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Abstract
In a context of an ongoing transformation process of the electricity market, the rollout
of smart meters will be one part of a modernized electricity system.
Such intelligent meters have potential benefits, but also raises new concerns regarding

privacy protection. The frequent real-time data transmission of the end-users’ electricity
demand to the utility would allow for disaggregating the aggregated load profile to
retrieve information about which device is operating and when. The disaggregation of
the load profile into composite appliance profiles allow for determining activities such as
the end users’ wake and sleep cycles.
In order to maintain a satisfying level of privacy protection, implementing a load

hiding system can be one meaningful approach. The installation of a battery system
allows for flattening the metered load to reduce the information that can be gleaned
from the load profile.
This thesis evluates the effectiveness of state-of-the-art battery-based load hiding algo-

rithms by analyzing the accuracy of a disaggregation technique. Moreover, accompany-
ing issues such as the battery dimensioning and the practical feasibility will be discussed.
Furthermore, this work proposes a new load-based load hiding system. Similar to the
battery system, a controllable load like a domestic hot water boiler allows the system
to manipulate the household’s power demand by consuming power at strategic times.
Finally a comparison between the load-based and battery-based system points out the
difference of the effectiveness of these methods.
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Kurzfassung
Im Rahmen der fortwährenden Umgestaltung des Elektrizitätsmarktes bildet auf Ver-
braucherseite die Installation der Smart Meter einen wesentlichen Teil eines modernen
und stärker vernetzten Elektrizitätsversorgungssystems.
Die Einführung dieser intelligenten Zählwerke bringt nicht nur potentielle Vorteile mit

sich, sondern es nehmen auch Bedenken bezüglich der Privatsphäre zu. Die hochaufgelöste
Echtzeitübermittlung des aktuellen Energiebedarfs eines jeden Endkunden an das EVU
wird dabei besonders kritisch betrachtet. So ermöglichen Algorithmen die das gemessene
Lastprofil in die Betriebszustände der angeschlossenen Haushaltsgeräte zerlegen können
weitreichende Erkenntnisse über das Kundenverhalten. Beispielsweise können anhand
der Daten Gewohnheiten wie der Wach-/Schlafrhythmus ermittelt werden.
Um dem damit einhergehenden Privatsphärenverlust entgegnen zu können, wurden

Verschleierungssysteme entwickelt. Diese Systeme versuchen direkt auf Endkundenseite
das Lastprofil gezielt zu beeinflussen. So kann ein Batteriesystem durch intelligente
Ansteuerung das elektrische Lastprofil des Netzkunden derart abflachen, dass kaum
mehr Informationen daraus gewonnen werden können.
Diese Masterarbeit testet aktuelle Batterieverschleierungsalgorithmen anhand eines

Simulationsmodells. Um die Effektivität dieser Systeme vergleichen zu können, wird an-
schließend die Erfolgsrate eines Algorithmus zur Zerlegung des Lastprofils in die einzel-
nen Haushaltsgeräte ausgewertet. Dazu passend wird auf Fragestellungen wie das Di-
mensionieren des Batteriesystems und eine mögliche praktische Realisierung eingegan-
gen. Des Weiteren wird ein neues lastbasiertes System vorgeschlagen. Ähnlich dem Bat-
teriesystem könnten steuerbare Lasten wie elektrische Warmwasserboiler gezielt einge-
setzt werden, um den Strombedarf des gesamten Haushalts beeinflussen zu können.
Schließlich wird die Effektivität eines solchen lastbasierten mit den batteriebasierten
Systemen verglichen.
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1 Introduction

1.1 Smart Grids and Smart Meter
In times where climate change, energy efficiency and scarcity of ressources are widely
discussed issues, innovations with regards to energy production, transportation and con-
sumption side become more and more important. This is where smart grids and smart
meters come into play.

“A Smart Grid is a modern electricity system. It uses sensors, monitor-
ing, communications, automation, and computers to improve the flexibility,
security, reliability, efficiency, and safety of the electricity system.” [60]

The European Parliament forces the liberalization of the electricity market via the
third energy package with the directive 2009/72/EC1 in order to transform the elec-
tricity markets from vertical integrated electric utilities to a more competitive market
with independent market players. Together with the strongly promoted and subsidized
expansion of renewables, this led and still leads to a more decentralized energy supply
with excess but smaller gensets. Compared to centralized systems in the past, decen-
tralization increases the requirements to the system operator to maintain a good quality
of supply.
Electric energy is characterized by being difficult to store which means that the level

of supply must equal usage all the times. As supply has to keep up with usage, the
transformation process towards decentralization brings up challenges: on the one hand
renewables like photovoltaic and wind energy are supply-dependend, whereas a mix of
conventional power plants based on hydro power, nuclear power or fossil fuels allow better
control in a need-based matter. This uneven load of renewables must be forecasted and
the gap between supply and usage has to be compensated by conventional power plants,
e.g. combined cycle plants or pumped storage hydro power stations.
High subsidies for renewables and the nearing end of the design life of conventional

power plants, especially with regards to the current situation in Germany convential
power plants are more and more advised out of the market, which increases the problem
of attempting to maintain the balance between supply and usage at all times. This
challenge can be minimized by reducing the gap between the load demanded by the
customers and the given supply of the renewables.
Furthermore, electrical power grids and the generation system need to be dimensioned

for the maximum load that can be expected during normal operation. A glance at
1Directive 2009/72/EC of 13th of July 2009 concerning common rules for the internal market in
electricity and repealing Directive 2003/54/EC
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Austrian load profiles shows that the power demand increases during cold and extreme
hot seasons and, on a smaller time scale, on weekdays at midday and in the early evening.
The entire generation system (or rather imports) must be able to cover the maximum
demanded load, which necessitates running power plants with a limited time of operation,
though this results in high costs holding enough power generation units available for
covering peak times. Maintaining a more constant load for conventional power plants
would reduce the system costs. The electrical energy produced by these plants must
also be transmitted to the customers. If power plants are built hundreds of kilometers
away from the majority of the customers this may overload the grid, especially during
those peak loads. To tackle such congestions, system operators may activate utilities
such as phase-shifting transformers, or they may choose to redispatch the power plant
deployment. Due to the limits of this loophole it seems to be necessary to strengthen
the power grids, however, the projects are delayed or even doomed by the resistance of
the affected landowners very often.
In order to solve both problems, customers need information and incentives when to

consume energy, such as time-based pricing models. In a worst-case scenario, customers
would be restricted to a maximum load or suffer from partial/total disconnection from
the power grid during a congestion. This asks for a better communication between the
suppliers, the grid operator and the customers. Large power plants are already well
connected with the transmission grid in terms of working communication infrastructure,
which essentially grasps the meaning of a smart grid, the situation in medium high
voltage and low voltage systems looks more bleak. So-called smart grids necessitate the
extension of Information and Communications Technology (ICT) between customers,
power grid operators and suppliers in order to handle various challenges.
On the customer side this is where smart meters come into play. Since the introduction

of the electromechanical induction watt-hour meters, complete with manual readout
technology, in 1888, there was no significant development regarding electricity meters
until the 1990s when the South African Electricity Supply Commission introduced digital
readout meters [66]. Further enhancements led to electricity meters that are now known
as smart meters.
Smart meters are electronic devices that record consumption, not necessarily solely

of electricity but also of gas, water, heating and hot water in intervals of, for example,
15 min or even one second. This data should be provided to the customers in order to
motivate a change in habits dependent on actual congestions on the power generation
system side or the power grid side and, moreover, to save energy [51]. Furthermore, the
data are meant to be sent to the utility for monitoring purposes, customer information
and forecasting but also for billing purposes.
The concrete requirements of a smart meter depend on the region. In Austria they are

listed in the ordinance “E-Control Ordinance Determining the Requirements for Smart
Meters 2011,”see [30] published by E-Control, the Austrian energy markets regulator.
Corresponding to the ordinance and the associated annotations [29] the functionality

of smart meters should comprise the following itemization:

• Two-way communication via Powerline, GRPS, ADSL, xDSL, wireless or similar

Christoph Prokop 10
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to be able to send and receive data to and from the system operator or a third
party.

• Secured state-of-the-art communication to prevent access by non-entitled parties.

• The possibility to encrypt the display to avoid unwarranted readings by neighbours,
etc.

• Data readings of the consumed energy with a timestamp of the balanced active
power or balanced active energy every 15 minutes, 15 minutes, which allows the
installation of electricity generators such as photovoltaic systems without the in-
stallation of a second electricity meter.

• Save the aggregated daily consumption.

• Store readings for a maximum of 60 days.

• To send all data until midnight of each day to the system operator via a commu-
nications interface daily no later than 12:00 on the following day.

• Prepaid tariffs or the possibility to remotely disable the connection of the customer
facility and to restrict the maximum load; in case of a resetting the customer has
to reactivate the current flow for safety reasons itself.

• A secured and encrypted communications interface to communicate with external
devices such as other quantity metering devices for energy management purposes.

• An internal clock and calender with remote synchronisation.

• To support status and/or error logs and access logs and the meters shall be
equipped with a manipulation detection function.

• Remote software updates.

• The smart meters have to comply with the provisions of metrology and calibration
law and data protection.

The legal framework for smart metering is based on the directive 2009/72/EC and is
also mentioned in 2006/32/EC2.
As per the directive 2009/72/EC:

“Where roll-out of smart meters is assessed positively, at least 80 % of
customers shall be equipped with intelligent metering systems by 2020.”

2Directive 2006/32/EC of 5th of April 2006 on energy end-use efficiency and energy services and
repealing Council Directive 93/76/EEC
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Based on a cost-benefit-analysis, an outsourced PricewaterhouseCoopers Austria study
in 2010 [65] concludes that the implementation of smart metering in Austria would be
beneficial from an economic point of view. In contrast to that, an outsourced Ernst &
Young study in Germany in 2013 [35] concludes the opposite, claiming the smart meter
installation costs exceed the expected benefits.
Due to the ordinance for the implementation of intelligent meters in [18] system op-

erators are obligated to install at least 10 % of their metering points with smart meters
by 2015, 70 % by 2017 and 95 % by 2019 with a few exceptions due to already installed
load profile and smart meters, for further information see [18].

1.2 Potential of Smart Metering
Aside from easing the progress of decentralization, the installation of smart meters may
offer the potential for further benefits.
As environmental matters have gained more importance, greater energy efficiency and

savings are central steps to reducing greenhouse gas emissions as outlined by Europe
2020 targets. Smart metering can be one of the many factors used to meet these targets.
As per [65] the realtime reading of the consumed energy and the possibility to compare
the development of consumption via a feedback system of the system operator using
websites or mailings should force customers to adjust their consumption behaviour. As
per [29] customers with yearly settlements are confronted with annual data of their en-
ergy consumption, sometimes even based on calculations and not on manual readings.
Smart meters should enable better control of the consumption like providing monthly
settlements [29]. [65] expects that such a system should be able to reduce electricity con-
sumption by 3.5 %. The disaggregation of an end-user’s load profile into the appliance’s
profiles can help realize large-scale and cost-effective energy savings [51]. Using such a
disaggregation technique, a so-called Nonintrusive Load Monitoring (NILM) algorithm,
allows for direct feedback as well as automated personalized recommendations to the
end-user.
A project commissioned by Ofgem3 “was designed to help better understand how

domestic customers react to improved information about their energy consumption over
the long term” [15]. The project began in 2007, finished in 2010 and used different
combinations of measures, including four energy supply companies with more than 60.000
households. The energy companies were able to find statistically significant energy
savings from smart meters depending on the feedback and interventions of the supply
companies [15].
On the customer side there are numerous benefits such as greater transparency and

comprehension of energy consumption levels and furthermore increased ease in change
of supplier due to remote readouts [65].
In addition smart meters will enable remote control to minimize electricity theft and

allows a dynamic pricing scheme, with more than just one fixed off-peak tariff during
3Ofgem: Office of Gas and Electricity Markets, the government regulator for electricity and natural
gas markets in Great Britain
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nights and the regular tariff. There are different approaches to implement time-based
pricing such as the so-called Tarif Bleu Option Tempo in France. The electricity market
in France is distinguished due to both a high share of nuclear energy providing base load
and a high number of electric heaters. This results in high peaks during cold season. To
master the situation the French energy supplier EdF4 offers several tariffs such as the
Tarif Bleu Option Tempo. French customers are informed via SMS, television, radio,
internet, etc., about the tariff levels on a specific day: blue days refer to lower priced
electricity, whereas electricity on red days is priced much higher, sometimes fivefold the
rate on a blue day. This system helps minimize the peak loads and referring to [26] the
system is quite successful.
Summing up, as [66] depicts:

“The idea is that smart meters will enable customers to conserve energy
and adapt usage to supply conditions.”

1.3 Threats of Introducing Smart Meter
Smart metering systems provide high resolution and realtime end user power consump-
tion data for utilities for monitoring, controlling, managing and billing purposes [22].
Besides the advantages of fine grained data for customers, for system operators, power
plants and billing companies, smart metering data could be used to analyze the end-
user’s habits when applying a NILM algorithm. For example, researchers in [58] have
shown that power consumption data with an sampling interval of max. 15 s allows de-
tailed information on customer activities such as whether someone is home and reading
the appliances use-status of the microwave, stove, water heater, TV etc., can determine
the sleep/wake cycle and other events like showers, breakfast, dinner and parties.
Such fine grained data could answer the following questions [13], [20], [33], [38]:

• Were you home during your sick leave?

• Did you sleep well?

• How often do you eat microwave dinner?

• How many hours of TV do you watch?

• Do you eat breakfast, if so - a cold or hot one?

• Are you a devout muslim?

Furthermore there are agencies, organizations and individuals that may have motives
to use power consumption data such as [37], [58], [66], [73]:

4EdF: Électricité de France SA
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• Law enforcement agencies: e.g. to use records to seek out drug producers (e.g. the
Austin Police Department as a special case even without a search warrant) relaying
on the fact that the heat lamps and watering systems increase the consumption
far beyond the norm.

• Marketing: energy management tools like Google PowerMeter5 and Microsoft
Hohm6 may feature their tools by using metering information for advertisements
for repairs or new products if the customer’s device gets broken. Moreover, this
helps sellers adjust their prices to the customer’s needs.

• Supply companies: combined with time-based pricing the data could allow supply
companies to engage in predatory pricing and pursue exploitative contracts as the
utilities exactly know the customers behaviour and needs.

• Insurance companies: could use information about customers’ life patterns to
charge those with “unhealthy” patterns more. They could also use the data to
check if people on a sick leave are staying at home and to determine care premi-
ums based on unusual behaviour indicating illness.

• Criminal activities: having information about the user’s presence at home facili-
tates burglary and helps identify the presence of high-priced appliances.

• Creditor: usage patterns could provide information on the credit-worthiness of the
customer.

• Press: to collect information on celebrities and other people in the public eye.

The 2010 Austrian study concluding with the view that the implementation of smart
metering would be beneficial from an economic point of view [65] suggests the use of a
web portal summarizing the data provided by smart meters and in agreement with the
customers to transmit that data to third parties like energy consultants, suppliers or
energy providers.
Anderson [66] argues that implementing remote off switches in smart meters to mini-

mize electricity theft and defaults in payment may be hazardous, as cyber terrorists or
wartime enemies could be able to shut electricity down. Furthermore, he sees another
risk if a region faces a supply crunch as old power stations are near the end of their
design lives. Will ministers cut off households who fail to meet saving targets or the
most profligate household in each street?
Supporting the seriousness of this privacy threat, in 2009 the Dutch court decided

that the mandatory collection of nonessential fine grained metering data is contrary to
article 8, ECHR7 [23].
The NIST report on Smart Grid Interoperability Standards [61] states:

5Google PowerMeter: project to track electricity usage to save energy, announced in 2009, discontinued
in 2011

6Microsoft Hohm: web application by Microsoft to analyze energy usage based on recommendations,
announced in 2009, discontinued in 2012

7ECHR: European Convention on Human Rights, entered into force on 3rd of September 1953
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“The major benefit provided by the Smart Grid, i.e. the ability to get
richer data to and from customer meters and other electric devices, is also
its Achilles’ heel from a privacy viewpoint.”

1.4 Possible Solutions to Privacy Loss
Privacy is “someone’s right to keep their personal matters and relationships secret” as
per Cambridge Dictionary8.
With regards to this definition, smart metering may result in a conflict with privacy.

Nevertheless reporting energy usage accurately is essential for the smart grid. [22] speci-
fies some requirements considering a smart meter framework taking privacy preservation
into account as well:

• to fully protect user’s privacy

• without sacrificing the resolution of smart meter data for actual load management
usage

• to provide a verifiable billing method

• without a trusted third party.

[37] categorizes the effort to meet privacy issues into the following classes:

• Anonymization of metering data to separate the data from customer IDs which
necessitates a third-party involved.

• Metering data obfuscation to mask the energy consumption profile, e.g. with local
battery buffers, the so called Battery-based Load Hiding (BLH).

• Privacy-preserving metering data aggregation, e.g. sums the data of many cus-
tomers up prior to sending the data to the utility.

The first category aims to address the privacy issue by anonymizing the customer’s
identity through using an escrow service as a third party, as proposed by Efthymiou and
Kalogridis in [19]. In fact, the authors state that this proposal may not offer sufficient
smart metering protection, but it contributes an additional layer of privacy protection.
The problem remains that the necessity to trust a third party should be avoided due to
the framework requirements above.
In order to address these issues, several researcher developed systems that fit into

the third category, see [22], [36], [38] and [49]. Using this method of data aggregation
includes the encryption of the data, followed by an aggregation prior sending the data
to the utility. With regards to an encryption system, many papers suggest some sort

8Cambridge Dictionary: Cambridge Advanced Learner’s Dictionary and Thesaurus, Cambridge Uni-
versity Press, online: http://dictionary.cambridge.org/dictionary/british/privacy?q=privacy, ac-
cessed on 7th October 2013
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of homomorphic encryption which allows the summing up of ciphertext (so that each
individual’s contribution remains encrypted) which equals after the decryption the sum
of the same operation using plaintext. Due to a random factor such homomorphic
encryption techniques are indeterministic, i.e. they are resistant to dictionary attacks
[36].
Ács and Castelluccia [39] follow a similar approach of aggregating a cluster of thou-

sands of smart meters using a modulo addition-based encryption scheme, which is ar-
guably easier to adopt than homomorphic encryption. Prior applying this encryption
technique, they implement a Laplacian Perturbation Algorithm, which modifies the mea-
sure by adding noise. The noisy and encrypted measure will be sent to the supplier that
is only able to decrypt the noised aggregated electricity consumption of the cluster with-
out gaining access to individual values. The aggregate is noised just enough to provide
privacy to each user, while still providing a low data error [39].
Moreover the third category can offer the advantage of reducing the amount of data

that is generated due to the summation of many metering points. This scheme can
satisfy all four requirements to a smart meter framework [22] but raises new concerns
such as electricity theft that would be impossible to detect. Referring to [40] this solution
is the most relevant one to protect smart grid privacy at the moment.
Aside from these schemes, the second class of metering data obfuscation seems promis-

ing as well. While it currently lacks in efficiency, the idea of BLH is to install a control
system in combination with a rechargeable battery between the metering point and the
internal wire to obfuscate the actual power consumption with characteristic peaks by
modifying and smoothening the load profile, as proposed by [27], [40], [70] and [74].
Obfuscating metering data could also be done on the customer’s load side for powerful
interruptible processes that are not time-critical and adjustable in their power consump-
tion, with the same result of modifying or smoothening the total load. Such a process
could be a domestic electric hot water boiler, an electric heater, or perhaps even an
electric vehicle charger. In the remainder, systems using such a variable load will be
shortened by Load-based Load Hiding (LLH), inspired by BLH.

1.5 Nonintrusive Load Monitoring
NILM or Nonintrusive Appliance Load Monitoring demonstrates how the information
gleaned through metered energy data can be used to track appliance usage patterns [40].
As early as 1992, Hart defined [41]:

“A nonintrusive appliance load monitor determines the energy consump-
tion of individual appliances turning on and off in an electric load, based on
detailed analysis of the current and voltage of the total load, as measured at
the interface to the power source.”

Following, NILM algorithms decompose load profiles into composite appliance profiles
based on either known or learned signatures [70]. Based on [14] the NILM approach is
illustrated in Figure 1.1. As [14] explains: the first step is to acquire the aggregated
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load measurement by the smart meter. After applying some preprocessing such as fil-
tering, the next module extracts features from the load profile data. Referring to [47]
such features could be switching transients (ON/OFF-events), the current waveform,
active and reactive power, harmonics, eigenvalues of the current waveform, the instanta-
neous admittance or power waveform. Then the load identification attempts to identify
appliance-specific states from the aggregated measurement. The last step is the system
training process. The learning process can be divided into supervised and unsupervised
learning approaches. Supervised mechanisms require labeled data sets to train the clas-
sifier [14]. This approach incurs extra human effort, whereas the unsupervised method
tries to achieve disaggregated energy sensing wihtout a-priori information [14].

Data Acquisition

Appliance Feature 
Extraction

Inference and 
Learning

Transient State Features

Steady State Features

Non-Traditional Features

Supervised Learning

Unsupervised Learning

Figure 1.1: NILM approach to disaggregate the load profile [14]

[48] demonstrates that the use of multiple features increases the disaggregation accu-
racy remarkable. For a more cost-effective NILM solution [57] lists some methods that
base on very few data. As an example [57] lists a heuristic approach that uses real power
data with a 15 min. sampling interval.
Referring to [74] various NILM approaches are based on edge detection:
Traces of discrete changes in energy use can be mapped directly to ON/OFF events

of appliances. NILM matches sister features (ON/OFF events with the same ampli-
tude) against known profiles, e.g. a light bulb, to uncover usage patterns by extracting
such appliance profiles from the household’s load profile where the appliance’s power
signatures are aggregated [70]. Techniques that reconstruct the usage pattern have been
shown to be highly accurate in practise [32], [58], [59]. Such a result is illustrated in
Figure 1.2.
Aside from edge detection, another important approach is to determine the appliance’s

ON/OFF-state for each sampling interval by evaluating the most likely combination of
the appliances that are turned ON. One idea is to model each appliance as an Hidden
Markov Model (HMM), which is a model in which the states are not directly observable
but are characterized by a probability density function. In order to model the aggregated
load profile using the HMM a Factorial Hidden Markov Model (FHMM) can be used [76].
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Figure 1.2: Exemplary load changes due to individual appliance events, reproduced from
[41]

The idea is to find the combination that results in an aggregated signal that is as close
as possible to the observed signal [48]. Such an algorithm that determines these hidden
states via a probability distribution using a particle filter was proposed by Egarter et al.
[24]. In the remainder this NILM algorithm will be used to evaluate the effectiveness of
the load hiding systems.
To gain high success rates of decomposing load profiles necessitates a high sampling

rate at the current state of research. [40] claims that, within the near future, use of
less fine-grained data, e.g., intervals of 15 min., will allow data readers to predict the
operation of certain home appliances. [73] argues that when using long sampling periods
like 15 min., fast switching appliances can no longer be recognized, but measuring active
and reactive power helps in identifying certain appliances once again.
Note that NILM algorithms do have useful applications, such as informing electricity

customers about their usage patterns, which may help conserve energy as demonstrated
in [51]. However, analyzing a user’s electric load profile to deduce the appliances that
are being used can be done remotely without the knowledge of the houshold’s residents
[74].

1.6 Load Hiding Systems
The idea behind a load hiding system is to obfuscate the fine-grained energy consumption
data measured by the smart meter. In principle net demand, which is the demand of all
appliances except the load hiding system, could be modified by hiding, obfuscating or
smoothing, as illustrated in Figure 1.3 [40].
The state-of-the-art technique of a load hiding system is BLH. It uses a rechargeable

battery that gets charged and discharged at strategic times, attempting the modification
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Figure 1.3: Different load shaping strategies as per [40]

of net demand. As a new approach this work proposes a LLH system using a variable
load such as a domestic hot water heater. Conversely to BLH, that allows to increase
but also decrease the energy consumption that is measured by the smart meter, a LLH
system only allows to increase the energy consumption.

1.7 Time-Based Pricing
Time-based pricing is the idea of moving from time-invariant electricity prices to prices
that are more closely tied to the variation in the marginal costs of generating electricity
[64] as an incentive for the end-users to adjust their energy consumption to the supply-
dependent ressources.
As [64] depicts, the marginal costs of electricity vary widely over time because of both

varying demand and the uneconomical nature of electricity storage in most applications.
Base load capacity with high construction costs and low marginal operating costs, inter-
mediate capacity with lower construction costs and higher marginal operating costs and
peaking capacity with the lowest construction costs and the highest marginal operating
costs must always balance supply and demand. As long as demand is low it is cleared
with base load capacity, but as demand rises, generating capacity with higher marginal
operating costs are called upon to meet the condition supply equals demand.
If customers face retail prices that reflect these variations, they will consume less

during peak periods and more during off-peak periods [64]. This possibility is one reason
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for introducing the smart meter as a gentle modification of consumption.
There are different approaches for time-based pricing, including real-time, or dynamic

pricing, whereby prices may change on an hourly basis, and critical peak pricing, whereby
prices increase only during certain peak periods. The time-of-use principle sets specific
electricity prices during a specific time period in advance. For further information see
[25].
Under such pricing schemes battery-based load hiding may be beneficial as it usually

moves the end-user’s peak load towards off-peak periods.
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2.1 Introduction
The idea behind BLH is to obfuscate the actual household’s energy demand. Therefore
a battery with an intelligent control system must be installed between the smart meter
and the internal wiring without the necessity of any further modifications on the smart
grid side or the smart meter itself. Moreover, as explained in [40], BLH can co-exist with
other privacy protection solutions which may increase the effectiveness of each solution.
Figure 2.1 illustrates a BLH system with arrows indicating possible load flows for pure
customers without any power generation units, based on the work of Kalogridis et al.
[40].

Utility

Smart 
Meter

Battery

Intelligent control system

Electrical appliances

Metered load

Net demand

Figure 2.1: Schematic representation of BLH based on [40]

The aim is to hide or obscure load signatures so that appliance usage events and usage
patterns cannot be detected [40]. To reach a level of perfectly hidden load signatures,
the customer’s load would have to be zero all the time, so that both the average and
changes in energy consumption are hidden. In case of customers with at least one
appliance and without electricity generation units and due to physical limitations of the
battery’s capacity it would be impossible to reach a zero energy consumption level at all
times. The second-best solution for providing privacy would be to maintain a constant
consumption which would only leak the average. Such an idealized BLH system without
any contraints is diagramed in Figure 2.2.
In practise there are physical limitations of batteries such as a maximum charging
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Figure 2.2: Idealized battery-based load hiding based on [70]

and discharging rate or the limited capacity of the battery. Taking high battery prices
and limited battery capacity into account, providing the second best solution would be
inefficient. This leads to an optimization problem minimizing the leakage of information
using feasible battery sizes. Therefore several algorithms have already been studied as
mentioned in [74].
The aim of BLH algorithms is to minimize the residence’s leak of information by

charging or rather discharging a battery at strategic times [74]. This allows the removal of
one part of the basic information needed by NILM algorithms to identify appliances, thus
thwarting further analysis [74]. BLH algorithms have to cope with physical limitations
of the battery system and with varying consumption patterns in net demand [74].
The basic strategy of existing BLH algorithms is to flatten the load profile to a constant

value as often as possible [74]. The algorithms are currently designed to mask short-
term energy usage patterns and not to mask longer periods of inactivity by emulating
appliances.

2.2 Algorithms
2.2.1 Best Effort Algorithm
The first proposal of a BLH algorithm was the so-called Best Effort (BE) algorithm,
suggested by Kalogridis et al. [40] in 2010. The BE algorithm aims to hold the external
load measured by the smart meter constant whenever possible. If net demand changes,
the battery should make up the difference.
The explanations of the following 4 cases are based on [74]. In [40] only the latter two

cases are described precisely.
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• Case 1: the battery’s State of Charge (SOC) gets too low.

• Case 2: SOC gets too high.

• Case 3: the charge rate is too weak.

• Case 4: the discharge rate is too weak.

The best effort algorithm always attempts to maintain the metered load that is trans-
mitted to the utility at a constant level for as long as possible. If the battery should
discharge to hold the metered load constant but the SOC is too low, the battery can’t
provide more energy to maintain a constant power level, thus the metered load will
increase to the level of net demand. Such a case is illustrated in Figure 2.3.

Electric 
power

Time

Metered load

Battery status: discharged t<t0: battery is discharging
t=t0: battery is discharged
t>t0: battery remains discharged

Net Demand

Battery power

max. charging rate

0

max. discharging rate

t0

Figure 2.3: BE algorithm: SOC is too low, the battery idles

Note that the authors in [74] argue the opposite, or that the metered load will decrease.
One of the authors, Mr. Weining Yang, confirmed their fault in their paper by mail.
If the opposite happens, maintaing the load would overcharge the battery, the metered

load will decrease to the level of net demand and again the battery idles.
Furthermore there are two situations regarding battery rate constraints where the

BLH system cannot provide enough power to maintain a constant metered load, where
the first one is plotted in Figure 2.4.

Electric 
power

Time

Metered load

Battery‘s charge rate is too weak

t0

t<t0: battery is charging
t=t0: battery can’t provide enough power
t>t0: charging with max. power

Net Demand

Battery power

max. charging rate

0

max. discharging rate

Figure 2.4: BE algorithm: if the charge rate limits the system the metered load will
decrease
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If net demand decreases by an amount that cannot be covered by charging the battery,
the metered load will decrease by the difference that cannot be hidden. The battery will
be charged at its maximum rate until it reaches the upper level of SOC.
Again the opposite happens if the increase in net demand cannot be covered by the

battery system. The metered load will increase as the discharging rate of the battery
is too low, as plotted in Figure 2.5. Similarly the battery will be discharged at its
maximum rate until the battery’s SOC gets too low.

Electric 
power

Time

Metered load

Battery‘s discharge rate is too weak
t<t0: battery is discharging
t=t0: battery can’t provide enough power
t>t0: discharging with max. power

Net Demand

Battery power

max. charging rate

0

max. discharging rate

t0

Figure 2.5: BE algorithm: if the discharge rate limits the system, the metered load will
increase

Yang et al. [74] observed that this algorithm can leak information as plotted in Fig-
ure 2.6.

Electric 
power

Time

Metered load

Battery status: discharged t<t0: battery is discharging
t=t0: battery is discharged
t>t0: battery remains discharged

Net Demand

Battery power

max. charging rate

0

max. discharging rate

t0

Change in net demand is visible

Electric 
power

Time

Metered load

Battery‘s discharge rate is too weak

t<t0: battery is discharging
t=t0: battery can’t provide enough power
t>t0: discharging with max. power

Net Demand

Battery power

max. charging rate

0

max. discharging rate

t0

Change in net demand is visible

Figure 2.6: Information leakage using best effort algorithm

If the metered load increases, it can whether be case 1 (upper SOC limit) or case 4
(exceeding max. charging current) [74]. In this situation the metered load equals net
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demand (case 1) or net demand minus the maximum discharging rate of the battery
(case 4) [74]. Imagine the observation of the load profile changes of the metered load. If
two consecutive changes having the same direction occur, e.g. (up, up), the possibility
is high that these changes were caused by the same constraint, either case 1 or 4 [74].
Hence the second change most likely reveals the increase in net demand which may be
useful for decomposing the profile [74]. Certainly, BE can also leak information if the
metered load decreases.

2.2.2 Stochastic Algorithm
In 2011, a stochastic battery policy was proposed by Varodayan and Khisti in [27]. The
authors suggest that it would be possible to minimize information leakage compared
to BE algorithm. This new abstract algorithm considers a binary-load binary-battery
model in which net demand and the metered load are independent and identically dis-
tributed (iid). Using such a model means that the appliances (binary load) consume
either 1 or 0 units of power at a discrete time or rather the utility provides 1 or 0 units
of power. Moreover, the battery (binary battery) has two states: 1 = charged and 0
= discharged. For example, if the battery is fully discharged and net demand is 1, the
utility must provide 1 and the battery’s SOC remains low. If the appliances consume 0
either the battery can be charged (utility = 1) or remains discharged (utility = 0). The
decision whether to load the battery or to stay at the same level bases on stochastic
probabilities [27].
With regards to this algorithm, the work does not go into further details due to the

limitation of this simple binary-load binary-battery model. For proper simulation results
such a model requires further enhancements. Furthermore, compared to that compared
to more advanced algorithms, particularly the stepping framework, the benefits of this
algorithm are not readily apparent.

2.2.3 Non-Intrusive Load Leveling
McLaughlin et al. proposed the so-called Non-Intrusive Load Leveling (NILL) algorithm
[70]. NILL tries to maintain a constant target load similar to the BE algorithm using
a more complex system differing three states. The NILL approach attempts to provide
privacy for all appliances under all battery states [70], even if the battery’s SOC is too
low or to high.
The following explanations of the NILL algorithm are based on [70] and [74]:
NILL algorithm distinguishes between the following three states:

• Stable State: NILL will always attempt to set the metered load to this state, which
is the forecasted average load; if the battery’s charge or discharge rate is too weak
to maintain a constant level, the metered load will change and the battery be used
with its maximum power (remaining in stable state)

• High recovery state: occurs if the battery’s SOC is insufficient to hold the metered
load on a constant level under light net demand (upper SOC limit)
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• Low recovery state: similar, with battery’s SOC being too low to maintain the
metered load under heavy net demand

The algorithm maintains a stable state until either a high or a low recovery state
occur. If the system returns to a stable state from either a high or a low recovery state,
the new stable state level is updated to the exponential weighted moving average of the
most recent stable state und the average load during the last high or low recovery state
(α ·average+(1−α) · last stable state) where α is chosen to be 0.5 in experiments [70]).
If the battery reaches the upper limitation of SOC, it changes from a stable state

to a high recovery state and sets the new metered load just below the most recent net
demand to discharge the battery slightly, e.g. a discharge current of 0.5 A. The system
remains at this high recovery state level as long as no new overloading situation occurs
or rather one of the following two cases: if net demand is 5 A higher than the current
level of high recovery state, the system returns to a stable state with a new level based
on the weighted average. Also if the battery is discharged to 50 % of its usable capacity,
it returns to a new stable state (note that the usable capacity may be between 20 % and
90 % of the battery’s total capacity, so 50 % would be 0.5 · 20 % + 0.5 · 90 % = 55 % of
total capacity). Both cases are illustrated in Figure 2.7.
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state

New steady 
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New steady 
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Battery status ≤ 50 %

Figure 2.7: NILL algorithm: situations under a high recovery state

If the battery’s SOC gets too low, the system switches to a low recovery state where
the metered load is set to the maximum charging rate of the battery, hence a low recovery
state can mask events with amperages less or equal to this maximum rate. A low recovery
state attempts to gradually recharge the battery. In order to make this understandable,
the authors of NILL assume that the maximum charge rate of the battery is higher
than the expectable load of net demand. In the case when the battery is in danger of
discharging once again while maintaining a constant metered load, the battery idles and
the metered load is set to net demand. The system remains in a low recovery state until
the SOC reaches 80 %.
As with BE algorithm, Yang et al. [74] observed that NILL algorithm can leak infor-

mation in the stable state if the battery’s charge or discharge rate is too low, and in a
low recovery state if net demand exceeds the maximum charging rate. The latter case
is illustrated in Figure 2.8.
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Figure 2.8: Information leakage using NILL algorithm

With regards to the NILM algorithm, identifying this information leakage is tricky as
it necessitates the prediction of the system’s state. Referring to [74] this may be feasible
as the stable state is maintained for an extended period of time and e.g. sustained peak
periods in net demand will cause the system to enter a low recovery state. It would be
hard to identify if the metered load varies because the system is in a low recovery state
and net demand is too high or because it is limited by the maximum current rating in
a stable state.

2.2.4 Stepping Framework
Finally, Yang et al. [74] proposed a new framework for BLH algorithms which they call
Stepping Framework (SF). This algorithm aims to coarse-grain the value dimension of
the metered load by quantizing it to a step function, hence the name [74].
Based on [74] SF makes the metered load to be integer multiples of a constant value,

chosen on the battery’s parameters. To specify it, the constant value is the minimum of
the maximum of the allowed charging and discharging rate. Therefore for any possible
net demand there exists a multiple of this constant satisfying the battery constraints.
For each level of net demand one can choose either the level just higher than net demand,
which will charge the battery, or the level just lower than net demand which will discharge
the battery. If the battery’s SOC gets too high then the system chooses the lower level
and the reverse when the battery’s state gets too low.
During normal operation the decision of whether to choose the upper or lower level is

task of the SF. Yang et al. consider the following algorithms:

• Lazy Stepping 1 : keep the metered load constant if possible, otherwise if the
battery’s usable capacity is below half, charge the battery by choosing the higher
level and discharge it otherwise.

• Lazy Stepping 2 : keep the metered load constant if possible, otherwise randomly
choose the upper or rather the lower level.
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• Lazy Charging: keep the charging state constant if possible (until the SOC is too
high or low), otherwise change it.

• Random Charging: randomly choose the charging state whereas the expectation
of the randomizing function should be adjusted according to the actual SOC (e.g.
the probability for choosing the lower level to discharge the battery equals to:
actual SOC−min. SOC
max. SOC−min. SOC ).

After applying the SF, the uncertainty of predicting net demand is two times the
constant value that is the charging/discharging rate (which can be determined by ob-
servers). This is plotted in Figure 2.9. Note that Lazy Charging is more predictable as
the actual charging state divides the possible range into half.
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Uncertainty of the 
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Figure 2.9: The uncertainty of predicting net demand using stepping framework

One strength of SF is that one always obtains some degree of privacy protection.
Predicting the charging state halves the possible range of net demand. Highly accurate
load change detection due to information leakage, as it was demonstrated for BE and
NILL under certain circumstances, is impossible for SF.
The authors conclude that the Lazy Stepping 2 algorithm in particular significantly

and consistently outperforms other algorithms. For this reason this work bases the
application of the stepping framework on Lazy Stepping 2 using the acronym SF.

2.3 Battery Configuration
The battery is the central element of a BLH system. Referring to [21] the battery
requirements can be compared with batteries used in combination with photovoltaic
systems as they experience deep cycling and are sometimes left in low states of charge
for extended periods of time.
Table 2.1 compares some typical battery types. Considering our battery setup, a long

cycle life, a high round trip efficiency and a low price are the most important parameters.
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Lio-ion as well as LiPo provide the highest round trip efficiency, but a cycle life that
does not outperform lead acid batteries significantly. Regarding cycle life, the high
temperature molten salt Zero Emission Battery Research Activities (ZEBRA) battery
provides the best results.

Lead acid Li-ion LiPo NiMH ZEBRA
Energy density in Wh/l 70 200-730 300 170-240 160
Specific power in W/kg 75-412 250-1500 100-315 150-250 150

Round trip efficiency in % 85 >95 >95 65 91
Cycle life >200 >400 >400 >300 >3000

Table 2.1: Battery type comparison [1], [2], [5], [6], [10], [11], [43], [46], [52], [54]

A study in 2011 [28] suggests that lead acid and lithium-ion batteries in particular are
the most qualified decentralized storage units in dwellings. Lithium-ion batteries cost
approximately 750 €/kWh [28] but it is expected that the costs for stationary batteries
decrease to 250 €/kWh within several years due to further improvements and economies
of scale [28]. Lead acid batteries cost approximately 100-250 €/kWh and it is expected
that the costs will reduce to 80 €/kWh [28], but compared to other types it offers a
moderate efficiency with high maintenance requirements and a long lifetime [21].
Neovoltaic AG, a company seated in Hartberg in Styria, has developed their own

storage unit ”neostore compact”. It is used in combination with a photovoltaic system
providing a capacity of 5 kWh using lithium-iron phosphate batteries (a kind of lithium-
ion batteries). These batteries have a life cycle of over 6000 and a Depth of Discharge
(DOD)1 of 80 % with an output power of 3500W or rather a short-term output power of
10500W [8]. Unfortunately this system is not feasible for BLH systems as it necessitates
a power generation unit and does not offer the possibility of modifying the charger
according to the BLH algorithm which was confirmed by the CEO of neovoltaic AG,
Mr. Werner Posch.
Another Styrian company, Everto Photovoltaik-Energie KG, seated in Leibnitz-Leitring,

uses storage units developed by VARTA Storage using the same type of lithium-iron
photsphate batteries with a capacity between 3.7 and 13.8 kWh, a cycle life of 6000 and
a DOD of 90% with a single phase output power of 1.33 kW [9].
Inspired by McLaughlin et al. [70] this work assumes the use of deep-cycle lead acid

batteries.
Common starting lead acid batteries are designed for a low DOD of a just a few %

of the battery’s capacity. Deep-cycle lead acid batteries are designed for DODs of up to
80% with a cycle life of several thousand [21]. Modifications to the electrolyte such as
Absorptive Glass Matting include the ability to be deeply discharged without affecting
lifetime, allowing high charge/discharge rates and an extended temperature range for
operation [21]. Such a modification is accompanied by higher intial costs and the need

1DOD: Depth of Discharge, which specifies the battery’s usable capacity in % [21]
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for more carefully controlled charging regimes [21]. These improvements are very helpful
when implementing a BLH system at home.
For all battery types, specific charging strategies exist to maintain an optimum capac-

ity during the lifecycle. For lead acid batteries one possible strategy is the iu-charging
method, which loads the battery with a constant current up to 80 % and with a con-
stant voltage above this level until the battery is fully charged. Such a procedure is not
feasible for BLH systems as they necessitate a particular load at a particular time.
One of the limitations that necessitates the use of specific BLH algorithms to maintain

some degree of privacy is the charging/discharging rate of the battery system. Setting
this rate affects the rated battery capacity, higher currents reduce the capacity and
furthermore it decreases the battery’s lifetime due to a higher temperature [21]. [70]
assumes the use of ten 50 Ah batteries (500 Ah in total) with a maximum charging or
rather discharging current of 60 A, chosen because of a specific solar charge controller
with this current setting. 60 A for a 500 Ah battery system means that the current
is approximately 0.12 of the rated capacity: the notation 0.12C (or rather the inverse
C8.33) stands for 0.12 h−1 · 500 Ah = 500Ah

8.3̇ h = 60 A.
While the charging current for small lead-acid batteries should be set between 0.1C and

0.3C (e.g. 0.3C: 600 mA for a 2 Ah type), larger batteries should generally be charged
at lower current ratings [44]. [72] recommends a current less than 0.1C to avoid the
battery’s voltage from exceeding the level where the gassing process increases severely.
Doubtless higher current ratings reduce the usable capacity, [34] states that even with
currents up to 8C (e.g. 300 A for a 37 Ah battery) they could not find evidence that
fast-charging has detrimental effects on cycle life of a battery, as temperature didn’t
increase dramatically. The manual of the Xtender inverter/charger-combination2 of
Studer Innotec recommends charging currents between 0.1C and 0.2C.
An overview of deep cycle batteries such as Multipower MP100-12C (100 Ah, 12 V)3,

Ritar RA12-260D (260 Ah, 12 V)4 and Ultracell UCG 120-12 (120 Ah, 12 V)5 demon-
strates that all of these batteries support charging current rates of 0.3C. The maximum
5 s short-time discharging currents are 12C for the 120 Ah battery and 10C for the
260 Ah.
Aside from the maximum current rating, another important parameter when dimen-

sioning the battery setup is the capacity itself. The choice of the battery’s capacity is
connected with two important effects: Firstly, a greater capacity allows higher charg-
ing/discharging currents. Secondly the time until the battery gets fully charged or dis-
charged increases with capacity, which results in a longer design life as one charge/discharge
cycle describes a longer time interval. Conversely, the required space and expenses in-

2Xtender inverter/charger combination of Studer Innotec as per http://www.studer-inno.com/upload/
temp/Benutzerhandbuch%20Xtender%20Serie.pdf, accessed on 29th of November 2013

3Multipower MP100-12C: http://www.akkusolar.de/data/datenblatt_0000038_1.pdf, accessed on 7th
of November 2013

4Ritar RA12-260D: http://www.maurelma.ch/Produkte/Batterien/Hausmarke/Datenblatt_RA12_
260D_260Ah.pdf, accessed on 7th of November 2013

5Ultracell UCG 120-12: http://www.blei-akkus.com/Multipower-MP100-12C-12V-100Ah-Blei-Akku-
Zyklentyp, accessed on 7th of November 2013
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crease as the battery’s capacity increase.

2.4 Implementation
Aside from simulating a BLH system, the implementation of a working system would be
of interest to get an idea if such a system would be practicable and feasible.
In the previous sections, the necessary components for building an elementary BLH

system were already discussed. The combination of a charger and an inverter with the
integrated DC-AC and AC-DC conversion must allow a power flow into both directions,
the battery stores the energy and the control system, which may be a PC, a Raspberry
PI, a µController like an Arduino etc. sets the actual charging/discharging current for
the inverter/charger-combination on the basis of the BLH algorithm.
Developing a BLH system requires several specifications to be satisfied. After design-

ing the system based on a harmonized system of the battery and the inverter/charger-
combination, must allow the realtime-adjustment of the battery’s current remotely.
Therefore, the control system necessitates some input parameters such as the actual SOC
of the battery and the battery’s voltage to calculate the charging or rather discharging
current based on the power level that was chosen by the BLH algorithm. Moreover, it
is essential to measure net demand.
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3.1 Introduction
Proposing an alternative load hiding system one could theoretically reach similar results
using fully controllable loads. The reason for considering a rather new approach beyond
BLH bases upon the high implementation and maintenance costs, but also the power
losses of the battery and the inverter/charger-combination when applying a BLH system.
The schematic of such a load-based load hiding system is demonstrated in Figure 3.1.

Utility

Smart 
Meter

Boiler

Control 
system

Electrical appliances

Metered load

Net demand

Figure 3.1: Schematic representation of LLH based on the BLH system in [40]

An interruptible load such as that of an electric water boiler would allow to defer the
power consumption of heating water. Reproduced from Figure 2.2, Figure 3.2 shows a
constant metered load using LLH instead of BLH. Note that LLH can only increase but
not decrease the level of the metered load compared to the corresponding net demand.
This is limited by the maximum power of the appliance used as a variable load and
moreover by the necessary energy consumption of the device during a day.
Developing a LLH system profits by previous works of demand side managemant.

In [31] the authors attempt to develop a control strategy for demand side management of
electric boilers to smooth the aggregated household’s demand by improving the existing
ripple control in Switzerland. LLH would require similar engagement but on a much
smaller scale - namely a single household, a shorter interval of control and adjustments
beyond ON/OFF-time. As per [63] electric water heaters in EU-27 accounted for 8.7%
of total electricity consumption in 2009. In 2007, estimations show that in the EU-27
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Net Demand

Time

Electric 
power

Electric boiler

Time

Electric 
power +

Leveled load profile

Time

Electric 
power

Figure 3.2: Idealized load-based load hiding

about 119 million electric water heaters were installed, whereas 29 million units were
electric instantaneous and 90 million of those units were heaters with storage systems
as per [63]. This illustrates the widespread use of domestic electric boilers that could be
used as variable loads.

3.2 Algorithm
To the best of our knowledge there exists no LLH system/algorithm or similar privacy
preserving approach. The following algorithm is the first attempt of a load hiding system
using variable loads such as an electric hot water boiler. As the use of an electric boiler
must be based upon the customer’s needs, the algorithm must take this into account.
For this system a sampling interval of one second is assumed.
For the sake of simplicity, this work assumes a daily target energy consumption dis-

regarding the amount, temperature or time of use of the hot water as the boiler’s end
product. Taking these effects into account would require a dynamic model with further
assumptions like setting the temperature and the time and amount of using hot water.
A simple dynamic thermal model of a 150 l 2.2 kW boiler based on experiments can be
found in a paper proposed by Amann et al. [62]. The authors analyze possible savings
and the demand side management potential of electric boilers, but in their paper the
boiler can either be turned on with the maximum power or turned off with zero power
which distinguishes the use of the boiler compared to LLH. From a demand side man-
agement point of view there exist several other dynamic thermal models of electric water
heaters like in [31], [45], [50], [53] and [56]. As a first approach, a dynamic model does
not seem necessary as the consumed energy will be set in advance.
Two main targets of developing a LLH algorithm are the simple implementation and a
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high level of privacy protection. A novel implementation does not require any changes in
the houshold’s internal wiring and furthermore necessitates no extra measurements like
the actual level of net demand (demand apart from the variable load) which is necessary
in case of a BLH system.
The target model is a completely passive electric boiler without any knowledge of the

interal wiring, the appliances in use, net demand or the metered load. Without any data
of net demand, maintaining a constant metered load is impossible. Additionally, holding
a constant value like under BLH would necessitate some kind of forecast to fill the gap
between net demand and the constant load to still meet the targeted energy level at the
end of each day without leaking too much information. The basic idea of this proposal
is to overlay net demand by a probabilistic signal i.e. artificial noise which impedes the
detection of the appliance’s states. Figure 3.3 plots net demand that is overlayed by a
probabilistic load of the electric boiler.

Net Demand

Time

Electric 
power

Electric boiler

Time

Electric 
power +

Metered Load

Time

Electric 
power

Figure 3.3: Sketchy: net demand overlayed by artificial noise to obfuscate net demand

The basis of this artificial noise is a Probability Density Function (PDF) which de-
scribes the range and probability of the realizations. The realizations must lie within
the interval [0 Pmax] where Pmax is the maximum power of the variable load. In order
to meet the target energy consumption, the mean of the distribution function and the
comparable constant load must be balanced, e.g.: a daily energy target of 5 kWh can
be realized by a constant load of µset = 5000Wh

24h = 208.3̇ W but also by realizations of a
random variable X based on a PDF with the same mean. Figure 3.4 plots a signal of
1440 realizations which are helt constant for 60 s each. The dark grey line illustrates
the (true) mean of the signal. The underlying PDF is a beta distribution with α = 0.7,
β = 7.028 and Pmax = 2300W with an expectation of 208.3̇W . The corresponding his-
togram is plotted on the left. This concrete realization results in an energy consumption
of 5.1 kWh.
In this paper both a beta and a truncated normal distribution will be used. In addi-

tion to these two basic distributions, a modified beta distribution should test potential
privacy protection improvements. The reason for testing another distribution is the pre-
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Figure 3.4: Artificial noise using a beta distribution

processing of the NILM algorithm which uses filters such as applying a running median
filter prior to applying the actual algorithm. The higher the level of randomization of
the artificial noise is, the worse the effectivity of the filter should be.
Figure 3.5 plots 3 histograms for a specific parameter set with µset = 208.3̇W .
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Figure 3.5: Histograms of a beta, truncated normal and a modified beta distribution
with an expectation of 208.3 W

The left diagram shows a beta distribution, the center diagram the modified beta dis-
tribution and the right diagram the truncated normal distribution. The realizations with
the highest values accompany with the modified beta distribution with a few outliers.
Furthermore, the beta distribution is steeper than the truncated normal distribution.

3.3 Load Configuration
In contrast to the battery system of BLH, the variable load of a LLH system must be
dimensioned in a need-based matter. In this work, the controllable load is assumed to be
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an electric boiler that must provide a specific temperature for a given volume of water.
Whereas an electric boiler using off-peak electricity heats the boiler up to a specific
temperature set by the customer, other types of electric boilers usually try to maintain
a given temperature level within a hysteresis. To implement a LLH system using an
electric boiler necessitates some knowledge about the customer’s behaviour and the hot
water demand.
Measurements in a flat share in Graz over a period of 76 days (16th of May until

31st of July 2013) showed an average energy consumption of 5 kWh per day for an
off-peak electric boiler with 150 l. At a rough estimate this should represent about
m = 5 kWh·3600 s

h

4.184 kW s
kgK

·(37−12)K = 172 kg of water of body temperature referring to the formula
Q = m · c ·∆T where Q is the energy content, m the mass, c the specific heat capacity
and ∆T the temperature difference. The inlet temperature of water is assumed to be
12°C. As per [71] 4 persons consume about 120-200 l of water of body temperature per
day for showering purposes only. To take a full bath [71] specifies a water demand of
150-180 l of body temperature per person.
This work assumes a target energy consumption of 2.5-10 kWh per day.

3.4 Implementation
Compared to a BLH system, the realization of a LLH system requires less effort. There
are two essential elements for implementing a LLH system: the electric boiler and an
electronic device with a simple control system that allows the adjustment of the voltage
level provided to the heating element of the eletric boiler as illustrated in Figure 3.6.
In Figure 3.6 the electronic device is a Phase-Fired Controller (PFC) which allows the
adjustment of the root mean square value of the voltage. Note that P ∼ U2 as P = U2

R

where R can assumed to be constant. In reality, the control system should set the voltage
based on the actual temperature, the set temperature and the LLH algorithm that will
be used.

PFC device

Control 
System

Utility

Electric 
boiler

LLH-System

Appliances

Figure 3.6: Model of a LLH system

Christoph Prokop 36



4 Evaluation Setup

4.1 Measuring Privacy Protection
In connection with the discussion of the simulation results, it is convenient to compare
the efficiency of different load hiding systems using some kind of quantity measuring
the efficacy of privacy protection. In similar works the authors favor different metrics
such as empirical and relative entropy in [40] and [70], relative feature mass in [70],
mutual information measures in [27] and [74] and finally cluster classification in [40].
While the idea of each measure is to quantify the information content, the approaches
are very different. This work focuses on metrics that can be easily calculated and do not
necessitate restrictive assumptions like the independence assumption of the time series.
The idea of the first metric, the relative feature mass, is to measure the efficacy of a

BLH algorithm to hide load changes as edge detection is the key information for many
NILM algorithms. The second metric is the Root-Mean-Square Error (RMSE) which
is well known for measuring the accuracy of forecasting models. In this work, RMSE
should quantify the deviation between the original time series of net demand and the
metered load profile after applying a load hiding system. The last quantity is the direct
comparison of the success rate of a NILM algorithm of net demand and the metered
load.

4.1.1 Relative Feature Mass
Inspired by [70] the first measure is Relative Feature Mass (RFM) which quantifies the
improvement of the number of changes in the load profile during a specified time window
of the time series after applying an algorithm compared to the original time series. The
following explanations regarding this measure are based upon [70]:
Imagine a load profile with 6 realizations p(t): 0, 10, 5, 15, 15, 30 for t0 up to t5. A

differentiation at lag 1 yields the changes in the load profile dp(t) = p(t)−p(t−1): NaN,
+10, -5, +10, 0, +15 for t0 up to t5. Samples with no changes, i.e. p(t)−p(t−1) = 0 are
no features and ignored for relative feature mass. The next step is to count the number
of non-zero changes in the load profile, this number is called the feature mass (FM).
For the given example feature mass is 4. For discrete sample sets with length ω D =
(dd0, dd1, ..., ddω) (time series of the changes in net demand) and E = (de0, de1, ..., deω)
(time series of the changes in the metered load) the feature mass for a given time windows
ω can be calculated as:
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FM(ω,D) =
ω∑
i=1

(ddi 6= 0)

FM(ω,E) =
ω∑
i=1

(dei 6= 0)

The relative feature mass for a time window of size ω is the ratio of the two feature
masses, in this application it is the quotient of the metered load divided by the original
time series of net demand:

RFM(ω,D,E) = FM(ω,E)
FM(ω,D)

whereas RFM(ω,D,E) ≥ 0. [70] uses a sliding time windows of size ω = 1 h. In this
work the time windows is set to ω = 86400 s, as a result RFM provides just a single
measure per day. As NILM algorithms most likely won’t analyze very small variations in
power consumption due to noise and measuring inaccuracy, this work assumes all load
changes below 5 W to be zero. The reason for choosing 5 W is based upon the load
with the lowest possible power consumption, which is a smartphone charger that only
consumes approximately 6W referring to tracebase database [68] that will be described
in section 4.2.1.
When applying a BLH system, a smaller RFM is better, as BLH tries to avoid load

changes. When developing a LLH system, a constant target load must not be the best
choice. As opposed to attempting to flatten the metered profile overlying disturbances
by randomly adjusting the variable load may be beneficial as it necessitates no measure-
ments of net demand. In this case a high RFM would suggest a better result.
RFM is signficant as both of the other measures, the RMSE and the F-measure fail to

describe the level of modifying load changes directly which is important as many NILM
algorithms are based on edge detection.

4.1.2 Root-Mean-Square Error
While the first metric measures the change in the number of load changes, the RMSE
aims to measure the deviation between the original time series and the time series after
applying a load hiding system. This should quantify the information loss of the actual
level of net demand, as opposed to the load changes in particular. The absolute value of
RMSE is not significant as it changes with the sample length and other characteristics
of the time series considered. Using this metric, only comparisons between different
algorithms using the same sample length, sampling interval and the same time series of
net demand is meaningful.
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RMSE =
√√√√ 1
n

n∑
i=1

(di − ei)2

di . . . discrete time series of net demand
ei . . . discrete time series of the metered load
n . . . sample length to be considered, i.e. 86400 s

4.1.3 F-Measure
The final metric is the success rate of decomposing the customer’s load profile using a
specific NILM algorithm by Egarter [24]. The NILM algorithm is not based on edge
detection but on state estimation. It estimates the appliance’s states with the help of
particle filtering where appliances are modeled as a HMM. The algorithm chooses the
most likely combination of appliances that are turned ON for each one of the 86400
samples per day. For a higher success rate only sampling intervals of one second will be
applied, and furthermore a simplified load profile using only 7 appliances will be used.
The possible decisions of the NILM algorithm are listed in Table 4.1. When observing a

specific sample, the head line describes the actual state of the appliance (ON or OFF) and
the first column the estimated state using the NILM algorithm. If the appliance is turned
ON and NILM detects it correctly as ON, the result is true-positive (shortened Tp),
whereas if the algorithm detects it as OFF the result would be false-negative Fn. This
ON/OFF-state estimation must be repeated for all the samples analyzed and moreover
for all of the appliances that are adopted. When analyzing one day of 86400 samples,
the aggregated Tp can be interpreted as the number of times an appliance is correctly
detected as ON in our case. Fn-rate describes the number of times an appliance is
wrongly detected as OFF, Fp the number of times an appliance is wrongly detected as
ON and Tn characterizes the number of times an appliance is correctly detected as OFF.

Appliance is ON Appliance is OFF
NILM detects appliance as ON Tp Fp
NILM detects appliance as OFF Fn Tn

Table 4.1: Possible decisions of the NILM algorithm to detect the appliance’s state

The effectivity of the NILM algorithm can be described by 2 measures commonly
known in information retrieval: precision and recall. Precision is the positive predictive
value and defined as precision = Tp

Tp+Fp
. Recall is the sensitivity, hit rate or the true

positive rate and defined as recall = Tp

Tp+Fn
. Use of only one of these measures does not

necessarily produce a meaningful result. Imagine a load profile of 1 appliance with 10
measurements where the appliance is turned ON for the first half of the samples and is
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OFF for the second half. If the NILM algorithm decides that the appliance is always
turned ON (Tp = 5, Fn = 0, Fp = 5) then the recall is 5

5+0 = 1 and the precision
5

5+5 = 0.5. For this case the measure recall does not seem very promising. Conversely, if
the NILM algorithm detects the readings on the interval [2, 5] to be ON (Tp = 4, Fn = 1,
Fp = 0), recall is 4

4+1 = 0.8 and precision is 4
4+0 = 1. These examples demonstrate

that, as an exclusive metric, neither the precision nor the recall are significant values
in describing the efficiency of the algorithm. One approach to solving this problem is
to combine these measures into one measure, as is true with the so-called F-measure,
which is defined as the harmonic mean of precision and recall:

F = 2 · precision · recall
precision+ recall

As the NILM algorithm aims to detect more than just one device, the precision,
or rather the recall, are derived for every appliance using 86400 samples. Hence each
appliance includes two measures per day. Subsequently they are averaged over all devices
to get the total precision and recall rate to finally calculate the total F-measure.

4.2 Data Setup
4.2.1 Database
The following databases concerning the load profiles for a household’s demand have been
considered for the evaluation (all listed databases are freely available):

• http://www.tracebase.org/ : Tracebase [68] is a dataset provided by Technische
Universität Darmstadt. It includes 43 types of devices such as refrigerators, TVs
or WiFi routers with one or several appliances for each type with a total of more
than 1800 traces (accessed on 28th of Oct. 2013). Such a trace includes a 24 h load
profile measurement of active power using a sampling interval of one second or up
to four seconds, but note that sometimes the sampling frequency varies within the
same trace.

• http://redd.csail.mit.edu: The American REDD dataset in [75] is provided by Z.
Kolter and M. Johnson and can be split into two parts: The high frequency part
contains one voltage and two current measurements for 2 houses (accessed on
28th of October) recorded with a sampling frequency of 15 kHz. Due to the high
frequency readings, the authors use a specific compression system to reduce the
necessary memory capacity. The second part of the REDD database are low fre-
quency apparent power measurements based on a sampling rate of approximately
one second for a total of 6 houses with different device setups for several days each
(accessed on 28th of October). The apparent power measurements are divided
into up to 24 channels with individual circuit measurements such as lighting, re-
frigerator and another 2 extra channels for the whole house due to the split-phase
electric power system.
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• http://ampds.org/ : The AMPds dataset is provided by S. Makonin and include
recordings of a single household in Canada for an entire year from April 2012 until
March 2013. The data records one minute read intervals measuring inter alia real,
reactive and apparent power and energy. The recordings regarding electricity are
split into 19 sub-meters and one meter for the whole house. Due to unmetered
loads, the sum of all 19 sub-meters differ from the readings from the whole house.
For the accompanying paper see [69].

• http://nilm.cmubi.org/ : BLUED [16] is a electricity disaggregation dataset pro-
vided by INFERLab, a group at Carnegie Mellon University. The dataset consists
of a voltage and two current measurements (two active wires) for a single-family
residence using approximately 50 appliances in the United States over the course
of a week, sampled at 12 kHz (accessed on 21st of Feb. 2014). The included csv-
files contain the current and voltage measurements, the included mat-files contain
active and reactive power data.

• http://traces.cs.umass.edu/ : The UMass Smart* Home and the UMass Smart* Mi-
crogrid datasets [17] are provided by the Laboratory for Advanced System Software
at the University of Massachusetts. The Smart* Home dataset includes a variety of
traces of 3 homes in the United States. For example the measurements of home C
contain aggregated electrical data (active power, sampling interval of one second),
environmental data (temperature, humidity, windspeed, etc., sampling interval of
60 s) and power generation data from a battery system, three solar panels and two
micro wind turbines (sampling interval of 5 s) over a period of approximately 3
months. Home A is the most deeply instrumented home with motion sensor data,
electricity data of each circuit, heating sensors, etc. The Smart* Microgrid dataset
includes electrical active power data from over 400 homes in the United States over
the course of a day, sampled every 60 s.

BLH systems use some kind of power electronics to connect the battery with the
internal wiring of the customer’s house. As the Austrian electricity bills of private
customers are usually based on active energy, power electronics such as inverters of
photovoltaic systems are commonly optimized for providing active power to the electric
grid. For simplicity’s sake this work assumes that the BLH system is only capable in
providing active power. In addition, according to the E-Control ordinance [30] smart
meters must only be able to provide active power measurements. Hence databases used
in this work should provide active power data. Whereas tracebase, AMPds, BLUED and
the UMass Smart* databases provide these active power readings, the REDD dataset
would necessitate further calculations to evaluate active power using the high frequency
measurements of the current and voltage. The assumption of using active power also
satisfies the use of a LLH system as the controllable load most likely will be an electric
heating element which is a resistive load that only consumes active power.
The dataset used in this work is the one provided by tracebase. It offers a high

sampling frequency and active power data that allows a perfect decomposition of the
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generated load profile. Furthermore, tracebase offers readings of devices that are com-
monly used in Europe, which may influence the shape of the load profile compared to
American devices. The AMPds, BLUED, UMass Smart* and REDD databases won’t
be considered in this work.
In order to analyze the possible savings incurred through using a BLH system under

a time-based pricing scheme, some price information must be incorporated. Assuming
dynamic pricing with hourly prices, i.e. 24 electricity prices a day the data used are
provided by EXAA [3], the Energy Exchange Austria. These prices are wholesale prices
of the control areas in Austria and Germany.

4.2.2 Data Preparation
Prior to using the data provided by these databases, a verification of the data should
be mandatory. The sampling interval of the tracebase data varies from one second to
several seconds within one dataset, which necessitates the interpolation as further calcu-
lations will use a one-second sampling interval. Luckily each measurement comes with an
accompanying timestamp which allows the calculation of time between measurements.
Assuming that each value at a specific time equals the average power since the last
reading, the missing values can be interpolated by using the next measurement: e.g. a
time series of NAN, 1, 2, NAN, 3, NAN, NAN, 4, NAN results in 1, 1, 2, 3, 3, 4, 4,
4, NAN. Missing boundary values are filled by using an extrapolation process where the
nearest value will be used to fill the data. In doing so, the time series above yields in
1, 1, 2, 3, 3, 4, 4, 4, 4. This data preparation steps must be applied to all devices of
interest in order to finally sum up all time series to a single aggregated load profile.
For further calculations the 15 minute sampling interval may also be of interest. Using

the load profile from above, the 15 minute readings can be calculated by averaging (no
moving average) 15min·60 s

min
= 900s each. This arithmetic averaging process produces

a new time series with the same amount of energy. For example a time series of 1, 3, 2,
4, 5, 6 would result in 2, 2, 3, 3, 5.5, 5.5 by averaging 2 seconds each.
A similar problem of missing information comes along with the EXAA price data

from 1.10.2012 until 30.9.2013. Due to the clock change, hour 3 on 31st of March 2013
is missing. To fill the gap, the average of the previous and the subsequent hour is used.
As per [4] on 13th of November 2012 the entire day is missing because of a breakdown of
the electronic data processing center on the trading day, the 12th of November. These
gaps are filled by hourly averaging the data of the previous and the following day.

4.2.3 Load Profile
Using the tracebase data necessitates the aggregation of appliances to simulate a house-
hold. This work distinguishes between two load profiles: a simple one for applying the
NILM algorithm using only 7 devices, and the aggregation of 21 devices as listed in
Table 4.2 where the devices for building the simplified load profile are indicated in bold.
In order to get a small variety of load profiles, 6 days will be analyzed. Devices that

offer recordings over such a period were preferred, nevertheless the smartphone charger
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Device Labeling Database Dates for Day 1 - Day 6
Charger-Smartphone dev_D32328 6 times 20.11.2011

Coffeemaker dev_D369E0 15.1.-20.1.2012
Cookingstove dev_D33097 17.12.-21.12., 25.12.2011

Digital TV receiver dev_D33097 3.12.-8.12.2011
Dishwasher dev_B7E6F4 18.1.-23.1.2012
Freezer dev_D36601 16.12.-17.12.2011, 20.1.-23.1.2012
Lamp 1 dev_11F01E 18.1.-22.1., 24.1.2012
Lamp 2 dev_72882E 10.5.-15.5.2012
Lamp 3 dev_C3E6D1 16.5.-20.5., 27.5.2012

Multimediacenter dev_B7E43D 3.12.-8.12.2011
PC-Desktop Desktop_Denis 1.1.-6.1.2012

Printer dev_D3230E 21.11., 23.11.-27.11.2011
Refrigerator dev_76C07F 11.6.-16.6.2012

Router dev_B1B603 3.12.-8.12.2011
Subwoofer dev_5534A4 13.1.-18.1.2012

Solar thermal system _5525DD 16.12.-17.12.2011, 20.1., 21.1., 23.1., 24.1.2012
Toaster dev_98ABD2 8.1.-9.1., 11.1.-14.1.2012
TV-LCD dev_B8121D 13.1.-18.1.2012

Washing machine dev_D31FFD 11.6.-12.6., 14.6.-15.6., 19.6., 21.6.2012
Water boiler _55151A 3 times 24.-25.1.2012
Water kettle dev_5AE2CA 1.2.-3.2., 5.2.-7.2.2012

Table 4.2: Device setup for building a load profile using tracebase [68], the devices used
to build a simplified load profile are indicated in bold

and the water boiler only offered 1 or rather 2 recorded days, so the data were reapplied
6 or rather 3 times.
The energy consumption of the aggregated simplified load profile adds up to 1194

kWh a year, for day 1 (365 times day 1). Considering all 6 days the extrapolated annual
energy consumption is 1131 kWh (60 times day 1 to 6 = 360 days, plus the days 1 to
5). Using 21 devices the energy consumption increases to 2228 kWh per year for day 1
and 2671 kWh for all 6 days. All of them are less than the average Austrian household’s
annual consumption of 3500 kWh, as per E-Control1. A consumption between 1800 and
3000 kWh usually represents a household of one or two persons.
Figure 4.1 plots the load profiles for 3 of the 6 days analyzed using 21 devices.
The figure illustrates that the daily load profiles differ distinctly. The upper diagram

shows day 1, the central diagram day 3 and the lower one day 6. Day 1 is characterized
by a couple of high peaks, a higher demand during noon and some smaller peaks that

1Average annual consumption as per E-Control, see http://www.e-control.at/de/konsumenten/
strom/strompreis/strompreis-monitor (accessed on 8th of November 2013)
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Figure 4.1: Load profiles using 21 devices for day 1, 3 and 6 based on data provided by
tracebase [68]

occur quite frequently. Day 3 is characterized by a load of more than 6 kW in the
afternoon and a higher demand during the evening hours. Day 6 is similar to day 1 but
less chaotic with a higher base load that is caused by the washing machine.
Aside from a small water boiler used for dishwashing purposes, an energy-intensive

electric boiler for supplying hot water for showering purposes is missing in both of the
load profiles. For testing a LLH system such an element is mandatory. Therefore another
appliance i.e. an electric boiler with a daily energy consumption between 2.5 kWh and
10 kWh will be additionally implemented for LLH system analysis.
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4.2.4 Dynamic Pricing
The dynamic prices used to analyze potential savings when installing a BLH system
base on averaging the hourly data provided by EXAA from 1st of October 2012 until
30th of September 2013. Figure 4.2 plots the prices used in this work.
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Figure 4.2: Dynamic electricity prices based on the EXAA spot market data [3]

4.3 Battery-Based Load Hiding
This section deals with the battery setup and the simulation model.

4.3.1 Battery Configuration
Inspired by the authors of the NILL algorithm [70] this work assumes the use of deep-
cycle lead acid batteries with a minimum SOC of 20% and a maximum SOC of 90%, i.e.
DOD is 70%.
The dimensioning of the battery for BLH algorithms depends on a variety of factors

such as the shape of the load profile, the variance of the power, the demanded degree
of privacy, the implemented algorithm etc. This work analyzes the following capacities:
10, 40, 70, 100, 120, 150, 200, 400 and 600 Ah.
The maximum charging and discharging current is assumed to be 0.3C, i.e. for a

100 Ah battery the maximum current is set to 30 A, which may reduce the usable ca-
pacity compared to the nominal capacity (e.g. 100 Ah) which is usually the 0.1C or 0.2C
capacity. This may be overvalued compared to commonly used load strategies, but in
using BLH algorithms the charging current most likely will not be held constant at 0.3C
for a longer period of time but instead vary between 0 and 0.3C.
To simulate the BLH model a battery model provided by the SimPowerSystems library

of Matlab is used. The following explanations of the battery model base on the descrip-
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tions of http://www.mathworks.de/de/help/physmod/sps/powersys/ref/battery.html, ac-
cessed on 2nd of December 2013:
The model necessitates at least 4 parameters: the battery type, the nominal voltage

that represents the end of the linear zone of the discharge characteristics, the rated
capacity which is the minimum effective capacity of the battery and the initial SOC.

Figure 4.3: Discharge characteristics of a 12 V, 170 Ah lead acid battery

All other parameters can be set by Matlab automatically, e.g. the maximum capac-
ity, fully charged voltage, nominal discharge current which is set to 0.2C automatically,
internal resistance, the extracted capacity until the voltage drops under the nominal
voltage and the voltage and capacity corresponding to the end of the exponential zone
of the discharge characteristics. In this work each of these parameters will be set auto-
matically. Figure 4.3 plots the discharge characteristics of a 12 V lead acid battery with
a rated capacity of 170 Ah.
Referring to Mathwork’s website, experimental validation of the model has shown a

maximum error of 5% for a SOC between 10% and 100%, a charging current between 0
and 2C and a discharging current between 0 and 5C. Note that the model is based on
several assumptions. For example it does not take temperature into account, there is
no memory effect and, most significantly, the battery’s capacity does not change with
the amplitude of current. This means that the effect of different currents changing
the battery’s capacity (like it is plotted in the lower diagram in Figure 4.3) won’t be
considered in the model which may restrict the validity of the simulation results.
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4.3.2 Simulation Model
We use Matlab 2013a in combination with the Simulink package and the SimPowerSys-
tems library to simulate a realistic battery model.
The essential part of this work is the simulation of a BLH system. The basic principle

of the model is illustrated in Figure 4.4. A inverter/charger-combination is connected
to the utility and charges or discharges the battery. The operational mode of the in-
verter/charger is controlled by an intelligent control system. The three components
battery, inverter/charger-combination and the control system form a BLH system.

Inverter/
Charger

Control 
System

Utility

Battery

BLH-System

Appliances

Figure 4.4: Simplified model of a BLH system

For simplification, this work assumes a purely resistive system considering active power
only which allows the use of a DC system instead of an AC system. Furthermore, the
inverter/charger-combination is idealized by two programmable current sources with
zero losses. All other elements are assumed to be ideal as well. The reason for using a
simulation model is the application of a realistic battery model that considers the actual
SOC of the battery. Figure 4.5 plots the Simulink model.
The powergui box (1) is required by the SimPowerSystems library with some basic

settings that must coincide with the Model Configuration Parameters of the Simulink
simulation. (2) is the realistic battery model of SimPowerSystems. The time delay of 1
step (3) is necessary to avoid algebraic loops. Furthermore, the settings of the control
system (4) for the following step depend on measurements of the current state, as a
logical consequence the delay is mandatory. The control system contains the algorithm
behind the BLH system and adjusts the level of the output currents i_1 and i_2 based
on the measurements of the battery’s voltage level, the SOC and the actual level of net
demand. The programmable current source (5) represents the DC-side (e.g. 12 V DC)
of the inverter/charger-combination of a BLH system, the current source (6) represents
the AC- or utility-side (e.g. 230 V AC), which is simplified by another 12 V DC system
in this simulation. If the output of the current source on the DC-side is positive, the
source acts as a generator and the battery will be charged, if the current is negative
the source acts as a load and the battery gets discharged. Therefore if the current
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Figure 4.5: Simulation model of a BLH system
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on the DC-side (5) is positive, the power flows from the utility to the battery. In the
following, the AC-side must act as a load on the secondary branch to consume this
energy. Basically i_1 = −i_2, but in contrast to the AC-side the voltage level on the
DC-side is not constant. To get the same power p(t) = u(t) · i(t) on both sides there
must be a correction factor considering that effect. Thus, disregarding the direction
of the current flow yields in i_1(t) = pnet_demand(t)

u(t−1) and i_2(t) = pnet_demand(t)
uutility(t) whereas

uutility = 12 V and u(t − 1) varies from approximately 10 V to 14 V depending on the
SOC. (7) represents the workspace import of net demand in W in a one-second time
series format. This input must be inverted as the household is represented as another
programmable current source (8) and it can only act as a load so that the current must
always be zero or below zero. Prior to controlling the current source the power (net
demand) must be converted to a current, thus the calculations in (9). (10) represents
the utility as a 12 V DC voltage source. Finally, the current measurements in (10) allow
the use of scopes and the export to the workspace. Several variables will be exported to
the workspace but for clarity reasons the To Workspace-blocks are hidden in Figure 4.5.
Upon beginning the simulation the system starts in stable state using NILL algorithm.

Using BE- or NILL algorithm the intial value of the metered load equals net demand,
whereas using the SF with Lazy Stepping 2 yields in an appropriate quantized intial
value.
The data produced by this Simulink simulation will be postprocessed for user-defined

diagrams and to calculate the three measures RFM, RMSE and the F-measure.

4.3.3 Assumptions
Summarizing the Evaluation Setup of BLH this experiment is based upon the following
assumptions:

• Load profile: using active power data provided by tracebase, assuming that the
each measurement is the average power since the last measurement, quantized in
1 W steps, analyzing 6 independent days in total.

• Price data: data provided by EXAA, with missing information filled by averaging,
the prices are the hourly means from 1st of October 2012 to 30th of September
2013.

• Simulation model of BLH: the DC simulation model uses a battery model provided
by SimPowerSystems library but all other devices are assumed to be ideal.

• RFM: for calculating the relative feature mass only load changes of 5 W or more
will be taken into account.

• F-measure: the F measure represents the effectivity of a specific NILM algorithm
[24].
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• 12 V Lead acid battery with an initial SOC of 55 %, the usable SOC is 20-90 % with
a max. charging and discharging current of 0.3C, all other battery’s parameter are
set by Matlab automatically.

• Initial states: NILL algorithm starts in stable state, BE- and NILL algorithm start
with metered load equals net demand.

• NILL algorithm: the measure for calculating the following stable state is α =
0.5, when switching from stable state to high recovery state the battery will be
discharged with 0.5 A, the algorithm changes from high recovery state to stable
state if the battery’s discharging current exceeds 5 A.

4.4 Load-based Load Hiding
This section addresses the load configuration, the algorithm setup and the simulation
model when applying a LLH system.

4.4.1 Load Configuration
The controllable load is assumed to be an electric boiler. For simplification this work
bases upon a fairly evenly distributed energy consumption of the electric boiler with a
given target energy level of 5 kWh over the day (annual energy demand increases by 1825
kWh) which is simply another appliance in the load profile using tracebase data. The
assumption of a target level yields in a constant energy consumption per day but not
a constant temperature. If the boiler’s temperature decreases dramatically, it may take
some time to reach a high temperature level again, whereas a conventional temperature
control would set the boiler’s power demand to its maximum level.
The assumption of a constant energy demand is more similar to an electric boiler using

off-peak electricity, however the target is not a given temperature but a specific energy
consumption. Inspired by the Austria Email AG this work is based upon data of the
electric heaters EWH-158-E and EWH-156-E with a volume of 150 l and a maximum
power of 1.6 kW (rounded down) or rather 2.3 kW. As per [71] the standby energy
consumption of these types are about 0.95 kWh per day, which means that 4.05 kWh
will be available for the heating process which may be a plausible hot water consumption
for a household of 2 persons.
This work also analyzes daily target energy consumptions of the electric boiler of 2.5,

7.5 and 10 kWh.

4.4.2 Noise Generation
In this paper a beta, a modified beta distribution and a truncated normal distribution
will be used. In order to test different distributions, the parameter setup α, β, µ, σ,
Pmax and the target energy consumption will be varied. Furthermore the time of holding
the boiler’s load constant is set between 1 and 120 s. Longer time frames will not be
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used as the NILM algorithm may derive the boiler’s load and hence net demand more
easily.
When applying the normal distribution, the expectation µ is set to µset = 208.3̇ W

for an energy target of 5 kWh. Due to the asymmetric truncation from 0 to Pmax the
actual mean would be higher than µset. Hence the expectation (of the common normal
distribution) is set to a smaller value and the expectation of the truncated distribution
will be derived. This iteration process is done until the deviation between the new
expectation and µset is below 10−5 W . Pmax ist set to 1600 or 2300 W and the standard
deviation σ to 300, 800, 1200 or 1600W.
The beta distribution is based upon the parameters α and β. Again Pmax is set to

1600 or 2300 W, α varies from 0.1 to 1.8 and β is derived by α and the expectation µ
that is set to µ = µset: β = α−α·µ

µ
.

The modified beta distribution sets α constant but varies µ randomly between 0 and
P for a random time frame with a maximum of one hour where randomization bases
on uniformly distributed pseudorandom integers. The PDF allows realizations in [0 P ]
where P is randomly set between Pmax

4 and P . If µ is set higher than µset the boiler
consumes more energy than it should. Therefore, when setting the following time frame
and µ the energy gap of the realizations compared to the constant load µset is analyzed. If
the gap exceeds ±0.5kWh the new expectation is limited to [0 µset) or rather (µset Pmax]
depending on whether it was too high or too low. There is a high probability that the
daily energy consumption differs from the target consumption but this gap shouldn’t be
too dramatic. The realized consumption lies in [4.29 7.8] kWh for a target energy of
5 kWh taking the worst case into account.

4.4.3 Simulation Model
The simulation model of a LLH system is based on several simplifications. This paper
uses not a dynamic model of the electric boiler but only the maximum power of the
boiler of 1600 or 2300 W and a daily target energy consumption between 2.5 and 10
kWh without considering any further losses or devices. Thus, a Simulink simulation
model is not necessary.

4.4.4 Assumptions
Summarizing the Evaluation Setup of LLH this paper is based upon the following as-
sumptions:

• Load profile: using active power data provided by tracebase, assuming that the
each measurement is the average power since the last measurement, quantized in
1 W steps, analyzing 6 independent days in total.

• Simulation model of LLH: no dynamic model, the modelling is solely based upon
a maximum power level and a target energy consumption.
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• F-measure: the F measure represents the effectivity of a specific NILM algorithm
[24].
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5 Results
This chapter presents the results of simulating the BLH and LLH systems. The most
important measure when analyzing the effectivity of privacy protection is the F-measure,
which describes the success rate of the NILM algorithm. Most likely the success rate of
such a NILM algorithm is below 100% even without applying a load hiding system, as,
for example, there may be situations when net demand could be realized by a variety of
combinations of appliances that are turned ON. Figure 5.1 plots the F-measure of the
original time series of net demand for the days 1-6 (simplified load profile), the dashed
black line illustrates the mean. As the F-measure is already at a level of approximately
50%, even without applying any kind of obfuscation system, this suggest that the high
sampling interval and the low number of appliances was chosen quite reasonably.
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Figure 5.1: F-measure of the original time series of net demand

5.1 Battery-Based Load Hiding
This section specifies the results when using a battery-based load hiding system. Besides
discussing different battery sizes this section compares the effectivity of increasing the
capacity with an increase of the current rating. Furthermore potential savings and the
availability of the components of such a system will be mentioned.

5.1.1 Net Demand vs. Metered Load
Figure 5.2 plots net demand, the metered load, the actual SOC and the charging/discharging
current for day 1 when using BE algorithm, a battery capacity of 120 Ah und a current
limit of 36 A.
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Figure 5.2: Results using BE algorithm for day 1 (C=120 Ah, 0.3C)
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BE algorithm tries to maintain a constant metered load as long as possible, i.e. until
the battery is limited by the maximum current or SOC. Due to the maximum current
rating, high peaks in net demand cannot be filtered out but only minimized by the
maximum discharging current of 36 A. Small variations can be minimized but with an
initial SOC of 55% the battery’s SOC reaches its maximum of 90% very fast. As the
SOC is at its maximum almost all the time BE algorithm suffers under a less effective
functionality. The bottom diagram shows the charging/discharging current which is
below 0 in situations where the battery gets discharged. The battery experiences the
highest peaks whenever high peaks in net demand occur. Compared to the small current
settings that emerge most of the time, periods where the battery suffers the maximum
current rating are short.
When simulating NILL algorithm instead of BE algorithm using the same parame-

ters leads to the metered load illustrated in Figure 5.3. In general the resulting load
profile looks very similar compared to BE algorithm, so does the SOC and the charg-
ing/discharging current, hence they are not plotted here. For example a small difference
between BE and NILL can be recognized at about 30000 s where the NILL algorithm
yields to a smaller metered load after recovering from a peak load in net demand.
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Figure 5.3: Metered load for NILL algorithm for day 1 (C=120 Ah, 0.3C)

Figure 5.4 plots the results when using SF. In this case net demand gets quantized
into steps that equal the battery’s charging or rather discharging current multiplied by
the voltage level (p(t) = u(t) · i(t)).
The initial value of the metered load cannot be quantized as the simulation model bases

on previous measurements at time (t − 1). When starting the model there is no data
available for (t−1), hence the initial value of the metered load is set to net demand. All
further samples of net demand can be realized by two levels of quantization (net demand
may also equal the quantization step, in that case the metered load is set to net demand).
The SF tries to maintain the same level as long as possible. In situations where it must
be changed, the choice whether to choose the upper or lower limit is set randomly as long
as no limitation regarding the SOC occurs. Therefore, the output of SF is probabilistic
which means that the metered load may differ from one computational run to another.
The average level of the SOC is lower compared to BE- or NILL algorithm, which means
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Figure 5.4: Results using the SF for day 1 (C=120 Ah, 0.3C)
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that the algorithm can work with a higher efficiency as the quanization steps can be
set randomly. Compared to BE or NILL, the battery experiences less maximum current
peaks but a higher average absolute value which may decrease the battery’s lifetime.
The next step is to increase the sampling interval from one second to 15 min. The

SF provides the metered load that is diagramed in Figure 5.5. Whereas net demand is
held constant for at least 15 min the sampling interval of the simulation model is still
set to one second. Clearly short-time peaks in net demand that occur when using a
one-second sampling interval diminishes when changing to 15 min. While net demand is
already less chaotic the BLH system is able to hide most of the load variations. At the
moment the SOC reaches the lower limit the metered load increases to the next higher
quantization level to recharge the battery. The opposite happens when the battery
reaches the upper level. Compared to the one-second data the battery’s SOC varies
more widely between the upper and the lower limit. The accompanying absolute value
of the charging or rather discharging current is much higher than using a one-second
resolution, but fortunately currents at their maximum rating are very rare.
There are 2 unexpected peaks between 40000 and 50000 s which are caused by the

simulation model. The reason for these short outliers is the randomized setting of the
quantization steps based on the actual current of net demand. While net demand in
terms of power is constant for at least 15 min, the battery’s current is not constant
because the voltage level of the battery changes. So a situation may occur where the
battery cannot maintain a given constant power level as the battery voltage changes
and cannot maintain the same power would outrun the current limit, therefore the
quantization step must be changed.
For example, the initial battery voltage has a level of 13 V and the quantization

steps 4 and 5 may be feasible for a specific level of net demand of 645 W (the max.
charging/discharging current is assumed to be 10 A, Pstep4 = 4 · 13 V · 10 A = 520W ,
Pstep5 = 5 · 13 V · 10 A = 650W ). Now assume that the SF chooses the 4th step, hence
the battery must provide the difference of 645W − 520W = 125W and gets discharged.
A discharge reduces the battery voltage, in this example it decreases to 12 V. Whereas
with 13 V the battery was able to provide 13V ·10A = 130W , now the maximum power
of the battery is 12 V · 10 A = 120 W . Thus quantization step 4 decreases from 520 W
to 480 W and step 5 from 650 W to 600 W. As net demand remains unchanged at 620
W the battery system cannot make up the difference of 645 W − 480 W = 165 W and
the quantization step must be changed to step 5 or 6. Now when choosing step 6, the
battery gets recharged again and the battery voltage increases, which may result in an
opposite reaction. Such unfortunate situations result in short peaks.
To minimize this problem (it cannot be eliminated as long as there is a current but not

a power rating) it would be possible to use a fixed voltage to calculate the quantization
steps instead of using the battery voltage. In order to avoid new problems, the fixed
voltage should be set to the minimum battery voltage that is allowed (and not its nominal
value as that raises new problems). This would reduce the size of the quantization steps
but also remove most of the short peaks that may occur, although their influence is
marginal.

Christoph Prokop 57



5 Results

0 1 2 3 4 5 6 7 8

x 10
4

0

20

40

60

80

100

Time in s

S
ta

te
 o

f c
ha

rg
e 

in
 %

0 1 2 3 4 5 6 7 8

x 10
4

−40

−20

0

20

40

Time in s

C
ha

rg
.(

+
)/

di
sc

ha
rg

.(
−

) 
cu

rr
en

t i
n 

A

0 1 2 3 4 5 6 7 8

x 10
4

0

1000

2000

3000

Time in s

N
et

 d
em

an
d 

in
 W

0 1 2 3 4 5 6 7 8

x 10
4

0

1000

2000

3000

Time in s

M
et

er
ed

 lo
ad

 in
 W

0 1 2 3 4 5 6 7 8

x 10
4

0

20

40

60

80

100

Time in s

S
ta

te
 o

f c
ha

rg
e 

in
 %

0 1 2 3 4 5 6 7 8

x 10
4

−40

−20

0

20

40

Time in s

C
ha

rg
.(

+
)/

di
sc

ha
rg

.(
−

) 
cu

rr
en

t i
n 

A

0 1 2 3 4 5 6 7 8

x 10
4

0

1000

2000

3000

Time in s

N
et

 d
em

an
d 

in
 W

0 1 2 3 4 5 6 7 8

x 10
4

0

1000

2000

3000

Time in s

M
et

er
ed

 lo
ad

 in
 W

Figure 5.5: Results using the SF for day 1 based on a sampling interval of 15 min.
(C=120 Ah, 0.3C)
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5.1.2 Battery Configuration
The previous section provided an overview of the output of a BLH system. In this
section the effect of changing the battery capacity will be analyzed. The capacity is set
to 10, 40, 70, 100, 120, 150, 200, 400 or 600 Ah.
Figure 5.6 plots net demand and the metered load under the SF for using a 40 Ah

and a 400 Ah battery.
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Figure 5.6: SF for day 1, using 40 Ah or rather 400 Ah (sampling interval: one second)

It is obvious that the level of distortion between net demand and the metered load
increases with a higher capacity. Hence the success rate of NILM should be worse when
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increasing the capacity. With a higher capacity comes increased quantization steps as
the step size is set to the maximum charge rate which in turn is set to 0.3C, i.e. for 40 Ah
it is set to 12A ·12V = 144W and for 400 Ah it is set to 120A ·12V = 1440W roughly.
For the remainder of this section all figures and results are based upon averaging days
1-6 unless otherwise stated.
Figure 5.7 plots the results of the NILM algorithm based on the simplified load profiles.

The F-measure describes the success rate of the algorithm, smaller values are better
from a load hiding point of view, e.g. if the F-measure is 0.3 about one third of the
appliance’s states can be detected correctly. The figure allows an overview of BE, NILL
and SF considering different battery capacities. Whereas the NILL algorithm seems to
be the most promising one for small capacities, for higher capacities SF is the best.
From 10 to 100 or rather 120 Ah the fall of the F-measure is almost constant. Then a
saturation process begins and the measure actually increases until 200 Ah where it drops
to its minimum at 400 Ah. Using 600 Ah the metered load remains constant nearly all
the time but unexpectedly the NILM algorithm again provides a higher success rate.

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

Capacity in Ah

F
−

m
ea

su
re

 o
f t

he
 N

IL
M

 a
lg

or
ith

m

 

 
BE−Day1−6
NILL−Day1−6
SF−Day1−6

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

Capacity in Ah

F
−

m
ea

su
re

 o
f t

he
 N

IL
M

 a
lg

or
ith

m

 

 

Figure 5.7: F-measure of the NILM algorithm after applying a BLH algorithm

A comparison of the RMSE using the simplified load profile is illustrated in Figure 5.8.
A higher value means that there is a greater difference between net demand and the
metered load, i.e. the higher the RMSE is the better the BLH should work. SF provides
the most accurate results, but the difference is not very significant. Until a capacity of
400 Ah RMSE increases at an almost linear rate but the gradient shows some saturation
effects when increasing to 600 Ah. When analyzing the more complicated load profile
using 21 devices both the one-second and the 15 min readings yield very similar results
without further remarkable insights. Therefore, they are not plotted in this work.
Finally, the RFM of the simplified load profile is diagramed in Figure 5.9. A higher

value means a higher number of load changes of ≥ 5 W of the metered load compared
to the original time series of net demand. A RFM greater 1 means that the number
of load changes actually increased because of the BLH system. Values below 1 should
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Figure 5.8: RMSE after applying a BLH algorithm

be beneficial as the metered load is more constant than ned demand. Again the most
desirable results come along with SF which provides the smallest values of RFM.
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Figure 5.9: RFM of the simplified load profile using a sampling interval of one second

Figure 5.10 plots the same measure for the more complicated load profile and again
SF offers the most desirable results. The average RFM is much smaller as the number
of load changes of net demand is much higher compared to the simplified load profile.
When changing the sampling interval to 15 min. the BE algorithm provides the most

desirable results for capacities up to 100 Ah, for higher capacities the SF is the most
desirable, see Figure 5.11. Using the SF accompanies with high RFM values for small
capacities. Even though net demand maintains constant when the battery’s SOC gets
too low or high the SF changes the quantization level to recharge or discharge the battery
again.
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Figure 5.10: RFM using a sampling interval of one second
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Figure 5.11: RFM using a sampling interval of 15 min

5.1.3 Current Ratings vs. Battery’s Capacity
The previous section listed various results using different battery sizes. Whereas using
a higher capacity allows the BLH system to provide the same amount of energy for a
longer period of time until the SOC reaches its limit, a greater capacity allows a higher
current rating in Amps using the same ratio of 0.3C too.
Regarding privacy protection the question arises whether the effect of doubling the

current rating using the same battery outperforms doubling the capacity. For example,
a comparison between a 100 Ah battery with a maximum current of 30 A which equals
0.3C and a 300 Ah battery with the same maximum current of 30 A that equals 0.1C
in this case can determine the more significant effect. If there is no significant privacy
protection improvement when using 300 Ah instead of 100 Ah, the battery’s capacity
rather than its current rating would appear to be the key factor when dimensioning a
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BLH system but the current rating is.
The following results are based upon the 6 day average outputs of the SF. Table 5.1

lists the analyzed current ratings for a constant capacity of 120 Ah, the associated
current in A and the accompanying capacity if the current rating is set to 0.3C.

Current rating in parts of 120 Ah Current rating Capacity when using 0.3C
0.02 2.4 A not analyzed
0.025 3 A 10 Ah
0.05 6 A not analyzed
0.1 12 A 40 Ah
0.175 21 A 70 Ah
0.2 24 A not analyzed
0.25 30 A 100 Ah
0.3 36 A 120 Ah
0.375 45 A 150 Ah
0.5 60 A 200 Ah

Table 5.1: Comparing current ratings using a specific capacity with different capacities
using 0.3C

Figure 5.12 plots the F-measure over different currents using both a constant capacity
but a varying current rating (black) and furthermore a constant current rating but
varying capacity (grey) for currents up to 60 A.
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Figure 5.12: F-measure of the NILM algorithm depending on different currents to com-
pare the effects of a fixed current rating vs. a constant capacity

The results are very similar which supports the significance of the current rating
instead of different capacities. The results at 36 A correspond to 120 Ah and 0.3C,
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therefore the F-measure should be equal. The reason for the observable gap is the
probabilistic determination of the NILM algorithm but also of the SF that may yield
to different results from one computational run to another (the simulation process was
repeated). Below 36 A the black line (constant capacity) should perform better (smaller
values of the F-measure) as the BLH system provides the same maximum current but
a higher capacity. There is a vague trend that supports this idea but the trend is not
very significant. The opposite should happen for currents that are higher than 36 A,
but there is no evidence for this trend.
The same situation using a 600 Ah battery analyzing currents up to 180 A leads to

Figure 5.13.
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Figure 5.13: F-measure of the NILM algorithm depending on different currents to com-
pare the effects of a fixed current rating vs. a constant capacity

Compared to the previous analysis there is even less evidence that the constant ca-
pacity provides betters results. For a current of 180 A the results should again be the
same (600 Ah, 0.3C=180 A) and de facto they are the same.
The results of the RFM using the 120 Ah battery are plotted in Figure 5.14. Although

the calculation of RFM is probabilistic as the SF base on some randomized settings the
results using 36 A are the same. As expected for currents below 36 A the black line
that corresponds to a constant capacity performs better, whereas for higher currents it
performs worse. So in contrast to the F-measure RFM suggests that there is evidence
that both not only the current rating but also the battery size are significant. Analyzing
RMSE yields a similar result.

5.1.4 Potential Savings
Another question that may be of interest is whether a BLH system allows financial
savings as the battery system tries to delay and flatten peak loads. Such peaks may
occur while electricity prices are high assuming a dynamic pricing scheme. The electricity
prices that are used here are wholesale prices without taxes or any additional charges.
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Figure 5.14: RFM for different currents to compare the effects of a fixed current rating
vs. a constant capacity

Figure 5.15 plots possible savings when comparing net demand (simplified load profile)
with the metered load under the same pricing scheme. Positive values describe real
financial savings. Figure 5.15 suggests that a BLH system do not help cutting the
electricity bill.
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Figure 5.15: Potential savings using a 400 Ah BLH system

Unfortunately, this diagram is not significant as it does not consider that the battery’s
SOC at the end of the day may be higher than the initial value. Furthermore the
simulation model disregards all kinds of losses. For example, using a 400 Ah battery the
initial SOC is 27.5% smaller than the SOC at the end of the day when calculating the 6
day average of SF. This corresponds to an energy of roughly E = 0.275 · 400Ah · 12V =
1.32 kWh. For comparative purposes note that the 6 day average daily consumption
is 3.101 kWh. Assuming a uniformly distributed charging process, the mean wholesale
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price of 0.0389 € leads to a correction factor for charging the battery to a higher level:
Correction = E · price = 1.32 kWh · 0.0389 Euro

kWh
= 0.051 Euro. The financial burden

of using SF with a 400 Ah battery that is illustrated in Figure 5.15 is -0.049 €. Adding
this correction factor would lead to daily savings of 0.2 Cent.
The problem in evluating this correction factor is that such simplified calculations

disregard that the battery voltage is not held constant to 12 V, the capacity changes
when changing the charging or rather discharging current (this effect will also not be
taken into consideration under the Simulink’s battery model) and it assumes a uniformly
distributed charging process over the day. An attempt to determine days where the
initial SOC is the same as the SOC at the end of the day was unsuccessful, the SOC
level increases at least 10% for all days and algorithms analyzed. This rising SOC level
suggests that the initial SOC was set too low.

5.1.5 UPS Capability
When implementing a BLH system, the battery maybe is assumed to work as an uniter-
ruptible power supply (shortened UPS) that provides energy in case of a blackout. Dis-
regarding problems such as an issue of the battery system failing to supply all of the
appliances the customer would like to operate, a brief overview of the average SOC of the
battery should illustrate further possibilities of such a system as a beneficial side-effect.
Figure 5.16 plots the 6 day average SOC using the simplified load profile.
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Figure 5.16: SOC using the simplified load profile and a one-second sampling interval

While the characteristics of BE- and NILL algorithm are very similar, SF provides
the smallest values of the SOC. With regards to UPS compatibility, the performance
of the SF is the worst but high SOC values accompany a high share of a fully-charged
battery system, i.e. a state of 90%, which may significantly decrease the effectivity of
the BLH algorithm. The general trend is that the SOC level decreases as the capacity
increases, which is plausible as the battery’s charging/discharging time increases heavily
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under the same current setting in A. Note that the shape of the load profile is essential
for SOC. Furthermore the randomization of the SF accompanies probabilistic variations
of the SOC. Using the more complicated load profile leads to very similar results, hence
they are not plotted here.
Figure 5.17 plots the results when applying a 15 min. sampling interval. NILL provides

the highest and the SF the lowest levels of SOC. In general compared to the one-second
interval the SOC is smaller ranging from about 55% to 82% roughly. As Figure 5.5
demonstrated the variation of SOC increased remarkable when changing from a one-
second sampling interval to 15 min. Therefore, the battery will not longer remain at
high levels of SOC for longer periods any more.
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Figure 5.17: SOC using a sampling interval of 15 min.

5.1.6 Implementation
It cannot be ruled out that an implementation of a BLH system already exists, however
during the course of this work no such a system could be identified. Hence, it may be
of interest to explore the availability of the necessary components of a BLH system.
Aside from the battery system, the most important components are the inverter and the
charger which must be remotely controllable.
The following list shows companies that offer programmable inverter/charger-combinations

are well known for their battery charging devices. These companies were contacted by
mail to ask for devices that meet the specifications for the implementation of a BLH
system (status: November 2013).

• Fronius International GmbH, contact person: Thomas Schuller: Fronius does not
offer products with the required specifications thus far, but they have scheduled
the development of such a device for their product portfolio for the end of 2014
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• Mastervolt GmbH, contact person: Stefan Haslinger: Mastervolt forwarded the
request to the local distributor DOMA elektroengineering GmbH. They did not
reply to our request, instead they sent an offer for a inverter/charger-combination

• Sinergex Technologies L.L.C.: no reply

• Solar Business of Schneider Electric SA (formerly Xantrex Technology), contact
persons: Azra Fadaee and Sandra Herrera: Schneider Electric offers inverter/charger-
combinations with a communications device that allows some remote configura-
tions and readings via a web interface but no complete remote control

• SMA Solar Technology AG: no reply

• Studer Innotec SA, contact persons: Serge Remy and Eric Werfeli: according
to the contact persons, the Xtender series meets all requested specifications and
allows complete remote control via RS-232 using Xtender serial protocol which
is documented properly. Studer Innotec provides not only some example byte
streams to program the device but also a command line tool named scom.exe that
helps implementing the protocol.

• TBS Electronics BV, contact person: Daniel Schouten: in principle TBS Electron-
ics offers programmable inverter/charger-combinations but the devices may be too
slow for BLH systems. For example the devices require about 5 s to change from
inverting to charging mode due to a build in stability check of the grid and besides
that the charging current increases very slowly (it takes about 5-10 s to reach a
stable state). Hence realtime remote control is not feasible.

• Victron Energy B.V., contact person: Ruurd ten Brink: no reply

An incomplete assortment of devices with the combined function of a inverter and a
charger of different manufacturers with nominal output powers between 500 and 7000
VA (without the parallel connection of devices) is listed in Table 5.2. All of the devices
are capable of being connected to the ENTSO-E1 grid of 50 Hz. Data from/to PC should
describe the possibility to read in data from measurements and to send various basic
settings from the PC to the inverter/charger combination via a communications device.
A basic setting includes the battery type, voltage level, max. charging current, the load
strategy, etc. Fit for BLH describes the capability of a complete remote control of the
device meeting the specifications for BLH systems. Some of the devices such as the ones
from Mastervolt, Sinergex and SMA allow the use of remote panels to read and write
data to and from the device using their own bus systems. The Xantrex Technology
devices (while Xantrex is part of Schneider Electric, they have their own web presence)
are not listed as they just provide systems for 60 Hz grids.
There is only one device that fulfills all specifications: the Xtender series of Studer

Innotec, a company seated in Switzerland. A request for a list of examples that use

1ENTSO-E: European Network of Transmission System Operators for Electricity
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Compact Studer Innotec
Conext SX4024-230-50 Schneider Electric X RS485, LAN
Easy Plus 12/1600/70 Victron Energy

Fusion Sinergex Techn.
Mass Combi Mastervolt X RS232

Multi Plus 800VA-5kVA Victron Energy X RS232, USB, NMEA 2000
Powersine TBS Electronics X RS232, USB

Sunny Island 6.0H SMA
Tripp Lite APSX2012SW Tripp Lite

Xtender Studer Innotec X X RS232

Table 5.2: Assortment of charger/inverter-combinations

the Xtender serial protocol that allows remote control as well as a request for a quote
remained unanswered.

5.2 Load-Based Load Hiding
This section deals with the results when applying a LLH system instead of the BLH
system. Compared to the previous chapter there is an essential difference when analyzing
the results. Whereas all BLH algorithms try to maintain a constant level of the metered
load, the LLH algorithm tries to make the metered load even more noisy. Therefore
the metric RFM in particular may no longer be significant. A sampling interval of 15
minutes will not be considered as the only meaningful metric is the F-measure, which
only works properly with a one-second interval and the simplified load profile.
The parameter setup of α, σ and Pmax is based upon some some preevaluations. Pmax

is set to 1600 or rather 2300W depending on the distribution function, α was set to
0.1, 0.3, 0.5, 0.7, 0.9, 1.3 and 1.8, but the most desirable results accompany α set to
1.8 and 0.7 depending on the time frame that describes the time the boiler’s load is
held constant. σ was set to 300W, 800W, 1200W and 1600W but 300W and 800W
provided the best results.
Proposing a LLH system, this work does not aim to determine the ideal LLH algorithm

but to provide a first attempt to analyze the potential of a LLH system.
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5.2.1 Net Demand vs. Metered Load
Figure 5.18 plots net demand and the metered load after applying a LLH system using an
underlying truncated normal distribution for day 1 with Pmax = 2.3kW and σ = 800W .
The boiler’s load is always held constant for 60 s and the target energy consumption (of
the boiler) is set to 5 kWh.
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Figure 5.18: Net demand and the metered load using a truncated normal distribution
(simplified load profile)

Net demand has an offset of 208.3̇ W which equals a constant load that yields in
an additional consumption of 5 kWh per day to balance the energy consumption of
net demand and the metered load. When looking at the metered load, smaller peaks
disappear in the superimposed noise generated by the truncated normal distribution. As
the boiler cannot supply energy, the minimum load of net demand cannot be reduced
and clearly remains visible. Furthermore higher peaks appear almost as clear as without
a LLH system.
Similarly Figure 5.19 plots the same situation when using the beta distribution (Pmax =

2.3 kW , α = 0.7) or the modified beta distribution (Pmax = 1.6 kW , α = 0.9).
While the results of the beta distribution look similar to the truncated normal distri-

bution, the results of the modified beta distribution is distinguished from the others as
it is less noisy. Furthermore, there are readings where the minimum load is clearly tem-
porarily offset. For example such a situation can be observed at approximately 52000 s
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Figure 5.19: Net demand vs. metered load using different beta distributions (simplified
load profile)

where net demand is relatively low but the metered load is at levels of about 1 kW. Fur-
thermore, there are situations where the metered load is alike net demand as the noise
produced by the modified beta distribution can occasionally be very small to maintain
the target energy consumption at the end of the day. Thus, there may be time frames
where the level of distortion is very low but on the other hand there are periods where
the difference between net demand and the metered load is significant.
This may be beneficial as the NILM algorithm uses filters to pre-process the data

before decomposition. The NILM input is always a filtered load profile using some
kind of filter such as a median filter. Figure 5.20 plots the results after running a
one-dimensional median filter with a window size of 360 s. When applying the filter,
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Figure 5.20: Filtered net demand and metered load using different beta distributions
(simplified load profile, median filter)

less distinct peaks in net demand disappear but the artificial noise based on the beta
distribution adds additional variations. In comparison the modified beta distribution
creates noise that seems to be more significant with a number of much higher peaks.
This may decrease the total success rate of the NILM algorithm. Therefore, none of the
distributions succeed in hiding the higher peaks, and they may potentially even raise
these peaks as the LLH system does not take the actual level of net demand into account.
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5.2.2 Load Configuration
This section deals with the effect of varying the boiler’s target energy ranging from
2.5 kWh to 10 kWh and the effect when increasing the time the boiler’s load is held
constant in a range from 1 s to 120 s. The following results are based upon averaging 6
days.
Figure 5.21 plots the F-measure of the NILM algorithm for different distributions over

different target energy consumptions. The time frame where the boiler’s load is held
constant is set to 30 s. The distribution parameters are Pmax = 2.3 kW , σ = 300 W
for the truncated normal distribution, Pmax = 2.3 kW , α = 0.7 for the beta distribution
and Pmax = 1.6 kW , α = 0.9 for the modified beta distribution.
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Figure 5.21: F-measure when holding the boiler’s load constant for 30 s respectively

A downward trend is clearly visible as with higher energy consumption the amplitude
of the artificial noise can be set much higher, therefore the distortion level increases.
A saturation processes is slightly visible beginning at 5 kWh. Aside from the 10 kWh
level the randomized beta distribution provides the best results, the truncated normal
distribution the worst. All 3 distributions provide F-measures of less than 30% for 5
kWh or beyond.
Increasing the time frame to 120 s yields the results plotted in Figure 5.22. In this

case the truncated normal distribution performs best. Again there is a downward trend
and a minor saturation process. The parameter setup is Pmax = 2.3 kW , σ = 800 W
for the truncated normal distribution, the parameters of the beta and the modified beta
distribution are the same.
The metric RMSE is diagramed in Figure 5.23 for using a time frame of 60 s. The

parameters remain the same as with 30 s. The precise upward trend is almost linear for
all distributions. Doubling the target energy from 2.5 kWh to 5 kWh does not duplicate
the RMSE, suggesting that the level of privacy protection is already saturated. In
general, the results of the F-measure and RMSE are similar, a higher target energy
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Figure 5.22: F-measure when holding the boiler’s load constant for 120 s respectively

consumption increases the level of privacy protection but there is a a small saturation
process noticeable.

3 4 5 6 7 8 9 10
200

300

400

500

600

700

800

900

1000

Energy in kWh

R
M

S
E

 in
 W

 

 
Beta distribution
Truncated normal distr.
Randomized beta distr.

3 4 5 6 7 8 9 10
200

300

400

500

600

700

800

900

1000

Energy in kWh

R
M

S
E

 in
 W

 

 

Figure 5.23: RMSE when holding the boiler’s load constant for 60 s respectively

The idea of using a variety of time frames where the boiler’s load is held constant
should analyze potential improvements of the performance of the distributions. Fig-
ure 5.24 plots the F-measure for different time frames using the truncated normal dis-
tribution. The parameter setup is Pmax = 2.3 kW , σ = 300 W for 1 and 30 s and
Pmax = 2.3 kW , σ = 800W for 60 and 120 s. Aside from the expected downward trend
the diagram suggests a longer time frame to increase the efficiency of the distribution.
However, note that an even higher time frame may simplify the learning process of the
NILM algorithm to filter the current load of the electric boiler.
In addition, analyzing the beta distribution over a longer time from does not neces-

sarily provide more accurate results, as illustrated in Figure 5.25. Therefore, the proper
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Figure 5.24: F-measure of the truncated normal distribution to analyze different time
frames where the variable load is helt constant

time frame depends on the distribution. Considering 1 s, 30 s, 60 s and 120 s, for a target
energy consumption of 5 kWh the ideal time frame for the truncated normal distribution
would be 120 s and 60 s for both of the beta distributions. The parameters are set to
Pmax = 2.3 kW , α = 0.7W for 30, 60 and 120 s but α = 0.9 for 1 s.
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Figure 5.25: F-measure of the beta distribution to analyze different time frames where
the variable load is helt constant

All three distributions are based upon a target energy consumption of the electric
boiler. As the distribution functions are based upon probabilities there is only a certain
probability of reaching the exact target level. The probability of missing the target level
increases if the time frame or the target level itself increases. Furthermore the modified
beta distribution adjusts the expectation which yields in an even higher spread of data.

Christoph Prokop 75



5 Results

Figure 5.26 plots the histogram for all 6 days analyzed considering all 3 distributions,
all 4 energy targets and all of the time frames analyzed (without any averaging). The
larger part of the spread lies within the interval ±1 kW . There is a positive skew of the
distribution observable that is caused by the overrated expectation of the modified beta
distribution. Thus, especially the modified beta distribution yields in realizations that
outrun the target level.
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Figure 5.26: Histogram of the gap between the realized and the target energy
consumption

5.2.3 Implementation
As with a BLH system, the implementation of a LLH system could be of interest.
The essential parts when implementing such a system using an electric boiler are the
boiler itself and an electronic device that allows to set the voltage level that is remotely
controlled by a control system.
The first question when implementing such a system is whether an electric boiler allows

for the adjustment of the voltage level or rather the power consumption. Without power
control, an overview of load profiles in literature [53], [55] suggests that an electric boiler
that is turned ON usually consumes constant power. Salehfar [42] models an electric
boiler which allows for power control in a specific range but without considering the
implementation of such a system. More practical is a paper proposed by Jia [67] that
takes benefit of the structure of the North American power grid that bases on a split-
phase electricity distribution system. Such a system allows for the switch between 110 V
and 220 V when using two live conductors instead of a single-phase to grounded neutral
setup.
Mr. Friedrich Stocker, an engineer of the Austrian boiler manufacturer Austria Email,

confirmed that power controlling would be possible with regards to the boiler. According
to Mr. Stocker the boiler acts as a purely resistive load that allows voltage control without
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harming the boiler’s lifecycle. He suggests the use of a phase-fired thyristor control to
adjust the voltage level.
Devices such as the M028 power control provided by Kemo Electronic GmbH are very

common and allow for power controlling up to 2.88 kVA [7].
Note that such phase-fired controllers may stress the electricity system with peak

currents whereas a BLH system may unburden it as it tries to minimize peak loads in
general. For further research such effects should be taken into account.
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6 Comparison and Discussion
The previous chapter presented the results of the simulation process upon which this
work is based. This section deals with further analysis and the discussion of the results
and moreover the comparison of both load hiding approaches.

6.1 BLH Battery Setup
When implementing a BLH system one key element is the dimensioning of the battery
system. Figure 6.1 plots the F-measure over the battery’s capacity. As always, when
deriving the F-measure the load profile is the simplified one and the results are based
on the 6 day mean. There is a clear saturation process starting at 120 Ah. As a
tradeoff between privacy protection and costs, not only of the battery but also of the
inverter/charger combination, choosing a 120 Ah battery for this specific case seems to
be reasonable.

Figure 6.1: F-measure over different capacities using the SF, 6 day average

Figure 6.2 illustrates the comprehensible effect of an uptrend of the F-measure if
the daily energy consumption increases when using SF for days 1 to 6. If demand
increases, the obfuscation potential of the battery system decreases which results in
a higher success rate of the NILM algorithm. A 120 Ah battery has a capacity of
approximately 12 V · 120Ah = 1.44 kWh. Day 3 has an energy demand of 2.5 kWh and
the F-measure is below 5 %. Day 6 requires 3.68 kWh, which is more than twice the
battery’s capacity. Compared to day 3 (2.5 kWh) the success rate increased remarkable
up to 20 %, but is still less than one third.
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Figure 6.2: F-measure when using a 120 Ah battery and SF for 6 days

Another parameter that may influence the results is the empirical variance. If the
variance would be 0, the metered load would already be constant which necessitates
no further obfuscation system. A load profile with many high peaks, which results in
a higher variance, may make it difficult to turn the load profile into a constant load.
Conversely, the detection of the appliance’s states may be more difficult for the NILM
algorithm as well. The outlier at 3.38 kWh, which is day 2, has the highest empirical
variance of the metered load of 2e+3W2 compared to 1.9e+3W2 for day 6 or 1.6e+3W2
for day 3, which supports the idea that a higher variance may reduce the success rate
of the NILM algorithm. Furthermore day 4 with 3 kWh has a higher empirical variance
(1.8e+3W2) compared to the neighbour day 5 (1.5e+3W2) and the same empirical
variance as day 1.
The number of samples is far too limited for any kind of significant inference but with

regards to the results a battery that can supply half of the daily energy may provide a
satisfying privacy protection.
It is the current rating rather than the capacity which appears to be more significant.

Averaging all 6 days, Figure 6.3 plots the F-measure when using a constant current
rating of 0.3C, but different capacities (10, 40, 70, 100, 120, 150, 200 Ah). The abscissa
plots the F-measure when using a constant capacity of 120 Ah but different current
ratings (0.025C, 0.1C, 0.175C, 0.25C, 0.3C, 0.375C, 0.5C). Hence, when considering the
abscissa and the ordinate the maximum currents in Amps are the same, to analyze the
significance of the capacity vs. the current rating.
If the battery size has no influence to the success rate of the NILM algorithm the F-

measures should be the same in both situations. This is illustrated by the grey line with
a gradient of 1. As all of the results are very close to that line and there is no obvious
trend observable this suggests that the dimensioning of the battery is not essential.
When analyzing the F-measure over a variety of capacities like it is plotted in chapter 5
the F-measure decreased significantly as the capacity increased. With regards to the

Christoph Prokop 79



6 Comparison and Discussion

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

F−measure using a capacity of 120 Ah

F
−

m
ea

su
re

 u
si

ng
 a

 m
ax

. c
ur

re
nt

 o
f 0

.3
C

 

 
results of using SF
if the capacity has no influence

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

F−measure using a capacity of 120 Ah

F
−

m
ea

su
re

 u
si

ng
 a

 m
ax

. c
ur

re
nt

 o
f 0

.3
C

 

 

Figure 6.3: F-measure to compare the significance of the maximum current setting vs.
the capacity

missing significance of the battery capacity, here this dependency can be attributed to
the maximum current rating in A that changes with the battery capacity. In sum, the
current ratings appear to be significant while the battery’s capacity does not.
Inspired by [70] this work assumed the use of a deep-cycle lead acid battery. When

observing the actual levels of the SOC, a high share of a fully charged battery can be
observed. Conversely, situations in which the battery is fully discharged occur rarely and
only when using high capacities of 400 Ah or more. This suggests that the use of a deep-
cycle battery that allows a high DOD may not be necessary, a common car battery may
provide a satisfactory performance. In addition, the algorithm’s performance suffers in
cases where the battery is fully charged especially when using BE- or NILL algorithm.
Furthermore the level of SOC at the end of the day is consequently higher than the
initial value. Hence the initial value of 55% was set too low.
Figure 6.4 plots the aggregated histogram of the battery’s SOC for all 6 days analyzed

when using a 120 Ah battery and SF.
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Figure 6.4: Histogram of the SOC when using a 120 Ah battery and SF for days 1 to 6
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6.2 BLH Algorithms
This work applied three different BLH algorithms. All algorithms attempt to flatten net
demand to provide a constant metered load.
The Best Effort algorithm idles the battery if the SOC is too high or too low, otherwise

it always attempts to maintain a constant metered load by using the battery as a supplier
or a load. If the battery cannot provide enough power, the battery charges or rather
discharges with its maximum power anyway.
In contrast, the Non-Intrusive Load Leveling algorithm is much more complicated and

distinguishes between 3 states of which the favored one is the stable state which is based
upon the weighted average of the previous states. Based upon certain parameters the
algorithm switches from one state to another if the SOC limits were to be violated. The
NILL algorithm allows for some modifications of the parameter, this work is based upon
the settings as proposed in [70] and [74].
The Stepping Framework is based upon quantizing net demand into a step function.

The authors of the SF [74] propose several different approaches in reaching this target.
The authors state that the best results are reached with Lazy Stepping 2 which sets the
actual step randomly, therefore this work considered this approach as the substitute of
the SF.
The implementation of the BE algorithm and the SF would be much easier than the

NILL algorithm as they do not necessitate extra calculations based upon previous states.
Thus, the NILL algorithm requires some kind of memory whereas BE algorithm and the
SF solely set the battery power based on the actual level of net demand and the SOC
and current limitation of the battery.
Figure 6.5 plots the F-measure to compare all 3 algorithms using a 120 Ah battery.

Figure 6.5: F-measure to compare all 3 BLH algorithms using a 120 Ah battery

As already discussed in chapter Results, the choice of which algorithm performs best
is rather murky. In analyzing the F-measure, the NILL algorithm performs worst most
often, Yang et al. [74] argues the same using other metrics. In general the SF performs
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slightly better than BE, but the difference may not be significant. This inference holds
for both when summarizing all results but also when throwing a glance onto this diagram
that plots the situation for 120 Ah solely.
However the F-measure is based upon the decomposition of a specific NILM algorithm

that uses state estimation but not edge detection. Therefore, RFM may be of interest as
RFM is the only metric used in this work that takes load changes directly into account.
Figure 6.6 plots the results for a 120 Ah battery. As with the F-measure, the results
are the 6 day average. The performance of the SF is distinctly and visibly the most
desirable. When using the simplified load profile (7 devices) or the higher sampling
rate of 15 min. the RFM is higher as the number of load changes in net demand is
significantly lower compared to the normal load profile (21 devices).

Figure 6.6: RFM of all 3 BLH algorithms for different load profiles using a 120 Ah battery

Note that the F-measure is not necessarily the best metric to describe the effectiveness
of the NILM algorithm. Imagine a device such as an energy-intensive dryer that is turned
OFF most of the time. If the algorithm estimates the appliance’s state to be OFF all the
time, the success rate, hence the F-measure is quite high. Even though the F-measure
suggests a well performing algorithm, the information when the device is turned ON is
completely lost. This information could be of particular interest, for example under a
time-based electricity pricing scheme when using a program that recommends how to
cut the electricity bill by changing the time of operation. Furthermore, when analyzing
a smaller load like a smartphone charging device, the ON/OFF-states may be misjudged
most of the time which results in a small F-measure. When calculating the overall F-
measure, the smaller significance of the charger to the aggregated load profile will not
be considered. Whereas the energy consumption of the dryer may be much higher than
the consumption of the smartphone charger, the F-measure assumes all appliances to
be comparable and does not consider different energy consumption levels. Therefore, it
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may be meaningful to use an energy-based-weighting process or another metric.

6.3 LLH Algorithms
As a first proposal of a LLH system, various distributions that produce artificial noise
were analyzed.
When analyzing 5 kWh as diagramed in Figure 6.7 the modified beta distribution per-

forms best while the common beta distribution performs worst. The parameter settings
of the distribution were already described in chapter 5. Increasing the time frame where
the boiler’s load is held constant increases the level of privacy protection, hence it may
be clever to test even longer frames, however then it may become easier to detect the
boiler’s actual load.. The best single result for 5 kWh accompanies with the truncated
normal distribution using a time frame of 120 s.

Figure 6.7: F-measure of different PDFs for an energy target of 5 kWh

Picking out the best results of each distribution leads to Figure 6.8. The best single
result of 5.9% is provided by the truncated normal distribution for a target energy of 10
kWh. Whereas for a smaller energy target the modified beta distribution outperforms
the common beta distribution the opposite happens for high energy consumption. In
general, there is no clear evidence of which distribution performs best as it also depends
on the daily energy target.
Implementing the beta distribution is easier than implementing the truncated normal

distribution that requires an iteration process to meet the target energy. The modified
beta distribution requires several randomization steps and the probability to outrun the
target energy level is high in comparison to the other distributions.
As with BLH systems, the efficiency of a LLH system may decrease as the customer’s

net demand increases.
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Figure 6.8: F-measure over a target energy for different LLH algorithms

6.4 BLH vs. LLH
When discussing methods to improve privacy protection via a load hiding system the
question arises as to which one of the systems can provide better results. The metric
RFM cannot be used for a comparison as the BLH and the LLH system follow different
approaches to distort net demand.
Figure 6.9 plots the F-measure for the original time series of net demand, the best

result of the LLH system and finally the best result of the BLH system for a 120 Ah
battery.

Figure 6.9: F-measure of the BLH (120 Ah battery) and LLH system (5 kWh target
energy consumption)

With regards to LLH the plot assumes a daily target energy consumption of 5 kWh.
Compared to the original series (46.6 %) the LLH system decreases the success rate of
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the algorithm to about one third (16.4%) whereas the BLH system provides an even
better performance of almost one-fifth (9.8%).
Figure 6.10, a plot of the RMSE for the same setup suggests that LLH can provide

better results than BLH does.

Figure 6.10: RSME of the BLH (120 Ah battery) and LLH system (5 kWh target energy
consumption)

The reason for the improvement is that the LLH system can distort net demand by
5 kWh whereas the BLH system uses less energy. The BLH system could use the (usable)
battery’s energy of about 0.7 ·120Ah ·12V = 1.01kWh numerous times. The problem is
that the BLH system remains at a high level of SOC most of the time, therefore the total
energy that is stored into the battery plus the energy supplied by the battery is less than
5 kWh. Summing up the absolute value of the battery’s energy consumption and supply
yields in sort of an energy turnover of the battery. The 6 day mean of this turnover is
about 2.18 kWh which is clearly less than the 5 kWh of the LLH system. Hence the
LLH system can take benefit of the high energy consumption of the electric boiler, but
either way the system was not able to provide a higher level of privacy protection when
applying the NILM algorithm.
Finally Figure 6.11 plots the F-measure when looking for the best 6 day average results

of BLH and LLH. BLH clearly outperforms LLH.
When comparing the expenses, the LLH system clearly outperforms BLH. Both the

installation and maintenance costs of the BLH system exceed those of the LLH sys-
tem. Whereas BLH necessitates a battery, some measuring units, a inverter/charger-
combination and finally a controlling unit, the LLH system requires a variable load that
could already be installed, an electronic device that allows for an output voltage or power
level setting and finally a controlling device with some inputs of the electric boiler.
Neither the BLH system nor the LLH system can provide perfect privacy protection

under a realistic setup. Under the assumptions (5 kWh target energy for LLH, 120
Ah battery for BLH) both systems are able to decrease the success rate of the NILM
algorithm by about two-thirds or even more. A detection rate of about one third may
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Figure 6.11: F-measures of the best results of the BLH and LLH system

already be satisfying as decomposing the appliance’s states under such a quality of result
is doubtful.
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This work presented various load hiding systems that could possibly prevent the invasion
of an end-user’s privacy after the installation of smart metering. State-of-the-art sys-
tems use a battery with an intelligent control system to charge and discharge the battery
at strategic times. This allows for the flattening of the end-user’s electricity demand.
Therefore, three meaningful algorithms have been proposed thus far. Based on a simula-
tion model, this thesis applied all three algorithms and quantified the effectiveness using
the accuracy of a proper NILM algorithm to disaggregate the load profile. In addition,
several related issues such as the battery dimensioning were discussed. Furthermore, an
alternative solution of a load hiding system was suggested.
Summarizing the results, the latest proposal of a BLH algorithm named Stepping

Framework performs best, and the NILL algorithm produced the worst results. The
key factor when dimensioning the battery is the maximum charge/discharge rate of the
current rather than the battery’s capacity. A battery that provides approximately half
of the user’s daily energy consumption showed to be a novel tradeoff between battery
size i.e., costs and privacy protection. In our case, a single 120 Ah, 12 V lead acid battery
would have provided a sufficient level of privacy protection. Furthermore based on the
high level of the battery’s state of charge most of the time, the use of a deep-cycle battery
would not be necessary, an ordinary automotive battery could provide a satisfactory
performance and lifecycle. Even though the implementation of a BLH system may not
be economically justifiable at the moment, all of the components that are required to
build such a system, i.e. battery, inverter/charger-combination, measuring units and a
controlling device are already readily available.
In order to develop a meaningful and more affordable alternative to BLH, this work

further proposed a new load-based load hiding system. Such a LLH system adjusts the
power level of a variable load like an electric hot water boiler to modify the domestic
load profile. Whereas the BLH systems attempt to maintain a constant level of the
metered load, the proposed LLH system attempts to superimpose artificial noise to
make the load profile more chaotic. To produce this noise, three different underlying
probability density functions were suggested and analyzed. There is no clear trend which
one performs best, but the success rate of the NILM algorithm that decomposes the load
profile can be reduced to about one third compared to the original time series of net
demand. Compared to a BLH system the implementation of such LLH is easier as it
requires only a variable load, a voltage/power-controller and a controlling unit without
measuring net demand.
Finally a benchmark showed that the BLH system outperforms the LLH system.

Clearly none of the systems will be able to provide a perfect level of privacy protection.
The level of privacy protection may be more satisfactory if combined with other privacy
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protection approaches such as anonymizing, aggregating and encrypting the end-user’s
data.
The following questions may be the subject of further research. Aside from the real

implementation of load hiding systems, the combination of a BLH system with a pho-
tovoltaic system could be interesting. Furthermore, taking three-phase currents into
account and analyzing more than just 6 days of data using a proper metric would help
providing more significant conclusions. Setting the intial SOC more accurately, further
research regarding potential savings, and the potential to unburden the electricity grid
may help reducing the expense of installing such a system. Alternative storage units
such as supercapacitors could increase the performance of such systems as the key factor
of a BLH system seems to be the maximum charging/discharging current as opposed
to the capacity. Moreover, a BLH system would be able to simulate the customer’s
presence at home. Determining the overall efficiency may decrease the practicality of a
BLH system compared to other systems. With regards to LLH, a long-term simulation
based on a novel dynamic model considering the temperature of the hot water could
offer new insights to such a system. Moreover, enhancements of the algorithms may
finally increase the level of privacy protection.

“The bottom line, says Rotenberg1, is who controls the data. ’You may
not have a lot of privacy concerns about whether you’re using a toaster or a
toaster oven,’ he says, ’but you should be able to decide whether or not you
reveal that information.’ ”[12]

1M. Rotenberg: director of the Electronic Privacy Information Center
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