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Abstract

Organic thin films may exhibit crystallographic phases which differ from the bulk phase

due to the presence of a surface during the crystallization process. Such thin film phases

are crucial for the charge transport in organic semiconducting devices. Therefore a

complete structure solution is necessary to understand the complex properties of or-

ganic electronic devices. The investigation of such films is challenging due to the small

scattering volume and low scattered intensities. Hence standard single crystal structure

solution methods are not applicable. Our approach is a combination of experimental and

theoretical methods based on grazing incidence X-ray diffraction (GID) and molecular

dynamics simulations. Compared to rigid body refinement, molecular dynamics is capa-

ble of handling flexible molecules as well, which is especially important for molecules

with flexible functional groups. A simulation scheme involving a shrinking simulation

box based on the experimental unit cell was developed. In order to avoid simulations

getting trapped in local minima of the potential energy surface, multiple simulation

runs with different initial molecular packings were carried out. The evaluation of the

results was based on the comparison of X-ray structure factors and corresponding en-

ergies. The procedure was tested for molecules with increasing complexity beginning

with pentacene and ternaphthalene. In both cases a herringbone motif was favored by

energy and matched the experimental X-ray structure factors. Also the planarization

of the twisted ternaphthalene molecule in a crystallographic unit cell was successfully

reproduced. However the herringbone angles were approximately 5° too low compared

to literature values. In order to improve the results, a plane-wave DFT optimization

on the most promising structures was carried out and lead to excellent agreement with

experimental data. DFT optimizations proved to be an excellent tool to improve the the

molecular dynamics results since they do not rely on the molecular mechanics force field

approximations. For dioctyl-terthiophene we observed a herringbone motif for the con-

jugated backbone. The orientation of the terminal chains matched the energy minimum

of the dihedral potential as obtained by DFT calculations and fulfilled the close-packing

principle. The largest investigated system DBDCS, a cyano distyrylbenzene derivative,

contained four molecules per unit cell with alkoxy chains attached to the backbone. De-

spite the extreme flexibility of the side chains, we still managed to identify a parallel

stacking motif which features most likely bent terminal chains.





Kurzfassung

Organische dünne Schichten können Aufgrund des Einflusses der Substratoberfläche

kristallografische Phasen aufweisen, welche sich von der Bulk-Struktur Phase unter-

scheiden. Solche Dünnfilmphasen spielen eine entscheidende Rolle für den Ladungstrans-

port in der organischen Elektronik und machen eine vollständige Kristallstrukturlö-

sung notwendig. Durch das geringe Streuvermögen gestaltet sich die Untersuchung

solcher dünnen Filme sehr schwierig und herkömmliche Einkristallmethoden sind nicht

anwendbar. In dieser Arbeit wird eine Methode vorgestellte welche sich aus der ex-

perimentellen Messung mittels Röntgenbeugung unter streifenden Einfall und Moleku-

lardynamik Simulationen zusammensetzt. Im Gegensatz zu einem Rigid Body Refin-

ment Ansatz, welcher Moleküle als starre Gebilde annimmt, ist diese Einschränkung

in der Molekulardynamik nicht gegeben. Um zu verhindern, dass Simulationen in

lokalen Energieminma stecken bleiben, wurde zum einen eine vergrößerte Einheit-

szelle verwendet, welche wärend des Simulationsverlauf auf die experimentelle Größe

schrumpft und des weiteren unterschiedliche Startkonfigurationen. Die Auswertung der

Ergebnisse basiert auf den gemessenen Röntgenstrukturfaktoren und den jeweiligen En-

ergien der molekularen Packungen. Die Methode wurde auf unterschiedliche Moleküle

mit zunehmender komplexität angewand. Für Pentacene und Ternaphthalene wurde

von der Energie und den Strukturfaktoren ein Herringbone Motiv eindeutig bevorzugt.

Des weiteren wurde bei Ternaphthalene die typische planarisierung von verdrehten

Molekülen in einer Einheitszelle beobachtet. Jedoch wich in beiden Fälle der Herring-

bone Winkel um 5° von den Literaturwerten ab. Eine anschließende Optimierung mit-

tels DFT war in der Lage diese Abweichungen zu beseitigen und ist somit gegeigenet die

Ergebnisse von klassichen Molekulardynamik Simulationen zu verbessern. Für Dioctyl-

Terthiophene konnte eine Herringbone Struktur für das Molekül-Backbone identifiziert

werden. Die Orientierung der Seitenketten war in guter Übereinstimmung mit dem

Energieminimum des Torsionspotential und entspach einer dichten Kugelpackung. Das

komplexeste System DBDCS ist ein cyano Distyrylbenzene Derivat mit Alkoxy Seitenket-

ten und vier Molekülen pro Einheitszelle. Trotz der extrem flexiblen Seitenketten war

es möglich ein paralleles Stappeln der Molekül-Backbones und eine bevorzugte Ausrich-

tung der Seitenketten normal zur Backbone Ebene zu identifizieren.
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1. Introduction

Organic π-conjugated molecules are widely used in organic electronic devices such as

OFETs [1] and OLEDs [2]. The charge transport in such devices depends on the over-

lap of π-orbitals and therefore on the orientation of adjacent molecules [3, 4]. Organic

molecules such pentacene and polythiophenes are usually applied as thin films in elec-

tronic devices. It has been shown that organic molecules in thin films can exhibit a

different crystallographic phases compared to the bulk structure [5, 6]. This thin film

phases are induced by the substrate surface. Hence the thin film phase is crucial for

the charge transport [7], a complete structure solution is necessary to understand the

complex behavior of organic electronic devices.

X-ray diffraction techniques are perfect tools for crystal structure solution and have

an impressive history. Probably the most famous results of X-ray diffraction has been

the discovery of the double-helix structure of DNA [8]. First, due to ground breaking

scientific contributions to the understanding of living organism but later more due to

the dubious way of how contributions of other researchers were concealed [9].

The work flow for solving the crystal structure of a thin film phase is shown in Figure 1.1.

The experimental data is collected by means of grazing incidence X-ray diffraction (GID).

Such an experiment can be used for the determination the crystallographic lattice con-

stants. Furthermore, the intensity of diffraction peaks is used to calculate the X-ray

structure factors. The difficult part in crystal structure solution is the determination of

the positions of atoms or molecules inside the unit cell. This is also known as the phase
problem. For single crystal techniques many sophisticated methods have been developed

to reconstruct the missing phase information, for example the Direct Methods or Patter-
son Methods [10]. However they rely on the availability of several hundred or thousand

individual structure factors which is not possible for organic thin films. In the case of

organic thin film phases, the number of molecules in an unit cell can be estimated from

the unit cell volume and molecular weight. This information can be used for a rigid
body refinement. This method operates in direct space and is basically an optimization

of the molecule positions. The aim of the optimization is to minimize the difference

between the measured and calculated structure factors. A drawback of this method is

1



1. Introduction

Figure 1.1.: Illustration of thin film crystal structure solution work flow. The rigid body refine-
ment is replaced with molecular dynamics simulations to incorporate the flexibility of
molecules.

that molecules are assumed to be rigid. Hence molecular conformational changes are

not possible during the crystal structure solution procedure. Nevertheless, this approach

has been used successfully for thin film crystal structure solution involving small rigid

molecules such as pentacene and ternaphthalene [11, 12].

In order to incorporate flexibility of molecules the rigid body refinement was exchanged

for a molecular dynamics (MD) approach. MD simulations are widely used in the study of

macromolecules like proteins and DNA but also provide an opportunity for small organic

molecule simulations [13]. In this work, MD simulations for single unit cells have been

carried out and the results have been evaluated by comparing the experimental and

simulated structure factors |F (hkl)|. Another criteria is the energy of the molecular

packings, since an optimal packing should represent a low energy arrangement. Since

MD simulations rely on several approximations, the best MD results have been optimized

by means of density functional theory (DFT) in order to improve the packing.

2



2. Fundamentals

2.1. Molecular dynamics simulations

In molecular dynamics, Newton’s laws of motion [14] and numerical integration is used

to simulate the evolution of a quantum mechanical many-body system over time. The

result is a trajectory that describes the positions and velocities of the particles.

F(r) = −∇V (r) = ma (2.1)

Due to the large mass difference between nuclei and electrons, it is possible to treat them

separately. This is known as the Born-Oppenheimer approximation. Once the problem for

the electrons is solved, which usually involves the solution of the Schrödinger equation,

a potential V (r) can be defined for the calculations of the classical trajectories of the

nuclei. The nuclei are assumed to behave like charged point particles which move due

to the force F that is equal to the negative of the potential energy gradient, see Eq. (2.1).

2.1.1. Numerical integration

Since no analytical solution for a many-body problem with N > 2 can be obtained, nu-

merical integration is necessary to find a solution. For numerical integration a large

number of different schemes are available. A very popular and easy to implement

method is the Verlet algorithm [15]. It is based on the Taylor expansion of the posi-

tion ri at time step i.

ri+1 = ri + ∂ri
∂t

∆t+ 1
2
∂2ri
∂t2

∆t2 + 1
6
∂3ri
∂t3

∆t3 + . . . (2.2)

The first derivative of ri with respect to time is the velocity vi at time step i and the

second derivative, the acceleration ai. Since classical mechanics (neglecting friction)

3



2. Fundamentals

Figure 2.1.: Highly simplified description of a molecular dynamics simulation.

is time-reversal invariant, the position of a particle a small time step ∆t earlier can be

obtained by substituting ∆t for −∆t.

ri−1 = ri − vi∆t+ 1
2ai∆t2 −

1
6
∂3ri
∂t3

∆t3 + . . . (2.3)

Combining Eq. (2.2) and (2.3) and solving for ri+1 yields

ri+1 = (2ri − ri−1) + 1
2ai∆t2 + · · · (2.4)

ai = F(ri)
m

= − 1
m
∇V (ri). (2.5)

Eq. (2.4) can be used for solving Newton’s equation numerically with a sufficiently small

time step ∆t. Hence the term including the third derivative disappears, the approxima-

tion is correct to the third order in ∆t. For the initial time step, the previous position is

naturally not available, but can be estimated from Eqn. (2.2).

r−1 = r0 − v0∆t (2.6)

The Verlet algorithm has the drawback that velocities do not appear explicitly. This poses

a problem for controlling the temperature of an ensemble, which is usually achieved by

4



2.2. Force field methods

adjusting the velocities of the particles. An alternative version that contains velocities

explicitly is the so called leap-frog algorithm [16, p. 452]:

ri+1 = ri + vi+ 1
2
∆t (2.7)

vi+ 1
2

= vi− 1
2

+ ai∆t. (2.8)

Eqs. (2.7) and (2.8) also provide a third-order integration scheme, as the Verlet algo-

rithm, however the position and velocities updates are shifted by half a time step. The

major disadvantage of the leap-frog algorithm is obviously that position and velocity are

never known at the same time. The Verlet and leap-frog algorithm are usually preferred

over the the famous Runge-Kutta integration scheme because the latter is not time-

reversible. It can be shown that time-reversibility tends to improve the conservation of

energy over long simulation times [17].

2.2. Force field methods

The potential energy function V (r) contains all the information about a system and

dictates the forces. Hence it determines ultimately the result of the simulation. There-

fore it is crucial to find an appropriate description of the potential energy of an atomic

system.

Molecules are approximated by a ball and spring model. Atoms have different masses

and electrostatic charges. Bonds are modeled by springs with different stiffness and

lengths. Molecules are mostly composed of smaller units that are similar in their struc-

ture. For example, benzene rings are part of many different organic molecules. How-

ever the benzene ring itself is not heavily influenced by its chemical environment and

can usually be described by the same set of parameters, such as bond lengths and an-

gles. Therefore it stands to reason to think of molecules as larger structures which are

built up by smaller independent units. Such a set of small structural units, and its cor-

responding parameters, is called a force field. The smallest units are usually atoms, or

more precisely atom types. Atom types account for the different behavior of for example

carbon atoms in an aromatic ring or in an aliphatic chain. The force field approach is

also known as as molecular mechanics (MM).

5



2. Fundamentals

Figure 2.2.: Illustration of force field energy contributions.

2.2.1. Force field energy

The potential or force field energy EFF is split up into two parts, the short range intra-

molecular and long range inter-molecular forces:

EFF = Eb + Enb (2.9)

Eb = Estr + Ebend + Edihed (2.10)

Enb = Eel + EvdW (2.11)

The intra-molecular energy Eb (bonded) considers all the energies and forces that are

connected to bond properties. These include stretching (Estr), bending (Ebend) and the

torsion (Edihed) of a bond. The latter is also referred to as the dihedral angle in the

context of molecular mechanics.

The inter-molecular energy Enb (non-bonded) takes all long range forces into account.

Namely the electrostatic force Eel and the van der Waals force EvdW . The bonded and

non-bonded contributions to the force field are illustrated in Figure 2.2

2.2.2. Stretching energy

Estr is the energy required for stretching a bond between two atoms of type A and B.

The simplest approximation for a ball and spring model is a harmonic oscillator which

is obtained by a second-order Taylor expansion around the equilibrium bond length l0

and l being the deflection.

Estr(l − l0) = kAB(l − l0)2 = kAB∆l2 (2.12)

6



2.2. Force field methods

Here ∆l = l − l0 is the stretching of the bond and kAB is the force constant associ-

ated with the A – B bond. Bond breaking or forming is not possible. An alternative

to a harmonic potential is the more sophisticated Morse potential [18]. However, the

most important region of the potential energy function is near the energy minimum and

the agreement between the harmonic potential and quantum mechanical potential is

sufficient for a large majority of systems.

2.2.3. Bending energy

Ebend is the energy function for bending a bond angle defined by three atom types A, B

and C. There are bonds between A and B, and B and C. Also the bending potential is

considered to be a harmonic potential, which is sufficient for most applications.

Ebend(θ − θ0) = kABC(θ − θ0)2 = kABC∆θ (2.13)

2.2.4. Dihedral energy

The torsional energy or often called dihedral energy Edihed considers the energy change

which is linked to rotations around a bond. Lets consider the arrangement of atoms C,

D, E, F in Figure 2.2. The torsion or dihedral angle χ is defined by the rotation around

the D – E bond. The dihedral potential is naturally a periodic potential and therefore a

Taylor expansion in χ is not applicable. However, a Fourier series can be used to account

for the periodicity of Edihed.

Edihed =
∑
n

kn(1 + cos(nχ− δ)) (2.14)

Here, n allows to define rotations that are periodic by 360° for n = 1, n = 2 corresponds

to a periodicity of 180° and so on. The constant kn is used to set the rotation barriers

around the D – E bond. Although a Fourier series allows one to represent an arbitrary

periodic function, the chemical properties of a bond limits the choice of physically rea-

sonable n.

Dihedrals are of special interest for molecular packing in solids since the cost in energy

for rotating a bond is relatively low considering the large change in geometry. Hence

molecules obey the close-packing principle, dihedral angles are strongly influenced by

inter-molecular forces. In contrast, bond lengths and bending angles play only a minor

role in the packing of molecules, since these intra-molecular properties are not heavily

7
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Figure 2.3.: Comparsion of the bending and dihedral potentials of a butoxyphenyl group based
on the CGenFF force field. Left: Bending potential (B – C – E) of the center oxygen
atom. Right: Dihedral potentials A – B – C – D (red) and B – C – D – E (blue).

influenced by adjacent molecules. Furthermore, bond lengths and angles have only a

small impact on the overall conformation of the molecule.

Figure 2.3 illustrates nicely the huge difference in energy costs for modifying bending

angles and dihedrals. Bending the (B – C – E) angle by just 4°, which is a rather small

change in the molecular conformation, causes a rise in energy of roughly 20 kcal/mol.

In contrast, the rotation barrier for the B – C – D – E (blue) dihedral is just slightly over

3 kcal/mol. Considering that the average kinetic energy at 300 K is about 0.9 kcal/mol

[16, p. 26], the importance of the dihedrals for the molecular conformation becomes

clear. In the case of shallow potentials even low temperatures are sufficient to overcome

the rotation barrier for certain parts of a molecule such as alkyl side chains. Hence those

chains tend to move more or less unrestricted due to thermal energy. This behavior

makes it rather tricky to find an optimal molecular packing.
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2.2. Force field methods

2.2.5. Van der Waals energy

Van der Waals interaction (EvdW ) is a purely quantum mechanical effect and occurs

due to instantaneous dipoles. Thus, it is also observed between non-polar molecules.

The van der Waals energy is positive at small distances, features a negative minimum

near the touching distance of the particles and approaches zero as the distance becomes

larger. Probably the most famous model for the van der Waals interaction is the Lennard-
Jones (LJ) potential [19]. A LJ potential, as in Eq. (2.15), is defined by two parameters.

rminAB defines the distance at which the energy minim occurs and εAB defines the depth

of the potential well. Figure 2.4 illustrates the typical behavior of an LJ potential for a

hydrogen-oxygen pair.

EvdW = ELJ = εAB

[(
rminAB

rAB

)12

− 2
(
rminAB

rAB

)6]
(2.15)

Since van der Waals interaction is calculated between all non-bonded atoms, the number

of possible combinations can become very large and each combination requires its own

LJ parameters. In order to circumvent this problem, a technique known as parameter
mixing is applied. The LJ parameters for the interaction of two atom types A and B are

calculated by Eq. (2.16) and (2.17).

εAB =
√
εAεB (2.16)

rminAB = rminA + rminB

2 (2.17)

2.2.6. The electrostatic energy

The second non-bonded interaction is due to electrostatic forces and modeled by the

Coloumb potential as given in Eq.(2.18). The electron charge is not evenly distributed

over the whole molecule. Thus, certain parts of a molecule are positively or negativity

charged.

Eel = QAQB
ε rAB

(2.18)

Quantum mechanics uses orbitals to describe electron, thus the charge density is a con-

tinuous function. In order to approximate the charge distribution for a molecule, each

9
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Figure 2.4.: Lennard-Jones potential for a hydrogen-oxygen pair.

atom is assigned a partial charge. The assignment of these charges can be done by using

empirical rules or more commonly by a fitting the electrostatic potential to theoreti-

cal data, for example the molecular electrostatic potential as obtained by computational

chemistry methods.

This very basic approximation has naturally several drawbacks. The fitting of the atomic

charges is usually performed on the equilibrium conformation of the molecule. Any

change of the charge distribution due to different molecular conformations are ne-

glected. As a consequence, the conformational energy for polar molecules is less ac-

curate as for non-polar systems.

The computational cost of including long range intermolecular forces scales like O(N2).
A first step to get on top of is undesirable scaling is to introduce a cutoff distance, beyond

which the long range interaction potential is set to zero. A typical cutoff radius would be

10 Å. To avoid unphysical large forces at the cutoff distance, due to the discontinuity of

the energy, two cutoff radii are defined. The region between these two distances is used

to reduce the energy function smoothly to zero. For this purpose a so called switching
function such as S(r) is multiplied onto the potential.

S(r) = (r2
2 − r2)2(r2

2 + 2r2 − 3r2
1)

(r2
2 − r2

1)3 r1 ≤ r ≤ r2 (2.19)
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Figure 2.5.: Illustration of a Coulomb potential with a smooth cutoff between 10Å and 12Å.

Figure 2.5 demonstrates the effect of switching function S(r) on the Coulomb potential.

The cutoff region was set to be between 10 and 12 Å.

This works quite well for EvdW , because the energy at a typical cutoff radius of 10 Å

is usually below 0.01 kcal/mol due to r−6 decay. However, Coulomb interaction varies

only as r−1 and has still a noticeable contribution. Therefore it is advisable to check the

influence of the cutoff radius on the results. Nevertheless the computational complexity

is still O(N2) inside of the cutoff sphere. Many efficient methods for the summation of

long range forces are based on Ewald summation [20]. Such summation schemes, rely

on the fact that certain sums converge rapidly in reciprocal space. If modern numer-

ical Fourier transform methods, like Fast Fourier Transform (FFT) in combination with

particle mesh methods such as the particle-particle-particle mesh (PPPM) are applied, the

complexity of the summation can be reduced to O(N logN) [21].

2.2.7. Parametrization

An essential part of a molecular mechanics force field, besides the functional descrip-

tion, is the parameter set which is used to describe the interaction between different

atom types. Each combination of atom types requires its own parameter set. Unfortu-

nately the number of parameters becomes absolutely huge even for a simple force field

which contains for example 50 atom types. Each of them requires two van der Waals
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2. Fundamentals

parameters, so 100 parameters. Not all atom types are able to form bonds, even if just

half of them form bonds, one needs to find 576 stretching parameters, for the 288 possi-

ble combinations. It gets even worse for bond angles (13800 parameters) and dihedrals

(500000 parameters).

The intra-molecular parameters are mostly determined by quantum mechanical calcu-

lations and do not rely so much on experimental data as the non-bonded parameters.

Anyhow, calculating many hundred thousands of dihedral parameters is still not feasi-

ble. So usually only parameters for very common chemical compounds are available.

Hence it is quite common that one is in need for a replacement for missing parameters.

A straightforward approach is to look for chemically similar compounds, for example,

dihedral parameters for A – B – B – A are missing, but parameters for A – B – B – C exist.

The results of such an approach, referred to as Parametrization by Analogy, depends of

course on the similarity of atom types. If no fitting replacement is available in the force

field one needs to fit the energy function of the corresponding parameter to some refer-

ence data in order to obtain new force field parameters. Such a procedure is described

in more detail in Section 3.3.

One should keep in mind, that new parameters should always be in balance with the rest

of the force field. Therefore mixing of parameters of different force fields is not advisable

and will most likely produce useless results. Also re-optimization of parameters should

always be carried out by following the guidelines of the particular force field.

2.3. Computational chemistry

For accurately describing atoms, a complete quantum mechanical approach is not avoid-

able. Such methods are called ab inito, due to the fact that they all focus on the solution

of the time-independent Schrödinger equation as given in Eq. (2.20) and do not rely on

empirical data.

Ĥ |ψ〉 = E |ψ〉 (2.20)
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2.3. Computational chemistry

Again, the Born-Oppenheimer approximation is applied, which allows one the solve the

Schrödinger equation with fixed nuclei coordinates. This leads to the following many-

body Hamiltonian:

Ĥ |ψ〉 =
[
T̂ + V̂ + Û

]
|ψ〉 =

=

 N∑
i

(
− h̄2

2mi
∇2
i

)
+

N∑
i

V (ri) +
N∑
i=1

∑
j<i

U(ri, rj)

 |ψ〉 = E |ψ〉 (2.21)

where E is the total energy. T̂ is the kinetic energy, V̂ is the potential due to the nuclei

and Û covers the problematic electron-electron interaction, which makes it impossible to

separate the many-body equation into simpler single-particle equations. Even an exact

numerical solution of a coupled many-body problem is computationally not feasible and

some further simplifications are required.

2.3.1. Density functional theory

The foundation for many modern computational chemistry methods for solving the

many-body Schrödinger equation is the Hartree-Fock (HF) formalism. Since a detailed

treatment of the HF method and density function theory (DFT) would go easily beyond

the scope of this work, only the most important aspects will be discussed. A practical

introduction to DFT can be found in [22].

The exact wave function for a many-body systems consists of a linear combination of

Slater determinants. Since this wave function would be too huge for any real appli-

cation, it is approximated by a single Slater determinant. Using this ansatz yields the

Hartree-Fock equation. It becomes clear that the electron-electron interaction is approx-

imated by a single-particle potential, which depends solely on the electron density n(r).
The single-particle potential can further be split up into two parts. The so called Hartree

potential and the problematic exchange potential (Fock potential). The former can be

expressed exactly, however the exchange potential can only be evaluated by using the

rather intuitive Slater approximation.

A highly successful method, which is based on insights gained by HF is density functional
theory (DFT). The idea behind DFT is to find a single-particle potential for the exchange

potential Û , which depends solely on the n(r) like the Hartree potential. The connection
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2. Fundamentals

between the complicated antisymmetric wave function Ψ and electron density n(r) is

given by:

n(r) = N

∫
d3r2

∫
d3r3 . . .

∫
d3rN Ψ∗(r, r2, . . . rN )Ψ(r, r2, . . . rN ) (2.22)

The important part is, that the relation in Eq. (2.22) can be reversed. Hence it is possible

to calculate the ground-state wavefunction Ψ0 for a given ground-state density n0(r).
This means, Ψ0 is a unique functional of n0(r) [23]:

Ψ0 = Ψ[n0]. (2.23)

Furthermore the ground-state electron density n0 determines also the ground-state en-

ergy E0

E0 = E[n0] = 〈Ψ[n0]| T̂ + V̂ + Û |Ψ[n0]〉 . (2.24)

The external potential V̂ is defined by the investigated system. In contrast, T̂ and Û are

called universal potentials, because they do not depend on the investigated system. If

the functional T [n] and U [n] are known, one has to minimize

E[n] = T [n] + U [n] +
∫
V (r)n(r)d3r (2.25)

with respect to n(r) in order to find the ground-state density n0. First, the electron-

electron interaction U [n] is neglected:

Es[n] = 〈Ψs[n]| T̂ + V̂s |Ψs[n]〉 (2.26)

where V̂s is an external effective potential in which the non-interacting electrons move.

It was shown by Hohenberg and Kohn that the electron density that minimizes the energy

of the overall functional is the true electron density corresponding to the solution of the

Schrödinger equation [24]. However, the true exchange-correlation functional has not

been discovered yet, therefore approximations, as discussed in in the next section, are

applied. Nevertheless, the variational problem of minimizing the energy is solved by

using Lagrangian multipliers. This leads to the famous Kohn-Sham equations:[
− h̄2

2m∇
2 + Vs(r)

]
φi(r) = εiφi(r) (2.27)

The difference to the original problem in Eq. (2.21) is that the Kohn-Sham equation
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2.3. Computational chemistry

is missing the summations. This is due to the fact that the Kohn-Sham equations are

single-electron equations. The solutions φi(r) allow one to calculate the sought electron

density ns(r).

ns(r) =
N∑
i

|φi(r)|2. (2.28)

A more detailed expression of the effective single-particle potential is given by:

Vs(r) = V (r) +
∫
e2ns(r′)
|r− r′| d

3r′ + VXC [ns(r)] (2.29)

The second term is the already known Hartree potential and the third term VXC is the

still unknown exchange-correlation potential, which includes all the many-body inter-

actions. Due to the fact, that the Hartree and exchange-correlation potential depend

on ns(r), the Kohn-Shams equations can only be solved iteratively. One starts with an

reasonable guess for ns(r), subsequently calculates Vs and solves the Kohn-Sham equa-

tions. The obtained solutions φi(r) are used to calculate a new density ns(r) for the

next iterative step. This steps are repeated until the density ns(r) is converged or below

a certain tolerance level.

Exchange-correlation potential

A rather simple approximation for VXC is the Local Density Approximation (LDA) [25]. It

is assumed that exchange-correlation just depends on the position where the functional

is evaluated:

ELDAXC =
∫
εXC(n)n(r)d3r (2.30)

Since exchange-correlation potentials are often obtained by Monte Carlo methods, an

appropriate analytical representation is desired. Such fitting formulas where, for ex-

ample created by Perdew and Wang (PW) [26]. An expansion of LDA is the generalized
gradient approximation (GGA). It is still local but considers also the gradient of n(r):

EGGAXC =
∫
εXC(n,∇n)n(r)d3r (2.31)

Two widely used GGA functionals are PBE, named after Perdew, Burke and Ernzerhof
[27] and PW91 [28].
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Another kind of functional are the so called hybrid functionals. They consists of a mix

of HF exact exchange energy, based on the Kohn-Sham orbitals φi(r) rather than on the

density n(r), and various other exchange and correlation density functionals. Probably

most common hybrid functional is B3LYP [29, 30].

The correct or true exchange-correlation functional is still unknown, hence all solutions

obtained by means of DFT are not exact solutions of the Schrödinger equation. Proba-

bly the most well-known inaccuracies of DFT are the underestimation of band gaps in

semiconductors and the lack of proper van der Waals interaction.

2.3.2. Møller-Plesset perturbation theory

Møller-Plesset perturbation theory (MP) is a post-Hartree-Fock method which uses per-

turbation theory to add electron correlation effects. The Møller-Plesset theorem states

that the correlation potential does not contribute in first-order to the exact electronic en-

ergy [31]. Therefore second order perturbation theory (MP2) is the lowest order which

changes the unperturbed Hartree-Fock result. MP2 and even higher order calculation

are only used for small system due to the relatively large computational cost compared

to DFT.

2.3.3. Basis sets

So far only the description of the particle interaction was discussed. However, for an

actual calculation a linear combination of functions is used to approximate the unknown

molecular orbitals. Such a set of functions is called a basis set. For solids with periodic

boundary conditions, usually a set of plane waves in combination with pseudo poten-

tials is used. Plane waves up to a certain cutoff energy are included in the calculations.

For isolated molecules a linear combination of atomic orbitals (LCAO) is used to ap-

proximate the molecular orbitals. Since many different basis sets are available, the most

popular sets will be discussed briefly.

The simplest basis sets are called minimal basis sets. Only a single function (called an

atomic orbital) is used for each electron of the atoms. Thus, for hydrogen and helium

a single 1s-orbital and for second row elements two s-functions (1s, 2s) and three p-

orbitals (2px, 2py, 2pz) are sufficient. An expansion of the minimal basis set is the

Double Zeta (DZ) or Triple Zeta (TZ) basis set. Double and triple refers to the doubling or

tripling of the atomic orbitals for each electron. Hence ten atomic orbitals (two 1s, two

2s, six 2px,y,z) would be necessary for second row elements like carbon for a DZ basis
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2.4. Crystal lattice

set. Such a basis set is more flexible and allows for a better description of the electron

distribution in different directions. This is especially important to accurately describe σ

and π-bonds. The drawback is a larger basis set which increases the computational cost.

Keeping in the mind that only valence electron contribute to bonds, it stands to reason

to split the electrons into core and valance electrons. Such basis sets are known as split
valence basis.

Further improvements are to include polarization and diffuse functions. An s-orbtial

can be polarized by mixing with a p-orbital and d-orbitals are used to polarize p-orbitals.

Diffuse functions use smaller exponents to account for the larger region of influence of

anions and elements like sulfur, nitrogen, oxygen and fluorine in organic molecules.

Names of basis sets can be quite cryptic and confusing. The most popular notations for

basis sets are based on the work of the group of Pople [32] and Dunning [33]. A short

list of commonly used basis sets is given in Table 2.1.

Table 2.1.: List of basis sets with a short description. Top four are basis sets are in Pople notation
and the bottom three are correlation-consistent basis sets in Dunning notation.

basis set description

6-31G split valence double-zeta
6-31G* * adds d-type polarization on non-hydrogen atoms

6-311G* split valence triple-zeta with d-type polarization on non-hydrogen atoms
6-31+G* + adds one set of diffuse s- and p-functions for non-hydrogen atoms

cc-pVDZ correlation-consistent, polarized valence double-zeta
cc-pVTZ correlation-consistent, polarized valence triple-zeta

aug-cc-pVTZ aug includes a set of diffuse s- and p-functions

2.4. Crystal lattice

Many properties of solids can be explained by their periodic structure. Therefore it is

possible to reduce the large macroscopic bulk structure to a single microscopic repetitive

unit cell. Generally, the unit cell is defined by six parameters, which are the lengths of

the edges (a, b and c) and the angles between them (α, β and γ). The positions of the

atoms ri (also known as basis, however not to be confused with the lattice basis vectors)

are defined relative to the lattice point. The positions R of the lattice points (or unit
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Figure 2.6.: Example of a 2-dimensional lattice with lattice vectors a and b. ri is the the position
of atom i in fractional coordinates.

cells) create crystal lattice. It is obtained by translation of the lattice basis vectors a, b
and c.

R = ua + vb + wc u, v, w ∈ Z (2.32)

The combination R and ri allows one to reconstruct a crystalline solid. This circum-

stance is sometimes expressed rather casually as:

lattice + basis = crystal structure

For a orthorhombic lattice (α = β = γ = 90°) the basis vectors for the lattice are

expressed by Eq. (2.33) and are equal to a Cartesian basis.

a = (a, 0, 0) b = (0, b, 0) c = (0, 0, c) (2.33)

Usually the positions of the atoms ri inside the unit cell are not represented in Cartesian

coordinates rci but in fractional coordinates rfi (unit cell coordinates). For a general
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triclinic system defined by the lattice parameters a, b, c, α, β, γ and V , such a basis

transformation is performed by Eq. (2.34).

B =

a b cos γ c cosβ
0 b sin γ c(cosα−cos β cos γ)

sin γ
0 0 V

ab sin γ



rci =

xcyc
zc

 = B

xfyf
zf

 (2.34)

The volume V as used above is given by V = a · (b×c). For the transformation of vector

in Cartesian coordinates into fractional coordinates, one simply needs to invert B:

rfi =

xfyf
zf

 = B−1

xcyc
zc

 (2.35)

Since X-ray diffraction is usually analyzed in the reciprocal space, the following relations

are used to calculate the reciprocal lattice vectors a∗, b∗ and c∗:

a∗ = b× c
a · b× c = b× c

V
(2.36)

b∗ = c× a
a · b× c = c× a

V
(2.37)

c∗ = a × b
a · b× c = a × b

V
. (2.38)

An extremely useful relation between the direct and reciprocal lattice vectors is given in

Eq. (2.39) and (2.40). Depending on the definition of the reciprocal lattice vectors the

scalar product of the direct and reciprocal lattice vector is either 1 or 2π.

a · a∗ = b · b∗ = b · b∗ = 1 (2.39)

a · b∗ = a · c∗ = b · c∗ = 0 (2.40)

An arbitrary vector in reciprocal space is a linear combination of the reciprocal lattice

vectors. If the coefficients are integers such as h, k and l they are called Miller indices
and represent a reciprocal vector hhkl to a reciprocal lattice point (see Eq. (2.41)).
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Furthermore, it is possible to derive a handy expression for the corresponding netplane

distance dhkl as shown in Eq. (2.42).

hhkl = ha∗ + kb∗ + lc∗ h, k, l ∈ Z (2.41)

dhkl = 1
hhkl

(2.42)

One should note that the vector hhkl is perpendicular to the corresponding (hkl)-netplane.

Since hhkl points to a reciprocal lattice point, it allows one to construct the reciprocal

lattice by using all integer combinations of hkl.

2.5. X-ray scattering

A thorough derivation of X-ray scattering involves many technical and rather cumber-

some mathematical rearrangements. Therefore the following section will only focus on

important key elements in order to introduce some principal concepts of X-ray diffrac-

tion. A rigorous derivation can be found in [10] or [34]. The basic concept of elastic

Figure 2.7.: Illustration of a scattering event. Unit vectors s and d point in the direction of the
source and detector, respectively. An incoming wave is scattered at O and P. The
interference is determined by the path difference ∆s and ∆d.

scattering will be explained on basis of Figure 2.7. The at O scattered electromagnetic

(EM) wave is observed at position r. The amplitude of the EM wave is denoted as Es.

At some time t the scattered wave at r is Er(t) = Es cosωt. However at same time t, the
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2.5. X-ray scattering

situation for a wave scattered at P at r′ looks different due to the shorter path. The dif-

ference is L = ∆s+∆d. This path difference can also be expressed as a phase difference

ϕOP = ωt − ω(t + L/c) = −ωL/c, where c is the speed of light. Introducing direction

vectors s and d allows one to define the phase difference by using the projection of the

vector vOP onto s and d, respectively:

ϕOP = −ωL
c

= −2πνL
c

= −2π
λ

(vOP · (s + d)) (2.43)

Switching to the complex representation of the electric field allows for a more compact

notation. Using ω = 2πν yields:

EO(t) = Ese
i2πνt EP (t) = Ese

i(2πνt+ϕOP ) (2.44)

The electric field which hits the detector is naturally the sum of both scattered waves

EO and EP .

EOP = Es

(
e2πiνt + ei(2πνt+ϕOP )

)
(2.45)

During an experiment the detected intensity will be proportional to the square of the

EM field, which will be independent of time. Therefore one can set t = 0 in Eq. (2.45)

which yields

EOP = Es + Ese
iϕOP (2.46)

In order to explain the scattering which occurs in a solid, many single scatters have to be

included. The scatterer or electron at the origin is removed, however a now hypothetical

scattered wave Es as a reference is still assumed. It stands to reason to use following

approach for the diffracted electric field Ed for a n electron system:

Ed = Es

n∑
j=1

eiϕj with ϕj = −2π
λ

(
vOPj · (s + d)

)
(2.47)

where vOPj is the vector pointing to electron j. However, real electrons are not located

at a point. Due to their quantum mechanical nature the electron charge density or

the probability of finding an electron ρ(r) is spatially distributed. Hence the electron

density depends on the position r. The integral over space has to be unity or equal to

the number of electron for a multi-electron system. Considering now infinitesimal small
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volumes allows one to transform the sum in Eq. (2.47) into an integral over the volume

V of the crystal.

Ed = Es

∫
V

ρje
iϕjdV = Es

∫
V

ρje
−i 2π

λ (vOPj ·(s+d))dV (2.48)

In order to connect the geometry with an actual crystal lattice, the position O is set to

a crystal lattice point. Thus, the positions of the atoms vOPj can be described by lattice

vectors and fractional coordinates.

vOPj = Rj + rfj = (uja + vjb + wjc) + (xfj a + yfj b + zfj c) (2.49)

By plugging Eq. (2.49) into Eq. (2.48) one gets the rather unhandy expression for the

scattered wave of the whole crystal:

Ex = Es

∫
V

ρje
−i 2π

λ (uja+vjb+wjc+xf
j

a+yf
j

b+zf
j

c)·(s+d)dV (2.50)

Since a crystal consists of a periodic arrangement of unit cells, the integration can be

limited to the volume of one single unit cell VC . The triple sum takes care of the summa-

tion over all unit cells in the crystal volume. Also index j in the fractional coordinates

can be neglected since the atom positions are the same in each unit cell.

Ex = Es
∑
U

∑
V

∑
W

e−i
2π
λ (Ua+V b+Wc)·(s+d)

∫
VC

ρ(rfj )e−i 2π
λ (xfa+yfb+zfc)·(s+d)dV

(2.51)

The first part of Eq. (2.51) depends only on lattice constants and defines a necessary

condition for diffraction. However, the second part depends on the content of the unit

cell and determines the intensity of the peak. The last part which needs modification

is the phase difference expression, since it is still not connected to the crystal lattice.

Vector s and d are pointing in the direction of the source and detector and are divided

by the wavelength. Hence they can be expressed as a reciprocal vector:

s + d
λ

= ha∗ + kb∗ + lc∗ = hhkl = ki − kf (2.52)

Due to the fact that peaks only occur at constructive interference it is no coincidence

that the coefficients h, k, l in Eq. (2.52) turn out to be the infamous Miller indices.

Eq. (2.52) is known as the Laue condition [35] and defines a requirement for observing

diffraction peaks. The detector and source must be moved in a position where the vector
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2.5. X-ray scattering

Figure 2.8.: Orientation of incoming and outgoing wave vector ki and kf , respectively. Scattering
vector q and corresponding net plane distance is indicated as dhkl.

sum of s and d is parallel to hhkl. Instead of using s and d, it is convenient to use the

incoming and diffracted wave vector, ki and kf , to denote these directions as illustrated

in Figure 2.8. Thus, in the case of constructive interference, the scattering vector q is

equal to the reciprocal lattice vector hhkl. Since we are only considering elastic scat-

tering, hhkl bisects the angle defined by ki and kf and furthermore is perpendicular to

the corresponding (hkl) net plane. Bragg’s law [36] can be obtained by using Eq. (2.42)

and |k| = 1/λ:

sin θ = hhkl/2
kf

= hhkl
2kf

λ = 2dhkl sin θ (2.53)

Combining Eq. (2.51), Eq. (2.52) and considering the helpful relation between the direct

and reciprocal vectors in Eq. (2.36) one obtains:

Ex = Es
∑
U

∑
V

∑
W

e−i
2π
λ (hU+kV+lW )

∫
VC

ρ(rf )je−i
2π
λ (xfh+yfk+zf l)dV (2.54)

The first part of Eq. (2.54) also explains that the volume of the crystal or number of

unit cells, which take part in the scattering is proportional to the scattered intensity.
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However for a given crystal size and incoming intensity, the sums just pose a constant

factor D. This allows one to simplify the expression for the scattered EM wave and find

its final form:

Ehkl = D

∫
VC

ρ(rf )e−2πi(hxf+kyf+lzf )dV = D

∫
VC

ρ(rf )e−2πi(hhkl·rf ) (2.55)

2.5.1. Structure factors

The structure factors Fhkl play a important role in crystal structure determination, since

they are intimately connected to the the electron density ρ and therefore to the atom

positions. The structure factors should be independent of the incident beam intensity

and crystal size. This is achieved by dividing Eq. (2.55) by D, which acts as a constant

multiplier depending on the crystal size and beam intensity:

Fhkl = Ehkl
D

=
∫
VC

ρ(rf )e−2πi(hxf+kyf+lzf )dV (2.56)

Since usually no analytical expression for the periodic electron density ρ is available, a

Fourier series expansion seems to be the obvious solution.

ρ(rf ) =
∞∑

m=−∞

∞∑
n=−∞

∞∑
o=−∞

Cmnoe
−2πi(mxf+nyf+ozf ) (2.57)

Plugging the Fourier expression for ρ into Eq. (2.56) yields after a lengthy and cumber-

some evaluation that the Fourier coefficients Cmno can be expressed by the structure

factors Fh:

ρ(rf ) = 1
Vc

∑
h

Fhe
−2πi(h·rf ) (2.58)

This means that the electron density ρ and the structure factors Fh are connected by a

Fourier transform. Since the electrons are localized around their corresponding atoms,

the spherical atom approximation is applied. The electron density is modeled as a sphere

centered around the atom positions. Using this model, an expression for the structure

factor can be obtained, which contains the atomic form factor fj . It defines the scatter-

ing amplitude of an isolated atom. Since no convenient analytical expression for fj is

available, it is usually modeled by Eq. (2.59). The coefficients ai, bi and c are known as
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2.5. X-ray scattering

Cromer–Mann coefficients and can be found in the International Tables for Crystallography
[37].

fj(q) =
4∑
i=1

aie
−bi( q

4π )2
+ c (2.59)

Figure 2.9 illustrates fj for elements commonly found in organic molecules and its de-

pendence on the reciprocal scattering vector magnitude q. For q = 0 it equates the

atomic number of the element. Since fj increases with the atomic number, it becomes

clear that X-rays are not very sensitive to hydrogen and other light elements. Further-

more the contrast between neighboring atoms in the periodic table is rather small which

makes it difficult to separate them.

Using the atomic form factor allows one to write the structure factor Fhkl in following

convenient form which just contains the sum over all atoms in the unit cell:

Fhkl =
n∑
j=1

fj(hkl)e−2πi(hxf
j

+kyf
j

+lzf
j

) =
n∑
j=1

fj(hkl)e−2πi(h·rf
j

) (2.60)

The argument hkl in fj(hkl) refers to the scattering vector as defined in Eq. (2.41)

and rfj is the position of atom j in fractional coordinates. The phase of the complex

structure factor Fhkl depends solely on the fractional coordinates of the atoms, exactly

the information which is required for a crystal structure solution. If sufficient enough

structure factor are known, the electron density ρ and therefore the atom position can

be reconstructed by means of Fourier synthesis.

2.5.2. Phase problem

The intensity of an EM wave is proportional to E2. In the case of an X-ray experiment

this means that the measured intensity is proportional to the incoming beam intensity

and furthermore depends for the main part on the structure factor:

I ∝ |F (hkl)|2 (2.61)

This may look convenient at first glance but is a huge problem for crystal structure

solution, since only the magnitude of the complex structure factor Fhkl is accessible

with an experiment. However, for a successful Fourier synthesis of the electron density

ρ, the magnitude and phase are necessary. This inconvenient circumstance is known as

the phase problem.
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Figure 2.9.: Atomic form factor for hydrogen, carbon, nitrogen and oxygen.

2.5.3. Intensity correction

The recorded intensity for a reflection (hkl) in an experiment is only proportional to

|F (hkl)|2. For a successful crystal structure solution it is absolutely crucial to correct

the measured intensities to obtain reliable structure factors. Properties of X-rays and

the experimental setup have a strong influence on the intensities. Since the direction of

polarization of an X-ray beam changes during scattering, the polarization of the incident

beam influences the scattered intensity. X-rays with a polarization perpendicular to

scattering plane are unaffected and the intensity does not change. However, the electric

field of X-rays with polarization in the plane of scattering are reduced by the cosine of

the scattering angle 2θ. Hence, the intensity, which is proportional to the electric field

squared, is reduced by cos2 2θ. In contrast to linear polarized synchrotron radiation,

X-rays produced by a typical X-ray tube are a homogenous mixture of all polarization

directions and the correction factor is the mean of the two extreme cases and is given in

Eq. (2.62).

P = 1 + cos2 2θ
2 (2.62)

Another important factor is the Lorentz correction which takes the finite size of recipro-

cal lattice points into account. The form of the Lorentz factor depends on experimental
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2.5. X-ray scattering

arrangement and sample. The relation in Eq. (2.63) holds for powder samples measured

in a Bragg-Brentano geometry.

L = 1
sin θ sin 2θ (2.63)

Correction factors for more sophisticated setups such as grazing incidence diffraction

are discussed in [11, 38].

27





3. Methods

3.1. Grazing incidence X-ray diffraction

Grazing incidence X-ray diffraction (GID) is a surface sensitive technique due to a pri-

mary beam incidence angle αi near the critical angle (≈ 0.2° for Cu Kα). A typical

experimental setup is given in Figure 3.1 and described in [39]. In contrast to a specu-

lar setup, GID probes netplanes perpendicular to the sample surface and is used to study

the in-plane order of thin films. The scattering vector q is split up in the in-plane (qp)
and out-of-plane (qz) component and plotted in a 2D reciprocal space map (RSM).

Figure 3.1.: Schematic of a GID laboratory setup using an X-ray tube and 1D detector show-
ing the incidence angle αi, wave vector ki and kf of the incoming and scattered
beam. Corresponding scattering vector q and its in-plane (qp) and out-of-plane (qz)
components are shown. Reprinted from [39].

Since the peak positions solely depend on the lattice parameters, the unit cell can be

determined by adjusting the lattice parameters until experimental and calculated peak

positions match. The peak intensities are extracted by integrating along one direction in

the RSM. This yields a 1D intensity profile which is usually fitted by Gaussian, Lorentzian

or Pseudo-Voigt functions in order to obtain the peak intensity.
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Figure 3.2.: Reciprocal space map of a thin film perylene sample.

3.2. MD simulations with LAMMPS and CGenFF

This part will cover the steps which are necessary to set up MD simulations with LAMMPS
using the CHARMM General Force Field (CGenFF). LAMMPS is an open source classical

molecular dynamics simulator that can be used with several force fields. It is available

for Windows and Linux and can be used on normal desktop PCs and large scale computer

clusters. The CHARMM program suite (Chemistry at HARvard Macromolecular Mechan-

ics) was developed to study molecules of biological interest including macromolcules

such as proteins, lipids and DNA. It offers among other tools, a MD simulator and force

fields. The CHARMM simulator itself is not free, however the CHARMM force fields can

be used free of charge. The CHARMM suite offers a variety of force fields which are

suited for different applications. The CHARMM22 and CHARMM27 force fields are op-

timized for protein-DNA binding. The most versatile force field is the CHARMM General
Force Field (CGenFF) [40]. It was designed for small drug-like molecules and covers

many typical subunits of small organic molecules.

In order to convert the CHARMM force field data to LAMMPS compatible files many dif-

ferent file formats and programs are required. Nevertheless, Figure 3.3 tries to provide

an overview of all the file formats and programs to avoid too much confusion.
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3.2. MD simulations with LAMMPS and CGenFF

Figure 3.3.: Overview of files and programs included in the conversion of CHARMM to LAMMPS
compatible data.

3.2.1. Molecule file formats

Molecules are available in a large variety of data formats. The simplest format is the

XYZ format. It just contains the Cartesian coordinates of the atoms and the element.

Due to its simplicity it is also quite limited. In crystallography the Crystallographic Infor-
mation File (cif) is very popular. It is used to save complete crystal structures including

lattice constants and symmetries. Another very common file format is the Protein Data
Bank (pdb) format which was used extensively during this work because most programs

are compatible with this file format. The format is discussed in more detail in Sec-

tion 3.2.3.
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3.2.2. CHARMM topology and parameter file

The CHARMM topology file (.rtf or .tpc) contains only chemical information (atom types

and bonds) about a molecule and no coordinates. An excerpt of a topology file for acetic

acid is shown in Listing 3.1. The first entry in the file tells psfgen to generate automat-

ically the angles and dihedrals for the molecule. The first part of the file lists all the

masses and corresponding atom types. The second part begins with the unique name

of the molecule is indicated by the keyword RESI. The expression residue is used to

describe a single molecule, although it has a different meaning in the field of macro-

molecules. The next part of the topology file assigns an unique name to each atom, the

type and the partial charge. The last part defines the bonds between the atoms. There

is no need to define a bond type, since this information is already provided by the atom

type. The actual assignment of atom types, charges and penalty scores is covered in

Section 3.3.

Listing 3.1: Excerpt of a CHARMM topology file for acetic acid.
1

2 AUTOgenerate ANGLES DIHEDRAL
3

4 MASS 258 HGA3 1.00800 ! alphatic proton, CH3
5 MASS 320 CG331 12.01100 ! aliphatic C for methyl group (-CH3)
6 MASS 293 CG2O2 12.01100 ! carbonyl C: esters, [neutral] carboxylic acids
7 MASS 359 OG2D1 15.99940 ! carbonyl O: amides, esters, carboxylic acids
8 MASS 266 HGP1 1.00800 ! polar H
9 MASS 372 OG311 15.99940 ! hydroxyl oxygen

10

11 RESI ACE 0.000 ! param penalty= 0.000 ; charge penalty= 0.000
12 GROUP ! CHARGE CH_PENALTY
13 ATOM O1 OG311 -0.600 ! 0.000
14 ATOM H1 HGP1 0.430 ! 0.000
15 ATOM O2 OG2D1 -0.549 ! 0.000
16 ATOM C1 CG2O2 0.749 ! 0.000
17 ATOM C2 CG331 -0.300 ! 0.000
18 ATOM H2 HGA3 0.090 ! 0.000
19 ATOM H3 HGA3 0.090 ! 0.000
20 ATOM H4 HGA3 0.090 ! 0.000
21

22 BOND O1 H1
23 BOND O1 C1
24 BOND O2 C1
25 BOND C1 C2
26 BOND C2 H2
27 BOND C2 H3
28 BOND C2 H4
29

30 END
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3.2. MD simulations with LAMMPS and CGenFF

The CHARMM parameter file (.prm) contains the parameters for bonds, angles and di-

hedrals, all of which are defined by atom types. As one can imagine, there are many

thousand possible combinations of atom types and each corresponds to an unique chem-

ical setup with different properties. Listing 3.2 shows only a very small fraction of all

available parameters as a demonstration. As one can see, for example, bonds are defined

by two atom types and the parameters refer to the force constant and the equilibrium

bond length of a harmonic potential. All CGenFF parameters are combined in one sin-

gle file named par_all36_cgenff.prm. The generation of a parameter file and necessary

modifications for new molecules are explained in Section 3.3.

Listing 3.2: Excerpt of the CGenFF parameter file.
1

2 BONDS
3 CG2O2 CG331 200.00 1.5220 ! acetic acid pure solvent
4 CG2O2 OG2D1 750.00 1.2200 ! acetic acid pure solvent;
5 CG2O2 OG311 230.00 1.4000 ! acetic acid pure solvent
6 CG331 HGA3 322.00 1.1110 ! alkane update
7 OG311 HGP1 545.00 0.9600 ! methanol vib fit;
8

9 ANGLES
10 CG331 CG2O2 OG2D1 70.00 25.00 20.00 2.44200 ! acetic acid pure solvent;
11 CG331 CG2O2 OG311 55.00 110.50 ! acetic acid vibrations
12 OG2D1 CG2O2 OG311 50.00 123.00 210.00 2.26200 ! acetic acid
13 CG2O2 CG331 HGA3 33.00 109.50 30.00 2.16300 ! acetic acid
14 HGA3 CG331 HGA3 35.50 108.40 5.40 1.80200 ! alkane update
15 CG2O2 OG311 HGP1 55.00 115.00 ! acetic acid pure solvent
16

17 DIHEDRALS
18 OG2D1 CG2O2 CG331 HGA3 0.0000 6 180.00 ! from lipid methyl acetate
19 OG311 CG2O2 CG331 HGA3 0.0000 6 180.00 ! from lipid methyl acetate
20 CG331 CG2O2 OG311 HGP1 2.0500 2 180.00 ! acetic Acid C-Oh rot barrier
21 OG2D1 CG2O2 OG311 HGP1 2.0500 2 180.00 ! acetic Acid C-Oh rot barrier

3.2.3. Protein data bank format

This section will explain just the basic structure of a pdb file and how they are used for

MD simulations. A full reference of the pdb format can be found online. This file format

was originally designed to work with macromolecules. Many features are therefore not

used or adapted to work for this kind of MD simulations. Since the pdb format is widely

spread most of the programs are able to handle pdb files. Hence they are essential for

the communication between various tools and programs.

pdb files contain the coordinates of the atoms but also allow to distinguish between

multiple molecules. Listing 3.3 shows a short example of a pdb file for acetic acid. The
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first line is an optional header. The second line contains the crystallographic unit cell

parameters. Each following line contains information about a single atom. It starts

with the ATOM keyword and is followed by an unique atom index. The next column is

the unique name of the atom. The atom name must be the exact same name as in the

CHARMM topology file. The name is the only link between the pdb file which contains

the positions of atoms and the topology file which stores the information about the

atom types, charges and bonds. The next column contains the residue name and is only

used for creating the psf file. The fifth column contains the very important residue id.

This id is used to separate single molecules. The next three columns are the Cartesian

coordinates of the atom. The example in Listing 3.3 contains two acetic acid molecules

and each molecule consists of eight atoms. The atom index is increasing for all atoms,

however the atoms names repeat for each single molecule. Since the pdb file format

dates back to time of punched cards the format is very strict and any violation of the

column formatting is not allowed. MATLAB provides helpful functions for reading and

writing of pdb files (pdbwrite and pdbread).

Listing 3.3: Example of a pdb file for acetic acid.
1 HEADER CSD ENTRY ACETAC07
2 CRYST1 13.1510 3.9230 5.7620 90.00 90.00 90.00 Pna21
3 ATOM 1 O1 UNK 1 4.912 3.486 0.000 1.00 0.00 O
4 ATOM 2 H1 UNK 1 4.248 3.692 -0.455 1.00 0.00 H
5 ATOM 3 O2 UNK 1 3.248 2.397 0.981 1.00 0.00 O
6 ATOM 4 C1 UNK 1 4.409 2.754 0.978 1.00 0.00 C
7 ATOM 5 C2 UNK 1 5.401 2.417 2.038 1.00 0.00 C
8 ATOM 6 H2 UNK 1 4.958 1.973 2.777 1.00 0.00 H
9 ATOM 7 H3 UNK 1 6.115 1.969 1.717 1.00 0.00 H

10 ATOM 8 H4 UNK 1 5.813 3.229 2.426 1.00 0.00 H
11 ATOM 9 O1 UNK 2 8.239 0.437 2.881 1.00 0.00 O
12 ATOM 10 H1 UNK 2 8.903 0.231 2.426 1.00 0.00 H
13 ATOM 11 O2 UNK 2 9.903 1.526 3.862 1.00 0.00 O
14 ATOM 12 C1 UNK 2 8.742 1.169 3.859 1.00 0.00 C
15 ATOM 13 C2 UNK 2 7.750 1.506 4.919 1.00 0.00 C
16 ATOM 14 H2 UNK 2 8.193 1.950 5.658 1.00 0.00 H
17 ATOM 15 H3 UNK 2 7.036 1.954 4.598 1.00 0.00 H
18 ATOM 16 H4 UNK 2 7.338 0.694 5.307 1.00 0.00 H

3.2.4. Protein structure file (psf)

The Protein Structure Files (psf) are used in an intermediate stage for the data conver-

sion with charmm2lammps. As one can guess from its name, it contains only structural

information about a system and no coordinates. Usually manual editing of psf files is

not required and therefore a more detailed explanation is not necessary. However they

play an important role in data visualization as explained in Section 3.2.8.
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For the generation of psf files, a CHARMM topology file and a pdb file with the coor-

dinates is required. The conversion is possible with VMD (Visual molecular dynamics),

which provides a graphical user interface and therefore requires manual user input. An-

other more efficient alternative is psfgen, a simple console program which can be part

of an automated script for structure generation. psfgen is part of another MD simulator

called NAMD and is available free of charge.

psfgen needs a short configuration script to work properly (Listing 3.4). In line 2 the

name of the CHARMM topology file is defined. Line 4 is used to change (if necessary)

the residue name of UNK to ACE (for acetic acid). The residue name must match the

name in the topology file. The segment name is not used in the simulations but needs to

be defined. In line 9 the name of the pdb file, which contains the coordinates, is given.

The last two lines just define the output name of the psf and pdb file.

Listing 3.4: Input script for psfgen.
1 package require psfgen
2 topology top_acetic.rtf
3

4 pdbalias residue UNK ACE
5 segment DBD1 {
6 pdb unit_cell.pdb
7 }
8

9 coordpdb unit_cell.pdb DBD1
10

11 writepsf unit_cell.psf
12 writepdb unit_cell.pdb

3.2.5. charmm2lammps

Finally charmm2lammps is used to create the input files for LAMMPS and is part of the

LAMMPS package. However charmm2lammps is a Perl script which relies on the use of

many Linux command line tools. Therefore it is not possible to use charmm2lammps
on Windows without Cygwin. Cygwin provides a minimal Unix-like environment for

Windows. It includes many of the useful standard tools which are part of every Linux

distribution. More information about Cygwin is available online.

charmm2lammps needs a psf and pdb file (structural information + coordinates) and

the CHARMM parameter file to create the LAMMPS data file which includes all the

information about the system for the simulation. The generated input file (.in) for

LAMMPS can be ignored.
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3.2.6. LAMMPS data file

The LAMMPS data file contains the structural information and all the force field param-

eters in LAMMPS format. The first part of the file is a summary of the parameters of the

system. The important part begins at line 12. The next 4 lines define the dimensions

and geometry of the simulation box. Line 12 to 14 define the x, y, z dimensions of the

box for a rectangular box. Line 15 is used to define a non-orthogonal (triclinic) box. It

is important to note, that this formalism differs from the usual crystallographic unit cell

definition. For non-orthogonal unit cells the conversion as described in [41] needs to be

applied in order to convert unit cell parameters into the correct LAMMPS box parame-

ters. This part of the data file is modified to fit the experimental unit cell of the organic

thin film structure for the MD simulation.

The remaining part of the data file lists all atom types, initial atom positions and charges,

intra-molecular pairs and corresponding coefficients, as well as the inter-molecular pair

coefficients. Usually there is no need to modify this part of the data file. Again, a

comprehensive description of the data file is available online in the LAMMPS documen-

tation.

3.2.7. LAMMPS input file

The actual simulation is set up in the input file (.in). Listing 3.5 shows a simple LAMMPS

input script that performs a simulation run of 50 ps. The initial temperate is set to 100 K

and decreases during the simulation to 50 K.

The most important commands and setting will be explained in more detail. In line

3 the system of units is defined. The keyword real set measure of length to Ångröms,

time to femtoseconds and energy to kcal/mol. This setting was used for all further

simulations. Line 10 defines the type of long range inter-molecular interaction and

the corresponding cutoff radii. The most important setting is the kspace_style setting.

The so called particle-particle-particle mesh (PPPM) is a very efficient method to deal

with the long range particle interaction. However for LAMMPS (version 1 Jul 2013) it

was only implemented for orthogonal simulation boxes. In oder to use triclinic boxes

it was necessary to switch to the less efficient Ewald summation schema. The loss in

performance presents not a large problem due to the relatively small particle numbers.

It seems that for more recent versions of LAMMPS, PPPM is also supported for triclinic

systems.
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The information about the particles and force field is defined in line 14 and is read from

the previously generated data file (see Section 3.2.6). Line 16 is used to control the

data dumping. It tells LAMMPS to save all atoms positions every 1000 time steps in a

dcd file. Line 17 is used to unwrap the coordinates of the atoms. Due to the periodic

boundary conditions, molecules which stick out of the simulation box are broken up into

multiple pieces. In order to conserve the complete molecular structure in the output

files, unwrapping of the coordinates is applied. This means that the periodic boundary

conditions are ignored for the coordinates in the output file.

thermo and thermo_style defines the periodic output of thermodynamic data as such

potential energy, kinetic energy, temperature etc. timestep obviously defines the time

step for the simulation and is was set to 1 fs. variable allows one the define symbolic

variables. minimize is used to perform a energy minimization before the simulation start

to minimize the potential energy of the system due to a suboptimal starting geometry,

mostly due to too close adjacent atoms. Without such an energy minimization it is

very likely to have an unusual high potential energy in the system which renders the

simulation useless.

In line 30, initial velocities are assigned to the atoms to represent a temperature of

100 K. fixes are used to control the simulation. In line 31, the momentum fix is used

to zero the linear momentum of the system, to avoid the so called flying ice cube effect

[42]. The next fix in line 32 sets up an NVE (constant number of particles, volumne

and energy) simulation. Such an simulation represents a microcanonical ensemble. In

order to control the temperature of the system a Berendsen thermostat fix was used.

The temperature is decreasing during the simulation from 100 K to 50 K. Finally, the

run command in line 34 tells the simulator to calculate 50000 time steps. As usual, a

more detailed explanation of all commands and fixes is available online in the LAMMPS

documentation [43].

Listing 3.5: Input script for LAMMPS.
1 # Minimize the molecules in an expanded unit cell
2

3 units real
4 neigh_modify delay 2 every 1
5

6 atom_style full
7 bond_style harmonic
8 angle_style charmm
9 dihedral_style charmm

10 pair_style lj/charmm/coul/long 8. 10.
11 pair_modify mix arithmetic
12 kspace_style ewald/disp 1e-4
13 special_bonds charmm
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14 read_data cell.data
15

16 dump 1 all dcd 1000 minimization.dcd
17 dump_modify 1 unwrap yes
18

19 thermo_style custom step cpu etotal temp press evdwl ecoul eangle
edihed pe ke lx ly lz

20 thermo 1000
21 #thermo_style multi
22 timestep 1
23

24 variable var_temp equal 100.0
25 variable var_temp_end equal 50.0
26

27

28 minimize 1e-6 1e-9 1000 100000
29 # Run the MD simulation.
30 velocity all create ${var_temp} 5782341 dist uniform
31 fix 1 all momentum 1 linear 1 1 1
32 fix 2 all nve
33 fix 3 all temp/berendsen ${var_temp} ${var_temp_end} 100.
34 run 50000

Listing 3.6: LAMMPS data file.
1 Created by charmm2lammps v1.8.1 on Wed, Nov 20, 2013 3:52:38 PM
2 50 atoms
3 53 bonds
4 86 angles
5 118 dihedrals
6

7 6 atom types
8 7 bond types
9 10 angle types

10 15 dihedral types
11

12 -4.178 12.321 xlo xhi
13 -12.561 12.561 ylo yhi
14 0.425 40.934 zlo zhi
15 0.027 0.937 2.371 xy xz yz
16

17 Masses
18 1 1.008 # HGA3
19 2 1.008 # HGR61
20 3 12.011 # CG2R61
21 4 12.011 # CG2R67
22 5 12.011 # CG331
23 6 15.9994 # OG301
24 Pair Coeffs
25 1 0.024 2.387609 0.024 2.387609 # HGA3
26 2 0.03 2.420037 0.03 2.420037 # HGR61
27 3 0.07 3.550053 0.07 3.550053 # CG2R61
28 4 0.07 3.550053 0.07 3.550053 # CG2R67
29 Atoms
30 1 1 6 -0.391 3.828 3.651 11.665 # OG301
31 2 1 3 0.219 3.756 3.185 12.954 # CG2R61
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32 3 1 3 -0.115 3.085 3.805 13.98 # CG2R61
33 4 1 2 0.115 2.627 4.6 13.827 # HGR61
34 5 1 3 -0.114 3.097 3.239 15.243 # CG2R61
35 Bond Coeffs
36 1 305 1.375 # CG2R61 CG2R61
37 2 305 1.375 # CG2R61 CG2R67
38 3 340 1.08 # CG2R61 HGR61
39 4 230 1.382 # CG2R61 OG301
40 Bonds
41 1 7 1 22 # CG331 OG301
42 2 4 1 2 # CG2R61 OG301
43 3 1 2 10 # CG2R61 CG2R61
44 4 1 2 3 # CG2R61 CG2R61

3.2.8. LAMMPS output

LAMMPS allows one to use several file formats and methods to save data during a

simulation run. Usually the positions of the particles are periodically saved in a file. Such

a file, commonly called a dump file, contains therefore the trajectories of the particles

and allows one the visualize the system’s behavior over time. Since the amount of data is

quite large, even for small system many hundred megabyte of data are not uncommon, a

simple format like the xyz format would not be efficient. Therefore the compressed dcd

file format is used by most MD simulators to store trajectories and additional data.

However dcd files only hold information about the coordinates. The structural informa-

tion about the system (bonds) is only available through the psf file, which was generated

during the preparation of the simulation. VMD [44] provides the easiest way to visualize

dcd files, only in combination with the correct psf file, and allows one the analyze many

different aspects of a simulation. It is also capable of rendering high quality images by

using the Tachyon ray tracing engine [45].

In order to use dcd files in MATLAB, a third-party library can be found here [46].
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Figure 3.4.: Overview of LAMMPS data output.

3.3. Parametrization by analogy

The last sections covered the conversion of the CHARMM data in LAMMPS format. For

this purpose it was assumed that the CHARMM topology and CHARMM parameter file

already available. This section will explain the generation of the topology and parameter

file.

In order to perform a successful MD simulation the correct atom types need to be as-

signed to each atom of a molecule. Since manual parametrization or even re-optimization

for new molecules is quite time consuming and also prone to human error, the as-

signment of atom types new parameters is therefore performed by a method called

Parametrization by analogy. This method tries to compute new charges and use already

available parameters of CGenFF to find those missing parameters. Analogy refers to the

fact that parameters of chemically similar compounds are used during the parametriza-

tion. For each new parameter a penalty score is calculated, which tries to quantify the

dissimilarity between the parameters for the new molecule and the reference material.

A more detailed description of this process and penalty scores can be found in [47].

In order to use this kind parametrization several steps are necessary. The only file format

which works properly is mol2. Unfortunately, there are only a few editors which are

capable of editing and saving a mol2 files which are conform to the mol2 standard. The

only easy available editor so far is Accelrys’ Discovery Studio Visualizer. It is a proprietary

but free of charge software. For a successful parametrization all bond orders must be
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chosen correctly. The created mol2 file is subsequently uploaded to paramchem.org.

This website implements the current Parametrization by analogy algorithm and allows

the user to download a simple text file which contains the results (atom types and new

intra-molecular parameters) of the parametrization.

3.3.1. Generation of CHARMM topology files

The part of the parametrization results concerning the the topology (atom types and

charges) are moved to new topology file. If already all parameters are available in

CGenFF, this means for every combination of atom types present in the new molecules,

exists an entry the CHARMM parameter file, there is no need to modify or expand the

parameter file. If this is not the case, the best match (lowest penalty score) is used

to replace the missing parameters. However this new combination of atom types is

of course not the standard CHARMM parameter file. Therefore it is necessary to add

these new parameters. Another possibility is to copy all parameters for the molecule,

including the new one, in a separate file. If parametrization by analogy fails to find a

suitable replacement for the missing parameter, re-optimization of the best parameter

set is necessary. This quite time consuming task is described in Section 3.6.

3.4. Shrinking cell simulation

Usually MD simulations are performed with large super cells which consists of several

unit cells in order to achieve a proper statistical ensemble and to avoid that molecules

interact with its own image in a neighboring cell. Since we are not interested in statisti-

cal properties, such as thermodynamic quantities, the number of unit cells does not pose

a problem. However the size of the simulation box could lead to unphysical structures

but since the results will be compared to X-ray data, such structures can be easily re-

jected. Furthermore, a super cell approach would bring along different challenges, such

as increased calculation times, averaging over multiple unit cells etc.

The work flow of the shrinking cell MD simulation is illustrated in Figure 3.5. The simu-

lations are based on the experimental unit cell parameters either obtained by GID exper-

iments or literature. At first, the initial packings were created by randomly distributed

molecules. Such a straightforward approach was not successful since a unit cell is too

small and molecules are locked in their initial configuration. Therefore it was necessary

41



3. Methods

Figure 3.5.: Work flow of the shrinking cell MD simulation.

to use a slightly larger simulation box. Subsequently, the box was shrunk to its experi-

mental size during the simulation. The initial size and shrinking speed is essential for a

successful realization of this approach. If the initial cell was too large, all information of

the initial packing was lost. On the other hand, if the cell shrunk too fast, molecules did

not have enough time to rearrange properly and the system got stuck in a high energy

configuration. An expansion by a factor of 1.1 to 1.3 and shrinking over 50 ps produced

satisfying results. Nevertheless, several hundred independent simulations with different

initial conditions were performed in order to avoid local minima.

Depending on the complexity of the simulated system the choice of initial molecular

packings can be crucial. The ideal case is, of course, a random generation of initial

packings to assure unbiased simulations in order to fully explore the parameter space.

However, a complete random generation of initial packings produces also many useless

simulations. In order to increase the efficiency, constraints in form of crystallographic

motifs, such as herringbone or π-stacking, were introduced and modified randomly by

translations and rotations within reasonable limits depending on the system under in-

vestigation.

An excerpt of the LAMMPS input file with comments is shown in Listing. 3.7. The sim-

ulations was carried out using Ewald summation since PPPM was not supported for

triclinic systems in this version of LAMMPS with a time step of 1 fs. The radii for the

smooth cutoff region for long range forces was set to 8 and 10 Å. A Berendsen ther-

mostat [48] was applied for controlling the temperature. The shrinking was performed
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3.4. Shrinking cell simulation

over 50 ps at 150 K and the subsequent cool down from 150 K to 20 K took 20 ps. The

last step was an energy optimization based on a conjugate-gradient search in the force

field.

Since several hundred or even thousand individual simulation runs were required a

fully automated script was developed in MATLAB to set up the simulations. A prototype

structure (pdb file), containing the content and size of the unit cell was used to generate

the initial structure and saved as a pdb file. This file was used for generating the psf

file and subsequently the LAMMPS data file by utilizing the charmm2lammps script.

The LAMMPS data file was modified to use the expanded unit cell size and the correct

triclinic tilt parameters if necessary. After the simulation, the energy of the final results

was extracted from the LAMMPS log file and the dcd file containing the coordinates was

converted to pdb.

Listing 3.7: Input script for shirnking cell simulations in LAMMPS.
1 # shrinking cell simulation
2 timestep 1
3

4 # factor for shrinking, box dimension set to 1.1 exp. size
5 variable var_scale equal 1./1.1
6

7 # FF energy optimization
8 minimize 1e-4 1e-6 200 1000
9

10 velocity all create 150. 5782341 dist uniform
11 fix 1 all momentum 1 linear 1 1 1
12

13 # use constant energy and volume (NVE) simulation
14 fix 2 all nve
15 # set temperature to 150 K during shrinking
16 fix 3 all temp/berendsen 150. 150. 100.
17

18 # shrinking to experimental cell size in 50000 steps (50 ps)
19 fix 4 all deform 1 x scale
20 ${var_scale} y scale ${var_scale} z scale ${var_scale} units box
21 run 50000
22 unfix 3
23 unfix 4
24

25 # cool down to 20 K in experimental unit cell
26 fix 5 all temp/berendsen 150. 20. 100.
27 run 20000
28

29 # FF energy optimization
30 minimize 1e-4 1e-6 200 1000
31

32 #save last frame
33 dump 1 all dcd 1 shrinking.dcd
34 dump_modify 1 unwrap yes
35 run 0
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3.5. DFT optimization

For DFT optimizations the Vienna Ab initio Simulation Package (VASP) [49–52] was uti-

lized. VASP is based on pseudo potentials and plane waves and uses periodic boundary

conditions. For the optimization projector augmented wave (PAW) potentials [53, 54] im-

plementing GGA functionals with an energy cutoff of 345 eV were used. The k-mesh was

generated automatically by using a Monkhorst-Pack scheme [55]. A VASP calculation

requires four input files.

• POTCAR: contains the pseudo potentials

• POSCAR: unit cell and atom positions

• KPOINTS: defines the k-mesh

• INCAR: what to do and how to do it (Listing 3.8)

The complete documentation explaining various files and parameters is available online

[56]. POSCAR is a very simple format that contains more or less just coordinates. How-

ever the ordering of the elements must be consistent with the POTCAR file. Therefore

the atoms are usually ordered by elements, which in most cases messes up the accus-

tomed atom order of the MD simulation results (pdb file). The easiest way to get on top

of this annoying peculiarity of the POSCAR format is to write a special pdb to POSCAR

converter. This allows one to restore the original ordering of atoms during the conver-

sion of the VASP results back into the pdb format. VASP calculation were carried out on

the dcluster at TU Graz.

Listing 3.8: Input script for geometry relaxation in VASP.
1 SYSTEM = Pentacene
2

3 ISTART = 0
4 ICHARG = 2
5 ISMEAR = -5
6 EDIFF = 1.0E-4
7 EDIFFG = -0.01
8 LWAVE = .TRUE.
9 LCHARG = .TRUE.

10 LVTOT = .FALSE.
11 ENCUT = 345.00 eV # energy cut-off for the calculation
12 ISIF = 2 # forces and stress are optimized
13 NPAR = 4
14

15 IBRION = 2 # CG algorithm
16 NSW = 100 # 100 ionic steps
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3.6. Potential energy surface scans

3.6. Potential energy surface scans

The first step for adding new parameters to a force field is the creation of quantum

mechanical target data, usually obtained by ab initio calculations. The aim is to find

force field parameters which are able to reproduce the target data. An optimization

procedure was developed for dihedral parameters, since they are most important for

the molecular packing. A dihedral potential (or more generally a 1D potential energy

surface), as described in more detail in Section 2.2.4, is the energy in dependence of

the dihedral angle. Thus, the dihedral in question, is rotated to a certain angle and the

total energy of the molecular conformation is calculated. Potential energy surface (PES)

scans were performed in Gaussian09 and LAMMPS. The next section will explain the

generation of the QM target data and how to perform PES scans with LAMMPS.

3.6.1. Gaussian09

During this work Gaussian09, a widely used quantum chemistry program, was used for

geometry optimizations and for dihedral potential calculations. The results were used

as target data for the FF optimization. Gaussian offers various levels of theory, including

HF and post HF methods, like Møller-Plesset perturbation theory (MP2) and of course

several DFT based methods like B3LYP, PBE and PW91.

Geometry optimization

An input file for a geometry optimization is given in Listing 3.9. The first two lines

are used do define the available memory and processors for the calculation. The ge-

ometry optimization is selected by the keyword OPT and is carried out for example at

the B3LYP/cc-pVDZ level of theory. pop=esp produces charges fit to the electrostatic

potential. It is used for calculating the partial charges of atoms with a method called

Restrained Electrostatic Potential (RESP). Unfortunately, such an approach is not eligible

for CHARMM force fields. The initial geometry is given in Cartesian coordinates. The

other keywords are used for output formatting and are not important at the moment.

However, the interested reader may be referred to the online documentation of Gaus-

sian [57].
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Listing 3.9: Gaussian input file for geometry optimization. Geometry is given in Cartesian coor-
dinates.

1 %mem=100MB
2 %nprocshared=8
3 #p B3LYP/cc-pVDZ gfinput IOP(6/7=3) OPT pop=esp
4

5 2T
6

7 0 1
8 C 20.17400 -5.76700 -0.00100
9 C 19.67000 -4.52000 -0.00100

10 S 18.91300 -6.87100 0.00000
11 C 18.13900 -4.52800 0.00000
12 C 17.64400 -5.77100 0.00000

Potential energy surface scan

If a geometry optimization is carried out for each step of the potential energy surface

scan the obtained PES is called a relaxed PES. The geometry optimization is necessary

because the rotated molecule conformation might have a different relaxed geometry

compared to the unrotated conformation. Since input files for Gaussian calculations are

quite tricky an example for a relaxed PES is presented in Listing 3.10. The important

settings are in line 3. opt=modredundant is used to set up an geometry optimization

using redundant coordinates, which are provided at the end of the file. B3LYP/6-311G*
defines the level of theory.

For PES scans the use of internal coordinates is required. Gaussian uses the Z-matrix
notation to represent to molecular structure. The geometry of the molecule is defined by

relative distances and angles (bond length and angle, dihedrals). The conversion from

Cartesian coordinates into Z-matrix representation can be done with several molecular

file viewer, for example Avogadro, which is also a convenient tool for viewing Gaussian

log files. The most important part are the last two lines. These lines are used to define a

new dihedral angle between atoms (18, 11, 12, 9). The numbers refer to the ordering in

the Z-matrix. (*, 11, 12, *) tells Gaussian to include all dihedrals which are connected

to the center atoms 11 and 12. Otherwise the rotated structure would be useless. S 36
5.0 is used to perform a scan over the dihedral with a step size of 5.0° for 36 times. The

result of the scan can be extracted from the Gaussian log file. Since Gaussian log files

are absolutely huge and confusing a handy script was developed for efficient extraction

of the required data.
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3.6. Potential energy surface scans

Listing 3.10: Gaussian relaxed potential energy scan input file (not all atoms and variables
shown). Geometry is given in Z-matrix notation.

1 %mem=100MB
2 %nprocshared=8
3 #p opt=modredundant B3LYP/6-311G* nosymm gfinput IOP(6/7=3)
4

5 relaxed pes scan
6

7 0 1
8 C
9 C 1 B1

10 H 2 B2 1 A2
11 C 1 B3 2 A3 3 D3
12 H 4 B4 1 A4 2 D4
13 C 2 B5 1 A5 3 D5
14 H 6 B6 2 A6 1 D6
15 C 6 B7 2 A7 1 D7
16 C 4 B8 1 A8 2 D8
17 C 9 B9 4 A9 1 D9
18 ...
19 Variables:
20 B1 1.39796
21 B2 1.08617
22 A2 120.13426
23 B3 1.39702
24 A3 119.43305
25 D3 178.51562
26 B4 1.08603
27 A4 120.16348
28 ...
29

30 * 11 12 *
31 18 11 12 9 S 36 5.0

3.6.2. LAMMPS

LAMMPS does not offer directly an option for PES scans. However it is possible to con-

straint certain bonded parameters during a simulation run. Hence, a dihedral parameter

was set to a fixed value and a geometry optimization of the molecule was carried out

in a large simulation box. The large box avoids interaction over the periodic boundary

conditions. A high temperature at the beginning is necessary to escape local energy

minima. Subsequently, the temperature was lowered during the simulation run in or-

der to reach the global energy minimum. To obtain the PES scan, a separate run for

each dihedral angle was performed. A MATLAB script was used to start the simulations

and subsequently extract the energies of the LAMMPS log files. Listing 3.11 shows the

LAMMPS input file for the calculation for on point of the PES scan. By setting the dihe-

dral constant to 10 000 kcal/mol in line 5 and 9, the dihedral defined by atoms (22, 10,
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9, 24) is fixed to value of angle1. This constant, the initial temperature and cooling rate

may have to be adjusted to work properly with the system under investigation.

Listing 3.11: Input script for PES scan with LAMMPS based on [58].
1 # minimize molecule energy with restraints
2 velocity all create 600.0 8675309 mom yes rot yes dist gaussian
3 fix NVE all nve
4 fix TFIX all langevin 600.0 0.0 100 24601
5 fix REST all restrain dihedral 22 10 9 24 0.0 10000.0 ${angle1}
6 fix_modify REST energy yes
7 run 10000
8 fix TFIX all langevin 0.0 0.0 100 24601
9 fix REST all restrain dihedral 22 10 9 24 10000.0 10000.0 ${angle1}

10 fix_modify REST energy yes
11 run 10000
12 # sanity check for convergence
13 minimize 1e-6 1e-9 1000 100000
14 # report unrestrained energies
15 unfix REST
16 run 0

3.6.3. Dihedral parameter fitting

The fitting procedure for missing dihedral parameters is based on the description in

[59]. The idea is to fit the energy difference between the QM and force field data. At

first, parameters for each dihedral were assigned during the parametrization by analogy

as described in Section 3.3. To obtain the energies without the contribution of the

dihedral which is to be optimized, the force constant for this dihedral is set to zero and

a PES in LAMMPS is recorded. The easiest way to manipulate the dihedral parameters

is simply by locating the corresponding line in the LAMMPS data file and changing the

dihedral constant. Subsequently, the difference of the relative energies (by subtraction

of the energy minimum of the respective scan) of the QM and LAMMPS PES is calculated

and fitted by using the function of the dihedral potential as defined in Eq. (2.14).

The new optimized dihedral parameters are used for another PES scan in LAMMPS to

check if the optimization worked. If this is the case, the force field should be able to

reproduce the QM energies within reasonable limits. The same procedure can be used

to check a suspicious dihedral (high penalty score) if further optimization is necessary.

This is simply done by comparing the relative energies of the QM and LAMMPS result.
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3.7. StructFactViewer

In order to work efficiently with the amount of data produced by the simulations, a

MATLAB tool called StructFactView was developed. It is capable of batch processing the

MD results and calculating the structure factors based on Eq. (2.60). The structures

are sorted according to the difference of all or a selection of structure factors based on

experimental data. The graphical user interface allows one to navigate easily through

to results and visualize the structure factor spectrum and molecular packing. Even the

influence of the position and orientation of molecules on the structure factor spectrum

can be studied by rotating and translating molecules in the unit cell. Another feature is

the capability to load .dcd files containing several frames of a MD run and visualize the

structure factors for each time step and in doing so, the impact of thermal motions or

other conformational changes on structure factors can be investigated.

Figure 3.6.: Screenshot of StructFactViewer.

3.8. Computational equipment

Gaussian09, VASP and partly LAMMPS calculations were carried out on the dcluster at

TU Graz. It consists of 120 computing nodes, each of which is built up of two octo-

core Intel XEON processors and 64 GB RAM. The total performance of the dCluster is

49



3. Methods

approximately 30 Teraflops. VASP was executed on 16 CPUs and for Gaussian09 usually

eight CPUs were used.

The less computationally intensive shrinking cell simulations with LAMMPS were car-

ried out on a desktop PC consisting of an Intel Core i7-3770 quad-core processor and 8

GB RAM. Due to hyper threading, it was possible to use eight parallel threads for the cal-

culations. Roughly a thousand shrinking cell simulations were possible in approximately

12 hours, for unit cells containing about 100 atoms.
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This chapter will present and discuss the results obtained by MD simulations and DFT

calculations. The unit cell parameters for each molecule are summarized in Table 4.1

Table 4.1.: Experimental lattice constants used for the shrinking cell simulations.

molecule a b c α β γ ref.
(Å) (Å) (Å) (deg) (deg) (deg)

pentacene 5.958 7.596 15.61 81.25 86.56 89.80 [6]
NNN 8.15 5.98 19.45 90.00 94.58 90.00 [12]

s-DOTT 5.43 7.71 33.2 90.00 90.00 90.00 [60]
b-DOTT 5.59 7.56 32.4 90.00 90.00 90.00 [60]
perylene 11.277 10.826 10.263 90.00 100.55 90.00 [61]

B-DBDCS 9.851 10.094 27.455 85.42 89.67 85.91 [12]

4.1. Pentacene

Pentacene consists of five linearly-fused benzene rings and is one of the most famous

representatives of acenes. Due to its high electron mobility it is widely used in organic

electronics and was investigated on many occasions. The combination of its rigid ge-

ometry and the availability of several reference solutions of the thin film phase makes

pentacene an ideal candidate to check the capabilities of MD simulations and especially

the CGenFF force field. The experimental data was provided by Armin Moser, who used

rigid body refinement to solve the crystallographic structure of the film phase.

4.1.1. Parametrization

The parameters for pentacene were obtained by analogy as described in Section 3.3.

All force constants (bonds, angles and dihedrals) and partial charges are available in
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Figure 4.1.: Pentacene molecule with atom labels as used for MD simulations.

CGenFF without any penalties. The obtained atom types and charges are shown in

Table 4.3).

4.1.2. Energy

For a first evaluation only the energy of the final pentacene structures were considered.

As expected there is a significant difference in energy of approximately 11 kcal/mol or

0.48 eV between the π-stack and herringbone motif (see Figure 4.2). Since most of the

herringbone structures are too close in energy it is not possible to select an unambiguous

solution. Therefore it was necessary to compare the results with complementary X-ray

data. The final selection of the correct structure is based on the experimental structure

factors |F (hkl)|2.

4.1.3. Structure factors

The difference χ2 =
∑
hkl

(
|Fcalc(hkl)|2 − |Fexp(hkl)|2

)2
between the experimental and

calculated structure factors was used to evaluate the results. Figure 4.3 shows the com-

parison of the best match based on structure factors. The calculated structure factors

are in excellent agreement with the experimental data. As already illustrated in the

energy plot, the packing of this structure features the typical herringbone motif. Since

the same data set was used for a rigid body refinement of the thin film pentacene phase,
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Figure 4.2.: First 250 MD results for pentacene in order of increasing energy.

the first five structure factors were set to zero as an additional constraint during the

optimization. However the herringbone angle θ of 50.5° is about 4.5° too low compared

to published results (see Table 4.2).

There is clearly a correlation between χ2 and energy since a low χ2 indicates a good

agreement with the experimental data and therefore the actual molecular packing,

which is of course a low energy packing. In Figure 4.4 the correlation of χ2 and the

energy is illustrated. The difference between lowest energy packing and the best X-ray

data match is only 0.28 kcal/mol. Due to the large number of degrees of freedom and

thermal motion, which is always present in MD simulations, a perfect match in energy

is not very likely. Even the geometry optimization at the end of the simulation run gets

stuck easily in one of the many local energy minima. This gives rise to many different

molecular packings, which are very close in energy and geometry that can be considered

to be equal though.

All structures with energies above 22 kcal/mol are a result of failed random initial pack-

ings. Rotating and translating of molecules without constraints can lead to interlocking

molecules. Such unphysical packings are of no use and are neglected. Only solutions on

the left bottom of Figure 4.4 (low χ2 and low energy) are of interest.

In order to compare the simulation results with solved pentacene thin film phases, the

orientation angles of the molecules were calculated (see Table 4.2). One can see that

the tilt angle χ (5.5°) is significantly lower than in the bulk phase (22°) and agrees pass-

53



4. Results and Discussion

Figure 4.3.: (a) Initial random molecular packing for MD simulation. (b) Final packing after MD
simulation and conjuagte gradient geometry optimization.

ably with the reference solutions. The upright orientation is typical for surface induced

phases. The herringbone angle θ of 50.5° is roughly 4.5° to small compared to the refer-

ence solutions. Since many initial packings produced no useful results, in consequence

of the unrestricted random initial packings, constraints were introduced to focus on

more likely packings. Just applying information which was gained from the simulations

so far, it is quite obvious that only a herringbone motif is able to match the experimental

data and low energy criterion. Hence the initial packings were limited to slightly mod-

ified herringbone packings. The best MD result was used as a template and rotations

and translations within reasonable limits were applied to randomize this structure and

a second batch of MD simulations was performed. However the herringbone angle just

improved by 1.1° which is still too less.
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Figure 4.4.: Correlation of energy and χ2 for pentacene results. Right: all results. Left: Region
with reasonable results.
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Since pentacene is a remarkable rigid molecule the intra-molecular forces only play

a minor role and the herringbone angle is mostly affected by inter-molecular forces.

The cause of the mismatch is most likely due to the distribution of the partial charge

of the molecule. However the force constants and partial charges for pentacene are

perfectly covered (no penalties) by CGenFF. In order to improve the result one could

start using a different partitioning schema for the charges but such an optimization

would be necessary for each molecule and without an reference solution it is quite hard

to estimate the success of such an approach. A rather different approach is to avoid

completely the problem of charge partition. This can be achieved by using ab initio DFT

methods. Again, the best structure based on the X-ray data was used as an input for the

geometry optimization with VASP. The optimization was able to improve the agreement

in the structure factors and most important, the herringbone angle θ of 53.7° matches

the experimental data.

Although pentacene is a rigid molecule the fused benzene rings are not absolutely flat.

Due to thermal motion, dihedral angles up to 1° are observed in the benzene units.

Those deviations of the ideal flat structure are reduced during the DFT optimization to

about 0.1°. Nevertheless the non planar geometry introduces a small uncertainty in the

determination of the herringbone angle.
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Figure 4.5.: Comparison of first MD run (calc) with random initial packings and X-ray (exp) struc-
ture factors |F (hkl)|2.
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Figure 4.6.: Comparison of DFT optimized packing (calc) and measured (exp) structure factors
|F (hkl)|2 for pentacene.

Table 4.2.: Orientation of pentacene molecules in the bulk and thin film phase compared to the
MD simulation results obtained with random initial packings (MD), the lowest energy
packing (energy), randomized herringbone packing (MD HB) and DFT optimized re-
sults. χ measures the angle between of the long molecular axis (LMA) and the nor-
mal vector on the ab-plane of the unit cell. δ is the angle between the LMA of the
molecules.

θ χ1 χ2 δ
(deg) (deg) (deg) (deg)

bulk [62] 52.5 22.4 20.5 2.2
Nabok [63] 54.96 3.01 3.00 0.02
Moser [11] 54.13 4.79 4.83 0.14

energy 50.5 6.1 5.3 0.93
MD 50.5 5.3 6.2 0.92

MD HB 51.6 3.99 4.27 0.85
DFT 53.7 4.38 3.87 0.52
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Table 4.3.: CHARMMCGenFF parameters for pentacene obtained by analogy. All penalty scores
are zero. Atom labels see Figure 4.1.

atom type charge atom type charge

C1 CG2R61 -0.116 C19 CG2R61 0.002
C2 CG2R61 -0.116 C20 CG2R61 -0.117
C3 CG2R61 -0.116 C21 CG2R61 0.003
C4 CG2R61 0.003 C22 CG2R61 -0.116
C5 CG2R61 -0.117 H1 HGR61 0.115
C6 CG2R61 0.002 H2 HGR61 0.115
C7 CG2R61 -0.117 H3 HGR61 0.115
C8 CG2R61 0.002 H4 HGR61 0.115
C9 CG2R61 -0.117 H5 HGR61 0.115

C10 CG2R61 0.003 H6 HGR61 0.115
C11 CG2R61 -0.116 H7 HGR61 0.115
C12 CG2R61 -0.116 H8 HGR61 0.115
C13 CG2R61 -0.116 H9 HGR61 0.115
C14 CG2R61 -0.116 H10 HGR61 0.115
C15 CG2R61 0.003 H11 HGR61 0.115
C16 CG2R61 -0.117 H12 HGR61 0.115
C17 CG2R61 0.002 H13 HGR61 0.115
C18 CG2R61 -0.117 H14 HGR61 0.115
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4.2. Ternaphthalene

4.2.1. Isolated molecule

Ternaphthalene consists of three connected rigid naphthalene units. However the whole

molecule itself is flexible. The equilibrium geometry in vacuum for an isolated molecule

shows a distinct rotation of the center naphthalene unit as shown in Figure 4.8. The cal-

culation for the MD simulation was performed in a sufficiently large box to avoid inter-

action between the adjacent molecules due to periodic boundary conditions. The exact

rotation angle of the center naphthalene unit depends clearly on the applied method.

The agreement of the MD result and MP2 was excepted since the CGenFF force field is

based on MP2 calculations. The difference between B3LYP and MP2 results is a well

known fact and illustrates that especially dihedral angles are subject to large systematic

uncertainties.

Figure 4.7.: Ternaphthalene molecule with atom labels as used for MD simulations.

4.2.2. Parametrization

Pentacene and naphtalene, both are composed of laterally fused benzene rings, are

in the broader sense chemically very similar. Therefore it is not surprising that the

parametrization by analogy found the same atom types for the naphtalene units. Only

atoms which are involved in the bond between the naphtalene units (e.g. C7 or C11)

were assigned a different atom type.
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4.2. Ternaphthalene

Figure 4.8.: Isolated NNN molecule in vacuum. Comparison of different geometry optimizations
based on molecular dynamics (left), DFT (center) and MP2 (right) calculations.

4.2.3. Energy

A first evaluation of the results is solely based on energy. The energy of the first 100

MD results is shown in Figure 4.9. Since a possible solution should have a low energy,

only structures up to the first energy step are reasonable. The lowest energy results

features a herringbone arrangement of the molecules and the naphthalene units of each

molecule are in the same plane. Such a planarization of a twisted molecules in a periodic

arrangement is due to the minimization of the total energy. Although the energy of a

single flat molecule is higher than the twisted geometry, the total energy of the flat

herringbone packing is lower (see Figure 4.11).

The first step in energy is connected to an increase of the orientation angle χ. Other

packing motifs with higher energies are illustrated in Figure 4.11a and 4.11b. Parallel

packing and even a mix of herringbone and parallel stacking can be excluded as an

likely structure due to the high energies. Hence the flexible bond between the naphtha-

lene units allows for more rotational freedom the energy difference between different

packing motifs is not as pronounced as with pentacene.
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Figure 4.9.: First 100 MD results for ternaphthalene in order of increasing energy.

4.2.4. Structure factors

The GID measurement of NNN and subsequent intensity extraction for the structure

factors was performed by Alexander Pichler during his master thesis [12]. The thin

film phase was solved successfully by means of rigid body refinement and is used for

verification of the MD results.

The best results of the MD simulation were obtained by comparison with the experi-

mental structure factors. The energy of this herringbone packing is only slightly higher

than the lowest energy results. Considering thermal motion, the difference between the

lowest energy and the best X-ray results is negligible (∆E = 0.26 kcal/mol). The ori-

entation angles χ match the solved thin film phase, however the herringbone angle θ is

again 4.5° too low. Nearly the same mismatch was observed for pentacene. This system-

atic underestimation of the herringbone angle seems to be a characteristic of CGenFF.

Thus a subsequent DFT optimization of the packing was necessary to improve the her-

ringbone angle. The overall agreement with the structure factors was increased and the

herringbone angle matches the experimental value.
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Figure 4.10.: Comparison of DFT optimized packing (calc) and X-ray intensity (exp) structure
factors |F (hkl)|2.

Table 4.4.: CHARMM CGenFF parameters for ternaphthalene obtained by analogy. All penalty
scores are zero. Atom labels see Figure 4.7.

name type charge name type charge name type charge

C1 CG2R61 0.006 C18 CG2R61 -0.119 H5 HGR61 0.115
C2 CG2R61 0.004 C19 CG2R61 -0.122 H6 HGR61 0.115
C3 CG2R61 -0.116 C20 CG2R61 -0.115 H7 HGR61 0.115
C4 CG2R61 -0.116 C21 CG2R67 0.005 H8 HGR61 0.115
C5 CG2R61 -0.116 C22 CG2R61 0.004 H9 HGR61 0.115
C6 CG2R61 -0.116 C23 CG2R61 0.006 H10 HGR61 0.115
C7 CG2R67 0.005 C24 CG2R61 -0.115 H11 HGR61 0.115
C8 CG2R61 -0.119 C25 CG2R61 -0.122 H12 HGR61 0.115
C9 CG2R61 -0.122 C26 CG2R61 -0.119 H13 HGR61 0.115

C10 CG2R61 -0.115 C27 CG2R61 -0.116 H14 HGR61 0.115
C11 CG2R67 0.005 C28 CG2R61 -0.116 H15 HGR61 0.115
C12 CG2R61 0.006 C29 CG2R61 -0.116 H16 HGR61 0.115
C13 CG2R61 0.006 C30 CG2R61 -0.116 H17 HGR61 0.115
C14 CG2R61 -0.115 H1 HGR61 0.115 H18 HGR61 0.115
C15 CG2R61 -0.122 H2 HGR61 0.115 H19 HGR61 0.115
C16 CG2R61 -0.119 H3 HGR61 0.115 H20 HGR61 0.115
C17 CG2R67 0.005 H4 HGR61 0.115
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4. Results and Discussion

Figure 4.11.: Left: Result of best MD simulation according to X-ray data. The planarization of
the twisted isolated molecules in a crystallographic unit cells is reproduced by the
simulation. Right: Molecular packings with higher energy. a) Parallel stackingmotif.
b) Mix of parallel and herringbone packing for single naphthalene units.

Table 4.5.: Orientation of NNN molecules for rigid body refinement (rbr), lowest energy, MD and
DFT results. χmeasures the angle between of the long molecular axis (LMA) and the
normal vector on the ab-plane of the unit cell. δ is the angle between the LMA of the
molecules.

θ χ1 χ2 δ
(deg) (deg) (deg) (deg)

rbr 52.4 22.9 22.9 2.0
energy 48.0 22.2 22.1 0.5

MD 47.9 22.1 21.9 0.2
DFT 52.3 21.9 21.9 0.4
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4.3. Dioctyl-Terthiophene

4.3. Dioctyl-Terthiophene

Dioctyl-Terthiophene (DOTT) consists of a backbone containing three thiophene rings

(3T)connected by a carbon-carbon bond and octyl chains at each end of the backbone.

DOTT is used typically for the active layer of organic semiconducting devices [64]. The

octyl chains are able to rotate quite easily, which increases the overall flexibility of the

molecule and different orientation are therefore observed.

DOTT was investigated extensively by Christoph Lercher during his master’s thesis [60].

Among other things, he was able to determine the unit cell parameters for the b- and

s-phase. Those unit cell parameters were used for MD simulations. However, due to the

weak scattered intensities of the GID experiment, it was not possible to use the measured

intensity data for further structure refinement. The evaluation of the MD simulations is

therefore based solely on the energy of the simulation results.

4.3.1. Isolated molecule

In order to investigate the important thiophene inter-ring dihedral and the octyl-thiophene

dihedral potential, the molecule was split in smaller units. Figure 4.13 illustrates a

bithiophene unit (2T) which was used to study the inter-ring dihedral φ. The octyl-

thiophene (OT) dihedral ψ was investigated in a system as shown in Figure 4.15. The

popular quantum chemistry methods, MP2 and DFT on basis of the B3LYP hybrid func-

tional were used and the influence of different basis sets were studied and compared.

The calculations were carried out in Gaussian09. For 2T, a step size of 5° and 10° was

chosen for MP2 and B3LYP, respectively. For OT, a step size of 5° was used for all calcu-

lations. At each step a geometry optimization was performed. At detailed description of

the procedure and corresponding input files are explained in Section 3.6.1.

Figure 4.12.: Dioctyl-Terthiophene with atom labels. For the sake of clarity, hydrogen atoms are
not shown. H1 to H6 are attached to the thiophene rings, H7 to H23 and H24 to
H40 are part of the octyl chains.
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4. Results and Discussion

Bithiophene (2T)

The results for 2T are summarized in Figure 4.14. The dihedral potential features two

local minima, the position of which depends on the applied method. A difference of

approximately 15° for the minima positions was observed for the MP2 and B3LYP cal-

culation. Also the height of the rotation barriers is influenced by the applied method.

The energy difference for the anti-syn barrier, can get up to 1.2 kcal/mol, depending on

the choice of basis set. Nevertheless, the position of the anti-syn barrier at 90° seems

to be independent of the level of theory. The potential around φ = 180° is very shallow

and the anti-anti barrier is in the case of MP2 0.4 kcal/mol and even lower for B3LYP

(0.1 kcal/mol). The barrier seems to vanish completely for the B3LYP/aug-cc-pVDZ cal-

culation. However using a even larger aug-cc-pVTZ basis set did bring the rotation

barrier back but the computational effort increased roughly by a factor of 12. Neverthe-

less, the influence of the basis set is rather small and only minor deviations are observed.

The use of a mixed basis set consisting of aug-cc-pVDZ for sulfur and cc-pVDZ for all

other atoms produced the lowest rotation barrier. Usually such a mixed basis set is used

to save time since diffuse function increase drastically the computational effort. All in

all, the calculations are in good agreement with the results as reported in [65, 66].

Figure 4.13.: Bithiophene (2T) model as used for the study of the inter-ring dihedral potential φ.
a) 2T in anti conformation with φ = 180°. b) 2T in syn conformation with φ = 0°.
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4.3. Dioctyl-Terthiophene

Additionally, unconstrained geometry optimization at various levels of theory were per-

formed and are summarized in Table 4.6. In order to find a global minimum the flat anti

geometry was rotated by 10°. Without those modifications the geometry optimization

yielded a perfectly flat (φ = 180.0°) molecule, which does not correspond to the low-

est energy conformation with dihedral angles φof ≈ 140 to 160°. The variation of the

optimized dihedrals may seem quite large, however the global minimum is relatively

flat. Merely a change of 0.05 kcal/mol ≈ 2 meV in energy is enough to shift the dihedral

angle roughly by 15° but there is still a significant difference between MP2 and B3LYP.

Table 4.6.: Unconstrained geometry optimization at various levels of theory for bithiophene. Di-
hedral angle φ (in degree) corresponds to the global energy minimum as illustrated
in Figure 4.14. Bottom half lists the relative computing time based on the time for
MP2/cc-pVTZ of 18.00 h.

6-31G* 6-311G* cc-pVDZ cc-pVTZ aug-cc-pVDZ

MP2 141.5 136.7 146 150.8 148.1
B3LYP 157.5 149.4 163.3 157.9 158.4

MP2 0.044 0.092 0.097 1.000 0.529
B3LYP 0.019 0.023 0.032 0.278 0.194

Octyl-Thiophene (OT)

In Figure 4.16 the PES for the ocytl-thiophene dihedral ψ is illustrated. In contrast to the

inter-ring potential φ, the level of theory has a much smaller impact on the chain-ring

potential ψ. The global minimum is located at ψ ≈ 70° and a local yet very shallow min-

imum is at ψ = 180°, which allows the octyl chain to move freely in a range of ±30°. In

contrast to φ potential of 2T, MP2 produces now larger rotation barriers and the B3LYP

potential especially around ψ = 180° is extremely flat and features only a small barrier

of ∆E ≈ 0.15 kcal/mol. The barrier at ψ = 0° has a height of 2 kcal/mol for MP2 and

1.5 kcal/mol for B3LYP. In order to escape to local minimum during a geometry opti-

mization it was necessary to set ψ = 120°. The results for the unconstrained geometry

optimization is given in Table 4.7.

DOTT geometry optimization

The knowledge gained by studying the 2T and OT dihedrals was applied in a geometry

optimization of the terthiophene (3T) backbone and the whole DOTT molecule. Starting

with a flat geometry for 3T yielded a flat optimized 3T molecule with all inter-ring
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Figure 4.14.: Inter-ring dihedral potential for 2T calculated with MP2 and B3LYP for different basis
sets. The green mixed basis set consists of aug-cc-pVDZ for sulfur and cc-pVDZ
for all other atoms. The black dashed line illustrates the significant difference in
rotation barrier heights and minima positions between MP2 and B3LYP. During the
calculations, a step size of 5° and 10° was used for MP2 and B3LYP, respectively.
Cubic spline interpolation was used to obtain a continuous potential.
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4.3. Dioctyl-Terthiophene

Figure 4.15.: Octyl-Thiophene (OT) as used for the investigation of the chain-ring dihedral ψ. a)
OT in anti conformation with ψ = 180°. b) OT in syn conformation with ψ = 0°.

Table 4.7.: Unconstrained geometry optimization at various levels of theory for octhyl-thiophene
(OT). Dihedral angle ψ (in degree) corresponds to the global energy minimum as
illustrated in Figure 4.16. Bottom half lists the relative computing time based on the
time for MP2/aug-cc-pVDZ of 38.47 h.

6-31G* 6-311G* cc-pVDZ aug-cc-pVDZ

MP2 70.9 74.4 73.1 72.7
B3LYP 68.5 69.6 69.9 69.1

MP2 0.078 0.165 0.153 1.000
B3LYP 0.025 0.041 0.046 0.758

dihedral equal to 180°. A geometry optimization with an initial conformation with

inter-ring dihedral set to 175° yielded a twisted structure with both inter-ring dihedral

at 153.4°. The calculations were carried out the the B3LYP/6-311G* level of theory

and are in good agreement with the 2T relaxed geometry, which yielded a dihedral

angle of 149.4°. The energy difference between the flat and the twisted (lower energy)

conformation is 0.35 kcal/mol.

DOTT geometry optimizations were performed at the B3LYP/6-31G* level of theory.

The octyl-thiophene (ψ) and inter-ring (φ) dihedral were set near their equilibrium

values in order the avoid a flat optimized structure. The optimized twisted structure

is 1.29 kcal/mol lower in energy than the flat conformation and the dihedral angles ψ
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Figure 4.16.: Octyl-thiophene dihedral potential calculated with MP2 and B3LYP for different ba-
sis sets. For details see caption of Figure 4.14. A step size of 5° was used for MP2
and B3LYP calculations. It was not possible to carry out the MP2/aug-cc-pVDZ in
a reasonable time frame.
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4.3. Dioctyl-Terthiophene

are 68.4 and 72.3° which matches the results of the isolated octyl-thiophene system.

The inter-ring dihedrals φ are 170.8 and 162.5°, which differs from the value of the

2T optimization (157.5°). However the dihedral potential is quite flat in this region and

could be very sensitive to the changes introduced by the octyl chains. This might explain

the presence of a flatter backbone.

4.3.2. Parametrization

The results for the DOTT parameters are summarized in Table 4.8. Unfortunately not all

parameters are available in CGenFF. The largest penalty scores are as expected for the

link between the backbone and the side chains and the between the single thiophene

units in the backbone. For so called hairy rods molecules like DOTT, the primary focus

lies on the dihedral parameters for the link between the side chains and backbone. The

backbone of DOTT is rather rigid, therefore a flat backbone is expected and is also

indicated by single crystal results. In order to check the force field parameters the data

presented in Section 4.3.1 was utilized.
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Figure 4.17.: Comparison of the PES recorded with LAMMPS (CGenFF ) and MP2 for the octyl-
thiophene dihedral potential (see Figure 4.15).
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4. Results and Discussion

4.3.3. Energy

In Figure 4.18 and 4.19 the results for the s- and b-phase are presented. As expected

both phases differ in their herringbone angle. Values for the herringbone angles are pre-

sented in the next section. It is interesting to note, that in both cases, a distinct increase

in energy is linked to a certain orientation of the side chains. This orientation matches

the dihedral potential minimum of approximately 70° (see Figure 4.16). Hence two

molecules are present in an unit cell, four important dihedral angles (two per molecule)

are shown in the figures. In order to increase the packing density, the side chains rotate

to ±70°. For higher energies it seems that the side chains are in an energetically less

favorable orientation.

5 10 15 20 25 30 35 40 45 50
64

66

68

70

E
N

E
R

G
Y

 (
kc

al
/m

ol
)

5 10 15 20 25 30 35 40 45 50
60

61

62

63

H
B

 A
N

G
LE

 (
de

g)

5 10 15 20 25 30 35 40 45 50

50

100

150

SIMULATED STRUCTURE

D
IH

E
D

. A
N

G
LE

 (
de

g)

Figure 4.18.: First 50 DOTT s-phase results in increasing order of energy. The herringbone angel
of the backbone and the dihedral angles φ: S2-C1-C16-C17 and ψ: S12-C14-C24-
C25 of the side chains are indicated in red and blue, respectively. One can see
clearly the influence of the side chain orientation on the energy.

4.3.4. Average structures

Due to the thermal motion of the terminal chains it was necessary to average the posi-

tion of the atoms over 1000 time frames to obtain stable results. For this purpose the

lowest energy packing was used as an input for another MD simulations with the correct
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Figure 4.19.: First 50 DOTT b-phase results in increasing order of energy. For a detailed descrip-
tion see caption of Figure 4.18.

experimental unit cell. The simulation was executed at a temperature of 20 K using a

Berendsen thermostat. Subsequently the herringbone angle θ and the side chain dihe-

dral angles φ and ψ were calculated using the average structure. An illustration of the

b- and s-phase is provided in Figure 4.20. The orientation of the long molecular axis

(LMA) of the backbone is for both phases normal to the ab-plane of the unit cell.

Furthermore, the influence of temperature on mean values and standard deviations was

investigated. For this purpose the same procedure as for averaging was performed at

various temperatures (see Figure 4.22). Up to 350 K the average dihedral angle in-

creased by approximately 1°, in contrast the standard deviation σD increased fourfold.

Nevertheless the average values are not strongly affected by the temperature but uncer-

tainties in the range of a few degrees should be excepted.

4.3.5. DFT optimization

Comparing the carbon-carbon bond length between the thiophene rings of the single

crystal solution and DFT optimized structures of 2T showed a significant difference. The

bond length according to B3LYP/cc-pVTZ is 1.447 Å. The MD simulations showed a bond

lengths of 1.37 Å. This could be caused by the suboptimal force field parameters. Hence

71



4. Results and Discussion

a complete DFT geometry optimization was carried out as described in Section 3.5.

After the optimization the intra-molecular distances matched the DFT results for 2T

and single crystal data. The optimization had also an influence on the inter-molecular

arrangement. As seen with previous systems, the herringbone angle decreased rougly

about 5° for both phases. The dihedral angle between the octyl chains and backbone

was basically unaffected and is still approximately 70°.

Figure 4.20.: DOTT structures obtained by averaging over 1000 frames and DFT optimization.
Herringbone angle δHB and dihedral angles φ, ψ are indicated.
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4.3. Dioctyl-Terthiophene

Figure 4.21.: DOTT b-phase. a) Single unit cell with two DOTT molecules. b) Multiple unit cells
which demonstrate the close-packing of the octyl side chains.
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Figure 4.22.: Influence of temperature on the mean value and standard deviation σD of dihedral
angle φ1 for the DOTT s-phase.
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4. Results and Discussion

Table 4.8.: CHARMM CGenFF parameters for dioctyl-terthiophene obtained by analogy. Atom
labels see Figure 4.12.

name type charge penalty name type charge penalty

C1 CG2R51 -0.011 73 H6 HGR51 0.193 0
S2 SG2R50 -0.069 67 H7 HGA2 0.09 3
C3 CG2R51 -0.253 10 H8 HGA2 0.09 3
C4 CG2R51 0.092 3 H9 HGA2 0.09 0
C5 CG2R51 -0.249 2 H10 HGA2 0.09 0
C6 CG2R51 0.091 0 H11 HGA2 0.09 0
C7 CG2R51 -0.249 0 H12 HGA2 0.09 0
S8 SG2R50 -0.098 0 H13 HGA2 0.09 0
C9 CG2R51 -0.249 0 H14 HGA2 0.09 0

C10 CG2R51 0.091 0 H15 HGA2 0.09 0
C11 CG2R51 0.092 3 H16 HGA2 0.09 0
S12 SG2R50 -0.069 67 H17 HGA2 0.09 0
C13 CG2R51 -0.249 2 H18 HGA2 0.09 0
C14 CG2R51 -0.011 73 H19 HGA2 0.09 0
C15 CG2R51 -0.253 10 H20 HGA2 0.09 0
C16 CG321 -0.088 62 H21 HGA3 0.09 0
C17 CG321 -0.181 5 H22 HGA3 0.09 0
C18 CG321 -0.181 3 H23 HGA3 0.09 0
C19 CG321 -0.18 0 H24 HGA2 0.09 3
C20 CG321 -0.18 0 H25 HGA2 0.09 3
C21 CG321 -0.178 0 H26 HGA2 0.09 0
C22 CG321 -0.183 0 H27 HGA2 0.09 0
C23 CG331 -0.269 0 H28 HGA2 0.09 0
C24 CG321 -0.088 62 H29 HGA2 0.09 0
C25 CG321 -0.181 5 H30 HGA2 0.09 0
C26 CG321 -0.181 3 H31 HGA2 0.09 0
C27 CG321 -0.18 0 H32 HGA2 0.09 0
C28 CG321 -0.18 0 H33 HGA2 0.09 0
C29 CG321 -0.178 0 H34 HGA2 0.09 0
C30 CG321 -0.183 0 H35 HGA2 0.09 0
C31 CG331 -0.269 0 H36 HGA2 0.09 0
H1 HGR51 0.193 0 H37 HGA2 0.09 0
H2 HGR51 0.207 0 H38 HGA3 0.09 0
H3 HGR51 0.207 0 H39 HGA3 0.09 0
H4 HGR51 0.207 0 H40 HGA3 0.09 0
H5 HGR51 0.207 0

74



4.4. DBDCS

4.4. DBDCS

DBDCS is a cyano distyrlbenzene (DBS) derivative with butyloxy groups at the terminal

rings (see Figure 4.23). Such conjugated materials are extensively investigated due to

their optoelectronic properties. An overview about DBDCS and similar DBS derivatives

is provided in [67]. DBDCS exhibits two-color fluorescence switching in response to

pressure and temperature. These changes can be explained by two crystal phases, the

optical green G-phase and blue B-phase. The structure of the G-phase was solved by

means of single crystal diffraction and is reported in [68]. For the B-phase only thin

film samples are available. The samples have been investigated by means of GID. The

unit cell parameters and several structure factors were determined by Alexander Pichler

during his Master’s thesis [12]. The unit cell for the B-phase contains four molecules.

The backbone itself is expected to be rigid and only small deviations (≈ 5°) of a planar

conformation are indicated by the G-phase. In contrast, the terminal chains are able to

change their orientation quite easily. Therefor the rigid body refinement was not able to

produce reasonable results.

4.4.1. Isolated molecule

An isolated DBDCS molecule features a twisted backbone due to the the nitrile groups.

Results of DFT calculations are reported in [68] and shown in Figure 4.23. The pla-

narization of the single crystal conformation is explained by hydrogen bonds between

the nitrogen and oxygen atoms and hydrogen atoms of adjacent molecules. The dihedral

potentials for both torsions were calculated using MP2 and B3LYP, basically following

the same procedure as demonstrated with DOTT. For the calculations the molecule was

Figure 4.23.: Molecular structure of DBDCS. The local dipoles and transition dipole moment µ
are indicated as dashed and solid arrows, respectively. The dihedral angles for the
inner bonds are given for an isolated molecule and in single crystal conformation
(in brackets). Image adapted from [68].

75



4. Results and Discussion

reduced to a smaller system consisting of two benzene rings and one nitrile group as

illustrated in Figure 4.24. The potentials are shown in Figure 4.25. Again, a significant

difference in the height of the rotations barriers between MP2 and B3LYP calculations is

observed. Nevertheless, the potential minima are in good agreement with the results as

presented in Figure 4.23.

4.4.2. Parametrization

CGenFF contains proper parameters for the alkyl chains and benzene rings. However, the

dihedral parameters for parts which are related to the nitrile group, especially dihedral

angle φ1 and φ2, had penalty scores above 100 and were checked against the results

of the QM calculations. The recorded data is illustrated in Figure 4.26. The potential

for φ1 did not fit at all and was optimized according to the procedure as described in

Section 3.6.3. After the optimization, the force field was capable of reproducing the QM

potential. Although the penalty score for φ2 was as bad as for φ1, already the standard

CGenFF force field was able to provide a satisfying potential.

Figure 4.24.: Model system based on the backbone of DBDCS used for the investigation of the
dihedral potentials involving the nitrile group.

4.4.3. Energy

The usual approach for generating random initial molecular packings for the shrink-

ing cell MD simulations was not successful in the case of DBDCS due to the number
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Figure 4.25.: Dihedral potentials φ1 and φ2 obtained by quantum chemical calculations using
B3LYP and MP2.
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Figure 4.26.: Comparison of CGenFF force field and QM data (black) for dihedral potentials φ1
and φ2. The original force field and optmized data is shown in blue and black,
respectively.
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of molecules, flexibility and unfavorable height to width ratio. Most simulations got

stuck in energetically unfavorable states. Therefore various common packing motif

were chosen and modified randomly to create molecular packings for the simulation.

An overview of these packings is given in Figure 4.27. The results of the shrinking cell

approach is discussed in the following sections. The results will be identified by their

unique serial number (1 to 5000) as used during the MD simulations. In the case of

DBDCS the shrinking cell simulations and DFT optimizations were carried out by Otello

M. Roscioni (University of Bologna) using a force field which was optimized for DBDCS

by Luca Muccioli (University of Bologna).

LL-RR LL-LL RR-RR

LR-RLRR-LL RL-RL

TT-LL BB-LL TB-LR

BT-LR TB-RL BT-RL

Structure 1 Structure 2

Structure 3

TL-LT BL-LB TR-RT BR-RB

TR-LB TL-RB BR-LT BL-RT

Figure 4.27.: Overview of molecular packing motifs for the DBDCS shrinking cell approach.

The lowest energy packings are shown in Figure 4.28. In contrast to the previous sys-

tems, the energy increases more or less continuous and it was not possible to imme-

diately select a motif. However a clear trend to parallel stacking was observed which

is also indicated by results as reported in [68]. Furthermore, a slip along the short

molecular axis is most likely involved in the structural change from G to B-phase.
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Figure 4.28.: Energies of DBDCS molecular packings in increasing order of energy.
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Figure 4.29.: Specular scan of a DBDCS B-phase thin film measured using Cu Kα radiation.
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4.4.4. Structure factors

Unfortunately the analysis of the X-ray data is not as straightforward as for the other

samples. For the evaluation of the simulation results two data set are available. The

results of the GID measurement by Alexander Pichler at HASYLAB [12] and specular

data recorded with a Siemens D501 Bragg-Brentano diffractometer with a copper tube

at 40 kV and 30 mA. Due to the large lattice constant c, it was possible to detect 15 Bragg

peaks. Corrections for polarization and Lorentz factor have been applied to obtain the

structure factors.

The lowest energy results (2735, −228 kcal/mol) did not match the specular nor the

GID data and was therefore not further investigated. The second lowest packing (0328,

−211 kcal/mol) however fits the specular data but the large peak #33 is completely

missing. Another promising result is structure 0460 (-57kcal/mol, third best GID match).

Peak #33 is very strong and peak #13 is much weaker compared to 0328.

A similar trend was observed for the specular scans. Motifs such as 0328 tend to have a

strong peak #11 and weaker #10 in the specular scan. In general, structures which are

in good agreement with the specular data, tend to have only a weak #33 peak in the

GID measurement. The best specular match is structure 1945 and is of the same type

as 0328. However the side chains are only bent at one end of the backbone. Additional

information about the side chain orientation is not available, however bent side chains

seem to be favored by energy and X-ray data.

Symmetrization

A reliable comparison of the structure factors is quite difficult because the positions

of the side chains are not well defined by the MD simulation. It was not possible to

determine proper positions, however it seems that bent alkyl chains are favored by

low energy packings and the X-ray data. In order to get a better understanding of the

influence of the side chain orientation on the structure factors a symmetrization to space

group P 1̄ was carried out in PLATON and subsequently optimized by means of DFT in

CASTEP. DBDCS is a rather large system, thus DFT optimization was only feasible for

a small number of results. The structure factors of the most promising packings are

given in Figure 4.32. Based on the fact, that peak #33 is missing in result 0328b it

seem unlikely to be correct, although the energy is 6.9 kcal/mol lower. So far none of

the simulated structures seem to fulfill all requirements. However, 0460b seems to be

the best match so far for following reasons. The dominant peak #33 is present and the
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energy of reasonably low. Furthermore, the packing features a parallel stacking motif

with a slip along the short molecular axis, which is in agreement with the properties

described in [67].
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Figure 4.30.: Best structure (1945) based on specular structure factors in comparison with the
GID data. 1945 is of the same type as 0328 but the side chains are only bent at
one end of the backbone.
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5. Conclusion

The capabilities of molecular dynamics simulations for organic thin film crystal struc-

ture solution based on grazing incidence X-ray experiments using the CHARMM CGenFF
force field was investigated. The parametrization by analogy procedure offers in princi-

ple a quick and convenient parametrization of new molecules. However, due to the way

CHARMM force fields are designed, many parameters which are especially important

for the connection of molecular subunits, especially dihedral parameters, are not prop-

erly included and manual re-optimization of those parameters is necessary. Even more

difficult is the determination of partial charges since a fit to the electro-static potential

is not applicable. Charges are based on the reproduction of HF/6-31G* water-model

compound interaction energies, which is quite difficult without the complete CHARMM

suite.

The CGenFF force field was able to model the typical planarization of flexible molecules

in a densely packed crystallographic unit cell. Unfortunately the herringbone angles

were not reproduced in a satisfying manner, even if all parameters were available in the

force field without penalty scores. For pentacene and NNN the herringbone angle was

approximately 5° to low compared to literature values. The MD results have been used

as starting geometries for plane-wave DFT calculations. A relaxation of the structures

was able to reproduce the herringbone angles within a reasonable tolerance.

For DOTT the parametrization did not provide all force field parameters and the best-

match alternatives for the thiophene inter-ring dihedral had high penalties. In order to

check the usability of these parameters DFT calculations for the octyl-thiophene dihe-

dral have been performed and compared to the PES produced by the MD simulation.

The thiophene inter-ring potential was also investigated by means of DFT and the influ-

ence of different methods (MP2 and B3LYP) and basis sets was studied. Since a charge

and force field optimization was not feasible, the MD simulations have been carried out

with the parameters as provided by the analogy parametrization. The orientation of the

side chains matched the energy minimum of the dihedral potential and fulfill the close

packing principle. The MD results showed clearly a different herringbone angle for the

b- and s-phase of DOTT. The 3T backbone which exhibited a twisted conformation in
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vacuum DFT calculations, was planarized in the shrinking cell simulations. This is in

excellent agreement with the single crystal solution. Averaging over 1000 frames lead

to more symmetric orientation of the side chains and was therefore able the reduce the

influence of thermal motion. However the carbon-carbon bond between the thiophene

rings was roughly 0.07 Å too short, which is probably due to the suboptimal force field

parameters. A subsequent DFT optimization in VASP was able to reproduce the exper-

imental intra-molecular distances and significantly decreased (≈ 5°) the herringbone

angle for both phases.

In the case of DBDCS the situations was more difficult for multiple reasons. First of all,

the structure factor extraction was difficult due to the awkward peak positions. Fur-

thermore the combination of a large unit cell with four flexible molecules proved to

be a challenging system. Furthermore, the MD simulation was not capable of produc-

ing well-defined positions for sidechains. However, the results indicated that π-stacking

and bent terminal chains are the preferred motif. The former is also expected from ex-

periments, since the activation barrier for the phase transition is very low. Due to the

more or less random orientation of the alkyl chains an evaluation based on energy or

structure factors was quite difficult and ambiguous. Hence symmetrization was nec-

essary to see an defined impact between certain structural changes on the structure

factor spectrum. Subsequent DFT optimization of the symmetrized structures reviled

very promising molecular packings.

Structure factors are particularly sensitive to the atomic positions and rather small de-

viations can have a strong impact. Also the determination of the structure factors, es-

pecially for GID measurements, is a quite delicate procedure, due to importance of cor-

rection factors and the influence of the experimental setup and sample must be taken

into account. In addition, if peaks are too close to each other or even start overlapping

a meaningful intensity extraction is not possible.

MD simulations also have their limitations as demonstrated with the problematic DB-

DCS system, however they still provide an extremely useful alternative to rigid body

refinement. Even without an optimized force field, MD simulations can be used to cre-

ate input structures for further optimizations by means of DFT, which does not rely on

the approximations of molecular mechanic force fields. Another important improvement

to rigid body refinement is that this approach does not depend on the sensitive X-ray in-

tensity data. It just uses it as an additional source of information to optimize and verify

the results.
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A. Appendix

A.1. Perylene

Perylene is a flat and rigid aromatic hydrocarbon and consists of two bonded napththa-

lene units connected by two carbon-carbon bonds. Due to its blue fluorescence, it is

used as a blue-emitting dopant material in OLEDs. Perylene crystallizes in a monoclinic

system, with four molecules in the unit cell.

A.1.1. Intensity correction

A specular scan of a thin film perylene sample was recorded. The specular scans probes

only the out-of-plane order, thus net planes parallel to the sample surface (00l). The

measured intensities have been correct for the Lorentz and Polarization factor as given

in Eq. (2.63) and Eq. (2.62). Figure A.2 illustrates the importance of the corrections

factors, which are absolutely necessary to obtain meaningful data.
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Figure A.1.: Specular scan of a perylene thin film using Cu Kα radiation.
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