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Abstract

Topological insulators are a class of materials different from trivial band insu-
lators. The topological order of the insulators, classified by invariants, is the
reason for gapless states emerging at the surface. Currently, they are in the
spotlight of theoretical as well as experimental physics due to the possible ap-
plications of such edge states in quantum computing. Of certain interest is the
influence of strong electron-electron interaction, which is investigated in this
thesis. The system used here is the Kane-Mele-Hubbard (KMH) model, which
is an interacting two-dimensional tight-binding model on a honeycomb lattice.
Unlike trivial models for graphene, a spin-orbit coupling is added that gaps
the system and leads to a nontrivial topology. To test a possible evaluation of
topological invariants using Wannier charge centers (WCC), the noninteracting
Kane-Mele model is analyzed in detail. The Hubbard term is first introduced in
mean-field (MF) approximation in order to keep the determination of invariants
using WCC possible, which requires the existence of Bloch functions. Using
this tool, the phase diagram of the KMH model is determined as a function
of interaction strength, spin-orbit coupling, on-site potential and Rashba cou-
pling. The resulting topological invariants are compared to the existence of edge
states of the MF-KMH model on a zigzag ribbon, showing perfect agreement.
Finally, a two-site dynamical impurity approximation (DIA) which is based on
the self-energy-functional approach is used to obtain results beyond MF. The
topological invariants of this fully interacting system are determined using a so-
called topological Hamiltonian in order to allow a calculation with WCC. The
DIA results show that the direction of a possible magnetic moment is of great
importance in order to calculate topological properties.
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Kurzfassung

Topologische Isolatoren sind eine Klasse von Materialien, die sich von gewöhn-
lichen Band-Isolatoren unterscheiden. Die topologische Ordnung der Isolatoren,
klassifiziert durch Invarianten, ist der Grund für die Existenz von Zuständen
ohne Bandlücke an der Oberfläche. Derzeit sind sie wegen möglicher Anwendun-
gen dieser Randzustande in der Quanteninformatik im Rampenlicht sowohl in
der theoretische, als auch der experimentellen Physik. Von besonderem Interesse
ist der Einfluss von starker Wechselwirkung der Elektronen, die in dieser Arbeit
untersucht wird. Das System, das hier verwendet wird, ist das Kane-Mele-
Hubbard-Modell (KMH), welches ein zweidimensionales Tight-Binding-Modell
auf einem Bienenwabengitter ist. Im Unterschied zu einfachen Modellen von
Graphen ist eine Spin-Orbit-Kopplung hinzugefügt, die eine Bandlücke und die
nichttriviale Topologie verursacht. Um eine mögliche Bestimmung von topolo-
gischen Invarianten unter Verwendung von Wannier-Zentren zu testen, wird das
nichtwechselwirkende Kane-Mele-Modell im Detail analysiert. Der Hubbard-
Term wird zuerst in einer Mean-Field-Näherung (MF) eingeführt, um die Bes-
timmung von Invarianten mit Wannier-Zentren zu ermöglichen, welche die Exis-
tenz von Bloch-Zuständen voraussetzen. Mit dieser Methode wird das Phasendi-
agramm des KMH-Modells in Abhängigkeit von der Wechselwirkungsstärke, der
Spin-Orbit-Kopplung, einer Energiedifferenz zwischen den Untergittern, und
der Rashba-Kopplung bestimmt. Die topologischen Invarianten werden mit
der Existenz von Randzuständen des MF-KMH-Modells verglichen und zeigen
perfekte Übereinstimmung. Zum Abschluss wurde eine dynamische Störstellen-
Näherung (DIA) auf zwei Plätzen, die auf der Selbstenergie-Funktional-Methode
fußt, verwendet, um Resultate zu erzielen, die über MF hinausgehen. Die
topologischen Invarianten dieses wechselwirkenden Systems wurden mit einem
so genannten topologischen Hamilton-Operator bestimmt, um die Berechnung
mit Wannier-Zentren zu erlauben. Die DIA Resultate zeigen, dass die Rich-
tung eines möglichen magnetischen Momentes von großer Wichtigkeit sind, um
topologische Eigenschaften zu berechnen.
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Chapter 1

Topological invariants

1.1 Berry phase

In quantum mechanics, wave functions are usually defined up to a phase which
has no physical meaning since it vanishes in expectation values which are the
only physically relevant quantities. However, Berry has shown in 1984 that a
geometric phase which may has observable effects appears if a system is trans-
formed adiabatically in a cyclical manner [1–3].

The derivation given here is following the review of Yoichi Ando [2]. Given a
Hamiltonian H which depends on a set of parameters a which change cyclically
over time t, the equation for the eigenvectors |n,a(t)〉 reads

H [a(t)] |n,a(t)〉 = En[a(t)] |n,a(t)〉 . (1.1)

Assume the parameters a change adiabatically from certain values a(0) = a0.
The associated state evolves in time obeying the time dependent Schrödinger
equation

H [a(t)] |n,a0〉 (t) = i~
∂

∂t
|n,a0〉 (t). (1.2)

The solution can be expressed in terms of the eigenstates of the explicitly time
dependent Hamiltonian in equation (1.1)

|n,a0〉 (t) = exp

{
i

~

∫ t

0

dt′ (i~ ȧ(t′) 〈n,a(t′)| ∇a |n,a(t′)〉 − En[a(t
′)])

}
|n,a(t)〉

(1.3)
which can be shown by inserting the solution (1.3) in the Schrödinger equation
(1.2).

Thus, if the parameters a change adiabatically, a phase factor consisting of
two terms appears. The second term gives the expected time dependence of an
eigenstate in a system which does not explicitly depend on time, and is called
dynamical phase factor θn:

θn(t) = − 1

~

∫ t

0

dt′ En[a(t
′)]. (1.4)
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The first phase in equation (1.3) is nontrivial and is called Berry phase γn, if
the parameters a describe a closed path C as time evolves from 0 to a period
T :

γn[C] ≡ i

∫ T

0

dt ȧ(t) · 〈n,a(t)|∇a |n,a(t)〉 = i

∮

C

da · 〈n,a|∇a |n,a〉 = (1.5)

= −
∮

C

da ·An(a) = −
∫

S

d2a · Fn(a),

where we introduced the the Berry connection

An(a) ≡ −i 〈n,a|∇a |n,a〉 (1.6)

and the Berry curvature

Fn(a) ≡ ∇a ×An(a). (1.7)

In the last step of equation (1.5), Stokes’ theorem has been used.

To conclude, the Berry phase is a phase factor additional to the dynamical
one accumulated by following a closed path in parameter space a. It is important
to note that it cannot be removed by a simple gauge transformation

|n,a〉 → |n,a〉′ = eiξn(a) |n,a〉 (1.8)

which is shown for example in [3].

1.2 Chern invariant

In mathematics, Chern numbers are defined for vector bundles on an oriented
manifold of even dimension 2n. Details on the mathematics of Chern classes
can be found in several textbooks as for example in [4].

For two-dimensional topological insulators the Chern topological invariant
of the mth band, which is a first Chern number, is defined by [5]

Cm ≡ 1

2π

∫

BZ

d2k · Fm(k) =
1

2π

∮

∂BZ

dk ·Am(k) =
1

2π
γm[∂BZ], (1.9)

with Fm(k) = ∇k ×Am(k) and Am(k) = i 〈umk| ∇k |umk〉. Hence, the Chern
invariant is up to a factor of 2π a Berry phase. The set of parameters which are
changed adiabatically in the eigenvalue equation (1.1) is the wave vector k, the
closed path is the boundary of the Brillouin zone.

The Chern invariant is not necessarily uniquely defined, in case of degen-
eracies it can depend on gauge. However, the total Chern invariant, which is
the sum of Chern invariants related to occupied bands, is an uniquely defined
integer if the gap between filled and empty bands remains finite [6, 7],

C =
∑

m occupied

Cm. (1.10)



1.3. INTEGER QUANTUM HALL EFFECT 13

If the Hamiltonian of a band can be written as Hm(k) = hm(k) ·σ, where σ is
the vector of Pauli matrices, the Chern number reads [8]

Cm =
1

4π

∫
d2k

[
∂ĥm(k)

∂kx
× ∂ĥm(k)

∂ky

]
· ĥm(k). (1.11)

The hat denotes the normalized vector ĥ = h/ |h|.

1.3 Integer Quantum Hall effect

The first experiment of an effect that is fundamentally based on a nontrivial
Chern number was the discovery of the quantum Hall effect under high magnetic
fields at low temperature by von Klitzing et al. in 1980 [9]. The astonishing
result was that the longitudinal conductivity σxx vanishes whereas the Hall
conductance σxy is quantised to integer multiples of e2/h:

σxy = n
e2

h
. (1.12)

The quantisation is due to the topological nontrivial structure of the bands,
as Thouless, Kohmoto, Nightingale and den Nijs (TKNN) have shown in 1982
[5,10]. Hereafter, a short derivation of the TKNN invariant n is given, following
the review by Ando [2]. In order to highlight operators, they are denoted by hats.

Since the Hall conductivity is given by

σxy ≡

〈
ĵx

〉
E

Ey
, (1.13)

an expression for the expectation value of the current density given a certain
electric field E has to be found.

Let’s consider a 2D electron system of size L×L with an electric field E in y
direction and a magnetic field in z direction. If the electric field is homogeneous,
the potential can be set to V (x) = −eEy. Perturbation theory gives as a first
order correction of the eigenstates

|n〉E = |n〉+
∑

m( 6=n)

〈m| (−eEŷ) |n〉
En − Em

|m〉+O(E2). (1.14)

The current density 〈jx〉 is given by

〈
ĵx

〉
E
=
∑

n

f(En)

〈
n

∣∣∣∣
E

(
ev̂x
L2

) ∣∣∣∣n
〉

E

=
e

L2

∑

n

f(En) 〈n|E v̂x |n〉E (1.15)

where f(E) is the Fermi Dirac distribution and vx the velocity in x direction.
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Up to the first order of the electric field E, the solution is

〈
ĵx

〉
E
≈
〈
ĵx

〉
0
+

1

L2

∑

n

f(En)×

×
∑

m( 6=n)

〈n| ev̂x |m〉 〈m| (−eEŷ) |n〉+ 〈n| (−eEŷ) |m〉 〈m| ev̂x |n〉
En − Em

=
e2~E

iL2

∑

n

f(En)
∑

m( 6=n)

〈n| v̂x |m〉 〈m| v̂y |n〉 − 〈n| v̂y |m〉 〈m| v̂x |n〉
(En − Em)2

. (1.16)

In the last step, the equality

〈m| v̂i |n〉 =
1

i~
(En − Em) 〈m| x̂i |n〉 (1.17)

has been used, which follows from the Heisenberg equation of motion d
dt x̂i =

v̂i = 1
i~ [x̂i, H ]. If the labels n and m are exchanged in the second term of

the numerator, the Hall conductivity given by equations (1.13) and (1.16) is
simplified to

σxy =
e2~

iL2

∑

n

∑

m( 6=n)

(f(En)− f(Em))
〈n| v̂x |m〉 〈m| v̂y |n〉

(En − Em)2
. (1.18)

In the limit T → 0, the Fermi functions become Heaviside functions F (E) =
Θ(EF − E). Reversing the exchange of n and m, the Nakano-Kubo formula

σxy =
e2~

iL2

∑

En<EF

∑

Em>EF

〈n| v̂x |m〉 〈m| v̂y |n〉 − 〈n| v̂y |m〉 〈m| v̂x |n〉
(En − Em)2

(1.19)

is obtained, that is also used by Kohmoto [5]. Further evaluation is possible if the
eigenfunctions are written in momentum space as Bloch functions |n〉 = |unk〉,
|m〉 = |umk′〉. The matrix elements of the velocity operator are transformed
back to matrix elements of the position operator using equation (1.17). The
position operator is then acting on the Bloch wave as a derivative, i.e. x̂i → i ∂

∂ki
,

as known from basic quantum mechanics [11]. The resulting matrix elements
are thus [2, 5]

〈unk| v̂i |umk′〉 =1

~
(Enk − Emk′ )

〈
unk

∣∣∣∣
∂umk′

∂k′i

〉
= (1.20)

=− 1

~
(Enk − Emk′)

〈
∂unk
∂ki

∣∣∣∣ umk′

〉
.

Using these equations, the Nakano-Kubo formula becomes

σxy =
e2

i~L2

∑

kEn<EF

k
′Em>EF

(〈
∂unk
∂kx

∣∣∣∣ umk′

〉〈
umk′

∣∣∣∣
∂unk
∂ky

〉
− (1.21)

−
〈
∂unk
∂ky

∣∣∣∣ umk′

〉〈
umk′

∣∣∣∣
∂unk
∂kx

〉)
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The summation over m can be reduced due to the completeness relation

∑

k′Em>EF

|umk′〉 〈umk′ | = 1−
∑

k′Em<EF

|umk′〉 〈umk′ | . (1.22)

The term resulting from the second part is identical to the sum in equation
(1.21) except that Em < EF instead of Em > EF . Because of this change, the
term is now asymmetric in exchanging the indices nk and mk′, wherefore the
sum must vanish. This can be seen by applying all differential operators to the
corresponding bra vectors instead of the ket vectors, which gives a minus sign
according to equation (1.20), i.e.

〈
∂unk
∂kx

∣∣∣∣ umk′

〉〈
umk′

∣∣∣∣
∂unk
∂ky

〉
−
〈
∂unk
∂ky

∣∣∣∣ umk′

〉〈
umk′

∣∣∣∣
∂unk
∂kx

〉
=

(1.23)

= −
〈
∂unk
∂kx

∣∣∣∣ umk′

〉〈
∂umk′

∂k′y

∣∣∣∣ unk
〉
+

〈
∂unk
∂ky

∣∣∣∣ umk′

〉〈
∂umk′

∂k′x

∣∣∣∣ unk
〉
. (1.24)

The last term is obviously antisymmetric in nk ↔ mk′. As mentioned above,
the sum therefore vanishes and the conductivity (1.21) simplifies to

σxy =
e2

i~L2

∑

kEn<EF

(〈
∂unk
∂kx

∣∣∣∣
∂unk
∂ky

〉
−
〈
∂unk
∂ky

∣∣∣∣
∂unk
∂kx

〉)
. (1.25)

The sum over n with the restriction En < EF is equivalent to a sum over
occupied bands if the band structure is gapped, which is assumed from now

on. The summation over k is replaced by an integral
∑

k
→
(

L
2π

)2 ∫
d2k if the

crystal size tends to infinity, which leads to

σxy =− ie2

h2π

∑

n occupied

∫
d2k

(〈
∂unk
∂kx

∣∣∣∣
∂unk
∂ky

〉
−
〈
∂unk
∂ky

∣∣∣∣
∂unk
∂kx

〉)
=

=− ie2

h2π

∑

n occupied

∫
d2k

(
∂

∂kx

〈
unk

∣∣∣∣
∂unk
∂ky

〉
− ∂

∂ky

〈
unk

∣∣∣∣
∂unk
∂kx

〉)
=

=− e2

h2π

∑

n occupied

∫
d2k (∇k ×An(k))z = − e2

h2π

∑

n occupied

∫
d2k (Fn)z =

=− e2

h

∑

n occupied

Cn = −e
2

h
C. (1.26)

Hence it is proven that the TKNN invariant in equation (1.12) is minus the
Chern number, i.e. n = −C.

1.3.1 Quantum Spin Hall insulator

It is possible that a system has a Hall conductivity equal to zero σxy = 0, but
a nonzero spin Hall conductivity σs

xy ≡ ~/2e(σ↑
xy − σ↓

xy), when a finite spin
current Js ≡ (~/2e)(J↑ − J↓) exists [12, 13]. If the spin is conserved, the spin
Hall conductivity is also quantized for the same reason as the Hall conductivity
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and takes only multiples of e/2π. The multiplicative integer is minus the spin
Chern number [14, 15]:

Cs =
∑

σ

σ Cσ = (C↑ − C↓)/2. (1.27)

The topological spin properties are mostly determined by a Z2 invariant [7]

ν = Cs mod 2. (1.28)

If the spin in z direction, Sz, is not conserved, definition (1.27) cannot be
used to calculate a spin Chern number and σs

xy is not quantized any more [13],
but according to [15] it is possible that a quantum spin Hall phase with a
quantized quantity ν persists if spin Chern numbers are defined differently.
Further definitions of the Z2 invariant are given in the sections 1.6 and 1.8.

1.4 Time reversal symmetry

Since spin S is an angular momentum it should pick up a minus sign under time
reversal transformation T : t 7→ −t ⇒ S 7→ −S. A matrix representation Θ of
the time reversal transformation T must therefore obey

ΘSΘ−1 = −S. (1.29)

A possible representation of Θ for spin 1/2 particles is [16]

Θ = e−iπSy/~K = e−iπσy/2K = −iσyK, (1.30)

where K denotes the operator of complex conjugation. An important theorem
in this context is Kramers’ theorem which states that the energy eigenvalues
of a system with an odd number of fermions are at least two fold degenerate
if time reversal symmetry is assured [16]. This is especially important in the
case of band structures, which are the one particle energies as a function of k,
as demonstrated in the review of Yoichi Ando [2], which is the guidance for the
following lines.

In a periodic system, eigenvectors can be labeled by a band index n and the
wave vector k.

H |ψnk〉 = Enk |ψnk〉 (1.31)

Due to Boch’s theorem, the eigenstates can be written as a product of a plane
wave with a vector that has the same translational symmetry as the lattice,

|ψnk〉 = eik·r |unk〉 . (1.32)

Here, |unk〉 is an eigenvector of the Bloch Hamiltonian H(k) = e−ik·rHeik·r

and obeys therefore the reduced Schrödinger equation

H(k) |unk〉 = Enk |unk〉 . (1.33)

If the system preserves time reversal symmetry, i.e. [H,Θ] = 0, the Bloch
Hamiltonian satisfies

H(−k) = ΘH(k)Θ−1. (1.34)
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kx

ky

1=(0,0) 2=( ,0)

3=(0, ) 4=( , )

Figure 1.1: Time reversal invariant momenta Γi of a 2D quadratic lattice.

This means that Bloch waves with reverse momenta k and −k have the same
energy. These Kramers pairs are an important special case of Kramers degen-
eracy mentioned above. Accordingly, if k and −k are equivalent points in the
Brillouin zone, the bands are degenerate at these so called time reversal invari-
ant momenta (TRIM). For example, the TRIM of a simple square lattice are
situated at the corners of a square with length π, as shown in figure 1.1.

1.5 Theory of charge polarisation - Wannier func-

tions

As a basis set for periodic Hamiltonians usually Bloch waves |ψnk〉 = eik·r |unk〉
are used, see equations (1.31-1.33). Hence, the wave functions are commonly
labelled by their band index n and their momentum k. This representation has
the drawback that it is not suited to receive any information about the locali-
sation of the electrons within a unit cell. For this purpose, Wannier functions
are superior. The Wannier function in cell R of band n is defined by [17]

|Rn〉 ≡ V

(2π)D

∫
dDk e−ik·R |ψnk〉 , (1.35)

the inverse transformation is

|ψnk〉 =
∑

R

eik·R |Rn〉 . (1.36)

With this definition one can define a charge center of band n by

r̄n ≡ 〈0n| r |0n〉 . (1.37)

The spread of a Wannier function around the center is given by
〈
r2
〉
n
− r̄2

n =〈
0n
∣∣ r2

∣∣0n
〉
− r̄2

n.



18 CHAPTER 1. TOPOLOGICAL INVARIANTS

The connection of Wannier functions to topology is due to a relation pre-
sented in [18], which links matrix elements of the position operator in the Wan-
nier basis to the Berry connection An(k) = −i 〈unk| ∇k |uvk〉:

〈Rn| r |0m〉 = i
V

(2π)3

∫
d3k eik·R 〈unk| ∇k |umk〉 . (1.38)

With this expression one can easily formulate the charge center as well as the
spread in terms of Bloch functions |unk〉 [19]:

r̄n = i
V

(2π)3

∫
d3k 〈unk| ∇k |unk〉 (1.39)

〈
r2
〉
n
=

V

(2π)3

∫
d3k |∇k |unk〉|2 (1.40)

However, the definition of all quantities above is not unique since the Bloch
functions associated with the Wannier functions have a gauge freedom. One
can modify the basis function by a phase

|unk〉 → eiφn(k) |unk〉 (1.41)

and still preserve a valid set of Bloch functions. The Wannier center r̄n remains
the same, modulo a lattice vector, whereas the spread changes [19]. In general,
one can transform not only a single Bloch function, but also a set of Bloch
functions using a unitary matrix Umn:

|unk〉 →
∑

m

Umn(k) |umk〉 . (1.42)

The new set of vectors |unk〉 are not necessarily eigenvectors of H(k) as defined
in equation (1.33) any more but span still the whole space. Furthermore, the
generalized gauge transformation changes also the Wannier charge centers r̄n,
the only quantity preserved (up to a lattice vector) is the total charge center∑

n r̄n.

1.6 Definition of Z2 invariant by Fu and Kane

In their original work [20] Fu and Kane considered a one dimensional periodic
Hamiltonian H with a lattice constant a = 1, length L and periodic boundary
conditions. Furthermore, H changes adiabatically with a pumping parameter t.
This parameter is periodic with period T

H [t+ T ] = H [t] (1.43)

and odd under time reversal Θ

H [−t] = ΘH [t]Θ−1. (1.44)

The idea is now to use Wannier charge centers (WCCs) to describe the
topological properties of this system, since the expression for charge centers
(1.39) is proportional to a Berry phase (1.5). In our 1D case, the expression for
a polarisation Pn reads

Pn ≡ 〈0n|x |0n〉 = i

2π

∫ π

−π

dk 〈unk| ∂k |unk〉 = Cn (1.45)
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Figure 1.2: Kramers pairs of bands of a 1D time reversal invariant system
without additional degeneracies.

and is hence exactly the first Chern number Cn. Note that the charge polarisa-
tion is a Wannier charge center x̄n, but in [20] and related papers it is denoted
by Pn, wherefore this notation is also used here. The total charge polarisation
is given by Pρ =

∑
n P

n. As already mentioned, the charge polarisation is only
defined up to a lattice constant, but if one changes H(t) adiabatically from an
initial value t1 to a final value t2 and defines |unk〉 continuously, the change of
charge polarisation is well defined:

Pρ[t1]− Pρ[t2] =
1

2π

∫ π

−π

dk (A(t1, k)−A(t2, k)) . (1.46)

As in section 1.2, A(t, k) = i
∑

n 〈unk(t)| ∂k |unk(t)〉 denotes the Berry connec-
tion. Considering k and t as two independent coordinates of a 2D system, a
Berry curvature can be defined as
F (k, t) = i

∑
n (〈∂tunk(t)| ∂kunk(t)〉 − 〈∂kunk(t)| ∂tunk(t)〉), then the change in

charge polarisation reads

Pρ[t1]− Pρ[t2] =
1

2π

∫ π

−π

dk

∫ t2

t1

dt F (k, t). (1.47)

If the integration in time is over a full period, the difference in polarisation
Pρ[0]−Pρ[T ] is the total Chern number of a 2D system with coordinates (k, t),
as can be seen by comparing with the definition (1.9). Since H is supposed
to be time reversal invariant, F (−k,−t) = −F (k, t) and hence the total Chern
number is zeros. However, as explained in section 1.4, only half period is needed
to describe the system because of Kramers pairs. The idea of Fu and Kane was
now [20] to split the total charge polarisation Pρ in two parts. The 2N bands are
labelled by the number of the related Kramers pair α = 1, ..., N and a further
label within a certain pair s =I,II, see figure 1.2. A consequence or Kramers
degeneracy is that a state obtained by time reversing a Bloch function uIα,k has
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to be, up to a phase χα,k, its Kramers partner uIIα,−k. The Bloch waves within
a band are thus related by

∣∣uIα,−k

〉
= −eiχα,kΘ

∣∣uIIα,k
〉

(1.48)
∣∣uIIα,−k

〉
= eiχα,−kΘ

∣∣uIα,k
〉
. (1.49)

The second equation follows from the first and the properties of the time reversal
operator. The splitting of the Kramers pairs allows the definition of partial
polarisations P I and P II given by

P s =
1

2π

∫ π

−π

dk As(k), (1.50)

As(k) = i
N∑

α=1

〈usαk|∂k |usαk〉 . (1.51)

Obviously, the total charge polarisation is the sum of the two partial polarisa-
tions Pρ = P I +P II. For the definition of the Z2 invariant, the difference of the
partial polarisations, called time reversal polarisation

Pθ ≡ P I − P II (1.52)

is needed. Taking the time reversal invariance into consideration, integrating
over half a period is sufficient to determine properties of the system. The Z2

invariant for time reversal invariant systems is thus defined by

ν ≡ Pθ[T/2]− Pθ[0] mod 2. (1.53)

In the same paper [20], Fu and Kane also presented a method to determine
the invariant. The method is not used in this thesis, but it is explained for
completeness. The most important quantities for that purpose are the overlap
matrices of time reversed Bloch states

wmn(k) = 〈um,−k|Θ |un,k〉 . (1.54)

Because of equation (1.48), w(k) are direct products of 2×2 matrices where the
off-diagonal elements are the complex phases eiχα,k and eiχα,−k . Especially, in
the case of the two time reversal invariant momenta (TRIM) k = 0 and k = π,
the matrices w(k) are antisymmetric. Remarkably, it can be shown [20] that
only the time reversal overlap matrices at k = {0, π} and t = {0, T/2} are
necessary to determine the Z2 invariant. These four momentum/time pairs are
denoted Γi and the invariant can be calculated from

(−1)ν =

4∏

i=1

δi with δi =

√
det[w(Γi)]

Pf[w(Γi)]
. (1.55)

Since the Pfaffian Pf, which is only defined for antisymmetric matrices as it is
the case for w(Γi), is the square root of the determinant, only the branch of the
square root in equation (1.55) determines the sign of δi. The branch has to be
chosen such that the |unk〉 as well as

√
det[w(k)] are continuous between k = 0

and k = π. To implement a local gauge satisfying this is the most challenging
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part of this method.

The motivation here was given for a 1D system depending on an adiabatic
pumping parameter t. For two-dimensional systems the Z2 invariant can be
defined and calculated similarly, one just has to identify the momentum in the
second direction ky as the pumping parameter, thus all quantities depend on
(kx, ky) instead of (k, t). Equation (1.55) is still valid, Γi are the TRIM (0, 0),

(0, π), (π, 0) and (π, π) (see figure 1.1). The continuity of |unk〉 and
√
det[w(k)]

has to be satisfied along two opposing edges of the square defined by the four
TRIM, so either from (0, 0) to (0, π) and from (π, 0) and (π, π), or from (0, 0)
to (π, 0) and from (0, π) to (π, π).

1.6.1 Topological systems with inversion symmetry

As mentioned above, to use equation (1.55) a local gauge has to be used such that
the eigenstates are continuous between the TRIM. Fortunately, for the special
case of Hamiltonians with inversion symmetry it is possible to reformulate this
equation so that no knowledge of the eigenstates between the TRIM is necessary.

Inversion symmetry means that mirroring the lattice at an inversion center i
leaves the Hamiltonian invariant. Usually, i defines the origin O of the unit cell
which means inversion is realized by the parity operation P which maps all vec-
tors in real space to its negative, i.e. P : x 7→ −x. If a Hamiltonian is inversion
symmetric, the Bloch matrix H(k) commutes with a matrix representation P
of the parity transformation P . Thus, a complete set of common eigenvectors
exists [21]. The Bloch functions |unk〉 are therefore eigenfunctions of the parity
operator P with eigenvalues ξn = ±1.

If the Hamiltonian is furthermore time reversal invariant, the eigenfunctions
can be divided in Kramers pairs (see section 1.4). The parity eigenvalue of
eigenfunctions belonging to the same Kamers pair are equal ξIα = ξIIα = ξα [22].
It can be shown that the Z2 invariant is given just by the eigenvalues ξα of the
parity operator of the Kramers pair α at the TRIM Γi [22].

(−1)ν =

4∏

i=1

δi with δi =

N∏

α=1

ξα(Γi) (1.56)

The calculation of δi is here much simpler than in the more general equation
(1.55) since no continuous gauge between the TRIM has to be found.

1.7 Soluyanov-Vanderbilt method to determine

the Z2 invariant

The method described in this section was first published by Soluyanov and
Vanderbilt [23] and is based on definition (1.53). Since in this thesis only
two-dimensional systems where ky plays the role of the pumping parameter
t are considered, I use in this section only the notation (kx, ky) rather than the
parametrisation (k, t) which is used in section 1.6 and the original papers [20]
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and [23].

In this 2D parametrisation the Wannier functions of interest are the hybrid
Wannier functions where in contrast to definition (1.35) only one coordinate is
transformed from momentum k to spacial coordinates,

|Rxkyn〉 =
1

2π

∫ π

−π

dkx e
−iRxkx |ψnk〉 . (1.57)

The Wannier charge center (WCC) is thus the expectation value of the x com-
ponent of the position operator and depends on ky,

x̄n(ky) =
〈
0kyn

∣∣∣ X̂
∣∣∣0kyn

〉
. (1.58)

From equation (1.39) it follows that the WCC can also be written as

x̄n(ky) =
i

2π

∫ π

−π

dkx 〈unk| ∂kx
|unk〉 (1.59)

which is the polarisation in x direction, see equation (1.45). Hence, the Z2

invariant defined by equation (1.55) can also be written as

ν =
∑

α

[
x̄Iα(π) − x̄IIα (π)

]
−
∑

α

[
x̄Iα(0)− x̄IIα (0)

]
(1.60)

where α labels again the Kramers pair and (I,II) the number within a pair, see
figure 1.2. Because of Kramers degeneracy, x̄Iα = x̄IIα modulo a lattice constant
at ky = 0 and ky = π. Therefore, each of the summands in equation (1.60) is
an integer. However, to find the correct integer, the branch of x̄n(k) must not
change evolving from ky = 0 to ky = π.

The hybrid Wannier functions are not uniquely defined as explained in sec-
tion 1.5, since the bands still have the freedom of unitary gauge transformations

|ũmk〉 =
∑

n

Umn(k) |unk〉 . (1.61)

The desired gauge that makes sure that the correct branches are chosen is the
gauge that leads to maximally localised Wannier charge centers, as long as the
WCCs evolve smoothly [23]. The maximally localised WCC is defined as the
WCC with the minimal total spread [19]

Ω =
∑

n

[〈
0kyn

∣∣∣ X̂2
∣∣∣0kyn

〉
−
〈
0kyn

∣∣∣ X̂
∣∣∣0kyn

〉2]
. (1.62)

This condition defines a local gauge where the unitary transformation matrix
U(k) can be calculated using the following recipe for each value of ky [19, 23].

1. Define a discrete mesh of points k1, ..., kN along kx, see figure 1.3. I used,
as recommended by Soluyanov and Vanderbilt, 10 nodes.

2. For all of the discrete points, calculate the eigenvectors
∣∣unkj

〉
.



1.7. SOLUYANOV-VANDERBILT METHOD 23
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kj kj+1

Figure 1.3: Example of an finite kx mesh for a certain value of ky. As ex-
plained in the text, the local gauge at kj+1 is determined from the overlap of
the eigenvectors |uk〉 with the eigenvectors at the previous node kj .

3. The eigenstates at the first momentum k1 = 0 are not transformed:
|ũnk1

〉 = |unk1
〉.

4. To find the correct transformation for the states at momentum kj+1, a
singular value decomposition (SVD) of the overlap matrix with the already
transformed state at kj is performed:

M (kj ,kj+1)
mn =

〈
ũmkj

∣∣ unkj+1

〉
(1.63)

SVD: M = V SW † (1.64)

5. The correct transformation is given by

U(kj+1) = (W V †)T (1.65)
∣∣ũmkj+1

〉
=
∑

n

Umn(kj+1)
∣∣unkj+1

〉
(1.66)

and has the required property thatM
(kj,kj+1)
mn =

〈
ũmkj

∣∣ ũnkj+1

〉
, the trans-

formed overlap matrix, is hermitian.

Now, given the correct gauge, it is easy to calculate the WCCs. Because
of the periodicity of the lattice, |ũm0〉 and |ũm2π〉 are connected by a unitary
matrix Λ,

|ũm2π〉 =
∑

n

Λmn |ũn0〉 . (1.67)

The eigenvalues λn of Λ have an absolute value of 1 since Λ is unitary. Hence,
they can be written as complex phases φn, i.e. λn = e−iφn . φn can be seen
as a total phase accumulated while evolving |ũn〉 continuously from kx = 0 to
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Figure 1.4: Examples for Wannier charge centers of a system with two bands,
on the left in the case of a quantum spin Hall state and on the right for a
trivial insulator. The two upper pictures show the WCC on a cylinder, the
lower uncoiled over three periods.

kx = 2π while ky remains constant. This phase determines the Wannier charge
center x̄n via the relation [19, 23]

x̄n(ky) = φn/2π = −(ℑ logλn)/2π. (1.68)

The topological properties of the band structure are given by the properties
of the curves x̄n(ky). Let me summerize again the constraints due to time
reversal symmetry:

• The WCC is defined modulo the lattice constant a which is set to be 1,
since different gauges add a multiple of the lattice constant, see section
1.5.

• Since ky is periodic with period 2π, x̄n(ky) is defined on a torus, see figure
1.4.

• On the torus the WCC are continuous. Uncoiling the torus to a strip one
has to be aware that steps of magnitude a = 1 can appear which just
means that a switch to another branch has happened, see figure 1.4.

• Because of Kramers degeneracy, x̄Iα(ky) = x̄IIα (−ky)
• Especially, the two WCC curves belonging to the same Kramers pair in-
tersect at ky = 0 and ky = π.

• According to definition (1.60), the Kramers pair α is topologically non-
trivial if the WCC curves at ky = 0 and ky = π belong to a different
branch, see figure 1.4.
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Figure 1.5: Determination of the Z2 invariant using Wannier charge centers
x̄ = φ/2π. The red and blue circles, respectively, are the WCC, the green stars
are located in the middle of the larger of the two interspaces between the two
WCC. In the left picture, one jump of the green curve z(ky) between 0 and π is
larger than 1/4, hence ν = 1. Here, two periods of x̄ are shown.

To sum up, for all Kramers pairs one has to follow the WCC from ky = 0
to ky = π continuously to see if the same branches intersect again. However,
following the WCC is not so easy since they have been calculated only at dis-
crete values for ky. In the case of conserved quantities, for example Spin in z
direction, the two WCC within a Kramers pair can easily labelled, but without
there is no other way as to track the WCC.

Soluyanov and Vanderbilt suggested in [23] to follow the maximum interspace
between the WCCs instead of the curves itself. In the simplest case of two
occupied bands the two WCC divide the torus in two regions. The sum of the
two gaps is of course the period 1. In figure 1.5, the larger gap is marked by a
green star in the center of the interspaces and is subsequently called z(ky). TheZ2 invariant is given by the number of discontinuities of z(ky) between 0 and π,

ν = #discontinuities of z(ky) in [0, π] mod 2. (1.69)

Is is much easier to determine the discontinuities of z than tracking x̄ since the
jump of z at a discontinuity is for two bands exactly 1/2, whereas a possible
crossing of x̄I and x̄II needs a much higher resolution. In the following sections,
I considered discrete jumps of z lager than 1/4 as physical jumps which are not
due to numerical artefacts. An example is given in figure 1.5.

1.8 Topological invariants for interacting systems

The definition of the Chern number (1.9) is not applicable for interacting sys-
tems since Bloch states are used. The first definition for interacting systems
was introduced by Niu, Toulousses and Wu in 1985 [24] and uses the change
of the many body ground state |Ψ0〉 as boundary conditions change. Suppose
a 2D many body system obeys general boundary conditions defined by phase
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shifts φx, φy which impose

Ψ0(. . . , {xi + nxLx, yi + nyLy}, . . . ) = ei(nxφx+nyφy)Ψ0(. . . , {xi, yi}, . . . ).

The Chern number of the system is then given by [13, 24]

C =

∫ 2π

0

∫ 2π

0

dφxdφy
2πi

(〈
∂Ψ0

∂φy

∣∣∣∣
∂Ψ0

∂φx

〉
−
〈
∂Ψ0

∂φx

∣∣∣∣
∂Ψ0

∂φy

〉)
. (1.70)

For a Z2 invariant or a spin Chern number, the phase shift might be different for
spin up and spin down variables. Thus, the Chern number for each combination
has to be calculated via [13, 15]

Cσσ′

=

∫ 2π

0

∫ 2π

0

dφσxdφ
σ′

y

2πi

(〈
∂Ψ0

∂φσ′

y

∣∣∣∣
∂Ψ0

∂φσx

〉
−
〈
∂Ψ0

∂φσx

∣∣∣∣
∂Ψ0

∂φσ′

y

〉)
. (1.71)

The total Chern number is given by C =
∑

σσ′ Cσσ′
and the spin Chern number

in analogy to (1.27) by C =
∑

σσ′ σ Cσσ′
[13, 15].

In most cases, this expressions are difficult to evaluate. However, information
about some quantum mechanical many body system is not only given by the
many body ground state, but also by the Green’s function. Fortunately, is is
possible to reformulate equation (1.70) in terms of the single particle Green’s
function [24–26]

C =
ǫµνρ

24π2

∫
dk0

∫
d2k Tr

[
G∂µG

−1G∂νG
−1G∂ρG

−1
]

(1.72)

where k0 is the real frequency k0 ≡ ω ∈ R and G = G(iω,k) the Green’s func-
tion in Matsubara representation. G is a matrix whose indices are the remaining
degrees of freedom after translational invariance has been used to transform to
momentum space k, as for example spin and different sites within a unit cell,
and G−1 denotes the matrix inverse of G. Furthermore, ∂µ ≡ ∂

∂kµ
and Greek

letters are looping from 0 to 3, i.e. µ = 0, 1, 2, 3, where the Einstein convention
of implicit summation is used. This formulation using Green’s functions gives
qualitative information about topology, for example, a change of the topological
invariant can only happen if a singularity appears in G or G−1 [25,27]. However,
the numerical evaluation of (1.72) is demanding since a good knowledge of the
derivatives of the Green’s function is necessary to compute the triple integral
accurately.

A huge simplification could be achieved by Zhong Wang et al. developing
a new method where the Green’s function is only needed at frequency ω = 0
[28–30]. We can introduce an equation of the Green’s function at ω = 0 which
reads

G−1(ω = 0,k) |α(ω = 0,k)〉 = µα(ω = 0,k) |α(ω = 0,k)〉 . (1.73)

It is possible to calculate a quantity

Cα =
1

2π

∫

BZ

d2k ·Fα(k) =
1

2π

∮

∂BZ

dk ·Aα(k), (1.74)
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with Fα(k) = ∇k × Aα(k) and Aα(k) = −i 〈α(0,k)| ∇k |α(0,k)〉, directly
from the eigenvectors of G−1. These quantities are Chern numbers and thus
integer valued since they have the same structure as the Chern number defined
for noninteracting systems (1.9). The difference is that another vector bundle is
used: Instead of Bloch states |u(k)〉 which define the topology of the band Chern
numbers through Berry connections Am(k) = i 〈umk| ∇k |umk〉, eigenfunctions
|α(k)〉 of G−1(ω = 0,k) define the topology of these different Chern numbers
through Berry connections Aα(k) = −i 〈α(0,k)| ∇k |α(0,k)〉. On the first sight,
invariants defined on different bundles may not be connected in any way, but
it is the remarkable work of Wang et al. to show that summing over all Cα

belonging to positive eigenvalues µα > 0 (usually called R-space in contrast to
L-space witch is the space of vectors with negative eigenvalues) gives exactly
the same total Chern invariant as defined by (1.72),

C =
∑

α∈R-space

Cα. (1.75)

If the system obeys inversion symmetry, G−1(ω,k) commutes at the TRIM k =
Γi with the parity transformation matrix P (see also section 1.6.1) wherefore
|α(ω,Γi)〉 are simultaneous eigenstates of G and P :

P |α(ω = 0,Γi)〉 = ηα |α(ω = 0,Γi)〉 . (1.76)

In [28] it is shown that the topological invariant can be calculated from these
eigenvalues trough

(−1)ν =
∑

R zeros

η1/2α (1.77)

and that it reduces to the Fu-Kane formula (1.56) in the noninteracting case.
Here, the convention (−1)1/2 = i is used.

To sum up, one can calculate the desired Chern invariant by evaluating Berry
phases related to eigenvectors with positive eigenvalues of the inverse Green’s
function matrix G−1(ω = 0,k). One the other hand, for noninteracting systems,
the Chern invariant is calculated using eigenvectors with negative eigenvalues of
a matrix H(k). Hence, the topological properties of an interacting system are
the same as for an artificial noninteracting Bloch Hamiltonian which is minus
the inverse Green’s function at ω = 0. This defines the so called topological
Hamiltonian

Ht(k) = −G−1(ω = 0,k). (1.78)

Thus, all topological properties are encoded in an artificial system. Since this
is interactionless, all methods described in the previous sections can be used
to calculate the Chern invariant. However, it is prudent to mention that only
the topological properties are encoded in Ht(k), it is not suitable to use it for
estimates of any other quantities.

1.9 Bulk boundary correspondence

A fundamental aspect of finite topological systems is the appearance of gapless
states at the boundary, for example 1D states at the edge of a 2D ribbon. The
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basic idea behind this correspondence between the topologically nontrivial bulk
and the existence of gapless states at the boundary is the stability of topological
invariants with respect to minor modifications of the bands. As mentioned in
section 1.2, the Chern number can only change if a gap closes and a quantum
phase transition happens. A boundary can be seen now as a sharp change of
the Hamiltonian from a topologically nontrivial system to the vacuum, which is
topologically trivial (the bands are the dispersions of free electrons and positrons
as conduction band and valence band, respectively). The change of a topolog-
ical invariant involves, as mentioned above, a gap closing which has to happen
exactly at the boundary.

Such edge states have already be found by Jackiw and Rebbi in 1976 [31] and
reappear in the model by Su, Schrieffer and Heeger [32]. The idea from Jackiw
and Rebbi of an 1D field theory with edge states is used in the review by Hasan
and Kane [7] as an introductory example to bulk boundary correspondence. The
model is a Hamiltonian of massive Dirac particles living on a honeycomb lattice
(Details on that lattice are explained later in section 2.1). For small momenta
around the K points, q ≡ k −K and mass m the Hamiltonian reads

H(q) = ~vF q · σ +mσz (1.79)

and has the energies E(q) = ±
√
|~vFq|2 +m2 with a gap of 2 |m|. If m has

a different sign at the two K points K and K ′, the system is a topological
insulator, otherwise a trivial insulator. Consider now an interface where the
sign of m at K ′ is changing as a function of y as m(y) = |m|Θ(y) (Θ is the
Heaviside step function), but remains positive at K. The Schrödinger equation
has then the simple solution

ψqx(x, y) ∝ eiqxx−
∫

y

0
dy′ m(y′)/vF

(
1

1

)
(1.80)

with the linear dispersion E(qx) = ~vF qx. Hence, there exists a gapless edge
state exponentially localized at the interface.

Analysing the eigenfunctions of a Hamiltonian has been also considered at
quantum Hall insulators by Halperin [33] shortly after the experimental discov-
ery of the QH effect even before TKNN published their theoretical description.
Halperin’s paper is based on the idea of Laughlin, who has shown the quanti-
sation of Hall conductivity by using gauge invariance and a mobility gap [34].
The geometry used by Laughlin is a metal ring pierced by a magnetic field
H0. Through the ring flows a variable magnetic flux Φ, see figure 1.6. The
Hamiltonian of that system with charge carriers of mass m∗ is

H =
~
2

2m∗

(
P − e

c
A
)2

+ eE0y. (1.81)

With a Landau gauge for the magnetic field A = H0yx̂ the Landau levels En =(
n+ 1

2

)
~ωc with the cyclotron frequency ωc = |eB0| /m∗c can be proven. In his

gedankenexperiment, Laughlin changed the vector potential to A → A + A0x̂
which physically means turning on a magnetic flux Φ = A0Lx through the loop
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H0

1

2

Figure 1.6: The left picture shows the geometry of the Laughlin gedankenex-
periment, the right picture the modified version from Halperin.

which causes a current in y direction given by

I =
c

Lx

∂ 〈H〉
∂A0

= c
∂ 〈H〉
∂Φ

. (1.82)

This relation can be proven directly from Hamiltonian (1.81). A detailed deriva-
tion is given in Laughin’s Nobel lecture [35]. The idea of this loop geometry is
now that increasing Φ by a flux quantum ∆Φ = hc/e maps the system back to
itself since it is a legit gauge transformation. This means that the energy levels
have to be the same as before, but the population of each level may change.
Laughlin showed that n electrons are shifted from the left to the right of the
sample which gives the correct Hall current calculated from (1.82)

I = n
e2

h
V. (1.83)

Halperin modified the model to a flat geometry, see figure 1.6. He considered
a vector potential in azimuthal direction with magnitude

A =
1

2
B0r +

Φ

2πr
(1.84)

and looked at the eigenstates, which are due to the Landau levels proportional
to harmonic oscillators

ψmν(r, θ) ∝ eimθfν(r − rm). (1.85)

Here, fν are the eigenfunctions of a harmonic oscillator. They are centered at
rm and have a spread which is in the order of magnitude of the cyclotron radius
rc. However, because of boundary conditions, this structure of the eigenstates
is only true if r1 < rm < r2 and rm − r1 and r2 − rm are large compared to rc.
Halperin looked more closely to these eigenstates and concluded [33] that the
eigenstates of structure (1.85) do not contribute to a current. In fact, all the
current density is nonzero only in a region of ≈ rc near the edge. If no voltage is
applied, the currents at the two edges cancel to give a zero net current I1 = −I2.
If a voltage is applied, the Fermi levels E

(1)
F and E

(2)
F are different and give a

net current Iedges =
(
E

(2)
F − E

(1)
F

)
ne/h carried by the edge states.

These examples of a field theory with massive Dirac particles and the con-
siderations of a Quantum Hall system are strong indications for the assumption
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stated at the beginning of this section that a surface or an interface between
two materials with different topological properties accompanies edge states. For
many systems, rigorous proofs exist. Essin and Gurarie have shown in [27] that
the existence of edge states follows from the a nonzero topological invariant
given in terms of Green’s functions (see equation (1.72)). This approach is very
general and valid for all 10 topological classes in all dimensions and uses the fact
that a Chern integer defined by (1.72) can only change if the Green’s function
has a pole or a zero. The proof presumes that no Green’s function zeros appear,
which is true if the system is noninteracting. For interacting systems, Green’s
function zeros can appear and hence it is in principle possible that no edge
states are at an interface between two interacting topological insulators, which
hence can be continuously deformed from one to another without ever closing
the bulk gap [25]. The Chern number in terms of Green’s functions (1.72) is de-
signed such that it adiabatically connected to Chern numbers of noninteracting
systems calculated from Bloch functions. It thus has the right properties in the
limit of vanishing interaction, but its meaning for strongly interacting systems
is still not clear [13].

Another interesting proof is from Schulz-Baldes [36] who has shown for 2D
systems with time-reversal symmetry breaking terms, as for example Rashba
spin-orbit, that the spin edge currents persist provided there is a spectral gap
and the spin Chern numbers (1.27) are nontrivial. Graf and Porta [37], on the
other hand, give a new definition of the Z2 invariant for both bulk and edge
and show that these are equivalent.



Chapter 2

The Kane-Mele model

2.1 Graphene

In nature, carbon appears in two different crystal structures. One is diamond,
which is due to the fcc lattice with two atoms per primitive unit cell a very
hard insulating material. The second is graphite, where two-dimensional sheets
with hexagonal symmetry are stacked onto each other. In contrast to diamond,
graphite is conducting, opaque (black) and very soft. Graphene is the name of
the two-dimensional material which consists of exactly one sheet of graphite.
This material is stable and has been experimentally realized by Novoselov et al.
in 2004 [38].

The crystal structure is hexagonal with two atoms per unit cell (called sub-
lattices A and B, respectively) and is usually called honeycomb lattice, see figure
2.1. Since there are several ways to define the orientation, the reference length
and the unit cell, I will define here all relevant quantities which are used later
in this thesis. The hexagon is oriented such that corners with sites of type A
point in negative y direction and opposing corners with B sites in positive. The
lattice vectors are called a1 and a2, respectively, and their length is the lattice
parameter a which is set to be 1 throughout this thesis, but it is kept as a pa-
rameter in this section for completeness. As shown in figure 2.1, the numerical
values of the lattice vectors are

a1 =
a

2

(
1√
3

)
a2 =

a

2

(
−1√
3

)
. (2.1)

The nearest-neighbor distance is δ = a/
√
3 and the corresponding vectors δi are

defined to point from sites A to sites B:

δ1 =
a√
3

(
0
−1

)
δ2 =

a

2
√
3

(√
3
1

)
δ3 =

a

2
√
3

(
−
√
3

1

)
. (2.2)

In the case of graphene, a = 2.46± 0.02 Å and hence δ ≈ 1.42 Å [39]. The basis
vectors (2.1) determine the reciprocal lattice vectors

b1 =
2π

a
√
3

(
−
√
3

1

)
b2 =

2π

a
√
3

(√
3
1

)
. (2.3)

31
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Figure 2.1: Honeycomb lattice in real space. Full circles represent sublattice
A, empty circles sublattice B. The primitive lattice vectors ai are defined in
equation (2.1), the nearest-neighbor vectors δi in equation (2.2).

Figure 2.2: Brillouin zone and reciprocal lattice vectors of the honeycomb lattice.

The first Brillouin zone is hexagonal and shown in figure 2.2. Special points are
Γ, K, K ′ and M ,

Γ =

(
0
0

)
K =

2π

3a

(
−1√
3

)
K ′ =

2π

3a

(
1√
3

)
M =

2π

a
√
3

(
0
1

)
. (2.4)

Their location in the Brillouin zone is shown in figure 2.2.

The easiest model for graphene is a nearest-neighbor tight-binding model so
that hopping to another site gains energy t. The corresponding Hamiltonian in
second quantisation is

H = −t
∑

〈i,j〉σ
c†iσcjσ . (2.5)

The energy levels can be easily found by transforming to momentum space, as
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Figure 2.3: Energy bands of the nearest-neighbor tight-binding model on the
honeycomb lattice. The Dirac cones touch at the corners of the Brillouin zone
called K and K ′, see figure 2.2.

shown in appendix A.1. The resulting dispersion relation with a = 1 is [40, 41]

E(k) = ± |g(k)| = ±t

√√√√1 + 4 cos

(
kx
2

)
cos

(√
3ky
2

)
+ 4 cos2

(
kx
2

)
. (2.6)

As shown in figure 2.3, the dispersion is linear around K and K ′. Expanding
the momentum around the K points k = K + q, the energies of these so called
Dirac cones are [41]

E(q) = ±vF |q|+O
[
(q/K)2

]
(2.7)

with the Fermi velocity vF = − 3
2 t. Hence, around theK points, the Hamiltonian

can be written effectively as the Dirac Hamiltonian of a massless particle

Heff(q) = vFσ · q. (2.8)

Comparing to experimental data, a much better result is achieved if a hop-
ping to second nearest-neighbors is considered as well. The Hamiltonian has
then the form

H = −t
∑

〈i,j〉σ
c†iσcjσ − t′

∑

〈〈i,j〉〉σ
c†iσcjσ. (2.9)

The energies change to [40, 41]

E(k) = ± |g(k)| − t′
[
4 cos

(
kx
2

)
cos

(√
3ky
2

)
+ 4 cos2

(
kx
2

)
− 2

]
, (2.10)

with g(k) the same as in equation (2.1). The second nearest-neighbor hopping
breaks particle hole symmetry, but near the K points it causes, up to order q2,
just a constant shift in Energy. This means that the Dirac cones, which only
consider linear order in q, remain the same with a Fermi velocity vF = − 3

2 t.
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Figure 2.4: Illustration of the sign of νij . The left picture shows all left turns
to next-nearest-neighbors within a hexagon with νij = −1, the right picture all
right turns with νij = 1.

2.2 Haldane model

Haldane considered in [42] a model of spinless fermions aiming at a nonzero
quantum Hall conductance σxy in the absence of an external magnetic field.
The Hamiltonian is defined on a honeycomb lattice and is identical to the next-
nearest-neighbor tight-binding model for graphene (2.9), but with the general-
isation that the next-nearest-neighbor hopping is modified by a site dependent
phase eiνijφ. Here, νij ≡ sgn(dik × dkj)z = ±1 where dik is the vector pointing
from site i to its nearest-neighbor site k and is hence equal to ±δi defined in
(2.2). This means that the phase is +φ if the electron makes a left turn while
travelling to the next-nearest-neighbor and −φ in the case of a right turn, see
figure 2.4. Furthermore, Haldane considered an energy difference between the
sublattices A and B, controlled by a parameter M . The total Hamiltonian is

HHaldane = −t
∑

〈i,j〉
c†i cj − t′

∑

〈〈i,j〉〉
eiνijφc†i cj +M

∑

i

ξic
†
i ci, (2.11)

where ξi = 1 for i ∈ A and ξi = −1 for i ∈ B.

Although looking pretty similar to the graphene model (2.9), fundamental
differences arise due to the complex phase. If φ 6= 0 and φ 6= π, time reversal
symmetry is broken, which is necessary for the Chern invariant to be nontriv-
ial. Furthermore, if M 6= 0 the inversion symmetry is broken. In contrast to
graphene, the energy bands are gapped. As presented in [42], the gap closes in
the case of M = ±3

√
3t2 sinφ. The intersting property of this Hamiltonian is

that the Chern number changes with the parameters. The only case, where C
is easy to evaluate, is the time reversal invariant with φ = 0 or π since there it
is known that C = 0 (see section 1.2). In the case of a nontrivial φ it is easier
to calculate changes in the Chern number rather than the Chern number itself.
In [42] it is shown that the Chern number changes when the band gap closes at
the K points, namely ∆C = 1 if M is increased over 3

√
3t2 sinφ and ∆C = −1

if M is increased over −3
√
3t′ sinφ. Together with C = 0 for φ = 0, the phase

diagram is completely determined (see figure 2.5) [42, 43].
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Figure 2.5: Phase diagram of the Haldane model. The Chern invariant C is
shown as a function of the next-nearest-neighbor phase shift φ and the energy
difference between the sublattices.

2.3 Kane-Mele model

In 2005, two remarkable papers [12,44] by Kane and Mele were published which
set the starting point of the wide field of topological insulators. Their model
consists of electrons on a honeycomb lattice including, along a nearest-neighbor
tight-binding term, at least a spin-orbit interaction. This term causes a sign
difference between spin up and spin down electrons in the Hamiltonian. Hence,
to avoid expressions with several spin indices, a spinor notation c† ≡ (c†↑, c

†
↓) is

conveniently used. In some papers or reviews, an additional mark like a hat (for
example in [13]) or a tilde are used to distinguish a spinor operator from a one
particle operator but I will stick to the original notation [12] that a creation or
annihilation operator in a spinful system always denotes the spinor if no explicit
spin index is added. The total Kane-Mele Hamiltonian is

HKM =− t
∑

〈i,j〉
c†icj + iλSO

∑

〈〈i,j〉〉
νijc

†
iσ

zcj (2.12)

+ iλR
∑

〈i,j〉
c†i (σ × d̂ij)zcj + λν

∑

i

ξic
†
i cj .

The first term is the tight-binding term which already appears in the graphene
and the Haldane model. The second is a spin-orbit interaction. It is a next-
nearest-neighbor hopping that depends on spin (additional minus sign for ↓ due
to σz) and on the hopping. νij ≡ sgn(dik×dik)z = ±1 is defined as in the case of
the Haldane model, see figure 2.4. Comparing with the next-nearest-neighbor
hopping term of the Haldane model, one sees that the spin-orbit interaction
corresponds to φ = −π/2 for spin up electrons and to φ = π/2 for spin down
electrons. The third term is a nearest-neighbor Rashba interaction. σ denotes
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here the vector of Pauli matrices σ = (σx, σy, σz) and d̂ij the unit vector of
the nearest-neighbor vector dij pointing from site i to site j. This term breaks
the z 7→ −z mirror symmetry and hence the spin in z direction Sz is no longer
conserved. The last term is, as in the Haldane model, a sublattice potential
causing due to ξi = ±1 an energy difference between A and B sites.

To sum up, the only term that did not appear already in the Haldane model
is the Rashba coupling, wherefore the Kane-Mele Hamiltonian with λR = 0 can
be written as a sum of Haldane models [43]

HKM(λR = 0) = H↑
Haldane(φ = −π/2) +H↓

Haldane(φ = π/2). (2.13)

The corresponding parameters of the Haldane model (2.13) are t′ = λSO and
M = λν . The Kane-Mele Hamiltonian is, in contrast to the Haldane Hamilto-
nian, time reversal invariant, which has the direct consequence that the Chern
number is zero. In other words, Hall conductivity violates T symmetry and must
therefore vanish. However, the Chern invariant for each spin is for |λν | < 3

√
3 |t|

nontrivial (see figure 2.5).

C↑ =C
[
H↑

Haldane(φ = −π/2)
]
= 1 (2.14)

C↓ =C
[
H↓

Haldane(φ = π/2)
]
= −1 (2.15)

C =C↑ + C↓ = 0 (2.16)

Cs =(C↑ − C↓)/2 = 1 (2.17)

ν =Cs mod 2 = 1 (2.18)

In a historical view, it was this model with its structure of two opposing quan-
tum Hall systems that induced Kane and Mele to define a Z2 invariant.

2.3.1 Bloch Hamiltonian

From the Haldane model it is already known that that the topological structure
will break down at λν = 3

√
3λSO (see figure 2.5) as mentioned without com-

plete proof in section 2.2. Considering the full Kane-Mele model, this section is
aiming to describe the properties of the Bloch Hamiltonian in order to discuss
rigorously the topological properties.

The eigenergies of HKM can be evaluated, as usual for tight-binding systems,
by using the translational symmetry of the lattice. Hence, a Fourier transfor-
mation from real space coordinates Ri with lattice indices i to momentum k

leads to a block diagonal structure. Next to k, the remaining degrees of free-
dom are the two sublattices and the spin. The basis used here is, like in [13],

Ψ†
k
= (a†

k↑, b
†
k↑, a

†
k↓, b

†
k↓). In this basis, the Hamiltonian is of the form

HKM =
∑

k

Ψ†
k
H(k)Ψk. (2.19)
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The Bloch Hamilton matrix is, as shown in appendix A.1,

H(k) =




γk + λν −gk 0 ρk
−g∗

k
−γk − λν −ρ−k 0

0 −ρ∗−k
−γk + λν −gk

ρ∗
k

0 −g∗
k

γk − λν


 (2.20)

with

gk =t

[
e
−i

ky√
3 + 2e

i
ky

2
√

3 cos

(
kx
2

)]
(2.21)

γk =2λSO

[
2 sin

(
kx
2

)
cos

(√
3ky
2

)
− sin (kx)

]
(2.22)

ρk =iλR

[
−e−i

ky√
3 + e

i
ky

2
√

3

(
cos

(
kx
2

)
−
√
3 sin

(
kx
2

))]
. (2.23)

To analyse the behaviour ofH(k) under certain transformations, it is helpful
to expand the matrix in terms of Dirac matrices [12]. The vector space of 4× 4
matrices is 16 dimensional and a proper basis consists of the identity Γ0 ≡ 1,
five Dirac matrices Γa and their 10 commutators Γab = [Γa,Γb]/(2i). The Bloch
Hamiltonian can be written as

H(k) =
5∑

a=0

da(k)Γ
a +

5∑

a<b=1

dab(k)Γ
ab (2.24)

There are many ways to define the Γa, the definition from [12] is used here:
Γ(1,2,3,4,5) = (1⊗ σx,1⊗ σz , σx ⊗ σy, σy ⊗ σy, σz ⊗ σy). The first matrix is
related to spin, the second to the sublattice (Hilbertspace = spin⊗sublattice) to
be consistent with matrix representation (2.20). Note that in [12] the definition
is contrary (Hilbertspace = sublattice ⊗ spin) what gives the same expansion
(2.24), but another matrix representation of H(k) which is a rearrangement
of the elements of (2.20). The reason for the definition of Γa used here and
in [12] is that Γa are even under time reversal ΘΓaΘ−1 = Γa while Γab are odd
ΘΓabΘ−1 = −Γab. Within this representation, the non vanishing coefficients
d(k) in equation (2.24) are [12]

d1 = −ℜ (gk) = −t(1 + 2 cosx cos y)
d2 = λν
d3 = λR(1 − cosx cos y)

d4 = −
√
3λR sinx sin y

d12 = −ℑ (gk) = 2t cosx sin y
d15 = γk = 2λSO(2 sinx cos y − sin 2x)
d23 = −λR cosx sin y
d24 = λR sinx cos y

(2.25)

with x ≡ kx/2 and y ≡ ky
√
3/2. The time reversal invariance of H(k) can

be proven easily: Since Γa is even and Γab odd under T , and furthermore
d(k) fulfil da(k) = da(−k) and dab(k) = −dab(−k), it follows from (2.24) that
ΘH(k)Θ−1 = H(−k).
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Figure 2.6: Bands of the Kane-Mele Model with λν = λR = 0. The left picture
shows bands for λSO = 0.03 t. The smallest gap is at K and K ′ with a gapsize
of ∆ = 3

√
3λSO. In the right picture, λSO = 0.3 t where the smallest gap is now

at M with ∆ = 2 t.

2.3.2 Topology in inversion symmetric case

In the simple inversion symmetric case of λν = λR = 0, matrix (2.20) is decom-
posed into two, up to a factor of −1 in the diagonal, identical matrices. These
are related to spin up and spin down, respectively. Hence, the energy bands

E±(k) = ±
√
|gk|2 + γ2

k
(2.26)

are two fold degenerate, which can be seen as an interplay of inversion sym-
metry together with T symmetry which causes Kramers degeneracy. The most
important qualitative change in comparison with bare tight-binding models is
the appearance of a gap at the K points of size

∆K = 2γK = 6
√
3λSO. (2.27)

For large spin-orbit couplings λSO/t > 1/(3
√
3) ≈ 0.19, the minimal gap is

at the M point and is of size ∆ = 2t [13]. The bands for λS0 = 0.03 t and
λS0 = 0.3 t are shown in figure 2.6.

From the relation to the Haldane model (2.13) it is known that the spin
Chern number is 1 (see eq. (2.17)) and that the Z2 invariant defined by Cs

mod 2 (1.28) is nontrivial. Since spin in z direction is conserved because of
λR = 0, the definition of ν is identical to the definition introduced by Fu and
Kane (1.53). For the latter definition, it is easier to calculate ν directly using
equation (1.56), than calculating the changes of Chern invariants as done for
the Haldane system in section 2.2. This has been already done in the paper
where the method is presented [22]. The time reversal invariant momenta Γi of
the honeycomb lattice are Γ and three M points, see figure 2.7:

Γ1 = Γ =

(
0
0

)
Γ2 = M1 =

2π

a
√
3

(√
3
1

)

Γ3 = M2 =
2π

a
√
3

(
−
√
3

1

)
Γ4 = M3 =

2π√
3

(
0
1

) (2.28)

To calculate the topological invariant, the eigenvalues of the inversion opera-
tor at these momenta are needed. This problem can be simplified using the
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Figure 2.7: Topologically relevant points of the honeycomb lattice in reciprocal
space. The four TRIM (Γ and three M points) are marked as circles. The blue
area shows the region used to calculate x̄(k2).

fact that inversion symmetry (matrix representation: P = 1 ⊗ σx = Γ1) is
assumed. For time reversal invariant Hamiltonians which additionally obey in-
version symmetry, PΘH(k)Θ−1P−1 = PH(−k)P−1 = H(k) holds. Since only
Γ1,Γ12,Γ13,Γ14,Γ15 are even under PT while the other basis matrices are odd,
equation 2.24 simplifies to

H(k) = d0(k)1+ d1(k)Γ
1 +

5∑

b=2

d1b(k)Γ
1b. (2.29)

At the time reversal invariant momenta (TRIM), H(Γi)=H(−Γi). Hence, in
addition to the constraint that H is even under PT it must be even under both
P and T . This is only true for Γ1 = P , wherefore the Bloch Hamiltonian of
inversion symmetric systems has at the TRIM the form

H(k = Γi) = d0(k = Γi)1+ d1(k = Γi)P. (2.30)

Because of this simple structure, the eigenvalues of P are related to the eigen-
values of H . The coefficients δi defined in section 1.6.1 are given by [22]

δi = −sgn(d1(k = Γi)). (2.31)

Inserting the TRIM (2.28) in d1 (2.25), the results are δ1 = −1, δ2 = 1, δ3 = −1,
δ4 = −1, and hence

4∏

i=1

δi = (−1)1 ⇒ ν = 1. (2.32)

Interestingly, only d1, a term originating from the tight-binding term, has an
impact on the result. The spin-orbit term seems to have no influence, since it
is odd under P . However, the term is needed to gap the system because only
for insulators the description above is valid.
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Figure 2.8: Wannier charge centers of the inversion symmetric Kane-Mele model.
The spin-orbit coupling is λSO = 0.03 t in the left figure and λSO = 0.3 t in the
right. Blue and red circles denote x̄↑(k2) and x̄↓(k2), respectively. Since the
maximum interval curve z(k2) shown in green jumps once between 0 and 2π/

√
3,

we have ν = 1 in both cases.

2.3.3 Topology in general case

The approach of the last section is only suitable for the inversion symmetric
case, i.e. λν = λR = 0. In the general case, the Soluyanov-Vanderbilt method
can be used. This method is explained in section 1.7, but with the restriction
that a rectangular lattice is assumed. It can be easily adopted by using the non-
orthogonal basis of the reciprocal lattice k = k1b̂1 + k2b̂2 instead of Cartesian
coordinates k = kxx̂ + kyŷ. The hybrid Wannier transformation is performed
along k1 to give Wannier Charge centers as a function of k2. The half Brillouin
zone used to calculate x̄(k2) is shown in figure 2.7 as a bluish shaded region.
The quantity k2 used as abscissa variable has a periodicity of 4π/

√
3 since this

is the length of the reciprocal lattice vector b2.

In the following, the hopping t defining the energy scale is set to be one in or-
der to keep a clear focus on the interplay of the other parameters λSO, λν and λR.
This is equivalent to a rescaling λi → λi/t. The Wannier charge centers (WCC)
belonging to the bands shown in figure 2.6 (λSO = 0.03 and 0.3, λν = λR = 0)
are shown in figure 2.8. Since λR = 0, the spin in z direction is conserved,
wherefore the individual WCC can be traced. x̄I is defined to the WCC of spin
up states and colored blue, x̄II the WCC of spin down and colored red. In figure
2.8, one can directly read off the topological quantities that had been deter-
mined for the Haldane model in equation (2.14). x̄I(4π/

√
3)− x̄I(0) = 1, hence

C↑ = 1. In analogy, C↓ = −1. The Z2 invariant ν has been calculated using
the definition ν = Cs mod 2, but using the Soluyanov-Vanderbilt approach of
counting the discontinuities of the maximum interval curve z(k2) (see section
1.7 and equation (1.60) in particular) it can also be determined in the sense of
Fu and Kane (1.53). Once again, it should be mentioned that for Sz conserving
Hamiltonians that obey T symmetry the two ways to define ν are identical.

One symmetry of these curves is x̄I(k2) = x̄II(−k2) which is a direct conse-
quence of Kramers degeneracy due to time reversal symmetry. Another sym-
metry is x̄I(k2) = −x̄II(k2) which is caused by the degeneracy of the bands due
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Figure 2.9: The left picture shows the bands, the right picture the Wannier
charge center of the Kane-Mele model with λSO = 0.1 t, λν = 0.2 t and λR = 0.
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Figure 2.10: The left picture shows the bands, the right picture the Wannier
charge center of the Kane-Mele model with λSO = 0.1 t, λν = 0.7 t and λR = 0.

to inversion symmetry. The latter symmetry is broken if an energy difference
between the sublattices is applied by λν 6= 0. The eigenvalues can be easily
calculated from matrix (2.20):

E↑
±(k) = ±

√
|gk|2 + (γk + λν)2, (2.33)

E↓
±(k) = ±

√
|gk|2 + (γk − λν)2. (2.34)

The corresponding bands and the WCC are shown in figure 2.9. The degeneracy
of the bands is lifted in most regions of the Brillouin zone, the spin symmetry
remains only between Γ and M since γ(kx = 0) = 0 follows from equation
(2.22). The system is still a topological insulator, the Chern invariants C↑ = 1
and C↓ = −1 are the same as in the case of λν = 0. If λν is increased further,
the gap closes at λcν = 3

√
3λSO as known from the Haldane model (see section

2.2). If the gap reopens for λν > λcν , the system changes to an trivial band
insulator. The corresponding bands and WCC are shown in figure 2.10. Note
that the band structures on the left look similar in figure 2.9 and 2.10, although
they belong to topologically distinct classes.

If λR 6= 0, the degeneracy of the bands is lifted everywhere except at the
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Figure 2.11: Bands of the Kane-Mele model with λSO = 0.15 t and λν = 0 for
different values of λR. The Rashba coupling is λR = 0 in the upper left picture,
λR = λSO in the upper right, λR = 3.1λSO in the lower left and λR = 5λSO in
the lower right.

time reversal invariant momenta (Kramers degeneracy). Furthermore, the min-
imum of the conduction bands shifts with increasing λSO and with increasing
λR away from K and K ′ closer to Γ. An example is given in figure 2.11. If
λR is increased further, the indirect band gap closes and the system becomes
metallic. For instance, for λSO = 0.15 the gap closes at λR = 3.09λSO, as shown
in figure 2.12. The corresponding bands are shown in the third picture of figure
2.11, where λR = 3.1λSO. However, the bands do not intersect until another
critical value is exceeded. At the K point, this value only depends on the ratio
λR/λSO with the critical value λcR/λSO ≈ 3.465.

The Hamiltonian is not a combination of two Haldane Hamiltonians any
more. Furthermore, the spin in z direction Sz is not conserved, which means
that a topological analysis as in equation (2.14) is no longer possible, so only
the definition of Fu and Kane can be taken into account. An example for the
Wannier charge centers are given in figure 2.13. Because of λν = 0, the sym-
metry x̄I(k2) = −x̄II(k2) is obeyed. Note that the colors in fig. 2.13 are chosen
by the sign of 〈u2π(k2)|Sz |u2π(k2)〉. If λR = 0, Sz is conserved and hence the
matrix element is ±1. If the spin symmetry is broken, the absolute value of the
matrix element can be smaller than one. If the sign of

〈
uI2π(k2)

∣∣Sz

∣∣uI2π(k2)
〉

changes, the color changes, as for example in figure 2.15. Therefore, although
it seems easy to trace the two WCC in figure 2.13, one cannot be sure if x̄I and
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Figure 2.12: Band gap of the Kane-Mele model as a function of λR with λν = 0,
and two different spin-orbit couplings λν = 0. The full curves are defined by
the the minimum of the second highest energy band minus the maximum of the
third highest. If this value is negative, the system is metallic. The dashed lines
are the band gaps at the K points. The energy scale is fixed by t = 1.

x̄II have been assigned correctly. In contrast to the WCC without λR shown
in figure 2.9, tracing x̄s is not possible and thus C↑ and C↓ are not defined.
However, the Z2 invariant can be determined via the discontinuities of the max-
imum interspace function z(k2), as explained in section 1.7. If λν = 0, as in
the analysis for the bands above, the Hamiltonian remains topological as long
as the band gap persists. An example for the Wannier charge centers is given
in figure 2.13. On the other hand, for metallic systems the topological clas-
sification is no longer valid (see section 1.6). In the limit λSO → 0 the band
gap closes only at the K point, wherefore the system is a topological insulator
if λR < λcR ≈ 3.465λSO and metallic if λR ≥ λcR. For finite λSO, the metallic
phase extends to smaller values of λR/λSO, as explained above and in figure 2.12.

If λν 6= 0 as well, the system remains in the Quantum Spin Hall phase
until a critical value λcν(λR) is reached, where the band gap closes at the K
points. λcν(λR) only depends on the ratios λν/λSO and λR/λSO, but not on
the magnitude of λSO. The phase boundary was calculated by determining the
zeros of the band gap at the K points and is shown in figure 2.14. Note that it
is symmetric in λν and λR. As already described above, λcν = 0 if λR > λcR ≈
3.465λSO. If λR < λcR, λ

c
ν(λR) smoothly connects the point (λR = λcR, λν = 0)

to the already analytically calculated critical point (λR = 0, λν = 3
√
3λSO). In

the limit λSO → 0, any λν 6= λcν gaps the system. The Z2 invariant ν is easily
calculated for each phase using again the Soluyanov-Vanderbilt method. The
phase diagram is shown in figure 2.14 [12], example Wannier charge centers are
shown in figure 2.15. For finite λSO, the metallic phase is extended to smaller
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Figure 2.13: Wannier charge center for λSO = 0.15, λR = 3λSO and λν = 0.

values of λR (see figure 2.12) and persists also for nonzero λν . The corresponding
phase diagram is exemplary shown for λSO = 0.5 in figure 2.16.

2.4 Ribbon

In section 1.9 the bulk boundary correspondence has been discussed. The aim
of this section is to verify the correspondence for the Kane-Mele model and to
analyse the transition as well as the properties of the edge states.

2.4.1 Geometry

In principle, the bulk boundary correspondence can be analyzed on any geom-
etry that includes a region where the Chern number changes. In order to keep
matrix dimensions low, it is preferable to retain translational invariance in one
direction. Such a ribbon can appear in various forms depending on the ori-
entation of the hexagon with respect to the boundary. In usual notation, the
orientation is encoded in the primitive lattice vector R of the ribbon which is
expressed in terms of the primitive lattice vectors of graphene a1 and a2, i.e.
R = na1 +ma2 (see section 2.1). Because of the C3 rotation symmetry of the
lattice, only angles between θ = 0 and θ = 30◦ between x axis and boundary
line of the ribbon have to be considered. The primitive lattice vectors can be
chosen such that (n,m) are within this region n > 0 and n > m > 0. The
ribbon (n,m) = (1, 0) is called zigzag ribbon (θ = 0), (n,m) = (1, 1) called
armchair ribbon (θ = 30◦) due to the shape of their edges. The others are
chiral ribbons, see figure 2.17. This notation is also applicable for nanotubes,
but with the difference that lines illustrating the edges of ribbons shown in fig-
ure 2.17 represent the circumferences of the tubes. Since the primitive lattice
vector of a tube is orthogonal to its circumference, the primitive lattice vector
of a (n,m) nanotube is orthogonal to the primitive lattice vector of a (n,m)
nanoribbon. Therefore, an armchair ribbon corresponds to a zigzag tube. The
only difference between these two are boundary conditions which are open and
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Figure 2.14: Phase diagram of the Kane-Mele model in the limit λSO → 0.
The black line denotes the metallic phase where the band gap at the K points
closes. The topological trivial phase with Z2 invariant ν = 0 is obtained if
Rashba coupling λR or sublattice potential λν are increased relative to spin-
orbit coupling λSO [12].
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Figure 2.15: Quantum transition as a function of λR. For both WCC curves,
λSO = 0.1 and λν = 0.4. In the left picture, λR = 0.1 (ν = 1) and in the
right λR = 0.3 (ν = 0). Here one can see that ordering the WCC according to
the sign of spin in z direction (red or blue, respectively) is not necessarily the
correct order.
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Figure 2.16: Phase diagram of the Kane-Mele model with a large spin-orbit
coupling of λSO = 0.5. in contrast to figure 2.14, a metallic phase shown in grey
appears. As a dashed line, the gap close at K is denoted, which is the only
phase boundary in the limit λSO → 0.
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Figure 2.17: Edge orientation of a zigzag, an armchair and a chiral (n,m)=(2,1)
ribbon. The colored dots denote the respective equivalent lattice points to the
black one.

periodic, respectively.

Comparing ribbons to tubes is helpful since the dispersion relation is easier
to calculate using periodic boundary conditions since it can be determined from
the bulk properties. The only difference between a tube and the extended sheet
is that the values of the momentum around the circumference are quantised
to k⊥ = l/r where l is an integer and r the radius of the tube. Hence, the
dispersion of nanotubes can be viewed as slices through the two-dimensional
dispersion of a graphene sheet, see figure 2.18 [45]. Detailed analysis shows that
the K point is an allowed momentum if n−m is a multiple of 3 [45]. This has
the consequence, that all armchair carbon nanotubes are metallic whereas two
thirds of zigzag carbon nanotubes are semiconducting. Because of the similarity
between armchair tubes and zigzag ribbons, all zigzag carbon nanoribbons are
metallic whereas the properties of armchair ribbons depend on their width.

These general considerations are of course not sufficient to provide any quali-
tative information about edge states since those are emerging from open bound-
ary conditions which are actually the only difference between armchair tubes
and zigzag ribbons. However, regarding the results of the tubes, one can con-
clude that zigzag ribbons are preferable to armchair ribbons in order to analyse
topological properties since the latter have a stronger dependence on the width.
For example, an observed bandgap may not be due to spin-orbit coupling, but
simply resulting from size effects. A further drawback of armchair ribbons is that
both K and K ′ are mapped to ky = 0, whereas they are mapped to kx = ±2π/3
at zigzag ribbons. Therefore, possible differences between K and K ′ are easier
identified at zigzag ribbons.

The geometry of a zigzag ribbon is shown in figure 2.19. If the number of
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Figure 2.18: Allowed k values in the Brillouin zone for an (2, 2) armchair tube
[45].

zigzag lines in x direction is called N , thee are N − 1 rows of hexagons along
the width of the ribbon. The periodicity along the x axis is the lattice constant
of the 2D honeycomb lattice a, which is, as in the sections describing bulk
properties, set to be 1. The primitive lattice vector is therefore R = (1, 0), see
also figures 2.17 and 2.19. Each of the N zigzag lines contains one A and one
B site within a unit cell, hence the total number of sites is 2N .

2.4.2 Kane-Mele model on a zigzag ribbon

To calculate dispersion relations of the Kane-Mele model (2.12) on a zigzag
ribbon, a Fourier transform is used. In contrast to the 2D bulk case exam-
ined in section 2.3.1, translational invariance in only valid in x, but not in y
direction, wherefore Fourier transform can only be applied in one direction.
The site indices in y direction remain as additional dimensions. The new basis

is, similar to equation (2.19), Ψ†
kx

≡
(
a†kx↑, b

†
kx↑, a

†
kx↓, b

†
kx↓

)
. Here, however,

c†kxσ
≡
(
c†kx1σ

, c†kx2σ
, . . . c†kxNσ

)
is a vector of length N . In this basis the Hamil-

tonian has the form
HKM =

∑

kx

Ψ†
kx
H(kx)Ψkx

. (2.35)

A derivation of the 4N × 4N matrix H(kx) is given in appendix A.2.

Numerically calculating the eigenenergies as a function of kx gives the results
shown in figure 2.20 (see also [12,44]). Because of the ribbon width of N = 20,
the dimensionality is 80. Due to a degeneracy of 2 for all lines, each of the
two bulk bands is represented by 38 lines and thus easily visible. Since the
spin-orbit coupling is rather small (λSO = 0.05), the smallest bulk band gap
is located at K and K ′ with a magnitude of ∆K = 6

√
3λSO ≈ 0.52 (see eq.

(2.27)) which fits perfectly to the ribbon gap at kx = 2π/3 and kx = 4π/3, the
momenta representing the K points in the zigzag ribbon. In addition to the



2.4. RIBBON 49

Figure 2.19: Zigzag ribbon of width N = 5. A unit cell is shown within the
dashed rectangle and contains 2N = 10 sites.
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Figure 2.20: Eigenenergies of the Kane-Mele model for λSO = 0.05, λν = λR = 0
and N = 20 [12].
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Figure 2.21: Localisation of the edge states at λSO = 0.05. The left picture
shows the dependence on position of both electron and hole excitations. The
right picture shows the correlation length ξ as a function of kx.

dense lines representing the bulk bands, two additional excitations, each two
fold degenerate, appear that close the gap at kx = π. These excitations are the
edge states caused by the change of topology at the boundary [44]. To check the
level of localisation, the expectation value of the particle density as a function of
the lattice sites is needed, which can be calculated from the eigenvectors of the
Bloch matrix H(kx). For a certain kx the eigenvectors un(kx) have 4N entries
because of 2 spin, 2 sublattice and N position indices. The particle density as
a function of sublattice s ∈ {A,B}, position l, Energy E and momentum kx
is given by summing the square of the eigenvectors over spin and degenerate
energies, i.e.

〈nsl(E, kx)〉 =
∑

nσ

δ(E − En) |unσsl(kx)|2 . (2.36)

The densities of both particle and hole like edge excitations for λSO = 0.05 and
kx = 0.8π (E(kx) = ±0.173) are shown in figure 2.21. One sees that densities
of particle and hole like excitations are identical which is due to particle hole
symmetry of the model. On the other hand, the densities on A and B sites
differ strongly: The A sites are populated mostly at the lower edge whereas
the B sites at the upper. The reason for that is that the ribbon starts with an
A site and ends with a B site, see figure 2.19. All states are clearly localised
exponentially at the edge with the same correlation length. This implies to fit
the density at the first sites exponentially via 〈nl〉 ∝ e−l/ξ. The correlation
length ξ does not depend on sublattice or edge, but only on the parameters of
the Kane-Mele model and kx. For λSO = 0.05, the correlation length of the
lowest excitation is shown in figure 2.21 as a function of kx. It diverges as kx
approaches 2π/3 and 4π/3, which means that the lowest excitation is indeed
only an edge state when it splits off the bulk bands in order to close the gap in
the region between the K points (see figure 2.20).

For a deeper analysis of the edge states, the degeneracy of the bands has
to be lifted. This can be done for example by a sublattice potential λν . The
results are shown in the left picture of figure 2.22 for λSO = 0.1 and λν = 0.2.
As in the case λν = 0, gap closing edge states exist, but the degeneracy is
lifted. Considering the eigenvectors un of the edge states, it turns out that each
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Figure 2.22: Dispersion relation of the Kane-Mele model on a zigzag ribbon for
λSO = 0.1 and λν = 0.2 (left) and λν = 0.6 (right), respectively. Edge states
localized more than 99% to a half of the ribbon are shown in different colors.

state is bound to only one edge and that it has a clearly defined spin. In the
following I will use the notation right/left edge rather than upper/lower edge
in order not to confuse with spin up/down. This corresponds to a rotation of
90◦. Those eigenenergies corresponding to eigenvectors whose spin polarisation
is over 99% and where over 99% of the weight is on the left/right half of the
ribbon are displayed in a different color. It can be seen that all states with finite
correlation length are polarised in spin and edge. If λν is increased further, it
is known from the bulk system that a quantum phase transition to a trivial
band insulator happens at λν = 3

√
3λSO. An example for this phase is given

in the right picture of figure 2.22. Localized edge states still persist, but they
do not close the gap any more. This is expected because of bulk boundary
correspondence. One interesting feature of the edge states is that all excitations
at the left edges are particle like whereas all at the right hole like. The reason for
that is that the left edge starts with an A site that has an higher onset energy
than the B site on the right edge. If a Rashba coupling is added as well, the
edge states are still bound to one edge, but the spin polarisation is destroyed.
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Chapter 3

Kane-Mele-Hubbard model

The Kane-Mele model is a band theory that does not include any explicit
electron-electron interaction. Coulomb repulsion is easiest added by using a
Hubbard term U

∑
i ni↑ni↓ introduced by John Hubbard in 1963 to describe

intra-atomic interaction which is important for narrow bands [46]. Here, niσ

are the number operators of site i and spin σ defined by niσ ≡ c†iσciσ. The
parameter U controls the strength of the repulsion. The Hubbard term is fre-
quently used to describe band magnetism and metal insulator transitions, so
called Mott transitions [47]. The Kane-Mele-Hubbard model is an extended
version of the Kane-Mele model that includes an on site Hubbard interaction
controlled by a parameter U ,

HKMH ≡ HKM + U
∑

i

ni↑ni↓. (3.1)

This term was first considered by Rachel and Le Hur [13, 48], who did a mean-
field approximation. As in many proceeding papers, in the original work the
terminus Kane-Mele-Hubbard model denotes the minimal correlated model with
a spin-orbit coupling and a Hubbard term, but without sublattice potential and
Rashba coupling. In this chapter, the energy scale is set by t = 1.

The Kane-Mele model was an important milestone in the development of
models featuring nontrivial topology giving an easy access to understand topo-
logical phase transitions. As a consequence, the KMH model with additional
Hubbard interaction is supposed to be a toy model in order to understand
the influence of interactions on topology. Therefore, it has been investigated
by several methods after Rachel and Le Hur [48] first considered this model in
mean-field approximation [13,49–52]. Since in these methods beyond mean-field
theory the picture of Bloch states breaks down, the topology has to be deter-
mined differently, as explained in section 1.8. In order to explain in principle
how topology is affected by an interaction, in this chapter only the mean-field
approximation is used since the same framework as for the noninteracting model
(chapter 2) is applicable. The methods beyond mean-field are described in the
next chapter 4. For the Hubbard model, the mean-field approximation reads:

U
∑

i

ni↑ni↓ ≈ U
∑

i

(〈ni↑〉ni↓ + 〈ni↓〉ni↑ − 〈ni↑〉〈ni↓〉). (3.2)

53
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Because of the periodicity of the lattice, it is assumed that the electron den-
sities are identical in all unit cells. Therefore, 4 independent particle densities
〈nA↑〉, 〈nB↑〉, 〈nA↓〉 and 〈nB↓〉 remain because of two spins and two sublattices.
Fixing the filling at one electron per site (half filling), three independent pa-
rameters that have to be determined self consistently define the system. One
set of parameters is the ferromagnetic magnetisationMF, the antiferromagnetic
magnetisation MAF and a sublattice difference ∆NAB defined by

N = + 〈nA↑〉+ 〈nB↑〉+ 〈nA↓〉+ 〈nB↓〉 = 2 (3.3)

MF = + 〈nA↑〉+ 〈nB↑〉 − 〈nA↓〉 − 〈nB↓〉 (3.4)

MAF = −〈nA↑〉+ 〈nB↑〉+ 〈nA↓〉 − 〈nB↓〉 (3.5)

∆NAB = −〈nA↑〉+ 〈nB↑〉 − 〈nA↓〉+ 〈nB↓〉 (3.6)

The mean-field Hamiltonian given by (3.1) and (3.2) is particle hole symmetric
without the Rashba coupling. However, the energies are in general not sym-
metric around E = 0 any more. This could be fixed by a chemical potential
µ. In the following all bands are shifted to be symmetric around 0, wherefore
the constant U

∑
i 〈ni↑〉 〈ni↓〉 will not be mentioned any more since it might

be included in the chemical potential. Writing the mean-field approximation
HMF = U

∑
i(〈ni↑〉ni↓ + 〈ni↓〉ni↑) in the same Bloch matrix representation as

the noninteracting Kane-Mele model (2.20), one obtains

HMF = U




〈nA↓〉 0 0 0
0 〈nB↓〉 0 0
0 0 〈nA↑〉 0
0 0 0 〈nB↓〉


 (3.7)

Expanding this matrix to the basis of Dirac matrices (see section 2.3.1), the
non-zero coefficients are proportional to the independent parameters N , MF,
MMF and ∆NAB defined in equations (3.3-3.6):

d0 = U/4N
d2 = −U/4∆NAB

d15 = U/4MAF

d34 = −U/4MF

(3.8)

Since dab(k) = −dab(−k) is necessary for time reversal invariance (see section
2.3.1), any kind of magnetisation breaks time reversal symmetry.

3.1 Magnetisation

The values of MF, MMF and ∆NAB have to be determined self consistently.
From a given set of 〈nr〉 where r denotes both spin and sublattice variable
r ∈ {A ↑, B ↑, A ↓, B ↓}, the eigenvalues and eigenvectors can be calculated.
However, the occupied eigenstates ul determine the occupation numbers 〈nr〉
via

〈nr〉 =
1

NΛ

∑

k

∑

l

Θ(E − El) |urlk (〈nA↑〉 , 〈nB↑〉 , 〈nA↓〉 , 〈nB↓〉)|2 . (3.9)
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Figure 3.1: The left picture shows the antiferromagnetic moment of the mean-
field KMH Hamiltonian as a function of U for three different λSO, the right the
corresponding gaps. The dashed line indicates the topological transition.

The eigenvectors ulk can be calculated by diagonalizing H(k) + HMF given
by the equations (2.20) and (3.7). If λR = 0 the matrix decouples into two
2 × 2 matrices and the eigenvectors can be easily determined analytically. The
eigenenergies are given by

E↑
±(k) = ±

√

|gk|2 +
[
γk + λν +

U

2
(〈nA↓〉 − 〈nB↓〉)

]2
, (3.10)

E↓
±(k) = ±

√

|gk|2 +
[
−γk + λν +

U

2
(〈nA↑〉 − 〈nB↑〉)

]2
. (3.11)

With these eigenvalues, it is straight forward to calculate the eigenvectors. The
four densities 〈nr〉 have to be chosen such that the four self consistency equations
(3.9) are satisfied. This can be done numerically by assuming initial values for
〈nr〉0 and iteratively calculating new densities 〈nr〉s+1 until a stationary point

is reached. A mixing, i.e. 〈̃nr〉s+1 = a 〈nr〉s+1 + (1 − a) 〈nr〉s, improves the
stability and avoids a divergent behaviour. Depending on the parameters, a
was chosen between 0.3 and 0.7. If λν = 0, the Hamiltonian is symmetric in
A and B wherefore ∆NAB has to vanish. If furthermore the ferromagnetic
magnetisation is assumed to vanish, the self consistency simplifies to [48]

MAF =
1

NΛ

∑

k

MAFU/2− γk√
|gk|2 + (γk −MAFU/2)

2
. (3.12)

If all 4 densities 〈nr〉 are free to vary, it turns out that this assumption is indeed
correct and that the ferromagnetic magnetisationMF vanishes for all parameter
sets.

Considering the Kane-Mele-Hubbard (KMH) model without sublattice po-
tential and Rashba coupling, an antiferromagntic ordering appears if U is above
a critical value U c

1 (λSO). The order parameter rises continuously from 0 above
U c
1 , wherefore the phase transition is of second order, see figure 3.1. In the limit

U → ∞ the antiferromagnetic moment approaches the saturation value 2, which
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Figure 3.2: Phase diagram of the KMH model in mean-field approximation
without sublattice potential and Rashba coupling. For U < U c

1 the system is
a topological Quantum Spin Hall insulator (QSH). For U larger than U c
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antiferromagnetic moment appears, but between U c
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2 the QSH structure

remains. See also [48].

corresponds to a fully polarized system. The dependence of U c
1 on λSO is shown

in figure 3.2 [48]. As seen in section 2.3.3, another point in parameter space
that possibly yields a phase transition is a closing of the band gap. Looking at
the band gap ∆(U), it remains constant (∆ = 6

√
3λSO if λSO < 1/(3

√
3) and

∆ = 2 else, see section 2.3.2) as long as the antiferromagnetic moment vanishes.
With increasing magnetic moment at U > U c

1 the band gap decreases, closes at
another critical interaction U c

2(λSO) and reopens for larger values U > U c
2 . As

a function of spin-orbit coupling, U c
2(λSO) is shown in figure 3.2.

3.2 Topological transitions

As already seen in the noninteracting case, a band gap closing might be an
indication for a topological transition. Furthermore, an antiferromagnetic mo-
ment changes symmetries and can thus change the topological structure as well.
Hence, three different phases are possible as U varies. Wannier charge centers
(WCC, see section 1.5) are used here in order to analyse topological properties
since they give a detailed insight in both quantum spin Hall structure (1.28)
and the Fu-Kane definition of the Z2 invariant (1.53).

As U increases from 0, bands and WCC do not change as long as the an-
tiferromagnetic moment remains 0, as can be seen by comparing the first two
rows of figure 3.3. For U > U c

1 , MAF is non zero, which has important influence
on topology. The magnetisation destroys time reversal symmetry, since d15 in
equation (3.8) is even in k instead of odd, as required for T (see section 2.3.1).
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Figure 3.3: Bands and Wannier charge centers for λSO = 0.5, λν = 0 and λR
for various values of U .
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This has the consequence that the definition of the Z2 invariant by Fu and Kane
(see section 1.6) cannot be used since time reversal is preconditioned. The ab-
sent T symmetry can be seen as well from the bands since K and K ′ are no
longer equivalent and from the WCC since x̄I 6= x̄II at k2 = 0 and k2 = 2π/

√
3

as required by Kramers degeneracy. However, a definition via a spin Chern num-
ber is still possible since Sz is a conserved quantity as long as λR = 0. Hence,
as long as no Rashba coupling is present, the spin Chern number is defined and
can easily be used to calculate a topological invariant. The WCC related to
spin up (red) still changes by 1 wherefore C↑ = 1 and analogously C↓ = −1.
Hence, although a magnetisation is present and T symmetry is broken, Cs = 1.
To sum up, the first transition at U = U c

1 is from a non magnetic quantum
spin Hall phase to an antiferromagnetic QSH which has the same spin Chern
structure. The second transition at U = U c

2 is of a completely different kind.
Looking at the bands one sees that with increasing MAF the gap at K becomes
smaller whereas it increases at K ′. At U c

2 the antiferromagnetic field is strong
enough that the bandgap closes. This becomes clear by looking at the energies
at the K point. Using equation (3.10) with gK = 0, γK = 3

√
3 and λν = 0, the

band gaps at K and K ′ are

∆K′,K =

∣∣∣∣6
√
3± U

2
MAF

∣∣∣∣ . (3.13)

It has been used that 〈nA↑〉 − 〈nB↑〉 = 〈nA↓〉 − 〈nB↓〉 = −MAF/2 because of
the symmetry of the sublattices. The plus sign is valid at K ′, the minus sign
at K. Note that from the symmetry is follows that there are always two equiv-
alent solutions for the magnetisation, namely +MAF which corresponds to the
structure A ↓ B ↑ and −MAF which corresponds to the structure A ↑ B ↓. A
negative magnetisation is equivalent to exchanging K and K ′. From equation
(3.13) it follows that the gap closes at K or K ′ if U |MAF(U)| = 12

√
3 which

implicitly defines U c
2 . For larger interaction and hence larger magnetisation the

bandgap reopens again, but the Chern numbers C↑ and C↓ become 0, as can
be seen in the last row of figure 3.3. The transition from a QSH phase to a triv-
ial insulator after a band gap close is similar to the quantum phase transition
caused by λν , see section 2.3.3. The only difference is that in both phases time
reversal symmetry is broken due to the magnetic moment.

3.2.1 Generalisation of Z2 invariant definition

As already mentioned, the Fu-Kane definition of ν is not applicable if time
reversal symmetry is broken, but it is possible to generalize it. Comparing the
WCC with and without magnetisation (U = 4 and U = 6) in figure 3.3, they
look similar despite the fact that the crossing points shift slightly away from
k2 = 0 and k2 = 2π/

√
3. Hence it is promising to regard the whole period

instead of just one half, but in order to get the same constant one has to divide
by 2. Generalizing the Fu-Kane definition (1.53) with that purpose results in

ν ≡ (Pθ[T ]− Pθ[0]) /2 mod 2 (3.14)

Here it should be stressed that the gauge has to be chosen such that Pθ is con-
tinuous, since Pθ[T ] = Pθ[0] mod 1 which means that the right side of equation
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(3.14) always vanishes if the gauge is not fixed. Hence, one can calculate the
topological invariant in the sense of Soluyanov and Vanderbilt which is equiv-
alent to the Fu-Kane definition (see section 1.7) by counting the jumps in the
maximum interspace function z(k2) within a full period and divide by 2 instead
of just counting within a half period. However, one has to be aware that this
only works if x̄I and x̄II intersect within each region where z(k2) is continuous.
Consider a case that x̄I and x̄II just come close, but do not intersect, so that
z(k2) jumps twice. Dividing by 2, as proposed, this would change the topo-
logical constant by 1. In the time reversal symmetric case this had not been
a problem because of Kramers degeneracy: Intersection at the time reversal
invariant momenta (kx = 0 and kx = π/

√
3 in the case of hexagonal lattices) is

guaranteed. Furthermore a scenario as described above were x̄I and x̄II come
close but do not intersect somewhere away from TRIM is doubled since k and
−k are equivalent. Modulo 2 the change in topological invariant is thus 0. If T
symmetry is broken, a numerical threshold can be used to figure out whether
or not the curves intersect, but this is a possible source of inaccuracy. Thus,
if T symmetry is broken but spin is conserved, separating the WCC by spin
and tracing them is preferable to the Fu-Kane definition. Therefore, this gen-
eralized Fu-Kane method will only be used when λR 6= 0 and time reversal
symmetry is broken (see section 3.4). However, in the simple KMH model here,
both methods have been used in order to check the reliability of the generalized
Soluyanov-Vanderbilt method. The results gained were identical for all consid-
ered parameters.

To conclude, two definitions of a topological order exist: The Fu-Kane def-
inition is suitable for time-reversal symmetric systems, the quantum spin Hall
picture is applicable if the spin in z direction is conserved. The definition given
here in this section combines the two definitions, including both kinds of topo-
logical systems. However, if both time-reversal symmetry and Sz conservation
are violated, a phase with a nontrivial generalised invariant according to equa-
tion (3.14) may have different properties than topological systems obeying at
least one of the two symmetries. For instance, the edge states do not necessarily
close the gap, as observed later in section 3.5.2.

3.3 Influence of a sublattice potential

As mentioned in the previous section, the quantum phase transition that takes
place as U is increased is similar to the phase transition obtained by high values
of λν . In this section it is discussed what happens if the two parameters act
together. A qualitative difference to the case of λν = 0 is that ∆NAB can be
different from zero due to symmetry breaking. Hence, next to the antiferromag-
netic moment a second parameter has to be determined self consistently. Since
a positive λν shifts lattice sites A to higher energies than sites B, the density at
B will be higher and according to definition (3.5). The term originating from
this additional mean-field parameter ∆NAB has the same matrix form as the
sublattice potential λν . Comparing equations (3.8) and (2.25), the new effective
sublattice potential is

λeffν = λν − U

4
∆NAB (3.15)
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Figure 3.4: The left picture shows the electron densities 〈nr〉 for λSO = 0.5 and
λν = 1 as a function of U . On the right, the associated magnetisations and
density variations are shown.

For fixed λSO = 0.5 and λν = 2λSO the electron densities 〈nr〉 as well as the
parameters N , MF, MAM and ∆NAB are shown as a function of U in fig-
ure 3.4. The total density N is fixed at 2 because of half filling. Because
of particle-hole symmetry, the chemical potential is again chosen such that
the energy bands are symmetric around zero. The magnetic moments behave
similar to the case λν = 0 described in the last section. The ferromagnetic
moment always remains zero whereas the antiferromagnetic moment is non
zero for U larger than a threshold value U c

1 . In addition, λν causes ∆NAB

to be different from zero. With increasing U this parameter decreases since
MAF + ∆NAB = 2 〈nB↑〉 − 2 〈nA↑〉 ≤ 2 and in the limit U → ∞ the system
tends to a totally polarized state with MAF = 2. The antiferromagnetic thresh-
old value U c

1 is shown as a function of λν for λSO = 0.5 in figure 3.5.

In order to analyse the topological properties, let me recapitulate the transi-
tions known from the special cases U = 0 and λν = 0. In the noninteracting case
it has been shown that the transition from a quantum spin Hall insulator to a
trivial insulator takes place at λcν = 3

√
3λSO. As long as the antiferromagnetic

moment vanishes, i.e. U < U c
1 , the mean-field Hamiltonian is identical to the

noninteracting Hamiltonian besides the renormalisation of λν given by equation
(3.15). Hence, for 0 < U < U c

1 the band gap closes at a critical value of λν
given by

λcν(U)/λSO = 3
√
3 +

U

4
∆NAB(U, λν). (3.16)

The numerical results of (3.16) are shown for λSO = 0.5 in figure 3.5. The
curve λcν(U) seems to have a linear behaviour. For λSO = 0.5, a linear fit
gives λcν(U)/λSO ≈ 3

√
3 + 0.78U . As does the threshold interaction of mag-

netisation, the slope depends on λSO. For example, for λSO = 0.1 the result
is λcν(U)/λSO ≈ 3

√
3 + 1.13U . Because of the similarity to the noninteracting

Hamiltonian it is expected that for larger values of λν the topology becomes
trivial. Using Wannier charge centers this is easily provable. When calculating
λcν(U), next to the bandgap the topological invariant has been calculated as well
using Soluyanov-Vanderbilt method. For U = 4 both bandgap and topological
transition are shown in figure 3.6. Clearly, the close of the bandgap coincides
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Figure 3.5: Transitions occurring in the Kane-Mele-Hubbard model varying λν
and U . U c

1 is the threshold for magnetisation,

with the transition, as expected.

A second topological transition is known from the special case λν = 0. In
section 3.2 it has been analysed that a large antiferromagnetic moment destroys
the topological order. The magnetisation threshold is called U c

1 , the slightly
higher interaction that causes the topological transition U c

2 . With a sublattice
potential different from zero, the degeneracy of spin up and spin down electrons
is broken due to λν and an unequal occupation of the sublattices ∆NAB 6= 0
is resulting. The effective energy difference is again given by equation (3.15).
As a consequence, the gap size at K becomes spin dependent. The resulting
generalisation of equation (3.13) is

∆↑
K,K′ =

∣∣∣∣6
√
3±

[
U

2
(MAF −∆NAB) + 2λν

]∣∣∣∣ , (3.17)

∆↓
K,K′ =

∣∣∣∣6
√
3±

[
U

2
(MAF +∆NAB)− 2λν

]∣∣∣∣ . (3.18)

The gap close ∆ = 0 defines a topological transition which leads to equations
determining U c

2 implicitly:

4
(
3
√
3− λν

)
= U c

2↑
[
MAF(U

c
2↑)−∆NAB(U

c
2↑)
]
, (3.19)

4
(
3
√
3 + λν

)
= U c

2↓
[
MAF(U

c
2↓) + ∆NAB(U

c
2↓)
]
. (3.20)

This means that the transition is different for spin up and spin down electrons.
The gap size as a function of U for fixed λν is shown in figure 3.7, the criti-
cal interactions U c

2↑ and U c
2↓ causing the gap close calculated numerically from

equation (3.17) are shown as a function of λν in figure 3.5. In addition, the
Chern numbers have been determined separately for spin up and spin down
electrons using Wannier charge centers. This is possible since spin is conserved
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Figure 3.6: Gap size as a function of λν for λSO = 0.5 and U = 4.The dashed
line denotes the topological transition: To the left of the line, ν = 1, to the right
ν = 0 according to the definition of Fu and Kane.

because of the absence of the Rashba coupling (see section 2.3.3). Example
WCC curves are shown with the associated bands in figure 3.8. Changes in the
Chern numbers are shown toghether with the band gap in figure 3.7. As already
known, they coincide perfectly with the band gap closes.

Since all transitions of the Kane-Mele-Hubbard model have been described
(see figure 3.5), the phase diagram can be analysed in detail. The different
phases are labelled in figure 3.9. In the case U < U c

1 , the system is non-
magnetic. If furthermore λν < λcν , the Z2 invariant is nontrivial, i.e. ν = 1.
Note that the Fu-Kane definition (1.53) and the definition via the spin Chern
number (1.28) are equivalent due to T symmetry and conservation of Sz. This
phase, in figure 3.9 colored in pink, is adiabatically connected to the most simple
model of a topological insulator consisting only of a tight-binding and a spin-
orbit term. Hence, this phase is still a combination of two Haldane models with
opposing Chern number for each spin. If λν > λcν(U), the spin Hall structure
is destroyed. Therefore, a trivial band insulator is realized as also known form
the Haldane model (shown in light blue in figure 3.9).

For U > U c
1 , the antiferromagnetic moment does not vanish: This has the

consequence that T symmetry is broken, wherefore the Fu-Kane definition of ν
cannot be used. The region U < U c

2↓ marks an antiferromagnetic quantum spin

Hall insulator (C↑ = 1, C↓ = −1 ⇒ Cs = 1), for U > U c
2↑ the topological order

is destroyed and a trivial antiferromagnetic state (C↑ = 0, C↓ = 0 ⇒ Cs = 0)
is realized. These two regions, colored light red and blue in figure 3.9, are adi-
abatically connected to the two different magnetic phases existing for λν = 0.
This can be seen by comparing bands and WCC shown in the figures 3.3 and
3.8. A detailed analysis of these phases is given in section 3.2. In addition, a
new phase appears for U c

2↓ < U < U c
2↑. In this region, one Chern number is

trivial whereas the other is not. Therefore, the total Chern number is nontrivial
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Figure 3.7: Gap size as a function of U for λSO = 0.5 and λν = 1.5. The dashed
line denote transitions: The cyan line is the onset of magnetisation, red and
green lines mark changes in C↑ and C↓, respectively.

C = C↑ + C↓ = 1. Since the Chern number is related to the Hall conductiv-
ity (see section 1.3), The Hall effect is non zero even without a magnetic field.
Therefore, the desired phase is a quantum anomalous Hall state.

To conclude, I will briefly recapitulate the phases of the Kane-Mele-Hubbard
model in mean-field approximation referring to the Haldane model. As described
in section 2.2, the Haldane model has been introduced to describe systems with
intrinsic quantum Hall effect without requiring a magnetic field. For that pur-
pose, time reversal symmetry has to be broken. The Kane-Mele model without
Rashba interaction is a combination of two Haldane models, one for each spin,
to obey T symmetry. The total Chern number is therefore 0, but the topol-
ogy for each spin is still nontrivial. An antiferromagnetic moment caused by a
strong mean-field interaction lifts T symmetry and together with a sublattice
potential λν the two modified Haldane models are not opposing each other any
more. This makes it possible that the Hamiltonians for each spin are in different
topology classes. In that case, the system becomes a quantum anomalous Hall
insulator with non-zero Chern number just like the Haldane model, but with a
spin dependent Hall conductivity.

3.4 Influence of Rashba coupling

In the case of a noninteracting Kane-Mele model (section 2.3.3) the only ad-
ditional phase appearing when λR 6= 0 is a metallic one, realized for large λR.
The critical coupling decreases if λSO increases and increases with growing λν .
Hence, in order to emphasise the influence of a Rashba coupling, in this section
a phase diagram with axes λR and U is analysed, with λSO = 0.5 (as in the
previous chapter) and λν = 0.

For U = 0 it is known from section 2.3.3 that the system is a topological
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Figure 3.8: Bands and Wannier charge centers for λSO = 0.5, λν = 3λSO and
λR = 0 for various values of U .
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insulator if λR < λcR ≈ 2.23λSO and metallic if λR > λcR. In the other limiting
case, λR = 0, an antiferromagnetic moment appears for U > U c

1 which destroy
the topological order for U > U c

2 . If both parameters are present, it turns out
that U c

1 , the onset of magnetisation, hardly changes as long as λR < λcR. In
fact, the relative change is within 3%. Furthermore, the critical Rashba cou-
pling remains constant within numerical accuracy of 10−4 as U is varied as long
as the antiferromagnetic moment vanishes (see figure 3.10).

As already mentioned, for λR = 0 a magnetisation appears with increasing U
that decreases the bandgap and finally closes it at U = U c

2 . For larger values, it
reopens again. For 0 < λR < λcR the behaviour is similar: Magnetisation closes
the band gap, but in contrast to λR = 0 the band gap remains closed for a finite
interval U ∈ (U c

2close, U
c
2open). This metallic phase is conceptionally different to

the first one mentioned above, since here not only the Rashba coupling causes
the gap close, but the interplay of Rashba coupling with rising magnetisation.
Furthermore, in section 3.2 it is shown for the case λR = 0 that the topology is
nontrivial before the gap close even if an antiferromagnetic moment is present,
but it becomes trivial for U > U c

2 . There is strong evidence that this holds
also for λR 6= 0 since the gap does not close as Rashba coupling rises from 0.
However, it is still important to consider the topology since λR breaks the con-
servation of spin in z direction. This has the consequence that it is not possible
to track the Wannier charge centers individually since they cannot be ordered by
spin any more. If no magnetisation is present and hence the Hamiltonian is time
reversal invariant, this is no substantial problem since the Fu-Kane definition
(1.53) together with Soluyanov-Vanderbilt method can be used, as described in
section 2.3.3. However, if λR 6= 0 and U > U c

1 , T symmetry and spin conser-
vation are broken, which means that the Z2 invariant by Fu and Kane is not
defined as well as C↑, C↓ and Cs. A generalisation of the definition by Fu-Kane
is given in section 3.2.1. With this method it is provable that the a generalised
invariant ν remains 1 until the gap closes and that it becomes trivial when it
opens again. The possible inaccuracies mentioned in section 3.2.1 due to jumps
in the maximum interspace function z(k2) without accompanied crossings of the
WCC are for the model and parameters here not relevant since the crossings for
U < U2close are always clearly detectable, whereas no jump in z(k2) appears for
U > U2open. Examples for the WCC within each phase are given in figure 3.11.
It is important to mention that this generalised topological structure is different
to the spin Chern structure realized in the case λR = 0 since less symmetries
are present. If both spin conservation and time-reversal symmetry are violated
(region labelled ”AF top” in figure 3.10), edge states do non necessarily close
the gap. This is analyzed later in section 3.5.2.

If both U and λR are large (U ≈ 7, λR ≈ 3), a ferromagnetic state rather
than a antiferromagnetic state is realized. For U = 13 the magnetic moments
are shown as a function of the Rashba coupling in figure 3.12. One sees that the
transition is sharp, i.e. the ferromagnetic moment raises discontinuously at a
critical Rashba coupling from 0 to a finite value whereas the antiferromagnetic
moment drops to zero. The detailed phase boundaries are shown in figure 3.10.
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Figure 3.11: Wannier charge center of the Kane-Mele-Hubbard model in mean-
field approximation for λSO = 0.5, λν = 0 and λR = λSO. The left picture with
U = 6 shows a topological phase since the WCC are changing by 1 and −1,
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Figure 3.13: Pairing of A and B sites along the unit cell of a zigzag ribbon from
l = 1 to l = N = 5. Note that the orientation is different for pairs with even
index l and for those with odd l.

3.5 KMH model on a zigzag ribbon

The Kane-Mele-Hubbard model shows in mean-field approximation a variety of
different topological and magnetic phases. In order to cross check the results
obtained for the bulk, the model is analysed in this section on a zigzag ribbon,
especially to see whether the number of edge states and their properties are
consistent with the topological structure.

3.5.1 Magnetisation

In contrast to the 2D bulk lattice, the unit cell of a zigzag ribbon contains N
sites of each sublattice, as shown in section 2.4 and especially in figure 2.19.
Since the different sites within a unit cell are independent, the particle densi-
ties and thus the magnetic moments may vary along the width of the ribbon.
The self consistency equation (3.9) is still valid, but with the difference that
the combined index r consists not only of spin sand sublattice, but also of the
position index in y direction. Because of half filling, the total density is fixed∑

r 〈nr〉 = 2N . Therefore, the number of independent variables that have to be
determined self consistently is 4N − 1. In the bulk case, the four densities have
been transformed to the three independent parameters MAF, MF and ∆NAB.
In order to compare with the results from the ribbon, the transformation is
performed here as well for each pair of sites. The way the sites are grouped is
shown in figure 3.13.

The behaviour of magnetisation of the KMH model as a function of U is
known from bulk results: A non magnetic state is realised up to a threshold
U c
1 and a growing antiferromagnetic moment appears for higher U . The actual
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Figure 3.14: Antiferromagnetic moment along a ribbon of width N = 36 as a
function of pair index l (see figure 3.13) for U = 5.7, λSO = 0.5.

value of the Kane-Mele parameters (λSO, λν and λR) changes the threshold
interaction and the value of magnetisation, but does not affect the qualitative
behaviour. The only exception are very high Rashba couplings, see section
3.4. Therefore, the rising magnetisation is analysed here for fixed λSO = 0.5,
λν = λR = 0. From the bulk the threshold interaction is known to be U c

1 ≈ 5.84.
As expected, for small U ≪ U c

1 the magnetisation vanishes throughout the rib-
bon, for large U ≫ U c

1 MAF is approximately constant along the ribbon and
close to the saturation value of 2. For interactions a bit smaller than the bulk
threshold, a finite antiferromagnetic moment appears along the edges. An ex-
ample is given in figure 3.14. Note that the antiferromagnetic moment of pairs
is shown and not spin densities of single sites. Hence, the magnetic order at the
edges is ↓↑↑↓↓↑↑↓ . . . and not ↑↓↑↓ . . . as in the bulk for large U . To analyse the
ordering as interaction varies, the antiferromagnetic moment of the first pair,
the second pair, a pair situated in the middle of the ribbon and the average of
the whole ribbon are plotted in figure 3.15. The magnetic moment vanishes for
small U . At U ≈ 4.9 a transition at the edges happens with an ordering ex-
plained above. The threshold for ordering in the middle of the ribbon is U ≈ 5.9
which is approximately the value found for the bulk. The middle region seems
not to be affected from the edges since the ordering is ↑↓ in contrast to ↓↓↑↑
ordering still persisting at the boundaries. The last transition takes place at
U ≈ 6.3 where the edges adopt the ordering from the bulk.

3.5.2 Topology and edge states

In order to check the topologically distinct phases of diagram 3.9, the disper-
sion relation of one selected point within each phase has been calculated. The
results are shown in figure 3.16 and can be compared with bulk results shown
in figure 3.8. Because of the asymmetry of all curves one can see that the anti-
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Figure 3.15: Antiferomagnetic moments of selected pairs of a ribbon of width
N = 36 as a function of U for λSO = 0.5.
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Figure 3.17: Dispersion relations of a ribbon of width N = 40 for λSO = 0.5,
λν = 0, λR = 0.1 and U = 6.2.

ferromagnetic moment does not vanish throughout the ribbon in all three cases.
In the first picture (U = 6.3), four edge states exist with the same structure
as in the noninteracting case described in section 2.4, so two edge states exist
on each edge, one with spin up and one with thin down. For U = 7, which
is in a phase identified as quantum Hall state, only the edge states with spin
down persist. This accords with the topological analyses in section 3.3 where it
has been concluded that the spin up part of the Hamiltonian is trivial whereas
the spin down part remains topological. For U = 8 the topology of the whole
Hamiltonian is trivial and no edge states occur.

In the cases considered above, the picture of a spin Hall insulator explained
in section 1.3.1 is applicable since the spin in z direction is conserved. A Rashba
coupling destroys this symmetry, but preserves time-reversal symmetry and the
topological Z2 structure if no interaction is present (see section 2.3.3). If a
magnetic moment due to strong interaction and a Rashba coupling are present,
both symmetries are broken. It is possible to generalize the topological invariant
to this case using Wannier charge centers (see section 3.2.1), but the lack of
symmetries changes the nature of the edge states. As shown in figure 3.17, the
edge states are non necessarily gapless any more. For large Rashba couplings,
the gap size can be even of the same order of magnitude as the bulk gap.
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Chapter 4

Kane-Mele-Hubbard model

beyond mean-field

approximation

As mentioned in the previous chapter, the KMH model is a good system in order
to understand the influence of interactions on topology. It is thus also expected
to work as a toy model to test the advanced methods to determine topological
constants explained in section 1.8. Therefore, it has been investigated by several
methods after Rachel and Le Hur [48] first considered this model in mean-
field approximation. The the critical U for a finite magnetisation has been
examined for example with a determinant quantum Monte Carlo [49] as well
as with a cellular dynamical mean-field theory [50]. The Variational Cluster
Approach has also been used in order to determine the phases [50–52]. In the
two latter references, the obtained Green’s function of the inversion symmetric
model is used to determine topological phases with equation (1.77). The aim
of this chapter is to use also a self-energy-functional based method to calculate
topological invariants even if inversion symmetry is broken, to look whether
the topologically nontrivial phases with antiferromagnetic moment described in
chapter 2 persist beyond mean-field approximation.

4.1 Self-energy-functional approach

Consider a Hamiltonian H = H0(t) + H1(U) consisting of a noninteracting
part depending on a hopping matrix t and an interacting one depending on an
interaction tensor U ,

H =
∑

ij

tijc
†
i cj +

1

2

∑

ijkl

Uijklc
†
i c

†
jclck. (4.1)

The Green’s function of H0 is given by G0 = 1/(ω + µ − t) and determines
together with the self-energy Σ the full Green’s function G via the Dyson equa-
tion G = G0 +G0ΣG (see for example [47]). In contrast to the free Green’s
function, the self-energy is not known beforehand and can usually only be calcu-
lated approximately. In the following, the self-energy-functional approach [53]

73
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Figure 4.1: Reference systems for a quadratic lattice. In a), the original system
is shown with a constant hopping between all nearest-neighbor sites. b) displays
the reference system for a DIA with ns = 4, c) the 4 site clusters of a VCA.

is summarized which is a frequently used method to estimate Σ. In 2003, the
self-energy-functional

Ωt[Σ] ≡ Tr log
(
−(G−1

0 −Σ)−1
)
+ F [Σ] (4.2)

was first proposed by Potthoff [53]. F [Σ] denotes the Legendre transform of the
Luttinger-Ward functional Φ[G] [53, 54]. The subscript t indicates the depen-
dence of the functional on the hopping through G0. It can be shown [53] that
the grand potential Ω is a stationary point of the self-energy-functional Ωt[Σ].
The physical self-energy thus fulfils δΩt[Σ] = 0. The problem is that Ωt[Σ] is in
general not known exactly. The approximation of this method is now to restrict
the space of self energies Σ. This subset S of all self energies is spanned by all
Σ(t′) that are the exact physical self energies of a so called reference system
H ′ = H0(t

′) +H1(U), which has the same interaction part H1 as the original
system but a different hopping matrix. The reference system has to be solvable
so that Σ(t′) can be calculated. By varying t′, Σ(t′) is scanned through the
restricted sub space in order to find the self-energy Σ ∈ S that gives the best
solution of Ωt[Σ]. Hence, the optimal solution within this approximation is a
stationary point of the functional Ωt[Σ(t′)]. Note that t′ only influences the
self-energy, the effect of the original hopping t is present due to the parametric
dependence of the functional Ωt on G0. The parametrized functional can be
reduced to [53]

Ωt[Σ(t′)] =Ω′(t′) + Tr log
(
−
(
G−1

0 (t) −Σ(t′)
)−1
)
− (4.3)

− Tr log
(
−
(
G−1

0 (t′)−Σ(t′)
)−1
)

(4.4)

and can thus be calculated if the Green’s function of the reference system is
known.

A crucial role plays the reference hopping t′. Rather simple systems are
needed to compute the self-energy Σ(t′), but they still need to be complex
enough in order to host self energies close to the exact physical self-energy of
the original system. The first considered reference system was a single impurity
Anderson model (SIAM) for each lattice site [53] which is also frequently used as
an impurity model for dynamical mean-field theory with exact diagonalisation
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as impurity solver. The system that has to be solved exactly has ns sites,
consisting of one correlated impurity and ns − 1 bath sites. An example with
ns = 4 is shown in figure 4.1 b). A self-energy-functional approach with SIAM
reference system is usually called dynamical impurity approximation (DIA) [53,
55]. Another frequently used reference system consists of isolated clusters tiling
up the original system, as in cluster perturbation theory. The resulting method
is called variational cluster approach (VCA) [56], see also figure 4.1 c). The
VCA incorporates the correlation effects correctly at length scales of the cluster
and acts like a mean-field approximation beyond [57]. The clusters of a VCA
may also include additional bath sites which makes the DIA to a special case
of the VCA with minimal cluster size of one bath site. In addition to the bare
hopping within a cluster and towards bath sites, a mean-field like Weiss field

HW =
∑

i

c†i (hi · σ) ci (4.5)

can be used to handle spontaneous symmetry breaking [52, 58].

Once the reference system is defined, the stationary point of the VCA grand
potential (4.3) has to be found. The first term Ω′(t′) is the grand potential of
the reference system. The other two terms which are traces over the logarithm
of Green’s functions can be expressed simply by the single particle excitation
energies of the respective Green’s functions [55, 57]:

Tr log
(
−
(
G−1

0 (t) −Σ(t′)
)−1
)
− Tr log

(
−
(
G−1

0 (t′)−Σ(t′)
)−1
)
= (4.6)

= −
∑

m

T log
(
1 + e−βωm

)
+
∑

m

T log
(
1 + e−βω′

m

)
= (4.7)

T=0
=

∑

m

ωmΘ(−ωm)−
∑

m

ω′
mΘ(−ω′

m). (4.8)

Here β = 1/T is the inverse temperature and Θ(ω) the Heaviside step function.

ωm are the poles of the VCA Green’s function GVCA =
(
G−1

0 (t) −Σ(t′)
)−1

, ω′
m

are the poles of the reference system’s Green’s functionG′ =
(
G−1

0 (t′)−Σ(t′)
)−1

.
Supposed that the poles of the reference system can be determined, the poles
of GVCA can be calculated as well using following procedure [57]: First, G′ has
to be expressed in Lehmann representation in the form [57, 59]

G′
αβ =

∑

m

Qαm
1

ω − ω′
m

Q†
mβ, (4.9)

where ω′
m = Es − Er is the pole resulting from an excitation from state |r〉 to

another state |s〉. For T = 0, the Q-matrices are given by

Qαm = δr,0 〈0| cα |s〉+ δs,0 〈r| cα |0〉 . (4.10)

Defining the difference between physical system and reference system as V ≡
t − t′ and the diagonal matrix of the reference system’s poles Λmn ≡ δmnω

′
m,

the excitation energies ωm are the eigenvalues of the matrix M = Λ+Q†V Q.
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Figure 4.2: Reference system of a ns = 2 DIA for 2 sites per unit cell. The total
reference system is a multiplication of this cluster for each unit cell, see figure
4.1b).

4.2 Kane-Mele-Hubbard model in 2 site DIA

As mentioned in the previous section, the selection of the reference system
may have an influence on the result. How symmetries of the chosen cluster
affect topological properties can be seen for example in [60]. In that paper, the
Haldane-Fermi-Hubbard model (Haldane model (2.11) with nearest-neighbor
interaction V

∑
〈i,j〉 ninj but without on-site potential M) has been analysed

using exact diagonalisation. The Chern invariant is calculated using twisted
boundary conditions (1.70). For small V , the system is a topological insulator,
for large V in a charge density wave order. Depending on the cluster geometry,
the CDW and topological order coexist. If a cluster is chosen that preserves the
symmetry of the honeycomb lattice, the coexisting phase vanishes. The Hal-
dane model is related to the Kane-Mele model and the topological CDW region
corresponds to the topological antiferromagnetic region discussed in mean-field
approximation (section 2.3). Hence, there is evidence that the existence of a
topological AF phase could possibly depend on the cluster geometry of a VCA.
Therefore, a DIA (e.g. a single site cluster VCA) is chosen here in order to anal-
yse the phase diagram of the KMH model since all symmetries are inherently
conserved. A disadvantage of that approach is that the self-energy is local so
that basically a mean-field theory is considered. However, an improvement to
the mean-field approximation in chapter 3 is that due to the undefined mag-
netisation direction and the hopping to bath sites a much more flexible system
is considered. The number of bath sites is chosen here to 1, the total num-
ber of sites is hence ns = 2. This keeps the effort to calculate the poles of
the reference system marginal and still reproduces the phase diagram for the
Mott transition, as analysed in detail for the Hubbard model on a square lattice
in [55]. To analyse magnetic transitions, additionally a Weiss field (4.5) is added.

The used clusters consist of a correlated impurity of interaction strength U
with on site energy ε and a Weiss field h, and of an uncorrelated bath site with
on site energy ǫ, see figure 4.2. The two sites are linked through a hopping t′.
The total reference system is an infinite number of such clusters, one for each
site of the physical system. Note that the variational parameters (h, ǫ, ε and
t′) of clusters on A sites might be different from those on B sites, wherefore the
total number of parameters is 12 if no constraints or symmetries are considered.
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Figure 4.3: Examples of the self-energy-functional as a function of the Weiss
field for already optimized hopping t′. A Discussion of the stationary points is
given in the text, see also [52].

To generate a phase diagram of the KMH model as a function of λSO and
U for vanishing sublattice potential and Rashba coupling as in figure 3.2, the
number of parameters can be reduced. First, lattice sites A and B are identi-
cal wherefore the only allowed difference between the two clusters is due to an
unequal symmetry breaking Weiss field, which reduces the parameters by 3, i.e.
hA 6= hB, ǫA = ǫB, εA = εB, t′A = t′B. Furthermore, particle hole symmetry
forces the energy of the impurity to be zero, ε = 0. The bath sites have to be
arranged symmetrically as well and since here only one bath site is added the
energy is fixed to the chemical potential, i.e. ǫ = µ = U/2. Thus, except for the
Weiss field, the only parameter that has to be varied is t′. The Weiss fields hA

and hB can be varied in principle without restriction, but symmetries can be
used to reduce the effort. The KMH Hamiltonian is symmetric in exchanging x
and y coordinate, therefore also the potential Ωt[Σ(t′)] obeys the same symme-
try. Hence, only hx and hz have to be considered since the set of all solutions
can be generated by rotating the special solution h = (hx, 0, hz) around the z
axis. In addition, because of the mean-field results in chapter 3 it is assumed
that only antiferromagnetism will be physical. Hence, hB = −hA. This can
be easily checked by adding small ferromagnetic moments in addition to the
observed stationary point in order to see if it is stable. To sum up, only three
parameters are varied in order to find a stationary point: hx, hz and t′.

The direction of a magnetic moment is not known beforehand. In order to
check it, the stationary t′ has been calculated for various values of hx and hz,
the resulting potential Ωt[Σ(hx, hz, t

′
best(hx, hz))] is shown in figure 4.3. For the

bare Hubbard model on a hexagonal lattice, i.e. λSO = 0, not just hx and hy are
equivalent, but also hz due to SU(2) spin symmetry. If U is small, a minimum
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site DIA. The phase boundary is shown as a solid red line. In comparison, the
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at h = 0 is the only stationary point. Over a critical interaction this point be-
comes a maximum and the minimum shifts to a finite value of |h|, see also figure
4.3 and [52]. If the spin-orbit coupling is raised from 0, the symmetry between
x and z axis is lifted with the consequence that the functional is lower in hx
direction. In this regime, 3 different stationary points exist: A minimum along
hx axis, a maximum along hz for small values of order 0.1, and a saddle point
also along hz but approximately of the same magnitude than the minimum. For
different cluster geometries, only the minimum and the saddle point exist [52].
For even larger values of λSO, keeping U constant, the minimum with an anti-
ferromagnetic Weiss field in x direction is the only stationary point. Looking at
the changes of the stationary points as U is varied and λSO is kept constant, the
first stationary point apart h = 0 evolving with increasing U is the minimum in
x direction. For large U also the saddle point and the maximum in z direction
exist. However, for all values of spin-orbit coupling and interaction strength
it turns out that the minimum of the potential is always achieved along the
axis hz = 0, which means that in order to determine the phase diagram only
two parameters, hx and t′, have to be varied. By inspection of Ωt[Σ(hx, t

′)]
it turns out that the stationary point of interest with non vanishing t′ and hx
is always a minimum. The minimisation of the potential with respect to the
two parameters has been done using a Nelder-Mead downhill simplex algorithm.
As in mean-field, the Weiss field vanishes if the interaction is small and has a
finite value for large U . The threshold interaction U c

1 (λSO) is shown in figure
4.4. In comparison to the mean-field results (figure 3.2), the slope of the phase
boundary is lower, i.e. for small spin-orbit couplings the threshold interaction
is higher in DIA, for high λSO lower.

The topological properties can be calculated using the topological Hamil-
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tonian, see section 1.8. The obtained VCA Green’s function is a matrix of
size 8. For the topological Hamiltonian, only the four dimensions of the im-
purity have to be considered, i.e. Htop(k) = G−1

VCA impurity(k). The resulting
4 × 4 matrix is identical to the Bloch Hamiltonian of the noninteracting sys-
tem H0(k) with an additional constant self-energy Σ on the diagonal and a
Weiss field in x direction. As a consequence, without magnetisation the topo-
logical Hamiltonian is, up to a constant that can be shifted into the chemical
potential, identical to the noninteracting one. Therefore, also the WCC remain
unchanged. Thus, without a magnetisation the topology cannot be changed.
Above the critical interaction U > U c

1 , a finite antiferromagnetic moment in
xy plane exists, that breaks time reversal symmetry and thus lifts Kramers de-
generacy of the WCC x̄I(k2 =

√
3π/2) = x̄II(k2 =

√
3π/2). An example is

given in figure 4.5. Since the time reversal symmetry is broken and spin in
z direction Sz is not conserved because of the magnetisation in x direction,
the Z2 invariant is not defined beforehand. A discussion of this general case
is given in section 3.2.1. As mentioned there, counting the discontinuities of
the maximum interspace function z(k2) may lead to wrong results because of
the loss of Kramers degeneracy (see also figure 4.5). However, the special case
λν = λR = 0 provides symmetries for the WCC. First, as it is discussed in the
mean-field chapter, xI(k2) = −xII(k2) mod 1 for Hamiltonians obeying inver-
sion symmetry. Furthermore, as long as the magnetic moment in z direction
vanishes, xs(k2) = xs(4π/

√
3− k2) holds. As a consequence, a possible crossing

of the WCC away from the TRIM k2 = 0 and k2 = 2π/
√
3, is doubled, just as

in the time reversal symmetric case. The only difference is that the degeneracy
at the TRIM is not guaranteed. Hence, topological properties are encoded at
the Wannier charge centers at k2 = 2π/

√
3. If the two WCC cross at this point,

the topology can be determined using Soluyanov-Vanderbilt method (for the
parameters here, it is always is nontrivial), if not, the system is a trivial band
insulator. Hence, the possible numerical problems described in section 3.2.1
cannot appear because of symmetries, only the TRIM k2 = 0 and k2 = 2π/

√
3)

have to be checked.

It turns out that any magnetisation in x direction immediately destroys
topological order. In contrast to the mean-field magnetisation in z direction,
the intersection point of the two WCC curves is not shifted to a different mo-
mentum, but does not persist in the entire Brillouin zone. Each non vanishing
magnetisation in x direction ”gaps” the Wannier charge center curves, see figure
4.5. Hence, the DIA shows no antiferromagnetic topological phase as proposed
by mean-field theory. The reason is the different direction of magnetisation. If
only magnetisation in z direction was allowed and thus the saddle point was con-
sidered (see figure 4.3), the antiferromagnetic trivial phase would appear just as
in the mean-field case. The transition because of a Weiss filed in x direction is
of a different kind than the transition caused by a field in z direction. The latter
case is explained in detail in the mean-field chapter 3: An increasing magnetic
moment shifts both bands and WCC, which can be assigned to a certain spin
in z direction. Exactly when the band gap closes, the Chern invariant for each
spin type changes to zero. In contrast, a magnetic moment in x direction does
never close the band gap. The magnetic moment inherently breaks the conser-
vation of Sz and thus topological order. It is not a topological quantum phase
transition with a gap close as was always the case in mean-field approximation,
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Figure 4.5: Wanner charge center of the topological Hamiltonian for λSO = 0.5
and U = 5.7. The resulting magnetisation in x direction is hx ≈ 0.24, the
corresponding hopping to the bath sites t′ ≈ 1.86.

it is a topological transition due to a symmetry breaking.

If a sublattice potential λν is included, the threshold interaction for a anti-
ferromagnetic moment is increased, see figure 4.6. As already mentioned above,
the DIA does not change the topological Hamiltonian if no Weiss field is present.
The reason for that is that an unequal occupation of the two sublattices that
has been seen in mean-field (see section 3.3) is not included in this model.
Hence, in contrast to MF, the critical potential for a topological phase tran-
sition λcν = 3

√
3λSO does not depend on the interaction strength. A possible

reason for that are the assumed symmetries between the two clusters on A and
B sites. A relaxation of the constraints could change the phase boundaries,
but increases the effort to find stationary points. Since for a first step beyond
mean-field the reference system used here is sufficient, different clusters on the
sublattices are postponed to future work.

For high interaction strengths, when an antiferromagnetic Weiss field is
present, new phases as in the mean-field approach (see section 3.3) are expected.
However, in DIA the system does not provide a topological antiferromagnetic
phase due to the magnetisation in x direction. Additionally, the Quantum
Hall phase obtained using mean-field approximation cannot be realized with a
magnetisation in x direction since the WCC are symmetric around the TRIM
k2 = 2π/

√
3. This has the consequence that the total Chern number always

has to vanish if hz = 0. Except the antiferromagnetic region, the only addi-
tional phase caused by very strong interactions (U ≈ 20) is a Mott insulator
characterised by a decoupled cluster, i.e. t′ = 0.
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Figure 4.6: Phase diagram of the KMHmodel using a two site DIA for λSO = 0.5
and λR = 0.
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Chapter 5

Conclusions and outlook

Calculating topological invariants for strongly correlated systems is an inter-
esting and demanding task since the picture of a topological one-particle band
structure is not compatible with the many-body framework enforced by in-
teractions. In this thesis, the Kane-Mele-Hubbard model was investigated to
understand the influence of an interaction on a topological insulator. First,
the noninteracting Kane-Mele model was analyzed in order to get a clear pic-
ture of topological invariants in general and how they are affected by certain
parameters. An introduction in topological invariants was given in chapter 1,
resulting in the statement that the topological information is encoded in Wan-
nier charge centers (WCC) which was highlighted by Soluyanov and Vanderbilt.
This framework was used to explain the definition of the Z2 invariant given by
Fu and Kane, which is suitable for time-reversal symmetric systems. Further-
more, another definition via the spin Chern number is given, which can only be
used if the spin in z direction is conserved.

In chapter 2, the methods described above were applied to the noninteracting
Kane-Mele model. It was analyzed how spin-orbit coupling, sublattice potential
and Rashba coupling affect both band structure and WCC. Furthermore, the
phase diagram valid for small spin-orbit couplings published by Kane and Mele
was reproduced and expanded to large λSO. Finally, the results were compared
to the existence of edge states at a zigzag ribbon to check the bulk-boundary
correspondence, which showed perfect agreement.

In order to introduce an interacting term, the Kane-Mele-Hubbard (KMH)
Hamiltonian was considered in mean-field approximation. This simple theory
has been chosen in order keep the WCC framework, which is based on the ex-
istence Bloch states. In chapter 3, the phase diagram was analyzed in detail.
It turned out that if the interaction U is large, an antiferromagnetic moment
that breaks time-reversal symmetry appears. It is important to mention that
the topological spin order persists even when the magnetic moment is finite.
The topological order is destroyed if the magnetic order exceeds a critical value.
Furthermore, an on-site potential λν and a Rashba coupling λR were included,
which causes additional phases. The spin ordering on the sublattices and the
energetic difference due to λν allow different absolute values of the two spin
Chern numbers. Hence, for a certain parameter set, a anomalous Hall phase is
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possible. The chapter was concluded with a check of bulk-boundary correspon-
dence in mean-field theory, which showed again perfect agreement. However, if
time-reversal symmetry and spin symmetry are broken simultaneously, the edge
states are gapped.

In the last chapter 4, a two-site Dynamical Impurity Approximation (DIA)
was used to check the existence of various phases in a first step beyond mean-
field. So-called topological Hamiltonians, that had been already introduced at
the end of chapter 1, were used in order to allow the calculation of WCC. It
turned out that the magnetic moment aligns in x direction, as already pub-
lished by several other groups using different clusters or methods. In the simple
mean-field approximation of chapter 3, a magnetisation in z direction had been
inherently assumed. The direction of magnetisation had great impact on the
topological order, since other symmetries are imposed on the WCC. Within
DIA, an antiferromagnetic quantum spin Hall state, which has been found in
mean-field approximation, is not possible. Thus, one can conclude that the
correct determination of the easy axis of a magnetic moment is of certain im-
portance in order to determine the topology correctly.

The two-site DIA is a very simple model to test topology beyond mean-field.
A further step would be to increase the cluster size in order to check the influence
of a nonlocal self-energy. This increases of course the effort to calculate the
topological Hamiltonian. A simpler addition to the work presented here would
be a mean-field approximation where the x axis is the reference direction. This
could possibly reproduce the DIA results qualitatively on a Hartree level. The
final goal is of course to use different models closer to real systems to predict
strongly correlated materials with nontrivial topology.



Appendix A

Kane-Mele Bloch

Hamiltonians

A.1 Bulk

In this appendix, matrix representation (2.20) is derived by writing the Kane-
Mele Hamiltonian

HKM =− t
∑

〈i,j〉
c†i cj + iλSO

∑

〈〈i,j〉〉
νijc

†
iσ

zcj (A.1)

+ iλR
∑

〈i,j〉
c†i (σ × d̂ij)zcj + λν

∑

i

ξic
†
icj

in the form HKM =
∑

k
Ψ†

k
H(k)Ψk, using the basis Ψ†

k
= (a†

k↑, b
†
k↑, a

†
k↓, b

†
k↓),

where a†
k↑ creates a spin up particle with momentum k on sublattice A. The

lattice geometry is defined in section 2.1. Lattice sites A are thus situated at
R = na1 + ma2, lattice sites B at R + δ1. Hence, spinors c† ≡ (c†↑, c

†
↓) are

transformed to momentum space by

c†
R
= a†

R
=
∑

k

eik·Ra†
k

if i ∈ A, (A.2)

c†
R

= b†
R

=
∑

k

eik·(R+δ1)b†
k

if i ∈ B. (A.3)

The transformation of the sublattice potential term λν
∑

i ξic
†
i cj is trivial since

it is diagonal. In the following, each of the remaining three terms is transformed
separately.

85



86 APPENDIX A. KANE-MELE BLOCH HAMILTONIANS

Tight-binding term:

−t
∑

〈i,j〉
c†i cj = −t

∑

〈i,j〉

(
a†i bj + b†iaj

)
= −t

∑

〈i,j〉
a†ibj + h.c. (A.4)

∑

〈i,j〉
a†i bj =

∑

R

3∑

l=1

a†
R
bR+δl

=
∑

R

3∑

l=1

∑

kk′

ei(k·R−k
′·(R+δl))a†

k
bk′ (A.5)

=
∑

k

3∑

l=1

e−ik·δla†
k
bk (A.6)

The sum over nearest-neighbors is combined to gk, which has been already used
in the dispersion relation of graphene (2.6). Simplifying the sum gives

gk/t ≡
3∑

l=1

e−ik·δl = e
i
ky√

3 + e
−i

(

kx
2
+

ky

2
√

3

)

+ e
−i

(

−kx
2
+

ky

2
√

3

)

(A.7)

=e
i
ky√

3 + 2e
−i

ky

2
√

3 cos

(
kx
2

)
. (A.8)

The tight-binding term of the Kane-Mele model can thus be written as

−t
∑

〈i,j〉
c†i cj =

∑

k

gk a
†
k
bk + h.c., (A.9)

with gk expressed above.

Spin-orbit coupling:

∑

〈〈i,j〉〉
νijc

†
iσ

zcj =
∑

〈〈i,j〉〉
νij

(
c†i↑cj↑ − c†i↓cj↓

)
(A.10)

=
∑

〈〈i,j〉〉
νij

(
a†i↑aj↑ − a†i↓aj↓ + b†i↑bj↑ − b†i↓bj↓

)
(A.11)

The 6 next-nearest-neighbor vectors are (see figure 2.1):

∆1,2 = ±a1 = ±1

2

(
1√
3

)
∆3,4 = ±a2 = ±1

2

(
−1√
3

)
(A.12)

∆5,6 = ±(a1 − a2) = ±
(
1
0

)
(A.13)

Since the expression is similar for both sublattices, only sublattice A is treated
here:

∑

〈〈i,j〉〉
νij a

†
iσajσ =

∑

R

6∑

l=1

ν∆l
a†
RσaR+∆lσ (A.14)

=
∑

R

6∑

l=1

∑

kk′

ν∆l
ei(k·R−k

′·(R+∆l))a†
kσak′σ (A.15)

=
∑

k

6∑

l=1

ν∆l
e−ik·∆la†

kσak′σ (A.16)
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As for the tight-binding term, the sum over l is combined to γk. For the eval-
uation of the sum, ∆l = −∆l+1 for l odd and ν∆ = −ν−∆ can be used, which
gives

γk
iλSO

≡
6∑

l=1

ν∆l
e−ik·∆l =

∑

l odd

ν∆l

(
eik·∆l − e−ik·∆l

)
(A.17)

=
∑

l odd

ν∆l
2i sin (k ·∆l) (A.18)

=i sin (kx)− i sin

(
−kx

2
+

√
3ky
2

)
+ i sin

(
−kx

2
−

√
3ky
2

)
(A.19)

=4i sin

(
kx
2

)
cos

(√
3ky
2

)
− 2i sin (kx) . (A.20)

For sublattice B, an overall minus sign appears since νA∆l
= −νB∆l

, see figure
2.4. Hence, the total spin-orbit term can be written as

iλSO
∑

〈〈i,j〉〉
νijc

†
iσ

zcj =
∑

k

gk

(
a†
k↑ak↑ − a†

k↓ak↓ − b†
k↑bk↑ + b†

k↓bk↓
)
. (A.21)

Rashba term:

∑

〈i,j〉
c†i (σ × d̂ij)zcj =

∑

〈i,j〉

(
c†i↑c

†
i↓

)(
0 d̂y + id̂x

d̂y − id̂x 0

)(
cj↑
cj↓

)
(A.22)

=
∑

〈i,j〉

(
d̂y + id̂x

)
c†i↑cj↓ + h.c. (A.23)

Considering creation on sublattice A and annihilation on sublattice B, the re-
lation

∑
〈i,j〉 a

†
i bj =

∑
k

∑3
l=1 e

−ik·δla†
k
bk has been already proven in equation

(A.6). In analogy, the relation

∑

〈i,j〉

(
d̂y + id̂x

)
a†i↑bj↓ =

∑

k

3∑

l=1

(
δ̂ly + iδ̂lx

)
e−ik·δla†

k↑bk↓ (A.24)

holds. It has been used that the difference vector dij is equal to the nearest-
neighbor vector δl. Inserting the nearest-neighbor vectors δ, the result for the
sum over l is

ρk
iλR

≡
3∑

l=1

(
δ̂ly + iδ̂lx

)
e−ik·δl (A.25)

=− e−i
ky
3 +

(
1

2
+ i

√
3

2

)
e
i
(

kx
2

+
ky

2
√

3

)

+

(
1

2
− i

√
3

2

)
e
i
(

− kx
2
+

ky

2
√

3

)

(A.26)

=− e
−i

ky√
3 + e

i
ky

2
√

3

(
cos

(
kx
2

)
−
√
3 sin

(
kx
2

))
, (A.27)

which defines the term ρk. In the term which is related to a hopping from A
to B, the difference vector dij in equation (A.23) is not δl, but −δl. It is easy
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to see that a transformation δ → −δ leads to ρk → −ρ−k. Hence, the Rashba
term in momentum spaces takes the form

iλR
∑

〈i,j〉
c†i (σ × d̂ij)zcj =

∑

k

(
ρk a

†
k↑bk↓ − ρ−k b

†
k↑ak↓

)
+ h.c. (A.28)

with ρk defined in equation A.27.

To sum up, after a Fourier transformation the three terms of the Kane-Mele
take the form (A.9), (A.21) and (A.28). Writing these expressions and the
sublattice potential term in matrix form as defined by equation 2.19, the Bloch
Hamiltonian (2.20) is obtained. The explicit form of the coefficients gk, γk and
ρk given in the equations (2.21-2.23) is proven as can be seen from the relations
(A.8), (A.20) and (A.27).

A.2 Zigzag ribbon

In the case of a bulk material, the transversal invariance in both x ans y direction
can be used to write the Hamiltonian in a block diagonal form (the Hamiltonian
is diagonal in momentum k) so that only 4 degrees of freedom remain. A ribbon
is translational invariant in only one direction. The unit cell of a zigzag ribbon
is shown in figure 2.19. The size of the block diagonal parts for each kx is the
number of sites in the unit cell times 2 (spin degree of freedom). In order to
have no dangling bonds, the number of sites of sublattice A within a unit cell
has to be equal to the number of sites of sublattice B and is in the following

denoted by N . We used, as in the bulk case, Ψ†
kx

≡
(
a†kx↑, b

†
kx↑, a

†
kx↓, b

†
kx↓

)
as

a basis. Here, however, c†kxσ
≡
(
c†kx1σ

, c†kx2σ
, . . . c†kxNσ

)
is a vector of length N .

Therefore, Ψ†
kx

has dimension 4N . The Bloch Matrix H(kx) has the block form

H(kx) =




HA↑A↑ HA↑B↑ HA↑A↓ HA↑B↓
H†

A↑B↑ HB↑B↑ HB↑A↓ HB↑B↓
H†

A↑A↓ H†
B↑A↓ HA↓A↓ HA↓B↓

H†
A↑B↓ H†

B↑B↓ H†
A↓A↓ HB↓B↓


 (A.29)

where each block will be sparse (maximum tridiagonal for zigzag, pentadiagonal
for armchair ribbons) since only nearest and next-nearest-neighbor interactions
are considered. The analysis here is similar to the bulk case in section A.1.
Therefore, only one hopping type within each term will be considered, for ex-
ample, from A ↑ to B ↓ in the case of the Rashba coupling. The other hoppings
can be easily reconstructed using the results of the bulk in section A.1 by com-
paring the block form of Bloch Hamiltonian (A.29) of the ribbon with the Bloch
Hamiltonian (2.20) of the bulk. For example, HA↑A↑(kx) = HB↑B↑(kx) and
HA↑B↓(kx) = −HB↑A↓(−kx). The only qualitative difference to the bulk case is
that the index m representing the y component remains since no translational
symmetry in this direction is given. Therefore, m is the index or the row or the
column, respectively, of the block matrices in equation (A.29).
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Tight-binding term:

∑

〈i,j〉
a†ibj =

∑

R

3∑

l=1

a†
R
bR+δl

(A.30)

=
∑

nm

3∑

l=1

∑

kxk′
x

ei(kxR
n
x−k′

x(R
n
x+δlx))a†kxm

bkxm+dl (A.31)

=
∑

ky

∑

m

3∑

l=1

e−ikxδ
l
xa†kxm

bkxm+dl (A.32)

=
∑

ky

∑

n

(
e−iky

√
3

2 a†kxm
bkxm+1 + eiky

√
3

2 a†kxm
bkxm+1+ (A.33)

+ a†kxm
bkxm−1

)
(A.34)

=
∑

ky

∑

m

2

(
cos

(
kx

√
3

2

)
a†kxm

bkxm+1 + a†kxm
bkxm−1

)
(A.35)

Spin-orbit coupling:

∑

〈〈i,j〉〉
νij a

†
iσajσ =

∑

R

6∑

l=1

ν∆l
a†
RσaR+∆lσ (A.36)

=
∑

nm

6∑

l=1

∑

kxk′
x

ν∆l
ei(kxR

n
x−k′

x(R
n
x+∆l

x))a†kxmσakxm+Dlσ (A.37)

=
∑

kx

∑

m

6∑

l=1

ν∆l
e−ikx∆

l
xa†kxmσakxm+Dlσ (A.38)

As shown in figure 2.19, pairs of next-nearest-neighbor sites having the same
y coordinate ∆y can be formed. The x component within a pair changes by
factor of −1, wherefore, as in equation (A.17), ν∆x,∆y

= −ν−∆x,∆y
can be used

to combine the exponential terms to sinuses. The final result is

∑

〈〈i,j〉〉
νij a

†
iσajσ =

∑

kx

∑

m

[
− 2 sin

(
kx

√
3
)
a†kxmσakxmσ+

+ 2 sin

(
kx

√
3

2

)
a†kxmσakxm+1σ+ (A.39)

+ 2 sin

(
kx

√
3

2

)
a†kxmσakxm−1σ

]
.

Rashba coupling:
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∑

〈i,j〉

(
d̂y + id̂x

)
a†i↑bj↓ =

=
∑

m

∑

kx

3∑

l=1

(
δ̂ly + iδ̂lx

)
e−ikxδlxa†kxm↑bkxm+dl↓ (A.40)

=
1

2

∑

kx

∑

m

[
(
√
3 + i)e−iky

√
3

2 a†kxm↑bkxm+1↓+ (A.41)

+ (−
√
3 + i)eiky

√
3

2 a†kxm↑bkxm+1↓ − 2ia†kxm↑bkxm−1↓
]

= i
∑

kx

∑

m

[(
−
√
3 sin

(
ky

3

2

)
+ cos

(
ky

3

2

))
a†kxm↑bkxm+1↓− (A.42)

− 2a†kxm↑bkxm−1↓

]

With these results, the block matrices of equation (A.29) can be constructed
easily. For instance, HA↑A↑ is determined by equation (A.39) and has for N = 5
the form

HA↑A↑(kx) =




α β 0 0 0
β α β 0 0
0 β α β 0
0 0 β α β
0 0 0 β α




(A.43)

with α = −2 sin
(
kx

√
3
)
and β = 2 sin

(
kx

√
3
2

)
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