
Master Thesis

Content Based Retrieval of 3D Models
using Generative 3D Models

Harald Grabner, BSc

Institute of Computer Graphics
and Knowledge Visualization

Graz University of Technology

September 2013

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

date (signature)

i

Abstract

Improvements in techniques for digitizing, modeling and visualizing 3D shapes have led
to an enormous amount of 3D models available on the internet. To explore such large
databases, efficient retrieval methods are needed in order to obtain relevant results with
respect to a given search query.

In this thesis a novel approach to retrieve 3D models, based on generative modeling
techniques, is presented. The generative models span a shape space, of which a number
of training samples is taken at random. The randomly generated training samples are
used to train retrieval methods. In this way, no “real” training data is needed a priori
and no additional meta data must be provided for the 3D models to be retrieved.

To train the retrieval methods, feature vectors are calculated for the randomly generated
training samples. For this purpose, the training samples are voxelized, aligned and
transformed using inverse distance transformation. The transformed training samples
are split into a grid of regular cells. For each cell the histogram of inverted distances is
calculated, which serves as the cells feature vector.

Two 3D model retrieval methods are presented. The first method learns a non-parametric
density function for each cell, the second method uses a one-class support vector machine
to estimate the distribution of training samples in the feature space. Furthermore, two
approaches to improve retrieval effectiveness are presented. The first approach aims to
improve retrieval results by calculating the joint probability on a Markov random field.
The second approach uses diffusion processes to take the underlying structure of the data
manifold into account. The effectiveness of the methods is demonstrated by testing the
methods against Princeton shape benchmark using standard quality measures.

It is shown that it is possible to train retrieval methods using solely generative models.
Furthermore it is shown, that the histogram of inverted distances can be used as a
feature vector for spatial data.

ii

Zusammenfassung

Methoden zur Digitalisierung, Modellierung und Visualisierung von 3D Objekten wur-
den in den letzten Jahren laufend verbessert. Die Verwendung dieser Methoden hat zu
einer immensen Anzahl von 3D Modellen im Internet geführt. Um Datenbestände dieser
Größenordnung zu durchsuchen werden Methoden benötigt, die auf Basis einer Suchan-
frage relevante Resultate zurückliefern. Diese Methoden werden Retrieval-Methoden
genannt.

In dieser Arbeit wird eine neuartige Retrieval-Methode für 3D Modelle präsentiert. Die
Methode basiert auf Techniken der generativen Modellierung. Generative Modelle wer-
den in dieser Arbeit benutzt um einen Raum von 3D Modellen aufzuspannen. Aus
diesem Raum werden zufällig 3D Modelle ausgewählt, welche später zum Trainieren der
Retrieval-Methoden benutzt werden. Auf diese Weise werden keine ”echten“ Trainings-
daten im Vorhinein benötigt und die zu suchenden Modelle müssen nicht mit Metadaten
versorgt werden.

Um die Retrieval-Methoden zu trainieren werden Merkmalsvektoren für die zufällig
ausgewählten 3D Modelle berechnet. Dazu werden die Modelle in das Voxel-Format
konvertiert und anschließend ausgerichtet. Auf den ausgerichteten Modellen wird die
inverse Distanztransformation berechnet. Die transformierten Modelle werden danach
in ein regelmäßiges Gitter, bestehend aus Zellen, aufgeteilt. Für jede Zelle wird das
Histogramm der inversen Distanzen berechnet. Dieses Histogramm stellt den Merk-
malsvektor für die jeweilige Zelle dar.

In dieser Arbeit werden zwei Retrieval-Methoden präsentiert. In der ersten Methode
wird pro Zelle eine parameterfreie Dichtefunktion gelernt und in der zweiten Methode
wird eine Support Vector Machine benutzt um die Verteilung der Trainingsmodelle
im Featureraum zu schätzen. Des Weiteren werden zwei Ansätze um die Retrieval-
Ergebnisse zu verbessern vorgestellt. Im ersten Ansatz werden Markov-Netzwerke be-
nutzt und im zweiten Ansatz werden Diffusionsprozesse benutzt. Die Effektivität der
Methoden wird durch den Vergleich mit dem ”Princeton Shape Benchmark“ gezeigt.
Dazu werden klassische Qualitätsmetriken verwendet.

In dieser Arbeit wird gezeigt, dass es möglich ist Retrieval-Methoden ausschließlich mit
generativen Modellen zu trainieren. Des Weiteren wird gezeigt, dass das Histogramm
der inversen Distanzen als Merkmalsvektor für 3D Modele verwendet werden kann.

iii

Acknowledgements

This project would not have been possible without the support of many people. I
would like to thank my supervisor Dr. Torsten Ullrich who supported and guided me
throughout the project. Furthermore, I would like to thank all members of the Computer
Graphics and Knowledge Visualization institute and especially my labmates Christian
and Martin. I would also like to thank my family and friends for all the support they
have provided. Special thanks goes to Patrick Min for making his tools “meshconv”
and “binvox” available to the public and to Michael Donoser for publishing his diffusion
code.

iv

Contents

1 Introduction 1

2 Background 4
2.1 Information Retrieval . 4

2.1.1 Structure of 3D Model Retrieval Systems 4
2.1.2 Evaluation of Information Retrieval Methods 5

2.2 Probability and Statistics . 8
2.2.1 Probability Spaces and Random Variables 8
2.2.2 Gaussian Distribution . 10
2.2.3 Kernel Density Estimation . 10
2.2.4 Histogram Density Estimation . 11
2.2.5 Support Vector Machines . 12
2.2.6 Principal Component Analysis . 13
2.2.7 Markov Random Fields . 13

2.3 Shape Representations . 15
2.3.1 Polygonal Model Representation 15
2.3.2 Parametric Patches . 16
2.3.3 Constructive Solid Geometry . 16
2.3.4 Spatial Subdivision Techniques . 17
2.3.5 Implicit Representation . 18
2.3.6 Procedural Models . 18

3 Related Work 20
3.1 Feature Based Retrieval Methods . 21

3.1.1 Global Feature Based Retrieval Methods 21
3.1.2 Global Feature Distribution Based Retrieval Methods 21
3.1.3 Spatial Maps of Features . 22
3.1.4 Local Feature Based Methods . 22

3.2 Graph Based Retrieval Methods . 24
3.2.1 Model Graph Based Methods . 24
3.2.2 Skeleton Based Methods . 25

3.3 Geometry Based Retrieval Methods . 26
3.3.1 View Based Retrieval Methods . 26
3.3.2 Volumetric Error Based Retrieval Methods 26
3.3.3 Weighted Point Set Based Retrieval Methods 27

4 Methodology 29
4.1 Generation of Training Examples . 30
4.2 Voxelization and Pose Normalization . 32
4.3 Feature Vector Calculation . 33

v

Contents vi

4.4 Matching using Kernel Density Estimation 35
4.5 Matching using Support Vector Machines 35
4.6 An Approach to Improve Retrieval Results using Markov Random Fields 36
4.7 An Approach to Improve Retrieval using Diffusion Processes 36

5 Evaluation 38
5.1 Evaluation Setup . 38

5.1.1 Sedan Car . 38
5.1.2 Commercial Airplane . 39

5.2 Evaluation of the Histogram of Inverted Distances - Kernel Density Esti-
mation Algorithm . 39

5.3 Evaluation of the Histogram of Inverted Distances - Support Vector Ma-
chine Algorithm . 42

5.4 Evaluation of the Markov Random Field Approach 44
5.5 Evaluation of the Diffusion Process Approach 46

6 Conclusion 50

Bibliography 52

List of Figures

1.1 An example of a meta data-based retrieval approach. 2
1.2 An example of a content-based retrieval approach 2
1.3 A generative model of a Greek temple. 3

2.1 A conceptual framework for 3D content based retrieval systems. 5
2.2 Relevant and retrieved 3D models. 6
2.3 An exemplary precision-recall curve. 7
2.4 Averaged eleven point precision-recall graph. 7
2.5 A dodecahedron with differently colored faces. 10
2.6 A continuous version of the wheel of fortune. 10
2.7 Kernel Density Estimation. 11
2.8 Histogram Density Estimation. 12
2.9 Support Vector Machine. 12
2.10 Principal Component Analysis. 13
2.11 A Markov random field with two maximal cliques. 14
2.12 The derived Markov random field for image denoising. 14
2.13 A noisy black and white image. 15
2.14 Image de-noised by optimizing a joint probability function. 15
2.15 A sphere represented by a triangle mesh. 16
2.16 The halfedge data structure. 16
2.17 An example of a NURBS surface. 17
2.18 The B-rep data-structure. 17
2.19 An example of a constructive solid geometry model. 17
2.20 A voxelized version of the Stanford bunny. 18
2.21 The Stanford bunny represented in an octree. 18

3.1 Shape Distributions . 22
3.2 A two-dimensional radial shape histogram. 23
3.3 A two-dimensional shape histogram. 23
3.4 Partial matching with spin images. 23
3.5 Indexing of solid models using graphs. 25
3.6 Iterative skeleton extraction by mesh contraction. 26
3.7 Matching models by comparing their skeletons. 26
3.8 View based retrieval. 27
3.9 Volumetric error based retrieval. 28
3.10 Weighted point sets. 28

4.1 Generation of training samples. 30
4.2 The structure of the Euclides framework. 31
4.3 Unaligned and aligned version of a voxelized car model. 32
4.4 Two models of the same class which are aligned differently. 33
4.5 Inverse distance model. 34

vii

List of Figures viii

4.6 Inverse distance model split into a grid of cubes. 34
4.7 3D Markov random field. 36
4.8 Diffusion Processes. 37

5.1 Generative description of the “sedan car” model. 38
5.2 Generative description of the “commercial airplane” model 39
5.3 HID-KDE: Precision Recall Graph. 40
5.4 HID-KDE: Top 16 car results. 41
5.5 HID-KDE: Top 16 airplane results. 41
5.6 HID-SVM: Precision Recall Graph. 42
5.7 HID-SVM: Top 16 car results. 43
5.8 HID-SVM: Top 16 airplane results. 43
5.9 HID-MRF: Precision Recall Graph. 44
5.10 HID-MRF: Top 16 car results . 45
5.11 HID-MRF: Top 16 airplane results. 45
5.12 The color map used to visualize the affinity matrix. 46
5.13 Affinity matrix before the application of the diffusion process. 46
5.14 Affinity matrix after the application of the diffusion process. 46
5.15 Eleven point precision-recall plot. 47
5.16 Top 16 retrieval results before applying diffusion. (Faces) 48
5.17 Top 16 retrieval results after applying diffusion. (Faces) 48
5.18 Top 16 retrieval results before applying diffusion. (Chessboard) 49
5.19 Top 16 retrieval results after applying diffusion. (Chessboard) 49

Chapter 1

Introduction

Improvements in techniques for digitizing 3D objects, modeling and visualization of 3D
models have led to an enormous amount of 3D models available on the internet. Web-
sites like “archive3d.net” host over 35.000 publicly available 3D models. Furthermore
domain specific 3D part databases like “CADENAS Part Solutions” contain over 50.000
3D standard parts like screws, nuts or bolts. Another example of a large 3D model
database is the RCSB protein database (www.rcsb.org). It hosts over 50.000 different
proteins and their 3D representation. To explore such large databases, efficient retrieval
methods are needed in order to obtain relevant results with respect to a given search
query.

Retrieval of relevant 3D models is for instance needed when arranging 3D scenes of
individual 3D models. A designer of a 3D scene could search for all chairs and tables
in a 3D model database to arrange the interior of a particular room. Retrieval methods
can also be used to facilitate reuse of 3D models. In mechanical engineering reusing and
adapting parts of former projects can help to save design time. Therefore, a mechanical
engineer designing a car engine could search for all pistons that fit the needs and adapt
the best one, instead of designing the piston from ground up. Other application domains
of 3D model retrieval include molecular biology, medicine or virtual reality.

The retrieval process can either perform on additionally attached meta data, or on the
documents content. Meta data means “data about data”. In the context of 3D models
meta data could, for instance, be the type of object or a textual description of the
object. Retrieval based on text-based methods is a well researched topic and text-based
search functions can be found in many applications, such as websites or text processing
software. However there are two disadvantages, when using text-based methods. First,
meta data needs to be added and maintained manually and second, meta data might be
inaccurate or subjective [1].

To overcome these problems content-based methods can be used. Content-based meth-
ods aim to find similar 3D models based on the content of a given query model. Those
methods are necessary if no additional meta data are present.

1

archive3d.net
www.rcsb.org

Introduction 2

An example of a meta data-based retrieval approach is illustrated in Figure 1.1. Based
on tags added to each 3D model, models with the same tags can be retrieved. An
example of a content-based retrieval approach is illustrated in Figure 1.2. Based on a
set of 2D views, which are drawn by the user, similar models are retrieved. This method
does not depend on any additional attached meta data.

Figure 1.1: An example of a meta data-based retrieval approach. Based on tags
added to a 3D model, models with the same tags can be retrieved (archive3D.net).

Figure 1.2: An example of a content-based retrieval approach. Based on a set of 2D
views, which are drawn by the user, similar models are retrieved. This method does

not depend on any additional attached meta data (shape.cs.princeton.edu).

archive3D.net
shape.cs.princeton.edu

Introduction 3

In contrast to 3D models, text documents can be retrieved easily using content-based
methods. For a collection of text documents an index of all words found in the documents
can be built. Documents can simply be retrieved by returning all documents associated
with a given word in the index. Unfortunately, 3D documents are not retrieved easily,
because no such things as “words” are explicitly represented in the 3D model. To retrieve
relevant 3D documents the similarity between two 3D models must be calculated.

In this thesis a novel approach to retrieve 3D models similar to generative models is
presented. A generative 3D model, is an algorithm that takes a number of parameters
and produces 3D geometry. By varying the values of the parameters and combining
generative models, complex scenes can be modeled based on a set of formal construction
rules. Figure 1.3 shows a generative model of a Greek temple with different parameter
values. The parameters are number, height and distance of the temples pillars.

Figure 1.3: A generative model of a Greek temple. By varying the model parameters
(number, height and distance of pillars), different 3D models are generated.

In this thesis generative models are used to describe 3D model classes. The generative
models span a shape space, of which a number of training samples is taken at random.
The randomly generated training samples are used to train the retrieval methods. In
this way, no “real” training data is needed a priori. Retrieval is performed using the
generative models as a query. This way no relevant models from the test set must be
known to formulate a query, and no additional meta data must be provided for the 3D
models to be retrieved.

The thesis is structured as follows: Chapter 2 presents the basics of information retrieval,
probability and statistics and shape representations. Chapter 3 presents relevant related
work in the field of content-based 3D model retrieval. In Chapter 4 two methods for
retrieving 3D models similar to given generative models are presented. Furthermore
two approaches to improve retrieval quality are presented. In Chapter 5 the retrieval
methods are evaluated using standard benchmarks and quality measures. The thesis is
concluded in Chapter 6.

Chapter 2

Background

2.1 Information Retrieval

Information retrieval is the process of finding documents that satisfy given search condi-
tions within a collection of documents [2]. Well known examples of information retrieval
systems are web search engines such as www.google.com or www.yahoo.com.

2.1.1 Structure of 3D Model Retrieval Systems

In the context of 3D model retrieval, the documents to be found are 3D models. The
retrieval process can either perform on attached meta data, such as keywords or user
comments, or on the document’s content. This thesis will only deal with retrieval meth-
ods that operate solely on the document’s content, so called content-based methods.
Such methods are necessary if no additional meta data are present. Furthermore, meta
data based retrieval systems can be improved by additionally incorporating content
based methods [3, 4].

The overall retrieval process can be illustrated using the conceptual framework for shape
retrieval by Tangelder et al. [5], which is depicted in Figure 2.1. As the first step in the
framework a descriptor for all models from a 3D model database is extracted. The
descriptor captures the models properties and features and is is later used for matching,
by calculating a similarity measure on a pair of descriptors. To speed up the retrieval
process an index can be built, based on the extracted descriptors. Well known indexing
structures for special types of descriptors are for instance R-trees, X-trees or k-d trees.
An overview of indexing structures for multimedia retrieval is given in the survey of
Böhm and Berchtold [6]. Both tasks, the descriptor extraction as well as the creation of
an index, can be done offline. Different types of descriptors and matching methods are
covered in the related work chapter in Section 3.1.

After the generation of an index, users of 3D model retrieval systems can query the
database using three different approaches:

4

www.google.com
www.yahoo.com

Background 5

Query by Example
The user of the retrieval system provides an existing 3D model. Based on the sub-
mitted 3D model the query descriptor is extracted and similar models are retrieved by
comparing the query descriptor against the index.

Direct Querying
The user directly provides the query description of the wanted 3D model. This approach
is only feasible under the condition, that the descriptor is provided in a human readable
and editable form.

Browsing
The user can also browse through the database.

3D Model

Database

Descriptor

Extraction
Descriptors Index

Model IDs

Example

Model

Query

Descriptor

Query

Results

Index

Construction

MatchingFetching

Descriptor

Extraction

Query by

Example

Query by

Example

Browsing

Query by

Example

Direct

Querying

User

Interface

Offline

Online

Figure 2.1: A conceptual framework for 3D content based retrieval systems. For all
models in a 3D model database descriptors are calculated and an index is built based
on the descriptors. A user can either search for 3D models by submitting an example
model, by submitting a query descriptor or by simply browsing through the models.

(Modified from [5])

2.1.2 Evaluation of Information Retrieval Methods

The effectiveness of information retrieval methods is evaluated by testing against stan-
dardized benchmarks. Those benchmarks consist of a collection of 3D models and gold
standard results for each query [2]. For every possible query the gold standard marks
each 3D model as either relevant or non-relevant, like depicted in Figure 2.2.

Background 6

In the field of content based 3D model retrieval standardized benchmarks are for instance
the Princeton shape benchmark [7] or the Purdue CAD shape benchmark [8]. A famous
contest in the field of content based 3D model retrieval is the annual SHREC shape
retrieval contest which is part of the Eurographics Workshop on 3D Object Retrieval [9].

3D Model Database

Retrieved Models

Relevant Models

Figure 2.2: From a 3D model database a subset is retrieved by the retrieval method.
Relevant models that have been retrieved are called true positives, whereas retrieved

models that are not relevant are called false positives.

Combined with actual retrieval results, each retrieved model can be classified into one
of four different sets: true positives, false positives, true negatives and false negatives.

Based on the retrieval results and the gold standard, the measures precision and re-
call can be calculated. Precision is defined as the fraction of retrieved models that
are relevant and recall is defined as the fraction of relevant documents that have been
retrieved [2]. The formulas for both measures are depicted in Equations 2.1 and 2.2.

Precision =
| relevant models retrieved |
| retrieved models |

=
| true positives |

| (true positives) ∪ (false positives) |
(2.1)

Recall =
| relevant models retrieved |

| relevant models |
=

| true positives |
| (true positives) ∪ (false negatives) |

(2.2)

If the retrieval process ranks the results according to their match, the precision and
recall values can be calculated on the top k-Results, with increasing k. Those values are
denoted Precision(k) and Recall(k) respectively. The precision and recall values can be
plotted by displaying the precision on the abscissa and recall on the ordinate. This plot
is called precision-recall curve.

An exemplary precision-recall curve is depicted as a solid line in Figure 2.3. Usually for
small values of k the precision is high. At least, when k is greater than the number of
relevant models, the precision decreases. The gold standard, would produce a horizontal
line at precision = 1, which drops when k is greater than the number of relevant models.

The precision-recall graph exhibits a characteristic saw tooth shape. The spikes in the
graph are often removed by calculating the interpolated precision [2]. The formula for
the interpolated precision is given in Equation 2.3.

Precisioninterp(k) = max
k′≥k

Precision(k′) (2.3)

Background 7

1
0

1

Better

Worse

Gold Standard

Recall

P
re

c
is
io

n

0

Figure 2.3: An exemplary precision-recall curve of a retrieval method. The gold
standard would produce a horizontal line, which drops at recall = 1.

The justification for the interpolated precision is the assumption that users of a retrieval
system would look at a few more documents, if the percentage of relevant documents
would increase [2]. The interpolated precision-recall graph is depicted as a dotted line
in Figure 2.3.

The precision-recall graph only illustrates the results of a single search query. To evaluate
the results for a whole test collection, the averaged eleven point precision-recall graph
can be used. Therefore, the precision is measured at eleven different recall levels of
(0, 0.1, 0.2, . . . 1.0) for each query. The recall values are averaged over all queries and
presented in a single graph [2]. An exemplary averaged eleven point precision-recall
graph is depicted in Figure 2.4.

1
0

1

Recall

P
re

c
is

io
n

0

Figure 2.4: An exemplary averaged eleven point precision-recall graph. Using the
averaged eleven point precision-recall graph, results for a whole test collection can be

evaluated.

Background 8

2.2 Probability and Statistics

In this Section, basics of probability and statistics are denoted. The notation is based
on “Introduction to Probability” by Hoel [10] and “Pattern Recognition and Machine
Learning” by Bishop [11].

2.2.1 Probability Spaces and Random Variables

A probability space is a triple (Ω,A ,P) consisting of a nonempty set of all possible
outcomes of a random experiment Ω, a set of measurable events A and a probability
measure P. The set of all measurable events A consists of subsets of Ω and must adhere
to the following properties:

� (A ∈ A)⇒ (Ac ∈ A).

�

(
(A ∈ A) ∧ (B ∈ A)

)
⇒
(
(A ∪ B) ∈ A ∧ (A ∩ B) ∈ A

)
.

The first property states, that the set A is closed under complementation, where Ac

denotes the complement of A. The second property states that the set A is closed under
union and intersection.

The probability measure P maps from elements in A to R. The function P must adhere
to the following properties:

� P(A) ≥ 0 : ∀A ∈ A .

� P(Ω) = 1.

�

(
(A ∈ A) ∧ (B ∈ A) ∧ (A ∩ B = ∅)

)
⇒
(
P(A ∪ B) = P(A) + P(B)

)
.

The first property assures non-negativity of the probability measure. The second prop-
erty states that the probability of the certain event is 1. The last property states that
the probability of the union of two disjoint sets equals the sum of their probabilities.

On a probability space random variables are defined. Random variables denote the
outcome of a random experiment as a numerical quantity.

A discrete real-valued random variable on a probability space (Ω,A ,P) is a function
X, that maps from the set of all possible outcomes Ω to a finite or countably infinite set
{x1, x2, . . . } ⊂ R, such that {ω ∈ Ω : X(ω) = xi} is a measurable event for all i. The
probability for the event {ω ∈ Ω : X(ω) = xi} is denoted as P(X = xi). The function
f , defined by f(x) = P(X = xi), is called the discrete density function of X.

A continuous real-valued random variable on a probability space (Ω,A ,P) is a function
X, that maps from the set of all possible outcomes Ω to R, such that ∀x ∈ (−∞,∞) :
{ω |X(ω) ≤ x} is an event and ∀x ∈ (−∞,∞) : P(X = x) = 0. The function F, defined
by F(x) = P(X ≤ x), is called the distribution function of the random variable X. In
practice distribution functions are usually defined using probability density functions.

Background 9

A probability density function f is a non-negative function such that
∫∞
−∞ f(x) dx = 1.

The distribution function F defined by the probability density function f is given by

F(x) =

∫ x

−∞
f(y) dy. (2.4)

The average of a random variable X weighted with its density function f is called the
expectation of X, denoted E(X). For a given discrete random variable with a finite
number of values n, its expectation is defined in Equation 2.5 and the expectation of
continuous random variables is defined in Equation 2.6.

E(X) =

n∑
i=1

xif(xi) (2.5)

E(X) =

∫ ∞
−∞

xf(x) dx. (2.6)

The variance of a random variable provides a measure of how much the random variable
X spreads around its expectation is defined in Equation 2.7 and for two given random
variables X and Y , the covariance measures how they vary together. The definition of
covariance is given in Equation 2.8.

Var(X) = E
(
(X −E(X))2

)
(2.7)

Cov(X,Y) = E
(
(X −E(X))(Y −E(Y))

)
(2.8)

To further illustrate probability spaces and random variables, two simple random ex-
periments will be presented.

Rolling a dodecahedral dice – The dodecahedron is a twelve sided polyhedron. It
consists of twelve regular pentagonal surfaces and is one of the platonic solids [12].
Assuming the dice is fair, the chances for the dice landing on each side should be equal.
As illustrated in Figure 2.5, the faces of the dodecahedron are colored differently and
can therefore be distinguished. The set of all possible outcomes can be modelled using
the set Ω = {yellow, green, gray, red, blue, black, white, purple, orange, pink, brown,
cyan}. We define the set of all measurable events as A = P(Ω), which denotes the
power set of Ω. Obviously the A is closed under complementation, intersection and
union as the power set of Ω contains all subsets of Ω. As the dice should be fair, the
probability measure P is be modelled using P(A) = |A|

12 . Again the properties of valid
probability distributions can easily be verified.

On the probability space (Ω,A ,P) a random variable X can be defined by a bijective
mapping from Ω to the set {1, 2, . . . , 12}. For the random variable the expectation is
given by E(X) =

∑12
i=1

i/12 = 13/2.

Continuous wheel of fortune – The continuous wheel of fortune is depicted in Fig-
ure 2.6. A random experiment can be created by rotating the wheel and recording the
position of the pointer, when the wheel stops. The set of all possible outcomes Ω is
the half-closed interval [0, 2π) and the set of all measurable events A is the set of all
subsets A ⊆ [0, 2π). For symmetry reasons it should be assumed, that the probability
density is equal everywhere. We therefore define the density function of the random
variable X to be f(x) = 1

2π if x ∈ [0, 2π) and zero elsewhere. The distribution function
F =

∫ x
−∞ f(x) dx is a valid distribution function and can for instance be used to calculate

Background 10

the probability of the random variable taking a value in the interval I = [a, b] ⊂ [0, 2π)
using P(a < X ≤ b) = F(b)− F(a).

Given the random variable X and the density function f the expectation can be calcu-
lated. The expectation is given by E(X) =

∫ 2π
0

x/2π dx = π.

Figure 2.5: A dodecahedron with dif-
ferently colored faces.

Figure 2.6: A continuous version of
the wheel of fortune.

2.2.2 Gaussian Distribution

The Gaussian distribution (also normal distribution), is a common model for the dis-
tribution of continuous variables. Its density function in the univariate case is depicted
in Equation 2.9, where µ denotes the mean of the curve and σ denotes the standard
deviation. In the multivariate case the density function for an n-dimensional vector x is
depicted in Equation 2.10, where µ again denotes the mean and Σ denotes the covariance
matrix.

N(x|µ, σ) =
1

(2πσ2)1/2
exp

(
− (x− µ)2

2σ2

)
(2.9)

N(x|µ,Σ) =
1

(2π)n/2
1

(|Σ|)1/2
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
(2.10)

The expectation of a random variable X under the univariate Gaussian distribution is
µ, whereas the variance is given by σ2. In the multivariate case, the expectation is µ,
whereas Σ describes the covariances. In this thesis the Gaussian distribution is used for
estimating a non-parametric density, as explained in Subsection 2.2.3.

2.2.3 Kernel Density Estimation

Kernel density estimation is a non-parametric method for estimating the density of a
random variable X, based on observations (x1, x2, . . . , xN). Non-parametric, in this
context, means that the estimation method makes only few assumptions about the form
of the distribution. The general form of the kernel density estimation is depicted in
Equation 2.11, where Kσ denotes a smoothing kernel with smoothing parameter σ.
A kernel is a real valued function that maps to values greater or equal to zero and
the integral over the function must be one. A valid kernel function is for instance the
truncated uniform distribution, which maps to 1/2 if |u| ≤ 1 and zero elsewhere. However
this kernel might introduce a discontinuous density estimation function.
Smoother results can be achieved using Gaussian kernel density estimation, where the

Background 11

density is estimated as the average of a number of Gaussian densities. The Gaussian
density estimation function is depicted in Equation 2.12.

fK(x) =
1

N

N∑
i=1

Kσ(‖x− xi‖) (2.11)

fG(x) =
1

N

N∑
i=1

1

(2πσ2)n/2
exp

(
−‖x− xi‖

2

2σ2

)
(2.12)

As the estimated function is a valid density function and as it is a sum of continuous
functions, the function itself is continuous everywhere. The only free parameter is the
standard deviation of the Gaussian kernels σ, which acts as a smoothing parameter.
The effect of the smoothing parameter is visualized in Figure 2.7. If the smoothing
parameter is set to low (σ = 0.05), the estimated function oscillates in the vicinity of
sample points and if the smoothing parameter is set to high (σ = 0.6), the estimated
function only poorly approximates the original function.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

Original Density
Samples (N = 60)
Estimated Density (σ = 0.05)
Estimated Density (σ = 0.2)
Estimated Density (σ = 0.6)

Figure 2.7: The figure shows the effect of the smoothing parameter. If the smoothing
parameter is set to low (σ = 0.05), the estimated function oscillates in the vicinity of
sample points and if the smoothing parameter is set to high (σ = 0.6), the estimated

function only poorly approximates the original function.

2.2.4 Histogram Density Estimation

The Histogram density estimation is another common non-parametric density estimation
method. Using the univariate histogram method, the image space of the random variable
is partitioned into k equi-sized bins of length ∆i. The probability for X falling into bin i
is given by pi = ni/N∆i, where ni denotes the number of observations of X falling into bin
i and N denotes the overall number of observations. The histogram method estimates
a valid density function and its only parameter is the number of bins k. However,
the histogram method introduces artificial discontinuities in the density function at the
border of the bins.

Background 12

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

Histogram (k = 10)
Original Density
Samples (N = 60)

Figure 2.8: The figure shows an estimated density function created with the histogram
density estimation method. The only free parameter is the number of bins, which was

set to 11 in that case.

2.2.5 Support Vector Machines

The support vector machine is a method for classifying a given set. Classification is the
problem of assigning a class label c to an input vector x. In this section support vector
machines are introduced for the linear separable case with two classes.

A support vector machine performs classification based on a given set of training samples
x1, . . . , xn and their classifications t1, . . . , tn, where ti ∈ {−1, 1} in the case of two classes.
We assume, that the training samples can be separated linearly in a feature space. The
classification function is given by: f(x) = sign(wT θ(x) + b), where w and b describe the
classification hyperplane to be learned and θ is a function that maps from the sample
space to the feature space. For simplicity of the formulas, we assume that w is of unit
length. Figure 2.9 depicts the classification hyperplane and two linearly separable sets.

m

ri

Figure 2.9: The figure shows the functional margin ri of feature point xi and the
margin m of the separating hyperplane. The depicted hyperplane already has maximum

margin.

The functional margin of training samples xi in the feature space is their distance to the
classification hyperplane and is given by ri = ti(w

T θ(xi)+b). The training samples with
the least distance to the classification hyperplane are called support vectors. The margin
of the classification hyperplane is given by 2 ·min{ri}. Maximizing the margin of the

Background 13

classification hyperplane leads to a particular solution of the classification hyperplane.
The optimal parameters for the hyperplane are denoted in Equation 2.13. For the
derivation and the solution of the optimization problem the reader of this thesis is
referred to Bishop’s “Pattern Recognition and Machine Learning” [11].

arg max
w,b

{
min
i

{
ti
(
wT θ(xi) + b

)}}
(2.13)

2.2.6 Principal Component Analysis

Principal component analysis is a method to calculate an orthogonal projection that
maximizes the variance of the projected data. Let the unit-length vector uT1 denote
a linear mapping from the sample space to a one dimensional Euclidean space. The
variance of the projected data is given by 1

n

∑n
i=1

(
uT1 xi − uT1 x̄

)2
= uT1 Su1, where

x̄ denotes the mean of the sample data and S is the covariance matrix given by:
S = 1

n

∑n
i=1

(
xi − x̄

)(
xi − x̄

)
. Maximizing the projected variance under the side con-

straint |u1| = 1 leads to the expression: Su1 = λu1, which implies that the principal
components are eigenvectors of the covariance matrix.

The principal components analysis is used in Chapter 4 to align 3D models along their
principal axes. Figure 2.10 shows the principal components of a random two-dimensional
point set.

−1.5 −1 −0.5 0 0.5 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2−Dimensional Point Set
Principal Components

Figure 2.10: The figure shows a random 2-dimensional point set and its principal
components.

2.2.7 Markov Random Fields

A Markov random field is an undirected probabilistic graphical model. It is described
by a graph G, whose vertices xi ∈ (x1, . . . , xn) are random variables. The vertices are
connected with edges, that describe probabilistic dependencies between two vertices.
Figure 2.11 depicts a Markov random field composed of four random variables.

For a given Markov random field, the joint probability p(x) can be written as a product
of the potential functions of their maximal cliques Ci. A clique is a subset of a graph’s

Background 14

vertices, such that all vertices are connected to each other. A maximal clique is a
clique which is not a strict subset of a larger clique [13]. The Markov random field in
Figure 2.11 consists of two maximal cliques. A potential function is a positive function,
that expresses the affinity of a given clique. Common choices for potential functions
are exponential functions, such as the exponential distribution, which is defined by the
density function f(x) = λe(−λx). If the set of vertices within a clique is denoted as xC ,
the joint probability for the whole Markov random field is given by the formula depicted
in Equation 2.14

p(x) =
1

Z

∏
C
ψC(xC) (2.14)

Z =
∑
x

∏
C
ψC(xC) (2.15)

where ψC(xC) denotes the potential of clique xC . The function Z is called partition
function and ensures, that the joint probability is a valid probability distribution.

x1 x2

x4

x3 C1

C2

Figure 2.11: A Markov random field
with two maximal cliques.

yi

xi

Figure 2.12: The derived Markov
random field for image denoising.

To illustrate the applicability of Markov random fields, an example based on Bishop’s
example [11, pp. 387–389] will be illustrated here. Given a noisy binary image, whose
pixels are denoted by yi, a de-noised image composed of pixels xi can be derived by
maximizing the joint probability of a Markov random field. The output pixels xi are
connected with the according input pixels yi by edges E , as the value of the output pixel
xi should depend on the input pixel yi. Furthermore the output pixels are connected
with their four neighborhood by edges F , as the output intensity should be consistent
at neighborhoods. The derived Markov random field is depicted in Figure 2.12. The
black vertices represent the intensity values of the input image and the white vertices
represent the intensity values of the output image. To establish a joint probability for
the given Markov random field, a potential function for all maximal cliques is needed.
Obviously all maximal cliques in the example are of size two and can be divided in two
different types: Edges between input and output pixels and edges between output pixels.
Assuming black pixels are denoted by −1 and white pixels are denoted by +1 a valid
joint probability function can be modeled using:

p(x) =
1

Z

∏
(xi,yi)∈E

exp(αxiyi)
∏

(xi,xj)∈F

exp(βxixj), (2.16)

where α and β are free parameters. By optimizing the joint probability function the
most likely output image can be calculated.

Background 15

The input image is shown in Figure 2.13. Based on the joint probability function an
optimization problem can be formulated, that finds values for the pixels xi such that the
probability p(x) is maximal. A solution for the optimization problem can be approxi-
mated using the iterated conditional models (ICM) algorithm. This algorithm simply
performs a greedy optimization step for every coordinate until convergence. By choosing
appropriate values for α and β and optimizing the joint probability function with the
ICM algorithm the de-noised output image in Figure 2.14 is obtained.

Figure 2.13: A noisy black and white
image.

Figure 2.14: Image de-noised by op-
timizing a joint probability function.

2.3 Shape Representations

Many different shape representations exist. The choice of the “right” shape represen-
tation depends on the problem domain. For example 3D models in a computer game
should be rendered quickly and look acceptably realistic, whereas in product design
surfaces should look smooth and exhibit certain geometric properties while rendering
time is not of utmost importance. In this section the mainstream shape representation
models from Alan Watts “3D Computer Graphics” [14] will be presented.

It should be noted here, that the terms “object”, “3D model” and “shape” are often
used as synonyms. In this thesis the convention of Alan Watt will be used: A 3D model
is a description of the shape of an object.

2.3.1 Polygonal Model Representation

Using a polygonal model representation the 3D shape is approximated with a mesh of
planar faces. The accuracy of the representation can be controlled by the number of
faces. A triangle mesh representation of a sphere is depicted in Figure 2.15. However it
is obvious, that models composed of planar faces are not smooth. The polygonal model
can be stored in different types of mesh data structures. The simplest form is a list of
triangles, where every triangle knows coordinates of its vertices. This representation is,
for instance, used in the stereo lithography file format (STL), which serves as a low level
file exchange format for polygonal models.

Background 16

However in a simple triangle list edges and vertices are not explicitly represented, which
makes traversing and editing of the mesh a cumbersome job. That is why, more elaborate
data structures have evolved like the halfedge data structure [15]. The halfedge data
structure splits an edge into two opposite halfedges. Every halfedge knows its opposite
halfedge, its incident face, its incident vertex and the next halfedge to traverse along its
face. This data structure is depicted in Figure 2.16.

Figure 2.15: A sphere represented
by a triangle mesh. The accuracy of
the representation can be controlled by
the number of faces. However, mod-
els composed of planar faces are not

smooth.

Halfedge

Opposite

Incident Vertex

Incident Face

N
ex

t H
al

fe
dg

e

Figure 2.16: The halfedge data struc-
ture. Every halfedge knows its opposite
halfedge, its incident face, its incident
vertex and the next halfedge to traverse

along its face (Modified from [16]).

2.3.2 Parametric Patches

One disadvantage of polygonal model representations is, that they cannot represent
smooth objects exactly. However smooth surfaces are of utmost importance in some
industries, for instance in the car industry. That is why parametric patches were
developed. Parametric patches are represented explicitly by mathematical functions.
The most common parametric patch representation is the non-uniform rational B-spline
(NURBS) representation [17]. A NURBS Surface with random parameters is depicted
in Figure 2.17.

To represent a whole object using parametric patches a boundary representation (B-rep)
is needed. A B-rep represents a solid object by its “skin” which divides the outer from the
inner space. The B-rep combines topological and geometrical aspects. On the topological
side a 3D object is represented by a set of faces, which are bounded by edges. The edges
are delimited by vertices. The topological entities have a geometric description. Faces
are described as parts of surfaces, which can for instance be parametric patches or a
plane surface or a cylindrical surface. The edges, that bound the faces are described as
parts of curves, which can for instance be parametric curves, circles or straight lines.
The vertices delimiting the edges are described as points [18]. The B-rep data structure
is depicted in Figure 2.18.

2.3.3 Constructive Solid Geometry

Constructive Solid Geometry (CSG) is a high level shape representation, where models
are described by the application of Boolean set operations on elementary objects, so

Background 17

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 2.17: An example
of a NURBS surface. The
parameters were set to ran-

domly chosen values.

Object

Topology

Face

Edge

Vertex

Geometry

Surface

Curve

Point

Figure 2.18: The B-rep data-structure com-
bines topological and geometrical aspects. Topo-
logically an object is represented using faces,
edges and vertices. Geometrically faces are de-
scribed as parts of surfaces, edges are described
as parts of curves and vertices are described as

points.

called primitives. Primitives are for instance: spheres, cylinders or cuboids, whereas
the Boolean operations are subtraction, union and intersection. Figure 2.19 shows how
cylinders can be combined to form a pipe with a flange using CSG.

Figure 2.19: The figure shows how cylinders can be combined to form a pipe with a
flange using Constructive Solid Geometry.

2.3.4 Spatial Subdivision Techniques

Spatial subdivision methods divide the object space into parts and label each part as
either empty or filled. Voxel representations divide the object space into a uniform grid
of small cubes, so called voxels. The voxel representation in 3D is analogous to the 2D
bitmaps. As an example for voxel models, the Stanford bunny is depicted in Figure 2.20.
A more elaborate subdivision method is the octree data structure, where the object space
is divided recursively until the required accuracy is achieved. The octree version of the
Stanford bunny is depicted in Figure 2.21.

Background 18

Figure 2.20: A voxelized version of
the Stanford bunny.

Figure 2.21: The Stanford bunny
represented in an octree. [19]

2.3.5 Implicit Representation

3D models can be represented implicitly by the solution of an equation f(x) = 0. The
domain of the function f(x) is the 3-dimensional Euclidean space E3 and it maps to R.
The shape of the 3D model is given by the set of points, that satisfy the equation.

For example a sphere can be defined implicitly by the equation 0 = x2
1 + x2

2 + x2
3 − 1.

The representation of 3D objects is restricted to very special objects. Implicitly rep-
resented objects can for instance be rendered using a raytracer or by converting the
implicit function to a polygonal representation.

2.3.6 Procedural Models

Manual modeling of complex scenes, such as cities, can become infeasible due to the
number of 3D objects and their level of detail. As a consequence, procedural model-
ing techniques have been developed. Procedural modeling techniques employ formal
construction rules to create 3D Models [20]. A list of notable procedural modeling tech-
niques can be found in Müller et al. [20] and Vanegas et al. [21]. Common procedural
modeling techniques include: Lindenmayer systems, shape grammars and generative
modeling.

Lindenmayer systems are a type of grammar. They are commonly used for modeling
biological structures such as trees or ferns. The grammar is a three-tuple consisting
of an alphabet, a set of productions and a start symbol. A production defines how a
symbol can be replaced by a word. The grammar defines a language, whose words can
be interpreted graphically [22]. Prusinkiewicz [22] used turtle graphics to interpret the
words graphically.

Shape grammars are a formal system, where derivation rules are applied directly on
labeled lines and points. Shape grammars were introduced by Stiny [23] and they have
successfully been used for the construction and analysis of buildings.

Generative modeling is a modeling paradigm, where the process of the model genera-
tion is described and not only its end product [24]. Havemann et al. [24] have intro-
duced the “Generative Modeling Language”, which is a postscript-like language to create

Background 19

3D-models. Another approach to generative modeling called “Euclides” has been intro-
duced by Schinko et al. [25]. This approach uses JavaScript to describe the modeling
operations. Euclides is used in this thesis and further described in Section 4.1.

Chapter 3

Related Work

Many content-based retrieval methods for 3D models have been proposed recently. Tan-
gelder et al. [5] and Bustos et al. [26] have both surveyed literature on content-based
retrieval methods.

Bustos et al. as well as Tangelder et al. list important properties of retrieval methods.
Both list efficiency, effectiveness as well as robustness. Effectiveness refers to the quality
of the retrieval results, it can, for instance, be measured using precision-recall graphs
as described in Subsection 2.1.2. Efficiency refers to the resources needed for retrieval.
Efficiency is usually measured by the response time of a retrieval method and the mem-
ory used for storing the search index. Robustness means that the retrieval method is
insensitive to small variations, such as noise and topological degeneracies [26].

Tangelder et al. further specify the need for pose normalization, the ability of partial
model matching and the need for a certain shape representation as attributes of retrieval
methods.

If the similarity measure used in the matching phase is not invariant under scale, trans-
lation or rotation, the models need to be normalized first. Scale and transition can be
normalized by scaling the object to the unit bounding box and centering at its center of
gravity. The rotation can for instance be normalized by applying principal component
analysis, as described in Subsection 2.2.6. However more elaborated alignment tech-
niques exist for special types of 3D models. An extreme example for such a technique is
“Upright Orientation of Man-Made Objects” by Fu et al. [27], where a machine learn-
ing algorithm is trained to predict the correct orientation, based on a feature vector.
Normalization may be a necessary preprocessing step for some matching methods, but
it should be noted that information may be lost through normalizing 3D models. As an
example, by normalizing models to a common size, toy cars may become very similar to
real cars.

The ability of partial matching is important for matching incomplete models and for
finding parts in a larger scene. Biasotti et al. [28] argue that partial matching is a
desired feature for engineering applications, as partly similar models can be reused
and adapted to fit new needs. Retrieval methods are depended on a certain type of
shape representation. The most prominent shape representations have been covered in
Section 2.3. Furthermore for some retrieval methods the models must be manifold [5].
An intuitive definition for manifoldness of a surface at a point is that the surface patch

20

Related Work 21

that lies within a sufficiently small ε-sphere around that point is topologically equivalent
to a disk. A surface is called manifold, if it is manifold at each point [15].

Tangelder et al. divide shape matching methods into three categories: feature-based,
graph-based and geometry-based methods. Feature-based methods operate on global
(e.g. volume, area) or local (e.g. curvature) properties. Graph-based methods calculate a
graph, such as a skeleton, based on the 3D model and perform matching based on graphs.
Geometry-based methods operate directly on the models geometric representation [5].

Matching methods cannot always be classified clearly into one of the categories, as many
methods combine two or more different matching paradigms. Representative methods
of each category will be presented in the following subsections.

3.1 Feature Based Retrieval Methods

Feature based methods can be further divided, based on whether global features, global
feature distributions, local features or spatial maps of features are used [5].

3.1.1 Global Feature Based Retrieval Methods

Global feature methods calculate a single feature vector for the whole 3D model. Ex-
amples for global features are the scale, the size of the bounding box or the density of
the bounding box used by Paquet et al. [29]. Kolonias et al. [30] incorporate the aspect
ratio of the objects bounding box, which is also a global feature, into their similarity
measure.

It is obvious that the aforementioned global features do not discriminate the object very
well, however they can be calculated quickly are easy to implement and can for instance
be used to filter the set of relevant 3D models before searching with other retrieval
methods to reduce the overall run time. Tangelder et al. [5] argue that global feature
methods are not very sensitive to variations in object details as they describe the overall
object.

3.1.2 Global Feature Distribution Based Retrieval Methods

3D Models can also be described by the global distribution of their features. Osada et
al. [31] have introduced a descriptor based on the probability distribution of geometric
properties. They call their descriptors “Shape distributions”. They compare five differ-
ent geometric properties, namely the angle between three points, the distance between
the center of gravity and a point on the surface, the distance between two points on
the surface, the square root of the area of a triangle of three points on the surface and
the cube root of the volume of a tetrahedron between four points on the surface. They
found out that the probability distribution of the distance between two random points
on the surface led to the best results. Figure 3.1 shows the shape distributions of a mug
and a sphere, which act as the shape descriptor for retrieval.

The shape distribution has for instance been extended by Hazma et al. [32] to work with
geodesic distances and by Liu et al. [33] to work with the thickness of the 3D model.

Related Work 22

Tangelder et al. [5] observed that shape distribution methods are able to distinguish
broad model categories very well, however they are insensitive to model details.

Figure 3.1: The figure shows the shape distributions of a mug and a sphere. The
distributions act as the shape descriptor for retrieval [31].

3.1.3 Spatial Maps of Features

Instead of calculating a single global feature vector or the probability distribution of
features, features can also be calculated for sections of the 3D model. Such methods are
called spatial maps by Tangelder et al. [5], they capture the relative spatial location of
the features of an object.

Ankerst et al. [34] have introduced spherical shape histograms. Shape histograms de-
compose the space into disjoint cells, which correspond to the bins of a histogram. As
depicted in Figure 3.2 in 2D, they have proposed three different types of histograms:
shell bins, sector bins and combined bins. The spherical cells are centered at the cen-
ter of gravity and the corresponding histograms are built from uniformly distributed
points on the objects surface. They have evaluated their method for the retrieval and
classification of molecules.

Kriegel et al. [35] also divide the space into shape cells, however they use uniform cubes.
They first convert the model to a voxel representation, divide the model into cells and
then calculate features on each cell. A schematic 2D example of their approach is
shown in Figure 3.3. They have analyzed the features: cell density, solid angle and the
eigenvalues of the principal components of a cell. The cell density is given by the number
of voxels inside a cell divided by the cells volume, the solid angle measures the concavity
and the convexity of surfaces.

3.1.4 Local Feature Based Methods

Local feature based methods build a feature vector, based on the neighborhood of a
point on the models surface [5].

Johnson et al. [36] introduced spin images as a local descriptor for 3D models. For
that, they require the model to be represented in an oriented polygonal mesh. At every
mesh vertex the normal vector and the coordinates of the vertex define a plane going

Related Work 23

Figure 3.2: A two-dimensional ver-
sion of the shape histograms intro-
duced by Ankerst et al. (modified

from [34])

Voxel

Cell

Figure 3.3: A two-dimensional ver-
sion of the shape histogram intro-
duced by Kriegel et al. (modified

from [35])

through that vertex and a ray, starting at that vertex and pointing into the normal
direction. For every neighboring vertex the perpendicular distance to the ray α and the
signed perpendicular distance to the plane β can be calculated. Using those distances
of the neighboring vertices, a histogram can be built for every vertex. This histogram
is called the spin image. Spin images of a scene and a model are depicted in Figure 3.4.
Dark areas of the spin images indicate, that many neighboring points were projected
to that bin of the histogram. The parameters of the spin image are the size of the
image, the number of bins and the size of the neighborhood. Two models are matched
by calculating the correlation coefficient of their spin images. The models are said to
be similar if many points on the surface are similar. This approach does not depend on
normalized poses and also allows for partial matching as indicated in Figure 3.4.

0 1 2 3
model spin-image

0

1

2

3

sc
en

e
sp

in
-im

ag
e

Spin-Image Scatter Plot
As = 60 Ds = 5

model points
accumulated

scene points
accumulated

scene spin-image

model spin-image
ρ = 0.958

Figure 3.4: The image shows the application of spin images for partial matching. The
middle column shows two vertices with similar neighborhood in two distinct models.
On the left side the corresponding spin images are shown. The scatter plot on the right

side indicates, that both spin images linearly correlate. (modified from [36])

Related Work 24

Another local feature based method is “3D Shape Contexts” by Körtgen et al. [37].
Körtgen et al. calculate a shape histogram for uniformly sampled points on the surface
of a 3D model. The shape histogram is built based on the relative position of uniformly
sampled points on the surface. This histogram is called the shape context for a point.
The shape histograms used are based on those depicted in Figure 3.2. Körtgen et al.
compare shape contexts using the χ2 distance on normalized histograms.

Wessel and Klein [38] have introduced a method to learn the compositional structure
of man-made objects. Therefore the object must be represented as a 3D point cloud.
The point cloud is split into primitives, such as planes, spheres, cylinders, cones and tori
using a point cloud segmentation algorithm [39]. Spin images are used to describe the
primitives. A probabilistic framework is used to learn the spatial arrangement of the
detected shape primitives.

3.2 Graph Based Retrieval Methods

Graph based retrieval methods operate on a graph that represents the 3D model. The
graph describes how components are connected and it is used for matching. Even though
graphs can be seen as special types of features, they will be treated in an own section
in this thesis, as there are many retrieval methods based on graphs.

Graphs can be compared by computing the editing distance between two graphs or
by calculating the maximal common subgraph. The edit distance between graph1 and
graph2 is the shortest sequence of edit operations that transform graph1 into graph2.
A maximum common subgraph of two graphs graph1 and graph2 is a subgraph of both
graphs such that there is no larger subgraph of graph1 and graph2. Both problems
are NP-complete problems, that is why heuristics are mostly used to approximate their
solutions [40].

Schnabel and Klein [41] have introduced a graph based method for the recognition of
objects in 3D point clouds. A point cloud segmentation algorithm [39] is used to split
the input model, represented as a point cloud, into planes, spheres, cylinders, cones
and tori. Based on the primitives the topology graph is constructed, where a vertex
represents a primitive and an edge represents the adjacency of two primitives. Using
subgraph matching, 3D objects can be found in the topology graph of the point cloud.

3.2.1 Model Graph Based Methods

Model graph based methods directly operate on a graph based representation of a model.
Examples for graph based representations are CSG-trees or the B-Rep data structure.
Such methods are especially relevant for the retrieval of CAD models [5].

Cicirello and Regli [42] presented a method to calculate the similarity of solid models
based on their machining features. Machining features, in their case, are extrusions,
ribs, chamfers or holes. They start by converting the tree of machining features, which
is actually a special type of CSG representation, into the model dependency graph. The
model dependency graph is an acyclic graph where the vertices represent features and
the edges represent some sort of spatial dependence of the features. The similarity of

Related Work 25

two model dependency graphs is calculated by approximating the size of the greatest
common subgraph.

McWherter [43] proposed a method to index solid objects represented as B-Reps. For
that they convert the models from B-Rep to model signature graph. The model signature
graph is a graph, where the vertices represent the faces of the B-Rep and edges represent
the edges of the B-Rep. For every vertex the following four attributes are stored: face
type, geometric representation properties, the face area and a set of surface normals.
For every edge the edge type, a convexity identifier, geometric representation parameters
and the length of the edge are stored. The affinity between two solid models is calculated
by comparing the spectrum of their model signature graphs, which is the sorted set of
eigenvalues of the graphs adjacency matrix. The spectrum is treated as a vector in
metric space. The vectors in the metric space can be indexed to improve performance.
The overall solid model indexing process is depicted in Figure 3.5.

Solid Model Graph Metric Space Index

Figure 3.5: Overview of the McWherter’s approach. Solid models are first converted
to the model signature representation, over which a metric space is constructed. The

vectors in the metric space can then be indexed. (modified from [43])

3.2.2 Skeleton Based Methods

Skeleton based retrieval methods operate on the skeleton of a 3D model. The skeleton
can either be defined manually or it can be automatically extracted. Skeleton extraction
algorithms are for instance the volume thinning algorithm by Gagvani et al. [44] or
“Skeleton Extraction by Mesh Contraction” by Au et al. [45]. Gagvani et al. perform
iterative thinning on a voxel representation of the 3D model whereas Au et al. iteratively
contract a 3D mesh using Laplacian smoothing, as illustrated in Figure 3.6.

Sundar et al. [46] have developed a matching method based on skeletons, created by
the method of Gagvani et al. [44]. They call their skeletons shape graphs. Each node
of the shape graph stores a geometric signature vector which encodes the geometric
properties of the neighborhood and a topological signature vector which encodes the
topology of the subtrees rooted at that vertex. Two shape graphs are matched by
defining a cost function between edges, and approximating the bipartite graph with
maximum cardinality and minimum weight. Figure 3.7 shows two different 3D models
with similar skeletons matched with their skeleton matching method.

Special types of skeletons are Reeb graphs. A Reeb graph is defined as the quotient space
of a shape and a quotient function. An exact definition is given in Hilaga et al. [47].
Hilaga et al. use the integral of geodesic distance as the quotient function and calculate
the Reeb graph for multiple resolutions. Matching is performed iteratively from the
coarsest Reeb graph to the finest Reeb graph.

Related Work 26

Figure 3.6: The Figure shows iterative
skeleton extraction by mesh contraction by

Au et al. (modified from [45])

Figure 3.7: Two different 3D
models with similar skeletons
are matched with the skele-
ton matching method by Sun-

dar et al. [46]

3.3 Geometry Based Retrieval Methods

Geometry based retrieval methods operate solely on a geometric representation of a 3D
model. Those methods can be divided in to view based retrieval methods, volumetric
error based retrieval methods, and weighted point set based retrieval methods.

3.3.1 View Based Retrieval Methods

View based similarity methods match models by matching views from various view-
points. The main idea is that, 3D models are similar if they look similar from various
viewpoints [48].

Chen et al. [48] presented a retrieval method, that matches models based on their light
field. A light field of a 3D model in this context describes the radiometric properties of
light in a space. A light field is a four dimensional function, which is represented by Chen
et al. as collection of 2D views around the model. The lightfield is created by rendering
the 3D model from the 20 vertices of a dodecahedron containing the model. Two 3D
models and their lightfields are represented in Figure 3.8. As the silhouettes of the model
are identical from opposite vertices, only 10 views are necessary. The dissimilarity of the
3D model is given by the sum of the view’s dissimilarity. The dissimilarity of two images
is calculated using the method presented in “An Integrated Approach to Shape Based
Image Retrieval” by Zhang et al. [49]. To achieve rotation invariance, all 60 possible
rotations of the dodecahedron are examined and the minimum dissimilarity is taken to
be the dissimilarity of the two 3D models.

3.3.2 Volumetric Error Based Retrieval Methods

Novotni et al. [50] approximate the similarity of two objects by calculating their vol-
umetric error. Therefore they calculate the distance field of one object and calculate
the overlap of the other object. A measure on the histogram of distances of the overlap

Related Work 27

Figure 3.8: The Figure shows two similar 3D models and their corresponding light
fields. The dissimilarity of two lightfields is given by the dissimilarity of the views.
Three of the 60 different rotations of the second model (a), which influence the similarity,

are shown (b,c,d) [48].

is used to approximate the similarity. The method of Novotni et al. depends on pose
normalization and the similarity measure is not symmetric.

Sánchez-Cruz et al. [51] have presented a method that calculates the voxels to move
and how far they have to move to map one voxel model to another. Their method
operates on two voxelized models, called model A and model B. First they calculate the
voxels, that are not in the intersection of the voxelized models A and B and formulate
an optimal bipartite graph matching problem between the difference set of A and B
and the difference set of B and A. The weight function for the edges is given by the
euclidean distance between the voxels. Figure 3.9 shows two volcanoes (a, b) and their
difference sets (c, d).

3.3.3 Weighted Point Set Based Retrieval Methods

Weighted point set based retrieval methods describe the geometry of an object using a
set of salient points and their weights. Tangelder et al. [52] choose salient points that
have a high magnitude of Gaussian curvature. Two models are compared by comparing
the set of salient points and their weights. Tangelder et al. compare two models by
introducing a variant of the earth movers distance, that obeys the triangle inequality.
Figure 3.10 shows four airplanes and a visualization of their weighted points beneath
them. The model on the left is used to query by example and its weighted point set is
laid over the other point sets in the visualization.

Related Work 28

Figure 3.9: The Figure shows two volcanoes (a,b) and their difference sets (c,d). By
finding the minimum costs of moving the voxels shown in (c) to the voxels shown in

(d) a similarity measure is obtained (modified from [51]).

Figure 3.10: The Figure shows four airplanes and a visualization of their weighted
points beneath them. The model on the left is used to query by example and its weighted

point set is laid over the other point sets in the visualization. (modified from [52])

Chapter 4

Methodology

In this thesis I present two methods to retrieve models similar to given generative models.
The first method is based on kernel density estimation, it is presented in Section 4.4.
The second method uses support vector machines to match 3D models. The method is
presented in Section 4.5.

Furthermore I present two attempts to improve retrieval results. By modeling a Markov
random field long range conformity of the 3D models is rewarded. This approach is
presented in Section 4.6. Another attempt to improve the retrieval results is using
diffusion processes, it is described in Section 4.7.

In my approach generative models are used to describe 3D model classes. In the training
phase, the generative models span a shape space, of which a number of training samples
is taken at random. In this way, no “real” training data is needed a priori. The generative
modeling system and the generation of training examples is presented in Section 4.1.

In a preprocessing step, training samples are converted to a voxel representation and
their principal axes are aligned to the canonical Euclidean basis vectors. The voxelization
and pose normalization step is described in Section 4.2.

When the training models are voxelized and normalized, they are transformed using
inverse distance transformation. The volume model is then split into a regular grid of
cubes, so called cells. For each cell the histogram of inverted distances is determined,
which acts as a feature vector for the cell. The process of feature vector calculation is
described in Section 4.3.

In the recognition phase we need to find the most similar models of a test set for a
given object class. The object class is represented by its generative model and its
learned density function. The first step of the recognition phase is to voxelize and
align the models from the test set, calculate the distance transformations and split the
models into cells. For each cell the similarity is estimated using kernel density estimation
(Section 4.4) or support vector machines (Section 4.5).

29

Methodology 30

4.1 Generation of Training Examples

In my approach 3D model classes are represented by generative models. A generative 3D
model M , is an algorithm that takes an argument vector x and produces 3D geometry
M(x). Each generative 3D model is used to generate training samples for the class
it represents. Without loss of generality, the model’s parameter domain D(M) has a
multidimensional, rectangular structure; i.e. the Cartesian product of closed intervals.
By randomly sampling a number of argument vectors xi from D(M), a representative
subset of the shape space is generated in form of a simple list of random models M(xi),
which are used in the training phase. Figure 4.1 depicts the generation of training
examples.

Generative Model

Sample 1 Sample n

...

Training Samples

Sample 2

Figure 4.1: Training samples can be generated by randomly sampling the parameter
domain D(M) of a generative model M . In the bottom of the Figure random samples

are depicted.

In this thesis generative models are created using the generative modeling framework
Euclides, introduced by Schinko et al. [25]. The Euclides framework translates generative
models written in JavaScript to other platforms, like Java or HTML. JavaScript [53] is a
well known scripting language, which is easy to read and already used by non-computer
scientists [25]. The structure of the Euclides framework is depicted in Figure 4.2. Gener-
ative knowledge, depicted on the left side, is provided in JavaScript files. Euclides scans
and parses the input and translates it to different platforms. In our case the target
platform is Java. The resulting Java code is then compiled and executed. As a result
the Java code returns a generated 3D model.

The JavaScript scripts, describing the model classes, must, at least, provide the functions
shapeName(), shapeDomain() and shape(). The shapeName() function simply returns the
name of the model, for example “car”. The shapeDomain() function returns an array
that contains the lower and the upper bounds for every model parameter. The shape()

function takes an array containing numerical values and returns concrete 3D geometry
represented by an indexed face set. An arbitrary number of training models can be
created by calling the shape() function with random samples from the parameter space.

Methodology 31

Generative knowledge
and procedural 3D models
in JavaScript source files

standard XML for sustainable
documentation and long-term
archival

commonly used 3D formats
and viewers (GML, Java, etc.)
for visualization

internet file formats (HTML)
for publishing and distribution

The Euclides
framework:

- lexical
scanner

- grammar
parser

- translator
to various
platforms

Figure 4.2: Generative knowledge, depicted on the left side, is provided in JavaScript
files. Euclides scans and parses the input and translates it to different platforms (mod-

ified from [25]).

The models are stored in the (.off)-file format, which is also used by the Princeton
shape benchmark. The (.off)-file format is a simple serialization of the indexed face
set. Listing 4.1 illustrates a generative model of a cube. The cube’s only parameter is
its edge length. The generative model shown in Figure 4.1 represents the object class
“sedan car”. The model takes six parameters (wheel base, axle track, car height, car
length, top length, and trunk length). It generates and returns a 3D model with a fixed
topology (consisting of 672 polygons) and varying geometry. The model is implemented
in about 350 lines of code.

Methodology 32

function shapeDomain () { return [5, 8]; }

function shapeName () { return "cube"; }

function shape(parameters) {

var myObject = geometricObject ();

var a = parameters [0];

myObject.addPoly ([[0, 0, 0], [a, 0, 0], [a, a, 0], [0, a, 0]]);

myObject.addPoly ([[0, 0, a], [a, 0, a], [a, a, a], [0, a, a]]);

myObject.addPoly ([[0, 0, 0], [a, 0, 0], [a, 0, a], [0, 0, a]]);

myObject.addPoly ([[0, a, 0], [a, a, 0], [a, a, a], [0, a, a]]);

myObject.addPoly ([[0, 0, 0], [0, a, 0], [0, a, a], [0, 0, a]]);

myObject.addPoly ([[a, 0, 0], [a, a, 0], [a, a, a], [a, 0, a]]);

return myObject;

}

Listing 4.1: A simple example of a generative 3D model. The generative model
generates a cube. The cube’s only parameter is its edge length.

4.2 Voxelization and Pose Normalization

After the generation of training examples the training models are converted to a voxel
format. Patrick Mins [54] voxelizer “binvox” is used to convert the training models to a
grid size of R ×R ×R. The voxelized training models are then aligned using Principal
Component Analysis (PCA). After the application of PCA, the principal axes of the
training models are aligned to the canonical basis vectors and the center of gravity of
all models is centered at

(
R/2,

R/2,
R/2
)
. The aligned and unaligned version of a model

are depicted in Figure 4.3. If n is the number of training models, the family of aligned
training models is noted (Ti){i∈1,...,n}. After alignment, the volume v(Ti, x, y, z) of a
given element in the voxel grid is either 1, if the voxel contains a part of the surface of
the model or zero, otherwise.

Figure 4.3: Unaligned and aligned version of a voxelized car model. The principal
axes of the aligned model are aligned to the canonical basis vectors and the center of

gravity of all model is centered at
(
R/2,

R/2,
R/2
)
.

However, aligning the model using PCA does not guarantee a unique alignment. One
reason is that the normalized principal axes are only unique except for the sign. First, if
v is a unit length eigenvector, then obviously −v is also a unit length eigenvector. The
two airplanes on the left side in Figure 4.4 illustrate this problem.

Methodology 33

Second, the axes are sorted according to their eigenvalues. If the eigenvalues for a model
class are similar to each other, then the orientation of the principal axes depends on
numerically unstable values. Figure 4.4 illustrates this problem. It shows two models of
the same class, which are aligned differently: the eigenvector with largest eigenvalue of
the model on the left-hand side points along the fuselage, whereas the eigenvector with
largest eigenvalue of the model on the right-hand side points along the wings.

Figure 4.4: Two models of the same class which are aligned differently using standard
Principal Component Analysis (PCA). As aligning the model using PCA does not
guarantee a unique transformation, the axes of the aligned coordinate system may have

to be swapped.

To circumvent this problem we transform the model to additional coordinate systems
by swapping principal axes if their associated eigenvalues are similar. Furthermore, we
transform the model to coordinate systems with inverted axis directions. By consid-
ering only valid transformations that preserve the coordinate system’s orientation, the
algorithm uses

� 4 coordinate systems, if all eigenvalues are sufficiently dissimilar,

� 8 coordinate systems, if two values are similar, and

� 24 coordinate systems, if all eigenvalues are similar.

The model is transformed to all potential coordinate systems. The unique, aligned test
model X is the one with the greatest overlap with the average density of the training
models.

4.3 Feature Vector Calculation

Based on the aligned training models the inverse distance models are computed. The
volume of the distance transformed training samples (Di){i∈1,...,n} is defined by

v(Di, x, y, z) = max

{
cut− d(Ti, x, y, z)

cut
, 0

}
, (4.1)

where d(Ti, x, y, z) denotes the Euclidean distance of point (x, y, z) to the models sur-
face. The value cut adjusts the rate of diffusion of the inverse distance transformation.

Methodology 34

For the calculation of the inverted distance neither manifoldness nor watertightness is
necessary. In fact, the inverse distance transformation could also be calculated for point
sets. Figure 4.5 illustrates an aligned voxeled training model as well as its corresponding
inverse distance transformed version.

Figure 4.5: Visualization of the cross section of the aligned voxel model and the
inverse distance model of a car. The resolution of the voxel model is 256 × 256 × 256

and the cutoff value for the distance calculation is 16.

After the calculation of the inverse distance model, the model is split into a regular grid
of cubic cells. The cross section of a inverse distance model is depicted in Figure 4.6.
Let p denote the number of cells along one axis, then the total number of cells is p3.
Each cell has a side length s with s = R

p . If(
C(i,a,b,c)

)
(i,a,b,c)∈(1...n)×(1...p)3

(4.2)

denotes the family of the cells for model i, then the volume of the cell C(i,a,b,c) at position
(x, y, z) ∈ (1 . . . s)3 is

v(Di, (a− 1) · s+ x, (b− 1) · s+ y, (c− 1) · s+ z). (4.3)

For each cell C(i,a,b,c) the histogram of inverse distances with k bins is calculated. The
histogram is normalized by dividing through its largest member and serves as a k-
dimensional feature vector of the cell. This feature vector of cell C(i,a,b,c) is denoted as

h(i,a,b,c) ∈ [0, 1]k.

Figure 4.6: Cross section of an inverse distance model split into a grid of cubes. For
each cube the histogram of inverse distances is calculated.

Methodology 35

4.4 Matching using Kernel Density Estimation

The first matching method presented uses kernel density estimation. Based on the fea-
ture vectors h(i,a,b,c) a non-parametric density function for each cell position is estimated
(a, b, c) using Gaussian kernel density estimation [11]. The density function for a cell at
position (a, b, c) is

P (h′, a, b, c) =
1

N

n∑
i=1

exp
(
−‖h

′−h(i,a,b,c)‖2
2σ2

)
(2πσ2)b/2

, (4.4)

where σ represents the standard deviation of the Gaussian kernel. The standard devia-
tion acts as a smoothing factor.

Usually the standard deviation can be estimated easily using appropriate estimation
methods [55]. However, in this case, at some positions all the features are exactly the
same. This situation often occurs at border cells, where the inverse distance to the
surface is zero everywhere. To solve this problem, the standard deviation σ has been set
to an empirically determined value.

Matching is performed on an aligned test model X. Therefore the inverse distance
transformation is calculated. Like in the training phase, the inverse distance transformed
model is partitioned into cells and the corresponding histograms (h′(a,b,c))(a,b,c)∈(1...p)3 are
calculated. Using the density functions for each cell, the probability of a sample object
belonging to a learned class can be approximated:

Let X be a test model and (h′(a,b,c))(a,b,c)∈(1...p)3 denote the feature vectors of the test
model, then the joint probability of model X belonging to the learned class is∏

(a,b,c)∈1...p3

P (h′(a,b,c), a, b, c). (4.5)

We call this matching method the “histogram of inverted distances - kernel density
estimation” (HID-KDE) method.

4.5 Matching using Support Vector Machines

The second matching method uses support vector machines to estimate the distribution
of the training models in the feature space. The idea for this algorithm is based on the
method introduced by Chen et al. [56]. For this method a single feature vector for each
training model is shaped by concatenating the cell feature vectors h(i,a,b,c). The new

feature vector is called fi and is in [0, 1](kp
3).

The feature vectors are used to train a one-class support vector machine. This special
type of vector machine has been introduced by Schölkopf et al. [57] and has the advantage
that only positive examples are needed in the training phase.

Let X be a test model and f ′ ∈ [0, 1](kp
3) denote the feature vector of the test model,

then the one-class SVM model returns a similarity value that indicates the likelihood
of the test model belonging to the learned class. This matching method is called the
“histogram of inverted distances - support vector machine” (HID-SVM) method.

Methodology 36

4.6 An Approach to Improve Retrieval Results using Markov
Random Fields

To further improve the retrieval quality a Markov random field is constructed and the
joint probability is calculated on the Markov random field. The assumption is, that by
incorporating pairwise potentials long range consistency of the retrieved model can be
rewarded. The structure of the 3D Markov random field is depicted in Figure 4.7. The
cells are represented by the vertices V in the Markov random field and cell neighborhoods
are represented through edges E. The letter ’X’ in the figure represents a sample 3D
model, for which we like to calculate the probability of belonging to the learned class.

x

Figure 4.7: The structure of the 3D Markov random field. The cells of the 3D model
are represented as vertices. Neighbouring vertices are connected with an edge.

We define the model for our Markov random field as follows:

p(x) =
1

Z(x)

∏
v∈V

ψ1(v)
∏

(v,w)∈E

ψ2(v, w) (4.6)

where Z(x) represents the partition function which assures, that P (x) is a valid density
function. The instance potentials are modeled using the function ψ1(x). The pairwise
potential functions are modeled using ψ2(v, w).

Let us assume that (h′(a,b,c))(a,b,c)∈(1...p)3 denotes the calculated cell histograms of the
3D model X. For the instance potentials, the learned cell histograms are used. The
instance potentials is defined as ψ1(v) = exp(P (h′(a,b,c), a, b, c)), where h′(a,b,c) denotes

the cell histogram for the vertex v. The pairwise potentials are defined as ψ2(v, w) =
exp(|ψ1(v)− ψ1(w)|).

4.7 An Approach to Improve Retrieval using Diffusion Pro-
cesses

The second approach to improve retrieval results is using diffusion processes. Using
matching methods for 3D models, the similarity or affinity between two models can be
calculated. Assuming that N is the number of 3D models, a square N ×N matrix of all
3D models can be calculated. This matrix will be called the affinity matrix A here.

Retrieving 3D models similar to the i-th model using the affinity matrix A only, is done
by extracting the i-th row in the affinity matrix and sorting this row by its affinity

Methodology 37

values. However, doing so ignores the structure of the underlying data manifold [58].
Diffusion processes re-evaluate the affinities of all models in the context of all other
elements. This is done by diffusing the affinity values through the graph described by
the affinity matrix [58]. Donoser et al. [58] have recently surveyed diffusion processes for
retrieval. They mention that diffusion processes have the ability to significantly improve
applications like retrieval. Figure 4.8 shows the affinity values before (left) and after
(right) applying a diffusion process.

Figure 4.8: The figure shows the affinity values before (left) and after (right) applying
a diffusion process. Using only pairwise affinities is not sufficient to capture the intrinsic
structure of the data manifold. Applying a diffusion process spreads affinities through

the graph described by the affinity matrix [58].

One of the best known diffusion algorithm is the Google page rank algorithm [59]. For
the page rank algorithm an affinity matrix A is needed, which contains all pairwise
affinity values. Each row of the affinity matrix A is divided by its sum, which gives the
row stochastic matrix P . The matrix P can be interpreted as a transition matrix for
randomly walking on a complete graph of size N .

Assuming we want to retrieve 3D models similar to the model with id j, the N -
dimensional probability vector f0 must be initialized with:

f0(i) =

{
0 if i 6= j
1 if i = j

(4.7)

The probability vector, which contains the final affinities for all other 3D models can be
iterative calculated using:

f(t+1) = ftP, (4.8)

This update operation is performed iteratively until convergence. In this thesis a slightly
modified diffusion algorithm will be used, where diffusion is constrained to the k-nearest
neighbors in the affinity matrix. The update step changes to W(t+1) = PWtP

T , where
W denotes the new affinity matrix, which is initialized with P . This approach is called
“Locally constrained diffusion process” (LCDP), it has been introduced by Yang et
al. [60].

Chapter 5

Evaluation

5.1 Evaluation Setup

The matching methods were tested against the Princeton shape benchmark [7] at the
base classification setting. The base classification setting is the most fine-grained clas-
sification, it divides the 907 models into 90 classes. For the evaluation the generative
models “commercial airplane” and “sedan car” were modeled. The sedan car test case
has 10 positive examples and the commercial airplane test case has 11 positive examples.

p3

p 1
p2

p4

p 5

p6

Figure 5.1: The generative description of the “sedan car” model has six degrees of
freedom. These parameters (p1, . . . , p6) define the car’s outer shape.

5.1.1 Sedan Car

The sedan car class was modeled using a JavaScript file with ≈ 350 lines of code (LOC).
The script has six parameters, that control the dimensions of the car. The effect of the
parameters on the main dimensions of the car is visualized in Figure 5.1.

Other dimensions, such as the length of the top of the car are either derived by combining
multiple parameters or set to a constant value. The car is modeled by first defining only
the side of the car, which is colored in green in Figure 5.1. The side is then extruded
twice using tapered extrusions with different angles. The first extrusion creates the
blue parts and the second one creates the red parts in Figure 5.1. By mirroring the
side and the two extrusions around its center plane the whole car is created. The tires
are modeled using cylinders. The extrusion as well as the creation of a cylinder are

38

Evaluation 39

implemented as JavaScript functions. Using functions allows simple reuse of code parts
in other generative models.

p1

p 2

p3

p4

p5

Figure 5.2: The class of commercial airplanes is defined by a generative model that
takes five parameters. The effect of its parameters is visualized in this construction

plan.

5.1.2 Commercial Airplane

The commercial airplane class was modeled in JavaScript as well (≈ 250 LOC). The
script has five parameters, that control the dimensions of the airplane. The effect of the
parameters on the main dimensions of the airplane is visualized in Figure 5.2. Other
dimensions, such as the angle or the length of the wings are either derived by combining
multiple parameters or set to a constant value. The fuselage of the airplane is created
using a rotational surface which is then slightly deformed to model the cockpit and the
aft fuselage. The jet engines are modeled using cylinders. Again the rotational surface
is implemented as a JavaScript function, which could be reused in other models.

5.2 Evaluation of the Histogram of Inverted Distances -
Kernel Density Estimation Algorithm

This method relies on six parameters. The values for the retrieval parameters were
evaluated empirically. All parameters and their corresponding values are displayed in
Table 5.1.

The benchmark was executed on a modern computer with an Intel i7 950 CPU and 12
GB Ram. The generation and voxelization of 64 models for both model classes took 103
seconds. The learning phase took 292 seconds. The actual retrieval process for both
classes took about 4.75 hours. That is 9.41 seconds in average per test model. However
most of the time is spent for converting and aligning the models and calculating the
descriptors, the actual calculation of the similarity takes 0.3 seconds on average. The
effectiveness of a retrieval method is evaluated using the precision-recall graph, like

Evaluation 40

Parameter Value

n Number of training samples 64

R Resolution of the voxel models 256

p Number of cells in one direction 16

σ Standard deviation for the Gaussian kernel
density estimation

1/4

cut Cutoff value of the inverted distance calcu-
lation

16

k Number of histogram bins 8

Table 5.1: The parameters and their corresponding values listed in this table have
been used for benchmarking our method.

presented in Section 2.1.2. Figure 5.3 shows the precision-recall graphs for the classes
“sedan car” and “commercial airplane”.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

Precision−Recall

Commercial Airplane

Sedan Car

Figure 5.3: The precision-recall graph shows the benchmark results of the classes
“sedan car” and “commercial airplane” using the histogram of inverted distances algo-

rithm.

The graph indicates, that the method is able to find similar objects to the given genera-
tive models. The retrieval results for the class sedan car are almost perfect. However the
commercial airplane class performs significantly worse. This is because the generative
model is not detailed enough to differentiate between different airplane classes (com-
mercial, fighter, biplane etc.) as can be seen in Figure 5.5. Figure 5.4 shows the top 16
retrieval results for the class sedan car.

Evaluation 41

Figure 5.4: The top 16 retrieval results for the class sedan car.

Figure 5.5: The top 16 retrieval results for the class commercial airplane. Even
though all models in the top results are airplanes, there are many false positives. That is
because the Princeton benchmark distinguishes between many different airplane classes

(commercial, fighter, biplane etc.), and we only search for commercial airplanes.

Evaluation 42

5.3 Evaluation of the Histogram of Inverted Distances -
Support Vector Machine Algorithm

The parameters for the evaluation were the same as for the histogram of inverted dis-
tances algorithm, presented in Table 5.1. During the training phase, training the support
vector machines adds another 0.1 seconds per class, which is a negligible amount of time.
In the recognition phase the calculation of the similarity per model declines from 0.3 to
0.006 seconds when using support vector machines instead of kernel density estimation.

The effectiveness of a retrieval method is evaluated using the precision-recall graph, like
presented in Section 2.1.2. Figure 5.6 shows the precision-recall graphs for the classes
“sedan car” and “commercial airplane”.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

Precision−Recall

Commercial Airplane

Sedan Car

Figure 5.6: The precision-recall graph shows the benchmark results of the classes
“sedan car” and “commercial airplane” using the histogram of inverted distances -

support vector machine algorithm.

The results are very similar to the kernel density estimation algorithm. Again the results
for class sedan car are almost perfect. The results for the class airplane are however
better compared to the kernel density estimation algorithm. The top 16 results for
the sedan car class and the commercial airplane class are shown in Figures 5.8 and 5.7
respectively.

Evaluation 43

Figure 5.7: The top 16 retrieval results for the class sedan car.

Figure 5.8: The top 16 retrieval results for the class commercial airplane. Even
though all models in the top results are airplanes, there are many false positives. That is
because the Princeton benchmark distinguishes between many different airplane classes

(commercial, fighter, biplane etc.), and we only search for commercial airplanes.

Evaluation 44

5.4 Evaluation of the Markov Random Field Approach

The Markov random field approach additionally requires the calculation of the joint
probability on the Markov random field, as described in section 4.6. This adds another
0.0005 seconds, which is again negligible.

The effectiveness of a retrieval method is evaluated using the precision-recall graph, like
presented in Section 2.1.2. Figure 5.9 shows the precision-recall graphs for the classes
“sedan car” and “commercial airplane”.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

Precision−Recall

Commercial Airplane

Sedan Car

Figure 5.9: The precision-recall graph shows the benchmark results of the classes
“sedan car” and “commercial airplane” using the histogram of inverted distances -

Markov random field algorithm.

The results are slightly better, compared to the kernel density estimation approach, as
can be seen in Figure 5.9. The top 16 results for the sedan car class and the commercial
airplane class are shown in Figures 5.11 and 5.10 respectively.

Evaluation 45

Figure 5.10: The top 16 retrieval results for the class sedan car.

Figure 5.11: The top 16 retrieval results for the class commercial airplane. Even
though all models in the top results are airplanes, there are many false positives. That is
because the Princeton benchmark distinguishes between many different airplane classes

(commercial, fighter, biplane etc.), and we only search for commercial airplanes.

Evaluation 46

5.5 Evaluation of the Diffusion Process Approach

To apply diffusion processes in the field of retrieval, a N × N matrix containing all
pairwise similarities is needed. This matrix is called the affinity matrix. The pairwise
similarities are calculated by comparing the cell histograms of the models. Like in
Johnson et al. [36], the similarity between two cells is given by the correlation coefficient.
The similarity between two models is given by the sum of the cells similarity.

The construction of the affinity matrix for the whole benchmark requires 18142 model
comparisons. One comparison of two models took 0.34 seconds on average, which results
in 310.77 hours for the whole benchmark. To speed up the calculation of the affinity
matrix, the workload was distributed to seven similar computers. Thereby calculation
time was reduced to two days. From the affinity matrix for the whole benchmark,
the affinity matrix for the test set was extracted. This affinity matrix is depicted in
Figure 5.13 using a the color map depicted in Figure 5.12. Black color indicates low
similarity, whereas white color indicates high similarity.

Figure 5.12: The Figure shows the color map used to visualize the affinity matrix.
Black color indicates low similarity, whereas white color indicates high similarity.

The only parameter for applying the locally constrained diffusion process, is the number
of nearest neighbors k to consider. The value k was set to 4, as this led to the best
results. The application of the diffusion process takes 1.1 seconds until convergence.
The resulting affinity affinity matrix is depicted in Figure 5.14.

Figure 5.13: Affinity matrix before
the application of the diffusion process.

Figure 5.14: Affinity matrix after the
application of the diffusion process.

The effect of the diffusion process on the retrieval effectiveness is visualized with the
averaged eleven point precision-recall graph in Figure 5.15. The green precision-recall
graph shows the results before the application of the diffusion process and the blue graph
shows the results after the application of the diffusion process. It can be seen that the
precision slightly decreases at lower recall values, but increases at recall values of about
0.4.

Evaluation 47

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

Averaged Evelven Point Precision−Recall

Diffused
Undiffused

Figure 5.15: Eleven point precision-recall plot. The green precision-recall graph
shows the results before the application of the diffusion process and the blue graph

shows the results after the application of the diffusion process.

Figure 5.16 and Figure 5.17 show how the diffusion process can improve retrieval per-
formance. Before the application of the diffusion process (Figure 5.16) only four faces
are found in the top 16 results. By apply the locally constrained diffusion process eleven
faces can be found in the top 16 results.

However this process might also reduce the retrieval performance as shown in Figure 5.18
and in Figure 5.19. Figure 5.18 shows that seven chessboards can be found in the top
16 retrieval results. However in the three nearest neighbors two false positive models
are found. Those objects have the shape of a circular disc. After diffusion the retrieval
performance reduces, because many objects similar to circular discs are present in the
top 16 retrieval results.

Evaluation 48

Figure 5.16: The Figure shows the top 16 retrieval results before applying diffusion.
Only four faces can be found in the top 16 retrieval results.

Figure 5.17: The Figure shows the top 16 retrieval results after applying diffusion.
Eleven faces can be found in the top 16 retrieval results.

Evaluation 49

Figure 5.18: The Figure shows the top 16 retrieval results before applying diffusion.
Seven chessboards are found in the top 16 retrieval results.

Figure 5.19: The Figure shows the top 16 retrieval results after applying diffusion.
The retrieval quality reduces, because many objects similar to circular discs are present

in the top 16 retrieval results.

Chapter 6

Conclusion

In this thesis I have presented a new approach to perform content-based retrieval of
3D shapes based on generative modeling techniques. The generative models are used
to describe 3D model classes, respectively, 3D shape spaces. In the training phase, the
shape spaces are sampled randomly. In this way, no “real” training data is needed a
priori.

Two retrieval algorithms, the “histogram of inverted distances - kernel density esti-
mation” method and the “histogram of inverted distances - support vector machine”
method, have been developed. Both methods use a voxel representation, PCA align-
ment and inverse distance transformations on a grid. For each cell in the grid the
histogram of inverted distances is calculated. Furthermore two approaches to improve
retrieval quality have been developed. The first approach uses Markov random fields
and the second one uses diffusion processes.

Kernel Density Estimation The “histogram of inverted distances - kernel density
estimation” method uses kernel density estimation to learn a non-parametric density
function for each cell. In the recognition phase, the cell histograms for the test model
are calculated. The similarity between a cell of a test model and a learned cell is
estimated using the corresponding learned density function. The similarity of the whole
model is given by the product of all cell similarities.

Support Vector Machine The second algorithm is called “histogram of inverted
distances - support vector machine”. It trains a one-class support vector machine to
estimate the distribution of training samples in the feature space. For that the cell
histograms are concatenated to a global feature vector for each training model. In the
recognition phase, the global feature vector is calculated for each test model and the
support vector machine is used to estimate, whether the test samples belong to the
distribution of training samples.

Markov Random Field In the first approach to improve retrieval results, a Markov
random field is constructed and the joint probability is calculated. It has been shown,
that the Markov random field approach could slightly improve retrieval performance.

50

Conclusion 51

Diffusion Processes The second approach uses diffusion processes, to take the un-
derlying structure of the data manifold into account, similar to the Google page rank
algorithm. It has been shown that retrieval performance slightly decreased at low recall
rates, but increased at recall rates of about 0.4.

As a consequence, the contribution to 3D shape retrieval is a novel indexing and retrieval
method based on generative models and histograms of inverted distances. I have shown
that it is possible to train the retrieval methods using solely generative models, by
evaluating the method using the Princeton benchmark.

As a benefit, this technique eliminates the cold start problem in the training phase.
A generative description implemented in a few lines of code is sufficient to generate a
reasonable training set. Furthermore, it has been shown that the histogram of inverted
distances can be used as a feature vector for spatial data.

Bibliography

[1] Ying Liu, Dengsheng Zhang, Guojun Lu, and Wei-Ying Ma. A survey of content-
based image retrieval with high-level semantics. Pattern Recognition, 40(1):262–282,
2007.

[2] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduc-
tion to Information Retrieval. Cambridge University Press, July 2008. ISBN
9780521865715.

[3] Michael S. Lew, Nicu Sebe, Chabane Djeraba, and Ramesh Jain. Content-based
multimedia information retrieval: State of the art and challenges. ACM Trans.
Multimedia Comput. Commun. Appl., 2(1):1–19, February 2006. ISSN 1551-6857.
doi: 10.1145/1126004.1126005. URL http://doi.acm.org/10.1145/1126004.

1126005.

[4] Patrick Min, Michael Kazhdan, and Thomas Funkhouser. A comparison of text and
shape matching for retrieval of online 3D models. In Rachel Heery and Liz Lyon,
editors, Research and Advanced Technology for Digital Libraries, number 3232 in
Lecture Notes in Computer Science, pages 209–220. Springer Berlin Heidelberg,
January 2004. ISBN 978-3-540-23013-7, 978-3-540-30230-8. URL http://link.

springer.com/chapter/10.1007/978-3-540-30230-8_20.

[5] J. W. H. Tangelder and R. C. Veltkamp. A survey of content based 3D shape
retrieval methods. Multimedia Tools and Applications, 39(3):441–471, 2008. URL
http://www.springerlink.com/index/988121hl24227239.pdf.

[6] Christian Böhm, Stefan Berchtold, and Daniel A. Keim. Searching in high-
dimensional spaces: Index structures for improving the performance of multime-
dia databases. ACM Computing Surveys (CSUR), 33(3):322–373, 2001. URL
http://dl.acm.org/citation.cfm?id=502809.

[7] Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas Funkhouser. The
princeton shape benchmark. Shape Modeling Applications, 2004. Proceedings,
pages 167–178, 2004. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=1314504.

[8] Subramaniam Jayanti, Yagnanarayanan Kalyanaraman, Natraj Iyer, and Karthik
Ramani. Developing an engineering shape benchmark for CAD models. Computer-
Aided Design, 38(9):939–953, 2006. URL http://www.sciencedirect.com/

science/article/pii/S001044850600100X.

[9] Bo Li, Afzal Godil, Masaki Aono, X. Bai, Takahiko Furuya, L. Li, R. Lpez-Sastre,
Henry Johan, Ryutarou Ohbuchi, and Carolina Redondo-Cabrera. SHREC’12 track:
Generic 3D shape retrieval. In Proceedings of the 5th Eurographics conference on

52

http://doi.acm.org/10.1145/1126004.1126005
http://doi.acm.org/10.1145/1126004.1126005
http://link.springer.com/chapter/10.1007/978-3-540-30230-8_20
http://link.springer.com/chapter/10.1007/978-3-540-30230-8_20
http://www.springerlink.com/index/988121hl24227239.pdf
http://dl.acm.org/citation.cfm?id=502809
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1314504
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1314504
http://www.sciencedirect.com/science/article/pii/S001044850600100X
http://www.sciencedirect.com/science/article/pii/S001044850600100X

Bibliography 53

3D Object Retrieval, pages 119–126, 2012. URL http://dl.acm.org/citation.

cfm?id=2381218.

[10] Paul Gerhard Hoel and Stone . Introduction to probability theory. Houghton Mifflin,
Boston, 1971. ISBN 039504636X 9780395046364.

[11] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
October 2007. ISBN 0387310738.

[12] Philip Schneider and David H. Eberly. Geometric Tools for Computer Graphics.
Morgan Kaufmann, October 2002. ISBN 9780080478029.

[13] Eric W. Weisstein. Maximal clique – from wolfram MathWorld. URL http://

mathworld.wolfram.com/MaximalClique.html.

[14] Alan H Watt. 3D computer graphics. Addison-Wesley, Harlow, England; Reading,
Mass., 2000. ISBN 0201398559 9780201398557.

[15] Mario Botsch. Polygon mesh processing. A K Peters, Natick, Mass., 2010. ISBN
9781568814261 1568814267.

[16] Lutz Kettner. Designing a data structure for polyhedral surfaces. In Proceedings
of the fourteenth annual symposium on Computational geometry, SCG ’98, pages
146–154, New York, NY, USA, 1998. ACM. ISBN 0-89791-973-4. doi: 10.1145/
276884.276901. URL http://doi.acm.org/10.1145/276884.276901.

[17] Les A. Piegl and Wayne Tiller. The Nurbs Book. Springer, January 1997. ISBN
9783540615453.

[18] Ian Stroud. Boundary Representation Modelling Techniques. Springer, December
2006. ISBN 9781846286162.

[19] Matt Pharr and Randima Fernando. GPU gems 2: programming techniques for
high-performance graphics and general-purpose computation. Addison-Wesley, Up-
per Saddle River, NJ, 2005. ISBN 0321335597 9780321335593.

[20] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool.
Procedural modeling of buildings. ACM Trans. Graph., 25(3):614–623, July 2006.
ISSN 0730-0301. doi: 10.1145/1141911.1141931. URL http://doi.acm.org/10.

1145/1141911.1141931.

[21] Carlos A. Vanegas, Daniel G. Aliaga, Peter Wonka, Pascal Müller, Paul Waddell,
and Benjamin Watson. Modelling the appearance and behaviour of urban spaces.
In Computer Graphics Forum, volume 29, pages 25–42, 2010.

[22] Przemyslaw Prusinkiewicz. Graphical applications of l-systems. In Proceedings of
graphics interface, volume 86, pages 247–253, 1986.

[23] George Stiny. Introduction to shape and shape grammars. Environment and plan-
ning B, 7(3):343–351, 1980.

[24] Sven Havemann and Dieter W Fellner. Generative mesh modeling. PhD thesis,
University of Braunschweig-Institute of Technology, 2005.

http://dl.acm.org/citation.cfm?id=2381218
http://dl.acm.org/citation.cfm?id=2381218
http://mathworld.wolfram.com/MaximalClique.html
http://mathworld.wolfram.com/MaximalClique.html
http://doi.acm.org/10.1145/276884.276901
http://doi.acm.org/10.1145/1141911.1141931
http://doi.acm.org/10.1145/1141911.1141931

Bibliography 54

[25] Christoph Schinko, Martin Strobl, Torsten Ullrich, and Dieter W. Fellner. Scripting
technology for generative modeling. International Journal On Advances in Software,
4(3 and 4):308–326, 2012. URL http://www.thinkmind.org/index.php?view=

article&articleid=soft_v4_n34_2011_6.

[26] B. Bustos, D. Keim, D. Saupe, and T. Schreck. Content-based 3D object retrieval.
IEEE Computer Graphics and Applications, 27(4):22–27, 2007. ISSN 0272-1716.
doi: 10.1109/MCG.2007.80.

[27] Hongbo Fu, Daniel Cohen-Or, Gideon Dror, and Alla Sheffer. Upright orientation
of man-made objects. ACM Trans. Graph., 27(3):42:1–42:7, August 2008. ISSN
0730-0301. doi: 10.1145/1360612.1360641. URL http://doi.acm.org/10.1145/

1360612.1360641.

[28] Silvia Biasotti, Simone Marini, Michela Spagnuolo, and Bianca Falcidieno. Sub-part
correspondence by structural descriptors of 3d shapes. Computer-Aided Design, 38
(9):1002–1019, 2006.

[29] Eric Paquet, Marc Rioux, Anil Murching, Thumpudi Naveen, and Ali Tabatabai.
Description of shape information for 2-d and 3-d objects. Signal Processing: Image
Communication, 16(1):103–122, 2000.

[30] Ilias Kolonias, Dimitrios Tzovaras, Sotiris Malassiotis, and Michael G Strintzis.
Fast content-based search of vrml models based on shape descriptors. Multimedia,
IEEE Transactions on, 7(1):114–126, 2005.

[31] Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin. Shape
distributions. ACM Transactions on Graphics (TOG), 21(4):807–832, 2002.

[32] A Ben Hamza and Hamid Krim. Geodesic matching of triangulated surfaces. Image
Processing, IEEE Transactions on, 15(8):2249–2258, 2006.

[33] Yi Liu, Jiantao Pu, Hongbin Zha, Weibin Liu, and Yusuke Uehara. Thickness
histogram and statistical harmonic representation for 3d model retrieval. In 3D
Data Processing, Visualization and Transmission, 2004. 3DPVT 2004. Proceedings.
2nd International Symposium on, pages 896–903. IEEE, 2004.

[34] Mihael Ankerst, Gabi Kastenmüller, Hans-Peter Kriegel, and Thomas Seidl. 3d
shape histograms for similarity search and classification in spatial databases. In
Advances in Spatial Databases, pages 207–226. Springer, 1999.

[35] H-P Kriegel, P Kroger, Zahi Mashael, Martin Pfeifle, Marco Pötke, and Thomas
Seidl. Effective similarity search on voxelized cad objects. In Database Systems for
Advanced Applications, 2003.(DASFAA 2003). Proceedings. Eighth International
Conference on, pages 27–36. IEEE, 2003.

[36] Andrew E. Johnson and Martial Hebert. Using spin images for efficient object
recognition in cluttered 3D scenes. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 21(5):433–449, 1999. URL http://ieeexplore.ieee.org/

xpls/abs_all.jsp?arnumber=765655.

[37] Marcel Körtgen, Gil-Joo Park, Marcin Novotni, and Reinhard Klein. 3D shape
matching with 3D shape contexts. In The 7th central European seminar on computer
graphics, volume 3, pages 5–17, 2003. URL http://cg.tuwien.ac.at/hostings/

cescg/CESCG-2003/MKoertgen/paper.pdf.

http://www.thinkmind.org/index.php?view=article&articleid=soft_v4_n34_2011_6
http://www.thinkmind.org/index.php?view=article&articleid=soft_v4_n34_2011_6
http://doi.acm.org/10.1145/1360612.1360641
http://doi.acm.org/10.1145/1360612.1360641
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=765655
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=765655
http://cg.tuwien.ac.at/hostings/cescg/CESCG-2003/MKoertgen/paper.pdf
http://cg.tuwien.ac.at/hostings/cescg/CESCG-2003/MKoertgen/paper.pdf

Bibliography 55

[38] Raoul Wessel and Reinhard Klein. Learning the compositional structure of man-
made objects for 3d shape retrieval. In EUROGRAPHICS 2010 Workshop on 3D
Object Retrieval, pages 39–46, May 2010.

[39] Ruwen Schnabel, Roland Wahl, and Reinhard Klein. Efficient ransac for point-cloud
shape detection. Computer Graphics Forum, 26(2):214–226, June 2007.

[40] Horst Bunke. On a relation between graph edit distance and maximum common
subgraph. Pattern Recognition Letters, 18(8):689–694, 1997.

[41] Ruwen Schnabel, Raoul Wessel, Roland Wahl, and Reinhard Klein. Shape recogni-
tion in 3d point-clouds. In Proc. Conf. in Central Europe on Computer Graphics,
Visualization and Computer Vision, volume 2, 2008. URL http://citeseerx.

ist.psu.edu/viewdoc/download?doi=10.1.1.92.2344&rep=rep1&type=pdf.

[42] Vincent Cicirello and William C. Regli. Machining feature-based comparisons of
mechanical parts. In Shape Modeling and Applications, SMI 2001 International
Conference on., pages 176–185, 2001. URL http://ieeexplore.ieee.org/xpls/

abs_all.jsp?arnumber=923388.

[43] David McWherter, Mitchell Peabody, Ali C. Shokoufandeh, and William Regli.
Database techniques for archival of solid models. In Proceedings of the sixth ACM
symposium on Solid modeling and applications, pages 78–87, 2001. URL http:

//dl.acm.org/citation.cfm?id=376968.

[44] Nikhil Gagvani and Deborah Silver. Parameter-controlled volume thinning. Graph-
ical Models and Image Processing, 61(3):149–164, 1999. URL http://www.

sciencedirect.com/science/article/pii/S1077316999904951.

[45] Oscar Kin-Chung Au, Chiew-Lan Tai, Hung-Kuo Chu, Daniel Cohen-Or, and Tong-
Yee Lee. Skeleton extraction by mesh contraction. In ACM SIGGRAPH 2008
papers, SIGGRAPH ’08, pages 44:1–44:10, New York, NY, USA, 2008. ACM. ISBN
978-1-4503-0112-1. doi: 10.1145/1399504.1360643. URL http://doi.acm.org/10.

1145/1399504.1360643.

[46] Hari Sundar, Deborah Silver, Nikhil Gagvani, and S. Dickinson. Skeleton based
shape matching and retrieval. In Shape Modeling International, 2003, pages 130–
139, 2003. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=

1199609.

[47] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and Tosiyasu L. Kunii. Topol-
ogy matching for fully automatic similarity estimation of 3D shapes. In Proceedings
of the 28th annual conference on Computer graphics and interactive techniques,
pages 203–212, 2001. URL http://dl.acm.org/citation.cfm?id=383282.

[48] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. On visual simi-
larity based 3D model retrieval. In Computer graphics forum, volume 22, pages 223–
232, 2003. URL http://onlinelibrary.wiley.com/doi/10.1111/1467-8659.

00669/full.

[49] Dengsheng Zhang and Guojun Lu. An integrated approach to shape based im-
age retrieval. In Proc. of 5th Asian conference on computer vision (ACCV),
pages 652–657, 2002. URL http://lightfieldretrieval.googlecode.com/svn/

trunk/Report/accv_integrate.pdf.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.2344&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.2344&rep=rep1&type=pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=923388
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=923388
http://dl.acm.org/citation.cfm?id=376968
http://dl.acm.org/citation.cfm?id=376968
http://www.sciencedirect.com/science/article/pii/S1077316999904951
http://www.sciencedirect.com/science/article/pii/S1077316999904951
http://doi.acm.org/10.1145/1399504.1360643
http://doi.acm.org/10.1145/1399504.1360643
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1199609
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1199609
http://dl.acm.org/citation.cfm?id=383282
http://onlinelibrary.wiley.com/doi/10.1111/1467-8659.00669/full
http://onlinelibrary.wiley.com/doi/10.1111/1467-8659.00669/full
http://lightfieldretrieval.googlecode.com/svn/trunk/Report/accv_integrate.pdf
http://lightfieldretrieval.googlecode.com/svn/trunk/Report/accv_integrate.pdf

Bibliography 56

[50] M. Novotni and R. Klein. A geometric approach to 3D object comparison. In Shape
Modeling and Applications, SMI 2001 International Conference on., pages 167–175,
2001. doi: 10.1109/SMA.2001.923387.

[51] Hermilo Snchez-Cruz and Ernesto Bribiesca. A method of optimum transfor-
mation of 3D objects used as a measure of shape dissimilarity. Image and Vi-
sion Computing, 21(12):1027–1036, November 2003. ISSN 0262-8856. doi: 10.
1016/S0262-8856(03)00119-7. URL http://www.sciencedirect.com/science/

article/pii/S0262885603001197.

[52] Johan WH Tangelder and Remco C. Veltkamp. Polyhedral model retrieval
using weighted point sets. International journal of image and graphics, 3
(01):209–229, 2003. URL http://www.worldscientific.com/doi/abs/10.1142/

S021946780300097X.

[53] David Flanagan. JavaScript: The Definitive Guide. O’Reilly Media, Inc., April
2011. ISBN 9781449308162.

[54] Patrick Min. binvox 3d mesh voxelizer, keywords: voxelization, voxelisation, 3D
model. URL http://www.cs.princeton.edu/~min/binvox/.

[55] M. C. Jones, J. S. Marron, and S. J. Sheather. A brief survey of bandwidth selection
for density estimation. Journal of the American Statistical Association, 91(433):
401–407, March 1996. ISSN 0162-1459. doi: 10.2307/2291420. URL http://www.

jstor.org/stable/2291420.

[56] Yunqiang Chen, Xiang Sean Zhou, and Thomas S. Huang. One-class SVM for learn-
ing in image retrieval. In Image Processing, 2001. Proceedings. 2001 International
Conference on, volume 1, pages 34–37, 2001. URL http://ieeexplore.ieee.org/

xpls/abs_all.jsp?arnumber=958946.

[57] Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alex J. Smola, and
Robert C. Williamson. Estimating the support of a high-dimensional dis-
tribution. Neural computation, 13(7):1443–1471, 2001. URL http://www.

mitpressjournals.org/doi/abs/10.1162/089976601750264965.

[58] Michael Donoser and Horst Bischof. Diffusion processes for retrieval revisited. URL
http://vh.icg.tugraz.at/publications/CVPR_2013_Diffusion.pdf.

[59] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank
citation ranking: bringing order to the web. 1999. URL http://ilpubs.stanford.

edu:8090/422.

[60] Xingwei Yang, Suzan Koknar-Tezel, and Longin Jan Latecki. Locally constrained
diffusion process on locally densified distance spaces with applications to shape
retrieval. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, pages 357–364. IEEE, 2009.

http://www.sciencedirect.com/science/article/pii/S0262885603001197
http://www.sciencedirect.com/science/article/pii/S0262885603001197
http://www.worldscientific.com/doi/abs/10.1142/S021946780300097X
http://www.worldscientific.com/doi/abs/10.1142/S021946780300097X
http://www.cs.princeton.edu/~min/binvox/
http://www.jstor.org/stable/2291420
http://www.jstor.org/stable/2291420
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=958946
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=958946
http://www.mitpressjournals.org/doi/abs/10.1162/089976601750264965
http://www.mitpressjournals.org/doi/abs/10.1162/089976601750264965
http://vh.icg.tugraz.at/publications/CVPR_2013_Diffusion.pdf
http://ilpubs.stanford.edu:8090/422
http://ilpubs.stanford.edu:8090/422

	1 Introduction
	2 Background
	2.1 Information Retrieval
	2.1.1 Structure of 3D Model Retrieval Systems
	2.1.2 Evaluation of Information Retrieval Methods

	2.2 Probability and Statistics
	2.2.1 Probability Spaces and Random Variables
	2.2.2 Gaussian Distribution
	2.2.3 Kernel Density Estimation
	2.2.4 Histogram Density Estimation
	2.2.5 Support Vector Machines
	2.2.6 Principal Component Analysis
	2.2.7 Markov Random Fields

	2.3 Shape Representations
	2.3.1 Polygonal Model Representation
	2.3.2 Parametric Patches
	2.3.3 Constructive Solid Geometry
	2.3.4 Spatial Subdivision Techniques
	2.3.5 Implicit Representation
	2.3.6 Procedural Models

	3 Related Work
	3.1 Feature Based Retrieval Methods
	3.1.1 Global Feature Based Retrieval Methods
	3.1.2 Global Feature Distribution Based Retrieval Methods
	3.1.3 Spatial Maps of Features
	3.1.4 Local Feature Based Methods

	3.2 Graph Based Retrieval Methods
	3.2.1 Model Graph Based Methods
	3.2.2 Skeleton Based Methods

	3.3 Geometry Based Retrieval Methods
	3.3.1 View Based Retrieval Methods
	3.3.2 Volumetric Error Based Retrieval Methods
	3.3.3 Weighted Point Set Based Retrieval Methods

	4 Methodology
	4.1 Generation of Training Examples
	4.2 Voxelization and Pose Normalization
	4.3 Feature Vector Calculation
	4.4 Matching using Kernel Density Estimation
	4.5 Matching using Support Vector Machines
	4.6 An Approach to Improve Retrieval Results using Markov Random Fields
	4.7 An Approach to Improve Retrieval using Diffusion Processes

	5 Evaluation
	5.1 Evaluation Setup
	5.1.1 Sedan Car
	5.1.2 Commercial Airplane

	5.2 Evaluation of the Histogram of Inverted Distances - Kernel Density Estimation Algorithm
	5.3 Evaluation of the Histogram of Inverted Distances - Support Vector Machine Algorithm
	5.4 Evaluation of the Markov Random Field Approach
	5.5 Evaluation of the Diffusion Process Approach

	6 Conclusion
	Bibliography

