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Kurzfassung

Die heutige Technologie erlaubt es bereits sehr kleine Strukturen auf einem IC zu er-
stellen. Gleichzeitig mit den immer kleiner werdenden Strukturen steigt natürlich auch
die Anzahl der Komponenten die ein fertiger IC besitzen kann. Je mehr Komponenten
ein IC besitzt umso mehr stellt sich die Frage wie die einzelnen Komponenten effizient
miteinander kommunizieren können.

Eine Möglichkeit hingegen bietet ein Network-On-Chip (NoC). Dieses kann das Pro-
blem lösen indem es Datenpakete von einer Node im Netzwerk zur nächsten weiter schickt.
Dadurch können alle Komponenten die mit dem Netzwerk verbunden sind gleichzeitig Da-
ten senden und empfangen. Dadurch können Daten schneller ans Ziel gelangen und durch
den Aufbau des NoCs wird auch weniger Platz auf dem IC verbraucht.

Allerdings haben NoCs noch einige Probleme. So werden NoCs meist ohne jegliche
Sicherheitsmechanismen konzipiert, denn ein NoC soll nur sehr wenig Platz am Silizi-
um verbrauchen. Fehler können durch diverse Umwelteinflüsse, z.B. kosmische Strahlung,
hochenergetisches Licht, etc. hervorgerufen werden, aber gezielte Attacken auf das NoC
können nicht ausgeschlossen werden. Dies wirft natürlich Fragen bezüglich der Sicherheit
eines NoC auf und warum zumindest keine rudimentären Gegenmaßnahmen implementiert
wurden.

Diese Arbeit beschäftigt sich mit der Thematik wie man ein NoC sicher gegen Fehler
von außen machen kann und zeigt mögliche Sicherheitsmaßnahmen für ein solches. Dabei
werden verschiedene Sicherheitsmechanismen wie Parity Bits oder CRC auf ihre Taug-
lichkeit sowie ihre Geschwindigkeit in einem NoC anhand einer für ein NoC angepassten
Applikation überprüft. Dazu wird der von Schelle et. al. [SG04] entwickelte Network-on-
Chip Emulator (NoCem) verwendet.
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Abstract

Today’s technology allows the creation of very small structures on an integrated circuit
(IC). Simultaneously to the structures getting smaller naturally the number of components
a final IC has increases. The more components an IC has the more the question has to be
asked how they can communicate efficiently with each other.

A Network-On-Chip (NoC) can solve this problem by sending data packets from one
node in the network to the next one. Thus all components that are connected to the
network can send and receive data simultaneously and the data can reach its destination
faster and because of the structure of a NoC less space on the IC is used.

However do NoCs have several problems. A NoC is usually designed without any
security measurements, because a NoC shall takes as few space as possible on the silicon.
Errors can be introduced by environmental influences, e.g. cosmic rays, high energetic
light, etc. besides direct attacks on the NoC can not be excluded. This prompts questions
regarding the security of a NoC and why at least no rudimentary counter measures are
implemented.

This thesis focuses on the main topic how to secure a NoC against faults introduced
from the outside and shows possible counter measures on such. Thereby different tech-
niques like parity bits or CRC are tested for usability as well as speed in a NoC, based on
a fitted application for NoCs. Therefore the Network-on-Chip emulator (NoCem), which
was developed by Schelle et. al. [SG04], is used.
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Chapter 1

Introduction

1.1 Motivation

Todays technology allows the creation of very small structures in an integrated circuit.
This makes it easier to pack more components or even while systems on a chip (SoC).

Although increasing the number of components in an IC arises several problems. Es-
pecially when it comes to the communication between components. The simplest solution
for this problem would be to connect each component with each other. Resulting in a very
high amount of connections, depending on the number of components of course. Thus this
solution may not be suitable for that many connections.

Another solution would be to use a bus based system to connect the components with
each other. Bus based systems tend to have another downside. Now that the components
are not connected to each other directly, the bus has to manage which component is
allowed to send data and which components have to wait until the data is read from the
bus, meaning the more data has to be send on the bus the slower it may get.

A Network-on-Chip (NoC) on the other hand can solve the problems that direct con-
nections or bus systems arise. A NoC connects only nodes with each other. So one node
would only be connected to four other nodes, resulting in a network where all components
are connected to each other. Very much like a computer network a NoC would route
packets of data from one node to the next until the packet has reached its destination.
This allows the components to send as much data as the want, while having the benefit
of not having direct connection with all the components.

Figure 1.1 shows the transition from connecting all components via wires to a NoC. It
can be seen that the NoC needs only as many connections as there are components, while
the wire only connections need much more wires. The wires only connection will always
grow by the formula shown in 1.1, where W is the number of wires needed to connect n
components with each other. On the other hand a NoC will have fewer connections which
can be seen by formula 1.2. For a prove of this equation refer to appendix A.

W =
n · (n− 1)

2
(1.1)

W = 2 · n ·m− n−m (1.2)

12
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Figure 1.1: From only wires to a Network-on-Chip

As a NoC is a general purpose network it can be used for a variety of tasks. It can be
used to connect different top level modules with each other and either reduce the wires
that have to be routed and thus probably the size of the used silicone, or replace simple
bus systems and gain more speed on the connection between different nodes on the bus.

Another example would be to use an NoC together with an algorithm that can be
pipelined as pipeline. Each node of the NoC then acts as a stage of the pipeline and the
connected modules are different stages of the algorithm that can be processed.

Probably another advantage of the NoC is its network adapter or access point. The
access point works as an interface between the NoC and the connected module(s) and
takes care of the data leaving the module and going into the NoC and also the data that is
received by the NoC and going back to the module. Therefore it uses internal buffers and
the module itself does not take care if the NoC has available capacities and can process
the data or not. This also makes the module itself a slightly smaller and the evaluation
can probably be done in less time than normal.

Using an NoC in a design may have many advantages but also a few disadvantages.
Current implementations of different NoCs do not provide any security features. Packets
that are routed to the wrong node may cause severe damage because a secret key was
retrieved or an application fails.

Only little research has been done in this security area. NoCs are a relatively new
design paradigm and were introduced by Dally et al. in [DT01] in the year 2002. Only a
few papers have been published that tackle the possibility of faults in an NoC and what
a fault may cause and mostly they focus on the NoC alone [FKCC06], [CDBZ99].

1.2 Goal

As written in section 1.1, not that much research on how to secure an NoC against fault
induced attacks has been done yet. Many possibilities to secure the NoC lie in the access
point itself where the data has not been corrupted yet.
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Therefore the following points are defined:

• Evaluate some freely available NoC implementations

• Design and implement secure access points for an NoC

• Create an NoC specific fault injection framework

• Evaluate the secure access points for size, speed and reliability

The first evaluation phase should choose different NoC implementations that are freely
available and see whether they are suitable for this thesis. The evaluation should focus
on different parameters like size on the FPGA, documentation, readability of the code as
well as the possibilities to extend the existing code. As a result of this point a selection
of the NoC that will be used in this thesis is made.

The second point focuses on the design and implementation of an access point for the
NoC. Several countermeasures will be implemented, the design must be very modular to
insert or replace counter measures to have the same code base for the later evaluation.

The creation of the NoC specific fault injection framework focuses on the hardware
as well as on the firmware. The modular fault injector introduced by Grinschgl et al.
[GKS+11] should be placed inside the hardware design as well as the control of sending
and receiving data to and from the NoC. On the firmware side a library to control these
actions has to be implemented.

Last but not least the secure access points have to be evaluated for size, speed and
reliability. The NoC itself is a general purpose NoC and does not have a specific application
running on top of it out of the box. As written in section 1.1 it is possible to use the NoC
for pipelining an algorithm. As a possible use case for this the Advanced Encryption
standard is chosen, because of its different rounds that can be run on different nodes of
the NoC.

1.3 Structure

This thesis has the following structure: The chapter related work describes the work al-
ready done by other persons on which this thesis builds up. This is followed by a design
chapter where the basic design of the implementation and tools is show. The implemen-
tation chapter shows details about the implementation. The design and implementation
leads to the results chapters where the results of this thesis are shown. Last but not least a
conclusion and future work chapter gives a short overview about this thesis and describes
work that can still be done.



Chapter 2

Related Work

2.1 Network-on-Chip

In recent years a new design paradigm has become very popular. Replacing global wiring
and simple bus systems in integrated circuits with so called Network-on-Chips (NoC). An
NoC works very similarly to a normal computer network. While a bus can only have one
sender and multiple receivers an NoC can have multiple senders and multiple receivers.

The first proposal of a NoC design paradigm was made by Dally et al. in 2001 [DT01].
Their network consists of four ports called North, South, East and West, together with a
lightweight description of a datagram.

Each NoC consists of several building blocks. In today’s literature the following com-
ponents can be found:

• Network Adapter - implementation of the interface by which cores are connected to
the NoC

• Routing Node - implement the routing strategy

• Link - physical connection that connects the nodes and provides the bandwidth

With these components it is possible to create a whole NoC [DT01], [BM06]
Bjeeregaard et al. mentions that the term NoC is used for a very broad sense ranging

from gate level physical implementation, across system layout aspects and applications, to
design methodologies and tools in [BM06]. This lies in the widespread adoption of network
technology and abstracted models for networked communications. It is also possible to
easily adapt the OSI model of layered network communication to an NoC as done by
Benini and Micheli [BDM01]. Figure 2.1 shows this link to the OSI model of layered
network communication.

Since the first paper on NoC in 2002 by Dally et al. [DT01] a wide variety of proposals
and implementations has been made. Salminen et al. covers most of these proposals and
implementations in [SKH] where he tries to compare the different proposals with each
other, which proves to be a very difficult point, because basic properties of the NoC can
vary very heavily from each other, but still Salminen et al. compared 44 different NoC
proposals with each other.

While Dally et al. only propose a simple mesh network in their paper [DT01], many
different layouts are possible.

15
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Figure 2.1: The flow of data from source to sink through the NoC components with an
indication of types of datagrams and research area, [BM06]

2.1.1 Attacking a NoC

Sterpone et al. focuses on how to inject faults in a specific way to test the NoC’s behaviour
in [SSR12]. The approach used is very similar to the one in this thesis, although Sterpone
et al. uses the net list and the FPGA configuration memory to apply different types of
fault into the NoC. The results of Sterpone et al.’s work provide a new test method and
identifiy areas in the NoC that are not secure, but do not give any solution on how to
make them more secure.

On the other hand Frantz et al. focuses more on the crosstalk in a routers switch
in [FKCC06]. Frantz et al. can either simulate Single Event Upsets (SEU) as described
in [KCR06] or crosstalk, where Frantz et al. uses the Maximum Aggressor Fault model
(MAF) as described in [CDBZ99]. As an approach to gain results Frantz et al. uses a
golden model of the NoC and also a faulty model and checks for errors there.

Kang et al. proposes a different type of router model to overcome the problem of
induced errors in an NoC [KKD10]. His network router adds CRC to different parts and
therefore gets a very good error coverage.

Error Correcting Codes

Bertozzi et al. describes a very common design paradigm for fault tolerant circuits in
[BBM05]. Basically the standard approach is to provide double or even triple redundancy
in the circuit. Due to of the large overhead that this method bears it may not be useful
in an area and power constricted environment.

Bertozzi et al. also states that Error Correcting Codes (ECC) may be useful as they
can be carried out in either hardware or software. Still the circuit to correct the error may
use more space on the silicone.

Therefore another solution, a two-rail code, can be used. According to [BBM05] the
bus lines are doubled in this case and a complementary signal is transferred on the doubled
lines. The packet layout proposed by Bertozzi et al. can be found in 2.2.

The packet layout seen in figure 2.2 is a layout that can be expected from a Hamming
Weight code, which is also used in [BBM05]. Bertozzi et al. also describes a version
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Figure 2.2: Packet layout proposed by [BBM05]

of the Hamming Weight decoder which consists of an EXOR-Tree and an optional error
correcting stage [BBM05]. Figure 2.3 shows the Hamming Weight decoder.
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Figure 2.3: Hamming Weight decoder as proposed by [BBM05] with additional correction
stage
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Adaptive Routing Algorithms

Kohler et al. proposes adaptive routing algorithms to overcome the problem of a static
fault in [KSR10]. Therefore the network is reconfigured if an error is found. This adaptive
routing algorithm has some requirements. It must not create deadlocks and it must not
create livelocks. Although network reconfiguration is very prone to those two effects, Jos
et al. [DLPP05] and Lysne et al. [LPD05] provide a theory and a methodology that solves
this problem.

The adaptive routing introduced by Kohler et al. in [KSR10] cannot be used when
transient faults occur. According to [KSR10] the adaptive routing is not fast enough to
adapt the routing before the error may disappear again.

In order to make the adaptive routing to work, Kohler et al. uses a few bits of the
packet and replaces them by an 8 bit CRC. Figure 2.4 shows the original and the new
packet. It is very clear to see that one packet is 128 bits big and the payload data is 96
bits. By adding the CRC their payload is reduced to only 88 bits while the CRC takes up
8 bits. Thus the CRC alone needs about 10% space of the original payload size.

Figure 2.4: Original data packet and data packet with CRC, [KSR10]

2.2 Security Measures For the NoC and the Access Point

A wide variety of measures to determine that an error occurred during the execution does
exist. It could be as easy as implementing the same circuit but in negative logic, or process
the input n times and check the results. If they differ, a fault must have occurred and
actions have to be taken.

These measures are good, but unfortunately not really suitable for this thesis or prob-
ably for an NoC anyway. They may blow up the whole design and also the area on the
silicon. Hence an NoC should be as small as possible such countermeasures are not evalu-
ated in this thesis. This just leaves another type of countermeasures like parity bits that
can be used and evaluated using NoCs. The following sections describe the countermea-
sures in a bit more detail.
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2.2.1 Security for the NoC

Dally et al. propose a very common way to protect the NoC against faults during the
production by providing spare bits on network links and network buffers. After the test
laser fuses are blown or configuration registers are set, so that these extra lines can be
used or not [DT01].

Dally et al. also explain in [DT01] that this adds additional delay to the NoC because
of the rewiring of wires and if the communication requires additional security, it should
be moved into the access point.

2.2.2 XOR-Table (Parity Bits)

A single parity bit can be calculated by XOR-ing all the input data. This will lead to a
result that is either logical

”
0“ or

”
1“. The problem that arises when using only one parity

bit is that only one error can be detected. So if a bit is flipped, this can be detected.
whereas two bit flips cannot be detected any more and the result my seem to be correct.

2.2.3 Hamming Codes

Hamming Codes were introduced by R.W. Hamming in [Ham50]. While a hamming code
is very similar to a parity bit, it offers a few more advantages than a simple parity bit.
Hamming Codes calculate multiple parity bits and place them in the middle of the data
(at positions which are 2n where n increased for each run). It makes them very effective
to detect single bit flips, but also multiple bit flips can now be detected and single bit flips
can be corrected.

2.2.4 Cyclic Redundancy Check (CRC)

Peterson and Weldon describe CRC in their book Error-correcting Codes [PW72] as well
as Lin et al. in [LC04].

In general CRC is a non secure digest function over a data word. It handles the data
via a mathematical operation over GF (2) (polynomial). Then it performs a division by
the creation polynomial GF (x). The remainder of this division then is the final CRC code
and can be used as input for the next run.

2.2.5 Reed-Solomon (RS) Codes

Based on Hamming’s work in [Ham50] Irving Reed and Gus Solomon published their new
work [RS60]. It is a non binary-cyclic code. The code itself is made up of sequences and
creates blocks to code them.

2.2.6 Secure Hash Algorithms (SHA-3)

SHA-3 is the new secure hash algorithm that will be standardized by the NIST in FIPS-
202 very soon [NIS]. The algorithm uses a sponge function to process the message step by
step. Therefore a message can be very large. Only a small part of it is processed at each
step until the whole message has been processed.
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The absorbed data is then XOR-ed and used the first output is squeezed out. This
procedure then is repeated with the rest of the data until the whole input is adsorbed.
See [BDPA11] for more details.

2.3 Different Ways of Fault Injection

In order to make changes to the system, different ways of fault injection have to be found.
In this thesis it is not possible to open the chip itself and analyse its internal structure to
apply the attacks on the right spot. This means that a non-invasive fault injection system
must be used.

Several ways are known to create faults. One would be the usage of the partial recon-
figuration functions of an FPGA as described in [dARGG06], which limits the choice of
FPGAs a lot. For example an FPGA from XILINX 1 could be used.

Another way of manipulating the circuit would be the installation of faulty or modified
logic elements or elements that can be controlled from the outside. Logic elements that
can be controlled from the outside would be mutators or saboteurs as used by Boue in
[BPC98].

Ziade et al. describes possible ways of fault injections in [ZAV04]. Ziade et al. catego-
rizes faults in two different groups: hardware/physical faults and software faults and their
probable causes.

This thesis uses saboteurs to manipulate the hardware. If not activated, a saboteur
does not have any effects and the circuit works as expected. Once they are activated they
inject their signals directly into the hardware.

On the other hand mutators or mutants are modified versions of the original logic
element. Mutants do not have any effects on the circuit if they are not activated and just
sit there and wait. If they are activated, they replace the original logic element or module
entirely.

2.4 Modular Fault Injector (MFI)

The used MFI was introduced by Grinschgl et al. in [GKS+11]. Their design features the
following points

• Fully modular fault injector design [GKS+11]

• Multi-bit fault injection to support fault attack emulation [GKS+11]

• Online-testing support [GKS+11]

The whole MFI can be added very easily to the whole design. It uses a General
Purpose Input/Output (GPIO) communication interface which can be easily included in
a design and it also supports a big selection of architectures. Grinschgl et al. [GKS+11]
also provide a software library for XILINX [Xil] to easily set the pins of the GPIO and to
configure/control the MFI.

1Xilinx Virtex IV http://www.xilinx.com/support/index.html/content/xilinx/en/supportNav/

silicon_devices/fpga/virtex-5.htm, last visit January 2014

http://www.xilinx.com/support/index.html/content/xilinx/en/supportNav/silicon_devices/fpga/virtex-5.htm
http://www.xilinx.com/support/index.html/content/xilinx/en/supportNav/silicon_devices/fpga/virtex-5.htm
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Further the MFI consists of the following modules:

• Fault Injection Controller (FIC)

• Saboteurs

• Fault pattern support

In Grinschgl et al. [GKS+11] design the FIC is the main part of the MFI. Its main purpose
is the control of the mode and the activation time of the connected saboteurs.

The saboteurs that are used can be classified as unidirectional serial simple saboteurs
[GKS+11]. Only one direction is possible and that the saboteur is directly connected to
the signal it should affect.

The fault pattern support allows the programmer of the firmware to change the pattern
of an attack. Therefore the location of the saboteurs on the silicon has to be known.
Different patterns can then be applied [GKS+11].

After a proper placement of all the saboteurs, triggers, the fault injector and the GPIO
components it is easy to control the MFI from a firmware only. No needs to change the
hardware if different types of errors need to be checked, which makes it a very versatile
tool for verification.

2.5 Advanced Encryption Standard (AES)

AES is the successor of the Data Encryption Standard (DES). It was released by the
National Institute for Standards and Technology (NIST) in October 2000 in the standard
[AES01] paper.

A similar implementation was done by Yang et al. [YBLB09], although Yang et al.
did not have a close look at the security issues that can occur by porting an algorithm
over to an NoC.

In general the AES is a symmetric block cypher that can either have key sizes of 128,
192 or 256 bits while a block of data is always 128 bits and is based on the design principle
known as substitution-permutation network.

The algorithm operates on a 4x4 field, also called state array. Depending on the key
size the state array is computed 10 times for a key size of 128 bits, 12 times for 198 bit
keys and 14 times for 256 bit keys.

In detail the AES algorithm defined in [AES01] works as described in listing 2.1. The
input array in contains the 4x4 array of input data (Nb = 4). The encrypted output is
saved in out which contains the 4x4 array (Nb = 4). The input w contains the key schedule
as described in section 5.2 in the [AES01] and contains the original key plus the keys for
all the other Nr rounds. Nr equals the rounds the AES algorithm has. If a 128 bit key is
used Nr = 10, for a 192 bit key Nr = 12 and for a 256 bit key Nr = 14.
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Cipher ( byte in [ 4∗Nb] , byte out [ 4∗Nb] , word w[Nb∗(Nr+1)])
begin

byte s t a t e [ 4 ,Nb ]

s t a t e = in

AddRoundKey( s tate , w[ 0 , Nb−1])

for round = 1 step 1 to N r 1
SubBytes ( s t a t e )
ShiftRows ( s t a t e )
MixColumns ( s t a t e )
AddRoundKey( s tate , w[ round∗Nb, ( round+1)∗Nb−1])

end for

SubBytes ( s t a t e )
ShiftRows ( s t a t e )
AddRoundKey( s tate , w[ Nr∗Nb, (Nr+1)∗Nb−1])

out = s t a t e
end

Listing 2.1: Pseudocode for AES [AES01]

For all the above methods, except AddRoundKey which uses a different RCon-Table,
an inverse method does exist to decipher the bit stream. Deciphering a complete text
using the NoC is not covered in this thesis.

2.5.1 Attack Methods to Reconstruct the Secret Key from Use Case
AES Implementation

Takahashi et al. proposes a very efficient way to retrieve the key from AES with known
plain texts and faulty cypher texts in [TFYpt]. Therefore the assumption is made that
random faults are injected into the 9th round key. It has to be considered that the faults
are not injected into bytes of the same row in the 9th round. Additionally the attacker
has to be able to obtain pairs of correct and faulty outputs from the same input.

Figure 2.5 shows how a fault induced into the 9th round in the second column into the
bits one and two is distributed throughout the key scheduling process. The faulty bits
affect also the other bits of the key in the same round.

Due to the definition of AES the fault is propagated to the 10th round. This is done
in two different ways. The 10th round key is affected directly by the 9th round key and
indirectly by the last row of the 9th round key as this is used to calculate a starting value
for the 10th round.

The main approach of Takahashi et al.’s attack is to set the faulty state calculated by
the faulty output equal to the correct state calculated by the correct output before the
faulty keys were added into the round operation. Both states are correct at this point.
An entire key can be retrieved one by one calculating the equations yielded by the correct
faulty states [TFYpt].

Another way to attack AES would be a reduction of its runtime from ten to one round.
Then the reconstruction of the secret key is very easy too. Bouillaguet et al. [BDD+10]
describes the procedures in his paper

”
Low Data Complexity Attacks on AES“.
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SubWord

Rcon9

RotWord

SubWord
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9th round

10 th round

Figure 2.5: AES key scheduling process with fault induced into K9
1,1 and K9

1,2, [TFYpt]

The attack on an AES that is reduced to only one round is very simple. According
to Bouillaguet et al. it only takes 212 encryptions if some special features of the AES are
taken into account. If they are not taken into account, the number of encryptions raises to
216 [BDD+10]. Although on hardware that is available today it should be only a matter
of seconds.

Bouillaguet et al. uses for the simplest attack two plain texts and calculates the cypher
texts using the faulty algorithm. First apply SR−1 ·MC−1 to the output difference. This
leads to only the output differences of all S-boxes. The now calculated S-box differences
are equal to the plain text difference in their respective bytes. Next calculate all 28 inputs
that are able to create the input difference. Find the pairs that are suggesting the correct
output difference. This should be two pairs for each Sbox. The last step is trail and error.
Encrypt the input using the faulty algorithm and see which combination causes the correct
output. In the worst case there are 216 tries. For more information on how to improve
the speed on this attack please refer to [BDD+10].



Chapter 3

Evaluation of existing NoC
Implementations

3.1 Criteria for the Evaluation of existing Network-On-Chip
Implementations

In the last years many proposals and implementations on NoC have been made. This has
led to a wide variety of existing tools. It also makes it difficult to choose a sufficient im-
plementation. Salmien et al. [SKDH08] gives an overview about NoC proposals. Salmien
et al. examines about 60 different NoC proposals, which shows that there is already a
wide variety of NoC proposals around. Only about 65% of the analysed proposals and
implementations in [SKDH08] can be synthesized and used on real hardware.

In order to choose the right implementation for this thesis, two different approaches
of an NoC implementation are evaluated, none of them is mentioned in [SKDH08]. The
first implementation is the so called Atlas [MCM+] while the second one is the so called
Network-On-Chip Emulator (NoCem) [SG04]. Both implementations are freely available
and can be downloaded from the internet.

For this evaluation a Xilinx Virtex 5 series ml507 evaluation board is used. The board
utilizes a Xilinx Virtex 5 FPGA. In the later part of this thesis the evaluation board is
used to attack the NoC.

The following subsections show the evaluation criteria and give a short description
where the focus of the criteria lies.

3.1.1 Features

Beside the creation of the NoC several other features can come with the tools used in this
evaluation. This section describes the provided features in detail and if they can be used
in this thesis or not.

3.1.2 Usability

This section describes the usability of the NoC. It describes how the NoC can be configured
and how different settings can be achieved by using different settings.

24
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3.1.3 Configuration Options

The configuration options are probably a very important point in this evaluation. They
show which settings can be used for the NoC. It also shows the parameters of the settings
that can be applied.

3.1.4 Routing Algorithms

As it may not be clear how the routing algorithms work, the following sections provide a
short description on the routing algorithms.

XY-Routing

The XY routing algorithm is first described in [RLP06a]. It proposes that each router
knows its position in the network, basically its X and Y coordinate. Depending on that
coordinate the packet is sent to the right output port. For example a packet is injected
into a 4x4 mesh at the router with the position (x, y) = (0, 0) and the destination of that
packet is router (x, y) = (3, 3). The packet is first sent into the X direction. The output
port is the east port of the router. This is done until the X coordinate of the current router
and the X coordinate of the destination router are the same. Now the packet traverses
the network in Y direction. Therefore it is sent on to the north output port of the current
router. This step is repeated until the Y coordinate of the router matches the Y coordinate
of the packet. The packet has now received its destination router and can be extracted
from the network. Figure 3.1 shows two examples for this algorithm.

To describe this algorithm in a more generic way: if the X coordinate of the current
router is smaller than the X coordinate of the destination router, send the packet to the
east port. If the X coordinate of the current router is bigger than the X coordinate of
the destination router, send the packet to the west port. Do so until the X coordinate of
the current router is equal to the X coordinate of the destination router. Now traverse
the network in Y direction. The same algorithm is then executed to traverse the network
in Y direction, except that if the Y coordinate of the current router is bigger than the
Y coordinate of the destination router, the packet is sent to the north port of the router
and if the Y coordinate is smaller, the packet is sent to the south port. Again, if the Y
coordinates from the current router are equal to the one in the packet, the destination
router is found and the packet can be extracted from the network.

West-first and West-first Non Minimal

The west-first routing algorithm is an adaptive routing algorithm [RLP06b] and is an
extension of the XY routing algorithm. Basically it works in the same way as the XY
routing algorithm with the exception that all packets have to go as far west as necessary.
It is not allowed to route packets to the west after the first west step. Figure 3.2 shows
the allowed routing directions for west-first routing.

Cypher and Gravano Routing (CG)

This algorithm is first introduced in [CG94] and is a routing algorithm used in torus
networks. This algorithm is used within computer networks but can be ported to an NoC.
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R(0,0) R(1,0) R(2,0) R(3,0)

R(0,1) R(1,1) R(2,1) R(3,2)

R(0,2) R(1,2) R(2,2) R(3,2)

R(3,3)R(2,3)R(1,3)R(0,3)

Figure 3.1: Example of the XY Routing algorithm. The green arrows show the path of a
packet that is sent from R(0,0) to R(3,3) and the red arrows show the path of a packet
sent from R(3,2) to R(1,3).

For the routing algorithm three queues are defined: an injection queue, a delivery
queue and a standard queue. New packets can only be placed in empty injection queues
in their source node and only removed from a delivery queue at the destination node. A
standard queue can be accessed directly from all of the node’s input ports [CG94].

The routing algorithm now specifies which movements between the queues are allowed.
To do so a set of queues to which the packet may be moved can be specified. Cypher et
al. call them a waiting set. Only if a queue is in a packets waiting set the packet is moved
to that queue [CG94].

3.1.5 Test Bench

Within this point of the evaluation the existence and the completeness of a test bench
should be evaluated. First a check for the existence of a test bench is done. If one exists,
further evaluation is done.

For an existing test bench additional tests are done. First it is checked if it can be run
very easily, or if it is hard to run the test bench. For example it could be possible to use
some exotic Tcl/Tk libraries that have to be installed on the system.

After the test bench can be executed the completeness of the test bench is evaluated.
Therefore, the test bench is run and the results of this run are evaluated.
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Figure 3.2: Allowed routing directions in west first routing

3.1.6 Connections to other IPs

At some point during development it may be useful to connect the NoC directly to a CPU.
This allows the CPU to transfer data directly to the NoC without making any big detours.
Although not used in this masters thesis this feature may be useful for other projects.

3.1.7 Size on the FPGA

An FPGA only offers a limited amount of logic gates. Therefore, it is necessary to find out
how much space the NoC needs. This also leads to knowledge about the best configuration
for the later fault injection experiments.

3.1.8 Readability Of the Source Code

This section has its focus on the readability of the source code. Some writers tend to write
very hard to understand source code. The aim of this section is to evaluate the source
code. Points like the readability of the code, naming of variables and the quality of the
comments are in the close focus.

3.1.9 Extensibility

The extensibility of the NoC is very closely linked to the readability of the source code.
An extension like a parity bit generator and checker can only be added if the source code
is very well understandable.

3.2 Evaluation of the Atlas NoC Tool

The Atlas Tool is developed by Moares et al. and is available from [MCM+]. The tool is
first introduced in [MACM11]. It can be used for a wide variety of tasks like the generation
of a Network-on-Chip (NoC), traffic generation for this NoC. The tool is also capable of
doing a simulation and a power and performance analysis of the configured NoC.

Atlas is designed to support the designer of an NoC to quickly do power and per-
formance analysis of the designed network. It doesn’t provide features to test the NoC
against faults.

3.2.1 Features

Atlas comes with a wide variety of features, although only the first two features are of
interest for the master thesis. They are the NoC Generation feature and the Traffic
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Generation Feature. In the thesis several Networks-on-Chip are created and fed with
traffic from the Traffic Generator.

• NoC Generation

• Traffic Generation

• Performance Analysis

• Power Analysis

The NoC Generator can also configure more than one type of NoC. The configurable
networks are:

• Hermes

• Hermes TB

• Hermes TU

• Hermes SR

• Hermes CRC

• Mercury

The Hermes NoC is first introduced in [MCM+04]. It is a router that consists of
five ports (North, South, East, West and an Local Port) and uses basically an XY routing
algorithm with wormhole switching. Wormhole switching is defined in a way that a packet
is split into smaller flit that are routed through the network. When a flit head flit arrives
the router routes it and reserves the resource for all other flits until a tail flit arrives. In
that way it looks like a worm that is travelling through the network.

With Atlas it is also possible to create saboteurs. This can only be done when a Hermes
CRC network is created and then it uses the Maximum Aggressor Fault Model (MAF) to
simulate errors on the connections between routers, [CDBZ99].

3.2.2 Usability

The usability of the Atlas tool is very good. It guides the user through the process of
configuring the NoC with a Graphical User Interface (GUI) and supports the user when
it comes to creating the traffic. Finally the tool can also support the user when it comes
to power and performance analysis, but this is not a point of the thesis.

The NoC Generation is where all parameters for the NoC can be set. Changes in the
layout of the network, for example the change from the standard 3x3 network to a 4x4
network are also shown to the user so that he can imagine the look of the network even
better. Figure 3.3 shows an example of the GUI.

The traffic generation is quite simple as well. The user can choose between the types
of traffic he wants to create and can set a lot of parameters to create the traffic. It is
possible to create the traffic for each router individually. At the end of this process the
traffic is generated and can be used in the test bench. Figure 3.4 shows an example of the
GUI that is used to create the traffic and 3.5 shows the settings for an individual router.
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Figure 3.3: Example of the configuration of an NoC

Unfortunately Atlas does not make any requests on the size of the NoC that should be
created. It doesn’t check if the NoC could be too big to fit on a certain Field Gate Array.
This has to be found out by synthesis of the NoC and may lead to long times running the
synthesis just to find out if the NoC fits.
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Figure 3.4: Example of the traffic generation screen.

Another downside of Atlas is that most of the source code is documented and some
of the variables used in the program code are in portuguese language. This leads to the
problem that the source code cannot be understood as easily as intended by the writers of
Atlas. Also the fact that some variables are named in Portuguese makes it hard to read
and understand the code.

Although Atlas provides a save feature for the NoC configured by the user it seems
that Atlas doesn’t read the settings back in a correct way. Whenever the GUI is opened
in order to alter settings in the NoC Generation tool then the tool will display its default
settings and not the saved settings. This seems to be a bug in the GUI as the traffic
generation shows the network in the way it was configured.

3.2.3 Configuration Options

Atlas provides a lot of configuration options for the creation of an NoC. A summary of all
the parameters that can be configured for an NoC can be found in Table 3.1.
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Figure 3.5: Example of an individual router traffic generation setup.

Parameters Hermes Hermes TB Hermes TU Hermes SR Hermes
CRC

Mercury

Topology 2D Mesh 2D Torus 1D Torus 2D Mesh 2D Mesh 2D Mesh

Virtual Chan-
nels

1, 2 or 4 1 2 1 or 4 2 1

Flit Width 8, 16, 32 or 64 16 16 8, 16, 32 or
64

Buffer Depth 4, 8, 16 or 32

Routing Algo-
rithm

XY or
West-first

West-first
non mini-
mal

XY XY XY CG

Scheduling Al-
gorithm

Round
Robin,
Priority

Round
Robin

Round
Robin

Age Based Round
Robin

Round
Robin

CRC No No No No Yes No

QoS Yes No No Yes No No

Table 3.1: Configuration options for the NoC Generation [MCM+]

3.2.4 Test Bench

Atlas provides a large test bench. The test bench is written in SystemC and is used to test
the network with the provided traffic from the tool. The simulation can also be started
from the Atlas tool itself which opens up a small window with a progress bar. Nothing
else can be seen.

Unfortunately it was not possible to run the test bench because ModelSim is not able



CHAPTER 3. EVALUATION OF EXISTING NOC IMPLEMENTATIONS 32

to compile SystemC code as the destination system should be a RedHat Linux distribution
and the test system uses a SuSe Linux distribution.

3.2.5 Routing Algorithms

Atlas provides several routing algorithms. The routing algorithms provided by Atlas are

• XY

• West-first

• West-first non minimal

• Unidirectional XY

• CG

A detailed description on how the routing algorithms work can be found in section
3.1.4.

3.2.6 Connections To Other IPs

The Atlas Tool doesn’t provide any common interfaces to other IP cores. So the connec-
tions to a Processor Local Bus (PLB) for example have to be written if the connection to
a micro processor is desired for example.

3.2.7 Size on the FPGA

As the NoC Generator can create a variety of networks with a lot of varying parameters
the size on an FPGA can vary very much. In the test synthesis that is done it could be
seen that a network with only four routers (2x2 Mesh) could fit very easily in the biggest
configuration on the FPGA while a 4x4 Mesh is very hard to fit onto the FPGA and
depends on the configuration.

3.2.8 Readability of the Source Code

The source code is very well structured. Each module has its own file and only covers its
functionality.

A problem that occurs in the source code is the language. The comments in the
source as well as some variables are kept in portuguese language. This makes it very hard
to understand the source code. Probably replacing those comments and variables into
English may help.

3.2.9 Extensibility

It is very hard to tell how good the extensibility of atlas and the generated NoCs are.
This is basically because of the language they used to write the source code in. The code
is written in English and Portuguese.
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The Java part of the tool can be easily extended. It is object oriented and doesn’t use
any foreign language in the code. Besides it is well structured and can be understood very
easily.

The VHDL code is harder to understand. Some parts of it are written in a foreign
language, which makes it difficult to understand which program blocks or variables are
used for. Besides the language gap other problems arise.

The VHDL code is generated from the Java part. It creates all the necessary connec-
tions between the routers. A later change of the connections is only possible if the whole
network is generated by the tool again.

Also a change of the behaviour of some routers or parts of a router can probably only
be done if some big changes in the Java part are made. Although the source code is very
clean structured a single router can probably not be exchanged so easily. Also depending
on the position of the router in the network several files have to be rewritten to make this
possible.

3.3 Evaluation of the Network-On-Chip Emulator (NoCem)

NoCem was first introduced by Schelle et al. in [SG04]. NoCem only provides a configu-
ration file and is very easy to configure once the different options are understood. NoCem
provides different configuration options. It is possible to add virtual channels (VC), create
different layouts like mesh, 2D- or 3D- torus, etc.

3.3.1 Features

Compared to Atlas, NoCem provides hardly any features. NoCem comes with a basic
configuration and test bench and can be configured by the user. The configuration file
provides a wide variety of configuration options. Although no configurations have names,
it is still possible to create nearly as many different configurations as Atlas.

3.3.2 Usability

The usability of NoCem is very good. Although NoCem does not provide a GUI to
configure the network, it provides configuration options that can be changed with a simple
text editor. This has the advantage that NoCem can be reconfigured very fast and because
the files for all different types of the network are included it can be synthesized without
copying any files or write any additional source code. An example for the configuration of
NoCem can be seen in listing 3.1.
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constant NOCEM TYPE : i n t e g e r := NOCEM CHFIFO VC TYPE;
constant NOCEM CHFIFO TYPE : i n t e g e r := NOCEM CHFIFO VC TYPE;
constant NOCEM TOPOLOGY TYPE : i n t e g e r := NOCEM TOPOLOGY MESH;
constant NOCEM FIFO IMPLEMENTATION : i n t e g e r := NOCEM FIFO LUT TYPE;

constant NOCEM NUM AP : i n t e g e r := 4 ;
constant NOCEM NUM COLS : i n t e g e r := 2 ;
constant NOCEMNUMROWS : i n t e g e r := NOCEM NUM AP / NOCEM NUM COLS;

constant NOCEMDW : i n t e g e r := 8 ;
constant NOCEMAW : i n t e g e r := 2 ;

constant NOCEM NUM VC : i n t e g e r := 2 ;
constant NOCEM VC ID WIDTH : i n t e g e r := NOCEM NUM VC;

constant NOCEM CHFIFO DEPTH : i n t e g e r := 4 ;
constant NOCEM MAX PACKET LENGTH : i n t e g e r := 8 ;

Listing 3.1: Configuration example of NoCem.

3.3.3 Configuration Options

NoCem provides a wide variety of configuration options. The configuration options are
a little bit different if a microprocessor is used or not. A summary of the configuration
parameters can be found in table 3.2

Parameters without microprocessor with microprocessor

Topology Mesh, Torus, double Torus

Grid Configuration Rectangle or Square

NoC dataword size 1-256 bits

Packet Control word size 1-256bits

Packet Length 2, 4, 8, 16 datawords

Virtual Channels 2 or 4

Channel FIFO length 2, 4, 8, 16

Routing Algorithm XY

Scheduling Algorithm Round Robin

CRC No

QoS No

Microprocessor Datasize - 4 bytes

Peripheral Bus - OPB, PLB

Processor Type - Microblaze, PPC

Table 3.2: Configuration options for the NoC Generation or NoCem

3.3.4 Test Bench

NoCem does provide a test bench in VHDL. This test bench is very small and only
instantiates the NoC and drives the clock for the simulation of the NoC.
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The test bench also provides so called exercisers which can create data for the simula-
tion process. Although very well designed, those exercisers are kind of hard to understand
and due to the inflexibility of VHDL it is even better to write a test bench that is more
flexible.

3.3.5 Routing Algorithms

Although not really stated in any of the documents regarding NoCem the assumption can
be made that it uses an XY routing algorithm. This assumption can be confirmed by a
simple simulation. No other routing algorithm is implemented in this version of NoCem.

3.3.6 Connections to other IPs

NoCem already provides two different connection IPs. One is an On-Chip Peripheral Bus
(OPB) and the other one is a Processor Local Bus (PLB). They can be used to connect
to either a Microblaze or a Power Pc (PPC) softcore CPU.

3.3.7 Size on the FPGA

The size of the NoC depends on its configuration. For example there a configuration
that requires virtual channels may require more space on the FPGA than a configuration
without the virtual channels. Although having virtual channels in the NoC may speed up
the routing process, it is not necessary to have them.

3.3.8 Readability of the Source Code

The source code is very readable. Each module has its own source file and only uses this
one file for the implementation.

A minor downside is the heavy usage of generate statements in the code. This makes
it harder to read the code because the configuration has to be either known or looked up
in order to know which path is taken in the code, but the configuration of the NoC can
be remembered very easy.

3.3.9 Extensibility

NoCem is very easy to extend. The source code is very organized and packed into small
modules. NoCem also provides a good documentation how packets can be sent via the
network and how they can be injected into the network. This makes the process of writing
an access point very easy.

3.4 Conclusion

Making a decision for either implementation was not easy. Both have very unique features.
Atlas on the one hand uses a GUI for the whole configuration process while NoCem does
the configuration with a simple configuration file but it would be possible to write a GUI
for the configuration of NoCem, as well.
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Table 3.3 shows a comparison of the two implementations with focus on the size of the
NoC. It can be seen that NoCem needs more space on the FPGA than the implementations
provided by Atlas.

The decision finally was made for NoCem. It provides the better features and is easier
to configure. Besides the fact that it needs more space on the FPGA, NoCem’s code is
readable and can be extended very easily.

Easy to configure

NoCem provides a configuration file where all the configurations can be made. If something
needs to be changed only a few lines in the configuration file have to be changed. Custom
changes are kept and only a recompilation of the NoC is needed to apply the changes.

Atlas only provides the GUI to configure the NoC. Changes can only be made in the
GUI and result in a new generation of the NoC. This may cause problems when some
custom changes to the source code are made. A new generation of the NoC will result in
a loss of changes, unless they were already made in the files that are used for generation.

Readability of the Source Code

NoCem’s source code is very easy to read and understand, beside the fact that the generate
statements sometimes can make it a little bit difficult to know whether a specific section
of code is generated or not.

Atlas on the one hand doesn’t come with a documentation in English. The documen-
tation is included in the source files and is in Portuguese. If you are not familiar with this
language, no information can be extracted from the documentation. Although the source
code looks clean, some variables are named in Portuguese. Again, it can’t be said what a
specific variable is doing without any doubts.

Test bench

Both implementations provide a test bench. NoCem provides a test bench completely in
VHDL and provides modules to send packets into the NoC and extract the sent packets
from the NoC again. This makes it easy to write an own test bench on top of the existing
one. Atlas on the other hand provides a test bench completely written in SystemC.
Unfortunately the server which should run the test bench should, was not able to compile
SystemC syntax and it was impossible to run the test bench.
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Chapter 4

Design

4.1 Extended NoC Module

As described in section 3.1 NoCem is used as a basis for this thesis. It already provides a
working NoC that needs to be configured so that the application can be applied to it.

4.1.1 The Networks Access Points

An access point is either an entry point into or an exit point from the NoC. Access points
need to be placed wherever data is extracted from the NoC or data is send to the NoC.
Figure 4.1 shows where the access point is located. It sits right on top of the node and
provides send and receive functionality.

NoC Node

Send Receive

Application

Acess Point

Figure 4.1: Overview: The access point is split into a send and a receive part

4.1.2 Receiving Data from the NoC

The basic state machine, used for all counter measures, in the receiving process has four
different states (Init, ReInit, Idle and Data). With these states it is possible to receive
data correctly. Figure 4.2 shows how the states are connected together.

38
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Init ReInit Idle Data

CLK

CLK

valid data
received

< 7 packets
received

all packets received

Figure 4.2: State machine used to receive data.

For the CRC countermeasure the state machine looks a little bit different. The CRC
is generated for all packets that are sent and thus can only be received as the last packet.
Therefore it gets an extra state where the check of the calculated and the received CRC
takes place, by this time the CRC of the last packet received is calculated. The new
handling of the states is shown in figure 4.3.

Init ReInit Idle Data

CLK

Check CRC

CLK

Valid data
received

< 8 packets
received

8 packets
received

CLK

Figure 4.3: State machine used to receive data using CRC as a counter measure.

• Init: In this state the whole module is initialized. It is the entry state and is active
when the NoC is being reset. The Init state is only entered after a reset of the NoC.
The transition to the next state happens if the first CLK transition happens.

• ReInit: This state is entered when the whole data is received. It resets all the
variables needed for the reception and then traverses right to the Idle state.

• Idle: This state is entered right after the Init or the ReInit states have finished.
This state checks if data is available on the input lines. If data is received in this
state the transition to the Data state is made.
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• Data: Writes the data into the right registers according to their positions in the
data stream. This state also sends an acknowledge to the sender. After one packet
has been received the idle state is called again. If the activated countermeasure is
CRC, the state Check CRC is entered right after the last packet has been received.

• Check CRC: In this state the received CRC is compared to the calculated CRC
and the transition back to the ReInit state is made.

4.1.3 Sending Data into the NoC

The state machine for sending data contains five states (Init, ReInit, Idle, Send and
WaitForReception). Figure 4.4 shows how they are linked together. The layout is very
similar to the receive state machines.

Init ReInit Send
Wait for 

reception
Idle

CLK

Presend
CLK

Data packet
to send CLK

Packet received and not the 
last packet

8 rounds of data send

Last packet send

CLK

Figure 4.4: State machine used to send data.

• Init: In this state the whole module is initialized. It is the entry state and is active
when the NoC is being reset.

• ReInit: This state is entered when the whole data is received. It resets all the
variables needed for the send process.

• Idle: In this state the module waits until data is available to send. If data is available
to send, it traverses to the Send state.

• Presend: Waits until the calculation of counter measures is finished, which normally
takes one CLK cycle and then the next state is entered.

• Send: Prepares one packet to send and actually sends it to the destination. In the
case that the 8th packet should be send then the ReInit state is entered. Else the
WaitForRecepton state is entered.

• WaitForReception: After one packet is sent this state waits until it is received by
the receiver. If more packets have to be sent, then the Send state is entered again.
If the send process is finished, the ReInit state is entered.
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4.2 Framework for the Fault Injection System

FPGA

NoC PPC

GPIO

S

CMD 
Proc

FIC

RS232

Trigger

Figure 4.5: Framework for the fault injection system containing the NoC

The framework consists of several parts. It consists of the Fault Injection Controller
(FIC) which can be programmed to react on different states of the NoC. The FIC gets the
information about the current state of the NoC via triggers and then can decide due to its
programming if the saboteurs (S) should be triggered or not. Figure 4.5 shows the setup.

In order to program the FIC and also to send data to the NoC either fixed values have
to be added. The downside of this is that they have to be hard coded in the hardware
and cannot be altered without a lot of effort.

An easier solution would be to add a CPU to communicate with the FIC and the NoC.
As it is easier and faster to change some piece of software this seems to be the right choice.
For the CPU a PowerPC is chose, simply because it is already provided by Xilinx EPS
and can be easily extended and it provides a simple GPIO IP core which can be used
to communicate with the FIC and NoC. The PowerPC also provides an RS323 interface
which can be used to show a status on the console of a PC connected to the FPGA board.

Last but not least a mechanism to communicate with the NoC is used. Therefore the
Command Processor (CMD Proc) module is used. It can parse the commands received
from the PowerPC and translate them into data for the NoC.

4.2.1 Command Processor Commands

In order to control the NoC and to send and receive data from the NoC the PowerPC has
to send several commands. The command processor itself does not have any buffers and
thus only one command can be sent and processed. The software has to make sure that
the NoC is given enough time to process the commands until a new one is sent. This is
done via an acknowledge signal.

PPC, GPIO and NoC may work with different clock speeds, it may not be possible to
hold a command for exactly one clock cycle. It is also not possible to tell if the command
is correctly received by the NoC. Therefore a command has to be acknowledged.

The acknowledge signal contains exactly the same command code that was sent to the
NoC. GPIOs already contain input and output ports that are exactly the same size. They
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only need to be defined in the top level design. A simple line that just makes a transition
from logical low to logical high would also require a GPIO module with a width of just one
bit and more overhead then the proposed solution because of the new GPIO peripheral.
Sending the whole command code also adds a better flow control. The received command
can be checked and a possible error can be detected.

An acknowledge is sent back to the sender by simply sending the received command
back when its processing is done. This allows the application to wait until the command
is processed and then sends new commands. Figure 4.6 shows how a command is sent to
the NoC, processed and sent back to the PPC. It also shows the lifetime of the command
on the PPC and on the NoC.

A whole set of commands is defined for this thesis. Table 4.1 shows the commands
defined to interface with the NoC. With these commands it is possible to send data into
the NoC and extract the encrypted data from it. Table 4.1 shows in which direction a
command can be sent. It can be either sent by the PowerPC and received by the NoC
or it can be sent by the NoC and received by the PowerPC. It has to be said that table
4.1 shows the command names in the direction firmware to FPGA, NoC. The names in
the hardware model are different. A SEND in the firmware becomes a RECEIVE in the
hardware model and vice versa.

PPC NoC

SEND_DATA_PART0

RECV_DATA_PART0

Figure 4.6: A typical command sequence to send data into the NoC

4.2.2 The Firmware

As stated in the beginning of section 4.2 PowerPC is used to control the FIC and the NoC
and that implementing the commands for FIC and NoC in hardware would not be the
goal. Therefore the firmware of the PowerPC is used.

The firmware contains the control of the FIC. The firmware therefore is already pro-
vided by [GKS+11]. The fault injection library currently does not custom callbacks for
methods that can set different fault injection patterns. This is kind of annoying because
for the both attacks two different firmwares have to be written that only differ in one
point, the fault injection patterns. It is much better to have one firmware that is able to
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Command Value PPC
to
NoC

NoC
to
PPC

Description

DO_NOTHING 0x000 x x Does nothing. Clears the send com-
mand.

KEY_PART_0 0x001 x First column of the key.

KEY_PART_1 0x002 x Second column of the key.

KEY_PART_2 0x003 x Third column of the key.

KEY_PART_3 0x004 x Fourth column of the key.

DATA_PART_0 0x005 x First column of the data.

DATA_PART_1 0x006 x Second column of the data.

DATA_PART_2 0x007 x Third column of the data.

DATA_PART_3 0x008 x Fourth column of the data.

RECV_COMPLETE 0x009 x No more data to send. NoC can
start work.

DATA_READY 0x00B x Not used.

ERROR_KEY 0x00C x Key error.

ERROR_DATA 0x00D x Data Error.

CALC_STARTED 0x00E x Calculation was started by the NoC.

ENCRYPTED_DATA_PART_0 0x00F x Get first encrypted data column.

ENCRYPTED_DATA_PART_1 0x010 x Get second encrypted data column.

ENCRYPTED_DATA_PART_2 0x011 x Get third encrypted data column.

ENCRYPTED_DATA_PART_3 0x012 x Get fourth encrypted data column.

CALC_DONE 0x013 x Calculation is done. Data ready.

ENCRYPTED_DATA_COMPLETE 0x014 x Encrypted data is read from NoC.
No more data available.

RECV_RECV_COMPLETE 0x015 x All data received. Can ready to
start calculation.

RECV_UNKNOWN_CMD 0xFFF x Command unknown. NoC doesn’t
know how to process it.

Table 4.1: Command overview. Those are the commands used in the firmware. On the
FPGA the commands that are receive commands in this table are send commands and
vice versa.
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set both patterns. Therefore the function fic_write_pattern_cb is introduced. It takes
an callback as argument and executes the callback if one is passed to the function.

The other part of the firmware consists of two layers. One layer represents the NoC
and contains methods for the command processor to communicate with it. The second
layer contains the data and methods for AES. As in the hardware the AES layer is build
on top of the NoC layer.

4.3 Attack Scenarios

Several parts of the NoC can be attacked but not everywhere an attack will lead to a good
result. This is shown for the case of a pipelined version of AES that is run as application
on the NoC. For other attacks the command set needs to be adapted on the hardware and
software side.

This leaves only a limited number of attacks on AES. One is a round reduction and
the other one is a more complicated attack introduced by Takahashi et al. in [TFYpt]
on the round key transmission in the 9th round of the AES core. Those attacks can be
executed directly on the NoC. There is no need to place saboteurs inside the access nodes
or the AES cores directly.

For the round reduction the control registers of the NoC need to be attacked. With
bit flips on those lines it should be possible to redirect the whole data to the extraction
node where the partly encrypted data can then be extracted and evaluated.

In order to execute Takahashi et al.’s attack some changes have to be made to it.
Krieg et al. proposes a possible implementation of this attack in [KGS+12]. Although it
places the saboteur after the XOR gate, it would be possible to get the same results if the
saboteur were placed right before the XOR gate. Figure 4.7 shows this modification of
the attack.

FI ControllerS

Round 
Key 9

Router IPIP

OP

Key Scheduler

IP

IPOP
OP

S

S Saboteur

Key

Attacked Key Byte

Consequential Key Error

Input Port

Output Port

Figure 4.7: Krieg et al.’s attack modified to fit into an NoC environment

The results should then show if it is possible to retrieve the key and if the counter
measures are able to detect the change in the key because of the saboteur.
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4.4 Countermeasures

Counter measures are an essential part of this thesis. In this section the design of the
counter measures is described, together with their effects on the NoC.

4.4.1 XOR Table

This counter measure is also known as parity bit. To calculate a parity bit over a wide
range of data an XOR table, or tree seems like a good solution. It always XORs two lines
next to each other. The output is half the amount of lines which are processed in the same
way until one bit is left. For the 32 bits of data that are used in this thesis this process
has to be repeated four times until only one bit is left. A snippet of the implementation
can be seen in figure 4.8.

Figure 4.8: Simple parallel XOR-Table implementation.

Another way to calculate a parity bit would be to take two lines and xor them. They
then are used as input for the next xor together with the next line. This is repeated until
no more lines are left. The result is then the parity bit. For the 32 bits of data this has
to be done exactly 32 times. A snippet of the implementation can be seen in figure 4.9.

Input 1

Input 2

Input 3
Input 4

Input n

Parity Bit

Figure 4.9: Simple serial XOR-Table implementation.

Now only one parity bit for the packet control line is submitted. The same goes for
the data lines. The newly calculated parity bit is added to the data lines and sent. On
the receiver side it is extracted and compared with the calculated value of the other 32
bits of data.
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4.4.2 Hamming Weight

The hamming code is very similar to the XOR table implemented in section 4.4.1. A
hamming code still calculates XOR tables, but not just one. It calculates several tables
for different combinations of input bits and therefore is capable of detecting two errors
and correct one of them.

Hamming Code calculation is still a little bit more difficult than calculating an XOR
table. Not only are more parity bits calculated. They are also in specific spots. For the
data lines the parity bits are left in place, because they do not bother, but for the packet
control lines a few changes have to be made.

The Hamming Code expects the parity bits in a specific place and thus the decoder
has to be aware of this. Especially if no specialised decoder for the packet control lines
is used. Then the bits have to be aligned correctly prior to decoding them. Decoding is
basically the same as encoding with a comparison of the calculated parity bits.

4.4.3 CRC

Because of the size of the CRC it is not possible to attach the calculated values to the
same packet. Instead the CRC is calculated over all transmitted packets and then sent as
the 9th packet afterwards.

Now the problem lies in the detail again. The CRC packet has to be able to contain
the CRC data for the data as well as the packet control lines. Therefore the 32 data lines
that are available are split up.

The CRC calculated over the packet control lines is very small. The full CRC only
takes up 8 bit of space. Those 8 bits are the 8 least significant bits of the data packet.

The CRC calculated over the data lines is a little bit too big to transfer in one packet.
It has 32 bits in total. Now either another packet is sent or the 24 bits in the data packet
that are not used right now are filled up with 24 bits of the CRC. It does not cause any
security vulnerabilities to only send 24 bits instead of 32 bits as the CRC is only used to
check if the previously sent data has been corrupted or not.

4.4.4 Reed-Solomon Code

By having a closer look at RS some doubts for this algorithm seemed to be the available
registers and lookup tables on the FPGA. To spend less time an implementation1 was
downloaded from www.opencores.org. This implementation is then used to evaluate if
it would be possible to fit enough RS encoders and decoders on the NoC. Unfortunately
it turned out, that already one set of encoders and decoders need most of the FPGA
resources and therefore no further investigation on this counter measure will be done.

4.4.5 Secure Hash Algorithm (SHA)

As described in section 4.4.4 the same doubts are given for the SHAs. Again to save
time the implementation2 was downloaded from www.opencores.org. Again it showed

1http://opencores.org/project,rs_dec_enc
2http://opencores.org/project,sha3

www.opencores.org
www.opencores.org
http://opencores.org/project,rs_dec_enc
http://opencores.org/project,sha3
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that the implementation uses most of the resources of the FPGA and therefore no further
investigation on this counter measure will be done.

4.5 Use Case: Implementing an AES Module with NoC

The AES module used in this thesis was developed by Satyanarayana Hemanth and can
be obtained from [Hem10]. This implementation works as a basis. Upon further research
it was seen that this version is not suitable to work with an NoC because of its design.
The whole algorithm is implemented in one file and is not split up into several smaller
packages. This makes it impossible to map parts of the algorithm on NoC nodes.

Therefore the AES module needs to be redesigned. All the functions that AES provide
need to be packed into small distinct modules. The modules are:

• KeyExpansion

• AddRoundKey

• MixColumns

• ShiftRows

• SubBytes

By splitting the implementation into this modules it is possible to create the initial
round, body rounds and final round without any problems.

4.5.1 AES Initial Round

The AES initial round module consists of a send, a receive, an add round key, shift rows,
sub bytes and a key schedule module. The module itself has no own functionality except
that it connects these modules. Figure 4.10 shows the data flow through this module.

RecvDataModule SendDataModuleAddRoundKey

ExpandKey

SubBytes ShiftRows MixColumns AddRoundKey SendDataModule

Figure 4.10: Flow of data through the AES initial round module

The initial round is different from the other rounds. It has two AddRoundKey modules
inside. The first one creates a new key right after the body round module receives data
and generates a key which is used to cypher the data. The second one then creates a new
key with the expanded key.
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4.5.2 AES Body Round

The body round module consists of the same modules as the initial round does. The only
difference is that it only has one AdRoundKey module inside which is fed with data at
the end of a body round. Figure 4.11 shows the data flow through this module.

RecvDataModule SendDataModule

ExpandKey

SubBytes ShiftRows MixColumns AddRoundKey SendDataModule

Figure 4.11: Flow of data through the AES body round module

4.5.3 AES Final Round

The final round module contains the same modules as the body round, except for the mix
columns module. The last round of AES does not make use of this module and therefore
it is missing here. Figure 4.12 shows the data flow through this module.

RecvDataModule SendDataModule

ExpandKey

SubBytes ShiftRows AddRoundKey

Figure 4.12: Flow of data through the AES final round module

4.5.4 Connecting the NoC Access Points to the Application

Until now it has not been possible to work with the NoC. Although it is possible to send
and receive data, no data is processed. To do so the nodes must contain some AES code.
As they are very specialized, the algorithm has to be split up.
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A first step is already done in section 4.5. Now that all the functions are available it
is easy to set up specialized NoC nodes that can do parts of the calculation. To calculate
AES, three different types of nodes are needed:

• Initial Round: In this round all the initial calculations for AES are done.

• Body Round: This module does all the calculations that can be referred to as
body. This core is used nine times.

• Final Round: AES handles the last round different. It does not contain the Mix-
Column module.

4.5.5 Evaluation Tools to compute Keys from induced Faults

Until now the design has only features to attack the NoC. It has not been possible to
evaluate them yet. Since the evaluation can be very calculation intensive, a set of tools is
developed to help with the process of retrieving the secret key.

The main purpose of this tool is to support the process of retrieving the secret key. It
should be possible to retrieve the secret key for the round reduction attack and for the
modified Takahashi/Krieg attack. The calculation of the secret key for Takahashi can be
very time consuming (Takahashi et al. calculated the time for the worst case to retrieve
the key to be about one year [TFYpt]). Although this thesis doesn’t show the whole
computation of the secret key for Takahashi’s method it is still possible to extend the
calculation to retrieve the whole key.

Another goal is to only have one tool that can calculate the round reduced key and
the Takahashi key retrieval algorithm. Multiple tools would be good enough for this but
having them in just one tool has the benefit that the user does not have to search for the
other tools and can just open them from the GUI.

4.5.6 Layout of the GUI

The layout of the GUI is kept very simple. It is a multiple document interface (MDI),
which means that a workspace keeps track of the open dialogs. Dialogs can only be moved
in that workspace and if the application is minimized all dialogs are minimized to, or if
the workspace is closed all opened dialogs are closed to.

The Takahashi dialog is very simple and can be seen in 4.13. The tabwidget at the
top contains the plain, cypher and faulty cypher text. Because the attack needs at least
two different sets of plain, cypher and faulty cypher text it is possible to add new tabs
by clicking on the Add new P, C, C’ button. This will create a new tab with the same
fields where data can be entered. By clicking on the Delete current P, C, C’ button
the currently active tab can be deleted.

The input has to have a C/C++ hex style syntax and is separated by a colon. This
allows an easy parsing of the values. It is also possible to get this values directly from the
firmware that runs on the PowerPC. By clicking on the Calculate button the calculation
of the key is started.

At the bottom of the dialog another tabwidget can be found. It is filled with the
calculated data. The Key-tab contains a 4x4 spreadsheet. All the calculated keys are
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AES DFA - Takahashi

0 ...

Enter Text

Enter Text

Enter Text

Calculated ValuesEpsilonKey

P, C and C‘ #...P, C and C‘ #2P, C and C‘ #1

3

2

1

4

Plain Text:

Cyper Text:

Faulty Cyper Text:

Add new P, C, C' Delete current P, C, C' Calculate

Figure 4.13: Dialog to retrieve key from AES based on Takahashi’s attack

entered in the corresponding row and column. Each value also contains their occurrence
in braces right after the calculated value.

The Epsilon and Calculated Values tab are very similar. They contain a spreadsheet
which holds the name and the values of the calculated data. With these intermediate
values it is easier to find errors in the calculation and the results can be verified easily.
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The round reduction dialog contains all the elements to successfully calculate the key
from a round reduced AES. The dialog can be seen in figure 4.14. The input fields for
plain and cypher texts can be found at the top of the dialog. Because two different plain
texts and with that two different cypher texts are used, input boxes are provided for them.

AES DFA - Round Reduction

0 ...

Enter Text

Enter Text

Enter Text

Enter Text

2

1

0

3

Plain Text 1:

Cypher Text 1:

Plain Text 2:

Cypher Text 2:

Suggest Plain Text 2 Calculate

Key:

Figure 4.14: Dialog to retrieve key from AES based on a round reduction

Although it seems easy to have two different plain texts, the second plain text has to
fullfill certain criteria. The two inputs need a certain distance from each other. A good
suggestion for the second plain text can be made by pressing the Suggest Plain Text 2

button. It then calculates values for the second plain text.
By pressing the Calculate button, the values for the new key are calculated. The

calculation itself is just a rerun of the AES. Refer to section 2.5.1 for more details.
The results are shown in the spreadsheet at the bottom of the dialog. It contains the

rows and columns with the calculated values.
In case of an error, or if it was not possible to calculate a key, a message box will show

up, informing the user that something went wrong.
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Implementation

This section deals with the implementation of the diploma thesis. It shows the details of
the implementation and elaborates the solutions that lead to the final results.

The first section of this chapter describes how the infrastructure is implemented. It
explains in detail how the access point to the NoC is implemented as well as send and
receive modules. This is followed by the implementation of the security measures that
each access point has.

5.1 Implementation of the Extended NoC Infrastructure
(Including the Use Case Implementation)

One very basic implementation is used for the attacks and the security measures (see table
5.1). It allows a comparison between the basic setup and the different security measures.
The only thing that changes in the configuration is the size of the packet control lines.
They have to be adjusted to fit the needs of the security measure. For example, it will
not make any sense to transmit the additional bits that a hamming weight generates in
an additional packet, because they have to be evaluated in each round and thus would
introduce bigger changes to the code that would make a comparison much harder.

Table 5.1 gives an overview of the most important parameters used in the configuration.
The topology of the NoC is a mesh. This layout saves some space as connections. Nodes
that are at the end of the graph are not directly connected to the node on the other side
(e.g. a node at the bottom left corner has no direct connection to the node at the bottom
right corner).

The NoC contains 16 access points. They are aligned in four rows and four columns.
A bus type of network was tried out but failed due to some implementation errors in the
NoCem implementation. The first version also used virtual channels, which would allow
multiple packets to be transmitted on one connection, however another bug in the NoCem
implementation stopped any further investigation in using virtual channels.

The data bus is 32 bits wide. This makes it possible to transmit one row of the AES
key or of the data to encrypt at once. As the AES implementation uses an 128 bit key,
only four transmissions are needed to transmit the whole key. Because an 128 bit key is
used, the maximum amount of data is also 128 bit. One row of data can be transmitted
during one transaction.

52
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Parameter Value

Topology Mesh

Type Simple Packet Type

Topology No Virtual Channels

Access Points 16

Columns 4

Rows 4

Data width 32 bit

Address width 4 bit

Maximum Packet Length 8 Packets

Packet Control Width 9 bit

Table 5.1: Configuration parameters of the NoC

Four rows of data and four rows of key lead to a maximum packet length of eight
continuous packets. NoCem is able to have maximum packet length of 8 continuous
packets. Although in the later development of this thesis the maximum packet length will
be exceeded.

5.1.1 Access Points

Access points are used to inject or extract data from the NoC. They have to be written
for each task as they can send data in various ways.

The basic layout of an access point used in this thesis can be seen in figure 5.1. It
shows that the access points contain a send and receive unit. These two units are the
same for every access point used in this thesis. Still there are some special access points
that lack either a send or a receive unit. This is because those units are not needed for
those access points to work (e.g. the ingress access point that only needs to send data).

Access Point

Send Receive

Application

Figure 5.1: General construction of an access point
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Send Module

The send module takes each row with either key or data values and tries to send it. Figure
5.2 shows the general input and output values for this module. Table 5.2 gives an overview
of each pin and what it is used for. The send module implements the state machine in
figure 4.4.

rst
clk
en

key_reg0

key_reg1

key_reg2

key_reg3

data_reg0
data_reg1

data_reg2

data_reg3

arb_req

arb_grant

node_noc_data

node_noc_data_valid

noc_node_data_recvd

node_noc_pkt_cntrl

node_noc_pkt_cntrl_valid

noc_node_pkt_cntrl_recvd

32

32

32

32

32

32

32

32

32

9

Figure 5.2: The send module of an access point

Pin Width Direction Description

clk 1 in Clock

rst 1 in Reset

key reg0 32 in Row 0 of the key

key reg1 32 in Row 1 of the key

key reg2 32 in Row 2 of the key

key reg3 32 in Row 3 of the key

data reg0 32 in Row 0 of the data

data reg1 32 in Row 1 of the data

data reg2 32 in Row 2 of the data

data reg3 32 in Row 3 of the data

arb grant 1 in Set if access on the line is granted

noc node data recvd 1 in Set if the data was successfully re-
ceived by the next node

noc node pkt recvd 1 in Set if the control packet was success-
fully received by the next node

arb req 1 out Set if the access point wants to send
data

node noc data 32 out Contains the data for the current
transmission round



CHAPTER 5. IMPLEMENTATION 55

noc node pkt cntrl 9 out Contains the control data for the
packet

node noc pkt cntrl valid 1 out Set when the control data is valid.
Next node can receive it.

node noc data valid 1 out Set when the data is valid. Next
node can receive it.

Table 5.2: Send module pin description

It keeps track of the currently sent data with an internal counter. According to the
value in the counter the data that relates to the counters value is sent out. Data value
rows 0 to 3 are sent when the value of the counter is smaller than 3 and key row 0 to 3
are sent afterwards.

Receive Module

The receive module is built very similarily to the send module in the previous section. It
only gets some additional lines and most of the lines that are inputs to the send module
are now outputs and outputs of the send modules are now used as input for the receive
module. Table 5.3 shows the pins and their description whereas figure 5.3 shows the
general input and output variables.

Pin Width Direction Description

clk 1 in Clock

reset 1 in Reset

noc node data valid 1 in Set if the data is valid

noc node pkt cntrl valid 1 in Set if the control packet is valid

isSOP 1 in Set to control the internal receive
round counter

isEOP 1 in Set to control the internal receive
round counter

noc node data 32 in Contains the data about to be re-
ceived

key reg0 32 out Row 0 of the key

key reg1 32 out Row 1 of the key

key reg2 32 out Row 2 of the key

key reg3 32 out Row 3 of the key

data reg0 32 out Data 0 of the key

data reg1 32 out Data 0 of the key

data reg2 32 out Data 0 of the key

data reg3 32 out Data 0 of the key

node noc data recvd 1 out Set when the data was received.
Tells the sending node that the data
is received successfully.
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node noc pkt cntrl recvd 1 out Set when the control packet was re-
ceived. Tells the sending node that
the data is received successfully.

recvd data 1 out

Table 5.3: Receive module pin description

An incoming packet is detected by the lines noc node data valid and
noc node pkt cntrl valid. If both are logic high the values in noc node data and
noc node pkt cntrl are valid and the packet is received. Besides the values isSOP and
isEOP indicate whether it is the beginning of a transmission (data 0) or the end of a
transmission (key 3). If the data and the packet control are valid, the internal counter is
increased. The isSOP and isEOP are used to set the counter to the start value or to the
end value. This allows an error correction when for some reasons glitches appear and the
counter is increased by accident.

Some lines like the recv error is not available in the basic implementation (without
counter measures). It is simply not needed and not connected to anything. The mod-
ule also has two additional lines in the implementation which allow an activation and
deactivation of countermeasures on data and packet control lines.

5.1.2 Injecting Data

Data is injected when command DATA READY is received (see table 4.1) via the GPIO
lines from the PowerPC. The whole data that is currently saved in the input buffers is
then send to the NoC.

This module only contains a send module to send that data to the NoC that has been
received from the PowerPC via the GPIO lines.

5.1.3 Extracting Data

Very similar to the inject module is the extract module. It receives the data from the final
AES round and sends it back to the PowerPC by sending the CALC DONE command
following the data. The PowerPC then picks up the data and the application can display
it.

This module contains only a receive module to receive the data from the NoC. The
data is then sent back via GPIO lines to the PowerPC.

5.2 Implementing the Security Measures for the Access Points

This section describes the implementation of the security measures used in this thesis. It
shows how the implementation was done and which problems have occurred.

There is one common point between all the security measures. As soon as an error is
detected the error bit on the packet control line is set. This allows the extraction module



CHAPTER 5. IMPLEMENTATION 57

reset
clk

key_reg0

key_reg1

key_reg2

key_reg3

data_reg0
data_reg1

data_reg2

data_reg3

node_noc_data_valid

noc_node_data_recvd

node_noc_pkt_cntrl_valid

noc_node_pkt_cntrl_recvd

32

node_noc_pkt_cntrl
9

node_noc_data
32

isSOP
isEOP

32

32

32

32

32

32

32

recvd_data
recvd_error

Figure 5.3: The receive module of an access point

to recognize the error and set the data to zero. This flag informs the last node that there
was an error and again the extraction node will set the data to zero.

Setting the data to zero has the benefit that the attacker cannot gain any information
from his attack. By showing him only zeros the only information he has gathered is that
his attack had at least some impact on either data or packet control lines, but he still has
no data to either do a DFA or calculate the round key using Takahashi et al.’s method.

5.2.1 Detecting the Round Reduction

A round reduction can be detected very easily, especially for AES. Each node knows which
round it is calculating. The only the NoC now needs to send the current round number
on the packet control lines, so that the nodes know which node was previously executed.
This is an easy and straight forward implementation. Figure 5.4 shows the new control
packet which is able to send the round that was currently processed.
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Figure 5.4: New packet containing information about the round in the
”
Round“ field of

the packet.
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5.2.2 XOR-Table

The implementation chosen for this counter measure is the parallel XOR-Table implemen-
tation as described in section 4.4.1. It is the faster implementation compared to the serial
implementation an.

The implementation has an input of 32 bits. This means that the data lines can be
processed without any problems, while the packet control lines cause some problems. There
are not as many packet control lines as data lines do exist. To overcome this problem, and
to use only one implementation of the XOR-Table, the missing amount of lines are filled
with zero. Then it is no problem to use the same implementation for data and packet
control lines.

Now that the parity bit is calculated it is transmitted via the packet control lines. This
is the only bit that is not part of the parity bit calculation of the packet control lines.
Figure 5.5 shows the new packet.
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Figure 5.5: New packet containing information about the parity in the
”
PAR“ field of the

packet.

The implementation just uses generate statements to generate the XOR tree nearly
automatically. Listing 5.1 shows the generate statements used.

tmp <= data in ;

g1 : for i in 0 to 15 generate
tmp1( i ) <= tmp(2∗ i ) xor tmp(2∗ i +1);

end generate ;

g2 : for i in 0 to 7 generate
tmp2( i ) <= tmp1(2∗ i ) xor tmp1(2∗ i +1);

end generate ;

g3 : for i in 0 to 3 generate
tmp3( i ) <= tmp2(2∗ i ) xor tmp2(2∗ i +1);

end generate ;

g4 : for i in 0 to 1 generate
tmp4( i ) <= tmp3(2∗ i ) xor tmp3(2∗ i +1);

end generate ;

dataout (DATA OUT SIZE−1 downto 0) <= tmp4(DATA OUT SIZE−1 downto 0 ) ;

Listing 5.1: Calculation of the parity bits for the XOR-Table counter measure

The data packet also has to be extended in order to transmit the parity bit. Therefore
it transmits now 33 bits, where the MSB is the parity bit.
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When the packet is received those fields are extracted and the receive module has to
calculate the parity bit of the received packet. If the parity bits are equal then there is a
high possibility that the received packet is correct.

5.2.3 Hamming Code

The hamming code is implemented very similar to the XOR Table, except that 6 different
parity bits are calculated. The generation of the parity bits can be seen in listing 5.2.

dout ( 0) <= din ( 0) xor din ( 1) xor din ( 3) xor din ( 4) xor
din ( 6) xor din ( 7) xor din ( 8) xor din (10) xor
din (11) xor din (13) xor din (15) xor din (17) xor
din (19) xor din (21) xor din (23) xor din (25) xor
din (26) xor din (28) xor din ( 3 0 ) ;

dout ( 1) <= din ( 0) xor din ( 2) xor din ( 3) xor din ( 5) xor
din ( 6) xor din ( 9) xor din (10) xor din (12) xor
din (13) xor din (16) xor din (17) xor din (20) xor
din (21) xor din (24) xor din (25) xor din (27) xor
din (28) xor din (29) xor din ( 3 0 ) ;

dout ( 3) <= din ( 1) xor din ( 2) xor din ( 3) xor din ( 7) xor
din ( 8) xor din ( 9) xor din (10) xor din (14) xor
din (15) xor din (16) xor din (17) xor din (22) xor
din (23) xor din (24) xor din (25) xor din (29) xor
din (30) xor din ( 3 1 ) ;

dout ( 7) <= din ( 4) xor din ( 5) xor din ( 6) xor din ( 7) xor
din ( 8) xor din ( 9) xor din (10) xor din (18) xor
din (19) xor din (20) xor din (21) xor din (22) xor
din (23) xor din (24) xor din ( 2 5 ) ;

dout (15) <= din (16) xor din (17) xor din (18) xor din (19) xor
din (20) xor din (21) xor din (22) xor din (23) xor
din (24) xor din ( 2 5 ) ;

dout (31) <= din (26) xor din (27) xor din (28) xor din (29) xor
din (30) xor din ( 3 1 ) ;

Listing 5.2: Calculation of the parity bits for the hamming code counter measure

Figure 5.6 shows the new packet control lines. The hamming weight bits are added as
MSBs. Leaving them in place would have resulted in a lot of changes in the NoC itself.
The NoC itself expects all the bits including the OS bit in a very specific spot. Changing
this order would have been a lot more work, than rearranging the bits.

Again only one encoder and decoder is implemented. They have do deal with the 32
bits of the data lines, which creates the same problem for the packet control lines. The
problem was solved very similarly as in the last section.

5.2.4 Cyclic Redundancy Check

In order to have an already working implementation of a CRC a generator was used1.
This already provides source code for a provided polynomial so that the development of

1OutputLogic.com
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Figure 5.6: New packet containing information about the parity in the
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Hamming Weight“

field of the packet.

the whole IP core can be skipped.
The polynome for the 8 bit CRC used is CRC = 1+x4 +x5 +x8 while the 32 bit CRC

uses CRC = 1 +x1 +x2 +x4 +x5 +x7 +x8 +x10 +x11 +x12 +x16 +x22 +x23 +x26 +x32.
In order to store the internal state 8 bit registers are used. The first initialisation of the
integers is with all logic highs.

The next CRC is calculated by calculating xors for each bit of the register input state
variable (which is only saved during a clock high and if the CRC module is enabled). The
calculation of those bits can be seen in listing 5.3.

l f s r c (0 ) <= l f s r q (0 ) xor l f s r q (3 ) xor l f s r q (4 ) xor l f s r q (6 ) xor
data in (0 ) xor data in (3 ) xor data in (4 ) xor data in ( 6 ) ;

l f s r c (1 ) <= l f s r q (1 ) xor l f s r q (4 ) xor l f s r q (5 ) xor l f s r q (7 ) xor
data in (1 ) xor data in (4 ) xor data in (5 ) xor data in ( 7 ) ;

l f s r c (2 ) <= l f s r q (2 ) xor l f s r q (5 ) xor l f s r q (6 ) xor data in (2 ) xor
data in (5 ) xor data in ( 6 ) ;

l f s r c (3 ) <= l f s r q (3 ) xor l f s r q (6 ) xor l f s r q (7 ) xor data in (3 ) xor
data in (6 ) xor data in ( 7 ) ;

l f s r c (4 ) <= l f s r q (0 ) xor l f s r q (3 ) xor l f s r q (6 ) xor l f s r q (7 ) xor
data in (0 ) xor data in (3 ) xor data in (6 ) xor data in ( 7 ) ;

l f s r c (5 ) <= l f s r q (0 ) xor l f s r q (1 ) xor l f s r q (3 ) xor l f s r q (6 ) xor
l f s r q (7 ) xor data in (0 ) xor data in (1 ) xor data in (3 )
xor data in (6 ) xor data in ( 7 ) ;

l f s r c (6 ) <= l f s r q (1 ) xor l f s r q (2 ) xor l f s r q (4 ) xor l f s r q (7 ) xor
data in (1 ) xor data in (2 ) xor data in (4 ) xor data in ( 7 ) ;

l f s r c (7 ) <= l f s r q (2 ) xor l f s r q (3 ) xor l f s r q (5 ) xor data in (2 ) xor
data in (3 ) xor data in ( 5 ) ;

Listing 5.3: Calculation of the 8 bit CRC counter measure. lfsr q is the output while
lfsr c is the input of the register.

5.3 Implementation of the Fault Injection System

The whole implementation of the NoC and the fault injection system is done on a Xilinx
Virtex 5 Evaluation Board (ml506) which is provided by the University. The board already
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comes with a PowerPC core which only needs to be configured for the needs of this thesis.
The following already provided peripherals are used besides the PowerPC CPU:

• plb v46

• ppc440

• xps bram if cntlr bram

• xps bram if cntlr

• DDR2 SDRAM

• jtagppc cntrl inst

• proc sys reset

• DIP Switches 8Bit

• RS232 Uart 1

• RS232 Uart 2

• clock generator

• several GPIO peripherals to connect the NoC

The only custom made peripheral is the aesnoc peripheral. It contains the NoC, the
Access Nodes and the Fault Injection System. The aesnoc peripheral can communicate
via the GPIO ports with the PowerPC and send and receive data.

To communicate with the NoC several GPIO modules are used. Table 5.4 shows the
used GPIO peripherals, configuration and purpose. The GPIO peripheral allows data to
be received as well as sent back. Therefore the aesnoc peripheral makes heavy use of
this with its command processor. Control commands are received via the gpio AES cntrl
peripheral. If it is a pure control command, then it is sent back on the same GPIO
peripheral. On the other hand if it sends data to the NoC, the command is setd back via
the gpio AES in GPIO.

The gpio AES out peripheral acts a little bit differently and creates an exception.
Because it is needed to send the processed data back, the command is sent back via the
gpio AES cntrl peripheral.

5.3.1 The Fault Injection System

The fault injection system used in this thesis is first introduced by Grinschgl et al. in
[GKS+11]. It consists of a Fault Injection Controller (FIC), Triggers and Saboteur.

The FIC is connected directly to the gpio FIC peripheral and is controlled directly by
the firmware. To the FIC, triggers are connected. They are used to inform the FIC about
the next action it should do according to its programming and if it should activate the
saboteurs that are placed in the VHDL code.
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GPIO Name Address Start Address End Size Purpose

gpio AES cntrl 0xA0002000 0xA0002FFF 4kB Is used for control purposes. Com-
mands from and to the NoC are send
via this GPIO peripheral.

gpio AES in 0xA0000000 0xA0000FFF 4 kB Data that is used for the processing
of the AES algorithm.

gpio AES out 0xA0001000 0xA0001FFF 4 kB Processed data from the NoC.

gpio DEBUG 0xA0004000 0xA0004FFF 4 kB For debugging purposes only.

gpio AES reset 0xA0003000 0xA0003FFF 4 kB Reset of the NoC and its applica-
tion.

gpio FIC 0xA0008000 0xA0008FFF 4 kB Fault Injection control mechanism.

Table 5.4: GPIO peripherals used on the FPGA board to communicate with the NoC.

5.4 The Firmware

The firmware itself consists of a few modules and resembles the commands from section
4.2.1. The firmware is used to talk to the NoC and send and receive the data.

The base layer of the modules is the NoC module. It contains the basic functionality
to send commands to the NoC. It holds the basic structures for the GPIO modules that
are implemented in the PowerPC core.

On top of the NoC module sits the AES module. It holds all the values from the
NoC and as well as the key, plain and cypher text. The AES module also knows which
commands it has to send via the NoC module to the NoC.

5.5 Attack Scenarios

5.5.1 Round Reduction

For the round reduction attack only one trigger is needed. This trigger has to listen on
the arb req line between the InitialRound and the first body round. The arb req line is
always activated when data is sent. This trigger is then used to notify the FIC about
the beginning of the transaction and the FIC activates the saboteurs according to its
programming. Figure 5.7 shows the placement of the trigger and the saboteurs together
with the FIC. The saboteurs are only placed on the address lines of node noc pkt cntrl.
So it is possible to reroute the data to every node of the NoC.

Although there is a trigger used for the activation, no trigger for deactivating the
saboteurs is used. Because the transmission of the data between the initial round and the
first body round requires all transmitted data to be rerouted.

For this attack several saboteurs are placed. One on each address line, allowing a
better configuration of the attack. This allows to reroute the data to each access node in
the NoC.
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Figure 5.7: Placement of Trigger and Saboteur and their connection to the FIC for a
round reduction attack on AES

5.5.2 Attacking the Key Schedule

The attack on the key schedule is a little bit more sophisticated. It needs more triggers
and more saboteurs, compared to the attack implemented in section 5.5.1. This is because
the attack on the key schedule is only possible if the timing is correct. The attack that is
implemented needs to inject a fault in the third row key between the transmission from
the eight to the ninth round. The placement of the triggers and saboteurs is shown in
figure 5.8.
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Figure 5.8: Placement of Trigger and Saboteur and their connection to the FIC to imple-
ment Takahashi et al.’s attack

To fulfil this task two triggers are placed in the design. One is used to activate the fault
injection, while the other is used to deactivate the fault injection. The faults should only
be injected in one packet of the transmission and not into all of them as in the previous
attack.

This attack places the used saboteurs on the data lines. By placing them there they
are able to inject faults into the data lines and alter the third row of the ninth round key,
which will then also have some effects on the fourth row.

Finding the right packet is very easy with this system. The trigger already implements
a counter that only needs to be configured correctly. As it is known that the seventh
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transmitted packet is the one containing the right key it is easy to set the counter to
this value and let the trigger take care of it. If the trigger had not implemented an
internal counter, this counter would have been another implementation that is necessary
to implement.

Still having the counter implemented in the trigger has a few big advantages. First
there is no need to implement the counter and second the counter is already configurable
and can be set to any value.

5.6 Use Case Implementation: Implementing an AES Mod-
ule with NoC

The original version of the AES code used in this thesis is provided by [Hem10] and can
be downloaded from the OpenCores website at http://opencores.org/project,aes_

crypto_core. It already provides a complete AES128 encoder and decoder. Although the
implementation contains all the elements, the implementation only has one top level design
where all the modules have to be extracted from. Thus the implementation provided by
[Hem10] can only be used as a template.

In a first step the implementation is analysed to see which code represents the later
modules and where they can be found in the source code. This is mainly done by looking
at the code and verifying it by using a simulator to gain a better understanding of the
code. After the code is fully understood, it is easy to separate the code in the desired
modules.

With this knowledge the next step could be taken. The source is being split up into
several modules that represent their functions in the AES specification [AES01].

The key expander has already been a module of its own in the original code and is
basically taken as it is, with a minor change inside the code. The other modules got an
interface that fits their needs. In general they get all the data and keys needed and have
the data as output again.

Now that all the original code is separated into modules, it is easy to arrange the
modules in a way that each round of AES can be mapped onto an access node of the NoC.
The sequence of the modules can be seen in figure 4.10, 4.11 and 4.12 from the design
section of this thesis.

The modules are provided access to the NoC so that they can communicate with each
other. They are connected directly to the send and receive lines of the access point. The
data at the access points is there for at least one clock cycle. This is enough time to
calculate the output and save it in the send module.

http://opencores.org/project,aes_crypto_core
http://opencores.org/project,aes_crypto_core
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Results

6.1 Testenvironment

The test environment consists of the FPGA1 and a PC that is connected to the FPGA
development board via a serial interface, which allows communication between the FPGA
development board and the computer. Debug outputs and data can be sent from PC to
the FPGA and vice versa. The computer does not need any additional software except
for a terminal program that can access the serial interface of the PC. A detailed overview
of the environment can be found in figure 6.1.

Inside the FPGA the NoC and a PowerPC processor can be found. The PowerPC pro-
cessor is used to execute the test program and takes commands from the serial interface or
write data to the serial interface for debugging purposes. The PowerPC is also responsible
for sending commands to the NoC. These commands are processed by the CMD Proc
module. It checks whether it is a valid command and if the data is available and sends it
to the NoC. It is also possible to send data processed by the NoC back to the PowerPC.
The PowerPC is also responsible to configure the Fault Injection Controller (FIC). The
FIC is responsible to evaluate the data from the trigger and then activate or deactivate
the saboteur inside the NoC.

All the analysis of the data is done on the PC. This keeps the PowerPC code fast and
slim. Besides the FPGA can be used for other tasks and only the PC has to stay on during
the analysis process. It is also possible to speed up the code of the evaluation software by
using multiple CPUs for the calculation, which is another reason to shift the evaluation
from the FPGA to the PC.

6.2 Comparison in Size

This section deals with the comparison of the different sizes of the counter measurements
compared to the NoC and AES application without any counter measurements.

To get the results for this section, the program ISE from Xilinx [Xil] is used to synthe-
size the NoC and the AES. To speed up the generation of the results, the PowerPC is not
synthesized into the project. The differences between the counter measures can be seen

1Xilinx Virtex IV http://www.xilinx.com/support/index.html/content/xilinx/en/supportNav/

silicon_devices/fpga/virtex-5.htm, last visit January 2014
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http://www.xilinx.com/support/index.html/content/xilinx/en/supportNav/silicon_devices/fpga/virtex-5.htm
http://www.xilinx.com/support/index.html/content/xilinx/en/supportNav/silicon_devices/fpga/virtex-5.htm
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Figure 6.1: Testenvironment setup consisting of the NoC with triggers and saboteurs,
control logic and PowerPC (PPC) and the connection to a PC via a serial interface

without the PowerPC core, too. With the PowerPC included in the project the synthesis
project can take several hours as 99% of the FPGA are used.

Table 6.1 shows the results of the synthesis process for the NoC and AES implemen-
tation without the PowerPC core and is taken as a reference for all the other counter
measurements. This shows that there is plenty of room for counter measurements.

Available Used %

Slice Register 44800 18159 40.533

Slice LUTs 44800 28696 64.054

Used as Logic 44800 28696 64.054

Unused Flip Flop 33322 15163 45.504

Unused LUT 33322 4626 13.883

Fully used LUT-FF pairs 33322 13533 40.613

Block RAM/FIFO 148 36 24.324

Table 6.1: Synthesis result from ISE for the whole project without any counter measures
installed (PowerPC is not included)

6.2.1 XOR-Table

The first counter measure implemented is the XOR-Table or parity bit. It is a relative
small counter measure. Depending on the size of the data and packet lines it only uses
a few XOR gates. Table 6.2 shows the results of the synthesis reports. In total three
different systems were created: one with the counter measure on the data and packet
lines, one with the counter measures on the data lines and a last one with the counter
measures on the packet lines.

The interesting part can be seen in figure 6.2(a) and 6.2(c), because there are only a
few packet lines and 32 data lines one would expect that the counter measure on the data
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Packet Data All
size % size % size %

Slice Register 18903 42.194 18693 41.725 19372 43.241

Slice LUTs 30183 67.373 30288 67.607 31474 70.254

Used as Logic 30183 67.373 30288 67.607 31474 70.254

Unused Flip Flop 16112 46.015 16015 46.142 16710 46.311

Unused LUT 4832 13.800 4420 12.735 4608 12.771

Fully used LUT-FF pairs 14071 40.186 14273 41.123 14764 40.918

Block RAM/FIFO 36 24.324 63 24.324 36 24.324

Table 6.2: Synthesis result from ISE for the XOR table counter measure (PowerPC is not
included)

lines would need more registers. In this case the implementation of the counter measure
was not optimized for the packet lines. Thus the packet lines were extended to 32 bits,
which happens on every access node.

Figure 6.2(b) shows the utilization of the LUTs available in the FPGA. Nothing really
exciting could be seen here, except that the synthesizing tool has problems with the counter
measures applied to both data and packet lines.
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Figure 6.2: FPGA utilization with XOR-Table countermeasure.

6.2.2 Hamming Codes

The second counter measure implemented was the Hamming Code counter measure. Table
6.3 shows the synthesis results of this counter measure. Again no special implementation
for the packet lines was done, which can be seen in the synthesis results.

A reason for this can be found in the implementation, which was not really adjusted
for the needs of the fewer packet lines that are available. The Hamming Weight imple-
mentation takes 32 bits of data. As the packet lines are usually smaller than 32 bits, the
missing bits have to be inserted. This can explain the higher utilization when applying
this counter measure on the packet lines only. This effect can be seen very well in figure
6.3(a), 6.3(b), 6.3(c).
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Packet Data All
size % size % size %

Slice Register 20476 45.705 19938 44.504 22195 49.542

Slice LUTs 37723 84.203 36883 82.328 40246 89.835

Used as Logic 37723 84.203 36883 82.328 40246 89.835

Unused Flip Flop 22474 52.326 22139 52.615 23821 51.767

Unused LUT 5227 12.169 5194 12.344 5770 12.539

Fully used LUT-FF pairs 15249 35.504 14744 35.041 16425 35.694

Block RAM/FIFO - - - - - -

Table 6.3: Synthesis result from ISE for the Hamming Weight counter measure (PowerPC
is not included)
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Figure 6.3: FPGA utilization with Hamming Weight countermeasure.

6.2.3 Cyclic Redundancy Check

As a third counter measure CRC was implemented. Table 6.4 shows the synthesis results
of the CRC counter measure. Compared to the Hamming Weight and XOR-Table some
differences can be seen.

First, the synthesis of the counter measure just applied on the packet lines and on the
data lines shows a picture that would have been expected. The difference this time is that
two different implementations for the CRC are used. On the data lines a CRC-32 is used
while on the packet lines only a CRC-8 is used.

Second, the counter measure applied on data and packet lines is very big. It uses more
than 45% of the FPGAs resources. Together with the PowerPC this counter measure uses
about 99.5% of the resources available on the FPGA and its synthesizing takes about 3
hours compared to the others which can be synthesized in about 30 minutes.

Again figures 6.4(a), 6.4(b), 6.4(c) give a graphical overview. It can be clearly seen
that the counter measure only applied to data lines needs more space than only on the
packet lines.
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Packet Data All
size % size % size %

Slice Register 19235 42.935 19595 43.739 20564 45.902

Slice LUTs 36104 80.589 39297 87.717 40498 90.397

Used as Logic 36104 80.589 39297 87.717 40498 90.397

Unused Flip Flop 21857 53.190 24348 55.408 24854 54.723

Unused LUT 4988 12.139 4646 10.572 4920 10.832

Fully used LUT-FF pairs 14247 34.671 14949 34.019 15644 34.444

Block RAM/FIFO - - - - - -

Table 6.4: Synthesis result from ISE for the CRC counter measure (PowerPC is not
included)
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Figure 6.4: FPGA utilization with CRC countermeasure.

6.2.4 Reed-Solomon Codes

Reed-Solomon codes are rather big. They were considered as a possible counter measure-
ment, but unfortunately one set of encoder and decoder is already very big. Table 6.5
shows the utilization of one single set of encoder and decoder. It can be seen that one set
nearly uses about 40% of the FPGA resources. Therefore this counter measure was not
implemented due to the size of it.

Figure 6.5(a) shows that NoC and one single set of Reed-Solomon encoder and decoder
nearly utilize the same amount of registers. This means that only one Reed-Solomon
encoder and decoder can be fit into the whole design, requiring to give up all the benefits
of the NoC, by routing all data and packet control lines through this one set of encoder
and decoder. Figure 6.5(b) shows that there are plenty of LUTs available.

6.2.5 Secure Hash Algorithm (SHA)

Although this counter measure is very small (see table 6.6), it is not very suitable for the
needs in this thesis. On one hand it needs 512 bits of data to calculate the SHA-3, on the
other hand it takes very long to compute the SHA-3.

512 bits of data can hardly be provided. A total of 128 bits of data and 128 bits for
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Reed-Solomon
size %

Slice Register 16978 37.897

Slice LUTs 12073 26.949

Used as Logic 12073 26.949

Unused Flip Flop 4786 21.990

Unused LUT 9691 44.578

Fully used LUT-FF pairs 7287 33.482

Block RAM/FIFO 2 1.351

Table 6.5: Synthesis result from ISE for the ReedSolomon encoder and decoder only
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Figure 6.5: FPGA utilization compared NoC with RS

the key can be provided, but that would not be enough and the rest of 256 bits need to
be filled in, which takes up additional space.

The column All in table 6.6 shows the outcome of the results for twelve SHA-3 cores
used in the FPGA. This calculation was done by multiplying one SHA-3 core by twelve.
Many fields cannot be calculated with this method, but the most important ones can, in
order to get a rough estimation of the size to expect.

SHA-3 All
size % size %

Slice Register 2267 5.060 27204 60.720

Slice LUTs 2939 6.560 35268 78.720

Used as Logic 2938 6.558 35256 79.056

Unused Flip Flop 1282 36.123 - -

Unused LUT 610 17.188 - -

Fully used LUT-FF pairs 1657 46.689 - -

Block RAM/FIFO - - - -

Table 6.6: Sythesis result from ISE for the SHA-3 encoder and decoder only
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To prove this, figure 6.6(a) and 6.6(b) show that twelve of this SHA-3 cores take even
more space than the NoC. Considering that the NoC already takes up more than 40%
space without any counter measures and that the PowerPC takes up another 50% it can
easily be seen that there is not enough space to fit twelve SHA-3 cores in there. Therefore
it is not suitable in this NoC.
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Figure 6.6: FPGA utilization compared NoC with SHA-3

6.2.6 Round Reduction Counter Measure

As a last counter measure this round reduction counter measure was implemented. This
counter measure relies on the fact that each node knows which round of the AES it has
to compute. Therefore this counter measure is only valid for this special application and
probably not usable in a different scenario where no rounds or sequences exist.

Table 6.7 shows the synthesis results of this counter measure. This counter measure
can only be applied to the nodes itself and not to the data and packet lines, those rows
are removed from the table.

6.2.7 Direct Comparison of the Counter Measures

The direct comparisons in figure 6.7(a) and 6.7(b) show some interesting results. It was
expected that the counter measures were deployed in a way that their size is ascending.
Surprisingly it turns out that the Hamming Weight counter measure requires more space
than the CRC counter measure.

The Hamming Weight counter measure needs more space on the FPGA than the CRC,
which can be explained with the implementation of the two counter measures. While the
Hamming Weight counter measure adds additional data and packet lines to the NoC, CRC
only transmits an additional packet. All the additional data and packet lines have to be
routed throughout the entire design and thus create this overhead.
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All
size %

Slice Register 19432 43.375

Slice LUTs 32069 71.583

Used as Logic 32069 71.583

Unused Flip Flop 17688 47.651

Unused LUT 5051 13.607

Fully used LUT-FF pairs 14381 38.742

Block RAM/FIFO 36 24.324

Table 6.7: Synthesis result from ISE for the Round Reduction counter measure (PowerPC
is not included)

This effect can also be seen in figure 6.8(a) and 6.8(b). Although the utilization of
the LUTs shows that Hamming Weight and CRC counter measure nearly utilize the same
amount of LUTs.
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Figure 6.7: Differences in registers utilized on the FPGA (red = no counter measure, blue
= XOR Table, green = Hamming Weight, yellow = CRC, orange = Round Reduction)

Figure 6.7(a), 6.7(b), 6.8(a) and 6.8(b) also show that the counter measure against
the round reduction needs almost as much space as the XOR-Table counter measurement
applied to both data and packet control lines. Each node knows its exact round, it cannot
be applied on data and packet control lines. Although the figures show this, the utilized
registers and LUTs stay the same for this counter measurement.

For this special application it is a perfectly good counter measure. It is small and does
not take that much more space. Although it is not possible to protect against Takahashi
et al. [TFYpt] attack, still it may work well for a different application that is only based
on different rounds that need to be watched over.

The rest of the results show the expected result. The XOR-Table only adds a few
logic elements to each node, while the CRC counter measure needs more logic elements to
compute the results.

Reed-Solomon and SHA-3 are not included in this section, because they are both too
big to fit into the FPGA together with the NoC. For a detailed explanation see section
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Figure 6.8: Differences in LUTs utilized on the FPGA (red = no counter measure, blue =
XOR Table, green = Hamming Weight, yellow = CRC, orange = Round Reduction)

6.2.4 and section 6.2.5

6.3 Comparison in Speed

This speed comparison aims to show the differences in speed between the counter measures.
One the one hand it will show how fast the whole NoC can be synthesized with the counter
measure and on the other hand it will show how much effort, or how much overhead it
takes to transmit the whole data (in terms of packets).

The maximum clock frequency (see table 6.8 is automatically determined during the
synthesis process by Xilinx ISE. This should just give a rough estimation about how fast
the NoC together with the applied counter measure can be theoretically run and if there are
any counter measures that may slow the whole project down. However for the emulation
together with the PowerPC only clock frequency of 25 MHz is used.

The second part then shows how much a particular counter measure slows down the
transfer of packets over the network. In order to transmit a packet to compute AES, eight
packets are used. A good counter measure shall not increase this value a lot.

Clock Frequency MHz

All 143.625

Table 6.8: Clock frequency for NoC without counter measure.

6.3.1 XOR-Table

Again the first counter measure that is analysed is the XOR-Table or parity bit. Table
6.9 shows the maximum clock periods for this counter measure and figure 6.9 shows the
comparison between them.

If the values are compared to table 6.8, it can easily be seen that the NoC can operate
nearly at the same speed as without the counter measure. It also shows that it depends
on the gates that are used how fast the counter measure can act. Each gate has a setup
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and hold time. Especially this counter measure has a cascade of logic gates and thus has
to be a little bit slower.

Clock period MHz

All 123.220

Data 143.972

Packet 143.805

Table 6.9: Clock period for
NoC with XOR-Table counter
measure.
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Figure 6.9: Timing measurements for XOR-
Table counter measure generated with Xil-
inx ISE

Regarding the packets that have to be transmitted, this counter measure does not add
any additional packets. The additional bits can easily be coded into the existing data and
packet lines by extending them.

6.3.2 Hamming Weight

The Hamming Weight counter measure surprises with its speed. Table 6.10 shows that
the maximum speed for the counter measure applied only on the packet lines can increase
the clock period quite a bit. This may only be because the routing algorithms of Xilinx
ISE can place the needed elements better in this case compared to the others. In total the
counter measure is slower than the NoC without counter measures (table 6.8).

Figure 6.10 shows the comparison between the counter measure applied on either all
data and packet lines, or either data or packet lines and shows kind of an expected result.
The more registers and LUTs are used within this counter measurement, the slower it
gets.

Clock period MHz

All 128.811

Data 134.277

Packet 145.256

Table 6.10: Clock period for
NoC with Hamming Weight
counter measure.
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Figure 6.10: Timing measurements for
Hamming Weight counter measure gener-
ated with Xilinx ISE

Again this counter measure does not need any additional packets to be transmitted
through the network and the existing lines can be extended to transport the additional
information. Although this makes the whole NoC a little bit bigger, it is still fast.
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6.3.3 Cyclic Redundancy Check

This counter measure showed some unexpected clock period behaviours. It does not really
depend on where this counter measure is applied to (data or packet lines, or both). The
clock period stays nearly constant, which is good, compared to the other counter measures.
Table 6.11 shows the absolute clock periods, while figure 6.11 shows the timings compared
to each other.

Clock period MHz

All 145.256

Data 145.256

Packet 143.061

Table 6.11: Clock period for
NoC with CRC counter mea-
sure.
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Figure 6.11: Timing measurements for CRC
counter measure generated with Xilinx ISE

This counter measure unfortunately has to transmit an additional packet. Therefore
the CRC can be calculated over all the data sent, which can increase the security of the
NoC. CRC needs a clock, while the others don’t, another packet needs to be added at the
end and no intermediate values are transmitted.

The last packet contains the CRC information which is divided into two parts. 8 bits
are reserved for the packet line CRC and the other bits are used for the CRC calculated
on the data lines.

It doesn’t matter that one additional packet is transmitted. It can be seen from the
Hamming Weight counter measure that packing everything into the data and packet lines
may not be the best solution.

6.3.4 Reed-Solomon Codes

Due to the fact that the Reed-Solomon code core already needs so much space, no further
investigation into this topic was made. Only with a simulator the values could have been
extracted, but then still issues that the simulator has would have to be taken into account
and the question if this version of the NoC runs on real hardware, cannot be answered.

6.3.5 Secure Hash Algorithm (SHA)

Similar to section 6.3.4 no further investigation for this counter measure was done, al-
though in this case it would be possible to fit enough cores into the NoC to calculate the
SHA-3, it would take a very long time to transmit additional packets.

From [BDPA11] it can be estimated that SHA-3 needs at least 13 rounds to be com-
puted. During this time no further data can be processed by the NoC. In a bigger appli-
cation this could lead to a congestion very quickly.



CHAPTER 6. RESULTS 76

Another problem is the size of data. SHA-3 needs 512 bits of data, which simply
cannot be provided by the NoC with this application.

6.3.6 Round Reduction

Interesting results are shown by the round reduction counter measure. Table 6.12 shows
the clock period for this counter measure. It is much faster than the actual NoC without
any counter measures applied (compare with table 6.8). This may be because of the
placement of the different cores. The cores are nearly the same, except they now know
which round they belong to. Still some more registers have to be used to save this data,
but unfortunately this can be synthesized better to create a faster NoC.

Clock period MHz

All 150.928

Table 6.12: Clock period for NoC with round reduction check counter measure.

Nothing really interesting can be said about the packet transfer. The actual round is
transmitted in the packet lines, only a comparison between the transmitted round and the
round the core is aware of has to be made.

6.3.7 Direct Comparison of the Counter Measures

The comparison in figure 6.12 shows the very interesting results for the speed comparison.
It shows the comparison between all counter measurement timings compared to the NoC.

It can be seen very clearly that the optimized CRC counter measure is as fast as the
NoC without any counter measure and that the round reduction counter measure is a little
bit faster than both of them.

Also the difference in the maximum clock period of the counter measure between XOR-
Table, Hamming Weight and the NoC without counter measurements can be seen very
well.
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Figure 6.12: Overall overview of all timings in the counter measures, (XOR = XOR-Table,
HW = Hamming Weight, CRC = Cyclic Redundancy Check, RR = Round Reduction

According to the additional packets, only the CRC counter measure introduces an
additional packet that has to be transmitted, while all the other counter measurements
can transmit the additional bits in the same packet.
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6.4 Results of the Attacks

This section shows the results of the attacks and the counter measures. This makes it
easier to compare the results.

The results are determined in the following way: First a set of plain text and key values
is determined. This stays the same throughout the whole evaluation and does not change.
Then the correct cypher text is calculated. This is the value that should be returned if
the NoC worked properly.

After the determination of the cypher text, the attacks can be applied one by one to
the NoC. Their results are then saved and run through the decypher tool to see if the
secret key can be retrieved or not. It would be tedious to do this for all the values that
are received, especially since they are mostly the same.

It is also necessary to see that the counter measure does not have any effects on the
calculation. Therefore each sub section contains some one run with the data and no
counter measure applied.

4C 69 74 74
6C 65 20 6D
69 73 73 20
6D 75 66 66

Table 6.13: Plain text

00 01 02 03
04 05 06 07
08 09 0A 0B
0C 0D 0E 0F

Table 6.14: Key

ac 22 83 b4
a9 7b 7f 51
7f 2f a3 19
73 a4 17 e4

Table 6.15: Cypher text

Table 6.13 and 6.14 show the used plain text and key. Table 6.15 shows the encrypted
data. The plain text and the key are used in all evaluations. The result from the last table
is the expected result. This result can be retrieved if no attacks or faults have happened.

a0 00 ea 09
9d 7f 63 5b
fa 60 5d 5b
da 3d 21 9f

Table 6.16: Cypher text with acti-
vated round reduction attack

7b 1f e4 e3
7e 6d d5 cd
e4 16 a7 8e
11 99 56 08

Table 6.17: Cypher text with attack
on the 9th round key schedule

In order to have comparable data, the attacks were applied to the NoC and the appli-
cation started. The results of the round reduction attack are found in table 6.16 and the
results of the attack on the 9th round key schedule are found in table 6.17. Once again
both tables are used as reference for all the counter measures.

6.4.1 XOR-Table

The results of the the XOR-Table contain no real surprise. A simple parity bit can only
detect one bit error. All of the attacks change more than one bit and therefore it is very
hard to detect an error with this method.
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ac 22 83 b4
a9 7b 7f 51
7f 2f a3 19
73 a4 17 e4

Table 6.18: Cypher text (data lines,
no attack)

ac 22 83 b4
a9 7b 7f 51
7f 2f a3 19
73 a4 17 e4

Table 6.19: Cypher text (packet
lines, no attack)

Table 6.18 shows the counter measure applied on the data lines and table 6.19 shows
the counter measure applied on the packet lines, both with no attack. The result is in
table 6.15. This means that the counter measure does not have any effects on the NoC if
it is run normally.

a0 00 ea 09
9d 7f 63 5b
fa 60 5d 5b
da 3d 21 9f

Table 6.20: Cypher text (packet
lines, round reduction)

7b 1f e4 e3
7e 6d d5 cd
e4 16 a7 8e
11 99 56 08

Table 6.21: Cypher text (packet
lines, 9th round key schedule)

Table 6.20 and 6.21 show an expected behaviour. The cypher text contains errors
and is similar to the results in table 6.16 and 6.17. The attack itself changes more than
one bit, which cannot be detected by this counter measure. The counter measure thinks
that everything was fine and therefore this counter measure does not work with the round
reduction attack.

a0 00 ea 09
9d 7f 63 5b
fa 60 5d 5b
da 3d 21 9f

Table 6.22: Cypher text (data lines,
round reduction)

7b 1f e4 e3
7e 6d d5 cd
e4 16 a7 8e
11 99 56 08

Table 6.23: Cypher text (data lines,
9th round key schedule)

Very similar are the results for the counter measure applied to the data lines only.
Table 6.22 and 6.23 show that the same values are calculated as before and again the
counter measure cannot detect whether an error occurred or not.

a0 00 ea 09
9d 7f 63 5b
fa 60 5d 5b
da 3d 21 9f

Table 6.24: Cypher text (packet and
data lines, round reduction)

7b 1f e4 e3
7e 6d d5 cd
e4 16 a7 8e
11 99 56 08

Table 6.25: Cypher text (packet and
data lines, 9th round key schedule)

Although already proven that it is not possible to protect the NoC against an attack
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with this counter measure it is shown that it is not possible if counter measures are applied
on data and packet lines at the same time. The result can be seen in table 6.24 and 6.25.

6.4.2 Hamming Codes

The Hamming Weight works very similarly to the parity bit in the previous section. Only
this time several parity bits are calculated. Table 6.26 and 6.27 show the results of the
normal run without any attacks.

The results for the Hamming Weight show some interesting behaviour. It was not
possible to run it completely on the FPGA. It would always freeze. Each synthesis process
showed a different unwanted behaviour. This may be due to some timing constraints that
were not met and some signals need longer than expected and thus the NoC is not able
to process the data correctly.

On the other hand, the simulation does not show this behaviour. Therefore the results
are generated from the FPGA as well as they could be created. Only the cypher text with
counter measures on data lines and packet lines had to be gathered from the simulation.

ac 22 83 b4
a9 7b 7f 51
7f 2f a3 19
73 a4 17 e4

Table 6.26: Cypher text (data lines,
no attack)

ac 22 83 b4
a9 7b 7f 51
7f 2f a3 19
73 a4 17 e4

Table 6.27: Cypher text (packet
lines, no attack)

a0 00 ea 09
9d 7f 63 5b
fa 60 5d 5b
da 3d 21 9f

Table 6.28: Cypher text (packet
lines, round reduction)

7b 1f e4 e3
7e 6d d5 cd
e4 16 a7 8e
11 99 56 08

Table 6.29: Cypher text (packet
lines, 9th round key schedule)

Unfortunately this counter measure shows an interesting behaviour on the data lines.
The error cannot be detected and so the data can be extracted as in the comparison tables.
Table 6.28 and 6.29 show the data of this experiment.

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

Table 6.30: Cypher text (packet lines, round reduction, generated with ModelSim)

It can be seen by comparing table 6.30, which shows the results of the counter mea-
sure calculated with the simulator and table 6.28, where the results are calculated on the
FPGA. This may be due to timing issues on the FPGA that the simulator does not handle
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yet. Still this would require some more investigation. It shows that the results can be
calculated correctly.

a0 00 ea 09
9d 7f 63 5b
fa 60 5d 5b
da 3d 21 9f

Table 6.31: Cypher text (data lines,
round reduction)

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

Table 6.32: Cypher text (data lines,
9th round key schedule)

As it comes to the counter measure on the data lines, it is clear why it can’t help if
the attack is on the packet lines. Table 6.31 shows clearly that data can be retrieved and
that it contains the data from table 6.15.

On the other hand table 6.32 shows the results of the counter measure to the data
lines with an attack on the key schedule, which happens to transfer data on the data lines.
Thus the attack can be detected and the corrupted data can be sorted out. It is just for
security reasons that the NoC returns all zeros.

a0 00 ea 09
9d 7f 63 5b
fa 60 5d 5b
da 3d 21 9f

Table 6.33: Cypher text (packet and
data lines, round reduction)

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

Table 6.34: Cypher text (packet and
data lines, 9th round key schedule)

Last but not least the counter measure is applied to both data and packet lines. This
shows exactly the actually expected result. Table 6.33 only has the packet lines attacked
at an early stage and thus it has been seen in table 6.28 that it is not possible to protect
the data.

If the data is processed until the attack of the 9th round key, the counter measure
again behaves as expected. The results are shown in table 6.33.

6.4.3 Cyclic Redundancy Check

The CRC shows the expected behaviour with the counter measure on data and packet
lines. Table 6.35 and 6.36 show that the values are correct and prove that the counter
measure does not have any effects on the data to be processed.

ac 22 83 b4
a9 7b 7f 51
7f 2f a3 19
73 a4 17 e4

Table 6.35: Cypher text (data lines,
no attack)

ac 22 83 b4
a9 7b 7f 51
7f 2f a3 19
73 a4 17 e4

Table 6.36: Cypher text (packet
lines, no attack)
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00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

Table 6.37: Cypher text (packet
lines, round reduction)

7b 1f e4 e3
7e 6d d5 cd
e4 16 a7 8e
11 99 56 08

Table 6.38: Cypher text (packet
lines, 9th round key schedule)

The results for the counter measure applied on the packet lines together with the round
reduction attack show the expected behaviour. Table 6.37 shows the expected result of
the attack, the output is all zeros.

Table 6.38 shows the same results but this time the key schedule is attacked. This
attack does not have any effects on the packet lines and thus it is not possible to detect
the injected fault and the NoC computes the wrong cypher text.

a0 00 ea 09
9d 7f 63 5b
fa 60 5d 5b
da 3d 21 9f

Table 6.39: Cypher text (data lines,
round reduction)

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

Table 6.40: Cypher text (data lines,
9th round key schedule)

The results in table 6.39 are similar to the ones presented before. Due to the fact that
the synthesis didn’t work that well the results generated for the counter measure just on
the data lines are equal to the ones generated for just the counter measure on the packet
lines.

The cypher text in table 6.40 shows exactly the expected behaviour. The counter
measure worked for the data lines and so the injected fault can be detected.

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

Table 6.41: Cypher text (packet and
data lines, round reduction)

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

Table 6.42: Cypher text (packet and
data lines, 9th round key schedule)

The counter measure applied on the data and packet lines only concludes the previous
results. Table 6.42 and 6.41 show the results of the counter measure with both kinds of
attacks.

6.4.4 Round Reduction Counter Measure

This result is just for completeness. The result for keeping track of the round number is in
table 6.43. Again the counter measure does not have any effects on the proper calculation
of the result.
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ac 22 83 b4
a9 7b 7f 51
7f 2f a3 19
73 a4 17 e4

Table 6.43: Cypher text (packet lines, no attack)

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

Table 6.44: Cypher text (packet
lines, round reduction)

7b 1f e4 e3
7e 6d d5 cd
e4 16 a7 8e
11 99 56 08

Table 6.45: Cypher text (packet
lines, 9th round key schedule)

The results for this counter measure and the attack on the packet lines work as ex-
pected. The results in table 6.44 show exactly this result. It can be seen that the round
number already protects very well against this attack.

It is also very clear that this attack cannot help against an attack on the round key
schedule. This is documented in table 6.45. Therefore it is a very valid result and shows
that this counter measure works for this specific reason.

Again it has to be mentioned that this counter measure is just here for completeness.
It should only show that even easy looking counter measures can prevent the stealing of
data and that it depends heavily on the case how they shall be used or which level of
security is needed.

6.4.5 Reconstructing the Secret Key in One Round AES

The algorithm to reconstruct the secret key is proposed by Bouillaguet et al. in [BDD+10].
The reconstruction is easier with two known plain- and cyphertext pairs another pair is
generated. Table 6.46 shows the new plaintext and table 6.47 shows the round reduced
version.

9b b4 36 08
73 f1 0a 3f
c7 03 c4 2f
62 30 71 73

Table 6.46: 2nd plain text

bf 4d e2 d5
73 d2 22 1d
a3 4d ec 45
5f aa 81 03

Table 6.47: 2nd cypher text

In the first step the input difference is calculated. The result of this operation is found
in table 6.48.

The output difference in table 6.49 is the Sbox difference of the output. Therefore the
difference between the two cypher texts is calculated followed by SR−1 ◦MC−1. This
allows to handle each Sbox independently and the problems with the MixColumn can be
overcome. By shifting the rows to their original places only the Sbox needs to be examined
later on and no difficult calculations have to be made.
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Now the 28 possible input values to create the input difference need to be found. After
they are found search through the 28 values to find out which values can create the Sbox
difference, by subsituting the input values by their Sbox equivalent and XORing those
values. This should result in two suggestions for each byte of k0. The key consists of
sixteen bytes and two values for each byte are available which means that only 216 train
encryptions would be needed in the worst case to retrieve the secret key shown in table 6.14.

d7 dd 42 7c
1f 94 2a 52
ae 70 b7 0f
0f 45 17 15

Table 6.48: Input difference

3d 90 20 de
b0 6f 09 05
65 bd 3d c7
70 9b 97 e9

Table 6.49: Sbox difference

6.4.6 Reconstructing the 9th Round Key

In order to prove the counter measures to work correctly it can be tried to reconstruct
the 9th round key. In order to do so, the calculations provided in [TFYpt] have to be
executed. To be able to retrieve the key correctly more than one result is needed. This
second result has to use different faults than the first one. The first result was created
by setting all values of the third round key to 0xFF. Thus another result must not use
this values for the third round key. Then the unique keys as proposed in [TFYpt] can
be calculated without any problems. If no second result exists, the complexity of this
problem rises. A single calculated key can provide two results for the 9th round key but
only one of them is the correct one. Still it would be possible to construct the correct key
by guessing and brute force but it will be more time consuming.

With all the implemented counter measures the 9th round attack from Takahashi can
be partly avoided and only parts of the secret key can be extracted rather than the whole
one.

00 01 02 03
04 05 06 07
08 09 0A 0B
0C 0D 0E 0F

Table 6.50: Key used to
create results

54 99 32 d1
f0 85 57 68
0f 7a a8 97
a1 c5 d2 45

Table 6.51: Corrupted key
in the 9th round (Red
shows the injected fault,
while yellow is just a con-
tinuous effect of the error)

54 99 32 d1
f0 85 57 68
0f 7a a8 97
be c5 97 4e

Table 6.52: Calculated key
for the 9th round (Red
fields show the recalculated
9th round key)

The table 6.50 shows the original key that is used for the cypher algorithm. No
modifications have been made here so far. It is the standard key.

Table 6.51 shows the change of the values in the 9th round after the attack. Notice
that the column in red is the one attacked. The yellow one is just the error distribution
due to the key expansion algorithm of AES.
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Last but not least table 6.52 shows the calculated values for the 9th round key. It is not
that difficult any more to calculate the rest of the values, but unfortunately it should just
show that the error has an effect and that the key can be reconstructed. Cells coloured in
red are the values that could be reconstructed using [TFYpt].

As a matter of fact it is not that difficult to reconstruct the original key whenever
the last subkey has been correctly calculated. Dusart et al. describe how to do this in
[DLV03].



Chapter 7

Conclusion and Future Work

Security in NoCs is becoming more and more important as NoCs are being used for more
security relevant applications. Due to the fact that NoCs are usually designed without
counter measures it is easily possible to attack them right now.

This thesis has shown that it is possible to secure an NoC against fault induced attacks
by applying different types of countermeasures on the network adapter and therefore check
whether the data has been corrupted or not. Therefore, counter measures like a parity bit
up to the complexity of an secure hash algorithm have been examined.

A problem that arises when it comes to counter measures is the fact, that they add
overhead to each node of the NoC which then can make the whole system undesirably big
or slow. Depending on the counter measurement. Counter measures without any registers
would only add up in size, but most likely not in speed (due to the propagation delay time
of the logic elements), while a counter measure that has to use registers would also need
more time to calculate.

The different countermeasures have been evaluated for size and their speed. It could
be seen that countermeasures that may sound promising in the first place were not as
good as expected and that probably adding an additional transmission cycle for data may
be helpful quite a lot.

Unfortunately some counter measures were not able to fit into the NoC. After a first
evaluation round they used too much space already. Therefore they couldn’t be emulated
on the FPGA due to its limited size.

With all the implemented counter measures the 9th round attack from Takahashi can
be partly avoided and only parts of the secret key can be extracted rather than the whole
one.

The results of the 9th round attack are just for a prove of concept. The tool can only
crack a few values of the key but not all of them. It would be nice to implement the rest
of the attack to get the whole key out of it, but for a prove of concept just parts of the
key are good enough.

As future work the NoC extension should be improved to discard packages where a fault
has been detected. Also different use cases should be evaluated to improve the designed
and implemented counter measures.
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Appendix A

Proove of Connections in a Mesh NoC

In order to prove that the number of connections in a NoC are smaller or equal to the
number of connections. Therefore two different approaches do exist. The NoC examined
has a mesh layout and consists of n×m nodes. The first approach in equation A.4 defines
that each router only has half the connections. Routers usually share a connection. If they
are split up and each router has one half of the connection the following observations can be
made: First the corners of the NoC are examined. A corner only has two full connections
and four corners do exist within a mesh layout. Thus the number of connections in the
corners can be defined as

CornerNode = 4 · 2

2
(A.1)

Next the surrounding nodes are examined. It shows that a node that is not a corner
block, but at the border of the NoC has three connections and is mirrored on the other
side. In one direction only n − 2 nodes with three connections can exist. The two nodes
substracted are the corner nodes. Thus the following equation can be defined

BorderNode = 2 · 3

2
· (n− 2) (A.2)

The same observation is made for the m direction.
Finally the inner core is examined. Each node here has four connections and in n and

m direction the border, which is 2, needs to be substracted. This can be expressed in the
following equation

CoreNode =
4

2
· (n− 2) · (m− 2) (A.3)

Figure A.1 shows how the half connections are used. Now those three equations for
corners, borders and core nodes are put together, which leads to the equation in A.4.

(n− 2) · (m− 2) · 4

2
+ (n− 2) · 3

2
· 2 + (m− 2) · 3

2
· 2 + 4 · 2

2
(A.4)

Another approach would be to count the number of connections differently. Figure
A.2 shows this count strategy. A node is defined with only two connections. One in n and
the other one in m direction.
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R(0,0) R(1,0) R(2,0) R(3,0)

R(0,1) R(1,1) R(2,1) R(3,2)

Figure A.1: Count strategy for node connections (half connections). To show one half
connection the line between to nodes has two colors.

R(0,0) R(1,0) R(2,0) R(3,0)

R(0,1) R(1,1) R(2,1) R(3,2)

Figure A.2: Count strategy for node connections. Red and green show the example of the
counting. This leaves only a few connections out.

If started with a network that has 1 × 0 or 1 × 1 nodes it can be seen that there are
no nodes that have two connections. This allows the assumption that there are only

Connections = (n− 1) + (m− 1) (A.5)

in the network. Now a bigger network with 2× 2 nodes is examined. In n direction only
one node exists that has the two connections that should be counted. By rotating the
search pattern, the same applies to the m direction. Therefore the number of such nodes
can be extracted as

Nodes = (n− 1) · (m− 1) (A.6)

To get the number of connections the equation needs to multiplied by 4. Now the equation
is still not correct. If an 3× 2 network is examined, the number of calculated connections
would be too big. Again counting the nodes that apply to the counting rules should help.
It can be seen that there are n − 1 nodes that apply in n direction and only one node
(again m− 1) in m direction. If the formula (n− 1) · (m− 1) · 4 is applied the result is 8
connections. However, the number of connections in a 3× 2 network is 7.

In order to get the correct result the approach is changed a little bit. Again the same
counting method is applied, but now the nodes with two connections are counted again and
multiplied by the number of connections. Now in the n direction exactly n−1 connections
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and in m direction exactly m− 1 connections have not been counted. If everything is put
together the following formula can be created:

(n− 1) · (m− 1) · 2 + (n− 1) + (m− 1) (A.7)

In order two show that the two thesis are equal the two equations in A.4 and A.7 are
simplified and the result compared. See the calculation in A.8.

(n− 1) · (m− 1) · 2 + (n− 1) + (m− 1) =

= (n− 2) · (m− 2) · 4

2
+ (n− 2) · 3

2
· 2 + (m− 2) · 3

2
· 2 + 4 · 2

2
2 · n ·m− 2n− 2m + 4 + n + m− 2 = 2 · n ·m− 4 · n− 4 ·m + 8 + 3 · n + 3 ·m− 12 + 4

2 · n ·m− n−m = 2 · n ·m− n−m

(A.8)

It can be seen that the two equations are equal and that either of them can be used to
represent the number of connections in a mesh type network.

Proove that a NoC always has less Connections than a full
Mesh

In order to show that a NoC has less connections than a full mesh the upper boundary
of the growth is shown. As it is already known the NoC always has 2 · n · m − n − m
connections. Therefore the upper boundary of a NoC would be

f(NoC) ∈ O(n ·m) (A.9)

On the other side the full mesh grows with

f(Mesh) =
(n ·m)(n ·m− 1)

2
= frac(n ·m)2 − n ·m2→ f(Mesh) ∈ O((n ·m)2)

(A.10)
In a final conflusion it can be determined that the number of connections in the NoC

will always be smaller than the number of connections in the mesh.

f(NoC) < f(Mesh) (A.11)
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