], uuid->clockSeqAndNode[5], uuid->clockSeqAndNode[4],

uuid->clockSeqAndNode[3], uuid->clockSeqAndNode[2], uuid->clockSeqAndNode[1], uuid->clockSeqAndNode[0])

;

320 }

}

322 return 0;

}

324
uint32_t thread_get_cpu_mode(struct thread_t *thread) {

326 if (thread == get_current_thread()) {

return getCPSR() & MODE_BITS;

328 } else {

return thread->context.cpsr & MODE_BITS;

330 }

}

332 static void setup_sig_ctx(struct user_thread_t *th, core_reg *ctx,

uint32_t *usr_sp, uint32_t *usr_lr, int signum, struct siginfo_t *siginfo) {

334 struct signalrestore_stack_t *s;

// switch to sigalt stack if it is set and we are not already on it

336 if (th->sig_stack.base != NULL &&

th->sig_stack.limit < th->sig_stack.base

338 // we have a sigalt stack

// is it not currently active (nested signals)
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340 && !(th->sig_stack.base >= (void *) *usr_sp &&

th->sig_stack.limit < (void *) *usr_sp)) {

342 s = (struct signalrestore_stack_t *) th->sig_stack.base;

} else {

344 s = (struct signalrestore_stack_t *)

(*usr_sp - sizeof(struct signalrestore_stack_t));

346 }

348 memcpy(&s->svc_ctx, ctx, sizeof(core_reg));

s->usr_sp = *usr_sp;

350 s->usr_lr = *usr_lr;

s->sigmask = th->sigmask;

352

*usr_sp = (uint32_t) s;

354 *usr_lr = (uint32_t) th->thread.process->sigretfunc;

356 if (siginfo) {

memcpy(&s->siginfo, siginfo, sizeof(struct siginfo_t));

358 } else {

memset(&s->siginfo, 0, sizeof(struct siginfo_t));

360 }

362 ctx->pc = (uint32_t) th->thread.process->sigactions[signum].handler;

ctx->r[0] = signum;

364 ctx->r[1] = (uint32_t) &s->siginfo; // should point to a siginfo_t

ctx->r[2] = (uint32_t) s; // points to the context

366 }

368 static void setup_sync_sig_ctx(struct user_thread_t *th, core_reg *ctx,

int signum, struct siginfo_t *siginfo) {

370 uint32_t usr_sp, usr_lr;

getSP_LR(SYS_MODE, &usr_sp, &usr_lr);

372
setup_sig_ctx(th, ctx, &usr_sp, &usr_lr, signum, siginfo);

374
setSP_LR(SYS_MODE, usr_sp, usr_lr);

376 }

378 static void setup_async_sig_ctx(struct user_thread_t *th, int signum) {

setup_sig_ctx(th, &th->thread.context, &th->thread.sys_context.sys_sp,

380 &th->thread.sys_context.sys_lr, signum, NULL);

}

382
static void restore_sig_ctx(struct user_thread_t *th, core_reg *ctx) {

384 uint32_t usr_sp, usr_lr;

getSP_LR(SYS_MODE, &usr_sp, &usr_lr);

386
struct signalrestore_stack_t *s = (struct signalrestore_stack_t *) usr_sp;

388
memcpy(ctx, &s->svc_ctx, sizeof(core_reg));

390 setSP_LR(SYS_MODE, s->usr_sp, s->usr_lr);

th->sigmask = s->sigmask;

392 }

394 static void thread_deliver_sync_signal(core_reg *current_ctx, int signum, struct siginfo_t *siginfo) {

struct user_thread_t *self = thread_to_userthread(get_current_thread());

396 if (self == NULL) {

task_error("ASSERT: user thread is NULL, sending no signal");

398 return;

}

400 setup_sync_sig_ctx(self, current_ctx, signum, siginfo);

// the triggering signal, and the handler’s mask are added to the threads sigmask.

402 // the current mask is stored along with the context and restored afterwards.

self->sigmask |= (1 << signum) | self->thread.process->sigactions[signum].mask;

404 }

406 static void thread_deliver_async_signal(struct user_thread_t *receiver, int signum) {

if (receiver == NULL)

408 return;

410 setup_async_sig_ctx(receiver, signum);

receiver->sigmask |= (1 << signum) | receiver->thread.process->sigactions[signum].mask;

412 }

414 void thread_exit_signal(core_reg *current_ctx) {

struct user_thread_t *self = thread_to_userthread(get_current_thread());

416 if (self == NULL) {

task_error("ASSERT: user thread is NULL, impossible");

418 kpanic();

return;

420 }
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restore_sig_ctx(self, current_ctx);

422 // the state is RUNNING here. Which is ok, because signal should wake threads.

// the only exception on andix is, that BLOCKED threads are not woken.

424 }

426 static void sig_stop(struct user_thread_t *receiver, struct user_thread_t *sender) {

// non-maskable, non-ignorable, always just stop

428 if (receiver == sender) {

receiver->thread.state = STOPPED;

430 yield();

} else if (thread_get_cpu_mode(&receiver->thread) == USR_MODE ||

432 receiver->thread.state == SLEEPING || receiver->thread.state == WAIT_FOR_SIG) {

receiver->thread.state = STOPPED;

434 task_debug("STOPping thread %d immediately", receiver->thread.tid);

} else {

436 spinlock_aquire(&receiver->sync_lock);

receiver->attr |= THREAD_ATTR_STOP_REQUEST;

438 spinlock_release(&receiver->sync_lock);

task_debug("setting STOP_REQUEST flag for thread %d", receiver->thread.tid);

440 }

return;

442 }

444 static void sig_cont(struct user_thread_t *receiver, struct user_thread_t *sender) {

if (receiver->thread.state == STOPPED) {

446 receiver->thread.state = READY;

task_debug("CONTinuing STOPed thread %d", receiver->thread.tid);

448 }

}

450
static void sig_term(struct user_thread_t *receiver, struct user_thread_t *sender) {

452 // non-maskable, non-ignorable, always kill, but kill only thread, or process??

// assume if this signal is directed to a thread, only the thread is killed.

454 // should it be possible to join a killed thread?

task_debug("TERMinating thread %d", receiver->thread.tid);

456 if (receiver == sender) { // we treat this case as pthread_exit

exit_thread(receiver, NULL);

458 } else { // we treat this like an async cancel

receiver->attr |= THREAD_ATTR_CANCEL_ASYNC;

460 cancel_thread(sender, receiver);

switch_to_thread(&receiver->thread);

462 }

return;

464 }

466 int thread_send_signal(struct user_thread_t *receiver, int signum){

return thread_send_signal_info(receiver, signum, NULL);

468 }

470 int thread_send_signal_info(struct user_thread_t *receiver, int signum, struct siginfo_t *siginfo) {

struct user_thread_t *sender = thread_to_userthread(get_current_thread());

472 struct user_process_t *rproc = receiver->thread.process;

474 switch (signum) {

case 0:

476 return 0;

case SIGKILL:

478 // not changeable

sig_term(receiver, sender);

480 return 0;

482 case SIGSTOP:

// also not changeable

484 sig_stop(receiver, sender);

return 0;

486
case SIGHUP:

488 case SIGINT:

case SIGQUIT:

490 case SIGILL:

case SIGTRAP:

492 case SIGABRT:

case SIGEMT:

494 case SIGFPE:

case SIGBUS:

496 case SIGSEGV:

case SIGSYS:

498 case SIGPIPE:

case SIGALRM:

500 case SIGTERM:

case SIGURG:



D.2. Threading 161

502 case SIGTSTP:

case SIGCONT:

504 case SIGCHLD:

case SIGTTIN:

506 case SIGTTOU:

case SIGIO:

508 case SIGXCPU:

case SIGXFSZ:

510 case SIGVTALRM:

case SIGPROF:

512 case SIGWINCH:

case SIGLOST:

514 case SIGUSR1:

case SIGUSR2:

516 if (rproc->sigdisp[signum] == SIGDISP_IGNORE)

return 0;

518
if (receiver->sigmask & (1 << signum)) {

520 receiver->sigpending |= (1 << signum);

return 0;

522 }

switch (rproc->sigdisp[signum]) {

524 break;

case SIGDISP_CONT:

526 sig_cont(receiver, sender);

break;

528 case SIGDISP_STOP:

sig_stop(receiver, sender);

530 break;

case SIGDISP_CORE:

532 case SIGDISP_TERM:

sig_term(receiver, sender);

534 break;

case SIGDISP_CATCH:

536 if (sender == receiver) {

core_reg *cur_ctx = receiver->ret_ctx;

538 thread_deliver_sync_signal(cur_ctx, signum, siginfo);

} else {

540 /*
In User mode, run the handler immediately. In Svc and other modes,

542 we are not sure what the thread is doing, so we set the signal pending.

It will be handled when returning to User mode.

544 Note, that currently threads are not pre-empted, so they will never be

in USR_MODE at this point. But this might change.

546 */

if (thread_get_cpu_mode(&receiver->thread) == USR_MODE) {

548 thread_deliver_async_signal(receiver, signum);

switch_to_thread(&receiver->thread); // switch, ignoring the thread’s state

550 } else {

receiver->sigpending |= (1 << signum);

552 }

}

554 /*

* Usually, some syscalls should be interrupted (the posix spec is quite flexible here)

556 * and return EINTR. This is quite tricky, so we only interrupt sleeping threads at the

* moment, because this is not tricky :)

558 */

if (receiver->thread.state == SLEEPING ||

560 receiver->thread.state == READY ||

receiver->thread.state == WAIT_FOR_SIG ||

562 receiver->thread.state == STOPPED) {

receiver->thread.state = READY;

564 switch_to_thread(&receiver->thread);

} else {

566 // interrupt some syscalls if you can.

}

568 break;

}

570 return 0;

default:

572 return EINVAL;

}

574 }

576 static void do_pending_signals(struct thread_t *kthread) {

struct user_thread_t *thread = thread_to_userthread(kthread);

578 int i = 0; // signal 0 doesn’t exist.

sigset_t todo;

580 while ((todo = thread->sigpending & ~thread->sigmask)) {

i = (i == SIGNUM_MAX) ? 1 : i + 1;

582 if (todo & (1 << i)) {
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thread->sigpending &= ~(1 << i);

584 thread_send_signal(thread, i);

}

586 }

}

588
void thread_signal_checkpoint(struct thread_t *kthread) {

590 struct user_thread_t *thread = thread_to_userthread(kthread);

if (thread == NULL)

592 return;

if (thread->sigpending) {

594 do_pending_signals(kthread);

}

596 spinlock_aquire(&thread->sync_lock);

if (thread->attr & THREAD_ATTR_STOP_REQUEST) {

598 task_debug("STOP_REQUEST is set, STOPping thread %d", thread->thread.tid);

thread->thread.state = STOPPED;

600 thread->attr &= ~THREAD_ATTR_STOP_REQUEST;

spinlock_release(&thread->sync_lock);

602 if (kthread == get_current_thread())

yield();

604 }

spinlock_release(&thread->sync_lock);

606 }

608 int thread_set_sigstack(struct user_thread_t *th, uint32_t sp, uint32_t sz) {

// following the spec of sigaltstack() this should return an error, if the

610 // process is currently running on this stack.

uint32_t usr_sp, usr_lr;

612 getSP_LR(SYS_MODE, &usr_sp, &usr_lr);

if (th->sig_stack.base != 0 && // alt. stack is set

614 th->sig_stack.base >= (void *) usr_sp &&

th->sig_stack.limit < (void *) usr_sp) // is it used currently?

616 return -1;

if (sp == 0) {

618 th->sig_stack.base = th->sig_stack.limit = th->sig_stack.sp = NULL;

} else {

620 th->sig_stack.limit = (void *) sp;

th->sig_stack.base = th->sig_stack.sp = (void *) (sp + sz);

622
}

624 return 0;

}

Listing D.4: thread.h, kernel thread.
0 /**

* @file thread.h

2 * @brief

* Created on: Jan 22, 2014

4 * @author Florian Achleitner <florian.achleitner@student.tugraz.at>

*/

6
#ifndef THREAD_H_

8 #define THREAD_H_

10 #define TASKNAME_SIZE 50

12 #define PROCESS_TASK "NS_PROCESSOR"

#define SERVICE_TASK "NS_SERVICE"

14 #define TEE_TASK "TEE_TASK"

16 #include <monitor/monitor.h>

#include <common/locked_list.h>

18
typedef enum {

20 SECURE,

NONSECURE

22 } EXEC_CONTEXT_t;

24 typedef enum {

NONE = 0,

26 NEW,

CREATING,

28 CREATED,

PERFORMING,

30 DESTROYING,

DESTROYED
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32 } TRUSTLET_STATE;

34 struct stack_info_t {

void *base;

36 void *limit;

void *sp;

38 };

40 typedef enum {

READY = 0,

42 RUNNING,

BLOCKED,

44 SLEEPING,

STOPPED,

46 WAIT_FOR_SIG,

TO_JOIN,

48 DEAD

} thread_state_t;

50
struct thread_t {

52 core_reg context; // saved/restored at monitor entry/exit

mon_sys_context_t sys_context; // saved/restored on task switch

54 EXEC_CONTEXT_t exec_context;

tid_t tid; // Task/thread ID

56 // const char *name; // TODO deprecated

thread_state_t state;

58 struct stack_info_t kernel_stack;

struct stack_info_t user_stack;

60 uint8_t *thread_pointer; // thread local in user space containing TLS

struct user_process_t *process; // NULL for kernel threads

62 int intr_flag; // set to interrupt a syscall

};

64
// This must of course be what the userspace expects as second argument to the signal handler.

66 struct siginfo_t {

int si_signo; /* Signal number */

68 void *si_addr; /* Address causing the signal */

};

70 typedef uint32_t sigset_t;

struct signalrestore_stack_t {

72 core_reg svc_ctx;

uint32_t usr_sp, usr_lr, sigmask;

74 struct siginfo_t siginfo;

};

76
// Creating some polymorphism in C: thread_t is included at the first position.

78 // so a pointer to a user_thread_t is also a valid thread_t.

struct user_thread_t {

80 struct thread_t thread;

void *tls_start;

82 uint32_t tls_size;

void *retval;

84 struct user_thread_t *joiner;

uint32_t attr;

86 spinlock_t sync_lock;

void (*cancel_cleanup)(void); // to be run in user-mode on cancel to do pthread_cleanups

88 sigset_t sigmask;

sigset_t sigpending;

90 struct signalrestore_stack_t *sigrestore_stacktop;

core_reg *ret_ctx;

92 struct stack_info_t sig_stack;

};

94
#define THREAD_ATTR_DETACHED (1 << 1)

96
#define THREAD_ATTR_CANCEL_REQUEST (1 << 2)

98 #define THREAD_ATTR_CANCEL_ASYNC (1 << 3)

#define THREAD_ATTR_CANCEL_DISABLED (1 << 4)

100 #define THREAD_ATTR_CANCEL_RESUME (1 << 5)

#define THREAD_ATTR_STOP_REQUEST (1 << 6)

102
struct thread_t *create_kernel_thread(uint32_t mode, EXEC_CONTEXT_t world);

104 struct thread_t *create_kernel_thread_at(struct thread_t *loc, uint32_t mode,

EXEC_CONTEXT_t world);

106 struct user_thread_t *create_user_thread(struct user_process_t *process);

void cleanup_kernel_thread(struct thread_t *thread);

108 void cleanup_user_thread(struct user_thread_t *thread);

int join_thread(struct user_thread_t *joining, tid_t to_joinid, void **retval);

110 void exit_thread(struct user_thread_t *thread, void *retval);

void cancel_thread(struct user_thread_t *thread, struct user_thread_t *to_cancel);

112 int thread_cancel_checkpoint(struct thread_t *th);
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void thread_set_entry(struct thread_t *thread, void *entry);

114 int is_user_thread(struct thread_t *thread);

int print_thread(struct thread_t *thread, void *none);

116 char* thread_state_str(thread_state_t state);

uint32_t thread_get_cpu_mode(struct thread_t *thread);

118 void thread_signal_checkpoint(struct thread_t *kthread);

void thread_exit_signal(core_reg *current_ctx);

120 int thread_send_signal(struct user_thread_t *receiver, int signum);

int thread_send_signal_info(struct user_thread_t *receiver, int signum, struct siginfo_t *siginfo);

122 int thread_set_sigstack(struct user_thread_t *th, uint32_t sp, uint32_t sz);

124 #define KERNEL_STACK_SIZE 0x4000

126
static inline struct thread_t* userthread_to_thread(struct user_thread_t *thread)

128 {

return thread ? &thread->thread : NULL;

130 }

132 static inline struct user_thread_t* thread_to_userthread(struct thread_t *thread)

{

134 return (thread && thread->process) ? (struct user_thread_t *) thread : NULL;

}

136
#endif /* THREAD_H_ */

Listing D.5: user_process.c, kernel user process.
0 /**

* @file user_process.c

2 * @brief

* Created on: Jan 20, 2014

4 * @author Florian Achleitner <florian.achleitner@student.tugraz.at>

*/

6

8 #include <mm/mm.h>

#include <task/user_process.h>

10 #include <loader.h>

#include <scheduler.h>

12
static uint32_t current_pid = 1;

14
struct user_process_t *create_user_process(uint8_t* elf_start, uint32_t elf_size, const char *name) {

16 struct user_process_t *process = (struct user_process_t*) kmalloc(sizeof(struct user_process_t));

if (process == NULL) {

18 task_error("Failed to allocate memory for process!");

return process;

20 }

memset(process, 0, sizeof(struct user_process_t));

22
if (process == NULL) {

24 kfree(process);

return process;

26 }

28 locked_list_init(&(process->files));

locked_list_init(&(process->threads));

30 process->pid = ++current_pid;

32 process->vuserPD = (virt_addr_t) create_page_directory((uintptr_t *) &process->userPD);

34 memset(process->membitmap, 0xFFFFFFFF, sizeof(process->membitmap)); // set everything to free

36 // Activate new user space page table to let elf loader and thread creator write into it.

// This might be quite inefficient, because we loose the complete TLB of the current process :(

38 // Could be speed-improved by mapping the new process userspace into the kernel.

uint32_t* restore_upt = get_user_table();

40 set_user_table((uintptr_t) process->userPD);

invalidate_tlb();

42
virt_addr_t entry = setup_elf(elf_start, elf_size, process);

44 // Invalid ELF Image

if (entry == 0xFFFFFFFF) {

46 // TODO: free page directory!

kfree(process);

48 return NULL;

}
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50
struct user_thread_t *mainthread = create_user_thread(process);

52 if (mainthread == NULL) {

// TODO its all hopeless! Free everything and fail gracefully

54 task_error("Failed to create thread for new process, it’s hopeless!");

kpanic();

56 }

thread_set_entry(&mainthread->thread, (uintptr_t) entry);

58 mainthread->thread.context.r[0] = mainthread->thread.tid;

// restore current process userspace page table.

60 set_user_table(restore_upt);

invalidate_tlb();

62
if (name) {

64 strncpy(process->name, name, TASKNAME_SIZE);

}

66 set_dfl_signal(process, 0);

sched_add_thread(&mainthread->thread);

68
return process;

70 }

72 void proc_add_fhandle(struct user_process_t *proc, task_file_handle_t* hdl) {

if (!locked_list_add(&proc->files, hdl)) {

74 task_error("Failed to add file handle to list, hopeless!");

kpanic();

76 }

}

78
void proc_rem_fhandle(struct user_process_t *proc, task_file_handle_t* hdl) {

80 locked_list_remove_match(&proc->files, hdl);

}

82
task_file_handle_t* proc_get_fhandle(struct user_process_t *proc, int32_t fd) {

84 struct locked_list_iterator iter;

task_file_handle_t *hdl;

86 task_debug("Retrieving FD %d for process %s %d", fd, proc->name, proc->pid);

spinlock_aquire(&proc->files.lock);

88 locked_list_iter_init(&iter, &proc->files, 0);

90 while ((hdl = locked_list_iter_next(&iter))) {

if (hdl != NULL && hdl->user_fd == fd) {

92 break;

}

94 }

spinlock_release(&proc->files.lock);

96 return hdl;

}

98
int32_t proc_get_next_fd(struct user_process_t *proc) {

100 int32_t fd;

task_file_handle_t * hdl;

102 for (fd = 100; fd < 0xFFFF; fd++) {

hdl = proc_get_fhandle(proc, fd);

104 if (hdl == NULL) {

task_debug("New FD for process %s %d: %d", proc->name, proc->pid, fd);

106 return fd;

}

108 }

task_error("No more fds!");

110 kpanic();

return 0;

112 }

114 void set_dfl_signal(struct user_process_t *process, int signum) {

static const sigdispo_t default_sigdisp[SIGNUM_MAX] =

116 { // signal numbers from newlib’s sys/signal.h, they are somewhat different among systems.

0,

118 SIGDISP_TERM, // SIGHUP 1

SIGDISP_TERM, // SIGINT 2

120 SIGDISP_CORE, // SIGQUIT 3

SIGDISP_CORE, // SIGILL 4

122 SIGDISP_CORE, // SIGTRAP 5

SIGDISP_CORE, // SIGABRT 6

124 SIGDISP_CORE, // SIGEMT 7

SIGDISP_CORE, // SIGFPE 8

126 SIGDISP_TERM, // SIGKILL 9

// | SIGDISP_FLAG_FIXED,

128 SIGDISP_CORE, // SIGBUS 10

SIGDISP_CORE, // SIGSEGV 11

130 SIGDISP_CORE, // SIGSYS 12
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SIGDISP_TERM, // SIGPIPE 13

132 SIGDISP_TERM, // SIGALRM 14

SIGDISP_TERM, // SIGTERM 15

134 SIGDISP_IGNORE, // SIGURG 16

SIGDISP_STOP, // SIGSTOP 17

136 // | SIGDISP_FLAG_FIXED,

SIGDISP_STOP, // SIGTSTP 18

138 SIGDISP_CONT, // SIGCONT 19

SIGDISP_IGNORE, // SIGCHLD 20

140 SIGDISP_STOP, // SIGTTIN 21

SIGDISP_STOP, // SIGTTOU 22

142 SIGDISP_TERM, // SIGIO 23

SIGDISP_CORE, // SIGXCPU 24

144 SIGDISP_CORE, // SIGXFSZ 25

SIGDISP_TERM, // SIGVTALRM 26

146 SIGDISP_TERM, // SIGPROF 27

SIGDISP_IGNORE, // SIGWINCH 28

148 SIGDISP_TERM, // SIGLOST 29

SIGDISP_TERM, // SIGUSR1 30

150 SIGDISP_TERM, // SIGUSR2 31

152 };

if (signum)

154 process->sigdisp[signum] = default_sigdisp[signum];

else

156 memcpy(process->sigdisp, default_sigdisp, sizeof(process->sigdisp));

// This is needled double work, as long as the complete process struct is zeroed at creation.

158 //memset(process->sigactions, 0, sizeof(process->sigactions));

}

Listing D.6: user_process.h, kernel user process.
0 /**

* @file user_process.h

2 * @brief

* Created on: Jan 17, 2014

4 * @author Florian Achleitner <florian.achleitner@student.tugraz.at>

*/

6
#ifndef USER_PROCESS_H_

8 #define USER_PROCESS_H_

10 #include <task/thread.h>

#include <common/locked_list.h>

12 #include <task/uuid.h>

14 typedef struct {

int32_t user_fd;

16 void* data;

} task_file_handle_t;

18
struct thread_local_info_t {

20 uint32_t some1;

uint32_t some2;

22 uint32_t tls_start;

};

24
struct ksigaction_t { // layout in userspace depends on the library config. So we use our own struct.

26 void (*handler)(int); // handler function

sigset_t mask; // mask to be applied while running the handler

28 uint32_t flags; // several flags..

};

30
typedef void (*sigretfunc_t)(void);

32
#define SIGNUM_MAX 32

34 typedef uint8_t sigdispo_t; //< define what happens on signal reception (called signal disposition)

#define SIGDISP_IGNORE 1 //< signal is ignored

36 #define SIGDISP_TERM 2 //< process is terminated

#define SIGDISP_CORE 3 //< process is terminated and core dumped, we don’t have that

38 #define SIGDISP_STOP 4 //< thread is stopped

#define SIGDISP_CONT 5 //< thread is continued

40 #define SIGDISP_CATCH 6 //< signal is caught by a handler function

#define SIGDISP_FLAG_FIXED (1<<7) //< the disposition can not be changed by the standard’s definition

42
struct user_process_t{

44 char name[TASKNAME_SIZE];

tid_t pid; // process ID
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46 uint32_t membitmap[800]; // page bitmap for userspace, --> umm.c

locked_list files; // containing *task_file_handle_t

48 locked_list threads; // containing thread_t

50 uint32_t userPD; // physical user page directory address

uint32_t vuserPD; // virtual user page directory address mapped into kernel

52 uint32_t vheap; // current heap break

54 struct elf_TLS_segment_t { // TLS (thread local storage) template, stored by elf parser

uint32_t start; // start of the TLS template in process memory

56 uint32_t filesz, memsz;

} tls_template;

58
struct tee_context_t { // for TEE and Trustlets

60 TASK_UUID uuid;

TRUSTLET_STATE trustlet_state;

62 uintptr_t tee_rpc;

struct thread_t *tee_handler; // Thread to wake up on TEE requests

64 } tee_context;

66 sigdispo_t sigdisp[SIGNUM_MAX]; // current signal disposition, i.e. what to do when a signal is received

// contains everything we need from struct sigaction in userspace

68 struct ksigaction_t sigactions[SIGNUM_MAX];

sigretfunc_t sigretfunc;

70 };

72

74 #define THREAD_LOCAL_PAGES_SPACING 64

#define THREAD_POINTER_TLS_OFFSET 8 // gcc’s tls starts 8 bytes after the thread pointer (don’t know why).

76
#define DEFAULT_USER_STACK_PAGES 8

78
#define THREAD_VMEM_START 0x60000000 // page aligned

80 #define THREAD_VMEM_END 0x6FFFFFC0 // ~256MB THREAD_VMEM_START + 0x3FFFFF * THREAD_LOCAL_PAGES_SPACING

82
struct user_process_t *create_user_process(uint8_t* elf_start, uint32_t elf_size, const char *name);

84 void proc_add_fhandle(struct user_process_t *proc, task_file_handle_t* hdl);

void proc_rem_fhandle(struct user_process_t *proc, task_file_handle_t* hdl);

86 task_file_handle_t* proc_get_fhandle(struct user_process_t *proc, int32_t fd);

int32_t proc_get_next_fd(struct user_process_t *proc);

88 void set_dfl_signal(struct user_process_t *process, int signum);

#endif /* USER_PROCESS_H_ */
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