
Gabriel Haas

A Model for Stochastic Neural
Computation and Learning with

Memristive Devices

MASTER’S THESIS

to achieve the university degree of
Diplom-Ingenieur

Master’s degree programme: Telematics

submitted to

Graz University of Technology

Institute for Theoretical Computer Science (IGI)
Inffeldgasse 16b/I, 8010 Graz

Thesis Advisor
Assoc.Prof.Dipl.-Ing.Dr.techn. Robert Legenstein

Graz, August 2015

Statutory Declaration

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
marked all material which has been quoted either literally or by content
from the used sources.

Graz, August 20, 2015
Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt,
und die den benutzten Quellen wörtlich und inhaltlich entnommenen
Stellen als solche kenntlich gemacht habe.

Graz, am 20. August 2015
Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

iii

Abstract

Recently, neuroscience in general and the field of neuromorphic engi-
neering in particular receive an increasing attention. Although some of
the concepts, such as learning within artificial spiking neural networks
based on plastic synapses, are well understood from a theoretical per-
spective, implementing the corresponding models in hardware has proven
challenging. This is the case, since, when implemented based on classic
CMOS technology, the involved complex mathematical model descriptions
at least partially conflict with tight constraints imposed on both chip area
as well as energy consumption. As a result, a persistent interest for al-
ternative substrates to base implementations of neuromorphic hardware
circuits upon has been ever-present.

With the discovery of memristive behavior within nano-scale electronic
devices, recently a promising candidate for these alternative substrates
was identified. Based on this, the presented work seeks to capture and
model plasticity within memristive synapses as well as related topics at
different levels of abstraction, reaching from the detailed device level up
to an abstract machine learning perspective.

In computer simulations, the most important properties are identified,
which a given memristor model has to offer, in order to render it a potential
candidate foundation to build a memristive synapse implementation upon.
Moreover, as turns out in final simulations at network level, spiking winner-
take-all (WTA) networks of voltage-based memristive synapses are indeed
capable of solving demanding tasks such as the autonomous classification
of handwritten digits.

v

Kurzfassung

Sowohl für das Fachgebiet der Neurowissenschaften im Allgemeinen, als
auch das Teilgebiet des neuromorphic Engineerings im Speziellen, ist
in der näheren Vergangenheit ein steigendes Maß an Interesse zu be-
obachten. Obwohl komplexe Themengebiete, wie etwa das maschinelle
Lernen in künstlichen neuronalen Netzwerken mit plastischen Synapsen,
in theoretischer Hinsicht bereits sehr gut verstanden werden, stellt die
Umsetzung ebensolcher Netzwerke in neuromorphen Schaltungen nach
wie vor eine große Herausforderung dar, da beispielsweise starke Ein-
schränkungen in Hinblick sowohl auf die nutzbare Chipfläche als auch
die Leistungsaufnahme oft im Widerspruch zur Komplexität entsprechen-
der auf CMOS-Technologie basierender Schaltungen stehen. Um dem
Rechnung zu tragen, besteht seit jeher Interesse an alternativen Grund-
materialien für die Umsetzung neuromorpher Schaltungen.

Die Entdeckung von memristivem Verhalten in kleinsten elektronischen
Bauteilen förderte in den letzten Jahren schlussendlich eine vielver-
sprechende Grundlagen für künstliche plastische Synapsen zu Tage. Ba-
sierend darauf wird in der vorliegenden Arbeit versucht, synaptische
Platizität in künstlichen memristiven Synapsen auf unterschiedlichem
Abstraktionsniveau zu erfassen und zu modellieren.

Dazu werden in Computersimulationen die wichtigsten Eigenschaften
identifiziert, die von Memristormodellen erfüllt werden müssen. Wie an-
schließende Simulationen auf Netzwerkebene zeigen, können memristive
spikende Winner-Take-All (WTA) Netzwerke anspruchsvolle Aufgaben, wie
die autonome Klassifizierung von handgeschriebenen Ziffern, lösen.

vii

Acknowledgements

First and foremost, I want to thank my advisor Robert Legenstein for
enabling this thesis as part of the PNEUMA Project as well as for the
great ideas and the incredible expertise he contributed to this work.

Secondly, I am deeply indebted to Johannes Bill for the countless hours
of valuable discussion he spent with me. Without his unyielding patience
and ever undiluted view for the big picture, this thesis would not have
been possible.

Next, I want to thank Mario Prantl and Harald Wesenjak, two of my
former teachers at HTL Innsbruck Anichstraße, who, through the excellent
education they bestowed upon me, undoubtedly to a large extent laid the
academic foundation for my studies in Graz.

Moreover, I want to thank all my fellow students, especially Tim Hell and
Markus Mayerwieser, for the fruitful and pleasant time we spent together
at university.

In addition to this, I also want to thank my family and friends, especially
my sister Theresa and my girlfriend Marie-Theres, for their support, their
patience and the solid foundation they provided me to rest my educational
efforts upon.

Last but not least, I want to express my deepest gratitude to my parents
Elisabeth and Robert for raising me in an education oriented environment,
enabling my studies in Graz and especially for the loving care and support
I received from them over all these years – danke Mama, danke Papa!

ix

Contents

Abstract v

Kurzfassung vii

Acknowledgements ix

1 Introduction 1

2 Background 5
2.1 Historical Outline . 5
2.2 Memristor Models . 7

2.2.1 Current-Based . 8
2.2.2 Voltage-Based . 11

2.3 Plasticity and Learning Theory 17
2.3.1 Spike Time Dependent Plasticity 18
2.3.2 SEM Learning Theory 18

2.4 Goals . 20

3 Software 23
3.1 Python Framework . 24

3.1.1 Memristors . 24
3.1.2 Modules . 25
3.1.3 Parameter Sets . 28
3.1.4 Initializers . 28
3.1.5 Pulses . 29
3.1.6 Class Diagrams . 31

3.2 Verification . 31

xi

Contents

3.3 Test Protocols . 31
3.3.1 Protocol 1 . 34
3.3.2 Protocol 2 . 36
3.3.3 Protocol 3 . 37
3.3.4 Protocol 5 . 39
3.3.5 Protocol 7 . 40

4 Problems and Solutions 43
4.1 Overreaction of Vx and M . 45
4.2 Non-Linear Vx/Conductance Mapping and Dynamic Range . 49
4.3 Pulse shapes . 54

4.3.1 D-Pulses . 58
4.3.2 T-Pulses . 65
4.3.3 S-Pulses . 69

4.4 Weight Dependence and Convergence 70
4.5 Independence from Initialization 79

5 Refinements and Experiments 83
5.1 Systematic Parameter Search 84

5.1.1 Requirements . 84
5.1.2 Objective Function L(·) 87
5.1.3 Search Strategies and Results 92

5.2 Network Level Simulations 97
5.2.1 Overview . 98
5.2.2 Details and Results . 100

6 Discussion 113

A SPICE vs. Python 119
A.1 Introduction . 119
A.2 Experiments . 121

A.2.1 Python Rewrite . 121
A.2.2 Reimplementation according to SPICE Model 121
A.2.3 Direct comparison of the internal state variables . . . 123
A.2.4 Slow/no decay . 124
A.2.5 Finite slew rates . 127

xii

Contents

A.2.6 Multiplicative Updates 132
A.2.7 Limited Precision . 135
A.2.8 Simulation Time Step Size 139

A.3 Summary and Conclusions 141

B Derivation of Vz(t) 145
B.1 Generic Expression . 145
B.2 Smooth Transitions . 148

C Derivation of Initializers 151
C.1 Maximum Memristance/Minimum Conductance 152
C.2 Minimum Memristance/Maximum Conductance 153
C.3 Midrange Memristance . 154
C.4 Fraction ρ of Maximum Conductance 155
C.5 Midrange Conductance . 158
C.6 Midrange Conductance without M0 160

Bibliography 163

xiii

List of Figures

2.1 State mapping and parameter functions. 8

2.2 Parameter functions φ(·) and g(·). 15

2.3 Illustration of the underlying network architecture. 20

3.1 Class diagram illustrating the memristor framework. 32

3.2 Class diagram illustrating the pulse library. 33

3.3 Comparison of the SPICE and the Python implementation. . 33

3.4 Protocol 1 as defined by Serb et al. [Serb, 2014]. 35

3.5 Protocol 2 as defined by Serb et al. [Serb, 2014]. 36

3.6 Protocol 3 for a negative Δt and D-pulses. 38

3.7 Protocol 5 for Δt = 9 ms and D-pulses. 40

3.8 Protocol 7 for D-pulses and p(Y = 1 | Z = 1) = 0.5. 41

3.9 Alternative visualization of Protocol 7. 42

4.1 Different subproblems and simplified setup. 44

4.2 System response to events of two different types. 45

4.3 Reaction of Vx and M to events of two different types. . . . 48

4.4 Memristance M and conductance G as functions of Vx. . . . 50

4.5 Additional ohmic pre-resistor M0. 51

4.6 Memristance M and conductance G as functions of Vx for
different values of M0. 52

4.7 Qualitative illustration of the pre-synaptic pulse. 56

4.8 Qualitative illustration of the post-synaptic D-pulse and STDP
plot. 59

4.9 System response to different events composed of D-pulses. 64

4.10 Qualitative illustration of the post-synaptic T-pulse and STDP
plot. 66

xv

List of Figures

4.11 System response to different events composed of T-pulses. . 68

4.12 Normalized STDP plots for T-pulses and different initial
states. 72

4.13 Temporal evolution of the conductance for different input
statistics. 73

4.14 Window function ψ(·) for different values of κ. 75

4.15 Temporal evolution of the conductance for different input
statistics. 76

4.16 Mapping between input statistics and convergence conduc-
tances. 78

4.17 Normalized STDP plots for different initial states and the
modified window function ψ(·). 79

4.18 Temporal evolution of the conductance for different input
statistics and initializations. 81

5.1 Gradual improvement of the STDP responses. 95

5.2 Temporal evolution of the conductance for different input
statistics. 96

5.3 Mapping between input statistics and convergence conduc-
tances. 97

5.4 Network architecture and synapse model. 98

5.5 Original mapping and fitted linear model. 104

5.6 Learning of simple color gradients. 108

5.7 Learning of handwritten digits. 111

A.1 SPICE results for Protocol 1 and Protocol 2 ({6} and {8}
[Serb, 2014]). 121

A.2 Initial Python results for Protocol 1 and Protocol 2. 122

A.3 Improved Python results for Protocol 1 and Protocol 2. . . . 123

A.4 Evolution of Vw, Vx, Vy and Vz for δt = 50 ms 125

A.5 Comparison of the temporal evolution of Vz. 128

A.6 Evolution of Vz as yielded by Python. 129

A.7 Comparison of the temporal evolution of Vz. 131

A.8 Unstable evolution of Vw, Vx, Vy and Vz for δt = −50 ms. . . 133

A.9 Evolution of Vw, Vx, Vy and Vz for δt = −50 ms. 136

xvi

List of Figures

A.10Comparison of the results for Protocol 1. 137
A.11Evolution of g(Vw) for δt = −50 ms. 138
A.12Evolution of (Vz ≤ 0) for δt = −50 ms. 138
A.13Evolution of Vy. 140
A.14Comparison of the final results for Protocol 1. 142

xvii

List of Tables

2.1 Parameters for the memristor model by Berdan et al. [Berdan,
2014]. 9

2.2 Parameters for the memristor model by Serb et al. [Serb,
2014]. 12

3.1 Methods exposed by the Memristor class. 25
3.2 List of module implementations (Modules_xxx classes). . . . 26
3.3 Methods and lambdas exposed by the different Modules_xxx

classes. 27
3.4 List of parameter set implementations (Params_xxx classes). 28
3.5 List of initializer implementations (init_xxx() functions). . 29
3.6 List of pulse implementations (x_pulse classes). 30
3.7 Methods exposed by the x_pulse classes. 30

4.1 Different events and their expected effects. 55
4.2 Summary of the parameters describing D-pulses. 62
4.3 Summary of the parameters describing T-pulses. 67

5.1 Design points used for the parameter search. 93
5.2 Initialization and results of systematic parameter search. . 94

xix

1
Introduction

Over the past few years, the field of neuroscience has been experiencing
an increasing attention. A growing interest can in particular be observed
for the field of neuromorphic engineering. This field tries to capture neural
behavior as can be observed in biological computational units such as
neurons and synapses and attempts to model and replicate this behavior,
for instance, in dedicated hardware circuits.

A typical property all these hardware implementations have in common
is the extensive demand for complex support circuitry [BillLegenstein,
2014]. Among other things, this support circuitry is mainly responsible
for handling the communication between the constituent neural entities
as well as the implementation of appropriate synaptic plasticity rules.
Due to tight constraints on both energy consumption as well as plain
chip space, this demand bears one of the biggest challenges most circuit
implementations of state-of-the-art proposals of neuromorphic hardware
models face. This is the case, since especially the implementation of a

1

1 Introduction

biologically plausible synaptic plasticity rule supporting a decent form
of weight dependence involves complex mathematical operations. Map-
ping these operations to classic CMOS-based technology is difficult and
requires a considerable amount of chip area per synapse [Fieres, 2008].
Practically relevant neuromorphic chips, however, are supposed to be
small in size and still offer a couple of million of plastic synapses, since
most spiking neural network motifs connect their respective input and
output neurons in an all-to-all fashion.

With the recent discovery of memristive behavior within nano-scale de-
vices, however, a promising substrate for the implementation of plastic
synapses in hardware was found, which is believed to elegantly satisfy
the above-mentioned constraints. Memristors and memristive devices in
general are circuit elements whose electric resistance is changed per-
sistently based on the physical history the device has experienced. This
physical history includes, for instance, the time course of the input cur-
rent that flew through the memristive device or the voltage that was
applied across its terminals as driving force behind non-volatile resistance
changes. Besides their extremely small size, this intrinsic property of
persistent and history-dependent state changes as are required by the
principles of synaptic plasticity, renders memristive devices promising
candidates for future hardware implementations of plastic synapses for
artificial neural networks. Evidence which supports this perception was
provided by Linares-Barranco and Serrano-Gotarredona [Linares, 2009],
who showed that the concept of memristance can basically explain spike
time dependent plasticity (STDP), a powerful and biologically plausible
plasticity rule, within biologic neural synapses.

Instead of investigating biological synapses and neurons, the focus of
this work lies on artificial, biologically inspired replicas of neural struc-
tures. Specifically, we focus on spiking winner-take-all (WTA) networks, a
common motif for artificial neural networks, based on plastic synapses
that adhere a weight-dependent STDP rule. Unsupervised learning within
these spiking WTA networks is well understood from a machine learning
perspective as it can be explained through online Expectation Maximiza-
tion [Nessler, 2013]. While a link between the two fields of unsupervised

2

learning within spiking WTA networks and memristive synapses was al-
ready established by Bill and Legenstein [BillLegenstein, 2014], a joint
investigation of the constituent building blocks including a detailed view
on the utilized memristive synapses at circuit-level has been lacking so
far. This detailed and joint investigation is contributed by this work.

More precisely, this work tries to capture plasticity within memristive
synapses at different levels of abstraction, reaching from the low-level
circuit description of the internal dynamics of a voltage-based memristor
up to the high-level behavior of the resulting spiking neural circuit which
can be described by means of probability and machine learning theory.
By doing so, this work establishes a further intensification of the above
mentioned link between memristors, neural networks and the backing
learning theory and identifies some of the key components the overall net-
work setup has to offer. In addition to this, in final computer experiments,
the proposed memristive synapses are combined with stochastically spik-
ing neurons and assembled to a spiking WTA network circuit. As turns
out in these final computer simulations at network level, spiking WTA
networks based on the proposed memristive synapses are indeed capable
of solving complex tasks such as the autonomous classification of images
of handwritten digits.

In the following chapters, we will first present a review of the theoret-
ical background behind memristors in general as well as the employed
learning theory (Chapter 2). This review is followed by a documentation of
the software and simulation framework which was created for this work
(Chapter 3). Chapter 4 presents a comprehensive summary and descrip-
tion of different problems and implications identified during the process
of studying a candidate memristor model according to is suitability for
the implementation of memristive synapses. This model is fine-tuned and
used as foundation for network level simulations in Chapter 5. Finally,
a discussion of the presented work and the different results is given in
Chapter 6. Appendices A to C provide additional material, which accom-
panies the previous chapters and explains some of the specifics in greater
detail.

3

2
Background

This chapter is devoted to the discussion of the theoretical background
behind the two main components this work is based on. These components
include memristors in general as well as the underlying learning theory.
We start with a short historical outline, continue with the introduction of
two different memristor models as well as a short review of the backing
learning theory and conclude by restating the goals of this work in the
light of this theory background.

2.1 Historical Outline

Speaking of passive circuit elements, one usually thinks of resistors,
capacitors and inductors. At least this was the common conception for
almost one century after the postulation of Maxwell’s famous equations
[Johnsen, 2012]. This conception, however, began to totter in the early

5

2 Background

1970s, when Leon Chua argued that there should be a fourth and equally
fundamental circuit element. Back then, Chua had studied the relations
between the four axiomatic circuit variables (that is, the voltage v, the
current i, the charge q and the flux ϕ) and had observed that not all of
their possible combinations had led to established relations yet.

One of the possible relations, the one between the charge q and the flux ϕ,
was still undefined. Chua justified the relevance of this missing relation
from both a logical point of view demanding symmetry as well as for the
sake of completeness. He described the circuit element implementing the
missing relation as a device, whose resistance depends on the history it
has experienced. More precisely, he postulated this fourth fundamental
circuit element to act as a resistor with memory in that it was capable
of establishing a link between the physical state of the device in terms
of the amount of charge that had flown in a specific direction and its
resistance experienced by external circuitry. This intrinsic property of
acting as amemory resistor is what Chua derived his postulated device’s
name memristor from [Chua, 1971].

Initially, however, due to the absence of real-world examples and observa-
tions, memristive devices received only little attention. In fact, it was not
until almost four decades later, that the first appearance of memristive
behavior in hardware was documented. More precisely, with the emerge of
nano-scale electronics, devices showing evidence for the above-mentioned
behavior of the resistance changing persistently as different inputs are
being applied to the device, were observed.

As turned out in the recent past, memristors are a useful means for model-
ing various processes in biology and neuroscience [Johnsen, 2012]. Spike
time dependent plasticity in biological neural synapses, for instance, as
was already indicated in the introduction, can be explained through mem-
ristive effects [Linares, 2009]. Consequently, it seems natural to try and
utilize the now existing memristors to build synapses for neuromorphic
hardware implementations of artificial neural networks.

Obviously, explaining plasticity and especially learning within artificial
as well as biologic neural networks in a theoretical manner, requires an

6

2.2 Memristor Models

appropriate learning theory framework. One of the first and probably
most famous learning rules ever proposed in this context (originally for
biological neural networks) is the simple rule “What fires together, wires
together” suggested by Hebb [Hebb, 1949]. Later, inspired by observa-
tions made with biologic synapses, this rule was refined to the concept
of spike time dependent plasticity (STDP). In contrast to Hebbian learn-
ing, STDP explicitly demands a certain cause-effect relationship between
the pre- and post-synaptic activity in order for the respective synaptic
plasticity reactions, that is, increasing or decreasing the efficacy of the
respective synapses, to be triggered. To do so, STDP focuses on the exact
spike times of the pre- and post-synaptic neurons [DanPoo, 2004].

Based on this general and more historically inspired overview, the two
main building blocks this work is based on shall now be discussed more
thoroughly. In the following two sections we will first investigate different
mathematical models describing the behavior of memristive hardware
devices and then continue with a short review of the employed learning
theory.

2.2 Memristor Models

Over the past few years, various formal descriptions for memristive de-
vices were proposed. Generally speaking, depending on which of the
circuit variables is regarded as being responsible for triggering updates
to the internal state of the memristor (and thus ultimately the device’s
input/output behavior), one can basically distinguish voltage-based and
current-based models. In this section, we are going to introduce a rep-
resentative for both of them. We will also consider implications and lim-
itations which are intrinsic to and arise directly from the respective
architectures.

7

2 Background

0.0 x 1.0

Ron

R
(x

)
Roff

(a) R(x)

0.0 X 1.0

1.0

f
(X

)

(b) f (X)

Θ
N

z Θ
P

1.0

G
(z
)

(c) G(z)

Figure 2.1: State mapping and parameter functions. In the current-based memristor model by Berdan
et al. [Berdan, 2014], R(·) establishes a linear mapping between the internal state variable x and
the resistance of the device as encountered by external circuitry. f (·) confines the values of x
and y to the unity interval and G(·) introduces thresholds ΘN and ΘP which need to be exceeded
in order for non-volatile changes to be enabled.

2.2.1 Current-Based

The first memristor model that was investigated for this work was pro-
posed by Berdan et al. [Berdan, 2014]. This memristor model is built upon
a set of three internal state variables. The first one of these, x, determines
the instantaneous resistance R of the device as

R(x) = x (Ron − Roff) + Roff , (2.1)

where Ron and Roff denote the resistances of the device when being in the
on- (most conductive) and off-state (least conductive), respectively.

Following Ohm’s law, at any instant of time, the current Imem that flows
through the device in response to a voltage V being applied across its
terminals is given as

Imem =
V

R(x)
. (2.2)

This mapping is illustrated in Figure 2.1a.

The exact value of x at any instant of time, in turn, can be decomposed
into a volatile and a non-volatile portion. More precisely, on the one hand,
a certain volatile fraction determined by the amount of current that flew
through the device in the recent past is present. On the other hand, in
case no input current Imem according to Equation 2.2 is present, x decays

8

2.2 Memristor Models

Name Value Name Value
Ron 1 Ω Cz 1 F
Roff 100 kΩ Rz 2 Ω
μv 1 · 10−9 m2

s V Cy 1 F
D 20 nm ΘP 1.65 nV
Cx 0.32 F ΘN −1.65 nV
Rx 20 Ω P 10

Table 2.1: Parameters for the memristor model by Berdan et al. [Berdan, 2014]. Some of these quan-
tities are related to physical parameter such as the device geometry or its material, while others
are merely a result of fitting the presented dynamic model to data obtained from measurements
conducted on real memristive hardware devices.

exponentially towards y, the non-volatile second internal state variable.
Consequently, y is responsible for capturing persistent changes in the
device’s resting resistance. This is accomplished through the help of the
third state variable, z, which integrates the recent current flow Imem. It is
compared against a positive and a negative threshold and in case one of
them is exceeded, y receives either a positive or a negative update.

Formally, the evolution of the three internal state variables is described
by a system of three coupled differential equations:

Cx
dx
dt

= −x − y
Rx

+ I0(x) (2.3)

Cy
dy
dt

= G(z) I0(y) (2.4)

Cz
dz
dt

= − z
Rz

+ Imem , (2.5)

with capacitances Cx, Cy and Cz, which basically define the strength of
the coupling between the respective internal state variables x, y and z
and their governing quantities.

In the system given in Equations 2.3 to 2.5, the functions I0(·) and G(·)
are defined as

I0(ξ) =
Ron μv

D2 f (ξ) Imem (2.6)

9

2 Background

and

G(z) = H (Imem) H (z − ΘP) + H (−Imem) H (− (z − ΘN)) , (2.7)

respectively, where H(·) denotes the Heaviside step function. The quanti-
ties D and μv used in Equation 2.6 are constant and related to the device’s
material and geometry. Typical values for these as well as all the other
parameters used by the model are listed in Table 2.1.

The window function f (·), finally, is given as

f (ξ) = 1 −
[(

ξ − 1
2

)2

+
3
4

]P

, (2.8)

where P is a shape parameter which determines the sharpness of the
window function’s edges. While f (·) confines the values of the affected
state variables to the unity interval (0, 1), G(·) implements the above-
mentioned thresholds ΘP and ΘN which need to be exceeded in order to
allow for non-volatile changes. An illustration of these two functions is
given in Figures 2.1b and 2.1c, respectively.

Having a closer look at the system definition given in Equations 2.3 to
2.5 reveals that the input current Imem affects all three internal state
variables. Consequently, the memristor model by Berdan et al. [Berdan,
2014] can be considered current-based in that the input current Imem is
the driving force behind all volatile and non-volatile state updates the
device experiences. As turns out, however, this current-based architecture
is problematic for the learning framework this work aims for.

Namely, Equation 2.5 introduces a complex feedback into the system.
More precisely, dz

dt depends on Imem which itself depends on 1
R(x) through

Equation 2.2. As a consequence, on the one hand, a device in a high
resistive state will hardly undergo any non-volatile changes according to
Equation 2.4. This is the case since the applied voltage V is insufficient to
open the gate defined by G(z), that is, due to their amplitudes not being
capable of driving enough current through the device, z remains below
the thresholds ΘN and ΘP for most pulses. On the other hand, a device

10

2.2 Memristor Models

in a low resistive state will, due to the strong current flow Imem, exhibit
non-volatile changes even for small voltages V. Since already in initial
learning experiments this implied type of varying thresholds turned out
to be very hard to control, the memristor model by Berdan et al. [Berdan,
2014] had to be ruled out as a possible candidate prematurely. Rather, a
voltage-based architecture was identified as being favorable for the given
learning framework.

2.2.2 Voltage-Based

Another memristor model, which is somewhat related to the one presented
in the previous section, was recently proposed by Li et al. [Li, 2015]. To
base our research on, we were kindly permitted premature access to an
early draft version of this model by Serb et al. [Serb, 2014], our PNEUMA
project partners at the University of Southampton. This is why we are
going to describe the draft version, rather than the published one here.
Nevertheless, compared to this model, the publicly published one by Li
et al. [Li, 2015], anyway features merely some slight modification to some
of the internal details, while the overall system behavior remains almost
unchanged.

The memristor model by Serb et al. [Serb, 2014] splits up the system
description into five different modules, each of which describes a spe-
cific aspect of the overall system behavior. According to the authors, this
modular system design was chosen in order to increase the flexibility by
allowing for certain modules to be replaced easily to match new types
of memristive hardware as they emerge [Serb, 2014]. One of the main
differences between this model and the one discussed in the previous sec-
tion is that this model relies on a voltage-based architecture. As indicated
in the previous section, memristive devices built on top of voltage-based
architectures are potentially better suited for the implementation of mem-
ristive synapses in the learning setup utilized for this work. In combination
with the modular setup, this rendered the memristor model by Serb et al.
[Serb, 2014] a promising candidate to base this work on.

11

2 Background

Name Value Name Value Name Value
Mmin 1 Ω Rz 3 mΩ U− −5 · 10−10

Mmax 100 kΩ Cw 1 F U+ 5 · 10−10

Cx 5 mF Rw 600 mΩ α 0.5
Rx 1 Ω k 106 Kp 0.7
Cy 0.15 F B− −3.5 · 10−10 Kn 1
Cz 1 F B+ 3.5 · 10−10 p 108

Table 2.2: Parameters for the memristor model by Serb et al. [Serb, 2014]. Some of the quantities
have a physical interpretation while others rather result from fitting the presented model to data
obtained from measurements performed on memristive hardware devices.

In the following, we will take a closer look at the different modules in
order to gain some insight into the memristor model’s internals. The
parameters used by these modules are jointly summarized in Table 2.2.

Module I: Memristor Interface M

The first module defines the memristor’s interface with respect to external
circuitry:

iM(t) =
V(t)
M(t)

, (2.9)

where

M(t) = Mmax − Vx(t)ΔM (2.10)

and

ΔM = (Mmax − Mmin) (2.11)

As such, Equation 2.9 describing the time course of the current iM that
flows through the memristor resembles a time-dependent version of Ohm’s
law: Not only the voltage V applied to the device but also its resistance M
is a function of the time. More precisely, as is indicated by Equation 2.10,

12

2.2 Memristor Models

the instantaneous memristance M at time t encountered by a voltage
V being applied across the terminals of the memristor, depends on the
current value of some internal state variable Vx.

Since, as we shall see in the next section, the value of Vx is confined to
the interval (0, 1) and as a result of Equation 2.11, Mmin and Mmax are
the minimum and maximum values the instantaneous memristance M(t)
according to Equation 2.10 can attain.

Module II: Volatile Changes Vx

Module II accounts for the volatile memristor dynamics, that is changes in
the instantaneous memristance M(t) which decay over time. The system
equation for this module reads

Cx
dVx

dt
= ix(t)− Vx(t)− Vy(t)

Rx
, (2.12)

where

ix(t) = k iM(t) f (Vx (t)) (2.13)

and

f (Vx) =

{
1 if 0 < Vx < 1
0 else

. (2.14)

As can be seen from Equation 2.12, the driving force behind these short
term changes is the imaginary current ix(t). This imaginary current has
no physical equivalent in the system but is closely related to the voltage
applied across the memristor’s terminals as becomes clear from Equa-
tion 2.13. The constant k used in this equation captures the influence of
both the device’s geometry as well as its fabrication on the overall system.
As indicated above, Vx is confined to 0 < Vx < 1 by the window func-
tion f (·) defined in Equation 2.14. This holds, because as Vx approaches

13

2 Background

the bounds of the interval (0, 1), its updates according to Equation 2.12
are restricted to changes away from these bounds, towards inside the
interval.

Since Vx is the only link of the memristor model’s internals to the corre-
sponding memristor interface defined in Module I, Module II is actually
also responsible for implicitly forwarding the non-volatile memristance
changes to the outside. This is accomplished by the second term of the
right hand side in Equation 2.12, which makes Vx decay exponentially
towards Vy if ix(t) is equal to zero, that is, in case no input is present. The
time constant τx of this exponential decay is determined by the constants
Cx and Rx. As we shall see later in Section 4.1, besides its contribution to
the decay time τx, Cx also defines the strength of the coupling between
Vx and the input voltage V(t).

Module III: Non-Volatile Changes Vy

As indicated above, the purpose of Module III is capturing the non-volatile
memristor dynamics, that is, long term changes in the memristor’s rest-
ing memristance. For this task, Serb et al. [Serb, 2014] suggested the
following system equation:

Cy
dVy

dt
= iy(t) = φ(Vz, B+, B−, U+, U−) g(Vw) f (Vy) , (2.15)

where

φ(Vz, B+, B−, U+, U−) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if Vz ∈ [B−, B+]

α Vz−B−
U+−B+

if Vz ∈ [U−, B−)
α Vz−B+

U+−B+
if Vz ∈ (B+, U+]

α else

, (2.16)

g(Vw) =

{
Kp

√
p Vw + 1 if Vz > 0

Kn

[
1 − 2 (p Vw)

2
]

else
(2.17)

14

2.2 Memristor Models

0

−1.0

−0.5

0.0

0.5

1.0

(a) φ(Vz) for different values of α.

0 1 2 3 4 5 6 7 8
1e−9

−0.3

0.0

0.3

0.6

0.9

1.2

(b) g(Vw) with its different branches.

Figure 2.2: Parameter functions φ(·) and g(·). φ(·) implements certain thresholds B± and U± which need
to be exceeded in order to allow for non-volatile changes controlled by Vy. g(·) accounts for the
activity dependence of the system. It is a purpose-built function that was fitted to data measured
for biological synapses.

and f (Vy) according to Equation 2.14. The other parameter functions φ(·)
and g(·) are illustrated in Figure 2.2. α, Kp and Kn used in their definitions
in Equations 2.16 and 2.17 are scaling factors.

As can be seen from Equation 2.15, non-volatile changes in Vy (and thus
the resting memristance) are only possible if all three functions φ(·), g(·)
and f (·) yield function values different from zero. Each of these parameter
functions serves a different purpose. The first one, φ(·), introduces two
pairs of thresholds B± = ±3.5 · 10−10 and U± = ±5 · 10−10 which jointly
specify the neutral, bipolar and unipolar regions of φ(·). The driving effort
Vz (see the next section) needs to exceed at least B± in order to enable
non-volatile changes. Next, the parameter function g(·) accounts for the
activity dependence of the non-volatile memristance changes. According
to Serb et al. [Serb, 2014], rather than being directly related to memristive
hardware, the exact shape of this function was fitted in order to match
data observed for biological synapses. Finally, similar as in the previous
section, the window function f (·) serves the purpose of confining the state
variable Vy to the interval (0, 1), forcing the instantaneous memristance M
to be smaller than Mmax and greater than Mmin, respectively. The strength

15

2 Background

of the coupling between the product of the three parameter functions φ(·),
g(·) and f (·) and the non-volatile responses triggered in Module III is, as
can be seen from Equation 2.15, determined by the constant Cy.

Module IV: Driving Effort Vz

The fourth module defined by Serb et al. [Serb, 2014] is responsible for
integrating all the external inputs V(t) applied across the memristor’s
terminals in order to obtain the driving effort Vz. This driving effort is
ultimately responsible for triggering non-volatile memristance changes
through the parameter function φ(·) described in the previous section.
The system equation for Module IV is as follows:

Cz
dVz
dt

= iz(t)− Vz(t)
Rz

, (2.18)

where

iz(t) =
V(t)
Mmid

(2.19)

and

Mmid =
Mmax − Mmin

2
. (2.20)

As can be seen from Equation 2.18, Module IV basically implements a
low-pass filter as a leaky integrator. The input of this leaky integrator
according to Equation 2.19 is also where the above-mentioned voltage-
based nature of this memristor model becomes evident. Since both Cz as
well as Mmid defined in Equation 2.20 are constants, the leaky integrator
integrates a certain fraction of the input voltage V(t). In case the applied
input voltage V(t) is zero, the leaky integrator implemented by Cz and
Rz discharges with a time constant τz = Cz Rz. Contrary to the memristor
model by Berdan et al. [Berdan, 2014] described earlier, this makes the
input voltage rather than the input current the driving force behind non-
volatile changes in the resting memristance for this model.

16

2.3 Plasticity and Learning Theory

Module V: Activity Dependence Vw

Module V, finally, integrates the absolute power dissipation through a
leaky integration process defined by the following differential equation:

Cw
dVw

dt
= |iw(t)| − Vw(t)

Rw
(2.21)

where

iw(t) = i(t)V(t) (2.22)

Together with the purpose-built parameter function g(·) described above,
the governing state variable Vw of this module is supposed to account for
activity dependent effects introduced by Joule heating in Equation 2.15.

This concludes the discussion of the internals of different memristor mod-
els. As turned out, a voltage-based model is potentially better suited for
the task of implementing memristive synapses for spiking WTA networks.
A candidate memristor model was found in the proposal by Serb et al.
[Serb, 2014]. In the following section, we will take a closer look at synaptic
plasticity as well as the learning theory this memristor model is supposed
mimic.

2.3 Plasticity and Learning Theory

As indicated in the introduction to this chapter, the second major building
this work is based on is formed by synaptic plasticity as well as the
SEM learning theory. Generally speaking, plasticity rules are a way of
explaining how the individual synapses of a neural network are supposed
to adapt the encoded synaptic weight in response to a certain type of
neural activity within the network. Over the past few years, various
different plasticity rules were proposed. As indicated in the introduction,
one of the more famous ones is spike timing dependent plasticity (STDP

17

2 Background

for short). Besides being comparatively simple, STDP is experimentally
well supported as well as considered plausible from a biological point of
view. In the following, we will first introduce this plasticity rule and then
establish a link to SEM, the learning theory assumed as foundation for
this work.

2.3.1 Spike Time Dependent Plasticity

By itself, the basic STDP rule is simple. In a nutshell, for each of the
synapses, it focuses on the respective pre- and the post-synaptic neurons
only. The adaption of the weight encoded by the connecting synapse is
then made according to the relative timing of the spikes these two neurons
send through it. More precisely, for the STDP rule, one considers pairs of
pre- and post-synaptic spikes and determines which of the two occurred
first in terms of the exact absolute spike time [DanPoo, 2004]. According
to this, one can basically distinguish the two cases

• pre-synaptic neuron spiked before post-synaptic neuron and
• post-synaptic neuron spiked before pre-synaptic neuron.

Instances of these cases are assumed to increase (“potentiate”) and de-
crease (“depress”) the weight of the affected synapse, respectively. For
each of the observed spike pairs, the exact degree of potentiation and de-
pression, that is the amount the encoded synaptic weight is incremented
or decremented, depends on the timespan elapsed between the respec-
tive pre- and post-synaptic spikes. As a general rule, however, smaller
timespans will lead to stronger reactions.

2.3.2 SEM Learning Theory

As indicated above, the role of STDP for the plastic adaption of the synaptic
junctions within networks of neurons is well supported by findings from
experimental biology. Still, the specific way how information is encoded

18

2.3 Plasticity and Learning Theory

and processed within these synapses as well as the exact influence of
STDP on the plastic adjustment, remains largely unknown.

There exists, however, evidence that probabilistic inference is a key compo-
nent of the underlying information processing machinery. More precisely,
it is believed that neural networks maintain prior distributions as well as
likelihood models for hidden causes in their network parameters. Among
others, these network parameters include the strengths of the synaptic
junctions between neurons, which are assumed to implicitly encode differ-
ent likelihood models [Fiser, 2010]. During their operation, given some
observed input, spiking neural networks then combine the priors with
the likelihoods in order to obtain posterior distributions of hidden causes
according to Bayes’ theorem and, by doing so, infer the cluster an applied
input vector belongs to. This, of course, raises the question how the prior
and likelihood models can be acquired by networks of spiking neurons in
a purely unsupervised manner.

An explanation to this puzzle can be found in the SEM (Spike-based
Expectation Maximization) learning theory proposed by Nessler et al.
[Nessler, 2013]. Based on a weight dependent STDP rule, for which the
adaption of a synapse’s weight depends on its current weight, they showed
that within spiking WTA networks the ongoing weight refinement process
gives rise to an online approximation of Expectation Maximization. SEM
assumes pre-synaptic spikes to trigger post-synaptic potentials (PSPs),
pulses of a certain amplitude and a given duration τ. Post-synaptic neurons
are assumed to react to these PSPs through point events, the post-synaptic
spikes. Consequently, according to the SEM theory, one can basically
distinguish four different cases:

• PRE-pulse only,
• POST-spike only,
• POST-spike before PRE-pulse and
• PRE-pulse starts at most τ before POST-spike.

In terms of the induced synaptic plasticity, the first one of the above cases
is not supposed to trigger any reactions, while the second and the third
ones are assumed to act depressing, that is, reduce the synaptic weight.

19

2 Background

z1
.
.
.

Wki zk

zK

y1

yN

yi

.

.

.

...

...

(a) WTA network model

zk
yi

Mki

Wki Gki = 1/Mki

PRE

POST

(b) Memristive synapse

Figure 2.3: Illustration of the underlying network architecture. The spiking WTA network motif illus-
trated in (a) features N spiking input neurons yi and K spiking network neurons zk. The (pre-
synaptic) input neurons are connected with the (post-synaptic) network neurons in an all-to-all
fashion through plastic synapses with weights Wki. Due to lateral inhibition, the network neurons
are in competition to fire for a given input pattern. For this work, the connections between the
neurons are implemented as memristive synapses as shown in (b). PRE and POST denote pulses
of specific shape which are triggered by spikes of the respective neurons. Both illustrations are
adapted from [BillLegenstein, 2014].

Finally, the fourth configuration shall result in a potentiation, that is, an
increment of the affected synaptic efficacy.

2.4 Goals

Based on the theoretical foundation presented in the previous sections, the
primary goals of this work can be specified more precisely. Given a spiking
WTA network, this work aims to find a memristor model and, if necessary,
additional building blocks required in order to approximate STDP- and
SEM-like behavior in hardware. In addition to this, if an appropriate
model is found, it shall be determined whether the resulting memristive
WTA circuits are capable of learning and performing meaningful neural
computation.

Figure 2.3a illustrates the spiking WTA network model used for this
purpose. WTA networks, which are a common and well established spiking

20

2.4 Goals

network motif, in general feature N spiking (pre-synaptic) input neurons
yi and K spiking (post-synaptic) network neurons zk. Through lateral
inhibition, only a single network neuron zk can be active firing a spike at
any instant of time. Consequently, the network neurons are in competition
for firing in response to any given input. The input and the network
neurons yi and zk, respectively, are connected in an all-to-all fashion
through plastic synapses of a specific strength, the synaptic weights Wki.
Depending on the spiking activity of the neurons they connect, these
plastic synapses are assumed to adapt their weight according to a weight-
dependent STDP rule as well as the SEM learning theory.

Obviously, instead of using an idealized plastic synapse model, for this
work we aim to use memristive synapses, which are, at every instant
of time, assumed as establishing a relation between their instantaneous
conductance Gki and the synaptic weight Wki they encode. This is illus-
trated in Figure 2.3b, where PRE and POST denote appropriate pulse
shapes, capable of triggering different responses in terms of the induced
memristance changes within the memristive synapses. These PRE- and
POST-pulses are assumed as being triggered by the pre- and post-synaptic
spikes. With regard to the post-synaptic events, this is, of course, a sub-
stantial deviation from the setup the SEM learning theory is built around,
which assumes the events being emitted by the post-synaptic neurons as
having infinitesimal small extent. Since this, however, is not practically
feasible in a hardware implementation, for the purpose of this work we
simply demand the POST-pulses as being short compared to the PRE-
pulses. Finally, and in compliance with the SEM theory again, the spikes
emitted by the constituent neurons are generated according to various
stochastic process.

This concludes the discussion of the theoretical background and the
motivation of this work. In the following chapter, we will have a closer
look at the software framework which was created for this work.

21

3
Software

The memristor model described in Section 2.2.2 was originally imple-
mented by Serb et al. as a SPICE circuit model being controlled by
different MATLAB scripts. For this work, however, it was decided to
re-implement the memristor model in Python1. This decision was moti-
vated by Python being free and open-source software with a large variety
of ready-to-use libraries for scientific computing as well as plotting being
available. Moreover, using Python was found to increase the flexibility
and extensibility of the simulation framework as well as to ensure easy
integration into pre-existing code frameworks such as the implementation
of a spiking WTA network.

1https://www.python.org/

23

3 Software

3.1 Python Framework

As indicated above, flexibility and extensibility were two of the key design
objectives considered for the memristor model’s Python implementation
written for this work. These objectives were met by choosing a modular
framework design which allows for easy exchangeability of the different
building blocks. More precisely, this modular design splits up and dis-
tributes the functionality of the memristor model among multiple entities
including classes as well as modules and procedures. Since all entities of a
given type (for instance pulse shapes or parameter sets) offer the same in-
terface, one can switch from one implementation to another quite easily. In
fact, most of the simulations can be configured using simple command line
arguments which then select the appropriate entity implementations.

In the following we will take a brief look at some of the more important
entity types. Class diagrams illustrating these entities as well as their
relation to each other are presented in Section 3.1.6.

3.1.1 Memristors

The Memristor class shields the internals of the underlying memristor
model away from other parts of the software framework. It offers various
methods which allow other entities to interact with the implementation of
the memristor model’s dynamics. These methods are listed in Table 3.1
along with a short description of their functionality.

Currently, only one implementation, the one for the memristor model by
Serb et al. [Serb, 2014] described in Section 2.2.2, exists of the Memristor
class. In addition to providing the above-mentioned unified interface to
other software components, in the chosen implementation the Memristor
class is also responsible for keeping track of the different internal state
variables defined in Serb et al.’s memristor model.

24

3.1 Python Framework

Name Function
Delta_g() Calculate and retrieve conductance change ΔG trig-

gered by the preceding input stimulus.
M() Retrieve current instantaneous memristance M.
inject_state() Set internal state variables to specific values.
recording() Retrieve recording of the evolution of the memris-

tance as well as the memristor’s internal state vari-
ables over time as triggered by the preceding input
stimulus.

state() Retrieve the current values of the memristor’s inter-
nal state variables.

update() Update memristor state according to an external in-
put V which is assumed to be constant for a duration
of dt seconds.

Table 3.1: Methods exposed by the Memristor class. The Memristor class is the main interface other
entities can use in order to interact with the memristor model’s dynamics. It is intended to shield
away the internals of the underlying memristor model from other parts of the software framework.

3.1.2 Modules

As shown in Section 2.2.2, the memristor model defined by Serb et al.
[Serb, 2014] is composed out of five modules. The purpose of most of
these modules is solving differential equations describing different parts
and functionalities of the memristor model. Since no closed form solution
exists for most of these differential equations, in the software framework
they have to be approximated by means of numerical procedures. During
the course of this work, two different procedures for this purpose were
evaluated (see Appendix A for details). In addition to this, the model itself
was slightly modified. More precisely, the original window function used by
one of differential equations was replaced for a different one (details follow
in Section 4.4). Ultimately, in combination with the different numerical
approximation procedures, this lead to various different versions of the
modules. To account for this while ensuring flexibility for the simulations,
different flavors of the various modules were implemented and grouped
together in separate classes. The names of these classes all start with

25

3 Software

Name Description
Modules_default Default implementation using plain Eu-

ler Integration.
Modules_mult Implementation using multiplicative up-

dates where applicable.
Modules_mult_no_g Implementation as for Modules_mult,

but with g(Vw) ≡ 1.
Modules_mult_no_g_m0 Identical to Modules_mult_no_g, but

with additional pre-resistor M0.
Modules_mult_no_g_m0_fy Similar to Modules_mult_no_g_m0, but

with alternative window function ψ(·)
with κP = κD = κ.

Modules_mult_no_g_m0_2fy Identical to Modules_mult_no_g_m0_fy,
but with full-blown window function ψ(·)
with two different values for κP and κD.

Table 3.2: List of module implementations (Modules_xxx classes). The memristor model introduced in
Section 2.2.2 relies on five different modules. For the purpose of this work, different versions of
these modules were implemented, which all inherit from the Modules_default class.

26

3.1 Python Framework

Name Function
f_x() Implementation of the window function f (·) according to

Equation 2.14 as used by Module II.
f_y() Implementation of the window function f (·) according to

Equation 2.14 as used by Module III.
Phi() Implementation of the parameter function φ(·) according

to Equation 2.16 as used by Module III.
g() Implementation of the heating function g(·) according to

Equation 2.17 as used by Module III.
dV_x__dt() Implementation of the update rule for Module II accord-

ing to Equation 2.12.
dV_y__dt() Implementation of the update rule for Module III accord-

ing to Equation 2.15.
dV_z__dt() Implementation of the update rule for Module IV accord-

ing to Equations 2.18 and 2.19.
dV_w__dt() Implementation of the update rule for Module V accord-

ing to Equation 2.21.
update() Perform update of the state variables Vw, Vx, Vy and Vz for

a given external input V which is assumed to be constant
for a duration of dt seconds and return result.

Table 3.3: Methods and lambdas exposed by the different Modules_xxx classes. The different modules
defined in the memristor model by Serb et al. [Serb, 2014] are built around a set of differential
equations. In the software simulations, these are approximated by means of iterative numerical
procedures. These procedures are implemented by the above methods and lambdas.

Modules_ which is followed by abbreviations indicating the exact version
the class implements. A full list of all these classes is given in Table 3.2
along with a short description.

Similar as the Memristor class described in the previous section, also
the different Modules_xxx classes have a unified interface which other
software components (that is, primarily the Memristor implementations)
can use in order to interact with the modules in a standardized manner.
These interactions include calls used to update the internal state vari-
ables in response to an external input as well as to retrieve the current
memristance. Since some of the modules require additional parameter

27

3 Software

Name Description
Params_default Default parameter set as listed in Table 2.2.

Params_10_cx Parameter set for C′
x = 10 Cx and R′

x = Rx
10 .

Params_100_cx Parameter set for C′
x = 100 Cx and R′

x = Rx
100 .

Params_real Parameter set for realistic time constants τx =
100 ms (Cx = 500 mF and Rx = 200 mΩ).

Table 3.4: List of parameter set implementations (Params_xxx classes). For the simulations conducted
as part of this work, different parametrization for the modules defined by the memristor model
were evaluated. In the software simulations, these parameterizations were implemented as sepa-
rate Params_xxx classes all derived from Params_default.

functions, also the internal interface of the classes is unified in order to
allow for single functions to be easily replaced by means of subclassing.
The same applies to the functions used by the iterative update processes.
All these methods and lambdas are listed in Table 3.3 together with a
short description of their functionality.

3.1.3 Parameter Sets

In order to increase the flexibility, the values for the parameters used by
the modules described in the previous section were not hard-coded in their
implementations. Rather, different parameter sets were implemented as
separate Params_xxx classes. Each of these classes represents a specific
parameter configuration, such as the ones described in Section 4.1. When
a new Memristor instance is created, one of these parameter set classes is
selected and the underlying entity implementations retrieve the parameter
values from it.

3.1.4 Initializers

Based on the parameter sets mentioned in the previous section as well
as the modules described above, the memristor’s internal state variables
can be set to different initial states. In the software framework, this is

28

3.1 Python Framework

Name Description
init_max_g() Initialization to maximum conductance (same

as init_min_m()).
init_max_m() Initialization to maximum memristance.
init_mid_g() Initialization to midrange conductance (with-

out M0).
init_mid_g_m0() Initialization to midrange conductance (with

M0).
init_mid_m() Initialization to midrange memristance.
init_min_g() Initialization to minimum conductance (same

as init_max_m()).
init_min_m() Initialization to minimum memristance.
init_frac_max_g_m0() Initialization to a certain fraction ρ of the

maximum conductance (with M0).

Table 3.5: List of initializer implementations (init_xxx() functions). Some of the simulations described
throughout this work require the initialization of the memristor to a specific initial state defined
by specific values for the internal state variables Vw, Vx, Vy and Vz. This task is accomplished by
the above initializer functions.

accomplished by different initializer methods. These initializer methods
are methods which determine the initial values for the memristor model’s
internal state variables Vw, Vx, Vy and Vz according to different aspects

(for instance M(t = 0) !
= Mmin or G(t = 0) !

= Gmid) and return the corre-
sponding values. See Table 3.5 for a summary of the different initializers
and corresponding descriptions. A derivation of the different values the
initializers assign to the state variables is presented in Appendix C.

3.1.5 Pulses

The framework entities mentioned in the previous sections were all part
of the memristor model itself. During the course of this work, however,
also different pulse shapes to be used in combination with the memristor
model were developed. In order to allow for these pulse shapes to be
easily plugged into various types of simulations, also the different pulse

29

3 Software

Name Description
d_pulse Implementation of D-Pulses according to Section 4.3.1.
t_pulse Implementation of T-Pulses according to Section 4.3.2.
s_pulse Implementation of S-Pulses according to Section 4.3.3.

Table 3.6: List of pulse implementations (x_pulse classes). During the course of this work, different
pulsing schemes were evaluated with respect to their suitability for the implementation of STDP
within memristive synapses. In order to increase the flexibility, these pulsing schemes were imple-
mented in separate classes.

Name Function
post() Retrieve the voltage the POST-pulse attains at a spe-

cific time t relative to the origin.
pre() Retrieve the voltage the PRE-pulse attains at a spe-

cific time t relative to the origin.
sample_post() Sample the POST-pulse at a given dt and return an

array containing the resulting voltage train.
sample_pre() Sample the PRE-pulse at a given dt and return an

array containing the resulting voltage train.
T1() Retrieve the overall duration of the PRE-pulse.
T2() Retrieve the overall duration of the POST-pulse.

Table 3.7: Methods exposed by the x_pulse classes. Other parts of the software framework can rely on
these methods as a defined interface in order to interact with pulse implementation according to
different pulsing schemes.

types described in Section 4.3 were implemented as classes with a unified
interface. In addition to the pulse implementations listed in Table 3.6, also
a pulse class was implemented which all the other classes are derived
from. This class offers the main interface consisting of the two methods
get_name() and sample_pair() which other framework components such
as the simulation scripts can call. The sample_pair() method, in turn,
relies on some of the methods listed in Table 3.7 in order to sample PRE-
and POST-pulses which are then combined to pulse pairs. The implemen-
tations of these methods are provided by the x_pulse classes. Although
these methods are primarily intended to be called internally (for instance
by sample_pair()), they are exposed to and can be used safely by the
rest of the framework.

30

3.2 Verification

3.1.6 Class Diagrams

Figures 3.1 and 3.2 show class diagrams of the memristor framework as
well as the pulse library described above.

3.2 Verification

Once a first version of the memristor model’s Python implementation
described above was finished, it had to be verified for correct functionality.
In order to do so, the test protocols Protocol 1 and Protocol 2 defined by
Serb et al. [Serb, 2014] and described in Sections 3.3.1 and 3.3.2 were
run on the Python implementation. The results were then compared to
the ones obtained from the SPICE/MATLAB implementation.

During this test phase, initially different discrepancies were identified
and had to be resolved. Appendix A presents a comprehensive summary
of the efforts which were taken in order to do so and align the results
yielded by the different implementations. As we can see from Figure 3.3,
after resolving all the discrepancies, finally both the Python as well as the
SPICE/MATLAB version yielded almost identical results.

3.3 Test Protocols

Besides the memristor model itself, also various test protocols were im-
plemented as part of the software framework. These test protocols were
defined in order to allow for the investigation of the different problems
which will be discussed in Chapter 4. In addition to the new test protocols,
as mentioned above, also two others defined by Serb et al. [Serb, 2014],
were adopted for this work.

One characteristic all of these protocols have in common is that they
employ inputs which are composed of pulses of two different types. These
pulses occur with a certain timespan between each other. In this context

31

3 Software

Parametersets Modules

Initializers

Memristors

Params_default

+M_min : double

+M_max : double

+M_mid : double

+beta : double

+M_0 : double

+k : double

+C_x : double

+R_x : double

+C_y : double

+C_z : double

+R_z : double

+C_w : double

+R_w : double

+B_pos : double

+B_neg : double

+U_pos : double

+U_neg : double

+alpha : double

+p : double

+K_p : double

+K_n : double

+kappa_p : double

+kappa_n : double

Params_100_cx

+C_x : double

+R_x : double

Params_10_cx

+C_x : double

+R_x : double

Params_real

+C_x : double

+R_x : double

Modules_default

#_p : Params_default

+f_x() : double

+f_y() : double

+Phi() : double

+g() : double

+M() : double

+dV_x__dt() : double

+dV_y__dt() : double

+dV_z__dt() : double

+dV_w__dt() : double

+update() : double(4)

Modules_mult_no_g_m0_fy

+f_y() : double

Modules_mult_no_g_m0_2fy

+f_x() : double

+f_y() : double

Modules_mult_no_g_m0

+M() : double

Modules_mult

+update_mult() : double

+update() : double(4)

Modules_mult_no_g

+g() : double

Initializer
+paramset : Params_default

+init_max_g() : double(4)

+init_max_m() : double(4)

+init_mid_g() : double(4)

+init_mid_g_m0() : double(4)

+init_mid_m() : double(4)

+init_min_g() : double(4)

+init_min_m() : double(4)

+init_frac_max_g_m0() : double(4)

Memristor
-__V_w : double

-__V_x : double

-__V_y : double

-__V_z : double

+paramset : Params_default

+modules : Modules_default

+initializer : Initializer

+Delta_g() : double

+M() : double

+inject_state() : void

+recording() : double(5)[]

+state() : double(5)

+update() : double(5)

Figure 3.1: Class diagram illustrating the memristor framework. As can be seen, the memristor frame-
work primarily consists of four different classes, each of which is responsible for covering a
specific aspect of the given memristor model’s internals. A comprehensive description of these
different classes is given in Sections 3.1.1 to 3.1.4.

32

3.3 Test Protocols

pulses

pulse

#_name : string

+get_name() : string

+sample_pair() : double[](2)

+post() : double
+pre() : double
+sample_post() : double[]
+sample_pre() : double[]
+T1() : double
+T2() : double

t_pulse

-__V0_post : double

-__V1_post : double

-__t1_post : double

-__V2_post : double

-__t2_post : double

-__V3_post : double

-__t3_post : double

-__V0_pre : double

-__V1_pre : double

-__t1_pre : double

d_pulse

-__V0_post : double

-__V1_post : double

-__t1_post : double

-__V2_post : double

-__t2_post : double

-__V0_pre : double

-__V1_pre : double

-__t1_pre : double s_pulse

-__V0_post : double

-__V1_post : double

-__t1_post : double

-__V0_pre : double

-__V1_pre : double

-__t1_pre : double

Figure 3.2: Class diagram illustrating the pulse library. The pulse library comprises three different im-
plementations of the abstract pulse interface. These implementations represent different types
of pulses as will be introduced in Sections 4.3.1 to 4.3.3.

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
−4

−3

−2

−1

0

1

2

3
x 10−8

Inter−event−interval (IEI) δt [s]

Δ
g

SPICE
Python

Figure 3.3: Comparison of the SPICE and the Python implementation. The plot compares the results
for Protocol 1 as yielded by the original SPICE and the final Python implementation. The process
of aligning the two implementations with each other is described at length in Appendix A.

33

3 Software

it should be pointed out, however, that there is a fundamental difference
in the way the original protocols by Serb et al. and the new ones proposed
in this work define this timespan. More precisely, on the one hand Serb
et al. define the inter event interval as the time between the end of the
first pulse and the beginning of the second pulse. Obviously, given an
arbitrary inter event interval, this definition alone does not allow for the
determination of the exact order in which the respective pulses occurred.
This order, however, is substantial with respect to the learning theory
in spiking neural networks. Most likely, this is why a second definition
stating that negative inter event intervals correspond to the negative
pulse occurring first was added by Serb et al.. For δt = 0, however, this
definition is still ambiguous which is probably why Serb et al. excluded
this case by definition in their software framework.

On the other hand and in contrast to [Serb, 2014], for the new protocols
the inter event interval is defined as the timespan between the beginning
of the respective pulses of a pulse pair. Since these times correspond to the
spike times of the pre- and post-synaptic neurons, this approach is better
aligned with spiking neural network theory. Moreover, this conception
of the inter event interval is necessary in order to allow for overlapping
pulses, which is a crucial point with respect to the theory this work is
based on.

In order to allow for a better distinction of these two definitions, the inter
event interval according to Serb et al. will be denoted as δt throughout this
work, while Δt, in contrast, refers to the inter event interval according to
the new definition given above. Given these definitions, we will now take
a closer look at the implementation of some of the simulation protocols
used for this work.

3.3.1 Protocol 1

One of the first steps taken for this work was porting the memristor model
proposed by Serb et al. [Serb, 2014] to Python. As indicated earlier, in
addition to the memristor model itself, Serb et al. also defined two test

34

3.3 Test Protocols

(a) Protocol

−40 −20 0 20 40
−3

−2

−1

0

1

2

1e−8

(b) Example result

Figure 3.4: Protocol 1 as defined by Serb et al. [Serb, 2014]. Pairs of two pulses with fixed amplitudes
of −2 V and 2 V and fixed durations of 10 μs but a varying inter event interval δt are applied to
a memristor. The conductance changes ΔG resulting from these stimuli are then plotted against
the inter event interval.

protocols. Both of them were adopted for this work in order to allow for a
comparison of the Python and the reference implementation.

The first one of these two protocols, Protocol 1, is illustrated in Figure 3.4a.
It defines a pair of a positive and a negative rectangular pulse both with
durations of t = 10 μs. In order to account for realistic hardware limita-
tions and to meet the original SPICE implementation, also rise and fall
times of 1 μs are considered. The amplitudes of the pulses were chosen
as V1 = 2 V and V2 = −2 V, respectively. Based on this setup, the time
between these pulses, the inter event interval (IEI) δt, is varied from
δt = −50 ms to δt = 50 ms in 0.5 ms steps. In this context, as we mentioned
in the introduction to this section, negative and positive values for the
IEI translate to the negative and the positive sub-pulse occurring first,
respectively. The resulting voltage trains are then applied to a memristor
initialized at midrange memristance. For each of these inputs, the differ-
ence ΔG between the final and the initial instantaneous conductance is
computed and plotted against the corresponding δt values, yielding plots
as the one shown in Figure 3.4b. This type of simulation allows insight into
the influence of the exact timing between the positive and the negative
pulses on the resulting change in conductance.

35

3 Software

(a) Protocol for δt = 3 ms

0 5 10 15 20 25 30 35 40 45 50

0.0

0.5

1.0

1.5

1e−5

(b) Example results

Figure 3.5: Protocol 2 as defined by Serb et al. [Serb, 2014]. 60 pairs of pulses with the same properties
as the ones defined in Protocol 1 are generated at different frequencies f and applied to a mem-
ristor. Two different inter event intervals δt = −3 ms and δt = 3 ms are used. The conductance
changes ΔG resulting from these stimuli are recorded and plotted against the frequency for each
of the inter event intervals.

3.3.2 Protocol 2

As indicated in the previous section, besides Protocol 1 also the second
test protocol defined by Serb et al. [Serb, 2014], Protocol 2, was adopted
for this work. Similar to Protocol 1, also Protocol 2 is based on pairs of
square pulses as the ones shown in Figure 3.4a.

Figure 3.5a, however, illustrates that Protocol 2 applies multiple pulse
pairs rather than single ones. In addition to this, the (absolute) time
interval between the pulses forming a pulse pair is fixed. Based on these
fixed quantities, Protocol 2 varies the time between the pulse pairs in
order to match certain pairing frequencies. Put differently, Protocol 2
chooses the time T = 1/ f between the pulse pairs such that the resulting
60 paired events occur at specific frequencies f . These frequencies are
varied from f = 0.5 Hz to f = 50 Hz in 0.5 Hz steps, yielding values for
the timespan T between the pulse pairs of T = 20 ms to T = 2 s. The
input trains resulting from each of the frequencies are then applied to
memristors, while keeping track of the instantaneous conductance G(t).
The difference ΔG between the conductance present at the end and at
the beginning of this stimulation is recorded for each of the frequencies f .

36

3.3 Test Protocols

The resulting array of ΔG values is finally plotted against f yielding plots
as the one shown in Figure 3.5b.

As we mentioned in the previous section, for the protocols defined by
Serb et al. the sign of the inter event interval δt specifies which of the
two pulses occurs first. In this section we stated that for Protocol 2 the
absolute inter event interval is fixed. Given the remaining protocol setup
described above, this allows for two different simulation runs for δt = 3 ms
and δt = −3 ms indicated in red and blue in Figure 3.5b.

3.3.3 Protocol 3

The protocols described in the previous two sections formed the foun-
dation for the first new protocol defined during the course of this work.
Consequently, Protocol 3 can be seen as a combination of Protocol 1 and
Protocol 2. More precisely, it performs a sweep of the inter event interval
and, for each of the inter event interval values, generates multiple pulse
pairs at a given frequency. There are, however, also a few significant
differences between the protocols described in the previous sections and
Protocol 3.

For instance, in contrast to the protocols defined by Serb et al. [Serb,
2014], Protocol 3 is not restricted to pulses of a specific shape. Rather, it
allows for almost any arbitrary pulse shapes such as the ones defined in
Section 4.3 to be plugged into the simulation. Hence, as such, Protocol 3
merely defines the simulation environment of having 100 pulse pairs which
occur at a specific pairing frequency f = 1/T = 20 Hz. Besides this, also
the sweep of the inter event interval between the two pulses of a pulse
pair is part of the protocol definition. In contrast to the protocols proposed
by Serb et al. [Serb, 2014], however, as becomes clear from Figure 3.6a
Protocol 3 is the first test protocol which features the alternative definition
of the inter event interval Δt we mentioned in the introduction to this
section.

37

3 Software

(a) Protocol for a negative Δt (b) Example result

Figure 3.6: Protocol 3 for a negative Δt and D-pulses. 100 pairs of pre- and post-synaptic pulses are
generated (according to one of the pulse shapes listed in Section 4.3) with a varying inter event
interval Δt at a frequency of f = 20 Hz. The resulting trains are then applied to a memristor
while recording the conductance change ΔG for each of the inter event intervals.

During the simulation of Protocol 3, the values for Δt are varied from
Δt = −20 ms to Δt = 20 ms in 0.5 ms steps. For each of these Δt values, a
corresponding pulse train is generated comprising 100 pulse pairs with
a pairing frequency of f = 20 Hz. This pulse train is then applied to a
memristor initialized at a specific initial memristance, again keeping track
of the instantaneous conductance G(t). Similar as for Protocol 1, the dif-
ference ΔG between the final and the initial conductance is computed for
each of the pulse trains. The resulting array of ΔG values is finally plotted
against the corresponding Δt values, yielding plots as the one shown in
Figure 3.6b. Hence, similar as Protocol 1, also Protocol 3 provides some
insight into how the change in conductance depends on the relative timing
of the pulses of a pulse pair. Since this is closely related to the theory of
STDP, we will also refer to plots as the one shown in Figure 3.6b as STDP
plots.

Finally it should be mentioned that, besides the pulse shapes actually used
by the protocol, also almost any other (fixed) parameter can be adjusted
for Protocol 3. For instance, for some of the simulations presented in later
chapters, only single pulse pairs were used.

38

3.3 Test Protocols

3.3.4 Protocol 5

Protocol 5 is closely related to Protocol 3 discussed in the previous section.
In contrast to Protocol 3, however, no sweep of the inter event interval
Δt is performed. Rather a fixed value for Δt is used. This fixed value
is either specified at the beginning of the simulation or chosen from
observations made with Protocol 3. More precisely, if no value for Δt
is specified explicitly, the inter event interval is chosen from an array
containing the Δt values for which the maximum responses in ΔG were
observed for previous runs of Protocol 3.

Using this inter event interval Δt, similar as for Protocol 3, 100 spike
pairs are generated at a pairing frequency of f = 20 Hz. These spike
pairs are then interpreted as triggers for pre- and post-synaptic pulses
according to different pulse shapes again. Afterwards, the pulse trains
resulting from this interpretation are fed to a memristor, keeping track of
the instantaneous memristance M(t). In contrast to Protocol 3, however,
also the evolution of all internal state variables is recorded.

At the end of the simulation, the time courses of all the internal state
variables Vw, Vx, Vy and Vz as well as the applied external voltage V
resulting from the pulse trains and the instantaneous memristance M are
plotted. Figure 3.7 shows an example for plots of this type. Obviously,
since these plots depict all the internal state variables along with the
resulting input/output behavior of the memristor, Protocol 5 can be used
in order to gain insight into the memristor’s internals, how they affect the
overall system and how these internals give rise to certain input-output-
behavior.

Similar as Protocol 3, also Protocol 5 allows for full customization of
almost any of the simulation parameters. For instance, besides specifying
the pulse shapes, the pre- and post-synaptic pulses can be selectively
disabled in order to simulate different cases with respect to the SEM
learning theory.

39

3 Software

0 1 2 3 4 5

−3

−2

−1

0

1

2
V

[V
]

1e−2

0 1 2 3 4 5
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

M
[Ω

]

1e4

0 1 2 3 4 5
Time [s]

0
1
2
3
4
5

V
w

1e−10

0 1 2 3 4 5

5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5

V
x

1e−1

0 1 2 3 4 5

5.0

5.2

5.4

5.6

5.8

V
y

1e−1

0 1 2 3 4 5
Time [s]

−1
0
1
2
3
4
5

V
z

1e−10

Figure 3.7: Protocol 5 for Δt = 9 ms and D-pulses. A number of pulse pairs (default: 100) with a fixed inter
event interval is generated and applied to a memristor. At the end of the simulation, the time
course of all the different internal state variables is plotted. Pre- and post-synaptic pulses may
be disabled selectively.

3.3.5 Protocol 7

Basically, Protocol 7 is closely related to one of the experiments described
in [BillLegenstein, 2014]. More precisely, Protocol 7 defines a number of
n = 20000 POST-pulses with a pairing frequency f = 1/T = 20 Hz which
trigger corresponding POST-pulses. Again, the exact shape of these POST-
pulses is not part of the protocol definition, but rather specified at the
beginning of the simulation. From these n POST-pulses, a certain subset of
size m is selected at random. This random subset of POST-pulses is paired
with an additional PRE-pulse with a fixed inter event interval Δt = 4 ms.

As we shall see in Section 5.2.2, in a spiking WTA network, two random
variables Y and Z exist, which model the activity of the pre- and post-
synaptic neurons, respectively. In this probabilistic framework, the case
of overlapping PRE- and POST-pulses translates to Y = 1 and Z = 1.
Hence, the fraction m

n can be considered approximating the probability

40

3.3 Test Protocols

t

0V

50 ms

4 ms

...

...

(20000 overall)

POST

PRE

(a) Protocol

0.0 0.2 0.4 0.6 0.8 1.0

p(y=1|z=1)

0.2

0.4

0.6

0.8

G
[S

]

1e−4

(b) Example result

Figure 3.8: Protocol 7 for D-pulses and p(Y = 1 | Z = 1) = 0.5. Pulse trains encoding different probabil-
ities p(Y = 1 | Z = 1) are generated by creating n = 20000 POST-pulses of a given pulse shape
(compare Section 4.3) and overlaying a PRE-pulse to a certain subset of them. The resulting
stimuli are then then applied to memristors The resulting final convergence conductance values
are then plotted against the probabilities.

p(Y = 1 | Z = 1), that is, the probability of a PRE-pulse given a POST-
pulse.

Given the fixed quantities n, f and Δt, Protocol 7 performs a sweep of
p(Y = 1 | Z = 1) from 0.0 to 1.0, corresponding to none and all of the
events being of the PRE-and-POST type, respectively. For each of the prob-
abilities, an input pulse train is generated, encoding the respective proba-
bility p(Y = 1 | Z = 1) (an example for D-pulses and p(Y = 1 | Z = 1) = 0.5
is illustrated in excerpts in Figure 3.8a). Each of the resulting input pulse
trains is then applied to a memristor. At the end of each of these simula-
tions, the instantaneous conductance G(t) is recorded. In order to allow
for a more generalized view and to eliminate outliers, the simulation is
repeated for different memristor initializations. Finally, the convergence
conductances (that is, the final instantaneous conductance G(t)) obtained
in the different simulation runs are plotted against the corresponding
probabilities p(Y = 1 | Z = 1), yielding plots as the one shown in Fig-
ure 3.8b. Obviously, plots like this allow for an evaluation of the mapping
between the probabilities p(Y = 1 | Z = 1) and the corresponding conver-
gence conductances. As we shall see later in Sections 4.4 and 4.5, these
plots play a key role in assessing convergence and initialization issues.

41

3 Software

0 200 400 600 800

t [s]

0.0

0.2

0.4

0.6

0.8

1.0
G

[S
]

1e−4

p(y=1|z=1)=0.0

p(y=1|z=1)=0.1

p(y=1|z=1)=0.2

p(y=1|z=1)=0.3

p(y=1|z=1)=0.4

p(y=1|z=1)=0.5

p(y=1|z=1)=0.6

p(y=1|z=1)=0.7

p(y=1|z=1)=0.8

p(y=1|z=1)=0.9

p(y=1|z=1)=1.0

Figure 3.9: Alternative visualization of Protocol 7. Instead of plotting the final (convergence) conduc-
tances for each of the probabilities p(Y = 1 | Z = 1), the evolution of the instantaneous conduc-
tance G over time is plotted as a whole.

In addition to the plots described above, also an alternative visualization
for Protocol 7 exists. For this visualization, the evolution of instantaneous
conductance G over time is recorded as a whole for each of the probabili-
ties p(Y = 1 | Z = 1). The resulting arrays of G(t) values are then plotted
against the time. As can be seen from Figure 3.9, this allows for some
insight into the exact convergence behavior of the memristor as a function
of the applied PRE/POST statistics as well as the memristor’s initial state.
Based on this, the mapping plots shown earlier can be considered as a
snapshot of the evolution plots illustrated in Figure 3.9 taken at the end
of the simulation.

With n = 20000 POST-pulses involved, the focus of Protocol 7 lies on the
investigation the system’s long term behavior, making simulation runs for
Protocol 7 consume significantly more computation time than the proto-
cols described earlier. To account for this, Protocol 7 was implemented in
a distributed, cluster-enabled manner.

This concludes the documentation of the software framework written
for this work. In the next chapter, we will take a closer look at different
problems investigated base on this software framework.

42

4
Problems and Solutions

During the process of studying the memristor model by Serb et al. [Serb,
2014] (see Section 2.2.2) in the context of its suitability for the implemen-
tation of synapses for spiking WTA network circuits, different problems
were encountered. Some of these problems were found to be related with
each other, while others turned out to be independent. In this section it
was tried to decompose all of them into separate and almost independent
subproblems as well as in any way possible. In the following, each of these
decomposed subproblems will be discussed in its own section, starting
with problems related to single spike and short term dynamics. These
discussions are followed by considerations on issues encountered in the
context of long term and convergence studies involving up to a couple of
thousand spike pairs.

Figure 4.1a illustrates the corresponding subproblem-section mapping,
where OMM denotes the original memristor model by Serb et al. [Serb,
2014]. These subproblems include the following:

43

4 Problems and Solutions

OMM

4.1 4.2 4.3

4.4

4.5

x

x

(a) Subproblem-section mapping

zy

MPRE

POST
V

(b) Simplified simulation setup

Figure 4.1: Different subproblems and simplified setup. In (a), OMM denotes the original memristor
model as described in Section 2.2.2. Arrows are labeled with the name of the problems and point
to the section in which these problems are discussed in this work. Rectangles with rounded
corners, name these sections. The problems above the dashed red line are related to single spike
(short term) setups, while those below it are specific to multi spike (long term) environments. (b)
illustrates the simplified single-synapse setup which is used for the simulations described in this
chapter to allow for an uncluttered notation (illustration adapted from [BillLegenstein, 2014]).

• Section 4.1: Overreaction of Vx and M to the input voltage.
• Section 4.2: Non-linearity of the mapping between Vx and the synap-
tic weight represented by the memristor’s conductance.

• Section 4.3: Finding an appropriate pulsing scheme that is suitable
for implementing LTP and LTD depending on the STDP timing Δt.

• Section 4.4: Weight dependence of the conductance change in order
to achieve convergence.

• Section 4.5: Independence of the convergence points from the mem-
ristor’s initialization.

As is indicated by Figure 4.1a, the investigations of the subproblems
related to the system’s short term dynamics are all based on the original
memristor model as described in Section 2.2.2. The insights gained in the
corresponding experiments were then jointly used to implement a slightly
modified but fine-tuned memristor model, serving as foundation for the
multi spike experiments. In order to allow for an uncluttered notation
as well as to facilitate an easy analysis, the different subproblems were
investigated based on a simplified network setup consisting of only a
single synapse as illustrated in Figure 4.1b.

44

4.1 Overreaction of Vx and M

0.0 0.1 0.2 0.3 0.4 0.5
−4
−3
−2
−1
0
1
2

V
[V

]

1e−2

0.0 0.1 0.2 0.3 0.4 0.5
3.5

4.0

4.5

5.0

5.5

6.0

M
[Ω

]

1e4

0.0 0.1 0.2 0.3 0.4 0.5
Time [s]

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

V
w

1e−11

0.0 0.1 0.2 0.3 0.4 0.5
4.0

4.5

5.0

5.5

6.0

6.5

V
x

1e−1

0.0 0.1 0.2 0.3 0.4 0.5

4.98

4.99

5.00

V
y

1e−1

0.0 0.1 0.2 0.3 0.4 0.5
Time [s]

−4

−2

0

2

4
V
z

1e−10

Figure 4.2: System response to events of two different types. Clearly, Vx modeling the volatile mem-
ristance changes shows heavy reactions to both the unipolar as well as the bipolar event. Vy
governing the non-volatile portion of the instantaneous memristance reacts less violently.

4.1 Overreaction of Vx and M

As turned out during experiments involving pulses of different shapes, the
original memristor model described in Section 2.2.2 shows heavy reac-
tions to various types of input. More precisely, in the original memristor
model the instantaneous memristance M(t) follows spikes in the applied
input voltage V(t) immediately. This situation is illustrated in Figure 4.2.
In the corresponding simulation, two events of different type were applied
to a memristor initialized with standard parameters. These events are
illustrate in the top left plot of Figure 4.2: While the first event is unipolar
and comprises a single plain square pulse with an amplitude of 6 mV and
a duration of 10 ms, the second event is bipolar and features a combi-
nation of a positive and a negative square sub-pulse. These sub-pulses
have amplitudes of 18 mV and −36 mV and durations of 0.5 ms and 1 ms,
respectively.

As becomes evident from the plots shown in Figure 4.2, although the

45

4 Problems and Solutions

memristor reacts heavily to both the bipolar as well the unipolar event,
in terms of the internal state variables these overreactions are limited to
Vx covering the volatile aspects of the memristor. The non-volatile part of
the memristance Vy, in contrast, reacts to the pulses in the input voltage
much less violently, merely dropping by less than one percent in case of
the bipolar event. Both events’ impact on Vx, however, is severe. More
precisely, in a memristor initialized at midrange memristance, a single
unipolar event drives Vx from the initial value Vx = 0.5 to a maximum of
Vx ≈ 0.63. Similarly, the first sub-pulse of a bipolar event initially increases
Vx from Vx = 0.5 to Vx ≈ 0.54, before the second sub-pulse drives the value
down to Vx ≈ 0.4. According to Equation 2.10, these ranges translate to
variations of the instantaneous memristance from M(t) ≈ 37 kΩ to M(t) ≈
50 kΩ and M(t) ≈ 46 kΩ to M(t) ≈ 60 kΩ, respectively. For memristors
with less neutral initial states (that is, states further away from midrange
memristance), this could cause the instantaneous memristance M(t) to
be driven into its upper or lower bounds regularly by comparatively non-
invasive events. Although finally these peaks in the memristance curve
decay quickly for both pulse types, this behavior is highly undesirable in
spiking WTA networks consisting of several hundreds of interconnected
memristive synapses as it could compromise the overall system stability.

Based on the observation that only Vx is affected, the transient charging
process defined in Module II was identified as a potential cause of the
overreactions. More precisely, it was supposed that the coupling between
the input voltage V(t) and the volatile state Vx(t) was too strong. Accord-
ing to Equation 2.12, the strength of this coupling is basically defined
by the capacitor Cx, where larger capacitance values generally lead to
weaker coupling. To account for this, it was decided increase Cx. In terms
of the underlying system dynamics, this adjustment was supposed to slow
down the before-mentioned transient charging process of Vx triggered
by the input voltage V(t). Trying to keep the influence of this parame-
ter adjustment on the overall system behavior as small as possible, it
was decided, however, to preserve the module’s original time constant
τx = Cx Rx by choosing an appropriate new value for Rx.

As a starting point, C′
x = 100 Cx and a corresponding R′

x = Rx
100 were cho-

46

4.1 Overreaction of Vx and M

sen. The Vx- and M-curves associated with this first adjusted parameter
configuration are indicated with solid lines in the middle and bottom
plots of Figures 4.3a and 4.3b. As can be seen, for both input events the
results are perfectly aligned with our expectations. Indeed, the memris-
tor’s volatile reactions represented by Vx are much smoother, ultimately
resulting in a less spiky instantaneous memristance M(t). Actually, the
remaining peaks in the Vx(t) curve are so small that they are not even
visible when using the same scale as in Figure 4.2, which is why zoomed
insets with an appropriate scale were added.

While undoubtedly reducing the strength of the coupling between the
input voltage V(t) and the instantaneous memristance M(t) and thus
solving the problem of having Vx overreact to spiky input, one might
legitimately have serious concerns about this parameter adjustment. Even
if preserving the original time constant τx, increasing Cx just like that
seems a rather invasive strategy. Talking to Serb et al., however, it turned
out that the adaption of Cx and the thereby induced reduction in the
sensitivity of Module II controlling the volatile memristance, was well
supported by their latest research findings[Bill, 2014a]. In addition to this,
Serb et al. reported that their most recent experiments gave rise to the
assumption that in real memristor hardware volatile processes related
to the instantaneous memristance M(t) occurred with time constants in
the range of hundreds of milliseconds up to a few seconds[Bill, 2014a].
In order to account for these new insights, the time constant τx was
adjusted once again, choosing τx = 100 ms by setting C′

x = 500 mF and
R′

x = 200 mΩ.

After this adjustment, the simulations described above were re-run. The
Vx and M-curves resulting from this second alternative parameter con-
figuration are illustrated in dashed lines in Figures 4.3a and 4.3b. As we
can see, while having slightly stronger coupling than for the previous and
arbitrarily chosen value for C′

x, the reaction of Vx to the input events is
still clearly weaker than for the original parameter configuration. Com-
paring the dashed and the solid Vx-plots we notice, however, that the
decay time of Vx(t) has increased notably, which results from the new
time constant τx being twenty times larger than the original one. Since

47

4 Problems and Solutions

0.0 0.1 0.2 0.3 0.4 0.5

−3

−2

−1

0

1

V

1e−2

0.0 0.1 0.2 0.3 0.4 0.5

4.5

5.0

5.5

6.0

6.5

V
x

1e−1

C ′

x =100 Cx
R ′

x =Rx /100

C ′

x =500 mF

R ′

x =200 mΩ

0.0 0.2 0.4
0.500

0.502

0.0 0.1 0.2 0.3 0.4 0.5
Time [s]

3.5

4.0

4.5

5.0

5.5

M

1e4

C ′

x =100 Cx
R ′

x =Rx /100

C ′

x =500 mF

R ′

x =200 mΩ

0.0 0.2 0.4

5.00e4

4.98e4

(a) Unipolar event

0.0 0.1 0.2 0.3 0.4 0.5

−3

−2

−1

0

1

V

1e−2

0.0 0.1 0.2 0.3 0.4 0.5

4.5

5.0

5.5

6.0

6.5

V
x

1e−1

C ′

x =100 Cx
R ′

x =Rx /100

C ′

x =500 mF

R ′

x =200 mΩ

0.0 0.2 0.4

0.498

0.500

0.0 0.1 0.2 0.3 0.4 0.5
Time [s]

3.5

4.0

4.5

5.0

5.5

M

1e4

C ′

x =100 Cx
R ′

x =Rx /100

C ′

x =500 mF

R ′

x =200 mΩ

0.0 0.2 0.4

5.02e4

5.00e4

(b) Bipolar event

Figure 4.3: Reaction of Vx and M to events of two different types. Solid lines indicate the modified
parameter set with C′

x = 100 Cx and R′
x = Rx

100 , while dashed lines represent the “realistic” pa-
rameter set with C′

x = 500 mF and R′
x = 200 mΩ. Zoomed insets were added in order to allow for

the same scale as used in Figure 4.2.

48

4.2 Non-Linear Vx/Conductance Mapping and Dynamic Range

the instantaneous memristance M(t) is shaped by Vx(t), the same applies
to the corresponding M(t)-plots in Figures 4.3a and 4.3b. Nevertheless,
as turned out in experiments we are going to discuss in later sections,
there is no harm in the increased decay time introduced by the “realis-
tic” parameter set, making it an acceptable choice. Consequently, it was
ultimately adopted into the final memristor model.

These considerations conclude the discussion of the efforts that were
made in order to reduce the overreactions of the instantaneous mem-
ristance M(t) to spiky input. As we have seen, adjusting the parameter
Cx according to different aspects helped in making the reactions of the
system less violent, increasing the overall stability. In the next section we
will take a closer look at the mapping of internal state variables onto a
corresponding conductance value.

4.2 Non-Linear Vx/Conductance Mapping and

Dynamic Range

In Section 2.4 we stated that the ultimate goal of this work was construct-
ing novel memristor-based synapses for spiking WTA networks. Most
modern neuromorphic hardware implementations of these networks rep-
resent neural spikes as voltage pulses of different shapes. Based on this,
the most natural approach is to establish a proportional relation between
the conductance of the junctions of pairs of neurons as the respective
synapses’ weight. As a result, for our memristor-based synapses it can be
considered preferable to have the affected synapses’ response in terms of
the conductance changes triggered by the individual pulses well under
control. In the underlying memristor model, this requirement translates
to the need of having the state variables governing the memristor’s char-
acteristics drive the device’s conductance through the available dynamic
range linearly and evenly.

Recalling the models presented in Section 2.2, we notice however that
the available state-of-the-art memristors seem to be constructed around

49

4 Problems and Solutions

0.0 0.2 0.4 0.6 0.8 1.0

V
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2
M

[Ω
]

1e5

(a) Memristance M

0.0 0.2 0.4 0.6 0.8 1.0

V
x

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

G
[S

]

(b) Conductance G

Figure 4.4: Memristance M and conductance G as functions of Vx. While the mapping of Vx onto a cor-
responding memristance M(Vx) is perfectly linear, the relation between Vx and the conductance
G(Vx) is highly non-linear (notice the logarithmic scale of plot (b)).

a linear mapping between a subset of their internal state variables and
the instantaneous memristance M(t), meaning that they are resistance-
based. None of them allows for our desired linear mapping of the memris-
tor’s internal state onto its instantaneous conductance G(t). While this
resistance-based mapping is not of harm for some applications, one runs
into a fundamental problem when implementing memristive synapses for
spiking WTA networks.

In their memristor model, Serb et al., for instance, defined the mapping as
shown in Equation 2.10 through the internal state variable Vx yielding the
perfectly linear relation between Vx and the instantaneous memristance
M as illustrated in Figure 4.4a. The resulting mapping of Vx onto a corre-
sponding conductance G, however, is highly non-linear. More precisely,
as we can see from Figure 4.4b, more than 99 % of the conductance’s
dynamic range is covered by less than 10 % of Vx. For synaptic weights,
this translates to a huge dynamic range being available to choose the
weights from, but significant weight changes only happening within a very
narrow range. This makes the reaction of the synaptic junctions highly
sensitive to the applied input. After staying almost the same for very
long time, the weight of a memristive synapse would then change from
a relatively low to the highest possible value almost instantaneously. Al-

50

4.2 Non-Linear Vx/Conductance Mapping and Dynamic Range

zy

MPRE

POST
V

M0

Figure 4.5: Additional ohmic pre-resistor M0. Connecting M0 aids in reducing the dynamic range of
both the memristance as well as the conductance, thus improving the linearity of the mapping
between Vx and the conductance (illustration adapted from [BillLegenstein, 2014]).

though compound memristive synapses based on stochastically switching,
bistable memristive devices were proposed and shown to be viable by Bill
and Legenstein [BillLegenstein, 2014], this behavior is highly undesirable
for the approach we pursue for this work. As indicated in Chapter 1, for
this work we aim for single-memristor synapses with a continuous weight
spectrum.

Besides the underlying system design, in the memristor model by Serb et
al. [Serb, 2014], the above-mentioned effect of the conductance changing
from the least to the most conductive state almost instantaneously pri-
marily results from the relatively large dynamic range of the memristor’s
memristance (Mmin = 1 Ω to Mmax = 100 kΩ). Linearizing the system by
narrowing this range down without any further ado, however, seemed to
be an unnecessarily invasive strategy. Moreover, it was unknown whether
changes like this are compatible with real memristive hardware. In an
attempt to still reduce the dynamic range of the memristive synapse
while acting less invasively, it was decided to introduce an additional,
pure ohmic pre-resistor M0. Connecting this resistor M0 in series to the
memristor representing the memristive synapse as shown in Figure 4.5
was supposed to bring the bounds of the memristance’s dynamic range
closer together. Consequently, also the bounds of the memristor’s con-
ductance would be closer together, thus reducing the non-linearity of the
Vx/conductance mapping. Put differently, the installation of the additional
pre-resistor M0 was meant to reduce the non-linearity by widening the
conductance range covered by a given Vx-range.

Looking at Figure 4.6b, however, we notice that, although reducing the

51

4 Problems and Solutions

0.0 0.2 0.4 0.6 0.8 1.0

V
x

0.0

0.5

1.0

1.5

2.0
M

[Ω
]

1e5

M0 = 100.0 kΩ

M0 = 33.3 kΩ

M0 = 20.0 kΩ

M0 = 14.3 kΩ

M0 = 11.1 kΩ

(a) Memristance M

0.0 0.2 0.4 0.6 0.8 1.0

V
x

0

1

2

3

4

5

6

7

8

G
[S
]

1e 5

M0 = 100.0 kΩ

M0 = 33.3 kΩ

M0 = 20.0 kΩ

M0 = 14.3 kΩ

M0 = 11.1 kΩ

(b) Conductance G

Figure 4.6: Memristance M and conductance G as functions of Vx for different values of M0. Notice
how the dynamic range controlled by Vx depends on the value chosen for M0. Clearly, greater
values for M0 reduce the non-linearity of the mapping between Vx and a corresponding conduc-
tance G(Vx).

non-linearity of the mapping, the chosen value of this resistor M0 turns
out to be a crucial quantity. As we can see, larger M0 values basically lead
to less non-linearity in the resulting G(Vx) plots. This increased linearity,
however, is obtained at the expense of a large dynamic range. Choosing
M0 = Mmax

9 = 11.1 kΩ, for instance, leads to a minimum and maximum
memristance of approximately 11.1 kΩ and 111.1 kΩ, respectively. This
translates to a synapse’s ability of adjusting its weight by a factor of 10
during learning. For the more linear curve obtained with M0 = Mmax =
100 kΩ, however, there is only a factor of approximately 2 between the least
and most conductive memristor state. This corresponds to the synapse
being able to only double the strength of the corresponding synaptic
junction anymore. In contrast to this, for the original memristor model as
proposed by Serb et al., a factor of roughly 105 could be achieved without
the additional resistor M0. For the purpose of the simulations carried out
during this project, M0 = Mmax

9 was chosen. As turned out, for this value
both acceptable stability as well as a sufficiently large dynamic range can
be achieved.

In addition to the need for an appropriate choice of the value of M0,
introducing the pre-resistor bears another potential drawback. As indi-

52

4.2 Non-Linear Vx/Conductance Mapping and Dynamic Range

cated in the introduction, the implementation of a spiking WTA network
as neuromorphic hardware chips involves tight area constraints. One of
the greatest advantages of using memristors rather than other classic
semiconductor-based devices for such networks lies in the way plastic-
ity is implemented. While for classic semiconductor-based solutions one
has to design special circuits or even dedicated co-processors that are
capable of doing the complex math required by the principles of synap-
tic plasticity, memristors implement these rules intrinsically. Hence, in
general memristor-based WTA network solutions can reduce the required
die space dramatically [Serrano, 2013]. On the one hand, this allows for
additional hardware on the chip. On the other hand, however, one has to
be careful not to recklessly spoil the gained spatial advantage by blindly
adding supplemental circuitry such as M0. As turned out, however, the
crossbar architecture suggested in [Linares, 2009], comes in handy at this
point. More precisely, one does not have to add the pre-resistors M0 for
each of the memristive synapses. It suffices to add them at the the cross-
bar’s input, since each of the PRE input channels is connected to multiple
POST neurons through the respective memristive synapses. Since this
ensures that the hardware scales well, adding the additional pure-ohmic
resistor M0 to the final memristor model seemed reasonable.

This concludes the discussion of the non-linearity problem intrinsic to
all state-of-the-art memristor models. As we have seen, the implementa-
tion of memristive synapses potentially suffers from the way up-to-date
memristor models map their internal state variables onto the external
input-output-behavior. As a solution to this problem, the introduction of
additional pure-ohmic pre-resistors M0 was identified. These pre-resistors
are connected in series to the input of the memristive synapses, reducing
the conductance’s dynamic range, while leaving the internals of the actual
memristor model unchanged. Similarly, also in the next section dealing
with different pulse shapes which are to be used in combination with the
memristive synapses, the internals of the underlying memristor model are
not changed in any way.

53

4 Problems and Solutions

4.3 Pulse shapes

While the previous sections dealt with problems related to the internals
of the memristors used to the construct memristive synapses, this section
is devoted to a topic more in the context of these synapses’ environment
within spiking WTA networks. More precisely, we are going to develop
different pulse shapes suitable for the implementation of synaptic plastic-
ity inspired by the findings of Zamarreño-Ramos et al. [Zamarreño, 2011]
and Querlioz, Bichler, and Gamrat [Querlioz, 2011]. In contrast to Sec-
tion 5.1, the approach taken here is solely based on general reasoning
implied by the memristor and learning theory discussed in Chapter 2. Put
differently, in this section we are only interested in finding pulse shapes
which implement synaptic plasticity in a qualitative manner and skip a
thorough discussion of quantitative aspects for the moment.

Obviously, besides the memristors themselves, the different pulse shapes
utilized by the individual neurons are one of the most fundamental building
blocks for the implementation of spiking WTA networks as memristor-
based neuromorphic hardware circuits. In combination with the input-
output-characteristics of the memristors, the employed pulse shapes
are responsible for the correct enforcement of an appropriate synaptic
plasticity rule. As mentioned in Section 2.3, in this work we aim for a
network implementation of the SEM learning theory as a standard gauge
to match the behavior yielded by our memristive synapses against.

Recalling Section 2.3.2, we remember that, with respect to the weight
adaption in response to a given type of synaptic activity, the SEM learning
theory basically distinguishes four different cases, which call for three
different synaptic reactions to be triggered. These reactions are

• increasing the synaptic weight,
• reducing the synaptic weight and
• leaving the synaptic weight unchanged.

As mentioned in Section 4.2, in the model used for this work the cur-
rent weight of the memristive synapses is encoded in the instantaneous
conductance G(t) of the underlying memristors. Given that G(t) is the

54

4.3 Pulse shapes

Case / Event Reaction
PRE-only None
POST-only Increase non-volatile memristance

POST-before-PRE Increase non-volatile memristance
PRE-at-most-τ-before-POST Reduce non-volatile memristance

Table 4.1: Different events and their expected effects. According to the SEM learning theory presented
in Section 2.3.2, four different cases with respect to the combination of pre- and post-synaptic
activity can be distinguished. These cases call for three different synaptic reactions, which need
to be emulated by the memristive synapses.

inverse of the instantaneous memristance M(t), we can formulate the
main requirements for our desired pulse shapes with respect to the in-
duced conductance changes as summarized in Table 4.1. Obviously, in
terms of the underlying memristor model by Serb et al. [Serb, 2014],
these qualitative statements with respect to changes in the non-volatile
memristance basically translate to an appropriate sign of the temporal

derivative
dVy
dt being required for each of the four cases.

Recalling Equation 2.15, we remember that the sign of this derivative is
determined by the parameter function φ(·), since both f (Vy) as well as
g(Vw) are always positive within the range the memristors are operated
in. The sign of φ(·), in turn, is determined by the driving effort Vz(t),
since all the other quantities involved in its definition in Equation 2.17
are constants. Consequently, considering the shape of φ(·) shown in
Figure 2.2a, with respect to our pulse shapes everything boils down to
depressing events being required to drive Vz below B− for some timespan,
while for potentiating ones Vz needs to exceed B+. For neutral events
in terms of the induced weight change, finally, Vz shall stay within the
interval (B−, B+).

Based on the definition of dVz
dt given in Equation 2.18, these requirements

to the driving effort Vz ultimately imply certain courses (that is, amplitudes
and durations) for the input voltages V(t) for each of the events listed
in Table 4.1. Having a closer look at these events and the corresponding
reactions once again, we notice that POST-pulses are involved in three
out of four events, which require reactions of two different types to be

55

4 Problems and Solutions

t

0

V

t
1,PRE

V
1,PRE

Figure 4.7: Qualitative illustration of the pre-synaptic pulse. Without any additional superimposed
post-synaptic D- or T-pulse, the pre-synaptic pulse does not trigger any persistent conductance
changes.

triggered. To account for this, it seems reasonable to aim for a bipolar
design for the post-synaptic pulses, that is, pulses consisting of at least
one positive and one negative sub-pulse. Moreover, given that pre-synaptic
pulses are not supposed to trigger any non-volatile changes unless an
overlap with a corresponding post-synaptic pulse exists, the simplest
shape for the pre-synaptic event to satisfy both constraints is a single
unipolar plain square pulse as shown in Figure 4.7.

Translating the qualitative constraints listed in Table 4.1 now into certain
pulse shapes for the constituent sub-pulses of the different pulses requires
an expression describing the evolution of Vz over time depending on the
applied input voltage. This expression can be determined by solving the
differential equation describing the temporal derivative of the driving
effort Vz defined in Equation 2.18. Assuming a constant input V(t) = A
and an arbitrary initial preload Vz,0, we obtain

Vz(t) = Vz,0 e
−t

Cz Rz +
A Rz

Mmid

[
1 − e

−t
Cz Rz

]
(4.1)

(see Appendix B for a detailed derivation). A remarkable property of this
expression is that, for the given assumptions, at any arbitrary instant of
time the overall driving effort Vz can be interpreted as a superposition of
two different forces. Namely, these forces are the decaying preload Vz,0
(the first expression of the sum) on the one hand and a transient charging
process of the system driven by V(t) = A (the second expression) on
the other hand. As we shall see later, this interpretation comes in handy
when dealing with multi-pulse input. In accordance with [Bill, 2014c], we

56

4.3 Pulse shapes

identify the input voltage V(t) yielded by the neurons as

V(t) = VPOST(t)− VPRE(t) . (4.2)

In hardware, this translates to the positive and negative terminals of
the memristor being connected to the pre- and post-synaptic neurons,
respectively.

Looking for appropriate values to be chosen for the PRE-pulses’ free
parameters V1,PRE and t1,PRE, we start with the duration t1,PRE. One of the
main purposes of the unipolar pre-synaptic pulses is defining the width
τ of the STDP learning window, during which the memristive synapse
is receptive to potentiating updates. In order to match observations in
this context made for real biological synapses, t1,PRE = 10 ms was chosen.
Based on this value for the pulses’ width, one can determine a range of
corresponding maximally allowable values for V1,PRE. As explained above,
for pre-only events Vz is required to stay within the range (B−, B+) for
the duration of the whole pulse. Looking at Equation 4.1 we notice that,
depending on the sign of the constant input voltage A, the evolution
of Vz over time will be either monotonically increasing or decreasing.
Hence, its local extremum will be reached at the end of the square pulse,
that is at t = t1,PRE. This implies that if Vz does not exceed the bounds
of the just-mentioned range at the end of the square pulse and it has
not at the beginning, we can safely assume that it has not exceeded the
bounds anywhere in between either (see Appendix B.2 for a more detailed
explanation).

Based on this observation and given the values for the positive bipolar
threshold B+ that must not be exceeded and an assumed initial preload
Vz,0 = 0, a lower bound for V1,PRE can be determined by rewriting Equa-
tion 4.1 as

V1,PRE
!
> − B+ Mmid

Rz

[
1 − e

−t1,PRE
Cz Rz

] . (4.3)

Note that the negative sign of the right hand side of the above expression
is a direct consequence of the way the input voltage is constructed out of
the neurons potentials according to Equation 4.2. The upper bound for

57

4 Problems and Solutions

the amplitude of the pre-synaptic pulses is given as V1,PRE < 0 mV, since
Equation 4.2 implies a negative value for V1,PRE in order to allow for the
assigned responsibility of making Vy exceed B+ in the case of potentiating
events. Plugging the model parameters defined in Table 2.2 as well as
the above mentioned value t1,PRE = 10 ms into Equation 4.3, we obtain a
legitimate range for V1,PRE of

− 6.049 mV < V1,PRE < 0 mV . (4.4)

As a slightly tighter constraint than the one satisfied by the above voltage
range, we require that Vz(t) stays within the range (B−, B+) even in
the limit case, that is for t1,PRE → ∞. This limit case approximates high
spiking activity in the pre-synaptic neurons, resulting in a PSP being
present almost all the time and yields

−5.833 mV < V1,PRE < 0 mV . (4.5)

Based on these estimations, finally V1,PRE = −5.83 mV was chosen.

Together with t1,PRE = 10 ms, this value for the amplitude fully describes
the pre-synaptic pulse used in combination with post-synaptic D-pulses
and T-pulses. These pulse shapes will be discussed in detail in the following
(Sections 4.3.1 and 4.3.2, respectively) and compared with respect to their
STDP behavior according to Protocol 3 described in Section 3.3.3 as well
as few other aspects.

4.3.1 D-Pulses

As indicated in Section 4.1, one of the starting points in finding an ap-
propriate POST-pulse shape suitable for the implementation of synaptic
plasticity in memristive synapses was a pulse consisting of a positive and
a negative sub-pulses as illustrated in Figure 4.8a. We will refer to this
pulse type as D-pulse, where D is an abbreviation for double derived from
the number of contributing sub-pulses. The idea behind the bipolar design
is a direct consequence of the above-mentioned observation that post-
synaptic pulses need to be capable of triggering two different synaptic

58

4.3 Pulse shapes

(a) POST-pulse (b) STDP-plot

Figure 4.8: Qualitative illustration of the post-synaptic D-pulse and STDP plot. Indeed, as is indicated
by the plot in (b), in combination with the PRE-pulse shown in Figure 4.7, D-pulses are qualita-
tively capable of triggering STDP: For negative inter event intervals Δt, the induced conductance
change is negative, while it is positive for positive inter event intervals.

reactions depending on the relative timing to and the resulting overlap
with respective pre-synaptic pulses.

According to the illustration presented in Figure 4.8a, with V1,POST, V2,POST,
t1,POST and t2,POST there are four free parameters to be chosen for D-pulses.
In order to derive specific ranges for each of them, we utilize the expres-
sion for the temporal evolution of the driving effort Vz given in Equa-
tion 4.1 together with the constraints mentioned earlier in this section
as well as additional requirements. One of these additional requirements
states that, in order to stay compatible with the SEM learning theory, the
post-synaptic pulses have to be short compared to the pre-synaptic ones.
To account for this, t1,POST = 0.5 ms and t2,POST = 1 ms was chosen.

Based on these durations, the qualitative constraints defined earlier in
this section can be translated into voltage ranges the amplitudes V1,POST
and V2,POST are not allowed to exceed. As mentioned earlier, POST-only
events are supposed to trigger pure LTD without any fraction of LTP. Put
differently, the drive effort Vz is not allowed to exceed B+ for the duration
of the whole POST-pulse. Since only positive input voltages can drive Vz
towards B+, this constraint allows for the derivation of an upper bound
for V1,POST. Similar as for the PRE-pulse, this can be achieved by plugging

59

4 Problems and Solutions

B+ and t1,POST into Equation 4.1 and solving the resulting expression with
respect to V1,POST:

V1,POST
!
<

B+ Mmid

Rz

[
1 − e

−t1,POST
Cz Rz

] (4.6)

The corresponding lower bound of V1,POST can be derived from the PRE-
and-POST case, which is supposed to trigger LTP. In order to match the
theory, also small inter event intervals Δt should suffice to lead to a poten-
tiation of an affected synapse’s weight. Translating this into requirements
to the pulse shapes, in contrast to the previous case we do want the
superposition of the pre-synaptic pulse and the positive sub-pulse of the
post-synaptic pulse to drive Vz beyond B+. Solving Equation 4.1 with these
parameters with respect to V1,POST again, this results in

V1,POST
!
>

B+ Mmid

Rz

[
1 − e

−t1,POST
Cz Rz

] + V1,PRE . (4.7)

Plugging the values for the model parameter defined in Table 2.2 along
with the other values we chose freely into Equations 4.6 and 4.7, we
obtain the legitimate range for V1,POST:

32.168 mV < V1,POST < 37.998 mV (4.8)

Based on this range, finally V1,POST = 37 mV was chosen.

Given the value for the amplitude of the post-synaptic pulse’s first sub-
pulse, a range for the amplitude of the negative sub-pulse can be deter-
mined, again utilizing different constraints. The first of these constraints
forces V2,POST to be negative enough to drive Vz below B− in the POST-
only case, in order to trigger the required LTD. An appropriate range of
amplitudes V2,POST, which satisfy this requirement, can be derived using
the definition of the drive effort Vz given in Equation 4.1 again. In contrast
to the previous ranges, however, a preload Vz,0 has to be considered in
this case. This is due to effect of the post-synaptic pulse’s first sub-pulse
starting to decay at the moment the to be determined negative sub-pulse
takes effect. One can account for this by interpreting the POST-pulse

60

4.3 Pulse shapes

as defined by the D-pulses scheme as a succession of two piecewise lin-
ear and constant input voltages, both of which are applied for a limited
amount of time. The still persisting effects of the first sub-pulse are then
considered as corresponding pre-loads Vz,0 in Equation 4.1. In the case of
the D-pulses, the preload corresponds to the value of the drive effort Vz
at the end of the first sub-pulse, that is Vz,0 = Vz(t1,POST). In addition to
considering this preload, we also perform an implicit time shift such that
the second sub-pulse starts in the origin, that is at t = 0, of the new time
axis. The term Vz(t1,POST), however, shall still denote the drive effort Vz at
time t1,POST relative to the old origin.

Rewriting the expression resulting from all these assumptions, we obtain
the upper bound for the amplitude of the post-synaptic pulse’s negative
sub-pulse shown in Equation 4.9. This amplitude corresponds to the most
positive voltage, only just capable of correctly triggering LTD in the POST-
only case.

V2,POST
!
<

[
B− − Vz(t1,POST) e

−t2,POST
Cz Rz

]
Mmid

Rz

[
1 − e

−t2,POST
Cz Rz

] (4.9)

Given this upper bound for negative sub-pulse’s amplitude, the corre-
sponding lower bound of V2,POST can be derived from yet another con-
straint. Namely, it was decided to demand that the drive effort Vz shall
not exceed U− in any case. This constraint was introduced due to the
parameter function φ(Vz) suddenly changing its sign at Vz = U− (com-
pare Figure 2.2a). First and foremost, because the sign of φ(Vz) turns
from negative to positive when Vz exceeds U−, the negative sub-pulse
would trigger partial LTP even in the POST-only case. Having partial LTP
in the POST-only case is highly undesirable, since it could threaten the
overall system stability. Secondly, in addition to being undesirable from a
theoretical point of view, the reason for the sudden sign change of φ(·)
could not be figured out. Hence, it was found to be a good idea to avoid
coming into contact with it. Based on this, the corresponding lower bound

61

4 Problems and Solutions

Name Value Name Value
V1,PRE −5.83 mV t1,PRE 10 ms
V1,POST 37 mV t1,POST 0.5 ms
V2,POST −43 mV t2,POST 1 ms

Table 4.2: Summary of the parameters describing D-pulses. Parameterizing the pulses illustrated in
Figures 4.7 and 4.8a with the above parameter set yields a pulsing scheme capable of triggering
qualitatively correct STDP in the presented memristor model.

for V2,POST can be derived as

V2,POST
!
>

[
U− − Vz(t1,POST) e

−t2,POST
Cz Rz

]
Mmid

Rz

[
1 − e

−t2,POST
Cz Rz

] . (4.10)

Plugging the parameters defined in Table 2.2 along with the values for
Vz(t1,POST) according to Equation 4.1 as well as t2,POST = 1 ms into Equa-
tions 4.9 and 4.10, we obtain a legitimate range for V2,POST of

−43.756 mV < V2,POST < −34.937 mV . (4.11)

Ensuring a certain safety margin, finally an amplitude of V2,POST =
−43 mV was chosen. Given this value, all four parameters required to fully
describe the D-Pulses’ post-synaptic pulses are defined. Table 4.2 summa-
rizes all of them along with the parameters chosen for the pre-synaptic
pulses.

In order to evaluate the system’s reaction when being pulsed according
to the D-scheme, different combinations of the pre- and post-synaptic
pulses with regard to Table 4.1 were applied to a memristor initialized
with standard parameters. This was achieved by configuring Protocol 5
described in Section 3.3.4 to generate either single pulses or single pulse
pairs with an appropriate inter event interval Δt. Figure 4.9 shows the
reactions of the memristor model’s internal state variables as well as the
corresponding input-output-behavior resulting from these events.

As can be seen from the Vy(t)- and M(t)-plots (Figures 4.9e and 4.9d), in
combination with the PRE-pulses described above, the chosen D-POST-
pulses are indeed capable of triggering the desired reactions in terms of

62

4.3 Pulse shapes

the induced synaptic plasticity. In the POST-only case, for instance, the
instantaneous memristance M(t) is increased by a certain amount, cor-
responding to LTD being triggered. While this might not be that obvious
from the red memristance plot, this circumstance can be inferred from
the black Vy-plot. As we remember from Section 2.2.2, although Vx is
the quantity defining the course of M(t), the non-volatile portion of the
memristance is governed by Vy which Vx decays to after some time. As
we can see, in the POST-only case the post-synaptic pulse reduces Vy by
a certain amount. Given the relationship between Vy and Vx according
to Equation 2.12 as well as the definition of the memristor’s interface
in Equation 2.10, smaller Vy values translate to a greater instantaneous
memristances M(t), corresponding to weaker synaptic junctions. The
same applies to the POST-before-PRE case. In contrast to this, in the PRE-
and-POST case, the D-pulse scheme causes Vy to be boosted by a certain
amount, translating to the instantaneous memristance being reduced and
thus the corresponding conductance being intensified, which ultimately
translates to LTP being triggered. Finally, without any additional overlap-
ping post-synaptic pulse, just as expected, the PRE-pulse as defined in
Table 4.2 does not trigger any non-volatile changes.

Also, as can be seen from Figure 4.8b, the results in terms of the triggered
STDP behavior according to Protocol 3 yielded by the D-pulses can be
considered quite promising. Negative inter event intervals Δt, that is,
instances of the POST pulse occurring before the PRE-pulse, induce
a negative conductance change ΔG, translating to a reduction of the
synaptic efficacy. Starting with Δt = 0, that is, in case the POST-pulse is
triggered after the PRE-pulse, the conductance change turns positive. For
Δt > 9 ms, finally, the weight update triggered by a single pulse pair starts
to become smaller, turning negative again for Δt = 13 ms.

Having a closer look at Vx(t) and the M(t)-plots, however, reveals a po-
tential flaw in the proposed D-pulse shapes. In case of the POST-pulse
occurring without a corresponding PRE-pulse, it takes Vz(t) quite some
time to return the neutral state Vz(t) ≈ 0 again. Similar as for Vx, also for
Vz transient processes like this are undesirable in hardware implementa-
tions of spiking WTA networks. The attempt to remedy this drawback leads

63

4 Problems and Solutions

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

−
4

−
2 0 2 4

1
e

−
2P

R
E

-o
n

ly
P

O
S

T
-o

n
ly

P
O

S
T

-b
e

fo
re

-
P

R
E

P
R

E
-a

n
d

-
P

O
S

T

(a
)
In
p
u
t
vo
lta

g
e

V

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

4
.0

4
.5

5
.0

5
.5

6
.0

6
.5

1
e

−
1

(b
)
V
o
la
tile

sta
te

V
x

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

−
4

−
2 0 2 4 6

1
e

−
1

0

(c)
D
rive

e
ffo

rt
V

z

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

1
e

4

(d
)
M
e
m
rista

n
ce

M

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

4
.9

7

4
.9

8

4
.9

9

5
.0

0

1
e

−
1

(e
)
N
o
n
-vo

la
tile

sta
te

V
y

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

1
e

−
1

0

(f)
A
b
so
lu
te

p
o
w
e
r
d
issip

a
tio

n
V

w

F
ig
u
re

4
.9
:
S
yste

m
re
sp

o
n
se

to
d
iffe

re
n
t
e
ve

n
ts

c
o
m
p
o
se
d
o
f
D
-p
u
lse

s.
A
s
ca
n
b
e
se
e
n
fro

m
(d
),th

e
e
ffe

ct
o
f
sin

g
le
e
ve
n
ts
o
n
th
e
n
o
n
-vo

la
tile

p
o
rtio

n
o
f
th
e
re
stin

g
m
e
m
rista

n
ce

is
sm

a
ll
co
m
p
a
re
d
to

th
e
m
e
m
rista

n
ce
’s
d
yn

a
m
ic

ra
n
g
e
.
T
h
e
p
e
rsiste

n
t
ch

a
n
g
e
s
trig

g
e
re
d
b
y
th
e

re
sp
e
ctive

e
ve
n
ts

a
re
,
h
o
w
e
ve
r,
cle

a
rly

visib
le

fro
m

(e
)
illu

stra
tin

g
th
e
e
vo
lu
tio

n
o
f
th
e
n
o
n
-vo

la
tile

sta
te

V
y .
L
ik
e
w
ise

,
th
e
e
xce

e
d
a
n
ce

o
f
d
iffe

re
n
t
th
re
sh
o
ld
s

B±
a
n
d

U
±
b
y

V
z
ca
n
b
e
o
b
se
rve

d
fro

m
(c),

w
h
e
re

th
e
th
re
sh
o
ld
s
a
re

in
d
ica

te
d
b
y
th
e
fo
u
r
d
a
sh
e
d
lin

e
s.

64

4.3 Pulse shapes

to the development of the T-pulses, an alternative type of POST-pulses,
which will be discussed in the next section.

4.3.2 T-Pulses

The bipolar D-pulses basically satisfy, as we have seen in the previous
section, all the requirements we defined for pulses being used in order
to trigger synaptic plasticity in memristive synapses. In addition to this,
as is emphasized by the STDP-plot presented in Figure 4.8b, also the
results in terms of synaptic plasticity themselves obtained for D-pulses are
promising. As already indicated, however, D-pulses introduce a potential
drawback into the system. More precisely, after POST-only- and PRE-
before-POST-events it takes the drive effort Vz some time to relax to
the neutral state Vz ≈ 0. As we mentioned earlier in Section 4.1, long
durations for transient processes like this are undesirable in hardware
implementations of spiking WTA networks, as they could lead to adverse
superposition side-effects, ultimately reducing the overall system stability.
In an attempt to account for this, it was decided to extend the existing D-
pulses by a third sub-pulse, yielding T-pulses. By analogy with the previous
section, the letter T is an abbreviation for tripple derived from the number
of constituent sub-pulses featured by the POST-pulses according to this
pulsing scheme.

This additional third sub-pulse is supposed to act as some kind of compen-
sation pulse driving Vz back towards Vz ≈ 0 in the POST-before-PRE and
POST-only cases. Obviously, the assigned task of compensating a negative
Vz calls for a positive amplitude for the to be determined third sub-pulse.
This leads to the new pulse shape as illustrated in Figure 4.10a in a
qualitative manner, with V3,POST and t3,POST as two additional parameters
which need to be defined.

For both symmetry reasons as well as to keep the overall length of the
POST-pulse short compared to the pre-synaptic one, t3,POST = 0.5 ms was
chosen. Based on this duration, an appropriate corresponding amplitude
V3,POST can be determined. For this purpose, again a preload Vz,0 has to

65

4 Problems and Solutions

(a) POST-pulse (b) STDP-plot

Figure 4.10: Qualitative illustration of the post-synaptic T-pulse and STDP plot. Comparing plot (b)
with Figure 4.8b shows that for T-pulses the POST-pulse’s third sub-pulse has clearly increased
the strength of LTP.

be considered, which is set to the value of Vz at the end of the preceding
sub-pulse. In addition to this, also the implicit time shift is performed
again, such that the third sub-pulse starts in the origin. Vz(t2,POST) shall,
however, still denote the drive effort with respect to the old time axis.
Trying to keep the relationships between the different amplitudes as
simple as possible, it was decided to demand full compensation of the
negative portion of Vz by the end of the POST-pulses’ third sub-pulse in the
POST-only case. Based on these requirements, V3,POST can be determined
utilizing Equation 4.1 again as

V3,POST
!
= −Vz(t2,POST) e

−t3,POST
Cz Rz Mmid

Rz

[
1 − e

−t3,POST
Cz Rz

] . (4.12)

Plugging the model parameters defined in Table 2.2 along with the ex-
pression for the preload and the above mentioned value t3,POST = 0.5 ms
into Equation 4.12 yields

V3,POST = 44.768 mV . (4.13)

Based on this estimation, finally V3,POST = 44.7 mV was chosen in order
not to overcompensate the negative drive effort.

66

4.3 Pulse shapes

Name Value Name Value
V1,PRE −5.83 mV t1,PRE 10 ms
V1,POST 37 mV t1,POST 0.5 ms
V2,POST −43 mV t2,POST 1 ms
V3,POST 44.7 mV t3,POST 0.5 ms

Table 4.3: Summary of the parameters describing T-pulses. Instances of the pulses illustrated in Fig-
ures 4.7 and 4.10a according to the above parameters are induce proper STDP behavior in mem-
ristive synapses. The additional compensation pulse ensures compensation of Vz in the POST-only
and POST-before-PRE cases.

As an aside, a potential pitfall which has to be taken care of should be
mentioned at this point. Inappropriately large values for V3,POST could
lead to situations in which LTP is triggered even for POST-before-PRE
events. More precisely, for very small negative inter event interval Δt, the
remaining partial overlap of the PRE- and the POST-pulses could cause
Vz to exceed B+, if the amplitude of V3,POST is chosen too high. For the
values listed in Table 4.3, however, this problem was not observed.

In order to allow for a direct comparison of this new pulsing scheme
with D-pulses described in the previous section, the same simulations as
described above were repeated. This time, however, the different events
described in Table 4.1 were represented using T-pulses. Figure 4.11 shows
the resulting evolution of the memristor model’s different internal state
variables as well as the input-output-behavior again. As becomes clear
from Figures 4.11b and 4.11d, the additional third sub-pulse introduced
with the T-pulse indeed aids in speeding up the relaxation of Vz(t) after
POST-only or POST-before-PRE events. Obviously, also the PRE-and-POST
case is affected by the third sub-pulse. As we can see, compared to the
plot shown in Figure 4.9c, the drive effort Vz illustrated in Figure 4.11c
is pushed further towards the positive bipolar threshold B+. Ultimately,
compared to D-pulses, this will lead to LTP becoming stronger than LTD
in a relative sense. This becomes also evident when comparing the STDP
plots shown in Figures 4.8b and 4.10b. While for D-pulses the STDP
curves’ minimum and maximum are more or less symmetric with respect
to the Δt-axis, this is not the case for T-pulses. More precisely, comparing
the minimum and maximum values, for T-pulses LTP is approximately

67

4 Problems and Solutions

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

−
4

−
2 0 2 4

1
e

−
2P

R
E

-o
n

ly
P

O
S

T
-o

n
ly

P
O

S
T

-b
e

fo
re

-
P

R
E

P
R

E
-a

n
d

-
P

O
S

T

(a
)
In
p
u
t
vo
lta

g
e

V

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

4
.0

4
.5

5
.0

5
.5

6
.0

6
.5

1
e

−
1

(b
)
V
o
la
tile

sta
te

V
x

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

−
4

−
2 0 2 4 6

1
e

−
1

0

(c)
D
rive

e
ffo

rt
V

z

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

1
e

4

(d
)
M
e
m
rista

n
ce

M

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

4
.9

7

4
.9

8

4
.9

9

5
.0

0

1
e

−
1

(e
)
N
o
n
-vo

la
tile

sta
te

V
y

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

1
e

−
1

0

(f)
A
b
so
lu
te

p
o
w
e
r
d
issip

a
tio

n
V

w

F
ig
u
re

4
.1
1
:
S
yste

m
re
sp

o
n
se

to
d
iffe

re
n
t
e
ve

n
ts

c
o
m
p
o
se
d
o
f
T-p

u
lse

s.
A
g
a
in
,
a
s
ca
n
b
e
se
e
n
fro

m
(d
),
th
e
ch

a
n
g
e
s
to

th
e
re
stin

g
m
e
m
ris-

ta
n
ce

a
re

sm
a
ll
co
m
p
a
re
d
to

its
d
yn

a
m
ic

ra
n
g
e
.
S
im

ila
r
a
s
in

F
ig
u
re

4
.9
,
h
o
w
e
ve
r,
th
e
p
e
rsiste

n
t
ch

a
n
g
e
s
a
re

a
g
a
in

cle
a
rly

visib
le

fro
m

th
e
illu

stra
tio

n
o
f

V
y
sh
o
w
n
in

(e
)
a
s
w
e
ll
a
s
th
e
e
vo
lu
tio

n
o
f

V
z
sh
o
w
n
in

(c)
(d
a
sh
e
d
b
la
ck

lin
e
s
a
g
a
in

illu
stra

te
th
e
th
re
sh
o
ld
s

B±
a
n
d

U
±
).

68

4.3 Pulse shapes

three times stronger than LTD. We will return to this observation later in
Section 4.4 in the context of weight dependence and convergence. For
the moment, however, we conclude the discussion of T-pulses, the second
pulse shape investigated in this work.

4.3.3 S-Pulses

As a side note it should be mentioned that also experiments with a third
pulse type, the so-called S-pulses, were made. In contrast to the D- and
T-pulses described in the previous two sections, for this pulsing scheme
both the proposed pre- and the post-synaptic pulses are unipolar. More
precisely, on the one hand, similar to the D- and T-pulses, also for S-Pulses
the amplitude of the pre-synaptic pulse was chosen such that the resulting
driving effort Vz is bound to the range (B−, B+). Its polarity, however, was
chosen to be positive. On the other hand and in contrast to D- and T-pulses,
for S-pulses the post-synaptic pulse is limited to a single square pulse
(which the abbreviating S is derived from). Its amplitude was chosen
negative, such that the resulting Vz values are below B−, close to but yet
above U−.

Given the parameter function φ(Vz) illustrated in Figure 2.2a, in theory
this design allows for correct implementation of the four cases regarding
synaptic plasticity as follows. On the one hand, similar to above, PRE-only
would not trigger any change in the synaptic weight since φ(·) is equal
to zero in the affected Vz-range. POST-only as well as POST-before-PRE
would lead to LTD by pulling the driving effort Vz into the negative bipolar
region, resulting in negative values for φ(Vz). Finally, due to the positive
amplitude of the pre-synaptic pulse and the way the memristor’s input
voltage is defined in Equation 4.2, Vz would be driven below U− in the PRE-
and-POST case. As can be seen from Figure 2.2a, the parameter function
φ(·) is positive for arguments smaller than U−, resulting in positive values

for
Vy
dt according to Equation 2.15. Hence, also in the PRE-and-POST case,

S-pulses would be able to trigger the correct reaction in terms of synaptic
plasticity by reducing the memristance, leading to LTP.

69

4 Problems and Solutions

As mentioned earlier in Section 4.3.1, however, the reason for the sudden
sign change of φ(·) at U−, which is utilized explicitly by S-pulses, is not
known. This is why it was decided not to investigate this third pulse type
any further although it seemed reasonable from a theoretical point of
view.

These thoughts conclude both the discussion of the pulse shapes used in
combination with memristive synapses in particular as well as the investi-
gations of problems in the context of single spike setups in general. The
following two sections are devoted to problems related to the long term
behavior of the memristive synapses. That is, problems and requirements
which arise in multi spike environments with several thousands of spikes
or spike pairs. Since these spike pairs will be generated according to
PRE/POST statistics, these setups introduce some degree of stochastic-
ity. As indicated earlier, the models used for these experiments already
incorporate all the insights gained in the previous three sections. That
is, on the one hand the memristor model was configured to use the Cx
value determined in Section 4.1 leading to a realistic parameter set. On
the other hand, the memristive synapses were extended by the ohmic
pre-resistor and driven by T-pulses as described in Sections 4.2 and 4.3.2,
respectively. Based on this modified memristor model, the first problem to
be investigated in the next section will be related to weight dependence
as well as convergence issues.

4.4 Weight Dependence and Convergence

In the previous section we identified two different pulse shapes that are
capable of driving our memristive synapses in such a way that, depending
on the relative timing of the respective neural spikes, different reactions
in terms of synaptic plasticity are triggered. Although, as we have seen
from the plots shown in Section 4.3, both D- and T-pulses basically trigger
decent STDP, an additional building block is required for our setup in
order to finally make memristors usable as synapses for spiking WTA
networks backed by the SEM learning theory.

70

4.4 Weight Dependence and Convergence

More precisely, besides having pulses of appropriate shape at hands, the
memristor model itself has to offer support for weight dependence of some
sort. In this context, the term weight dependence means that the amount
a certain event changes the weight represented by a memristive synapse
shall depend on the weight currently encoded by this synapse. This is a
crucial point when it comes to encoding certain PRE/POST statistics in
the synapse’s weight. Put differently, this behavior is necessary in order
to ensure convergence of the synapse’s conductance to a certain value in
response to any given PRE/POST statistics. Without weight dependence,
over short or long the memristor’s conductance would be simply driven
into the bounds 1

Mmax
and 1

Mmin
, respectively, depending on which type of

event (that is, LTD or LTP) is predominant in the input being applied to
the device.

As an aside, it should be emphasized at this point that our setup of hav-
ing the synapses’ weight being linked to the memristor’s instantaneous
conductance G(t) actually already implements some sort of weight depen-
dence. More precisely, as a direct consequence of the non-linear mapping
between the internal state variables and the corresponding synaptic
weight (compare Section 4.2), for larger conductance values the abso-
lute weight increment or decrement triggered by a single potentiating
or depressing event will be greater than for smaller ones. In this section,
however, we are interested in a different type of weight dependence. What
we are looking for here is a way of making one type of event (LTP or LTD)
stronger than the other, depending on the weight currently encoded by
the affected synapse.

Having a closer look at the memristor model by Serb et al. [Serb, 2014]
we introduced in Section 2.2.2, we notice that out of the box the model as
such does not provide support for this kind of weight dependence. This is
also clearly visible from STDP plots shown in Figure 4.12. Note that, in
contrast to the STDP plots shown in the previous section, these STDP plots
are normalized, that is, they were scaled such that the STDP curves have
unity height. As we can see, although for this simulation the synapses were
initialized to entirely different initial states (midrange memristance for
Figure 4.12a and midrange conductance for Figure 4.12b), the resulting

71

4 Problems and Solutions

20 15 10 5 0 5 10 15 20

Δt [ms]

0.2

0.0

0.2

0.4

0.6

0.8

(a) Midrange memristance

20 15 10 5 0 5 10 15 20

Δt [ms]

0.2

0.0

0.2

0.4

0.6

0.8

(b) Midrange conductance

Figure 4.12: Normalized STDP plots for T-pulses and different initial states. In contrast to the STDP
plots shown earlier, these plots are scaled to unity height. As can be seen, although the mem-
ristors were initialized to different states, their responses to Protocol 3 are almost identical,
indicating that proper weight dependence is not supported by the original memristor model.

STDP curves are almost identical. Obviously, if the underlying memristor
model had proper weight dependence in place, this would not be the case.
Although, the shape of the curve itself would not change that much, one
of them would be shifted by a certain vertical offset compared to the other
one, illustrating that one of the two LTP and LTD is stronger for a given
memristor state.

In addition to the STDP plots shown in Figure 4.12, the missing support
for weight dependence becomes also evident from Figure 4.13 created
using Protocol 7. As we can see, for the original memristor model as
proposed by Serb et al. [Serb, 2014], the applied input consisting of 20000
POST-pulses (a certain fraction of which is overlayed a corresponding
PRE-pulse) drives the conductance either into its upper or its lower bound.
No dynamic equilibrium is reached, as would be the case if the memristor
model offered support for weight dependence. Besides this, also another
observation can be made from the plot in Figure 4.13. As we can see, for
three out of eleven of the probabilities p(Y = 1 | Z = 1) (that is, fractions
of LTP events), the instantaneous conductance G runs into the maximum
conductive state. This translates to LTP being considerably stronger than
LTD for the chosen setup. This observation is perfectly aligned with what

72

4.4 Weight Dependence and Convergence

0 200 400 600 800

t [s]

0.0

0.2

0.4

0.6

0.8

1.0

G
[S
]

1e−4

p(Y=1|Z=1)=0.0

p(Y=1|Z=1)=0.1

p(Y=1|Z=1)=0.2

p(Y=1|Z=1)=0.3

p(Y=1|Z=1)=0.4

p(Y=1|Z=1)=0.5

p(Y=1|Z=1)=0.6

p(Y=1|Z=1)=0.7

p(Y=1|Z=1)=0.8

p(Y=1|Z=1)=0.9

p(Y=1|Z=1)=1.0

Figure 4.13: Temporal evolution of the conductance for different input statistics. Without support
for proper weight dependence, the conductance G(t) runs into the upper and lower bounds.
No dynamic equilibrium is reached for any of the input statistics p(Y = 1 | Z = 1). Since the
conductance runs into its upper bound in the majority of the cases, LTP can be considered
stronger in the given setup utilizing T-pulses.

we saw from the STDP plots shown in Figure 4.12. As we can see from
Figures 4.12a and 4.12b, for the inter event interval Δt = 4 ms used by
Protocol 7, the magnitude of the encountered Δg value is much greater for
the LTP case than for any of the LTD cases (that is, any of the negative Δt
values). This imbalance is, as already indicated in Section 4.3.2, primarily
a result of the chosen T-pulses.

Looking now for an appropriate place for the weight dependence feature
to be added to the existing model, one has to take a closer look at the
system’s dynamics. As we remember, the memristor model splits up the in-
stantaneous memristance into a volatile and a non-volatile portion. Clearly
the non-volatile part of the memristance defined in Module III is where
long term weight dependence has to be implemented. As can be seen
from the corresponding module definition given in Section 2.2.2 (Equa-
tion 2.15), the dynamics of Module III are governed by Vy. Vy, in turn, is
controlled by the three parameter functions φ(·), g(·) and f (·) being ap-
plied to the state variables Vz, Vw as well as Vy itself, respectively. The first
one of these, φ(·), describes certain thresholds that control whether the
driving strength Vz suffices to trigger non-volatile memristance changes.

73

4 Problems and Solutions

The role of this function was found to be too fundamental as to be changed
in any way. In addition to this, with g(·) and f (·) better candidates for
the implementation of weight dependence were available. This seemed
reasonable, since on the one hand, as stated by Serb et al. [Serb, 2014],
g(·) was not directly linked to observations made with real memristor
hardware. Rather g(·) was fitted in order to match data measured for
real biologic synapses. On the other hand, as mentioned in Section 2.2.2,
the role of f (·) is merely confining the instantaneous memristance M(t)
to the bounds Mmin and Mmax. As we remember, this is achieved by im-
plementing f (·) as a sharp-edged window function on the interval (0, 1).
However, as seems quite intuitive and as becomes evident from the plot
shown in Figure 4.13, dynamic systems involving sharp edged window
functions like f (·) tend to drive the affected system variables into their
bounds. Besides being undesirable, behavior like this is not supported by
data observed for hardware memristors. This gives rise to the assump-
tion that also the window function f (·) could be an appropriate place
for our desired weight dependence to be implemented without violating
fundamental memristor principles.

In order to both keep the system simple as well as to get rid of the
undesired sharp edged window function f (·), it was decided to set up
a new parameter function as a combination of both g(·) and f (·), such
that it undertakes both of the above-mentioned tasks. Put differently, it
was decided to choose the new window function in such a way that it is
capable of both introducing wight dependence to the memristor model as
well as confining the instantaneous memristance to the above-mentioned
bounds Mmin and Mmax.

A possible choice for this new and combined window function ψ(·) (note
the new name which was chosen trying to avoid any ambiguities) that
offers all the above-mentioned feature is shown in Equation 4.14:

ψ(Vy) =

⎧⎨⎩
(
1 − VκP

y
) 1
κP if Vz > 0(

1 − (
1 − Vy

)
κD

) 1
κD else

(4.14)

As we can see, this function explicitly distinguishes between the LTP and
LTD case. Similar as for the original parameter function g(·), in the model

74

4.4 Weight Dependence and Convergence

0.0 0.2 0.4 0.6 0.8 1.0

Vy

0.0

0.2

0.4

0.6

0.8

1.0

ψ
(V

y
)

LTP

LTD

(a) κ = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

Vy

0.0

0.2

0.4

0.6

0.8

1.0

ψ
(V

y
)

LTP

LTD

(b) κ = 0.75

0.0 0.2 0.4 0.6 0.8 1.0

Vy

0.0

0.2

0.4

0.6

0.8

1.0

ψ
(V

y
)

LTP

LTD

(c) κ = 1.5

0.0 0.2 0.4 0.6 0.8 1.0

Vy

0.0

0.2

0.4

0.6

0.8

1.0

ψ
(V

y
)

LTP

LTD

(d) κ = 3.0

0.0 0.2 0.4 0.6 0.8 1.0

Vy

0.0

0.2

0.4

0.6

0.8

1.0

ψ
(V

y
)

LTP

LTD

(e) κ = 4.0

0.0 0.2 0.4 0.6 0.8 1.0

Vy

0.0

0.2

0.4

0.6

0.8

1.0

ψ
(V

y
)

LTP

LTD

(f) κ = 400.0

Figure 4.14: Window function ψ(·) for different values of κ. For the six plots, the symmetric version of
ψ(·) was chosen, that is, κP = κD = κ. As suggested by (f), for large values of κ, the proposed
window function ψ(·) degenerates to the original sharp edged window function f (·).

this distinction can be made by examining the current sign of the driving
effort Vz. This holds, since Vz is ultimately responsible for triggering

either LTP or LTD as, through φ(·), it determines the sign of
dVy
dt . Plugging

the new parameter function ψ(·) into Equation 2.15, we obtain the new
system equation for Module III:

Cy
dVy

dt
= i′y(t) = φ(Vz, B+, B−, U+, U−)ψ(Vy, Vz,κP,κD) (4.15)

Besides having two branches, another remarkable property of the new
parameter function ψ(·) is that the only parameters to be chosen in order
to fully determine its exact shape are the values for κP and κD. However, to
keep things simple and uncluttered for the moment, we focus on the case
κP = κD = κ in this section, that is, we use the same shape parameter
value for both the LTP and the LTD branch of Equation 4.14. Figure 4.14
illustrates ψ(Vy) for the case κP = κD = κ for different values of κ.

As we can see, the function ψ(·) basically fulfills both of our main require-

75

4 Problems and Solutions

0 200 400 600 800

t [s]

0.0

0.2

0.4

0.6

0.8

1.0
G

[S
]

1e−4

p(Y=1|Z=1)=0.0

p(Y=1|Z=1)=0.1

p(Y=1|Z=1)=0.2

p(Y=1|Z=1)=0.3

p(Y=1|Z=1)=0.4

p(Y=1|Z=1)=0.5

p(Y=1|Z=1)=0.6

p(Y=1|Z=1)=0.7

p(Y=1|Z=1)=0.8

p(Y=1|Z=1)=0.9

p(Y=1|Z=1)=1.0

Figure 4.15: Temporal evolution of the conductance for different input statistics. Clearly, the adapted
window function ψ(·) has introduced weight dependence into the system. A distinct conver-
gence conductance is reached for almost any of the different input statistics p(Y = 1 | Z = 1).

ments. On the one hand, it is bound to the interval (0, 1). Hence, also Vy
can be considered confined to the interval (0, 1), thus forcing M to be be-
tween Mmin and Mmax again. On the other hand, also weight dependence
seems to be implemented properly. For high conductive states (Vy values
around 1.0), the LTP branch leads to much smaller function values of ψ(·)
than the LTD branch does. Hence, in this situation (synaptic weight is
already strong) the relative weight increment produced by a single po-
tentiating event will be much smaller than the relative weight decrement
induced by a single depressing event. This makes LTD dominant in this
case. Likewise, if the memristor is in a low conductive state (Vy values
around 0.0), the LTP branch leads to larger ψ(Vy) values than the LTD
branch does. Thus, in this situation (synaptic weight is already small), the
relative weight increment produced by potentiating events will be larger
than the weight decrement triggered by depressing events. Hence, LTP
will be dominant in this situation. Overall, the interaction of both cases
is supposed to lead to our desired type of weight dependence, that is,
achieving a dynamic equilibrium. This, in turn, is supposed to make the
model stable and converge to a certain conductance value for any given
PRE/POST statistics.

In order to examine the actual suitability of the proposed window function

76

4.4 Weight Dependence and Convergence

ψ(·) for adding this type of weight dependence to the existing memristor
model, the simulation mentioned earlier in this section was repeated.
Instead of using the original memristor model, however, the generated
input was applied to a memristor whose parameter functions g(·) and f (·)
were replaced for the new and combined window function ψ(·) as defined
in Equation 4.14. The value for its free shape parameter κ was chosen
as κ = 1.5. All other simulation parameters (initial memristance state,
number of pulses, inter event interval and so on) were left unchanged.

Figure 4.15 shows a plot illustrating the evolution of the conductance
resulting from this setup. Comparing this plot to the one shown in Fig-
ure 4.13, we notice that the stability of the system has clearly improved.
More precisely, almost any of the probabilities p(Y = 1 | Z = 1) leads to
a distinct convergence conductance. This indicates that, in contrast to
the original memristor model, for the modified model featuring the newly
proposed window function ψ(·), a dynamic equilibrium is reached for most
of the input statistics. In a spiking WTA network, this translates to the
quality of the p(Y = 1 | Z = 1)/weight mapping having improved. This
mapping is illustrated in Figure 4.16 for both the model employing the
original parameter functions g(·) and f (·) as well as the modified model
featuring our proposed combined parameter function ψ(·). Obviously, the
linearity of the mapping between the probabilities p(Y = 1 | Z = 1) and
the corresponding convergence conductances has improved significantly.
While the mapping resembles the shape of a step function for the original
memristor model it is almost linear for p(Y = 1 | Z = 1) ≤ 0.8 in case of
the modified model utilizing the new window function ψ(·). In addition
to being almost linear, within this interval the mapping is more or less
unique, allowing for bijectivity. That is, any arbitrary PRE/POST statistics
imply a certain convergence conductance G and vice versa. In a spiking
WTA network with memristive synapses, this translates to a unique and
bijective mapping between the probability p(Y = 1 | Z = 1) encoded in
the applied input and the weight the affected synapse converges to.

Although the simulations based on Protocol 7 allow for the examination of
the system’s long term behavior, the gained insights are limited to a single
inter event interval Δt. In order to account for this and to gain further

77

4 Problems and Solutions

0.0 0.2 0.4 0.6 0.8 1.0

p(Y=1|Z=1)

0.2

0.4

0.6

0.8

G
[S

]

1e−4

(a) Model with f (·) and g(·)

0.0 0.2 0.4 0.6 0.8 1.0

p(Y=1|Z=1)

0.2

0.4

0.6

0.8

G
[S

]

1e−4

(b) Model with ψ(·)

Figure 4.16: Mapping between input statistics and convergence conductances. The plots were gener-
ated by running Protocol 7 according to Section 3.3.5 on two memristors. One of them was set
up to use the original combination of f (·) and g(·) as parameter functions, while the other one
was assigned the modified window function ψ(·).

insights, the experiments based Protocol 3 described earlier in this section
and related to investigation of the STDP behavior were repeated for the
updated memristor model. The results obtained from these simulations
can be seen in Figure 4.17. Again, two STDP plots were created by apply-
ing a single spike pair with varying inter event interval to two memristors
which were previously initialized to two different initial states. As we can
see, in contrast to Figure 4.12, for the memristor model featuring the
new parameter function ψ(·), the normalized STDP plots yielded for dif-
ferent memristor states are not equal to each other anymore. Specifically,
as indicated by Figure 4.17a for the already relatively low conductive
state represented by the initialization to midrange memristance, LTP is
clearly stronger than LTD. Since in our synapse model, low conductance
corresponds to a low synaptic weight, the reaction of making LTP pulses
dominant in this situation is perfectly aligned with what was required
from the new parameter function ψ(·) earlier. Likewise, the STDP plot
shown in Figure 4.17b suggests that for midrange conductance and an
average inter event interval with respect to the width of the STDP learning
window τ, both LTP and LTD are almost equally strong. Given that in our
synapse model midrange conductance corresponds to a midrange weight,

78

4.5 Independence from Initialization

20 15 10 5 0 5 10 15 20

Δt [ms]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

(a) Midrange memristance

20 15 10 5 0 5 10 15 20

Δt [ms]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

(b) Midrange conductance

Figure 4.17: Normalized STDP plots for different initial states and the modified window function
ψ(·). Clearly, the modified window function ψ(·) has introduced weight dependence into the
system. While LTP is predominant for the relatively low weight represented by midrange mem-
ristance, LTP and LTD are almost equally strong in case of the initialization to midrange con-
ductance and a medium inter event interval of Δt ≈ 5 ms.

also this reaction is aligned with our initial requirements.

These results obtained for the simplified version of the proposed new
parameter function ψ(·) were found to be very promising with respect to
the correct implementation of our desired weight dependence as required
by SEM. As an aside it should be mentioned at this point that, in addition
to apparently implementing proper weight dependence, the shape of the
simplified version of ψ(·) in general was confirmed as being plausible in
the context of real memristor hardware by an expert on memristor solid
state chemistry [Bill, 2014b]. It remains to be seen, however, whether
nano-scale memristive devices showing this type of weight dependence
can be manufactured in big scale with the required reliability.

4.5 Independence from Initialization

In the experiments we described so far, we assumed that we had full
control over the initial memristor state. More precisely, for different ex-
periments, we specifically initialized the involved memristors to certain

79

4 Problems and Solutions

memristance or conductance values. In contrast to regular circuit ele-
ments, however, currently state-of-the-art hardware memristors can be in
any of the possible states right after production. Since it would be rather
time consuming, if not even impossible, to program each of the memristors
of a highly integrated chip to a specific, known good state before they are
assembled to a huge spiking WTA network, it is desired to ensure decou-
pling the memristors’ convergence conductances from their initial states.
Put differently, it is desirable to ensure that the convergence conductance
of a given memristive synapse is independent of the initial memristor
state. Rather, it should solely depend on the applied PRE/POST statistics.
Together with the demand for convergence discussed in the previous sec-
tion, this feature is supposed to aid in avoiding “un-trainable” hardware
networks. That is, networks that are, due to adverse combinations of
initial states, not capable of adjusting their synaptic weights properly as
would be required to correctly resemble certain input statistics.

Looking for an appropriate test setup to check the final modified mem-
ristor model for this independence from the initial state, Protocol 7 was
chosen again. In contrast to the simulations presented in the previous
section, however, for these tests the same input trains were applied to
multiple memristors initialized to different initial states. More precisely,
for each of the PRE/POST statistics an appropriate input train encoding
the respective probability p(Y = 1 | Z = 1) was generated. This input
train was then applied to five memristors, initialized to five different
initial states. These states comprise

• minimum conductance (maximum memristance),
• midrange memristance without M0,
• midrange conductance,
• midrange conductance without M0 and
• maximum conductance (minimum memristance).

The evolution of the instantaneous conductance G of the five differently
initialized memristors was then recorded for each of the different input
trains encoding one of the probabilities p(Y = 1 | Z = 1) and finally plotted
against the time, yielding the plot shown in Figure 4.18.

80

4.5 Independence from Initialization

0 200 400 600 800

t [s]

0.0

0.2

0.4

0.6

0.8

1.0

G
[S
]

1e−4

p(Y=1|Z=1)=0.0

p(Y=1|Z=1)=0.1

p(Y=1|Z=1)=0.2

p(Y=1|Z=1)=0.3

p(Y=1|Z=1)=0.4

p(Y=1|Z=1)=0.5

p(Y=1|Z=1)=0.6

p(Y=1|Z=1)=0.7

p(Y=1|Z=1)=0.8

p(Y=1|Z=1)=0.9

p(Y=1|Z=1)=1.0

Figure 4.18: Temporal evolution of the conductance for different input statistics and initializations.
Independent of the chosen initial state, the memristor converges to the same convergence
conductance. Consequently, the the equilibrium state can be considered fully characterized by
the input statistics p(Y = 1 | Z = 1). The number of samples required to reach this equilibrium
state, however, varies with both the applied input statistics as well as the chosen initial state.

As we can see from this plot, after initial transients of different durations
indeed the conductance runs into the same convergence value for any
of the five different initializations. This gives rise to the assumption that
our final memristor model supports the desired independence from the
initial memristance state. Put differently, it is assumed that within certain
limitations no special precautions with respect to the initial states have to
be taken when assembling multiple memristors to a spiking WTA network.
As can be seen from Figure 4.18, however, depending on the combination
of the applied PRE/POST statistics and the chosen initial state, it takes up
to approximately 400 s of learning for the system to converge to the final
conductance value. Given that in our test setup the POST-pulses were
generated with T = 50 ms between each other, this translates to a need
of up to 8000 events in order for the system to converge to the dynamic
equilibrium from any arbitrary initial state. Finally, convergence tends
to be the faster for PRE/POST statistics near the extremes p(Y = 1 | Z =
1) = 0.0 and p(Y = 1 | Z = 1) = 1.0 and is slowest for midrange values.

These observations conclude the investigation of the independence from
the memristor’s initialization as well as the chapter devoted to the discus-

81

4 Problems and Solutions

sion of different problems encountered during the process of examining
the memristor model proposed by Serb et al. [Serb, 2014] with respect
to its suitability for the implementation of synapses for spiking WTA net-
works. As we saw from the experiments presented in the previous five
sections, basically the investigated memristor model can be indeed con-
sidered a promising foundation to build an implementation of memristive
synapses upon. Nevertheless, some minor adjustments, a little bit of fine
tuning as well as a few additional building blocks were found to be nec-
essary in order to allow for a correct behavior of these synapses with
respect to synaptic plasticity as required for the SEM learning theory.
These include a slightly modified parameter set in order to reduce the
overreactions of Vx to the applied input (see Section 4.1 for the details).
Moreover, in Section 4.2 a linearization of the mapping of the internal
memristor state onto a corresponding instantaneous conductance G of
the memristor was found to be required in order to allow for the de-
sired correspondence between the synaptic weight and the conductance
as well as to ensure a sturdy coverage of the conductance’s dynamic
range by the internal state variable Vx. This linearization was achieved by
adding a pure ohmic pre-resistor M0 to the memristor. In addition to this,
with the different pulse shapes discussed in Section 4.3 one of the most
fundamental building blocks for the implementation of proper synaptic
plasticity within memristors was identified. With D- and T-pulses, two
possible candidates for pulse shapes capable of triggering appropriate
synaptic plasticity were derived. Based on these adjustments and obser-
vations, weight dependence in terms of the ratio between the strength
of LTP and LTD was added to the system in Section 4.4 by replacing the
employed parameter functions g(·) and f (·) by a combined parameter
function ψ(·). The chosen new parameter function ψ(·) turned out to
allow for convergence and reasonable mappings between the applied
input statistics and the convergence conductances. These observations
finally motivated the experiments concerned with the convergence con-
ductance’s independence from the memristor’s initial state described in
this section. As we saw from the corresponding results, for the chosen
setup the convergence conductance can be considered independent from
the memristor’s initial state.

82

5
Refinements and Experiments

Based on the memristor model described in Section 2.2.2, in the previous
chapter, we step by step derived various improvements until we finally
arrived at a synapse framework that was basically capable of mimicking
spike time dependent plasticity in hardware. By doing so, we identified the
utilized pulse shapes as well as the need for intrinsic weight dependence
as two of the most important aspects for the implementation of memristor-
based synapses for spiking WTA networks. The derivations of these two
building blocks, however, were performed independently from each other.
In addition to this, they were solely based on qualitative aspects and had
more or less only proof-of-concept character.

This chapter, in contrast, presents refinements to the basic approaches
taken in Chapter 4 in that a systematic and joint optimization of the pa-
rameters for the pulse shapes and the window function ψ(·) is performed.
The resulting optimized parameter set is then used as foundation for final
experiments at network level. These final experiments are intended to

83

5 Refinements and Experiments

underline the relevance of the presented memristive synapse model. They
include autonomous learning and classification of simple color gradients
as well as handwritten digits. As turns out, both tasks can be solved
successfully with comparably small networks of memristive synapses.

5.1 Systematic Parameter Search

As already indicated in the introduction to this chapter, the approach taken
in Section 4.3 to derive suitable pulse shapes for the implementation of
spike time dependent plasticity in memristive synapses according to the
memristor model introduced in Section 2.2.2, was based on general rea-
soning implied by the learning theory as well as fundamental memristor
principles. Consequently, as such, the approach was more of qualitative
nature. In this section, in contrast, we ware going to take a much more
systematic and formal strategy trying to optimize the parameters for the
T-pulse pulsing scheme and the window function ψ(·) in a quantitative
manner by means of an objective function L(·). Since, however, a general,
closed form analytical solution does not exist for all of the system equa-
tions defining the memristor model, this objective function L(·) will be
the foundation for an iterative refinement process rather than subject to
direct and analytical optimization. More details on this topic follows in
Section 5.1.3.

5.1.1 Requirements

Before the objective function L(·) can be set up, we start with an exhaus-
tive summary of the different requirements imposed on the pulse shapes
as well as the memristor model used by the resulting framework. Some of
these requirements were already mentioned briefly in Section 4.3, while
others are new.

• PRE-only events should not change anything non-volatile to the mem-
ristance. This translates to Vz not being allowed to exceed B+ and

84

5.1 Systematic Parameter Search

B− in the PRE-only case. Otherwise, PRE-only events would trig-
ger either LTP or LTD. This, however, would be incompatible with
the theory. Moreover, also very short exceedances of the thresh-
olds B± are not allowed, since, in a network of multiple memristive
synapses, they could accumulate and cause undesired behavior. This
requirement shall also hold for the limit case, that is, for T1 → ∞.
⇒ B− < Vz < B+ for the duration of the whole PRE-pulse T1 (where
T1 → ∞) in the PRE-only case.

• POST-only events should reduce the non-volatile conductance of
the memristive synapse, that is, increase the non-volatile portion of
the memristance. Hence, POST-pulses shall drive Vz below B−. This
is necessary, because from a theoretical point of view, POST-only
events are supposed to trigger LTD.
⇒ Vz < B− for part of the POST-pulse’s duration in POST-only case.

• None of the POST-pulse’s sub-pulses should cause Vz to exceed B+

in case of a POST-only event. Otherwise, POST-only events would
temporarily decrease the non-volatile part of the memristance (that
is, increase the non-volatile conductance). Although this would not
contradict the theory as long as the overall POST-only event triggers
LTD, it is safer to require Vz to stay below B+ for the duration of
the whole POST-pulse in order to avoid similar effects as mentioned
together with the first requirement.
⇒ Vz < B+ for the duration of the whole POST-pulse in the POST-only
case.

• Vz should not exceed U− for any of the events (PRE- or POST-only,
PRE-and-POST). The meaning and the reason of the sudden sign
change of the function φ(·) at U− are not known. Moreover, it could
turn LTD into LTP, if the amplitude of POST-pulse’s negative sub-
pulse is chosen too large.
⇒ Vz > U− for all pulse combinations.

• Vz should exceed B+ (and/or U+) in PRE-and-POST case. This is
necessary to trigger a non-volatile decrement in memristance (that is,
non-volatile conductance increment), which is necessary to achieve
LTP for this constellation, as required by the theory. Already small
positive Δt values should drive Vz beyond B+ in order to trigger

85

5 Refinements and Experiments

LTP. Small negative Δt values should still trigger LTD. Similar to the
POST-only case, where B+ should not be reached, B− shall not be
exceeded in the PRE-and-POST case.
⇒ Vz > B+ or Vz > U+ for part of the PRE-and-POST event (that
is, 0 < Δt < T1). ⇒ Vz > B− for the duration of the whole PRE-and-
POST event.

• PRE-pulses should have a duration of about 10 ms in order to match
observations concerning the STDP learning window and firing rates
made with real biologic synapses.
⇒ T1 ≈ 10 ms.

• POST-pulses should be “short” compared to PRE-pulses.
⇒ T2 	 T1.

• The increase of the STDP plot around Δt = 0 ms should be steep. Its
decay should be steady and start roughly at the end of the STDP
learning window, that is, around Δt ≈ T1. After falling rapidly, the
STDP curve should decay slowly towards its initial values (that is,
those encountered for negative Δt values).

• Vz should return to Vz ≈ 0 as fast as possible after the POST-pulse in
the POST-only case.

• Vx should not show too big spikes, that is, Vx should decay to Vy as
quickly as possible (PRE-only, POST-only, and PRE-and-POST case).
Although this is more a matter of the parameter set, using smaller
amplitudes can avoid huge ripples.

• Amplitudes should be in the range of several mV up to a few V
(≈ 5 mV − 2 V). Amplitudes in a similar range are preferred.

• Proper weight dependence shall be enforced, that is, LTP shall be
predominant for synapses in a low conductive state and LTD shall
be predominant for synapses with high conductance.

• The conductance G of a synapse is supposed to converge to a spe-
cific value G∗ for any given PRE/POST statistics p(Y = 1 | Z = 1).
The mapping of the different probabilities p(Y = 1 | Z = 1) to a
corresponding convergence conductance G∗ shall be unique.

• The convergence conductance G∗ shall be independent from the
initialization of the memristor, that is, it shall only depend on the
applied input statistics.

86

5.1 Systematic Parameter Search

5.1.2 Objective Function L(·)

Based on the requirements summarized in the previous section, the ob-
jective function L(·) tries to implement a quantitative assessment with
respect to the memristor as well as the learning theory of different pa-
rameter configurations. From the perspective of the learning theory, the
most important feature the memristive synapses have to offer is a unique
convergence conductance G∗, which a given synapse attains in response
to any arbitrary input statistics. In order to ensure independence of initial-
ization, this convergence conductance G∗ shall only depend on the applied
PRE/POST statistics and be independent of any other meta-parameters
such as the initial state. Besides the demand for unique convergence
conductances implied by the learning theory, a second, more qualitative
aspect related to the shape of the resulting STDP curves shall be con-
sidered by the to be defined objective function L(·). As indicated in the
previous section, we are aiming for a parameter configuration yielding
STDP plots which are basically approximately rectangular. To account for
these twofold requirements, the objective function L(·) will be setup as
the sum of two separate functions Lm(·) and Ls(·), assessing the quality
of the mapping and the shape of the resulting curves, respectively.

In a naive approach, the first one of these would simply measure the dif-
ference between the actual convergence conductances and some desired
target values for multiple input statistics p(Y = 1 | Z = 1). Besides this,
Lm(·) would also assess the deviation of the convergence conductances
obtained for different initializations. As indicated earlier, however, for the
available memristor model the parameter optimization has to be based
on an iterative process, since a closed form solution does not exist for all
of the memristor model’s system equations. As a result, in each of the
iteration steps, the evaluation of Lm(·) would require multiple simulation
runs of, for instance, the enormously time-consuming Protocol 7 to deter-
mine the convergence conductances. Due to this, in order to reduce the
computational complexity of the optimization process, a more elaborate
foundation for Lm(·) had to be developed. This alternative basis for Lm(·)
was found in a probabilistic view of the convergence conductance.

87

5 Refinements and Experiments

More precisely, the key idea behind the chosen objective function Lm(·) is
based on a closer inspection of the temporal evolution of a given synapse’s
conductance in a certain state. Generally, the average conductance change
this given synapse encounters over a longer timespan in a certain state
for any arbitrary input statistics is given as

〈
dG
dt

〉∣∣∣∣
G,p(LTP)

= p(LTP) · ΔGLTP (G) + p(LTD) · ΔGLTD (G) , (5.1)

where 〈·〉 denotes the expectation operator, p(LTP) is shorthand for
p(Y = 1 | Z = 1) and p(LTD) is given as p(LTD) = 1 − p(LTP). Finally,
ΔGLTP(G) and ΔGLTD(G), denote the conductance increment and decre-
ment triggered by a single potentiating or depressing event in a memristor
with current conductance G, respectively.

Obviously, assuming that a given synapse has, in response to given input
statistics characterized by p(LTP) and p(LTD), after some time reached
its convergence conductance G∗, the expected value of the conductance
change according to Equation 5.1 will be zero:

〈
dG
dt

〉∣∣∣∣
G=G∗,p(LTP)

= 0

⇔ p(LTP) · ΔGLTP(G∗) + p(LTD) · ΔGLTD(G∗) = 0

This expression can be rewritten as

p(LTP) · ΔGLTP(G∗) = −p(LTD) · ΔGLTD(G∗) . (5.2)

88

5.1 Systematic Parameter Search

The statement of the relation in Equation 5.2 seems rather intuitive,
serving as a good illustration of the term dynamic equilibrium: Once a
synapse’s conductance has converged to a given target value G∗, that
is, the point of dynamic equilibrium has been reached, the two forces
LTP and LTD are, when averaging over a longer time interval, equally
strong. The two forces are literally in a state of equilibrium. This state is
characterized by a specific ratio between the conductance increment and
decrement triggered by single events of each type (LTP or LTD), which
can be determined by rearranging Equation 5.2 as

ΔGLTP(G∗)
ΔGLTD(G∗)

= − p(LTD)
p(LTP)

. (5.3)

Assuming now that a convergence conductance G∗ exists, the above
argumentation also holds in the opposite direction: In order for the re-
spective equilibrium state characterized by G∗ to be reached in response
to any given input statistics, there has to be a specific ratio between the
conductance increment and decrement triggered by single instances of po-
tentiating and depressing events. Since the quantities p(LTP) and p(LTD)
are known from the given input statistics, this target ratio is uniquely
defined according to Equation 5.3 as

F :=
ΔGLTP(G∗)
ΔGLTD(G∗)

!
= 1 − 1

p(LTP)
. (5.4)

Obviously, the above relation shall hold for any arbitrary convergence
conductance G∗ and corresponding input statistics p(LTP). This insight
can be utilized to elegantly translate the demand for a decent mapping
of the probabilities p(Y = 1 | Z = 1) onto corresponding convergence
conductances G∗ into a number of ratios F according to Equation 5.4. In
the synapse model, these ratios F shall then be implemented by appro-
priate values for ΔGLTP(G∗) and ΔGLTD(G∗) yielded when the synapse is
currently in the state of the convergence conductance G∗.

This observation gives rise to a computationally much less expensive ob-
jective function. After defining a set of desired convergence conductances

89

5 Refinements and Experiments

G∗ for a set p of different probabilities p(Y = 1 | Z = 1), one does not
have to initiate long term simulations to determine the system’s exact con-
vergence conductances for different parameter configurations θ. Rather,
given the probabilities p, one determines a set of desired target ratios F∗
according to the right-hand side of Equation 5.4. For each of the tested
parameter configurations θ, these target ratios F∗ are then compared to
the ratios F(θ) actually yielded by the model by means of a normalized
sum squared error. Formally, this can be described as

Lm(θ) =
L

∑
i=1

[
F∗

i − Fi(θ)

F∗
i

]2

, (5.5)

where L denotes the number of design points, that is, the number of prob-
ability/target conductance pairs contained in p and G∗, respectively. Since
the actual ratios F(θ) can be determined from simple STDP simulations
as the ones performed by Protocol 3, the computational complexity of this
objective function is considerably smaller compared to the naive approach
outlined earlier.

The normalization of the absolute deviations as introduced with the divi-
sion by F∗

i in Equation 5.5 ensures that all the design points receive the
same importance in the partial objective function Lm(·). This is necessary
because the target ratios F∗ are spread across a considerably large range.
p(LTP) = 0.1, for instance, calls for F∗ = −9, while p(LTP) = 0.9 implies
F∗ = − 1

9 . As a result, without normalization, although having a much more
severe impact when encountered for small F∗ values, a given absolute
error would be treated uniformly over the whole range of F. Using the
division by F∗

i , the absolute misalignment is put in relation to the target
ratio, allowing for a relative assessment of the encountered errors.

Besides the demand for a decent mapping between different input statis-
tics and the resulting convergence conductances, the requirements listed
in the previous section also include various restrictions with respect to
the shape of the resulting STDP plots. In order to capture these additional,
also more qualitative aspects in a quantitative manner, a second term
Ls(·) is included in the final objective function. To keep things simple, the
requirements for steep increases and decays of the STDP plots mentioned

90

5.1 Systematic Parameter Search

in the previous section were summarized as a rectangular shape for the
STDP-curves being desirable. Based on this, the second term for the final
objective function is given as the area between the two curves, that is
the ideal rectangular STDP curve and the curve actually yielded by the
simulation. Formally, this corresponds to

Ls(θ) =
L

∑
i=1

⎡⎣∫ Δt2
Δt1

Ri,θ(ξ)− Si,θ(ξ) dξ∫ Δt2
Δt1

Ri,θ(ξ) dξ

⎤⎦2

, (5.6)

with R(·) and S(·) denoting a perfectly rectangular window of width
Δt2 − Δt1 and the STDP curve yielded by the simulation, respectively. For
each of the design points and parameter configurations, the hight of the
rectangular window is chosen as max (Si,θ). By doing so, one ensures
that the integrand of the numerators of the constituent summands in
Equation 5.6 is strictly non-negative. Finally, for each of the design points,
Δt1 and Δt2 denote the inter event intervals for which the simulated
STDP curve crosses the Δt-axis in rising and falling direction, respectively.
Consequently, only the LTP portions of the STDP curves are considered
by Ls(·).
By analogy with Lm(·), also the error measured by Ls(·) is normalized.
Similar as for Lm(·), this is necessary in order to make deviations of the
differently sized areas equally important in the overall objective function.
In addition to this, by using this relative approach, one ensures that the
compound objective function L(·) can be constructed as a weighted sum
of the partial ones.

Based on the expressions in Equations 5.5 and 5.6, we obtain the final
objective function L(·) as

L(θ) =
L

∑
i=1

⎧⎪⎨⎪⎩μ

[
F∗

i − Fi(θ)

F∗
i

]2

+ ν

⎡⎣∫ Δt2
Δt1

Ri,θ(ξ)− Si,θ(ξ) dξ∫ Δt2
Δt1

Ri,θ(ξ) dξ

⎤⎦2
⎫⎪⎬⎪⎭ , (5.7)

where μ and ν = 1 − μ are used to fine-tune the relative importance of the
mapping versus the shape aspects.

91

5 Refinements and Experiments

As we saw in Chapter 4, some of the requirements listed in Section 5.1.1
can easily be translated directly into certain value ranges various param-
eters such as pulse amplitudes or durations are not allowed to exceed.
This fact was utilized to narrow down the search space which has to be
covered by the iterative search process. Consequently, these requirements
and implications are not explicitly contained in the definition of the ob-
jective function L(·) given in Equation 5.7, but rather considered in the
simulations backing the parameter search.

5.1.3 Search Strategies and Results

Given the objective function given in Equation 5.7, an iterative search
process can be performed in order to find a set of model parameters θ∗
which are optimal with respect to L(·). For the given setup (T-pulses and
model featuring the full-blown window function ψ(·) with two separate
shape parameters for LTP and LTD), this parameter vector θ contains
eight entries. These comprise the amplitudes V1,POST, V2,POST and V3,POST,
the durations t1,POST, t2,POST and t3,POST as well as shape parameters κP

and κD.

Although, with a dimensionality of 8, the parameter space by itself is
not that big, assuming reasonable step sizes as well as realistic ranges
for the various parameters, still results in more than 1014 parameter
combinations. Consequently, despite the chosen objective function L(·)
being computationally way more efficient than the naive approach outlined
in the introduction to the previous section, an exhaustive search of the
parameter space is far from practically feasible. Due to this, an alternative
search strategy had to be chosen. More precisely, instead of covering the
whole parameter space, only a local search was performed. As indicated
in the previous section, some of the requirements listed in Section 5.1.1
were directly incorporated into this search process by picking appropriate
ranges for various parameters as well as excluding certain configurations
beforehand without even evaluating the objective function L(·).

92

5.1 Systematic Parameter Search

i p(LTP) F∗ ρ∗ = G∗
Gmax

1 0.1 −9 0.15
2 0.5 −1 0.55
3 0.9 − 1

9 0.95

Table 5.1: Design points used for the parameter search. For each of the design points, STDP simulations
according to Protocol 3 are run on synapses initialized to G∗ = ρ∗ Gmax. The results yielded by
these simulations are then used to evaluate the objective function L(·) according to Equation 5.7,
allowing for the quantitative comparison of different parameter configurations θ.

The design points used for this local parameter search are listed in Ta-
ble 5.1. An important observation in this context is that not any target
conductance G∗, or fraction ρ∗ for that matter, may be chosen for the
specification of these design points. More precisely, the minimum and
maximum conductances of the underlying type of memristor model as
well as the chosen value for the additional pre-resistor M0 according to
Section 4.2 impose certain limitations on this choice. For the memristor
model this work is based on, for instance, ρ∗ is limited to be within the
range 0.100009 < ρ∗ < 1 (see Section C.4 for a detailed derivation of this
range).

Another rather fundamental aspect of the parameter search process which
was neglected so far, is the question how to exactly determine the con-
ductance increments and decrements ΔGLTP(G∗) and ΔGLTD(G∗) from
the results yielded by the STDP simulations. As we remember from Sec-
tion 5.1.2, both quantities are, as they specify the ratio F, main building
blocks for the evaluation of the objective function Lm(·). While the LTD
conductance decrement ΔGLTD(G∗) can be determined relatively straight-
forward, this is not the case for ΔGLTP. As can be seen from various STDP
plots shown in Chapter 4, the ΔG values encountered for the LTD cases
are, in general, not that different from each other. Instead, they are basi-
cally the same, for instance, for almost any value of Δt < 0. In contrast
to this, the LTP cases 0 < Δt < τ yield a broad variety of different ΔG
values. Consequently, “the” conductance increment ΔGLTP(G∗) cannot be
determined that easily. For the purpose of this work it was decided to use
the mean over all ΔG values within the STDP learning window τ, since

93

5 Refinements and Experiments

Name Unit Init Step Result θ∗
V1,POST mV 35 0.5 34.5
V2,POST mV −35 0.5 −41
V3,POST mV 44.77 0.5 43.15
t1,POST ms 0.5 0.1 0.5
t2,POST ms 1 0.1 1.0
t3,POST ms 0.5 0.1 0.5
κP − 1.5 0.1 1.4
κD − 1.5 0.1 1.5

Table 5.2: Initialization and results of systematic parameter search. For each of the assessed param-
eter vectors θ, an appropriate value V3,POST was chosen (compare Section 4.3.2). Based on the
above initializations, the parameter values listed in the rightmost column optimize the objective
function L(·) defined in Equation 5.7.

the inter event interval Δt was assumed to be distributed uniformly over
the width of the PSPs triggered by pre-synaptic spikes, making each value
equally likely in a network setup with stochastic spiking activity. Possible
alternative choices include the mean, the median and the maximum ΔG
values encountered for LTP as well as the ΔG values yielded for midrange
inter event intervals Δt.

Besides the quantities directly related to the objective function, the param-
eter optimization process as such requires an additional building block.
As indicated earlier, the optimization is based on an iterative local search
strategy. Since the iterative local search works by varying the constituent
entries of the parameter vector θ by certain steps, obviously initialization
values are required for each of its entries. These chosen values as well
as the step sizes are listed in Tables 5.2. In order to avoid potential local
optimums, these initial values were intendedly chosen different from the
ones listed in Section 4.3.2..

Figure 5.1 illustrates the iterative nature of the chosen optimization pro-
cess. As can be seen, the local search strategy succeeds in driving the
STDP responses for the different convergence values ρ∗ apart, arriving
at a local optimum after n = 19 iterations. At this point, the parameter
set listed in the rightmost column of Table 5.2 was reached. The STDP

94

5.1 Systematic Parameter Search

(a) n = 1 (b) n = 5 (c) n = 8

(d) n = 11 (e) n = 14 (f) n = 19

Figure 5.1: Gradual improvement of the STDP responses. The iterative local search process succeeds
in optimizing the parameter set θ, finally yielding the results summarized in Table 5.2.

responses shown in Figure 5.1f illustrate, how this parameter configura-
tion gives rise to a distinct local ratio F between the weight increments
and decrements encountered for each of the desired convergence conduc-
tances. According to the above definition of the LTP weight increment,
the ratios F = {−4.75, −0.94, −0.15} can be read off of these plots. These
values are aligned with the target values F∗ = {−9, −1, − 1

9} listed in
Table 5.1 acceptably well. In addition to this, also the more qualitative
requirements for steep increases and decreases of the STDP plots are met
quite decently.

In an attempt to assess the optimized parameter set in a qualitative
manner, the convergence tests described in Section 4.4 were re-run on
memristors using the optimized parameter vector summarized in Table 5.2.
The results of this simulation are shown in Figures 5.2 and 5.3b. As be-
comes clear from Figure 5.2, still both proper weight dependence as well
as convergence are guaranteed. In contrast to the unoptimized parameter
set, for the optimized parameter vector especially the resolution of higher

95

5 Refinements and Experiments

0 200 400 600 800

t [s]

0.0

0.2

0.4

0.6

0.8

1.0
G

[S
]

1e−4

p(Y=1|Z=1)=0.0

p(Y=1|Z=1)=0.1

p(Y=1|Z=1)=0.2

p(Y=1|Z=1)=0.3

p(Y=1|Z=1)=0.4

p(Y=1|Z=1)=0.5

p(Y=1|Z=1)=0.6

p(Y=1|Z=1)=0.7

p(Y=1|Z=1)=0.8

p(Y=1|Z=1)=0.9

p(Y=1|Z=1)=1.0

Figure 5.2: Temporal evolution of the conductance for different input statistics. Clearly, for the op-
timized parameter set summarized in the rightmost column of Table 5.2, the quality of the con-
vergence conductances has improved. Compared to the evolution plot shown in Figure 4.15,
especially the resolution of higher p(Y = 1 | Z = 1) values has become better.

p(Y = 1 | Z = 1) values has become better. Recalling that in the modified
memristor model all non-volatile memristance changes are shaped by the
proposed parameter function ψ(·), and given that according to Table 5.2
the optimization process yielded a smaller value for κP than was used
in Section 4.4, this makes perfectly sense. The guessed value κP = 1.5
as used in the unoptimized parameter set made LTP events unrightfully
strong compared to LTD events for p(Y = 1 | Z = 1) ≥ 0.8.

This becomes also clear when comparing the mapping plots shown in
Figure 5.3. For the original parameter set shown in Figure 5.3a and prob-
abilities p(Y = 1 | Z = 1) ≥ 0.8, the conductance is driven into saturation.
In contrast to this, for the optimized parameter set using κP = 1.4, the
linearity as well as the uniqueness of the mapping between probabilities
p(Y = 1 | Z = 1) and corresponding convergence conductances G has
improved. As can be seen from Figure 5.3b, for the optimized parameter
set the saturation effects have vanished.

These observations conclude the section devoted to the explicit optimiza-
tion of the memristor model’s and pulse shapes’ joint parameter set. As
turned out, applying a local search with respect to the joint parameter

96

5.2 Network Level Simulations

0.0 0.2 0.4 0.6 0.8 1.0

p(Y=1|Z=1)

0.2

0.4

0.6

0.8

G
[S

]

1e−4

(a) Parameter set as in Section 4.5

0.0 0.2 0.4 0.6 0.8 1.0

p(Y=1|Z=1)

0.2

0.4

0.6

0.8

G
[S

]

1e−4

(b) Optimized parameter set

Figure 5.3: Mapping between input statistics and convergence conductances. Besides the evolution
plot shown in Figure 5.2, also the mapping plot resembles the improvements yielded by the op-
timized parameter set. The saturation effects encountered for p(Y = 1 | Z = 1) ≥ 0.8 for the
original parameter set illustrated in (a), have vanished for the optimized parameter set underly-
ing (b).

vector θ and the objective function derived in Section 5.1.2 yields an
improvement of the encountered convergence behavior. In fact, from
a theoretical point of view the overall system behavior suggested by
the mapping plot shown in Figure 5.3b, renders the modified memristor
and pulse framework a promising combination for the implementation
of memristor-based spiking WTA networks. Network level simulations
seeking to confirm this impression follow in the next section.

5.2 Network Level Simulations

Returning to the ultimate goal of this work, that is, finding and evaluating
a model for memristor-based plastic synapses to be used in spiking WTA
networks, simulations at network level were performed. As indicated in
the introduction to this chapter, these simulations include two different
learning tasks for which multiple memristive synapses were assembled
and combined with pre- and post-synaptic neurons to form spiking WTA
network circuits. In the following, we will first take a quick look at the

97

5 Refinements and Experiments

z1
.
.
.

Wki zk

zK

y1

yN

yi

.

.

.

...

...

(a) WTA network architecture

Vki

M0 Mki

yi zk

Wki Gki = 1/(M0 + Mki)
(b) Synapse model

Figure 5.4: Network architecture and synapse model. (a) shows an illustration of the WTA network ar-
chitecture. As illustrated in (b), for the simulations described in this chapter, the connections
between the neurons are implemented as memristive synapses according to the modified memris-
tor model proposed in this work. Plasticity within these synapses is triggered by an appropriate
pulsing scheme (indicated in blue and red). Both illustrations are adapted from [BillLegenstein,
2014].

general simulation setup before we turn to the implementation details as
well as the results obtained for the two learning tasks.

5.2.1 Overview

As indicated, the idea behind the network level simulations is to evaluate
the synapse framework based on the memristor model and pulsing scheme
described in earlier chapters in the context of unsupervised learning
within a spiking WTA network. For this purpose, a network as the one
illustrated in Figure 5.4a is equipped with memristive synapses. These
synapses are then pulsed according to the chosen T-pulse pulsing scheme
in response to the spikes emitted by the respective neurons (compare
Figure 5.4b). The parameters for this setup (that is, the parameters for the
underlying memristor model as such as well as the pulses sent through
the synapse) are chosen according to the optimized joint parameter vector
θ∗ identified in the previous section.

An important concept the simulations at network level are based on is
the introduction of two levels of detail. The first, more abstract level is

98

5.2 Network Level Simulations

concerned with synaptic transmissions and the generation of the input
and network spikes according to the underlying stochastic processes. At
this level, all quantities are idealized and unit-less. A pre-synaptic spike,
for instance, is assumed to trigger a PSP of width τ and height 1. In the
following simulations, this level is time-discretized at dto = 1 ms. Besides
this abstract and idealized level, there exists a second, more detailed level,
which aims to capture plasticity within the memristive synapses. This is
done at a time scale sufficiently small to allow for a detailed simulation
of the memristive hardware devices’ underlying dynamic systems. The
quantities involved on this level typically have physical equivalents in
a possible circuit implementation of the network and thus also have
physical units such as Volts or Siemens. Examples for such quantities are,
for instance, the amplitudes of the involved pulses actually sent through
the memristive synapses. Exceptions to this rule form, of course, some
of the the memristor model’s internal state variables which do not even
have a physical representation in a hardware memristor device (compare
Section 2.2.2). In order to capture the internal transient processes the
memristor model is built upon at a decent fidelity, the time step size for
this level of detail was chosen as dti = 50 μs.

The motivation behind this separation into two levels of detail is twofold.
On the one hand, it facilitates fast and simple simulations since only
those parts of the framework that require a comparably high fidelity are
actually simulated at a detailed temporal resolution. On the other hand,
the separation is necessary in order to allow for a distinction between
effects that arise from plasticity within the neural memristive synapses
and others which are results of neural interaction and integration in the
neurons. The latter include, for instance, effects such as the influence
of post-synaptic pulses on the membrane potential of the post-synaptic
neuron that has just spiked. While the investigation of these considerations
is subject to further research, the simulations carried out as part of this
work focus on the plastic behavior of the memristive synapses and almost
fully decouple plasticity from the spike generation.

99

5 Refinements and Experiments

5.2.2 Details and Results

Similar as in [BillLegenstein, 2014] and as indicated above, the simulations
presented here were performed on an abstract stochastic neuron model.
This neuron model is built around an abstract membrane potential uk(t),
which is defined as

uk(t) = bk +
N

∑
i=1

Wki yi(t) . (5.8)

In the above equation, yi(t) denotes the inputs which are fed from the
input neurons to network neurons zk through the afferent weights Wki.
These inputs are generated by the input neurons which are assumed to
send PSPs, rectangular voltage pulses of duration τ, through connected
synapses when they spike. Consequently, the membrane potential uk(t)
can be considered as linearly integrating the PSPs which arrive from all
the input neurons through the synaptic weights Wki.

The quantity bk in Equation 5.8 denotes the intrinsic excitability, which can
be interpreted as a network neuron’s general disposition to fire [BillLe-
genstein, 2014]. Over the process of learning, these intrinsic excitabilities
bk are adapted according to a homeostatic plasticity rule [Habenschuss,
2012]. In a nutshell, the idea behind homeostatic plasticity is to ensure
that all network neurons zk show a certain target activity and thus all of
them take part in the network response. In addition to a stabilizing effect,
homeostatic plasticity and the accordingly adapted intrinsic excitabilities
bk ensure a certain degree of “fairness” among the K network neurons.
Depending on the input that is presented to the network during learning,
it might happen that some of the pattern classes induce a higher activity
in the input neurons than others do. During WTA competition, without
a regulation of the intrinsic excitability through homeostatic plasticity,
neurons that became experts for strong patterns would have an advantage
over others that have specialized on low activity patterns [BillLegenstein,
2014]. Imposing lower intrinsic excitabilities on the former can balance
out this undesired effect to a certain extent.

The stochastic firing mechanism of the network neurons zk constituting
the network’s response to a given input stimulus, is assumed as a Poisson

100

5.2 Network Level Simulations

process with an instantaneous firing rate rk(t). This firing rate is given
as

rk(t) = rnet · euk(t)−uinh(t) , (5.9)

where rnet is the network’s overall firing rate. Basically, this firing rate
translates to each network neuron zk firing with probability rk(t) · ξ within
a small time interval ξ (for ξ → 0). Finally, the quantity uinh(t) in the
above equation models lateral inhibition and introduces WTA competition
among the network neurons for firing in response to a given input pattern.
It is defined as

uinh(t) := log

[
K

∑
j=1

euj(t)

]
. (5.10)

Following Bill and Legenstein [BillLegenstein, 2014], from a probabilistic
perspective, the spiking activity of the input neurons yi and network
neurons zk can be interpreted as samples of random variables Yi and Zk.
The definition of the values of Yi is straightforward. Setting Yi = yi(t), in
accordance with the concept of PSPs mentioned above, we identify Yi = 1
if input neuron with index i spiked within the interval [t − τ, t] and Yi = 0
otherwise. Consequently, the value of Yi is defined for all times t. This
is not the case for Zk, which labels the winner of the WTA competition
and thus is only defined at times, at which one of the network neurons
spikes.

Formally, this can be described through the help of sj(t), the function
defining the spike train of an arbitrary network neuron with index j. sj(t)
is given as

sj(t) = ∑
f

δ
(

t − t f
j

)
,

where δ(·) denotes the Dirac delta function and t f
j identifies the time at

which the f th spike of the network neuron with index j occurs. Provided
now that sj(t) �= 0 for some network neuron with index j, then the values
of Zk label the winner of the WTA competition such that Zk = 1 if k = j
and Zk = 0 otherwise. This can be interpreted as the random vector
Z := (Z1, . . . , ZK), being an unrolled version of a multinomial random

101

5 Refinements and Experiments

variable Z̃ ∈ {1, . . . , K} with components Zk = 1 for Z̃ = k and Zk = 0
otherwise [BillLegenstein, 2014].

Together with the input random vector Y := (Y1, . . . , YN), this probabilistic
interpretation of the spiking activity allows for the definition of a network
response distribution pnet(Z |Y) of the outputs given on the inputs. Since,
as mentioned above, the probability p(Zk = 1 |Y = y(t)) for a single
network neuron zk to be active can be determined from the instantaneous
firing rate rk(t), for any fixed input Y = y(t) = (y1(t), . . . , yN(t)), the above
response distribution pnet(Z |Y = y(t)) can be determined by combining
Equations 5.8 and 5.9:

pnet(Zk = 1 |Y = y(t)) =
rk(t)
rnet

= euk(t)−uinh(t) =

=
ebk+∑N

i=1 Wki yi(t)

∑K
j=1 ebj+∑N

i=1 Wji yi(t)
(5.11)

Obviously, since the random vector Z is only defined at those instants of
time at which one of the K network neurons zk spikes, this is also the case
for the above response distribution pnet(Z |Y).

As is outlined in [BillLegenstein, 2014], pnet(Z |Y) can be interpreted
as the result of a Bayesian computation. Specifically, by hypothetically
reversing the direction of the network computations, one can interpret the
spiking network as a generative model. This view allows for the spiking
activity of the network neurons zk to be interpreted as hidden causes for
the observed input patterns y(t). Moreover, this view implicitly gives rise
to a prior distribution p(Z) over the hidden causes Zk as well as a set
of likelihood distributions p(Y | Zk = 1). As was shown by Nessler et al.
[Nessler, 2013], these likelihood distributions are implicitly encoded in
the weights Wki each of the network neurons zk maintains to all the input
neurons yi. In the network’s real rather than reversed operation (that is,
hidden causes Zk which are to be inferred from input vectors y(t) rather
than the other way round), the prior and the likelihood distributions are
combined to obtain the posterior distribution as

p(Zk = 1 |Y = y(t)) ∝ p(Zk = 1) p(Y = y(t) | Zk = 1) . (5.12)

102

5.2 Network Level Simulations

In addition to showing that the likelihood distributions p(Y | Zk = 1) are
implicitly encoded in the synaptic weights Wki, Nessler et al. [Nessler,
2013] also showed that the above posterior distribution is approximated
by the network response distribution pnet(Z |Y) defined in Equation 5.11
and that the parameters Wki of this likelihood model can be optimized in an
unsupervised manner by a weight-dependent STDP rule [BillLegenstein,
2014].

Since the type of STDP weight dependence that is implemented by the
memristive synapses used for this work differs significantly from the plain
exponential weight dependence assumed by Nessler et al. [Nessler, 2013],
as a naturally arising question one might ask, which exact likelihood
model p(Y | Zk = 1) is actually implemented by the proposed memristive
synapses. As mentioned earlier, the proposed model sets the weights
Wki into direct proportion with the conductances Gki of the respective
synapses. As a result, an answer to the above question can be found
through a closer inspection of the mapping between probabilities p(yi =
1 | zk = 1) and corresponding convergence conductances G. Figure 5.5a
illustrates this mapping for the proposed memristive synapse model.

In a first approximation, a linear model of the form

G(p(LTP)) = λ p(LTP) , (5.13)

was fitted to these data points. In the above expression, p(LTP) is again
shorthand for p(Yi = 1 | Zk = 1) and λ is the fit parameter. For the original
data points indicated in blue in Figure 5.5a, this parameter was identified
as λ ≈ 9.7 · 10−5 S

Besides its simplicity, the choice of assuming a linear mapping model was
further motivated by the fact that it gives rise to a Gaussian likelihood
model for the distributions p(Y | Zk = 1) of the form

p(Y = y(t) | Zk = 1) =
N

∏
i=1

p(Yi = yi(t) | Zk = 1) , (5.14)

with the likelihood distribution of each input yi being given as

p(Yi = yi(t) | Zk = 1) =
1√

2 π σ2
e−

(yi(t)−μki)
2

2 σ2 . (5.15)

103

5 Refinements and Experiments

(a) Maping and fitted model (b) Gaussian likelihood model

Figure 5.5: Original mapping and fitted linear model. In a first approximation, a linear model of the
form indicated in Equation 5.13 was fitted to the original data points obtained for the mapping
between probabilities p(yi = 1 | zk = 1) and corresponding convergence conductances G in simu-
lations (see (a)). The plot in (b) shows an illustration of the Gaussian likelihood model according
to Equation 5.15 for two hidden causes Zj and Zk (adapted from [BillLegenstein, 2014]).

An illustration of this distribution is shown in Figure 5.5b. The same
model was already used by Bill and Legenstein [BillLegenstein, 2014],
who identified the mean values μki and the standard deviation σ used in
Equation 5.15 as

μki =
Wki

Wmax
and (5.16)

σ =
1√

Wmax
. (5.17)

In the above expressions, the quantity Wmax denotes the maximum achiev-
able weight a given memristive synapse can attain.

As indicated in the previous section, for the purpose of this work, the sim-
ulation of plasticity within the memristive synapses is almost completely
decoupled from the simulation of all the other, more abstract, parts of
the network such as the neuron model. The only link between these two
levels of detail are the values of the synaptic weights Wki On the one
hand, they are adapted through the simulation of the detailed hardware
dynamics of the memristor. On the other hand, their values are used for
the computation of the abstract membrane potentials uk(t) according to

104

5.2 Network Level Simulations

Equation 5.8. While so far we merely stated that the weights Wki are
proportional to the memristive synapses’ instantaneous conductance Gki,
we will now define them explicitly. In order to keep the model as simple as
possible, we set up the mapping between conductances and weights as

Wki = ζ Gki , (5.18)

where ζ is a constant proportionality factor. The exact value for this
factor represents a free parameter of the network model and may be
determined based on the findings of Bill and Legenstein [BillLegenstein,
2014] mentioned above. Combining Equations 5.16 and 5.17 one can
determine a relationship between the weights Wki, the mean values μki
and the standard deviation σ:

Wki =
μki
σ2 (5.19)

Assuming now that the full dynamic range of the memristive synapses’
conductance shall be mapped to the complete dynamic range of the
abstract synaptic weights Wki, we can write

ζ [G(μ1)− G(μ2)]
!
= W(μ1)− W(μ2)

Plugging Equation 5.19 into the above expression, using Equation 5.13
and assuming μ1 = 1 and μ2 = 0 yields

ζ [G(1)− G(0)] !
=

1 − 0
σ2

ζ [λ − 0] !
=

1
σ2 .

Choosing σ2 = 1, this translates to

ζ =
1
λ

(5.20)

Based on the value for λ determined through the fitted model, according
to the above expression we identify ζ as ζ = 1

9.7·10−5 S ≈ 1.03 · 104 1
S .

These considerations complete the discussion of the probabilistic inter-
pretation of and pave the way for the actual network level simulations.

105

5 Refinements and Experiments

Learning of Simple Color Gradients

The first of these simulations aims to train a network with K = 2 network
neurons such that it is able to distinguish and classify two different simple
color gradients. Since these color gradients are set up according to known
statistics, the ground truth of the presented input is known. Consequently,
the results of this example, that is, the convergence weights, may be
matched to the expected values according to the Gaussian likelihood
distributions.

Figure 5.6a illustrates the color gradients used for this example. The
brightness values of the 4 × 4 pixel cells xs are transformed to spike
trains. Similar as in [BillLegenstein, 2014], the spiking probabilities of the
constituent input neurons yi are determined according to

pspikei = 1 − (1 − xs
i)

dto
τ , (5.21)

with i indexing the 4 × 4 grid in a row-wise manner and s ∈ {1, 2} labeling
the two patterns. According to the above probabilities, spikes of the
input neurons are generated. These spikes are assumed as triggering the
rectangular PSPs of duration τ. In accordance with [BillLegenstein, 2014],
the resulting voltage trains are clipped to [0, 1], in order to limit the effect
of overlapping PSPs to an extension of their width. Similar measures are
taken for the network’s spike response. On the one hand, the number of
post-synaptic spikes a given network neuron zk can emit per simulation
time step dto is limited to one. On the other hand, for memristive plasticity,
once a post-synaptic pulse according to the chosen pulsing scheme is
triggered, no additional pulse can be triggered for the duration of the
first one. Consequently, for memristive plasticity, post-synaptic pulses are
limited to one every 2 ms for each of the network neurons.

Similar as in [BillLegenstein, 2014], the network simulation time step and
the width of the PSPs are chosen as dto = 1 ms and τ = 10 ms, respectively.
The brightness values for the left pattern x1 in Figure 5.6a are defined as
{0.1, 0.35, 0.65, 0.9} (from left to right) and in reversed order for x2.

106

5.2 Network Level Simulations

During learning, each pattern is presented to the input neurons for 200 ms,
with a new random pattern being drawn after this time period. In contrast
to [BillLegenstein, 2014], with rnet = 20 Hz a comparably low overall
network firing rate was chosen in order to adapt the frequency at which
the post-synaptic pulses are generated to the decay times of the memristor
model’s internal state variables’ transient processes (see Section 4.1 for
details). Choosing rnet to high bears the risk of glitches and adverse
overlaps, which could, in turn, lead to the implementation of an incorrect
STDP rule in the memristive synapses. As indicated earlier in this section,
plasticity within the memristive synapse is simulated at a time step size
dti = 50 μs.

As can be seen from Figure 5.6b, in response to the input the network
is presented with, indeed gradually prototypes of the input distribution
emerge in the weights Wki which were previously jointly initialized to a
midrange value. More precisely, over the course of learning for 2000 s
(10000 samples being presented for 200 ms each), the weights W1i adapt
to pattern x1, while the others, W2i, learn to represent pattern x2. This
specialization becomes already slightly apparent from the plots in the
second column of Figure 5.6b, which show the weight matrices after 250 s
of learning and is clearly visible from the plots shown in the rightmost
column, which illustrate the final weight matrices at the end of the 2000 s
learning procedure.

In addition to the illustration of the weight matrices, the gradual emer-
gence of prototypes in the weights becomes also evident from the plots
shown in Figures 5.6c and 5.6d. Instead of snapshots of the weights at
specific times, these plots show the evolution of the weights Wki over
time for the duration of the whole learning process. After an initial phase
of joint strengthening, the 2 × 16 afferent synapses of z1 and z2 split up
and converge to four distinct weight levels (2 × 4 synapses per level). As
becomes clear from the color codes of the plots, the mapping of the weight
levels to synapses is symmetric. This is perfectly aligned with the input
patterns xs being also symmetric.

The convergence levels which can be read off of the plots illustrating

107

5 Refinements and Experiments

(a) Input patterns xs (b) Gradual emergence of prototypes in the
weights Wki

(c) Evolution of the weights Wki over time (k = 1) (d) Evolution of the weights Wki over time (k = 2)

(e) Spike response before learning (f) Spike response after learning

Figure 5.6: Learning of simple color gradients. The brightness values (0.1, 0.35, 0.65 and 0.9) of the 4 ×
4 pixels xs

i in (a) are interpreted as probabilities p(yi = 1) and translated into spike trains.
These spike trains are then fed to the input neurons yi of a WTA network. As can be seen from
(b), during the process of unsupervised learning, prototypes of the presented input patterns
gradually emerge in the weights Wki (shown are the weight matrices Wki(t) for t = 0 s, t = 250 s
and t = 2000 s). These prototypic weight configurations turn each of the network neurons zk into
a probabilistic expert [BillLegenstein, 2014] for one of the two input patterns. At the beginning
of the learning process, for both network neurons the afferent weights Wki are strengthened
jointly, before the traces fan out and converge to four distinct levels (shown in (c) and (d)). This
is perfectly aligned with the presented input patterns, which encode four discrete probabilities
in the spikes patterns of yi. As can be seen from (e), prior to learning the spike response of the
network neurons zk is more or less random. Contrary, as is illustrated in (f), the spike trains
yielded after unsupervised learning for 2000 s (10000 random instances of the patterns shown in
(a) being presented for 200 ms each) are sparse with only a single network neuron being active
for a given input pattern most of the time.

108

5.2 Network Level Simulations

the evolution of the weights also allow for a rough quantitative assess-
ment of the probabilistic model actually encoded in the network. Ac-
cording to Equations 5.13 and 5.18, the convergence weights levels of
W1i shown in Figure 5.6c translate to probabilities p(Yi = 1 | Z1 = 1) =
{0.18, 0.43, 0.80, 0.91}. These levels resemble quite well the probabilities
the network input was generated according to. The reasons for the present
deviations may on the one hand be found in the linear model that was
fitted to the original data points (see Figure 5.5a). On the other hand,
also the original data points may not have captured the actual mapping of
probabilities p(Yi = 1 | Zk = 1) to convergence conductances G with the
necessary fidelity. As we remember, the underlying simulations according
to Protocol 7 only consider a single inter event interval Δt. Consequently,
also the resulting mapping is valid for a single inter event interval only.
In the actual network level simulations, however, a multitude of different
values for Δt is encountered, which may lead to a distortion of the map-
ping. In addition to this, also the saturation effects which arise from the
underlying memristor not being capable of attaining arbitrarily low or
high conductive states (compare Sections 2.2.2 and 4.2) are not captured
appropriately by the linear model we assumed for the simulation.

Nevertheless, as becomes clear from the spike responses illustrated in
Figures 5.6e and 5.6f, the network is still able to adapt to the presented
input. While prior to learning the spiking activity of the network neurons
zk appears to be quite random, after unsupervised learning for 2000 s the
network has learned to represent the input distribution quite well. As a
result, the corresponding spike trains are sparse with only a single neuron
being active for each of the input patterns most of the time. Plasticity
within the memristive synapses in combination with an appropriately
chosen pulsing scheme has turned each of the K = 2 network neurons into
a probabilistic expert [BillLegenstein, 2014] for one of the patterns.

Learning of Handwritten Digits

Since the results obtained for the small toy example of color gradients
presented above appeared quite promising, a second, more realistic and

109

5 Refinements and Experiments

practically relevant simulation was set up. This simulation attempts to
autonomously train a classifier for images of handwritten digits taken
from the MNIST dataset by Lecun et al. [Lecun, 1998] based on a WTA
network with memristive synapses.

For this purpose, a limited subset consisting of 17896 images showing
only 0s, 3s and 4s was extracted from the 60000 images contained in
the MNIST training set. In the simulation, the resulting 28 × 28 pixel
images are then cropped by a 2 pixel border and scaled down for 50 % to
12 × 12 pixels. Examples of the resulting images are shown in Figure 5.7a.
Based on [BillLegenstein, 2014], the gray-scale values of these images
are mapped to the interval [0.05, 0.9], yielding a set of different input
patterns xs. These input patterns are then transformed to spike trains
according to Equation 5.21 by the input neurons yi, where the pixels xs

i
are assigned to input neurons yi in a row-wise manner (see Figure 5.7b
for an illustration).

In this setup, over a period of 4000 s random samples of the set of input
patterns xs are drawn and presented to the network for 200 ms each (all
other network and simulation parameters not explicitly mentioned here
were chosen the same as for the color gradient simulation). Similar as
for the color gradients described above and as is clearly visible form
Figure 5.7c, starting from an initial midrange value, prototypes of the
presented input patterns emerge gradually in the weights Wki. While over
the first couple of hundred seconds of unsupervised learning only the
general and common area of interest, that is, the area in the center of
the pixel cells, jointly emerges in the weight matrices for all network
neurons (see for instance the weights after 500 s shown in Figure 5.7c),
after some time the memristive synapses have gathered enough spike
pairs in order to turn each network neuron into a probabilistic expert
for a given input pattern class. Since with K = 6 the number of network
neurons is chosen greater than the number of different pattern classes
actually contained in the presented input space, more than one network
neuron zk specializes on a given digit. More precisely, for instance, both
z4 as well as z6 have learned to represent 0s. The exact versions of the 0s,
however, are different. The same applies to neurons z2 and z5 as well as

110

5.2 Network Level Simulations

(a
)
E
xa
m
p
le

0s
,

3s
a
n
d

4s
(b
)
N
e
tw

o
rk

co
n
fi
g
u
ra
ti
o
n

(c
)
G
ra
d
u
a
l
e
m
e
rg
e
n
ce

o
f
p
ro
to
ty
p
e
s
in

th
e
w
e
ig
h
ts

W
ki

(d
)
N
e
tw

o
rk

sp
ik
e
re
sp
o
n
se

a
ft
e
r
le
a
rn
in
g

F
ig
u
re

5
.7
:
L
e
a
rn

in
g
o
f
h
a
n
d
w
ri
tt
e
n
d
ig
it
s.

0s
,

3s
a
n
d

4s
w
e
re

e
xt
ra
ct
e
d
fr
o
m

th
e
M
N
IS
T
d
a
ta
se
t
o
f
h
a
n
d
w
ri
tt
e
n
d
ig
it
s
[L
e
cu

n
,
1
9
9
8
],
cr
o
p
p
e
d

to
24

×
24

p
ix
e
ls
a
n
d
sc
a
le
d
b
y

50
%
,y
ie
ld
in
g

17
89

6
tr
a
in
in
g
im

a
g
e
s
(e
xa
m
p
le
s
a
re

sh
o
w
n
in

(a
))
.T

h
e
g
ra
y-
va
lu
e
s
o
f
th
e
re
su
lt
in
g

12
×

12
p
ix
e
l
im

a
g
e
s
a
re

co
n
ve
rt
e
d
to

sp
ik
e
tr
a
in
s
a
n
d
fe
d
ro
w
-w
is
e
to

th
e

14
4
in
p
u
t
n
e
u
ro
n
s

y i
.
A
s
in
d
ic
a
te
d
in

(b
),
th
e
se

in
p
u
t
n
e
u
ro
n
s
a
re

co
n
n
e
ct
e
d
in

a
n
a
ll
-t
o
-a
ll
fa
sh
io
n
to

th
e
n
e
tw

o
rk

n
e
u
ro
n
s

z k
th
ro
u
g
h
m
e
m
ri
st
iv
e
sy
n
a
p
se
s
(s
e
e
F
ig
u
re

5
.4
b
).
E
a
ch

o
f
th
e
n
e
tw

o
rk

n
e
u
ro
n
s

z k
sp
e
ci
a
li
ze
s
o
n
a
ce
rt
a
in

cl
a
ss

o
f
in
p
u
t
p
a
tt
e
rn
s.

S
in
ce

w
it
h

K
=

6
th
e
re

a
re

m
o
re

n
e
tw

o
rk

n
e
u
ro
n
s
th
a
n
d
if
fe
re
n
t
d
ig
it
s

in
in
p
u
t
sp
a
ce
,
so
m
e
o
f
th
e
n
e
u
ro
n
s
sp
e
ci
a
li
ze

o
n
(s
li
g
h
tl
y)

d
if
fe
re
n
t
ve
rs
io
n
s
o
f
th
e
sa
m
e
d
ig
it
(s
e
e
(c
))
.
A
ft
e
r

40
00

s
o
f
u
n
su
p
e
rv
is
e
d

le
a
rn
in
g
(2

00
00

tr
a
in
in
g
in
st
a
n
ce
s
b
e
in
g
p
re
se
n
te
d
fo
r

20
0

m
s
e
a
ch

),
th
e
n
e
tw

o
rk

h
a
s
le
a
rn
e
d
to

co
n
ve
rt
th
e
in
p
u
t
g
e
n
e
ra
te
d
fr
o
m

th
e

im
a
g
e
s
b
y
th
e
in
p
u
t
n
e
u
ro
n
s

y i
in
to

sp
ik
e
co
d
e
s
id
e
n
ti
fy
in
g
th
e
d
ig
it
th
e
im

a
g
e
sh
o
w
s.
A
s
ca
n
b
e
se
e
n
fr
o
m

(d
),
n
e
u
ro
n

z 4
,
fo
r
in
st
a
n
ce
,

e
xc
lu
si
ve
ly

sp
ik
e
s
fo
r

0s
,
w
h
il
e
n
e
u
ro
n

z 1
h
a
s
a
p
p
a
re
n
tl
y
sp
e
ci
a
li
ze
d
o
n

4s
.

111

5 Refinements and Experiments

z1 and z3, which have pair-wisely specialized on two versions of 3s and 4s,
respectively.

This specialization of the constituent network neurons on different input
pattern classes becomes also evident from the spike response illustrated
in Figure 5.7d. Most of the time, the network neurons zk spike only for
those test patterns (show in the upper area of the plot) they are, according
to the weight matrices illustrated in Figure 5.7c, probabilistic experts
for, and vice versa. Neuron z1, for instance, fires almost exclusively for
4s, while neuron z4 emits response spike only for 0s. In addition to this,
also the specialization of multiple network neurons to a single digit class
can be observed in the network spike response shown in Figure 5.7d.
While both neurons specialized on 0s, neuron z4 is more likely to fire for
roundish versions of 0s, neuron z6 predominantly spikes for narrower or
slightly slanted instances. This is in perfect accordance with the weight
matrices illustrated in Figure 5.7c. Instances of multiple neurons being
active for a given input pattern as is the case, for instance, for the ninth
“3” in the network response plot shown in Figure 5.7d, express uncertainty
about the correct class a given input pattern belongs to.

Finally, it shall be emphasized that the mapping between digit class and
the network neuron, which becomes an expert for it, happens on a purely
random basis. It is a result of the underlying spike-based Expectation
Maximization process [Nessler, 2013].

This concludes the discussion of the simulations at network level. As we
saw from the results presented in the previous paragraphs, indeed the
proposed synapses based on the slightly modified and fine-tuned memris-
tor model we introduced are, in combination with an appropriate pulsing
scheme, capable of implementing decent synaptic plasticity within spiking
WTA networks. These WTA networks can be trained in order to solve
demanding tasks such as the autonomous classification of handwritten
digits.

112

6
Discussion

In this work we studied different memristor models according to their
suitability for the implementation of plastic synapses for spiking WTA
networks. During these studies, as one of the major findings, we identified
voltage-based memristor architectures as being superior over current-
based ones. This is the case due to a destructive and escalating feedback
which is introduced by the latter ones in combination with the utilized
learning environment.

In addition to this, based on a voltage-based memristor model proposal by
Serb et al. [Serb, 2014], we identified five of the most important building
blocks required for memristors in order to form a stable foundation for
the implementation of the proposed memristive synapses. These major
building blocks include low intensities as well as short decay times for
transient processes within the memristors in response to plasticity pulses.
Secondly, as the instantaneous conductance of the memristive devices is
considered associated with the weight of the synapses they implement, a

113

6 Discussion

linear mapping of the internal memristor state onto the conductance G
was identified as being preferable. Since most state-of-the-art memristor
models combine a linear mapping between the internal state and the
memristance M with a large dynamic range, an additional pre-resistor
M0 was identified as possible regulation for the resulting non-linearity.
Next, an appropriate pulsing scheme which is capable of triggering the
required reactions in terms of synaptic plasticity within the memristive
synapses according to SEM is required. Inspired by Zamarreño-Ramos et
al. [Zamarreño, 2011] and Querlioz, Bichler, and Gamrat [Querlioz, 2011],
this pulsing scheme was found in the proposed T pulses, which consist of
a single plain square pulse in the pre-synaptic and a combination of three
square sub-pulses with different purpose in the post-synaptic case. Finally,
the support for intrinsic stabilizing weight dependence was identified
as probably the most important feature a memristor model has to offer
in order to be a serious candidate for the implementation of memristive
synapses. This weight dependence is closely related to the demand for
a decoupling of the device’s convergence conductance from its initial
state.

Fine tuning (partly in a systematic parameter search) and slightly modi-
fying the memristor model proposed by Serb et al. [Serb, 2014], finally
indeed yielded a model which turned out to be capable of solving de-
manding tasks such as the recognition of handwritten digits in a spiking
WTA network setup. It remains to be seen, however, whether memristive
devices showing the exact properties we assumed for these final simula-
tions can be fabricated with the necessary accuracy. Specifically, these
properties include the stabilizing type of weight dependence as well as the
continuous conductance spectrum, which has to be kept up over millions
of programming cycles, we assumed.

Possible future work, as is also indicated in [BillLegenstein, 2014], heads
for a full network implementation, which combines both synaptic plasticity
as well as neural transmission. As mentioned in Chapter 5, these two
mechanisms were decoupled for the purpose of this work, yielding, for
instance, a distinction between the plasticity pulses and the input received
by the abstract network neurons. In a combined setup, the pulses would

114

likewise serve both purposes and trigger plasticity as well as be integrated
to form the membrane potential of post-synaptic neurons. Simulations at
this combined level would also include and consider the reaction of the
(network) neurons to different pulse events.

Another possible link for future work is a more rigid investigation of the
mapping between input statistics and convergence conductances. As we
remember from Chapter 5, for the purpose of this work, we assumed a
linear mapping in combination with a Gaussian likelihood model. Although
these assumptions worked out well, they are basically no substitute for a
rigid formal and mathematical analysis. As a starting point, this analysis
could record the mapping curves in a more realistic setup by drawing the
inter event intervals from a uniform distribution, rather than assuming
a fixed value as was done here. The resulting data points could then
serve as the foundation for identifying the probabilistic model actually
implemented in the memristive synapses with higher accuracy.

115

Appendix

117

A
SPICE vs. Python

A.1 Introduction

This report aims to document the pitfalls that were identified during
the comparison of two different implementations of a memristor model
along with the corresponding insights that were gained. Both compared
implementations are based on the same memristor model suggested in a
paper draft by Serb et al. [Serb, 2014]. The investigated implementations
were the original SPICE reference implementation the authors used to
test their model on the one hand and a version written in Python on the
other.

Originally, the Python implementation was thought to be identically equal
to the SPICE reference implementation in that the produced results are
the same for both versions. In an attempt to verify this, the experiments
described by the two STDP test protocols defined in the Frontiers draft

119

Appendix A SPICE vs. Python

were run on the Python implementation. The comparison documented in
this report was motivated by the observation that the results yielded by
the initial Python implementation, however, deviated from the ones pre-
sented in the Frontiers paper draft in different ways. These discrepancies
included the following 1:

• Shifting/Bias: The STDP curve for Protocol 1 presented in {6} (com-
pare Figure A.1a in this report) appeared to be shifted further into
the positive half plane in the Python implementation. In other words,
the STDP curve yielded by Python showed some positive bias, caus-
ing the flat, less responsive areas at the very left and right to be
further away from the x-axis. Figure A.2a shows an example Python
output.

• Scaling: In addition to the above-mentioned bias, the STDP curve for
Protocol 1 also appeared to be scaled down by a factor of about 3 to
3.5 in the Python experiments. Also this phenomenon is clearly visible
from the plots in Figure A.2a: If the STDP curve presented in this plot
is imagined to be shifted down closer to the x-axis as it is supposed
to be according to Figure A.1a, the amplitude of its positive peak is
around 0.75. Looking at Figure A.1a again, we see that, according to
the SPICE implementation, it should be somewhere around 2.5.

• Curvature: As can be see from the plots in Figures A.1b and A.2b,
respectively, for the post-pre case of Protocol 2 (dotted blue) the
curvature of the conductance change function was different in the
Python implementation. In contrast to the SPICE reference results,
the function seemed to be an exponential function of some kind,
without any inflection points.

• Zero-crossing: Finally, the zero-crossing of the above mentioned
conductance change function for the post-pre case of Protocol 2
was shifted closer to the origin in the Python experiments (compar.
Figures A.1b and A.2b).

1To keep the descriptive texts short while preserving unambiguity, we decided to
reference equations of the Frontiers draft by their numbers put in parentheses. (11), for
instance, should be read as “Equation 11 in the Frontiers draft”. Likewise, the numbers
of figures contained in the Frontiers paper draft are put in curly brackets. {6} denotes
“Figure 6 contained in the Frontiers paper draft”.

120

A.2 Experiments

(a) Protocol 1 (b) Protocol 2

Figure A.1: SPICE results for Protocol 1 and Protocol 2 ({6} and {8} [Serb, 2014]).

In an attempt to track down the origin of these differences and to align the
outputs of the two implementations, different tests were made. These tests
will be described in the following sections along with the corresponding
results and insights that were gained.

A.2 Experiments

A.2.1 Python Rewrite

In a first attempt to align the results of the two implementations, the
Python version of the model was rewritten in accordance with the Fron-
tiers paper draft. This, however, did not change the results – all of the
above-mentioned discrepancies were still present.

A.2.2 Reimplementation according to SPICE Model

Since the rewrite of the Python implementation did not change the re-
sults at all, the authors of the Frontiers paper draft were contacted and

121

Appendix A SPICE vs. Python

δt

Δ
g

(a) Protocol 1

Δ
g

(b) Protocol 2

Figure A.2: Initial Python results for Protocol 1 and Protocol 2.

informed about the discrepancies. They rerun their SPICE simulations
and more or less confirmed the results presented in the paper draft. In
addition to the updated plots, the authors also provided the SPICE im-
plementation their results were generated with. Thus it was possible to
compare the SPICE and Python implementations against each other as
well as the SPICE version with the model introduced in the paper draft.
By doing so, additional scaling factors Kp and Kn for the two branches
of g(Vw) (compare (15)) were identified. These scaling factors were not
mentioned in the paper draft, however the SPICE implementation used
them. Moreover, the SPICE implementation used a different version of the
differential equation defining the behavior of Vw (see (13)). More precisely,
instead of using |i(t) · V(t)| as suggested in the paper draft, the SPICE
implementation internally used |i(t)|. Serb et al. confirmed the scaling
factors Kp and Kn as being correct, however identified the usage of |i(t)|
in the differential equation describing Vw as a mistake.

Updating the Python implementation according to this new information
yielded the results shown in Figure A.3. As we can see, the bias problem
for Protocol 1 appeared to be solved. The scaling issue, however, was still
present (compare Figure A.3a). For Protocol 2, the results yielded by the
updated Python implementation were also closer to the reference plots
contained in the Frontiers draft in terms of the curvature. Also the zero

122

A.2 Experiments

δt

Δ
g

(a) Protocol 1

Δ
g

(b) Protocol 2

Figure A.3: Improved Python results for Protocol 1 and Protocol 2. After applying the changes de-
scribed in Section A.2.2, the bias problem appeared to be solved. However, the scaling of the
STDP curves was still not correct.

crossing was shifted away from the origin, closer to where it was expected
to be according to the SPICE implementation (see Figure A.3b). Though
the zero crossing was not exactly at the very same place.

A.2.3 Direct comparison of the internal state

variables

After informing Serb et al. about the new results which still deviated from
the ones presented in the Frontiers draft, we were provided with their
full SPICE/MATLAB-simulation framework (including the SPICE circuit
simulator). So from this point on, we were able to run our own SPICE
simulations. This situation was utilized in that a comparison script was
written in MATLAB which was capable of comparing the actual evolution
of all internal state variables Vw, Vx, Vy and Vz over time as estimated
by the implementations in SPICE and Python. In order to keep things
as simple as possible, only Protocol 1 (that is, a single pulse pair with a
given inter event interval δt) was tested with this setup. The results of
these comparisons are depicted in Figures A.4a to A.4d. As we can see

123

Appendix A SPICE vs. Python

from these results, the reactions of the various internal state variables
are in general stronger in the SPICE implementation (that is, the peaks
are higher). This is best visible from the plot showing the time course of
Vy (see Figure A.4c). As we know from (10), on the one hand Vx decays
towards Vy. On the other hand, we know from (9) that Vx ultimately
influences the resting memristance. Put differently, we know that Vy has
great influence on the resting memristance and the shape of the STDP
curve of Protocol 1. This is why we found it worth taking a closer look at
Vy in the experiments described in the next section.

A.2.4 Slow/no decay

Having a look at (11), we notice that over φ(Vz) the dynamics of Vy, among
other things, primarily depend on Vz. As can be seen from (14), φ(·) in-
volves the thresholds B± and U±, respectively. According to Table I shown
in the Frontiers draft, the values of these thresholds are ±3.5 · 10−10 and
±5 · 10−10, respectively. As we can see from the plot shown in Figure A.4d,
the amplitudes of Vz are exactly within the range of these thresholds. In
other words, slight differences (or imprecisions) in the computation of
Vz performed by the two implementations of the memristor model could
potentially give rise to dramatic differences in the evolution of φ(Vz) and
ultimately (over (11)) Vy. This is the case, because the exact value of
Vz could determine whether one of the above-mentioned thresholds is
exceeded in the first place or not. As we know from the previous para-
graph, Vy ultimately influences the resting memristance (and thus the
STDP curves) over Vx. This is why in this experiment we concentrated on
Vz in order to find out whether the still present discrepancies in the STDP
curve for Protocol 1 resulted from differences in Vz.

Given the dynamic description of Vz presented in (12), we know that Vz
primarily depends on the input voltage V(t). In order to be better able to
see differences in Vz between the Python and the SPICE implementation,
the model parameters were slightly modified. The rapid decay of Vz de-
termined by the time constant τz = Cz Rz was slowed down while leaving

124

A.2 Experiments

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

1.
6

1.
8

x
10

−9

A
bs

ol
ut

e
si

m
ul

at
io

n
tim

e
t [

s]

Vw

S
P

IC
E

P
yt

ho
n

(a
)
A
b
so
lu
te

p
o
w
e
r
d
is
si
p
a
ti
o
n

V
w

0
0.

5
1

1.
5

2
2.

5
3

0.
4

0.
450.
5

0.
550.
6

0.
65

A
bs

ol
ut

e
si

m
ul

at
io

n
tim

e
t [

s]

Vx

S
P

IC
E

P
yt

ho
n

(b
)
V
o
la
ti
le

st
a
te

V
x

0
0.

5
1

1.
5

2
2.

5
3

0.
49

990.
5

0.
50

01

0.
50

02

0.
50

03

0.
50

04

0.
50

05

0.
50

06

0.
50

07

A
bs

ol
ut

e
si

m
ul

at
io

n
tim

e
t [

s]

Vy

S
P

IC
E

P
yt

ho
n

(c
)
N
o
n
-v
o
la
ti
le

st
a
te

V
y

0
0.

5
1

1.
5

2
2.

5
3

−5−4−3−2−1012345
x

10
−1

0

A
bs

ol
ut

e
si

m
ul

at
io

n
tim

e
t [

s]

Vz

S
P

IC
E

P
yt

ho
n

(d
)
D
ri
vi
n
g
e
ff
o
rt

V
z

F
ig
u
re

A
.4
:
E
vo

lu
ti
o
n
o
f

V
w
,

V
x,

V
y
a
n
d

V
z
fo
r

δt
=

50
m

s
A
s
ca
n
b
e
se
e
n
fr
o
m

th
e
p
lo
ts
,
th
e
S
P
IC
E
im

p
le
m
e
n
ta
ti
o
n
g
e
n
e
ra
ll
y
yi
e
ld
s
st
ro
n
g
e
r

re
a
ct
io
n
s
o
f
th
e
d
if
fe
re
n
t
st
a
te

va
ri
a
b
le
s.

125

Appendix A SPICE vs. Python

the initial response unchanged. This was achieved by choosing a much
larger Rz and leaving Cz unchanged. In addition to this, the behavior of
the input voltage was simplified. Instead of a spike pair with given IEI as
suggested by Protocol 1, only a single positive spike with an amplitude
of Vpulse = 2 V was used. Given the definition of the memristor model’s
dynamics, these simplifications allowed for an easy determination of the
analytical solution of Vz.

We start with (12), that is, the dynamics of Vz, which reads

Cz
dVz

dt
= iz(t)− Vz(t)

Rz
=

V(t)
Mmid

− Vz(t)
Rz

, (A.1)

where

MMid =
Mmax + Mmin

2
. (A.2)

According to the Frontiers draft, Mmax = 105 Ω and Mmin = 1 Ω.

Slowing down the decay of Vz, that is, choosing Rz sufficiently large
(for instance Rz = 3 TΩ), makes the right-most term of Equation A.1
neglectable and turns the whole sub-circuit into a pure integrator. Thus,
we can write

Cz
dVz

dt
≈ V(t)

Mmid
− 0 =

V(t)
Mmid

, (A.3)

where, according to the Frontiers draft, Cz = 1 F.

Solving this differential equation w.r.t. Vz we obtain

Vz(t) ≈ 1
Cz Mmid

t∫
0

V(ξ) dξ . (A.4)

Applying an input waveform for V(ξ) that comprises a single pulse at
tspk = 1 s with an amplitude of Vpulse = 2 V and a width of tactive = 10 μs
and evaluating the resulting Vz according to Equation A.4 at t = 3 s
yields:

Vz(t) ≈ 1
Cz Mmid

[
0|tspk0 + Vpulse · ξ|tspk+tactive

tspk + 0|ttspk+tactive

]
=

= . . . =
4

100001
· 0.000010 = 3.99996 · 10−10

(A.5)

126

A.2 Experiments

Figure A.5 shows a comparison of the different results achieved for this
test setup (including the adapted parameters) by SPICE and Python,
respectively. In SPICE, the single input pulse was implemented using
two different built-in voltage sources. On the one hand, the piecewise
linear source (PWL) was used with the same parameters as in the original
SPICE framework (rise and fall time of 1 μs). On the other hand, for the
second simulation run the input waveform was generated by the built-in
pulse source (PULSE). For the pulse source, the rise time was set to zero
(important additional notes on this are discussed in Section A.2.5). The
Python implementation used Euler integration and a simulation time step
size dt = 10 μs to solve the differential equations numerically.

As we can see from the plots in Figure A.5, the results yielded by Python
resembled the expected value for Vz we calculated in Equation A.5 closer.
The results by SPICE, however, seemed to show deviations of the analytic
solution determined in Equation A.5. Figure A.6 shows the evolution of Vz
as determined by the Python implementation. In contrast to Figure A.5,
for these plots smaller simulation time step sizes were chosen (dt = 5 μs
and dt = 1 μs). The difference between the evolution of Vz in these plots
and the ones presented in Figure A.5, however, is not visible with the
naked eye. This apparent numerical stability of the Python simulations as
well as fact that the Python results were closer to the allegedly correct
analytical solution, strengthened our confidence in the accuracy of the
Python-based solution.

A.2.5 Finite slew rates

In addition to the alleged confirmation of the Python model mentioned
in the previous section, the observation that both the piecewise linear
and the pulse source had led to almost the same results in the SPICE
simulations (see Figures A.5a and A.5b), gave rise to the assumption that
the limited slew rate of the pulse source was without influence on the
evolution (and especially the final value) of Vz.

127

Appendix A SPICE vs. Python

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10−10

t [s]

V
z

SPICE
Python

(a) PWL source

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10−10

t [s]

V
z

SPICE
Python

(b) PULSE source

Figure A.5: Comparison of the temporal evolution of Vz. The applied input comprises a single square
pulse with an amplitude of Vpulse = 2 V being generated by voltage sources of two different
types in case of the SPICE results. For the underlying simulation, a large decay time constant
τz was chosen by setting Rz = 3 TΩ, turning the corresponding module qualitatively into a pure
integrator.

128

A.2 Experiments

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

x 10−10

t [s]

V
z

Python

(a) dt = 5 μs

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10−10

t [s]

V
z

Python

(b) dt = 1 μs

Figure A.6: Evolution of Vz as yielded by Python. The plots show the evolution of the drive effort Vz for a
single input pulse with an amplitude of Vpulse = 2 V for two different simulation time step sizes.
Again, very large decay times τz was chosen.

129

Appendix A SPICE vs. Python

However, in another correspondence Serb et al. pointed out that they
had used rise and fall times greater than zero in their original SPICE
simulations. This made us rethink our conclusions and assumptions. First
of all, we redid the math presented in the previous section. This time
taking into account the limited slew rates (i.e. the rising and falling
slopes). Adding these rise and fall times of trise = tfall = 1 μs to the voltage
pulse and having a closer look at the resulting shape of the input voltage
revealed that, referring to the integral in Equation A.4, exactly one-tenth
of the area of the perfect rectangle we had assumed so far was contained
in the leading and trailing slopes. Obviously, adding these areas to the
perfect rectangle notably increased the area of the pulse as well as the
overall value of the integral in Equation A.4. This, in turn, of course meant
that the analytical solution determined in the previous section was highly
likely to be incorrect and that probably the Python implementation still
did not produce the correct results. The analytical determination of Vz
with the updated input voltage V(t) including rising and falling edges
with finite slew rate (and some simplifications for brevity) reads

Vz(t) ≈ 1
Cz Mmid

[
2 · Vpulse

trise
· ξ2

2

∣∣∣∣trise

0
+ Vpulse · ξ|tactive0

]
=

= . . . = 4.399959 · 10−10 .

(A.6)

Comparing this new analytic result with the plots shown in Figures A.5a
and A.5b again, we noticed that the SPICE results for both the pulse and
the piecewise line source were better aligned with the expected value.

Rerunning the Python simulations with the adapted pulse shape (i.e.
leading and trailing slopes with rise and fall times trise = tfall = 1 μs)
yielded the results presented in Figure A.7. As we can see, the evolution
of Vz over time was now almost identical for both the two SPICE and
the Python implementation. In addition to this, all results resembled the
analytical solution quite well.

These new observations, of course, raised the question why the results
for both the piecewise linear and the pulse source were identical. Or,
put differently, why the rise and fall times were without influence in the

130

A.2 Experiments

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10−10

t [s]

V z

SPICE
Python

(a) PWL source

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10−10

t [s]

V z

SPICE
Python

(b) PULSE source

Figure A.7: Comparison of the temporal evolution of Vz. The plots show the response of the modified
system in terms of the drive effort Vz to single input pulses with an amplitude of Vpulse = 2 V
as yielded by SPICE and Python for a large decay time τz. In contrast to Figure A.5, finite slew
rates were considered in the Python implementation.

131

Appendix A SPICE vs. Python

SPICE simulations (recall that we had set both parameters to zero for
the PULSE source), while they apparently definitely had an impact on
the Python implementation. Rerunning the SPICE implementation with
a pulse source and having a closer look at the log files revealed two
rather interesting lines: Limiting rise time of source v1 to 1e-006
and Limiting fall time of source v1 to 1e-006. So instead of using
zero, SPICE had limited both Tr and Tf to 1 μs. In other words, SPICE
had implicitly aligned the PWL and PULSE sources to behave identically. No
wonder, the results were identical too. This also contradicted (or at least
did not support) the assumptions concerning the missing influence of the
rise and fall times we made in Section A.2.4.

A.2.6 Multiplicative Updates

As described in the previous section, the results for the modified param-
eter set (slow/no decay) and the corresponding test setup (only a single
positive spike) were now almost identical for both the SPICE and the
Python implementation. When testing the results for Protocol 1, however,
a new problem emerged. The adaption of the shape of the input voltage
(finite slew rates) required the simulation time step size dt for the Euler
integration employed by the Python implementation to be adapted too.
Since we were uncertain about the correct choice of dt and various other
attempts turned out to be impractical, we decided to choose it according
to the SPICE simulation results (important additional notes on this topic
are discussed in Section A.2.8). This, however, made the simulation nu-
merically unstable. More precisely, Vz started to oscillate and made Vx
oscillate too. Since the oscillation diverged, Vy ran into its boundaries.
This behavior is depicted in the plots presented in Figures A.8b to A.8d. In
addition to this, the relatively slow decay of Vw was also rather imprecise
in the Python simulation now (see Figure A.8a).

In an attempt to achieve better robustness against these numerical arti-
facts, in the next step some of the variable updates used in the Python
implementation to solve the differential equations were changed to use a

132

A.2 Experiments

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

T
im

e
 [

s
]

0
.0

0
.5

1
.0

1
.5

V_w

1
e

9

S
P
IC

E

P
y
th

o
n

(a
)
A
b
so
lu
te

p
o
w
e
r
d
is
si
p
a
ti
o
n

V
w

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

T
im

e
 [

s
]

0
.4

5

0
.5

0

0
.5

5

0
.6

0

V_x

S
P
IC

E

P
y
th

o
n

(b
)
V
o
la
ti
le

st
a
te

V
x

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

T
im

e
 [

s
]

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

1
.1

V_y

S
P
IC

E

P
y
th

o
n

(c
)
N
o
n
-v
o
la
ti
le

st
a
te

V
y

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

T
im

e
 [

s
]

42024

V_z

1
e

1
0

S
P
IC

E

P
y
th

o
n

(d
)
D
ri
vi
n
g
e
ff
o
r

V
z

F
ig
u
re

A
.8
:
U
n
st
a
b
le

e
vo

lu
ti
o
n
o
f

V
w
,

V
x,

V
y
a
n
d

V
z
fo
r

δt
=

−5
0

m
s.

F
o
r
th
e
P
yt
h
o
n
im

p
le
m
e
n
ta
ti
o
n
,
p
la
in

E
u
le
r
in
te
g
ra
ti
o
n
w
it
h
si
m
u
la
ti
o
n

ti
m
e
st
e
p
si
ze

dt
a
cc
o
rd
in
g
to

th
e
S
P
IC
E
si
m
u
la
ti
o
n
w
a
s
u
se
d
.
C
le
a
rl
y,
th
is
a
d
ju
st
m
e
n
t
m
a
d
e
th
e
P
yt
h
o
n
si
m
u
la
ti
o
n
u
n
st
a
b
le

(V
x
a
n
d

V
z)
a
n
d
im

p
re
ci
se

(V
w
).

133

Appendix A SPICE vs. Python

multiplicative update instead of pure Euler integration. The idea behind
this multiplicative update rule can be described as follows:

We start with a differential equation of the form

dx
dt

= −γ · (x − a) , (A.7)

where x(t) is the variable, whose time course we are interested in. γ and
a are real valued constants. The solution of this differential equation is
given as

x(t) = C · e−γ·t + a , (A.8)

where C = x(t)|t=0 − a. Given the expression in Equation A.8, we can
derive a relation for x(t + dt), the value of x(t) an arbitrary amount of
time dt after time t:

x(t + dt) = C · e−γ·(t+dt) + a

= C · e−γ·t−γ·dt + a

= C · e−γ·t︸ ︷︷ ︸
x(t)−a

·e−γ·dt + a

= [x(t)− a] · e−γ·dt + a

(A.9)

Put into words, Equation A.9 suggests that x(t) can be updated to x(t+ dt)
by a multiplication with factor e−γ·dt and some addition operation ±a.
Notably, this type of numerical integration by itself is exact for any choice
of dt. One limit of accuracy that remains is, of course, the precision of the
floating point unit.

So far, however, we only considered the case without external input.
Adding an arbitrary external input I(t) to Equation A.7 yields

dx
dt

= −γ · (x − a) + I(t) . (A.10)

In order to allow for a multiplicative update in a numerical solution of this
differential equation as indicated in Equation A.9, we need to adjust this
expression and make some assumptions. More precisely, we assume the

134

A.2 Experiments

external input I(t) to be constant for short amounts of time dt. In addition
to this, we rearrange Equation A.10 as follows:

dx
dt

= −γ ·
(

x −
[

a +
I
γ

])
= −γ · (x − A) ,

(A.11)

where A is a constant. Again, the solution of this differential equation
can be approximated with an approach similar to the one described in
Equation A.9. In this case, however, the update (or more precisely the
solution the iterative update process converges to) is not exact anymore.
An additional disadvantage of this method is that it cannot be used for
differential equations that describe pure integrators (for instance (11)
describing the time course of Vy).

Nevertheless, as we can see from the plots shown in Figures A.9a to A.9d,
the multiplicative update strategy helped in making the Python simulation
stable. Neither did Vx and Vz oscillate anymore (see Figures A.9b and A.9d)
nor ran Vy into the boundaries. Rather all quantities behaved very similar
as in the SPICE simulation (compare Figure A.9c). Notably, compared
to Figure A.4c, the Python results for Vy improved since the difference
in the maximum peak amplitude of the time courses of Vy yielded by
the SPICE and the Python implementation decreased. In addition to this,
we also observed that the evolution of Vw (especially its relatively slow
decay) matched the SPICE results quite close now (compare Figure A.9a).
Finally, as can be seen from Figure A.10, also the results for Protocol 1
had improved. Although in the regions with low IEI δt now the Python
implementation showed heavier reaction than the SPICE version, the
relative difference between the two implementations had clearly become
smaller.

A.2.7 Limited Precision

As mentioned in Section A.2.6, using multiplicative updates the Python
simulation was now stable and resembled the SPICE results better than

135

Appendix A SPICE vs. Python

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

T
im

e
 [s

]

0
.0

0
.5

1
.0

1
.5

V_w

1
e

9

S
P
IC

E

P
y
th

o
n

(a
)
A
b
so
lu
te

p
o
w
e
r
d
issip

a
tio

n
V

w

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

T
im

e
 [s

]

0
.4

5

0
.5

0

0
.5

5

0
.6

0

V_x

S
P
IC

E

P
y
th

o
n

(b
)
V
o
la
tile

sta
te

V
x

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

T
im

e
 [s

]

0
.4

9
9
2

0
.4

9
9
4

0
.4

9
9
6

0
.4

9
9
8

0
.5

0
0
0

V_y

S
P
IC

E

P
y
th

o
n

(c)
N
o
n
-vo

la
tile

sta
te

V
y

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

T
im

e
 [s

]

4 2 0 2 4

V_z

1
e

1
0

S
P
IC

E

P
y
th

o
n

(d
)
D
rivin

g
e
ffo

rt
V

z

F
ig
u
re

A
.9
:
E
vo

lu
tio

n
o
f

V
w
,

V
x ,

V
y
a
n
d

V
z
fo
r

δt
=

−
50

m
s.

In
co
n
tra

st
to

F
ig
u
re

A
.8

m
u
ltip

lica
tive

u
p
d
a
te
s
w
e
re

u
se
d
w
h
e
re

a
p
p
lica

b
le

fo
r
th
e
P
yth

o
n
im

p
le
m
e
n
ta
tio

n
.
T
h
e
sim

u
la
tio

n
tim

e
ste

p
size

dt
w
a
s
ch

o
se
n
a
cco

rd
in
g
to

th
e
S
P
IC
E
sim

u
la
tio

n
.
C
le
a
rly,

u
sin

g
th
e

m
u
ltip

lica
tive

u
p
d
a
te
s
h
a
d
im

p
ro
ve
d
th
e
re
su
lts,

e
ve
n
th
o
u
g
h

V
y
sh
o
w
e
d
h
a
vie

r
re
a
ctio

n
s
th
a
n
S
P
IC
E
n
o
w
.

136

A.2 Experiments

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
−4

−3

−2

−1

0

1

2

3

4
x 10−8

Inter−event−interval (IEI) δt [s]

Δ
g

SPICE
Python

Figure A.10: Comparison of the results for Protocol 1. For Python, multiplicative updates were used
where applicable. In addition to this, slew rates were considered to be finite.

ever before. There were, however, still some differences in some of the
internal variables (especially in Vy, compare Figure A.9c). In an attempt
to find the origin of these remaining discrepancies, we had a closer look
at Vw and Vz, since both affect Vy over (11). First, we had a look at g(Vw)
and its evolution over time. Looking at Figure A.11, we noticed that the
course of g(Vw) after the positive spike was dramatically different for
SPICE and Python. Comparing this observation with the definition of g(·),
we presumed the root of this difference in the case differentiation in (15).
Apparently, SPICE used a different branch of the piecewise definition of
g(·) as Python did. As we can see from (15), one of the branches of g(·)
is for Vz > 0, the other for Vz ≤ 0. In order to check, which of the two
branches was used at which instant of time in each of the implementations,
the truth value of (V ≤ 0) was plotted against the time for both SPICE
and Python. The results of this experiment are shown in Figure A.12.

From this plot we observed that in the SPICE implementation the truth
value of (Vz ≤ 0) (and thus the branch of g(·)) switched multiple times.
This seemed rather odd, because in the area in question the course of Vz
was characterized by a positive exponential decay. In theory, the value
of this decay never exactly reaches zero. So the truth value of (Vz ≤ 0)

137

Appendix A SPICE vs. Python

0 0.5 1 1.5 2 2.5 3
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Absolute simulation time t [s]

g(
V w)

SPICE
Python

Figure A.11: Evolution of g(Vw) for δt = −50 ms. Multiplicative update for Python where applicable, dt
according to the SPICE simulation.

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

1.5

2

2.5

3

Absolute simulation time t [s]

V z <
=

0

SPICE
Python

Figure A.12: Evolution of (Vz ≤ 0) for δt = −50 ms. For SPICE, 1.5 and 2.5 and for Python 0.0 and 1.0
correspond false and true, respectively.

138

A.2 Experiments

should always be false once the positive spike takes effect. Looking at the
plot in Figure A.12 again, we noticed that this was only true for the Python
implementation. In other words, in the SPICE implementation, the decay
had at least reached zero (or even become negative). Having a look at the
exact values of Vz revealed that in the SPICE implementation values of Vz
with a magnitude below approximately 10−37 were truncated to 0.0, which
caused the branch in (15) to be switched. Having a look at the definition
of the IEEE 754 floating point format, we noticed that this value of about
10−37 was almost equal to the smallest non-zero value representable by an
IEEE 754 32-bit single precision float. This led us to the conclusion that
SPICE internally uses single precision floats, while our Python simulation
used doubles. As we have seen, this leads to the problematic behavior
of g(Vw). This problem, however, is without influence at least for the
discussed differential equation (11) describing the time course of Vy. This
holds, because φ(Vz) is zero in the affected regions, making the wrong
values of g(Vw) unharmful.

A.2.8 Simulation Time Step Size

In a final attempt to track down the roots of the still present differences
in Vy, we reduced the simulation time step size used for the Python
implementation. As mentioned in Section A.2.6, so far we had chosen dt
according to the simulation results yielded by SPICE. Now, however, we
reduced the step size and chose a constant dt = 5 ns. In order to speed
up the simulations, we limited the time interval to the “interesting part”
around the two spikes. A sample result of these simulations is shown
in Figure A.13. As we can see, the difference in the maximum negative
amplitude of Vy between the SPICE and the Python results became smaller.
Hence, we found it conceivable that reducing the simulation time step
size for the Python implementation even further could aid in increasing
the accuracy (and better align the SPICE and the Python results). This,
however, raised the question, why the time steps we had adopted from the
SPICE simulation did not lead to accurate results in Python (or at least
very similar ones as in SPICE). At this point, we remembered that a SPICE

139

Appendix A SPICE vs. Python

0 0.01 0.02 0.03 0.04 0.05 0.06
0.4993

0.4994

0.4995

0.4996

0.4997

0.4998

0.4999

0.5

0.5001

t [s]

V y

Python
SPICE

Figure A.13: Evolution of Vy. The plot shows the results as yielded by SPICE and Python for a simulation
time step size dt = 5 ns.

manual had stated that SPICE used two different time steps. One for the
numerical circuit simulation and one for reporting the current circuit state.
These two step sizes need not be the same and only the latter is accessible
through the simulation output. So we had used SPICE’s reporting time
steps for the numerical solution of the differential equations in Python.
Hence, the root of the still present differences in Vy as well as the fact
that decreasing dt improved the results in Python could originate from
this circumstance.

This conclusion motivated a final experiment. We returned to the choice
of dt, the simulation time step size, and tried once again to come up with
a rule describing its dependence on the shape of the input voltage V(t). It
was clear that in the affected regions dt had to be small enough to capture
the rising and falling edges of the voltage as well as the rectangular pulses
while being wide enough anywhere else in order to ensure reasonable
simulation times. Hence, we decided to introduce three different step
sizes

• dtfine = 100 ns for the spikes’ rising and falling edges (ensures 10

140

A.3 Summary and Conclusions

samples on the slopes),
• dtmedium = 1 μs for the square shape of the spikes themselves (10
samples) and the time between the spikes (the IEI δt) and

• dtsparse = 2 ms for anywhere else.

Depending on the current “state” of the input voltage (that is, before
spike, rising or falling edge, pulse peak, ...), we then switched back and
forth between these different simulation time step sizes. An important
task was to handle these switches properly and to prevent switching to
a smaller dt too late or to a larger one too early. Employing this new
rule for the choice of dt in combination with the multiplicative updates
described in Section A.2.6, yielded the final results presented Figure A.14.
As we can see, the STDP curve for Protocol 1 yielded by this final Python
implementation was now almost identical to the one yielded by the SPICE
reference implementation.

A.3 Summary and Conclusions

The observations we made in the experiments presented in the previous
sections can be summarized as follows:

• When applying a single spike and removing/slowing down the decay
of Vz, SPICE and Python yield almost identical results.

• SPICE limits the rise and fall times Tr and Tf for PULSE sources. Not
taking into account the slopes of the input voltage V in the Python
model made the simulations less responsive.

• Using the time step sizes as suggested by the SPICE simulation, the
Python simulation is only stable when using multiplicative updates
instead of plain Euler integration (where applicable) to solve the
differential equations. This update method also improves the results
for Protocol 1.

• SPICE internally apparently uses single precision floats, Python (at
least) doubles. This causes unexpected branch switches functions,
whose definitions involve case differentiations.

141

Appendix A SPICE vs. Python

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
−4

−3

−2

−1

0

1

2

3
x 10−8

Inter−event−interval (IEI) δt [s]

Δ
g

SPICE
Python

Figure A.14: Comparison of the final results for Protocol 1. The plot shows the results as yielded by the
SPICE reference implementation as well as the final Python implementation.

• SPICE uses two different time step sizes: One to simulate the im-
plemented circuit and solve corresponding differential equations
and a second one for reporting the current circuit state. These seem
to be different. Reducing the simulation time step size for Python
improved the results.

• Choosing the Python simulation time step size according to the
shape of the input voltage (that is, small dt for the rising and falling
edges, medium dt for the spikes and the regions in between, large
dt anywhere else) yields good results while preserving a reasonable
simulation time.

Using all the techniques described in Sections A.2.1 to A.2.8, the Python
and the SPICE implementation could be aligned almost completely. Hence,
we decided to stop at this point and accept the Python model as it was. For
Protocol 1, the final Python implementation yielded the results presented
in Figure A.14.

Concluding with the “ultimate lessons learned” (or the most important
conclusions that were made), three things can be said. Firstly, for the
numerical solution of the differential equations of the presented memristor

142

A.3 Summary and Conclusions

model, multiplicative updates are in general better suited. Secondly, it
is important to impose some maximum simulation time step size dt if
the external input V(t) �= 0 in order to preserve both stability as well as
accuracy. And finally thirdly, Vy is rather sensitive to changes in B± and
Vz. This raises the question whether there is a way to adjust the model by
selecting more stable parameters.

143

B
Derivation of Vz(t)

In this chapter we will take a closer look at one of the equations used
heavily throughout this work. More precisely, we will derive an expression
for the time course of the driving effort Vz and take a closer look at how it
behaves in response to pulse shaped input voltages.

B.1 Generic Expression

We start by recalling Equations 2.18 and 2.19, describing the dynamic
system governing the driving effort Vz(t):

Cz
dVz

dt
=

V(t)
Mmid

− Vz(t)
Rz

(B.1)

145

Appendix B Derivation of Vz(t)

As we mentioned earlier, this equation is a first order differential equation
of the generic type

dy
dt

+ a(t) y(t) = f (t) .

The solution for differential equations of this type is well known and given
by

y(t) =
[∫

f (t) e
∫

a(t) dt dt + c
]

e−
∫

a(t) dt , (B.2)

where c is an arbitrary constant. Rewriting Equation B.1 helps to identify
the terms a(t) and f (t):

dVz

dt
+

1
Cz Rz︸ ︷︷ ︸

a(t)

Vz(t) =
V(t)

Cz Mmid︸ ︷︷ ︸
f (t)

Plugging these expressions into the rule given in Equation B.2, we ob-
tain:

Vz(t) =
[∫ V(t)

Cz Mmid
e
∫ 1

Cz Rz dt dt + c
]

e−
∫ 1

Cz Rz dt

For a constant input with an amplitude of V(t) = A, this translates to

Vz(t) =
[∫ A

Cz Mmid
e
∫ 1

Cz Rz dt dt + c
]

e−
∫ 1

Cz Rz dt (B.3)

As we can see, in a nutshell the above expression consists two exponential
functions with integrals in their exponent as well as some multiplications
and another integral. Basically, both exponentials contain the same easy
to solve integral:

∫ 1
Cz Rz

dt =
1

Cz Rz

∫
dt =

t
Cz Rz

(B.4)

Plugging this expression into the exponential contained in the integrand

146

B.1 Generic Expression

of the outer integral yields

∫ A
Cz Mmid

e
t

Cz Rz dt =
A

Cz Mmid

∫
e

t
Cz Rz dt =

=
A

��Cz Mmid
��Cz Rz e

t
Cz Rz =

=
A Rz

Mmid
e

t
Cz Rz (B.5)

Rewriting Equation B.3 considering the expressions we obtained in Equa-
tions B.4 and B.5 yields

Vz(t) =
[

A Rz

Mmid
e

t
Cz Rz + c

]
e

−t
Cz Rz =

=
A Rz

Mmid
��
�

e
t

Cz Rz ��
�

e
−t

Cz Rz + c · e
−t

Cz Rz =

=
A Rz

Mmid
+ c · e

−t
Cz Rz (B.6)

Given Equation B.6, we have now specified the evolution of Vz(t) for a
given constant input A up to an arbitrary constant c. The value of this
constant, however, can be determined by solving initial value problems.
Generally, since Equation B.6 is supposed to hold for all possible times
t, it has to be true also for t = 0. Assuming that at time t = 0, Vz had a
certain preload Vz(t = 0) = Vz,0, we can derive a generic expression for
c:

Vz(t = 0) =
A Rz

Mmid
+ c · e

0
Cz Rz︸ ︷︷ ︸
=1

=
A Rz

Mmid
+ c !

= Vz,0

⇔ c !
= Vz,0 − A Rz

Mmid
(B.7)

Plugging the expression given in Equation B.7 back into Equation B.6

147

Appendix B Derivation of Vz(t)

yields the final expression describing the evolution of Vz over time:

Vz(t) =
A Rz

Mmid
+

[
Vz,0 − A Rz

Mmid

]
e

−t
Cz Rz =

= Vz,0 e
−t

Cz Rz +
A Rz

Mmid

[
1 − e

−t
Cz Rz

]
(B.8)

For the trivial case Vz,0 = 0, this expression can be slightly simplified to

Vz(t) =
A Rz

Mmid

[
1 − e

−t
Cz Rz

]
. (B.9)

B.2 Smooth Transitions

For some of the derivations shown in this work, we quietly assumed the
driving effort Vz(t) to follow jumps in the input voltage V(t) smoothly. The
derivation of appropriate amplitude levels for the different pulse shapes
presented in Section 4.3, for instance, was partly based on the assumption
that Vz cannot exceed certain thresholds during a given time interval, if it
is guaranteed to be below that threshold both at the beginning and at the
end of the time interval. In this section we will take a closer look at why
this assumption holds for the expression describing the time course of Vz
shown in Equation B.8.

In Section 4.3 we stated that the input voltage resulting from a multi-
amplitude pulse event can be interpreted as a quick succession of multiple
inputs, each being applied for a limited amount of time. As we remember,
the driving effort Vz resulting from this type of input can be determined
recursively. More precisely, the amplitudes of the different sub-pulses are
plugged into Equation B.8 as values for A along with the driving effort
Vz present at the end of the previous sub-pulse as the new initial preload.
Put differently, the driving effort Vz present at the end of each of the sub-
pulses is used as the initial condition for the new sub-pulse. Consequently,

148

B.2 Smooth Transitions

at any instant of time, the current driving effort can be determined by
considering the driving effort present at the nearest preceding sub-pulse
boundary as well as the current input voltage. For a pair of two sub-pulses
with amplitudes and durations of V1 and V2 and t1 and t2, respectively, at
an arbitrary instant of time during the second sub-pulse this translates
to

Vz(t1 + t) = Vz(t1) e
−t

Cz Rz +
V2 Rz

Mmid

[
1 − e

−t
Cz Rz

]
, (B.10)

where 0 ≤ t ≤ t2.

Assuming that the driving effort was zero before the first sub-pulse, this
expression can be expanded according to Equation B.8 to

Vz(t1 + t) =
V1 Rz

Mmid

[
1 − e

−t1
Cz Rz

]
︸ ︷︷ ︸

Vz(t1)

e
−t

Cz Rz +
V2 Rz

Mmid

[
1 − e

−t
Cz Rz

]
.

This expression can be rearranged as follows

Vz(t1 + t) =
[

V1 Rz

Mmid
− V1 Rz

Mmid
e

−t1
Cz Rz

]
e

−t
Cz Rz +

V2 Rz

Mmid
− V2 Rz

Mmid
e

−t
Cz Rz =

=

[
V1 Rz

Mmid
− V1 Rz

Mmid
e

−t1
Cz Rz − V2 Rz

Mmid

]
︸ ︷︷ ︸

Γ= const

e
−t

Cz Rz +
V2 Rz

Mmid
=

=
V2 Rz

Mmid
+ Γ · e

−t
Cz Rz (B.11)

As we can see, the expression in Equation B.11 consists of the sum of a
fraction which is constant and an exponential decay of a certain constant
Γ. Obviously, since the exponential decay by itself is smooth, also the sum
of a constant and an exponential decay as shown in Equation B.11 will be
smooth. Consequently, depending on the values of V1 and V2, the above
expression describing Vz(t1 + t) will have its (local) maxima and minima
for t = 0 and t = t2, respectively, rather than anywhere in between.

149

C
Derivation of Initializers

In this chapter we will take a closer look at the derivation of the different
initializers which were used heavily during the course of this work. As
mentioned in Section 3.1, these initializers were required in order to
prepare the memristors used in the various experiments with respect to
their initial states.

As we saw in Section 2.2.2, in the memristor model this work was finally
built upon, the memristor’s instantaneous memristance M(t) is split up
into a volatile and a non-volatile portion. The volatile part modeled by
Vx represents transient processes which finally decay towards the non-
volatile portion of the memristance governed by Vy. Obviously, in order
to ensure proper and reproducible results, one wants all transients to
be over before the simulation starts. Nevertheless, since according to
Equation 2.10, the instantaneous memristance M(t) is primarily defined
through Vx, this translates to finding an appropriate value for Vx and then

151

Appendix C Derivation of Initializers

setting Vy = Vx. This is the case, because setting Vy = Vx translates to Vx
having fully decayed to Vy and thus all transients being over.

Given this brief introduction, what we are concerned with in the following
sections is finding different values for Vx = Vy for each of the respective
initialization strategies in order to ensure a certain initial memristor state.
This memristor state is defined in terms of either a certain memristance
or a specific conductance.

C.1 Maximum Memristance/Minimum

Conductance

One of the simplest initialization strategies is choosing the initial mem-
ristor state such that the resulting instantaneous memristance M(t) is
equal to maximum achievable memristance. In this context it is irrele-
vant whether an additional pre-resistor M0 as suggested in Section 4.2 is
used for the actual memristor model or not. This is the case because the
pure-ohmic pre-resistor M0 goes into the equation as an additive constant.
Consequently, if the memristance is maximal without M0, it will also be
maximal in combination with the pre-resistor M0. Hence, in order to keep
the derivations simple, we will neglect M0 for the moment.

As we remember from Equation 2.10, the instantaneous memristance can
be determined from the relation

M(t) = Mmax − Vx (Mmax − Mmin) . (C.1)

Since Mmax is greater than Mmin, the expression in brackets on the right
is positive. Hence, choosing greater values for Vx will make M(t) smaller.
Consequently, the maximum instantaneous memristance M(t) is achieved
for the smallest possible value of Vx. As we remember from Section 2.2.2,
the value of Vx is confined to the interval (0, 1), making Vx = 0 + ε the
smallest possible value, where ε > 0. Hence, the maximum possible
memristance is approximately Mmax which is achieved for

Vx = Vy ≈ 0 . (C.2)

152

C.2 Minimum Memristance/Maximum Conductance

Obviously, since the instantaneous conductance G(t) is the inverse of the
memristance M(t), choosing Vx and Vy as shown in Equation C.2 will
likewise result in the minimum possible conductance.

C.2 Minimum Memristance/Maximum

Conductance

A similarly simple initialization strategy as the one described in the previ-
ous section is initializing the memristor to minimum memristance. Again
considering that the conductance is the inverse of the memristance, this
initialization corresponds to the initialization to maximum conductance.

Similar as in the previous section, also for this initialization the additional
pre-resistor M0 as introduced in Section 4.2 for linearization reasons
can be neglected. This holds again, because M0 is merely an additive
term. Hence, if the memristance is minimal for a given Vx value in the
model without M0, it will also be minimal for the case with the additional
pre-resistor. Consequently, we can concentrate on the original memristor
model without the additional memristor M0 again.

In order to find appropriate values for Vx and Vy, we start with Equa-
tion C.1 describing the instantaneous memristance M(t) again. By anal-
ogy with what we stated in the previous section, the instantaneous mem-
ristance M(t) will become smaller the greater Vx is. This holds, again,
because the term (Mmax − Mmin) is positive. Given that Vx is confined to
values between 0 and 1 Vx = 1 − ε is the greatest possible value, where
ε > 0. Hence, the smallest possible memristance will be achieved for

Vx = Vy ≈ 1 . (C.3)

For this value, the corresponding memristance is given as

M(t) ≈ Mmax − (Mmax − Mmin) =���
�Mmax −����Mmax + Mmin = Mmin .

As indicated at the beginning of this section, a memristance of M = Mmin

corresponds to a conductance of G = Gmax.

153

Appendix C Derivation of Initializers

C.3 Midrange Memristance

For the previous two initializers, the initial values for Vx and Vy were deter-
mined more or less directly from the equation describing the memristor’s
instantaneous memristance M(t). In contrast to this, the initialization to
midrange memristance requires some more derivations. To do so, first of
all the term midrange memristance has to be defined. For the purpose of
this work, midrange memristance shall refer to the arithmetic mean of
the memristor’s minimum and maximum memristances Mmin and Mmax,
that is

Mmid =
Mmin + Mmax

2
. (C.4)

Given this definition, we can start our derivation of Vx and Vy by equat-
ing the above expression with Equation C.1 defining the instantaneous
memristance M(t):

Mmax − Vx (Mmax − Mmin)︸ ︷︷ ︸
M(t)

!
=

Mmin + Mmax

2︸ ︷︷ ︸
Mmid

This equation can now be solved with respect to Vx:

Mmax − Mmax + Mmin

2
!
= Vx (Mmax − Mmin)

��2 Mmax −����Mmax − Mmin

2
!
= Vx (Mmax − Mmin)

Mmax − Mmin

2
!
= Vx (Mmax − Mmin)

Vx
!
= ����

����Mmax − Mmin

2�����
����(Mmax − Mmin)

=
1
2

Hence, initialization of the system to midrange memristance Mmid can be
achieved by setting

Vx = Vy = 0.5 . (C.5)

154

C.4 Fraction ρ of Maximum Conductance

In order to keep the derivation simple again, the above reasoning was
based on the original memristor model. Obviously, however, the resulting
values for Vx and Vy shown in Equation C.5 are also valid for the extended
memristor model featuring the additional pre-resistor M0.

C.4 Fraction ρ of Maximum Conductance

This initializer sets the internal state variables Vx and Vy to values such
that the memristor’s initial conductance is a fraction ρ of the maximum
achievable conductance Gmax. In contrast to the previous sections, we con-
centrate on the memristor model featuring the additional pre-resistor M0
as described in Section 4.2 here. In contrast to the Section 4.2, however,
for the derivation presented here, a more general expression M0 = Mmax

β
was chosen for this pre-resistor.

Before we can start with the actual derivation of the relations defining the
values for Vx and Vy required to achieve our desired initial conductance,
we have to determine an expression for the maximum conductance Gmax.
Obviously, the conductance has its maximum when the memristance is
at its minimum. As we remember from Section 2.2.2, in the memristor
model by Serb et al. [Serb, 2014], the instantaneous memristance can be
determined through the relation

M(t) = Mmax − Vx (Mmax − Mmin) .

In the memristor model employing the additional pure-ohmic pre-resistor
M0, this translates to

M(t) = M0 + Mmax − Vx (Mmax − Mmin) =

=
Mmax

β
+ Mmax − Vx (Mmax − Mmin) . (C.6)

Since Vx is confined to the interval (0, 1), clearly the minimum overall mem-
ristance is achieved for Vx ≈ 1. In order to keep the following derivations

155

Appendix C Derivation of Initializers

simple, however, we will assume Vx ∈ [0, 1] from now on. Consequently,
the minimum overall memristance is achieved for Vx = 1.

Plugging this value for Vx into Equation C.6, the minimum memristance
achievable in our setup translates to the sum of the pre-resistor M0 =
Mmax

β and the memristor’s lower memristance bound Mmin. Hence, the
corresponding conductance for this case, that is the maximum achievable
conductance Gmax, is given as

Gmax =
1

Mmax
β + Mmin

=
1

β Mmin+Mmax
β

=

=
β

β Mmin + Mmax
. (C.7)

As mentioned earlier, what we are interested in now is a value for Vx which
makes the instantaneous conductance G(t) equal to a certain fraction ρ

of Gmax. While we have just determined an expression for Gmax, a relation
for G(t) is still to be found. This can be achieved by taking the reciprocal
of the expression given in Equation C.6:

G(t) =
1

Mmax
β + Mmax − Vx (Mmax − Mmin)

=

=
1

(β+1) Mmax
β − Vx (Mmax − Mmin)

(C.8)

Given this expression, we can now begin with the derivation of Vx by equat-
ing the above expression with the one given in Equation C.7 multiplied
with ρ:

1
(β+1) Mmax

β − Vx (Mmax − Mmin)︸ ︷︷ ︸
G(t)

!
= ρ

β

β Mmin + Mmax︸ ︷︷ ︸
Gmax

(C.9)

Taking the inverse of this equation yields

(β + 1) Mmax

β
− Vx (Mmax − Mmin)

!
=

β Mmin + Mmax

β ρ
. (C.10)

156

C.4 Fraction ρ of Maximum Conductance

From this expression, Vx and Vy can now be determined in two steps:

−Vx (Mmax − Mmin)
!
=

β Mmin + Mmax − ρ (β + 1) Mmax

β ρ

Vy = Vx
!
=

β Mmin − Mmax [ρ (β + 1)− 1]
β ρ (Mmin − Mmax)

(C.11)

As we know from Section 2.2.2, the value of Vx is bound to the inter-
val (0, 1). In addition to this, the derivation given above is based on the
extended memristor model featuring the pre-resistor M0 = Mmax

β . Conse-
quently, obviously not any arbitrary value can be achieved for ρ. Based on
this observation, in the following we will derive a certain range of achiev-
able values for ρ. Especially for the reasoning the simulations presented
in Section 5.1 are based on, this interval is of great interest.

Put differently, we want to determine a range the expression ρ = G(t)
Gmax

can attain in our given setup. In order to do so, we take a closer look at

Equation C.9 again. Since this expression essentially reads G(t) !
= ρ Gmax,

ρ can be determined by rearranging this expression:

ρ =
β Mmin + Mmax

(β + 1) Mmax − β Vx (Mmax − Mmin)
(C.12)

In the above expression, Vx is the only non-constant quantity. Hence, the
corresponding minimum and maximum values for ρ can be determined by
plugging extremes Vx = 0 and Vx = 1 into Equation C.12. This yields

ρmin =
β Mmin + Mmax

(β + 1) Mmax
(C.13)

and

ρmax =
β Mmin + Mmax

(β + 1) Mmax − β (Mmax − Mmin)
=

=
β Mmin + Mmax

���
��β Mmax + Mmax −�����β Mmax + β Mmin

= 1 (C.14)

157

Appendix C Derivation of Initializers

This makes sense, of course, since G(t) cannot become greater than the
maximum conductance Gmax.

Finally, plugging the value β = 9 chosen in Section 4.2 along with the
parameters Mmin and Mmax according to Table 2.2 into the above Equa-
tion C.13 and taking into account that Vx is actually bound to the open
interval (0, 1), yields

0.100009 < ρ < 1 (C.15)

Recalling Section 4.2, this range is perfectly aligned with the statement
we made about memristive synapses in the chosen setup being able to
adjust their conductance by a factor of approximately 10.

C.5 Midrange Conductance

In the previous section we derived expressions for Vx and Vy which made
it possible to set the initial conductance to a certain fraction ρ of its
maximum value Gmax, assuming the extended and linearized memristor
model with the additional pre-resistor M0. A prominent example for this
type of initialization is the initialization to midrange conductance Gmid.
In order to determine corresponding values for Vx and Vy according to
Equation C.11, however, we need to derive an appropriate value for ρ first,
because, against intuition, picking ρ = 0.5 is not the correct choice. This
is due to the lowest possible value for ρ being different from zero, as we
can see from the range defined in Equation C.15.

The correct value for the target fraction ρ leading to midrange conduc-
tance can be determined from Equations C.14 and C.13. More precisely,
ρmid can be determined as the arithmetic mean of ρmin and ρmax:

ρmid =
ρmin + ρmax

2
=

β Mmin+Mmax

(β+1) Mmax
+ 1

2

=
β Mmin + (β + 2) Mmax

2 (β + 1) Mmax
(C.16)

158

C.5 Midrange Conductance

Plugging this expression into Equation C.11 we obtain:

Vx
!
=

β Mmin − Mmax

[
(β + 1) β Mmin+(β+2) Mmax

2 (β+1) Mmax
− 1

]
β

β Mmin+(β+2) Mmax

2 (β+1) Mmax
(Mmin − Mmax)

(C.17)

This equation can now be simplified in order to obtain an easy to handle
expression describing the target values for Vx and Vy leading to midrange
conductance for the model featuring an additional pre-resistor M0 =
Mmax

β .

Vx
!
=

β Mmin − Mmax

[
���

��(β + 1) β Mmin+(β+2) Mmax
2���(β+1) Mmax

− 1
]

β
β Mmin+(β+2) Mmax

2 (β+1) Mmax
(Mmin − Mmax)

Vx
!
=

β Mmin −����Mmax

[
β Mmin+(β+�2) Mmax−����2 Mmax

2���Mmax

]
β

β Mmin+(β+2) Mmax

2 (β+1) Mmax
(Mmin − Mmax)

Vx
!
=

β Mmin − β Mmin+β Mmax
2

β
β Mmin+(β+2) Mmax

2 (β+1) Mmax
(Mmin − Mmax)

Vx
!
=

��2 β Mmin −����β Mmin − β Mmax

2 β
β Mmin (β+2) Mmax

2 (β+1) Mmax
(Mmin − Mmax)

Vx
!
= ��β [Mmin − Mmax]

��2 ��β
β Mmin+(β+2) Mmax

�2 (β+1) Mmax
(Mmin − Mmax)

Vx
!
= ����

�����[Mmin − Mmax] (β + 1) Mmax

[β Mmin + (β + 2) Mmax] ����
�����(Mmin − Mmax)

Hence, in order to achieve midrange conductance Gmid according to the
extended memristor model, the initial values for Vx and Vy have to be
chosen as

Vy = Vx
!
=

(β + 1) Mmax

β Mmin + (β + 2) Mmax
. (C.18)

159

Appendix C Derivation of Initializers

Choosing β = 9 as suggested in Section 4.2, the expression in Equa-
tion C.18 can be simplified to

Vy = Vx
!
=

10 Mmax

9 Mmin + 11 Mmax
. (C.19)

Given Equation C.19, the exact values for Vx and Vy can be determined by
plugging in the values for Mmin and Mmax according to Table 2.2:

Vx = Vy = 0.909 (C.20)

C.6 Midrange Conductance without M0

Finally, midrange conductance can also be defined for the original mem-
ristor model without the additional pre-resistor M0. Similar as in the
previous section, G̃mid is defined as the arithmetic mean of conductance
values in the least and the most conductive states. For the original mem-
ristor model and by analogy with Equation C.4 this, however, translates
to the following expression:

G̃mid =
Gmin + Gmax

2
(C.21)

As we remember from Sections C.1 and C.2, for the original memristor
model the states of minimum and maximum conductance correspond to
maximum and minimum memristance, respectively. Plugging this knowl-
edge into Equation C.21, we can derive a more elaborate expression for
G̃mid:

G̃mid =
Gmin + Gmax

2
=

1
Mmax

+ 1
Mmin

2
=

Mmin+Mmax
Mmax Mmin

2
=

=
Mmax + Mmin

2 Mmax Mmin
(C.22)

160

C.6 Midrange Conductance without M0

Similar as in the previous sections, we are now interested in values for
Vx and Vy which lead to the conductance shown in Equation C.22. This
can again be achieved by equating the above expression with another one
describing the instantaneous conductance as a function of Vx. As indicated
in the introduction, in this section we assume the original memristor model
without any pre-resistor. Consequently, for this case the instantaneous
conductance G(t) can be determined by taking the inverse of Equation C.1.
Likewise, in order to determine Vx one can also determine M̃mid by taking
the inverse of Equation C.22 and equate the resulting expression with
Equation C.1:

Mmax − Vx (Mmax − Mmin)︸ ︷︷ ︸
M(t)

!
=

2 Mmax Mmin

Mmax + Mmin︸ ︷︷ ︸
M̃mid

This equation can now be solved with respect to Vx:

Vx (Mmax − Mmin)
!
= Mmax − 2 Mmax Mmin

Mmax + Mmin

Vx (Mmax − Mmin)
!
=

Mmax (Mmax + Mmin)− 2 Mmax Mmin

Mmax + Mmin

Vx
!
=

M2
max +

							Mmax Mmin − ��2 Mmax Mmin

(Mmax + Mmin) (Mmax − Mmin)

Vx
!
=

Mmax����
�����(Mmax − Mmin)

(Mmax + Mmin) ����
�����(Mmax − Mmin)

Vx
!
=

Mmax

Mmax + Mmin
(C.23)

Finally, plugging the values for Mmax and Mmin defined in Table 2.2 into
Equation C.23, yields the values for Vx and Vy required in order to achieve

midrange conductance G̃mid:

Vx = Vy = 0.99999 (C.24)

161

Appendix C Derivation of Initializers

As an aside, the target value shown in Equation C.24 emphasizes one of the
problems described in Chapter 4. As we remember from Section 4.2, the
original memristor model suffers from an extremely non-linear mapping
between Vx and the instantaneous conductance G(t). This non-linearity
becomes also clearly evident when looking at the above equation. More
precisely, the value presented in Equation C.24 translates to 99.999 % of
the Vx values controlling the first half of the conductance values. Conse-
quently, only a vanishing 0.001 % of the dynamic range of Vx remain to
adjust the second half of the conductance’s dynamic range.

162

Bibliography

[Berdan, 2014] Radu Berdan et al. “Qualitative SPICE modeling
accounting for volatile dynamics of TiO2 mem-
ristors.” In: Circuits and Systems (ISCAS), 2014
IEEE International Symposium on. June 2014,
pp. 2033–2036 (cit. on pp. 8–11, 16).

[Bill, 2014a] Johannes Bill. E-Mail communication with Alexan-
der Serb. Oct. 10, 2014 (cit. on p. 47).

[Bill, 2014b] Johannes Bill. Personal communication. Sept. 17,
2014 (cit. on p. 79).

[Bill, 2014c] Johannes Bill. TiO2 memristors as plastic synapses
for statistical model optimization. Tech. rep. Insti-
tute for Theoretical Computer Science, TU Graz,
Feb. 2014 (cit. on p. 56).

[BillLegenstein, 2014] Johannes Bill and Robert Legenstein. “A com-
pound memristive synapse model for statistical
learning through STDP in spiking neural net-
works.” In: Frontiers in Neuroscience 8.412 (2014).
ISSN: 1662-453X. DOI: 10.3389/fnins.2014.
00412 (cit. on pp. 1, 3, 20, 40, 44, 51, 98, 100–
110, 114).

[Chua, 1971] L.O. Chua. “Memristor-The missing circuit ele-
ment.” In: Circuit Theory, IEEE Transactions on
18.5 (Sept. 1971), pp. 507–519. ISSN: 0018-9324.
DOI: 10.1109/TCT.1971.1083337 (cit. on p. 6).

163

Bibliography

[DanPoo, 2004] Yang Dan and Mu-ming Poo. “Spike timing-depen-
dent plasticity of neural circuits.” In:Neuron 44.1
(2004), pp. 23–30 (cit. on pp. 7, 18).

[Fieres, 2008] Johannes Fieres, Johannes Schemmel, and Karl-
heinz Meier. “Realizing biological spiking net-
work models in a configurable wafer-scale hard-
ware system.” In: Neural Networks, 2008. IJCNN
2008.(IEEE World Congress on Computational In-
telligence). IEEE International Joint Conference
on. IEEE. 2008, pp. 969–976 (cit. on p. 2).

[Fiser, 2010] József Fiser et al. “Statistically optimal percep-
tion and learning: from behavior to neural repre-
sentations.” In: Trends in cognitive sciences 14.3
(2010), pp. 119–130 (cit. on p. 19).

[Habenschuss, 2012] Stefan Habenschuss, Johannes Bill, and Bern-
hard Nessler. “Homeostatic plasticity in Bayesian
spiking networks as Expectation Maximization
with posterior constraints.” In: Advances in Neu-
ral Information Processing Systems 25. Ed. by
F. Pereira et al. Curran Associates, Inc., 2012,
pp. 773–781 (cit. on p. 100).

[Hebb, 1949] Donald O. Hebb. The Organization of Behavior.
New York: Wiley, 1949 (cit. on p. 7).

[Johnsen, 2012] Gorm Krogh Johnsen. “An introduction to the
memristor-a valuable circuit element in bioelec-
tricity and bioimpedance.” In: Journal of Electri-
cal Bioimpedance 3.1 (2012), pp. 20–28 (cit. on
pp. 5, 6).

[Lecun, 1998] Y. Lecun et al. “Gradient-based learning applied
to document recognition.” In: Proceedings of the
IEEE 86.11 (Nov. 1998), pp. 2278–2324. ISSN:
0018-9219. DOI: 10 . 1109 / 5 . 726791 (cit. on
pp. 110, 111).

164

Bibliography

[Li, 2015] Qingjiang Li et al. “A Memristor SPICE Model
Accounting for Synaptic Activity Dependence.”
In: PLoS ONE 10.3 (Mar. 2015), e0120506. DOI:
10.1371/journal.pone.0120506. URL: http://
dx.doi.org/10.1371/journal.pone.0120506
(cit. on p. 11).

[Linares, 2009] Bernabé Linares-Barranco and Teresa Serrano-
Gotarredona. “Memristance can explain spike-
time-dependent-plasticity in neural synapses.” In:
Nature precedings 1 (2009) (cit. on pp. 2, 6, 53).

[Nessler, 2013] Bernhard Nessler et al. “Bayesian Computation
Emerges in Generic Cortical Microcircuits through
Spike-Timing-Dependent Plasticity.” In: PLoS Com-
putational Biology 9 (Apr. 2013) (cit. on pp. 2, 19,
102, 103, 112).

[Querlioz, 2011] Damien Querlioz, Olivier Bichler, and Christian
Gamrat. “Simulation of a memristor-based spik-
ing neural network immune to device variations.”
In: Neural Networks (IJCNN), The 2011 Interna-
tional Joint Conference on. IEEE. 2011, pp. 1775–
1781 (cit. on pp. 54, 114).

[Serb, 2014] A. Serb et al. “Memristors as synapse emulators
in the context of event-based computation.” June
2014. URL: http://eprints.soton.ac.uk/
362468/ (cit. on pp. 11, 12, 14–17, 24, 25, 27, 31,
34–37, 43, 51, 55, 71, 72, 74, 82, 113, 114, 119,
121, 155).

[Serrano, 2013] Teresa Serrano-Gotarredona et al. “STDP and
STDP variations with memristors for spiking neu-
romorphic learning systems.” In: Frontiers in
neuroscience 7 (2013) (cit. on p. 53).

165

Bibliography

[Zamarreño, 2011] Carlos Zamarreño-Ramos et al. “On Spike-Timing-
Dependent-Plasticity, Memristive Devices, and
building a Self-Learning Visual Cortex.” In: Fron-
tiers in Neuroscience 5.26 (2011). DOI: 10.3389/
fnins.2011.00026. URL: http://www.frontiersin.
org/neuromorphic_engineering/10.3389/fnins.
2011.00026/abstract (cit. on pp. 54, 114).

166

