
Masterarbeit

Analysis and Implementation of
Cryptographic Hardware Solutions in

Secure Embedded Systems

Tobias Rauter

————————————–

Institut für Technische Informatik
Technische Universität Graz

Begutachter: Dipl.-Ing. Dr.techn. Christian Kreiner

Betreuer: Dipl.-Ing. Dr.techn. Christian Kreiner
Dipl.-Ing. Christopher Preschern

Graz, im September 2013

Kurzfassung

Sicherheit in eingebetteten System ist ein aktuelles, sehr breites Forschungsthema. Vor
allem im Bereich der Cyber-Physikalischen Systemen, bei denen Software für die Steue-
rung großer Maschinen verantwortlich ist, können Auswirkungen von Cyber-Angriffen fatal
sein. Diese Arbeit analysiert und implementiert verschiedene Sicherheitsfeatures auf ei-
nem ARM-basierten System, das zur Steuerung von Wasserkraftwerken verwendet werden
soll. Angreifer, die sich Zugang zu solchen System verschaffen, können nicht nur kriti-
sche Infrastruktur wie die Stromversorgung kontrollieren, sondern auch eine Gefahr für
menschliches Leben darstellen. Um Mögliche Bedrohungen aufzufinden, wird eine Sicher-
heitsanalyse mithilfe von Threat-Modeling-Techniken durchgeführt. Um einige der gefun-
denen Schwachstellen abzuschwächen werden verschiedene Technologien analysiert und
implementiert. Insbesondere wurde das System um Trusted Computing Technologien, die
durch ein Trusted Platform Module unterstützt werden, erweitert. Außerdem wird eine
Data-on-Rest Verschlüsselung für den nicht-volatilen Speicher eingeführt, welche durch
ein integriertes Hardware-AES-Modul durchgeführt wird. Die hinzugefügten Erweiterun-
gen werden bezüglich ihrer Auswirkungen auf die Systemsicherheit sowie der Auswirkun-
gen auf die Leistung analysiert.

1

Abstract

Security in embedded systems is a wide research topic. Especially in Cyber-Physical
Systems, where software controls large physical devices, the impact of attacks is potentially
enormous. This work analyzes and implements security enforcing features in an ARM-
based embedded system used for power plant automation. Adversaries which gain access
to such control software may not only harm functionality of critical infrastructure but also
human lifes.

In order to locate such threats, a security analysis with the help of threat modeling
techniques is done. Different technologies are integrated to mitigate some of the found
threats. In particular, trusted computing technologies assisted by a Trusted Platform
Module are analyzed and implemented to ensure and attest systems’ integrity. Further-
more Data-On-Rest encryption backed by an integrated hardware AES module and a key
which is not readable by software is integrated. The new features are analyzed concerning
their impact on systems’ security and integrity, as well as their effects on performance.

2

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

.............................. ...
date (signature)

3

Credits

This master thesis was carried out at the Institute for Technical Informatics, Graz
University of Technology.

At this point I want to thank my family for their mental and financial backup what
at all enabled the possibility to finally write this thesis. Moreover I want to thank all my
friends who stand by for all professional and personal questions due my whole study.

Moreover, I want to thank the staff of the Graz University of Technology, especially
the team around this project for their help in technical and organizational issues.

Graz, 2013/09 Tobias Rauter

4

Contents

1 Introduction 11
1.1 Motivation . 11
1.2 Outline . 11

2 Related Work 13
2.1 Trusted Computing Basics . 13

2.1.1 Overview . 13
2.1.2 Trusted and Secure Boot . 13
2.1.3 Root of Trust . 15
2.1.4 Trusted Platform Module . 15

2.2 Trusted Computing Technologies . 19
2.2.1 TPM Based Trusted Boot Systems 20
2.2.2 Secure Boot Processes without TPM 25

2.3 Limitations and Weaknesses . 27
2.4 Trusted Software Stack . 29

2.4.1 Overview . 29
2.4.2 Implementations . 30

3 Architecture and Concept 32
3.1 System Overview . 32

3.1.1 Basic Architecture . 32
3.1.2 Attacker Model . 32

3.2 Threat Model . 33
3.2.1 Security Assumptions . 34
3.2.2 Data Flow Analysis . 34
3.2.3 Threat Definition . 36
3.2.4 Security Enhancements . 38

3.3 Subsystem Description . 40
3.3.1 Authenticated Boot . 40
3.3.2 Userspace Interface . 43
3.3.3 Attestation . 43
3.3.4 Encrypted Filesystem . 45
3.3.5 Hardware Accelerated AES . 46

5

4 Design and Implementation 50
4.1 Target System . 50

4.1.1 Hardware Components . 50
4.1.2 Software . 51

4.2 U-Boot and Trusted Boot . 51
4.2.1 Overview . 51
4.2.2 Basic Boot Process . 51
4.2.3 Trusted Boot Process . 52
4.2.4 Trusted Boot with Root of Trust . 52
4.2.5 U-Boot I2C Interface . 52
4.2.6 U-Boot TPM Interfaces . 53
4.2.7 Trusted Boot Integration . 55

4.3 TPM in Linux . 55
4.3.1 I2C Subsystem . 57
4.3.2 TPM Subsystem . 59
4.3.3 TPM Device Driver . 60

4.4 Integrity Measurement Architecture . 60
4.4.1 Overview . 60
4.4.2 Collect Measurements . 62
4.4.3 IMA-Policies . 62
4.4.4 IMA Activation and Usage . 63

4.5 TPM Usage in User-space . 64
4.5.1 Overview . 64
4.5.2 QTSSWrapper . 64
4.5.3 TPM Keys in OpenSSL . 65
4.5.4 TPM Random Generator . 66

4.6 Hardware AES . 66
4.6.1 Linux and Cryptography . 66
4.6.2 Design of AES-Driver . 69
4.6.3 Userspace access . 70
4.6.4 Disk Encryption . 70

5 Results 72
5.1 Threat Mitigation . 72

5.1.1 User and Client PC . 74
5.1.2 Non-Volatile Memory . 74
5.1.3 Communication Controller . 75
5.1.4 Network Connection . 76
5.1.5 Limitations . 77

5.2 Trusted Boot Performance . 77
5.2.1 Overview . 77
5.2.2 Bootloader . 78
5.2.3 Operating System . 79
5.2.4 Conclusion . 80

5.3 Hardware AES Performance . 80
5.3.1 Measurement Setup . 81

6

5.3.2 In-Kernel Measurements . 82
5.3.3 User-Space Measurements . 82
5.3.4 Data On Rest Encryption . 84

6 Conclusion 85
6.1 Future Work . 86

7

List of Figures

2.1 Chain of Trust . 14
2.2 TPM Key Tree . 17
2.3 Exemplary PCR Content . 18
2.4 Remote Attestation . 18
2.5 PrivacyCA . 19
2.6 VFMA Overview . 21
2.7 E-TPM: Control Module . 22
2.8 E-TPM Boot Process . 22
2.9 Integrity Measurement Architecture . 24
2.10 IMA Example . 24
2.11 DRTM for Trusted Network Connection . 26
2.12 Secure Virtualization with TrustZone . 27
2.13 TPM Reset Attack . 28
2.14 Attacking DRTM on LPC Bus . 29
2.15 TSS Architecture . 30

3.1 System Architecture . 33
3.2 Basic Data Flow . 35
3.3 Comprehensive Data Flow . 35
3.4 Reduced Complexity Data Flow . 36
3.5 System Architecture with Security Enhancements 39
3.6 Authenticated Boot Overview . 40
3.7 Trusted Bootloader . 41
3.8 Trusted Operating System . 42
3.9 TSS Wrapper Interface . 44
3.10 Attestation of the Communication Controller 45
3.11 Encrypted Filesystem . 46
3.12 Scatter/Gather Process of the Hardware AES Driver 48
3.13 Workflow of the Hardware-Based AES Encryption 49

4.1 U-Boot’s Basic Boot Process . 52
4.2 U-Boot’s Trusted Boot Process . 53
4.3 Linux Subsystem Overview for TPM Communication 56
4.4 I2C Subsystem in Linux . 57
4.5 TPM Driver Implementation . 61
4.6 TPM Usage in Userspace . 65

8

4.7 Asynchronous Blockcipher . 67
4.8 DCP Implementation . 71

5.1 Reduced Complexity Data Flow . 72
5.2 U-Boot Measurement . 78
5.3 Distribution of Measured Files Sizes . 80
5.4 AES Performance in Kernel . 82
5.5 HW-AES: CPU Idle Time . 83
5.6 AES Performance in User-Space . 83

9

List of Tables

2.1 VFMA Bootloader Size . 20
2.2 TSS Implementation . 30

3.1 Threat Entities . 36
3.2 Modeled Threats . 37
3.3 PCR usage . 45

4.1 Used Software Modules . 51

5.1 Threat Entities . 73
5.2 Threat Mitigation Overview . 73
5.3 Measurement Setup for Trusted Boot Performance 78
5.4 Authenticated Boot Performance in U-Boot 79
5.5 Authenticated Boot Performance in Linux 80
5.6 Data On Rest Encryption . 84

10

Chapter 1

Introduction

1.1 Motivation

Security in embedded systems is a wide research topic. Especially in Cyber Physical
Systems (CPS), where software controls large physical devices, the impact of attacks is
potentially enormous[CHL+09]. Security problems in power plants may not only lead to
a blackout of critical infrastructure but have also the potential to harm the integrity of
human bodies.

The Stuxnet attacks showed that the simple prevention of physical access to automa-
tion systems is not sufficient to secure these systems [Lan11].

On the other hand, security enhancing features like trusted computing are implemented
in embedded systems and show promising results [Win08]. Threat modeling techniques
are introduced [HL09] in order to build a development process which is aware of possible
security possible security problems.

This work focuses on a controller system used in hydro-electric power plants which is
comparable to a Programmable Logic Controller (PLC). It provides a security analysis
and enhancements for the system. The main contributions of this work are:

• Security Analysis: In order to locate possible threats, a security analysis based on
threat modeling techniques is done.

• Enabling Trusted Computing : In order to mitigate a subset of the found threats,
trusted computing capabilities assisted by a Trusted Platform Module (TPM) are
introduced in the system.

• Data On Rest (DOR) encryption: Moreover, DOR encryption backed by an inte-
grated hardware Advanced Encryption Standard (AES) module is implemented.

• Security and Performance: The impact on security, as well as on performance of the
introduced features are analyzed and discussed.

1.2 Outline

In order to provide a short overview of the used techniques and tools, Chapter 2 provides a
description of trusted computing and TPM features. Moreover, similar trusted computing

11

CHAPTER 1. INTRODUCTION 12

designs and implementations which are used as base for this work are presented and dis-
cussed. The limitations of TPM based trusted computing are described by two exemplary
attacks.

Chapter 3 illustrates the overall architecture of the implemented system. After a
overview of the targeted system a comprehensive security analysis based on the STRIDE
(Spoofing identity, Tampering, Repudiation, Information disclosure, Denial of Service,
Elevation of Privilege) process is done. The security enhancements which are used to
counter these threats are illustrated and alternatives are discussed.

In Chapter 4 these concepts are refined and the actual implementation on the real
system is described.

Chapter 5 provides an analysis of the implemented features. Therefore, the effect on
security is discussed and their impact on system’s performance is analyzed.

Chapter 2

Related Work

This chapter starts with a short introduction of the basic principles and terms in the
trusted computing field to provide the needed backgrounds for the following work. More-
over, a selection of trusted computing systems, especially in the embedded field, is pre-
sented as these systems represent the base if this work. To clarify the limitations of TPM
based systems, two simple attacks are illustrated. The chapter ends with a short overview
of existing software frameworks which can be used to enable trusted computing features
on different platforms.

2.1 Trusted Computing Basics

2.1.1 Overview

Security and reliability are integral parts of modern information systems. The system’s
user, as well as a possible remote entity want to know if the software a system is running
is trustworthy. Otherwise security or privacy critical information may be exposed to non-
authorized entities.

The Trusted Computing Group (TCG) [TCG13] is a non-profit alliance of different
hardware and software vendors with the aim to enhance security in computing systems.
Therefore, the TCG specification defines different roots of trust, a Trusted Software Stack
(TSS) and a TPM. The TCG defines a trusted system as follows:

A trusted system is one that behaves in the expected manner for a

particular purpose. [TCG13]

Thus, a trusted system has to be able to ensure that it is in a known state and has
to provide possibilities to report this state to other entities in a tamper-resistant way.
Otherwise, it can not be guaranteed that the system behaves as expected.

2.1.2 Trusted and Secure Boot

A common way to ensure a known system state is the ”measure before execute” paradigm.
The basic idea is that all executable code is measured by the loading entity before the
system jumps to the entry point of the newly loaded executable. A measurement, in this

13

CHAPTER 2. RELATED WORK 14

case, is mostly a checksum or hash of the new executable which is compared to a pre-
calculated value which is stored in the loader’s binary. Consequently implementing this
paradigm at all system levels leads to a Chain of Trust (COT) as shown in Figure 2.1.

In authenticated boot, all measured values are stored in a tamper-resistant way and
the boot process is continued even if a module’s measurement does not match the expected
value. It is up to the software to read the measurement values and handle these cases.
This behavior makes it important, that the saved values cannot be altered freely, as a
malicious module could reset the saved measurements to pretend a trusted system state.
An example how to achieve this behavior with the help of a TPM is shown in Section
2.1.4.

Sometimes, especially in mobile computing, it is desired to never run unknown code at
all (above all in privileged mode, as the bootloader or the operating system does). This
approach is called secure boot. The process is similar to authenticated boot in Figure 2.1
but the system stops execution before a tampered executable is loaded. Since malicious
code can never be executed (at least at the boot process) a secure storage for any pre-
measured values is not needed. The drawback of this approach is that the system does
not run at all if something is altered, which is often not appreciate in systems with strong
reliability constraints.

2nd Bootloader

Operating System

Userspace Processes

 Load, Measure and Execute

OS Modules

1st Bootloader

(CRTM)

 System Reset

 Load, Measure and Execute

 Load, Measure and Execute

Figure 2.1: Chain of Trust: At each step in the boot process, the next module which has
to be loaded is measured (e.g., a hash function) before it is executed.

CHAPTER 2. RELATED WORK 15

2.1.3 Root of Trust

A trusted system needs some entities which are implicitly trusted at all. The TCG defines
three root of trusts for measurement, reporting and storage.

Core Root of Trust for Measurement

The Core Root of Trust for Measurement (CRTM) is the first entity which performs a
measurement operation. In Figure 2.1 the first level bootloader represents the CRTM.
On a normal Personal Computer (PC), this is a part of the Basic Input Output System
(BIOS). This entity has to be secured against tampering since an alteration of this part
cannot be detected. Some approaches to achieve this in embedded systems are shown in
Section 2.2.

Root of Trust for Reporting

The Root of Trust for Reporting (RTR) is used to securely report the system state acquired
by the Root of Trust for Measurement (RTM) to a third party. In the TCG specification
this is done by the TPM as described in Section 2.1.4 (remote attestation).

Root of Trust for Storage

The Root of Trust for Storage (RTS) includes functions to securely store keys or data.
As described in Section 2.1.4 the keys are stored hierarchically encrypted in order to save
keys in non-secure storage.

2.1.4 Trusted Platform Module

A TPM is basically a microcontroller with some cryptographic functions and secure stor-
age. It can be seen as integrated smart card on a system’s motherboard. The device is
passive, thus it does not do anything on its own. However, there exist some software-only
implementations too, as shown in Section 2.2.2.

Building Blocks

The basic blocks of a TPM are:

• A Non Volatatile Memory (NVM) which is used to store the Storage Root Key
(SRK) and the Endoresement Key (EK) as well as user defined values. This memory
is physically located in a shielded location where it is protected against interference
from the outside and exposure.

• A Rivest/Shamir/Adleman (RSA) engine which is used for asymmetric encryp-
tion/decryption of keys/data and for creating and verifying digital signatures.

• A Secure Hash Algorithm (SHA-1) engine used for Hashed Message Authentication
Code (HMAC).

• A True Random Number Generator (TRNG) which is used for key generation.

CHAPTER 2. RELATED WORK 16

Moreover, it consists of a Central Processing Unit (CPU) running a firmware which
handles the incoming requests. According to the TCG the supported I/O-interfaces are
Low Pin Count (LPC) and Inter-IC (I2C).

Key Types and Structure

The TCG defines different keys for different purposes which are used by the TPM.

• Endoresement Key (EK): This key is the unique platform identity key. Some manu-
facturers create this key at production time and sign it to certify that this key comes
from a TPM. This key cannot leave the TPM and cannot be used for signing.

• SRK: The SRK is the root element of the key hierarchy and used to generate the
next three keys.

• Storage Key : Used to encrypt other elements in the hierarchy.

• Signature Key : Used for signing operations. Have to be leafs in the hierarchy.

• Binding Key : Used to encrypt small amounts of data (like keys used for symmetric
cryptography).

• Attestation Identity Key (AIK): These keys are used as aliases for the EK and
used to sign Platform Configuration Register (PCR) values for remote attestation
as described later in this section.

Since the NVM of the TPM is very limited, only the EK and SRK are permanently
stored. All other keys are managed in a tree structure shown in Figure 2.2. Since every
private key is encrypted with the corresponding parent public key, all keys of the path
have to be loaded in order to use a private key. Listing 1 shows an exemplary sign task
with ”Key2” of figure 2.2: With the help of the SRK, ”Key1” is loaded and decrypted.
This key enables the decryption of ”Key2” which is used to sign the tbs-data-blob. Since
the private parts can not leave the TPM unless they are explicitly marked migrateable,
they are never accessible to software. The signing operation is done on the TPM and the
software receives the result only.

1 TPM tpm;

2 tbs = "to be signed"

3 tpm.loadkey("srk");

4 tpm.loadkey("key1");

5 tpm.loadkey("key2");

6 signature = tpm.signData("key2", tbs);

Listing 1: Exemplary signing with the help of a TPM: The key chain has to be loaded in
order to use ”Key2” which is used to sign the string.

CHAPTER 2. RELATED WORK 17

SRK

Key1 (Storage) Key3 (Binding)

Key2 (Signature) "Is encrypted by"

stored on TPM

stored encrypted on HDD

Figure 2.2: Key hierarchy on TPM: Since NVM is limited, only the SRK is permanently
stored on the TPM. Other keys are encrypted and stored on the hard disk. In order to
use a key in the hierarchy, the full path has to be loaded and decrypted.

Platform Configuration Register

The PCRs are used to save measurements on the TPM. As mentioned before it is necessary
to prevent arbitrary write access to these registers. Otherwise, a malicious software with
privileged access is able to write false measurement states and the system cannot detect
the unauthorized software. However, a TPM only provides an ordinary read and an extend
command. The extension of a PCR is defined in equation (2.1)1.

PCR val(i+ 1) = SHA1(PCR val(i)||measurement) (2.1)

Since the resulting value is concatenated and hashed with the given measurement, the
complexity to generate a measurement which results in a given value is 2160 (first preim-
age).

Figure 2.3 show an exemplary content of the register on a ordinary PC. According to
the specification[TCG05], current TPMs have to implement 24 of these registers, wherein
the first 16 are only reset on platform reset and the remaining are reserved for Dynamic
Root of Trust for Measurement (D-RTM) usage.

Binding and Sealing

Bind and unbind are TPM primitives used to encrypt/decrypt another key or data with a
storage key. Sealing also uses given hash values which have to represent the TPM’s state
(i.e., the PCR content) at unseal time. Additionally the unsealing TPM has to be the
same one which sealed the buffer. Thus, a defective TPM causes data loss of all data ever
sealed on this device.

1The || sign represents a concatenation.

CHAPTER 2. RELATED WORK 18

PCR-00: 7E 90 9A CA 58 42 A0 F1 EB 4B F1 10 34 60 3E C8 9E 91 F5 B2

PCR-01: 7C 41 68 85 BB 51 91 0C 32 06 FD A6 01 75 EC 53 19 B4 2B 22

PCR-02: 93 10 04 B1 81 BE 42 A6 D5 88 E7 FF FB 07 30 12 79 43 EE 27

PCR-03: B2 A8 3B 0E BF 2F 83 74 29 9A 5B 2B DF C3 1E A9 55 AD 72 36

PCR-04: 62 60 F2 46 38 33 4A 1E 8F FD FA BE 6E 70 33 EF 05 5B 9E B7

PCR-05: 9C 89 EB 4F BC D9 E8 36 3C 97 52 52 D8 9A 73 78 88 18 16 AC

PCR-06: 56 47 16 89 83 C8 94 E7 BB EF F1 AA 3D FB DE 84 8F 91 8F 06

PCR-07: B2 A8 3B 0E BF 2F 83 74 29 9A 5B 2B DF C3 1E A9 55 AD 72 36

...

PCR-17: FF

PCR-18: FF

PCR-19: FF

PCR-20: FF

PCR-21: FF

PCR-22: FF

PCR-23: 00

Figure 2.3: Exemplary content of the PCRs on an ordinary PC.

Remote Attestation

As mentioned before, a trusted system has to provide the functionality to prove its con-
figuration to another entity. This process is called remote attestation. The basic progress
is shown in figure 2.4.

Figure 2.4: Attestation of a secure state: The remote entity challenges the trusted system
with a random value to check system’s integrity. The TPM signs the current PCR values
and the nonce to attest its state.

The remote entity sends a random value, called nonce, and a quote request, which is
basically a list of PCR numbers the entity is interested in. The trusted system performs
a TPM QUOTE operation on the TPM. The TPM signs the current PCR values and the

CHAPTER 2. RELATED WORK 19

nonce with an AIK. The remote entity is now able to compare the PCR values to stored
references and check the signature with the public part of the AIK in order to ensure data
integrity. In this case, the remote entity has to know the trusted system’s public AIK and
the key has to be distributed in a secure way.

Another possibility is the use of a Privacy Certification Authority (PrivacyCA) shown
in figure 2.5. The trusted system generates an AIK and sends it, together with its vendor-
signed EK certificate to the PrivacyCA. The PrivacyCA checks the EK-certificate, signs
the AIK and encrypts the response with the public part of the EK.

Create AIK

Create Request

Include EK Cert

Encrypt with

public PCA key

Validate AIK

and EK

Issue AIK certificateActivate AIK

Privacy CAClient

Figure 2.5: PrivacyCA: After a new AIK is created, the client sends a signing request
including the vendor-signed EK certificate to the PrivacyCA. If everything is OK, the
PrivacyCA signs the AIK and the key can be used for attestation.

In this case the entity which request an attestation can ask the PrivacyCA for the AIK
certificate state and does not need to hold its own copy of the key.

2.2 Trusted Computing Technologies

The basic ideas behind the techniques described in section 2.1 were proposed in 1989 by
Grasser et al.[GGKL89]. Yee et al. proposed the use of a cryptographic co-processor to
verify the integrity of software[YT95]. Recent development focuses on the integration of
trusted computing technologies in embedded systems to ensure secure and/or safe func-
tionality. This section gives an overview of similar systems which are the base of this
work.

CHAPTER 2. RELATED WORK 20

2.2.1 TPM Based Trusted Boot Systems

Verification-Based Multi-Backup Firmware Architecture

Yin et al. used the measure-before-execute paradigm to increase reliability in embedded
systems[YDJ11]. NAND flash is often used as NVM in embedded system. However, they
stated that this technique has a high rate of bad blocks what may damage the firmware
running on the system. Figure 2.6 shows the basic principle of their system. A minimal
bootloader, called PreBoot is loaded and checks the integrity of the actual bootloader. If
the bootloader’s integrity check fails, a backup copy is checked and loaded. The system
is able to update the damaged bootloader with the backup copy. An existing operating
system is loaded the same way. PreBoot represents the CRTM, thus it is not checked
anywhere. However, since this part can be implemented in few bytes, the chance of
PreBoot to be damaged is very low. The footprints of the different modules implemented
on an ARM-based system are shown in Table 2.1. The boot-time overhead introduced by
this system is 400ns and 1.5ms in case of a valid or damaged bootloader. However, about
50% of this overhead is the execution time of the checksum function. Compared to the
standard boot process, the VFMA approach uses 65% more time to boot in case of a valid
bootloader.

Table 2.1: Size of PreBoot compared to the standard bootloader.
Module Size

U-Boot (Standard) 219.7 kB

PreBoot (VFMA) 1.9 kB
U-Boot (VFMA) 219.5 kB

Reliable Trusted Boot

Another approach combining authenticated boot concepts with reliability was done by Li
et al.[LZZ11]. They also proposed a CRTM which is integrated in a dedicated hardware.
Thus, they do not rely on any software which has to be stored in a tamper-resistant way.
First, they introduced the Extended TPM (E-TPM), a hardware module which covers
basic TPM functionality with the following extensions:

• Control Module: The basic structure of the Control Module is shown in Figure 2.7.
It is used to enforce E-TPM start-up before the rest of the platform gets access to
peripherals. CPU and peripherals are set on hold while the Control Module checks
the integrity of critical data.

• Symmetric Cryptography : Additionally the E-TPM contains a symmetric cryptog-
raphy engine which can be used through the TSS. It implements Data Encryption
Standard (DES), Triple Data Encryption Standard (3DES) and Encryption Algo-
rithm for Wireless Network (SMS4) in hardware in order to provide a high computing
speed.

Based on this technology, the boot process of an embedded system can be extended
as shown in Figure 2.8. On system reset, the Control Module of the E-TPM takes over

CHAPTER 2. RELATED WORK 21

Basic Configuration

Load and Verify V1

Failed? Boot V1

Failed? Halt

Load and Verify V2

Update V1

Boot V2

Yes

No

Reset

No

Yes

Figure 2.6: VFMA boot process: After minimal configuration done by PreBoot , the first
version (V1) of the bootloader is loaded and verified. In case of integrity failure, the
backup copy (V2) is loaded. If the backup copy can be verified, the original version is
replaced with the backup and booted.

bus control and reads the bootloader from unprotected memory. If the signature of the
executable can be verified, the bus is handed over to the CPU and the system can start up
normally. Otherwise, the E-TPM tries to load and verify a recovery-copy of the bootloader
from protected storage. When even this step fails, the system is halted. As mentioned
before, this method provides two important advantages:

• The system does not rely on a bootstrap code that is securely stored (besides the
recovery-bootloader) since the CRTM is build in hardware. Thus, updating the
bootloader is simpler than in ordinary TPM-based systems.

• On the other hand, even if someone tampered with the NVM, the system is able to
boot a minimal software and the user is able to detect these modifications.

CHAPTER 2. RELATED WORK 22

Bus Control

Module

Startup Control

Module

CPUPeripherials

Data Bus

Data Bus
Control Signals

Control Module

Figure 2.7: Control Module of ETPM: The Control Module is used to enforce E-TPM
start-up while the rest of the platform is put on hold.

Integrity Check

Failed?

Failed? Halt

Hand Over

Control and Boot

Recovery

Yes

No

Reset

Yes

Hand Over

Control and Boot

Load and Check

Recovery

No

Figure 2.8: Boot process with E-TPM: The E-TPM loads and verifies the boot code and
does not start the CPU without ensured integrity of the executable.

CHAPTER 2. RELATED WORK 23

Integrity Measurement Architecture

The work presented so far focused on a measured boot process. The CRTM measures
the bootloader, the bootloader the kernel and so on. In order to provide a completely
measured system, account of the user-space processes has to be taken too.

As stated in Section 2.1 the extension of a PCR is non-commutative. However, in
off-the-shelf operating systems, user-space applications and libraries load quite randomly.
Some services only start if specific hardware is plugged in or on other external interrupts.
Moreover, scheduling can lead to different behavior of late loaded libraries. If every ap-
plication is measured and extended into the same PCR, such behavior leads to different
cumulative measurements at each time. Additionally, it is not entirely clear, what is
worth to measure. Measuring and extending every application binary at every execution
potentially leads to a high measurement overhead.

Sailer et al. worked on this problem and introduced a TPM-based Integrity Mea-
surement Architecture (IMA)[SZJvD04]. The basic idea is illustrated in figure 2.9. To
initialize the IMA, the following tasks have to be performed.

• Ensure a chain of trust up to the kernel (i.e., verify the bootloader and the kernel
before it is executed and extend the measurements to the TPM.

• Load the IMA module and the TPM driver before any code which is not integral
part of the kernel has to be executed.

• Install hooks which are able to react on execution of user-space files or late load of
kernel modules.

After the initialization, a measurement list is created. This list contains one line for
each measured binary. Each of these lines involve the name of the measured binary and
a hash value of the binary at execution time. The first entry contains the so called ’boot
aggregate’, what is the accumulated value of the pre-kernel measurements, taken from the
appropriate PCRs. Before each execution of a user-space application the following tasks
are done:

• Check if the binary is already in the measurement list and whether it was not altered
since the last measurement of this binary has been taken. If yes, continue with
execution.

• If the binary was not measured before, or have been altered since the last execution,
hash it and append it to the measurement list.

• Extend the new measurement to the configured PCR.

Figure 2.10 shows an exemplary measurement list. If any other entity wants to check
the integrity of the measured system it has to read the measurement list and a signed
quote (as described in Section 2.1) of the PCR used by the IMA. With the quote, the
remote entity is able to check the integrity of the measurement list and with the list it is
able to verify all software which runs or have been running on the system.

The IMA has been implemented into Linux and is also able to measure other important,
but not directly executed files like configurations or scripts. This can be adjusted with
different policies and is discussed in Section 4.4.

CHAPTER 2. RELATED WORK 24

Boot OS

Ensure CoT

Load TPM Driver

and IMA Module

Install Measurement

Hooks

Hook intercepts

action

Measure File

Append to list

Extend the PCR

Platform Reset New Binary about

to be executed

Continue ActionFinish Boot Process

Figure 2.9: The basic work-flow of IMA: On system boot time, the TPM driver and
IMA hooks are installed. Whenever a new file is about to be executed, the hash value is
appended to the measurement list and the accumulation of the measurements are extended
to the TPM.

10 d0bb59e83c371...ba6 ima 365a7adf8fa89...0b8 boot_aggregate

10 76188748450ab...a51 ima f39e77957b909...2ca /bin/sleep

10 df27e64596391...a8e ima 78a85b50138c4...a50 ld-2.15.so

... ...

10 30fa7707af01a...08b ima 72ebd589aa955...5fe parport.ko

Figure 2.10: Exemplary measurement list of the IMA in Linux.

DRTM for Secure Network

The conventional way to measure the integrity of a system is to build a chain of trust
and measure all executables starting at system’s boot time. In real computer systems this
measurements grow quickly to a size where management and verification may be very hard.
Different CPU vendors implement so called late launch technologies (e.g., Intel’s Trusted
Execution Technology (TXT)) to build a D-RTM. Hereby, the system stops executing
normal code and switches to an isolated mode. The CPU starts a hypervisor and uses
PCRs which are only usable in this special mode. This enables a starting point for a root
of trust which does not need a real hardware reboot or a completely measured system.

Feng et. al proposed a Trusted Network Connection (TNC) based on this technology
[FQmYF11]. The main goals of a TNC is to prevent insecure terminals from accessing
restricted networks. Basically this is done by measuring a system and check the status
before it is authorized to access the network. A problem of existing solutions is the Lying

CHAPTER 2. RELATED WORK 25

Endpoint Problem (LEP). A compromised terminal can simply forge a valid measurement
value. Technologies like authenticated boot and the IMA face this problem, but rely on a
CRTM.

As shown in Figure 2.11, the proposed system uses a D-RTM based on Intel TxT:

• Whenever the client want to join the network, the Network Access Control Manager
System (NACMS) sends a random nonce to the client.

• The client initializes the late-launch environment (called NACVisor) and extends
the measurement of the hypervisor to a special PCR before executing it.

• Similar to IMA running processes are measured.

• When all measurements have been collected, the client switches back to its normal
context and creates a quote of the PCRs.

• The NACMS checks the quote and the measurement list and allows network access
if the integrity can be ensured.

The system has been exemplary implemented on Windows and Linux and is able to
attest a trusted system state without the need of a CRTM.

2.2.2 Secure Boot Processes without TPM

Another possibility to ensure the integrity of the bootloader is to store it on tamper
resistant memory which is located in the System on Chip (SoC) itself.

An exemplary technology which enables these kind of systems is ARM’s TrustZone.
This system introduces a secure and non-secure world in hardware: Only the secure world
has unrestricted access to the systems hardware, memory and the on-chip Read Only
Memory (ROM). A special command switches the SoC to non-secure mode while the
secure world code is able to mask non-secure access to the different subsystems. However,
it is possible to jump back to secure world with so called Secure Monitor Call (SMC)
which can be seen similar to system calls in operation systems.

Based on this technology, a secure boot process using the on-chip ROM is presented
in [AHYK11]. Moreover, these subsystems enable the use of a software-based TPM.

Software Based Trusted Platform Module

Instead of using a dedicated hardware TPM, sometimes it might be sufficient to simply use
a software based implementation. Especially in development phase, it is advantageous to
use a TPM which can be re-initialized without a platform reset. Moreover, software based
approaches are generally faster and easier to debug. The drawback of such implementa-
tions is that the TPM is running in the same context as other software, which enables
simple attacks. However, in virtualized environments this problem can be mitigated if the
host and guest contexts are separated properly.

There are two different implementations which are used widely. The IBM TPM Em-
ulator [Cor13] uses a network socket for communication. The TSS is able to connect to
this socket and user software can use the software TPM transparently.

CHAPTER 2. RELATED WORK 26

Figure 2.11: DRTM for trusted network connection: In order to get access to the network,
the client has to prove its state to the NACMS. This is done with the help of the NACVisor,
that is late-launched by the CPU, measures the system state and extends the results to
the TPM. This approach removes the need of a chain of trust built up at boot time.

The Berlios TPM Emulator [SS13] implements a TPM device driver for Linux which
communicates with a user-space-daemon which implements the actual TPM functionality.
This approach enables the possibility to use the software TPM in kernel-space.

Virtualization

Based on the technologies described before, a system with software TPM in secure world
virtualizing a non-secure operating system has been introduced in [Win08]. Figure 2.12
shows the basic building blocks.

In the secure world, a minimal Linux with a driver used to manage the privileges and
callbacks of non-secure world runs a software based TPM and a Virtual Machine (VM)
supervisor. The supervisor defines platform resources which may be accessed by the guest

CHAPTER 2. RELATED WORK 27

VM and reacts on its secure monitor calls.

Non-Secure WorldSecure World

Secure World OS

VM Interface

VM

Supervisor

Software TPM

Secure

Monitor
OS

TPM Interface

Trusted Software

Stack

TPM Application

Kernelspace

Userspace

Figure 2.12: Virtualization with TrustZone: The supervisor is managing virtual machines
in Non-Secure world.

It has been shown that the non-privileged user-space supervisor introduces a set of
advantages compared to fully privileged VM management code:

• The amount of secure privileged code is minimized, what reduces the attack surface
of the secure world.

• Debugging of secure user-space applications has turned out to be more straight-
forward compared to kernel-space code.

Furthermore, the authors implemented the system on real hardware and provides a
framework for mobile trusted systems.

2.3 Limitations and Weaknesses

As mentioned before, physical access to the TPM potentially makes it futile. This section
covers two hardware attacks on these systems.

TPM Reset Attack

As described in Section 2.1 the integrity measurement of the system relies on the integrity
of the PCRs. As illustrated in Figure 2.13 the chain of trust can be compromised if the
attacker is able to reset the PCR and extend a bogus value into the TPM. This value

CHAPTER 2. RELATED WORK 28

Bootloader OS Userspace App1Loaded Application

PCR Value 0 hash(BL) hash(BL || OS)

Bad

Application

hash(BL||OS||App1) hash(..||Bad Appl.) 0

TPM_Extend

(BL||OS||App1)

hash(BL||OS||App1)

TPM

Hardware Reset

Figure 2.13: TPM reset attack: If an adversary is able to reset the PCR values he or she
is also able to mask the fact that unknown software is running on the system.

can be an accumulation of the real values, which would be extended into the PCR if the
system runs normally. In this case the system would not recognize the changed state.

Therefore, the TPM is only re-initialized on system reset. However, if an adversary
has physical access, it is possible to achieve this behavior by grounding the LPC reset line
with the help of a simple wire. Since the startup command of the TPM does not need a
locality check, the attacker can get control over the TPM anytime.

These kind of attacks can be mitigated with the use of a D-RTM as in OSLO [Kau07],
since the needed commands to initiate a D-RTM are hard to fake in software. However, it
does not provide real security against hardware attacks as the next presented work shows.
Other approaches might be an encrypted communication between the TPM and the CPU
or the integration of TPM like features into the CPU-die as mentioned before.

Attacking a DRTM

As described in Section 2.2.1 some CPUs provide a ’Late-Launch’ feature which enables
the possibility to start a measurement chain anytime after system startup. Therefore the
CPU needs an extra privilege level called locality. In normal PCs this locality level is
checked by the southbridge. Thus, an attack between the CPU and the southbridge might
be hard. However, the last mile to the TPM is done with the LPC bus which has been
successfully attacked in [WD12]. Figure 2.14 shows the basic idea behind this attack. The
upper LPC-frame describes an ordinary memory write action on the LPC bus which can
be done by any software which gains root access. The lower frame shows a TPM write
cycle with the locality bits used for authentication. As shown in the figure, it is possible to
put a complete TPM command into the ordinary write frame when the adversary is able to
mask the Start of Frame (SOF) line. The author of the attack used a Field Programmable

CHAPTER 2. RELATED WORK 29

Gate Array (FPGA) to delay the SOF signal and wrote highly privileged TPM commands
which were not detectable by the southbridge.

Preamble 32 bit Address 8 bit Data Postambel

Adr. + LocalityPreamble 8 bit Data Postambel

Memory Write

TPM Write

SOF

Data

SOF

Data

Figure 2.14: DRTM Attack on LPC bus: By delaying the SOF line of the LPC bus it is
possible to circumvent TPM locality checks within ordinary memory write cycles

In summary, it has to be said that a TPM is a device which can be used to defend
against remote software attacks but completely fails if someone has direct access to the
hardware. Thus, to prevent malicious users from attacking the system (e.g., a user who
wants to disable Digital Rights Management (DRM) features), the system has to use other
technologies.

2.4 Trusted Software Stack

2.4.1 Overview

The TCG defined the TSS software stack specification with three parts: The Trusted
Device Driver Library (TDDL), the Control Software (TCS), and the TSS Service Provider
(TSP). The architectural overview is given in Figure 2.15.

The TDDL provides an Application Programming Interface (API) to interface with
the actual TPM device driver used on the system. It offers low level functionality to open
and close a device, as well as basic communication.

The TCS synchronizes the access to a TPM and handles resources like authorization
sessions and key context swapping [CYC+07]. In case of TrouSerS, this module is im-
plemented as a single service daemon which is also capable to interface over a network
interface.

Every application interfaces with the TSP, what is mostly implemented as shared
library and provides the API to communicate with the TCS.

CHAPTER 2. RELATED WORK 30

Kernel Space

User Space

Remote System

TSS Device

Driver Library

TPM Device Driver TPM Hardware

TSS Device

Driver Library

TSS Service Provider

Local Application TSS Service Provider

Remote Application

Network

RPC Server

RPC Client

Figure 2.15: Basic Architecture of the TSS[CYC+07].

2.4.2 Implementations

The TSS has been implemented on different underlying techniques. TrouSerS was one of
the first implementations and is written in C . However, there are version for Java and
Mono/.Net too, as well as reduced complexity designs focused on embedded systems. An
overview of the different implementations is given in table 2.2.

Table 2.2: Comparison of different TSS implementations.
Trousers jTSS uTSS doTSS

Language C Java C++/Qt .Net/Mono
Licence CPL Dual, GPLv2 for FOSS Proprietary Apache-2

Platforms Linux/Windows Linux/Windows/ Linux/Embedded Windows/Linux/
Embedded Embedded Embedded

CHAPTER 2. RELATED WORK 31

Trousers

TrouSerS [TRO13] is IBM’s version of the TSS. It is Free and Open Source Software
(FOSS) and ships with additional tools to manage the TPM (TPMTools), as well as
an extension for open Secure Socket Layer (openSSL) to use the TPM for asymmetric
cryptography. The interface is very complex so it requires in-depth knowledge of the
specification to use it safely.

jTSS

jTSS [IAI13] is an object-oriented Java implementation of the TSS. The object-oriented
approach reduces the complexity but it does not reduce the effort of reading relevant parts
of the TCG specification[RNK+11].

uTSS

µTSS is an implementation by Sirrix [SZ10]. The design goals of this TSS targeted
especially embedded systems and simplicity. However, there is no free implementation
available.

doTSS

doTSS is an implementation with the goal to provide a developer friendly TSS [RNK+11].
It is written in C# and can be used with Microsoft’s .Net and Mono frameworks.

Chapter 3

Architecture and Concept

This chapter provides an overview of the security enhancing features in a platform-
independent way. Therefore, a comprehensive threat analysis with the help of STRIDE is
done. Subsequently, the concepts of the threat mitigation technologies which are imple-
mented in this work are presented. These mitigation technologies contain an authenticated
boot method backed by a TPM for embedded systems and a way to attest the system’s
state over an insecure network connection. Moreover, an object-oriented wrapper for the
TrouSerS TSS is presented in order to simplify the usage of the TPM capabilities and make
the process less error prone. Additionally, the encryption of the filesystem is discussed
and an approach to potentially speed up this process by the use of hardware accelerated
AES encryption is presented.

3.1 System Overview

3.1.1 Basic Architecture

Figure 3.1 shows the basic environment.
The heart of the system is the communication controller, which is an embedded system

including a CPU which is capable of running a ’full’ operating system (i.e., provide a
Memory Management Unit (MMU)). The communication controller is controlled with the
client computer over a TCP-IP network. The network interface of the communication
controller has to be considered untrusted as it may be connected to the internet. The
communication controller communicates via Serial Periphial Interface (SPI) with n >=
1 application controller which are running critical controlling tasks defined in loadable
software modules. These modules are defined by the user and loaded with help of the
communication controller which also gathers information from all application controller
and presents it over the network connection.

3.1.2 Attacker Model

Before it is possible to define the threats for the system, the targeted adversary has to
be defined. First of all, it has to be assumed that an attacker is not able to get physical
access to the communication controller or any application controller. As stated in section
2.3 physical access potentially breaks trusted computing approaches at little cost. None of

32

CHAPTER 3. ARCHITECTURE AND CONCEPT 33

Controller Board

User Client Computer

Communication

Controller

Application

Controller

Application

Controller

Company Network

Process Bus

Sensors

Acutators

NVM

Figure 3.1: The basic system architecture

the described techniques is able to counter a malicious user with the aim to break systems
security completely. The aim of such users may be breaking a DRM system in order to
run unlicensed software. However, some techniques indeed increase the difficulty of such
processes.

The attacker which has to be countered has the aim to affect the functionality of the
system. This can be achieved by:

• Spoofing a user or a client computer in order to control the communication controller:
Whenever an attacker is able to pretend it is a privileged user, it is possible to simply
exchange the software running on the application controller.

• Get access to the communication controller2 and send malicious messages to the
application controller or intercept the communication between client and commu-
nication controller. In the former case it is possible to change the behavior of the
application controller. The latter case opens the possibility to reveal user credentials
or falsify information in order to force the user to force the user to perform tasks
which may decrease system’s functionality.

3.2 Threat Model

This section describes the threats to the system according to the risk analysis of the
Security Development Lifecycle (SDL) [HL09]. In order to achieve this, some assumptions

2Since this device is connected to an open network and running a standard operating system it has to
be assumed that privileged logical access to the attacker is available at least temporary.

CHAPTER 3. ARCHITECTURE AND CONCEPT 34

about the system’s security have to be done. Subsequently, the involved users, processes,
data flows and the threats on these entities have to be defined.

3.2.1 Security Assumptions

Assumption 1

As discussed in Section 3.1.2, the main objective of the threat mitigation techniques de-
scribed here are implemented to counter an adversary who wants to manipulate the system
in order to decrease the functionality. Based on this claim, it can be assumed that no at-
tacker has physical access to the communication controller and application controller at
system’s lifetime. However, it can not be guaranteed that the system is safe from access
after disposal. Thus, a physical access is not allowed to disclose information that can be
used to attack other systems.

Assumption 2

In order to simplify the model, it is assumed that a logical access on the communication
controller of an adversary implies fully privileged access. There are some technologies to
mitigate this elevation of privilege but it can not be countered completely.

Assumption 3

The third assumption states that the company’s process bus is not accessible by the
attacker since it is physically shielded. This assumption can be done safely because an
adversary who is able to access this bus is also able to forge messages to and from sensors
or actuators. In other words, it is possible to reduce the system borders and take out the
process bus side completely from this security analysis.

3.2.2 Data Flow Analysis

In order to find possible attack vectors, the whole system has to be investigated under
a data flow point of view. Figure 3.2 shows the data flow diagram of the system. The
user, who may be a valid user or an adversary, communicates via a client process with
the communication controller which itself talks to the application controller over SPI. The
dotted lines represents trust boundaries. In this case, data flows from lowly to highly
trusted entities and vice versa. Thus, these data flows have to be checked for validity.

In Figure 3.2, the software on the communication controller is shown as one big set of
processes. Figure 3.3 shows a more detailed view on these processes. Only two of them
are allowed to communicate over the network interface: The Secure Shell Daemon (sshd)
for administration tasks and the TCS for user interaction. The sshd runs in a higher
privileged world as the TCS and the kernel is the most trusted process. The NVM is
modeled as data storage which is communicating with the kernel. Since all processes on
the application controller are equally security relevant, a deeper view on this subsystem
is not necessary.

CHAPTER 3. ARCHITECTURE AND CONCEPT 35

Comm.

Controller

SW (3)

User (1)

Appl.

Controller

SW (4)

Client

PC

SW (2)

Network Connection SPI

User Interaction

Figure 3.2: The basic data flow of the system: The user communicates with the com-
munication controller via the client PC. The application controller is controlled by the
communication controller.

User (1)
Appl.

Controller

SW (4)

Network Connection

SPI

User Interaction

Client

PC

SW (2)
Syscalls

Bus

NVM (5)

Kernel (3.1)

SSHd (3.2)

TCS (3.3)

Comm.

Controller

SW (3.4)

Figure 3.3: The data flow of the system with in-detail view into the communication
controller.

CHAPTER 3. ARCHITECTURE AND CONCEPT 36

In order to simplify the threat model, it is possible to merge some processes as shown
in Figure 3.4:

• According to Assumption 2 all processes on the communication controller can be
seen at the same trust level as an elevation of privilege on the system can not be
excepted.

• The client process can be seen as a simple interface of the communication controller
from security point of view. It does not matter if the user communicates with the help
of the delivered software or uses other communication tools, so it can be discarded.
This assumption does not hold when it is possible to use mutual attestation and the
software running on the client PC is measurable.

User (1)

Appl.

Controller

SW (4)

Network Connection

SPI

Storage Connection

NVM (5)

Comm.

Controller

SW (3)

Figure 3.4: The data flow of the system with reduced complexity based on Assumption 2
and transparent client software.

Based on the simplified model, the modules which have to be analyzed can be summa-
rized as in Table 3.1. This reduction may have been done on the basic data flow (Figure
3.2) too. However, a detailed view into important process groups may be necessary in
order to determine all different trust levels to examine possible threats completely.

Table 3.1: The types of the different modules
Module Type Modules

External Identity User (1)
Data Store NVM (5)

Process C-Software (3), A-Software(4)
Data Flow Network (1-3), Storage Connection (3-5) SPI(3-4)

3.2.3 Threat Definition

The modules defined in Table 3.1 are analyzed on possible threats with the STRIDE model
of the SDL. For this purpose the threat tree patterns presented in [HL09] are used. Table
3.2 shows the basic attack types for the different kind of modules examined in this section.

CHAPTER 3. ARCHITECTURE AND CONCEPT 37

Table 3.2: Possible threat types for the different modules
Module Threat Types

User (1) Identity Spoofing, Credentials disclosure, Replay Attack,
Repudiation

NVM(5) Data Confidentiality, Integrity of Executables
Controller Software (3) Spoofing Controller, Tamper with Processes

Network Connection (1-3) Link Confidentiality/Integrity

User (1)

The important threat types affecting the user are identity spoofing and repudiation. The
authentication process has to provide the following properties:

• Credentials used by the user to authenticate have to be strong (i.e., not simply
guessable) and there has to be a proper update policy.

• The credentials have to be stored on the communication controller. This storage has
to be protected against unauthorized access.

• The transmission of the credentials has to be secure against eavesdropping.

• If key-based authentication is used, the key distribution process has to be secure.

• Commands and configurations placed by a user have to be logged in a tamper resis-
tant way in order to ensure non-repudiation.

• Moreover, it has to be guaranteed that these commands cannot be placed by another
person or replayed.

NVM (5)

The NVM has to be secured against tampering and information disclosure.

• Stored data like keys or user credentials may not be readable by unauthorized enti-
ties.

• Moreover, an altered binary or configuration file has to be detected in order to
provide a secure system state.

Communication Controller Software (3)

The software running on the communication controller is the most critical part as it is the
system’s connection to the open network.

• First, it should not be possible for an adversary to spoof a communication controller
because a user may present his credentials to the spoofed system.

• Moreover it should not be possible to tamper with the processes on the system, at
least without notifying all communication partners of the altered state.

CHAPTER 3. ARCHITECTURE AND CONCEPT 38

Application Controller Software (4)

Since the software running on this controller is safety-critical, it has to be ensured that
only known and authorized software is running on this module. Since the only commu-
nication channel to the outside world is the SPI interface it has to be ensured that the
communication partner is authorized and does not run software which is not trusted.

On-Board Data Flows

The Storage Connection (3-5) and the SPI(3-4) are not physically accessible for any adverse
entity (Assumption 1). For this reason, they have not be secured against information
disclosure or altering of data.

Network Connection (1-3)

Communication between the user (or the client software) and the communication controller
is done via a relatively open network connection (the company’s internal network).

• Since physical access can not be prohibited it has to be ensured that the link does
not reveal information and that it is resistant against tampering.

• Critical data like encryption keys or credentials have to be encrypted the whole way
between the two endpoints.

• Moreover, an altered message should be detected and discarded.

3.2.4 Security Enhancements

The main focus of the security enhancements lies on the communication controller since
it is the system’s gateway to outer world. Figure 3.5 shows the changes made in order
to improve the system’s resistance against attackers described in Section 3.1.2. These
changes contain:

• Authenticated boot with the help of a TPM on the communication controller3.

• Attestation of the communication controller’s software state for the client software
and the application controller.

• Encryption of parts of the communication controller’s NVM.

• Acceleration of symmetric cryptography by enabling the on-chip cryptographic co-
processor.

Authenticated Boot

The authenticated boot functionality on the communication controller is necessary to
enable the possibility of remote attestation. Because a TPM is used, even a person with
fully privileged access to the communication controller is not able to falsify measurements
if the process is done properly as described in Section 3.3.1.

3The TPM can be simply exchanged with other similar devices as discussed in Section 3.3.1.

CHAPTER 3. ARCHITECTURE AND CONCEPT 39

Controller Board

User Client Computer

Communication

Controller

Application

Controller

Application

Controller

Company Network

Process Bus

Sensors

Acutators

NVMTPM

Trusted

Encrypted

Crypto Co-Processor

Figure 3.5: Overview of security enhancing features applied to the system.

Attestation

The attestation of the communication controller’s state enables two important possibilities:

• A client software running on a system which is not affected by the attacker is able
to detect the changes in the communication controller, rejects communication, and
informs the user.

• An application controller simply rejects any communication with an affected com-
munication controller. This may affect functionality, but enables the possibility to
ensure at least the operation of some critical parts which are in charge for ensuring
functional safety.

Disk Encryption

Disk encryption prevents data leakage on discharged systems. Providing that the key or
the secret which is used for encryption is destroyed it is not necessary to wipe the disk
with random data. Section 3.3.4 describes an approach with a non-software-readable key
by using a cryptographic co-processor.

AES Hardware Acceleration

Both, the disk encryption and the network connections (Secure Sockets Layer (SSL)) use
symmetric cipher algorithms. Especially on embedded systems with limited resources such
algorithms need much CPU time. Section 3.3.5 shows an approach to drastically reduce
CPU time by using a co-processor which is capable processing AES ciphers.

CHAPTER 3. ARCHITECTURE AND CONCEPT 40

3.3 Subsystem Description

3.3.1 Authenticated Boot

The heart of the security enhancements represents the authenticated boot mechanism of
the communication controller. Figure 3.6 contrasts the standard boot sequence with the
authenticated boot backed by a TPM. Basically, the module which is about to be loaded
is hashed and the results are saved into the PCRs at every stage.

Bootloader

Operating System

Userspace Processes

 System Reset

 Load and Execute

 Load and Execute

OS Modules

Bootloader

Operating System

Userspace Processes

 System Reset

 Load and Execute

 Load and Execute

OS Modules

TPM

Extend OS Measuerement

Extend Userspace and

Module Measurements

Figure 3.6: Overview of the authenticated boot mechanism compared to ordinary system
initialization.

Bootloader and SRTM

The bootloader is the first code loaded on a platform startup or reset. Usually there
exists some kind of reset-pointer on a specific address in memory which points to the start
address of the bootloader.

The left side of Figure 3.7 shows a common way of its functionality. After some
low-level initialization like CPU, timers, and memory a configuration file is loaded. The
configuration is stored in some kind of NVM or compiled into the binary itself. Based
on this information the operating system is loaded into the memory and the bootloader
handles over the control by jumping to the load address.

The right side of Figure 3.7 shows the authenticated boot extensions of the bootloader.
After the initialization, the TPM is started up. If the TPM does not respond properly, the
boot process is stopped since system’s integrity cannot be ensured at all. When the TPM
has been enabled correctly, the configuration is measured and loaded. After the kernel is
loaded into memory, the sections are extended too and the boot sequence is continued.

It should be noticed that this approach postulates a trusted bootloader. In conventional
PC systems the CRTM is part of the BIOS boot block which is normally stored on ROM
or, at least, only signed updates are possible[CPRS11]. On embedded systems this part is
often fully exchangeable by any user who has privileged access so it has to be ensured that
the bootloader cannot be altered. One approach may be the use of ROM or other types
of One Time Programmable (OTP) memory for the first loaded binary. Other approaches
based on hardware extensions like E-TPM or ARM TrustZone are described in Section 2.2.
This work uses a hardware based secure boot function called High Assurance Boot (HAB)

CHAPTER 3. ARCHITECTURE AND CONCEPT 41

Low Level

Initialization

Load Configuration

Load OS

Into Ram

Start OS

Low Level

Initialization

Initialize TPM

Measure Config

Start OS

Load Configuration

Load OS

Into Ram

Measure OS

Stop sequence
 Failure

 OK

Figure 3.7: Bootloader extensions used for authenticated boot compared to ordinary setup.

which is a proprietary technology integrated in the used SoC as described in Section 4.2.

Operating System

After control is handed over, the operation system initializes itself and the used hardware as
illustrated in Figure 3.8. Moreover, if present, additional late-loadable modules and drivers
are loaded and filesystem is mounted. When the initialization phase is completed, the
system starts the first user-space process (which is called the init-process here). Commonly
this process is in charge to start all other processes.

The right side of Figure 3.8 shows the authenticated boot process of the operating
system. The initialization of the TPM driver is done very early in the boot process in
order to proceed with the measure and execute paradigm. Again, if the TPM does not
react properly the boot process is halted. While the measurement of the late-loadable
modules is essentially the same as the measurements taken so far, the measurement of
user-space processes needs further investigation:

CHAPTER 3. ARCHITECTURE AND CONCEPT 42

Initialization

Load Modules

Start Userspace

Process

Init

Process
Process N

Kernelspace

Userspace

Start

Process N

Initialization

Initialize TPM

and IMA

Load Userspace

Process

Load Modules

Measure

Binary

Add Measurement

to List

Extend Measurement

to TPM

Start Userspace

Process

Init

Process
Process N

Kernelspace

Userspace

 Start

 Process N

Figure 3.8: Extensions regarding the operating system used for authenticated boot.

First, as described in Section 2.1.4 an extension of a PCR is non-commutative. This
means, that a different order of starting the same processes results in a different final
measurement. On modern operating systems on off-the-shelf PCs this order is very hard to
predict because modern initialization daemons execute start-up-programs simultaneously
and their behavior strongly depend on the state of plug and play hardware. However,
on embedded systems often only a small set of processes is started and the order may be
maintainable. Additionally, these devices often use only hard wired external hardware.
Anyway, the load time of late-loaded libraries or other files which have to be measured
may depend on the scheduler and execution time of other processes. Thus it is not possible
to rely on this behavior without accepting a number of false-negative measurements.

On the other hand, it is not entirely clear what to measure. Processes which are
executed and their used libraries are the minimum. Furthermore configuration files of
these processes may have a huge impact on system’s integrity. Network traffic, user input
and similar are also potentially malicious but a measurement of these values would make
the approach impractical. However, starting a process or loading a configuration can be
seen as the necessary consequence of a malicious user or network input.

The approach described in Section 2.2.1 has been implemented and solves these prob-
lems. The IMA is part of the operating system and performs measurements according to a
configurable policy. Every measurement is extended to a PCR and the history of all mea-
surement is saved in a list as tuple of result and input. As described in Section 3.3.3 this
enables the possibility to ensure the integrity of the system by checking the measurement

CHAPTER 3. ARCHITECTURE AND CONCEPT 43

list wherein the integrity of the list itself is ensured with the PCR value. The standard
policy measures every file a privileged user opens for read (or execute). This includes all
executables, libraries and configuration files. Based on this information, the system is able
to prove its integrity.

Alternatives to the Trusted Platform Module

The security enhancements described in this section depend on the use of a TPM. However,
it is possible to use other, similar techniques with the same architecture. As described
in Section 2.2 some architectures enable secure virtualization options. Moreover, if the
constraints enable the possibility to just prevent execution of untrusted code, there is no
need for attestation and the system simply rejects to load unknown modules.

3.3.2 Userspace Interface

As mentioned in Section 4.5.1 there are different implementations which enables user-space
access of TPMs according to the TCG. However, the managed-code approaches may not
be suitable for running on an embedded system if a complete runtime has to be installed
only for this executable and the low-level implementation provided by the TCG is very
complex.

Since complexity potentially leads to mistakes which may be harmful especially in
security critical environments, a simple wrapper is introduced to hide the implementation
details from TPM user.

Figure 3.9 shows the components used in this module:

• The TPM class provides methods to manage the actual device which may be a
physically TPM interfaced within a driver in the operation system or a software
emulator.

• The TPMCommand classes implement the logic to execute a specific command on a
TPM. Hereby, it is notable that some commands like AttestationRequest can be run
without an instance of TPM as they do not need it.

• The other classes are simple helpers which are used to store/load keys in files and
contain methods to convert such structures between different formats.

This approach does not only hide complexity, it also simplifies error handling and con-
tainer for error-prone structures like buffers in order to prevent common security problems.
It is used as the base for the attestation process on both, the trusted and the remote side.

3.3.3 Attestation

In order to check the state of the communication controller and the software running on
it, remote attestation is used. This section describes the technique on the client computer.
However, the same approach can be adapted to the application controller.

CHAPTER 3. ARCHITECTURE AND CONCEPT 44

Figure 3.9: Interface for the TSS wrapper.

Attestation of the Communication Controller

Figure 3.10 describes the basic approach. It is assumed that the client software knows the
public part of the AIK used by the TPM on the communication controller and the true
measurement values of the different modules and applications.

• The user starts the communication software on the client computer.

• The software sends an attestation request with the interesting PCR numbers and a
generated random to the communication controller.

• The communication controller loads the AIK on the TPM and generates a quote-
request.

• The TPM processes the request by signing the PCR values with the private part of
the AIK.

• The communication controller sends the quote and the measurement list of the IMA
back to the client computer.

• The client computer checks the measurement list and verifies it with the quote. It
also checks the quote itself and continues communication if everything is as expected.

Mutual Attestation

If the client computer also contains a TPM or some kind of D-RTM can be established,
it is possible to enable a mutual attestation. This basically mirrors the process shown in
Figure 3.10 after the communication controller attested it’s state to the client computer.
In this case, it is possible for the communication controller to prevent communication with
a tampered communication partner. However, it does not protect against a malicious user
which is able to authenticate on the system.

CHAPTER 3. ARCHITECTURE AND CONCEPT 45

Figure 3.10: Attestation of the communication controller’s state to the user.

Platform Configuration Register

Table 3.3 shows the PCRs and their content used for the attestation. With the information
contained in these registers, the remote entity is able to check the bootloader configuration,
the operation system and the processes started on the communication controller.

Table 3.3: The used PCR registers
PCR Number Content

1 Bootloader Configuration
2 Operating System
10 Integrity Measurement Architecture

3.3.4 Encrypted Filesystem

Data On Rest (DOR) encryption is added to the system in order to prevent information
exposure in case of unauthorized access or theft of the physical medium.

For performance reasons, the NVM is split up into two partitions. The root file system

CHAPTER 3. ARCHITECTURE AND CONCEPT 46

which contains the basic system what is not worth to be encrypted since it’s build up of
freely available components. The second encrypted partition holds data where an exposure
should be prevented. Figure 3.11 describes the basic architecture of the encryption. While
the root file system is mounted directly, the encrypted partition is mapped through a
proxy which is in charge encryption and decryption of accessed data. This computation is
transparent for user-space applications apart from some performance penalties. Moreover,
the ciphering is done with a cryptographic co-processor which enables two important
benefits:

• The dedicated hardware is generally faster than a software approach on most em-
bedded systems.

• There exists a possibility to use a key which is only writable, but not readable by
software.

Partition 1:

Bootloader

Partition 2:

Root File System

Partition 3:

Encrypted

Flash Memory

Block Device

Driver

Cipher

Proxy

Userspace

Operating System

Crypto

Co-Processor

Key

Encrypted Data

Figure 3.11: Partial encrypted filesystem with the help of a cipher proxy.

The key is stored on a special on-chip memory which can be fused to prevent the main
CPU from reading. This approach binds the storage media to the current SoC. Another
possibility to achieve this behavior would be the use of a key sealed by the TPM. However,
this approach makes the key visible on the connection bus between the SoC and the TPM
and in the system’s Random Access Memory (RAM).

On end of life the non-readable key is destroyed by a random write what make a secure
deletion of the physical media needless.

3.3.5 Hardware Accelerated AES

As mentioned before, on embedded systems ciphering potentially has a high impact on sys-
tem’s performance, especially when disk encryption is used. A cryptographic co-processor
which does the actual cipher operations can mitigate these drawbacks. First, it is normally

CHAPTER 3. ARCHITECTURE AND CONCEPT 47

faster than a software implementation and on the other hand it gives the main CPU time
for other operations.

This approach depends on the following features of the co-processor:

• Direct Memory Access (DMA) access is possible for the co-processor nearly ran-
domly. 4

• Additionally the co-processor is controlled with the help of description structures
which contain the needed information like keys, source and destination addresses
and similar.

Figure 3.12 illustrates the connection of the participating entities. An application
wants to encrypt a plaintext into a ciphertext-buffer. Both buffers are virtually continuous
from the application’s point of view. In fact they may be scattered all over the physical
memory by the operating system and the MMU. Somewhere in the memory exists a
ring buffer of description structures mentioned before. The operating system fills these
structures with the addresses of the scattered buffers and notifies the co-processor which
itself throws interrupts whenever it finished a packet.

The basic workflow is shown in Figure 3.13. The application requests a cipher process
with source and destination buffers and additional information like keys and mode of
operation. After the request is placed, the application sleeps until its callback function is
executed.

A thread inside the operating system continuously produces description structure with
the physical addresses of the buffers until the ring is filled. After every produced descrip-
tion structure the co-processor is notified to compute the next work package.

The co-processor reads the description structure, performs the operation, and rises an
interrupt to notify the CPU. If no other description structure is pending, it stops operation.

When the kernel thread receives an interrupt, the respective description slot is marked
free. If not all data has been split up and send to the co-processor, producing is continued.
Otherwise, if all data has been sent to the co-processor and all packets are finished, it
executes the callback function of the application in order to report the finished process.

4This means that the co-processor is able to read and write from and to the whole RAM with little or
less restrictions. These restrictions may be an address alignment as the co-processor is only able to address
word-wise.

CHAPTER 3. ARCHITECTURE AND CONCEPT 48

Application:

Encrypt Plaintext

into Ciphertext

Plaintext
Cipher-

text

Description

Structure

Slot 1...N

CPUCo-Processor

 Set AddressesRead Addresses

Enable

Interrupt

Virtual Addres Space

Physical Address Space

Figure 3.12: Memory handling: The main CPU is responsible to map the virtual addresses
of the calling process to physical addresses which can be used by the co-processor.

CHAPTER 3. ARCHITECTURE AND CONCEPT 49

Figure 3.13: The workflow of the hardware-based AES encryption: The main CPU fills a
ring-buffer which is processed by the co-processor.

Chapter 4

Design and Implementation

This Chapter refines the different concepts illustrated in chapter 3 and provides a detailed
view on the actual implemented system. These descriptions also contain a short intro-
duction of the used subsystems of the underlying software and technologies to clarify the
design decisions which were made.

4.1 Target System

The target system system will be used in hydro-electronic power plants as control system,
similar to PLCs. The system architecture has been presented in Section 3.1.1. This section
provides an overview of the used hardware and software.

4.1.1 Hardware Components

The Controller Board represents a custom printed circuit board containing the communi-
cation controller, the application controller, the TPM and additional peripherals like flash
and Electrically Erasable Programmable Read-Only Memory (EEPROM)s.

The communication controller is build with Freescale’s i.MX28 SoC, what is basically
an ARM9-core with additional building blocks for industrial and consumer applications.
The most interesting additional block for this work is the Data Co-Processor (DCP). This
co-processor can not only be used for simple memory operations like raw copying but also
for AES ciphers and SHA-1 operations.

The application controller is built with the same SoC but is implemented twice in order
to build redundancy for safety-critical operations on the process bus of the power plant.

As TPM, Atmel’s A97SC3204T is used. It communicates via I2C and only depends on
one external 33MHz clock source. Because of non-disclosure reasons, it was not possible
to get a datasheet for this device. However, Atmel is selling an evaluation board for this
TPM, which exposures the pin definition.

The client computer can be seen as ordinary PC running an off-the-shelf operating
system.

50

CHAPTER 4. DESIGN AND IMPLEMENTATION 51

4.1.2 Software

The system is still in development (as by July 2013), so the final versions of the used soft-
ware may change. Table 4.1 shows the software modules used for the different controllers.
They differ from the available source trees only in some smaller patches to adjust them to
the custom hardware.

Table 4.1: Software modules used in the system.
Module Name Used Software

communication controller Bootloader U-Boot 2012.10
communication controller Operation System Linux 3.7-rc5

application controller Bootloader U-Boot 2012.10
application controller Operating System SafeRTOS
Distribution Software Development Kit ELDK 5.2

4.2 U-Boot and Trusted Boot

4.2.1 Overview

”Das U-Boot” (The Universal Boot Loader) [Den13a] is an open source boot loader main-
tained by DENX Software Engineering. It is mostly used in embedded systems since it is
able to run on many different architectures (ARM, AVR32, PowerPC and MIPS[Den13b]).
U-Boot is highly configurable and includes a simple Command Line Interface (CLI), which
can be used to influence the boot process and perform I/O operations. It also implements
device tree support [Cor11] which is used by Linux (since version 3.7) in order to remove
hard coded board information in source code5. It also supports TCP/IP which enables
the possibility to load a kernel image via the Trivial File Transfer Protocol (TFTP).

4.2.2 Basic Boot Process

The basic boot process for the communication controller is shown in figure 4.1. The
controller jumps to U-Boot which is typically stored on some non-volatile memory like
flash or EEPROM. U-Boot does some low-level initialization (especially CPU and RAM)
and copies itself onto the top of the memory. The startup-configuration, which contains
the address of the TFTP-server and the kernel boot arguments are parsed and the boot-
image is loaded into memory. However, this part is only for debugging and development
in order to simply exchange the system image. The loaded image is verified with a CRC32
checksum and the program counter is set to the start address of the kernel. At this moment
U-Boot gives up control over the system. The kernel does not know where the bootloader
is located and treats the whole memory as empty.

5Until Linux version 3.7, each board (as in the physical printed circuit board with a CPU and external
hardware) had to have its own board file, a source file which sets up the resources and devices. The device
tree is a hierarchical structure describing the different hardware modules and their used resources. The
kernel parses this file and loads the needed drivers. This leads to the advantage that the kernel has not to
be recompiled after adding/removing an external module.

CHAPTER 4. DESIGN AND IMPLEMENTATION 52

Low Level

Initialization

Relocate U-Boot

on RAM

Load Configuration

Load Kernel + DT

via TFTP

Verify Kernel (CRC)

Boot Kernel

Reset

Figure 4.1: Basic boot process of U-Boot on i.MX28: After some low level initialization,
the kernel image is loaded via TFTP. The received image is checked against a CRC value
and booted.

4.2.3 Trusted Boot Process

In order to enable trusted computing capabilities, the bootloader has to initialize the TPM
and extend the states of the kernel and its configuration to the PCRs. Figure 4.2 shows
the extended boot process where the TPM is initialized and tested after relocation. If the
TPM does not react properly, the boot process is stopped since the reporting capabilities
cannot be guaranteed. The kernel image and the device tree are measured after they are
loaded to RAM. This means that the binaries are hashed and the result is saved to the
first PCR register of the TPM.

4.2.4 Trusted Boot with Root of Trust

As described in Section 2.1.2 it has to be ensured that the CRTM, which is U-Boot in
this case, has to be in a trusted state at any cases. This is ensured by the HAB feature of
the i.MX28. In the complete boot process U-Boot is only executed if the signature of its
binary is valid. The use of this functionality binds the system to Freescale’s architecture
since it is proprietary. However, there are other possibilities to accomplish similar results
like storing U-Boot on read-only memory6 or other techniques discussed in Section 3.3.1.

4.2.5 U-Boot I2C Interface

U-Boot provides a basic interface for I2C transfers. Each controller with an I2C bus
module has to implement a driver and register it in the board file. The interface is shown
in Listing 2 and is defined as follow:

• i2c init is used to initialize to module and to set the bus speed. This contains usually

6This approach demands on physical access to change the bootloader. Since physical access devastate
TPM security as mentioned in Section 2.3, a read-only bootloader may be enough for a ROTFM.

CHAPTER 4. DESIGN AND IMPLEMENTATION 53

Low Level

Initialization

Relocate U-Boot

on RAM

Intitialize and

Test TPM

Measure + Extend

U-Boot Configuration

Load Configuration

Reset

Load Kernel + DT

via TFTP

Measure + Extend

Kernel

Boot Kernel

Halt on Error

Figure 4.2: Trusted Boot Process in U-Boot: Before any additional content is loaded, the
TPM is initialized and tested. The configuration, as well as the kernel are hashed and
extended before execution.

a reset of the controller and some writes of configuration words to specific registers
used by the I2C-module.

• i2c probe is used to check whether a device with the given address is present on the
bus. This can be done by a simple write call without any payload. The master sends
the initialization byte and checks the presence of the acknowledge bit.

• i2c write is used to write a buffer to the chip with a specific chip-address and i2c read
is the corresponding read function.

For some reason, U-Boot developers decided to define the read and write interfaces with
additional register addresses for the slave device. However, since the implementation
simply concatenates the addr and the buffer and sends the resulting buffer to the bus, it
is possible to simply set alen = 0 in order to use the bus as serial interface. The bus driver
used for the i.MX28 did not support this kind of operations so it had to be patched.

1 void i2c_init(int speed);

2 int i2c_probe(uchar chip);

3 int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len);

4 int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len);

Listing 2: Interface for I2C modules in U-Boot.

4.2.6 U-Boot TPM Interfaces

The TPM subsystem of U-Boot consists of three parts:

CHAPTER 4. DESIGN AND IMPLEMENTATION 54

• The TPM device driver defined in include/tis.h

• The TPM commands defined in include/tpm.h

• The TPM command line interface defined in common/cmd tpm.c

TPM Driver

As shown in Listing 3, a TPM driver has to implement the following interface in U-Boot:

• tis init is used to initialize the TPM driver.

• tis open and tis close are used to open and close the connection to the TPM but
they are not needed for this device.

• tis sendrecv is used to send a raw command to the TPM.

1 int tis_init(void);

2 int tis_open(void);

3 int tis_close(void);

4 int tis_sendrecv(const uint8_t *sendbuf, size_t send_size, uint8_t *recvbuf,

5 size_t *recv_len);

Listing 3: Interface for TPM drivers in U-Boot.

TPM Library

The interface for the TPM usage is shown in Listing 4. The important functions for this
work are:

• tpm startup issues the startup command.

• tpm self test full starts the built-in self-test of the TPM.

• tpm extend and tpm pcr read execute the associated TPM commands for measure-
ment handling.

1 uint32_t tpm_startup(enum tpm_startup_type mode);

2 uint32_t tpm_self_test_full(void);

3 uint32_t tpm_extend(uint32_t index, const void *in_digest,

4 void *out_digest);

5 uint32_t tpm_pcr_read(uint32_t index, void *data, size_t count);

Listing 4: TPM Interface in U-Boot.

As by U-Boot version 2013.01, the library does not support binding, sealing, or quoting.
However, this is not necessary for authenticated boot but may be necessary in case of secure
boot since it would be possible to seal the U-Boot and kernel binaries.

CHAPTER 4. DESIGN AND IMPLEMENTATION 55

TPM Command Line Interface

The command line interface is used to provide TPM functionality to the user by enabling
a set of functions on the command line.

4.2.7 Trusted Boot Integration

TPM Driver

The driver for the actual TPM in U-Boot mainly maps between the tis sendrecv the
corresponding i2c * calls. The architecture of the driver is very similar as the Linux
version which is shown in Section 4.3.3.

Measuring the Kernel

There are some community projects running which target the integration of authenticated
boot into U-Boot [Gla13]. Since official support can be expected soon, this work simply
provides a proof-of-concept implementation.

First, the TPM has to be initialized with the startup command shown in Listing 5.

1 tpm startup TPM_ST_CLEAR

Listing 5: U-Boot TPM startup

In order to measure the kernel, U-Boot’s TPM library is used in an extended version
of the bootm command. This extended version simply calculates the hash of the binary
and extends the value to PCR 1.

4.3 TPM in Linux

As mentioned before, the corresponding functions have to be implemented into the operat-
ing system in order to fully provide trusted computing capabilities on the communication
controller. To achieve this, the following tasks have to be considered in the Linux kernel:

• In order to enable the TPM, a device driver has to be implemented.

• To actually use the TPM from user-space and enabling trusted computing technolo-
gies like attestation for applications, the device interface has to be enabled.

• The IMA implementation for Linux has to be enabled as described in Section 4.4.

Linux provides most of the functions needed for these tasks. The only part which has
to be implemented (as by version 3.7) is the driver for the actual TPM. However, there
are some subsystems which are involved in the communication as shown in figure 4.3:

• User-space applications call kernel functions via Input/Output Control (IOCTL)
system calls on a virtual file, the /dev/tpmX character device.

CHAPTER 4. DESIGN AND IMPLEMENTATION 56

Userspace

/dev/tpm

TPM Subsystem

TPM Driver

I2C Subsystem

I2C Driver

DMA Subsystem

DMA Driver

I2C Module

(physically)

TPM

(physically)

Kernel

Figure 4.3: The subsystems involved in the TPM communication in Linux: The user-space
applications interfaces via the character device with the TPM Subsystem which itself holds
the TPM Driver . The TPM is connected on the I2C bus so the I2C subsystem is used for
communication. On the i.MX28 the data transfer with the i2c module is done with DMA
so this subsystem has to be considered too.

• The TPM Subsystem provides high-level functionality to communicate with TPMs
and driver handling.

• To actually connect a specific TPM, the TPM Driver is used. It implements a simple
interface to send and receive messages to or from the TPM.

• Since the actual TPM is connected via I2C, the TPM Driver calls the I2C Subsystem
for message handling.

• The I2C Module on the i.MX28 is controlled by special function registers and DMA
for data transfer, so the I2C driver uses this subsystem. As described later in this
section, when using DMA transfers, some pitfalls regarding addressing have to be
considered.

CHAPTER 4. DESIGN AND IMPLEMENTATION 57

All implementation details in this section hold at least from Linux version 3.7 up to
3.10. However, it should be able to adopt this work for later versions with little or no
effort. In order to enable the TPM Driver on Linux versions smaller than 3.7, little
adoption regarding the device tree is necessary. The rest of this section describes the steps
needed to implement the TPM driver for usage on the i.MX28.

4.3.1 I2C Subsystem

Overview

The Linux I2C subsystem provides an API for both, the actual I2C bus driver and client
drivers. The subsystem architecture is illustrated in Figure 4.4.

Bus Driver

Client Driver

Adapter Algorithm

I2C Core

I2C Client Device Driver

I2C Bus

Figure 4.4: The Linux I2C subsystem: The actual I2C bus is controlled by the Adapter
and Algorithm driver. To enable a new slave device, one has to implement a Device Driver
which handles a new I2C Client structure.

On the bus side, the Algorithm driver is used for general functionality which is used
over various systems and contains the data transfer function. The specific Adapter driver
represents the code needed to communicate with the actual I2C module used in the system.
In case of the i.MX28 (which uses the driver in drivers/i2c/i2c-mxs.c) the Adapter driver
implements both, the Adapter and the Algorithm interface since it uses the DMA API.

On the client side, a Device Driver implements the functionality to communicate with

CHAPTER 4. DESIGN AND IMPLEMENTATION 58

an I2C device. For each connected device, the subsystem holds an I2C Client structure
which itself contains information like the bus address.

I2C Client Driver Implementation

In order to implement a new device for the I2C bus, one has to implement an i2c driver
structure and register it in the subsystem. The important part of the structure definition
is shown in Listing 6. The i2c client structure is illustrated in Listing 7.

1 struct i2c_driver {

2 int (*probe)(struct i2c_client *, const struct i2c_device_id *);

3 int (*remove)(struct i2c_client *);

4

5

6 void (*shutdown)(struct i2c_client *);

7 int (*suspend)(struct i2c_client *, pm_message_t mesg);

8 int (*resume)(struct i2c_client *);

9 };

Listing 6: I2C driver structure in Linux.

On initialization, the driver creates a new i2c driver structure and set the function
pointer for probe() and remove(). The other three functions can be used for power saving
features but they are not mandatory and skipped in this implementation. After creation,
the driver is registered in the I2C Subsystem and is ready to use.

1 struct i2c_client {

2 unsigned short flags;

3 unsigned short addr;

4

5 char name[I2C_NAME_SIZE];

6 struct i2c_adapter *adapter;

7 struct i2c_driver *driver;

8

9 int irq;

10 };

Listing 7: I2C client structure in Linux.

The I2C Subsystem creates a new i2c client structure each time a new device is de-
tected and a driver is registered for this kind of device. In the case of the TPM driver,
the detection is done with the help of the devicetree subsystem. As shown in Listing
8, the devicetree holds the information, that a TPM is connected to bus 0 on address
0x29. At registration time, the driver uses the same compatibility string as the devicetree
(tpm i2c atmel). Thus the subsystem is able to identify the driver which has to be used
for this device and calls the probe() function.

CHAPTER 4. DESIGN AND IMPLEMENTATION 59

Within this function, the driver sets the remaining fields of the i2c client structure
and tries to communicate with the TPM. If the TPM is accessible (i.e., communication
works), the function returns 0 and the device is set up.

There are other possibilities to report the existence of a device on the I2C bus beside
the device tree. It can be done hardcoded or with a write operation on a file in sysfs.
However, these methods are not very portable and considered for debugging purposes only.

1 [...]

2 i2c0: i2c@80058000 {

3 pinctrl-names = "default";

4 pinctrl-0 = <&i2c0_pins_a>;

5 clock-frequency = <400000>;

6 status = "okay";

7 [...]

8 tpm0: tpm@29 {

9 compatible = "tpm_i2c_atmel";

10 reg = <0x29>;

11 };

12 };

13 [...]

Listing 8: Registering the TPM within the devicetree.

4.3.2 TPM Subsystem

The external TPM interface in Linux is shown in Listing 9. It provides functions to read
and extend PCRs, to get a random and to send a message to the device. These functions
are provided over the whole kernel whenever TPM support is activated.

1 extern int tpm_pcr_read(u32 chip_num, int pcr_idx, u8 *res_buf);

2 extern int tpm_pcr_extend(u32 chip_num, int pcr_idx, const u8 *hash);

3 extern int tpm_send(u32 chip_num, void *cmd, size_t buflen);

4 extern int tpm_get_random(u32 chip_num, u8 *data, size_t max);

Listing 9: Linux TPM interface.

TPM device drivers have to implement a tpm vendor specific structure which is shown
in Listing 10. This structure contains the send() and recv() functions in order to enable the
communication with the TPM. A tpm chip structure is created by the subsystem when the
driver calls tpm register hardware() with the tpm vendor specific structure as parameter.

CHAPTER 4. DESIGN AND IMPLEMENTATION 60

1 struct tpm_vendor_specific {

2 [...]

3 int (*recv) (struct tpm_chip *, u8 *, size_t);

4 int (*send) (struct tpm_chip *, u8 *, size_t);

5 void (*cancel) (struct tpm_chip *);

6 u8 (*status) (struct tpm_chip *);

7 [...]

8 };

Listing 10: Important part of the tpm vendor specific structure used to describe a TPM
device driver

The subsystem generates a character device on /dev/tpmX for each registered TPM
to enable user-space access. Moreover, there are some files created on sysfs where status
parameters, as well as a list of PCR values are exported.

4.3.3 TPM Device Driver

Figure 4.5 illustrates the combination of the different parts mentioned in this section in
order to implement the driver for the used TPM:

• At initialization time, the module simply creates an i2c driver structure and registers
it in the I2C subsystem.

• When the probe() function is called, the driver generates the tpm vendor specific
structure and a bounce buffer for the TPM and registers it in the TPM subsystem.
The bounce buffer is needed because the I2C driver uses DMA: The DMA module on
i.MX28 depends on addresses aligned by 4 bytes (addr&0x03 = 0). Moreover, there
are some other constraints for memory to use it for DMA. Since neither the I2C
nor the DMA driver checks these conditions, it has to be done in the TPM driver.
After the tpm chip structure is created and registered, the tpm selftest command
is executed in order to check presence and functionality. If everything works as
expected, the TPM can be used.

• The actual transfer is to and from the bounce buffer, so data has to be copied before
and after communication to the proper buffers.

4.4 Integrity Measurement Architecture

4.4.1 Overview

The IMA described in Section 2.2.1 has been added to the Linux kernel by IBM in 2005
[Cor05]. The main goals of this implementation was to add an integrity measurement
mechanism which is complementary to Mandatory Access Control (MAC) implementations
like Security Enhanced Linux (SeLinux) with the following functions[IMA13]:

• Collect : Measure a file before it is accessed.

CHAPTER 4. DESIGN AND IMPLEMENTATION 61

Create and register

i2c_driver
Module

initialization

Create tpm_vendor_specific

Create bounce buffer

Register tpm_chip

I2C probe Call tpm_selftest

Return status

Copy data to

bounce buffer
Execute TPM

command

Send/receive data

via I2C

Copy Data

from bounce buffer

and return

Figure 4.5: TPM driver overview

• Store: Store the measurement list and, if present, extend the cumulative measure-
ment to a PCR on a hardware TPM.

• Attest : If a TPM is present, it is used to sign the IMA PCR in order to attest
system’s integrity to other entities.

• Appraise: Provide the possibility to validate measurements against known values
locally.

• Protect : Securely protect the security critical file attributes (like the appraisal hash)
against offline attacks.

The latter two functions are not implemented in this work, since local appraisal is not
forced in this work. However, the appraise functionality can be enabled similar to the first
IMA functions by the IMA-policies.

The basic data flow of an integrity measurement starts with an event like binary
execution and follows the following data flow:

• If enabled, depending on the event, one of the hooks is called.

• After some preliminary checks, the process measurement function is called.

• Based on the policy, the ima get action function decides the actions which have to
be performed (measure and/or appraise).

• If a policy matches, the measurement is taken by ima collect measurement .

• At last, the measurement is stored to the measurement list (and the cumulative hash
to the PCR by ima store measurement).

• If appraising is activated, the measurement is checked against a predefined value and
the hook returns with nonzero in case of mismatch.

CHAPTER 4. DESIGN AND IMPLEMENTATION 62

4.4.2 Collect Measurements

In order to collect the measurements, the hooks shown in Listing 11 are implemented and
controlled by a policy file:

1 extern int ima_bprm_check(struct Linux_binprm *bprm);

2 extern int ima_file_check(struct file *file, int mask);

3 extern int ima_file_mmap(struct file *file, unsigned long prot);

4 extern int ima_module_check(struct file *file);

Listing 11: Measurement hooks of IMA in Linux

• ima bprm check is used to check binaries before they are executed. The Linux binprm
structure is created by the do execve common function in fs/exec.c and stores infor-
mation like name and parameters of an executed file.

• ima file check measures files based on the policy, where the mask parameter contains
access information like MAY READ , MAY WRITE and MAY EXECUTE

• ima file mmap measures all files which are memory-mapped executable.

• ima module check measures all loaded modules. Since the kernel in this work is
monolithic (i.e., all modules are compiled into a single kernel-binary), this function
is not used.

4.4.3 IMA-Policies

The IMA-policies define what have to be measured. The standard policy is shown in
Listing 12. Basically it disables measurement for the virtual file systems (/proc, /sys and
so on) and enables measurement for all files opened or mmap’d executable, all files read
by the root user (uid = 0) and all kernel-modules.

CHAPTER 4. DESIGN AND IMPLEMENTATION 63

1 static struct ima_rule_entry default_rules[] = {

2 {.action = DONT_MEASURE,.fsmagic = PROC_SUPER_MAGIC,

3 .flags = IMA_FSMAGIC},

4 {.action = DONT_MEASURE,.fsmagic = SYSFS_MAGIC},

5 {.action = DONT_MEASURE,.fsmagic = DEBUGFS_MAGIC},

6 {.action = DONT_MEASURE,.fsmagic = TMPFS_MAGIC},

7 {.action = DONT_MEASURE,.fsmagic = RAMFS_MAGIC},

8 {.action = DONT_MEASURE,.fsmagic = DEVPTS_SUPER_MAGIC},

9 {.action = DONT_MEASURE,.fsmagic = BINFMTFS_MAGIC},

10 {.action = DONT_MEASURE,.fsmagic = SECURITYFS_MAGIC},

11 {.action = DONT_MEASURE,.fsmagic = SELINUX_MAGIC},

12 {.action = MEASURE,.func = MMAP_CHECK,.mask = MAY_EXEC,

13 .flags = IMA_FUNC | IMA_MASK},

14 {.action = MEASURE,.func = BPRM_CHECK,.mask = MAY_EXEC,

15 .flags = IMA_FUNC | IMA_MASK},

16 {.action = MEASURE,.func = FILE_CHECK,.mask = MAY_READ,

17 .uid = GLOBAL_ROOT_UID,

18 .flags = IMA_FUNC | IMA_MASK | IMA_UID},

19 {.action = MEASURE,.func = MODULE_CHECK, .flags = IMA_FUNC},

20 };

Listing 12: Pre-defined policy of IMA in Linux.

The policy can be changed at source level or by writing to a virtual file in securityfs.
Since user management is not yet defined for the targeted system, it is assumed that all
applications are ran by the root user and therefore the default policy is suitable.

4.4.4 IMA Activation and Usage

In order to enable the IMA in Linux, some tasks have to be done:
First, the kernel has to be compiled with IMA- and securityfs-support as shown in List-

ing 13. Moreover, the PCR number used by the IMA is set by CONFIG IMA MEASURE PCR IDX .

1 CONFIG_IMA=y

2 CONFIG_IMA_MEASURE_PCR_IDX=10

3 CONFIG_SECURITYFS=y

Listing 13: Enabling the IMA in the kernel configuration.

Secondly, the kernel command line parameter has to be extended with the ima tcb flag.
After recompiling and restart of the system, the IMA is set up and ready. By mounting
the securityfs, the measurement list (which was shown exemplary in Figure 2.10) is read
as shown in Listing 14.

CHAPTER 4. DESIGN AND IMPLEMENTATION 64

1 # Mount securityfs

2 $ su -c ’mkdir /sys/kernel/security’

3 $ su -c ’mount -t securityfs securityfs /sys/kernel/security’

4

5 # Read IMA Measurement List

6 $ su -c ’cat /sys/kernel/security/ima/ascii_runtime_measurements’

Listing 14: Mounting the securityfs and reading the IMA measurement list.

4.5 TPM Usage in User-space

4.5.1 Overview

The authenticated boot chain is set up and the kernel provides access to the TPM functions
with the /dev/tpm interface. In order to complete the trusted computing capabilities of
the system, the user-space part is implemented. First, the TSS has to be set up to provide
the following functionality in user-space:

• Installing TPMTools which are used to set up and debug the TPM.

• Implementing the TSS-Wrapper described in Section 3.3.2 in order to simplify at-
testation.

• Implementation of an exemplary attested network connection.

• Enabling the usage of keys which are stored on the TPM by openSSL.

• Fill the kernel’s entropy pool with randoms generated by the Hardware-based Ran-
dom Number Generator (HRNG) of the TPM in order to increase quality and quan-
tity of /dev/random.

4.5.2 QTSSWrapper

The interface described in Section 3.3.2 has been implemented for the system. Figure 4.6
shows the overall architecture.

The TrouSerS TCS daemon runs on the system and handles the communication with
the device driver. The trusted server application (TSA) links against the QTSSWrapper
library. This library wraps the basic TSP interface for key handling and attestation in
Qt(a framework for C++) [Dig13] objects. This object-oriented approach reduces the
complexity in many ways:

• The context and session handling is hidden from the application, what reduces the
Line of Code (LOC) count for TPM applications drastically.

• Error handling is done centralized.

• Applications do not have to care about memory handling, since basic Qt primitives
for buffers are used.

CHAPTER 4. DESIGN AND IMPLEMENTATION 65

Controller BoardClient PC

TCS Daemon

TPM Driver

QTSSWrapper

TSP Library

TSA
Remote Application

(Client PC)

Trusted Network

Connection

QTSSWrapper

TSP Library

Figure 4.6: The QTSSWrapper library wraps the TSS Service Provider in order to reduce
the complexity of attestation and TPM Quote commands.

• Keys are serializable in a simple way.

• Since the used Qt libraries (namely QtCore and QtNetwork) are used by other
applications on the system, no additional libraries have to be installed.

On the client side, a stripped-down version of this library is used to generate the nonce
and check the TPM Quote answer for integrity. The overall reduction in LOC for an
attestation is about 90% compared to direct use of TrouSerS’ TSP.

4.5.3 TPM Keys in OpenSSL

RSA keys managed by the TPM have the fundamental advantage, that the private part
cannot be read out by software. In order to use these kind of keys without changing the
networking software, OpenSSL is extended.

OpenSSL supports libraries which contain engines for different ciphers. Thus, it is
possible to load a library containing the interface for RSA which does the actual operations
on the TPM. TrouSerS ships with the openSSL-tpm-engine which exactly implements the
desired behavior. A tool, called create tpm key , which creates a file containing a new key

CHAPTER 4. DESIGN AND IMPLEMENTATION 66

encrypted with the SRK of the TPM. By using this engine, every application is able to
use the encrypted key to sign or encrypt data on the TPM.

4.5.4 TPM Random Generator

In order to fill the entropy pool and generate ’good’ random numbers, the Random Number
Generator (RNG) unit of the TPM is used. As described in [MWK+13], the ability to
provide randomness is a fundamental property of a secure system. On ordinary PCs,
user input like mouse or keyboard is used to fill the entropy-pool of the kernel. However,
embedded systems lack of these possibilities and gathering this randomness is even more
challenging.

In order to fill the entropy pool, the rng-tools [RNG13] daemon is used. This dae-
mon gathers randomness from installed hardware random generators and supply it to the
kernels entropy pool.

To enable rng-tools support for TPM RNGs, it has to be configured in /etc/default/rng-
tools as shown in Listing 15.

1 HRNGDEVICE=/dev/null

2 RNGDOPTIONS="-hrng=tpm -fill-watermark=90% -feed-interval=1"

Listing 15: Enabling TPM support in rng-tools

4.6 Hardware AES

To implement the DCP driver described in section 3.3.5 in Linux, the cryptographic API
is used. The first version of the driver had some performance issues (what will be shown
in Chapter 5). Thus, a second version is provided and discussed. Moreover, user-space
access for different applications like network services is needed.

4.6.1 Linux and Cryptography

Overview and User-API

The scatterlist cryptographic API in Linux has been introduced to support cryptographic
functions used by IP Security (IPSEC). Later, all subsystems which need cryptographic
support started using this API. Besides ciphering it also supports hash functions and
compression.

On the user side, so called transforms are used which internally handle the algorithms.
The actual cipher and mode of operation is encoded in a string which is parsed to decide
which algorithm is used. Listing 16 shows an exemplary allocation of an AES transform
with Cipher Block Chaining (CBC) mode of operation.

1 struct crypto_ablkcipher *tfm = crypto_alloc_ablkcipher("cbc(aes)", 0, 0);

Listing 16: Allocation of a transform for AES-CBC.

CHAPTER 4. DESIGN AND IMPLEMENTATION 67

Instead of working with logical addresses, the API works with page vectors. In Linux,
this is done with the scatterlist structure [Cor07]. Each scatterlist entry contains the
memory page, offset and data length. The two lists (one for source and one for the
destination buffer) are sent to the algorithm driver, so the implementation does not have
to do the conversion between logical buffer and pages itself.

Algorithm API

On the other side of the cryptographic API, algorithms may register itself at run-time
to provide different implementations for different ciphers. This work concentrates on
asynchronous block cipher algorithms. However, other algorithms are implemented similar
and a comprehensive overview is located at include/linux/crypto.h in the official Linux
tree.

Asynchronous block ciphers in Linux are block cipher operations where the actual
computation is not done in the caller’s context as shown in Figure 4.7. When the im-
plementation finishes the operation, a callback function is executed to notify the caller.
These are properties which are very comfortable for hardware accelerated cipher modules
because the caller is able to queue a number of cipher requests while the co-processor
performs the actual operation.

Start Encryption

Prepare more Data

for Encryption

Process Encrypted

Data

Encrypt

Notify Caller

Caller Process Crypto Process

Figure 4.7: Asynchronous block cipher in Linux - exemplary usage: The calling process
prepares the next buffer while the actual encryption is running on a different CPU or a
dedicated hardware.

A new algorithm is registered with crypto register alg(struct crypto alg *) where the
crypto alg structure holds all necessary information of the implementation as shown in
Listing 17.

CHAPTER 4. DESIGN AND IMPLEMENTATION 68

1 struct crypto_alg {

2 unsigned int cra_blocksize;

3 unsigned int cra_alignmask;

4

5 int cra_priority;

6

7 char cra_name[CRYPTO_MAX_ALG_NAME];

8 char cra_driver_name[CRYPTO_MAX_ALG_NAME];

9

10 struct ablkcipher_alg {

11 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,

12 unsigned int keylen);

13 int (*encrypt)(struct ablkcipher_request *req);

14 int (*decrypt)(struct ablkcipher_request *req);

15

16 unsigned int min_keysize;

17 unsigned int max_keysize;

18 unsigned int ivsize;

19 } cra_u;

Listing 17: Relevant parts of crypto alg structure used to describe a cipher algorithm in
Linux

• cra blocksize describes the block size of the cipher

• cra alignmask holds a mask for addresses used by this algorithm. According to the
i.MX28 manual [Inc13], the DCP is performing better, if all addresses are aligned by
4 bytes. In this case, this mask is set to 3 so the cryptographic subsystem checks all
addresses whether address&0x03 = 0 and uses bounce-buffers if the condition does
not hold.

• cra priority is used to prefer some implementations over others. If the kernel has soft
and hardware AES, it might be useful to use the hardware version if not explicitly
stated. A common value for hardware implementations is 300.

• The cra name string describes the implemented function (like ’aes’ or ’cbc(aes)’)
while cra driver name is used to store the driver’s unique name.

• cra u is actually an union for the different algorithm types (cipher, hash, and friends).
In this case, only the asymmetric block cipher type is shown.

– setkey points to the function used to set a key for an operation

– encrypt and decrypt points to the corresponding functions of the implementa-
tion. The ablkcipher request holds information like the source and destination
scatterlist and data length.

– The remaining parameters are used to set minimum and maximum key size, as
well as the size of the initialization vector

CHAPTER 4. DESIGN AND IMPLEMENTATION 69

Once the algorithm is registered, the subsystem provides it to the users. Especially in
asynchronous block cipher mode, the algorithm driver has to ensure that no race conditions
from multiple calls of the encryption or decryption functions can occur. Therefore, the
subsystem provides a helper structure (crypto queue) and associated functions to enable
queuing.

4.6.2 Design of AES-Driver

Basic Approach

The basic approach to enable the DCP described in Section 3.3.5 has been implemented
for Linux. At initialization time, the driver gathers all needed resources and registers the
crypto alg .

For actual usage, the following basic building blocks are implemented:

• dcp queue queue

• queue task tasklet 7

• done task tasklet

• hw pkg ring buffer for hardware description packets

As shown in Figure 4.8, every encryption or decryption request is added to the queue.
If no other request is processed, the queue task tasklet is scheduled. At the time this
function returns, the calling process is able continue with other work (or wait until the
cipher operation finishes).

The queue task de-queues the next element of dcp queue and, if present, performs
some initialization tasks like setting the mode of operation and the key before it calls the
dcp op proceed function.

This function is in charge to fill the hw pkg ring-buffer. Therefore, it calculates the
length and addresses of the next data-buffer and writes them to the first free hw pkg . The
constraints for the buffer is taken from the reference manual [Inc13]: The length has to be
a multiple of 16 (the block size) and it has to be physically continuous. The simplest way
to achieve this is to use one hardware description package for each physical page. After
the corresponding memory is mapped for DMA access, the packet is created and the DCP
is notified.

After executing the operation, the DCP raises an interrupt. The Interrupt Request
(IRQ) handler simply checks the error state of the DCP and schedules the done task
tasklet.

In done task , the memory is un-mapped from the DMA subsystem and the dcp op proceed
function is called if data is remaining. When no more data has to be processed, the tasklet
performs some cleanup tasks, calls the callback method of the finished request and sched-
ules queue task in case of any pending requests.

Moreover, some error-recovery mechanisms are included. The dcp watchdog timer
aborts the operation, if the DCP takes more than 500ms to complete a packet(compared

7A tasklet is a structure holding a function which may be scheduled at a system-determined safe time
[CRKH05]. The function is running in interrupt context, so it is not possible to call functions which may
sleep (and therefore call the scheduler).

CHAPTER 4. DESIGN AND IMPLEMENTATION 70

to about 7ms it takes the DCP to process one page). Every error is reported to the user
as argument of the callback function.

Optimized Approach

As shown in Chapter 5, the performance of the driver depends heavily on the number of
context switches (or scheduled tasklets). The performance has been significantly increased
by the following two optimizations:

• The function of the queue task tasklet is called directly the first time instead of
scheduling the tasklet. Thus, the first function call is done in user-context.

• After finishing a packet, the done task also calls the queue task function directly.

4.6.3 Userspace access

Kernel Driver

In order to enable user-space access to the accelerated cryptography, the cryptodev [Var13]
driver is used. This module provides a virtual file in /dev/crypto to access the kernel’s
cryptography subsystem.

User-space

Similar to the TPM usage described in section 4.5.3 there exists an engine for openSSL to
use the cryptodev module for ordinary AES ciphers in any application.

4.6.4 Disk Encryption

The device proxy described in Section 3.3.4 can be realized in Linux by using the dm crypt
module and cryptsetup. The first line in Listing 18 shows the steps used to setup the
encryption on the /dev/mmcblkp2 partition with AES and 128 bit key size. The second
line has to be executed to actually map the encrypted device. In this case the decrypted
block device is mapped to /dev/mapper/myencpart .

1 cryptsetup -y --cipher aes --key-size 128 luksFormat /dev/mmcblkp2

2 cryptsetup luksOpen /dev/mmcblkp2 myencpart

Listing 18: Encrypting a block device in Linux with dm-crypt and cryptsetup

In order to use the OTP key of the i.MX28, the setkey function of the DCP driver has
been extended to use this key when an all-zero key is provided.

CHAPTER 4. DESIGN AND IMPLEMENTATION 71

Add request to queue

dcp_encrypt/dcp_decrypt queue_task

dcp_busy?

schedule queue_task

Return

Encrypt

Element in

Queue?

No

No

Unqueue

Initialize Crypto

hw_pkg

usable?

Fill Packet

Notify DCP

Yes

Return

Return

Unmap Memory

from DMA

Map Memory

for DMA

Data Left?

Notify Caller Schedule queue_task

Yes

dcp_op_proceed

done_task

No

No

Yes
Yes

Figure 4.8: The basic building blocks of the implemented DCP driver for Linux.

Chapter 5

Results

This chapter covers the discussion of the impact of the implemented security enhancing
features on the threats defined in Chapter 3. Additionally, an analysis of the impact
on system performance in terms of boot and execution time is presented. Moreover,
the hardware-based cryptography is compared to software-only approaches in user- and
kernel-space.

5.1 Threat Mitigation

The threats defined in Section 3.2 are mitigated by the different security enhancements
described in Chapter 3 and 4. Figure 5.1 and Table 5.1 show the different modules which
were discussed before. Table 5.2 shows an overview of the used threat mitigation techniques
followed by a more detailed discussion of every module. Mitigation strategies which are
italic are not covered in this work and can be seen as assumptions and proposals.

User (1)

Appl.

Controller

SW (4)

Network Connection

SPI

Storage Connection

NVM (5)

Comm.

Controller

SW (3)

Figure 5.1: The data flow of the system with reduced complexity based on Assumption 2
and transparent client software.

72

CHAPTER 5. RESULTS 73

Table 5.1: System modules used in threat model.
Module Type Modules

External Identity User (1)
Data Store NVM (5)

Process C-Software (3), A-Software(4)
Data Flow Network (1-3), Storage Connection (3-5) SPI(3-4)

Table 5.2: Overview of the threat mitigation techniques per module.
Threat Mitigation Technique

U
se

r
(1

) Identity Spoofing Password policy, mutual attestation, DOR enc.
Credentials Disclosure on the Wire Network connection with TLS

Replay Attacks TLS
Repudiation DOR encryption, secure logging

N
V

M
(5

)

Data Confidentiality DOR encryption, Linux access control
Integrity of Executables authenticated boot and IMA

C
on

tr
ol

le
r

(3
)

Spoof controller authenticated boot, IMA, remote attestation
Exchange Executables authenticated boot, IMA, remote attestation
Run arbitrary Code IMA (partially)

N
W

(1
-3

)

Link Confidentiality TLS
Link Integrity TLS

CHAPTER 5. RESULTS 74

5.1.1 User and Client PC

As mentioned before, the important problems regarding the user are identity spoofing and
repudiation.

Identity Spoofing

Assuming a password-based authentication, there are basically two ways to spoof a user’s
identity:

Revealing User Secrets: The obvious way to spoof a user is to reveal it’s secrets. Thus,
a good password strength and update policy has to be chosen but this is not a
part of this work. Moreover, the credentials have to be saved on the endpoint,
the communication controller. Thus, this storage has to be secured against non-
authorized access what is described in Section 5.1.2. To protect the data on the link
between the user and the communication controller, the network connection has to
be secured as explained in 5.1.4.

Tamper with the client software: The user communicates with the communication
controller over an ordinary PC running a specific software. Compromising such a
system enables an attacker the possibility to easily read user input or forge com-
mands to the communication controller which are not actually placed by the real
user. Section 3.3.3 described a method to attest the client computers state to the
communication controller with the help of a TPM. This work does not cover an im-
plementation of authenticated boot on an ordinary PC since the Static Root of Trust
for Measurement (RTM) approach used on the communication controller might not
be efficient as described in Section 2.2.1. However, after implementing a chain of
trust on the client computer, the mutual attestation scheme can be implemented
with little effort.

Repudiation

Besides identity spoofing, it is important to ensure non-repudiation of user actions. There-
fore, log files have to be stored in a tamper resistant way. With DOR encryption, the files
are secured while unmounted as described in Section 5.1.2. Detection of non-repudiation
is not possible when a system is compromised, so this has to be done indirectly by logging
unauthorized code execution as described in Section 5.1.3

5.1.2 Non-Volatile Memory

The NVM has to provide a secure partition which is not readable on other systems. The
DOR encryption described in section 3.3.4 enforces this behavior.

Data Confidentiality

All data on this partition is encrypted with a per-system key which is only readable by
the cryptographic co-processor of the SoC. Even if an attacker is able to read the entire
memory of the system in software, he is not able to reveal the key. Thus, the NVM is

CHAPTER 5. RESULTS 75

bound to the SoC, so discarding of the memory card can be done without exhaustive
recovery-resistant removal-technologies.

Data Integrity

Data integrity is ensured with authenticated boot technologies as described in Section
5.1.3.

5.1.3 Communication Controller

As mentioned before, the main attack vectors regarding the communication controller are
spoofing a controller and running arbitrary code on an existing one. The former attack
could reveal user secrets or forge information of the automation system while the latter
case could additionally enable software modifications on an application controller.

Spoofing a Communication Controller

Assuming a non-compromised client computer, the communication controller has to attest
it’s state as described in 3.3.3. To successfully achieve this, the spoofing communication
controller needs the following information:

1. All measurements of a clean communication controller, including the PCR values
and the IMA measurement list.

2. A random value provided by the client software, the nonce.

3. An AIK which is known by the client.

While (1) and (2) are simple to reveal, the private part of the AIK does not leave the TPM
of the real system and therefore it can be seen as non-readable. It is possible to forge the
certificate-chain on the client computer to force the client to trust any key. However, in
this case, it would not make sense to spoof a communication controller because it does
not enable any benefits over access to the client computer.

Another possibility is to get access to an actual communication controller and generate
a quote with the intention to replay it on the spoofed communication controller. This is
countered with the 128 Bit nonce which is added to the measurement before singing.

Permanently change Executables on Communication Controller

According to Assumption 2 of Section 3.2.1 it is possible for an attacker to replace all
system files if logical access to a communication controller is obtained. Another possibil-
ity to achieve this is to directly manipulate the NVM since the system binaries are not
encrypted. The three types of software components are:

• Bootloader (U-Boot) and its Configuration

• Operation System (Linux)

• Userspace Applications

CHAPTER 5. RESULTS 76

As described in Section 4.2 the signature of the bootloader and its configuration are checked
by the HAB feature of the i.MX28. An altered bootloader would lead to a non-booting
system, what is easily detectable.

The bootloader measures the operating system and extends the measurement to a PCR
of the TPM. Whenever another entity starts a communication with the communication
controller, it has to quote these values as described in the last subsection. An altered state
will be detected and the communication refused.

Userspace applications are measured by the IMA, so a changed user-space binary or
configuration file will be detected within the attestation process.

Code Execution at Runtime

An attacker may have the ability to run new code or code what is not intended to run on
the communication controller. There are two components talking with the outer world:
The sshd and the TCS. It may not be excluded that there will be any exploits for these
parts at any time. Therefore, it has to be assumed that it is possible to send malicious
messages to the system in order to execute unattended code.

Profound exploits whereat software is altered without starting a new process are not
detectable by the system8. However, simpler attacks where an attacker is able to spawn
a shell and other processes are reflected in the measurement list of the IMA and can be
detected as described in the last subsection.

Impact on application controller

As mentioned before, it is not possible to completely prevent access to the communication
controller since future exploits are unknown. However, it is possible to detect most mali-
cious modifications on the communication controller. The application controller has to use
the attestation scheme described in Section 3.3.3 to check the state of the communication
controller. Since it can handle safety-critical operations autonomously, the communication
to the communication controller may be safely interrupted while its state is not trustwor-
thy. With this method it is not possible to send commands to the application controller
with non-authenticated software running on the communication controller.

5.1.4 Network Connection

The connection between the communication controller and the client computer is done over
the company network. Since it can not be assured that this connection is secure in terms
of confidentiality and data integrity, some technical protections have to be implemented.
These technologies are not covered by this work but an ordinary Transport Layer Security
(TLS) connection between the endpoints enables all required features.

8There are mitigation strategies for this kind of attacks like Address Space Layout Randomization
(ASLR) or Write XOR Execute (W⊕E) but it cannot be assumed that these mitigations are able to
completely prevent such attacks. A D-RTM based attestation mode where not only the binaries, but the
RAM content is measured may detect such modifications but this is out of the scope of this work.

CHAPTER 5. RESULTS 77

5.1.5 Limitations

This section concludes with the discussion of limitations of the security enhancing features
described so far.

Physical Access

The most important limitation is the absence of protection against physical access: An
adversary who is able to get physical access to the communication controller is able to
perform the following tasks:

• Directly replace files on the NVM: This is the simplest way to alter the behavior of
the device but detectable as described in Section 5.1.3.

• Tamper with the SPI bus: An attacker would be able to send malicious messages to
the application controller.

• Tamper with the I2C connection between the SoC and the TPM: If an attacker
is able to achieve this, the TPM can be considered useless as described in section
2.3. Moreover, any user would believe in the system’s trustworthiness because the
attestation features tell him so.

Thus, physical access has to be prevented for any adversary. However, hardware access
to one communication controller does not compromise security of other systems because
the keys used for encryption and signing are unique and their private parts are hardware
protected by the TPM.

Run-Time Integrity Detection

Another limitation is the lack of detection of sophisticated exploits as described in Section
5.1.3. Whenever an attacker is able to execute arbitrary code on the communication
controller without spawning a new process, this modification would remain undetectable.
Such kind of attacks can be mitigated with technologies like ASLR or W⊕E, and by
reducing the complexity of the software interfaces. Whenever an attacker needs to spawn
another process to perform an attack, it is detectable with the help of the IMA. Moreover,
a reset of the platform restores the system to a trusted state.

5.2 Trusted Boot Performance

5.2.1 Overview

Trusted and/or secure boot add a significant overhead in terms of CPU-time. Both, the
measurement itself (i.e., the hash function) and the extending to the TPM are relatively
cost intensive. In order to picture this overhead, this section provides some measurements
concerning the boot time differences of enabled and disabled integrity measurements.
Table 5.3 shows the basic setup of the bootloader, kernel and hardware.

CHAPTER 5. RESULTS 78

Table 5.3: Setup to measure authenticated boot performance impact.
Module Version

System on Chip Freescale i.MX287
Board Freescale i.MX28evk Evaluation Board

Bootloader U-Boot v2013.04 with TPM and bootstage support
Kernel Linux v3.10-rc4 with DCP, Atmel TWI TPM and IMA

5.2.2 Bootloader

Measurement Setup

U-Boot provide a simple measurement interface called bootstage to incrementally take
measurements of different actions. As shown in Figure 5.2 the measurement setup for
U-Boot is defined as:

• Initialize the TPM after U-Boot has loaded.

• Load the kernel image from a server with TFTP.

• Set a bootstage mark and generate a hash of the kernel.

• Set another mark and extend the measured value to a PCR.

• Print the time measurements and hand over control to the kernel.

Low Level

Initialization

Relocate U-Boot

on RAM

Intitialize and

Test TPM

Measure + Extend

U-Boot Configuration

Load Configuration

Reset

Load Kernel + DT

via TFTP

Measure + Extend

Bootstage point 4

Kernel

Boot Kernel

Halt on Error

Bootstage Point 1

Bootstage point 2

Bootstage point 3

Bootstage point 5

Figure 5.2: The bootloader is measured at 5 different points in order to measure the
impact of authenticated boot on execution time.

This setup enables the measurement of U-Boot’s performance while loading a kernel
image with 3.19MB (uncompressed).

CHAPTER 5. RESULTS 79

Table 5.4: Performance drawback in U-Boot when measuring a Kernel.
Action Time

Load Kernel via TFTP 4s
Other Actions 2s

Boot Time Without TPM 6s

Measure Kernel 222ms
Extend to TPM 700ms∗

Trusted Computing Overhead 922ms∗

Measurement Results

Table 5.4 shows the performance impact of the authenticated boot process in U-Boot.
It has to be noted that the used I2C driver still had some bugs which causes the

relatively long time used to extend the measurement to the PCR. However, assuming that
the final version of the system does not load the kernel image via TFTP but boots it from
memory (what reduces the boot time by 4 seconds), the impact on U-Boot boot time is
about 45%.

5.2.3 Operating System

Measurement Setup

In order to measure the CPU-time used for integrity measurements, the IMA-module has
been extended. As described in Section 4.4, the process measurement function is the first
function which is called from all measurement-hooks. Thus, it is the best candidate to
measure the execution time.

The time is taken with the local clock function what essentially calls the read sched clock
function in the clocksource-driver of the i.MX28 platform which itself reads the timrot reg-
ister 1 of the SoC. The complete boot time is measured with the help of a small kernel
module which is late loaded after all other startup daemons just before the first shell is
spawning. This is not a very accurate approach because it highly depends on scheduling
slices but it provides a basic idea of the time consumed by the complete boot process.

The Dynamic Host Configuration Protocol (DHCP) client and other network functions
are deactivated in order to minimize external dependencies. While the kernel is loaded
via TFTP, the root filesystem is stored on a memory card.

Measurement Results

Table 5.5 shows the impact of the integrity measurements made by the IMA. Figure 5.3
shows the distribution of program sizes and the average time needed to measure in order
to provide an idea of the amount of user-space applications. Since most of these files are
relatively small (< 500kB), the time difference between measurement only and additional
extending is very high (one extension takes about 20ms).

CHAPTER 5. RESULTS 80

Table 5.5: Performance drawback in Linux with activated IMA.
Action Time

Boot Time Without IMA 20s

IMA without TPM enabled (measurement only) 1695ms

IMA with enabled TPM 4748ms

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

150

Distribution of Size of Measured Files

File Size [kB]

C
o

u
n

t

0 50 100 150 200
0

20

40

60

80

Distribution of Size of Measured Files (< 500kB)

File Size [kB]

C
o

u
n

t

Figure 5.3: Distribution of sizes of measured files: The big time overhead used for extend-
ing the measured values to the TPM is explained by this distribution. Most of the 115
measured files are relatively small.

5.2.4 Conclusion

As seen in this section, the integrity measurements require a significant time in the boot
process. However, after the system is started successfully, the IMA does not need to
measure additional files, since all binaries needed for normal operation are loaded already.

5.3 Hardware AES Performance

The DCP driver’s performance highly depends on implementation details and block sizes.
This section describes different measurement setups used to analyze the behavior in kernel-
and user-space. The differences in terms of performance for different blocks and use-cases
are analyzed. The hardware and software setup is identical to Section 5.2.

CHAPTER 5. RESULTS 81

5.3.1 Measurement Setup

Hardware Time

In order to face the time needed for configuration done by the CPU and the time needed
for cryptography by the DCP, the driver is adopted as follows:

• Just before the DCP is notified in dcp proceed , the current time is measured with
local time (see Section 5.2.3).

• When the last hardware interrupt raises the done task tasklet, the time difference is
measured and provided through a sysfs file.

• Moreover, an exported function to provide the measurements to other kernel modules
is added.

In-Kernel Measurement

To measure the performance of the DCP as clean as possible in terms of minimizing
computing overhead and context switches, the crypto-test module tcrypt has been adopted:

• The module is loaded with insmod and sets up the scatterlist and cipher transform
for asynchronous encryption. The block size is set by a module parameter.

• In order to ensure that all needed code resides in RAM, the encryption function is
run for 100 times for a small block (16 Bytes). After this run, the measurement
value for hardware time of the DCP driver is set to 0.

• To prevent other processes to take CPU time, the scheduler is temporary disabled.

• The time is taken with local time and one asynchronous request is set up.

• When the callback function is executed, the time difference is measured and the
value is printed to the console

By running the encryption only once, it is possible to measure both, the complete CPU
time and the time needed for the hardware encryption itself. This measurement is taken
several times (100) to take a mean value to reduce fluctuations.

Userspace Measurement

In order to measure the performance in user-space, the cryptodev module is loaded and
a slightly modified version of openSSL’s speed tool is called as shown in Listing 19. The
modifications of openSSL limit on block size alignment to make the results comparable to
the in-kernel measurements.

1 openssl speed -evp aes-128-cbc

Listing 19: Measuring the encryption performance with openSSL

CHAPTER 5. RESULTS 82

Data On Rest Encryption

The DOR encryption is set up for an ordinary partition on an memory card and on a
RAM partition in order to clean the measurements form Input/Output (I/O) lags. The
block size of the encryption is 512 bytes (defined by dm-crypt) and the measured time
reflects a raw write form /dev/zero to the mapped block device to mask the file system
overhead.

5.3.2 In-Kernel Measurements

Figure 5.4 shows the performance of the DCP compared to software encryption for different
block sizes. As seen in the chart, the performance heavily depends on the block size. Big
blocks are encrypted more efficiently because the setup-time per block decreases. As shown
in Figure 5.5, the CPU is idling about 30−40% of the time. This can be seen as additional
performance gain compared to software-only encryption as the CPU can be used for other
computations.

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

30
Performance of HW AES

Blocksize [kB]

B
y

te
s

 p
e

r
s

e
c

o
n

d
 [

M
B

/s
]

Kernel

Kernel − less CS

Kernel − SW only

Figure 5.4: Performance of the hardware AES in kernel-space.

5.3.3 User-Space Measurements

Figure 5.6 faces the performance measured with openSSL’s speed tool with software en-
cryption. The user-space cryptography is generally slower than in-kernel encryption be-
cause of the context-switches to the kernel. Moreover, the graph flattens out much faster
than the in-kernel measurement because the cryptodev module splits up the user-space
memory to blocks of 1 page (4kB on this platform) and calls the DCP driver for each of
block separately.

CHAPTER 5. RESULTS 83

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45

50

CPU Idle Time

Blocksize [kB]

Id
le

 C
P

U
 T

im
e

 [
%

]

Figure 5.5: Idling time of the CPU while encrypting blocks in the co-processor.

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25
Performance of HW AES

Blocksize [kB]

B
y

te
s

 p
e

r
s

e
c

o
n

d
 [

M
B

/s
]

Kernel

OpenSSL − HW

OpenSSL − SW

Figure 5.6: Performance of the hardware AES in user-space.

CHAPTER 5. RESULTS 84

5.3.4 Data On Rest Encryption

Table 5.6 shows the results of the DOR performance measurement. The I/O performance
does not seem to be a problem since the encryption is much slower. The hardware en-
cryption is even less performing than the software-based approach. This gap results from
the small block size (512B) used by dm crypt . However, the time used for the hardware
based approach has to be reduced by 33% to reflect the amount of time where the CPU
is idle.

Table 5.6: Performance of DOR encryption.
Destination No Encryption Software Hardware

Ramdisk 18.8MB/s 2MB/s 1.8MB/s
MMC 7.4MB/s 2MB/s 1.8MB/s

Chapter 6

Conclusion

Security should be an integral part of CPS as consequences are potentially enormous.
Especially safety-critical applications like power plants need robust designs to prevent
adversary from access to the system. Trusted computing technologies enable the possibility
to ensure the integrity of a system. When a TPM is used, this can be achieved even if the
system is compromised in software with little cost.

This work added these capabilities to an existing system used in hydro-electric power
plants. Therefore, a security analysis with the help of the STRIDE process has been done
and a subset of the possible threats has been mitigated.

A hardware TPM and an authenticated boot process has been implemented in or-
der to prove the system’s state to other entities what enables the possibility to isolate
compromised subsystems.

Moreover, Data on Rest (DOR) encryption for the NVM has been implemented which
is backed by the hardware accelerated AES module of the used SoC.

Additionally, the implemented features enabled some advantages with little effort:

• To simplify the use of the TPM, a wrapper library with an high-level API for the
TrouSerS TSS has been implemented.

• The hardware-based RNG of the TPM is used to fill the entropy pool of the operating
system.

• OpenSSL is able to use the TPM’s RSA keys, what enables the possibility to securely
store the private parts of the keys used for SSL connections on the TPM. This process
is transparent to all applications using OpenSSL as cryptographic library.

The performance of the implemented features has been analyzed and the drawback in
terms of boot time is significant. However, since the features does not consume time at
run-time on a non-compromised system, this drawback is acceptable.

85

CHAPTER 6. CONCLUSION 86

6.1 Future Work

With the conclusion of this work, some additional tasks remain:

Analyzing run-time behaviour: The security analysis has shown, that it might be
possible to inject or execute arbitrary code on the communication controller without
being noticed by the IMA. The IMA only recognizes opened files. Thus, an injection
and execution of code without starting a new process is not covered in this work.
Technologies like ASLR or W⊕E might prevent these kind of threats, but further
analysis has to be done.

Non-Repudiation: Since write access to log files is not covered by any of the intro-
duced capabilities, non-repudiation is not ensured (except off-line tampering on the
encrypted partition). Since a changed log file might mask malicious users, investi-
gation of this problem should be done.

AES Performance: As seen in Chapter 4, there are some potentially performance gaps
in the implementation of the hardware AES driver since it is oriented on similar
drivers in the Linux tree and the organizational overhead is relatively high.

Acronyms

3DES Triple Data Encryption Standard. 21

AES Advanced Encryption Standard. 11, 32, 35, 44, 45, 66–68, 70

AIK Attestation Identity Key. 16, 18, 20, 39, 40, 75

API Application Programming Interface. 29, 57, 66, 67

ASLR Address Space Layout Randomization. 75, 77

BIOS Basic Input Output System. 15, 37

CBC Cipher Block Chaining. 66, 67

CLI Command Line Interface. 51

COT Chain of Trust. 14

CPS Cyber Physical System. 11, 82

CPU Central Processing Unit. 16, 21, 22, 24, 26, 28, 32, 35, 41–44, 67, 77–81

CRC Cyclic Redundancy Check. 52

CRTM Core Root of Trust for Measurement. 13, 15, 19, 20, 23, 25, 37, 52

D-RTM Dynamic Root of Trust for Measurement. 17, 24, 25, 28, 40, 75

DCP Data Co Processor. 45, 66, 68–70, 79–81

DES Data Encryption Standard. 21

DHCP Dynamic Host Configuration Protocol. 79

DMA Direct Memory Access. 42, 56, 57, 60, 69

DOR Data On Rest. 11, 41, 73, 74, 80, 81

DRM Digital Rights Management. 29, 33

E-TPM Extended TPM. 20–22, 37

87

Acronyms 88

EEPROM Electrically Erasable Programmable Read-Only Memory. 45

EK Endoresement Key. 15, 16, 18, 20

FOSS Free and Open Source Software. 31

FPGA Field Programmable Gate Array. 29

HAB High Assurance Boot. 37, 75

HMAC Hashed Message Authentication Code. 15

HRNG Hardware-based Random Number Generator. 64

I/O Input/Output. 80, 81

I2C Inter-IC. 16, 45, 53, 56–60, 76, 78

IMA Integrity Measurement Architecture. 23–25, 38, 40, 55, 60–64, 74–79

IOCTL Input/Output Control. 55

IPSEC IP Security. 66

IRQ Interrupt Request. 69

LEP Lying Endpoint Problem. 25

LOC Line of Code. 64, 65

LPC Low Pin Count. 16, 28, 29

MAC Mandatory Access Control. 60

MMU Memory Management Unit. 32, 42

NACMS Network Access Control Manager System. 25

NVM Non Volatatile Memory. 15–17, 19, 23, 34, 35, 41, 47, 50, 74–76

openSSL open Secure Socket Layer. 31, 64, 70, 80, 81

OTP One Time Programmable. 37, 70

PC Personal Computer. 15, 18, 28, 37, 38, 46–48, 66, 73, 74

PCR Platform Configuration Register. 16–19, 23–25, 27, 28, 35, 38, 40, 41, 55, 59–61,
63, 74, 75, 77, 78

PLC Programmable Logic Controller. 11, 45

PrivacyCA Privacy Certification Authority. 18, 20

Acronyms 89

Qt Qt - A framework for C++. 64, 65

RAM Random Access Memory. 41, 42, 75, 80

RNG Random Number Generator. 66

ROM Read Only Memory. 25, 37

RSA Rivest/Shamir/Adleman. 15, 65

RTM Root of Trust for Measurement. 15

RTM Static Root of Trust for Measurement. 74

RTR Root of Trust for Reporting. 15

RTS Root of Trust for Storage. 15

SDL Security Development Lifecycle. 46, 49, 77

SeLinux Security Enhanced Linux. 60

SHA-1 Secure Hash Algorithm. 15, 45

SMC Secure Monitor Call. 25

SMS4 Encryption Algorithm for Wireless Network. 21

SoC System on Chip. 25, 37, 41, 45, 74, 76, 79

SOF Start of Frame. 29

SPI Serial Periphial Interface. 32, 47, 48, 50, 73, 76

SRK Storage Root Key. 15–17, 66

sshd Secure Shell Daemon. 47, 75

SSL Secure Sockets Layer. 35

STRIDE Spoofing identity, Tampering, Repudiation, Information disclosure, Denial of
Service, Elevation of Privilege. 12, 45, 49

TCG Trusted Computing Group. 13, 15, 16, 29, 31, 38

TCS Control Software. 29, 47, 64, 75

TDDL Trusted Device Driver Library. 29

TFTP Trivial File Transfer Protocol. 52, 77–79

TLS Transport Layer Security. 76

TNC Trusted Network Connection. 24, 25

Acronyms 90

TPM Trusted Platform Module. 11–20, 23–29, 31, 32, 34, 35, 37–41, 45, 46, 52, 54–56,
58–61, 64–66, 70, 74–77

TRNG True Random Generator. 15

TSP TSS Service Provider. 29, 64, 65

TSS Trusted Software Stack. 13, 21, 26, 29–32, 39, 64

TXT Trusted Execution Technology. 24

VM Virtual Machine. 27

W⊕E Write XOR Execute. 75, 77

Bibliography

[AFS97] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and reliable boot-
strap architecture. In Proceedings of the 1997 IEEE Symposium on Security
and Privacy, SP ’97, pages 65–, Washington, DC, USA, 1997. IEEE Com-
puter Society.

[AHYK11] L. H. Adnan, H. Hashim, Y.M. Yussoff, and M. U. Kamaluddin. Root of trust
for trusted node based-on ARM11 platform. In Communications (APCC),
2011 17th Asia-Pacific Conference on, pages 812–815, 2011.

[CHL+09] Chris Codella, Arun Hampapur, Chung-Sheng Li, Dimitrios Pendarakis, and
Josyula R. Rao. Continuous Assurance for Cyber Physical System Security
[online]. 2009. visited: 08.09.2013. URL: http://cimic.rutgers.edu/

positionPapers/CPSSW09%20_IBM.pdf.

[Cor05] Jonathan Corbet. The Integrity Measurement Architecture [online]. May
2005. visited: 08.09.2013. URL: http://lwn.net/Articles/137306/.

[Cor07] Jonathan Corbet. The chained scatterlist API [online]. October 2007. visited:
08.09.2013. URL: http://lwn.net/Articles/256368/.

[Cor11] Jonathan Corbet. Platform devices and device trees [online]. June 2011.
visited: 08.09.2013. URL: http://lwn.net/Articles/448502/.

[Cor13] Jonathan Corbet. IBM Software TPM [online]. May 2013. visited:
08.09.2013. URL: http://ibmswtpm.sourceforge.net/.

[CPRS11] David Cooper, William Polk, Andrew Regenscheid, and Murugiah Souppaya.
BIOS Protection Guidelines. Technical report, 2011.

[CRKH05] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux De-
vice Drivers, 3rd Edition. O’Reilly Media, Inc., 2005.

[CYC+07] David Challener, Kent Yoder, Ryan Catherman, David Safford, and Leendert
Van Doorn. A practical guide to trusted computing. IBM Press, first edition,
2007.

[Den13a] Denx. Das U-Boot – the Universal Boot Loader [online]. May 2013. visited:
08.09.2013. URL: http://www.denx.de/wiki/U-Boot.

91

http://cimic.rutgers.edu/positionPapers/CPSSW09%20_IBM.pdf
http://cimic.rutgers.edu/positionPapers/CPSSW09%20_IBM.pdf
http://lwn.net/Articles/137306/
http://lwn.net/Articles/256368/
http://lwn.net/Articles/448502/
http://ibmswtpm.sourceforge.net/
http://www.denx.de/wiki/U-Boot

BIBLIOGRAPHY 92

[Den13b] Denx. Das U-Boot - Supported Target Architectures [online]. May
2013. visited: 08.09.2013. URL: http://www.denx.de/wiki/view/DULG/

ELDKSupportedTargetArchitectures.

[Dig13] Digia. Qt Project Site [online]. July 2013. visited: 08.09.2013. URL: http:
//qt-project.org/.

[FQmYF11] Wei Feng, Yu Qin, Ai min Yu, and Dengguo Feng. A DRTM-Based Method
for Trusted Network Connection. In Trust, Security and Privacy in Comput-
ing and Communications (TrustCom), 2011.

[GGKL89] A. Gasser, C. Goldstein, Kaufinan, and B. Lampson. The digital distribute
system security architecture. In In Proceedings of the National Computer
Security Conference, 1989.

[Gla13] Simon Glass. [U-Boot] [PATCH v3 0/12] Verified boot implementation
based on FIT [online]. July 2013. visited: 08.09.2013. URL: http:

//www.mail-archive.com/u-boot@lists.denx.de/msg115429.html.

[HL09] M. Howard and S. Lipner. Security Development Lifecycle. Microsoft Press,
2009.

[IAI13] IAIK. jTSS Project Site [online]. July 2013. visited: 08.09.2013. URL:
http://trustedjava.sourceforge.net/.

[IMA13] The Integrity Measurement Architecture - Documentation [online]. May
2013. visited: 08.09.2013. URL: http://sourceforge.net/apps/

mediawiki/linux-ima/index.php?title=Main_Page.

[Inc13] Freescale Semiconductor Inc. i.MX28 Applications Processor Reference Man-
ual, first edition, 2013.

[Kau07] Bernhard Kauer. OSLO: improving the security of trusted computing. In
Proceedings of 16th USENIX Security Symposium on USENIX Security Sym-
posium, Berkeley, CA, USA, 2007. USENIX Association.

[Lan11] R. Langner. Stuxnet: Dissecting a Cyberwarfare Weapon. Security Privacy,
IEEE, 2011.

[LZZ11] Jing Li, Huanguo Zhang, and Bo Zhao. Research of reliable trusted boot
in embedded systems. In Computer Science and Network Technology (ICC-
SNT), 2011.

[MWK+13] K. Mowery, M. Wei, D. Kohlbrenner, H. Shacham, and S. Swanson. Welcome
to the Entropics: Boot-Time Entropy in Embedded Devices. In Security and
Privacy (SP), 2013 IEEE Symposium on, 2013.

[RNG13] Rngtools Project Site [online]. July 2013. visited: 08.09.2013. URL: http:
//sourceforge.net/projects/gkernel/files/rng-tools/.

http://www.denx.de/wiki/view/DULG/ELDKSupportedTargetArchitectures
http://www.denx.de/wiki/view/DULG/ELDKSupportedTargetArchitectures
http://qt-project.org/
http://qt-project.org/
http://www.mail-archive.com/u-boot@lists.denx.de/msg115429.html
http://www.mail-archive.com/u-boot@lists.denx.de/msg115429.html
http://trustedjava.sourceforge.net/
http://sourceforge.net/apps/mediawiki/linux-ima/index.php?title=Main_Page
http://sourceforge.net/apps/mediawiki/linux-ima/index.php?title=Main_Page
http://sourceforge.net/projects/gkernel/files/rng-tools/
http://sourceforge.net/projects/gkernel/files/rng-tools/

BIBLIOGRAPHY 93

[RNK+11] Andreas Reiter, Georg Neubauer, Michael Kapfenberger, Johannes Winter,
and Kurt Dietrich. Seamless Integration of Trusted Computing into Standard
Cryptographic Frameworks. In Trusted Systems, volume 6802 of Lecture
Notes in Computer Science, pages 1–25. Springer Berlin Heidelberg, 2011.

[Spa07] Evan R. Sparks. A Security Assessment of Trusted Platform Modules. Tech-
nical Report TR2007-597, Dartmouth College, Computer Science, Hanover,
NH, June 2007. visited: 08.09.2013. URL: http://www.cs.dartmouth.edu/
reports/TR2007-597.ps.Z.

[SS13] M Strasser and H. Stamer. Software-based TPM Emulator [online]. May
2013. visited: 08.09.2013. URL: http://tpm-emulator.berlios.de/.

[SZ10] Christian Stüble and Anoosheh Zaerin. uTSS – A Simplified Trusted Software
Stack. In Trust and Trustworthy Computing, volume 6101 of Lecture Notes
in Computer Science, pages 124–140. Springer Berlin Heidelberg, 2010.

[SZJvD04] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. Design
and implementation of a TCG-based integrity measurement architecture. In
Proceedings of the 13th conference on USENIX Security Symposium, Berke-
ley, CA, USA, 2004. USENIX Association.

[TCG05] TCG. TCG PC Client Specific TPM Interface Specification [online]. 2005.
visited: 08.09.2013. URL: http://www.trustedcomputinggroup.org/

files/resource_files/87BCE22B-1D09-3519-ADEBA772FBF02CBD/TCG_

PCClientTPMSpecification_1-20_1-00_FINAL.pdf.

[TCG13] TCG. Trusted Computing Group [online]. May 2013. visited: 08.09.2013.
URL: https://www.trustedcomputinggroup.org/.

[TRO13] Trousers Project Site [online]. July 2013. visited: 08.09.2013. URL: http:
//trousers.sourceforge.net/.

[Var13] Various. Cryptodev-linux - Project Page [online]. July 2013. visited:
08.09.2013. URL: http://cryptodev-linux.org/.

[WD12] Johannes Winter and Kurt Dietrich. A Hijacker’s Guide to the LPC Bus. In
Public Key Infrastructures, Services and Applications. Springer Berlin Hei-
delberg, 2012.

[Win08] Johannes Winter. Trusted computing building blocks for embedded Linux-
based ARM trustzone platforms. In Proceedings of the 3rd ACM workshop
on Scalable trusted computing, New York, NY, USA, 2008. ACM.

[YDJ11] Hongfei Yin, Hongjun Dai, and Zhiping Jia. Verification-Based Multi-backup
Firmware Architecture, an Assurance of Trusted Boot Process for the Em-
bedded Systems. In Trust, Security and Privacy in Computing and Commu-
nications (TrustCom), 2011 IEEE 10th International Conference on, 2011.

http://www.cs.dartmouth.edu/reports/TR2007-597.ps.Z
http://www.cs.dartmouth.edu/reports/TR2007-597.ps.Z
http://tpm-emulator.berlios.de/
http://www.trustedcomputinggroup.org/files/resource_files/87BCE22B-1D09-3519-ADEBA772FBF02CBD/TCG_PCClientTPMSpecification_1-20_1-00_FINAL.pdf
http://www.trustedcomputinggroup.org/files/resource_files/87BCE22B-1D09-3519-ADEBA772FBF02CBD/TCG_PCClientTPMSpecification_1-20_1-00_FINAL.pdf
http://www.trustedcomputinggroup.org/files/resource_files/87BCE22B-1D09-3519-ADEBA772FBF02CBD/TCG_PCClientTPMSpecification_1-20_1-00_FINAL.pdf
https://www.trustedcomputinggroup.org/
http://trousers.sourceforge.net/
http://trousers.sourceforge.net/
http://cryptodev-linux.org/

BIBLIOGRAPHY 94

[YT95] Bennet Yee and J. D. Tygar. Secure Coprocessors in Electronic Commerce
Applications. In In Proceedings of The First USENIX Workshop on Elec-
tronic Commerce, 1995.

	Introduction
	Motivation
	Outline

	Related Work
	Trusted Computing Basics
	Overview
	Trusted and Secure Boot
	Root of Trust
	Trusted Platform Module

	Trusted Computing Technologies
	TPM Based Trusted Boot Systems
	Secure Boot Processes without TPM

	Limitations and Weaknesses
	Trusted Software Stack
	Overview
	Implementations

	Architecture and Concept
	System Overview
	Basic Architecture
	Attacker Model

	Threat Model
	Security Assumptions
	Data Flow Analysis
	Threat Definition
	Security Enhancements

	Subsystem Description
	Authenticated Boot
	Userspace Interface
	Attestation
	Encrypted Filesystem
	Hardware Accelerated AES

	Design and Implementation
	Target System
	Hardware Components
	Software

	U-Boot and Trusted Boot
	Overview
	Basic Boot Process
	Trusted Boot Process
	Trusted Boot with Root of Trust
	U-Boot I2C Interface
	U-Boot TPM Interfaces
	Trusted Boot Integration

	TPM in Linux
	I2C Subsystem
	TPM Subsystem
	TPM Device Driver

	Integrity Measurement Architecture
	Overview
	Collect Measurements
	IMA-Policies
	IMA Activation and Usage

	TPM Usage in User-space
	Overview
	QTSSWrapper
	TPM Keys in OpenSSL
	TPM Random Generator

	Hardware AES
	Linux and Cryptography
	Design of AES-Driver
	Userspace access
	Disk Encryption

	Results
	Threat Mitigation
	User and Client PC
	Non-Volatile Memory
	Communication Controller
	Network Connection
	Limitations

	Trusted Boot Performance
	Overview
	Bootloader
	Operating System
	Conclusion

	Hardware AES Performance
	Measurement Setup
	In-Kernel Measurements
	User-Space Measurements
	Data On Rest Encryption

	Conclusion
	Future Work

	Literaturverzeichnis

