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Abstract

We study vibrational effects on the steady state current through a molecu-
lar ring structure. In contrast to the, in the context of molecular junctions
with electron-phonon (e-ph) coupling, widely studied Anderson-Holstein model
where the ion motion couples to the electronic onsite energies, we use the Su-
Schriefer-Heeger (SSH) type of electron-phonon interatcion, which describes
how the electronic hoppings are altered when the molecule vibrates, to model
a system with an extended molecule as central region. We continue the work
by Michael Knap et al [PhysRevB.88.054301] where the e-ph interaction was
confined to the molecule and hence the important effect of vibrations altering
the electronic molecule-lead coupling was not taken into account. To include
the latter effect into the model the interacting region is extended to inhabit
the first lead sites. To study the system at strong electron-phonon interaction
we extend the linear SSH model to its exponential generalisation. We solve
the system by applying steady state Cluster Perturbation Theory (ssCPT), a
systematically improvable approximation to study molecular junctions out of
equilibrium where correlation effects of the molecule are treated non perturba-
tively, in conjunction with Exact Diagonalization Techniques. We show results
for the Anderson-Holstein model in the CPT approximation and find good
agreement with data found in the literature in the parameter regime where
the temperature is much smaller than the molecule lead coupling from weak
to strong e-ph interaction. Furthermore, we present electronic properties for
the isolated molecular ring in equilibrium as well as for the non-equilibrium
situation where it is coupled to non-interacting leads. From weak to strong
e-ph coupling the current voltage characteristics can be qualitatively predicted
from the equilibrium Density Of States of the central region. For intermediate
e-ph coupling where the linear SSH model is applicable the steady state current
obtained from ssCPT matches well to a calculation where the e-ph coupling is
treated in the Born-Oppenheimer approximation indicating that ion dynamics
play an inferior role for this parameters. In this regime the altered equilibrium
geometry leads to enhanced/suppressed molecule lead coupling explaining the
likewise behaviour of the current. The Born-Oppenheimer approximation starts
to disagree with the CPT results for parameters where the linear SSH model
breaks down. For strong e-ph coupling the I/V curves can not be interpreted
by the geometry change anymore and many-body correlation effects like the
Franck-Condon blockade take over.
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Kurzfassung

Es wurde der Einfluss von Vibrationen auf den stationären Strom durch eine
Molekulare Ring Struktur untersucht. Im Gegensatz zu dem, im Zusammen-
hang von kontaktierten Molekülen mit Elektron-Phonon (e-ph) Wechselwirkung,
umfassend untersuchten Anderson-Holstein Model, bei dem die Ionenbewegung
an die elektronische Onsite-Energie koppelt, verwenden wir den Su-Schriefer-
Heeger (SSH) Typ von e-ph Wechselwirkung, der beschreibt wie das elektro-
nische Hüpfen durch die Ionendynamik beeinflusst wird, um ein System mit
einem ausgedehnten Molekül zu modellieren. Wir führen die Untersuchungen
von Michael Knap et al [PhysRevB.88.054301] weiter, bei der die SSH Wech-
selwirkung auf das zentrale Molekül beschränkt war und daher der wichtige
Effekt der Veränderung des elektronischen Hüpfens von Molekül zu Kontakt
durch die Ionenbewegung nicht berücksichtigt wurde. Um diesen Effekt in das
Model zu integrieren weiten wir den e-ph korrelierten Bereich auf die ersten
Plätze der Kontakte aus. Um das System auch für starke e-ph Wechselwirkung
untersuchen zu können generalisieren wir das lineare SSH Model zu seiner expo-
nentiellen Verallgemeinerung. Wir berechnen Observablen wie den stationären
Strom über die Einteilchen Greensfunction des vollen Systems welche wir durch
Anwendung von stationärer Cluster Perturbation Theory in Verbindung mit Ex-
akten Diagonalisierungs Techniken auf unser System erhalten. Wir präsentieren
Ergebnisse für das Anderson-Holstein Model und zeigen, dass die CPT-Daten
für schwache bis starke e-ph Wechselwirkung gut mit Resultaten aus der Lit-
eratur, im Parameterbereich in dem die Temperatur gegenüber der Molekül-
Kontakt Kopplung klein ist, übereinstimmen. Weiters präsentieren wir elek-
tronische Gleichgewichtseigenschaften des isolierten molekularen Ringes sowie
Ergebnisse für den stationären Strom im Fall des kontaktierten Moleküls im
Nichtgleichgewicht. Von schwacher zu starker e-ph Wechselwirkung lässt sich
die Strom-Spannungs-Kennlinie qualitativ durch die elektronische Zustands-
dichte des zentralen Moleküls im Gleichgewicht vorhersagen. Für mittlere e-
ph Kopplung, bei der das lineare SSH Model noch gültig ist, lassen sich die
CPT-Resultate gut durch eine Rechnung, in der die e-ph Wechselwirkung in
der Born-Oppenheimer Näherung berücksichtigt wird, annähern. Dies deutet
darauf hin, dass in diesem Parameterbereich die Ionendynamik eine unterge-
ordnete Rolle spielt. In selbigem Parameterbereich führt die geänderte Gle-
ichgewichtslage der Ionen zu einer verstärkten bzw. unterdrückten Molekül-
Kontakt-Kopplung die das entsprechende Verhalten in den Strom-Spannungs-
Kennlinien erklärt. Die Born-Oppenheimer Näherung beginnt von den CPT-
Resultaten abzuweichen sobald das lineare SSH Model zusammenbricht. Für
starke e-ph Wechselwirkung kann das Verhalten des Stromes als Funktion der
Biasspannung nicht mehr allein durch die geänderte Gleichgewichtsgeometrie
erklärt werden sondern es müssen Vielteilcheneffekte wie die Franck-Condon
Blockade berücksichtigt werden.
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Introduction

Over the last decades, the interplay of ion motions and electrons was the
key to some of the most striking and technically important phenomena in solid
state physics. The BCS theory of conventional superconductivity [2] was able to
explain the vanishing electric resistivity at low temperatures for certain metals
with the help of a positive interaction between electrons mediated through lat-
tice vibrations/phonons. Other effects include the colossol magneto resistance
[23] technically used in magnetic harddrives, thermoelectricity [9] and piezo
electric crystals which paved the way for mechanical precision in the nanometer
regime. A relatively new and growing field in solid state physics is molecular
electronics [27]. Its aim is to build electronic devices, such as transistors, out of
(organic) molecules without the help of metallic semiconductors. If possible this
technology brings advantages, like reducing the costs and biological footprints
of electronics, to the table [33]. In this context the non-equilibrium properties,
such as the current voltage characteristics, of an organic molecule attached to
two metallic leads have become a subject of great interest. In this systems
the e-ph coupling can give rise to nonlinear effects such as bistability, negative
differential conductance and hysteric behaviour [5, 19, 11, 12, 13, 15, 29, 4].
Experimentally this setups can be investigated by (resonant) inelastig electron
tunneling spectroscopy [31]. With this technique experimentalists where able
to faithfully verify signatures of e-ph correlation in the transport properties of
such systems [8, 34, 26, 7, 32, 16, 30].
The most common theoretical description of these experiments is within the
framework of nonequilibrium Greensfunctions (NEGF) evaluated in the Local
Density Approximation (LDA) [10]. The LDA-NEGF approach has the advan-
tage of being ab initio but does not inlcude correlation effects beyond mean field.
Theoretical investigations of electron-phonon (el-ph) interactions in these setups
are mainly done by studying the Anderson-Holstein model (a single electronic
level with a local phonon mode coupled to two non-interacting tight-binding
chains). Although, this model inherits basic effects, such as the Franck-Condon
blockade or the step like behaviour of the I/V curves, it is not a suitable model
to describe an extended molecule coupled to leads. Especially the altering of
the electronic coupling to the leads due to the vibrations of the molecule is not
captured in the Anderson-Holstein model. In 2012 Michael Knapp et al [17]
started to theoretically study a benzene ring attached to two leads. To include
correlations between non-local vibronic modes with electrons into the model
the e-ph interaction on the molecule was modeled by the linear Su-Schriefer-
Heeger type of interaction. They studied the influence of the breathing mode
of free benzene, which allows an analytical solution of the central region, on
the electronic properties. Since they considered the modes of free benzene, the
effect of the altered coupling to the leads was not taken into account.
In this work we will continue the study of a six site ring attached to two leads
when imposing a SSH type of e-ph interaction in the central region and the
first lead site. By calculating the vibronic modes of a contacted ring we are
able to incorporate the interplay between the vibrations of the molecule and
the electronic coupling to the leads into the model. Furthermore, we extend
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the linear SSH model to its exponential form to study the system in the regime
of strong e-ph interaction.
This work is structured into four main parts. Chapter one covers some needed
theoretical basics. Chapter two is concerned with testing our method against
the literature by applying it to the Anderson-Holstein model. Chapter three
presents and discusses results of the electronic properties for a contacted molec-
ular ring in and out of equilibrium while the last chapter is denoted to summary,
conclusion and outlook.
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Chapter 1

Basics

In this chapter we want to review some of the needed basics. Sec.(1.2.1) gives
an overview of the theoretical treatment of the electron phonon coupling and its
formulation in second quantisation. Sec.(1.3) revises how to extract the vibronic
eigenmodes of a classical system consisting of pointmasses and springs. At last,
sec.(1.4) discusses the Lang-Firsov transformation and its application in the
Holstein and SSH model.
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1.1 Steady state CPT

We give a short introduction to the steady state Cluster Perturbation Theory
(CPT) formalism used to obtain non-equilibrium quantities. Details and further
improvements of the method can be found in [18, 25, 24]. First, we outline
how to obtain the CPT approximation to the full steady state single particle
greensfunction G̃. Than we will consider the example of an interacting electron
region coupled to two noninteracting leads and derive the formula of the steady
state current.

1.1.1 The CPT approximation to the single particle Greens-

function

In CPT the system of interest is divided into clusters with the only restriction
that one has to be able to solve each individual cluster without interaction
bewteen the clusters. With the greensfunctions of the isolated clusters (here
denoted with a lowercase g) at hand CPT tells us how to obtain an approxima-
tion for the greensfunction(s) of the system when the interaction between the
clusters is switched on (denoted with an uppercase G). Note that in the present
work we will only consider time-translation invariant (hence steady state) sys-
tems and thus it is always possible to fourier transform the greensfunctions into
frequency/energy space.

CPT in equilibrium

In equilibrium there are two (single particle) greensfuntions namely the ad-
vanced and retarded greensfunction which are just the complex conjugate of
each other and therefore carry the same information. Within CPT the greens-
function of the coupled clusters G is given in terms of the greensfunctions of
the isolated clusters g by

G−1 = g−1 − T (1.1)

where T is a matrix holding the intra cluster hoppings and g is the blockdiagonal
matrix made of the isolated greensfunctions. Note that G is a matrix in orbital
and, if one studies magnetic effects, spin space. With an approximation to the
greensfunction at hand one can continue to calculate obersvables of interest
which require only single particle greensfunctions such as the DOS.

Steady state CPT in non equilibrium

In non equlibrium time has to be viewed along the Keldysh contour leading
to four possibilities of greensfunctions instead of two. Like the retarded and
advanced greensfunction above these four greensfunctions are not independent
allowing a formalism which is only concerned with the retarded, advanced and
the so called Keldysh greensfunction which for an isolated cluster in equlibrium
may be obtained as

gk = (gr − ga)(1− 2f(E)) (1.2)

6



Figure 1.1: A sketch of an interacting electron region (red) coupled to two
semi-infinite leads (blue).

where f(E) is the Fermi-Dirac distribution function. These three greensfunc-
tions (which may be matrices them selves) are now embedded in a two by two
matrix which is called Kyldysh space (it corresponds to the four different time
argument possibilities on the Keldysh contour), as

G̃ =

(
Gr Gk

0 Ga

)
(1.3)

Note that the occupation or different chemical potentials of the isolated custers
enter only in the Keldysh component of the greensfunction G̃. Similar to the
furmula in equlibrium the full greensfunction withing CPT is

G̃ =

(
Gr Gk

0 Ga

)
=

[(
gr gk

0 ga

)−1

−
(
T 0
0 T

)]−1

(1.4)

The desired steady state greensfunction is then obtained by picking out the
corresponding entries from the final matrix.

1.1.2 Steady state Current through an interacting electron re-

gion

We start with a, for simplicity spinless, model for an interacting electron region
coupled to two non-interacting leads sketched in fig.(1.1). The hamiltonian can
be written as

Ĥ =Hleads +Hcenter +Hcoupling =

∞∑

α={l,r};i=0

εαi
n̂αi

− t(f †αi
fαi+1

+ f †αi+1
fαi

)

+Hcenter({c†, c}) +
∑

α={l,r}
vα(f

†
α0
cα + c†αfα0

) (1.5)

The starting point to derive an expression for the steady state current is the
continuity equation

dρ̂i
dt

= Ii−1,i − Ii,i+1 with ρ̂i = ec†ici (1.6)
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where we define e positively and the current beeing positive from left to right.
In the steady state the current is of course the same everywhere, with the
exceptions of vortices in the central region, and we can choose to evaluate it
anywhere. A logical choice would be the current from the last site of the left lead
fl0 and the corresponding coupled site of the central region cl. The continuity
equation for ρl0

dρ̂l0
dt

= Il1,l0 − Il0,cl (1.7)

together with the equation of motion for an operator in the Heisenberg picture

dρ̂l0
dt

=
i

~
[Ĥ, ρ̂l0 ] (1.8)

leads to

Il1,l0 − Il0,cl =
i

~
[Ĥ, ρ̂l0 ] (1.9)

Evaluating the commutator and arranging the terms conveniently, yields

Il1,l0 − Il0,cl =
ie

~
t(f †l1fl0 − f †l0fl1)−

ie

~
vl(f

†
l0
cl − c†l fl0) (1.10)

This allows us to identify the operator for the current from the left lead to the
central region. Taking the average with respect to the steady state, we arrive
at

Issl0,cl = 〈Il0,cl〉 =
ie

~
vl(〈f †l0cl〉 − 〈c†l fl0〉) (1.11)

Due to the electrons carrying negative charge the average of the hopping from
the center to the left, which is the negative direction of the current, leads to
positive and the hopping from the left lead to the center negative contributions
to the current. To make the connection between eq.(1.11) and the Keldysh
greensfunctions we make use of the definition of the lesser greensfunction

G<ci,cj (t, t
′) = i〈c†i (t′)cj(t)〉 (1.12)

which in the (time translation invariant) steady state is only a function of the
time difference G(t, t′) = G(t − t′) and can be written in terms of its Fourier
transform

G<ci,cj (t, t
′) = G<ci,cj (t− t′) =

∫ ∞

−∞

dE

2π
e

i
~
E(t−t′)G<ci,cj (E) (1.13)

and for equal times

G<ci,cj (t, t) = G<ci,cj =

∫ ∞

−∞

dE

2π
G<ci,cj (E) (1.14)

where we suppress the time argument since in the steady state the greensfunc-
tion is time independent. With the lesser greensfunction for equal times we can
rewrite the current as

Issl0,cl =
e

~
vl

∫ ∞

−∞

dE

2π

(
G<fl0 ,cl

(E)−G<cl,fl0
(E)
)

(1.15)
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To make use of the CPT formula eq.(1.4) we rewrite the last expression in terms
of the Keldysh greensfunction Gk(E). From the relations

Ga −Gr = G< −G> and Gk = G< +G> (1.16)

we get

Gk(E) = 2G<(E)− (Ga(E)−Gr(E)) = 2G<(E)− 2πA(E) (1.17)

where A(E) is the spectralfunction A(E) = − 1
πℑ(Gr(E)) with the normalisa-

tion property ∫ ∞

−∞
dEA(E) = 1 (1.18)

Hence,

G< =

∫ ∞

−∞
dE

1

2

(
Gk(E) +A(E)

)
=

1

2

∫ ∞

−∞
dEGk(E) + π (1.19)

This allows us to rewrite the expression for the current, eq.(1.15), and obtain

Issl0,cl =
evl
2~

∫ ∞

−∞

dE

2π

(
Gkfl0 ,cl

(E)−Gkcl,fl0
(E)
)

(1.20)

a formula for the steady state current in terms of the Keldysh greensfunction.
Note that eq.(1.20) is exact for the true greensfunction. The approximation
enters in the calculation of the greensfunction by CPT.

Connection to Meier-Wingreen/Landauer-Büttinger type of formulas
[22]

Often times formulas for the current are written as

Il,r =
e

~

∫
dE

2π
[f(E − µr)− f(E − µl)]T (E) (1.21)

where T (E) is a suitable transmission function. Interestingly the formula for the
current within CPT can be casted into a Landuaer-Büttinger type of formula
[6] which was initionally derived for non-interacting systems. Its transmission
function is given by

T (E) = T CPT (E) = tr(GrccΓlG
a
ccΓr) with Γα = 2ℑ(TcagaααTac) (1.22)

where Tca is the matrix holding the couplings from the central region to lead α,

gaαα is the advanced greensfunction of the left lead at the last site and G
r/a
cc is the

greensfunction of the central region coupled to the leads. Therefore, whithin the
CPT approximation the Landauer-Büttinger formula is still formally correct.
Note that Gcc and Γα are matrices in the sites of the central region and the
products have to be performed as matrix multiplications. Having different
formulas for the current may be useful since for different systems and parameters
one formula may be numerically more suitable than others.
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1.2 Electron phonon coupling

In this section we derive the Holstein and SSH model as linear approxiamtions
to the e-ph coupling term and translate the models to second quantisation. We
discuss the validity of the models, sec.(1.2.2), and extend the linear SSH model
to an exponential form in sec.(1.2.3). Note that, although this notation will be
used later in this work, we do not denote operators by Ô in this section as we
think there is little chance for misunderstandings.

1.2.1 Electron phonon coupling in second quantisation

We consider a many body hamiltonian of NI ions and Ne electrons with no e-e
interaction.

H = He,kin +HI,kin +HII +HeI

=
∑

i

p2
i

2me
+
∑

J

p2
J

2MJ
+ VII({R}) +

∑

iJ

veI(ri −RJ)
(1.23)

Where VII({R}) is the coulomb potential for the ion geometry, veI(ri − RJ)
is the coulomb interaction between ion J and electron i and we denoted the
ensemble of the ion position vectors (R1, ...,RN ) in shorthand notation by {R}.
As is common, we expand the potentials VII and veI up to leading order around
the equilibrium postions of the ions R0

I given by the condition ∇VII({R0}) =
0. Introducing the deviations from equilibrium XI as new dynamic variables,
leaves us with

RI = R0
I +XI

VII({R0 +X}) = VII({R0}) + 1

2

∑

I≥J
X⊤
I K̃IJXJ = V 0

II + VII,harmonic

(K̃IJ)αβ =
∂2VII({R0 +X})

∂XIα∂XJβ

∣∣∣∣
{X=0}

where α, β = 1, 2, 3

veI(ri −R0
J −XJ) = veI(ri −R0

J)−∇XJ
veI(ri −R0

J + XJ)|XJ=0Xj (1.24)

Where XIα is the α coordinate of ion I. We ignore the constant V 0
II and split

the hamiltonian into three parts, namely

He =
∑

i

p2
i

2me
+
∑

J

veI(ri −R0
J) the electronic part, (1.25)

HI =
∑

J

p2
J

2MJ
+

1

2

∑

I≥J
X⊤
I K̃IJXJ the ionic part, (1.26)

HeI = −
∑

iJ

∇xjveI(ri −R0
J +XJ) |XJ=0XJ and the coupling. (1.27)
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By Second quantisation of the electronic Hamiltonian eq.(1.25) with respect
to some basis |ψi〉, we obtain

Hsq
e =

∑

ij

tijc
†
icj with tij = 〈ψi|

p2

2me
+
∑

J

veI(r−R0
J)|ψj〉 (1.28)

a non-interacting Hamiltonian of fermions. Next, we bring our attantion to
the ionic part and construct the 3NI dimensional vector X⊤ = (X⊤

1 , ...,X
⊤
N )

containing all deviations from equilibrium. This allows us to rewrite eq.(1.26)
as

HI =
1

2
X⊤MX +

1

2
X⊤K̄X (1.29)

with a suitable matrix K̄ ∈ (R3NI ×R
3NI ) and the diagonal mass matrixM . To

decouple the system of coupled harmonic oscillators eq.(1.29), we first change
variables once more by absorbing M into the definition of a new vector X̄ ≡√
MX , resulting in

HI =
1

2
˙̄X 2 +

1

2
X̄⊤KX̄ with K =

√
M

⊤
K̄
√
M (1.30)

Expanding the new deviation vector X̄ in eigenvectors of K and changing dy-
namic variables to the expansion coefficients ηµ, we get

X̄ =
∑

µ

ηµUµ; ˙̄X =
∑

µ

η̇µUµ (1.31)

HI =
1

2
˙̄X 2 +

1

2
X̄⊤KX̄ =

1

2

∑

µν

ηµηνUµUν +
1

2

∑

µν

ηµηνUµKUν

=
∑

µ

1

2
η̇2µ +

1

2
ω2
µη

2
µ (1.32)

Where we used the eigenvalue equation UµK̃ = ω2
µUµ and the orthonormality

of the eigenvectors UµUν = δµ,ν . Note that we use supperscripts Uµ only
for convenience later on. Eq.(1.32) is the hamiltonian of uncoupled harmonic
oscillators, thus using the relation,

b†µ =
1

2~ωµ
(ωµηµ − iη̇µ) (1.33)

and because we need it later, we also state its inverse,

ηµ =

√
~

2ωµ
(b†µ + bµ) and η̇µ = i

√
~ωµ
2

(b†µ + bµ) (1.34)

we obtain the second quantisation of the ionic part

Hsq
I =

∑

µ

~ωµ(b
†
µbµ +

1

2
) (1.35)

The excitations/quasiparticles corresponding to the bosonic creation/annihilation
operators b are called phonons or vibrons depending on literature. Up to this
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point we have translated the ionic and electronic part of our hamiltonian and we
are left with the part we are interested in, namely the electron-phonon coupling
eq.(1.27). We expand the scalar product in eq.(1.27), resulting in

HeI = −
∑

Jαi

∂veI(ri −R0
J −XJ)

∂XJα

∣∣∣∣
XJα=0

XJα ≡ −
∑

Jα

∑

i

T Jα(ri)XJα (1.36)

The operator
∑

i T
Jα(ri) is an electronic single particle operator, thus its second

quantisation with respect to the same basis as in eq.(1.28) reads

T Jα =
∑

ij

T Jαij c
†
icj with T

Jα
ij = 〈ψi|

∂veI(r−R0
J −XJ)

∂XJα

∣∣∣∣
XJα=0

|ψj〉 (1.37)

This leaves us with the task of transforming the coordinate XJα into second
quantisation. First, we note that

XJα = X
J̃α

=
1√
MJ

X̄
J̃α

with J̃α ≡ 3(J − 1) + α (1.38)

and using eq.(1.31) together with eq.(1.34), we arrive at

XJα =
1√
MJ

X̄
J̃α

=
1√
MJ

∑

µ

ηµUµ
J̃α

=
∑

µ

√
~

2MJωµ
Uµ
J̃α

(b†µ + bµ) (1.39)

Combining eq.(1.37) with eq.(1.39), we finish with the second quantisation of
the coupling term eq.(1.27)

Hsq
eI = −

∑

µij

Gµijc
†
icj(b

†
µ + bµ) (1.40)

where the coupling matrix G for the mode µ is given by

Gµij =
∑

Jα

√
~

2MJωµ
Uµ
J̃α
T Jαij (1.41)

By combining the three parts, eq.(1.28), eq.(1.35) and eq.(1.40), we obtain

H =
∑

ij

tijc
†
icj +

∑

µ

~ωµ(b
†
µbµ +

1

2
)−

∑

µij

Gµijc
†
icj(b

†
µ + bµ) (1.42)

the total hamiltonian with linear electron phonon coupling.

1.2.2 Holstein type and Su-Schriefer-Heeger type of interaction

In the literature the electron phonon coupling is divided into the Holstein type
and Su-Schriefer-Heeger, from now on we will use the abberivation SSH, type
of interaction. As we will see later on, the two types are merely different parts
of the linear interaction, eq.(1.40), derived above. At first we will give a more
illustrative derivation of the electron phonon coupling which seperates naturally
in the two interaction types.

12



Alternative derivation: We want to think of the system as a molecule where
the ions have some equilibrium positions and can move along one specific mode.
Hence, the ion motion can be expressed in the form

{R} = {R0}+ ηµ{Xµ} (1.43)

where curly brackets indicate the whole ensemble of ions. The motion is quasi
one dimensional as the only free parameter in eq.(1.43) is the expansion coef-
ficient ηµ which is the stretching amplitude of the mode. The starting point
of the derivation is a hamiltonian of electrons and a single phonon mode µ in
second quantisation.

H =
∑

ij

heijc
†
icj + ~ωµ(b

†
µbµ +

1

2
)

= −
∑

i 6=j
tijc

†
icj +

∑

i

ǫini + ~ωµ(b
†
µbµ +

1

2
) (1.44)

As it is common, we devided the electronic hamiltonian in its diagonal, also
called onsite energy, and offdiagonal part, also called hopping. The interpre-
tation of ǫi is simply the energy that one has to pay to put an electron in the
orbital ci. It originates from the fact that orbitals with lower energy are allready
filled and can be thought of as an potential. The parameter tij is obtained as
the overlap integral of two different wavefunctions and therefore is proportianal
to the propability that an electron in orbital cj hopps into an orbital ci. This
part can be thought of as the kinetic energy part of the hamiltonian, hence the
artifical minus sign. We will ignore the phonon part for now and concentrate
on the electronic one. Lets say the electronic part describes electrons moving
in the potential of a fixed but arbitrary ion geometry {R}. Thus, the parame-
ters tij and ǫi in eq.(1.44) are functions of the ion geometry {R}. Keeping in
mind that we constrained the ion motion along one specific mode eq.(1.43) and
abusing notation, we write

tij = tij({R}) = tµij({R0}+ ηµ{Xµ}) = tµij(ηµ) (1.45)

ǫi = ǫi({R}) = ǫµi ({R0}+ ηµ{Xµ}) = ǫµi (ηµ) (1.46)

Note that we used superscripts µ to indicate that these functions will be different
for each mode. We drop the index µ for now and will reintroduce them later.
The exact functions are unknown and modelling them is a non-trivial task of
ab initio calculations. But assuming only that these functions are analytic, we
can allways expand them in a taylor series around some η0

tij(η) = tij(η0) +
∂tij(η)

∂η

∣∣∣∣
η=η0

(η − η0) +O((η − η0)
2) (1.47)

ǫi(η) = ǫi(η0) +
∂ǫi(η)

∂η

∣∣∣∣
η=η0

(η − η0) +O((η − η0)
2) (1.48)

To guarantee that we expand in a small parameter we make the obviouse choice
of η0 = 0 as this corresponds to the equilibrium positions. Truncating the above
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expansions after the linear order yields

tij = t0ij − gijη ǫi = ǫ0i + λiη (1.49)

with the definition of the electron phonon coupling constants

gij ≡ − ∂tij(η)

∂η

∣∣∣∣
η=0

λi ≡
∂ǫi(η)

∂η

∣∣∣∣
η=0

(1.50)

The artifical minus sign in the definition of gij is due to the fact that tij will
decrease if η increases (the overlap integral becomes smaller if the atoms are
further apart) and guarantees that gij has positive values. Using this in the
hamiltonian eq.(1.44) and the standart relation for the displacement of a har-
monic oscillator in second quantisation

η =

√
~

2mω
(b† + b) (1.51)

we obtain

H =−
∑

i 6=j
t0ijc

†
icj +

∑

i

ǫ0ini + ~ωµ(b
†
µbµ +

1

2
)

+

√
~

2mωµ

∑

i 6=j
gµijc

†
icj(b

†
µ + bµ) +

√
~

2mωµ

∑

i

λµi ni(b
†
µ + bµ)

=H0 +HSSH +HHolstein

(1.52)

the total hamiltonian for a single mode with the SSH and Holstein interaction.
Comparing eq.(1.52) to eq.(1.42), we see that the Holstein interaction is the
diagonal part and the SSH type of interaction is the offdiagonal part. One
could also say that the Holstein interaction couples to the electronic onsite
energies and the SSH type alters the electronic hoppings.

Validity of the SSH and Holstein model

In both derivations discussed above the electron phonon coupling is expressed
in terms of a taylor series and truncated after the linear term which leads to
the SSH and Holstein type of electron phonon interaction. Now we turn to the
examination of this approxiamtion. As the starting point of our investigation we
return to eq.(1.47) and eq.(1.48). Unfortunately we do not know the functions
tij(η) and ǫi(η) so we can not make use of formulas for the kth remainder of a
taylor series as they require the (k+1)th derivative. Though, we know that we
are only interested in a small region around the equilibrium because we know
from experiments that the deviation from equilibrium is small compared to the
equilibrium distances, which in our case translates to η ≪ 1. Like any taylor
series expanded in a small parameter it is only sensible to truncate after the
linear order if the linear term is already small compared to the equilibrium
contribution. This leads to the the following conditions for validity of the SSH
and Holstein model

14



∣∣∣∣∣
gijη

t0ij

∣∣∣∣∣≪ 1 for the SSH interaction and equivalentely (1.53)

∣∣∣∣
λiη

ǫ0i

∣∣∣∣≪ 1 for the Holstein interaction (1.54)

For the following considerations we want to think of an electronic basis which
is localized around the position of the ions. The electronic onsite energies ǫi
typically do not change significantely as η is varied (or in other words as the
geometry is altered) because ǫi depends only on the wave function localized at
site i. Thus, the electron phonon coupling constant λi in eq.(1.50) is small in
most cases leading to the fact that the Holstein model is usually valid. However,
the same can not be said about the electron phonon coupling in the SSH model
as gij in eq.(1.50) depends on two different wave functions localized at different
sites i and j respectively. Thus, tij(η) can change considerably as we vary the
ion geometry and hence the validity of the SSH model is situational. To this
end we note that the requirements for the SSH model are definitely violated

if

∣∣∣∣
gijη

t0ij

∣∣∣∣ > 1 because then tij = t0ij − gijη < 0 which is unphysical as these

parameters are defined strictly positive. Thus, for given bare hoppings t0ij and

onsite energies ǫ0i we can calculate an upper bound for gij if we search for the
root of f(η) = t0ij − gij〈η〉. Here, 〈η〉 ≡ 〈ψ0|η|ψ0〉 is evaluated in the ground
state of the system, which is the reason why all the system parameters enter in
the evaluation of f(η).

1.2.3 Beyond the SSH model

As mentioned above the linear approximation for the electronic hopping, eq.(1.49),
leading to the SSH model can be unjustified and even unphysical. The simple
answer to the question of what to do if the linear approximation is wrong is of
course that we do not truncate the taylor expansion, eq.(1.47), after the linear
order but rather keep more terms. The downside of this simple solution is that
for every order of the taylor expansion that we keep, we need to determine an-

other constant namely g
(n)
ij ≡ ∂ntij(η)

∂ηn
. Getting those additional parameters is

rather problematic as they need to be determined either by ab initio calculations
or by fitting the model to some experimental data. In both cases it is difficult
enough to get the paramater for the linear order and introducing further pa-
rameters into the model will just lead to a bad statistik in the case of fitting
to experimental data and larger quantitative disagreement between different ab
initio approaches. In addition to the issue of obtaining these additional param-
eters they would make the model more complicated than it needs to be and
therefore it would be an more unlikely description of reallity (occam’s razor).
For that reason we want another non linear model for the function tij(η; gij)
that depends only on the parameter gij for the cases were gij is large and the
linear SSH model is not applicable anymore. For concreteness we write down
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Figure 1.2: Sketch for the wavefunction overlap of atom i and j.

the defining equation for tij(η)

tij(η) = 〈ψi|Ĥ|ψj〉 =
∫

R

dr3ψi(r; η)Ĥ(r; η)ψj(r; η)

≃
∫

R

dr3ψi(r; η)Ĥ(r)ψj(r; η) (1.55)

Recall that our ion geometry enters through η in this expression. In eq.(1.55) we
have omitted the η dependence of Ĥ because the geometry enters only through
the coulomb potential which is small in the region where the wavefunctions
overlap and thus its variation can be neglected. To get an idea of what the
function t(η) should look like, we want to consider the following. Imagine a
system of two atoms, atom i and atom j, seperated by a distance R away from
each other. The main contributions to the hopping amplitude/overlap integral
eq.(1.55) will come from the regions where the wavefunctions centered around
the two sites overlap. This region will be far enough away from the center
of the atoms that we can assume an exponential decrease and increase of the
wavefunctions for site i and j respectively. The situation is sketched in fig.(1.2).
The assymptotic form of the wavefunctions motivates the following functional
form of the overlap integral

t(η) = t0e
−αη (1.56)

In order for the more general form eq.(1.56) to be a valid candidate for our
sought for function t(η) it has to agree with the linear SSH model up to linear
order. By expanding eq.(1.56) as

t(η) = t0(1− αη +
1

2
α2η2 +O(η3)) (1.57)

and comparing it to the SSH model eq.(1.47), we conclude that eq.(1.56) is
a rightful candidate given that α = g

t0
. Using the second quantization of η,

eq.(1.51), and reintroducing the site indices ij and mode index µ, we finally
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obtain what we want to call the electron phonon interaction beyond the SSH
model

tsqij = t0ije
−

∑
µ α

µ
ij(b

†
µ+bµ) with αµij =

√
~

2mωµ

gµij
t0ij

(1.58)

Because it is more illustrative we also state its analogue in first quantization

tfqij = t0ije
− gij

t0
ij

∆ij

with ∆ij = r0ij − |ri − rj | (1.59)

and r0ij is the equilibrium bond length. Thus, the interpretation of the electron
phonon coupling beyond the SSH model is that the electronic hopping from
site i to j is exponentially suppressed/enhanced as the atoms move further
apart/closer together. Plugging our more general interaction, eq.(1.58), into
eq.(1.44) we obtain

H =−
∑

i 6=j
t0ije

−
∑

µ α
µ
ij(b

†
µ+bµ)c†icj +

∑

i

ǫ0ini + ~ωµ(b
†
µbµ +

1

2
)

+
∑

µ

√
~

2mωµ

∑

i

λµi ni(b
†
µ + bµ) (1.60)

and neglecting the Holstein ineraction we arrive at what we want to call the
beyond SSH model

H = −
∑

i 6=j
t0ije

−
∑

µ α
µ
ij(b

†
µ+bµ)c†icj +

∑

i

ǫ0ini + ~ωµ(b
†
µbµ +

1

2
) (1.61)

This nonlinear form of e-ph interaction is hard to treat analytically but
is not a problem for numerical techniques like Exact Diagonalisation. Note
that for isolated molecules the Holstein interaction is much weaker than the
coupling through the altered hoppings (SSH type) which justifies the approxi-
mation from eq.(1.60) to eq.(1.61). However, the Holstein interaction becomes
important when modelling a molecule on a substrate where it can be used to
describe the interaction between the phonons of the substrate and the molecule.
Generally, the Holstein interaction (altering of the onsite energies) is used to
model vibronic effects of surroundings on the system of interest which often
times acts as a relaxation channel which is able dissipate energy.
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1.3 Calculation of modes

In this section we want to derive the vibronic eigenmodes of a system of masses
and springs.

1.3.1 General form for a system of masses and springs

We want to calculate the eigenmodes and eigenfrequencies of a classical system
of masses and springs. This amounts to considering N masses moving in the
potential

V ({R}) =
∑

ij

kij
2
(|Ri −Rj | − r0ij)

2 (1.62)

where r0ij are the equilibrium distances and Ri is the position vector of mass i.

Some people like to put a factor 1
2 in front of the sum in eq.(1.62) to account

for double counting appearing in the sum but here we want to assume that by
common sense each bond ij contributes only once in the potential above. Given
the potential, we can write down the lagrangian of our system

L({R(t)}) =
∑

i

mi

2
Ṙi −

∑

ij

kij
2
(|Ri −Rj | − r0ij)

2 (1.63)

Rewriting the position vectors as deviation from equilibrium Ri(t) = R0
i +ri(t),

eq.(1.63) becomes

L({r(t)}) =
∑

i

mi

2
ṙi −

∑

ij

kij
2
(|R0

ij + ri − rj | − r0ij)
2 (1.64)

To extract the modes we need to get the lagrangian/potential into a quadratic/harmonic
form. Dispite the fact that we are considering a harmonic potential for each
bond, the overall potential in eq.(1.64) is not quadratic in the variables ri. In or-
der to get an harmonic approximation for the lagrangian we rewrite it once again
by introducing the vector of all deviations from equilibrium ξ⊤ = (r⊤1 , ..., r

⊤
N ).

Doing so, we otbain

L(ξ(t)) = 1

2
ξ̇⊤M ξ̇ − V (ξ) (1.65)

Next, we expand the potential up to leading order around the equilibrium po-
sitions which amounts to ξ = 0.

V (ξ) = V (ξ = 0) +∇V (ξ = 0)︸ ︷︷ ︸
=0

ξ +
1

2
ξ⊤Kξ (1.66)

where the linear order is zero by the definition of the equilibrium position andK
is the hessian matrix of the potential V (ξ). We neglect the constant V (ξ = 0)
and plug the rest of the expansion, eq.(1.66), back into the lagrangian, eq.(1.65).

L(ξ(t)) = 1

2
ξ̇⊤M ξ̇ − 1

2
ξ⊤Kξ =

1

2

∑

i

miξ̇
2
i −

1

2

∑

ij

ξiKijξj (1.67)
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The equations of motion are given by the Euler-Lagrange equations

∂L
∂ξk

=
d

dt

∂L
∂ξ̇k

(1.68)

Respecting that K is symetric we calculate the derivatives

∂L
∂ξk

= −1

2

(
∑

i

jδikKijξj +
∑

i

jξiKijδjk

)

= −1

2


∑

j

Kkjξj +
∑

i

Kikξi


 = −

∑

i

Kkiξi

and
d

dt

∂L
∂ξ̇k

=
1

2

d

dt

∑

i

mi2ξ̇iδik =
d

dt
mkξ̇k = mkξ̈k

Plugging these derivatives into eq.(1.68), we get mkξ̈k = −
∑

iKkiξi which is
the kth component of the vector equation

M ξ̈(t) = −Kξ(t) (1.69)

By making the harmonic ansatz ξ(t) = eiωtξ we eliminate the time dependence
and eq.(1.69) transforms into the generalized eigenvalue equation

Mξµ = ω2
µKξµ (1.70)

for the mode µ with the eigenvector ξµ and eigenfrequency ωµ. Thus, after
calculating the matrices K and M we can solve for the modes numerically or
analytically if the system has enough symetries.

1.3.2 Writing expressions in terms of modes

As we saw in section (1.2) the objects we quantise are the expansion coefficients
ηµ in

ξ(t) =
∑

µ

ηµ(t)ξµ (1.71)

Therefore, we want to be able to write all expressions above in terms of modes
and their expansion coefficients. We start with expressing the position vector
of mass i Ri = R0

i + ri where R0
i is the equilibrium position. By defining a

matrix Si as
S3×3N
i ≡ (0...0︸︷︷︸

i−1

✶3×3 0..0︸︷︷︸
N−i

) (1.72)

we can write
ri = Siξ (1.73)

where Si just picks out the deviation vector for the mass i out of a ξ⊤ =
(r⊤1 , ..., r

⊤
N ). Combining eq.(1.72) with eq.(1.71) we obtain

Ri = R0
i + ri = R0

i +
∑

µ

ηµ(t)Siξµ = R0
i +

∑

µ

ηµ(t)r
µ
i (1.74)
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with rµi ≡ Siξµ which defines the direction in which the mass i is moving in the
mode µ. Next we bring our attention to the expression

∆ij ≡ |Ri −Rj | − r0ij = |R0
ij + ri − rj | − r0ij (1.75)

which is the change of bondlenght between mass i and j if mass i/j moves away
from its equilibrium position according to ri/j . This time rewriting it is not so
straight forward as it was in the case above because of the norm and the square
root it introduces. By expanding the norm, we get

|R0
ij + ri − rj | =

√∑

α

(Rij,0α + riα − rjα)2 (1.76)

We are only interested in small deviations from equilibrium (recall expansion
up to leading order of the potential eq.(1.66)) thus we want to keep only the

leading order of the square root in eq.(1.76) with respect to the deviations r
i/j
α .

We expand the square root in eq.(1.76) around r
i/j
α = 0

|R0
ij + ri − rj | =

√∑

α

(Rij,0α )2

︸ ︷︷ ︸
r0ij

+
∑

β

∂
√

∂riβ

∣∣∣∣
r=0

riβ +
∂
√

∂rjβ

∣∣∣∣
r=0

rjβ (1.77)

where
√ ≡

√∑
α(R

ij,0
α + riα − rjα)2 is used as abbreviation. The derivatives

are given by

∂
√

∂riβ
=

1

2
√ 2(Rij,0β + riβ − rjβ)

r=0
=

1

r0ij
Rij,0β

∂
√

∂rjβ
=

1

2
√ 2(Rij,0β + riβ − rjβ)(−1)

r=0
= − 1

r0ij
Rij,0β (1.78)

Plugging these derivatives back into eq.(1.77), using eq.(1.75) and writing
the sum over β as scalar product, we arrive at

|R0
ij + ri − rj | = r0ij +

1

r0ij
R0
ijri −

1

r0ij
R0
ijrj

|R0
ij + ri − rj | − r0ij =

R0
ij

r0ij
(ri − rj) (1.79)

∆ij = e0ij(ri − rj) with e0ij ≡
R0
ij

r0ij
(1.80)

The rest of the calculation is now straight forward again. We use eq.(1.73) to
write everything in terms of ξ

∆ij = e0ij(ri − rj) = e0ij(Siξ − Sjξ) (1.81)

Defining Sij ≡ Si − Sj and expanding ξ in terms of modes, we find

∆ij = e0ijSij
∑

µ

ηµξµ =
∑

µ

e0ijSijξµηµ (1.82)
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or in short

∆ij =
∑

µ

dµijηµ with dµij ≡ e0ijSijξµ (1.83)

Thus, the total difference in the bondlenght ∆ij is the sum of the contribu-
tions from every mode. The constants dµij describe the change of the bondlenght
of the bond ij if the masses move according to mode µ with a stretching am-
plitude of ηµ = 1. This also means that if the total sum of the dij is zero for a
paricular mode that the net difference in bondlenght is zero. This just means
that some masses move closer together and others further apart leading to a
cancelation in the above mentioned sum.
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1.4 Lang-Firsov Transformation

In this section, we want to introduce the Lang-Firsov transformation which is
widely used in the field of electron phonon coupling to remove the coupling
term in the hamiltonian. The operator of the Lang-Firsov transformation can
be written in the general form

L̂ = e−iγT̂ p̂ (1.84)

with a real parameter γ, the phononic momentum operator p̂ and an hermitian
operator T̂ that commutes with p̂ (for example a purely electronic operator).
Under these assumptions the transformation is unitary since

LL† = eγT̂ (b
†−b)eγ(b

†−b)†T̂ †

= eγT̂ (b
†−b)e−γT̂ (b

†−b) = ✶ (1.85)

First we will demonstrate the basic idea of the Lang-Firsov transformation and
give some useful formulas. Then we will show how this transformation removes
the coupling term in the Holstein and SSH model.

1.4.1 Basic idea of the Lang-Firsov transformation

To demonstrate the basic idea of the transformation and why it removes the
electron-phonon coupling, we want to consider an hamiltonian of the form

Ĥ = Ĥe + Ĥp + gĤep = Ĥe +
1

2m
p̂2 +

mω2
0

2
x̂2 + gT̂ex̂ (1.86)

where we have assumed an harmonic oscillator for the the phonon part Ĥp,
a generic form gTex̂ for the coupling term motivated by sec.(1.2) and Ĥe is
the electronic hamiltonian. The basic idea is now to absorb the coupling term
proportional to x̂ into the x̂2. By completing the square, we get

Ĥ = Ĥe +
1

2m
p̂2 +

mω2
0

2
(x̂+

g

mω2
0

T̂e)
2 − g2

2mω2
0

T̂ 2
e (1.87)

which is again an harmonic oscillator but x̂ is shifted by an amount g
mω2

0

T̂e.

However, this shift is not constant but inhabits an electronic operator which
means that the amplitude of the shift depends on the electronic configuration.
We could of course define the operator ˆ̃x = x̂+ g

mω2
0

T̂e but that would just hide

the coupling and not remove it since the new operator ˆ̃x would not be purely
phononic. Luckily instead of just defining a new operator one can also achieve
the desired shift by a suitable transformation which is then called Lang-Firsov
transformation. Before we continue, we want to review how one introduces a
constant shift x̂ 7→ x̂+∆ in space.

1.4.2 Generating a shift in space

For the following considerations, we will set ~ = 1. Recall that in quantum
mechanics a translation ∆ in space is done by applying the operator e−i∆p̂,
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where the momentum operator p̂ is referred to as the generating operator of
spatial translations. To demonstrate this property, we consider the wavefunc-
tion |ψzero〉 of an harmonic oscillator centered around x = 0 in its groundstate.
The subscript zero here does not indicate that it is the groundstate but rather
that this wavefunction is centered around x = 0. Before continuing, we note
that

e−∆ d

dx f(x) =
∞∑

n=0

(−∆)n

n!

dnf(x)

dxn
= f(x−∆) (1.88)

where we expanded the exponential as its taylor series in the first equality
and use the definition of a taylor series in the last equality. Using the spacial

representation of the momentum operator 〈x|p̂| = −i d
dx

we can apply e−i∆p̂ to

our wavefunction

e−i∆p̂|ψzero〉 =
∫
dx|x〉〈x|e−i∆p̂|ψzero〉 =

∫
dx|x〉e−∆ d

dxψzero(x)

=

∫
dx|x〉ψzero(x−∆) =

∫
dx|x〉〈x|ψ∆〉 = |ψ∆〉 (1.89)

which results in the same wavefunction centered around x = ∆. This is clear if
we look at the expectation value of x̂

〈x̂〉zero = 〈ψzero|x̂|ψzero〉 =
∫
dxψ∗

zero(x)xψzero(x) = 0 (1.90)

which is zero since the wavefunction is symmetric with respect to x. Now we
evaluate the same expectation value in the transformed/shifted state |ψ∆〉

〈x̂〉∆ = 〈ψ∆|x̂|ψ∆〉 =
∫
dxψ∗

∆(x)xψ∆(x) =

∫
dxψ∗

zero(x−∆)xψzero(x−∆)

u=x−∆
=

∫
duψ∗

zero(u)(u+∆)ψzero(u) = ∆ (1.91)

As expected we get the value ∆. Until now we have applied the transformation
to the states. Equivalently we can apply it to the operators instead.

General formulas for the transformation of operators Before we con-
tinue with the special case of the Lang-Firsov transformation we will state some
general rules about how operators transform under a specific transformation.
The prescription is

ˆ̃B = Ô†B̂Ô (1.92)

where B̂ is an unitary operator, Ô is the operator of the transformation and ˆ̃B
is the transformed operator. For the transformation of the hermitian conjugate
operator B̂† we get

˜̂
B† = Ô†B̂†Ô = (Ô†B̂Ô)† = ˆ̃B† (1.93)

That means it does not matter if one transforms first and then builds the
hermitian conjugate or the other way around. The practical consequence is
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that if one has transformed an operator, one gets the transformation of its
hermitian conjugate for free.
The prescription eq.(1.92) is readily obtained if we rewrite the expression for a
matrix element between transformed states |ψ̃m/n〉 = Ô|ψm/n〉

〈ψ̃m|B̂|ψ̃n〉 = 〈ψm|Ô†B̂Ô|ψn〉 = 〈ψm| ˆ̃B|ψn〉 (1.94)

which is the same if we transform the states directly or the operators according
to eq.(1.92). Note that in the context of time evolution, which is also a transfor-
mation, the freedom to transform either the states or the operators is referred
to as the Schrödinger (transformation of the states) or Heisenberg (transforma-
tion of the operators) picture, respectively.
In the case that the transformation operator Ô can be written as Ô = e−A with
an anti hermitian (Â† = −Â)operator Â, eq.(1.92) becomes

ˆ̃B = (e−Â)†B̂e−Â = e−Â
†

B̂e−Â = eÂB̂e−Â (1.95)

One way to evaluate the above expression is to make use of the Baker-Hausdorff
formula

eÂB̂e−Â =
∞∑

n

1

n!
[Â, B̂]n with [Â, B̂]n+1 = [Â, [Â, B̂]n] and [Â, B̂]0 ≡ B̂

(1.96)
We want to mention two special cases.

• First, we assume that [Â, B̂]n = 0 for n > 1. In this case the series in the
Baker-Hausdorff formula breaks down and we get

eÂB̂e−Â = B̂ + [Â, B̂] (1.97)

• Second, we assume that the commutator reproduces B̂

[Â, B̂] = ĈB̂ and [Â, Ĉ] = 0 (1.98)

Under these circumstances the n-th commutator is given by

[Â, B̂]n = ĈnB̂ (1.99)

proof by induction: The n = 1 case is true due to eq.(1.98). The
step from n→ n+ 1 is proven by

[Â, B̂]n+1 = [Â, [Â, B̂]n] = [Â, ĈnB̂] = Ĉn[Â, B̂] = Ĉn+1B̂ � (1.100)

Then the tranformed operator is given by

eÂB̂e−Â =
∞∑

n

1

n!
ĈnB̂ = eĈB̂ (1.101)
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This is what some would call the brute force method. A more elegant way of
performing the transformation is to introduce a parameter γ and viewing the

transformed operator ˆ̃B as function of this parameter

ˆ̃B(γ) = eγÂB̂e−γÂ (1.102)

By differentiating this expression with respect to γ, we get

d ˆ̃B(γ)

dγ
= eγÂÂB̂e−γÔ − eγÂB̂Âe−γÂ = eγÂ[Â, B̂]e−γÂ (1.103)

a differential equation for ˆ̃B(γ). If we assume that [[Â, B̂], Â] = 0 we can further
simplify to

d ˆ̃B(γ)

dγ
= [Â, B̂] (1.104)

with the solution

ˆ̃B(γ) = [Â, B̂]γ + ˆ̃B(0) = [Â, B̂]γ + B̂ (1.105)

where we used that, see eq.(1.102), ˆ̃A(0) = Â.

Now we turn back to our previous example and apply the transformation
Ô = e−i∆p̂ to the operator x̂. Thus, we are interested in

ˆ̃x = ei∆p̂x̂e−i∆p̂ (1.106)

Comparing with the general form eq.(1.95) yields the identifications

Â = i∆p̂ and B̂ = x̂ (1.107)

First we calculate the commutator appearing in both transformation approaches
mentioned above, eq.(1.96) and eq.(1.103).

[Â, B̂] = [i∆ˆ̂p, x̂] = i∆ [p̂, x̂]︸ ︷︷ ︸
−i

= ∆ (1.108)

Since this commutator is just a constant we also have [i∆ˆ̂p, x̂]n>1 = 0. Keeping
that in mind, we use eq.(1.108) in the Baker-Hausdorff formula eq.(1.96) and
obtain

ˆ̃x = ei∆p̂x̂e−i∆p̂ =
∞∑

n

1

n!
[i∆p̂, x̂]n = x̂+∆ (1.109)

For the differential equation approach, eq.(1.103), we can think of ∆ taking the
role of γ and therefore needs to be excluded in the identification of Â. With
the new identification Â = ip̂ eq.(1.105) yields

ˆ̃x = [ip̂, x̂]∆ + x̂ = x̂+∆ (1.110)

Which is, as it should be, the same as eq.(1.109).
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1.4.3 Removing the coupling term

Having learned how to generate a shift of amplitude ∆ in space, we can use
the Lang-Firsov transformation to remove the coupling term in the hamiltonian
eq.(1.86). From eq(1.87) we know that we want to generate the shift

ˆ̃x = x̂+
g

mω2
0

T̂e ⇔ x̂ = ˆ̃x− g

mω2
0

T̂e (1.111)

Motivated by the considerations above on how to introduce a constant shift in
space and ignoring the fact that we know the exact value of the needed shift,
we make the ansatz

Ô = L̂ = e−iγT̂ep̂ (1.112)

with a real and to be determined parameter γ which will shift the harmonic
oscillator by an amount γT̂e. To show also how the transformation is done if
one uses the ladder operators b̂ and b̂†, we write the phonon operators x̂ and p̂
in terms of ladder operators

x̂ =

√
1

2mω0
(b̂† + b̂) and p̂ = i

√
mω0

2
(b̂† − b̂) (1.113)

From now on we will omit the hat for b and b† since the risk of confusion is
minimal. With this relations, our hamiltonian eq.(1.86) becomes

Ĥ = Ĥe + ω0(b
†b+

1

2
) + g

√
1

2mω0︸ ︷︷ ︸
≡ḡ

T̂e(b
† + b) (1.114)

and our ansatz eq.(1.112) is modified to

L̂ = e−iγT̂ep̂ = eγ̄T̂e(b
†−b) (1.115)

where we absorbed the constants into the definition of γ̄ = γ
√

mω0

2 . Next we
calculate how the ladder operators transform. We start with

b̃ = e−γ̄T̂e(b
†−b)beγ̄T̂e(b

†−b) (1.116)

Analogous to the procedure of transforming x̂, eq.(1.107) and below, we begin
by identifying the operators Â and B̂ to make use of the formulas in paragraph
(1.4.2).

Â = −T̂e(b† − b) and B̂ = b (1.117)

Again we calculate the needed commutators

[A,B] = [−T̂e(b† − b), b] = −T̂e [b†, b]︸ ︷︷ ︸
−1

= T̂e

[A, [A,B]] = [T̂e(b
† − b), [−T̂e(b† − b), b]] = −[T̂e(b

† − b), T̂e] = 0 (1.118)
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where we used the assumption that T̂e is an electronic operator and commutes
with the bosonic ones. This time we use eq.(1.105) instead of the Baker-
Hasudorff formula, which is the reason why we excluded γ̄ from the definition
of Â, and end up with

b̃ = [−T̂e(b† − b), b]γ̄ + b = b+ γ̄T̂e (1.119)

Because of eq.(1.93) we get the transformation of b† as the hermitian conjugate
of b̃, which reads explicitly

b̃† = b† + γ̄T̂e (1.120)

With this relations, the hamiltonian eq.(1.114) transforms into

ˆ̃H = L̂†ĤL̂ = L̂†ĤeL̂+ ω0(L̂
†b†bL̂+

1

2
) + ḡL̂†T̂e(b

† + b)L̂

= ˆ̃He + ω0(L̂
†b† L̂L̂†
︸︷︷︸
✶

bL̂+
1

2
) + ḡT̂eL̂

†(b† + b)L̂

= ˆ̃He + ω0(b̃
†b̃+

1

2
) + 2ḡT̂e(b̃

† + b̃) (1.121)

where we used in the second equality that T̂e commutes with the Lang-Firsov
operator L̂† because the latter one only consists of T̂e itself and the bosonic
operators. With eq.(1.119) and eq.(1.120), we rewrite the hamiltonian further

ˆ̃H = ˆ̃He + ω((b† + γ̄T̂e)(b+ γ̄T̂e) +
1

2
) + ḡT̂e(b

† + γ̄T̂e + b+ γ̄T̂e)

= ˆ̃He + ω0(b
†b+

1

2
) + ω0γ̄T̂e(b

† + b) + ω0γ̄
2T̂ 2

e + ḡT̂e(b
† + b) + 2ḡγ̄T̂ 2

e

(1.122)

To remove the coupling term (to make the two terms proportional to T̂e(b
†+ b)

cancel), we demand that

ω0γ̄
!
= −ḡ = −g

√
1

2mω0

γ̄ = −g
√

1

2mω3
0

(1.123)

or writing this relation in terms of the physical shift γ

γ = γ̄

√
mω0

2

!
= −g

√
1

2mω3
0

γ = − g

mω2
0

(1.124)

By plugging this result back into eq.(1.112)

L̂ = e
−i(− g

mω2
0

T̂e)p̂
(1.125)
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we see that the needed shift − g
mω2

0

T̂e coincides with the suspected one in

eq.(1.111). With the proper choice for γ̄ the transformed hamiltonian takes
the final form

ˆ̃H = ˆ̃He + ω0(b
†b+

1

2
)− ḡ2

ω0
T̂ 2
e (1.126)

In this form it seems like that we have gotten rid of the coupling all together
and just had to pay the price of an extra term proportional to T̂ 2

e . But we have
yet to specify the electronic hamiltonian Ĥe and as we will see beneath that is
where the coupling has hidden itself in eq.(1.126).

1.4.4 Lang-Firsov Transformation in the Hubbard Holstein model

We continue by applying the Lang-Firsov transformation discussed above to
concrete hamiltonians with electron phonon coupling. In sec.(1.2), we saw that
we can devide the e-ph coupling into two parts, namely the Holstein and SSH
type of interaction. First, we will illustrate in which form the e-ph coupling
enters in the hamiltonian after the Lang-Firsov transformation, despite the
removed coupling term, using the single mode Hubbard-Holstein model as an
example. Then we continue by stating the result for the case of multiple modes.

Lang-Firsov Transformation in the Single mode Hubbard-Holstein
model

The hamiltonian for the single mode Hubbard-Holstein model (using ~ = 1)
reads

Ĥ =Ĥe + Ĥph + Ĥe−ph = −
∑

ijσ

tijc
†
iσcjσ +

∑

iσ

εiσniσ + U
∑

i

ni↑ni↓

+ ω0(b
†b+

1

2
) +

∑

iσ

√
1

2mω0
λi

︸ ︷︷ ︸
≡λ̄i

(b† + b)niσ (1.127)

It consists of an electronic hamilton Ĥe with Hubbard like electron-electron
interaction, the hamiltonian of an harmonic oscillator Ĥph and the coupling

term Ĥe−ph. To remove the coupling term we need to introduce a shift propor-
tianal to the operator

∑
iσ λ̄iniσ, which leads to the ansatz for the Lang-Firsov

operator

L̂ = eγ
∑

iσ λ̄iniσ(b
†−b) (1.128)

Comparing with eq.(1.115) we identify T̂e =
∑

iσ λ̄iniσ. We allready derived in
eq.(1.126) the transformed hamilton operator, where only the electronic part of
hamiltonian Ĥe was not explicitely transformed. For the single mode Hubbard-
Holstein model this part is given by

Ĥe = −
∑

ijσ

tijc
†
iσcjσ +

∑

iσ

εiσniσ + U
∑

i

ni↑ni↓ (1.129)
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Since niσ = c†iσciσ, its building blocks are only two operators, namely c†iσ and
ciσ. Because they are the hermitian conjugate of each other we only need
to transform one of them and obtain the other by eq.(1.93). We choose to
transform cjσ

c̃jσ = e−γ
∑

iσ λ̄iniσ(b
†−b)cjσ′eγ

∑
iσ λ̄iniσ(b

†−b) (1.130)

As in the previous cases we calculate the needed commutator
[
−γ
∑

iσ

λ̄iniσ(b
† − b), cjσ′

]
= −γ

∑

iσ

λ̄i(b
† − b) [niσ, cjσ′ ]︸ ︷︷ ︸

−δijδσσ′cjσ′

= γλ̄j(b
† − b)cjσ′

(1.131)
It reproduces the operator cjσ′ that we want to transform. We already derived
this case which resulted in eq.(1.101) and therefore we arrive at

c̃iσ = ciσe
γλ̄i(b

†−b) with its hermitian conjugate c̃†iσ = c†iσe
−γλ̄i(b†−b) (1.132)

Before we transform the whole hamiltonian eq.(1.127) note that the density
operators niσ are invariant under the Lang-Firsov transformation because they
commute with L̂. With the choice of γ = − 1

ω0
the coupling term cancels and

we obtain the transformed hamiltonian

ˆ̃H =−
∑

ijσ

tijc
†
iσcjσe

1

ω0
(λ̄i−λ̄j)(b†−b) +

∑

iσ

εiσniσ + U
∑

i

ni↑ni↓

+ ω0(b
†b+

1

2
)− 1

ω0

(
∑

iσ

λ̄iniσ

)2 (1.133)

From the last equation we see that the e-ph coupling now enters in the hop-
ping term in contrast to the hamiltonian before the Lang-Firsov transforma-
tion where it was an extra term. The last term introduces all sorts of negative
density-density interactions.This and the considerations beneath are the reason
why this term is generally called a negative U -term.

Special case of a single site system

Imagine if there was no hopping term in the original hamiltonian to begin with,
than the Lang-Firsov transformation does not only remove the coupling term
but exactly removes the e-ph coupling all together. This condition is fulfilled if
the system in question consists only of a single site, because then the electron
has no where to hop. In the following we will consider this special case. The
original hamiltonian eq.(1.114) and the transformed one eq.(1.133) simplify to

Ĥ =
∑

σ

εσnσ + Un↑n↓ + ω0(b
†b+

1

2
) +

∑

σ

λ̄nσ(b
† + b) (1.134)

and

ˆ̃H =
∑

σ

εσnσ + Un↑n↓ + ω0(b
†b+

1

2
)− 1

ω0

(
∑

σ

λ̄nσ

)2

(1.135)
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respectively. Indeed the e-ph coupling has vanished from the hamiltonian and
the only collateral side effect of the transformation is the arising of additional
last term. Eq.(1.135) can be further simplified by rewriting the last term as

− 1

ω0

(
∑

σ

λ̄nσ

)2

= − λ̄
2

ω0
(n↑ + n↓)

2 = − λ̄
2

ω0
( n2↑︸︷︷︸
n↑

+2n↑n↓ + n2↓︸︷︷︸
n↓

)

=
∑

σ

(
− λ̄

2

ω0

)
nσ −

2̄λ
2

ω0
n↑n↓ (1.136)

With that, eq.(1.135) becomes

ˆ̃H =
∑

σ

(
εσ −

λ̄2

ω0

)
nσ +

(
U − 2λ̄2

ω0

)
n↑n↓ + ω0(b

†b+
1

2
)

=
∑

σ

ε̃σnσ + Ũn↑n↓ + ω0(b
†b+

1

2
)

This is exactly the same as the starting hamiltonian eq.(1.134) but with renor-
malized parameters

ε̃σ = εσ −
λ̄2

ω0
and Ũ = U − 2λ̄2

ω0
(1.137)

Due to its property to negatively renormalize U the additionally arising term
is called a negative U -term. Note that for small U the renormalized value Ũ
can become negative. This leads to effectively negative e-e interactions in such
systems.

Hubbard-Holstein model with multiple modes

Before we close the discussion about the Lang-Firsov transformation in the
Hubbard-Holstein model, we want to state the result of the transformed hamil-
tonian in the case of multiple modes. The hamiltonian then reads,

Ĥ =−
∑

ijσ

tijc
†
iσcjσ +

∑

iσ

εiσniσ + U
∑

i

ni↑ni↓

+
∑

µ

ωµ(b
†
µbµ +

1

2
) +

∑

iσµ

√
1

2mωµ
λi

︸ ︷︷ ︸
≡λ̄µi

(b†µ + bµ)niσ (1.138)

Respecting all modes in the ansatz for the Lang-Firsov transformation yields

L̂ = e
∑

µ γµ
∑

iσ λ̄
µ
i niσ(b

†
µ−bµ) (1.139)
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An analog calculation as in the single mode case, with the choice of γµ = − 1
ωµ

,

transforms eq.(1.138) into

ˆ̃H =−
∑

ijσ

tijc
†
iσcjσe

∑
µ

1

ωµ
(λ̄µi −λ̄

µ
j )(b

†
µ−bµ) +

∑

iσ

εiσniσ + U
∑

i

ni↑ni↓

+
∑

µ

ωµ(b
†
µbµ +

1

2
)−

∑

µ

1

ωµ

(
∑

iσ

λ̄µi niσ

)2 (1.140)

1.4.5 Lang-Firsov transformation in the SSH model

At last, we demonstrate how to apply the Lang-Firsov transformation to the
SSH model.

Lang-Firsov transformation in the single mode SSH model

Above, we showed how to remove the e-ph coupling term in the Hubbard-
Holstein model using the Lang-Fisrsov transformation. Now, we turn to doing
so for the SSH model where the e-ph interaction alters the electronic hopping
amplitudes tij instead of the onsite energies εi. The single mode SSH model is
readily obtained from eq.(1.52) if we disregard the Holstein interaction, leading
to (again we use ~ = 1)

Ĥ =−
∑

i 6=j
σ

tijc
†
iσcjσ +

∑

iσ

εiniσ + ω0(b
†b+

1

2
) (1.141)

+
∑

ij
σ

ḡijc
†
iσcjσ(b

† + b) (1.142)

where we defined ḡij =
√

1
2mω0

gijδi 6=j which allows us to extend the sum over

all combination of indices ij.

The naive unsuitable ansatz of the Lang-Firsov transformation

Following the recipe from the last section we would make the ansatz for the
Lang-Firsov transformation

L̂ = e
γ
∑

ij
σ
ḡijc

†
iσcjσ(b

†−b)
(1.143)

The transformation of the phononic operators is straight forward and yields

b̃ = b+ γ
∑

ij
σ

ḡijc
†
iσcjσ (1.144)

With γ = 1
ω0

the coupling term would cancel, but if we try to transform an
electronic operator cj0σ, or the whole electronic part for that mather, we run
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into troubles. What is troublesome, is that the needed commutators neither
reproduce cj0σ, nor terminate naturally. To demonstrate this, we calculate

[−γ
∑

ij

σ′

ḡijc
†
iσ′cjσ′(b† − b), cj0σ] = −γ

∑

ij

σ′

ḡij(b
† − b) [c†iσ′cjσ′ , cj0σ]︸ ︷︷ ︸

−δσσ′δij0cjσ

= γ
∑

j

ḡj0jcjσ(b
† − b)

and

[−γ
∑

ij2
σ′

ḡij2c
†
iσ′cj2σ′(b† − b), cj0σ]2

= [−γ
∑

ij2
σ′

ḡij2c
†
iσ′cj2σ′(b† − b), γ

∑

j1

ḡj0j1cj1σ(b
† − b)]

= −γ2(b† − b)2
∑

ij2
σ′j1

ḡj0j1 ḡij2 [c
†
iσ′cj2σ′ , cj1σ]︸ ︷︷ ︸
−δσσ′δij1cj2σ

= γ2(b† − b)2
∑

j1j2

ḡj0j1 ḡj1j2cj2σ (1.145)

We see that the operator cj0σ is not reproduced but for every step from n to
n + 1 a new sum of the form

∑
jn+1 ḡjnjn+1

and a factor of γ(b† − b) is added.
This consideration leads to the generalization

[−γ
∑

ij

σ′

ḡijc
†
iσ′cjσ′(b† − b), cj0σ]n

= γn(b† − b)n
∑

j1j2...jn

ḡj0j1 ḡj1j2 . . . ḡjn−1jncjnσ (1.146)

proof by induction of eq.(1.146): The base case is given by eq.(1.145).
The inductive step from n 7→ n+ 1 is prooven by

[ , ]n+1 =[−γ
∑

ijn+1

σ′

ḡijn+1
c†iσ′cjn+1σ′(b† − b), [−γ

∑

ijn+1

σ′

ḡijc
†
iσ′cjσ′(b† − b), cj0σ]n]

=− γ(b† − b)γn(b† − b)n
∑

ijn+1

σ′

ḡijn+1

∑

j1j2...jn

ḡj0j1 ḡj1j2 . . . ḡjn−1jn [c
†
iσ′cjn+1σ′ , cjnσ]︸ ︷︷ ︸
−δσσ′δijncjn+1σ

=γn+1(b† − b)n+1
∑

j1j2...jn+1

ḡj0j1 ḡj1j2 . . . ḡjnjn+1
cjn+1σ � (1.147)

If we plug the generalisation eq.(1.146) into the Baker-Hausdorff formula,
we obtain

c̃j0σ =

∞∑

n=0

γn(b† − b)n

n!


 ∑

j1j2...jn

ḡj0j1 ḡj1j2 . . . ḡjn−1jncjnσ



n

(1.148)
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which does not allow an analytical simplification due to the sums. For that
reason, it is not possible to perform the summation in eq.(1.148) up to infinity
leading to the fact that this transformation can not be done exactly. Even if one
introduces a cut off for the maximal occupation number of the phonons nmax,
which is a common thing to do in numerical approaches, the summation can
not be performed consistently. In this context consistently would mean that,
given a phonon cut off nmax, all terms with n > nmax are zero. This is not the
case here since

(b† − b)n|nmax〉=̂
∑

l+m=n

αlm(b
†)lbm|nmax〉 6= 0 (1.149)

even for n > nmax. Of course, if one chooses the cut off high enough that the
γn

n! dominates it can be a viable approximation but typically this cut off is too
large to treat numerically.

Diagonalizing the coupling term to apply the Lang-Firsov transfor-
mation

So far, we have shown that the naive ansatz for the Lang-Firsov transformation,
eq(1.143), does not work in the case of a SSH type of interaction. The problem is
that it is not possible to perform the transformation for the fermionic operators
ciσ if we put a hopping term

∑
ijσ tijc

†
iσcjσ into the ansatz for the Lang-Firsov

transformation. Recall, that we did not find this issue in the case of the Holstein
interaction where the fermionic operators entered in the ansatz for the Lang-
Firsov transformation, eq.(1.128), only as densities ni. This suggests that we
have to rewrite the coupling term

Ĥe−ph =
∑

ijσ

ḡijc
†
iσcjσ(b

† + b) = (b† + b)
∑

σ

c†σGcσ (1.150)

in a way that it only inhabits densities anymore. In eq.(1.150) we defined the
vector c = (c1, c2, . . . , cN ) and the matrix (G)ij = ḡij . To rewrite the coupling
in term of densities we make use of the spectral representation of G = U †ΛU
and write

Ĥe−ph = (b†+b)
∑

σ

c†σU
†ΛUcσ = (b†+b)

∑

σ

d†
σΛdσ = (b†+b)

∑

iσ

λini (1.151)

where we transformed from the c to the d particles/orbitals by defining

dσ = Ucσ (1.152)

With eq.(1.151) we have achieved the goal of rewriting the coupling hamilto-
nian, eq.(1.150), in terms of densities. Therefore, one has to diagonalize the
electronic part of the e-ph coupling first before one can apply the Lang-Firsov
transformation. We start by transforming the whole hamiltonian, eq.(1.142),
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from the c to the d particles.

Ĥ =−
∑

i 6=j
σ

tijc
†
iσcjσ +

∑

iσ

εiniσ + ω0(b
†b+

1

2
)

+
∑

ij
σ

ḡijc
†
iσcjσ(b

† + b)

=
∑

σ

c†σH0cσ + ω0(b
†b+

1

2
) +

∑

σ

c†σGcσ(b
† + b) (1.153)

where we defined the matrix (H0)ij = −δi 6=jtij+δijεi. By inserting the identity
U †U in suitable places in eq.(1.153), we obtain the hamiltonian in terms of d
particles

Ĥ =
∑

σ

c†σ U
†U︸︷︷︸
✶

H0U
† Ucσ︸︷︷︸

dσ

+ω0(b
†b+

1

2
) +

∑

σ

c†σU
†UGU †Ucσ(b

† + b)

=
∑

σ

d†
σH̃0dσ + ω0(b

†b+
1

2
) +

∑

σ

d†
σΛdσ(b

† + b)

=
∑

ijσ

(H̃0)ijd
†
iσdjσ + ω0(b

†b+
1

2
) +

∑

iσ

λiniσ(b
† + b) (1.154)

with the transformed matrix H̃0 = UH0U
† and the eigenvalues λi of G. We

remove the coupling term by applying the Lang-Firsov transformation

L̂ = eγ
∑

iσ λiniσ(b
†−b) (1.155)

with γ = − 1
ω0

to the hamiltonian eq.(1.154) and obtain

ˆ̃H =
∑

ijσ

(H̃0)ijd
†
iσdjσe

1

ω0
(λi−λj)(b†−b)

+ ω0(b
†b+

1

2
)− 1

ω0

(
∑

iσ

λiniσ

)2 (1.156)

the transformed single mode SSH hamiltonian.

Lang-Firsov transformation in the multiple mode SSH model

Recall that we had to diagonalize the coupling term in eq.(1.153) to be able
to remove the coupling term. In the case of multiple modes this is generally
not possible since the coupling matrices Gµ for different modes usually do not
commute and therefore can not be diagonalized all at ones. Thus, in contrast
to the Hubbard-Holstein model, the Lang-Firsov transformation can not be
applied to the SSH model in the case of multiple modes.
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1.4.6 Calculation of phonon matrix elements appearing after

the Lang-Firsov transformation

In all hamiltonians above where we applied the Lang-Firsov transformation
a characteristic phonon operator of the form e−γ(a

†−a) occurred. For further
treatments of this hamiltonians it is useful to calculate its matrix elements.
Therefore, we are interested in the matrixelement

〈m|e−γ(a†−a)|n〉 (1.157)

Since [[a, a†], a(†)] = 0, we can use the Baker-Hausdorf formula eA+B = eAeBe−[A,B]/2

with A = −γa† and B = γa. Using the commutator [A,B] = −γ2[a†, a] = γ2,
leads to

〈m|e−γ(a†−a)|n〉 = e−
γ2

2 〈m|e−γa†eγa|n〉
Calculation of eγa|n〉:

eγa|n〉 =
∞∑

ν=0

γν

ν!
aν |n〉 =

n∑

ν=0

γν

ν!

√
n!

(n− ν)!
|n− ν〉

A similar calculation for 〈m|e−γa† and we get

〈m|e−γ(a†−a)|n〉 =e−
γ2

2

m∑

µ=0

n∑

ν=0

(−γ)µγν
µ!ν!

√
n!
√
m!√

(m− µ)!
√
(n− ν)!

〈m− µ|n− ν〉

=e−
γ2

2

m∑

µ=0

n∑

ν=0

(−γ)µγν
µ!ν!

√
n!
√
m!√

(m− µ)!
√
(n− ν)!

δm−µ,n−ν

For m ≥ n the sums are restricted by n and we eliminate µ with δµ=m−n+ν

〈m|e−γ(a†−a)|n〉 =e−
γ2

2

√
n!
√
m!

n∑

ν=0

(−1)m−n+νγm−n+2ν

(m− n+ ν)!ν!
√
m− (m− n+ ν)!(n− ν)!

= e−
γ2

2

√
n!
√
m!(−γ)m−n

n∑

ν=0

(−1)νγ2ν

(m− n+ ν)!ν!(n− ν)!
(1.158)

For n ≥ m the sums are restricted by m and we eliminate ν with δν=n−m+µ

〈m|e−γ(a†−a)|n〉 = e−
γ2

2

√
n!
√
m!γn−m

m∑

µ=0

(−1)µγ2µ

(n−m+ µ)!µ!(m− µ)!
(1.159)

For n = m both expressions eq.(1.158) and eq.(1.159) lead to

〈n|e−γ(a†−a)|n〉 = e−
γ2

2 n!
n∑

µ=0

(−1)µγ2µ

(µ!)2(n− µ)!
(1.160)
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And because we need it later we also state the special case

〈0|e−γ(a†−a)|n〉 = e−
γ2

2
γn√
n!

|〈0|e−γ(a†−a)|n〉|2 = eγ
2 γ2n

n!

(1.161)

The above derivation did not make use of the particular sign constellation of a
and a† in eq.(1.157). Therefore an analog calculation yields

〈n|eγ(a†+a)|m〉 = e
γ2

2

√
n!m!γn+m

min(n,m)∑

l=0

γ−2l

l!(n− l)!(m− l)!
(1.162)

which is the matrix element appearing when treating the beyond SSH model,
see sec.(1.2.3).

1.4.7 Greensfunctions and unitary transformations

In this work we solve for properties of our models, for example the steady
state current, using greensfunctions. Be it the retarded, advanced or keldysch
greensfunction in time or energy/frequency, all of them are defined as expecta-
tion values of some operators with respect to some state or ensemble of states
for finite temperature. We now want to show that all of this greensfunctions are
invariant under a unitary transformation that was applied to the hamiltonian.
Denoting the transformation operator by L̂ and using the Schrödinger equation
as a starting point we write

Ĥ|ψ〉 = E|ψ〉 /L̂† from left

L̂†ĤL̂L̂†|ψ〉 = EL̂†|ψ〉 (1.163)

ˆ̃H|ψ̃〉 = E|ψ̃〉 (1.164)

From that we see that the transformed hamiltonian has the same eigenvalues
as the original one and its eigenvectors are given by |ψ̃〉 = L̂†|ψ〉. To show that
any expectation value is invariant under a unitary transformation, we consider
an arbitrary expectation value of the form

〈ψ|Â1Â2 . . . Ân|ψ〉 (1.165)

Rewriting it as

〈ψ|L̂L̂†Â1L̂L̂
†Â2L̂L̂

† . . . L̂L̂†ÂnL̂L̂
†|ψ〉 = 〈ψ̃| ˆ̃A1

ˆ̃A2 . . .
ˆ̃An|ψ̃〉 (1.166)

we see that it is the same as if we replace every quantity appearing in its
definition by the transformed one. As a consequence of the greensfunctions
being invariant we know that any formalism/approximation that is formulated
in terms of only greensfunctions, as for example CPT, can be straightforwardly
applied taking the transformed hamiltonian as a starting point.
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Chapter 2

Anderson-Holstein model

We apply the CPT formalism to the widely studied Anderson-Holstein and
Anderson-Hubbard-Holstein model. First, we introduce the model and derive
the single particle greensfunction of the quantum dot. Second, we present some
results for weak to strong e-ph coupling and compare them to data found in
the literature.
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2.1 Anderson-Holstein model

The simplest model to study vibrational effects on the transport properties of an
interacting electron region coupled to leads is the so called Anderson-Holstein
model. For simplicity we consider spinless fermions. The Hamiltonian

ĤAH =Ĥleads + Ĥdot + Ĥcoupling

=−
∑

ij

tijf
†
liflj +

∑

i

(εli − µl)nli −
∑

ij

tijf
†
rifrj +

∑

i

(εri − µr)nri

+ (εd − µ)c†c+ ω0b
†b+ λ(b† + b)c†c

+ vl(f
†
l1c+ c†fl1) + vr(f

†
r1c+ c†fr1) (2.1)

consists of three parts. The first one describes the left l and right r leads
which are modeled as non interacting tight binding chains with electronic cre-
ation/annihilation operators fl/ri. The second hamiltonian represents a single
electronic level (often referred to as quantum dot) coupled to a local phonon
mode with the Holstein interaction. Note that in the literature the coupling
term is some times written as ω0g(b

† + b) introducing a dimensionless coupling
constant g = λ

ω0
. The last term couples the central region (here the quantum

dot) to the leads by allowing for hopping from and to the dot from the first left
and right lead sites, respectively.

2.1.1 Greensfunction of the central region

As outlined in sec.(1.1) the main ingredient for the steady state CPT formalism
is the greensfunction of the central region. The simplest sensible way to devide
the system into clusters is by cutting it between the dot and the first site of the
right/left lead. In this way we obtain three clusters, the quantum dot as the
central cluster and the right/left lead as the other two. We will refer to this
case as Nc = 1 since the central region is chosen to consist of a single site. For
Nc = 1 the central region allows an analytical solution. Our starting point is
the Lehmann representation of the greensfunctions

gr/a(E) =
∑

α

〈ψ0|c|α〉〈α|c†|ψ0〉
E − (Eα − E0)± i0+

+
∑

β

〈ψ0|c†|β〉〈β|c|ψ0〉
E + (Eβ − E0)± i0+

=
∑

α

|〈ψ0|c|α〉|2
E − (Eα − E0)± i0+

+
∑

β

|〈ψ0|c†|β〉|2
E + (Eβ − E0)± i0+

(2.2)

This allows us to obtain the greensfunction if we have solved our system for the
its eigenstates |α〉 and corresponding eigenvalues Eα. To do so we remove the
coupling term by applying the Lang-Firsov transformation

L̂ = e
− λ

ω0
c†c(b†+b)

(2.3)

to our hamiltonian eq.(2.1). The hamiltonians of the leads remain unchanged
because the fermionic lead operators f commute with the Lang-Firsov opera-
tor and with the results from sec.(1.4.4), we obtain the transformed hamilton
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operator

ˆ̃HAH =L̂†ĤAH L̂ = L̂†ĤleadsL̂+ L̂†ĤdotL̂+ L̂†ĤcouplingL̂

=−
∑

ij

tijf
†
liflj +

∑

i

(εli − µl)nli −
∑

ij

tijf
†
rifrj +

∑

i

(εri − µr)nri

+ (εd −
λ2

ω0
− µ)c†c+ ω0b

†b+ vl(f
†
l1ce

− λ
ω0

(b†−b)
+ c†e

λ
ω0

(b†−b)
fl1)

+ vr(f
†
r1ce

− λ
ω0

(b†−b)
+ c†e

λ
ω0

(b†−b)
fr1) (2.4)

In particular the transformed dot hamiltonian

ˆ̃Hdot = (εd −
λ2

ω0
− µ)c†c+ ω0b

†b (2.5)

is now decoupled and the eigenvectors are therefore merely a tensor product
of an electronic and a phonon state. Since the quantum dot has only a sin-
gle electronic level and we consider the case of no spin the possible electronic
states are the occupied level |ne = 1〉 = c†|0〉e and unoccupied/vacuum level
|ne = 0〉e = |0〉e. The phonon states are of course given by the eigenstates
of the harmonic oscillator |np〉 = (b†)np |0〉p and thus we can write down the
eigensystem of eq.(2.5) as

|ψ̃〉 = |ne〉 ⊗ |np〉 Ẽi = (εd −
λ2

ω0
− µ)δne,1 + npω0 (2.6)

The groundstate is the phonon vacuum, as the phonon part gives only positive
contributions to the energy, and depending on εd− λ2

ω0
−µ > / < 0 the electronic

vacuum or the occupied dot state. In short

|ψ̃0〉 =
{
|0〉e|0〉p εd − λ2

ω0
− µ > 0

|1〉e|0〉p εd − λ2

ω0
− µ < 0

(2.7)

Note that this is the groundstate of the transformed hamiltonian, the original
groundstate is related to the transformed one, see eq.(1.164), by

|ψ0〉 = L̂|ψ̃〉 = e
− λ

ω0
c†c(b†−b)|ψ̃〉 =

∞∑

n=0

(− λ
ω0
)n

n!
(c†c)n(b† − b)n|ψ̃〉 (2.8)

which for εd − λ2

ω0
− µ < 0 evaluates to

|ψ0〉 =
∞∑

n=0

(− λ
ω0
)n

n!
(c†c)n|1〉e︸ ︷︷ ︸

|1〉e

(b† − b)n|0〉p = |1〉e
∞∑

n=0

(− λ
ω0
)n

n!
(b† − b)n|0〉p

= |1〉ee−
λ
ω0

(b†−b)|0〉p = |1〉e
∞∑

n=0

|n〉pp〈n|e−
λ
ω0

(b†−b)|0〉p

= |1〉ee
− λ2

2ω2
0

∞∑

n=0

(
− λ
ω0

)n
√
n!

|n〉p (2.9)

39



where we have inserted the identity for the phonons ✶ =
∑∞

n=0 |n〉pp〈n| and
used eq.(1.158) to express the matrix element 〈n|e−

λ
ω0

(b†−b)|0〉. From eq.(2.9)
we see that the original groundstate is a superposition of all phonon states
with the amplitude given by the above matrix element. This is of course just a
consequence of the oscillator being shifted by the Lang-Firsov transformation
and thus one needs infinitely many states of the original oszillator to represent
the groundstate of the shifted one as discussed in sec.(1.4).
However, to obtain the greensfunction, eq.(2.2), we do not need the original
groundstate, as was shown in sec.(1.4.7) we get the same greensfunction if we
calculate it with all transformed quantities. With the transformed operators,
see eq.(1.132),

c̃ = L̂†cL̂ = ce
− λ

ω0
(b†−b)

and c̃† = c†e
λ
ω0

(b†−b)
(2.10)

eq.(2.2) becomes

gr/a(E) =
∑

α

|〈ψ0|L̂†L̂cL̂†L̂|α〉|2
E − (Eα − E0)± i0+

+
∑

β

|〈ψ0|L̂†L̂c†L̂†L̂|β〉|2
E + (Eβ − E0)± i0+

=
∑

α̃

|〈ψ̃0|ce−
λ
ω0

(b†−b)|α̃〉|2
E − (Eα̃ − E0)± i0+

+
∑

β̃

|〈ψ̃0|c†e
λ
ω0

(b†−b)|β̃〉|2
E + (Eβ̃ − E0)± i0+

(2.11)

First, we consider the case that εd − λ2

ω0
− µ < 0 with the groundstate |ψ̃0〉 =

|1〉e|0〉p and groundstate energy E0 = εd− λ2

ω0
−µ. There are no states |α̃〉 with

one electron more than in the groudstate and the states with one electron less
are |β̃〉 = |0〉e|n〉p. Since the electron part of the greensfunction is zero this
leaves us with only the hole part given by

gr/a(E) =
∑

β̃

|p〈0|e〈1|c†e
λ
ω0

(b†−b)|β̃〉|2

E + (Eβ̃ − (εd − λ2

ω0
− µ))± i0+

=

∞∑

n=0

|p〈0|e
λ
ω0

(b†−b)|n〉p|2|e〈1|c†|0〉e|2

E + (ω0n− (εd − λ2

ω0
− µ))± i0+

= e
−( λ

ω0
)2

∞∑

n=0

( λω0
)2n

n!

1

E − (εd − λ2

ω0
− µ− ω0n)± i0+

(2.12)

In the other case where εd− λ2

ω0
−µ > 0 the groundstate is the vacuum state and

therefore the hole part of the greensfunction vanishes. An analog calculation as
above then yields

gr/a(E) = e
−( λ

ω0
)2

∞∑

n=0

( λω0
)2n

n!

1

E − (εd − λ2

ω0
− µ+ ω0n)± i0+

(2.13)
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2.1.2 Franck-Condon blockade

The Franck-Condon blockade [20] is the effect that the low bias steady state
current through a system with e-ph coupling gets suppressed as the coupling
increases. It looks like the Coulomb blockade but unlike the Coulomb blockade
it can not be lifted by tuning the gate voltage. From eq.(2.13) and eq.(2.12),

we see that we have single particle excitations to the right/left of εd − λ2

ω0
− µ

for the electron/hole case with a spacing given by the phonon energy ω0 and an

amplitude given by the squared matrix element |〈n|e−
λ
ω0

(b†−b)|0〉|2. These are
the states an additional electron can use to hop on and off of the central region.
From fig.(2.1) we see that the important excitations get shifted to higher values
of n for increasing effective interaction λ

ω0
. This shifting translates to a shift

of the electronic states to higher energies given by ∆E = ~ω0. Thus, as the
e-ph coupling is increased the states get shifted to higher energies rendering
the current at low bias suppressed since the states in the fermi window of
the leads lose their spectral weight to higher energy states. The behaviour of
the matrix element in fig.(2.1) and therefore the Franck-Condon blockade can
also be understood in the simple picture of the shifted harmonic oscillators.
Recall that the shift generated by the Lang-Firsov transformation depends,
for the Holstein model, on the electronic density ndot or more generally on
the electronic configuration of the central region. Therefore, the shift of the
oscillator is different for the electronic groundstate and the excited state with
one electron more. For small e-ph coupling this difference in the shifts is small
and thus the overlap with the phonon groundstate is bigger for the low lying
phonon excitations. If the e-ph coupling is large the shift is more severe and
the overlap with the low lying states is exponentially suppressed leading to the
behaviour described above. The explanation in terms of shifted oscillators is,
of course, the reason for the name Franck-Condon blockade.

2.1.3 The Anderson-Hubbard-Holstein model

The Anderson-Hubbard-Holstein model is the generalisation of the Anderson-
Holstein model with spin and Hubbard U . The hamiltonian of the central region
for this model reads

Ĥdot = ω0b
†b+

∑

σ

(εd − µ)c†σcσ + λ(b† + b)c†σcσ +
U

2
c†σcσc

†
σ′cσ′ (2.14)

As shown in sec.(1.4.4) the e-ph coupling term can again be removed by the
Lang-Firsov transformation leading to a hamiltonian with renormalised param-
eters that is already diagonal. Thus, after choosing the correct groundstate
out of the four possibilities, which depends on the interplay of ε, λ and U , the
greensfunctions are straight forwardly calculated in analog to the derivation
above.
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Figure 2.1: The phonon matrix element |〈n|e−γ(b†−b)|0〉|2 for different γ. It
follows an poisson distribution

2.2 Comparison with the literature

2.2.1 Weak e-ph coupling regime

We test our method for the weak e-ph coupling regime by comparing with
results obtained by Koch et al [21] who investigated the system with pertur-
bation theory in the e-ph coupling. Note that the paper does not give an ex-
plicit value for the coupling strength to the leads v but uses a single parameter
Γ(ω) := 2π|v|2ρ(ω) to describe the leads. Furthermore, the perturbation theory
result is obtained for the wideband limit where Γ(ω) = Γ0 is energy indepen-
dent. To reproduce the same situation in our formalism we fix tleads = 40[eV ],
which leads to a very flat DOS of the leads in the bias region, and determine

the coupling v so that Γ0 = Γ(ω = 0) = 2|v|2
tleads

. For the evaluation of the current

we set the small imaginary quantity 0+ = 0. Fig.(2.2)-(2.4) show results for the
Nc = 1 case which are already in satisfying agreement with the figures from the
paper. The best agreement is met for small Γ0, fig.(2.2), which means small
dot lead coupling. This is to be expected since CPT is a perturbation theory
in the intra cluster hoppings.

Next, we compare with data from Hützen et al [14] who used a technique
called Iterative summation of path integrals (ISPI for short) to calculate steady
state I/V curves. The group themselves compared their results to perturbation
theory and rate equation approaches. Fig.(2.5) shows our results for different
sizes of the central region Nc and the corresponding figure from the paper. The
agreement with the results of the paper is not as good as for the comparison
with Koch et al but we see an improvement with increasing size of the central
region Nc. For consecutive Nc the data in fig.(2.5) jumps between two solutions
which converge only slowly into each other. Fig.(2.6) shows the current voltage
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Figure 2.2: Left, fig.(5a) from the paper Koch et al [21]. Right, our plot with
the corresponding parameters: T = 0.01, tleads = 40, Γ0 = 0.1, εd − µc = 2,
ω0 = 1, v = 1.4142, g = 1.4142. Note the difference in the y-axis.

Figure 2.3: Left, fig.(6a) from the paper Koch et al [21]. Right, our plot with
the corresponding parameters: T = 0.01, tleads = 40, Γ0 = 1, εd − µc = 2,
ω0 = 1, v = 4.4721, g = 1.4142. Note the difference in the y-axis.

Figure 2.4: Left, fig.(7a) from the paper Koch et al [21]. Right, our plot with
the corresponding parameters: T = 0.01, tleads = 40, Γ0 = 1, εd − µc = 8,
ω0 = 1, v = 4.4721, g = 1.4142.
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Figure 2.5: Left, fig.1 from the paper Hützen et al [14]. Right, our plot which
corresponds to the lower inlet with the parameters: T = Γ

3 , tleads = 40, Γ = 1,
εd − µc = 0, ω0 = Γ, g = 0.5Γ.

Figure 2.6: Left, fig.1 from the paper Hützen et al [14]. Right, our plot which
corresponds to the black doted line in the left figure. Parameters: T = 0.2Γ,
tleads = 40, Γ = 1, εd − µc = 0, ω0 = 2Γ, g = 0.5Γ.

characteristic for weaker dot lead coupling and a higher energy mode. We
see that the CPT data is clearly converged in this case, which is again to be
expected due to the small Γ, but does not agree with the result from the paper
suggesting that ISPI overestimates the current in this case.

2.2.2 Intermediate e-ph coupling

For intermediate e-ph coupling we check against a different observable, namely
the electronic conductance. In the paper from Ren et al [28] the group cal-
culates the electronic and thermal conductance by linear response for a range
of e-ph couplings. We use the formulas from the paper and replace the full
greensfunction by the greensfunction obtained by CPT with Nc = 1. The color
plots in fig.(2.7) show excellent quantitative and qualitative agreement with the
literature.

2.2.3 Strong e-ph coupling and Franck-Condon blockade

Finally, we match our CPT approach against known results in the strong
coupling regime. We compare with Koch and Oppen [19] who studied the
Anderson-Hubbard-Holstein model by means of rate equations. Looking at
fig.(2.8) we see very good agreement with the data from the paper.
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Figure 2.7: Left, fig.1a from the paper Ren et al [28]. Right, our plot. Param-
eters: T = 0.2Γ, tleads = 40, Γ = 1, εd − µc = 0, ω0 = 2Γ, g = 0.5Γ. Note the
different y-axis.

Figure 2.8: Left, fig.1a from the paper Koch and Oppen [19]. Right, our plot
which corresponds to the curves labeled equilibrated (eq.). Parameters: kT =
0.05, tleads = 40, εd = 0,ω0 = 1, Γ0 = 0.005, U = 100 Nc = 1.
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Chapter 3

Su-Schrieffer-Heeger model

for a molecular ring

We apply our method to a molecular ring with SSH type of e-ph interaction
coupled to non-interacting leads. The first section in this chapter is denoted
to the vibrational modes of a contacted ring. Then we study the effects of the
SSH interaction on the electronic properties of the ring in equilibrium. Finally,
we present and discuss the non-equilibrium situation of the contacted ring on
the basis of the current voltage characteristics.
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Figure 3.1: A sketch of the benzene lead system

Table 3.1: Parameters for the calculation of the modes

Parameter Symbol Value

bond length benzene r 1.39[A]

bond length coupling R 1.39[A]

bond length leads RL 3.92[A]

benzene Masses MB 13[u]

lead Masses ML 200[u]

spring constant benzene KB 21[eV/A]

spring constant coupling KC 11.5[eV/A]

spring constant leads KL 107[eV/A]

3.1 Calculation of modes for a contacted ring

3.1.1 System and parameters

We extract the classical vibrational modes of a benzene molecule attached to
two metallic leads by modeling it as a system of masses and springs. In principle
there are three different geometries in which the six site ring can be contacted.
The latter are called para, ortho and meta configuration which refer to two,
one and zero benzene sites between the connection points. Fig.(3.1) contains
a sketch of the system in para configuration and the parameters are given in
table(3.1).
The parameters for benzene are taken from [17] and the parameters of the

leads are chosen to model (to some extend) a platinum lead while the coupling
parameters are tuned in a way that the lowest energy mode corresponds to the
value reported in [16]. Please note that we are not trying to model any specific
experiment by choosing the parameter in this way but rather do so to obtain
realistic modes.

3.1.2 Results for the modes

We are only interested in modes which involve motions of the benzene sites.
These modes show no dependence on the number of lead sites nor the lattice
spacing (bond length) a and can be thought of as decoupled from the specific
parameters of the leads. Using the formalism outlined in sec.(1.3) and the
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Table 3.2: Stretching amplitudes of the modes for free benzene and their sum.
Labeling of the sites counterclockwise starting from the right.

Breathing mode (1) mode 2 mode 3 mode 4

d12 -0.408248 0.139212 0.693268 0.518532

d23 -0.408248 0.669993 0.226073 0.391382

d34 -0.408248 0.530781 -0.467195 -0.909914

d45 -0.408248 -0.139212 -0.693268 0.518532

d56 -0.408248 -0.669993 -0.226073 0.391382

d61 -0.408248 -0.530781 0.467195 -0.909914∑
d -2.4495 0 0 0

mode 5 Pi-mode (6)

d12 0.751304 0.707107

d23 -0.824714 -0.707107

d34 0.073410 0.707107

d45 0.751304 -0.707107

d56 -0.824714 0.707107

d61 0.073410 -0.707107∑
d 0 0

above parameters we obtain the modes shown in fig.(3.2) with their properties
assembled in table(3.3). Comparing with the modes of free benzene, fig.(3.3), we
recognise that the lowest energy mode of free benzene, which is referred to as the
breathing mode, does not remain at lowest energy but rather appears slightly
changed as mode three in the spectrum of the contacted system. Noteworthy is
also the highest energy mode in the isolated case, which we will call Pi-mode,
which survives the process of contacting the ring and remains unaltered in
energy and geometry at the top of the spectrum. Another mode that the para
configuration and free benzene have in common is the second degenerate mode
of free benzene which reappears as mode six in the para spectrum. Because
it is a degenerate mode in free benzene one may not recognise the equality by
looking at the pictures.
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Figure 3.2: The modes of free benzene
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Figure 3.3: The modes for the para configuration. The equilibrium geometry is
blue and the coloured stars indicate the changed positions of the atoms when
the mode is excited.
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Table 3.3: Properties of the modes for benzene in the para configuration. ω is
the frequency/energy of the mode and the dij are the stretching amplitudes of
a mode defined in eq.(1.83) and

∑
d indicates the sum over all of them. The

labeling of sites starts at the right corner of the ring and continues counter-
clockwise around the benzene, the left lead site is labeled as even and the right
one as eight.

mode 1 mode 2 mode 3 mode 4 mode 5

ω/eV 0.040502 0.044472 0.090541 0.100642 0.107365

d12 -0.110823 -0.103553 0.363281 -0.353553 0.603553

d23 -0.063072 < 10−6 0.462191 -0.707107 < 10−6

d34 -0.110823 0.103553 0.363281 -0.353553 -0.603553

d45 -0.110823 0.103553 0.363281 0.353553 -0.603553

d56 -0.063072 < 10−6 0.462191 0.707107 < 10−6

d61 -0.110823 -0.103553 0.363281 0.353553 0.603553

d47 -0.431101 0.500000 -0.508793 < 10−6 0.499999

d18 -0.431101 -0.500000 -0.508793 < 10−6 -0.499999∑
d -1.4316 0 1.3599 0 0

mode 6 mode 7 mode 8

ω/eV 0.129928 0.131043 0.142329

d12 -0.790569 -0.480360 0.707107

d23 < 10−6 0.884535 -0.707107

d34 0.790569 -0.480360 0.707107

d45 -0.790569 -0.480360 -0.707107

d56 < 10−6 0.884535 0.707107

d61 0.790569 -0.480360 -0.707107

d47 < 10−6 0.235117 < 10−6

d18 < 10−6 0.235117 < 10−6
∑
d 0 0.3179 0
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3.2 Equilibrium effects of the electron phonon cou-

pling in free benzene

Before we explore the nonequilibrium properties of a benzene ring attached
to leads, it is useful to look at the equilibrium effects of the electron phonon
coupling in order to interpret the nonequilibrium results. In this section we treat
the isolated ring in equilibrium and therefore use the modes of free benzene,
see tab.(3.2). In this context free means not connected to leads. For the sake
of simplicity we consider spinnless fermions.

3.2.1 Model and solution

The hamiltonian of the SSH-model for the six site ring reads

Ĥ =
∑

<ij>

tijc
†
icj +

∑

i

εin̂i +
∑

i

1

2mi
p̂2i +

∑

<ij>

Kij

2
(|x̂i − x̂j | − r0ij)

2

+
∑

<ij>

g̃ij(|x̂i − x̂j | − r0ij)c
†
icj (3.1)

where for free benzene the nearest neighbor hoppings and onsite energies are
given by tij = −t = −2.5[eV ] and εi = ε = −1.5[eV ] [3], Mi and Kij are
taken from table(3.1) and the electron phonon coupling constants g̃ij = g̃ =
2.8[eV Å−1] [17]. After second quantisation of the vibronic degrees of freedom,
see sec.(1.2) and sec.(1.3), and tracing out a single mode, we obtain

Ĥ =− t
∑

<ij>

c†icj + ε
∑

i

n̂i + ~ωµ(b
†
µbµ +

1

2
)

+
∑

<ij>

g̃

√
~

2mωµ
dµij

︸ ︷︷ ︸
:=gij

c†icj(b
†
µ + bµ) (3.2)

with the dµij defined in eq.(1.83) and their values for a particular mode are
shown in table(3.2). To transform the representaion of the problem to a more
natural basis we apply the Lang-Firsov transformation, as discussed in sec.(1.4),
leading to

ˆ̃H =− t
∑

<ij>

d†idje
1

ωµ
(λi−λj)(b†−b) + ε

∑

i

n̂i

+ ωµ(b
†b+

1

2
)− 1

ωµ

(
∑

i

λin̂i

)2

(3.3)

where λi are the eigenvalues of the matrix Gij := gij .
As mentioned above we examine the electronic properties of free benzene with
e-ph interactions by looking at the electronic DOS. To make the model numeri-
cally solvable we introduce a phonon cutoff which is increased until convergence
in the desired quantity (here the DOS with a cutoff nmax ≈ 10) is reached. To
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obtain the DOS we first solve the many body hamiltonian eq.(3.3) for its eigen-
system by an exact diagonalization technique [1] and calculate the single particle
greensfunction by using the Lehman representaion, eq.(2.11). The DOS is then
given by the well known formula

ρ(E) = − 1

π
tr(ℑ(gretij )) (3.4)

A special case is the highly symmetric breathing mode which allows an analyt-
ical solution of the greensfunction due to a common set of eigenvectors of the
hopping matrix Tij := tij and the coupling matrix G as demonstrated in [17].
Note that the Lang-Firsov transformation is optional in the sense that the same
results are obtained without it but it requires a phonon cutoff approximately
twice as big.

Beyond SSH model

As mentioned in sec.(1.2.3) the linear SSH model breaks down at some critical
e-ph coupling. To treat strong e-ph coupling one has in general to model e-ph
coupling by what we called the Beyond SSH model, with the Hamiltonian

H = −
∑

i 6=j
t0ije

−
∑

µ α
µ
ij(b

†
µ+bµ)c†icj +

∑

i

ǫ0ini + ~ωµ(b
†
µbµ +

1

2
)

where αµij =
√

~

2mωµ

gµij
t0ij

, see eq.(1.58). Which is the natural extension of the

linear e-ph coupling. When treating this many body Hamiltonian by numerical
means one chooses a phonon cutoff Np. Since we can not apply the Lang-Firsov
transformation Np may be large. The phonon matrix element appearing in the
calculation is, see eq.(1.162), of the form

〈n|eγ(a†+a)|m〉 = e
γ2

2

√
n!m!γn+m

min(n,m)∑

l=0

γ−2l

l!(n− l)!(m− l)!
(3.5)

For a phonon cutoff Np = 40, which is the typical value for our parameters,
there are 1600 (or about half if you use its symmetry) of them. This leads to
a considerable amount of non zero matrix elements in the many body Hamil-
tonian leading to an significant increase of the numerical effort. However, the
matrix 〈n|eγ(a†+a)|m〉 is sparse by itself (it has only significant entries in the
first few diagonals). Therefore, one can reduce the numerical effort drastically
by introducing a limit, eps = 10−12 in our calculations, and only respect matrix
elements that are big enough.

3.2.2 Results and discussion

We show results for the breathing mode, the Pi-mode and the second highest
energy mode (which is 2 fold degenerate) of free benzene in fig.(3.6)-(3.4). The
other degenerate mode (the second lowest in energy) leads to the same DOS as
the Pi-mode and is therefore not shown. For all plots of the DOS we set the
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Figure 3.4: The DOS for the Pi-mode of free benzene in red and the non
interacting case in blue. The curves are exactly on top of each other.

Figure 3.5: The DOS for the second highest energy mode of free benzene in red
and the non interacting case in blue.

small imaginary quantity 0+ = 0.01 which yields broadened peaks instead of
delta functions. The non interacting benzene has an electronic energy spectrum
of εk = (−6.5,−4,−4, 1, 1, 3.5)[eV ]. For a chemical potential of µ = 0, the
groundstate is at half filling and adding an electron leads to excitations at
E = (3.5, 1, 1)[eV ] and removing one to hole like ones at e = (−4,−4,−6.5)[eV ]
which correspond to the peaks of the non interacting DOS in fig.(3.4)-(3.6). The
fact that the states responsible for the peaks at E = (−4, 1) are degenerate is
responsible for those peaks being twice as high as the ones originating from
nondegenerate states. The system with and without interaction is electron hole
symmetric but everything is shifted by the onsite energy of ε = −1.5.
Looking at the Pi-mode, fig.(3.4), we see that the phonons have no effect on
the DOS. For the mode in fig.(3.5) one recognises that the degenerate peaks at
E = (−4, 1)[eV ] split into multiple peaks (being smaller since the total spectral
weight needs to be conserved) but the position in energy is unchanged, while
the non degenerate states remain completely uneffected. A new effect appears
when looking at the breathing mode, fig.(3.6), where all peaks split up and
additionally the group of peaks replacing the non interacting ones are centered
around different energies than the original ones. Therefore, we observe two
effects namely splitting of peaks and shifting of peaks.
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Figure 3.6: The DOS for the Breathing mode of free benzene in red, the non
interacting case in blue and with frozen phonon approximation in green.

3.2.3 Shifting of peaks

First, we discuss the origin of peaks shifting position which for free benzene
happens only for the breathing mode. When we go back to table(3.2), contain-
ing the stretching amplitudes dij , we realise that the breathing mode is the only
mode where these amplitudes do not add up to zero. To see the connection be-
tween the two facts (peak shifting and non zero sum of stretching amplitudes)
we look back to what dij is. It’s defining equation is, see eq.(1.83)

∆̂ij = dµij η̂µ (3.6)

where ∆̂ij = (|x̂i − x̂j | − r0ij) is the difference in bondlenght from equilibrium

and η̂µ =
√

~

2ωµ
(b†µ+ bµ), see eq.(1.34), is the position operator of the harmonic

oszillator describing the mode µ. For the breathing mode dij = d is bond
independent and we can drop the subscripts ij. So d relates the amplitude of
the quantum mechanical oszillator to the change in bondlenght. As mentioned
previously the fact that they do not add up to zero means there is a net change
in bondlenght when the mode is excited. Let us take a look at the expectation
value of the change in bond lenght

〈∆̂〉 = d〈η̂µ〉 =
√

~

2ωµ
d〈b†µ + bµ〉 (3.7)

For an ordinary (uncoupled) oszillator this expectation value is zero, but in our
case the oszillator is coupled to the electrons and thus the expectation value
has to be taken with respect to the groundstate of the compound system where
the groundstate has the generic form

|ψ0〉 =
∑

e,n

αen|e〉el|n〉ph (3.8)

The role of the electrons becomes more obviouse after the Lang-Firsov trans-
formation where with eq.(1.119) and T̂e =

∑
i λin̂i eq.(3.7) becomes

〈∆̂〉 =
√

~

2ωµ
d〈b†µ + bµ −

2

~ωµ
T̂e〉 =

xµd√
2
〈b†µ + bµ −

2

~ωµ
T̂e〉 (3.9)
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Calculating this expectation value in the interacting groundstate one gets 〈∆̂〉 =
−0.088889[Å]. This is to be compared to the equilibrium bondlenght of r0 =
1.39[Å] which proves that the linear SSH model is applicable in this case as the
deviations from equilibrium remain small. The non zero value of 〈∆̂〉 means
that the molecule has changed its geometry, which for the highly symmetric
breathing mode leads to a contraction of every bond by the same amount. Due
to the e-ph coupling this change in the geometry translates into a mean change
of the hopping amplitude 〈∆t〉 = g̃〈∆̂〉 = −0.2489[eV ], which is again small
compared to the t = 2.5[eV ] of non-interacting benzene. In this section non-
interacting benzene means benzen without e-ph interaction. Replacing ∆̂ by its
mean value one can make an approximate (non-interacting) model, which we
want to call frozen phonon approximation, with renormalized hopping obtained
by replacing the e-ph coupling by

He−ph ≈
∑

<ij>

g̃ij〈∆̂ij〉c†icj (3.10)

The green DOS in fig.(3.6) shows the result obtained by applying the frozen
phonon approximation to the breathing mode. By comparing with the interact-
ing DOS (red curve) one can see that the position of the peaks matches well to
the interacting case. From that we draw the conclusion that the shifting of the
peaks in the DOS is due to the geometry change of the molecule induced by the
e-ph interaction. Note that the frozen phonon approximation does not make the
overall calculation more economic since one has to obtain the mean difference
in bondlenght 〈∆̂〉 from the interacting calculation beforehand. However, as
will be shown in sec.(3.2.5) one can deduce the interacting value for 〈∆̂〉 from
a non-interacting calculation in the regime where where the linear SSH model
is still applicable

3.2.4 Splitting of peaks

Contrary to the shifting of the peaks which can be understood as the conse-
quence of the geometry change the effect of peak splitting is a real many-body
effect, meaning that it does not occur in any non-interacting calculation. It
corresponce to the fact that an electron can excite a phonon by loosing the
required amount of energy Eph = ~ωµ and therefore every non-interacting peak
can (in principle) split into multiple peaks with their spacing given by exactly
the phhonon energy. By examining the DOS in fig.(3.6)-(3.4) we see that it
depends on the mode and peak in question wether it splits or not. The Pi-
mode for example, fig(3.4), shows no peak splitting at all for an e-ph coupling
of g̃ = 2.8[eV Å−1]. If one goes to higher electron phonon coupling also the
peaks of the Pi-mode split as demonstrated in fig.(3.7). Due to the high e-ph
coupling, g̃ = 6[eV Å−1], used in fig.(3.7) it is computed from the beyond SSH
model, see sec.(1.2.3). The DOS of the Pi-mode for high e-ph coupling looks
like as if the peaks are shifted as well as splitted. This shift, however, is not
due to a geometry change, which is still neglectible (〈∆̂〉 < 10−10[Å]), but has
a different origin. Although there is no prove for the following, we suspect
the peaks appear to be shifted as a consequence of the poisson distribution of
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the phonon matrixelement shown in fig.(2.1). Fig.(2.1) demonstrates that the
phonon matrixelement which determines the weight of the poles of the greens-
function, and therefore the height of the peaks in the DOS, gets broader and
shifts to larger n as the coupling is increased. This shift to larger n translates
to a shift ∆E = n~ωµ of the peaks with weight to higher energies. The cor-

responding γ =
λi−λj
ωµ

≈ 1.7 − 3.4, with λ from eq.(3.3), lead to n ≈ 5 − 10

which translates to an energy shift ∆E ≈ 0.7− 1.4[eV ] in good agreement with
fig.(3.7). The latter suspicion can not be proven since the Lang-Firsov transfor-
mation can not by applied to the non-linear beyond SSH model. Although this
argument was basically the same as in the explanation of the Franck-Condon
effect, see sec.(2.2.3), the situation here is different since the shift of the har-
monic oscillator remains zero even for an additional electron. Therefore, this
behavior can not be ascribed to the Franck-Condon effect which argues with
shifted oscillators. Because the peaks grow continuously with increasing cou-
pling constant (not shown) we conclude that for small coupling all the weight
is concentrated at the zeroth peak rendering the side peaks suppressed and not
visible. This suppression is traceable by examining the system with first order
perturbation theory in the e-ph coupling as is outlined in the following.

Argumentation of phonon peak suppression

The complete calculation is a little subtle and so instead of presenting the
treatment with pertubation theory in detail we will illustrate the effect by
following a qualitative argumentation. As a starting point we transform the
hamiltonian, eq.(3.2), to k-space where the electronic part is diagonal. This
amounts to transforming from ci to dk orbitals by ci =

1√
6

∑
k e

−ikxidk where

k ∈ nπ
3 for n = 0, 1...5. The hamiltonian then reads

Ĥ =Ĥ0 + Ĥ1 =
∑

k

(ε− 2tcos(k))︸ ︷︷ ︸
εk

d†kdk + ~ωµ(b
†
µbµ +

1

2
)

+ g̃(b†µ + bµ)
∑

kk′

(UD̃U †
︸ ︷︷ ︸
:=D

)kk′d
†
kdk′ (3.11)

where D̃ is defined by

D̃ij :=

√
~

2mωµ
dij and Uki :=

1√
6
e−ikxidk (3.12)

The groundstate of the unperturbed hamiltonian is given by

|ψ0〉(o) =
∏

k≤kf
d†k|0〉e ⊗ |0〉ph := |111000〉e|0〉ph (3.13)

It is altered due to the e-ph coupling up to first order according to

|ψ0〉 = |ψ0〉(o) +
∑

i,n={1}

e〈 i| ph〈 n|Ĥ1|0〉ph|111000〉e
E

(o)
0 − ~ωµ − E

(o)
i

|i〉e|n〉ph (3.14)
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where i labels the different electronic states while n represents the nth excited
harmonic oscillator state. The phononic part of the above matrixelement is
proportional to δn,1 since the perturbation is proportinal to (b†µ + bµ) and can
thus only mediate between states with ∆n = ±1. Note that as a consequence

of the same fact all first order energy corrections E
(o)
n = 〈ψ(o)

n |Ĥ1|ψ(o)
n 〉 are zero.

From eq.(3.14) it is clear that the main contribution to the perturbation expan-

sion comes from states where E
(o)
0 −E

(o)
i = 0 because for all other possibilities

the denominator would contain an electronic energy difference ∆Ee which are
at least one order of magnitude larger than the phonon energy ~ωµ leading
to surpressed states. The DOS is derived from the Greensfunction, eq.(2.11),
using eq.(3.4) and the well known mathematical idintity

lim
η→0+

1

x± iη
= PV

1

x
∓ iπδ(x) (3.15)

as

ρ(E) =
∑

k,n

|〈ψ0|dk|ψn〉|2δ(E−(E0−En))+|〈ψ0|d†k|ψn〉|2δ(E+(E0−En)) (3.16)

The above mentioned effect of suppression gets squared in the DOS which is why

we consider only states whith E
(o)
0 − E

(o)
i = 0 in the perturbation expansions.

For the unperturbed system there are three excitations, corresponding to the

three possibilities of adding an electron to the groundstate, at energies ∆E
(o)
n :=

E
(o)
0 −E(o)

n . Due to the perturbation we expect, as explained above, that peaks
arise at energies E = ∆E(o) + n~ωµ. For concreteness we want to consider
the matrixelement 〈ψ0|d6|ψn〉 which for the unperturbed case is responsible

for the peak at E = 3.5[eV ] with |ψ(o)
n 〉 = |111001〉e|0〉ph. The excited state

|ψ(o)
n 〉 that leads to the desired energy difference ∆E(o) = 3.5 + ~ωµ is |ψ(o)〉 =

|111001〉e|1〉ph. The state |ψ(o)〉 = |111001〉e|0〉ph is not a valid candidate since
there is no energy correction up to first order. In analogy to eq.(3.14) we write
up to first order

|ψ〉 = |111001〉e|1〉ph +
∑

i,n={0,2}

e〈 i| ph〈 n|Ĥ1|1〉ph|111001〉e
E

(o)
ψ − ~ωµ − E

(o)
i

|i〉e|n〉ph (3.17)

From eq.(3.14) and eq.(3.17) wee see that the matrixelement 〈ψ0|d6|ψn〉 has
contributions from:

• The zeroth order of the excited state |ψ〉 with the first order correction
of the groundstate when i in eq.(3.14) corresonds to the state |111000〉.
The resulting overlap is

Q1 = 〈111000|〈1|Ĥ1|0〉|111000〉 (3.18)

• The zeroth order of the groundstate with the first order correction of the
excited state when n = 0 and |i〉 = |111001〉 in eq.(3.17). The resulting
overlap is

Q2 = 〈111001|〈0|Ĥ1|1〉|111001〉 (3.19)
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Table 3.4: The diagonal elements of the matrix D defined in eq.(3.11) without

the prefactor
√

~

2mωµ
.

D11 D22 D33 D44 D55 D66

Breathing mode -0.8165 -0.4082 -0.4082 0.4082 0.4082 0.8165

First degenerate mode 0 0 0 0 0 0

Second degenerate mode 0 -0.7906 0.7906 0.4716 -0.4716 0

Pi-mode 0 0 0 0 0 0

Figure 3.7: The DOS for the Pi-mode with an e-ph coupling of g̃ = 6[eV Å−1]
in red and the non-interacting case as reference in blue. Due to the high e-ph
coupling this result is obtained by application of the beyond SSH model

The matrixelements, Q1 and Q2, are diagonal in the electronic states (meaning
the electronic bra and ket vector correspond to the same state). Thus, for one
of the matrixelements to be non zero the matrix D, which is different for every
mode, has to contain non zero diagonal elements. For the matrixelements in
eq.(3.18) and eq.(3.19) the contributing entries of the matrix D would be the
elements D11, D22, D33 and D66. If we would have used d4/5 instead of d6 in the
derivation above the important elements of D would still be the first three diag-
onal elements plus the 4th or 5th depending on what annihilation operator we
chose. Table.(3.4) shows the diagonal elements for the four (two are degenerate
leading to the same physics) different modes. For the breathing mode, where
all peaks are split, the matrix D is diagonal with all diagonal elements being
non zero leading to a splitting of every peak. In the case of the Pi-mode and
the first degenerate mode the diagonal elements of the corresponding D-matrix
are all zero resulting in no peak splitting at all. The behaviour of the second
degenerate mode lies in between the two extreme above as only the degener-
ate peaks split. This is clear by recognising that the first three entries of the
D-diagonal add up to zero and the 6th entry is identically zero leading to no
splitting of the non-degenerate peak while the sum of the first three plus the
4th or the 5th diagonal entry is non zero giving rise to the peak splitting of the
degenerate peak.
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3.2.5 The optimized geometry approximation

In sec.(3.2.4) we learned that the effect of peak shifting in the DOS can be
interpreted by a geometry change of the molecule. Owing to that, we were able
to predict the correct (interacting) positions of the peaks by means of a non-
interacting calculation which only required the mean change in bondlenghts
〈∆̂ij〉, obtained from an interacting one, as inputs. When the molecule adopts
a different geometry the electronic hoppings get modified which can lead to a
lower electronic energy. On the other hand any change in geometry comes at the
price of potential energy between the ions. This tradeoff has an energy minimum
leading to an optimal geometry. We start with the mean field approximation
(Born-Oppenheimer approximation) to the hamiltonian eq.(3.1)

=
∑

<ij>

(tij + g̃ij∆ij)c
†
icj +

∑

i

εin̂i +
∑

<ij>

Kij

2
∆2
ij

=
∑

<ij>

(tij + g̃ij
∑

µ

dµijηµ)c
†
icj +

∑

i

εin̂i +
∑

<ij>

Kij

2

(
∑

µ

dµijηµ

)2

(3.20)

First, we will consider the effect of a single mode and simplify to

Ĥ =Ĥ(ηµ) =
∑

<ij>

(tij + g̃ijd
µ
ijηµ)c

†
icj +

∑

i

εin̂i +
∑

<ij>

Kij

2

(
dµijηµ

)2

=
∑

ij

hij(ηµ)c
†
icj +

∑

ij

vij(ηµ) = Ĥel(ηµ) + VIon(ηµ) (3.21)

with hij(ηµ) := δ<ij>(tij + g̃ijd
µ
ijηµ) + δijεi and vij(ηµ) := δ<ij>

Kij

2

(
dµijηµ

)2
.

This leaves us with a hamilton operator of non-interacting electrons Ĥel(ηµ)
describing them for a given ion geometry and a classical potential VIon(ηµ). The
optimal value of ηµ is then determined by the variational principle of minimal
energy

E(ηµ) =〈Ĥ(ηµ)〉0 = 〈ψ0|Ĥel(ηµ) + VIon(ηµ)|ψ0〉
=min

ηµ
(E0(ηµ) + VIon(ηµ)) (3.22)

with the electronic groundstate energy

E0(ηµ) = min

(
∑

i

λi(ηµ)

)
(3.23)

where λi(ηµ) are the eigenvalues of the matrix built from hij(ηµ) and min(
∑

i λi(ηµ))
indicates the minimal value possible by summing up any combination of the
λi(ηµ). Fig.(3.8) shows the function E(ηµ) for the different modes. The shift
of the harmonic potential in the case of the breathing mode is exactly the shift
treated in the Lang-Firsov transformation and the different curvatures are of
course due to the different energies of the modes (higher energy ⇒ steeper
potential). In principle the minimization procedure can be done analytically
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Figure 3.8: The energy function E(ηµ) for the different modes of free benzene.
The same parameters as for fig.(3.4)-(3.7)

by using calculus but it requires the differentiation of eigenvalues λi(ηµ) with
respect to a parameter ηµ in the corresponding matrix hij(ηµ) which can be
troublesome especially in the case of degeneracy. Conveniently the evaluation
of eq.(3.22) for a given ηµ is computationally quick (the biggest part is diago-
nalizing a six by six matrix) allowing a numerical solution of the minimization
problem eq.(3.22). The geometry obtained from this approximation shows very
good agreement, ∆int − ∆opt < 10−5[Å], with the one calculated from the in-
teracting hamiltonian throughout the parameter regime where the linear SSH
model is applicable (see sec.(1.2.2)). To gain further insight in what property of
the modes, translating to a property of the dµij , determines whether a geometry
change can lead to a lower energy we continue analytically. Eq.(3.21) together
with the Hellman-Feynman theorem, yields

dE(ηµ)

dηµ
=〈ψ0(ηµ)|

∂Ĥ(ηµ)

∂(ηµ)
|ψ0(ηµ)〉

=〈ψ0(ηµ)|
∑

ij

g̃ijd
µ
ijc

†
icj +

∑

<ij>

kij(d
µ
ij)

2ηµ|ψ0(ηµ)〉

=〈ψ0(ηµ)|c†Gc|ψ0(ηµ)〉+
∑

<ij>

kij(d
µ
ij)

2ηµ (3.24)

To evaluate the expectation value we transform from c to d operators by the def-
inition c = U(ηµ)d where the transformation matrix U(ηµ) diagonalizes hij in

eq.(3.21). With the corresponding groundstate (fermi sea) |ψ0〉 =
∏
k≤kf d

†
k|0〉
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we obtain

〈ψ0(ηµ)|c†Gc|ψ0(ηµ)〉 =〈ψ0(ηµ)|d†U †(ηµ)GU(ηµ)d|ψ0(ηµ)〉

=〈0|


∏

k≤kf
dk


∑

k′k′′

(U †
ηµGUηµ))k′k′′d

†
k′dk′′


∏

k≤kf
d†k


 |0〉

=

kf∑

k=1

(U †
ηµGUηµ))kk =

kf∑

k=1

u⊤
k Guk (3.25)

where uk are the eigenvectors of hij . Plugging this result back into eq.(3.24)and
demanding that the derivative vanishes furnishes the equation

dE(ηµ)

dηµ
=

kf∑

k=1

u⊤
k (ηµ)Guk(ηµ) + ηµ

∑

<ij>

kij(d
µ
ij)

2 !
= 0 (3.26)

For modes with no net difference in bondlenght the follwowing rule applies.
What is gained in energy by enhanced hopping is lost again on an equivalent
bond which has its hopping surpressed. Due to this symmetry the system
cannot lower (or increase for that matter) its electronic energy by a geometry
change according to such a mode. In these cases the first part in eq.(3.26) is
zero by symmetry and since

∑
<ij> kij(d

µ
ij)

2 > 0 the only solution is ηµ = 0
meaning no geometry change. For ηµ = 0 the electronic part of the hamiltonian

remains unaltered and the diagonal elements of (U †
ηµ=0GUηµ=0))kk coinside with

the ones shown in tab.(3.4) which are either exactly zero or (the first three) add

up to zero for modes with ηminµ = 0. Note that
∑kkf

k=1(U
†
ηµ=0GUηµ=0))kk = 0 is

only a neccesary condition for ηminµ = 0 since the reverse argument, concluding
ηµ = 0 from the fact that the matrixelements are zero is not generally true. An
example that violates this argumentation is when g̃ij is non isotropic or more
specefic when the e-ph coupling constants do not reflect the symmetry of the
purely ionic problem.
The generalization to treat any number of modes is straight forward by keeping
the sum

∑
µ from eq.(3.20) to eq.(3.21) leading to an energy function E =

E(η1, . . . , ηn) = E(η) with the objects hij and vij in eq.(3.22) changed into

hij(η) :=δ<ij>(tij + g̃ij
∑

µ

dµijηµ) + δijεi

vij(η) :=δ<ij>
Kij

2

(
∑

µ

dµijηµ

)2

= δ<ij>
Kij

2

∑

µν

dµijd
ν
ijηµην (3.27)

Solving the minimization problem for the case of multiple modes shows the
same agreement with interacting values as the limitation to one mode. In this
approximation it is also visible why the contribution to the geometry change
from a particular mode, is in very good approximation, independent of how
much modes one includes in the calculation meaning that the optimal values
ηminµ are practically independent. From eq.(3.27) we see that after differenti-
ation the mixing between the ηµ can only come from the ion potential as the
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electronic part is linear in the differentiation variables. By differentiating vij
from eq.(3.27) with respect to ην , yields

∂

∂ην
vij =δ<ij>

Kij

2

∂

∂ην

(
∑

µ

dµijηµ

)2

= δ<ij>Kij

∑

µ

dµijηµd
ν
ij (3.28)

By summing over ij we get the contribution which contains the mixing of modes

∂

∂ην

∑

ij

vij =
∑

µ

ηµ
∑

<ij>

Kijd
µ
ijd

ν
ij (3.29)

For free benzene Kij = K and it simplifies to

∂

∂ην

∑

ij

vij =K
∑

µ

ηµ
∑

<ij>

dµijd
ν
ij = Kδµνηµ

∑

<ij>

(dµij)
2 (3.30)

The property ∑

<ij>

Kijd
µ
ijd

ν
ij ∼ δµν (3.31)

is exact for the modes of free benzene. One might think that this orthogonality
relation is a consequence of the modes being orthonormal, ξ⊤µ ξν = 0. To see that
even for free benzene this argumentation is not true we collect the contributions
from each bond < ij >, there are six for free benzene, in eq.(3.30) and form a
vector Dµ defined by

(Dµ)<ij> := dµij = e⊤ijSijξµ ⇔ Dµ = ESξµ (3.32)

with

E :=




e⊤12
e⊤23 0

.
.

0 .
e⊤61




and S := (S12, S23, . . . , S61)
⊤ (3.33)

This allows us to rewrite eq.(3.31) in terms of a scalar product as
∑

<ij>

Kijd
µ
ijd

ν
ij = KD⊤

µDν = Kξ⊤µ S
⊤E⊤ES︸ ︷︷ ︸
6=∼✶

ξν (3.34)

Since the matrix S⊤E⊤ES is not proportional to the identity the orthonormal-
ity of the modes is not a sufficient condition for eq.(3.31) to be true but it may
well be a neccesary condition. The fact that it is exact for the modes of free
benzene is due to the high symmetry of the problem. For the symmetric para
configuration it holds to an approximation of

∑
<ij>Kijd

µ
ijd

ν
ij < 10−6[eV Å−2]

for µ 6= ν and it fails for the ortho and meta configurations. Thus, for this sym-
metric cases the minimization conditions for the different ηµ are independent
from each other. Of course when performing a calculation with multiple modes
one can exclude modes with ηminµ = 0, which are the majority, beforehand.
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Optimized geometry in the Beyond SSH model

It is straight forward to apply the optimized geometry calculation to the Be-
yond SSH model. The difference to the optimized geometry in the linear SSH
model is in the case of multiple modes. There, the exponential leads to direct
cross terms for the modes in the hamiltonian which are of higher orders in g.
This means that the optimal values of ηµ are not independent anymore in a
calculation with multiple modes and strong coupling. If only the e-ph coupling
g is increased, and all the other parameters entering the Hamiltonian are kept
constant, even the Beyond SSH model breaks down for some critical value of g
(for example g > 6[eV Å] for the Pi-mode). The reason is not that the hopping
becomes positive, as it was the case for the linear SSH model, because this is
taken care of by the exponential. To find the answer one has to consider the
optimized geometry argument from above. For a high enough coupling constant
the electronic contribution to the Hamiltonian has a higher negative curvature,
viewed as a function of ηmu, than the ionic potential meaning that increasing
ηmu always decreases the energy. This would make the system unstable since
the total energy would then be a negatively unbound function for ηµ −→ ∞.
Note that this is confirmed by the many body calculation as the groundstate
energy diverges to minus infinity as Np is increased. This of course just means
that one would have to increase the ionic spring constant k when going to
very strong coupling, which is only natural since a big spring constant usually
corresponds to a strong e-ph coupling.
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3.3 Non-equilibrium steady state current through a

molecular ring structure with e-ph coupling

We present results for the steady state current, obtained by ssCPT, as a func-
tion of bias voltage of benzene with e-ph SSH-type interaction. Unless stated
differently the parameters for benzene are the same as in sec.(3.2) and the leads
are characterised by tleads = 12[eV ], εl,r = 0[eV ], vl,r = 0.4[eV ] and the e-ph

coupling to the leads is gleads = 0.5[eV Å−1]. For the evaluation of the current
we use 0+ = 10−12. The value of gleads is chosen lower since we assume a weaker
coupling to leads, for the electronic hopping v and e-ph coupling, compared to
the values in benzene. We do so to stay, for intermediate e-ph coupling, in the
parameter regime of the linear SSH model, see sec.(1.2.2). Also, the current is
very sensible to vr,l since it enters squared in the lead induced hybridisation,

Γ = v2

tleads
, and defines the longest timescale in the system which can lead to

highly suppressed or enhanced currents, depending on the mode, compared to
the non-interacting case. For results with stronger e-ph coupling gleads is chosen
such that the ratio gbenz :=g

gleads
= const..

From the Meir-Wingreen formula [22] we know that the current through an
interacting electron region is qualitatively given by integrating the DOS of the
central region from [εl − Φ

2 , εr +
Φ
2 ] = [−Φ

2 ,+
Φ
2 ] which is often referred to as

the fermi window. This suggests to expect steps in the current voltage charac-
teristics when Φ

2 = Epeak where Epeak is some energy for which there is a peak
in the DOS. Thus, if there are peaks in the DOS split by the phonon energy
~ωµ we anticipate steps in the I/V curves spaced by 2~ωµ. From sec.(3.2) we
know that the effects of the linear SSH interaction on the DOS is shifting and
splitting of the non-interacting excitations. If the electronic DOS remains un-
affected by the e-ph coupling, which is true for the majority of the modes, we
would expect the steady state current to be close to the non-interacting case.
Unless stated differently all results shown in this section are obtained by using
the Lang-Firsov transformation.

3.3.1 Investigations of convergence and consistency

We check the convergence of our method in the cluster sizes Nc and phonon-
cutoff Np.

Convergence of CPT with increased Nc

We demonstrate the convergence of the CPT approximation with increasing
Nc for intermediate coupling g = 2.8[eV Å−1]. Fig(3.9) shows currents of three
different modes for cluster sizes Nc = 6, 8. The minimal central cluster can be
chosen with six sites because the considered modes do not alter the hopping
to the leads dbenz,lead = d47 = d81 = 0. Note that the data in picture two
and three of fig.(3.9) is not yet converged in the phonon cut off. However, the
convergence in Np does not influence the CPT convergence in Nc since different
Np define particular physical models.
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Figure 3.9: Convergence of CPT with increased Nc. From left to right and top
to bottom the pictures correspond to mode 4, mode 6 and the Pi-mode (mode
8). For all three pictures a phonon cutoff Np = 5 was used. Note that the
currents for mode 6 and 8 here are not converged in the phonon cut off.

Convergence in the phonon cut off

An important parameter for all observables obtained from a numerical calcu-
lation involving phonons is the phonon cut off Np, the highest excited phonon
state one allows the ionic system to be in. In calculations for bulk materials
the needed Np is often times too high to treat numerically. For our model and
parameters the needed cut off depends on the observable, mode and method of
solution (with or without Lang-Firsov transformation) in question and is within
the range of Np = 10− 40. For the linear SSH and Holstein model a very good
estimate for the needed Np can be obtained from the matrix element in fig.(2.1)
as the n corresponding to the peak of the poisson distribution. Fig.(3.10) and
fig.(3.11) demonstrate the convergence of the current with increasing Np for
mode 6 and 8, respectively. In both cases we see a rather confuse convergence
pattern for a small cutt off’s. Fig.(3.12) shows the same results when consider-
ing the breathing mode of free benzene. For the latter the convergence in Np

shows a simpler pattern which may be due to the fact that for the breathing
mode of free benzene the hamiltonian is diagonal after the LF-transformation.
We also see our suspicion confirmed that modes with no effect on the electronic
DOS lie on top of the non-interacting curve, see fig.(3.11). For mode 6, where
there is no geometry change but the degenerate peaks in the DOS are split, we
see that it follows the non-interacting case but the steps which originate from
the degenerate peaks in the DOS consist of smaller steps with twice the phonon
energy.
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Figure 3.10: The current altered by mode 6 with Nc = 6 for different phonon
cut offs Np

Figure 3.11: The current altered by the Pi-mode (mode 8) with Nc = 6 for
different phonon cut offs Np

Figure 3.12: The current altered by the breathing mode of free benzene with
Nc = 6 for different phonon cut offs Np
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Figure 3.13: Comparison of the current for mode 3 obtained with and without
the Lang-Firsov transformation. Left with spin and right spinless. Phonon cut
offs: Np = 20 with LF-transformation and Np = 40 without it. Nc = 8

Figure 3.14: The same as fig.(3.13) but only the spinless case and mode 1.
Phonon cut off’s: Np = 25 with LF-transformation and Np = 40 without it.
Nc = 8

Lang-Firsov vs. no Lang-Firsov transformation

As mentioned in sec.(3.2) applying the Lang-Firsov transformation is an op-
tional step in the method of solution. This allows us to check our results for
consistency by comparing results obtained with and without the Lang-Firsov
transformation. Fig.(3.13) and fig.(3.14) show a direct comparison of the two
equivalent methods. The approach without the LF-transformation requires, for
our system, a phonon cutoff Np about twice as high compared to the one with
LF-transformation. This leads to increased numerical effort especially when
respecting spin.

3.3.2 Frozen phonon approximation and optimized geometry

In sec.(3.2) we introduced what we call the frozen phonon approximation and
were able to predict the correct position of the shifted peaks in the DOS for
modes which give rise to a geometry change. Due to the fact that in the pa-
rameter regime of the linear SSH model the optimized geometry calculation
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yields the same geometry change than a calculation with interaction, the frozen
phonon approximation is equivalent to performing the whole calculation with
optimized geometry which does not require the solution of a many body hamil-
tonian. The shifting of peaks in the DOS translates to a shifting of the steps in
the I/V curves. Fig.(3.15) compares results with interaction to data obtained
by the frozen phonon approximation with and without spin. As expected the
position of the big steps, corresponding to the electronic excitations, are very
well reproduced by the frozen phonon approximation while the smaller steps,
originating from electrons exciting phonons which is only possible in a calcula-
tion with interaction, are not recovered by the frozen phonon approximation.
Note that the curve with spin in fig.(3.15) does not show distinguished smaller
steps because the voltage grid, ∆Φ = 0.1[V ] is too coarse to resolve steps with
twice the phonon energy 2~ωµ = 1.72[eV ] well. Besides the position of the big
steps beeing reproduced very well the amplitude of them is also in excellent
agreement. We see that the frozen phonon approximation does work better for
the calculation without spin. This may be caused by the phonon induced (neg-
ative U -term see sec.(1.4.4)) e-e interactions between the two spin channels.
In both cases, with and without spin, the current is suppressed in comparison
with the non-interacting curve. Since this is recovered by the frozen phonon
approximation we can ascribe it to an effect of the geometry change. In fact
it is easily explained by how the coupling to the leads v is changed due to the
new equilibrium geometry. For mode 3 (altered breathing mode) all the sites of
the benzene move closer together leading to a larger distance to the leads and
therefore a decreased coupling vl,r. As mentioned above the current responds
very sensible to this change which results in the current suppression observed
in fig.(3.15). The same argument is responsible for the enhanced current in
fig.(3.14). This effect is stronger for the model with spin since the geometry
change is bigger. This can be understood by recalling the argument of the
optimized geometry approximation, see sec.(3.2.5). In short, the equilibrium
geometry was determined by the trade off between gaining energy by chang-
ing the electronic hopping and loosing energy due to the ionic potential. Due
to spin the effect of lowering the electronic energy, through moving the atoms
closer together, gets doubled while the contribution from the ion potential re-
mains unaffected leading to an extremer geometry change at the overall energy
minimum.

Taking two modes into account

We investigate wether the optimized geometry/frozen phonon approximation
does work similarly well for multiple modes. From sec.(3.2.5) we know that,
for the symmetric para configuration and free benzene, the geometry change of
the modes is just the sum of the contribution from each mode under consider-
ation. Because this was due to the fact that terms that mix the modes in the
hamiltonian are very small we expect good agreement between the optimized
geometry approximation and the calculation with interaction. In sec.(1.4.5)
we proved that the Lang-Firsov transformation can not be applied to the SSH
model respecting multiple modes at once. Thus, the results for two modes at a
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Figure 3.15: Comparison of a calculation with interaction to the frozen phonon
approximation for mode 3 (altered breathing mode) with (left) and without
(right) spin. NP = 15, Nc = 8.

Figure 3.16: Optimized geometry approximation vs. calculation with interac-
tion for modes 1 and 3 without Lang-Firsov transformation Nc = 8, Np = 40.

time are obtained without the Lang-Firsov-transformation. Due to the higher
phonon cutoff’s and the bigger Hilbert space we can only present results with-
out spin. Fig.(3.16) shows the current when considering mode 1 and 3 at the
same time and comparing it to the optimized geometry calculation. Again, the
optimized geometry approximation is capable of reproducing the interacting
case very well.

3.3.3 Strong coupling regime and the beyond SSH model

To examine the effects of strong e-ph coupling we apply the beyond SSH model,
see sec.(1.2.3), to the benzene system. Due to the higher phonon cutoff needed
for stronger couplings, and because the Lang-Firsov transformation can not be
applied, we again present only results for spinless fermions.

Convergence of CPT

In analog to sec.(3.3.1) we present some results for different cluster sizes of the
central region. First, in fig(3.17) and fig.(3.18), we check the intermediate e-ph
coupling studied above. We see that for the cases without steps (all modes
except mode 3 and mode 6) the Nc = 8 and Nc = 10 curves match exactly. For
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Figure 3.17: Currents for different cluster sizes of the central region obtained
from the beyond SSH model for mode 1 (left) and mode 3 (right) without spin.
Np = 40, g = 2.8[eV Å−1]

Figure 3.18: The same as fig.(3.17) for mode 2 and 6.

the other modes the steps of the Nc = 8 and Nc = 10 curves do not match but
the overall results are similar. From the example of mode 6 in fig.(3.18) we see
that the steps of Nc = 10 match with the ones from Nc = 6. This suggests that
as for of the Anderson-Holstein model, see sec.(2.2) fig.(2.5), different Nc lie
alternately on two close but different curves converging very slowly into each
other. Fig.(3.19) shows the I/V curves of different cluster sizes for the Pi-mode
in the strong coupling regime. We see the same effect as in fig.(3.18), namely
that the data of Nc = 6 and Nc = 10 match very well.

Comparison of beyond SSH and linear SSH for intermideate e-ph
coupling

We ckeck the beyond SSH model against the linear SSH model for the inter-
mideate e-ph coupling of g = 2.8[eV Å−1] used above. In fig.(3.20) and fig.(3.21)
we see good agreement of the two models for this parameter regime. The de-
viations for mode 1 and mode 3 are due to minor corrections to the geometry
when applying the beyond SSH model which are magnified by the fact that this
two modes alter the hopping to leads.
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Figure 3.19: The same as fig.(3.17) but for the Pi-mode and strong e-ph cou-
pling. Right, a zoomed in version of the left graph.g = 6[eV Å−1],Np = 40

Figure 3.20: Comparison of results obtained from the beyond SSH model to the
linear SSH model for mode 1 (left) and mode 3 (right). Nc = 8, Np = 40

Figure 3.21: The same as fig.(3.20) but for modes 4 (left) and 7 (right).
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Breakdown of the Optimized geometry/Frozen phonon approxiamtion
for strong coupling

The Beyond SSH model allows us to find out when the optimized geometry
approximation breaks down indicating that the current for stronger e-ph cou-
pling can not be understood in a non-interacting picture and many-body effects
take over. We investigate boundaries for the optimized geometry approxima-
tion for the altered breathing mode (mode 3), which shows a geometry change
even for intermediate e-ph coupling, and the Pi-mode (mode 8) which does not.
Fig.(3.22) demonstrates that for the altered breathing mode the optimized ge-
ometry approximation does fit very well untill g = 4[eV Å−1] where it deviates
a little from the interacting data and breaks down for higher e-ph coupling.
From fig.(3.23), which shows the same for the Pi-mode, we can conclude that
the optimized geometry approximation breaks down between g = 5−6[eV Å−1].
Interestingly, the optimized geometry calculation for the contacted benzene, in
contrast to the treatment of free benzene, yields a geometry change, of about
|∆ij | = 0.18[Å] for g = 6[eV Å−1], which is the reason why the corresponding
curve in fig.(3.23) is altered with respect to the non-interacting one. How-
ever, this geometry change is not confirmed by the calculation with interaction
which predicts an unaltered geometry. Thus, the suppression of the current,
in fig.(3.23), at low bias for high g does not originate from a changed geome-
try. In fig.(3.7) the corresponding DOS is shown and we see that the spectral
weight has been shifted to higher phonon excitations leading to the energeti-
cally displaced states. As explained in sec.(3.2.4) this may be similar to the
Franck-Condon effect but can not be explained in terms of shifted harmonic
oscillators. For weaker e-ph coupling, g < 5[eV Å−1] the curves are exactly on
top of the non-interacting case and are therefore not shown. Note that the val-
ues where the optimized geometry approximation tends to fail are in the same
parameter regime where the linear SSH model breaks down.
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Figure 3.22: Comparison of the calculation with interaction and the optimized
geometry approximation for different e-ph couplings. Mode 3 Nc = 8, Np = 40

Figure 3.23: The same as fig.(3.22) except for mode 8. Nc = 6, Np = 40
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Chapter 4

Summary, conclusion and

outlook

We have investigated the effects of the SSH type e-ph interaction on the trans-
port properties of a molecular ring connected to leads by means of NEGF
obtained by steady state CPT. For our parameters the CPT approximation
does in most cases converge with increasing size of the central region within
the realm of still numerically treatable (Exact Diagonalisation) central clus-
ters. If not converged the data for different Nc seems to alternate between two
solutions, see fig.(3.19).

4.1 Anderson-Holstein model

Tests of the NEGF steady state CPT approach on the widely studied Anderson-
Holstein model, see sec.(2.1), show good agreement with results from the litera-
ture in the parameter regime where the coupling to the leads is small compared
to the temperature Γ << kT . An inherent advantage of the method is that
it can be applied up to strong e-ph coupling as the current formalism does
inlcude the many-body effects of the correlated region non perturbatively [18].
Therefore, we are able to reproduce the Franck-Condon blockade for strong e-ph
coupling which is an important mechanism in such systems.

4.2 SSH model for a contacted molecular ring

To study the effects of the SSH-type e-ph interaction on a molecular transistor
we applied the SSH model, in linear and non-linear approximation, to a molec-
ular ring, modeled as benzene, out of equilibrium. The vibronic eigenmodes
of the compound system, benzene connected to one-dimensional leads, where
calculated from a classical model of masses and springs, see sec.(3.1). From
weak to strong e-ph coupling the current voltage chracteristics of the studied
system can be qualitively predicted from the electronic DOS of the correlated
molecular ring in agreement with the Meier-wingreen formula [22]. The re-
sults in sec.(3.3) confirm the need to include at least one site of the leads into
the correlated central region since the current is very sensible to a change in
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the molecule lead coupling (electronic hopping) which enters quadratically in
the molecule lead hybridisation. When the molecule adopts a new geometry
this coupling gets enhanced, suppressed or unmodified and leads to a likewise
behaviour of the current.

4.2.1 Linear SSH model for intermediate e-ph coupling

Throughout the parameter regime of the linear SSH model, which we call in-
termediate e-ph coupling, we are able to interpret the DOS and hence the
steady state current in terms of geometry changes and excitation of phonons
through electrons, see sec.(3.2). In the parameter regime where the approxima-
tion of the linear SSH model is valid the change of the equilibrium geometry
leads to changed electronic hoppings which results in energetically shifted elec-
tronic excitations explaining the different offsets occuring in the I/V curves. In
sec.(3.2.5), we showed that this geometry change can be obtained from a calcula-
tion with non-interaction as the tradeoff between lowering the electronic energy
due to the changed hoppings but loosing some of the effect to the ion potential.
As does the linear SSH model, the optimized geometry approxiamtion breaks
down for strong e-ph coupling. In the case of considering multiple modes at a
time the geometry change is to a good approxiamtion the sum of the different
contributions. The current obtained from the non-interacting optimized geome-
try calculation does agree very well with the interacting one, see sec.(3.3.2), and
differs only by little steps, corresponding to electrons exciting a phonon, being
absent which is to be expected from a calculation without e-ph coupling. For
the para configuration there are only two out of eight modes which show these
steps since for the majority of the modes the corresponding peaks in the DOS
are suppressed for intermediate e-ph coupling as is exemplified in sec.(3.2.4).
The validity of the optimized geometry approximation for intermediate cou-
pling does imply that the widely used LDA-NEGF approach, given that it uses
a geometry optimization, is justified in this regime as well. The only differ-
ence to the calculation with interaction would be the small steps which may be
smeared out in experiments depending on the lead coupling, tempertaure and
relaxation channels for the phonons.

4.2.2 Non-linear beyond SSH model

The linear SSH model of the e-ph coupling breaks down for the contacted
benzene due to the weak hopping to the leads which can even get positive for
modes where this hopping gets suppressed when exciting it. To study the system
at stronger e-ph coupling we therefore extend the linear approximation to its
exponential generalisation introduced in sec.(1.2.3). Unlike in the realm of the
linear SSH model the optimized geometry and thus likewise also the LDA-NEGF
approach breaks down and is not a viable approximation to the interacting case
anymore. We observe a current suppression at low bias similar to the Franck-
Condon blockade in the Anderson-Holstein model at high e-ph coupling. Both
effects are traceable by looking at the corresponding electronic DOS of the
central region. For the Holstein interaction the Franck-Condon blockade can
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be understood in terms of shifted harmonic oscillators, see sec.(2.1.2), while
in the SSH model this argumentation fails since the suppression is observed
in cases where there is no shift of the oscillator for any excited state of the
compound system (electrons and phonons).

4.3 Outlook

The goal of course would be to model specific experiments to get better in-
sight into the mechanisms important to describe these systems accurately. To
do so the presented method can be fed by parameters obtained by ab initio
calculations. Other important mechanisms to inlcude into the model would be
relaxation channels. When the molecule is contacted on a substrate one may
include Holstein type of modes into the central region to take into account the
coupling to the substrate as a relaxtion mechanism. Coupling to modes of the
leads can in most cases be neglected as relaxation channels since they typically
have a lot higher energy than the vibrations of the molecule and therefore will
not get excited. However, the specific form of the relaxation channel incorpo-
rated into the model is rather unimportant as most of them have the same effect
of smearing/broadening the peaks in the electronic DOS. The current CPT ap-
proach is well suited to treat systems with small coupling to the leads which
is a realistic assumption depending on the molecule, the material of the leads
and whether or not anchoring groups are used to trap the molecule between the
leads which could lead to stronger molecule lead coupling.
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