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Abstract

X-ray crystallography has always been a fundamental tool in many scientific
fields. This is hardly surprising as one can gain a lot of fundamental information
on investigated materials like crystal structures, chemical bondings or electron
densities. It is therefore evident, that the techniques are improved continuously.
One of the main parts of every X-ray diffractometer is the sample stage, which is
nowadays much more than only a table to fix a sample. This work concentrates
on measurements using a new kind of sample stage which provides the possibility
to apply an external electric field while performing X-ray scattering experiments.
Electrostriction, piezo-, pyro- and ferroelectricity describe electromechanical

couplings showing slightly different phenomena. Measuring such materials in
an X-ray diffractometer one can expect changes of 10−3 to 10−4

◦ in scattering
angle 2θ by applying an electric field with a field strength of up to 106 V/m.
The piezoelectric effect of Gallium orthophosphate was investigated. Calcula-
tions let expect changes of 8 · 10−4

◦ at a scattering angle of 141◦ 2θ. Even
though the effect is minute, measurements show a clear trend and delivered
a piezoelectric constant of d11 = 14 pm/V compared to a literature value of
d11 = 4.5 pm/V. Potassium hydrogen phthalate as organic representative of piezo-
electric materials revealed an electrostrictive-like behavior. With an electric field
across its (010) plane, a shear strain in yz-direction was expected leading to a
change of ∆θ = 0.0008◦. Electrostriction superimposed this expectation and an
electrostrictive coefficient of M22 = −5.05 × 10−17 C2/N2 was determined from
measurements. Polyvinylidenefluorid-trifluoroethylene (P(VDF:TrFE)) with its
ferroelectric-paraelectric phase transition is finally used to point out capabili-
ties of combined stages. The material was heated up to its critical point at
roughly 80◦C and by applying an external voltage it is shown that this point
can be reversibly moved within a small range of some degree Celsius. For
P(VDF:TrFE) 70:30 the Clausius-Clapeyron relation delivers a theoretical value
of (∂Tc/∂E)p = 2.7× 10−7 Km/V for this shift while experiments delivered a value
of 1.5× 10−7 Km/V.





Kurzfassung

Kristallstrukturanalyse ist seit jeher ein grundlegendes Werkzeug in vielen
wissenschaftlichen Bereichen. Dies ist angesichts der fundamentalen Informa-
tionen, die man über die untersuchten Materialien gewinnen kann, kaum ver-
wunderlich. Es ist daher naheliegend, Methoden und Geräte kontinuierlich zu
verbessern. Einer der wichtigsten Teile eines jeden Röntgendiffraktometer ist die
Probenbühne, heutzutage wesentlich mehr als nur eine einfache Platte. Diese Ar-
beit konzentriert sich auf Messungen mit einer neuen Art Probenbühne, welche
die Möglichkeit bietet, zeitgleich zu einer Röntgenmessung ein externes elek-
trisches Feld an der untersuchten Probe anzulegen. Elektrostriktion, Piezo-,
Pyro- und Ferroelektrizität beschreiben elektromechanische Kopplungen mit le-
icht unterschiedlichen Phänomenen. In einem Röntgendiffraktometer vermessen
können durch Anlegen einer Spannung Änderungen im Größenbereich von 10−3

bis 10−4
◦ im Streuwinkel 2θ erwartet werden. Der Piezoelektrische Effekt von

Gallium Orthophosphat wurde untersucht. Erste Berechnungen ließen Änderun-
gen von 8 · 10−4

◦ bei einem Streuwinkel von 141◦ 2θ erwarten. Auch wenn
das Material nur kleine Effekte zeigt, lieferte es Messungen mit einem klaren
Trend und eine piezoelektrische Konstante von d11 = 14 pm/V konnte berech-
net werden. Die Literatur liefert hierfür einen Wert von d11 = 4.5 pm/V. Kali-
umhydrogenphthalat als organischer Vertreter von piezoelektrischen Materialien
zeigte elektrostriktiv-typisches Verhalten. Mit einem elektrischen Feld normal
zur (010) Ebene wurde eine Scherspannung in yz-Richtung erwartet und eine Än-
derung von ∆θ = 0.0008◦ berechnet. Elektrostriktion überlagerte diesen Effekt
und ein elektrostriktiver Koeffizient von M22 = −5.05 × 10−17 C2/N2 konnte aus
den Messungen heraus bestimmt werden. Polyvinylidenefluorid-Trifluoroethylen
(P(VDF:TrFE)) mit seinem ferroelektrischen-paraelektrischen Phasenübergang
wurde schließlich verwendet um Kombinationsmöglichkeiten mit anderen Probe-
bühnen aufzuzeigen. Das Material wurde bis zu seinem kritischen Punkt bei
circa 80◦C erwärmt wo durch Anlegen einer Spannung nachgewiesen wurde, dass
dieser Punkt reversibel in einem kleinen Temperaturbereich verändert werden
kann. Für P(VDF:TrFE) 70:30 liefert die Clausius-Clapeyron Relation einen
theoretischen Wert von (∂Tc/∂E)p = 2.7 × 10−7 Km/V für diesen Shift. Experi-
mente lieferten einen Wert von 1.5× 10−7 Km/V.
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1 Introduction

1.1 X-ray diffraction

Since the first days of X-ray crystallography around 1912, its potential on de-

termining crystal structures has been known. It became a principal method and

was therefore always of interest to be further developed. While different X-ray

techniques like powder diffraction, single crystal diffraction or small angle X-ray

diffraction have been worked out, it was long time a static measurement. By

inventing brighter X-ray sources, more sensible detection systems and improved

attachments, in-situ measurements became possible. Therefore different kinds

of sample stages have been developed like heating stages, humidity chambers or

tensile stages. As many materials react somehow on external electric fields, a

new kind of stage is proven on its feasibilities in this work. This electric stage is

able to apply an electric field across a measured sample in-situ thus expanding

the field of available sample stages for X-ray diffractometers.

1.2 Sample stage with electrical contacts

A figure of the used electric stage is given with 1.1. The stage is mountable

on most four-circle-goniometer and XYZ stages with according fitting plates. In

the middle a plastic socket of 20 × 20 mm2 provides space for standard wafer

sizes and prevents direct electric contact with the stage body. On the outside,

six BNC connectors are available to connect an external voltage source. From

the connectors small cables are drawn through the stage to the electric contacts

next to the sample socket. These contacts are sitting on a magnetic base for

higher stability. Contact arms can be adjusted to the sample height with small

screws. In addition an inert gas port is available for measurements under inert gas

13



1 Introduction

Figure 1.1: Sample stage with electric contacts for in-situ measurements.

atmosphere. To do so, a graphite and a plastic dome are part of the attachment

but are not shown on the picture. If the electric contacts are not enough to

fix a sample, additional contacts working like clamps can be used to prevent

unintended sample movements.

To be able to measure changes through an external electric field, samples have

to be prepared. Figure 1.2 shows a schematic drawing of a prepared sample.

As basis a wafer with a conductive layer (here gold is used as representative)

is needed to establish electric contact with the sample bottom electrode. The

sample itself should be attached with a bottom and top electrode to guarantee a

linear electric field inside the sample. Also the positions for the electric contacts,

the resulting electric field direction, direction of the beam and the interplanar

distance d are shown. The interplay of direction of electric field, measurement

direction and the materials orientation on the wafer determines the resulting

effect.

1.3 Piezo- and ferroelectric materials

The materials used in this work exhibit piezo- and/or ferroelectric properties.

These electromechanical couplings are well suited for the purpose of testing an

electric sample stage. In general piezoelectric materials are build in stacks to

14



1.3 Piezo- and ferroelectric materials

Figure 1.2: Conditions on samples for use with electric sample stage.

enlarge the size-changing effect. This requires complex production steps and is

therefore as sample source not preferred. With X-ray diffraction small changes

in interplanar distance dhkl become measurable and already simple, one layered

samples of a piezoelectric material are suited to be measured.

As inorganic material, gallium orthophosphate (GaPO4) was chosen. Very

similar to quartz, but in comparison to it, it is a quite temperature-stable ma-

terial mainly used in pressure sensors in high temperature environments. As it

has no natural origin, it has to be grown synthetically, which is done by the

company Piezocryst, Austria. Potassium hydrogen phthalate is often used in

chemistry for different purposes. Its ten times higher piezoelectric coefficients

compared to gallium orthophosphate makes it interesting for the aims of this

work. Polyvinylidenefluoride-trifluoroethylene finally is a ferroelectric represen-

tative. The polymer polyvinylidenefluoride is due to its thermal and chemical

stability a widely used material in very different kinds of applications. Its copoly-

mer with trifluoroethylene becomes more and more interesting as it forms a stable

ferroelectric phase at room temperature. It is therefore used as printable heat

15



1 Introduction

and pressure sensor. A phase transition occurs before melting and the effects of

an external electric field on this phase transition are studied.

16



2 Theory fundamentals

2.1 Piezoelectric effect

Piezoelectricity is defined by the Oxford Dictionaries as "electric polarization in a

substance (especially certain crystals) resulting from the application of mechani-

cal stress." [1]. More precisely this polarization is proportional to the strain and

changes its sign with it. This statement describes the direct piezoelectric effect.

Its inversion is called inverse piezoelectric effect, whereby a piezoelectric crystal

becomes strained under an external electric field by an amount proportional to

this field. Figure 2.1 shows this behavior schematically with the resulting net

dipole in the middle. The most left picture shows the material without external

electric field and net polarization equals zero. By applying an external electric

field the molecules gain electric dipole moment depending on the direction of

the field (middle and most right picture). This movement has a magnitude of

about one atomic distance. It is obvious, that a mechanical deformation can only

happen when the net dipole is different to zero in an external electric field. This

is true for noncentrosymmetric crystals. This linear electromechanical coupling

is described by a rank three tensor:

Pi = dijk σjk (i, j, k = 1, 2, 3) (2.1)

for the direct piezoelectric effect and

εjk = dijk Ei (i, j, k = 1, 2, 3) (2.2)

(P - polarization, σ - 2nd rank stress tensor, ε - 2nd rank strain tensor, d - 3rd

rank tensor for piezoelectric coefficients) for the indirect piezoelectric effect with

the Einstein summation convention to be applied [2]. Both equations are coupled

17



2 Theory fundamentals

Figure 2.1: Inverse piezoelectric effect: strained piezoelectric crystal due to polar-

ization caused by an external electric field. The effect goes linear and proportional

with the polarizing field.

with the same piezoelectric coefficient matrix, a rank three tensor, which would

result in 27 elements for the piezoelectric coefficients. However stress and strain

tensors are symmetric ones and their indices can be therefore relabeled in the

following way: 11→ 1; 22→ 2; 33→ 3; 23→ 4; 13→ 5; 12→ 6 [3]. This reduces

the piezoelectric coefficients to 18 elements. In order to illustrate this, one can

apply for example a shear stress σ12 on a sample. As it is obvious out of figure

2.2, to be in static equilibrium, σjk has to be equal σkj , otherwise a rotation of

the sample would take place. For the example this results in a total polarization

of

Pi = di12σ12 + di21σ21 = (di12 + di21)σ12 (2.3)

A separated determination of dijk and dikj is therefore not possible and makes a

reduction of indices possible.

The indices of the stress tensor (the same holds for the strain tensor indices) get

reduced in the following way:

σn =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =


σ1 σ6 σ5

σ6 σ2 σ4

σ5 σ4 σ3

 (2.4)

Together with the piezoelectric coefficients

18



2.1 Piezoelectric effect

Figure 2.2: Directions for stresstensor elements. σjk 6= σkj would cause a sample

rotation.

dmn =


d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

 (2.5)

where the first 9 elements from d11 to d33 describe reactions on normale stress

and the second 9 elements from d24 to d36 describe reactions on shear stress,

equation (2.1) becomes

Pm = dmn σn (m = 1, 2, 3;n = 1, ..., 6; ) (2.6)

and the same way equation (2.2) becomes

εn = dmnEm (m = 1, 2, 3;n = 1, ..., 6; ) (2.7)

That the same piezoelectric coefficients apply to both equations can also be shown

by their unit. Polarization is given in C/m2, stress is given in N/m2. Therefore

the piezoelectric coefficients must be given in C/N. The electric field has the unit
V/m. To derive the dimensionless strain tensor, the piezoelectric coefficients in

this case must be m/V . A conversion from C/N to m/V is easily derived:

19



2 Theory fundamentals

1
C

N
= 1

As

N
= 1

Ws

VN
= 1

kgm2

s2VN
= 1

kgm2s3

kgms3V
= 1

m

V
(2.8)

Most important property for a material to show a piezoelectric effect is the lack

of an inversion center. In case of centrosymmetric crystals, there is a indistin-

guishable point (-x,-y,-z) for every point (x,y,z) in the unit cell and dipoles would

always cancel each other out. To polarize a material, non-centrosymmetricity is

necessary. Of the overall 32 crystal classes, 21 are non-centrosymmetric and 20

of these have piezoelectric constants different from zero. Table 2.1.1 lists them

up [4].

2.1.1 Determination of piezoelectric coefficients by common
methods

X-ray diffraction is in general not the first choice to determine a piezoelectric coef-

ficient matrix. More common are the frequency method, the laser interferometry

method and the quasi-static method. The first method measures a materials

impedance and resonance frequencies to be able to calculate the piezoelectric

matrix according to the European standard EN 50324-2 [5]. Laser interferome-

try measures deflections on samples and their deviations due to applied electric

fields. This sets high requirements on the construction as even smallest vibra-

tions during a measurement significantly influence the results. The last method

mentioned is based on the direct piezoelectric effect. A constant force is brought

onto the sample and with an oscilloscope appearing voltages are measured. Out

of the relationship of force F and voltage U, the piezoelectric constants can be

calculated. For further information to all three methods, the gentle reader may

be referred to [6].

20



2.1 Piezoelectric effect

Table 2.1: Piezoelectric crystal classes with accompanying third rank tensors de-

scribing the positions and values of piezoelectric coefficients.

Crystal
system

Crystal
class

Int.
symbol

Third rank
tensor

Triclinic

a 6= b 6= c

α 6= β 6= γ

triclinic-

pedial
1


d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36



Monoclinic

a 6= b 6= c

α 6= 90◦

β = γ = 90◦

monoclinic-

sphenoidal
2


0 0 0 d14 d15 0

0 0 0 d24 d25 0

d31 d32 d33 0 0 d36


monoclinic-

domatic
m


d11 d12 d13 0 0 d16

d21 d22 d23 0 0 d26

0 0 0 d34 d35 0



Orthorhombic

a 6= b 6= c

α = β = γ = 90◦

orthorhombic-

disphenoidal
222


0 0 0 d14 0 0

0 0 0 0 d25 0

0 0 0 0 0 d36


orthorhombic-

pyramidal
mm2


0 0 0 0 d15 0

0 0 0 d24 0 0

d31 d32 d33 0 0 0



Tetragonal

a 6= c

tetragonal-

pyramidal
4


0 0 0 d14 d15 0

0 0 0 d15 −d14 0

d31 d31 d33 0 0 0


tetragonal-

disphenoidal
4̄


0 0 0 d14 d15 0

0 0 0 −d15 d14 0

d31 −d31 0 0 0 d36


tetragonal-

trapezoidal
422


0 0 0 d14 0 0

0 0 0 0 −d14 0

0 0 0 0 0 0


ditetragonal-

pyramidal
4mm


0 0 0 0 d15 0

0 0 0 d15 0 0

d31 d31 d33 0 0 0


tetragonal-

scalenoidal
4̄2m


0 0 0 d14 0 0

0 0 0 0 d14 0

0 0 0 0 0 d36



21



2 Theory fundamentals

Crystal
system

Crystal
class

Int.
symbol

Third rank
tensor

Trigonal

α, β, γ 6= 90◦

trigonal-

pyramidal
3


d11 −d11 0 d14 d15 d21

d21 −d21 0 d15 −d14 −d11
d31 d31 d33 0 0 0


trigonal-

trapezoidal
32


d11 −d11 0 d14 0 0

0 0 0 0 −d14 −d11
0 0 0 0 0 0


ditrigonal-

pyramidal
3m


0 0 0 0 d15 d21

d21 −d21 0 d15 0 0

d31 d31 d33 0 0 0



Hexagonal

a 6= c

hexagonal-

pyramidal
6


0 0 0 d14 d15 0

0 0 0 d15 −d14 0

d31 d31 d33 0 0 0


trigonal-

dipyramidal
6̄


d11 −d11 0 0 0 d21

d21 −d21 0 0 0 −d11
0 0 0 0 0 0


hexagonal-

trapezoidal
622


0 0 0 d14 0 0

0 0 0 0 −d14 0

0 0 0 0 0 0


dihexagonal-

pyramidal
6mm


0 0 0 0 d15 0

0 0 0 d15 0 0

d31 d31 d33 0 0 0


ditrigonal-

dipyramidal
6̄m2


0 0 0 0 0 d21

d21 −d21 0 0 0 0

0 0 0 0 0 0



Cubic
tetrahedral 23


0 0 0 d36 0 0

0 0 0 0 d36 0

0 0 0 0 0 d36



hextetrahedral 4̄3m


0 0 0 d36 0 0

0 0 0 0 d36 0

0 0 0 0 0 d36


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2.1 Piezoelectric effect

2.1.2 Determination of piezoelectric coefficients by X-ray
diffraction

Because the macroscopic deformations of piezoelectric crystals have their origin in

microscopic deformations of the unit cell, X-ray diffraction offers a direct way to

measure piezoelectric constants from the changes of Bragg-peak positions in the

diffraction pattern. The well known Bragg equation for constructive interference

of an incident X-ray beam with wavelength λ is given by

nλ = 2dhkl sin θ (2.9)

where θ is the incident beam angle and dhkl describes the interplanar spacing

between lattice planes. The latter is connected to a reciprocal lattice vector by

2π

dhkl
= Ghkl =

√
Ghkl ·Ghkl (2.10)

where

Ghkl = ha∗ + kb∗ + lc∗ (2.11)

with reciprocal lattice base vectors a∗,b∗ and c∗. From the base vectors of the

real lattice the reciprocal lattice can be calculated by:

a∗ =
2π

V
· b× c

b∗ =
2π

V
· a× c (2.12)

c∗ =
2π

V
· a× b

with V, the Volume of the unit cell. One can write down the unit cell vectors for

the direct and reciprocal lattice as matrices

A =


a1 b1 c1

a2 b2 c2

a3 b3 c3

 , A∗ =


a∗1 b∗1 c∗1

a∗2 b∗2 c∗2

a∗3 b∗3 c∗3

 (2.13)
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2 Theory fundamentals

Equation (2.7) gives the correlation between an external electric field and an

induced elastic strain ε. This strain changes the base vectors according to [7]:

A(ε) = (I + ε)A(0) (2.14)

Matrix A(0) describes the unit cell vectors without strain while A(ε) describes

the base vectors with corresponding strain. I is the unity matrix. The same

equation holds for the reciprocal space. Applied to the reciprocal lattice vectors

in the Bragg equation, it can be shown that the Bragg angle θ changes by ∆θ [8]:

∆θ = −E tan θ
3∑
i=1

3∑
j=1

3∑
k=1

ei hj hk dijk (2.15)

with

h =
Ghkl

Ghkl

and ei, the direction cosine of the electric field. What appears to be quite compli-

cated in the first moment becomes clear when one reminds what was mentioned

before according the piezoelectric components. The first index i in dijk gives

the direction of the electric field (or applied stress in the direct effect) and ei
describes therefore how strong a general electric field is in this certain direction.

The indices j and k describe the direction of reaction. Normal reactions appear

if j equals k, shear reactions if j is different to k. The amount of reaction must

be connected to an interplanar distance d, which is done via the normalized re-

ciprocal lattice vector h describing how strong this vector is changed in a certain

direction. Figure 2.3 illustrates this behavior between interplanar distance d and

a Bragg shift schematically. A smaller distance d leads to peaks at higher an-

gles while a broadening of the material, resulting in wider interplanar distance

d leads to peaks at lower diffraction angles. As the change in the diffraction

angle θ goes with its tangent in equation (2.15) it is obvious that measurements

at higher angles lead to bigger changes. They can be expected in the order of

∆θ = 10−4
◦ to 10−3

◦ , which makes it absolutely necessary to measure at high

angles for materials with low piezoelectric coefficients. Application of equation

(2.15) to the piezoelectric crystal classes in table 2.1.1 leads to specific equations

and allows to determine in which directions a sample has to be measured to
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2.2 Electrostriction

Figure 2.3: Correlation between strain induced changes in interplanar distance d and

changes in Bragg-peak positions.

gain all piezoelectric coefficients. G. R. Barsch gives a detailed description on all

crystal classes with the respectively associated equations in [9].

2.2 Electrostriction

Next to the converse piezoelectric effect exists electrostriction, which is a uni-

versal property in dielectrics and not restricted to non-centrosymmetric lattices.

The piezoelectric effect is, as mentioned above, linear and changes its direction of

deformation with changing electric field direction. Electrostrictive deformations

on the other hand are proportional to the square of the electric field and thus

act always in the same direction independent to the electric field direction. This

coupling is defined by the following formula [10]:

εij = qijklEk El (i, j, k, l = 1, 2, 3; ) (2.16)
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2 Theory fundamentals

Figure 2.4: Strain vs. external electric field for a) piezoelectric materials in a linear

way (blue), b) electrostrictive materials in a squared way (red) and c) ferroelectric

materials in a so called butterfly loop (green).

In piezoelectrics, also electrostriction can be present but is usually negligible as it

is extremely small. Nevertheless, if electric fields are high enough, the effect can

come in the range of a piezoelectric effect. In order to discern which effect one is

dealing with, the direction of the external electric field should always be reversed.

This way the effects are distinguishable in their behavior on the external electric

field. Figure 2.4 gives a comparison of the strain dependence on an electric field

for the different effects.
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2.3 Ferroelectric and pyroelectric effect

2.3 Ferroelectric and pyroelectric effect

Ferroelectrics are always piezoelectric and pyroelectric but in difference to the

effects previously mentioned have ferroelectrics a spontaneous polarization. Py-

roelectricity describes the appearance of surface charges through temperature

changes on the crystal and is due to the temperature dependence of the sponta-

neous polarization only. The pyroelectric coefficient γ is therefore the tempera-

ture coefficient of the spontaneous polarization [11]:

γ =
∂Ps
∂T

(2.17)

This spontaneous polarization arises from domains with dipoles in the same direc-

tion and the sum over these areas defines the net polarization similar to magnetic

domains in a ferromagnet. For ferroelectrics these domains are invertible by ex-

ternal electric fields in addition. Figure 2.5 shows a typical hysteresis how it

is observed when poling a ferroelectric from one direction to the opposite and

back in its first state. With Pr, the remnant polarization without electric field

is given, Ec describes the required field to gain a zero polarized material. The

strain in the material follows a so called butterfly loop with the external electric

field. In figure 2.4 this correlation between strain and electric field is shown not

only for ferroelectrics but also for piezoelectrics and the electrostrictive effect

described before. Above a temperature dependence of the polarization is men-

tioned. A critical temperature exists where a phase transition into a paraelectric

phase takes place, as long as this temperature is below the materials melting

point. These phase transitions can be described in a first approach by Landau

theory of phase transitions [12].

2.3.1 Landau theory of phase transitions

In general changes in internal energy can be described by

dU = TdS + σde+EdP (2.18)

with entropy S and the state variables temperature T , electric field E and me-

chanic stress σ acting on a crystal. Gibbs free energy is therefore
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2 Theory fundamentals

Figure 2.5: Typical hystereses for ferroelectric materials. Plotted is the polarization

in the material vs. the external electric field. Pr marks the remnant polarization, Ec
the electric field strength at which no polarization occurs. Reprinted from [13]

G(T,σ,E) = U − TS − σe−EP (2.19)

and for the total differential follows

dG(T,σ,E) = −SdT − edσ − PdE (2.20)

To calculate thermodynamic properties out of this, typically long and numerical

intensiv calculations have to be done. Near phase transitions Landau realized

that the free energy can be approximated. He coined the concept of an order

parameter, which is zero at the high temperature side of the transition and

different to zero at the low temperature side. Near the phase transition this

order parameter is small and therefore a Taylor expansion of the free energy in

this order parameter gives a good approximation. Phase transitions are ordered

after Ehrenfest by: A phase transition of n-th order is

1. continuous in its first to (n-1)th derivation
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2.3 Ferroelectric and pyroelectric effect

2. discontinuous in its n-th derivation

3. infinity in its (n+1)th derivation

However, phase transitions of 3rd and higher order haven’t been shown yet.

As it is a little bit easier in mathematics, Landau theory for second order phase

transitions is treated here first. The Taylor expansion for the free energy with

order parameter m is

f(T ) = f0(T ) + αm2 +
1

2
βm4 (2.21)

Landau parameters : α > 0, β > 0

β is assumed to be positiv so the free energy has a minimum for finite values of

the order parameter. α is greater zero in the case that the order parameter is

zero and describes therefore the high temperature phase. At a transition m is

finite and α has to change its sign at the critical temperature Tc and below. The

following ansatz is made:

α = α0(T − Tc) (2.22)

The free energy

f(T ) = f0(T ) + α0(T − Tc)m2 +
1

2
βm4 (2.23)

is shown in figure 2.6. For T < Tc the figure shows two minima in the order

parameter.

m = ±

√
α0(Tc − T )

β
(2.24)

Choosing the polarization as order parameter for ferroelectrics these minima fit

to the fact that a ferroelectric crystal will have a spontaneous polarization in one

of two possible directions along a polar axis after a phase transition.

To describe first order phase transitions, the free energy has to be expanded

to the sixth order:

f(T ) = f0(T ) + α0(T − Tc)m2 +
1

2
βm4 +

1

3
γm6 (2.25)
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2 Theory fundamentals

Figure 2.6: Free energy vs. order parameter for different temperatures in Landau

theory for second order phase transitions.

α0 > 0, β < 0, γ > 0

Figure 2.7 shows free energy curves for different temperatures around the critical

temperature. Again the order parameter minimizes the free energy, and one gets

the following solutions for the order parameter:

m = ±
√
−β+
√
β2−4α0(T−Tc)γ

2γ for T < Tc

m = 0,±
√
−β+
√
β2−4α0(T−Tc)γ

2γ for Tc < T < T1

m = 0 for T1 < T (2.26)

with T1 as the point where the two non-zero solutions become unstable:

T1 =
β2

4α0γ
+ Tc (2.27)

The jump in the order parameter at Tc is

∆m =

√
−β
γ

(2.28)
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2.3 Ferroelectric and pyroelectric effect

Figure 2.7: Free energy vs. order parameter for different temperatures in Landau

theory for first order phase transitions.

while the jump at T1 is

∆m =

√
−β
2γ

(2.29)

This means, with the example of a ferroelectric to paraeletric first order phase

transition:

• heating up a ferroelectric will cause a phase transition into a paraelectric

state at temperature T1 with a jump in the polarization from a finite value

to zero.

• cooling it down it will stay paraelectric until Tc where it undergoes a phase

transition to a ferroelectric with a jump in spontaneous polarization to a

finite value.

Figure 2.8 shows the difference in polarization vs. temperature for ferroelectrics

with second order and for those with first order phase transition.
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2 Theory fundamentals

Figure 2.8: Shape of the spontaneous polarization for ferroelectric materials. A

material with a second order phase transition shows a continuous decrease in its

polarization until it reaches its critical point, a first order phase transition is marked

by a jump in polarization. At the critical points a phase transition from ferroelectric

to paraelectric state takes place.

2.4 Thermal expansion

As the main part of experiments in this work aims on detecting changes of Bragg-

peaks in diffraction patterns, one has to take thermal expansion into account.

In general a material will change its dimensions more or less due to a change in

temperature. This leads also to a change in interplanar distances d and because

of that will cause a change in a Bragg-peak position. The relation between change

in size and change in temperature is described by the linear thermal expansion

coefficient α,

α =
1

L

dL

dT
(2.30)

with a specific length L and the rate of change in length per unit change in

temperature. Materials which expand in all main directions the same are called

isotropic and can be described with the same coefficient in all directions. An-

isotropic materials on the other hand have different expansion coefficients for

different directions. There are other expansion coefficients to describe a volu-
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2.4 Thermal expansion

metric or areal expansion, but for the purpose of this work it is enough to deal

with the linear expansion coefficient to describe changes in a certain direction.

Usually the coefficient varies with temperature but for small temperature

ranges the equation above can be linear approximated to

∆L = αL∆T (2.31)

The connection to an X-ray diffraction pattern is done when L is described as

L =
λ

2 sin θ
(2.32)

L equals therefore the interplanar distance dhkl in the Bragg equation. Thermal

expansion can be very different for different materials and as example, figure

2.9 shows a measurement of potassium hydrogen phthalate on silicon at different

sample temperatures. This sample is described in chapter 4.2. One can clearly see

the different temperature influences on silicon and potassium hydrogen phthalate

in differently strong shifting Bragg-peaks. In conclusion it is to say that one

has to keep thermal expansion in mind to avoid a distortion of measurements.

Changes in Bragg-peak positions due to a piezoelectric effect are very low and if

the thermal expansion coefficient has an accurate value, temperature fluctuations

of some degree can distort a measurement in a sensible way. Reasons for heat

fluctuations can be the X-ray source, which produces a lot of waste heat, or a

sample itself which isn´t at thermal equilibrium with the measurement chamber

and/or the sample stage.
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2 Theory fundamentals

Figure 2.9: Three measurements of potassium hydrogen phthalate on silicon showing

the effect of different thermal expansion coefficients and the resulting shift in Bragg-

peaks.

2.5 MATLAB peak-fitting

In case of determining piezoelectric constants out of X-ray diffraction patterns,

more or less only peak positions are of interest. Nevertheless evaluating hundreds

of measurements onto their peak positions by hand seemed to be very ineffec-

tive. Therefore a MATLAB script was written to automatically detect peaks in

diffraction patterns and determine changes of peak positions in a specific dataset.

Basic concept is fitting the experimental data as a Gaussian curve:

y = Ae
−(x−µ)2

2σ2 (2.33)

where A marks the height, σ the width and its center position x = µ. By taking

the natural logarithm one gets the function of a parabola with the same peak

position:

ln y = lnA− µ2

2σ2
+

2µx

2σ2
− x2

2σ2

= a+ bx+ cx2 (2.34)
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2.5 MATLAB peak-fitting

This leads to the possibility to fit a parabola with a,b and c and to determine

the peak position by:

µ =
−b
2c

(2.35)

The parabola fit was done using MATLABs fit function ’polyfit’. To avoid

errors due to noise, thresholds are set to distinguish between background and

a possible peak. Starting from the low angle side, intensity for every point is

checked. Is the beginning of a peak found by a certain amount of points above a

peak-threshold, all points are taken until they fall again below the set threshold.

From these peak points are, starting from the center point, as many selected

that the upper third of a peak is covered. This has to be done once by hand for

every dataset of a sample because data quality and point density was changing in

dependence of measurement setup. For even better results, the fitting was done

in an iterative process up to 10 times always starting with the parameters of the

previous fit [14].

35





3 Experimental methods

The main focus of this work was on measurements with the PANalytical Empyrean,

a multipurpose X-ray diffractometer. With its fast switchable components it is

capable of measuring powders, thin films, nanomaterials and solids. Grazing in-

cidence diffraction for a more detailed sample analysis has been done on a Bruker

Discovery D8 and heating measurements combined with electric fields were car-

ried out at synchrotron Elettra Trieste. This chapter will give an overview on

each setup used in this work and some basic descriptions about measurement

methods.

3.1 PANalytical Empyrean

3.1.1 Setup and Components

Figure 3.1 gives an overall view of the X-ray diffractometer. On the left the X-ray

tube and primary beam side move on the θ circle and on the right the secondary

beam side and detector move on the 2θ circle. This setup has the advantage of

a stationary stage. Also the DC voltage supply, able to deliver up to 230 V, is

shown in figure 3.1. A schematic drawing of the beam path is given with figure

3.2.

As X-ray source a water cooled copper tube, powered with 40 mA at 40 kV is

used. With different divergence slits reaching from 1/32 ◦ up to 1/2 ◦ and beam

masks to adjust the beam to sample size in horizontal direction, the beam shape

can be influenced in a fast and easy way. A parallel beam mirror collimates

the beam to enable a parallel beam geometry with a divergence below 0.055◦

and acts as monochromator to get mainly CuKα radiation with a wavelength of

λ = 0.154 nm. An alternative offers the also available Bragg-Brentano geometry,

37
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Figure 3.1: Measurement chamber of the Empyrian PANalytical X-ray diffractome-

ter. The electric stage is mounted and connected to a DC voltage supply unit.

which has advantages concerning signal-to-noise ratios or the angular resolution

but because of mainly focusing on peak positions the choice fell on the parallel

beam mirror which delivers more accurate results at this task as sample alignment

in height does not lead to errors so much. Next a programmable beam attenuator

protects the detector against too high beam intensity. The attenuator automati-

cally turns a 0.125 mm Ni-plate into the beam path above a specified count rate.

In figure 3.2 also the measurement direction and direction of the electric field

applied on the samples are drawn. They both point in the same direction, which

gives strong limitations in the accesible piezoelectric coefficients. Relating to the

matrix in Equation (2.5) only one element with two identical indices is measur-

able, this is set due to the sample preparation, explained in section 1.2. On the

diffracted beam side are an changeable anti-scatter slit and a 0.02 rad soller slit

to prevent information from radiation not scattered by the sample.

The PIXcel3D detector is a solid state detector with a pixel matrix of 255 ·255

channels and a pixel size of 55·55µm. It can be operated in three different modes:

0D also receiving slit mode; the detector acts like a point detector
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Figure 3.2: Schematic drawing of the beam path in the measurement chamber of

the Empyrian PANalytical X-ray diffractometer. Divergence slit, beam mask, beam

attenuator and anti-scatter slit are easily changeable between two experiments. Also

drawn are the given direction of the external electric field and the direction of mea-

surable interplanar distance d in the sample.

1D also scanning line mode; every horizontal line is read out by it´s own and

summed up for a specific 2θ angle

2D reciprocal space maps can be measured as every pixel is read out individually

In every mode one can set the vertical opening by setting the number of used

channels. The measurement setup was of utmost importance in order to deter-

mine peak positions with smallest possible error. To get a feeling for the different

combinations of slits and masks together with detector settings a series of spec-

ular scans (see Section 3.1.2) were made on a standard silicon wafer. Figure 3.3

summarizes the five best combinations of slits and detector mode. The curves are

labeled with two numbers, first the 2θ position and second the peak full width

at half maximum (FWHM). Legend entries have to be read in the following way:
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1. used mode of the detector and number of channels

2. used divergence slit on primary beam side

3. used anti-scatter slit on diffracted beam side

4. stepwidth

5. time per step

6. total scan time

The best FWHM value went down to 0.032◦, which is only a bit wider than the

FWHM of 0.026◦ measured with a NIST SRM660a LaB6 standard [15]. The

highest intense curve was achieved in receiving slit mode, also it took quite a

long time of around 40 minutes, but this mode offers the smallest step size of

0.0001◦ with a 2θ linearity of ±0.01◦ over the whole angular range. Scanning line

mode delivers much faster results but is limited in point density. Nevertheless

measurements required individual set ups for every sample to achieve evaluable

intensity. To get sufficient statistics a lot of measurements have been done and

the analysis under use of standard programs would have taken too much time.

Alternatively a MATLAB program was written for detecting peak positions

and calculating statistics. The theory to this peak determination ca be found in

chapter 2.5.

3.1.2 Specular scans

A specular scan, or symmetric θ − 2θ scan is defined by identical angles for the

incident and diffracted beam with respect to the interplanar net-planes parallel

to the sample surface. This allows to measure the distance dhkl between these

net-planes (see figure 3.4). On the PANalytical Empyrean this means that while

the primary beam side is moved to change the incident angle of the beam, the

secondary beam side is moved with the same speed but opposing direction to

hold the diffracted angle equally. The scattering vector q doesn’t change its

direction, only its length during this measurement. This is the type of scan used

to determine piezoelectric constants as it is sensible on deviations of dhkl due to

stress or strain.
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Figure 3.3: Best five measurements of a standard silicon wafer with different com-

binations of slits, masks and measurement set ups.

3.1.3 X-ray reflectivity

X-ray reflectivity is a method to determine film thicknesses between 2− 200 nm,

film density and roughness. The setup is the same as for a specular scan described

above, but accomplished at much lower incident angles around the critical angle

θc for total external reflection. This angle is for most materials below 0.3◦ and

typical ranges for XRR are between 0◦ and 5◦ in θ. Now not interplanar net-

planes of crystals reflect the beam, but the surfaces of different layers due to

different electron densities. In case of X-rays, the refractive index for solids is

below one, resulting in a critical angle below which total reflection occurs. The

refractive index can be written as [16,17]:

n = 1− δ + iβ (3.1)

with a dispersion term δ

δ =
λ2

2π
reρe =

λ2

2π
reNaρ

Z + f ′

A
(3.2)
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Figure 3.4: Diffraction on a set of net-planes. If the normal of the net-planes divides

the angle between incoming and outgoing beam into equal parts, diffraction can

occur.

and an absorption term β

β =
λ

4π
µx = δ

f ′′

Z + f ′
(3.3)

with re as classical electron radius, ρe the electron density and µ as linear ab-

sorption coefficient. Na is the Avogadro Number, A the atomic mass, ρ the mass

density and Z, the number of electrons per atom is expanded by an atomic form

factor Z + f ′ + if ′′, where f ′ + if ′′ is due to dispersion and absorption. The

critical angle can be expressed by

αc =
√

2δ (3.4)

and is therefore related to the materials density.

Above θc reflections occur at top and bottom of the investigated film and inter-

ference cause so called Kiessig-fringes. In addition with higher angles, reflected

intensity gets lower and the steepness of the curve is related to roughness. The

period of the fringes gives information about film thickness t by

t =
λ

2∆α
(3.5)
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Figure 3.5: Overview of the influences on a XRR measurement by film thickness

(top left), surface roughness (top right), materials density (bottom left) and interface

roughness (bottom right). Reprinted from [18].

with fringe spacing ∆α. Figure 3.5 gives an overview of the influences on mea-

surement curves by the just mentioned properties of a sample. X-ray reflectivity

is explained in more detail by C. Lercher [18].

3.2 Bruker D8

3.2.1 Setup and components

The Bruker Discovery D8 is build up in a geometry to measure lattice planes

perpendicular to the sample surface. A picture and schematic drawing is given

within figure 3.6. The beam path here runs from right to left. Also here a wa-

ter cooled X-ray copper tube is used. To be able to perform grazing incidence

diffraction the tube is mounted on a Bruker Ultra GID add-on to adjust the in-
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Figure 3.6: Picture and schematic drawing of the Bruker D8. The wave vectors

for incident and scattered wave (ki and kf , respectively) and the corresponding

momentum transfer q together with its in-plane and out-of-plane components qp
and qz are indicated. Reprinted from [20]

cidence angle αi of the beam with respect to the sample surface. After the tube

a Göbel-Mirror collimates the beam to a divergence below 0.025◦ and monochro-

matizes it to the wavelength of CuKα. A primary slit gives the opportunity to

limit the beam in height. Last a Soller slit decreases in-plane divergence to 0.35◦

before the beam hits the sample stage. This is a cradle, moveable around 6 axis

to guarantee a perfect alignment. On the diffracted beam side, another soller slit

reduces beam divergence to 0.35 ◦. A position sensitive detector Vantec-1 [19]

is used for data collection. It covers an out-of-plane range of αf = 7.3◦ with a

resolution of ∆αf = 0.007◦. Details on Gracing Incidence X-ray Diffraction can

be found at M. Neuschitzer [20].
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3.3 Synchrotron Elettra Trieste

Figure 3.7: Sketch of the high flux SAXS beamline at Elettra Trieste. A 57-pole

wiggler serves as source. In Optic Hutch I three monochromators provide a 5.4, 8

or 16 keV strong beam. Optic Hutch II consists a double focusing toroidal mirror.

Reprinted from [21]

3.3 Synchrotron Elettra Trieste

The highflux SAXS beamline at Elettra is designed for small angle X-ray scatter-

ing (SAXS). Figure 3.7 gives an schematic overview of the beam path. Starting

from a 57-pole wiggler as photon source, Optic Hutch I houses three Si(111) flat,

asymmetric-cut double crystal monochromators which can be set to fixed ener-

gies of 5.4, 8 or 16 keV [22]. Optic Hutch II houses a double focusing toroidal

mirror which is fully moveable to get in line with the incoming beam [23]. The

Experimental Hutch finally contains the highly variable sample area, space for

additional equipment and the detectors. Figure 3.8 shows this hutch with the

key components labeled. The sample area allowed to mount the same sample

stages and also DC supply unit and heating stage controller were the same as in

the home laboratory. A Pilatus 100K detector was used as WAXS detector and

mounted in such a way that a 2θ range of roughly 20◦ from 18◦ to 38◦ was cov-

ered. The detector has a pixel size of 172 ·172µm2 and an area of 487 ·195 pixel.

To be able to perform heating series under simultaneously applied electric fields,

the heating stage was equipped with electric contacts. Figure 3.9 gives a close up

on the heating stage with a sample contacted. The high intense beam left a clear

to see path on the sample, leading to a breakdown due to material weakening.
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The high flux is, on the one hand, a big advantage for measuring times and es-

pecially enabled heating series on reasonable time scales. On the other hand one

has to be careful about sample degeneration. In our case this limited the possible

heating cycles because of the increasing probability of electrical breakdowns.
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Figure 3.8: Set up of the measurement chamber at Elettra Trieste for wide angle

and small angle X-ray scattering. An adopted heating stage with electrical contacts

was used.

Figure 3.9: Close up on the used DHS 1100 heating stage by Anton Paar at Elettra

Trieste. The electric contacts were temporary glued on the outer ring of the heating

stage. On the sample the beampath is clearly visible. This sample degeneration over

time due to the beam increased the risk of electrical breakdowns during long time

measurements.
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4.1 Gallium orthophosphate

4.1.1 General information

Gallium orthophosphate (GaPO4) is a trigonal, optically clear crystal similar

to quartz (SiO2). The silicon atoms are substituted by gallium and phospho-

rus atoms. This leads to piezoelectric constants twice as high as for quartz. Its

molecular structure is shown in figure 4.1. The used atomic coordinates are listed

in table 4.1 [24]. It crystallizes in the trigonal space group P3121 (No. 152). Unit

cell dimensions are a = 0.4896 nm, c = 1.1026 nm, γ = 120◦. It must be synthe-

sized as it does not occur naturally. At the moment there is only one Austrian

company, Piezocryst, who distributes gallium orthophosphate. The material

shows no pyroelectricity and is very stable in its piezoelectric coefficients over

a big temperature range and therefore often used in high temperature pressure

sensors or microbalances. A phase transition into a non-piezoelectric phase oc-

curs at around 970 ◦C. The piezoelectric constants are as following (given in

10−12 m/V):

d =


d11 −d11 0 d14 0 0

0 0 0 0 −d15 2d11

0 0 0 0 0 0



d11 = 4.5 d14 = 1.9 (4.1)
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Figure 4.1: Molecular structure of gallium orthophosphate. In red oxygen, purple

phosphor and green gallium. a) Projection on the b-c-plane. b) Projection on the

a-b-plane. c) Projection on the a-c-plane. d) 3d view.

The material is anisotropic in thermal expansion. At room temperature thermal

expansion coefficients are (in 10−6 K−1)

α =


α11 0 0

0 α11 0

0 0 α33



α11 = 12.78 α33 = 3.69 (4.2)
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Table 4.1: Unit cell and fractional atomic coordinates for trigonal α-quartz-type

GaPO4, P3121 [24].

Unit cell Fractional atomic coordinates

x y z

a (nm) 0.4896 Ga 0.4557 0.0000 0.3333

c (nm) 1.1026 P 0.4562 0.0000 0.8333

γ (◦) 120 O1 0.4103 0.3185 0.3925

O2 0.4080 0.2717 0.8724

The investigated samples are 5× 3.3 mm in dimension and are 0.45 mm thick.

The [110] direction is perpendicular to the surface and equals the direction of

measurable interplanar distance dhkl. The samples are already coated on top

and bottom with a conductive layer. Figure 4.2 shows the sample stage with

a gallium orthophosphate sample on a gold layered silicon wafer. On the right

side the gold is contacted and on the opposite the gallium orthophosphate is

contacted.

4.1.2 Calculations and results

For measurements a high incident angle should be chosen to make best possible

use of the tangent in equation (2.15). Due to the cut of the sample, the highest

available peak is the 330 peak at roughly 141◦ 2θ. Setting the voltage to 200 V

leads with the thickness of the sample to an electric field of

E =
U

d
= 4.4 · 105

V

m
(4.3)

which is far away from the breakdown voltage of about 25 · 106 V/m. Equation

(2.15) simplifies with measurement direction and direction of the electric field to

∆θ = −E tan θ(h1h1e1d111)

∆θ = 8 · 10−4
◦

(4.4)
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4 Samples and Results

Figure 4.2: Sample stage with contacted gallium orthophosphate placed on a silicon

wafer with gold layer

Thermal expansion of gallium orthophosphate is an additional uncertainty. Cal-

culated with equation (2.31), the whole sample expands in direction of measure-

ment by

∆L = αL∆T = 5.8 nm (4.5)

upon a temperature fluctuation of ∆T = 1◦. This equals a ∆θ of 10−3
◦ for the

330 peak at 141◦.

Two measurement series of gallium orthophosphate have been taken at different

voltages from −230 V to +230 V. Series one is shown with figure 4.3. Blue

circles indicate a single measurement of the 330 peak, the mean value of 10

measurements for every voltage position is connected by the blue line and the

standard deviation is used as error bar. In red the calculated change is indicated.

The spread in peak positions for one voltage step is higher than expected but

still within the machines 2θ linearity of ±0.01◦. Nevertheless the negative voltage

sides mean values agree with the expected piezoelectric shift, on the positive side

only the high voltage values run out of line.

A second measurement series was taken with 20 measurements per voltage step

(see figure 4.4). Again peak 330 was measured and the same indication applies

as in figure 4.3. Also here tendency fits the calculation quite well, also on the
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4.1 Gallium orthophosphate

Figure 4.3: Specular scans on GaPO4 at different voltages. Plotted are in blue the

Bragg-peak positions from 10 measurements at each voltage point with standard

deviation as error bar. Connected by line are the mean values. In red the calculated

peak positions.

Figure 4.4: Specular scans on GaPO4 at different voltages. Plotted are in blue the

Bragg-peak positions from 20 measurements at each voltage point with standard

deviation as error bar. Connected by line are the mean values. In red the calculated

peak positions.

positive voltage side. On both sides a slight down bending is noticeable. This

could be due to an overlapping electrostrictive effect but further investigation

was decided not to be useful as it is extremely minute.

In conclusion it is to say that because of the thickness of the sample and the

resulting low electric field, the piezoelectric constant d11 could not be determined

satisfactorily. Its literature value is at d11 = 4.5 pm/V and the evaluated mean

value out of the measurements is d11eval = 14 pm/V. Also thermal fluctuations
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4 Samples and Results

could have increased the spread in peak positions. Nevertheless, the tendency

goes in the right direction, an effect is evident.
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4.2 Potassium hydrogen phthalate

4.2 Potassium hydrogen phthalate

4.2.1 General information

Potassium hydrogen phthalate, with the chemical formula C8H5KO4, shortened

as KAP, belongs to a series of alkali acid phthalates. It is often used in chem-

istry as standard in calibrating pH-meters for example. It crystallizes in the

orthorhombic point group Pca21 (No. 29) and its unit cell has the dimensions

a = 0.961 nm, b = 1.385 nm and c = 0.646 nm. One unit cell holds four KAP

molecules. A unit cell in different views is shown in figure 4.5. The atomic coor-

dinates for the plots are listed in table 4.2 and are taken from Y. Okaya [25]. He

reported KAP to be P21ab which was converted to Pca21 [26]. In Figure 4.6 one

finds the schematic of one molecule, showing the dipole between the potassium

and one oxygen. It grows in {010} platelets which can be seen in figure 4.8, giving

a configuration of the molecules in the ab-plane. The polar axis goes down the

c-direction. Its morphology is shown in figure 4.7 with the (010) face on top.

One big advantage for our purpose are the factor ten higher piezoelectric con-

stants compared to gallium orthophosphate (given in 10−12 m/V) [27]:

d =


0 0 0 0 −21.5 0

0 0 0 12.9 0 0

−46 26.5 16.5 0 0 0

 (4.6)

To find out about thermal movement, a heating series was made by measuring

the 070 peak at different temperatures from 30 to 90 ◦C. While figure 4.9 shows

the measurements of the peaks, figure 4.10 plots peak position over temperature.

Peak shifts are clear to see. Intensity is decreasing minimal, but can be explained

as the sample was not realigned between the measurements. The peak positions

where fitted linearly:

f(x) = p1 · x+ p2

p1 = −0.001963 p2 = 47.78 R2 = 0.9999 (4.7)

With this and with equations (2.31) and (2.32) a thermal expansion coefficient

was calculated to a mean value of α = 38.87·10−6 K−1 which is in good agreement

with the literature value of 37 · 10−6 K−1 [28].
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4 Samples and Results

Figure 4.5: Molecular structure of potassium hydrogen phthalate. In red oxygen,

in bronze carbon, in white hydrogen and in violet potassium. a) Projection on the

b-c-plane. b) Projection on the a-b-plane. c) Projection on the a-c-plane. d) single

molecule.
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4.2 Potassium hydrogen phthalate

Table 4.2: Unit cell and fractional atomic coordinates for orthorhombic KAP, Pca21
[25].

a (nm) b (nm) c (nm)

0.9609 1.3857 0.6466

Atom x y z

K 0.09898 0.03878 0.25000

C1 -0.17780 0.21761 0.00561

O1 -0.29831 0.26258 0.07871

O2 -0.16109 0.12732 0.01748

C2 0.06887 0.15685 -0.23842

O3 0.14522 0.09314 -0.15861

O4 0.00006 0.14401 -0.40385

C3 -0.05921 0.28937 -0.02519

C4 -0.06367 0.38466 0.06263

C5 0.04731 0.45050 0.03824

C6 0.16280 0.42058 -0.07350

C7 0.16928 0.32513 -0.15805

C8 0.05799 0.25841 -0.13588

H1 -0.38000 0.23500 0.03800

H2 -0.14600 0.40000 0.14000

H3 0.04800 0.52100 0.09600

H4 0.23700 0.46400 -0.09100

H5 0.25200 0.30400 -0.23100
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4 Samples and Results

Figure 4.6: Potassium hydrogen phthalate: the potassium (K) makes with the oxy-

gen the dipole for the piezoelectric effect

Figure 4.7: Morphology of a potassium hydrogen phthalate crystal [26]

The samples we received were 15 × 5 × 0.05 mm in dimensions and have the

(010) plane on top, which is their natural cleavage plane. The long sample

side marks the [100] direction, the short side goes along the [001] direction. To

be able to guarantee a homogenous electric field inside the samples, a 100 nm

aluminum layer was vapor-deposited on top and bottom of the samples. Such a

sample already mounted on a gold coated silicon wafer and electrically contacted

is shown in figure 4.11. The potassium hydrogen phthalate itself is transparent,

on it the aluminum layer can be clearly seen.

4.2.2 Calculations and results

In specular direction accessible were all 0k0 reflections. A list of them is given

with table 4.3 including the relative intensity. As one can see, most peaks are
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4.2 Potassium hydrogen phthalate

Figure 4.8: Molecular packing of four unit cells of potassium hydrogen phthalate in

its ab-plane. The polar axis goes in c-direction.

Figure 4.9: In-situ heating experiment to calculate the thermal expansion coefficient

of potassium hydrogen phthalate. The 070 Bragg-peak was measured at different

temperatures from 30 to 90 degree celsius. In figure 4.10 peak positions vs. temper-

ature are plotted and linearly fitted.
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4 Samples and Results

Figure 4.10: Peak positions out of figure 4.9 to calculate the thermal expansion

coefficient of potassium hydrogen phthalate. The peak positions are plotted vs.

temperature and are linearly fitted.

Figure 4.11: sample stage with potassium hydrogen phthalate placed on a silicon

wafer with gold layer
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4.2 Potassium hydrogen phthalate

Table 4.3: Peak position and intensity for KAP on {010} net planes

H K L 2θ (◦) d (nm) I (rel.)

0 1 0 6.626 1.33 100

0 2 0 13.273 0.66 0.97

0 3 0 19.967 0.44 0.04

0 4 0 26.729 0.33 0.00

0 5 0 33.588 0.26 0.41

0 6 0 40.574 0.22 0.58

0 7 0 47.721 0.19 0.99

0 8 0 55.071 0.16 0.05

0 9 0 62.675 0.14 0.11

0 10 0 70.602 0.13 0.34

0 11 0 78.937 0.12 0.18

0 12 0 87.806 0.11 0.12

very weak and so the 070 peak at 47.7◦ 2θ was chosen as it delivers high enough

intensity to hold measurement times short. The 0100 peak at 70.6◦ 2θ was also

tested but intensity was too low for a meaningful investigation.

However, there remained a further problem: the samples were cut in the (010)

planes. The electric field in [010] direction together with the piezoelectric ele-

ments in equation (4.6) results only in a shear strain in yz-direction as only the

element d24 is nonzero for this electric field vector. Therefore no change in in-

terplanar distance for the 070 Bragg-peak is expected. The consequence of this

shear strain is outlined in figure 4.12. On the left side the unit cell in its yz-

plane is shown without deformation, on the right side an external electric field is

switched on, leading to a shear strain. Marked is furthermore the incident angle

θ which will change through the deformation. An applied voltage of 200 V leads

to an electric field strength of 4 · 106 V/m and thus to a deformation in incident

angle of ∆θ = 0.0008◦. Also this is a quite small change, it corresponds only

to the incident angle of the measurement setup when the sample is positioned
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4 Samples and Results

Figure 4.12: Change in the unit cell of potassium hydrogen phthalate due to an

external electric field causing a shear strain. On the left the unit cell without electric

field, on the right with electric field in y-direction. The shear strain acts in yz-

direction.

with its short side in beam direction. This gives the possibility to "turn off" the

effect by rotating the sample by 90◦ such that the long sample side correlates

to the beam direction. Then the deformation will correspond to a change in χ

angle and will only affect the peak intensity, if any. It was tried to measure this

effect and figure 4.13 and figure 4.14 show the results. As well as for gallium

orthophosphate, 20 measurements have been taken for every voltage step. Plot-

ted is the mean value and its standard deviation as error at every voltage step.

Figure 4.15 compares these two results normed and the measurement with the

sample not rotated seems to show a bigger change. Furthermore what imme-

diately catches the eye is the form of the enveloping curve for both plots. An

effect much bigger than the calculated one happens and the Bragg-peak shifts

always to smaller positions, regardless of the direction of the electric field, which

means an expansion of the sample in every case. This could be associated to

electrostriction, unfortunately no literature data was found to compare the cal-

culated electrostrictive coefficients. Nevertheless table 4.4 gives a comparison of

electrostrictive coefficients for different materials to show that the result is likely
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4.2 Potassium hydrogen phthalate

Figure 4.13: Peak positions at different voltages out of rocking curves on potassium

hydrogen phthalate. The X-ray beam went in [0 0 1] direction on the sample, the

electric field in [0 1 0] direction. Every point represents a mean value out of 20

measurements with their standard deviation as error bar.

to be in the right order of magnitude. Going into detail, one might recognize the

bigger errors for the measurement in [100] direction. This can be explained due

to the fact that the measurement setup has been the same in both directions for

comparison, but the irradiated sample size is much smaller when the sample is

rotated with its long side in beam direction. This leads to a worse signal-to-noise

ratio and therefore to a bigger spread in peak positions. It was renounced on a

more detailed investigation due to this large uncertainty.
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4 Samples and Results

Figure 4.14: Peak positions at different voltages out of rocking curves on potassium

hydrogen phthalate. The X-ray beam went in [1 0 0] direction on the sample, the

electric field in [0 1 0] direction. Every point represents a mean value out of 20

measurements with their standard deviation as error bar.

Figure 4.15: Figure 4.13 and figure 4.14 normalized and overlaid for easier compar-

ison.
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4.3 Polyvinylidenfluorid-Trifluoroethylen

Table 4.4: Electrostrictive coefficients calculated for KAP out of taken measurements

and literature values for Lead-Zirconate-Titanate (PZT), Lead-Magnesium-Niobate

(PMN), and PMN-Platinum (PMN-PT).

Material Electrostrictive coefficient
(
C2

N2

)
KAP, figure 4.13 −3.17× 10−16

KAP, figure 4.14 −5.05× 10−17

PZT1 −5.32× 10−23

PMN1 −2.59× 10−17

PMN-PT1 −2.29× 10−18

1Literature values out of [29]

4.3 Polyvinylidenfluorid-Trifluoroethylen

4.3.1 General information

Polyvinylidenefluorid (PVDF) with repeating unit −(CH2 − CF2)− is a widely

used semicrystalline polymer already implemented from chemical over medical to

defense industries [31]. It crystallizes in different phases dispersed in amorphous

regions in which the degree of crystallinity strongly depends on preparation and

thermal treatment history [32]. While the nonpolar α-phase of PVDF is the

most stable at room temperature, its copolymer with trifluoroethylene (TrFE)

or −(CHF − CF2)− crystallizes into the polar β-phase at room temperature.

The copolymer (see figure 4.16) has a linear structure in which the monomers

are regarded to have a random sequence. Figure 4.17 compares the ferroelec-

tric β-phase with the paraelectric α-phase of PVDF. The red arrows indicate

the direction of dipoles. Due to the trans − gauche conformation of polymer

chains in the paraelectric phase, they cancel out each other, while in ferroelectric

all− trans conformation the dipoles sum up to a net polarization. The α-phase

can be transformed into a β-phase by poling, drawing or annealing. Different in

P(VDF:TrFE), where the additional fluor forces a ferroelectric all − trans con-
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4 Samples and Results

Figure 4.16: Structural formula of P(VDF:TrFE) [30]

figuration already at room temperature (figure: 4.18). Of course VDF to TrFE

ratio plays a major role, figure 4.20 shows a phase diagram for different VDF-

content. Crystal structures for different phases are given in literature with slight

differences, especially for the copolymers. Nevertheless Hasegawa et al. [33] gave

reliable values for PVDF, table 4.5 lists them together with lattice parameters

for P(VDF:TrFE) 70:30 by Bellet-Amalric and Legrand [34].

4.3.2 Sample preparation

P(VDF:TrFE) 70:30 mol% solved in γ-Butyrolacton (GBL) was used in this

work. Samples where prepared by spin coating on Si-wafer with 100 nm silver

layer vapor-deposited. After spin coating process, the samples where heated up

to 120 ◦C for 10 minutes to let the solvent evaporate and, in addition, to raise

the crystallinity. At this stage, sample thickness was evaluated by XRR measure-

ments and afterwards a 100 nm silver layer was vapor-deposited as top electrode.

A finished sample is shown in figure 4.19. Because spin coating did not happen

under vacuum respectively transport between spin coating and vapor-deposition,

polymer thickness was limited to a lower bound of about 2µm, otherwise impuri-

ties caused short-circuits between the electrodes. Such an impurity was recorded

by light-microscopy in figure 4.21. The two silver layers can be seen with some

distance due to the polymer in between with a hair like contamination caus-
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4.3 Polyvinylidenfluorid-Trifluoroethylen

Table 4.5: Ferroelectric and paraelectric lattice parameters for PVDF and

P(VDF:TrFE) 70:30 blend.

PVDF1 70/302 PVDF1 70/302

Ferroelectric phase Paraelectric phase

a (nm) 0.858 0.905 a (nm) 0.496 0.986

b (nm) 0.491 0.512 b (nm) 0.964 -

c (nm) 0.256 0.255 c (nm) 0.462 0.230

1 [33]
2 [34]

Figure 4.17: Conformations of PVDF for the ferroelectric and paraelectric phase.

The red arrows mark the direction of the dipoles. In the paraelectric phase, the

dipoles cancel each other out [35].
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Figure 4.18: Conformation of P(VDF:TrFE) in its ferroelectric state. Red arrows

show the direction of the dipoles [35].

Figure 4.19: Completed sample of P(VDF:TrFE) with silver top and bottom elec-

trode in sandwich configuration on Si-wafer.
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4.3 Polyvinylidenfluorid-Trifluoroethylen

Figure 4.20: Phase diagram for P(VDF:TrFE) with different mixture ratios [36].

ing a direct contact between the two electrodes. Usually, thicknesses of 200 nm

and more are not measurable by XRR because of vanishing Kiessig-fringes. The

big difference in critical angles for P(VDF:TrFE) and silver on the other hand

allowed a thickness determination by fitting only the area between these two crit-

ical points. Figure 4.22 compares two XRR measurements, in red a silver coated

Si-wafer only, in blue the same sample but with the polymer spin coated on it.

The fringes between 1◦ and 2◦ are caused by the silver layer only, delivering no

information about polymer thickness. But the additional polymer weakens the

signal due to its lower critical angle in an area of total reflection for silver. The

area in the green circle is zoomed out in figure 4.23. This part of the measure-

ment was fitted (red curve) and delivered a polymer thickness for this sample of

2.342µm. Table 4.6 gives fitting results in detail. Other samples in this series

delivered similar results. It was also tried to verify this thickness by profilome-

try, but due to the polymers softness, it was easily scratched by the profilometers

needle, leading to smaller thicknesses. Such a result sheet is shown in figure 4.24.
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Figure 4.21: Impurity in a P(VDF:TrFE) sample causing a short circuit between the

two silver layers.

Figure 4.22: X-ray reflectivity measurements on P(VDF:TrFE). Red curve shows a

measurement of the lower silver-electrode only, blue curve shows the same sample

with P(VDF:TrFE) spin coated on it. The interesting part for a thickness analysis is

marked in green.
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Figure 4.23: X-ray reflectivity measurements on P(VDF:TrFE). The marked part in

figure 4.22 is zoomed in here. The critical angles are shown. Blue line shows the

measured curve, in red the simulation is shown. Out of the curve shape between the

critical angles, the thickness of the spin coated P(VDF:TrFE) was calculated.

Figure 4.24: Thickness determination of P(VDF:TrFE) by profilometry.

Table 4.6: XRR fitting results for figure 4.23

Layer Density (g/cm3) Thickness (nm) Roughness (nm) Delta, e-7 Beta, e-7

P(VDF:TrFE) 1.733 2342.448 9.057 55.81414 0.24371

Ag 10.508 91.223 1.504 299.02594 24.64807

SiO2 2.100 600000 0.002 67.97208 0.88697
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To find out about polymer orientation on the substrate specular scans and

GIXD measurements have been made. Figure 4.25 compares measurements with

literature data [37]. While the blue GIXD measurement shows the first three

accessible peaks, the red specular scan clearly shows an orientation with the

110/200 double peak at 19.9◦. This peak is also associated to the ferroelectric

β-phase of P(VDF:TrFE), while the paraelectric α-phase can be identified by a

010 peak at 18◦ [38]. To be sure about the 110/200 double peak, pole figures

of P(VDF:TrFE) in its ferroelectric phase have been made at 20◦ 2θ. They are

plotted in figure 4.26 and the integral over ψ is plotted in figure 4.27. The pole

figure has been indexed with the lattice parameter of table 4.5, revealing a 110

ring at ψ = 60◦. This indicates an orientation in direction perpendicular to the

substrate but an inplane disorder and matches also the measurements in figure

4.25. For this direction perpendicular to the film surface literature values for the

piezoelectric coefficient are given up to 40 pm/V [39]. Calculating the expected

change in ∆θ at 200 V with a thickness of 2µm leads to a change of ∆θ = 0.001◦,

which is indeed by a factor 10 higher than the changes for GaPO4 and KAP, but

still low because of the very low peak angle of 20◦.

4.3.3 Ferroelectric-paraelectric phase transition

Poulsen et al. [40] showed an external electric field dependence of the ferroelectric-

paraelectric phase transition temperature at heating and cooling for Langmuir-

Blodgett films of the P(VDF:TrFE) 70:30 copolymer. We decided therefore to

take a closer look at this phase transition and tried to reproduce these results for

our spin coated films. The Curie-temperature for phase transition raises with an

increasing external electric field in a linear way:

∆Tc =

(
∂Tc
∂E

)
p

E (4.8)

With the coefficients of the Landau-Ginzberg-Devonshire free energy, an adopted

theory of the presented Landau-theory in section 2.3.1, and the Clausius-Clapey-

ron relation [41] (
∂Tc
∂E

)
p

=
1

α0

√
16γ

3 |β|
(4.9)
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Figure 4.25: Measured and literature data of P(VDF:TrFE). In red a specular scan

measured in z-direction, in blue a GIXD measurement in the x-y plane of the sample.

In the upper right corner literature measurements and peak positions out of [37].

Figure 4.26: Pole figure on P(VDF:TrFE) in its ferroeletric phase at 20◦ 2θ. Indexed

with lattice parameters taken from table 4.5
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Figure 4.27: Integral over ψ for the pole figures in figure 4.26 showing the 110 rings

at 60◦ more clear.

a theoretical value for this shift can be calculated. Using the coefficients in

table 4.7 for P(VDF:TrFE) 70:30 [42] one can calculate a value of (∂Tc/∂E)p =

2.7 × 10−7 Km/V. This result is already reduced by 13 %, due to the reducing

internal field of the spontaneous polarization.

XRD measurements have been made on the PANalytical Empyrean with a

DHS 1100 heating stage by Anton Paar to show the phase transition. Figure

4.28 shows the clear difference of the two phases. In red a peak measured at

room temperature, which is clearly associated to the 110/200 double peak at

19.9◦ of the ferroelectric phase. In blue a measurement at 115 ◦C, the red peak

vanished but another sharp peak at 18◦ indicates the 010 peak of the paraelectric

phase.

Further investigations on this phase transition and its dependence on exter-

nal electric fields were carried out at Elettra Trieste. A modified heating stage

DHS 1100 with additional electric contacts was used (see figure 3.9). These

measurements are plotted in figure 4.29. A sample was measured every 10 sec-

onds during heat up with a heating rate of 10 ◦C/min and during cool down with
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Table 4.7: Coefficients of the Landau-Ginzberg-Devonshire free energy and result of

the Clausius-Clapeyron relation (4.9) with these coefficients

Coefficient Value Unit

α0 (7.5± 1.5)× 107 Jm
C2K

β −(1.9± 0.2)× 1012 Jm5

C4

γ (1.9± 0.2)× 1014 Jm9

C6(
∂Tc
∂E

)
p

(2.7± 0.6)× 10−7 Km
V

Figure 4.28: Two representative specular scans of P(VDF:TrFE) at different phases.

In red the ferroelectric phase at room temperature, in blue the paraelectric phase

after heating up to 115 degree celsius.
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Figure 4.29: Measurements taken at Elettra Trieste plotted as intensity maps (red

- high intensity, blue - low intensity). The 110/200 ferroelectric peak at 19.9◦ was

observed. The same heat up and cool down process was measured at four different

voltage steps. Indicated with a red line are the points of phase transition.

natural convection by simply switching off the heating stage. This process has

been repeated with an applied DC voltage of 50, 100 and 200 V. The WAXS

detector was placed in a way to observe the 110/200 peak at 19.9◦ 2θ. Figure

4.29 shows intensity maps with red indicating high intensity and blue indicating

low intensity. Red lines mark the positions of vanishing 110 peaks, indicating

a beginning phase transition. As expected, at higher external electric fields the

phase transition temperature raises to higher values in both cases, heating and

cooling. These transition temperatures are also listed in table 4.8 and plotted

in figure 4.30. Rate of increase of this transition temperature with electric field

was calculated using the fitted sample thickness of 2.342µm and compared with

the theoretical value and literature data in table 4.9. In addition it is to say that

temperature slope in the compared literature is with 1 ◦C/min much lower than

our used slopes.
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4.3 Polyvinylidenfluorid-Trifluoroethylen

Figure 4.30: Comparison of the results at Elettra Trieste. In red the phase transition

temperatures from ferroelectric to paraelectric phase at different voltages while heat-

ing up. In blue the phase transition temperatures from paraelectric to ferroelectric

phase at different voltages while cooling down. Between to points the temperature

difference is given.

Table 4.8: Phase transition temperatures for heat up and cool down process with

increasing external electric field from figure 4.29

Voltage (V ) Temp. heating (◦C) Temp. cooling (◦C)

0 86 52

50 87 53

100 93 54

200 99 56

77



4 Samples and Results

Table 4.9: Rate of increase of phase transition temperature with electric field cal-

culated from Equation (4.9) and from different measurements.

Source ∂Tc/∂E (Km/V )

Clausius-Clapeyron relation (Equation (4.9)) (2.7± 0.6)× 10−7

Elettra, cooling 0.5× 10−7

Elettra, heating 1.5× 10−7

Literature, cooling1 (0.5± 0.2)× 10−7

Literature, heating1 (0.4± 0.2)× 10−7

1Literature data from [40]

One question is left open: the ferroelectric double peak at 19.9◦ is a composite

of the 200 peak at 19.6◦ and the 110 peak at 19.8◦. Due to this closeness they are

usually not separable and always measured as one broad peak. However, at all

phase transitions in figure 4.29 the 110 peak vanishes while the 200 peak remains

much longer. Also at cool down this 200 peak appears much earlier. This behav-

ior was only observed in measurements at the synchrotron while measurements

at the PANalytical Empyrean did not reveal such a clear individual behavior. No

comparable measurement was found in literature.

78



5 Conclusion

5.1 Limits of measurability

Piezoelectric constants, usually given in pm/V , only cause small changes in inter-

planar distance dhkl. Equation (2.15) gives the connection to an XRD experiment

and let expect changes of some 10−4
◦ in 2θ with typical electric field strengths

of up to 106 V/m . While the experimental equipment in principle offers a small

enough step size and a high enough resolution, also the tested stage can handle

theoretically extremely high voltages as there is no current flowing. But other

factors seem to limit the reliability on measured coefficients of such small ef-

fects. Samples have to be of high quality to deliver small peaks with a clear peak

position. Sample thickness plays an important role if the voltage source is lim-

ited. Also to measure all piezoelectric coefficients for a specific material, many

samples have to be prepared in different cut directions as XRD is limited in mea-

surement direction and direction of applied electric field. G.R. Barsch [9] gives

an overview of measurement and electric field directions to evaluate piezoelec-

tric coefficients for every piezoelectric crystal class. And there are also methods

to increase measurement accuracy by applying AC fields for example described

by [43]. Nevertheless, XRD measurements on GaPO4 indeed give a piezoelectric

value of d11 = 14 pm/V, which is three times higher than literature values, but

the right tendency is clearly evident. Also the electrostrictive behavior of KAP

was measurable and delivered a value of M22 = −5.05 × 10−17 C2/N2, which is

unfortunately not comparable as no literature value was found to compare with.

A few conditions have to be set to a sample: top and bottom electrode must

be attachable to guarantee an equally distributed electric field inside the sample.

Sample size has to be big enough to have space for placing the stage electrodes

without disturbing the X-ray beam. Besides this, the tested stage is together with
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5 Conclusion

the accuracy of X-ray diffraction a powerful tool for testing the consequence of

electric fields on non-conductive samples on their molecular level.

5.2 Combination with heating stage

Investigations on P(VDF:TrFE) revealed another strong combination. The pos-

sibility to heat with the heating stage DHS 1100 was expanded by the possibil-

ity to apply electric fields. For the ferroelectric-paraelectric phase transition of

P(VDF:TrFE) this was used to show a dependence of phase transition temper-

ature due to an electric field. For the phase transition during heat up, this led

to a shift in transition temperature of ∂Tc/∂E = 1.5× 10−7 Km/V. While heating

stages are an already common tool in X-ray diffraction, the possibility to apply

an electric field on a sample is a desirable extension. Especially at phase transi-

tions many parameters become much larger and therefore impacts due to electric

fields are much higher.

But the range of application is not limited to piezoelectric or similar materials.

In general, the application of an electric field becomes more and more interesting

as a new tuning method. Soft matter like liquid crystals for example are easily

influenced by electric fields and in combination with XRD their orientation due

to an external electric field can be studied. XRD studies on electric field induced

Mott transitions is another example and has been reported by Nakamura et

al. [44].
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