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Abstract

Slow motion is a widely used technique, to unveil and analyze details of movements,

which are too fast to be accurately perceived by the human visual system. This de-

celeration effect is typically achieved with the overcranking technique, where a video is

recorded at a high frame rate and played back at a slower speed. In this thesis, concepts

for the generation of the slow motion effect, which do not require a high frame rate

camera, are investigated. The motion compensated frame interpolation algorithm is a

sophisticated basis for the computation of the slow motion effect. It inserts novel frames

between every frame pair of the recorded video. These intermediate frames are computed

by interpolating moving objects along their apparent motion trajectories. Therefore, the

resulting slow motion sequence features smooth movements. In this work, the variational

Huber-L1 optical flow algorithm is utilized, to estimate the motion information. It was

observed, that in regions where the motion estimation is erroneous, interpolation errors

are very likely to become visible. These errors especially occur at very large displace-

ments, small moving structures, occlusions and disocclusions, which all represent weak

spots of the variational optical flow model. To improve these deficiencies, a two step

artifact removal strategy was developed, which addresses the correction of the optical

flow errors, to reduce the visible artifacts. The optical flow result was enhanced, by com-

bining the variational motion estimation model with a patch-based approach. Based on

this enhancement, the wrongly interpolated objects are relocated at the proper posi-

tion, and inpainted with the proposed depth-order preserving algorithm. As shown in

the evaluation, the slow motion algorithm yields promising results for a wide range of

different scenes and movements. Furthermore, the artifact removal strategy is able to

significantly reduce the amount of interpolation errors.

Keywords: Slow Motion, Motion Compensated Frame Interpolation, Bidirectional In-

terpolation, Optical Flow, Disocclusion-Handling, Inpainting
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Slow motion is a commonly used technique, to slow down a certain video and unveil

details of an initially fast movement. It is often used in the film industry for instant

replays in the field of sports broadcasting or as analytic tool for fast motion sequences,

like for example car crash-tests.

For professional applications, the slow motion effect is in general achieved by recording

a video at a very high frame rate, and playing it back at a lower speed. This so called

overcranking approach has no major computational challenges, and is very fast to com-

pute. However, it requires a high speed camera, which is capable of recording videos at

the desired frame rate, and handling the high amount of data within short time. These

devices are significantly more expensive than regular cameras with recording frame rates

of 24 - 30 frames per second (fps), depending on their highest possible recording frame

rate and video resolution. Furthermore, they reach physical limits regarding the ex-

posure time, and hence need additional light sources for high slowdowns, to get well

exposed frames. Therefore, it is necessary, to find alternative ways for the computation

of this slow motion effect, without the need for high speed cameras.

The primary goal of this thesis is to develop an algorithm, which computes a visually

attractive slow motion effect, without utilizing the explained overcranking technique.

We put special emphasis on smooth decelerated object movements and artifact-free

results, to reach a comparable video quality, like the high speed camera approach. In

the following sections, we give a short introduction to existing techniques and discuss

their visual performance, to determine where and how they can be improved.
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Chapter 1. Introduction 2

Several different concepts exist, to achieve a slow motion effect [25]. The simplest

technique is to repeat each recorded frame multiple times. This approach is on the

one hand very easy to implement and also fast to compute, but on the other hand

it yields very juddery object movements. A smoother result is gained with the frame

blending approach. Instead of repeating each frame multiple times, novel intermediate

images are generated by cross-fading two consecutive frames. This method yields smooth

transitions for moderate slowdowns. However, notable artifacts arise at the occurrence of

fast movements, because the moving objects are visible twice during blending. The most

sophisticated approach is the motion compensated frame interpolation [17]. A significant

improvement over other methods is gained, by taking the object motion during the

computation of novel frames into account. This allows the algorithm to propagate

pixel intensities along their corresponding motion vectors, and properly interpolate the

intermediate frames. The benefit of this approach are the very smooth decelerated object

movements in the resulting video. The required motion information is provided by an

optical flow algorithm. Therefore, this method has the highest computational expense

and complexity. An illustration of the three presented slow motion approaches is shown

in Figure 1.1.

A ? ? ? B ...

(a) Unknown intermediate frames

A A A A B ...

(b) Frame repeating

A BA BA A BB ...

(c) Frame blending

A X1 X2 X3 B ...

(d) Motion compensated frame interpolation

Figure 1.1: The figure shows a comparison on different slow motion concepts. (a)
To achieve a video slowdown by the factor of 4, we have to insert 3 intermediate
frames between every frame pair (in this example between frame A and B). (b) In the
simple approach, the original frames are duplicated multiple times, which leads to a
jaggy motion during playback. (c) A smoother result can be achieved by cross-fading
frame A and frame B in the intermediate frames. However, for fast moving objects
or high slowdowns, this technique still yields very poor results. (d) The smoothest
slow motion is gained with the motion compensated frame interpolation approach,
where the intermediate frames are generated by propagating pixel intensities along
their corresponding motion vectors.
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The motion compensated frame interpolation requires a dense motion field, to propagate

every single pixel intensity linear along the estimated displacement vector, as shown in

Figure 1.2. This is accomplished by applying a variational optical flow approach, like the

proposed model of Horn and Schunck [22]. The benefit of their optical flow algorithm

is the fill-in effect in weakly textured homogeneous regions, where a local optical flow

computation is not feasible. This approach was among others further improved by Zach

et al. [43] (Total Variation-L1), to allow sharp discontinuities in the flow field, and by

Werlberger et al. [41] (Huber-L1), to gain a smooth solution in weakly textured regions.

Frame A

Frame B
Interpolated frame

tim
e 

Figure 1.2: Linear propagation of a pixel intensity, along the corresponding motion
vector. The red vector indicates the displacement of a pixel from frame A to B, visu-
alized on the two-dimensional plane of frame A. The pixel displacement in the three-
dimensional space-time volume, spanned by frame A and B, is illustrated by the blue
vector. The point, where the blue vector intersects with the plane of the intermediate
frame, represents the interpolated position of the moving pixel.

The optical flow is the foundation of the motion compensated frame interpolation.

Therefore, the resulting slow motion video strongly depends on the quality and the

limitations of the optical flow model. This is clearly notable in the forward interpolation

approach, where only the forward flow, which is computed from frame A to B, is utilized

for the interpolation algorithm. Due to the lack of motion information in disoccluded

regions, visible holes emerge in the interpolated frames. This is illustrated in Figure 1.3,

where the occlusions and disocclusions are highlighted. A solution to this problem is the

bidirectional interpolation approach, where beside the forward also the backward flow

is taken into account. The holes can be properly filled, because a disocclusion in for-

ward direction is an occlusion in backward direction, and vice versa. This improvement

comes with an almost doubled computational expense, due to the additional backward

flow estimation.

With the constraint, that the motion estimation algorithm provides a correct opti-

cal flow, the bidirectional interpolation approach yields visually pleasant intermediate

frames and a smooth slow motion. However, if the optical flow is erroneous, visible

artifacts arise in the interpolated frames. To increase the visual quality, we focus on
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(a) Frame A (b) Frame B (c) Disocclusion (d) Bidir. interpolation

Figure 1.3: Visualization of occlusions (blue) and disocclusions (red), based on the
forward flow, estimated from frame A to B. For the red colored pixels, no intensity
information is available, due to the lack of motion vectors. In the improved bidirectional
interpolation method, these holes are filled with vectors of the opposite flow direction,
which leads to the correctly interpolated intermediate frame shown in (d).

the reduction of these occurring errors. In the first place, an error measure needs to

be defined, to locate wrongly interpolated pixels. These errors have to be removed and

inpainted at the correct location, to preserve the temporal continuity of the slow motion

video.

Our proposed solution is aimed at the correction of wrongly estimated displacement

vectors, since they cause the occurring artifacts. We detect and mask perceivable in-

terpolation errors, with the warp error measure. Identified erroneous pixels, which are

geometrically connected, are treated as individual patches. Based on these patches, we

try to enhance the optical flow, with a patch-based motion estimation approach. With

the corrected displacement vectors, we are able to determine the proper position of the

wrongly interpolated patch, where it needs to be inpainted. The proposed patch-based

inpainting algorithm, is able to preserve the correct depth order of the scene, which

is necessary for a sophisticated occlusion and disocclusion handling. As the evaluation

results show, our proposed slow motion algorithm yields visually attractive results, and

is able to significantly reduce the amount of artifacts, in comparison to the bidirectional

interpolation approach.

1.2 Related Work

A frame interpolation approach, for the generation of slow motion videos, was proposed

by Dudek et al. [17]. They utilize the motion vector field for the image registration,

to warp an image into the other. Based on this warping process, they generate novel

intermediate frames between every frame pair. The following key aspects are listed as

requirements for the motion estimation: support of large displacements, dense motion

vector field, fast and robust computation. Therefore, they use the variational approach of

Horn and Schunck [22], to estimate the optical flow. To support large displacements, the
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optical flow estimation is iteratively performed in an image pyramid, from the coarsest

to the finest level. The novel intermediate frames are generated, by propagating the

pixel intensities linear along the displacement vectors of the forward flow. The proposed

algorithm yields reasonable results, as shown in Figure 1.4. However, since the backward

flow is not considered in the frame interpolation, no sophisticated disocclusion handling

is achieved.

Figure 1.4: Comparison of the simple frame blending approach and the forward frame
interpolation approach. The upper row shows the two consecutive input images of the
frame interpolation algorithm. In the lower left, the visually poor result of the frame
blending approach is visible. The lower right image shows the interpolated result of the
frame interpolation algorithm, proposed by Dudek et al. [17]. The images are taken
from [17].

Werlberger et al. [42] proposed a framework, which is beside the bidirectional frame

interpolation also aimed at video restoration, denoising and inpainting. To gain a ro-

bust occlusion and disocclusion handling, the forward and backward flow are taken into

account. A slightly modified TV-L1 denoising model is utilized in a spatio-temporal

volume, which is spanned by the input images. The temporal derivatives are computed

along previously estimated motion vectors, to incorporate the movement of the pixels.

For the motion estimation they use the variational optical flow model, presented in [41].

As shown in Figure 1.5, their approach yields properly interpolated intermediate frames,

with good results in occluded and disoccluded regions. They state large displacements,

fast movements, small-scaled structures and complex occlusions as major difficulties.

An alternative frame interpolation approach, based on a modified TV-L1 optical flow

algorithm, was proposed by Rakêt et al. [31]. The data term of the TV-L1 energy

functional was re-parameterized, with the assumption of a symmetric optical flow. This

requires the unknown intermediate frame, to be located exactly in the middle between

the two input images, as shown in Figure 1.2. The solution of the modified energy

functional yields an optical flow, which points from the intermediate frame to the input
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Figure 1.5: The leftmost and rightmost column contain the input images and the
center columns the interpolated images. As can be seen in the enlarged frames in
the bottom row, the bidirectional frame interpolation algorithm of Werlberger et al.
[42] yields visually attractive results. The head movement and the mouth closing are
interpolated without visible artifacts. Furthermore, also the occluded region in the
background is handled correctly. The shown images are taken from [42].

images, instead of from the first input image to the other. Therefore, the flow warp-

ing step, which is necessary for the forward and bidirectional interpolation, becomes

obsolete. In their evaluation, the symmetrical approach outperforms the forward and

backward interpolation, as shown in Figure 1.6.

Figure 1.6: Comparison of different frame interpolation approaches. From left to right
column: ground truth images, forward interpolation, backward interpolation, symmet-
rical approach by Rakêt et al. [31]. It can be observed, that the symmetrical approach
yields a visually good result, with less artifacts in comparison to the other two ap-
proaches. The images are taken from [31].

1.3 Synopsis

In this section we want to give a brief overview on the structure of the thesis. In

chapter 2 we give a detailed introduction to optical flow. We present three different

optical flow concepts in section 2.2, and focus on gradient-based models in section 2.3.
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After introducing widely used constraints, we discuss local and global approaches. In

section 2.3.4 we in detail explain the well performing variational optical flow optimiza-

tion. Algorithms for motion compensated frame interpolation are presented in chapter 3.

After giving an overview on image and video inpainting algorithms in section 3.4, we

present our two-step artifact removal strategy in section 3.5. In chapter 4 we explain

the evaluation of the implemented algorithm. The utilized optical flow library and its

parameterization is presented in section 4.1. The final evaluation results of the Skiline

and Ground Truth datasets are presented in section 4.2 and section 4.3. A final con-

clusion on the presented work and an outlook for further research are summarized in

chapter 5.



Chapter 2

Optical Flow

Optical flow is an important topic in the field of computer vision, with applications

in video compression, segmentation, 3D reconstruction, object detection and motion

compensated frame interpolation. It describes the apparent motion of objects in a

sequence of images. Usually two consecutive images of a scene are considered for the

computation, where the main goal is to find for each pixel in frame A, a vector pointing

to the corresponding pixel in frame B. The resulting displacement vector field is called

optical flow.

2.1 Apparent Motion in Image Sequences

In general, motion of a rigid object is understood as geometric displacement of the object

itself, the observer, or both. Assuming the observer being a camera, which is capturing

the scene, we get an image sequence with certain object displacements. This image-

capturing process is a projection of the continuous three-dimensional (3D) space, onto

a discrete two-dimensional (2D) image plane, where information loss is inevitable. The

remaining information left for motion analysis, are pixel intensities and their changes

over time. This is not sufficient to compute the 2D motion field, which is defined as the

projection of 3D velocities on the image plane.

Since we have to stick to pixel intensities, we are only able to compute the motion, that

can be perceived in the image sequence. This apparent motion is called optical flow and

differs from the 2D motion field especially at the occurrence of illumination changes,

reflections, untextured objects, shadows, and translucent objects. For example, the 2D

motion field of an untextured rotating sphere is non-zero, but the optical flow, because

the rotation cannot be perceived in the image, is zero. This example is illustrated in

8
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Figure 2.1. A another problem with moving objects in image sequences are occlusions

and dis-occlusions, where the challenge is to find the optical flow for an object of the

current frame, which isn’t visible or only partly visible in the next frame.

(a) Rotating sphere (b) Static sphere

Figure 2.1: (a) An untextured sphere is rotating around its own axis and is lit by a
static light source. The motion field is non-zero due to the rotation of the sphere, but
the optical flow is zero, since the rotation cannot be perceived. (b) A static sphere is
lit by a moving light source. The motion field of a static sphere is zero, but the optical
flow is non-zero, because of the moving shadow on the sphere.

Despite these difficulties, the aim of optical flow algorithms is to get a result which is as

close as possible to the 2D motion field.

2.1.1 Visualization

Optical flow is defined by two components per pixel, therefore its visualization is not

a trivial task. The naive approach is to plot the motion vector as an arrow for every

pixel in the image. For large images or large motion this method mostly ends up in

chaos, since the arrows will overlap with their neighbors. By sub-sampling the vector

field, the number of arrows to plot can be significantly reduced. This on one hand

improves the visibility, but on the other hand hides some motion information because

many vectors are discarded. An alternative approach is, to plot a separate image for

each of the two optical flow components, and indicate their magnitude with brightness

values. The most common approach for dense optical flow visualization is the color-

coded plot, where every pixel gets a color assigned, based on the corresponding flow

vector and a two dimensional color map. The direction of the vector is coded by hue,

and the length by saturation. Each vector can be roughly estimated, by also plotting the

color map. With this approach it is very easy to evaluate the behavior of an algorithm

in particular regions, like along edges or in areas with weak texture. A comparison of

the arrow-plot and the color-coded plot is given in Figure 2.2. For color-coded plots we

use the color-scheme proposed by Baker et al. [2].
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(a) Input image (b) Color-coded optical flow (c) Color map

(d) Arrow plot (e) Subsampled arrow plot (f) Mixed

Figure 2.2: Several different techniques exist to visualize the optical flow. (a) A
cropped input image of the Football video. (b) The most common technique is the color-
coded plot, where the vector direction is coded by hue and the length by saturation.
(c) The color map for the color-coded scheme used in the entire work. A dash on the
axes denotes a vector length of one pixel. (d) In the sub-sampled arrow plot every nth

pixel gets an arrow assigned, which represents the motion vector. If n is too small,
most arrows will overlap, like in this example where n = 3. (e) The visibility can be
improved, by increasing n to n = 8, with the drawback of loosing detail information.
(f) To bring the arrow plot in context with objects of the image, it can be overlayed
over the input image.

2.2 Optical Flow Concepts

As summarized by Aubert and Kornprobst [1] optical flow algorithms can be divided

into three main categories, based on their concept:

1. Correlation-based

Correlation-based methods extract patches from one image and try to find the

corresponding patch in the next image, based on a similarity measure like sum of

squared differences (SSD) or sum of absolute differences (SAD). If a matching pair

of patches is found, the displacement vector is easily computed. The matching
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process is based on the intensity representation of a patch, which implies that

the intensities of a certain object, should remain constant in both images. Noise,

shadows and illumination changes are events, where correlation based methods

are very likely to fail, due to the violation of the constant intensities constraint.

Furthermore also the optical flow of repetitive structures or homogeneous regions

is error prone, due to multiple occurrences of a single patch. An example for a

correlation-based algorithm is the method of Barnard and Thompson [3].

2. Feature-based

Correlation-based approaches estimate the correspondence for each pixel in the im-

age, which often leads to false matches in homogeneous regions, where not enough

structure is present for reliable patch matching. This can be avoided if only salient

points like corners, are considered for the matching process, which is the concept

of feature-based methods. These distinct points are located with a feature detec-

tor like Speeded Up Robust Features (SURF [5]), and are represented by a feature

descriptor like Scale Invariant Feature Transform (SIFT [26]). Depending on the

application and its requirements, the feature detector and descriptor is chosen

properly. When using a descriptor, which is robust to illumination changes, then

the influence of light and shadows can be minimized. By matching feature de-

scriptors of points from both images, the displacements for those points can be

computed. The resulting optical flow is sparse, due to lack of distinct points in the

image. Brox et al. [9] presented a sophisticated approach, to convert a sparse to a

dense optical flow. By combining the sparse result of a feature-based method and a

variational energy minimization, they get a dense optical flow also in homogeneous

regions.

3. Gradient-based

Gradient-based (differential) approaches use spatial and temporal derivatives to

estimate the optical flow. They are among the most common techniques, and have

in comparison to others the best performance (Bruhn et al. [10]). Based on their

additional assumption on how to solve the aperture problem (see section 2.3.2),

they can be separated in local and global methods. Local methods as presented

by Lucas and Kanade [27] assume, that the optical flow is constant in a local

neighborhood of a pixel. In contrast to that, global approaches as the method of

Horn and Schunck [22], introduce a global smoothness constraint for the optical

flow vector field.

Due to the good performance of gradient-based global approaches (Baker et al. [2], Bruhn

et al. [10], Weickert et al. [39]) and the ability to compute a dense flow field, we use a

global method to compute the optical flow in our project. Therefore we concentrate on
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the category of gradient-based optical flow algorithms in section 2.3, where we give an

introduction to local approaches and then mainly focus on global methods.

2.3 Gradient-Based Optical Flow

2.3.1 Optical Flow Constraint

A common assumption for the optical flow computation is, that intensities of an object

stay constant in the image sequence. Also if the object moves across the image, its gray

values stay the same. This assumption is also called brightness constancy

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t), (2.1)

where I(x, y, t) is the pixel brightness at position (x, y) and at time t, (∆x,∆y) is the

displacement vector, and ∆t refers to the change in time. Considering real world exam-

ples, this assumption may be easily violated by for example non-uniform illumination,

noise or camera exposure inaccuracy. Nevertheless, approaches based on this assump-

tion in practice have a good overall performance. The reason for that is basically, that

most algorithms use two consecutive images with small object displacements or short

image capturing intervals, where illumination changes have less impact.

Based on the work of Fleet and Weiss [19], we will at first derive the displacement

estimation for the one-dimensional (1D) case. Let I1(x) and I2(x) be two consecutive

1D images, where I2(x) = I1(x − d), which means that I2(x) is translated by d from

I1(x), as shown in Figure 2.3. Assuming that the occurring displacement d is small, we

can derive an estimator for d by linearising I1(x− d) at the point x, with the first order

Taylor expansion and ignoring higher order terms.

I1(x− d) ≈ I1(x)− dI ′1(x), (2.2)

where I ′1(x) = dI1(x)/dx is the slope of I1(x). Based on equation (2.2) we get an

estimator d̂ for the real displacement d

d̂ =
I1(x)− I2(x)

I ′1(x)
, (2.3)

which yields an exact result for linear and an approximation for non-linear signals, as

shown in Figure 2.3.

The same approximation with the first order Taylor expansion, valid for small displace-

ments, is applied to 2D images. By expanding the right hand side of the equation (2.1),
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(a) (b)

Figure 2.3: Approximation of the displacement d between two 1D images I1(x) and
I2(x), by dividing the temporal difference I1(x) − I2(x) with the spatial derivative
(slope) I ′1(x). (a) The calculation of d is exact for linear signals. (b) For non-linear

signals we get an approximation d̂, which is close to d for small displacements . (Fleet
and Weiss [19])

we get

I(x, y, t) ≈ I(x, y, t) +
∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t, (2.4)

where ∂I/∂x and ∂I/∂y are the spatial derivatives in x and y direction, and ∂I/∂t is

the temporal derivative. When subtracting I(x, y, t) and dividing equation (2.4) by ∆t,

we according to Horn and Schunck [22] get

∂I

∂x

dx

dt
+
∂I

∂y

dy

dt
+
∂I

∂t
= 0. (2.5)

By using Ix and Iy for the spatial and It for the temporal derivatives, and setting

u = dx/dt and v = dy/dt as the displacement components, we get the so-called optical

flow constraint (OFC) equation

Ixu+ Iyv + It = 0. (2.6)

This equation is not sufficient to compute both unknown optical flow components u and

v, which is often referred as aperture problem.

2.3.2 Aperture Problem

Equation (2.6) represents an under-determined system with two unknowns and just one

equation. Without additional constraints this only allows to compute the normal flow,

~un =
−It
|∇I|

∇I
|∇I|

, (2.7)



Chapter 2. Optical Flow 14

which has the same direction as the brightness gradient ∇I = (Ix, Iy)ᵀ (Beauchemin

and Barron [6]). The aperture problem can be visualized by a straight line, which is

moving in an arbitrary direction. The movement of the line is observed through a small

aperture, which is the reason why only the motion perpendicular to the edge can be

perceived. The second component of the motion vector, which is parallel to the moving

line, cannot be determined unless the aperture is enlarged, and the edge-corners become

visible. This problem is illustrated in Figure 2.4.

(a) (b)

Figure 2.4: (a) When observing a moving edge through a small aperture, then only the
component of the motion vector, which is perpendicular to the edge, can be perceived.
This motion vector ~un is also called normal flow. (b) If the edge-corners become visible,
also the second component of ~u can be measured. (O’Donovan [28])

Several additional assumptions were introduced, to solve the ill-posed1 problem in equa-

tion (2.6). Depending on whether these assumptions affect the local neighborhood of a

pixel or the whole image, the solutions are separated in local (section 2.3.3) and global

approaches (section 2.3.4).

2.3.3 Local Approach

Lucas and Kanade [27] introduced an additional constraint, to solve equation (2.6).

Their proposed method assumes, that the optical flow is locally smooth. The neighbor-

hood of a pixel ~x is expressed as a patch N (~x) of the size n× n. For all pixels in N (~x),

the displacement vector is assumed to be constant. This results in an over-constrained

system with n×n equations and two unknown optical flow components ~u = (u, v)ᵀ. The

system can be written as a weighted least-squares estimator

E(~u) =
∑
N (~x)

g(~x)[~u · ∇I(~x, t) + It(~x, t)]
2, (2.8)

1A ill-posed problem, according to Hadamard [21], is a problem which violates any of the following
statements: a solution exists; the solution is unique; the solution depends continuously on the input
data.
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where g(~x) is a weighting function, which gives close pixels a higher and distant pixels

a lower weight, since nearby neighbors are more likely to have the same displacement

vector (Fleet and Weiss [19]). By minimizing E(~u) we get the least-squares optical flow

estimate ~u. Since least-squares problems are convex, the global minimum lies at the

point where its slope (derivative of E(~u)) is equal to zero:

∂E(u, v)

∂u
=
∑
N (~x)

g(~x) [uI2
x + vIxIy + IxIt] = 0 (2.9)

∂E(u, v)

∂v
=
∑
N (~x)

g(~x) [vI2
y + uIxIy + IyIt] = 0. (2.10)

When combining the equations (2.9) and (2.10) and rewriting them in matrix form, we

get the system M~u = ~b, where

M =

[∑
gI2

x

∑
gIxIy∑

gIxIy
∑
gI2

y

]
, ~b = −

(∑
gIxIt∑
gIyIt

)
. (2.11)

Only if M has rank 2, the displacement estimate û can be calculated with û = M−1~b.

This depends on the image structure within the local neighborhood N (~x). Corners and

well textured regions yield good results, but uniform areas or a single edge will result

in a rank deficient M, which then is singular and thus not invertible. By increasing the

size of N (~x) this problem may vanish, but for too large patches it is more likely that

the assumption of constant optical flow will be violated. A common solution is that the

size of N (~x) is kept low, with the drawback of getting a sparse optical flow.

Due to the low computational cost, the local approach is an attractive algorithm for

applications where sparse results are sufficient. If a dense optical flow is required, then a

method based on the global approach as described in the following section 2.3.4 should

be preferred.

2.3.4 Global Approach

With the additional assumption that optical flow vectors change smoothly over the

image, global methods introduce a global smoothness constraint. Horn and Schunck

[22] first proposed such a variational approach in 1981. Several extensions and further

developments of this method were proposed in past years, which are among the best

performing algorithms in the optical flow benchmark database of Baker et al. [2]. We will

discuss the approach of Horn and Schunck, and then present some improved methods.
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2.3.4.1 Horn and Schunk

Instead of solving the optical flow constraint on a local patch, Horn and Schunck [22]

presented a method where also the global neighborhood has an impact on the compu-

tation of an optical flow vector. Their assumption is, that nearby points have similar

velocities and therefore the optical flow field changes smoothly over the image. This

constraint is expressed with the smoothness term

Esmooth =

(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2

= |∇~u(x, y)|2, (2.12)

which measures the change of u and v in both coordinate directions. This term penalizes

optical flow discontinuities and supports smooth motion changes. In combination with

the optical flow constraint as data term this gives the error to be minimized

EHS =

∫
Ω

(
(~u · ∇I + It)

2︸ ︷︷ ︸
data term

+ λ|∇~u(x, y)|2︸ ︷︷ ︸
regularization term

)
d~x, (2.13)

where λ > 0 is the regularization parameter, which defines the balance between smooth-

ness (regularization term) and data fidelity. With this equation the error over the whole

image Ω regarding each pixels optical flow vector is computed. This error consists of a

data term, where the deviation of the flow vector from the spatial and temporal gra-

dient is measured, and a smoothness term, where the amount of smoothness in the

pixel-neighborhood is computed. In well-structured regions the data term is dominant,

whereas in uniform regions a smooth solution with respect to neighbor vectors is pre-

ferred. The propagation of optical flow estimates over such homogeneous regions leads

to a dense optical flow field. This automatic fill-in effect in poor textured areas is one

of the major advantages over local approaches.

To find the optical flow vector ~u, we have to derive the energy functional in equation

(2.13) and set it equal to zero. By estimating the Laplacian with the difference of u and

the weighted average of neighbor-values ∆u = u − uavg, Horn and Schunk developed a

system of two equations for each pixel

(λ+ I2
x + I2

y )(u− uavg) = −Ix(Ixuavg + Iyvavg + It) (2.14)

(λ+ I2
x + I2

y )(v − vavg) = −Iy(Ixuavg + Iyvavg + It). (2.15)

To solve this large system, Horn and Schunck proposed an iterative scheme, since uavg

and vavg depend on their neighbor values which also depend on the current estimate of

~u. The optical flow estimate ~un+1 = (un+1, vn+1) at iteration (n+ 1) can be computed
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with

un+1 = unavg −
Ix(Ixu

n
avg + Iyv

n
avg + It)

λ+ I2
x + I2

y

(2.16)

vn+1 = vnavg −
Iy(Ixu

n
avg + Iyv

n
avg + It)

λ+ I2
x + I2

y

(2.17)

where (unavg, v
n
avg) are the weighted averages of neighbor estimates at iteration n (Horn

and Schunck [22]). In image regions with brightness gradients close to zero, the estimate

will simply be the average of neighbor estimates. If such regions are large, then the fill-

in is accomplished over multiple iterations. Therefore the number of iterations among

others, depends on the size of the biggest homogeneous region to be filled in. If this size

is not known in advance, then Horn and Schunck suggest to use the cross-section of the

whole image as iteration estimate.

The energy functional in equation (2.13) penalizes deviations of the smoothness con-

straint in a quadratic way, which results in over-smoothed solutions with no discontinu-

ities in the optical flow vector field. This is a crucial drawback, because discontinuities

occur at object boundaries and define the boarders between objects. Also the the data

term has a quadratic penalization, which disables to perform a robust outlier handling.

These outliers arise if the OFC is violated with illumination changes, shadows, occlusions

etc. (Aubert and Kornprobst [1]).

Several different approaches have been proposed to overcome these disadvantages, by

modifying or replacing the data and the regularization term. A detailed survey on such

global variational approaches with focus on the analysis of data and regularization terms

has been done by Weickert et al. [39]. In the following chapters we will focus on two

improved methods, which address the major deficiency of the approach by Horn and

Schunck [22].

2.3.4.2 TV-L1

The TV-L1 approach assumes constant intensities along motion vectors (brightness con-

stancy) and uses the OFC equation as data term. As regularization term the total

variation (TV) norm of the optical flow field is applied

TV (~u) =

∫
Ω
|∇~u|d~x =

∫
Ω

√
u2 + v2d~x. (2.18)

Instead of a quadratic penalization, the L1-norm is applied on both terms, to allow

discontinuities in the flow field and perform robust OFC outlier handling. With this
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setting we get the TV-L1 energy functional to minimize

ETV -L1 =

∫
Ω

(
|∇~u(x, y)|+ λ|~u · ∇I + It|

)
d~x. (2.19)

Since the data and the regularization term in (2.19) are not continuously differentiable,

Chan et al. [14] proposed a numerical optimization with differentiable approximations of

both terms. Another approach to efficiently solve the TV-L1 optimization was proposed

by Zach et al. [43], and is based on a dual formulation of the TV energy. They introduce

a coupling term and split the problem in two sub-problems which are alternately solved.

The energy functional with the additional term is

E =

∫
Ω

( 2∑
d=1

|∇ud|+
2∑

d=1

1

2θ
(ud − vd)2 + λ|ρ(~v)|

)
d~x, (2.20)

where ~v is an auxiliary variable and ρ(~v) = ~v · ∇I + It represents the OFC constraint.

Zach et al. [43] split the energy functional and perform the optimization in two separate

steps:

• 1) For every d and fixed vd solve

min
ud

∫
Ω

(
|∇ud|+

1

2θ
(ud − vd)2

)
d~x. (2.21)

• 2) With fixed u, solve

min
~v

2∑
d=1

1

2θ
(ud − vd)2 + λ|ρ(~v)|. (2.22)

The minimization of (2.21) is the TV-based de-noising model of Rudin et al. [32], which

was efficiently solved by Chambolle [11]. The second step (2.22) boils down to a point-

wise thresholding step. For a detailed solution of both problems we refer to the work

of Zach et al. [43]. With the support of a parallel graphics processing unit (GPU)

implementation, they achieved realtime (30fps) performance on 320×240 pixel images.

To make the improvements of the TV-L1 model over Horn and Schunck visible, we

compare both color coded optical flow results, based on the Rubberwhale dataset of the

Middlebury optical flow benchmark1 [2]. They provide multiple datasets with image

sequences and the corresponding ground truth data. The comparison of both models is

shown in Figure 2.5. We can clearly see that the resulting optical flow of the Horn and

Schunck approach allows no sharp discontinuities. Edges are strongly over-smoothed,

1http://vision.middlebury.edu/flow/

http://vision.middlebury.edu/flow/
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which is caused by the quadratic penalization. In comparison to that, the TV-L1 ap-

proach has sharp object boundaries and is very close to the ground truth, which can be

explained with the robust outlier handling and L1 penalization.

(a) Input image (b) Ground truth

(c) Horn and Schunck TV-L1

Figure 2.5: Comparison of color-coded optical flow results with focus on the behavior
along edges. Images taken from Werlberger [40]. (a) One of the two input images of
the Middlebury Rubberwhale dataset with (b) the corresponding ground truth optical
flow. (c) The result of the Horn & Schunck approach is strongly over-smoothed, which
leads to blurred edges. (d) We can clearly see that the TV-L1 model yields a more
accurate result and allows flow discontinuities.

The TV-L1 approach of Zach et al. [43] was extended by Wedel et al. [38] to reduce the

impact of illumination changes, which cause violations of the OFC. In a preprocessing

step they perform a structure-texture decomposition on the input images, where the

structure represents the main large objects and the texture the smaller scaled details.

The structural part is calculated by denoising the gray-value image with the TV based

model of Rudin et al. [32] (see equation 2.21). The texture image is computed, by

subtracting the structural part and the original image. As their results show, the texture

image has significantly less shadows and shading reflections. By using this as input image

for the optical flow computation, they can increase the robustness against illumination

changes.
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2.3.4.3 Anisotropic Huber-L1

TV is a popular choice as regularization term, since it allows sharp discontinuities in the

optical flow. Nevertheless it still has some drawbacks in regions with weak texture. As

pointed out by Werlberger [40], the fill-in effect of the TV-L1 regularizer yields piecewise

constant instead of smooth solutions. This so-called staircasing effect can be reduced

by using an image-driven (anisotropic) regularization, which uses a quadratic penaliza-

tion for regions with low gradient magnitudes and linear penalization for high gradient

magnitudes. This behavior is achieved with the Huber-norm (Huber [23]) denoted by

| · |ε

|s|ε =

{ |s|2
2ε |s| ≤ ε
|s| − ε

2 else
, (2.23)

where ε > 0 is the threshold for the decision between the quadratic and the linear

penalization. By replacing the L1-norm of the regularization term in (2.19) with the

Huber-norm |∇u|ε we get the Huber-L1 energy functional

EH-L1 =

∫
Ω
|∇u|εd~x+ λ

∫
Ω
|ρ(~u)|d~x, (2.24)

where ρ(~u) = ~u ·∇I+ It is the OFC constraint. With ||a||p =
( N∑

j=1

M∑
i=1
|ai,j |p

)1/p
and the

discrete Huber-norm ||∇u||ε we can rewrite the optimization problem as

min
u∈Y
||∇u||ε + λ||ρ(u)||1 , Y := R ∪ {∞}. (2.25)

Werlberger [40] applied the primal-dual algorithm ([13] [12]), in order to optimize (2.25).

Therefore, the convex conjugate of the Huber function F (u) = ||∇u||ε must be deter-

mined

F ∗(p) = sup
u∈Y
{〈∇u, p〉Z − ||∇u||ε}. (2.26)

By considering the two cases of the Huber-norm (2.23) in the computation of the supre-

mum, we according to [40] get

F ∗(p) =
ε

2
||p||22 + δP (p) with δP (p) =

{
0 if p ∈ P
∞ else

, (2.27)

where P = {p ∈ Z : ||p||∞ ≤ 1}. The Huber-L1 energy functional (2.24) can now be

formulated as primal-dual saddle-point problem

min
u∈Y

max
p∈Z
〈∇u, p〉Z +G(u)− F ∗(p) with G(u) = λ||ρ(u)||1, (2.28)
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where u denotes the primal variable and p its dual. The solution of minimizing u and

maximizing p in (2.28) is given by an iterative algorithm, with the following iteration

updates

pn+1 = proxP

(
pn + σ∇ūn

1 + σε

)
un+1 = shrink

(
un − τdivpn+1

)
(2.29)

ūn+1 = 2un+1 − un,

where shrink(û) refers to a soft-thresholding step, regarding the OFC data term. The

thesholding step and a detailed solution of this optimization is given in [40].

To compare the the Huber-norm with the TV regularization, Werlberger [40] plotted

the u1 component of the resulting flow as height-field. As can be seen in Figure 2.6

the TV regularization yields piecewise constant levels. Much smoother transitions are

achieved with the Huber regularization due to quadratic penalization in regions with

weak texture and linear penalization else.

(a) (b)

Figure 2.6: By visualizing the height-field of the u1-component, we can evaluate
the presence of the staircasing effect (Werlberger [40]). The Middlebury Dimetrodon
dataset was used as input sequence. (a) With the TV as regularization term, the
piecewise constant levels in the height-field are clearly visible. (b) By changing the
regularization penalization to the Huber-norm, the result is significantly smoother.

2.3.5 Large Displacements

All in section 2.3 discussed optical flow algorithms are based on the linearized OFC

equation (2.6). The linearization limits the methods to only be capable of estimating

small displacements (see Figure 2.3). A common extension to enable the estimation of

large motion, is the coarse-to-fine warping technique. The basic idea is to downsample

the input images on a smaller image size, to decrease the motion distance. This is done by
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computing an image-pyramid for both input images. The scale-factor for downsampling

and the total number of pyramid levels depend on the size of the original image and the

largest supported displacement.

As illustrated in Figure 2.7 the first step is to initialize the displacement vectors with

u = 0 & v = 0, and then compute the optical flow with e.g. the anisotropic Huber-L1

algorithm on the coarsest pyramid level. In the next step the moving image is warped

towards the fixed image, by propagating the pixel intensities along the estimated motion

vectors, to reduce the displacements between the images. Depending on the requirements

of the application and computational resources this solve - warp step may be repeated

several times at the same pyramid level. The last step is to prolongate the resulting

vectors to the next finer level and use them as initialization. This process is repeated

on all pyramid levels, till the original image at the highest level is reached. (Fleet and

Weiss [19], Werlberger [40])

Due to consecutive solving on different pyramid levels, this technique estimates the

final motion vectors in a step-by-step fashion. A disadvantage of this scheme is, that

large displacements of tiny objects cannot be computed. The problem is, that these

objects vanish, when downsampling the original image to a coarser level. Therefore

their displacement is not computed, since they are not present at coarse levels.

init

solve

solve

warp

warp

prolongate

prolongate

Figure 2.7: The coarse-to-fine warping scheme enables optical flow algorithms, which
use the linearized OFC, to support large displacements. The algorithm starts to calcu-
late the optical flow at the coarsest level and initializes the next level with the resulting
displacement vectors, till it reaches the original image at the highest level.



Chapter 3

Video Frame Interpolation by

Motion Compensation

Motion compensated frame interpolation, often just referred as frame interpolation [31],

is the process of computing one or multiple synthetic intermediate frames, based on

a sequence of input images. It is used in the field of video compression [24], video

restoration [42], and frame-rate adjustment [15]. The latter has its applications mostly

in converting frame rates for different video standards (e.g. PAL: 25 frames-per-second

(fps), NTSC: 29.97 fps). By upsampling the frame rate with an frame interpolation

method, and playing the video at a lower frame rate, the well known slow motion effect

can be achieved.

frame I0 (t = 0) frame I1 (t = 1)interpolated frame I1/2 (t = 1/2)

Figure 3.1: With the frame interpolation algorithm, novel intermediate frames be-
tween the input images I0 and I1 are generated. The interpolation is based on object
motion information derived from the two known frames.

To interpolate the position of e.g. the ball in the intermediate frame (Figure 3.1),

its motion from frame I0 to frame I1 must be known. As discussed in section 2.1,

the 2D motion field of a captured scene cannot be computed based on image data

without additional information. The motion field that can be computed, is the apparent

motion called optical flow, which describes the perceivable movement of objects in the

image. An essential requirement of the optical flow algorithm is its capability to estimate

23
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a dense displacement field. This is crucial for frame interpolation, since every pixel

in the intermediate frame gets interpolated. Therefore, variational global optical flow

algorithms are best suited for this task, as pointed out in section 2.3.4.

3.1 Linear Motion

By computing the optical flow field uf , the warping of a pixel in image I0 to its position

in image I1 is estimated. The missing information we do not have is how the pixel moved

from I0 to I1. The object motion between to frames is commonly assumed to be linear.

This may be sufficient for straight moving objects. Problems with this assumption

arise if an object moves on a nonlinear path, as depicted in Figure 3.2. The motion

information gets lost, due to the too low sampling frequency for the fast object motion.

The accuracy of the linear approximation increases with a higher recording framerate.

object path

linear path

(a) (b)

Figure 3.2: (a) The assumption of linear object motion is sufficient for straight moving
objects. For non-linear movements, this constraint is just an estimate, which causes a
misplacement of the pixel in the intermediate frame (image adapted from Werlberger
[40]). (b) An increased sampling frequency may minimize this error.

The basic idea of frame interpolation is to propagate the pixel intensities linear along

their optical flow vectors. The scale factor ti ∈ (0, 1) for the motion vectors depends on

the intermediate position of the interpolated frame, on the timeline between frame I0

and I1. The relative time factor ti represents the time between the two known frames,

where ti = 0 is the position at frame I0 and ti = 1 at frame I1. The intermediate

positions ti are computed, depending on the total number of interpolated frames N ,

with

ti =
i

N + 1
, (3.1)

where i starts at i = 1 for the first interpolated frame.
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3.2 Forward Interpolation

Since the scaled flow vectors do not point to exact pixel coordinates, most methods

perform flow-warping with the optical flow field uf (Werlberger et al. [42], Baker et al.

[2], Rakêt et al. [31]). In the flow warping step uf is propagated towards uti
f , which

represents the warped flow field at the intermediate position ti

uti
f (b~x+ tiuf (~x) + 0.5c) = uf (~x). (3.2)

With this equation every flow vector of uf is written on the intermediate position

round(~x+ tiuf (~x)) of uti
f . This allows us to compute the interpolated frame i at time ti

with

Iti(~x) = I0(~x− tiuti
f (~x)). (3.3)

The interpolation described in equation (3.3) is a simple approach, where pixel intensities

from image I0 are propagated towards the image at ti, with the scaled motion vectors of

the warped flow uti
f . As shown in Figure 3.3, the optical flow vector points from the pixel

intensity in image I0 to the intensity in image I1. Since the pixel information of image

I1 is not taken into account in the simple approach, this may lead to rough transitions in

video playback, especially in areas where the optical flow constraint (OFC) is violated.

To get a smoother solution, both intensities from image I0 and I1 are considered as

weighted average, in the forward interpolation approach

IFti (~x) = (1− ti)I0(~x− tiuti
f (~x)) + tiI1(~x+ (1− ti)uti

f (~x)). (3.4)

This approach blends the intensities linearly, with the weights depending on where the

intermediate frame is positioned on the timeline between image I0 and I1. For ti < 1/2

(closer to I0), I0 gets a higher weight, and vice versa. The flow warping step and both

interpolation approaches are depicted in Figure 3.3.

Problems with this approach arise from the occurrence of object occlusions and disoc-

clusions, as can be seen in Figure 3.4. Occlusions typically cause the scenario, where

multiple optical flow vectors point to the same pixel location in image I1. We can ex-

plain this by analyzing an object occlusion. If an object covers another object, then some

pixels in image I0 lose their corresponding pixels in image I1, since they get occluded.

Therefore they are forced to map to another pixel in image I1, which obviously causes

the error. A common solution to the problem of multiple candidates for a single pixel,

is to pick the vector with the best data fidelity. This can be measured with the absolute

difference of both pixel intensities |I0(~x)− I1(~x+ ~uf )|.
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(a) Flow vector (b) Warped flow

(c) Simple approach (d) Forward interpolation

Figure 3.3: Example of the flow warping and frame interpolation process, with N = 3
and i = 1. All images (I0,I1 and I1/4) are overlaid. (a) Visualization of the flow vector
~uf , pointing from image I0(~x) to I1(~x+ ~uf ). (b) In the flow warping step ~uf is written
on the position of the first intermediate frame t1 . The other two intermediate positions
t2 = 1/2 and t3 = 3/4 are marked with a bold border. (c) Simple frame interpolation
approach which propagates the intensity I0(~x). (d) A smoother transition is gained by
blending the intensities of I0(~x) and I1(~x+ ~uf ).

Disocclusions cause the inverse problem, which is not as easy to solve. By uncovering

an object, novel pixels in image I1 become visible. They do not have a reference to

image I0, since they initially appear in image I1. Therefore, no motion vectors point

from image I0 to these disoccluded pixels. This leads to holes in the warped flow uti
f ,

and hence also in the interpolated image. Baker et al. [2] and Rakêt et al. [31] suggest to

solve this problem by applying an outside-in strategy on holes in the warped flow field.

This is a quite simple approach to fill the holes with neighbor intensities. The impact

of occlusions and disocclusions on the flow field is visualized in Figure 3.7.

A resulting intermediate frame of the forward interpolation and the occurring occlusions

and disocclusions are shown in Figure 3.5. As can be seen, the interpolation itself and the

occlusion handling yield acceptable results, whereas the fill strategy for holes introduces

clearly visible artifacts. They are caused by filling the red marked holes, which represent

the disoccluded background, with motion vectors of the skier. Therefore the disocclusion

handling is still in need for improvement. These deficiencies are addressed with the

bidirectional interpolation approach.
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(a) I0 (b) I1/3 (c) I2/3 (d) I1

Figure 3.4: (a,d) The cropped input images of the Skiline dataset. (b,c) Forward
interpolated frames without occlusion/disocclusion handling are prone to image errors.
The black region behind the skier depicts pixels with no intensity information, which
originates from the disocclusion. To remove such artifacts, we have to handle these
regions by filling in motion vectors.

(a) I0 (b) I1

(c) Occlusion/disocclusion (d) I1/2: forward (e) I1/2: bidirectional

Figure 3.5: (a,b) The cropped input images of the Skiline dataset. (c) A blue pixel
indicates that multiple motion vectors point to it, which is caused by occlusion. Pixels
that are not hit by a vector are colored red. These holes are the result of object
disocclusions. (d) The forward interpolation scheme yields an intermediate frame with
visible artifacts. Multiple candidates for a single pixel are handled by choosing the
best fitting vector, which yields a reasonable result. Holes in the flow field are filled
with neighbor values. This causes the dark trails, visible behind the skier. (e) A
better disocclusion handling is performed in the bidirectional interpolation, where no
interpolation artifacts in the disoccluded region are perceivable.
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3.3 Bidirectional Interpolation

The main problem of the forward interpolation scheme is the lack of a proper disocclusion

handling technique. Disocclusions cause holes in the warped flow field, which means that

no information is available on how to color such pixels. A simple approach to fill these

holes is to propagate the surrounding neighbor values inside the hole. However, this

approach introduces artifacts as depicted in Figure 3.5. A better method to gain vectors

for hole-filling, is to additionally compute the optical flow in reverse direction. This is

simply done by swapping the input images and estimating the motion field again. The

optical flow computed from image I0 to I1 is called forward flow, and from I1 to I0

backward flow. A color-coded optical flow visualization of the forward and backward

flow is shown in Figure 3.6.

(a) (b)

(c) (d)

Figure 3.6: Color-coded (c) forward and (d) backward flow visualization of the Foot-
ball sequence.

By comparing the resulting displacement field of both directions we can observe that

an occlusion in the forward flow is a disocclusion in the backward flow and vice versa.

This is also the reason why the optical flow is asymmetric, concerning its computing

direction. We can use this as advantage, since the holes of the forward scheme can

be filled with the information of the backward interpolation. This forward/backward

behavior is visualized and explained with a simple example in Figure 3.7.

Like the forward scheme, also the bidirectional interpolation needs a flow warping step,

to be able to generate the intermediate frames. This is performed separately for each

of the two flow directions. The warped forward flow is computed as shown in equation
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(a) I0 (b) I1

(c) Forward flow (d) Backward flow

Figure 3.7: A simple example to analyze the behavior of occlusions and disocclusions
in forward and backward computed optical flow. (a,b) Two 7×6 pixel input images,
with a static background and a dark moving 3×3 box. (c) Forward flow : blue vectors
indicate the movement of the dark box from the lower left to the upper right corner.
Static background pixels with zero motion vectors are drawn as blue dots. These vectors
point on the same position where they originate from. More interesting is the movement
of pixels, with black motion vectors. Due to the fact that their corresponding pixels
in image I1 are occluded, they are forced to point to wrong locations. This causes
the situation, where multiple vectors point to a single pixel, which is indicated by a
red bold frame. Disoccluded pixels are marked with a green dashed border. No flow
vector points to such pixels, since the initially appear in image I1. (d) Backward flow :
in general we can observe the same behavior as seen in forward flow, but since the
direction is reversed, also the occlusions and disocclusions are reversed. This allows us
to fill the holes of the backward flow with the forward flow and vice versa.

(3.2). Analogous to this, the backward flow ub is warped with

uti
b (b~x+ tiub(~x) + 0.5c) = ub(~x). (3.5)

Both, the forward and the backward interpolation use the same relative time factor

ti, which indicates the intermediate frame position between I0 and I1. Therefore the

convention that ti = 0 is at image I0 and ti = 1 at I1 is valid for both. With the

warped backward flow uti
b , we are able to compute the backward interpolated frame as

a weighted average of both pixel intensities

IBti (~x) = (1− ti)I0(~x− tiuti
b (~x)) + tiI1(~x+ (1− ti)uti

b (~x)). (3.6)

The final bidirectional interpolated frame is the average of the forward and backward

computed frames Iti = 1/2(IFti + IBti ), according to Rakêt et al. [31]. If holes occur in
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one of the two images, then only the color information of the filled image is taken into

account. In case that a hole of image I0 overlaps with a hole in image I1, then no

color information for the interpolated image is available. We handle this by applying

the already mentioned outside-in strategy on the overlapping region in both images. In

practice this scenario appears only over a very small range of pixels, and therefore has

not much impact on the final result.

As compared in Figure 3.5, the bidirectional interpolation yields more accurate results

than the forward scheme, since a more sophisticated occlusion and disocclusion handling

is performed. The drawback of this technique is that it is computationally more expen-

sive. The estimation of the optical flow, which already is the most demanding process,

has to be executed two times per image pair, to get the forward and backward flow.

Results of the bidirectional interpolation method are shown in Figure 3.8. We can ob-

serve, that the overall quality of the intermediate frames is very satisfactory, however

some artifacts are still visible. They are not caused by the interpolation method, but

have its origin in the optical flow estimation. The quality of the interpolated results

strongly depends on the accuracy of the optical flow. Therefore errors in the displace-

ment field are in general also perceivable in the intermediate frame. Small scaled objects,

strong shadows, illumination changes, etc. are events which cause problems for the flow

estimation and thus also for the frame interpolation. We are able to identify some of

these errors, by analyzing the bidirectional optical flow and the corresponding pixel

intensities.

3.3.1 Optical Flow Consistency

A common error measure for the bidirectional optical flow is the vector consistency. It

measures the similarity of the forward and the backward flow, by simply calculating the

euclidean distance between the corresponding vectors

edist =
√

(xf x − xbx)2 + (xf y − xby)2, (3.7)

where ~xf = ~x+ uf (~x) and ~xb = ~x− ub(~x+ uf (~x)), as shown in Figure 3.9. Large error

distances indicate, that the computation of the forward flow yields a different result than

the backward flow. In the best case the corresponding backward vector points on the

origin position of the forward vector, with the distance between the vectors being close

to zero.

This error measure denotes, for which regions in the image the flow estimation is depen-

dent on the order of the input images. As can be observed in Figure 3.7, such regions are
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I0 I1/2 I1

(a)

(b)

(c)

(d)

Figure 3.8: The left and right column contain the cropped input images and the center
column the bidirectional interpolated frame. The object displacements are better visible
if the image sequence is played back as video, but in a printed work we have to align
them side by side. Different kinds of environments and movements are shown in these
four scenes. The bidirectional interpolation yields a satisfying performance in all of
them, since no noticeable interpolation artifacts are visible. Errors which originate
from the optical flow estimation, are also propagated to the interpolation process. An
example for this is given in (d), where a skiing-stick is visible twice. Such small objects
are prone to errors, since they are not visible in the coarser levels of the coarse-to-fine
warping image pyramid, as explained in section 2.3.5. A similar error is visible in (b),
where a pole of the fence (visible between the legs) is also drawn two times.
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Figure 3.9: The flow consistency is measured between the forward vector uf (~x) and
the backward vector ub(~x + uf (~x)). Since the backward flow is computed in reverse
direction, the vector ub(~x+uf (~x)) is inverted and shifted onto the origin of the forward
vector, to compute the euclidean distance edist.

very likely to be occlusions or disocclusions. Other image parts, especially well textured

regions, typically yield low consistency error values. This is also verified in Figure 3.10,

where the consistency of the Skateboard dataset is visualized.

(a) Forward flow (b) Backward flow

(c) Color-coded flow consistency error

Figure 3.10: (a,b) Color-coded representation of the forward and backward flow,
calculated on the Skateboard dataset. In these visualizations some rough differences in
the flow fields are visible, for example at the knee of the skateboarder. (c) By calculating
the euclidean distance edist between the corresponding forward and backward flow
vectors, the error is visualized according to the color map. It is clearly visible that
the consistency error is large at the outer boundary of the moving object, where the
occlusions and disocclusions occur.

The optical flow consistency error is well suited to analyze the result of the bidirectional

flow estimation, and to determine the inconsistent regions in the image. However, it is

not able to identify the perceivable errors in the resulting interpolated image, since it
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takes only the flow vectors into account and not the pixel intensities. If for example

the displacement of a small object is wrongly estimated in the forward and backward

direction, then this error will not be indicated by the consistency error. Also artifacts,

caused by too large object displacements, are not detected with this error measure. These

errors occur in forward and backward direction, and thus cause no flow inconsistency.

Therefore, an error measure has to be introduced, which also takes the pixel intensities

into account, to detect the perceivable artifacts.

3.3.2 Warp Error

In general the variational optical flow algorithm, yields a good overall performance with

reliable displacement vectors. However, due to the coarse-to-fine warping technique,

small objects and large displacements often pose a problem. Due to the smoothness term

of the variational optical flow model, the displacement of such objects is obtained from

their neighboring vectors. This causes disruptive artifacts in the interpolated image,

as already observed in Figure 3.8 (d). To minimize such image errors, we have to

locate them and then try to restore the correct content. A salient property of erroneous

vectors is their poor data fidelity. This can be used as an error measure, which is based

on flow vectors and pixel values. We define the warp error, as the difference of the two

corresponding pixel intensities of a displacement vector u(~x)

efwarp = I0(~x)− I1(~x+ uf (~x)) and (3.8)

ebwarp = I1(~x)− I0(~x+ ub(~x)), (3.9)

where efwarp is for the forward and ebwarp for the backward flow, as depicted in Figure 3.11.

This error measure indicates vectors which establish a correspondence between two pixels

Figure 3.11: The warp error efwarp is calculated by subtracting the intensity I0(~x)
and its corresponding pixel I1(~x + uf (~x)). It measures how well the two intensities
of the displacement vector uf (~x) match, which is required for a reliable flow vector.
The backward warp error ebwarp is computed analogous to this, with the vectors of the
backward flow.

with unequal intensities. Such vectors obviously point to wrong locations, since the
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brightness constancy assumption of the optical flow estimation is violated. However,

this assumption is rarely fulfilled, especially in real world scenarios where sensor noise

of the camera is existent and illumination changes in the scene may occur. To be robust

to such minor allowed variations, we perform a thresholding step after calculating the

warp error. This yields a binary-mask as result, which denotes vectors with not matching

pixel intensities. The error mask is calculated separately for vectors of the forward and

backward flow. As shown in Figure 3.12, we use this error measure to identify image

errors, which originate from the optical flow estimation process. It is also important

to mention, that only those errors are recognized by this error measure, which have a

large color deviation. This means that a wrong displacement vector will not be marked

as erroneous, if the pixel it points to has nearly the same intensity as the pixel at the

correct position. In most cases such errors will not be perceived in the interpolated

image, since the color-difference is minimal. This can be also observed in Figure 3.12,

where the snow in the background has incorrect motion vectors.

3.4 Inpainting

The previously explained bidirectional interpolation approach generates intermediate

frames, based on a pair of input images. It propagates image intensities along scaled mo-

tion trajectories, estimated with an optical flow algorithm. Occlusions and disocclusions

are handled robustly by filling holes with information of the reverse flow respectively.

As can be seen in Figure 3.8, the overall performance of this interpolation approach is

mostly sufficient. Nevertheless, there are still some visible artifacts, that occur in certain

situations, like shown in Figure 3.12. The primal reason for such image errors are incor-

rect motion vectors, which are mainly caused by too large displacements or too small

objects. As explained in section 3.3.2, we are able to measure these in the intermediate

frame perceivable artifacts with the warp error. In this section, we will mainly focus on

how to handle such image errors and how to reconstruct the proper content.

3.4.1 Image Inpainting

Image inpainting is a widely used technique to perform object removal or restoration

of damaged images. The basic idea is to fill a predefined region (target region) with

content derived from the local pixel neighborhood or the whole image, with the main

goal of achieving a visually pleasant result. Several different approaches were proposed

in past years, which can be divided into three main categories:
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(a) I0 & I1

(b) I1/4 (c) I1/2 (d) I3/4

(e) Consistency error (f) Warp error

Figure 3.12: (a) The cropped input image pair of the Skiline dataset, with a large
movement of the skier and the camera in the same direction. Therefore the skier is
nearly static, whereas the ski-gate has a large displacement on the image plane. The
ski-gate pixels have an estimated optical flow of nearly zero, wherefore it is drawn twice.
Once at the position where it appears in I0 and once where it appears in I1. We can
explain the wrong estimation of the ski-gate optical flow, by its type of loose construc-
tion and the large displacement of over 70 pixels. The correct interpolated position of
the ski-gate however, should be between the two drawn gates. (e) Flow inconsistency is
measured between the skier an the ski-gate. (f) All pixels of both gates are accurately
recognized as warp error and marked with red color, since their motion vectors are
clearly incorrect. The displacement of the snow in the background is also estimated
wrongly. This region is not identified as error, because the color deviation of the wrong
vectors is too small. Due to the blending effect of the bidirectional interpolation, this
misbehavior is not perceived as disturbing artifact, when played back as video.
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• Structural inpainting

Structural inpainting methods try to preserve the geometric structure of the im-

age, in the target region. Bertalmio et al. [7] for example proposed a method,

which linearly propagates isophote lines through the target region. As shown in

Figure 3.13, the algorithm is able to successfully inpaint the superimposed text,

to restore the whole image.

Figure 3.13: Result of the structural inpainting algorithm. The images are taken
from Bertalmio et al. [7].

Inpainting methods based on structure propagation introduce perceptible blur

when applied on too broad regions. The reason for this is that no textural in-

formation is considered in the inpainting process. Therefore, such algorithms are

mainly used to inpaint thin regions like dust particles, scratches or text.

• Textural inpainting

Texture synthesis based inpainting methods perform a texture analysis in the im-

age, and try to replicate it in the target region. Due to these repetitive texture

patterns, larger areas in comparison to the structural approach can be inpainted,

without significant loss of details. A representative method for pure textural in-

painting is the approach of Efros and Leung [18], shown in Figure 3.14. Textural

inpainting has its advantages in being able to inpaint large regions, however it is

not suitable to propagate structural elements like edges.

Figure 3.14: Textural inpainting performed in the black region of the left input
image. Whereas some texture synthesis based algorithms require user-interaction to
specify which texture has to be replicated in the target region, this approach of Efros
and Leung [18] does this automatically. These images are taken from. [18].
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• Combined structural and textural inpainting

To overcome the disadvantages of textural and structural inpainting, Bertalmio

et al. [8] proposed a method which combines both approaches. They decompose the

image in a structure and texture part, and inpaint the target region in both parts

separately. To get the final image, as last step both sub-images are aggregated.

The comparison between a pure structural, a pure textural and the combined

approach is shown in Figure 3.15, where the advantages of the latter are clearly

visible.

(a) (b) (c) (d)

Figure 3.15: Comparison of inpainting approaches based on the white target region
in input image (a). The images are taken from [8]. (b) The structural approach yields a
blurred solution with correct edge propagation. (c) A more detailed solution is gained
by applying the textural approach with the drawback of inaccurate edge reconstruction.
(d) Bertalmio et al. [8] combine both methods to get a detailed textured solution and
proper edge paths. Due to replicating the texture from the source into the target region,
some repetitive patterns are noticeable in the region of actually random waves.

A different approach to combine the advantages of structural and textural inpaint-

ing was proposed by Criminisi et al. [16]. They perform large object removal with

an exemplar-based inpainting algorithm. By replicating similar patches from the

source image into the target region, their method is capable to preserve structural

and textural information, as can be seen in Figure 3.16. Furthermore, they also

discuss the importance of the fill order and present an edge-driven ordering as

alternative to the commonly used onion peel strategy.

The above mentioned inpainting algorithms are designed to be applied on still images. In

most cases user-interaction is required to mark the desired inpaint region in the image.

To inpaint this region, the algorithms take information of the spatial pixel neighborhood

into account. In the field of video processing where a sequence of frames is available, this

is not sufficient to get a pleasing result. Therefore, additional constraints like temporal

consistency have to be considered for the inpainting process.
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Figure 3.16: Object removal performed by the exemplar-based inpainting algorithm
of Criminisi et al. [16]. Both, structure and texture are preserved in the large target
region. The images are taken from [16].

3.4.2 Video Inpainting

Inpainting is often applied on image sequences to perform restoration of historic video

material or object removal. A naive approach is to utilize the same algorithms of image

inpainting for every single frame of the video. Since the pixel neighborhood of the target

region will change from frame to frame, the inpainted results will vary over time. This

causes perceivable artifacts (ghost shadows) if the image sequence is played back. To

minimize such image errors, pure spatial inpainting algorithms have to be extended to

also take temporal continuity into account.

Patwardhan et al. [29] proposed a basic video inpainting approach for image sequences

recorded with a static camera. Their algorithm is capable to remove moving objects

which occlude stationary background. This turns out to be a simple task for videos with

a stationary camera. Furthermore, their algorithm also supports inpainting of occluded

moving objects, which is a more demanding task. For both scenarios spatio-temporal

information is considered to maintain a time consistent solution. The proposed method

divides the image in a moving foreground and stationary background part, based on

motion information of the optical flow. To inpaint occluded moving objects, patches

from undamaged frames are copied in the desired region of the current frame. This is a

similar strategy as the example-based inpainting for images, with the enhancement that

the search space is extended to a volume of multiple images. As shown in Figure 3.17,

the algorithm yields visually pleasant results, with the limitation of only being applicable

on videos with a static camera. To compensate this disadvantage Patwardhan et al. [30]

further developed their algorithm to also support image sequences with a moving camera.

However, they constrain the camera motion to be approximately parallel to the plane of

image projection. Furthermore, they also assume to have a stationary background scene

and moving foreground object.
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Figure 3.17: The video inpainting algorithm of Patwardhan et al. [29] takes spatial
and temporal information into account to fill the target region. The method is limited
to image sequences with a stationary camera. These images are taken from [29].

The exemplar-based video inpainting approach proposed by Shih et al. [33] has no re-

strictions regarding the camera motion. Their method propagates an user-selected target

mask along optical flow vectors trough the image sequence. Therefore the selection of

the desired inpaint region is just required for the first frame. With an improved patch

matching strategy based on image gradients they inpaint this region with a temporal

continuity constraint. This ensures that nearly no artifacts like ghost shadows are per-

ceivable in the resulting video sequence. As their evaluations show, camera movements

like tilting and scenes with a perspective view (non-planar targets) still cause noticeable

artifacts.

Figure 3.18: Successful object removal with the temporal consistent video inpainting
algorithm of Shih et al. [33]. The images are taken from [33].

Granados et al. [20] proposed an algorithm, which is designed to handle dynamic objects

and a free-moving camera. The algorithm assumes a static background and addition-

ally requires a mask for the object to be removed and a mask for the dynamic object

that remains in the scene. Both masks have to be user-defined for every single frame

of the video. To inpaint the target region the algorithm aligns other frames in which

the occluded region is visible. This process is based on the assumption that the scene is

approximated with a piece-wise planar geometry. To align a frame-pair, the homography

for each such planar region is estimated. This enables to copy disoccluded pixels from

other frames in the target region to be filled. The proposed algorithm yields sophisti-

cated results with no noticeable ghost shadows, as shown in Figure 3.19.
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Figure 3.19: The video inpainting algorithm of Granados et al. [20] yields visually
pleasing results, even for complex background scenes. A mask for objects to be removed
and a mask for dynamic objects which remain in the image is required. The images are
taken from [20].

The presented video inpainting algorithms in fact yield sufficiently good results, but re-

quire a certain scene, restricted camera motion or manual labeling of the target region.

We can conclude that visually attractive video inpainting is possible in a constrained

setup, but no general solution exists which covers all scenarios. The algorithms are basi-

cally designed to fulfill the requirements of a specific application environment. Therefore,

we do not use an existing implementation, but develop an algorithm that perfectly fits

our needs.

3.5 Artifact Removal Strategy

To develop a strategy on how to handle the remaining interpolation artifacts, we analyze

the occurring errors and specify our application specific constraints. As discussed in

section 3.3.2, small objects and too wide displacements of larger objects often pose

a problem for the optical flow algorithm. They are not supported by the coarse-to-

fine warping scheme which enables the estimation of large displacements (see section

2.3.5). Since the optical flow vectors are a fundamental part of the motion compensated

frame interpolation, these mentioned objects are not interpolated properly. This leads

to artifacts in the intermediate frame, which become clearly noticeable during video

playback. A straight forward approach to get rid of these introduced artifacts is to

apply an inpainting algorithm. The visible image errors are measurable with the warp

error as shown in Figure 3.12. We use this warp error mask to define the target region

for inpainting, instead of requiring additional user-interaction. However, this does not

solve the problem of getting the correct intermediate frame, as explained in Figure 3.20.

To get a visually pleasing and temporal consistent interpolation result, we need a solu-

tion which handles the detected image errors properly, and additionally recovers wrong

positioned objects at the correct intermediate position. We present a method which

solves this problem in two separate steps:
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(a) I0 (b) I1/2 (c) I1

(d) Warp error (e) Inpainted frame (f) Correct I1/2

Figure 3.20: (a,c) The cropped input images showing a fence pole recorded with a
moving camera. (b) Due to the large displacement of about 80 pixels the optical flow
algorithm is not able to estimate the correct displacement. Therefore, the intermediate
frame is interpolated with the pole at the wrong position. As can be seen in this
example, the object is drawn two times, since the forward and backward motion vectors
do not match. (d) With the warp error mask the wrong positioned poles in I1/2 are
correctly identified. (e) These artifacts can be removed by inpainting the warp error
mask and retrieving the background. This on the one hand yields an artifact free
image, but on the other is not enough to obtain a visually pleasant intermediate frame,
as shown in (f). For a temporal consistent interpolation result a further step is needed,
where the pole is inpainted at the correct intermediate position.

1. Calculate object displacement

Determine the correct intermediate position of a wrongly interpolated object, by

estimating its displacement from image I0 to I1.

2. Inpaint object

Inpaint the object at the in step 1 determined intermediate position, with a patch

based algorithm and depth ordering.

During the explanation of the proposed approach within the next chapters, we always

refer to the forward flow, even though the method is analogously also applied on the

backward flow. This means that we assume the images I0 and I1 and the optical flow

computed from I0 to I1 as input for the algorithm. To apply the artifact removal

approach on the backward flow, the image order is simply reversed.

3.5.1 Calculate Object Displacement

The warp error mask denotes the image error, which has to be removed by retrieving

the background, but it does not indicate the intermediate position where the wrongly
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interpolated object needs to be restored, as shown in Figure 3.20. By calculating the

displacement from image I0 to I1 of such error prone objects, the correct intermediate

position can be determined. Since optical flow algorithms, which are based on the

coarse-to-fine warping scheme, fail to estimate the motion, we have to stick to another

approach.

The objects which cause interpolation errors are easily extracted as patches, by filtering

the input image with the warp error mask. Therefore, the correlation-based optical

flow approach (see section 2.2) is very well suited to estimate the displacement of the

patches. It matches an object patch of image I0 with its corresponding representation in

image I1. The matching process is implemented with a sliding window approach, where

the extracted patch is compared to all possible candidates in image I1. As similarity

measure we use the mean absolute error (MAE)

eMAE =
1

n

n∑
i=1

|I0(i)− I1(i)|, (3.10)

where I0(i) and I1(i) denote the ith intensity value of the corresponding patch and n

is the total number of patch pixels. We prefer the MAE over the mean squared error

(MSE), because it is more robust to strong outliers. The sliding window position in

image I1 with the smallest error is set as the matching patch location. If the error value

eMAE of the best matching candidate does not satisfy the minimum matching distance

threshold, then all pixels of the patch in image I0 are marked as not matched. This in

most cases happens if the object is occluded in image I1 or if the the patch intensities

change significantly due to illumination variations.

After the matching patch is found, the displacement vector ~u(~xI0) is easily determined

by computing the difference of the two bounding box origin points by

~u(~xI0) = ~xI1 − ~xI0 , (3.11)

as shown in Figure 3.21. We use ~u(~xI0) as displacement vector for every pixel of the

extracted patch, instead of the previously computed optical flow.

With this method the result of the optical flow algorithm is enhanced, and extended to

also handle large motions of small objects. If both matching objects lie within the image

bounds, there is basically no limit for the maximal supported displacement distance.

The approach is constrained on the visibility of the matching patches in both images.

Therefore, we are for example not able to correct erroneous optical flow vectors, if the

matching patch cannot be found in the corresponding image. This may be caused by

occlusions, deformations or significant illumination changes.
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(a) Patch location in I0 (b) Extracted patch

(c) Sliding window approach (d) Displacement vector ~u(~xI0)

Figure 3.21: An example for the sliding window-based displacement computation of
the wrong interpolated fence pole shown in Figure 3.20. (a) The bounding box of the
object in image I0 is defined by the warp error mask. (b) Based on this mask we can
easily extract the patch. Only the non-white pixels are taken into account for further
calculations. (c) With the sliding window approach we search for the matching object
in image I1. For every position of the patch, the error value eMAE is computed. The
matching object lies at the location with the lowest error value. (d) If a matching
patch is found, the displacement vector ~u(~xI0) is calculated with the difference of the
bounding box origin coordinates.

To increase the robustness against such events, we make use of the temporal consistency

assumption of motion vectors. Due to video recording frame-rates of 24 fps or higher,

motion vectors change only marginally over the image sequence. Therefore we are able

to approximate the displacement of an object from image I0 to I1 by calculating its

motion from image I-1 to I0. The advantage of this approach is that the target object

which is occluded in image I1 may be visible in image I-1, as shown in the example in

Figure 3.22.

The same sliding window approach as used before in image I1 is utilized to search for

the extracted patch of image I0 in I-1. If a matching patch is found the displacement

vector describing the motion from image I-1 to I0 is calculated in a similar way as shown

in equation (3.11). But since we now want to predict the position of the object in the

subsequent image I1, as shown in figure Figure 3.23, we have to slightly modify it

~u(~xI-1) = ~xI0 − ~xI-1 . (3.12)

With this approach we are able to estimate the position of an object in image I1, although

it is not visible or just visible in a significantly modified appearance in comparison to

image I0. The motion approximation is sufficient if the sampling rate is high enough
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(a) I0 (b) I1/2 (c) I1

(d) Warp error (e) I-1

Figure 3.22: (a,c) The cropped input images with a moving skier. In the first image
the pole of the ski-gate is visible, whereas in the second it gets occluded by the skier.
Therefore the optical flow algorithm cannot estimate the correct displacement of the
pole. (b) This leads to an intermediate frame with visible interpolation errors, due to
the wrong motion vectors along the pole. (d) The occurring image errors are correctly
indicated by the warp error mask. (e) Due to the temporal motion consistency, we
can retrieve movement information from neighboring images, where the pole is visible.
This is done by computing the pole displacement from image I-1 to I0, which is an
approximation of the motion vectors of the image pair I0 and I1.

(a) I-1 (b) I0 (c) I1 (d) Motion vector

Figure 3.23: With this example we want to demonstrate the temporal consistency of
motion vectors. Based on the image pair I0 and I1, the optical flow for the left ski-gate
pole cannot be estimated sufficiently, because it is only visible in the first of the two
images. The position of the pole in image I1 can be approximated, by also taking the
neighboring frame I-1 into account. This is achieved by calculating the displacement
vector ~u(~x-1) for the image pair I-1 and I0 and utilizing it for the patch pixels in image
I0. This is illustrated in (d), where the three bounding boxes of the pole are overlayed
on image I1. The position of the occluded pole is given by the displacement vector
~u(~x-1).
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in relation to the occurring motion changes. For object movements which significantly

change from frame to frame, the predicted location will deviate from the correct location.

The additional search in the neighboring image I-1 is only carried out, if no matching

patch can be found in I1. This ensures that in the first place the more accurate method

is used to find the displacement. If no matching patch can found in both neighboring

images I-1 and I1, then the erroneous optical flow vectors cannot be repaired. Such a

scenario occurs if the sought object is only visible in image I0 or the appearance in both

neighboring frames significantly differs.

In general, the patch-based search is prone to errors if the sought object underlies a

geometric transformation like rotation or scaling. This can be improved by implementing

a rotation and scale invariant matching algorithm, as proposed by Barnes et al. [4]. On

the one hand, such a method increases the matching rate, but on the other it is also more

likely to obtain false matches. Since this negatively affects the visual quality of the video,

we stick to the standard sliding window approach. Furthermore, matching errors are also

expected at the occurrence of repetitive structures, due to multiple similar candidate

patches. With a high minimum matching distance threshold these false matches can be

reduced. However, the threshold should not be too high, to allow minor outliers.

To reduce the computational expense, we limit the search region based on the largest

expected displacement, as shown in Figure 3.24. This also decreases the probability

of false matches, because less candidates are taken into account. The largest expected

displacement is an application specific value, which depends on known parameters like

recording frame-rate, sensor resolution, focal length and not predictable parameters like

camera motion, object speed and distance of the object to the camera. We approximate

this value individually for each dataset, according to an experimental evaluation on the

image sequences.

(a) I0

search region

(b) I1

Figure 3.24: By using a limited search region for the sliding window approach instead
of the whole image, the computational expense can be reduced. Furthermore also the
likelihood for false matches is decreased, because less candidates are considered in the
matching process.

One of the major disadvantages of coarse-to-fine warping-based optical flow algorithms,

is that small objects are not supported due to the downscaling in the image pyramid.
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Furthermore, also object occlusions and disocclusions disable a reliable optical flow esti-

mation. We address these deficiencies with the presented approach, which is used as an

additional post-processing step. We can state the following improvements and strengths

of our method:

• Large displacements

Large displacements are handled very well with our approach, independently of

the object size. However, we ignore patches with just a few pixels, due to the

lack of matching reliability. In general, the maximum object displacement is only

limited by the image bounds, but to increase the computational and matching

performance we limit it to a predefined value.

• Occlusions and disocclusions

If an object gets occluded or significantly changes its appearance, we are still able

to predict an approximated motion vector, if a matching patch can found in the

other neighboring frame. In the worst case, if an object is just visible in one frame

or has a significantly differing representation in all three frames, the displacement

vector cannot be computed.

Our approach addresses optical flow errors, which cause perceivable artifacts in the inter-

polated image. Errors in homogeneous regions like for example snow, are not recognized

by the warp error, but also not noticeable in the resulting interpolated frames. The

optical flow enhancements with our post-processing step are shown in Figure 3.25.

With the corrected flow vectors we are able to compute the intermediate positions of the

extracted patches. These objects have to be treated separately in the composition pro-

cess of the intermediate frame. This is required, since we also approximate displacement

vectors of objects, which are actually not visible in image I1. Therefore, an patch-based

video inpainting method is needed, which performs a depth check for such objects, to

determine if they get occluded or stay in the foreground.

3.5.2 Inpaint Object

In general, objects with wrong optical flow vectors cause interpolation errors which

become visible in the intermediate frame. This problem was addressed in the previous

section, by recovering the correct flow vectors. In this section we focus on how to inpaint

these wrongly interpolated objects at the proper position. The proposed displacement

recovery method is also capable of approximating motion vectors of objects, which are

occluded in image I1 Therefore, the inpaint method must consider the correct depth



Chapter 3. Video Frame Interpolation by Motion Compensation 47

(a) I0 (b) I1

(c) Huber-L1 optical flow (d) Enhanced optical flow

Figure 3.25: An example for the optical flow improvements visualized with the color-
coded representation, based on the image pair I0 and I1. With the Huber-L1 optical
flow the displacements of all fence poles in the background, the ski-gate and also the
snow are estimated wrongly, due to the fast camera movement. Beside the snow, which
does not introduce perceivable artifacts, these errors are identified and handled by our
approach. The improvements are clearly noticeable through the high color saturation
at the mentioned objects.

order of objects. If for example a ski-gate gets occluded by a skier in image I1, the

depth order is: skier - foreground; ski-gate - background. This depth order has to be

maintained during inpainting in the intermediate frames.

The position where the object needs to be inpainted is computed by linearly scaling

the recovered optical flow vectors, as explained in section 3.1. By simply drawing the

extracted patch at this position, the depth order may be violated. Therefore, we consider

two cases for inpainting:

• Object remains in the foreground

If for the patch extracted from image I0 a matching patch in image I1 is found,

as shown in Figure 3.26, we can conclude that it is also in foreground in the

intermediate frames. In this simple case, the whole patch is always drawn as

foreground, without considering neighboring pixels during inpainting.

• Object gets occluded

If for the extracted patch from I0 no matching patch in image I1 is found, we infer

that it is occluded in image I1. The patch moves from foreground to background in

the depth order, as shown in Figure 3.27. This means that its appearance changes

within the intermediate frames.
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(a) I0 (b) I1

Figure 3.26: The red colored region represents the object to be inpainted. Since the
whole red object is visible in both images, it is also in the foreground in the intermediate
frames. Therefore, the extracted patch is inpainted at the intermediate position without
any modifications.

We solve this problem by comparing the neighboring pixels of the patch in image I0

with the underlying pixels of the interpolated image. With this comparison we can

detect when and where the occluding object approaches to the extracted patch.

This video inpainting algorithm is in detail explained with a simple example in

Figure 3.28.

(a) I-1 (b) I0 (c) I1

Figure 3.27: In this example the red target object is only partly visible in image I1.
This is not enough to be considered as a reliable match. Therefore, the optical flow
is approximated by additionally taking the neighboring frame I-1 into account. The
difficult task is now to inpaint the target region in the intermediate frames properly, so
that the blue moving object is in front of the red object.

Our video inpainting algorithm is based on the visibility assumption, where an object is

assumed to be visible in the intermediate frames if it is visible in both input images I0

and I1. As shown in Figure 3.29 this assumption is not reliable if the recording frame

rate is too slow for the occurring object motions.

With the depth check we approximate the occlusion process in the intermediate frames.

This method should give the viewer of the resulting video the feeling of proper depth

handling. The approximated solution will not always be correct for every inpainted pixel.

This is noticeable by taking a close look on single frames of the image sequence. However,

when the sequence is played back as video these minor errors do not attract that much

attention. As explained in section 3.4.2, temporal consistency is very important for

video inpainting algorithms. We satisfy this criterion by using patches extracted from
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extracted patch

interpolated image

(a) Inpainting: I1/3

extracted patch

interpolated image

(b) Inpainting: I2/3

(c) Result: I1/3 (d) Result: I2/3

Figure 3.28: Interpolation of two intermediate frames with our inpainting approach,
based on a similar example as shown in Figure 3.27, where the target object gets
occluded. (a) Since the blue moving object is not overlapping with the neighbor pixels
of the red target patch, both objects are rendered normally, as can be seen in the
resulting interpolated frame (c). (b) The blue object approached the red region and
partly occludes it. By comparing the neighbor pixels of the extracted patch with the
underlying pixels of the interpolated image, we can detect where the blue object overlaps
with the red region. This pixel-wise comparison is visualized with the green arrows. A
red pixel is only drawn, if the closest neighbor pixel has a low comparison difference. If
the closest neighbor pixel has a blue overlap (high comparison difference), then instead
of the red pixel, the the underlying intensity is adopted. The result of this example is
shown in (d), where the partly occlusion of the red region is visible.

(a) I0 (b) I1

Figure 3.29: The depth check becomes unreliable, if the sampling frequency is too
low for the occurring displacements, as shown in the image sequence (a) and (b). Our
algorithm assumes, that the red target object is in the foreground in the intermediate
frames, since it is visible in both images. But in fact we cannot say which one of the
two objects is occluding the other, based on the input images I0 and I1.
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the input images, similar to the exemplar based inpainting approach. In general, the

presented video inpainting algorithm yields satisfying results, as shown in Figure 3.30

and Figure 3.31.

(a) I0 (b) Warp error mask (c) I1

(d) I1/4 (e) I2/4 (f) I3/4

(g) I1/4 (h) I2/4 (i) I3/4

Figure 3.30: (a,c) The motion vectors of the ski-gate are not estimated properly, due
to the fast moving camera. (b) This is correctly indicated by the warp error mask.
(d,e,f) Therefore, the bilinear interpolation yields wrong intermediate frames, since the
ski-gate is drawn two times. (g,h,i) With our video inpainting algorithm we are able to
recover the displacement of the ski-gate from image I0 to I1. The extracted patch (ski-
gate) is then inpainted at the three linearly interpolated intermediate positions. This
yields a temporal consistent result, where the ski-gate is moving along its displacement
vector.

3.6 Summary

To achieve the well known slow motion effect, synthetic intermediate frames are interpo-

lated between every consecutive frame pair. This is done by propagating pixel intensities

along motion vectors obtained from optical flow. To fill the holes, which arise due to ob-

ject occlusions and disocclusions, the optical flow is computed in forward and backward

direction. The intermediate frames are interpolated with the bidirectional approach,

where the propagated intensities are linearly blended from I0 to I1. The bidirectional

frame interpolation strongly depends on the optical flow. Therefore, errors in the flow

field are visible as artifacts in the intermediate frame, which are measurable with the
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(a) I0 (b) I1

(c) No inpainting: I1/3 (d) With inpainting: I1/3

(e) No inpainting: I2/3 (f) No depth ordering: I2/3 (g) With inpainting: I2/3

Figure 3.31: (a,b) In this sequence the left pole of the ski-gate gets occluded in image
I1. Therefore its displacement is not estimated correctly. With our presented video
inpainting approach, we are able to restore the proper motion vectors for the pole.
(c,d) We can clearly see the difference between the bidirectional interpolated frame and
the inpainted frame, where the pole gets recovered. (e,f,g) To emphasize the impor-
tance of the depth ordering-based inpainting approach we compare the bidirectional
interpolated frame, the inpainted frame without considering the depth, and the depth
ordered inpainting result. In (f) the pole is recovered at the correct position, which is
an improvement over (e), but it is drawn over the skier. This gets fixed by considering
the depth order in the inpainting process in (g).
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warp error. Based on this error measure, we developed a two-step artifact removal strat-

egy. In the first step, the corrupted optical flow is corrected with a patch-based method.

The proposed optical flow enhancement has its strengths over variational algorithms es-

pecially at large object displacements, thin moving objects, occlusions and disocclusions.

The latter two are achieved with the temporal consistency assumption for motion vec-

tors, where the preceding and subsequent frames are also included in the computation.

In the second step, the object-patch is inpainted at the in step one calculated position,

by differentiating between two different cases:

• If the whole patch is visible in both input frames I0 and I1, then it is inpainted

unchanged in the intermediate frame.

• If the patch is only visible in one of the two input images, then it moves from

foreground to background or vice versa. We developed an inpainting method which

determines where the patch gets occluded in the intermediate frame to maintain

the correct depth order of the objects.

Our proposed algorithm improves the interpolation result, where the variational optical

flow is not able to estimate the proper displacements.



Chapter 4

Evaluation and Results

The primary goal of this slow motion algorithm is to deliver visually attractive results for

a large variety of input sequences. This is considered in the evaluation of our algorithm,

where various test-videos with different scenes and movements are analyzed. A single

intermediate frame I1/2 is interpolated between every frame-pair of the test video. For a

sequence of 100 frames with 99 consecutive frame pairs, the resulting slow motion video

has 199 frames, which is a slowdown by the factor of approximately 2. Of course also

higher slowdowns are feasible with our algorithm. However, the resulting slow motion

sequence with multiple intermediate frames is difficult to visualize in this printed work.

Depending on the recording frame rate, the test-videos are separated in two datasets,

which are evaluated in different ways.

The Skiline dataset contains videos provided by the company Skiline Media AG. These

test video have in common that they were recorded with pan-tilt-zoom (PTZ) cameras

at a frame rate of 25 fps. Our frame interpolation algorithm is applied on every image

pair of the input sequence. The intermediate frames and the resulting slow-motion video

are visually inspected with the primary focus on disturbing artifacts and non-smooth

movements.

The videos of the Ground Truth dataset were recorded with a hand-held smartphone, at a

frame rate of 120 fps. This enables us to generate ground truth data for the intermediate

frames, by leaving every second frame of the video out. With the comparison of the

interpolated frame with the corresponding ground truth frame, we can measure their

similarity and determine where interpolation errors occur.

53
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4.1 Optical Flow Library

To estimate the optical flow for each frame pair, we use the FlowLib v3.0 library ([40],

[41]), developed at the TUGraz by the GPU4Vision group. The library offers multiple

variational optical flow models, which can be configured by a large set of parameters. It

is implemented in C++ and CUDA, and can be executed in a massively parallel fashion

on a GPU. This enormously speeds up the optical flow estimation. Binaries of the latest

FlowLib version are available at the GPU4Vision website1, which are free to use for

academic purposes.

The main parameters of our FlowLib configuration used for evaluation of the test videos

are listed below:

• Model: HL1

We use the Huber-L1 model with the Huber norm in the regularization term and

the L1 norm in the OFC-based data term. The Huber-L1 model is in detail

explained in section 2.3.4.3.

• Iterations: 70

The optical flow energy functional is minimized within 70 iterations per warp.

• Warps: 10

At every level of the image pyramid, 10 warps of image I0 towards image I1 are

performed. After each warp the optical flow is recalculated based on the previous

result. This iterative warping leads to an optical flow refinement.

• Scale-factor: 0.95

The two input images I0 and I1 are down-scaled to a coarser level in the image

pyramid, with a factor of 0.95.

• λ: 30

The balance between the regularization and data term of the energy functional, is

controlled with the λ parameter. A low value favors smooth solutions, whereas a

high value takes more details into account, as can be seen in Figure 4.1.

• εu: 0.01

The parameter εu defines the threshold for the Huber norm. Below the threshold

we obtain a quadratic and above a linear penalty.

• Median Filter: ON

The resulting optical flow vectors of a coarse level in the image pyramid are up-

scaled to a finer level by using a median filter.

1http://gpu4vision.icg.tugraz.at/

http://gpu4vision.icg.tugraz.at/
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(a) λ = 5.0 (b) λ = 50.0

Figure 4.1: Influence of the balance parameter λ on the optical flow result. (a) A low
value yields a smooth optical flow. (b) By increasing λ, also fine details are taken into
account. However, a too high value increases the influence of noise on the result. Both
images are taken from the FlowLib documentation.

4.2 Skiline Dataset

The company Skiline Media AG developed a system, where multiple stationary PTZ

cameras track and record a skier along a defined racing track. The automatically com-

posed video is stored online1, where the skier is able to watch and download it. This

application was also adapted for downhill mountain-biking and ski-/snowboard-jumping.

With the slow motion effect applied on a short part of the image sequence, the company

wants to enhance the viewing experience of the final composed videos. We chose 4 short-

ened sequences which cover most of the occurring scenarios like skiing, mountainbiking

and jumping, to evaluate how well our algorithm performs on their videos.

The camera motion of the Skiline test videos is limited to pan, tilt and zoom, due to

the type of installed camera-systems. Nevertheless, there are no restrictions regarding

the object motion in the scene. All videos were recorded at a frame rate of 25 fps and

with a video resolution of 1280 × 720 pixels. The chosen test sequences contain scene-

backgrounds which range from homogeneous snow to highly textured grass. Due to the

lack of ground truth data, the evaluation is done by visually inspecting the interpolated

frames and the slow motion video. It is very important, that the slow motion movements

look naturally, as if they were recorded at a higher frame rate. Therefore, we concentrate

on the occurrence of disturbing artifacts, not correct interpolated objects or non-smooth

movements. Also the optical flow consistency and warp error measures are taken into

account within the evaluation.

1http://www.skiline.cc/skimovies/spot/

http://www.skiline.cc/skimovies/spot/
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4.2.1 Test-Sequence: Ski-Planai

This test video shows a moving skier, passing a ski-gate in the front. The background

is static, beside an another moving skier in the upper left. The video was recorded

with a static camera, therefore, the optical flow of the background scenery is zero.

Figure 4.4 shows the input images and resulting interpolated images side by side. The

main difficulty of this video is the occlusion and disocclusion of the thin ski-gate poles

by the skier. Figure 4.2 shows the consistency and warp error for these frames. The

occurring errors cause disruptive artifacts in the intermediate frames of the bidirectional

interpolation. By applying our proposed inpainting algorithm as post-processing step,

the introduced artifacts are successfully removed, as shown in Figure 4.3.

Overall, the final interpolated frames in Figure 4.4 contain no major disturbing artifacts.

By enlarging a single interpolated frame, some minor pixel-scale artifacts become visible,

which vanish if the sequence is played back as video. The slow motion of the skier during

playback is very smooth and natural.

(a) Consistency error

(b) Warp error

Figure 4.2: Both, the flow consistency and the warp error indicate that flow errors
occur at the occlusion of the ski-gate poles. The two images on the left show the error
measures for the occlusion of the first ski-gate pole, and the two images on the right
for the second pole. While the consistency error also measures flow deviations in the
homogeneous snow region, the warp error just focuses on the perceivable error along
the ski-gate pole.



Chapter 4. Evaluation and Results 57

(a) Bidirectional frame interpolation

(b) Proposed frame interpolation approach with inpainting

Figure 4.3: Comparison of the resulting intermediate frames, which were calculated
with and without our inpainting algorithm. (a) Parts of the ski-gate poles are drawn
incorrectly in the bidirectional interpolated frame. This is caused by wrong optical flow
vectors, due to the occlusion by the skier. (b) These disturbing artifacts are removed,
by applying our proposed inpainting algorithm. Minor small-scaled artifacts are still
visible in the enlarged frame. However, they do not attract that much attention during
video playback with 25 fps.

4.2.2 Test-Sequence: Mountain-bike

The Mountain-bike sequence shows a cyclist jumping over a hill, as shown in Figure 4.6.

The scene background is highly textured and dominated by grass, stones and dirt. Due

to the fast camera panning in combination with the relatively long exposure time, a

decent amount of motion blur is introduced. This eliminates fine details and leads to

a poor visual quality of the test video. The thin elements of the mountain bike pose a

problem for the optical flow algorithm. The part of the front wheel with the hidden rim

is very hard to distinguish from the background. As in detail analyzed in Figure 4.5,

this leads to interpolation errors caused by wrong motion vectors along the wheel. Since

the upper part of the wheel is not clearly distinguishable from the background, also our

inpainting algorithm fails to remove the introduced artifacts. Beside this error, which

occurs in the last intermediate frame, no further disturbing artifacts are noticeable in

the resulting slow motion sequence. The highly textured background and the cyclist are

interpolated properly and have a smooth motion during video playback.
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Input images Interpolated images

Figure 4.4: Resulting Ski-Planai sequence
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(a) I1/2

(b) I0 (c) I1

(d) Forward flow superimposed with I0 (e) Consistency error

Figure 4.5: (a) A noticeable interpolation error at the front wheel of the bike occurs
in the last intermediate frame of the Mountain-bike sequence. (b,c) In image I0 and
I1 the white rim is not clearly visible in the upper half of the front wheel, wherefore it
is not distinguishable from the background. (d) This leads to a wrong estimated flow
along the wheel. By superimposing the color coded forward flow with the input image
I0, we can clearly see that a part of the front wheel is covered with motion vectors of the
background texture. (e) The occurring error is also indicated by the flow consistency
measure.
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Input images Interpolated images

Figure 4.6: Resulting Mountain-bike sequence
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4.2.3 Test-Sequence: Snowboard-Jump

This test video shows a snowboarder, which is performing a back-flip, as depicted in

Figure 4.8. He is rotating backward around his own axis. Under the boarder a landing

platform, the so called BigAirbag is visible. Regarding the camera motion, a zoom-in is

noticeable during the whole image sequence. A minor artifact is perceivable when the

background of the snowboard changes from snow to the landing platform. This error

is analyzed and shown enlarged in Figure 4.7. Except of this artifact, which has only

a small impact on the final result, the intermediate frames are interpolated accurately.

The slow motion video with the rotating snowboarder is smooth without any disturbing

artifacts. The good slow motion result is explained with the moderate camera motion

in combination with the compact type of moving object. In comparison to a skier with

thin skies and sticks or a cyclist with thin wheels, the shown snowboarder is less prone

to errors, regarding the optical flow estimation.

(a) I0 (b) I1

(c) I1/2

Figure 4.7: At the transition of the snowboard from snow to the BigAirbag, a minor
artifact is visible in the intermediate frame. Since the snowboard in I1 occludes a part
of the landing platform, the displacement vectors in this region are not reliable, which
leads to the highlighted artifacts. However, due to its small size in comparison to the
full image, this error does not attract attention during video playback.
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Input images Interpolated images

Figure 4.8: Resulting Snowboard-Jump sequence
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4.2.4 Test-Sequence: Ski-Soelden

In the Ski-Soelden video, a fast moving skier is passing a ski-gate in front of a poorly

visible fence, as shown in the image sequence in Figure 4.11. Between these mentioned

objects, weakly textured snow is visible everywhere in the image. The skier appears to

be nearly stationary, due to the fast camera movement in the same direction. Therefore,

the ski-gate and the fence poles are the apparently moving objects in the image, with

displacements of about 70 pixels. This image sequence represents a very challenging

problem for the variational optical flow approach. It is impossible to calculate a reliable

optical flow for the homogeneous snow region, due to the poor data term. Furthermore,

also the displacements of the ski-gate and fence poles cannot be estimated properly, since

they are too thin to be supported by the coarse-to-fine warping scheme. Therefore, the

snow region is filled-in with wrong neighboring flow vectors. Our patch-based algorithm,

explained in section 3.5.1, is able to enhance the variational optical flow result, by

correcting the displacement vectors of the patches masked by the warp error. The

variational optical flow and the enhanced solution are compared in Figure 4.9. With the

corrected optical flow, also the frame interpolation yields better results. A comparison

of intermediate frames which were computed with and without our inpainting algorithm

is shown in Figure 4.10. The improvements in the frame interpolation gained with our

approach are clearly visible. The final slow motion sequence is plotted in Figure 4.11.

Due to the corrected optical flow, the movements of the ski-gate and the fence poles

appear to be very smooth. if the image sequence is played back as video.

4.3 Ground Truth Dataset

The Skiline dataset limits us to a subjective visual evaluation of the interpolated frames,

due to the lack of ground truth data. Therefore, we decided to record test sequences,

where for every interpolated frame a ground truth image is available. This was accom-

plished by using a smart-phone camera (Apple iPhone 5s), which is capable of recording

videos at a frame rate of 120 fps. The test sequences are composed, by utilizing only

every second frame of the initial 120 fps video. The skipped images are used as ground

truth data for the interpolated frames I1/2.

As test scenes we have chosen sport activities like football, jumping or skateboarding,

where fast challenging movements occur. In contrast to the Skiline dataset, the main

moving objects are closer to the camera, and therefore appear bigger on the recorded

frames. This is an important consideration, since near objects in comparison to far

objects have larger displacements on the image plane. Except of the Jump sequence, the
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(a) I0 (b) I1

(c) Consistency error (d) Warp error

(e) Forward flow (f) Corrected forward flow

Figure 4.9: Optical flow correction based on the warp error mask. (e) Despite for
the skier, the variational optical flow algorithm yields a completely wrong result for the
input image pair I0 and I1. (c) Due to the incorrect forward and backward flow result,
the flow consistency error cannot measure the occurring errors reliably. (d) The warp
error mask provides the foundation for the optical flow correction, by indicating wrong
flow vectors, which cause a perceivable interpolation error. (f) With our patch-based
approach, the correct displacements for the indicated objects are regained. The snow
still has erroneous optical flow vectors of nearly zero. However, these errors are not
perceivable in the intermediate frame.
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(a) Bidirectional frame interpolation

(b) Proposed frame interpolation approach with inpainting

Figure 4.10: Comparison of the resulting intermediate frames, which were calculated
with and without applying our inpainting approach. (a) Due to wrong optical flow
vectors the bidirectional frame interpolation yields completely insufficient intermediate
frames. (b) By applying our inpainting algorithm, the correct displacements of the
ski-gate and the fence poles are regained. This leads to a clearly visible improvement
of the interpolated intermediate frames. The depth order of the skier and the inpainted
ski-gate is preserved, since the ski-gate is drawn on top of the skier. However, in the
bottom right interpolated frame the helmet of the skier is visible through the flag of the
ski-gate. This error occurs, because the white flag does not cause a measurable warp
error, due to the white snow in the background. Therefore, the flag is not part of the
warp error mask and thus is not inpainted.

smart-phone was hand held during video recording, wherefore the camera movements

are not restricted. Due to the separated ground truth images, the frame rate of the

input videos is reduced from 120 fps to 60 fps. Equal to the Skiline dataset, the video

resolution amounts to 1280 × 720 pixels. However, the videos of the Ground Truth

dataset feature much more details and sharper images.

Beside the subjective evaluation, with focus on disturbing artifacts and non-smooth

movements, also a ground truth comparison is carried out for this dataset. With the

difference of the interpolated intermediate frame and the corresponding ground truth

frame, the pixel intensity-based interpolation errors are measured. Standard metrics

to compare the distance between a reference frame and a modified frame are the mean

squared error (MSE) or the peak signal-to-noise ratio (PSNR). The PSNR metric is

mostly applied in the field of image or video compression, to measure the quality of

compression codecs. It is appropriate for tasks where the pixel-wise similarity of two

images is of interest. However, it does not correlate with the perceived visual quality
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Input images Interpolated images

Figure 4.11: Resulting Ski-Soelden sequence
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[35]. Wang et al. [37] proposed the mean structural similarity (MSSIM) index, which is a

commonly applied metric for applications, where the subjective similarity of two images

is more important then the pixel-wise comparison. By measuring the degradation of

the structure instead of the pure pixel intensity error, the MSSIM index behaves similar

to the human eye perception. It ranges from 0.0 (completely different images) to 1.0

(exactly the same images). A comparison of the MSE and the MSSIM metric is shown

in Figure 4.12. It is clearly visible that the strongly degraded images yield low MSSIM

values, whereas the MSE values stay constant. Many improved MSSIM-based metrics

(a) Reference image (b) MSE = 210, MSSIM = 0.99

(c) MSE = 210, MSSIM = 0.71 (d) MSE = 210, MSSIM = 0.69

Figure 4.12: Comparison of the MSE metric and the MSSIM index. The MSE is
constant for all degraded images (b),(c) and (d). Similar to the human visual system
the MSSIM index yields a high value for the similar looking image (b), and low values
for the strongly degraded images (c) and (d). These images are taken from [37].

were developed in recent years ([36] [34]). An evaluation on these image similarity

measurement approaches was done by Zhang et al. [45]. According to their results, the

feature similarity (FSIM) metric of Zhang et al. [44] correlates the best with the human

perception. It is based on the assumption that the human visual system understands

an image mainly according to its low-level features. The features considered by the

FSIM metric are the phase congruency and the gradient magnitude. Due to its robust

performance and good results in the above mentioned evaluation, we use the FSIM

metric to measure the interpolation quality of our algorithm.
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4.3.1 Test-Sequence: Football

In this test video a person is dribbling a football, as shown in the shortened sequence in

Figure 4.15. The whole test sequence has 84 input frames, which results in 167 frames

in the final slow motion video. The football player is standing on a texture-rich turf and

is surrounded by a forest in the background. Due to the direct sunlight, a lot of hard

shadows are visible in the scene. The ball and the feet of the sportsman are the main

fast moving objects, with displacements of up to 31 pixels.

From the visual perspective, no major disturbing artifacts are perceivable in the in-

terpolated frames. By taking a closer look, some minor differences are notable along

the border of the feet, where occlusions and disocclusions occur. These deviations are

also indicated by the interpolation error in Figure 4.14, where the interpolated image is

subtracted from the ground truth image. Nevertheless, these errors are only marginally

noticeable in the intermediate frames, due to the highly textured background. With ex-

cellent FSIM values ranging from 0.988 to 0.997, the subjective good result is confirmed

by the feature similarity measure, as shown in Figure 4.13. It is noticeable, that the

similarity index slightly decreases in the last third of the sequence. This is caused by

interpolation errors, which arise due to the increased camera motion. Since these errors

mainly occur in the highly textured grass, they have not a negative impact on the visual

quality of the final slow motion video. The slowed down movements appear very smooth

during video playback.
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Figure 4.13: The interpolated frames and the corresponding ground truth frames
have a large feature similarity, with an average value of 0.994. The slight decrease at
the end of the sequence is explained with the increasing average displacement, which is
caused by camera panning.
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(a) Interpolation error

(b) Ground truth frame

(c) Interpolated frame I1/2

Figure 4.14: The interpolation error is calculated by computing the difference of the
interpolated frame and the ground truth frame. For a better visibility, the result of the
subtraction is inverted. Due to the rich texture, only a few minor interpolation errors
are perceivable in the interpolated frame.



Chapter 4. Evaluation and Results 70

Input images Interpolated images

Figure 4.15: Shortened Football sequence



Chapter 4. Evaluation and Results 71

4.3.2 Test-Sequence: Jump

For this test video a person was recorded, while jumping down a hill. The background

is a blue sky with slowly moving scattered clouds. A shortened sequence of the whole

video with 98 frames is shown in Figure 4.19. The person reaches displacements of about

66 pixels, whereas the movement of the camera is negligible, since it was mounted on a

tripod.

In the first half of the image sequence, the FSIM index is ranging from 0.988 to 0.997.

These intermediate frames are very well interpolated, with only a few minor artifacts, at

the border of the jumping person. However, the second half has slightly worse feature

similarity values down to 0.977. The reason for this are the large displacements at the

end of the sequence, as shown in Figure 4.16.
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Figure 4.16: The interpolated frames of the Jump video have very good FSIM values,
except of 20 frames at the end of the sequence, where the feature similarity decreases.
This behavior inversely correlates with the Largest displacement curve, where the largest
occurring displacement is plotted for every frame. We can conclude that the similarity
index decreases, due to the interpolation errors caused by very fast motion.

Especially the right hand is moving very fast, with displacements of about 66 pixels.

In combination with its relative thin shape, this poses a challenging problem for the

optical flow algorithm. As shown in Figure 4.17, the bidirectional interpolation fails to

interpolate the moving hand properly, due to the wrong optical flow vectors. This leads

to strongly disturbing artifacts, which are visible in the interpolated image. With our

proposed algorithm, we are able to compute the large displacement of the hand and

inpaint it at the proper position.

The transformation of the hand from frame I0 to I1 mainly consists of a translation and

a rotation. Our sliding window-based algorithm only supports translations, to be more

robust against similar repetitive objects. Therefore, the patch of the hand is inpainted

with a slightly wrong rotation. However, this approximation is a huge improvement over
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the standard bidirectional approach, and is sufficient for moderate slow motion videos.

A comparison of the ground truth frame and the interpolated intermediate frame is

shown in Figure 4.18. The final slow motion video features smooth movements, due

to the corrected optical flow. In moderate slow motions, the wrong rotation of the

inpainted hand is not noticeable during video playback. By increasing the number of

interpolated images between each frame-pair, to achieve higher slowdowns, this error

becomes increasingly perceivable.

(a) I0 (b) I1

(c) Bidirectional interpolation (d) Interpolation error

(e) Forward flow (f) Corrected forward flow

Figure 4.17: With the bidirectional interpolation, the fast moving hand is not in-
terpolated properly, due to the wrong optical flow. This leads to interpolation errors,
which become clearly visible when subtracting the interpolated image with the ground
truth image. We are able to compute the large displacement of the hand, by applying
our proposed method as post-processing step. The result of the inpainting algorithm
in comparison to the ground truth is shown in Figure 4.18.
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(b) Ground truth frame

(c) Interpolated frame I1/2

Figure 4.18: A comparison of the ground truth frame and the corresponding inter-
polated frame. It can be observed that the hand is not inpainted exactly, due to its
wrong rotation. However, for slow motion videos with moderate slowdowns, this is a
good enough approximation.

4.3.3 Test-Sequence: Skateboard-Trick

This test sequence shows a skateboard-trick, where the skateboarder tries to land on a

rotating board. Due to the direct sunlight, hard shadows of the feet and the skateboard

are visible on the asphalt, as can be observed in Figure 4.22. These shadows pose a huge

problem for the the motion estimation, because the bright textured asphalt is nearly

static, whereas the dark shadows are moving. At the beginning and end of the video,

the measured feature similarity index has excellent values in the range of 0.988 to 0.997.

In the middle of the sequence the index clearly decreases to a minimum value of 0.926,

as shown in Figure 4.20. This is on the one hand caused by very large displacements of

about 77 pixels, and on the other hand by the moving shadows of the skateboard. As

shown in Figure 4.21, wrong optical flow vectors are estimated for the moving shadows,

due to optical flow constraint violations. This results in interpolation errors in this large

region, and leads to a lower similarity index. By looking at a single interpolated image,

the introduced errors are not clearly noticeable, due to the dark texture. However,

if the slow motion video is played back, these artifacts become disturbing, since the
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Input images Interpolated images

Figure 4.19: Shortened Jump sequence
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normally static asphalt texture is moving. Despite these errors, the intermediate frames

are interpolated properly, and the rotating skateboard and the jumping feet are moving

smoothly in the slow motion video.
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Figure 4.20: The FSIM index decreases from very good similarity values to a mini-
mum of 0.926 in the middle of the sequence. This is on the one hand caused by fast
moving objects, with displacements up to 77 pixels. On the other hand, also the moving
shadows have a negative impact on the interpolated image. As shown in Figure 4.21,
the optical flow is not estimated properly in that region, which leads to interpolation
errors.

4.4 Summary

The evaluation of our video frame interpolation algorithm was done on multiple test

sequences, with different types of scenes and movements. Depending on their properties,

the test videos were divided in two separate datasets. The Skiline dataset has a frame

rate of 24 fps, wherefore no ground truth data is available. The videos were evaluated

by visually inspecting the interpolated frames and the slow motion video. Furthermore,

also the flow consistency and the warp error were considered for the evaluation. In all

these test sequences the moving objects are relatively small. Therefore, the frames were

cropped and enlarged for the error analysis and interpolation result comparison. We have

shown that our proposed algorithm is capable to enhance the variational optical flow.

The improvements are measurable for large movements of thin objects (Ski-Soelden),

and also for occluded or disoccluded objects (Ski-Planai). Both scenarios are in general

a challenging problem for variational optical flow algorithms. With the corrected optical

flow, also the interpolation results are improved, as shown with side-by-side comparisons.

We also demonstrate the limits of our algorithm (Mountain-bike, Snowboard-Jump),

where the patch with wrong flow vectors is too thin or not clearly distinguishable from

the background, wherefore the result is not improved.
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(a) Forward flow

(b) Interpolated images

(c) Interpolation error

Figure 4.21: A comparison of the estimated optical flow and the interpolation results,
for the case where the skateboard shadow is moving (left column) and nearly static (right
column). If the shadow boarders are moving, the whole shadow is assumed to move in
that same direction too, although the underlying texture of the asphalt is static. This
leads to interpolation errors, which have a negative influence on the similarity index,
due to the large skateboard shadow. In the case where the shadow is nearly static, the
optical flow in this region is estimated correctly.

To be able to measure the interpolation quality, we decided to develop a Ground Truth

dataset. In addition to the subjective visual evaluation, also the feature similarity index

and the interpolation error was measured for these videos. We have shown that in scenes

with highly textured backgrounds, the interpolation errors appear less distracting (Foot-

ball, Skateboard-Trick), in comparison to homogeneous regions like snow. Furthermore,

we can say that image pairs with large object displacements, have a weaker feature sim-

ilarity, due to the higher amount of occluded and disoccluded pixels. Our algorithm is

able to enhance the optical flow of very fast moving objects (Jump), and improve the in-

terpolation result over the standard bidirectional interpolation. In the same test case we
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Input images Interpolated images

Figure 4.22: Shortened Skateboard-Trick sequence
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have shown, that our sliding window-based algorithm supports only patch translations

and no rotations. Therefore, the inpainting algorithm is on the one hand less precise,

but on the other hand still a good approximation for videos. This restriction is needed,

to lower the amount of false matches in scenes with similar repetitive objects.

Overall we can say that the performance of the bidirectional interpolation in combination

with the variational optical flow in general yields good results. However, for scenes with

large displacements or occlusions and disocclusions interpolation errors occur, which are

very distracting during video playback. In such cases our proposed inpainting algorithm

is able to enhance the optical flow and remove the artifacts in the interpolated frames.



Chapter 5

Conclusion and Outlook

In this work we presented an optical flow-based frame interpolation algorithm, for the

computation of smooth slow motion sequences. The primary goal of our approach is to

deliver artifact-free videos with authentic object movements.

5.1 Conclusion

The motion vector field, which describes the apparent object motion within two input

images, is the foundation of the presented algorithm. We use the variational Huber-L1

optical flow model, with a coarse-to-fine warping scheme for large displacements, to

obtain the required motion data. With its fill-in effect, this algorithm yields dense

results also for sequences with large homogeneous regions.

Based on the optical flow, the intermediate frames are interpolated by linearly propa-

gating pixel intensities along their corresponding motion vectors. We have shown that

the results of the forward flow-based frame interpolation are not sufficient, due to un-

reliable disocclusion handling. Better interpolation results are obtained by using the

bidirectional approach, which takes the motion field of the forward and backward flow

into account. The huge benefit of this approach is a more accurate filling strategy for

disocclusion holes, with vectors of the opposite flow direction. However, this method

doubles the computational cost, due to the additional backward flow estimation.

The bidirectional frame interpolation yields pleasant results, on condition of a correct

optical flow. Errors in the motion estimation in general lead to artifacts in the inter-

polated frame. We identify these errors, with the image-based warp error measure. To

remove the introduced artifacts, we developed a two-step strategy. In the first step we

perform a patch-based optical flow enhancement, to calculate the correct displacements

79
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for the wrongly interpolated patches. In the second step these patches are inpainted at

the corrected locations, while maintaining the proper depth order of the image. This

is crucial, since also displacements of occluded objects are estimated in the optical flow

enhancement step.

The proposed algorithm was evaluated with several different test videos. As the results

suggest, the frame interpolation algorithm is applicable for a wide range of scenes, in-

cluding homogeneous surroundings like snow or highly textured environments like grass.

We have shown, that the flow enhancement algorithm improves the variational optical

flow result, especially for fast moving objects, occlusions or disocclusions. Furthermore,

our inpainting approach successfully removes the occurring image artifacts, and inpaints

the patches at the proper position by considering the correct depth order. With a feature

similarity index of about 0.99, the overall performance of the frame interpolation algo-

rithm is very good. However, not all noticeable image artifacts were removed. Wrong

interpolated objects, which are just a few pixels thin or very hard to distinguish from

the background, pose a problem for our algorithm. Either they are not recognized as

artifact from the warp error, or the patch area is too small, to perform reliable patch

matching.

5.2 Outlook

The patch-based optical flow enhancement approach still has potential for improvement.

Our current sliding window implementation only supports pure translations for patch

matching. This restriction was introduced, to be more robust against repetitive struc-

tures, like for example fence poles. However, as concluded in the Jump test sequence,

rotation invariant matching is required for certain scenes. A favorable solution is, to keep

the false match ratio low, while supporting translations and a few degrees of rotation.

At very high slowdowns, object movements appear jaggy, because the intensities slowly

jump from pixel to pixel. This problem may be reduced by rendering the interpolated

image with subpixel precision. Furthermore, this method also adds a moderate amount

of smoothness to the final interpolated image, for smooth object border transitions.

The Huber-L1 optical flow provides a good basis for our frame interpolation algorithm.

However, further research in this field is necessary, to overcome the limitations regarding

large displacements, thin moving objects, occlusions, disocclusions, illumination changes,

shadows and layered motion. Since the frame interpolation algorithm directly depends

on motion vectors, improvements in the optical flow estimation will positively affect the

interpolation results.
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