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Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere
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Abstract

This thesis deals with an efficient approach for learning the optimal hyper-parameters for

Support Vector Machines (SVMs). The common method to determine hyper-parameters

is grid search. Grid search typically involves the definition of a discretized ”grid” of

possible parameter values with a certain resolution and a search for the values that

result in the minimal validation error of the learned model. A major limitation of grid

search is that the search space grows exponentially in the parameters which makes the

approach only practical for determining very few hyper-parameters. Additionally, grid

search operates on discrete parameter values which leads to suboptimal solutions. In

this thesis we develop an approach to use bi-level optimization for learning the optimal

hyper-parameters and solve both major shortcomings of grid search in an efficient and

elegant way. Bi-level learning is an optimization method where one optimization problem

has another optimization problem as its constraint. The goal of the bi-level program is to

find optimal hyper-parameters such that the validation error (the higher level objective)

is minimized, while the optimal training problem is solved for the underlying SVM (the

lower level objective). We use Lagrange multipliers to solve the bi-level problem and

formulate the solution for several variants of the SVM (linear, kernel, multiple kernel).

We can show that, using this method, the model selection problem (i.e. selection of

hyper-parameters) can be solved also for a large number of hyper-parameters. The bi-

level approach exploits the continuity of the hyper-parameters which allows for better

solutions than with grid search. In the experiments, we investigate different properties

of the bi-level approach and try to give insights into the advantages of this method. We

find that highly parametrized kernel SVMs perform best compared to simpler models

which is a clear advantage of bi-level optimization against grid search for model selection.
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Kurzfassung

In dieser Masterarbeit geht es darum, eine effiziente Methode zu entwickeln, um op-

timale Hyper-Parameter für Support Vektor Maschinen (SVMs) zu bestimmen. Die

klassische Methode dafür ist die Rastersuche. Diese Methode besteht aus der Definition

eines diskretisierten ”Rasters” von möglichen Parameterwerten mit einer bestimmten

Auflösung, und der Suche nach denjenigen Werten, die am gelernten Modell den mini-

malen Validierungsfehler ergeben. Der größte Nachteil dieses Ansatzes ist, dass der

Suchraum exponentiell mit der Anzahl der Parameter wächst, weswegen die Rastersuche

nur zum Bestimmen sehr weniger Parameter geeignet ist. Außerdem können mittels

Rastersuche nur diskretisierte Werte gefunden werden, was zu suboptimalen Lösungen

führt. In dieser Arbeit entwickeln wir einen Ansatz, mittels Bi-level Optimierung die

optimalen Hyper-Parameter zu lernen und lösen beide Mankos der Rastersuche zugleich

auf effiziente und elegante Weise. Bi-level Lernen ist ein Verfahren der Optimierung,

wobei ein Optimierungsproblem in ein zweites verschachtelt ist. Das Ziel des Bi-level

Programms ist es, Hyper-Parameter zu finden, die den Fehler auf den Validierungsdaten

minimieren (äußeres Problem), während das optimale Trainingsproblem für die darunter-

liegende SVM gelöst wird (inneres Problem). Wir verwenden Lagrange Multiplikatoren

um das Bi-level Problem zu lösen und formulieren die Lösung für verschiedene Varianten

der Support Vektor Maschine (linear, Kernel, Multikernel). Es kann gezeigt werden, dass

mittels Bi-level Lernen Modellselektion (i.e. die Auswahl von Hyper-Parametern) für

eine große Zahl an Parametern durchgeführt werden kann. Die vorgeschlagene Methode

nützt zusätzlich aus, dass die Parameter kontinuierlich sind, und daher können auch

bessere Lösungen gefunden werden als mittels Rastersuche. In den Experimenten wer-

den verschiedene Eigenschaften des Bi-level Ansatzes untersucht und die Vorteile des

Verfahrens werden diskutiert. Wir können zeigen, dass Kernel Support Vektor Maschi-

nen mit vielen Parametern, verglichen mit einfacheren Modellen, die besten Ergebnisse

liefern und untermauern dadurch die Vorteile der Verwendung einer Bi-level SVM zur

Modellselektion gegenüber der Rastersuche.
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Chapter 1

Introduction

1.1 Motivation

This master’s thesis is centred around a thriving discipline in computer science, namely

machine learning, and more specifically it deals with the problem of classification. One

of the main pillars of machine learning is the identification of patterns in data, to draw

conclusions from the acquired knowledge and to assign a human understandable meaning

to them. Some application scenarios are that we want to identify specific persons as a

means of access authorization, or to train a robot to perceive its environment in terms

of real objects instead of raw images, or to detect anomalies in user behaviour in order

to identify frauds. There are many methods and tools one can use to achieve this kind

of tasks, and this master’s thesis focuses on a specific method for binary classification,

namely Support Vector Machines.

Classification is a means to divide data into categories based on common characteris-

tics. For example, take the problem of deciding whether a person suffers from diabetes

or not. This is an instance of a binary classification problem, and can be solved by

regarding a set of typical laboratory values such as different blood glucose data, and

personal information such as the age, sex, body mass index, diastolic blood pressure

and physical activity level. We call such information ”features” or ”attributes”. Let

(xi, yi) be a training example for solving the diabetes problem; then xi is a vector con-

taining the previously stated information (mapped to real values) for a person i. All

persons having diabetes constitute the positive class with yi = 1, and persons not having

diabetes represent the negative class with yi = −1. We call yi the target values or labels.

Classification problems where the targets are given fall into the category of supervised

learning. During training of the machine learning algorithm, several training examples

are used to learn a function f(x) that takes a new unseen example of data as input

1



Chapter 1. Introduction 2

and generates a correct output y determining the category for the specific example. If

a lot of previously unseen data can be correctly classified the algorithm shows good

generalization, see e.g. [9].

Support Vector Machines (SVMs) are a popular supervised learning method for classi-

fication. They show empirically good performance and have successful applications in

many fields such as bioinformatics, text and image recognition and many more.

In general, the learning problem can be seen as an optimization problem. The amount

of misclassification described by some error measure on the training data is minimized

and also the complexity of the classifier. Many machine learning algorithms consist of

a convex optimization problem with one or more hyper-parameters. SVMs fall in that

category as well, and common hyper-parameters are the regularization parameter or

kernel parameters, etc.

The choice of those parameters is traditionally left to the user, typically the problem is

solved by cross-validation and grid search methods. This procedure can be very tedious,

and grid search is only practical if there are very few parameters to choose [6]. Other

attempts to facilitate for parameter selection other than grid search have been made

in [15] where they seek to minimize smoothed estimates of the generalization error of

the SVM w.r.t. the hyper-parameters by gradient methods. Another approach using

different generalization error bounds has been investigated in [19].

That is the starting point of this thesis. We want to examine an approach to circumvent

the arduous search for ”good” parameters - by bi-level optimization. Similar to ideas in

e.g. [15], we take a performance measure of the SVM, in our case the validation error,

and minimize the error w.r.t. the hyper-parameters of the SVM. This sounds rather

straight forward, however, this is not directly possible because the validation error does

not explicitly depend on the hyper-parameters of the SVM. In this work we show how to

solve this problem via bi-level optimization techniques. Bi-level optimization makes it

possible to determine many parameters at once using standard optimization techniques

and to exploit the fact that the hyper-parameters are continuous.

The idea of using bi-level optimization for determining hyper-parameters is not entirely

new. Bennett, Kunapuli et al. [6, 27, 7] have investigated a similar approach, but

they use different methods to deal with the optimization problem and only use available

standard solvers, which limits them basically to experiments with a linear SVM.

However, SVMs can be extended to deal with high dimensional non-linear data sets (e.g

images) by using kernels. Of course, those kernels contain additional parameters which

can be determined by bi-level optimization. In the end, solving the kernelized SVM
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model with a bi-level approach should accomplish the task of selecting the regulariza-

tion parameters as well as the kernel parameters automatically, see [27]. The problem

of determining hyper-parameters is also referred to as model selection in the machine

learning community.

Our contribution adopts their ideas of bi-level optimization to automate model selec-

tion, but follows a different way when dealing with the mathematics, and includes the

implementation of several configurations of bi-level SVMs including kernels. Further-

more, we apply the developed algorithms on several data sets for evaluation and analyse

properties and possible advantages or limitations of our approach.

The thesis is organized as follows: In the remainder of Chapter 1 we draw connections

to related work, and give a short introduction to Support Vector Machines, kernels,

and bi-level optimization in general. Chapter 2 contains the derivations of the bi-level

solution for the linear SVM. Next, in Chapter 3 we deal with the bi-level solution of

the bi-level kernel SVM in different settings. Chapter 4 closes the theoretical part

and contains explanations of the used optimization algorithms. Next, Chapter 5 and

Chapter 6 deal with experiments and the evaluation of this work. The first chapter

covers mainly experiments with small scale datasets to show some important properties

of our approach and includes also a comparison of the bi-level approach with grid search,

the second chapter discusses experiments with image classification benchmark data sets

and the corresponding results. Finally, in Chapter 7 there is a conclusion and some

comments on possible future work.

1.2 Relation to Existing Work

As already mentioned, Bennet et al. [6] aim at solving the model selection problem with

bi-level optimization, and their starting point is a linear SVM with the regularization

parameter c. They argue, that it might be feasible to use exhaustive search over a

discretized grid of possible parameter values for determining this parameter in the linear

case, but this is definitely not the case when the complexity of the model and therefore

the number of parameters grows. The model selection process is usually based on the

evaluation of the validation error or out-of-sample estimate. The principle of the bi-level

approach is to look for those hyper-parameters that yield the lowest validation error,

while the optimal learning problem is solved for the training set. The learning problem is

called inner or lower level problem, and is solved for a fixed instance of hyper-parameters,

and the outer or higher level problem is the error function on the validation set.
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From an optimization point of view, the bi-level problem is an optimization problem

with constraints, and those constraints themselves contain a parametrized optimization

problem. There is a connection to mathematical programs with equilibrium constraints,

so-called MPECs. MPECs are a generalization of bi-level problems, only that the lower-

level constraints are finite-dimensional parametric variational inequalities, see [20], page

66f. Bennet et al. [27, 7] transform the present bi-level problem into an instance of

a MPEC problem by substituting the lower level problem into a system of equations

of its primal and dual feasibility, complementary slackness and KKT (Karush-Kuhn-

Tucker) conditions. Due to the complementarity constraints, the optimization problem

is non-convex.

In [6] off-the-shelf non-linear programming solvers are used for the experiments. Bennet,

Kunapuli et al. also published papers investigating this topic further [27, 7]. In [7] they

claim that their model is restricted to linear data sets which is a major drawback. They

suggest to use a kernelized version of the SVM and state that the modified problem

can be reformulated into a MPEC problem, too [27]. However, they state that the

development of efficient solvers is still outstanding - with the available solvers they only

succeed to solve very small problems.

Following up to their statement, the main contributions of this thesis are

• the development of a suitable mathematical model to solve the bi-level problem

for linear as well as kernel SVMs,

• to develop software to solve the bi-level problems, and

• to investigate the advantages and limitations of the method with experiments.

1.3 Support Vector Machine

The basic building block of this work is the so-called Support Vector Machine (SVM).

It is a very popular supervised learning method which has been studied heavily during

the last two decades. One of the first references describing SVMs in their current form

was Cortes and Vapnik [17] as well as Vapnik [45] in 1995, including already the soft-

margin SVM and the extension to regression as well as the concept of kernel SVMs using

polynomial and radial basis function (RBF) kernels.

In this work, the focus is on Support Vector Machines used for binary classification.

To start with, we take a step back in history to 1982 where Vapnik [44] introduced the

optimal hyperplanes method for linear separation of data without errors. In a more
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recent publication of 1992 [10], a training algorithm for large margin classifiers was

presented.

Let

(x1, y1), ..., (xN , yN ) with yi ∈ {−1, 1}

be a set of training data and xi a feature vector as previously described in section 1.1.

The optimal hyperplane is given by the vector w which has the same length as the

training examples xi. There is also an offset or bias, b. The data is linearly separable if

the following inequalities are satisfied:

〈w, xi〉+ b ≥ 1 if yi = 1

〈w, xi〉+ b ≤ −1 if yi = −1.
(1.1)

The optimal hyperplane fulfills

〈w, xi〉+ b = 0.

For an example, see fig. 1.1: This version of the SVM is also called hard-margin SVM.

The data is separated with maximal margin, inside the margin no data points are al-

lowed. The data points lying on the margins (marked with thin blue lines) are the

so-called support vectors, fullfilling following equation:

yi(〈w, xi〉+ b) = 1.

The thick blue line marks the optimal separating hyper-plane. Using the given infor-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2
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0.4
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0.6

0.7

0.8
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1

SVM: data, hyperplane, margins and support vectors

x1

x
2

Figure 1.1: Toy example showing a linear separable data set, the hard-margin SVM
classifier, its margins and the support vectors lying on the margins. The thick blue line
marks the separating hyperplane, the thin blue lines mark the margins and the crosses

mark the support vectors.
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mation, we can state the optimization problem to determine the vector w defining the

hyperplane:

min
w,b

1

2
‖w‖22

s.t. yi(〈w, xi〉+ b) ≥ 1

with the constraint following from eq. 1.1. The decision function that decides the cate-

gory of a new example xj is given by

yi = sign(〈w, xj〉+ b).

In the real world, most data sets are not linearly separable. Therefore, the concept of

the soft-margin Support Vector Machine has been introduced in [17]. The principle of

the soft-margin SVM is to minimize the number of errors i.e. the number of examples

being inside the margin or on the other side of the hyperplane when perfect separation

of the given data into two classes is not possible. This leads to a different formulation

of the minimization problem stated before by introducing so-called non-negative slack

variables ξi:

min
w,ξ

c

2
‖w‖22 +

N∑
i=1

ξi

s.t. yi(〈w, xi〉+ b) ≥ 1− ξi

ξi ≥ 0.

(1.2)

The parameter w gives the optimal soft-margin hyperplane, and the regularization pa-

rameter c serves as a trade-off parameter between maximizing the margin and minimizing

the misclassification error. Let ti = yi(〈w, xi〉+b), then the constraints of the soft-margin

SVM can be written as shown in figure 1.2.

Minimizing over ξi, we can interpret the constraints in eq. 1.2 in terms of a loss function,

also called Hinge loss function `(w, b, xi, yi) = max(0, 1 − ti). Because the Hinge loss

function is not continuously differentiable, following loss functions are frequently used:

• the squared Hinge loss function: `(w, b, xi, yi) = max(0, 1− ti)2,

• the logarithmic loss function: `(w, b, xi, yi) = log(1 + exp(−ti)).

The different loss functions are shown in fig. 1.3.
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−2 −1 1 20

1

2

3
ξi

ti

Hinge Loss Function

ξi ≥ 1− ti

ξi ≥ 0

Figure 1.2: Constraints of the soft-margin SVM. The solid line shows the resulting
Hinge loss function

−0.5 0 0.5 1 1.5
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Hinge Loss, Hinge Squared Loss and Logarithmic Loss

yi(〈xi, w〉+ b)

l(
w
,
b,
x
i,
y
i)

hinge

hinge
2

log

Figure 1.3: Variants of loss functions. The Hinge loss function is shown in green, the
squared Hinge loss is depicted in red, and the logarithmic loss is shown in blue.

Using the concept of loss functions, we can write the soft-margin objective shown in

equation 1.2 in a different way:

E(c, w) =
c

2
‖w‖22 +

N∑
i=1

`(w, b, xi, yi). (1.3)

This equation can also be seen as an objective function that is minimized when solving

the SVM.

To summarize, the soft-margin SVM allows errors in the classification but penalizes

them via a loss function. Note that eq. 1.2 is a constrained formulation of the SVM [14].
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Solving the soft-margin SVM determines the optimal hyperplane that minimizes the

number of errors on the training set and at the same time separates the training examples

with maximal margin with the regularization parameter c. The Hinge loss function can

be seen as a misclassification measure: It minimizes the distance of each misclassified

training example from the trained classifier margin [27]. See the example in fig. 1.4:

Suppose we want to learn the optimal soft-margin hyperplane to separate the two classes

marked in red and blue dots respectively. The separating hyperplane (marked with the

thick blue line) results from minimizing the energy function given in equation 1.3. The

thin blue lines show the margin outside of which data points on the ’right’ side of the

classifier are not penalized. Examples which are correctly classified and are outside of

the margin, do not get a penalty (the loss function is 0 there). The penalty is between

0 and 1 between margin and hyperplane, and increases linearly when an example is on

the negative side of the hyperplane.

Summarized, we state that

yi(〈xi, w〉+ b)



> 1 if the example lies outside of the positive margin

= 1 if the example lies on the positive margin

∈ (0, 1) if the example lies inside the positive margin

= 0 if the example lies on the optimal hyperplane

∈ (−1, 0) if the example lies inside the negative margin

= −1 if the example lies on the negative margin

< −1 if the example lies outside of the negative margin.

(1.4)

Examples lying on the hyperplane or the margins are support vectors of the soft-margin

SVM and are marked with circles and crosses in fig. 1.4 respectively.

The concept of SVMs evolved over time and there have been proposed diverse extensions

such as structured prediction for arbitrary input and output domains (see [3] for different

kinds of approaches to deal with structured data), Support Vector Regression where the

SVM is used for function estimation with a tube parameter ε, or the concept of single

class SVMs for novelty/outlier detection e.g. to identify examples that are ”hard” to

classify due to mislabelling or similar [39]. Furthermore, we often want to discriminate

between more than two classes. A common method to perform multi-class classification

is to learn N 1-to-rest classifiers, with N the number of classes.
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SVM: data, hyperplane, margins and support vectors
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Figure 1.4: Toy example showing a non linearly separable data set, the SVM classifier,
its margins and the support vectors. The thick blue line depicts the hyperplane, the
thin blue lines depict the margins, the crosses and circles mark the support vectors.

1.4 Kernels

However, with a linear classifier we can only handle simple, low-dimensional data. But

of course, there is a solution to this problem: We can use kernel functions to handle

higher dimensional data and linearly not separable data sets. The input data can be

transformed via a kernel function in a higher dimensional feature space where the data

instances are linearly separable (see fig. 1.5).

−2 −1 0 1 2

−2

−1

0

1

2

Input Space

−2
−1

0
1

2

−2

−1

0

1

2

−1

0

1

Feature Space

Figure 1.5: Example. Transformation of linearly not separable input data to feature
space

The kernel function is able to describe pairwise similarities between instances of data by

using the inner products between the data points. The inner products implicitly define

the feature space, computing the exact transformation is not needed (see page 25f [40]).

Schölkopf describes kernels in his book [39] on page 32, figure 2.2 this way: Each pattern
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(xi, xj) is represented by a ”kernel shaped function sitting on the pattern. In this sense,

each pattern is represented by its similarity to all other patterns” (see figure 1.6).

Φ

x jx i Φ(x j)Φ(x i)

Figure 1.6: See [39], p. 32, fig. 2.2. Idea of a kernel function.

Typical kernel functions are the isotropic radial basis function kernel parameterized with

γi such as in equation 1.5 or the anisotropic version parameterized with a covariance

matrix Γ such as in equation 1.6.

kΦ(xi, xj) =
n∑
i=1

exp(−γi‖xi − xj‖22) (1.5)

kΦ(xi, xj) =
n∑
i=1

exp(−(xi − xj)TΓ(xi − xj)) (1.6)

We require that the kernel parameters γi > 0 and that the covariance matrix Γ is

symmetric and positive definite.

Next, we discuss the concept of bi-level optimization.

1.5 Bi-level Optimization

Bi-level optimization is a hierarchical mathematical concept involving a higher level

optimization problem having as constraint another optimization problem, the lower level

problem. Let us first have a look at some historical background information about bi-

level optimization: Bi-level optimization is related to Stackelberg games, a concept from

economics introduced in 1952. It is also called leader follower game, where the leader

commits to a strategy knowing all about the possible steps the follower might take, and

the follower observes the leader and chooses its own strategy such that the follower’s

benefit is maximized (see e.g. [42] for a good overview). The leader’s decision can be

seen as the higher level problem, the follower’s decision as the lower level problem. Bi-

level optimization as such can possibly be traced back to a related concept introduced
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by Bracken and McGill in 1973 in the context of mathematical programming. Bi-level

problems were described as mathematical programs with optimization problems in the

constraints [12].

In the context of model selection (i.e. choice of optimal hyper-parameters for a machine

learning algorithm), the higher level problem corresponds to finding the optimal hyper-

parameters that yield the smallest error on test or validation data, but requires that

the lower level learning problem is solved using those hyper-parameters. A common

method to determine ”good” hyperparameters is the procedure of grid search. Grid

search typically involves the definition of a ”grid” over a certain range of parameter

values with a certain resolution and a search for the best values that minimize the test

or validation error of the learned model. The crucial disadvantage of grid search is

that the complexity grows exponentially in the number of parameters. Additionally,

grid search operates on discrete parameter values and does not take advantage of the

continuity of the parameters [6]. With the bi-level approach, we can tackle both major

shortcomings of grid search in an efficient and elegant way.

Bi-level optimization is a generic concept and has diverse applications other than in

the machine learning context. It has been applied e.g. for solving inverse problems in

image processing such as diverse methods for image restoration. We want to name a few

examples: Pock and Kunisch [28] have used the bi-level appraoch to learn parameters

for variational de-noising models. In [16, 4] we find approaches to bi-level learning of

the parameters of Markov Random Field (MRF) models for image de-noising. Similar

work on learning MRFs by Tappen can be found in [38, 43] with applications to de-

noising as well as in-painting. A general bi-level approach to solve energy functionals

typical for tasks such as de-noising or image labelling is proposed in [18]. The use

of bi-level optimization for training of a non-parametric image restoration framework is

suggested in [26]. To state a final example, a bi-level programming approach for learning

a dictionary of analysis sparsity priors with application in signal denoising can be found

in [35].



Chapter 2

Bi-Level Solution for the Linear

Support Vector Machine

In this section the simplest version of the bi-level solution is presented. The goal is

to learn the optimal regularization hyper-parameter for the linear soft-margin SVM. In

section 2.1 we derive the solution of the general bi-level problem using implicit differen-

tiation and a Lagrange multiplier λ for the lower level constraint. The whole problem is

differentiated to the variables w, ϑ and λ and then the resulting gradients are used for

optimization (e.g. with a gradient descent method). As we need a twice differentiable

loss function ` we show different approximations to the Hinge loss function in section 2.2.

Finally, we extend our model to cross-validation (section 2.3) and to optimize multiple

regularization parameters (section 2.4).

2.1 Derivations

In the previous chapter we discussed the Support Vector Machine and bi-level problems,

now it is time to put everything together. To begin with, we formulate the bi-level prob-

lem in its general form. We introduce the parameter vector ϑ which contains the specific

hyper-parameters we want to learn. In the linear case, the parameter vector ϑ contains

only the regularization parameter c. This simplifies notation because later, when we

extend our model we will have different sets of parameters, not only the regularization

parameter c of the linear SVM.

In the following we show the constrained bi-level problem with H(w(ϑ),Ξ, η) as the

upper level problem and the SVM’s energy function E(w, ϑ,X, y) as the lower level

12
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∂H
∂ϑ

=?

min w(ϑ)

Parameters ϑ = {c, γ , ...}

min HHigher Level
Problem

SVM

Figure 2.1: Schematic description of the bi-level problem

problem:

min
ϑ
H(w(ϑ),Ξ, η)

s.t. w(ϑ) ∈ arg min
w

E(w, ϑ,X, y).
(2.1)

The parameter vector w(ϑ) can be determined from solving the optimality condition

of the SVM’s energy function E to the parameters w analytically if possible, or with

some iterative method. We can replace the lower level problem in equation 2.1 with its

optimality condition:

min
ϑ
H(w(ϑ),Ξ, η)

s.t. ∂wE(w, ϑ,X, y) 3 0.
(2.2)

In our case, the higher level problem H(.) is the error of the SVM evaluated on a

validation data set for the current set of hyper-parameters ϑ. In figure 2.1 we show a

schematic view on the bi-level optimization process. The first step is to calculate the

solution of the SVM with a given parameter vector ϑ. The parameter vector contains

the regularization parameter c or kernel parameters γ etc. The resulting minimized

w(ϑ) is used for evaluating the classifier on the validation set. Based on this result,

we want to know how we need to change the parameters in order to achieve a better

classification performance so we would like to determine the gradient ∂H
∂ϑ . This is not

obvious, since the higher level objective does not directly depend on the parameters

we want to optimize, but only through the lower level constraint. We apply implicit

differentiation to solve this issue.

In summary, the upper level problem H aims at minimizing the regularization parameter

c of the linear SVM such that the validation error is minimal. Since H does only
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depend implicitly on c we need to solve this by implicit differentiation. We assume some

properties of H and E for our approach to work: The energy function E needs to be

twice differentiable, for that reason we in introduced twice differentiable loss functions

as replacement for the Hinge loss function (see section 2.2). The validation error H

needs to be once differentiable. For that reason, we choose the mean squared error as

error measure:

H(w(c),Ξ, η) =
1

2L
‖ΞwT − η‖22 (2.3)

Figure 2.2 shows that the validation error varies with the regularization parameter c,

and that H(w(c), .) is not a convex function in c (only in w for a fixed c). To create this

figure, we evaluated H for different regularization parameters c from the range [1, 104]

on the Iris data set.

10
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0.7

c

H
(w

(c
),
Ξ
,
η
)

Validation error over c, cmin = 20.893, Hmin = 0.203

Figure 2.2: One dimensional grid search showing the validation error H over c for
the Iris data set

For the detailed derivations, we first need to state the training objective function of

the linear soft-margin SVM classifier. This objective function is used as the lower level

problem of the bi-level framework:

E(w, c,X, y) =
c

2
‖w̃‖22 +

N∑
i=1

`(w, xi, yi). (2.4)

Let us define the matrix containing the training examples with X ∈ RN×D. One row

of X contains one D-dimensional training example xi, in total there are N training

examples. The vector containing all the labels yi belonging to the examples xi we call

y ∈ RN×1. The labels can take the values {−1, 1} stating whether one example belongs

to the positive or negative class.
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We evaluate the higher level problem on a validation set to get an estimate of the

performance of the bi-level SVM. Therefore we define the matrix containing the examples

used for validation Ξ ∈ RL×D with L the number of validation examples. One row of Ξ

contains one D-dimensional validation example ξl. The vector containing the respective

validation labels is defined by η ∈ RL×1.

For a simpler form of notation we include the bias directly in our data matrices. To

achieve that, we define the weight vector of the SVM classifier with w ∈ R1×D, including

bias b in the end. The original data has d dimensions and by adding the ones, we get

D = d + 1 dimensions. Additionally, we add a column of ones at the end of X and Ξ

respectively. Note the notation w̃: The vector w̃ is the same as w, only that the last

element of w is zero. We use w̃ in the regularization term because the last element of w

is the bias included in the weight vector of the SVM and this value is not regularized.

Typically, the loss function ` is the Hinge loss function, but due to the nature of the opti-

mization algorithm we use, we need a twice differentiable approximation. See chapter 2.2

for details.

We continue our derivations by reformulating the bi-level problem in eq. 2.1 using the

optimality condition for the lower level problem in eq. 2.2 to its unconstrained form

using a Lagrange multiplier λ .

L(w, ϑ, λ) = H(w(ϑ),Ξ, η) + 〈λ, ∂E
∂w
〉 (2.5)

To calculate the gradient of L to the parameters ϑ we need to identify the gradient ∂L
∂ϑ

which we use instead of ∂H
∂ϑ for determining the optimal parameters ϑ.

The optimality condition of equation 2.5 is given by:

G(w, ϑ, λ) =


∂H
∂w + ∂2E

∂w2λ

∂2E
∂w∂ϑλ

∂E
∂w

 = 0. (2.6)

From equation 2.6 it can easily be seen that we require E(.) to be twice differentiable

w.r.t. w and ϑ and that H(.) is once differentiable w.r.t. w.

First of all, we eliminate the last equation in eq. 2.6 by solving the SVM for a given ϑ

with sufficient accuracy, see Chapter 4. By solving the SVM, we obtain the optimal w∗

which we will use in the following.



Chapter 2. Bi-level Solution for the Linear SVM 16

From the first line in eq. 2.6 we can calculate the solution for the Lagrange multiplier.

∂H

∂w∗
+
∂2E

∂w∗2
λ = 0

∂2E

∂w∗2
λ = − ∂H

∂w∗

Solving for λ yields:

λ = −
(
∂2E

∂w∗2

)−1
∂H

∂w∗
.

Substituting back into the second equation in 2.6 we can state the gradient of the

Lagrangian with respect to ϑ:

∂L
∂ϑ

= − ∂2E

∂w∗∂ϑ

(
∂2E

∂w∗2

)−1
∂H

∂w∗
. (2.7)

Using the function H(.) from equation 2.3 (the mean squared error on the validation

data set) we restate the bi-level problem for the linear case where ϑ = c:

min
ϑ
H(w(c),Ξ, η) = min

ϑ

{
1

2L
‖ΞwT − η‖22

}

s.t. w(c) ∈ arg min
w

{
c

2
‖w̃‖22 +

N∑
i=1

`(w, xi, yi)

}
.

To solve the optimization problem for c we need the following components:

∂H

∂w
=

1

L
ΞT (ΞwT − η)

∂2E

∂w2
= cĨ +XT diag(`′′(XwT , y))X

∂2E

∂w∂c
= w̃

∂E

∂w
= cw̃ + `′(XwT , y)TX

Inserting the results into equation 2.7 gives us the desired gradient w.r.t. c:

∂L
∂ϑ

= −w̃
(
cĨ +XT diag(`′′(XwT , y))X

)−1 1

L
ΞT (ΞwT − η)

A short note on the variables used in the previous equations: `′′(.) is the second derivative

of the loss function. This result shows us that we indeed need a twice differentiable

approximation to the Hinge loss function. As mentioned beforehand, we include the bias

in the w vector, but we do not want to regularize this value. Therefore, we introduced
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a modified weight vector for the derivations w̃ which is the same as w, only that the

last entry of w is set to zero. For the same reason, inspired by the work of Zhang et al.

[51], we introduce the diagonal matrix Ĩ ∈ RD×D which is the identity matrix except

that the last element in the diagonal is set to zero.

Next, we will introduce the loss function approximations we used in this work.

2.2 Loss Functions

As we have already mentioned, we need twice continuously differentiable approximations

to the Hinge loss function because it is not differentiable:

`(t, y) = max(0, 1− yt)

Note that we use the abbreviation t = XwT in the linear case. We require the approxi-

mations to be twice continuously differentiable because of the nature of the optimization

procedure we use to solve the bi-level problem. The simplest of the frequently used loss

functions is the logarithmic loss as discussed in section 1.3. Strictly speaking, when us-

ing the logarithmic loss `(t, y) = log(1 + e−yt), the SVM is actually a logistic regression

problem. There is however a modified version of the logarithmic loss as proposed by

Zhang et al. [51] which has a much better fit to the actual Hinge loss function. As a

second approximation we did a quartic approximation of the Hinge loss function.

Table 2.1 shows a summary of the two different loss functions and their first and second

derivatives. The inner derivatives of the functions are not included.

Mod. Logarithmic Quartic Approximation

`(t, y) 1
µ log(1 + e−µ(yt−1))


1− yt if (1)

a+ byt+ c(yt)2 + d(yt)3 + e(yt)4 if (2)

0 if (3)

`′(t, y) − y

eµ(yt−1) + 1


−y if (1)

(b+ 2cyt+ 3d(yt)2 + 4e(yt)3)y if (2)

0 if (3)

`′′(t, y)
µeµ(yt−1)

(eµ(yt−1) + 1)2


0 if (1)

2c+ 6dyt+ 12e(yt)2 if (2)

0 if (3)

Table 2.1: Different approximations to Hinge loss and their derivatives. Note the
additional information for the quartic approximation: (1) 1−ε ≤ yt, (2) 1−ε < yt < 1+ε
and (3) yt ≥ 1 + ε. The solutions for the coefficients of the quartic approximation are

as follows: a = 3ε4+8ε3+6ε2−1
16ε3 , b = − 2ε3+3ε2−1

4ε3 , c = 3(ε2−1)
8ε3 , d = 1

4ε3 , e = − 1
16ε3 .
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The modified logarithmic loss has a parameter µ determining the fit to the original Hinge

loss function, the bigger µ is, the closer it is to Hinge loss. The second approximation

is a piecewise defined quartic approximation to the Hinge loss with a parameter ε. The

smaller the ε parameter, the closer the approximation fits to the original Hinge loss

function.

See figures 2.3 to 2.5 to get a feeling how the loss function approximations look like.
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Figure 2.3: Different approximations of the Hinge loss function, µ = 7.5, ε = 2
5 .
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Figure 2.4: First derivatives of the Hinge loss approximations, µ = 7.5, ε = 2
5 .

The plots show a qualitative comparison of the modified logarithmic approximation and

the quartic approximation. We chose the parameters ε and µ such that the approxima-

tions show a comparable peak in figure 2.5. What we observe in figure 2.3 is that the
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Figure 2.5: Second derivatives of the Hinge loss approximations, µ = 7.5, ε = 2
5 .

logarithmic function is not as exact as the piece-wise defined quartic approximation; it

does only get close to the Hinge loss where the quartic approximation is already equal

to Hinge loss (outside of the interval [1 − ε, 1 + ε]). The difference is visually not very

prominent, but the difference between both approximations increases when looking at

the first (fig. 2.4) or second derivatives (fig. 2.5). At the interval boundaries the log-

arithmic function is smoothly decaying to 0 and −1 respectively, and the peak of the

second derivative is narrower than that of the quartic approximation. The results are

not surprising, given the indefinitely differentiable logarithmic function as opposed to

the other approach which consists of a quartic approximation in the close environment

of the discontinuity of the Hinge loss function and which is otherwise the exact Hinge

loss.

Next we will show how we applied cross-validation to our bi-level SVM.

2.3 Cross Validation

Cross-validation is a widely used technique to prevent a machine learning algorithm from

over-fitting and to ensure a good generalization performance. For cross-validation the

training set is partitioned T times into a training set and a validation set and then the

bi-level problem is solved for each partition of training/validation data. The resulting

parameters that give the best result are then used to retrain the model (= solve the

SVM) and this gives us then the final classifier.
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On our case of bi-level optimization, cross-validation is included in the optimization

procedure because we do not select the model parameters ”by hand” but let our bi-level

program do the job for us. Say we divide our data in t = 1, ..., T folds, then we need to

solve T times our lower level problem for one step towards the optimal hyper-parameters.

To state an example, if we have 30 training examples and select T = 5 folds, we have 24

training and 6 validation examples. During the cross-validation process the examples

are shuffled in T = 5 different configurations yielding different validation error values.

The sum of the error values is minimized, see eq. 2.8 and 2.10.

The general bi-level problem for cross-validation is:

min
ϑ
HT (w1(ϑ), ..., wT (ϑ),Ξ1, ...,ΞT , η1, ..., ηT ) (2.8)

s.t. wt ∈ arg min
wt

E(wt, ϑ,Xt, yt) for t = 1, ..., T.

The optimality condition of the t-th lower level problem is:

∂wtE(wt, ϑ,Xt, yt) 3 0 (2.9)

The higher level objective is now a sum over the validation errors of all folds, see the

equation for the linear case:

HT (w1(c), ..., wT (c),Ξ1, ...,ΞT , η1, ..., ηT ) =
T∑
t=1

Ht(wt(c),Ξt, ηt) (2.10)

with

Ht(wt(c),Ξt, ηt) =
1

2Lt
‖ΞtwTt − ηt‖22.

Analogous to before, we can state the unconstrained bi-level problem LT for cross-

validation using equations 2.8 and 2.9:

LT (w1, ..., wT , ϑ, λ1, ..., λT ) =

HT (w1(ϑ), ..., wT (ϑ),Ξ1, ...,ΞT , η1, ..., ηT ) +
T∑
t=1

〈
λt,

∂E(wt, ...)

∂wt

〉 (2.11)
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The optimality condition of equation 2.11 is given by:

GT (w1, ..., wT , ϑ, λ1, ..., λT ) =



∂H1
∂w1

+ ∂2E
∂w2

1
λt

...
∂HT
∂wT

+ ∂2E
∂w2

T
λt∑T

t=1
∂2E
∂wt∂ϑ

λt

∂E
∂w1

...
∂E
∂wT


= 0. (2.12)

From the last T lines of equation 2.12 by solving the t-th SVM we obtain w∗t which we

use in the first T equations to obtain the Lagrange multiplier λt:

λt = −
(
∂2E

∂w∗2t

)−1
∂Ht

∂w∗t
.

Consequently, instead of the original gradient∂L∂c we have the sum of gradients:

∂LT
∂c

=

T∑
t=1

(
∂L
∂c

)
t

Having introduced the concept of cross-validation for the linear bi-level SVM, we con-

tinue to extend our model to deal with several regularization parameters.

2.4 Regularization Parameters for Each Dimension of the

Input Data

To learn a model with more degrees of freedom using the linear SVM we extend the idea

of using one single regularization parameter to using several parameters. Instead of a

single regularization parameter c we now have a vector c̄ ∈ R1×D with one entry cd per

feature dimension of the input data (plus one due to the bias, but the last value of the

c̄ vector is set to zero).

With the following equations we want to show that we can also optimize multiple pa-

rameters with the bi-level framework. There are only subtle changes in the equations,

and they affect E(w, c̄,X, y) and the derivatives w.r.t. w only. See the equations:
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E(w, c̄,X, y) =
1

2

D∑
d=1

cdw
2
d + `(XwT , y)

∂E

∂w
= w diag(c̄) + `′(XwT , y)TX

∂2E

∂w2
= diag(c̄) +XT diag(`′′(XwT , y)X

We will show in Chapter 5 that it is indeed beneficial to use models with a higher

number of parameters compared to models using only one or two parameters. In the

next chapter, we will extend the linear bi-level SVM with kernels.



Chapter 3

Bi-Level Solution for the Kernel

Support Vector Machine

In this chapter, we develop the bi-level solution for kernel Support Vector Machines.

First we formulate the bi-level solution in its general form and then we specialize to

different settings. We develop solutions for optimization of the regularization parameter

c, then c and the kernel parameter γ combined. Next, we discuss the optimization of

multiple parameters γd and finally we develop the bi-level solution for a multiple kernel

approach. The chapter closes with a short note on cross-validation for the kernel SVM.

3.1 Bi-level Kernel SVM

In the following, we show the derivations of the bi-level kernel SVM with a simple kernel

function including the optimization of both the kernel and the regularization parameters

of the SVM. Again, we summarize the parameters in a vector ϑ to keep the derivations

universal.

At first some remarks on the notation: In analogy with the derivations of the linear

SVM found in chapter 2, we denote the training examples with xi, i = 1, 2, ..., N , and

the validation examples with ξl , l = 1, 2, ..., L. We denote the training targets with

yi, i = 1, 2, ..., N and the validation targets with ηl, l = 1, 2, ..., L. One example has

d = 1, ..., D coordinates, with D the number of feature dimensions. Note that for the

kernel SVM we do not consider any bias and therefore is D the true number of feature

dimensions.

23



Chapter 3. Bi-Level Solution for the Kernel Support Vector Machine 24

The general classification function of a kernel SVM is:

f(x) =
N∑
i=1

αik(x, xi) (3.1)

where x is an arbitrary example. Instead of the parameter vector w that defined the

optimal hyperplane for the linear SVM, the parameter vector α defines the hyperplane

for the kernel SVM. We define the general loss function as follows:

`(f(xj), yj). (3.2)

Putting equations 3.1, 3.2 and the SVM’s energy function from eq. 2.4 together, we get

the kernel SVM’s training objective function:

α(ϑ) = arg min
α

 c

2
‖f‖2 +

N∑
j=1

`

(
N∑
i=1

αik(xj , xi), yj

) .

What is still missing is to resolve the squared l2 norm of f , ‖f‖2:

‖f‖2 =

N∑
j=1

N∑
i=1

αjαik(xj , xi) = αTKα.

Finally we get the training objective function for the non-linear SVM:

α(ϑ) = arg min
α

 c

2
αTKα+

N∑
j=1

`

(
N∑
i=1

αik(xj , xi), yj

) .

Using a radial basis function (RBF) kernel, one kernel element for training is k(xj , xi) =

exp(−γ‖xi − xj‖22). Let us take a close look on the kernel matrices: We decompose the

kernel Matrix K with entries k(xj , xi) for training into rows kj ∈ R1×N

k1 = (k(x1, x1), k(x1, x2), . . . , k(x1, xN ))

which leads to the description of K ∈ RN×N :

K =


k1

k2

...

kN

 .

Note also, that the matrix K is symmetric, meaning K = KT , and positive definite

which is a fundamental requirement of kernels in general.
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Similarly, we decompose the kernel matrix of the validation examples into rows κl ∈
R1×N

κ1 = (k(ξ1, x1), k(ξ1, x2), . . . , k(ξ1, xN ))

which leads to the description of K ∈ RL×N

K =


κ1

κ2

...

κL

 .

Using a RBF kernel function, one kernel element for validation is

k(ξl, xi) = exp(−γ‖ξl − xi‖22).

To sum up, let us define the matrix dimensions for important terms: The parameter

vector of the SVM α ∈ RN×1, one training example xi ∈ R1×D, the matrix of training

examples X ∈ RN×D, one validation example ξl ∈ R1×D, the matrix of validation

examples Ξ ∈ RL×D, the target vectors y ∈ RN×1 and η ∈ RL×1.

Now we are prepared to state the bi-level problem for the kernel SVM using a generic

parameter vector ϑ in the dual variable α:

min
ϑ
H(α(ϑ),Ξ, η)

s.t. α(ϑ) ∈ arg min
α

E(α, ϑ,X, y).

We can substitute the lower level problem by its optimality condition:

min
ϑ
H(α(ϑ),Ξ, η)

s.t. ∂Eα(α, ϑ,X, y) 3 0.

Pursuing the same approach as in chapter 2, we rewrite the bi-level problem to its

unconstrained form using the Lagrange multiplier λ:

L(α, ϑ, λ) = H(α(ϑ),Ξ, η) + 〈λ, ∂E
∂α
〉. (3.3)
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Again, differentiating w.r.t. α, ϑ and λ we obtain the optimality system G(α, ϑ, λ) for

the kernel SVM in its general form:

G(α, ϑ, λ) =


∂H
∂α + ∂2E

∂α2 λ

∂H
∂ϑ + ∂2E

∂α∂ϑλ

∂E
∂α

 = 0. (3.4)

Given the SVM is solved to sufficient accuracy, the last line of equation 3.4 can be

eliminated and we obtain α∗. Using the first line of the optimality system given in

equation 3.4 we can find the solution for the Lagrange multiplier (analogous to the

linear case):

∂H

∂α∗
+
∂2E

∂α∗2
λ = 0

∂2E

∂α∗2
λ = − ∂H

∂α∗

Solving for λ yields:

λ = −
(
∂2E

∂α∗2

)−1
∂H

∂α∗
. (3.5)

Substituting back into the second equation in 3.4 we can state the gradient of the

Lagrangian to ϑ using the result for λ:

∂L
∂ϑ

=
∂H

∂ϑ
− ∂2E

∂α∗∂ϑ

(
∂2E

∂α∗2

)−1
∂H

∂α∗
.

In general, when computing the gradient of the Lagrangian with respect to the param-

eters ϑ, we use the optimal α∗.

In the following we specialize to several variants of the bi-level kernel SVM.

3.1.1 Bi-level Program to Find the Optimal Regularization

Parameter c

In the first version, our aim is to find the optimal regularization parameter c. Let ϑ = c,

then the SVM classifier can be written as follows:

α(c) = arg min
α

 c

2
αTKα+

N∑
j=1

`(kjα, yj)

 = arg min
α

E(α, c,X, y).
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Let us state the bi-level problem once again:

min
c
H(α(c),Ξ, η)

s.t. α(c) ∈ arg min
α

E(α, c,X, y)

As higher level problem for the kernel SVM we use the mean squared error on the

validation data set (compare with chapter 2):

H(α(c),Ξ, η) =
1

2L

L∑
l=1

(
N∑
i=1

αik(ξl, xi)− ηl

)2

=
1

2L

L∑
l=1

(κlα− ηl)2 =
1

2L
‖Kα− η‖22.

We state the bi-level problem in its unconstrained form for ϑ = c using the optimality

condition for the lower level problem:

L(α, c, λ) = H(α(c),Ξ, η) + 〈λ, ∂E
∂α
〉.

As aforementioned, we use gradient methods to solve the inner and the outer problems

using the gradients ∂E
∂α and ∂L

∂c . The gradient ∂H
∂c = 0, the remaining components read:

∂H

∂α
=

1

L
KT (Kα− η) (3.6)

∂2E

∂α2
= cK +K diag(`′′(Kα, y))K (3.7)

∂2E

∂α∂c
= αTK (3.8)

∂E

∂α
= cKα+K`′(Kα, y) (3.9)

For the derivations of the gradients shown in equation 3.6 to 3.9 please see Appendix A.

Using the gradients above we can write the optimality system:

G(α, c, λ) =


1
LK

T (Kα− η) + (cK +K diag(`′′(t, y))K)λ

αTKλ

cKα+K`′(t, y)

 = 0.

Finally, using the Lagrange multiplier λ from equation 3.5 we can state the term ∂L
∂c :

∂L
∂c

= − ∂2E

∂α∗∂c

(
∂2E

∂α∗2

)−1
∂H

∂α∗
(3.10)
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which we use for the optimization procedure.

So far, we have solved the bi-level kernel SVM for a fixed kernel parameter γ, but we

can find the optimal regularization parameter c via bi-level optimization. In the next

step, we want to achieve bi-level optimization on both the regularization parameter c

and the kernel parameter γ.

3.1.2 Bi-level Program to Find the Optimal Parameters c and γ

For solving the bi-level kernel SVM in the parameters c and γ we need a two-dimensional

parameter vector

ϑ =

(
c

γ

)
and the following vector of derivatives

∂L
∂ϑ

=

∂L
∂c

∂L
∂γ

 .

For the bi-level optimization process we need additionally the term ∂L
∂γ , the other term

∂L
∂c we have already defined in equation 3.10:

∂L
∂γ

=
∂H

∂γ
+

∂2E

∂α∗∂γ
λ. (3.11)

The Lagrange multiplier λ has already been defined in equation 3.5. The derivations for

the terms needed to calculate the gradient ∂L
∂γ given in equation 3.11 can be found in

the appendix A. Here the results:

∂H

∂γ
=

1

L
(K̄α)T (Kα− η) =

1

L
αT K̄T (Kα− η) (3.12)

∂2E

∂α∂γ
= (cK̄α+ K̄`′(t, y) +K diag(`′′(t, y))K̄α)T (3.13)

Referring to the kernel matrix for training, we define K̄ as the point-wise product of

the inner derivative Kin and K; K̄ := K �Kin. Likewise, referring to the kernel matrix

for validation, we define K̄ as the point-wise product of the inner derivative Kin and K;

K̄ := K �Kin.
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Using the gradients ∂L
∂c and ∂L

∂γ we can find optimal parameters ϑ for the SVM. The

optimality system is

G(α, c, γ, λ) =



1
LK

T (Kα− η) + [cK +K diag(`′′(t, y))K]λ)

αTKλ

1
Lα

T K̄T (Kα− η) + [cK̄α+ K̄`′(t, y) +K diag(`′′(t, y))K̄α]Tλ

cKα+K`′(t, y)

 = 0.

In order to make our model able to deal with many different kernel parameters which

has several benefits, we investigate a multi-γ bi-level SVM in the next section.

3.1.3 Bi-level Program to Find the Optimal Parameters c and Several

Parameters γd

For the multi-γ bi-level SVM we assume one kernel parameter γi for each feature dimen-

sion d = 1, 2, ..., D of the input data. We write down one kernel element for training:

k(xj , xi) = exp(−
D∑
d=1

γd(xjd − xid)2)

and for validation:

k(ξl, xi) = exp(−
D∑
d=1

γd(ξld − xid)2).

Let us denote the multi-γ kernel matrix with KD and the validation kernel matrix with

KD. For solving the lower level problem, the SVM objective, only the calculation of

the kernel matrices changes versus the previous setting. For the gradients to solve the

higher level problem, we need to make some modifications, though. The gradients ∂L
∂γd

are computed for each dimension and summarized in the gradient vector

∂L
∂γ

=



∂L
∂γ1

∂L
∂γ2

...
∂L
∂γD


.

One element is defined by

∂L
∂γd

=
∂H

∂γd
+

∂2E

∂α∗∂γd
λ

using the Lagrange multiplier λ from equation 3.5. For the gradient ∂H
∂γd

the inner

derivations of the validation kernel matrix change compared to the gradient ∂H
∂γ . We
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state the formula of the gradient first and then resolve the unknown variables:

∂H

∂γd
=

1

L
(K̄dα)T (KDα− η)

K̄d = KD �Kin,d

Kin,d =


−‖ξ1,d − x1,d‖22 −‖ξ1,d − x2,d‖22 . . .

...
. . .

...

−‖ξL,d − x1,d‖22 . . .


The above modifications also apply to the gradient ∂2E

∂α∂γd
:

∂2E

∂α∂γd
= (cK̄dα+ K̄d`

′(t, y) +KD diag(`′′(t, y))K̄dα)T .

3.1.4 Cross Validation for the Bi-level Kernel SVM

In section 2.3 we already described the general procedure of cross-validation applied in

the bi-level learning, and the same principles apply for the bi-level kernel SVM as well.

The general bi-level problem for cross-validation of the kernel SVM can we written as

follows, assuming that we partition the data in t = 1, ..., T folds:

minHT (α1(ϑ), ..., αT (ϑ),Ξ1, ...,ΞT , η1, ..., ηT )

s.t. αt(ϑ) ∈ arg min
αt

E(αt, ϑ,Xt, yt) for t = 1, ..., T

While the kernel SVM is solved for each fold t, the higher level objective HT is the sum

over the validation errors of each fold:

HT (α1(ϑ), ..., αT (ϑ),Ξ1, ...,ΞT , η1, ..., ηT ) =

T∑
t=1

Ht(αt(ϑ),Ξt, ηt) =

T∑
t=1

1

2Lt
‖Ktαt − ηt‖22.

As explained in section 2.3, we can state the unconstrained bi-level problem LT for

cross-validation as follows:

LT (α1, ..., αT , ϑ, λ1, ..., λT ) =

HT (α1(ϑ), ..., αT (ϑ),Ξ1, ...,ΞT , η1, ..., ηT ) +
T∑
t=1

〈
λt,

∂E(αt, ...)

∂αt

〉 (3.14)
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The optimality condition of equation 3.14 is given by:

GT (α1, ..., αT , ϑ, λ1, ..., λT ) =



∂H1
∂α1

+ ∂2E
∂α2

1
λt

...
∂HT
∂αT

+ ∂2E
∂α2

T
λt∑T

t=1

(
∂Ht
∂ϑ + ∂2E

∂αt∂ϑ
λt

)
∂E
∂α1

...
∂E
∂αT


= 0. (3.15)

From the last T lines of equation 3.15 by solving the t-th SVM we obtain α∗t which we

use in the first T equations to obtain the Lagrange multiplier λt:

λt = −
(
∂2E

∂α∗2t

)−1
∂Ht

∂α∗t
.

The relevant vector of gradients of the Lagrangian LT w.r.t. the parameter vector ϑ

contains the sums of the individual gradients over all folds as its components:

∂LT
∂ϑ

=

∑T
t=1(∂L∂c )t∑T
t=1(∂L∂γ )t

 .

The next section is dedicated to the last extension to the bi-level kernel SVM. We

consider the approach of using several kernels and develop the corresponding bi-level

solution.

3.2 Multiple Kernel SVM

The subject of this section is the extension of the previous model to use multiple kernels

instead of a single kernel. A good overview about multiple kernel learning algorithms

is provided e.g. by Gonen et al. [22]. There are different application scenarios for

the usage of multiple kernels: Such a model can be used to combine different subsets

of heterogeneous features, to combine different feature representations or different data

sources which require different measures of similarity.

Siddiquie et al. [41] describe in their paper how they combine multiple kernels for image

classification, where they use one kernel per feature channel (texture, color, histograms
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of oriented gradients, saliency features). There is a similar approach by Vedaldi et al.

[47]: they combine χ2 kernels for different feature channels such as edge distribution,

visual words and spatial feature descriptors.

We define the model as follows: Let p = 1, 2, . . . , P be the partitions (i.e. equivalent

to the number of kernels used) each of which are of dimension Dp. A training example

can be written as concatenation of P feature subsets: xi = {x1
i , x

2
i , . . . , x

P
i } whereas

xpi ∈ RDp×1. Usually, the number and size of the feature partitions and the type of

kernels are predefined according to the data used. The resulting classification function

is then a weighted sum of P kernels:

f(x) =
N∑
i=1

αi

 P∑
p=1

βpkp(x
p, xpi )


︸ ︷︷ ︸

kβ(x,xi)

.

Note that we use the constraint βp ∈ R+ in order to ensure that the kernel stays positive

definite. The SVM’s training objective function reads:

α(ϑ) = arg min
α

 c

2
‖f‖2 +

N∑
j=1

`

(
N∑
i=1

αikβ(xj , xi), yj

)
with

‖f‖2 =
N∑
j=1

N∑
i=1

αjαikβ(xj , xi) = αTKβα.

One element of the new multiple kernel matrix is kβ(xj , xi). The kernel matrix Kβ ∈
RN×N consists of rows kβj = (kβ(xj , x1), kβ(xj , x2), . . . , kβ(xj , xN )). Therefore,

Kβ =


kβ1

kβ2

...

kβN

 .

Likewise, we can define the validation kernel and its elements. One element of the

validation kernel matrix is κβ(ξl, xi). The validation kernel matrix Kβ ∈ RL×N consists

of rows κβl = (κβ(ξl, x1), κβ(ξl, x2), . . . , κβ(ξl, xN )). Therefore,

Kβ =


κβ1

κβ2

...

κβL

 .
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Simplified writing of the training objective function results in

α(ϑ) = arg min
α

 c

2
αTKβα+

N∑
j=1

`(kβjα, yj)

 = arg min
α

E(α, ϑ,Kβ, y).

The bi-level problem adapted to the new kernel matrices is

min
ϑ
H(α(ϑ),Kβ, η)

s.t. α(ϑ) ∈ arg min
α

E(α, ϑ,Kβ, y)

The parameter vector ϑ contains additionally the β parameter for multiple kernel learn-

ing:

ϑ =


c

γ̄

β

 .

Note that we have P parameters γp and βp, one for each feature subset:

γ̄ = (γ1, γ2, . . . , γP )T

β = (β1, β2, . . . , βP )T

The updated higher level problem reads:

H(α(ϑ),Kβ, η) =
1

2L

L∑
l=1

(κβlα− ηl)2 =
1

2L
‖Kβα− η‖2.

In all terms that we need to solve the bi-level problem where kernel matrices are involved,

the matrices K and K are substituted by Kβ and Kβ respectively. Additionally, we need

to derive the gradients ∂L
∂γ̄ and ∂L

∂β . We can view the partial derivatives of L w.r.t. γ̄

element-wise:

∂L
∂γ̄

=



∂L
∂γ1

∂L
∂γ2

...

∂L
∂γP

 .

We assume that we use RBF kernels. In the appendix B we show the derivations of ∂H
∂γp

and ∂2E
∂α∂γp

. Here the results:
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∂H

∂γp
=

1

L
αTβpK̄pTβ (Kβα− η) (3.16)

∂2E

∂α∂γp
= (cβpK̄

p
βα+ βpK̄

p
β`
′(tβ, y) +Kβ diag(`′′(tβ, y))βpK̄

p
βα)T (3.17)

The matrix K̄p
β is the point-wise product of the generic inner derivative of K and the

multiple kernel matrix Kβ parametrized with kernel parameter γp, K̄
p
β = Kin � Kp

β.

Equivalently for the validation kernel, K̄pβ = Kin�Kpβ. The variable tβ is used as a short

cut for tβ = Kβα.

To complete the list of derivatives needed for solving the bi-level problem for the multiple

kernel SVM we state the derivatives of L w.r.t. to β component-wise:

∂L
∂β

=



∂L
∂β1

∂L
∂β2

...

∂L
∂βp


.

The necessary building blocks of the derivatives are ∂H
∂βp

and ∂2E
∂αβp

are stated in the

following equations (again, please find the detailed derivations in Appendix B):

∂H

∂βp
=

1

L
αTKpTβ (Kβα− η) (3.18)

∂2E

∂αβp
= (cKp

βα+Kp
β`
′(tβ, y) +Kβ diag(`′′(tβ, y))Kp

βα)T (3.19)

Cross-validation for the bi-level multiple kernel SVM works analogous to the descriptions

in the previous sections (see sections 2.3 and 3.1.4).

In the next chapter, we discuss briefly the optimization algorithms that we used.
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Optimization Algorithms

This section provides a short overview of the used optimization algorithms both for

solving the SVM classifier (the inner problem) and for optimizing the outer problem.

For solving the SVM, we applied the FISTA algorithm [5]. For solving the bi-level

outer objective, implementations of the RPROP [37] algorithm or the LBFGS-B [13, 55]

algorithm were used alternatively.

It is important to note that we incorporate bounds on the hyper-parameters via the used

optimization algorithms. LBFGS-B inherently supports simple bounds on the optimized

variables, RPROP does not.

4.1 FISTA

The first step of selecting a suitable optimization algorithm is to analyse the structure of

the optimization problem. The lower level problem has a clear structure, that falls into

the class of problems that can be solved efficiently with the FISTA algorithm. FISTA

stands for ’fast iterative shrinkage-thresholding algorithm’ and was developed by Beck

and Teboulle in 2009 [5]. The structure of the optimization problem that can be solved

by their approach is as follows (throughout this section, we stick to the notation in [5]):

min
x
{F (x) ≡ f(x) + g(x) : x ∈ Rn}

where g : Rn → R is a continuous, convex but possibly non-smooth function with a

simple, in-expensive proximal map, and f : Rn → R is a continuous, smooth, convex

function ∈ C1,1 that is continuously differentiable with Lipschitz continuous gradient

35
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and a Lipschitz constant M(f) > 0:

‖∇f(x)−∇f(y)‖2 ≤M(f)‖x− y‖2 for every x, y ∈ Rn.

We analyse the SVM objective function described in equation 2.4, see below a more

compact writing:

E(w, c,X, y) =
1

2
‖w̃‖22 + `(XwT , y).

We have with f(x) = `(XwT , y) the smooth convex and continuously differentiable

function and with g(x) = 1
2‖w̃‖

2
2 the possible non-smooth regularizer with proximal

map which is easy to compute. The requirement of f(x) to be convex and continuously

differentiable is one of the reasons why we use smooth approximations to the Hinge

loss function fulfilling those preconditions, see section 2.2. Note that for optimizing the

bi-level problem, we need even the second derivatives of `(t, y).

Considering the kernel SVM, we have

E(α, ϑ,K, y) =
c

2
αTKα+ `(Kα, y)

for the energy function. Here, the proximal map of the regularization term is not easy

to compute, so we set f(x) = E(α, ϑ,K, y) and g(x) = 0. F(x) is then a smooth convex

optimization problem.

Another nice property of the FISTA algorithm is that it is a first order method which

means that the algorithm only uses function values and the first derivative of the function

to be optimized. This is an important enabling factor for large-scale optimization.

Further, the FISTA algorithm has a proven convergence bound of F (xk)−F (x∗) ≤ O( 1
k2

)

with k the number of optimization steps and x∗ the optimal solution. Specifically, we use

the FISTA algorithm with backtracking (line search) including the automatic estimation

of the Lipschitz constant M > 0 which acts as a step size parameter.

In the following, we state the FISTA algorithm with backtracking from [5]:
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Step 0 Take M0 > 0, ζ > 1, x0 ∈ Rn. Set y1 = x0, τ1 = 1.

Step k (k ≥ 1) Find the smallest non-negative integers ik such

that with M̄ = ζikMk−1

F (pM̄ (yk)) ≤ QM̄ (pM̄ (yk), yk).

Set Mk = ζikMk−1 and compute

xk = pMk
(yk),

τk+1 =
1 +

√
1 + 4τ2

k

2
,

yk+1 = xk +

(
τk − 1

τk+1

)
(xk − xk−1).

The quadratic approximation QM (x, y) of F (x) at a point y reads:

QM (x, y) = f(y) + 〈∇f(y), x− y〉+
M

2
||x− y||22 + g(x).

The key of the FISTA algorithm is xk = pM (yk) with

pM (y) = arg min
x
{QM (x, y)} = proxg, 1

M
(y − 1

M
∇f(y)).

Note that the proximal operator pM (.) is applied to the point yk which is a particular

linear combination of the previous points xk and xk−1.

Beck and Teboulle [5] point out the connection between the standard gradient algorithm

for solving the problem min f(x) with the key step of FISTA. They state that one

iteration of gradient descent

xk = xk−1 − τk∇f(xk−1)

can be interpreted as the proximal regularization of a linearisation of f at the point

xk−1:

xk = arg min
x

{
f(xk−1) + 〈∇f(xk−1), x− xk−1〉+

1

2τk
‖x− xk−1‖2

}
.

The following sections are dedicated to the algorithms used to optimize the higher level

objective. First, we discuss the LBFGS-B algorithm.
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4.2 LBFGS-B

Limited memory BFGS-B is an algorithm by Byrd et al. [13] for solving large non-linear

optimization problems with bounds on the optimized variables of the form li ≤ xi ≤ ui.
We can state the optimization problem as follows:

min f(x)

s.t. l ≤ x ≤ u

with f : Rn → R a non-linear function where the gradient g can be computed. The

variables to be optimized are contained in the vector x, with n the number of variables

(n can be large). Vectors l and u contain the lower and upper bounds on the variables

in x. The higher level objective of the bi-level problem fulfills these requirements, so we

can use this algorithm for optimization.

The algorithm belongs to the class of Quasi-Newton methods which use gradient infor-

mation and approximations to the Hessian matrix for optimization. There is no explicit

calculation of the second derivative of f needed, therefore the method can be used when

the Hessian matrix cannot easily be computed. In the case of LBFGS-B, the complexity

of the approximation to the Hessian matrix is linear in the memory requirements. The

algorithm uses line search for determining the optimization direction.

In the following, an outline of the LBFGS-B algorithm is given (we stick to the notation

in [13]).

• At iteration k = 0, an initial point x0 and an integer m which defines the number of

stored limited memory BFGS matrices Bk (approximations of the Hessian matrix)

are chosen. The initial matrix B0 is set to the identity matrix.

• In the beginning of each iteration, we are given the current iterate xk, the corre-

sponding function value fk, the gradient of f at step k, gk, and a positive definite

approximation to the Hessian matrix of f , Bk.

• Based on that information, we can write a quadratic approximation of fk:

mk(x) = fk + gTk (x− xk) +
1

2
(x− xk)TBk(x− xk).

• At first, the gradient projection method is used to determine the set of active

bounds, followed by a projection of the variables xi onto the feasible region defined

by the given bounds.
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• The variables xi that are at a lower bound li or at an upper bound ui are held

fixed, the rest of the variables are considered free variables for the next step. Then,

the algorithm approximately minimizes mk(x) for the free variables, ignoring the

bounds at first and then truncating the solution to satisfy the bounds.

• This approximate feasible solution x̄k+1 is used to determine the next iterate xk+1

by a line search procedure ensuring that the variables stay in the feasible region.

• Finally, the gradient gk+1 and Bk+1 are computed, copies of Bk older than m

iterations are discarded.

• If convergence has not yet been reached, set k = k+1 and start the next iteration.

We used the implementation provided by Liam Steward1. In the next section, we discuss

the RPROP algorithm as an alternative to solve the higher level objective of the bi-level

optimization problem.

4.3 RPROP

RPROP stands for ’resilient propagation’ and was proposed by Riedmiller et al. [37, 36]

as a heuristic alternative to standard gradient descent with the suggested application

scenario but not limited to neural networks. A comparison of different first-order learning

methods has been made e.g. in [25] where they state that the RPROP algorithm is

”one of the best performing first-order learning methods for neural networks”. Another

group of researchers applied the RPROP algorithm to a problem in the context of image

segmentation [1]. This shows that RPROP can be successfully applied for different kinds

of optimization problems.

In the following, we will discuss the shortcomings of standard gradient descent and show

how the RPROP algorithm works. See the formula for standard gradient descent:

xk+1 = xk − τ∇fk. (4.1)

Let x the variable we want to optimize, k > 0 the current number of iterations, τ the step

size of the parameter update. ∇fk denotes the gradient of the objective function f at xk.

Note that we consider x a multi-dimensional variable, let x ∈ RD×1. During gradient

descent, the variable x moves in the negative direction of the gradient of the error

function until convergence. The well-known problems with standard gradient descent are

that the algorithm tends to converge to local optima and usually shows slow convergence.

1 http://www.cs.toronto.edu/~liam/software.shtml
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A critical parameter in eq. 4.1 is τ , also considered the learning rate. If τ is too small

then the algorithm might get stuck in flat regions of the error surface, and if it is to high

the algorithm might start to oscillate around a (local) minimum. Thus, the step size τ

is highly influential on the number of iterations needed until convergence and is usually

set via an adaptive scheme. Also RPROP uses an adaptive scheme for updating the step

size, but contrary to standard methods it does not consider the size of the gradient but

only the sign of the gradient. The adaptation works based on the principle that when

the gradient value changes its sign the algorithm may have missed a local minimum or

simply took a too big step. In that case the algorithm reduces the step size. If the

gradient value keeps its sign, the step size is increased in order to speed up convergence.

RPROP uses one individual ”update-value” [37, 36, 1] for each dimension in x, which

are summarized in the vector ∆k ∈ RD×1. The update-values are determined as follows

(for each dimension d):

∆d
k =


min(∆d

k−1η
+,∆max) ∇dfk∇dfk−1 > 0

max(∆d
k−1η

−,∆min) ∇dfk∇dfk−1 < 0

∆d
k−1 ∇dfk∇dfk−1 == 0.

The gradient update term −τ∇fk in eq. 4.1 is then replaced by the following:

xk+1 = xk − sign(∇fk)�∆k

where � denotes the element-wise multiplication of the update-values and the sign of

the derivatives of the error function. The increase and decrease parameters η+ and

η− are usually fixed to 1.2 and 0.5 respectively. The parameters restricting the size

of the update-values ∆min and ∆max are set e.g. to 10−6 and 50 [37]. One of the

advantages of RPROP is that the algorithm is very robust to its internal parameters,

usually the algorithm works with the stated standard values. Another advantage is that

the magnitude of the gradient does not influence the size of the update step. This makes

the algorithm very robust also to noisy error functions and numerical gradients [25] and

resilient to initial values. RPROP shows empirically fast convergence due to the update

step adaptation.

We use the RPROP algorithm to optimize the higher level objective of the bi-level

framework. As already mentioned, we need to ensure that the parameters we want

to optimize in the bi-level framework stay within certain bounds, at least we require

that the parameters stay positive. RPROP does not inherently support bounds on the

variables, however we found a way to deal with the problem. As a workaround, we check

in each optimization step whether the parameter values fall in a feasible region and if not,

we project the value to the closest feasible value. In our case, we restrict the parameters
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to be strictly positive. Additionally, for kernel parameters, we set the threshold to τ

which is the smallest value which makes sense for the chosen kernel function.

In the next chapter, we will discuss the characteristics of the optimization algorithms in

the context of several basic experiments.



Chapter 5

Basic Experiments and

Evaluation

In this section we evaluate the bi-level SVM in all its variants developed in Chapters 2

and 3 on small scale data sets and discuss the results. First, we evaluate several choices

for loss function parameters according to different criteria and select them for the further

experiments. Second, we consider grid search vs. the bi-level SVM and compare both

approaches by experiments. Furthermore, we present results using a bi-level SVM with

multiple kernel as well as multiple regularization parameters and finally one experiment

with a bi-level SVM using multiple kernels.

5.1 Selection of Loss Function Parameters

For the evaluation of loss function parameters we use the Iris data set [2]. The data set

consists of three classes of Iris plants, and the four features are measurements of petal

and sepal lengths of instances of the flower. In our example we learn to discriminate

between the Iris Setosa and the other two (Iris Versicolor and Iris Virginica).

We consider a linear bi-level SVM for this evaluation and compare the number of SVM

evaluations needed to find a solution using the LBFGS-B algorithm. We always used

the same initial value for optimization (c0 = 9) and the very high precision of 10−12

for solving the SVM. Additionally, we state the minimal validation error Hmin and the

classification rates (CR) on the training and the test data. The results are shown in

table 5.1.

We find that a trade-off has to be made between number of SVM evaluations needed and

acceptable classification rates. When the loss function approximation is more accurate

42
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Modified Logarithmic Quartic Approximation

µ Eval. Hmin
CR
(train)

CR
(test)

ε Eval. Hmin
CR
(train)

CR
(test)

7.5 9 0.0588 91.33 % 93.50 % 0.4 47 0.0552 91.85 % 93.60 %

12 10 0.0541 92.02 % 93.84 % 0.25 11 0.0527 92.24 % 94.07 %

24 33 0.0515 92.45 % 94.12 % 0.125 10 0.0512 92.51 % 94.18 %

32 35 0.0510 92.53 % 94.15 % 0.1 19 0.0509 92.56 % 94.18 %

64 45 0.0506 92.61 % 94.17 % - - - - -

Table 5.1: Evaluation of loss function parameters. The table shows the number of
evaluations needed for linear bi-level optimization, the minimal validation error Hmin

and the corresponding training and testing classification rates (CR) for selected choices
of parameters µ and ε for the two loss functions (modified logarithmic loss and the

quartic approximation, see section 2.2).

(high µ or small ε) the resulting error rates are getting better until we observe some sat-

uration, but also more SVM evaluations are needed to solve the SVM. Fewer evaluations

however are beneficial for the performance of the bi-level program because they result

in faster computation times, and the gain of performance is not very high (less than

1% on the test classification rate). Comparing the modified logarithmic loss and the

quartic approximation, we observe that the resulting classification rates for a compara-

ble number of SVM evaluations are slightly better for the latter, but not substantially.

We decide to use µ = 12 for the logarithmic loss and ε = 0.125 for the following ex-

periments due to the low number of SVM evaluations needed and the comparably good

classification rates. In figure 5.1 we show the loss functions and their first and second

derivatives with the examined parameters shown in table 5.1 (apart from µ = 64 due to

the very high peak in the second derivative). Note that we chose the shown parameters

such that the peaks of the second derivatives were approximately comparable. We argue

that the classification rates using the quartic approximation are better than the rates

achieved using the modified logarithmic loss because the transitions of the logarithmic

loss to 0 or −1 are never as sharp as the transitions of the quartic approximation, almost

independent of the chosen parameters.

5.2 Grid Search vs. Bi-level Approach

As previously mentioned, grid search is a common method to choose the hyper-parameters

for a machine learning problem. Depending on the setting, whether linear or kernel SVM,

the number of parameters contained in the vector ϑ is different. We assume i = 1, ..., N

distinct parameters that we want to optimize. Then, for grid search, we need to choose

a range of reasonable values for each component ϑi and evaluate the performance of

the machine learning algorithm on each combination of values via exhaustive search.
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Figure 5.1: The figures show the modified logarithmic loss (left column) and the
quartic loss (right column) for different parameters µ and ε, respectively. From top to
bottom, the original functions, their first and second derivatives are shown. For the

further experiments, we choose µ = 12 (green curve) and ε = 1
8 (red curve).

We can easily see that the grid search approach is suffering from the so-called ’curse

of dimensionality’ - the complexity of grid search grows exponentially with the number

of parameters, see e.g. [8]. In the following subsections, we want to compare the grid

search approach with our bi-level solution. Note that in sections 5.2.1 and 5.2.2 no

cross-validation is used for reasons of better comparability between grid search and the

bi-level optimized SVM.
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5.2.1 Grid Search vs. One-dimensional Bi-level SVM

First, we compare both approaches in a one-dimensional setting. It is clear that the

grid over one parameter is not expensive to compute, but we can show that with bi-

level optimization we can find the optimal hyper-parameter in much fewer steps. One

advantage of bi-level optimization is that the optimal parameters can be learnt up to a

very high precision (which is important for applications that are very sensitive to the

parameters). Additionally, the bi-level approach exploits the continuity of the hyper-

parameters contrary to grid search.

A critical choice for grid search is how accurate the parameters are to be determined.

For our experiment we assume a range of reasonable values for c ∈ [1, 100]. The data

we use is the same as in the previous section, the Iris data set [2].

In figure 5.2 the resulting plots of the validation error H(.) over the parameter c are

shown for the two optimization algorithms (LBFGS-B and RPROP) and the two ex-

amined loss functions (modified logarithmic loss and the quartic approximation). The

blue curves show the result of grid search, the red circles mark the iterates ck of the

optimization algorithms. In the figure, we show grid search on c with a step size of 0.01:

The finer the step size, the more accurate we can determine the optimal c. In order to

be able to compare the computational cost, we count for both grid search and bi-level

optimization the number of SVM evaluations (i.e. computing the solution of the SVM

for a given c) required to obtain the optimal hyper-parameter.

Observing the behaviour of both algorithms in the 1D case, we can see that the RPROP

algorithm increases its step size gradually as long as the sign of the gradient does not

change, and is reset after stepping over the minimum which comes with a change of the

direction of the gradient. So the last few steps are small and relatively many additional

steps are required to achieve a high accuracy compared to the LBFGS-B algorithm.

Therefore it is more costly to use RPROP than LBFGS-B for the one-dimensional setting

(in this example RPROP needs approximately 15 additional SVM evaluations after

changing the direction). The LBFGS-B algorithm uses line search which is very effective

in 1D and therefore needs very few SVM evaluations to find the optimal hyper-parameter.

When comparing the shape of the H(.) function for the different loss function approxi-

mations in figure 5.2 we observe that the quartic approximation allows for slightly better

error values (Hmin) than the modified logarithmic loss, possibly due to the fact that the

quartic approximation is being closer to the Hinge loss (see section 2.2). The difference

in the achieved test error, however, is marginal.
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Figure 5.2: Iris data set. Comparison grid search and bi-level learning of the regu-
larization parameter c. The red circles show the iteration steps of the LBFGS-B and
RPROP optimization algorithms respectively, with c0 = 9. The left column shows the
results for the LBFGS-B algorithm, the right column the results for the RPROP algo-
rithm. Each line shows the results for one of the two examined loss functions. Note
that the number of SVM evaluations does not directly correspond to the number of red
dots in the case of LBFGS-B due to the line search procedure. Additionally to the SVM
evaluations, we report the determined Hmin by the bi-level program and the achieved

accuracy on a test set.

In table 5.2, we compared the number of SVM evaluations needed to find the optimal

hyper-parameter c for different step sizes of grid search. We call our linear bi-level

program ”bilinear” in short. As initial value for the bilinear program we chose c0 = 9.

Precision Bilinear (LBFGS-B)
SVM evaluations

Bilinear (RPROP)
SVM evaluations

Grid Search
SVM evaluations

100 8 51 99

10−1 8 57 990

10−2 9 60 9900

10−3 10 67 99000

Table 5.2: Number of SVM evaluations required to determine the regularization pa-
rameter c up to a given precision. We compare grid search with the linear bi-level
program (bilinear) using LBFGS-B and RPROP alternatively. The numbers for the
bilinear program are averaged over the three loss function approximations because they

result in a slightly different number of evaluations until convergence.

What we observe is that the bilinear program requires significantly fewer SVM evalu-

ations than grid search until the optimal solution for c is found. LBFGS-B is faster
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than RPROP due to the line search procedure which allows for large steps. When using

continuous optimization a solution can be found with high precision anyway, and to be

more accurate is only a matter of very few additional optimization steps (at least with

LBFGS-B). As a result of this analysis, we conclude that for the one-dimensional bi-level

program using the LBFGS-B algorithm for optimization is the better choice.

Next, we compare two-dimensional grid search with the basic kernel bi-level SVM (”bik-

ernel” in short).

5.2.2 Grid Search vs. Two-dimensional Bi-level SVM

For this experiment, we consider the two-dimensional data set shown in figure 5.3, the

synthetic fourclass data set provided by [23] 1.
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Figure 5.3: Visualization of the fourclass data set

The classification task here is to separate the red from the blue class with a non-linear

class boundary. The data can be separated without errors, but the optimal parameters of

the kernel SVM have to be determined either via grid search or via bi-level optimization.

The two-dimensional grid search gives us a nice error surface of which we show the con-

tours in figures 5.4 and 5.5 using the modified logarithmic loss and the quartic approx-

imation respectively. To compare the grid search procedure with the two-dimensional

parameter estimation via the bikernel program we chose four different starting values

and show the results using either the LBFGS-B algorithm or RPROP for optimization.

For calculating the two-dimensional grid we chose the regularization parameter c from

the range of [0.1, 4] and a RBF kernel with parameters γ from the range of [0.1, 4.1] with

a step size of 0.2. In both figures, we observe a sizeable region that results in good error

1downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Grid search vs. 2D bi-level SVM: LBFGS-B, mod. logarithmic loss

γ

c

 

 

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

4

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(a) Optimization via LBFGS-B, modified logarithmic loss

Grid search vs. 2D bi-level SVM: RPROP, mod. logarithmic loss
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(b) Optimization via RPROP, modified logarithmic loss

Figure 5.4: Comparison 2D grid search vs. 2D bi-level SVM. The loss function
approximation used is the modified logarithmic loss. The contour lines show the levels
of the higher level objective function H(.). There is a sizeable region that results in
good error values < 0.03 (the contour level with the darkest shade of blue shown in the

plots). The red dot marks Hmin found with grid search.

values (the contour level with the darkest shade of blue). The minimal value Hmin is

marked with a full red dot.

Results of the bikernel program were reported for four different initial values, see the

corresponding line plots in figures 5.4 and 5.5 as well as the summarized results in
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Grid search vs. 2D bi-level SVM: LBFGS-B, quartic loss
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(a) Optimization via LBFGS-B, quartic approximation

Grid search vs. 2D bi-level SVM: RPROP, quartic loss
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(b) Optimization via RPROP, quartic approximation

Figure 5.5: Comparison 2D grid search vs. 2D bi-level SVM. The loss function
approximation used is the quartic approximation. The contour lines show the levels
of the higher level objective function H(.). There is a sizeable region that results in
good error values < 0.03 (the contour level with the darkest shade of blue shown in the

plots). The red dot marks Hmin found with grid search.

table 5.3. The dots show the iteration steps of the optimization process. For RPROP,

the number of SVM evaluations corresponds to the iteration steps shown in the plots,

but the iteration steps of LBFGS-B do not contain the SVM evaluations resulting from

the line search procedure, they are given in table 5.3.
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In comparison to the bilinear program, the number of additional evaluations due to line

search is much more significant, but it does not directly reflect in longer computation

times because we use hot start for solving the SVM and for small variations in the

parameters there are only few iterations necessary for the SVM to converge (sometimes

< 10). Evaluating the computational cost of one SVM evaluation, see the rows Time
Eval. (s)

in table 5.3, we see that the the modified logarithmic loss needs a little less time per

evaluation than the quartic approximation, but more evaluations, and RPROP takes

three times the amount of time per evaluation than LBFGS-B. One evaluation by grid

search and RPROP consumes approximately the same time for the modified logarithmic

loss and a little longer for the quartic loss.

We observe that the behaviour of convergence differs between both optimization meth-

ods: As discussed in Chapter 4, the LBFGS-B algorithm uses line search, so the initial

steps are rather large, and the iterates show no zigzagging. Figures 5.4a and 5.5a show

that the first iterates seem to jump to the valley of the error surface with a big step,

and when getting closer to the optimum the step size gets smaller.

Start value
(c, γ)

LBFGS-B
(Mod. Log.)

RPROP
(Mod. Log.)

LBFGS-B
(Quartic L.)

RPROP
(Quartic L.)

(3,3)
black

Eval. 69 42 30 46
Hmin 0.01875 0.01869 0.01716 0.01723
Time (s) 20.76 27.87 16.33 26.64

(1,2.8)
red

Eval. 16 37 22 31
Hmin 0.01868 0.01867 0.01718 0.01730
Time (s) 7.81 15.40 22.03 20.06

(1,0.6)
yellow

Eval. 40 41 87 39
Hmin 0.01878 0.01867 0.01719 0.01726
Time (s) 9.30 10.12 14.13 24.01

(2,0.5)
blue

Eval. 184 50 113 41
Hmin 0.01874 0.01876 0.01727 0.01728
Time (s) 13.70 12.06 12.13 23.63

Avg. Bi-level

Eval. 77 43 63 39
Hmin 0.01874 0.01870 0.01720 0.01727
Time (s) 12.89 16.36 16.16 23.59
Time
Eval.

(s) 0.17 0.39 0.26 0.60

Grid Search

Eval. 420 420
Hmin 0.01885 0.01736
Time (s) 156.12 351.02
Time
Eval.

(s) 0.37 0.84

Table 5.3: Summarized results of 2D grid search vs. bi-level SVM. The table contains
results for each start value and optimization algorithm/loss function combination. The
number of SVM evaluations, the minimal error Hmin and the calculation time is shown.
Finally the average values for the bi-level approach are given as well as the results from

grid search for comparison.
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Precision Grid Search
no. of evaluations

10−1 1640

10−2 156791

10−3 15607901

Table 5.4: Grid search. Number of SVM evaluations needed to determine the regu-
larization parameter c and the RBF kernel parameter γ up to a given precision.

The RPROP algorithm however, does not use line search and therefore tends to have a

zigzagging behaviour close to the minimum. The step size is small at the beginning and

increases as long as the direction of the gradient does not change. Close to the minimum,

the algorithm needs many iterations to achieve a very high precision because the gradient

direction changes often and the step size is quite small. The effect is amplified especially

in the given example because the error surface is very flat around the minimum. The

flatness of the error surface makes the task challenging for the optimization algorithms

and we see that Hmin is slightly different in every configuration from the third to fourth

decimal place (compare the results in table 5.3). Further reasons for the minima being

slightly different are that the results depend on the starting values and that the numerical

accuracy is limited. Additionally, several combinations of c and γ can result in almost

the same validation error value.

We compare computation times and used SVM evaluations in table 5.3 and come to the

conclusion, that using the quartic loss - which is very close to Hinge loss - is compu-

tationally a little more expensive than using the modified logarithmic loss in the case

of RPROP, but also results in a little better error values in the end. When a better

error value is a priority, then using the quartic approximation is the best choice. When

computation time is a priority, then using the modified logarithmic loss with any op-

timization algorithm is the better choice, or using the quartic approximation together

with LBFGS-B as optimizer. In the end, whether to take RPROP or LBFGS-B for op-

timization does not really change anything in the results, but the LBFGS-B algorithm

shows a more stable behaviour close to the minimum.

We compared also the average result from the bi-level learning with grid search which

shows us that the bi-level program yields better results for the validation error Hmin.

For a grid with step size 0.2 we need already 420 SVM evaluations - more than 7 times

the amount needed on average using bi-level optimization. In table 5.4 we show the

number of necessary evaluations to obtain a grid with increasing accuracy (for the same

range of values as in this example).
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5.2.3 Two-dimensional Bi-level SVM

In this section we provide some figures to illustrate the workings of a kernel SVM with

one kernel parameter γ. We used a synthetic two-dimensional data set in the form of

two entangled half moons. In figures 5.6 to 5.8 the 3D plots of the RBF kernel on the

half moon data set and the contour of the separating hyperplane is shown. The figures

nicely illustrate how the data can be separated using a kernel SVM.

We can observe the influence of the parameter γ on the amount of smoothing of the

Gaussian kernel functions sitting on the data points. When the kernel parameters are

large, there is little smoothing. The training examples show sharp peaks as in figure 5.8

(γ = 1.9998). When the kernel parameters are small, the smoothing effect is larger,

as in figure 5.6 (γ = 0.49). Note also that the gap between the classes is larger when

the data is less smoothed, the classifier tries to be more accurate in this case. The

optimal solution for the kernel parameter lies somewhere in between with γ = 1.06, the

corresponding optimal regularization parameter is c = 8.

In the next section, results for experiments with increased number of parameters are

reported.

5.2.4 Seeds Data Set and Multiple γ Bi-level SVM

We argue that grid search gets infeasible for a large number of hyper-parameters to

choose. We want to theoretically confront the grid search approach with the bi-level

approach when the number of parameters increases.

Experiment setup Because the experiment is just for demonstration purposes, we

choose a small data set ”Seeds” from the UCI Machine Learning repository [2]. The data

set consists of three classes with 70 examples each. The task is about to differentiate

three different types of wheat: Kama, Rosa and Canadian, based on 7 geometric mea-

surements of wheat kernels. The features are: area, perimeter, compactness, length and

width of the kernel, asymmetry coefficient and the length of kernel groove. Of course,

the data is not linearly separable.

To highlight the differences between the bi-level approach and grid search we decided

to use a multiple γ bi-level kernel SVM on this task. We use RBF kernels with one

parameter γd per feature dimension, that makes eight parameters to optimize in total

including the regularization parameter c. Not a problem for the bi-level SVM, especially

because the data set is small and simple. During the grid search procedure, the SVM is

solved for all possible combinations of parameters in a pre-defined range of values. That
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Figure 5.6: Bi-level kernel SVM on the half moon data set, γ = 0.49
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means n8 times solving an SVM, with n the number of values per parameter used to

build the grid.

In order to get close to the precision of the bi-level SVM, we might e.g. choose a grid

of parameter values with step size 0.1. Usually, no prior information about the range

of values that yields the optimal classifier performance is available. Also, there is no

prior information about how fine-grained the grid needs to be. For that reason, one

possible way to deal with the problem is to perform grid search first for a very coarse

grid, with values e.g. c ∈ {1, 10, 100, 1000, 10000} and γd ∈ {1, 1.5, 2, 2.5, 3} and then

repeat the procedure for a fine grid with step size 0.1 around the so far best combination

of parameters.

We assume to have two runs of grid search, first with e.g. 5 values per parameter

as suggested above, and then a second round of 10 more values with step size of 0.1

around the so far best values. Still, the range of values tested is by far not exhaustive

and may be far off the optimal values. For demonstration purposes, in figure 5.9 we

show exemplary results for parameter values determined by the bi-level program for

the current example. We find that solving an SVM with a precision of 10−4 for this

data set size lasts 0.3421s which is the mean value of the recorded execution time per

evaluation. Given these numbers, the grid search procedure would last (58 + 108) ·
0.3421s = 34343632.81 seconds or 397.5 days. To wait for such a long time to get to

know hopefully good parameters for the SVM is clearly not feasible. Additionally, the

problem is a three class problem, therefore we need to learn three 1-rest classifiers which

multiplies the necessary computation time by three.
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Figure 5.9: Seeds data set, resulting magnitude of the γd parameters for the 2 vs.
rest classifier learnt with the LBFGS-B optimization algorithm.

Results The SVM was solved to a precision of 10−4, as Hinge loss approximation the

quartic loss was used, and as solver for the bi-level problem we used LBFGS or RPROP
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alternatively. Cross-validation was applied with T = 5 different training and validation

sets. Start values were randomly chosen for c0 ∈ [5, 15] and γd,0 ∈ [0.5, 1.5] for all three

classifiers. See the detailed results in table 5.5 including the minimal validation error

returned by the bi-level program (the mean value over all folds of cross-validation), the

resulting error H and classification rates on the training and test set, and the resulting

number of SVM evaluations needed for optimization.

LBFGS-B

Classifier Hmin Train: H Train: CR Test: H Test: CR Eval.

1 vs. rest 0.1055 0.0218 99.33% 0.0962 96.67% 311

2 vs. rest 0.0556 0.0195 99.33% 0.0378 96.67% 330

3 vs. rest 0.0724 0.0304 98.67% 0.0838 96.67% 235

RPROP

Classifier Hmin Test: H Test: CR Train: H Train: CR Eval.

1 vs. rest 0.1080 0.0254 93.33% 0.1039 93.33% 501

2 vs. rest 0.0401 0.0150 100% 0.0368 100% 501

3 vs. rest 0.0700 0.0249 96.67% 0.0791 96.67% 496

Table 5.5: Seeds data set, multiple γ bi-level SVM: Hmin (the mean value over all
folds of the cross-validated bi-level SVM), resulting H value and correct classification
rates (CR) on the training and test set, and number of SVM evaluations needed for all
three one vs. rest classifiers, classes are denoted with 1 to 3. Results are reported for

optimization via LBFGS-B and RPROP respectively.

We observe that the test classification performance for both choices of optimization

algorithms, either LBFGS-B or RPROP, are the same on average, and also the results

for H are similar. However, the number of evaluations needed is significantly lower with

the LBFGS-B algorithm than using RPROP. These findings suggest that for increasing

numbers of parameters using the LBFGS-B algorithm is probably the better choice. For

the further experiments, we will therefore stick to the LBFGS-B algorithm as solver for

the bi-level problem.

5.3 Multiple Parameter Experiments

5.3.1 Multiple Parameters Bi-level SVM for Feature Selection

Chapelle et al. discuss in [15] an approach to automatically select multiple kernel pa-

rameters for SVMs such that the generalization error is improved. They state that the

choice of kernel parameters is crucial for the performance of a SVM, and if it is possible

to tune several parameters at once, one can use more sophisticated kernels instead of

being restricted to very simple ones. Further, they consider the kernel parameters γd of
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the RBF kernel

k(xj , xi) = exp(−
D∑
d=1

γd(xjd − xid)2)

as a means of ”scaling factors” for each feature dimension. By learning the weights γd

of the different features one can determine irrelevant features with near-zero weight. We

will show with the following experiments that by determining the irrelevant features we

can perform a kind of feature selection. As a consequence, the dimensionality of the

problem is reduced without loss of classification performance.

We consider the ”Heart Disease” data set from the UCI Machine Learning Repository [2].

The data set contains 270 examples, we use 190 of them for training and 80 for testing.

There are 13 discriminative features:

1. age

2. sex

3. chest pain type (4 values)

4. resting blood pressure

5. serum cholesterol in mg/dl

6. fasting blood sugar > 120 mg/dl

7. resting electrocardiographic results (values 0,1,2)

8. maximum heart rate achieved

9. exercise induced angina

10. oldpeak = ST depression induced by exercise relative to rest

11. the slope of the peak exercise ST segment

12. number of major vessels (0-3) coloured by flourosopy

13. thal: 3 = normal; 6 = fixed defect; 7 = reversible defect

as the basis for the decision whether a heart disease is present or not. We use RBF

kernels, a precision of 10−4 for the lower level SVM, the quartic loss function approxi-

mation, and the LBFGS-B algorithm for optimizing the higher level objective. As initial

values we choose c0 randomly from the range [5, 15] and γ0,d from the range [0.5, 1.5].

Depending on the initial values, we get slightly different results, but by setting a seed

for the randperm function in Matlab we resolve this problem.

First, we determine the optimal kernel parameters γd for all feature dimensions with the

multiple γ bi-level kernel SVM. The resulting successful classification rate on the test

set is 88.75%. According to the resulting magnitudes of the parameters γd depicted in

figure 5.10a, we identify all the features having a magnitude of 0.01 (the lower bound

on the variables) as irrelevant and remove them (features number 1, 5, 6 and 11). After

the features being removed, we run the multiple γ SVM again and achieve a successful
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classification rate on the test set of 86.25%, only 2.5% lower than before. We can see in

table 5.6 that the classification rate on the training set is almost identical with full or

reduced feature set. The distribution of the magnitudes of γd after feature selection are

depicted in figure 5.10b. Interestingly, the age, cholesterol and blood sugar values are

dispensable for the decision whether a person has a heart disease or not.
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Figure 5.10: γd before and after feature selection. The resulting successful classifica-
tion rates are 88.75% and 86.25% respectively.

Further, we examine the results with the same preconditions, but instead of the multiple

γ bi-level SVM we use only a single γ parameter (classic bikernel SVM). The classifica-

tion results on the test set using all features is worse than using several γ parameters,

with 83.75% successful classification rate. Interestingly, here the classification rate on

the training set is very good (91.58%), but this does not say anything about the gener-

alization capability of the classifier.

SVM version Hmin Train: H Train: CR Test: H Test: CR Eval.

Multiple γ SVM
(before feat. sel.)

0.2450 0.2214 84.21% 0.2285 88.75% 286

Multiple γ SVM
(after feat. sel.)

0.2439 0.2128 84.74% 0.2452 86.25% 401

Bikernel SVM 0.3488 0.3370 91.58% 0.2889 83.75% 236

Multiple c SVM 0.2536 0.2442 84.74% 0.2334 87.50% 156

Bilinear SVM 0.2835 0.2605 82.63% 0.2253 85.00% 56

Table 5.6: Summary of results for the heart data set using several versions of SVMs

In summary, the findings suggest that the data can be better described using a com-

plex model with multiple kernel parameters. Next, the experiment was repeated using

multiple regularization parameters, with one cd per dimension of the input data. The

resulting successful classification rate on the test set was 87.50%. See figure 5.11 for

the resulting magnitudes of each parameter cd including one additional dimension show-

ing the scaling parameter for the bias, which is not regularized according to the model
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presented in Section 2.4. For experimental reasons we did not manually set the regular-

ization parameter for the bias to zero during the bi-level learning. However, the bi-level

SVM itself set the parameter to zero during the optimization process which is a nice

feature.
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Figure 5.11: The magnitudes of the regularization parameters cd for each dimension.
The data point at d = 14 shows the value for the non-regularized bias. The resulting

successful classification rate is 87.50%.

For comparison, the successful test classification rate for the bilinear SVM is 85%. In

summary, the bi-level SVM with multiple γ parameters yields the best classification

performance on the heart data set. Furthermore, we observe that in general using bi-

level optimization to learn the SVM leads to good generalization, which is reflected in

the higher classification rates on the test set compared to the training set. See table 5.6

for the summarized results.

5.3.2 Multiple kernel SVM

In the theoretical part of this thesis (see section 3.2), we have considered the bi-level

learning of parameters for a multiple kernel SVM. As already discussed, application sce-

narios for using several kernels include problems with different feature representations or

subsets of features. Here, results are reported on a small scale data set having inhomo-

geneous features i.e. features consisting of different kinds of measurements. We consider

the ”Parkinsons” data set, downloaded from the UCI Machine Learning Repository [2]

and originating from [32]. The dataset is composed of voice measurements of people

having the Parkinson’s disease and from healthy people that are used to discriminate

between both groups of persons. The data set includes 21 features, consisting of e.g.

different measurements of vocal fundamental frequencies, amplitude variations, varia-

tions in the fundamental frequencies, ratios of noise and tonal components, non-linear

dynamical complexity measures and a signal fractal scaling exponent.
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In [32], Little et al. report a correct classification rate on the data set of 91.8 ± 2%,

using a kernel SVM with a RBF kernel. The features of the Parkinson’s data set show

feature values in different orders of magnitude and therefore, they apply range scaling

as feature pre-processing. Additionally they filter out 7 highly correlated features.

With the multiple kernel SVM we can deal with the different kinds of measurements by

combining them into groups having similar orders of magnitude. For the full data set,

this results to 7 subgroups of features each of which are dealt with a separate kernel

in the multiple kernel setting. For the reduced data set with the features removed as

suggested in [32], the remainder of features were equivalently clustered into 7 subgroups

of similar range. Other than partitioning the data, no pre-processing was performed.

For bi-level learning, we used following settings: As loss function we used the quartic

approximation, the precision of the lower level problem was set to 10−4. Initial values

for both the kernel parameters γp and the kernel scaling factors βp were set via Matlab’s

rand function.

SVM version Hmin Train: H Train: CR Test: H Test: CR Eval.

Multiple kernel SVM
(full data set)

0.2763 0.0179 100% 0.1707 90.91% 266

Multiple kernel SVM
(reduced data set)

0.2458 0.0250 100% 0.1369 92.73% 216

Multiple γ SVM
(full data set)

0.4480 0.0029 100% 0.4362 87.27% 501

Bikernel SVM
(full data set)

0.3914 0.0013 100% 0.3461 83.64% 266

Table 5.7: Summary of results for the full featured and the reduced Parkinson’s data
set using the multiple kernel SVM, the multiple γ SVM and the bikernel SVM. The

table shows Hmin, errors and classification rates (CR) for the training and test set.

In table 5.7 the results are summarized. We are able to reproduce the results of the

paper, removing the features even improves the achieved classification results: The test

classification rates are 90.91% and 92.73% respectively. For comparison, we ran the

multiple γ SVM and the bikernel SVM on the data set, resulting in 87.27% and 83.64%

correct test classification rates respectively. The number of SVM evaluations needed

are consistent with the numbers we have seen so far, with the multiple γ SVM needing

more evaluations than the other versions. The training error is exceptionally low and

coincides with a 100% training classification rate.

To conclude the chapter, from all the experiments we have discussed do far, the multiple

parameter SVMs are consistently outperforming the ones with one or two parameters

only. Mostly, these results come at a higher number of total SVM evaluations but the

numbers are not significant, especially when comparing the bi-level and the grid search
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approaches. We gain expressive power when using highly parametrized models at a low

cost and achieve better classification performances.



Chapter 6

Image Classification Benchmarks

As the chapter title suggests, this chapter provides detailed information about the con-

ducted experiments on image classification tasks. The aim of those experiments is to

show the applicability of the bi-level SVM classifiers on medium-scale data sets. We do

not expect state of the art results in the chosen image classification benchmarks, because

the most potential for improving the performance of an image classification pipeline lies

in the careful selection of pre-processing and feature selection steps tailored to the kind

of input data, e.g. [54], and this is clearly not the focus of this work.

As a testing framework we used the VLFeat Library [46] which is an open-source toolbox

for computer vision algorithms focusing on visual feature extraction and clustering meth-

ods and comes handy with a Matlab interface. For the experiments we were inspired by

their sample programs for basic recognition. As pre-processing of the input images they

use a bag of visual words (BOVW) model (see [29, 49]) as a means of feature extraction:

Similar features in images form a ”word”; when extracting all relevant words from a

bunch of images, a dictionary of words can be created. When counting the occurrences

of specific words in images of the same category, one gets similar histograms of word

occurrences, while they can be very different in distinct categories. These histograms

are used as features for a classification algorithm such as the Support Vector Machine.

In the VLFeat sample, the pre-processing of the images for classification is based on so-

called PHOW features, a variant of dense SIFT features extracted at several scales [33],

k-means clustering for constructing the visual vocabulary and building the bag-of-visual-

words (BOVW) model, computation of spatial histograms [50] and finally the construc-

tion of the explicit χ2 kernel map such that a linear SVM classifier can be used [48]

(see e.g. [52], [31] for references on computing explicit kernel maps). The reason why

they use χ2 kernel is that they show empirically better performance with histogram

representations such as bag-of-words models than RBF kernels.

61
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For the concept of explicit kernel maps it is important to recapitulate that kernel SVMs

are nothing else than linear SVMs running in a sufficiently high feature space. For any

kernel there exists a function Ψ(x) (i.e. feature map) mapping the input data to an

infinite dimensional feature space. The clue is that there exists in many cases a finite

dimensional feature map Ψ̂ which is a sufficiently good approximation of the kernel, i.e.

the explicit kernel maps [48]. When we use our bi-level kernel SVM, the calculation of

the explicit kernel map is left out.

The approach to apply our bi-level framework on image classification consists basically

of the following steps:

(1) execute the pre-processing steps as explained above,

(2) partition the data into T=5 sets for cross-validation,

(3a) learn the optimal hyper-parameter c for the linear SVM with the bi-level approach

or

(3b) learn the optimal c and γ for the bi-level kernel SVM

(4) retrain the model on the optimal hyper-parameters,

(5) evaluate the result on a test set.

In the derivations of the variants of the bi-level SVM in chapter 2 and 3 we used only

RBF kernels, but we also implemented a χ2 kernel to be able to compare with the VLFeat

examples. However, we use an exponential χ2 kernel (eq. 6.1), and for computing the

feature maps they use an additive χ2 kernel (eq. 6.2). Note that xj,d is the corresponding

value at feature dimension d of example xj , analogous for xi,d.

k(xj , xi) = exp

(
−γ

D∑
d=1

(xj,d − xi,d)2

xj,d + xi,d

)
(6.1)

k(xj , xi) =

D∑
d=1

2xj,dxi,d
xj,d + xi,d

(6.2)

In the following section we discuss the experiments and results. We did experiments

on classic image classification benchmarks such as Caltech101 [21] and the Graz02

database [34]. Finally we discuss several results on the famous MNIST handwritten

digits database [30] including experiments applying the BOVW model and on raw data.

Caltech101 is a very famous image classification benchmark dataset and contains images

of 101 object categories including one background category. Object classes are e.g.

motorbike, cougar, ant, faces, piano etc.



Chapter 6. Image Classification Benchmarks 63

The Graz02 database contains images of three categories (bike, car, person) and one

background category (none). The natural images show high variability in each category,

and a lot of clutter in the background.

6.1 Experiments with Caltech101

For the Caltech experiments, we used only a subset of the categories for bi-level learning.

We perform experiments with the bikernel SVM and use a subset of 10 classes. A bottle-

neck of the bi-level kernel SVM are the memory requirements due to the kernel matrix

size of N × N with N the number of training examples. For the image classification

experiments the number of training examples scales with the number of classes because

we learn a 1 vs. rest classifier for each class.

Caltech101 - Bikernel In this part, we did not calculate the explicit kernel map,

but use the bi-level kernel SVM on the BOVW histogram directly. In figure 6.1 we

compare the confusion matrices of the bi-level kernel SVM using either a RBF kernel or

an exponential χ2 kernel on a small subset of the Caltech data. The diagonal entries in

the confusion matrix show the percentage of true positives over the number of the total

true and false classified test examples for each class. The entries outside of the diagonal

show the percentage of the false positives over the total number of test examples. We

observe that the χ2 outperforms the RBF kernel, as suggested by [52]. For the following

experiments we use therefore the χ2 kernel because it performs better than the RBF

kernel on histograms/bag of word models.
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Figure 6.1: Comparison of classification results on Caltech5, RBF and χ2 kernel

In the following we report results on the Caltech data set using 10 classes. We used 30

training/validation examples and 15 test examples, the vocabulary size for the BOVW
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model was set to 400. We compare the bikernel SVM with a grid search on the kernel

SVM with c = {0.5, 1, 1.5, 2} and γ = {0.5, 1, 1.5, 2}. The values used for grid search

were chosen after inspecting the range of results of the bikernel SVM. After performing

grid search, we picked the best performing hyper-parameter combination and reported

the corresponding results.

In figures 6.2a and 6.2b the corresponding confusion matrices are shown. We observe

that all classes but one perform better using the bikernel SVM. The concerned class

”anchor” has particularly few available examples, only 42 in total. This leads to a

reduced training/validation set on this class which may affect the performance of the

bi-level approach.

In general, it is important to take care that the training set is big enough when splitting

it to a training and a validation set such that the validation error can be taken as a

representative measure for bi-level learning.

6.2 Experiments with Graz02

In this section, results on the Graz02 data sets are reported. The pre-processing is done

with the VLFeat Library as previously described. In both the bi-level linear and kernel

SVM the number of training/validation images was set to 60, and the number of test

examples was set to 30 for each class. The number of words for the BOVW model was

set to 300.

Graz02 - Bilinear For learning the Graz02 data set with the linear SVM, the explicit

kernel maps were computed. In the following, we compare the results for the bilinear

SVM and for grid search using the linear SVM using the explicit χ2 feature map. The

precision of the SVM was set to 10−4 and the initial value for the regularization param-

eter was c0 = 10. We compare the bilinear SVM to a very coarse grid search on values

for c ∈ {1, 10, 100, 1000} of which the best results were picked.

To compare the results we show the confusion matrices in figure 6.3. We observe that

the bi-level SVM outperforms the linear SVM. The overall performance is increased by

about 1%, all but one category is outperformed by the bi-level version of the SVM.

Note that the category ”none” is no real category in this sense, but rather a general

background category (compare with Caltech’s category ”BG Google”). It may contain

all kinds of different backgrounds, so usually these categories cannot be clearly classified

(cf. figure 6.2).
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(a) Confusion matrix, bi-level optimization with LBFGS-B

13.33

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

6.67

80.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

6.67

0.00

20.00

100.00

0.00

0.00

0.00

0.00

0.00

0.00

6.67

13.33

0.00

0.00

100.00

0.00

0.00

0.00

16.67

8.33

0.00

0.00

0.00

0.00

0.00

100.00

0.00

0.00

0.00

0.00

0.00

6.67

0.00

0.00

0.00

0.00

100.00

0.00

0.00

25.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

100.00

0.00

0.00

6.67

20.00

0.00

0.00

0.00

0.00

0.00

0.00

75.00

8.33

20.00

26.67

0.00

0.00

0.00

0.00

0.00

0.00

8.33

58.33

0.00

13.33

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

60.00

Confusion Matrix, mAcc = 78.67%

B
G

_
G

o
o

g
le

F
a

c
e

s

F
a

c
e

s
_

e
a

s
y

L
e

o
p

a
rd

s

M
o

to
rb

ik
e

s

a
c
c
o

rd
io

n

a
ir
p

la
n

e
s

a
n

c
h

o
r

a
n

t

b
a

rr
e

l

BG_Google

Faces

Faces_easy

Leopards

Motorbikes

accordion

airplanes

anchor

ant

barrel

(b) Confusion matrix, grid search using χ2 kernel SVM

Figure 6.2: Comparison of classification results on Caltech10, using the LBFGS-B
algorithm and grid search

Graz02 - Bikernel In the following we compare the results for the bikernel SVM and

a simple grid search on the kernel SVM using a χ2 kernel, and show the results using the

LBFGS-B algorithm. The calculation of the explicit feature map is left out, the other

pre-processing steps are the same as before. The initial values for regularization and
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Figure 6.3: Comparison of the linear and the bilinear SVM on the Graz02 data set

kernel parameters were c = 0.5 and γ = 1. Parameter values for grid search were chosen

c = {1, 10, 100, 1000} and γ = {0.5, 1, 1.5, 2}.

The results on all the categories are equal or better than the best result obtained with

grid search. This comparison shows, that grid search on two parameters gets already

a bit tricky, the difference in performance is bigger with the kernel SVM than with

the linear SVM. After all, you can still make a good guess for a single parameter and

obtain satisfactory results. The bikernel SVM also outperforms the bilinear SVM in

the categories ”cars” and ”person”. Note that by using the explicit kernel maps the

difference in performance between linear and kernel SVM shouldn’t be significant as

argued in [48].
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Figure 6.4: Comparison of classification results on the Graz02 data, using the
LBFGS-B algorithm and grid search

6.3 Experiments with MNIST

In this section we experimented with the probably most used classification benchmark

data set - the MNIST handwritten digits database. First, we perform experiments on

the raw data, and then we apply the BOVW model as pre-processing for the MNIST
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data set. One training example of MNIST is an image with 28×28 pixels which makes

784 feature dimensions. The aim is to classify the handwritten digits into categories

from ”0” to ”9”.

All the experiments were conducted using the bikernel SVM with a χ2 kernel. We used

300 training/validation examples as well as 300 test examples per class. The precision

of the SVM was set to 10−4, as solver we used the LBFGS-B algorithm. As initial

values we used c = 10 and γ = 1. The raw data was used as-is. For the bag of

visual words modelled data, we considered the handwritten digits as images and applied

the previously described feature transformation to the data set. Before extracting the

PHOW features we blew up the images to 480×480 pixels (we found empirically that

this size yielded good results). The corresponding classification results are shown in

form of confusion matrices in figure 6.5.

Both variants show a really good classification performance, with the BOW features

outperforming the raw data which is not surprising. The results are quite satisfactory,

considered that we did not use the full number of available examples of the MNIST data

set. Using more training examples should improve the results further.

The results suggest that it might be promising to combine both feature sets using a

multiple kernel SVM.

In the final Chapter we draw some conclusions and give an outlook to possible future

work.
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Figure 6.5: Comparison of the bikernel SVM on two different feature sets of the
MNIST data
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Conclusion and Outlook

In conclusion, this thesis shows the applicability of the bi-level approach on a particular

machine learning algorithm, namely the Support Vector Machine. For our approach to

work, we require that the energy function of the SVM (the lower level problem) as well

as the validation error function (higher level problem) are differentiable which leads us

to the presented approximations of the loss functions used for the lower level problem.

With the approach presented in this thesis, we are able to optimize as many parameters

as there are dimensions in the training data and have a clear advantage over grid search

methods when it comes to model selection. The benefit is greater when the model is

complex and requires multiple parameters for a good description of the problem and/or

if the classification performance is sensitive to the parameters.

In some cases, as we have seen in figures 5.4 and 5.5, there can be numerous reasonable

parameter choices that yield a comparable classification performance up to a precision

of 10−2. Even the optimization algorithm gives us different answers depending on the

initial values (due to numerical inaccuracies and the fact that we solve the inner problem

only up to a certain precision), but we can still be certain that the parameters that our

bi-level program suggests yield good results. However, it has to be taken care that there

is enough training data such that when parts of the training data are used for validation

purposes, the validation error is a reasonable estimate of the performance of the SVM.

Additionally, we are able to gain much insight in the model and also the data. When

using a multiple parameter bi-level SVM, either a linear or a kernel version, we can draw

conclusions about the importance of each feature dimension on the resulting classifier.

In our model, multiple parameters are applied dimension-wise, so we can find out which

dimensions contribute more to a meaningful representation of the data. This can be

seen as weighting of the feature dimensions: The less meaningful dimensions will get

69
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smaller parameter values. When it turns out that some features have a near-zero weight

we can skip the features as a means of performing feature selection. We can still get

a good classification result and at the same time benefit from a reduced complexity

of the model. On the other hand, if we observe that all parameters stay alike after

optimization, perhaps the data does not need so many degrees of freedom and we can

stick to a simpler model using e.g. only one kernel/regularization parameter.

Naturally, training a simple SVM classifier with fixed hyper-parameters is faster than

solving a bi-level SVM. However, when working with standard classifiers, often much

time is lost in finding ”good” parameters. Additionally, there are seldom restrictions on

the training time of a machine learning algorithm, and classification using the trained

classifier is fast in both variants.

Attention has to be paid on choosing the bounds on the variables, especially for the

kernel SVM. Depending on the data and the γ parameter, the kernel value k(xi, xj) =

exp(−γ‖xi− xj‖2) makes sense or not. For this reason, we do not want to set the lower

bounds for the parameter optimization too low, instead we set them for both LBFGS-B

and RPROP algorithms to 0.01 or 0.1.

In the current Matlab implementation we face limitations of data set size and number

of features respectively due to the restrictions of memory and maximal allowed matrix

sizes. E.g., for the image classification datasets, the feature transformations reduce the

number of feature dimensions of the natural images drastically, but still there may be

4000+ feature dimensions, and additionally the data set size can be very large. To tackle

these problems, an implementation in another programming language or even a GPU

implementation can be a remedy.

An additional research question can be to examine the influence of the size of the val-

idation set on the final performance, and to investigate eventual over-fitting effects if

the validation set is too small, even tough cross-validation is used. This is an important

consideration since in bi-level optimization the error on the validation set is the objective

function to be minimized.

Further investigations can be made in exploring methods to solve the inner problem:

The VLFeat Library [46] offers two implementations of large-scale linear SVM solvers

using stochastic gradient descent and stochastic dual coordinate ascent which show a

very good performance. Stochastic gradient minimizes the expected loss on the training

set, which has in general a very good performance, see e.g. [53, 11]. For sparse data,

other variants of coordinate descent methods could also be considered to solve the SVM,

see e.g. [24].



Appendix A

Additional Derivations for the

Bi-level Kernel SVM

In the following we show some additional derivations for the gradients that are necessary

for solving the bi-level kernel SVM. First, we show the derivations for the gradients given

in equations 3.6 to 3.9.

Derivation
∂H

∂α
, see equation 3.6

H =
1

2L
〈Kα− η,Kα− η〉

dH =
1

2L
(〈Kdα,Kα− η〉+ 〈Kα− η,Kdα〉)

dH =
1

L
〈Kdα,Kα−η〉 =

1

L
(Kdα)T (Kα−η) =

1

L
dαTKT (Kα−η) =

1

L
〈dα,KT (Kα−η)〉

∂H

∂α
=

1

L
KT (Kα− η)

Derivation
∂E

∂α
, see equation 3.9

E =
c

2
αTKα︸ ︷︷ ︸
e1

+
N∑
j=1

`(kjα, yj)︸ ︷︷ ︸
e2

de1 =
c

2
(dαTKα+ αTKdα) =

71



Appendix A. Additional Derivations for the Bi-level Kernel SVM 72

=
c

2
(〈dα,Kα〉+ 〈KTα, dα〉) =

=
c

2
〈dα,Kα+KTα〉 K=KT

=

=
c

2
〈dα, 2Kα〉

∂e1

∂α
= cKα

e2 =

N∑
j=1

`(kjα, yj)

tj := kjα

e2 =
N∑
j=1

`(tj , yj)

de2 =

N∑
j=1

d`(tj , yj) =
N∑
j=1

`′(tj , yj)dtj

dtj = kjdα

de2 =
N∑
j=1

`′(tj , yj)kjdα =
N∑
j=1

〈`′(tj , yj)kTj , dα〉 =

de2 = 〈
N∑
j=1

`′(tj , yj)k
T
j︸ ︷︷ ︸

(
kT1 k

T
2 . . . k

T
N

)

`′(t1, y1)

...

`′(tN , yN )


︸ ︷︷ ︸

`′(t,y)

, dα〉 = 〈KT `′(t, y), dα〉

∂e2

∂α
= KT `′(t, y) = K`′(t, y)

∂E

∂α
= cKα+K`′(t, y)

Recap of logarithmic loss function Note that for simplicity, in our derivations we

assume a logarithmic loss function. However, the results are applicable to all of the

loss functions explained in section 2.2. Let us shortly recapitulate `(tj , yj), assuming

tj := kjα:

`(tj , yj) = log(1 + e−tjyj )

`′(tj , yj) =
−yj

etjyj + 1
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`′′(tj , yj) =
y2
j e
tjyj

(etjyj + 1)2

y2j=1
=

etjyj

(etjyj + 1)2

Derivation
∂2E

∂α2
, see equation 3.7

∂E

∂α
= cKα︸︷︷︸

e1

+K`′(t, y)︸ ︷︷ ︸
e2

de1 = cKdα

∂e1

∂α
= cKT = cK

de2 = Kd`′(t, y)

Element wise view:

d`′(tj , yj) = `′′(tj , yj)dtj
tj=kjα

= `′′(kjα, yj)kjdα

de2 = K


`′′(k1α, y1)k1dα

`′′(k2α, y2)k2dα
...

`′′(kNα, yN )kNdα

 =

= K


`′′(k1α, y1) 0 . . . 0

0 `′′(k2α, y2)
. . .

...
...

. . .
. . . 0

0 . . . 0 `′′(kNα, yN )




k1

k2

...

kN

 dα =

= K diag(`′′(t, y))Kdα

∂e2

∂α
= (K diag(`′′(t, y))K)T = K diag(`′′(t, y))K

∂2E

∂α2
= cK +K diag(`′′(t, y))K

Derivation
∂2E

∂α∂c
, see equation 3.8

∂E

∂α
= cKα+K`′(t, y)︸ ︷︷ ︸

e

de = Kαdc
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∂e

∂c
= (Kα)T = αTK

∂2E

∂α∂c
= αTK

Derivation
∂H

∂γ
, see equation 3.12

H =
1

2L
‖Kα− η‖22 =

1

2L
〈Kα− η,Kα− η〉

dH =
1

2L
(〈dKα,Kα− η〉+ 〈Kα− η, dKα〉)

dH =
1

L
〈dKα,Kα− η〉

dK =


exp(−γ‖ξ1 − x1‖22)(−‖ξ1 − x1‖22)dγ exp(−γ‖ξ1 − x2‖22)(−‖ξ1 − x2‖22)dγ . . .

...
. . .

...

exp(−γ‖ξL − x1‖22)(−‖ξL − x1‖22)dγ . . .



K =


exp(−γ‖ξ1 − x1‖22) exp(−γ‖ξ1 − x2‖22) . . .

...
. . .

...

exp(−γ‖ξL − x1‖22) . . .



Kin =


−‖ξ1 − x1‖22 −‖ξ1 − x2‖22 . . .

...
. . .

...

−‖ξL − x1‖22 . . .


dK = (K �Kin)dγ

K�Kin=K̄
= K̄dγ

dH =
1

L
〈K̄αdγ,Kα− η〉 dγ...scalar

=
1

L
〈K̄α,Kα− η〉dγ

∂H

∂γ
=

1

L
(K̄α)T (Kα− η) =

1

L
αT K̄T (Kα− η)

Derivation
∂2E

∂α∂γ
, see equation 3.13

∂E

∂α
= cKα︸︷︷︸

e1

+K`′(t, y)︸ ︷︷ ︸
e2

de1 = cdKα
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dK = (K �Kin)dγ = K̄dγ (compare with derivations of dK)

de1 = cK̄αdγ

∂e1

∂γ
= (cK̄α)T = cαT K̄

e2 = dK︸︷︷︸
X

`′(t, y) +K d`′(t, y)︸ ︷︷ ︸
?

d`′(t, y) = `′′(t, y)dt

dt = dKα

d`′(t, y) =


`′′(t1, y1)dk1α

`′′(t2, y2)dk2α
...

`′′(tN , yN )dkNα

 = diag(`′′(t, y))


dk1

dk2

...

dkN

α = diag(`′′(t, y))dKα

d`′(t, y) = diag(`′′(t, y))K̄αdγ

ge2 = K̄`′(t, y)dγ +K diag(`′′(t, y))K̄αdγ =

= (K̄`′(t, y) +K diag(`′′(t, y))K̄α)dγ

∂g2

∂γ
= (K̄`′(t, y) +K diag(`′′(t, y))K̄α)T

∂2E

∂α∂γ
= (cK̄α+ K̄`′(t, y) +K diag(`′′(t, y))K̄α)T



Appendix B

Additional Derivations for the

Bi-level Multiple Kernel SVM

In the following we show some additional derivations for the gradients that are necessary

for solving the bi-level multiple kernel SVM. We show the derivations for the gradients

given in equations 3.16 to 3.19.

Derivation
∂H

∂γp
, see equation 3.16

dH =
1

L
〈dKβα,Kβα− η〉

dKβ =


βp exp(−γp‖ξ1 − x1‖22)(−‖ξ1 − x1‖22)dγp βp exp(−γp‖ξ1 − x2‖22)(−‖ξ1 − x2‖22)dγp . . .

...
. . .

...

βp exp(−γp‖ξL − x1‖22)(−‖ξL − x1‖22)dγp . . .



Kpβ =


exp(−γp‖ξ1 − x1‖22) exp(−γp‖ξ1 − x2‖22) . . .

...
. . .

...

exp(−γp‖ξL − x1‖22) . . .

 =


κpβ(ξ1, x1) κpβ(ξ1, x2) . . .

...
. . .

...

κpβ(ξL, x1) . . .


dKβ = βpKin �Kpβdγp

K̄pβ :=Kin�Kpβ
= βpK̄pβdγp

dH =
1

L
〈βpK̄pβα,Kβα− η〉dγp

∂H

∂γp
=

1

L
αTβpK̄pTβ (Kβα− η)

76
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Derivation ∂2E
∂α∂γp

, see equation 3.17

∂E

∂α
= cKβα+Kβ`

′(Kβα︸︷︷︸
tβ

, y) := e

de = cdKβα+ dKβ`
′(tβ, y) +Kβd`

′(tβ, y) (B.1)

Analogous to dKβ,

dKβ = βpKin �Kp
βdγp

K̄p
β=Kin�Kp

β
= βpK̄

p
βdγp

d`′(tβ, y) = diag(`′′(tβ, y))dtβ

dtβ = dKβα

de = cβpK̄
p
βαdγp + βpK̄

p
β`
′(tβ, y)dγp +Kβ diag(`′′(tβ, y))βpK̄

p
βαdγp

∂2E

∂α∂γp
= (cβpK̄

p
βα+ βpK̄

p
β`
′(tβ, y) +Kβ diag(`′′(tβ, y))βpK̄

p
βα)T

Derivation ∂H
∂βp

, see equation 3.18

dH =
1

L
〈dKβα,Kβα− η〉

dKβ =


κpβ(ξ1, x1)dβp κpβ(ξ1, x2)dβp . . .

...
. . .

...

κpβ(ξL, x1)dβp . . .


dKβ = Kpβdβp

dH =
1

L
〈Kpβα,Kβα− η〉dβp

∂H

∂βp
=

1

L
αTKpTβ (Kβα− η)

Derivation ∂2E
∂αβp

, see equation 3.19 As a starting point we take equation B.1:

de = cdKβα+ dKβ`
′(tβ, y) +Kβd`

′(tβ, y)

dKβ = Kp
βdβp
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d`′(tβ, y) = diag(`′′(tβ, y))dtβ

dtβ = dKβα

de = cKp
βαdβp +Kp

β`
′(tβ, y)dβp +Kβ diag(`′′(tβ, y))Kp

βαdβp

∂2E

∂αβp
= (cKp

βα+Kp
β`
′(tβ, y) +Kβ diag(`′′(tβ, y))Kp

βα)T
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