
Christina Schwarz BSc

Tool for schematic design and automated

parameterization for real-time generic drivetrain models

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Telematics

submitted to

Graz University of Technology

Univ.-Doz. Dipl.-Ing. Dr.techn. Daniel Watzenig

Institute of Electrical Measurement and Measurement Signal Processing

 Diplom-Ingenieurin

Supervisor

Head of the Institute: Univ.-Doz. Dipl.-Ing. Dr.techn. Georg Brasseur

Graz, March 2015

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis dissertation.

Date Signature

Kurzfassung

Echtzeitfähige Antriebstrang-Modellierungsansätze haben ein großes Potenzial zur Ver-
ringerung von Entwicklungskosten in der Automobilindustrie. Obwohl viele echtzeitfähige
Antriebstrang-Modelle existieren, sind diese oft spezifisch für eine Getriebetopologie rea-
lisiert. Im Rahmen dieser Masterarbeit wurde ein Tool für den Entwurf und eine anschlie-
ßende automatische Parametrierung von Antriebssträng-Modellen entwickelt. Die Basis
für die Parametrierung stellt eine generische Methode dar, die auf alle Arten von Getrie-
ben mit diskreten Gängen anwendbar ist. Dies ermöglicht tool-unterstützte Modellierung
auch für unerfahrene Entwickler im Bereich des Maschinenbaus und der Regelungstechnik
und reduziert daher den Entwicklungs- und Testaufwand. Die generische Methode wird für
verschiedene exemplarische Antriebsstrang-Topologien, unter Verwendung des entwickel-
ten Tools für die automatische Parametrierung, gezeigt. Im Anschluss wird ein so erstelltes
Modell für ein 7-Gang-Automatikgetriebe mit Fahrzeug-Messdaten aus einem Fahrzyklus
auf einer Teststrecke validiert.

Schlüsselwörter: Antriebsstrang-Design, automatisierte Parameterierung, Fahrzeug-
getriebe, generische Modellierung, Reibungsmodellierung, Echtzeit-Simulation

Abstract

Real-time drivetrain modeling approaches have a significant potential for development cost
reduction in the automotive industry. Even though real-time drivetrain models are avail-
able, these solutions are specific to single transmission topologies. In this Master’s thesis a
tool for drivetrain design and automated parameterization, which is applicable to all types
of transmission topologies containing explicit gears is presented. This enables tool-guided
modeling by non-experts in the fields of mechanic engineering and control theory leading
to reduced development and testing efforts. The approach is demonstrated for different
exemplary automatic transmissions using the environment for automated parameteriza-
tion. Finally, a an automated parameterization for a 7-gear automatic transmission is
validated via vehicle measurement data of a real-life driving cycle.

Keywords: drivetrain design, automated parameterization, automotive transmis-
sion, generic modeling, friction modeling, real-time simulation

3

Danksagung

Ich möchte mich bei Univ.-Doz. Dipl.-Ing. Dr.techn. Daniel Watzenig für die Möglichkeit
der Durchführung dieser Diplomarbeit am Institut für Elektrische Meßtechnik und Meßsig-
nalverarbeitung an der Technischen Universität Graz in Zusammenarbeit mit dem Virtual
Vehicle Research Center bedanken. Ein großes Dankeschön gilt auch Dipl.-Ing. Markus
Bachinger, der mich während der gesamten Zeit der Masterarbeit betreut und unterstützt
hat. Weiterer Dank gilt den Mitarbeitern des Virtual Vehicle Research Centers, im Beson-
deren Dr. techn. Michael Stolz und Dipl.-Ing. Wolfgang Ebner, die mir mit ihrer fachlichen
Kompetenz zur Seite gestanden sind.

Bedanken möchte ich mich auch bei meiner Familie, vor allem bei meinen Eltern, ohne
deren mentale und finanzielle Unterstützung ich nicht soweit gekommen wäre.

Abschließend möchte ich mich bei meinen Freunden bedanken, die mich in dieser in-
tensiven Zeit auf andere Gedanken gebracht haben.

Graz, im März 2015 Christina Schwarz

4

Contents

1 Introduction 11
1.1 Motivation . 11
1.2 Ambition . 11
1.3 Outline . 12

2 Implementation strategy 13
2.1 Comparison of already existing simulation and modeling environments . . . 13

2.1.1 Modelica based software (OpenModelica and Dymola) 13
2.1.2 SimScape . 14

2.2 Comparison of different implementation strategies 14
2.2.1 Usage of OpenModelica as graphical user interface 14
2.2.2 Comparison of programming languages for (GUI) creation 15
2.2.3 Comparsion of programming languages for mathematical computation 15
2.2.4 Final decision . 16

2.3 Object-oriented programming . 17
2.3.1 Agents and messages . 17
2.3.2 Classes and instances . 17
2.3.3 Inheritance and polymorphism . 17

3 Automotive transmissions and modeling concept 19
3.1 Mechanical components in a drivetrain . 19

3.1.1 Interfaces . 19
3.1.2 Moment of inertia . 20
3.1.3 Shaft . 20
3.1.4 Friction elements . 21
3.1.5 Planetary gear . 22

3.2 Manual transmission . 24
3.3 Automated manual transmission . 24
3.4 Dual-clutch transmission . 24
3.5 Automatic transmission . 25
3.6 Continuously variable transmission . 26
3.7 Modeling concept . 27
3.8 Summary . 28

5

4 Drivetrain design 29
4.1 Graphical user interface - drivetrain configuration 29
4.2 Components . 32

4.2.1 External input . 32
4.2.2 Ground . 33
4.2.3 Inertia with output . 33
4.2.4 Shaft . 34
4.2.5 Gear . 35
4.2.6 Clutch/Brake . 36
4.2.7 Multiplexer (mux) . 36
4.2.8 Planetary gear set . 36
4.2.9 Extended Ravigneaux gear set . 37
4.2.10 Specific gear set . 38

4.3 Save and load configuration . 39

5 Automated drivetrain parameterization 41
5.1 Input . 44
5.2 Clutch/Brake . 44
5.3 Shaft . 44
5.4 Planetary gear set . 46
5.5 Extended Ravigneaux gear set . 46
5.6 Specific gear set . 46
5.7 Short summary . 47

6 Tool validation 49
6.1 Conventional automatic transmission . 49
6.2 Exemplary dual clutch transmission . 53
6.3 Complex hybrid-electric automatic transmission 55
6.4 Summary . 57

7 Conclusion and Outlook 59
7.1 Conclusion . 59
7.2 Outlook . 59

A MATLAB initialization files 61
A.1 DCT configuration . 61
A.2 Future hybrid configuration . 63
A.3 Conventional drivetrain configuration . 66

B Definitions 69
B.1 Abbreviations . 69
B.2 Used symbols . 69

Bibliography 70

6

List of Figures

2.1 Example of a class hierarchy for various material objects taken from [11] . . 18

3.1 Torque explanation . 20
3.2 Model of a moment of inertia taken from [14]. 20
3.3 Model of a elastic shaft taken from [14]. 21
3.4 Model of a clutch taken from [14]. 21
3.5 Simple planetary gear with four planets . 22
3.6 Commonly used transmission types taken from [18]. 24
3.7 Mechanical diagram of a dual clutch transmission taken from [20] 25
3.8 AVL future hybrid transmission [21] . 26
3.9 Exemplary CVT taken from [14] . 26
3.10 Block diagram of the drivetrain model taken from [4] 27

4.1 Illustration of the developed GUI for drivetrain design 29
4.2 Class diagram of the solution . 30
4.3 Inheritance diagram of the specific components including the parent class. . 31
4.4 Parent class component with parameters. 32
4.5 External input icon and parameter configuration. 33
4.6 Icon of the ground component. 33
4.7 Inertia icon and parameter configuration. 34
4.8 Shaft icon and parameter configuration. 35
4.9 Input icon and parameter configuration. 35
4.10 Clutch icon and parameter configuration. 36
4.11 Multiplexer icon. 36
4.12 Planetary gear set icon and parameter configuration. 37
4.13 Extended Ravigneaux gear set icon and parameter configuration. 38
4.14 Extended Ravigneaux gear set icon and parameter configuration. 39
4.15 XML-file of an example configuration . 40

5.1 Exemplary drivetrain configuration containing a shaft. 45

6.1 Diagram of a conventional automatic transmission. 49
6.2 Implementation of a conventional automatic transmission 51
6.3 Comparison of measurement data with simulation 52
6.4 Detailed comparison of measurement data and simulation 53
6.5 Diagram of a demo dual clutch transmission. 54
6.6 Implementation of a demo dual clutch transmission. 54

7

6.7 Diagram of a hybrid-electric transmission. 55
6.8 Implementation of a hybrid-electric transmission. 56

8

List of Tables

2.1 Main differences between Java and C++ . 16

3.1 Overview over transmission ratios of a simple planetary gear 23

4.1 Torque relations between inputs of a simple planetary gear set depending
on connected inertias . 37

4.2 Torque relations of inputs of an extended Ravigneaux gear set. 38
4.3 Torque relations of inputs of an specific gear set. 38

6.1 List of all used components with their used icon in the diagram and the
implementations. 50

6.2 Model parameters for simulation of driving cycle. 53

9

Chapter 1

Introduction

1.1 Motivation

Automotive industry nowadays has to handle increasingly complex software systems in
vehicles. According to [1] there are up to 80 different electronic control units (ECUs1)
which are connected via several different communication buses in one vehicle. These ECUs
control the functionalities of the vehicle such as braking, shifting, etc. There are even
more components such as electric machines and embedded powertrain controllers involved
when developing electric, hybrid or fuel cell vehicles [2]. Model-based design simplifies the
development of these mechatronic systems by providing an environment which includes
both, design and communication across several engineering disciplines. Using a model-
based approach, engineers are able to test their design at an early stage and can fix errors
faster [3].
In this Master’s thesis a tool has been developed, allowing the graphical build up of
a geard transmission, by arranging, interconnecting and parameterizing its mechanical
components. The tool covers the generation of simple conventional drivetrain layouts as
well as complex hybrid transmissions comprising planetary gear sets, multiple clutches
and propulsion sources. This enables tool-guided modeling by non-experts in the fields
of mechanic engineering and control theory leading to reduced development and testing
efforts.

1.2 Ambition

The aim of this thesis is twofolded, firstly, a graphical user interface (GUI) for schematic
drivetrain model design should be created and, secondly, parameterization files of these
designed drivetrains should be generated automatically. The basis of the development is
the generic real-time drivetrain model presented in [4] which will be described in more
detail later. As the model is generic, the drivetrain layout is defined by the model param-
eters only. Those parameters shall be found in a guided and automated way. As a result
the drivetrain model is parameterized with a file generated by the tool.

1For the readers convenience the abbreviations are summarized in appendix B.1

11

CHAPTER 1. INTRODUCTION 12

1.3 Outline

The contents of this thesis are structured as follows: chapter 2 covers a comparison of
the already existing software for modeling and simulation. Furthermore, the implemen-
tation possibilities are discussed and a short overview over object-oriented programming
is given. Chapter 3 describes the main topologies of automotive transmissions and the
basic mechanical components needed for real-time modelling of a drivetrain. The main
topologies of automotive transmissions are described in chapter 3. Additionally, this chap-
ter presents a short overview of the model, which was used as development base for the
drivetrain design and parameterization.
Chapter 4 covers the realization of the GUI for drivetrain design. Therefore, the structure
of the GUI is presented and the implemented components are described. Furthermore,
this chapter covers the save and load strategy. The algorithm for the automated parame-
terization of these drivetrains, including a simplified pseudo code, is described in chapter
5.
The tool has been tested on different drivetrain topologies, the topologies and the ac-
cording results are presented in chapter 6. The conclusion and a short outline on further
implementation plans is presented in chapter 7.

Chapter 2

Implementation strategy

In this chapter the already existing environments for simulation and modeling are com-
pared. Furthermore, the different implementation possibilities concerning the usage of
already existing environments and the different programming languages are listed.

2.1 Comparison of already existing simulation and modeling
environments

In the automotive industry many different component based modeling languages for multi-
body simulation exist. In this section the standard languages such as OpenModelica,
SimScape, and Dymola will be discussed, details are published in [5].

2.1.1 Modelica based software (OpenModelica and Dymola)

Modelica is an object-oriented, multi-domain modeling language for component-oriented
modeling of complex systems. These complex systems can contain subcomponents of var-
ious domains of physics such as mechanics, hydraulics, electronics, etc. Additionally these
systems can be extended by mathematical and control components. The open source Mod-
elica Standard Library is extended by developers of the organization Modelica Association.
One essential characteristic of Modelica is that equations do not describe assignment but
equality. As a result equations in Modelica have no pre-defined causality. There are many
simulation environments based on Modelica, two of the most important will be presented
now.

OpenModelica

OpenModelica is an open-source software and therefore can be used for free [6]. It provides
libraries with components for modeling and simulation, but also new elements can be
designed. Furthermore an interface to MATLAB is implemented. According to [5] the
integration of new components is rather difficult and there is no possibility to create s-
functions compatible to Simulink.

13

CHAPTER 2. IMPLEMENTATION STRATEGY 14

Dymola (DYnamic MOdeling LAboratory)

Dymola is a commercial product for modeling of physical objects of distinct types. Sim-
ilar to OpenModelica many libraries containing objects of distinct section in physics are
provided. Furthermore the source code of the components can be seen and modified.
Hence, it is easier to understand the functionality of the components and modify them.
The transformation of a Dymola model to an s-function is in general possible but the
user needs a special license to do so. Furthermore the generated s-function needs Dymola
running in background and therefore the s-function can not be used on computers without
Dymola. Additionally there is a co-simulation interface to MATLAB.

2.1.2 SimScape

MATLAB provides opportunities for simulation, one of it is Simulink. Since Simulink
is a signal based modeling language, the signal direction is unidirectional and therefore,
interactions between components and systems are not considered. To model these inter-
actions additional signal paths have to be modeled to provide a bidirectional signal path.
The Simulink extension SimScape is, similar to Modelica, component based and contains
predefined libraries and components, which are especially suitable for modeling of physical
systems. SimScape also provides toolboxes which provide modified and application-specific
components for different physical sections. A modification of the provided components is
not possible.

2.2 Comparison of different implementation strategies

In this chapter the different possibilities for the implementation of the Graphical User
Interface (GUI) are discussed. The focus of the discussion is put on on a customer-friendly
handling. Therefore not only the different programming languages are compared but also
the use of already existing software for the graphical development of drivetrains is taken
into consideration.

2.2.1 Usage of OpenModelica as graphical user interface

OpenModelica is a open source software for modeling and simulation [6]. It is a envi-
ronment for Modelica modeling, compilation, and simulation. The idea is to create the
mechanical model of the drivetrain with OpenModelica and write another program to
interpret and process this model. The advantage of using this software is that there is
already an existing GUI for the drivetrain model design. Additionally, the mechanical
models are saved in a format which can be interpreted and processed by a suitable pro-
gramming language for further usage. However, only a few of the components provided
by OpenModelica can be used for the design of drivetrain topology. Hence, it is very
important for the user to recognize which elements can be used. Since the aim of this
thesis is to enable drivetrain design for non-experts in the fields of mechanics, a program
in the background has to check every component and connection of the user. Additionally
OpenModelica is not installed on every computer by default. Due to the fact, that the
user has to handle at least two interfaces, one for the graphical modeling and one for the
interpretation of the model, the customer-friendly usage is questionable.

CHAPTER 2. IMPLEMENTATION STRATEGY 15

2.2.2 Comparison of programming languages for (GUI) creation

In the following subsections the different programming languages are compared with regard
to their suitability for GUI creation. Owing to the demand that different components of the
drivetrain should be connected via Drag and Drop, this property is discussed in particular.

Matlab

Matlab is a numerical computing environment developed by MathWorks [7]. However it is
also possible to create simple GUIs. Due to the fact that Matlab is created for numerical
computing, more complex GUIs with the realization of Drag and Drop are difficult to
implement. Hence, Matlab is possible but not suitable for the development of the GUI of
this project.

JavaScript

Another possibility is to create a GUI with JavaScript. It is a dynamic computer pro-
gramming language and is mostly used as part of web browsers. The advantage of this
language is that it is easy to learn and to use. Besides the realization of Drag and Drop
is very simple. In contrary the interpretation of the data for further processing is difficult
and the application runs on browsers only.

Java

Java is a general-purpose programming language which is class-based and object-oriented.
One great advantage of Java is its platform independence which means it does not have to
be recompiled if it is transferred to another platform. To develop a GUI Java provides the
Java Swing library which allows an easy GUI creation and implementation of Drag and
Drop. Furthermore the object-oriented structure of Java is well suited for the development
of the further processing of the drivetrain configuration.

C++

The last discussed programming language is C++ and is another general-purpose pro-
gramming language. Same as Java, it is object-oriented and can create applications which
run on every Operating System (OS) although they have to be recompiled on each plat-
form. The Qt-Library provided by C++ can be used for GUI development. There is also
a well documented development environment Qt-Creator which simplifies the creation of
GUIs.

2.2.3 Comparsion of programming languages for mathematical compu-
tation

Now the different programming languages will be discussed regarding the further inter-
pretation and automated parameterization of the designed drivetrain topology.

CHAPTER 2. IMPLEMENTATION STRATEGY 16

Matlab

Matlab may not be the best possibility for interpreting the drivetrain topology, but for
processing the data. The aim of this thesis is to create an initialization file for a Mat-
lab/Simulink Model. Therefore it would be an opportunity to create and interpret the
configuration with another program and to create the initialization file with Matlab.

JavaScript

Due to the fact that JavaScript is commonly used in web browsers it is not well suited for
the interpretation and further processing of the model.

C++ and Java

Owing to the object-oriented structure of C++ and Java it is easier to create complex
programs in contrast to JavaScript. Additionally mathematical operations can be imple-
mented easier with appropriate libraries. Nevertheless, it is more difficult to process the
information of the drivetrain configuration than in Matlab.

2.2.4 Final decision

Even though Matlab is very useful when processing mathematical data the possibilities
for the GUI creation are too poorly developed for the purpose of this thesis. In contrary
the GUI creation is very simple with JavaScript but the further processing of the model
is too difficult. An opportunity would be to develop the GUI in JavaScript and process
the data in Matlab. Since the targeted customer-friendliness can not be maintained due
to the usage of at least two interfaces this opportunity is eliminated. Furthermore, the
usage of OpenModelica as GUI with external processing of data is ruled out as well as
again two interfaces would be needed.
To make a final decision, the two remaining programming languages are discussed in more
detail. Java is easier to handle for inexperienced programmers since the rudimentary
tasks such as freeing memory are done by Java itself. According to [8] this is done cyclic
in background and leads to a poorer run-time and memory efficiency. When using C++
the memory has to be released by the programmer. As a result the memory can be released
immediately but the risk of memory leaks is much higher. The main differences between
Java and C++ are shown in tab. 2.1.

C++ Java

platform independence write once, compile anywhere write once, run anywhere

programming paradigm procedural or object-oriented object-oriented

memory management manually garbage collector

GUI creation Qt Swing

focus execution efficiency developer productivity

preprocessor yes no

Table 2.1: Main differences between Java and C++

CHAPTER 2. IMPLEMENTATION STRATEGY 17

C++ is normally complied to machine code which is executed directly by the operating
system whereas Java is first compiled to byte-code which is compiled to machine code and
executed by either interprets or

”
Just in Time“ (JIT) compilers of the Java virtual machine

(JVM) [9]. Hence, Java may have a little longer execution time. However, Prechtelt [10]
wrote:

‘Interpersonal variability, that is the capability and behavior differences be-
tween programmers using the same language, tends to account for more differ-
ences between programs than a change of the programming language.’ [10]

Summarizing the above, it can be stated that C++ with Qt for GUI development is more
suitable when creating large projects concerning run-time and memory management. As
Prechelt [10] wrote, programming capabilities of a programmer contribute more to the
program efficiency than the programming language. Due to the easier development and
data management, Java was chosen as developing language. Within this program run-time
considerations are irrelevant, as the program will be used offline and the overall project
code line number should be held small.

2.3 Object-oriented programming

Object-oriented programming (OOP) is a programming paradigm based on objects that
contain data fields, often known as attributes and code in form of procedures, often known
as methods. In this chapter the major design patterns of object-oriented programming
are discussed [11].

2.3.1 Agents and messages

To perform an action in object-oriented programming a message is transmitted to an
agent (an object) responsible for the action. This message consists of the request for an
action and additional information (arguments). If the receiver accepts the message, it
also accepts the responsibility to carry out the action by performing a method to satisfy
the request. This also implies the principle of information hiding which means the client
sending the request does not need to know the details of how the request is satisfied [11].

2.3.2 Classes and instances

The second principle of object-oriented programming is distinction between classes and
instances. A class describes the architecture of objects and is not used directly. Commonly
all objects are instances of a class. If a method is invoked in response to a message, it was
determined by the class of the receiver. Every instance of a certain class uses the same
method in response to similar messages [11].

2.3.3 Inheritance and polymorphism

The principle that knowledge of a more general category is also applicable to a more
specific category is called inheritance. Classes can be organized in a hierarchical structure
where a child class will inherit attributes and methods from a parent class. Abstract

CHAPTER 2. IMPLEMENTATION STRATEGY 18

Figure 2.1: Example of a class hierarchy for various material objects taken from [11]

parent classes are classes which are used only to create subclasses. Methods can be either
defined in a parent class or in the child class. Additionally there is the possibility to
override a method. If methods with the same name exist in both, parent and child class,
the method executed is said to override the inherited method.
The principle of polymorphism allows shared code to be tailored to fit the specific cir-
cumstances of individual data types. For example an instance of the class component can
either be an input but also a much more complex planetary gear set [12]. An example for
a class hierarchy is shown in fig. 2.1. It includes parent and child classes with according
instances.

Chapter 3

Automotive transmissions and
modeling concept

Various types of geared transmissions are available in the automotive industry. In this
chapter commonly used transmission systems will be described. For a better understanding
of the behavior of these transmissions some mechanical components are described. Within
this work all units are SI, except if especially stated differently. The symbols used for
variables in this thesis are listed in B.2.

3.1 Mechanical components in a drivetrain

3.1.1 Interfaces

The interfaces, rotational speeds and torques, between these components will be briefly
introduced.

Rotational speed is the number of rotations per time unit and is usually measured
in hertz. The used symbol within this thesis is ω. The relation between the rotational
speed ω and the velocity v is given through 2πr.

Torque is a physical dimension and describes the tendency of a force to rotate an object
about an axis. The used symbol for torque is τ . The magnitude of torque depends on the
force applied and the length of the lever arm.
Fig. 3.1 shows a force F action on an object with radius r. The radius is measured from
the axis of rotation to the point of application of the force. An easy way to calculate the
magnitude of the torque is, to determine the lever arm first which is r sin Θ. Then it has
to be multiplied by the applied force. Torque has dimension of force times distance [13].

τ = rF sin Θ (3.1)

The product of torque and rotational speed is power.

19

CHAPTER 3. AUTOMOTIVE TRANSMISSIONS AND MODELING CONCEPT 20

Figure 3.1: Force acting on an object creating a torque.

3.1.2 Moment of inertia

Moments of inertia are very fundamental in the terms of this work, since every mass is
modeled with a moment of inertia. Fig. 3.2 illustrates the model of such a moment of
inertia.

Figure 3.2: Model of a moment of inertia taken from [14]. In this figure the torques have the symbol M
and the rotational speed has the symbol ϕ̇.

Moments of inertia are the simplest possible elements of a machine including input and
output torque and a rotational inertia. The equation of motion is simply

J︸︷︷︸
MRS

ϕ̈︸︷︷︸
¨qRS

= Mans −Mabs︸ ︷︷ ︸
hRSs

(3.2)

3.1.3 Shaft

Shafts are fundamental parts in mechanical systems. Due to various design possibilities
shafts possess various influence on the overall system.

CHAPTER 3. AUTOMOTIVE TRANSMISSIONS AND MODELING CONCEPT 21

Figure 3.3: Model of a elastic shaft taken from [14]. J̄ represents the moment of inertia, the term M is
used for torque and ϕ̇ represents the rotational speed.

Elastic shafts represent the simplest possible case of an elastic multibody element when
rotational linear elasticity is concerned. Since a shaft has to be connected to inertias to
derive a equation of motion, the system in fig. 3.3 depicts two inertia elements intercon-
nected by springs and dampers of a shaft. The torque of the shaft can be seen in eqn.
(3.3).

Mshaft = (ϕ1 − ϕ2)c+ (ϕ̇1 − ϕ̇2)d (3.3)

The equations of motion for the whole system indicated in fig. 3.3 are shown in eqn. (3.4).
(
J̄ 0
0 J̄

)

︸ ︷︷ ︸
MES

(
ϕ̈1

ϕ̈2

)

︸ ︷︷ ︸
¨ϕES

=

(
(ϕ2 − ϕ1)c+ (ϕ̇2 − ϕ̇1)d
(ϕ1 − ϕ2)c+ (ϕ̇1 − ϕ̇2)d

)

︸ ︷︷ ︸
hES

+

(
Mans

−Mabs

)

︸ ︷︷ ︸
hESs

(3.4)

3.1.4 Friction elements

Friction elements play an important role in geared transmissions. The term
”
clutches“

within this work, whenever appearing, refers to all types of friction elements which can be
found in clutches, brakes and mechanical synchronizing elements. They cause a variable
order and structure system as the number of mechanical degrees of freedom depends on
the clutch state (

”
slip“ or

”
stick“) as well as the clutch torque dependency changes with

the clutch state.

A clutch is a device which is used to connect two shafts at their ends to transmit power.
A part of the power is lost due to speed difference between the clutch plates.

Figure 3.4: Model of a clutch taken from [14]. Here M is used for torque instead of τ and ϕ̇ instead of ω
for rotational speed.

Clutches are essential for transmissions and therefore are used in a wide range. They are
controlled hydraulically and transmit torques between gear components. A simple model
of a clutch is shown in fig. 3.4.

CHAPTER 3. AUTOMOTIVE TRANSMISSIONS AND MODELING CONCEPT 22

3.1.5 Planetary gear

As described in [15] and [16] planetary gears are gear systems which at least have three
coaxial shafts. The designation planetary gear is derived from the arrangement of the
gearwheels since the planet gears are arranged around the sun gear. Planet gears are
mounted on a carrier and normally circle the sun gear. Planetary gears also incorporate a
outer gear which meshes with the planet gears and is called ring gear. A great advantage of
the planetary gear set is their little installation space compared to their high transmission
ratios.
In fig. 3.5 the schematic representation of a planetary gear is shown. The most important
advantage of planetary gears for transmission systems is the easy realization of different
gear transmission ratios by holding sun, carrier or ring stationary. Each shaft can overtake
the role of input or output. The gear ratios are determined by the gear teeth, the selection
of the in- and output shaft.

Sun A

Carrier C

Ring BPlanet P

A

B

C
P

Figure 3.5: Simple planetary gear with four planets: schematic representation in view and side view.

With the Willis-Equations given in eqn. (3.8) all gear ratios can be calculated, the
following listed ratios are special cases. There are three different shaft bearing possibilities
at a simple planetary gear.

• carrier held stationary: First of all, the stationary gear which results from holding
the carrier stationary has to be analysed. If the sun gear is used as input with an
input speed of nin and the ring is used as output, the direction of rotation is inverted.
The overall gear ratio is

i =
ωin

ωout
=
ωA

ωB
=
zB
zA

def
= i0 (3.5)

whereat z is the number of teeth of each gear. This is defined as the stationary gear
ratio i0, i0 < −1.

• sun held stationary: If the sun is held stationary and the ring is used as input
the carrier has to be the output with the same rotation direction as the ring. Due

CHAPTER 3. AUTOMOTIVE TRANSMISSIONS AND MODELING CONCEPT 23

to the same rotation direction the overall gear ratio from input to output shaft is
speed reducing.

iov =
ωin

ωout
=
ωB

ωC
=
zB − zA
zB

= 1− 1

i0
(3.6)

• ring held stationary: If the ring is held stationary it is not only possible to
generate a speed increase 0 < i < 1 but also a speed reduction i > 1 by maintaining
the rotation direction. If the sun is used as input the carrier has to rotate with half
of the rotational speed of the planet gears. In this case the overall gear ratio is

iov =
ωin

ωout
=
ωA

ωC
=
zA − zB
zA

= 1− i0 (3.7)

If two of the three inputs are linked by a clutch the planetary gear is a block with i = 1.

Input Output Stationary ratio
i = ωin/ωout

note

sun (A) ring (B) carrier (C) i = i0 =
zB/zA

rotation direction inversion to
reduction, − inf < i < −1

ring (B) sun (A) carrier (C) i = 1/i0 =
zA/zB

rotation direction inversion to
step-up,−1 < i < 0

ring (B) carrier (C) sun (A) i = 1− 1/i0 transmission reduction,
1 < i < 2

carrier (C) ring (B) sun (A) i = i0/i0−1 transmission increase,
0.5 < i < 1

sun (A) carrier (C) ring (B) i = 1− i0 transmission reduction,
2 < i <∞

carrier (C) sun (A) ring (B) i = 1/1−i0 transmission increase,
0 < i < 0.5

Table 3.1: Overview over transmission ratios of a simple planetary gear

If the planetary gear is deployed as summation gearbox, power is applied over two shafts
and the total power is delivered at the third ’free’ shaft. For the identification of the speed
of all shafts it is sufficient to know the two input speeds. If it is deployed as a transmission
gearbox, the applied power is split over two outputs. To identify the speed of all shafts
the speed of the input shaft and the relation between the two output speeds are needed.
To gain these relationships kinetic and kinematic constraints have to be considered. The
kinematic constraint is defined by the Willis-Equation which is formulated by

ωA − ωBi0 − (1− i0)ωC = 0. (3.8)

The kinematic constraints are defined by the equilibriums of power eqn. (3.9) and external
torques eqn. (3.10) for a planetary gear set.

∑
P = ωAτA + ωBτB + ωCτ3 = 0 (3.9)

∑
τ = τA + τB + τC = 0. (3.10)

CHAPTER 3. AUTOMOTIVE TRANSMISSIONS AND MODELING CONCEPT 24

Figure 3.6: Commonly used transmission types taken from [18].

All possible transmission ratios can be lead back to the stationary gear ratio in tab. 3.1
with the Willis-Equation eqn. (3.8) and the equations eqn. (3.9) and eqn. (3.10) [17].
Fig. 3.6 illustrates an overview over the commonly used transmission topologies which
will be described in the following sections.

3.2 Manual transmission

Manual transmissions (MT) are widely used due to their low production costs and their
high efficiency. The overall vehicle efficiency heavily depends on the driver. They consist
of a driver-operated clutch and a movable gear stick. The gear pairs for each gear are
arranged at at least two parallel running shafts, whereas one is coupled with a shaft while
the other spins free on the other shaft. Only if a gear is selected, the free flywheel is
connected to the shaft over a switchgear unit [19].

3.3 Automated manual transmission

An automated manual transmission (AMT) is an automotive transmission which has prin-
cipally the same topology as a MT. Electronic sensors, pneumatics, processors and actu-
ators are used to execute gear shifts. This removes the need of a clutch pedal, since the
clutch itself is actuated by electronic equipment, which allows quick, smooth gear shifts.
An automation of the gear selection can be achieved by using hydraulic or electrome-
chanical components. The gear selection program and the switching point as well as the
shifting process require software functions. These software functions are embedded in the
transmission control unit [19]. AMTs have a high overall efficiency, since the efficiency is
not depended on the driver. Optionally, many AMTs provide a manual gear selection for
the driver.

3.4 Dual-clutch transmission

A dual-clutch transmission (DCT) is a transmission topology which allows a gear shift
without torque interruption. It combines the comfort of an automatic transmission with

CHAPTER 3. AUTOMOTIVE TRANSMISSIONS AND MODELING CONCEPT 25

the efficiency of a manual transmission. Two separate clutches are used, one for even and
one for odd gears. Generally it can be described as two separate manual transmissions
in one housing, working as one unit. This allows the control strategy to select two gears
at one time. The actual gear shift takes place through releasing the active clutch and
simultaneously coupling the passive one, which allows a gear shift without an interruption
of the traction. Usually DCTs are operated in a fully automatic mode, but many also
have the ability to allow the driver to manually shift gears in a semi-automatic mode [19].

Figure 3.7: Mechanical diagram of a dual clutch transmission taken from [20]

3.5 Automatic transmission

Automatic transmissions generally consist of planetary gear sets. In standard applications
torque converters (TC) are used to connect the combustion engine with the gear box.
These TCs can be replaced by friction clutches and in hybrid-electric applications the
electric motor can overtake the function. In fig. 3.8 an exemplary automatic transmission
for a hybrid is illustrated taken from [21].
The sun gear of the standard planetary gear set (PSG 0) is fixed to the housing, the ring
gear is connected to the internal combustion engine (ICE) via the separation clutch C0.
The extended Ravigneaux gear set (PGS 1) consists of two sun gears, two ring gears and
two planet gears which share one common carrier. Sun 1 of PGS 1 is connected to the
carrier of PGS 0 over the clutch C2, sun 2 is connected to the housing via brake B1. Ring
gear of PGS 0 and carrier are linked via cltuch C1, ring 1 is connected to eletric motor
and ring 2 is the output of the transmission.

Hydrodynamic converters

Hydrodynamic converters are basic components of automatic gear boxes and consist of a
pump, a turbine and an impeller. Due to their specific design even large speed differences
(i.e. starting car) can be balanced. They also include a special clutch bridging the con-

CHAPTER 3. AUTOMOTIVE TRANSMISSIONS AND MODELING CONCEPT 26

Figure 3.8: AVL future hybrid transmission with an extended Ravigneaux (PGS1) and a planetary (PGS
0) gear set taken from [21]. The four friction elements are one brake (B1) and three clutches (C0, C1, and
C2) including a separation clutch. This allows the transmission to operate at 7 different operating modes.

verter and the operation in a closed, open and in a slip state. Hence, such torque converter
can increase augment comfort and reduce fuel consumption with an appropriate control
[14].

3.6 Continuously variable transmission

Another transmission type is the continuously variable transmission (CVT). The advantage
of gear trains with gear wheels consists in a better component efficiency due to power
transmission form closure, the disadvantage is an only step wise approximation of the drag-
velocity hyperbola. The advantages of the CVT configuration is a perfect adaption to the
drag-velocity hyperbola and the possibility of a very smooth change of the transmission
ratio without any danger of generating a jerk. The disadvantages are a lower efficiency due

Figure 3.9: Exemplary CVT taken from [14]

CHAPTER 3. AUTOMOTIVE TRANSMISSIONS AND MODELING CONCEPT 27

to power transmission by friction and a somehow limited torque transmission [14]. The fig.
3.9 gives an impression of the system and its components. Many different configurations
are used in the industry, but the operation of a chain- or belt-driven CVT is always
the same. The chain or belt moves between two pulleys with conically shaped sheaves,
whereas one side of these pulleys possesses a movable sheave controlled by a hydraulic
system and the other side is fixed. Reducing or increasing the distance between the pulley
sheaves forces the chain or belt to move radially upwards or downwards thus changing the
transmission ratio of the CVT.

3.7 Modeling concept

Modeling drivetrain motion bases on the equations of motion of a multibody system. As
already mentioned above geared transmissions contain clutches and, due to the clutch state
change (stick vs. slip), are systems of variable structure and order. Hence, a mathematical
description for each friction element state combination has to be set up. Therefore, a
method with a single model and implicit consideration of clutch locking states is presented
in [4].
This concept allows a unique model code for different drivetrain topologies only by adapt-
ing the parameterization. The clutch slip drivetrain model shown in fig. 3.10 only covers
slipping and open clutches. Locked clutch torques are functions of internal states, external
inputs and torques of slipping clutches. Locked clutch behavior is considered via nonlinear
feedback, as indicated in fig. 3.10.

Clutch
locking

constraints

Clutch slip drivetrain model

ẋ = Ax+ Bu
y = Cxτs

τC

v

u

x

y

Drivetrain model

Figure 3.10: Block diagram of the drivetrain model taken from [4]

The model uses input torques v, provided by propulsion and load elements, and clutch
slip torques τ s. An approximation, that possible stiffness (k) and damping (d) factors are
constant, is justified for real-time execution limitations. Furthermore, inertias and shafts
are considered as lumped inertias and shafts. This approximation allows representation of
the clutch slip drivetrain model by a continuous-time state-space model eqn. (3.11) using
the following definitions:

• x: summarizes the minimum number of required states consisting of rotational
speeds of inertia elements and angular position differences over spring elements.

CHAPTER 3. AUTOMOTIVE TRANSMISSIONS AND MODELING CONCEPT 28

• u: represents the external inputs v and clutch torques τc.

• y: available sensor signals.

ẋ = Ax + Bu

y = Cx
(3.11)

Using the mass matrix M the system matrices A and B can be defined as A = M−1Ā
and B = M−1B̄, slightly reformulating eqn. (3.11) to eqn. (3.12).

Mẋ = Āx + B̄u

y = Cx
(3.12)

The drivetrain topology is completely defined by the parameters of the matrices Ā,B̄,C
and M in the context of this approach. To obtain these parameters it is sufficient to
formulate the equations of motion and define the states x, inputs u and outputs y. With
the developed tool it is convenient to draw the schematic of a drivetrain topology and let
the algorithm derive the parameters of the system matrices automatically.

This model is valid for continuous-time simulation which in most cases uses variable step
solvers. For real-time execution adaptive time-step methods are not feasible. Therefore,
fixed-step execution is required. A method is proposed in [4] to transform this continuous-
time model to discrete-time as well as to deal with large fixed time-steps, when model
execution will not coincide with clutch state change instants.

3.8 Summary

The main transmission topologies used in passenger cars and their mechanical components
have been presented in this chapter. Furthermore, the modeling concept, which was used
as the development base for this Master’s thesis, has been described. With this knowledge
the design of the GUI and the algorithm development has begun.

Chapter 4

Drivetrain design

This chapter covers the implementation of the GUI for the drivetrain design was developed
with the common known development tool eclipse1. As mentioned before the used pro-
gramming language is Java with Java Swing for the realization of the GUI. Additionally,
the library Forms 1.0.32 was used for better GUI design.

4.1 Graphical user interface - drivetrain configuration

The GUI is called
”
Drivetrain Configurator“, it consists of four components and is shown

in fig. 4.1.

Figure 4.1: Illustration of the developed GUI for drivetrain design

1 Eclipse Standard/SDK, Version: Luna Release (4.4.0),https://eclipse.org/
2 JGoodies Java Libraries, http://www.jgoodies.com/downloads/libraries/

29

CHAPTER 4. DRIVETRAIN DESIGN 30

First there is the drawing pane, which extends the class JPanel. This is the main compo-
nent for the drivetrain model design. On the left side is a JScrollPane with the available
components which can be added to the drawing pane by double-click. The menu bar is
at the top of the GUI and gives the user the possibility to save and load configurations,
to delete all the components on the drawing pane and to create an initialization file for
MATLAB. Lastly there is a log-window at the bottom of the GUI.

Figure 4.2: Class diagram of the solution without specified component and configuration classes.

In fig. 4.2 the class diagram of the main classes without the inherited classes for the
specific components are shown. It can be seen that the most important class is the
DrawingPane which is the main component for the schematic drivetrain design. To allow
different number of inputs and input positions IconPanel was implemented. IconPanel
combines the icons of the components with the correct position of the their inputs. This
class holds the class MovingPanel which is responsible for Drag and Drop functionality of
each component. To draw the connections between the components the class PanelListener
was implemented. The check if the connection between two components is valid is also
accomplished within this class. Fig. 4.3 shows the inheritance class diagram for the
specific components. For the sake of clarity, the methods have been omitted in both class
diagrams.

CHAPTER 4. DRIVETRAIN DESIGN 31

<<Java Class>>

Component

guiDevelopment

listOfConnectedComponents: Array...

positionOfInputs: ArrayList<Point>

listOfConnectedInputs: ArrayList<B...

listOfValidConnections: ArrayList<...

posX: int

posY: int

pathToImage: String

type: String

ComponentID: int

numberOfInputs: int

inputsLeft: int

inputsRight: int

inputsUp: int

inputsDown: int

numberOfConnectedInputs: int

image: BufferedImage

drawPanel: DrawingPane

<<Java Class>>

Clutch_Brake

guiDevelopment

linesPopup: deleteLinesPopup

rotSpeed: String

name: String

tqIsLeft: Boolean

tqIsRight: Boolean

paraFrame: JFrame

tfName: JTextField

contentPane: JPanel

torqueDir: JComboBox<String>

cluNameList: JComboBox<String>

<<Java Class>>

ExtRavigneaux

guiDevelopment

changeConfig: ConfigureInputsExtRavigGS

linesPopup: deleteLinesPopup

listOfPosOfInputs: ArrayList<String>

statRatio1: String

statRatio2: String

statRatio3: String

factorR1C: String

factorR1S1: String

factorR1S2: String

factorR2C: String

factorR2S1: String

factorR2S2: String

idxRing1: int

idxRing2: int

ratioRing1: String

ratioRing2: String

leverArmRing1: String

leverArmRing2: String

numberOfTorqueComponets: int

numberOfRotSpeedComponents: int

<<Java Class>>

Gear

guiDevelopment

linesPopup: deleteLinesPopup

ratio: String

hasTorqueCon: boolean

hasRotationalSpeedCon: boolean

paraFrame: JFrame

tfRatio: JTextField

contentPane: JPanel

<<Java Class>>

Ground

guiDevelopment

<<Java Class>>

Inertia

guiDevelopment

hasSensor: boolean

linesPopup: deleteLinesPopup

inertia: String

mass: String

leverArm: String

assignment: String

omegaInit: String

changeConfig: ConfigureInputsInertiaGS

conInLeft: ArrayList<Boolean>

conInRight: ArrayList<Boolean>

isMass: Boolean

paraFrame: JFrame

tfName: JTextField

tfLeverArm: JTextField

tfOmegaInit: JTextField

contentPane: JPanel

assignmentList: JComboBox<String>

type: JComboBox<String>

lblName: JLabel

<<Java Class>>

Input

guiDevelopment

isAddInput: boolean

name: String

paraFrame: JFrame

tfName: JTextField

contentPane: JPanel

<<Java Class>>

Mux

guiDevelopment

conInLeft: ArrayList<Boolean>

linesPopup: deleteLinesPopup

<<Java Class>>

Output

guiDevelopment

<<Java Class>>

PlanetaryGearSet

guiDevelopment

changeConfig: ConfigureInputsPlanetaryGS

linesPopup: deleteLinesPopup

listOfPosOfInputs: ArrayList<String>

statRatio: String

numberOfTorqueComponets: int

numberOfRotSpeedComponents: int

factorRing: String

factorSun: String

factorCarrier: String

searchedOmega: String

ratioCarrier: String

ratioRing: String

ratioSun: String

levArmCarrier: String

levArmRing: String

levArmSun: String

idxRing: int

idxCarrier: int

idxSun: int

paraFrame: JFrame

tfParam1: JTextField

contentPane: JPanel

<<Java Class>>

Shaft

guiDevelopment

linesPopup: deleteLinesPopup

stiffness: String

damping: String

dPhiInit: String

paraFrame: JFrame

tfStiffNess: JTextField

tfDamping: JTextField

tfPhiInit: JTextField

contentPane: JPanel

<<Java Class>>

SpecificGS

guiDevelopment

linesPopup: deleteLinesPopup

listOfPosOfInputs: ArrayList<String>

statRatio1: String

statRatio2: String

factorR1S2: String

factorR1C: String

factorS1S2: String

factorS1C: String

ratioC: String

ratioS2: String

leverArmC: String

leverArmS2: String

idxSun2: int

idxCarrier: int

numberOfTorqueComponets: int

numberOfRotSpeedComponents: int

changeConfig: ConfigureInputsSpecifcGs

paraFrame: JFrame

tfParam1: JTextField

tfParam2: JTextField

contentPane: JPanel

0..1

0..1

0..*

0..1

0..*

0..*

0..1

0..1

Figure 4.3: Inheritance diagram of the specific components including the parent class.

CHAPTER 4. DRIVETRAIN DESIGN 32

4.2 Components

The different components, which are described in detail below, all inherit some attributes
and functions form the component class shown in fig. 4.4. Using variables for parameter-
ization instead of explicit values is supported.

Figure 4.4: Parent class component with parameters.

4.2.1 External input

The external input component acts as interface and is only implemented to deliver a
torque. It is possible to switch the direction of the input from right to left only for
graphical representation. The external input is limited to be connected to a gear or an
inertia. In fig. 4.5(a) and 4.5(b) the icon of the input component is shown as well as the
configuration of the parameter name of the input.

CHAPTER 4. DRIVETRAIN DESIGN 33

(a) External input icon with
input direction to the right
side. (b) Parameter configuration of External Input.

Figure 4.5: External input icon and parameter configuration.

4.2.2 Ground

There is also a ground component implemented which can be connected to a clutch or to
one of the planetary gear sets. If it is connected to a clutch, the clutch will act as brake. If
it is connected to a gear set, the connector of the gear set will be ignored in the generated
formula.

Figure 4.6: Icon of the ground component.

4.2.3 Inertia with output

For the realization of the vehicle, engine, etc. a component representing a lumped inertia
of neighboring components is implemented. Fig. 4.7(a) depicts the icon for inertia and
the configuration possibilities are shown in figs. 4.7(b) and 4.7(c).
Additionally, the implementation allows to add an optional sensor to each inertia. Each
inertia is represented by its motion state . As presented in fig. 4.7(a) the inertia has two
inputs by default, though the user can choose how much inputs should be on each side of
the inertia. There is the possibility to have 0− 4 inputs on each side, however, there need
to be at least two inputs in total. Each inertia may be assigned to one of the following
standard locations within an automotive drivetrain:

• none is the default configuration and can be used for inertias which do not need to
be specialized.

• engine represents the common combustion engine.

• eMot represents the electric engine.

• TCimpeller represents the impeller of the torque converter.

CHAPTER 4. DRIVETRAIN DESIGN 34

• TCturbine represents the turbine of the torque converter.

• GearbOut represents the position at the secondary side of the gearbox/transmission
(i.e. between gearbox and final drive next to the gearbox).

• WhlDrv represents the driving wheels.

• Vehicle

(a) Inertia icon with an optional sensor on top.

(b) Parameter configuration of Inertia. (c) Parameter configuration of mass.

Figure 4.7: Inertia icon and parameter configuration.

Additionally the user can configure the initial value of ω. Furthermore there is also the
possibility to use the inertia as a mass. If it is a mass, the user has to configure the lever
arm in meters and the mass in [kg]. If it is a inertia, the lever arm does not need to be
configured. The inertia delivers rotational speed.

4.2.4 Shaft

This component serves to transmit torque and rotation to connect components of the
drivetrain. It is possible to configure two parameters: stiffness and damping. As illustrated
in fig. 4.8(a) the shaft has two inputs, one on each side.

CHAPTER 4. DRIVETRAIN DESIGN 35

(a) Shaft icon. (b) Parameter configuration of shaft.

Figure 4.8: Shaft icon and parameter configuration.

4.2.5 Gear

The gear component represents torque speed ratios introduced by mechanical gears, mul-
tiplying torque by the specified ratio and speeds by its inverse. The user can configure the
transmission ratio as shown in fig. 4.9(b). To support the user while creating a configura-
tion and avoid possible errors, a gear needs to be connected to one torque giving and one
rotational speed giving component.

(a) Gear icon. (b) Parameter configuration of gear.

Figure 4.9: Input icon and parameter configuration.

CHAPTER 4. DRIVETRAIN DESIGN 36

4.2.6 Clutch/Brake

(a) Clutch icon. (b) Parameter configuration of clutch.

Figure 4.10: Clutch icon and parameter configuration.

This component represents either a clutch or a brake. If the clutch icon is connected to a
ground it acts as a brake, otherwise it acts as clutch. Every clutch needs to be configured
with a name which has to be chosen from c0 − c7. Furthermore the user can define the
positive torque direction. The default configuration of the torque direction is from left to
right.

4.2.7 Multiplexer (mux)

This component was implemented to connect an input of a planetary gear set to more than
one clutch. This is needed in various transmission topologies, e.g conventional automatic
transmission.

Figure 4.11: Multiplexer icon.

4.2.8 Planetary gear set

The first gear set which is explained now is the simple planetary gear set. The schematic
representation is shown in fig. 3.5. Fig. 4.12(a) and fig. 4.12(b) illustrate the icon
for the planetary gear set in the developed environment and the according parameter
configurations. The three inputs are representing the three main components: ring, sun,
and carrier. The user can configure the arrangement of the inputs and the stationary gear
ratio. The user interface ensures, that the number of degrees of freedom and the number
of connected inertias fit, which is two in this case. According to which connector is linked
to a torque delivering component such as shaft or clutch, the relations between the gears
are calculated. In tab. 4.1 the torque relations for each input are shown depending on

CHAPTER 4. DRIVETRAIN DESIGN 37

inertia inertia ratio sun ratio carrier ratio ring

sun carrier rRS = − 1
i0

rRC = − (−1+i0)
i0

-

sun ring rCS = 1
−1+i0

- rCR = − i0
−1+i0

ring carrier - rSC = −i0 rRC = (−1 + i0)

Table 4.1: Torque relations between inputs of a simple planetary gear set depending on connected inertias

which input is not connected to an inertia. The first two columns indicate which gears are
connected to an inertia. These relations were calculated by a computational software by
solving the kinematic constraint (Willis equation) and the following kinetic constraints.

• All outer torques have to be zero in total, Στ = τ1 + τ2 + τ3 = 0.

• The sum of all power is zero, ΣP = ω1τ1 + ω2τ2 + ω3τ3 = 0

(a) Planetary gear set icon. (b) Parameter configuration of planetary gear set.

Figure 4.12: Planetary gear set icon and parameter configuration.

4.2.9 Extended Ravigneaux gear set

The second implemented gear set is the extended Ravigneaux gear set. Fig. 4.13(a)
illustrates that this gear set consists of two suns, two rings, and one carrier. The user is
able to configure three stationary gear ratios. Similarly to the simple planetary gear set,
two inertias have to be connected to the gear set, since the number of degree of freedom
has not changed. However, in this case the inertia cannot be connected to any input
but only to a ring. This constraint was implemented because the relations between the
inputs change, depending on which connectors are linked to inertias and would lead to an
additional effort to solve symbolic equations for each newly implemented combined gear
set. In tab. 4.2 the torque relations are shown. These relations have been calculated
similar to the planetary gear set (see subsection 4.2.8).

CHAPTER 4. DRIVETRAIN DESIGN 38

input ring1 ring2

carrier rR1
C = −(i11 − i12)−1i11 rR2

C = (i11 − i12)−1i12
sun1 rR1

S1 = −(i11 − i12)−1(i11 − i11i12) rR2
S1 = (i11 − i12)−1(i11 − i11i12)

sun2 rR1
S2 = −(i11 − i12)−1(i11 − i11i22) rR2

S2 = (i11 − i12)−1(i11 − i11i22)

Table 4.2: Torque relations of inputs of an extended Ravigneaux gear set.

(a) Schematic representation of the extended Ravigneaux gear set.

(b) Extended Ravigneaux
gear set icon.

(c) Parameter configuration of extended Ravigneaux gear
set.

Figure 4.13: Extended Ravigneaux gear set icon and parameter configuration.

4.2.10 Specific gear set

This specific gear set was implemented to configure the conventional automatic transmis-
sion shown in chapter 6. As illustrated in fig. 4.14(a) it has four shafts and consists of
two planetary gear set. The ring of the first gear is coupled with the carrier of the second
gear and the sun of the first gear is coupled with the ring of the second gear. The user
can configure two stationary gear ratios for the creation of the initialization file. The
torque-relations shown in tab. 4.3 are calculated similar to the planetary gear set (see
subsection 4.2.8) as well.

input carrier sun2

ring1 rCR1 = −(1− i22 + i11i22)
−1(i11i22 − i22) rS2R1 = −(1− i22 + i11i22)

−1

ring2 rCR2 = −(1− i22 + i11i22)
−1(i11i22 − i22 − i11 + 1) rS2R2 = −(1− i22 + i11i22)

−1i11

Table 4.3: Torque relations of inputs of an specific gear set.

CHAPTER 4. DRIVETRAIN DESIGN 39

(a) Schematic representation of the specific gear set.

(b) Extended Ravigneaux
gear set icon.

(c) Parameter configuration of extended Ravi-
gneaux gear set.

Figure 4.14: Extended Ravigneaux gear set icon and parameter configuration.

4.3 Save and load configuration

The tool allows to save the created configuration as xml-File. First of all, a list of the
components used in the configuration is saved on top of the xml-File. This is necessary
for loading the configuration. Afterwards the created function saves each component with
its parameters and its connected components. In fig. 4.15 a xml-File of a simple example
presented in fig. 5.1(a) in the following chapter with two inertias, two inputs and one
shaft is depicted.
When loading a configuration a list of all components is created. Afterwards each compo-
nent is parameterized according to the parameters saved in the xml-file and the connected
components are saved.

CHAPTER 4. DRIVETRAIN DESIGN 40

Figure 4.15: XML-file of an example configuration

<?xml v e r s i o n =”1.0” encoding=”UTF−8”?>
−<Conf igurat ion>

+<ComponentMap>
−<Component id=”0”>

<type>Input</type>
+<ConnectedComponents>
+<Parameters>
+<Pos i t ion>

</Component>
−<Component id=”1”>

<type>I n e r t i a </type>
+<ConnectedComponents>
+<ConnectedComponentsLeft>
+<ConnectedComponentsRight>
+<Parameters>
+<Pos i t ion>

</Component>
−<Component id=”2”>

<type>Shaft</type>
+<ConnectedComponents>
+<Parameters>
+<Pos i t ion>

</Component>
−<Component id=”3”>

<type>I n e r t i a </type>
+<ConnectedComponents>
+<ConnectedComponentsLeft>
+<ConnectedComponentsRight>
+<Parameters>
+<Pos i t ion>

</Component>
−<Component id=”4”>

<type>Input</type>
+<ConnectedComponents>
+<Parameters>
+<Pos i t ion>

</Component>
</Conf igurat ion>

Chapter 5

Automated parameterization of
the drivetrain design

The main task, besides providing a user-friendly front end, is to provide an automated
parameterization of the modeling approach presented in [4] for the created drivetrain topol-
ogy. For this purpose, the used components and their connections have to be analyzed.
First of all, the components are sorted by type and saved in array lists. Afterwards the
relations between the connectors of the gear sets are added according to the tabs. 4.1, 4.2
and 4.3. The main aim is to create a MATLAB initialization file which parameterizes the
matrices of the following state-space model eqn. (5.1) (see also eqn. (3.12)).

Mẋ = Āx + B̄u

y = Cx
(5.1)

x represents the states of the configuration which are defined by the states of motion
of inertias and the position difference over the shafts of the configuration. The inputs
and clutches represent the vector u and M is generated from the inertias respectively the
masses. Furthermore, y represents the outputs (sensors, observations) of the configuration.
Matrix C maps the sensors (outputs) to the states. This is realized by creating a matrix
filled with zeros with the number of outputs as rows and the number of states as columns.
For every state which has an output the complying entry is set to one.
The next step is to create the matrices Ā and B̄. To generate these matrices two additional
classes called State and BMatrixRow were implemented. The next step is to divide the
matrices in primary and secondary matrices. Āpri holds all torques and forces acting on
the ’left’ side of masses and Āsec holds all torques and forces action on the ’right’ side of
masses. The same applies for B̄pri and B̄sec. Every inertia is mapped to an instance of the
State class and BMatrixRow class which hold lists with indices and factors for the primary
and secondary matrices. The next step is to check which components are connected to
the inertia on each side. Gears are skipped in the implementation but their gear ratio
is saved for later purposes. Furthermore, the distinction between mass and inertia is not
important for the strategy of determination of the dependencies. After the determination
of the parameters of the system matrices the entries influenced by the mass are divided by
the lever arm. Algorithm 1 shows the simplified procedure for the initialization file creation

41

CHAPTER 5. AUTOMATED DRIVETRAIN PARAMETERIZATION 42

although there is no distinction between primary and secondary side. This algorithm will
be described in the following sections.

Algorithm 1 Algorithm for automated parameterization of system matrices

1: procedure createInitFile
2: enumerate Inertias, Shafts

3: initialize Ā
4: enumerate Inputs, Clutches

5: initialize B̄
6: enumerate Outputs

7: initialize C

8: for 1 to NumberOfIneritas do
9: if Inertia.hasSensor()is true then

10: C(idxOutput, idxInertia)=1

11: for 1 to NumberOfConnectors do
12: [Connection,Ratio]=calculateRatio(Connection)

13: switch Connection do
14: case Clutch
15: B̄(idxInertia, idxClutch)= ± Ratio

16: case Mux
17: B̄(idxInertia, idxClutch1)= ± Ratio

18: B̄(idxInertia, idxClutch2)= ± Ratio

19: case Input
20: B̄(idxInertia, idxInput)= ± Ratio

21: case GearSet
22: for 1 to NumberOfGearSetConnectors do
23: [GearSetConnector,RatioGS]=calculateRatio(GearSetConnector)

24: switch Connection do
25: case Clutch
26: B̄(idxInertia, idxClutch)= ± Ratio · ratioGS · relationGS
27: case Mux
28: B̄(idxInertia, idxClutch1)= ± Ratio · ratioGS · relationGS
29: B̄(idxInertia, idxClutch2)= ± Ratio · ratioGS · relationGS
30: case Shaft
31: idxInertia2=findIdxOfSecondInertia()

32: Ā(idxInertia, idxInertia) = -d·Ratio·ratioGS·relationGS
33: Ā(idxInertia, idxInertia2) = d·Ratio·ratioGS·relationGS
34: Ā(idxInertia, idxSecInertiaGS)= -d·Ratio·ratioGS·relationGS
35: Ā(idxInertia, idxShaft) = -k·Ratio·ratioGS·relationGS
36: case Shaft
37: for 1 to NumberOfShaftConnectors do
38: [ShaftConnection,RatioShaft] = calculateRatio(ShaftConnection)

CHAPTER 5. AUTOMATED DRIVETRAIN PARAMETERIZATION 43

39: switch ShaftConnection do
40: case Inertia
41: Ā(idxInertia, idxInertia) = -d·Ratio·RatioShaft
42: Ā(idxInertia, idxInertia2) = d·Ratio·RatioShaft
43: Ā(idxInertia, idxShaft) = -k·Ratio·RatioShaft
44: case GearSet
45: Ā(idxInertia, idxInertia) = -d·Ratio·RatioShaft·relationGS
46: Ā(idxInertia, idxInertia2) = d·Ratio·RatioShaft·relationGS
47: Ā(idxInertia, idxSecInertiaGS)= -d·Ratio·RatioShaft·relationGS
48: Ā(idxInertia, idxShaft) = k·Ratio·RatioShaft·relationGS
49: for 1 to NumberOfShafts do
50: [ShaftConnection,RatioShaft] = calculateRatio(ShaftConnection)

51: switch ShaftConnection do
52: case Inertia
53: Ā(idxShaft,idxInertia)=± RatioShaft

54: case GearSet
55: for 1 to NumberOfGSConnectors do
56: [GearSetConnnection,ratioGS] = calculateRatio(GearSetConnection)

57: if GearSetConnection is Inertia then
58: Ā(idxShaft, idxInertia)=± ratioShaft · ratioGS · relationGS
59:

60:

61: procedure [Connection, ratio]= calculateRatio(Connection)
62: if Connection is not Gear then
63: ratio=1

64: else if Connection is Gear And TorqueDirection is GearDirection then
65: ratio=Gear.getRatio()

66: Connection=Gear.getConnection()

67: else
68: ratio=Gear.getRatio()−1

69: Connection=Gear.getConnection()

70: return ratio,Connection

CHAPTER 5. AUTOMATED DRIVETRAIN PARAMETERIZATION 44

5.1 Input

If an external input is connected on the left side of the inertia an entry is added at the
column according to the input and the row according to the inertia in B̄pri. This entry
has to be positive because the torques point in the same direction. If there is a gear in
between the input and the inertia, the current factor is multiplied with the gear ratio.
If it is connected on the right side of the inertia an entry is added at the same index but in
B̄sec. Due to the fact, that the torques do not point in the same direction the sign of the
entry is negative. Furthermore, if there is a gear in between, the current factor is divided
by its gear ratio.

5.2 Clutch/Brake

Similarly to the input, the clutch component is also represented in the u-vector and,
therefore, an entry in matrix B̄ has to be added. Since there is the possibility to choose
the direction of the clutch torque the determination of the sign does not only depend on
which side it is connected but also of the clutch torque direction. However, in general the
sign of the entry is positive if the two torques point in the same direction and negative
otherwise. Depending on whether the clutch is connected on the left or the right side of
the inertia an entry is either added to B̄pri or B̄sec.

5.3 Shaft

If the connected component is a shaft the further procedure adapts due to the influence
of the shaft on the following component which can either be an inertia or one of the gear
sets. For better understanding of the shaft a small example is presented in fig. 5.1(a).
The configuration of the inertia on the left side of the shaft is shown in fig. 5.1(b) and the
configuration of the other inertia is shown in fig. 5.1(c). The parameters of the shaft are
defined with k for stiffness and d for damping.
Granted that x1 represents the motion state of J1, x2 represents the motion state of J2
and x3 represents the position difference over the shaft, the following equations of motions
can be expressed.

J1ẋ1 = −τs + τin1

J2ẋ2 = τs − τin1

ẋ3 = x1 − x2 (5.2)

τs = k∆ϕs + d∆ωs = kx3 + d(x1 − x2) (5.3)

Combining the equations in eqn. (5.2) and the equation eqn. (5.3) leads to eqn. (5.4).

J1ẋ1 = −dx1 + dx2 − kx3 + τin1

J2ẋ2 = dx1 − dx2 + kx3 − τin1

ẋ3 = x1 − x2 (5.4)

CHAPTER 5. AUTOMATED DRIVETRAIN PARAMETERIZATION 45

(a) Block diagram of a simple example with shaft.

(b) Parameter configuration of the in-
ertia left to the shaft.

(c) Parameter configuration of the iner-
tia right to the shaft.

Figure 5.1: Exemplary drivetrain configuration containing a shaft.

Writing down these equations in matrix format gives the following matrices.

x =
[
ω1 ω2 ϕ1 − ϕ2

]

u =
[
τin1 τin2

]

M = diag(
[
J1 J2 1

]
)

Ā =

−d d −k
d −d k
1 −1 0

 (5.5)

B̄ =

1 0
0 −1
0 0

C = 0

For the creation of matrix Ā the left inertia is considered first. The speed difference over
the shaft (see eqn. (5.3)) is separated and is illustrated in the first two entries in the first
row of Ā. The third entry in the first row is given through the torque over the shaft which
is multiplied by the stiffness of if. Since x1 represents the motion state of the left inertia
and x2 the motion state of the right inertia, the signs of the entries in the second row are
inverse. According to the which side of the inertia the shaft is connected, these entries
will be saved in ĀPri or ĀSec. Now the first two rows of Ā are complete. The last row
represents the influences on the shaft which are 1 for the inertia on the left side and −1
for the inertia on the right side. The example in fig. 5.1a can be easily extended with
gears. Depending on which side the are connected they will be divided or multiplied. In
the algorithm 1 this is indicated with ratio and ratioShaft.
If the shaft is connected to a gear set the main configuration stays the same since the
gear set can be seen as two additional inertias connected over gears. These gear ratios are

CHAPTER 5. AUTOMATED DRIVETRAIN PARAMETERIZATION 46

defined through the gear set and the arrangement of the inertias. In the algorithm 1 the
ratio defined by the gear set is called relationGS. Furthermore, the shaft torque τs is now
dependent on all three inertias in total. As a result, the two inertias connected to gear set
are also dependent on each other.
The matrix C is zero, since there are no sensors in the configuration. The determination
of the entries of B̄ is already described in section 5.1.

5.4 Planetary gear set

If the inertia is directly connected to a planetary gear set the other components connected
to the gear set have to be checked. In case that the next component is an inertia or a
ground it can be skipped since it provides a rotational speed. There are three possible
components providing torques which need to be treated differently.

1. Shaft: The determination of the dependencies is already described above. The
only difference to the procedure above is that the considered inertia is not directly
connected to the shaft but linked over the gear set.

2. Clutch/Brake: As mentioned above each clutch is represented in vector u and
therefore the dependencies have to be saved in B̄. A planetary gear set in between
an inertia and a clutch can be seen as gear with a certain predefined gear ratio. It
was assumed that all torques acting on the planetary gear sets point to the gear set.
Furthermore, the clutch torque direction is configurable. In addition, the internal
calculation bases on the assumption that all torques acting on a inertia point to it.
As a result, all torque directions are defined and the determination of the sign of the
dependency is simple. Depending on which side the inertia is linked to the planetary
gear set the dependency is either saved in B̄pri or B̄sec.

3. Mux: Considering that mux was implemented to combine two clutches the deter-
mination of the dependencies is similar to the procedure above. It can be treated as
two independent clutches linked to one input of the gear set.

5.5 Extended Ravigneaux gear set

In case that the next component is a extended Ravigneaux gear set, the procedure of the
determination of the dependencies is very similar to the planetary gear set described earlier.
The only difference is that there are three inputs which are not connected to inertias. As
a result, an inertia linked to an extended Ravigneaux gear set has influences of all other
connected components. Depending on whether the considered connected component is a
shaft, clutch or mux the dependencies are saved in Ā or B̄.

5.6 Specific gear set

Similar to the extended Ravigneaux gear set, the specific gear set also uses the same
procedure to determine the dependencies as the planetary gear set. Here, two components

CHAPTER 5. AUTOMATED DRIVETRAIN PARAMETERIZATION 47

are connected to the gear set which are not inertias and therefore have an influence on the
connected inertias.

5.7 Short summary

With the developed algorithm it is possible parameterize different drivetrain configurations
automatically. The algorithm 1 illustrates the main procedure for the systematic interpre-
tation of the designed drivetrain. In the following chapter the automated parameterization
will be validated with the model presented in [4].

Chapter 6

Tool validation

The automated parameterization is demonstrated for three different topologies. Therefore,
the system matrices of eqn. (5.1) are shown for each topology. An overview over the used
components is given in tab. 6.1.

6.1 Conventional automatic transmission

This drivetrain topology comprises a seven-clutch transmission. Fig. 6.1 illustrates the
schema of this conventional automatic transmission, showing the different torque directions
and configurations. In fig. 6.2 the drivetrain topology designed with the implemented
development is presented. The inertia Jv in fig. 6.1 was configured as vehicle mass Mv

with the lever arm rw representing the wheel radius.

J1

τe

J2
C0

−→−→
τC0

C0

−→−→
τC0

S3C2

←−←−
τC2

C2

←−←−
τC2

R3

C1

←−←−
τC1

C1

←−←−
τC1

S2J3

R2

C4

−→−→
τC4

C4

−→−→
τC4

C3

−→−→
τC3

C3

−→−→
τC3

S1

R1

C5

−→−→
τC5

C5

−→−→
τC5

C6

−→−→
τC6

C6

−→−→
τC6

Jf

Jv

k

dd
τv

if

ωe

ωP3

ωS3 ωf

ωv = r−1w vv

ϕv = r−1w svi22 i11i33

←−←−
τP3

−→−→
τS3

P2P3

PG 3

PG 1/2

Figure 6.1: Diagram of a conventional automatic transmission which comprises a seven-clutch transmission
with an specific combined gear set (PG 1/2) and a planetary gear set (PG 3). The seven friction elements
are four brakes (c1, c2, c5, c6) and three clutches, including the separation clutch c0.

49

CHAPTER 6. TOOL VALIDATION 50

Diagram Implementation Description

torque input

clutch

elastic shaft

ground

gear

motion of inertia

planetary gear set

extended Ravigneaux gear set

extended Ravigneaux gear set

Table 6.1: List of all used components with their used icon in the diagram and the implementations.

CHAPTER 6. TOOL VALIDATION 51

Figure 6.2: Configuration of the conventional automatic transmission given in fig. 6.1 in the implemented
environment.

In this configuration a specific and a simple planetary gear set is used. The fifth state is a
velocity and not an angular velocity and M(5, 5) is a mass and not an inertia. Therefore,
the velocity and has to be divided by the lever arm rw which is indicated in in the following
matrices. The torque relations of the planetary gear sets have been determined with the
kinematic and kinetic equations as mentioned in subsection 4.2.8. There are only inertias
and clutches connected to the gear sets. Hence, their relations are only considered in B̄.
The whole configuration file is shown in appendix A.3. The factors rCR1

, rS2
R1
, rS2

R2
and rCR2

can be found in tab. 4.3.

x =
[
ωe ωP3 ωS3 ωf vv ifϕf − ϕv

]T

u =
[
τe τv τc0 τc1 τc2 τc3 τc4 τc5 τc6

]T

M =

J1 0 0 0 0 0
0 J2 0 0 0 0
0 0 J3 0 0 0
0 0 0 Jf 0 0
0 0 0 0 Mv 0
0 0 0 0 0 1

Ā =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 −i−2
f d− dg −i−1

f d r−1
w i−1

f k

0 0 0 i−1
f d r−1

w −d r−2
w k r−1

w

0 0 0 i−1
f −r−1

w 0

CHAPTER 6. TOOL VALIDATION 52

100

300
ω
e

[ra
d s

]

0

15

v v
[m s

]

Vehicle Meas Sim

−1

0

1

a v
[m s2

]

0 50 100 150 200 250 300
slip

lockC0

lockC1

lockC2

lockC3

lockC4

lockC5

lockC6

Time [s]

C
0
..
6

Figure 6.3: Vehicle measurement data of a driving cycle on a test track is used for validation of the
modeling solution. The diagram illustrates the rotational speed of the engine ωe, the vehicle velocity vv
and acceleration av as well as the clutch states c0...6. For the sake of clarity, the different clutch states are
shown in different colors. As can be seen, the clutch c6 is never activated during the driving cycle, since it
is responsible for reverse driving. For a better interpretation of the measured and simulated data the red
sections in this figure are shown in more detail in fig. 6.4.

B̄ =

1 0 −1 0 0 0 0 0 0

0 0 1 −(1 + i33)i
−1
33 0 −1 −1 0 0

0 0 0 −i−1
33 −1 −rS2

R2
−rS2

R1
rS2
R1

rS2
R2

0 0 0 0 0 −rP1
R2
−rCR1

rP1
R1

rCR2

0 −r−1
w 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

For this configuration vehicle measurement data of a driving cycle on a test track was
available. Therefore, an offline simulation of this driving cycle was performed and com-
pared to the vehicle measurement data. The comparison is illustrated in fig. 6.3 and
reveals that the simulation model represents well the behavior of the overall vehicle in-
cluding different maneuvers and gear shift sequences. The deviation of the simulation can
be justified as model parameters were directly taken from mechanical design instead of
fitted to measurement. Fig. 6.4 shows a more detailed few of to sections indicated in fig.
6.3. In the left section transient driving with only one shift in a 50s time period shows
that simulation and measurement fit well. However, the shifting procedure in the right
section reveals the limitations of the model. The modeled acceleration signal is not precise
enough to allow a representative driveability evaluation. For a more precise model, the
effort for parameterization of other model components, such as clutch hydraulics or the
combustion engine, needs to be increased. The model parameters used for the simulation
are summarized in tab. 6.2.

CHAPTER 6. TOOL VALIDATION 53

200

350

ω
e

[ra
d s

]

10

15

v v
[m s

] Vehicle Meas Sim

−1

0

1

a v
[m s2

]

50 60 70 80 90 100
slip

lockC0

lockC1

lockC2

lockC3

lockC4

lockC5

lockC6

Time [s]

C
0
..
6

227 229 231 233 235
Time [s]

Figure 6.4: Detailed comparison of measurement data and simulation. A transient driving maneuver is
shown in the left section with only one gear shift event at ≈ 82s. The section on the right side illustrates a
more dynamic shifting procedure, since there is an downwards and upwards shifting in a small time period
of ≈ 5s representing a standard acceleration for an overtaking maneuver.

Var Parameter Value Unit

J1 Inertia engine, C0 primary 0.098 [kgm2]

J2 Inertia C0 secondary 0.0124 [kgm2]

J3 Inertia 0.023 [kgm2]

Jf Lumped inertia gearbox secondary, side shafts 1.32 [kgm2]

Mv Mass of vehicle 1380 [kgm]

k Shaft stiffness gearbox secondary to vehicle 4000 [Nm/rad]

d Shaft damping gearbox secondary to vehicle 200 [Nms/rad]

i11 Stationary gear ratio between S1 and R1 -1.64

i22 Stationary gear ratio between S2 and R2 -2.08

i33 Stationary gear ratio between S3 and R3 2.19

if Gear ratio final drive 3.61

rw Dynamic wheel radius 0.28 [m]

Table 6.2: Model parameters for simulation of driving cycle.

6.2 Exemplary dual clutch transmission

Another drivetrain topology tested is a DCT. The schematic of this drivetrain topology
is depicted in fig. 6.5 again showing the torque directions and configurations. The dual-
clutch transmission implemented with the developed environment is shown in fig. 6.6

CHAPTER 6. TOOL VALIDATION 54

Figure 6.5: Diagram of a demo dual clutch transmission with one gear for each layshaft.

Figure 6.6: Design of the demo dual clutch transmission given in fig. 6.5 with the implemented environment.

The algorithm generated the following matrices. The shaft is connected to Jf over the
gear if and to Jv. The relations between these components are in Ā. The entries in B̄ lead
back to the clutches and inputs in fig. 6.6. The configuration file is shown in appendix
A.1.

CHAPTER 6. TOOL VALIDATION 55

x = [ωe ωf ωw i−1
f ϕf − ϕw]T

u = [τe τv τc1 τc2]T

M =

J1 0 0 0
0 Jf 0 0
0 0 Jv 0
0 0 0 1

Ā =

0 0 0 0

0 −i−2
f d −i−1

f d i−1
f k

0 i−1
f d −d k

0 i−1
f −1 0

B̄ =

1 0 −1 −1
0 0 i1 i2
0 −1 0 0
0 0 0 0

6.3 Complex hybrid-electric automatic transmission

The last configuration is a automatic hybrid-electric drivetrain taken from [4]. Fig. 6.7
shows the schematic of this future hybrid transmission to gain clarity of names and torque
directions. In fig. 6.8 the topology drawn with the developed tool is presented. The
inertia Jv is configured as the vehicle mass Mv with the lever arm rw representing the
wheel radius. This example demonstrates the applicability of this solution to complex
drivetrains.

J2

J1

S3

S1

R3

JR3

R1

S2

R2

Jf

τm τe

τR1
←−←−

C1

−→−→
τC1

P
C1

−→−→
τC1

P

C3

−→−→
τC3

C3

−→−→
τC3

C0

−→−→
τC0

C0

−→−→
τC0

ωR3

C2

−→−→
τC2

P3

C2

−→−→
τC2

P3

k

dd Jv τv
if

ωm

ωe

ωf

ϕf

ωv = r−1w vv

ϕv = r−1w sv

τR2
−→−→

Figure 6.7: Diagram of a hybrid-electric transmission with an extended Ravigneaux and a planetary gear
set. The four friction elements are one brake c3 and three clutches, including one separation clutch c0.
These allow a conventional, a power-split and a fully electric operation mode.

CHAPTER 6. TOOL VALIDATION 56

Figure 6.8: Design of the hybrid-electric transmission given in fig. 6.7 with the developed environment.

This configuration consists of an extended Ravigneaux and a simple planetary gear set.
Similar to the conventional automatic transmission in section 6.1 the fifth state is a ve-
locity and not an angular velocity and M(5, 5) is a mass and not an inertia. Therefore,
the velocity and has to be divided by the lever arm rw. The torque relations of the plan-
etary gear sets have been determined with the kinematic and kinetic equations already
mentioned above. These relations are used in B̄, since both gear sets are only connected
to clutches, inertias and ground elements. The relations are presented in tab. 4.2. The
initialization file containing these matrices is also shown in appendix A.2.
With the help of the automated parameterization of the tool, sign errors of the manual
parameterization have been detected.

x =
[
ωe ωm ωR3 ωf vw ifϕf − ϕw

]T

u =
[
τe τm τv τc0 τc1 τc2 τc3

]T

M =

J1 0 0 0 0 0
0 J2 0 0 0 0
0 0 JR3 0 0 0
0 0 0 Jf 0 0
0 0 0 0 Mv 0
0 0 0 0 0 1

CHAPTER 6. TOOL VALIDATION 57

Ā =

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0

0 0 0 −i−2
f d −i−1

f d r−1
w i−1

f k

0 0 0 i−1
f d r−1

w −d r−2
w k r−1

w

0 0 0 i−1
f −r−1

w 0

B̄ =

0 1 0 −1 0 0 0
2 0 0 0 −rR1

C −rR1
S1 rR1

S2

0 0 0 1 −1 −i33(−1 + i33)
−1 0

0 0 0 0 −rR2
C −rR2

S1 rR2
S2)

0 0 −r−1
w 0 0 0 0

0 0 0 0 0 0 0

6.4 Summary

This chapter showed that the developed tool is useful for schematic design and parameter-
ization of different commonly used drivetrain topologies such as dual-clutch transmission,
transmissions for hybrid-electric vehicles and conventional automatic transmissions. The
automated paramterization has matched the manual configuration for each given example.
It has been verified with a real-life driving cycle.

Chapter 7

Conclusion and Outlook

7.1 Conclusion

In this Master’s thesis a novel tool for schematic drivetrain design and its automated
parameterization was developed. For this purpose, a graphical user interface was imple-
mented, providing relevant mechanical components needed for the drivetrain configuration.
These components can be arranged and connected via Drag and Drop. To simplify the
drivetrain design for the user, some restrictions concerning the connections between com-
ponents are treated automatically as well. The drivetrain design can be saved and loaded
for further developments. For the automated parameterization an algorithm, which in-
terprets the designed drivetrain, has been developed. The most challenging topics, while
developing the algorithm, have been to find a way to generalize the sign determination of
the clutch torques and the implementation of the different advanced gear sets.

The efficiency of the approach basing on the developed tool has been successfully demon-
strated for several drivetrain topologies such as dual clutch transmission, conventional
automatic transmission, and a transmission for a hybrid-electric vehicle. The parameteri-
zations of these topologies have been validated with the results presented in [4]. Finally, an
automated parameterization of a conventional automatic transmission has been validated,
using measurement data of a real-life driving cycle.

Existing approaches for generic drivetrain modeling base on a model with full mechanical
degree of freedom (all friction elements slipping) switch over to reduced models in the
case of locked clutches. Building up model-internal generic algorithms requires expert
know-how in mechanical engineering. The developed tool for automated parameterization
enables non-experts to design drivetrain topologies, to derive the model parameteriza-
tion for these and to reduce possible sources of errors usually occurring during manual
modeling.

7.2 Outlook

Since drivetrain topologies can hold many different combined gear sets, a more general
implementation of complex gear sets would be beneficial. Therefore, a coupling of the

59

CHAPTER 7. CONCLUSION AND OUTLOOK 60

tool with a computer algebra software to solve the kinetic and kinematic equations of
any specific gear set would increase flexibility. Furthermore, the handling of depended
parameters of the flexible shaft (damping and stiffness) and the integration of rotational
speeds as interface are aims of future work. Moreover, the implementation of an improved
torque converter will be subject to further investigations, possibly basing on the model
description in [22].

Appendix A

MATLAB initialization files

The following table shows corresponding symbols used in the following configuration files
and in the parameterization results in chapter 6.

x vec x
u vec u
Aq Ā
Bq B̄
r w rw

In the following sections the three configuration functions for the drivetrain topologies
presented in 6 are given. The function dctConfig is the configuration function of the dual-
clutch transmission. fhConfig is the initialization function for the electric-hybrid trans-
mission and conventionalConfig represents the initialization function for the conventional
automatic transmission.

A.1 DCT configuration

Contents

• Create Mass-Matrix (M)
• Create A-Matrix (Aq)
• Create B-Matrix (Bq)
• Create C-Matrix (C)
• Create state initialization vector (x0)

function [ParNT, Pconfig] = dctConfig(P)

% x_vec = [Om_engine, Om_GearbOut, Om_Vehicle, PhiShaft [P.k, P.d]]

% u_vec=[tau_engine, tau_Vehicle, tau_c1, tau_c2]

% number of states

nrX = 4;

% Number of inputs (external, excluding clutches)

nrU = 2;

61

APPENDIX A. MATLAB INITIALIZATION FILES 62

% number of clutches

nrC = 2;

% number of outputs

nrY = 3;

Create Mass-Matrix (M)

M = diag([P.J1, P.Jf, P.Jv, 1]);

Create A-Matrix (Aq)

% Torques/forces acting on primary (’left’) side of masses

AqPri = zeros(nrX, nrX);

AqPri(3,2) = P.if^-1 * P.d;

AqPri(3,3) = -1^2 * P.d;

AqPri(3,4) = P.k;

% Torques/forces acting on secondary (’right’) side of masses and

torques/forces acting on shafts

AqSec = zeros(nrX, nrX);

AqSec(2,2) = -P.if^-2 * P.d;

AqSec(2,3) = P.if^-1 * P.d;

AqSec(2,4) = -P.if^-1 * P.k;

AqSec(4,2) = P.if^-1;

AqSec(4,3) = -1;

Aq = AqPri + AqSec;

Create B-Matrix (Bq)

Torques/forces acting on primary (’left’) side of masses

BqPri=zeros(nrX,nrU+nrC);

BqPri(1,1) = 1;

BqPri(2,3) = P.i1;

BqPri(2,4) = P.i2;

% Torques/forces acting on secondary (’right’) side of masses

BqSec=zeros(nrX,nrU+nrC);

BqSec(1,3) = -1;

BqSec(1,4) = -1;

BqSec(3,2) = -1;

Bq = BqPri + BqSec;

Create C-Matrix (C)

y -> sensor values

APPENDIX A. MATLAB INITIALIZATION FILES 63

C = zeros(nrY,nrX);

C(1,1) = 1; % engine

C(2,2) = 1; % GearbOut

C(3,3) = 1; % Vehicle

Create state initialization vector (x0)

x0 = zeros(nrX,1);

x0(1) = P.Dt_NEngInit * pi/30;

x0(2) = P.Dt_VVehInit;

x0(3) = P.Dt_VVehInit;

x0(4) = 0;

% Indices of components in states ’x’ in order:

% (Engine, E-Motor, TC-impeller, TC-turbine, GearbOut, WhlDrv, Vehicle)

% if component is not available, use index -> 0

ParNT.idxXorig = [1, 0, 0, 0, 2, 0, 3]’;

% Indices of components in external inputs ’u’ in order:

% (Engine, E-Motor, TC-impeller, TC-turbine, WhlDrv, Vehicle)

% if component is not available, use index -> 0

ParNT.idxU = [1, 0, 0, 0, 0, 2]’;

Pconfig.nrX = nrX;

Pconfig.nrY = nrY;

Pconfig.nrU = nrU;

Pconfig.nrC = nrC;

Pconfig.M = M;

Pconfig.AqPri = AqPri;

Pconfig.AqSec = AqSec;

Pconfig.Aq = Aq;

Pconfig.BqPri = BqPri;

Pconfig.BqSec = BqSec;

Pconfig.Bq = Bq;

Pconfig.C = C;

Pconfig.idxUN = idxUN;

Pconfig.Dv = Dv;

Pconfig.x0 = x0;

end

A.2 Future hybrid configuration

Contents

• Create Mass-Matrix (M)
• Create A-Matrix (Aq)

APPENDIX A. MATLAB INITIALIZATION FILES 64

• Create B-Matrix (Bq)
• Create C-Matrix (C)
• Create state initialization vector (x0)

function [ParNT, Pconfig] = fhConifg(P)

% x_vec = [Om_engine, Om_eMot, Om_none, Om_GearbOut, V_Vehicle,

PhiShaft [P.k, P.d]]

% u_vec=[tau_eMot, tau_engine, tau_Vehicle, tau_c0, tau_c1,

tau_c2, tau_c3]

% number of states

nrX = 6;

% Number of inputs (external, excluding clutches)

nrU = 3;

% number of clutches

nrC = 4;

% number of outputs

nrY = 4;

Create Mass-Matrix (M)

M = diag([P.J_1, P.J_2, P.J_R3, P.J_f, P.M_v, 1]);

Create A-Matrix (Aq)

% Torques/forces acting on primary (’left’) side of masses

AqPri = zeros(nrX, nrX);

AqPri(5,4) = P.i_f^-1 * P.d * P.r_w^-1;

AqPri(5,5) = -P.d * P.r_w^-2;

AqPri(5,6) = P.k * P.r_w^-1;

% Torques/forces acting on secondary (’right’) side of masses and

torques/forces acting on shafts

AqSec = zeros(nrX, nrX);

AqSec(4,4) = -P.i_f^-2 * P.d;

AqSec(4,5) = P.i_f^-1 * P.d * P.r_w^-1;

AqSec(4,6) = -P.i_f^-1 * P.k;

AqSec(6,4) = P.i_f^-1;

AqSec(6,5) = - P.r_w^-1;

Aq = AqPri + AqSec;

Create B-Matrix (Bq)

Torques/forces acting on primary (’left’) side of masses

BqPri=zeros(nrX,nrU+nrC);

BqPri(1,2) = 1;

BqPri(2,1) = 1;

APPENDIX A. MATLAB INITIALIZATION FILES 65

BqPri(3,4) = 1;

BqPri(4,5) = - ((P.i_11 - P.i_12)^-1 * P.i_12);

BqPri(4,6) = - ((P.i_11 - P.i_12)^-1 * (P.i_12 - P.i_11*P.i_12));

BqPri(4,7) = ((P.i_11 - P.i_12)^-1 * (P.i_12 - P.i_11*P.i_22));

% Torques/forces acting on secondary (’right’) side of masses

BqSec=zeros(nrX,nrU+nrC);

BqSec(1,4) = -1;

BqSec(2,5) = - (-(P.i_11 - P.i_12)^-1 * P.i_11);

BqSec(2,6) = - (-(P.i_11 - P.i_12)^-1 * (P.i_11 - P.i_11*P.i_12));

BqSec(2,7) = (-(P.i_11 - P.i_12)^-1 * (P.i_11 - P.i_11*P.i_22));

BqSec(3,5) = -1;

BqSec(3,6) = (-P.i33/(-1+P.i33));

BqSec(5,3) = - P.r_w^-1;

Bq = BqPri + BqSec;

Create C-Matrix (C)

y -> sensor values

C = zeros(nrY,nrX);

C(1,1) = 1; % engine

C(3,2) = 1; % eMot

C(2,3) = 1; % none

C(4,5) = 1; % Vehicle

Create state initialization vector (x0)

x0 = zeros(nrX,1);

x0(1) = P.Dt_NEngInit * pi/30;

x0(2) = P.Dt_NMotInit * pi/30;

x0(3) = 0;

x0(4) = P.Dt_VVehInit / 3.6;

x0(5) = P.Dt_VVehInit / 3.6;

x0(6) = 0;

% Indices of components in states ’x’ in order:

% (Engine, E-Motor, TC-impeller, TC-turbine, GearbOut, WhlDrv, Vehicle)

% if component is not available, use index -> 0

ParNT.idxXorig = [1, 2, 0, 0, 4, 0, 5]’;

% Indices of components in external inputs ’u’ in order:

% (Engine, E-Motor, TC-impeller, TC-turbine, WhlDrv, Vehicle)

% if component is not available, use index -> 0

ParNT.idxU = [2, 1, 0, 0, 0, 3]’;

Pconfig.nrX = nrX;

APPENDIX A. MATLAB INITIALIZATION FILES 66

Pconfig.nrY = nrY;

Pconfig.nrU = nrU;

Pconfig.nrC = nrC;

Pconfig.M = M;

Pconfig.AqPri = AqPri;

Pconfig.AqSec = AqSec;

Pconfig.Aq = Aq;

Pconfig.BqPri = BqPri;

Pconfig.BqSec = BqSec;

Pconfig.Bq = Bq;

Pconfig.C = C;

Pconfig.idxUN = idxUN;

Pconfig.Dv = Dv;

Pconfig.x0 = x0;

end

A.3 Conventional drivetrain configuration

Contents

• Create Mass-Matrix (M)
• Create A-Matrix (Aq)
• Create B-Matrix (Bq)
• Create C-Matrix (C)
• Create state initialization vector (x0)

function [ParNT, Pconfig] = conventionalConfig(P)

% x_vec = [Om_engine, Om_none, Om_none, Om_GearbOut,

V_Vehicle, PhiShaft [P.k, P.d]]

% u_vec=[tau_engine, tau_Vehicle, tau_c0, tau_c1,

tau_c2, tau_c3, tau_c4, tau_c5, tau_c6]

% number of states

nrX = 6;

% Number of inputs (external, excluding clutches)

nrU = 2;

% number of clutches

nrC = 7;

% number of outputs

nrY = 2;

Create Mass-Matrix (M)

M = diag([P.J_1, P.J_2, P.J_3, P.J_f, P.M_v, 1]);

APPENDIX A. MATLAB INITIALIZATION FILES 67

Create A-Matrix (Aq)

% Torques/forces acting on primary (’left’) side of masses

AqPri = zeros(nrX, nrX);

AqPri(5,4) = P.i_f^-1 * P.d * P.r_w^-1;

AqPri(5,5) = -P.d * P.r_w^-2;

AqPri(5,6) = P.k * P.r_w^-1;

% Torques/forces acting on secondary (’right’) side of masses and

torques/forces acting on shafts

AqSec = zeros(nrX, nrX);

AqSec(4,4) = -P.i_f^-2 * P.d;

AqSec(4,5) = P.i_f^-1 * P.d * P.r_w^-1;

AqSec(4,6) = -P.i_f^-1 * P.k;

AqSec(6,4) = P.i_f^-1;

AqSec(6,5) = - P.r_w^-1;

Aq = AqPri + AqSec;

Create B-Matrix (Bq)

Torques/forces acting on primary (’left’) side of masses

BqPri=zeros(nrX,nrU+nrC);

BqPri(1,1) = 1;

BqPri(2,3) = 1;

BqPri(3,4) = (-1/P.i_33);

BqPri(3,5) = -1;

BqPri(4,6) = - -(1 -P.i_22 + P.i_11 * P.i_22)^-1 *

(P.i_11 * P.i_22 - P.i_22 - P.i_11 + 1);

BqPri(4,7) = - -(1 -P.i_22 + P.i_11 * P.i_22)^-1 *

(P.i_11 * P.i_22 - P.i_22);

BqPri(4,8) = -(1 -P.i_22 + P.i_11 * P.i_22)^-1 *

(P.i_11 * P.i_22 - P.i_22);

BqPri(4,9) = -(1 -P.i_22 + P.i_11 * P.i_22)^-1 *

(P.i_11 * P.i_22 - P.i_22 - P.i_11 + 1);

% Torques/forces acting on secondary (’right’) side of masses

BqSec=zeros(nrX,nrU+nrC);

BqSec(1,3) = -1;

BqSec(2,4) = (-(-1+P.i_33)/P.i_33);

BqSec(2,6) = -1;

BqSec(2,7) = -1;

BqSec(3,6) = -(1) * -(1 -P.i_22 + P.i_11 * P.i_22)^-1 * P.i_11;

BqSec(3,7) = -(1)^-1 * -(1 -P.i_22 + P.i_11 * P.i_22)^-1;

BqSec(3,8) = (1)^-1 * -(1 -P.i_22 + P.i_11 * P.i_22)^-1;

BqSec(3,9) = -(1 -P.i_22 + P.i_11 * P.i_22)^-1 * P.i_11;

BqSec(5,2) = - P.r_w^-1;

Bq = BqPri + BqSec;

APPENDIX A. MATLAB INITIALIZATION FILES 68

Create C-Matrix (C)

y -> sensor values

C = zeros(nrY,nrX);

C(1,1) = 1; % engine

C(2,4) = 1; % GearbOut

Create state initialization vector (x0)

x0 = zeros(nrX,1);

x0(1) = P.Dt_NEngInit_P * pi/30;

x0(2) = 0;

x0(3) = 0;

x0(4) = P.Dt_VVehInit_P / 3.6;

x0(5) = P.Dt_VVehInit_P / 3.6;

x0(6) = 0;

% Indices of components in states ’x’ in order:

% (Engine, E-Motor, TC-impeller, TC-turbine, GearbOut, WhlDrv, Vehicle)

% if component is not available, use index -> 0

ParNT.idxXorig = [1, 0, 0, 0, 4, 0, 5]’;

% Indices of components in external inputs ’u’ in order:

% (Engine, E-Motor, TC-impeller, TC-turbine, WhlDrv, Vehicle)

% if component is not available, use index -> 0

ParNT.idxU = [1, 0, 0, 0, 0, 2]’;

Pconfig.nrX = nrX;

Pconfig.nrY = nrY;

Pconfig.nrU = nrU;

Pconfig.nrC = nrC;

Pconfig.M = M;

Pconfig.AqPri = AqPri;

Pconfig.AqSec = AqSec;

Pconfig.Aq = Aq;

Pconfig.BqPri = BqPri;

Pconfig.BqSec = BqSec;

Pconfig.Bq = Bq;

Pconfig.C = C;

Pconfig.idxUN = idxUN;

Pconfig.Dv = Dv;

Pconfig.x0 = x0;

end

Appendix B

Definitions

B.1 Abbreviations

AMT Automated manual transmission
AT Automatic transmission
DCT Dual-clutch transmission
ECU Electronic control unit
GUI Graphical user interface
ICE Internal combustion engine
MT Manual transmission
PGS Planetary gear set

B.2 Used symbols

d [Nms/rad] damping of spring element
i - gear ratio
J [kgm2] moment of inertia
k [Nm/rad] stiffness of spring element
τ [Nm] torque
ω [rad/s] rotational speed
u - input
v [m/s] velocity
x - state
y - output

69

Bibliography

[1] O. Niggemann, A. Geburzi, and J. Stroop, “Benefits of system simulation for auto-
motive applications,” in Model-Based Engineering of Embedded Real-Time Systems
(H. Giese, G. Karsai, E. Lee, B. Rumpe, and B. Schaetz, eds.), Springer, 2007.

[2] D. W. Gao and A. Emadi, Modeling and Simulation of Electric and Hybrid Vehicles.
IEEE, Proceedings of the IEEE, 2007.

[3] T. Lennon, Model-based design for mechatronics systems. Natick, Mass.: The
MAthWorks Inc., 2007. http://machinedesign.com/archive/model-based-design-
mechatronics-systems.

[4] M. Bachinger, M. Stolz, and M. Horn, “Fixed time-step drivetrain observer for embed-
ded automotive applications,” in Control Applications (CCA), 2014 IEEE Conference
on, pp. 47–52, Oct 2014.

[5] J. Fuchs, “Dynamische modellierung eines elektrifizierten antriebsstranges,” Master’s
thesis, Institut fuer Elektrische Messstechnik und Messsignalverarbeitung, Technische
Universitaet Graz, September 2012.

[6] O. M. 1.9.1, Copyright Open Source Modelica Consortium (OSMC).
https://openmodelica.org/q, Accessed on 01.12.2014, 2014.

[7] MATLAB, version 8.4.0.150421 (R2014b). Natick, Massachusetts: The MathWorks
Inc., 2014.

[8] L. Prechelt, “Comparing java vs c/c++ efficiency differences to inter-personal differ-
ences,” tech. rep., Fakultaet fuer Informatik, Universitaet Karlsruhe, 1999.

[9] M. K. Dalheimer, “Qt vs. java: A comparison of qt and java for large-scale, industrial-
strength gui development,” Klaraelvdalens Datakonsult AB, -.

[10] L. Prechelt, “An empirical comparison of c, c++, java, perl, python, rexx, and tcl,”
IEEE Computer, 2000.

[11] T. A. Budd, An Introduction to Object-Oriented Programming. Addison Wesley Long-
man Inc, 1998.

[12] T. A. Budd, “Object-oriented programming,” in Handbook of Programming Lan-
guages, Volume I (P. H. Salus, ed.), Macmillian Technical Publishing, 1998.

70

BIBLIOGRAPHY 71

[13] P. M. Fishbane, S. Gasiorowicz, and S. Thornton, Physics for Scientists and Engi-
neers. Prentice-Hall, 1996.

[14] F. Pfeiffer, Mechanical System Dynamics. Lecture Notes in Applied and Computa-
tional Mechanics, Springer, 2008.

[15] E. Kirchner, Leistungsuebertragung in Fahrzeuggetrieben: Grundlagen der Ausle-
gung, Entwicklung und Validierung von Fahrzeuggetrieben und deren Komponenten.
Springer: New York, Berlin, Heidelberg, 2007.

[16] H. J. Foerster, Automatische Fahrzeuggetriebe : Grundlagen, Bauformen, Eigen-
schaften, Besonderheiten. Springer, 1991.

[17] F. Kurth, Efficiency Determination and Synthesis of Complex-Compound Planetary
Gear Transmissions. PhD thesis, Technische Universitaet Muenchen, 2012.

[18] G. Lechner and H. Naunheimer, Fahrzeuggetriebe: Grundlagen, Auswahl, Auslegung
und Konstruktion. Springer, 1994.

[19] R. Fischer, F. Kücükay, and G. Jürgens, Das Getriebebuch. Der Fahrzeugantrieb,
Springer Vienna, 2012.

[20] “Dual clutch transmission.” http://en.wikipedia.org/wiki/Dual-clutch transmission
Accsessed on: 16.03.2015.

[21] M. Yolga, “Robust 3-element gear shift for electrified powertrains,” in CTI Symbosium
Fahrzeuggetriebe, HEV- und EV-Antriebe, 2014.

[22] S. Z. et al., “Modeling and simulation of the automatic transmission assembly using
matlab/simulink,” in Applied Mechanics and Materials, pp. 291–294, 2013.

[23] K. R. (Hrsg.), Konventioneller Antriebsstrang und Hybridantriebe. Springer Fachme-
dien Wiesbaden, 2010.

