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Abstract

Extraction, segmentation and analysis of pulmonary vessels from computed tomography

(CT) images of the human chest is an important topic for a wide range of applications

in medical image analysis. We present a pulmonary vessel extraction and segmentation

algorithm which is fast, fully automatic and robust against noise. It uses a segmentation

of the airway tree and a left and right lung labeled volume to restrict the response of

an offset medialness vessel enhancement filter. We test our algorithm on phantom data

as well as on the VESSEL12 challenge dataset. Our clinical focus is on the detection of

pulmonary hypertension (PH), which is a chronic disorder of the pulmonary circulation,

marked by an elevated mean pulmonary arterial pressure (mPAP). On a dataset containing

24 patients from a clinical pulmonary hypertension pilot study, we show that quantitative

indices derived from the segmented pulmonary vessels correlate with the mPAP and are

applicable to distinguish patients with and without PH.

Keywords. pulmonary vessels, segmentation, fractal dimension, tortuosity, pulmonary

hypertension, CT
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Kurzfassung

Die Erkennung, Segmentierung und Analyse von Blutgefäßen aus Computertomographie

(CT) Aufnahmen ist ein wichtiger Bereich der medizinischen Bildverarbeitung mit zahlre-

ichen klinischen Anwendungsgebieten. Wir präsentieren einen effizienten, voll automatis-

chen und robusten Algorithmus, der Blutgefäße in der Lunge (pulmonale Gefäße) erkennt

und segmentiert. Mithilfe eines Vessel-Enhancement Filters, der auf die linke und rechte

Lunge beschränkt wird, und unter Einbeziehung von Information aus einer Segmentierung

der Bronchien, erkennen und segmentieren wir die pulmonalen Blutgefäße. Wir testen den

Algorithmus auf einem Phantombild sowie auf den Datensätzen der VESSEL12 Challenge.

Als klinische Anwendung fokussieren wir uns auf die Erkennung von Pulmonaler Hyper-

tonie (PH), einer Erkrankung, die durch einen erhöhten Blutdruck und Gefäßwiderstand

im Lungenkreislauf gekennzeichnet ist. Aufgrund von Daten von 24 Patienten, die sich im

Rahmen einer klinischen Pilot Studie einer CT Untersuchung unterzogen haben, zeigen

wir, dass quantitative Messwerte aus den segmentierten pulmonalen Gefäßen mit dem

Lungendruck korrelieren und wir mit unserer Methode Patienten mit und ohne PH unter-

scheiden können.
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Overview and Contributions . . . . . . . . . . . . . . . . . . . . . 4

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Motivation

Since its introduction in the 1970s, computed tomography (CT) has become an important

tool in medical imaging. It is the gold standard in the diagnosis of a large number of

different disease entities [9, 58], and further technological progress has strengthened its

diagnostic impact leading to an essential role in clinical practice. However, with increasing

spatial resolution of CT images also the amount of data in CT images increases. Automatic

algorithms are needed to give comparable, quantitative data on patients, in contrast to

the subjective diagnosis of a radiologist which depends a lot on her or his experience.

In this thesis we present a fully automatic algorithm that is able to detect and seg-

ment vessels in the lung (pulmonary vessels). Extraction, segmentation and analysis of

the pulmonary vessel tree from CT images is already used for computer aided diagnosis

of vascular diseases [53], non-rigid image registration [38], or detection of pulmonary em-

bolism [60]. A depiction of the lung anatomy, the function and a slice from a CT scan is

shown in Figure 1.1.

Our clinical interest is on the detection of pulmonary hypertension (PH), which is a

chronic disorder of the pulmonary circulation, marked by an elevated mean pulmonary ar-

1



2 Chapter 1. Introduction

(a) (b)

Figure 1.1: (a) Pulmonary circulation: deoxygenated blood leaves through the right ven-
tricle, through the pulmonary artery to the capillaries where the gas exchange takes place.
Blood leaves the capillaries through the pulmonary vein to the heart, where it re-enters
at the left atrium ( c© James W. Clack, www.iupucbio2.iupui.edu/anatomy). (b) Coronal
view of the thorax from a CT-image.

terial pressure (mPAP). In healthy people the mPAP is only 12-16 millimeters of mercury,

in cases of severe pulmonary hypertension, pulmonary blood pressure can be 3-5 times

higher, thus the right heart chamber is overloaded and can fail. Unlike the systematic

circulation, the blood pressure in the pulmonary vessels is very difficult to measure. The

gold standard for determining the pulmonary pressure is invasive right heart catheteri-

sation (RHC) [18]. Unfortunately PH has usually progressed to late stage by the time

of diagnosis. Early PH is often asymptomatic and, by the time symptoms appear, dis-

ease progression is well advanced and not reversible [5]. The most common symptoms

of PH include shortness of breath, particularly upon physical exercise (exertional dysp-

nea), fatigue, dizziness and fainting, all of which are worsened by exertion. PH can affect

people of all ages, including children, though the average age at diagnosis is 50 years [1].

There are no definitive figures for the prevalence of PH but it is thought that there are

several million patients globally. By finding a non-invasive way of measuring the pul-

monary blood pressure, the number of patients awaiting treatment could be significantly

decreased. Therefore, early diagnosis of pulmonary hypertension is an important aim of

clinical research. This thesis was done in cooperation with the Ludwig Boltzmann Insti-

tute for Lung Vascular Research, Graz, Austria, where a clinical PH pilot study including

24 patients was conducted.
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The following goals were defined for this project:

• Designing an algorithm that can detect vessels inside the lungs without any user

intervention,

• finding a readout from the extracted vascular structure that correlates with the mean

arterial pulmonary blood pressure,

• creating a fast and efficient implementation of the algorithm, that can be used in

daily clinical practice. Further, the algorithm should be able to work on full reso-

lution CT scans (several hundreds of 512x512 pixel slices) to gain full benefit from

the available data.

1.2 Related Work

In this section we will give only a short survey of related work, more detailed reviews,

ordered by methodological aspects, can be found in the appropriate sections of the thesis.

1.2.1 3D Vessel Segmentation

Several 3D vessel segmentation algorithms have been presented up till now, excellent

reviews can be found in [36] and in [30]. In general, existing techniques can be classified into

three different classes: vessel detection and segmentation using appearance and geometric

models, using image features, and using extraction schemes.

An approach based on an appearance model was done by Boskamp et al. [6], where

theoretical knowledge about the vessel intensity distribution was directly applied for ves-

sel segmentation. Frangi et al. [15, 17] published works that rely on implicit geometric

assumptions on the vessel surface. Frangi et al. [14] also published a method based on im-

age features, namely second-order derivative information derived from the Hessian matrix.

This method relies on the eigenvalues and vectors of the Hessian matrix to discriminate

between plane-, blob- and tubular-like structures. As an alternative to Hessian based fil-

ters, Bauer and Bischof [3] used the gradient vector flow and the local Jacobian to find

tubular structures. Another approach to vessel segmentation are region growing tech-

niques. They fall in the category of greedy algorithms, employ low-level, simple inclusion

rules, and explore datasets only sparsely, a critical advantage for large 3D datasets. Re-

gion growing based techniques can be distinguished between classical region growing [6],

and wave propagation techniques [7]. A more accurate, yet still computationally efficient
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alternative for the wave propagations is the fast-marching algorithm [52], as a special case

derivation of general level-set approaches. Extraction schemes combine geometric models

and image features, together with pre-processing and pre-segmentation steps to simplify

image content.

Our vessel detection and segmentation approach is inspired by the commonly used

Hessian based filters, combined with an active contour model.

1.2.2 Non-Invasive Detection of Pulmonary Hypertension

Regarding the non-invasive detection of PH, two previous works have been published.

It was shown that the fractal dimension (FD) of the pulmonary vessel tree of children

suffering from pulmonary hypertension correlates with the pulmonary vascular resistance

[42]. Moreover, in their study, lower FD was associated with poorer survival. In another

study, it was presented that an increase in the two dimensional FD of the pulmonary

arteries in PH patients, was highly correlating with the pulmonary blood pressure [23].

However, these two studies used maximum intensity projections (MIP) of the vessel trees to

compute the FD, whereas we hypothesize that quantitative readouts need to be performed

on 3D voxel data.

1.3 Overview and Contributions

The focus of this work is on the robust segmentation of the pulmonary vessel tree and on

the structural analysis of the obtained tree. For vessel detection, we propose an algorithm

that uses a combination of lung- and airway segmentation, together with a sophisticated

vessel enhancement filter to obtain a proper segmentation of the left and right pulmonary

vessel trees separately, even in patients showing severe pathologies. The algorithm is fully

automatic, computationally efficient and able to handle large datasets.

We use an improved version of the vessel enhancement filter proposed by Pock et

al. [48], which itself is an extension of the model based approach of Krissian et al. [31],

and include additional information derived from airway- and lung-segmentation in the

vessel detection and segmentation process. For our algorithm to be used in clinical daily

routine, all filters are implemented in CUDA. CUDA is a parallel programming model

from NVIDIA, that generates hardware accelerated instructions for NVIDIA graphics

processing units (GPUs). Using CUDA we can significantly improve the run time of our

3D image processing algorithms, due to the high degree of parallelization.
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From the point of view of the clinical application, we are not aware of anybody com-

puting the 3D fractal dimension of lung vessels before. Also the tortuosity readout of

human pulmonary vessels has not been mentioned in the literature.

1.4 Structure of the Thesis

The thesis is organized as follows. In Chapter 2, we give an overview of the vessel extraction

algorithm and then explain airway-, lung- and vessel segmentation in detail.

In Chapter 3 we apply the proposed algorithm on three different datasets: a liver

vessel tree phantom, 20 publicly available CT scans from the VESSEL12 challenge, and

24 datasets from patients from the clinical PH study.

In Chapter 4 two different readouts of the vascular tree, the fractal dimension and the

distance metric, are introduced and computed on the vessel centerlines of the clinical PH

study datasets. In Chapter 5 we correlate these readouts with actual clinical parameters

from the patients derived from right heart catheterization.

We conclude the work in Chapter 6 and Appendix A shows a list of publications as an

outcome of this master’s thesis. Appendices B and C describe required implementation

dependencies and characteristics of the PH patients.





Chapter 2

Detection and Segmentation of

Pulmonary Vessels

Contents

2.1 Automated Airway Segmentation . . . . . . . . . . . . . . . . . . 9

2.2 Automated Lung Segmentation . . . . . . . . . . . . . . . . . . . 11

2.3 Pulmonary Vessel Segmentation . . . . . . . . . . . . . . . . . . 15

In this chapter we introduce the method for detecting pulmonary vessels, a flowchart

of the algorithm is shown in Figure 2.1. The input for the algorithm are contrast enhanced

thorax CT scans. We begin with identifying the lung regions through simple thresholding

and by segmenting the airways with an iterative region growing algorithm.

Inside the two lungs, we compute the response (i.e. medialness) from a multi-scale

vessel enhancement filter (VEF). The VEF is using the eigenvectors of the Hessian ma-

trix, which give information about the local image structure, to detect tubular structures

such as vessels. To improve accuracy and robustness against noise, at each position an

offset-medialness boundary measure perpendicular to the estimated vessel direction is eval-

uated [31] and combined with the gradient magnitude at the current position [48]. This

gives the final medialness response.

After non-maxima suppression of the medialness, centerlines of the vessels are detected

and connected by applying a shortest path algorithm. A coarse vessel segmentation is

done by estimating the radius for each vessel centerline point using a spherical ray-casting

approach. The final segmentation takes the image edges into account using a globally

optimal geodesic active contour model based on total variation [50].

7
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Figure 2.1: Vessel detection flowchart. First row: CT image, second row: lung segmenta-
tion, airway segmentation and CT-image with medialness overlay, third row: medialness
restricted to the lungs, last row: connected centerlines and 3D rendering of lungs, airways,
vessel centerlines and heart.
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2.1 Automated Airway Segmentation

Segmentation of the airways is crucial for various clinical applications, such as image-

guided peripheral bronchoscopy [22] or the detection of airway related diseases, like asthma

and chronic obstructive pulmonary disease [49]. A large number of methods proposed in

the literature rely on region growing algorithms, because they are fast and assume no prior

knowledge of the shape or size of the airways. Broad overviews of existing methods have

been published during the Extraction of Airways from CT 2009 (EXACT’09) challenge

in [37] and in [30, 55]. Our approach uses a simple iterative region growing algorithm since

we do not need the whole airway tree for our subsequent steps.

One reason for the airway segmentation is to be able to separate the lung segmentation

into left and right lung. Segmentation of the main bronchi is sufficient for this task. A

second reason is, that the bronchi usually run along the pulmonary vessels and are attached

to it. Since the intensity contrast of the airway border and the blood vessels is very low,

we found that incorrect segmentation of the blood vessels can occur. Also here a rather

coarse segmentation of the first few generations is sufficient to remove these mistakes. For

small bronchi, the airway wall is naturally attenuated due to the partial volume effect.

In this section we first describe the anatomy of the airways, how to automatically

detect a seed point for an iterative region growing algorithm, and how we improve the

obtained coarse airway segmentation using responses from an airway enhancement filter.

This is then followed by a geodesic active contour segmentation step, which leads to the

final airway segmentation.

2.1.1 Morphology of the Respiratory Tract

The human respiratory tract is divided into 3 main parts:

• upper respiratory tract (nose, nasal passages, paranasal sinuses, and throat)

• respiratory airways (voice box, trachea, bronchi, and bronchioles)

• lungs (respiratory bronchioles, alveolar ducts, alveolar sacs, and alveoli)

The airways are organized as a branching network of tubes that become narrower, shorter,

and more numerous as they penetrate deeper into the lung. We are interested in the airway

tree starting with the trachea. At the carina the trachea splits into left and right main

bronchi (Figure 2.2). From there on it ramifies into a tree with ∼ 17 million branches
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with a total surface area of 130 m2 [20]. Each terminal branch ends in an alveolus where

the gas exchange takes place.

In our CT images only airways with a diameter of about 3 mm are clearly distinguish-

able, the limited resolution and the resulting partial volume effect makes it impossible to

detect smaller airways.

Figure 2.2: Anatomy of the human airway ( c©EMT-National-Training.com)

2.1.2 Coarse Airway Segmentation

To get rid of some of the noise, two preprocessing steps are performed on the chest CT

scan. First, all voxels with a Hounsfield unit (HU) value bigger than -400 HU are clamped

[22]. This is the input for our airway-enhancement filter. The airway-enhancement filter

is the same as the vessel-enhancement filter (see Section 2.3.4), but with enhancement of

dark tube-like structures instead of bright tube-like structures. We automatically detect

the airway on the top-most slice of the contrast-enhanced volume, which is a dark circle

surrounded by high-intensity tissue, to get a seed point xs for an iterative 3D region

growing algorithm. For the region growing two thresholds are defined: thmin = I(xs)− 1

and thmax = I(xs) + 1, where I(x) is the HU value at position x. All N6 connected voxels

which fulfill

thmin < I(x) < thmax

are added to the segmentation. Then the thresholds are updated (thmin = thmin − 1

and thmax = thmax + 1) and region growing is restarted iteratively with the previous

segmentation as seed. This is repeated until leakage of the region growing algorithm is

detected. After leakage has occurred, the thresholds from the previous iteration step are
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selected as final threshold.

Two measures are monitored for leakage detection: first, if the number of voxels added

in the current iteration is 3 times larger then the average number of voxels added at the

previous iterations, the region growing is stopped. The second measure is the number

of edge voxels. If the number of edge voxels in one iteration is 3 times larger than the

number of edge voxels in the previous iteration, the region growing is stopped. To prevent

early termination of the region growing algorithm, a minimum volume Vmin = 20000mm3

is introduced. We empirically chose this value under the assumption, that every human

airway tree will be larger than this volume Vmin. For post processing 3D hole filling

is applied. In Figure 2.3 the different steps of the region growing as well as a leaked

segmentation is shown.

These steps lead to a coarse segmentation of the airway tree. To improve it, we use the

tube detection response for airway enhancement in addition to the coarse region growing

result and formulate a geodesic active contour to snap to image gradients. This step is

inspired by the TVSeg algorithm [59] and the work in [50].

(a) (b) (c) (d)

Figure 2.3: Airway segmentation example: (a) Segmentation after 35 iteration, (b) after
130 iterations, (c) final segmentation after 260 iterations, (d) leaked segmentation.

2.2 Automated Lung Segmentation

Lung segmentation is a crucial step in various tasks related to analysis of the lung. In our

case we use it to identify a region of interest for the later pulmonary vessel detection.

In this section an automatic lung segmentation algorithm which separates the two

lungs is proposed. It uses a thresholded CT image as coarse lung segmentation and refines

it in multiple steps. For the separation into right and left lung, the segmented airway tree

is used (see Section 2.1).
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2.2.1 Morphology of the Lung

The human lung is subdivided into five lobes that are separated by pulmonary fissures.

There are three lobes in the right lung, namely upper, middle, and lower lobe. The right

upper and right middle lobes are divided by the right minor fissure, whereas the right

major fissure delimits the lower lobe from the rest of the lung. The left lung is usually

a little bit smaller than the right lung. It has the cardiac notch which is produced to

accommodate the space taken up by the heart and it has only two lobes (upper and lower)

that are divided by the left major fissure (Figure 2.4). Together, the lung lobes contain

approximately 2,400 kilometres of airways and 300 to 500 million alveoli, having a total

surface area of about 70 square metres in adults - roughly the same area as one side of a

tennis court [45]. The entire organ weighs about 2.3 kilograms.

Figure 2.4: Rendering shows the lung subdivided into right upper (RU), right middle
(RM), right lower (RL), left upper (LU), and left lower (LL) lobe [35].

2.2.2 Previous Work

Significant amount of previous work has been done on lung segmentation [55]. An overview

can be found in the results from the LObe and Lung Analysis 2011 (LOLA11) challenge∗.

Most of these algorithms struggle with pathological cases where lung diseases change tissue

density. High density pathologies are often connected to the lung border and distort the

segmentation. An algorithm based solely on intensity thresholding will not work for these

cases. The method from Hu et al. [24] is based on a grey level thresholding of CT images

∗http://www.lola11.com/
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and uses morphological operations to close holes in the segmentation caused by vessels.

In [27] anisotropic diffusion is used as a preprocessing step followed by morphological op-

erations. Another approach described in [28, 33] uses an active contour model additionally

to the thresholding segmentation, which leads to a smooth segmentation that includes the

artefacts at the lung border and implicitly leads to a separation of the two lungs. The

algorithm proposed in [25] uses a graph search driven by a cost function combining the

intensity, gradient, boundary smoothness, and the rib cage information.

Our method is based on thresholding and morphological closing. We found that this

approach lead to accurate results on our datasets and could be implemented very efficiently.

However, the two lungs always merge through the airways and in some datasets the border

between right and left lung is hardly visible, resulting in additional connections between

the lungs (see Figure 2.5a). This is of course not desirable and thus requires an additional

step for separating left and right lung. We propose a novel Dijkstra [10] based method for

lung separation.

2.2.3 Left and Right Lung Segmentation Algorithm

First the optimal threshold to separate foreground (body) and background (air) from the

thorax CT image is calculated using Otsu’s method [46]. With a connected component

analysis, the background region which corresponds to the lungs is selected and a 3D hole

filling is applied. This leads to one big region for right and left lung, since the two lungs

always merge through the airways (and in some patients additional connections of the lung

occur because the border between right and left lung is hardly visible, Figure 2.5a). To

separate left and right lung, the airway segmentation is used. We detect the carina in the

airway segmentation (where the trachea separates into the left and right main bronchi) and

assign different labels to the trachea, right and left airway tree. Carina detection works

by slice wise scanning of the airway segmentation from top to bottom until we get two

independent connected components in the 2D axial slice. If both connected components

are connected to the main airway stem in the previous slice, the carina is found.

To label the voxels in the lung mask according to left and right lung, a modified form of

Dijkstra’s shortest path algorithm [10] is used. For each voxel belonging to the lung mask

we calculate the minimum cost path to the trachea. The first label (either right or left

airway tree) that lies on this path determines the label of the voxel. As cost function Ic we

use the scaled gradient magnitude of the CT image |∇I| and the binary lung segmentation

Ilung excluding the airways Iairway



14 Chapter 2. Detection and Segmentation of Pulmonary Vessels

Ic =
Ilung − Iairway + 4 · |∇I|

5

The gradient image |∇I| is normalized to be in the interval [0 . . . 1]. The scaling factor was

empirically found to perform well on our datasets. This enables the lung segmentation to

snap onto the border between the two lungs (Figure 2.5b).

As final step, to remove the holes caused by vessels and other high intensity structures,

the airways are removed from the lung segmentation and morphological closing is applied

at each lung separately. We use a six-neighbourhood star-shaped structuring element and

10 closing operations. The different steps of the lung segmentation can be seen in Figure

2.5. A problem common to all lung segmentation approaches is patients with diseases

that cause tissue changes in the lung parenchyma, resulting in high density tissue. Figure

2.6 depicts a patient with severe scleroderma (an autoimmune disease characterized by

hardening of the parenchyma and thus making it more dense), where the lung mask does

not cover the whole lung.

(a) (b) (c)

Figure 2.5: (a) CT image, axial slice, (b) coarse lung segmentation after separation, (c)
refined lung segmentation.

Figure 2.6: Due to the high degree of lung involvement from a scleroderma patient, the
segmentation does not cover the whole lung.
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2.3 Pulmonary Vessel Segmentation

This section will cover one of the major aims of the thesis, the detection and segmentation

of pulmonary vessels. At the core of our method is a multi-scale vessel enhancement

(VE) filter based on the Hessian matrix. It is similar to [48] in using the eigenvectors of

the Hessian matrix to detect candidate voxels inside the vessels and computing an offset-

medialness boundary measure perpendicular to the estimated vessel direction [31]. The VE

response (i.e. medialness) is limited to the right and left lung using the lung segmentation

from Section 2.2. A non-maxima suppression of the medialness inside the lungs leads to

centerline candidate points. Small centerline fragments (less than 5 connected voxels) are

removed before a Dijkstra-like shortest path algorithm is used to connect the fragments

into a single vessel tree. The vessel radius is estimated at each centerline voxel using a

spherical ray-casting approach. The final segmentation is the output of a globally optimal

geodesic active contour model based on total variation [50].

2.3.1 Morphometry of Pulmonary Vasculature

The pulmonary vasculature carries deoxygenated blood away from the heart, to the lungs,

and returns oxygenated blood back to the heart. The main pulmonary artery extends

from the right ventricle of the heart and branches into left and right pulmonary arteries,

which branch out into the five lobes of the lung. Pulmonary arteries carry deoxygenated

blood to the lung capillaries, where it releases carbon dioxide and binds oxygen during

respiration. Blood leaves the capillaries to the pulmonary veins, reaching the heart, where

it re-enters at the left atrium. On average, a single blood cell takes roughly 30 seconds to

complete a full circuit through both the pulmonary and systemic circulation. In Figure 2.7

the whole circuit is depicted. A typical human lung includes in the order of hundreds of

thousands of arterial and venous vessels. Huang et al. [26] found a total 15 generations

of arteries and veins between the main pulmonary artery/vein and the capillaries, with

diameters varying from 15 mm to 0.02 mm. In our CT images we can recognize vessels

down to a diameter of approximately 2 mm, smaller vessels cannot be detected due to the

partial volume effect.

2.3.2 Previous Work

Several 3D vessel segmentation algorithms have been presented up till now, some excellent

reviews can be found in [36] and in [30]. In [44] they propose a framework that links



16 Chapter 2. Detection and Segmentation of Pulmonary Vessels

Figure 2.7: Blood circulation in the lungs. Pulmonary veins depicted in blue, arteries in
red (Figure c© McGraw-Hill Ryerson).

vessel segments based on an iterative process. They take the distance, the angle between

segments and a cost function calculated by a kNN classifier into account; first segments

with small distance d and similar angle get connected, then the distance is successively

increased until a maximal distance (dmax) is reached. Each segment is added to the final

graph if the cost function (which is based on 12 features such as length of the segment,

average grey value, standard deviation of the grey value, curvature,...) is below a threshold

tc. To find the optimal path between segments, dynamic programming is used. When the

maximum distance dmax is reached, a connected component analysis is performed and

the largest component is selected to be the final result. Estrada et al. [11] is using a

single source - multiple destination version of Dijkstra’s shortest path algorithm to create

a vascular forest from the vascular network in the human retina, however only on 2D

images. For creating a graph, each candidate pixel (obtained from a vessel enhancement

filter) is considered as a node v with arcs e to all 8 neighbouring nodes. The cost of each

arc is chosen such that it is high if one or both endpoints are outside the vessel and low

if both are inside. With the Dijkstra algorithm it is possible to compute the minimum

cost path between any two nodes. An exploratory version of the Dijkstra algorithm is

used, which includes every path from the source node to any other node below a certain

threshold τ . This algorithm is applied to every candidate pixel. As a result, a forest with

shortest path trees is obtained. A slightly different idea utilizing the Dijkstra algorithm is

shown in [47]. They also generate a set of seed points, based on a vessel enhancement filter.

For each seed point x0, with its given branch orientation, an optimal path from x0 to every

point on the surface of a sphere of a certain radius is computed. This path is computed via
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the Dijkstra algorithm based on a cost function F . From this list of candidate paths, only

those that satisfy certain geometrical criteria are selected and added to the final forest. A

disadvantage of this method is that due to its locality it does not yield one connected tree.

An approach trying to globally optimize the vascular tree is presented in [29]. They utilize

high-level prior knowledge (the minimum flow resistance with minimum vascular volume)

in their approach. The main idea is that the vascular system has to fulfill the perfusion

task with minimum effort for maintaining its anatomical structure. They present a cost

function that models the tree geometry, the perfusion resistance from the root of the tree

to a cell group and the blood flow resistance within the vessels. They further propose a

simplified cost function, that consists of a minimum spanning tree and a shortest path

tree, and an algorithm to efficiently minimize it. However, even the simplified version of

the cost function is difficult to implement, and numerous parameters have to be estimated.

A more pragmatic approach is presented in [57] where they first compute a forest (i.e. a

graph with no loops) from a given set of vessel-candidate points. This forest is subsequently

cleaned and improved using simple geometric filters. Short branches are trimmed and gaps

between vessels that geometrically fit to each other are filled in. For constructing the forest

Kruskal’s minimum spanning tree algorithm is used to subsequently add new branches to

a tree sorted by increasing branch length. After the forest is cleaned up, the user selects

the root of one tree which is then cleaned up using two simple geometric heuristics: vessels

which cause sharp turns in the blood flow directions are removed and vessels which are

well aligned but belong to a different tree (for example veins and arteries), are removed

by analysing the alignment between a path in the selected tree and the whole forest.

Our proposed reconnection algorithm tries to combine ideas from the approaches men-

tioned above. We chose to use a shortest path algorithm that takes gradients and the

medialness into account.

2.3.3 Preprocessing

Implants like pacemakers or other metallic objects cause extremely high HU values because

of their high x-ray attenuation. To reduce this effect, we clamp the input image I(x), which

has an original range between −1024 HU and 3071 HU, to a maximum HU value of 1500

and scale it to be in the interval [0, 1]:

Ic(x) = max

(
0,min

(
1,
I(x) + 1024

1500 + 1024

))
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To smooth the CT image without blurring the edges we use the Rudin-Osher-Fatemi

(ROF) algorithm [51] .

2.3.4 Vessel Enhancement

Vessel detection is based on a modified version of the vessel-enhancement filter (VEF)

proposed by Pock et al. [48], an algorithm that was also investigated in the PhD thesis of

Christian Bauer [2] to detect liver vessels. The VEF uses the eigenvalues of the Hessian

matrix to determine candidate vessel voxels, followed by a combined offset- and center-

medialness function to compute the vessel probability. To achieve a reasonable run time

of the filter, we implemented it in CUDA. Detecting vessels of different sizes requires the

use of multi-scale image pyramids. We use a scale space with 4 scales and a downsampling

factor of 1.7 between neighbouring scales. The variance σi in voxels for the Gaussian

smoothing at each scale i is computed the following way:

σi =

(
2i−1

2

)2

The use of first and second derivative kernels from [13] (Table 2.1) and the reduced

downsampling factor showed improved discrimination between different vessel radii, com-

pared to the widespread use of Gaussian pyramids with a downsampling factor of two.

Limited memory on our GPU restricts the possible size of datasets, so we decompose CT

images into overlapping sub-volumes, which are processed sequentially, with each sub-

volume benefiting from the CUDA based parallelization.

Table 2.1: Filter taps for optimal differentiators of first (d1) and second order (d2) with
5 taps and their corresponding prefilters (p). Shown are half of the filter taps, the other
half are determined by symmetry: the prefilter and even-order derivatives are symmetric
and the odd-order derivatives anti-symmetric about the origin (sample number 0) [13]

Sample Number

0 1 2

p 0.426375 0.249153 0.037659

d1 0.000000 -0.276691 -0.109604

p 0.439911 0.249724 0.030320

d2 -0.471147 0.002668 0.232905
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For the calculation of the medialness, at each scale σ we compute the eigen-values

|e1| ≥ |e2| ≥ |e3| and the associated eigenvectors v1, v2 and v3 of the Hessian matrix

Hσ(x):

Hσi(x) =


Iσxx(x) Iσxy(x) Iσxz(x)

Iσyx(x) Iσyy(x) Iσyz(x)

Iσzx(x) Iσzy(x) Iσzz(x)


where Iσ(x) = Gσ ? Ic(x) is the CT image convolved with a Gaussian kernel with

variance σ and Iσxx(x) is the second derivative in x-direction computed with the optimal

filter tabs from [13], Table 2.1 (analogue Iσyy(x), Iσzz(x), Iσxy(x), Iσzy(x) and Iσxz(x)). The

eigenvector v3 represents the tangent direction of the vessel segment, v1 and v2 span a

cross section plane as illustrated in Figure 2.8.

Figure 2.8: Based on the eigenvectors v1, v2 and v3 of the Hessian matrix the tubes cross
section plane orientation is estimated and gradient information B at surface points x along
a circle in this plane contribute to the offset medialness computation [4].

We define the boundary gradient

B(x, σ) = σ∇Iσ(x)

An initial response is given by the median of the boundary contributions

bi,σ = |B(x + rvαi , σ)vαi |

with i = 1 . . . b2πr + 1c and r being the radius varying from 1.0 to 2.0, ∆r = 0.3, which

we denote as R+
0 . A problem of R+

0 (x, r, σ) is, that it also produces responses at isolated
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edges. To avoid this, a measure of symmetry is introduced:

S(x, r) = 1− s(x, r)

b

where s(x, r) is the median absolute deviation of the boundary samples and b is its

median. The final boundary response is computed as:

R+(x, r, σ) = R+
0 (x, r, σ)S(x, r)

3
2

To suppress responses at the border of vessels, the gradient magnitude at the center of

the vessel is used:

R−(x, r, σ) = σi|∇Iσi(x)|

R−(x, r, σ) is combined with the offset medialness from above, such that the boundary

measure is only used, if it is larger than the gradient at the center of the circle with radius

r.

R(x, r, σ) = max{R+(x, r, σ)−R−(x, r, σ), 0}

The final vesselness response

Rmulti(x) = max
σ,r
{R(x, r, σ)}

is the maximum response from all different scales σ and radii r. We found 4 scales and radii

r varying from 1 to 2 pixels, with an increase of 0.3 pixels to have the best performance.

Figure 2.9a shows an example of the vessel filter response, where locations with high

vessel probability are shown in red.

2.3.5 Non-maxima Suppression

In a non-maxima suppression step inspired by [4], at each position x with a medialness

R(x) > thmin, we sample 8 points on the unit circle on a plane perpendicular to the

estimated vessel direction. If the medialness on any of these 8 points is larger than at

the current position x, R(x) is set to zero. This leads to disconnected vessel centerline

fragments due to branching points of the vessels, where the tubular model assumption

fails. Figure 2.9b depicts the non-maxima suppressed centerline fragments in green.
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Figure 2.9: Vessel enhancement filter response in the lung vessels (a), non-maxima sup-
pressed response (b, green lines), connected centerline (c, red lines)

2.3.6 Centerline Reconnection

For vessel structure analysis it is important to have a fully connected vessel tree. However,

the vessel enhancement filter has problems in branching regions of vessels, because the

tubular model assumption is not fulfilled. This leads to disconnected centerline fragments

after non-maxima suppression. We propose an efficient shortest path algorithm that takes

a combination of different information into account, to produce a single connected vessel

centerline tree.

As a preprocessing step, small centerline fragments (less than 5 N26-connected vox-

els) are removed and all maxima lying on the airway border are cleared using the airway

segmentation from Section 2.1. For the reconnection of the vessel centerlines, we apply a

modified version of the graph search approach presented in the intelligent scissors algo-

rithm [43]. Starting from one root point pr in the CT image, the costs and the cheapest

path from all voxels to pr are computed. We use three data structures, a sorted stack SA

holding voxel coordinates and the corresponding costs, a volume Icum having the same
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size as the CT image that will hold the cumulative costs, and a volume Iptr with the same

size as the CT image for storing pointers for the cheapest path. The stack SA is sorted

such that voxels with the smallest costs are on top. As initialization, we set all voxels in

Icum to infinity, except the root pr which has zero cost and we push the root point pr onto

the stack. The algorithm works as follows: As long as the stack SA is not empty, take the

position p with the lowest cost off the stack and for each N26-connected neighbour n(p),

compute the cost

ci = Icum(p) + Ic(n(p))

where i is the neighbour index. If ci is lower than Icum(n(p)), then save the new cost

in Icum, push the neighbour n(p) onto the stack and save a pointer from the neighbour

n(p) to p in Iptr.

Since all vessels are connected to the heart we choose the center of the heart as root

pr. In our datasets we found that the center of the image is a good approximation of the

heart. The cost map includes information from the normalized medialness R, the maxima

of the medialness Rmaxima, and the normalized image gradient magnitude |∇I|:

Ic =
(

3
√
|∇I|+ e−10R

)
(1−Rmaxima)

The cube root from the gradient magnitude image was computed to give higher cost

to small edges and the scaling factor of 10 for the medialness was found empirically. To

avoid wrong connections through the mediastinum, we process each lung separately. The

connected trees of the right and left lung form the final vessel tree.

2.3.7 Graph Generation

For a later analysis of the vascular structure, a higher level representation of the vessel

centerlines is needed. We construct a graph with vessel branching points as vertices and the

vessels as the edges between the branching points. We start with classifying the centerline

voxels as branching points (more than 2 neighbouring centerline voxels in a twenty-six

neighbourhood) or edge points (exactly two neighbours). As root for the graph the same

voxel as for the centerline reconnection is taken. Using a recursive algorithm, the graph is

generated until all centerline voxels have been processed. Figure 2.10 shows an example of

a graph generated from the connected vessel centerlines. Green boxes represent endpoints

and branching points, the edges (vessel segments) are plotted with different colours.
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Figure 2.10: 3D rendering of the graph representing the vascular tree

2.3.8 Vessel Radius Estimation

The vessel segmentation consists of two steps: first a coarse radius detection is performed

using the vessel centerlines as input, then a geodesic active contour algorithm [50] is

applied for the final segmentation, thus enabling the segmentation to snap onto the image

gradients.

For the coarse detection of the vessel radius we use the centerlines as initialization. At

each vessel centerline point, we sample points lying on a sphere from the CT-image and

accumulate the grey values. This is done for different sphere radii rs = 0.1 . . . 15 mm,

increment ∆ = 0.1 mm. Figure 2.11 shows the normalized sum of grey values for 4

different positions at different vessels. The advantage of using a sphere instead of a plane

perpendicular to the estimated vessel direction is, that it is more robust and does not need

the vessel direction estimation. In branching points for example the vessel direction cannot

be estimated correctly, which would then result in a wrong radius estimation. This coarse

segmentation is used as initialisation for a geodesic active contour model. In Figure 2.12

an example vessel segmentation is illustrated.
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Figure 2.11: Examples for the sum of grey values (SOG) of points sampled on a sphere
with different radii rs. The intersection with the empirically found value of 0.6 indicates
the vessel radius.

Figure 2.12: 3D Rendering of a vessel segmentation



Chapter 3

Experiments and Results

Contents

3.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Phantom Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 VESSEL12 Challenge Dataset . . . . . . . . . . . . . . . . . . . . 26

3.4 PH Study Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Discussion of the Results . . . . . . . . . . . . . . . . . . . . . . . 38

In this section results from our algorithm are presented. First we show segmentations of

a phantom liver vessel tree, where we successively add Gaussian noise to test the robustness

of our algorithm. Then we apply the algorithm to the publicly available VESSEL12

challenge dataset. As third dataset we use 24 CT scans from patients who underwent

contrast enhanced CT as a part of a clinical PH study at the Ludwig Boltzmann Institute

for Lung Vascular Research, Graz (see Appendix C for detailed information about the

patients included in the study). From the 24 patients we show the results of the airway-

and lung-segmentation and the reconstructed vascular trees.

3.1 Implementation Details

All of our filters are implemented in CUDA, which is a parallel programming model from

NVIDIA, that generates hardware accelerated instructions for NVIDIA graphics process-

ing units (GPUs). Using CUDA we can significantly improve the runtime of our 3D image

processing algorithms due to the high degree of parallelization. Limited memory on our

GPU restricts the possible size of datasets, therefore we decompose CT images into over-

lapping sub-volumes, which are processed sequentially, with each sub-volume benefiting

25
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from the CUDA based parallelization. To further decrease the computation time and

memory requirements, we crop the CT images according to the bounding extents of the

lung mask after lung segmentation and perform all further computations on the cropped

CT scan. This way, we can directly work on the full resolution CT data. The runtime of

the CUDA implementation of the whole algorithm pipeline ranges from 5 to 10 minutes,

whereas a CPU-only implementation would need more than an hour.

3.2 Phantom Data

We used a phantom of a liver vessel tree, shown in Figure 3.2a, to check the performance

of the algorithm and validate its robustness against noise. We successively added Gaussian

noise with increasing variance to the phantom data (Figure 3.1) and calculated the Jaccard

index of the ground-truth segmentation with the obtained segmentation. The curve in

Figure 3.2b shows how the Jaccard index changes if Gaussian noise with increasing variance

is added to the phantom dataset. As long as the variance of the noise is below 40 Hounsfield

Units (HU), the performance lies above 93% segmentation overlap.

(a) σ = 0 (b) σ = 20 (c) σ = 80

Figure 3.1: Coronal slice of the liver vessel phantom with increasing Gaussian noise. For
visualization purposes the window level for all three images has been modified.

3.3 VESSEL12 Challenge Dataset

To be able to compare our algorithm to other approaches, we tested it on 20 CT scans

which were provided by the organizers of the VESSEL12 Challenge workshop. For infor-

mation about obtaining the reference segmentations and the exact definition of the used

performance measures we refer to the official website∗. The generated segmentations were

∗http://vessel12.grand-challenge.org/
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(a) (b)

Figure 3.2: (a) 3D rendering of liver vessel phantom, (b) Jaccard index over variance of
Gaussian noise

sent to the organizers, who in return provided evaluation results. Table 3.1 summarizes

the evaluation results for the 20 testing datasets. On average, our algorithm achieved a

specificity of 0.971 and a sensitivity of 0.742. The area under the curve was Az = 0.863.

We performed very well in terms of specificity, however improvement in the sensitivity is

still necessary. With these results, we occupy a midfield position among all participating

teams. Reasons for this performance of the algorithm is the optimization for the contrast-

enhanced setup and the use of isotropic CT scans which is not the case in all VESSEL12

datasets. We see room for improvement for detecting small vessels, smaller than 2−3 mm

in diameter, which are misclassified as noise and hence not included in the segmentations.

All results from the other participating groups can be found on the official VESSEL12

challenge website.

3.4 PH Study Dataset

As a third dataset, we use 24 contrast enhanced CT scans, with a median size of 512 ×
512 × 426 pixel, from patients who took part in clinical PH study conducted by the

Ludwig Boltzmann Institute for Lung Vascular Research, Graz (LBI-LVR). In Appendix C

detailed information about the clinical data from the patients can be found. We do not

have any ground truth information on the vessels, however together with the experts from

the LBI-LVR, we quantitatively evaluated the segmentations and found them suitable
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Table 3.1: Evaluation results from the VESSEL12 challenge in comparison with the best
team (Anon feat learning)
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for further analysis. In the subsequent sections we show the results of the airway- and

lung-segmentation and the reconstructed vascular trees from these 24 patients.

3.4.1 Airway Segmentations

In this section we present segmentations of the airway tree from patients included in the

PH study. One segmentation took on average 68 seconds. Table 3.2 gives a quantitative

overview of the airway segmentation results, in Figure 3.3 and Figure 3.4 3D renderings

of segmentations of the airways are shown.

(a) 01 (b) 02 (c) 03

(d) 04 (e) 05 (f) 06

(g) 07 (h) 08 (i) 09

Figure 3.3: Airway segmentations from patients of the clinical PH study. The sub figure
captions indicate the patient number.
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(a) 10 (b) 11 (c) 12 (d) 13

(e) 14 (f) 15 (g) 16 (h) 17

(i) 18 (j) 19 (k) 20 (l) 21

(m) 22 (n) 23 (o) 24

Figure 3.4: Airway segmentations from patients of the clinical PH study. The sub figure
captions indicate the patient number.
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Table 3.2: The obtained airway characteristics from patients of our PH study
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3.4.2 Lung Segmentations

Figure 3.5 and Figure 3.6 show lung segmentations in difficult cases (patients having e.g.

scleroderma), and simpler cases, respectively. To be able to properly segment the lung of

all patients, more prior knowledge about the lung needs to be utilized (using for example

a generative model of shape and/or appearance, or using the rib cage as reference [56]).

In Table 3.3 the volumes of the segmented lungs for each patient are listed.

(a) 11

(b) 19

(c) 24

Figure 3.5: Difficult cases for the lung segmentation (patients with severe lung pathologies
and/or hardly visible fissures between left and right lung). The first column shows 3D
renderings of lung segmentations, coronal and axial views are depicted in column two and
three, respectively. The sub figure captions indicate the patient numbers.
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(a) 02

(b) 03

(c) 05

(d) 09

Figure 3.6: Lung segmentations of patients not showing severe diseases affecting the lung
parenchyma. The first column shows 3D renderings of lung segmentations, coronal and
axial views are depicted in column two and three, respectively. The sub figure captions
indicate the patient numbers.
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3.4.3 Pulmonary Vascular Trees

Figure 3.7, Figure 3.8 and Figure 3.9 are showing 3D renderings of the lung segmentations

(brown), the airway segmentations (blue) and the extracted vessel centerlines (red) from

patients of the clinical PH study. In Table 3.3 the number of detected vessel segments for

each patient is listed.

(a) 01 (b) 02 (c) 03

(d) 04 (e) 05 (f) 06

(g) 07 (h) 08

Figure 3.7: 3D renderings of the lungs, airways and the vessel centerlines. The sub figure
captions indicate the patient number.
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(a) 09 (b) 10 (c) 11

(d) 12 (e) 13 (f) 14

(g) 15 (h) 16

Figure 3.8: 3D renderings of the lungs, airways and the vessel centerlines. The sub figure
captions indicate the patient number.
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(a) 17 (b) 18 (c) 19

(d) 20 (e) 21 (f) 22

(g) 23 (h) 24

Figure 3.9: 3D renderings of the lungs, airways and the vessel centerlines. The sub figure
captions indicate the patient number.
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Table 3.3: Number of vessel segments and lung volumes from patients in the PH study
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3.5 Discussion of the Results

We showed that the algorithm works well on the data sets from our PH patient cohort,

consisting only of isotropic contrast-enhanced scans. We found the detected centerlines

to be correct in almost all cases, which is a crucial requirement for the later analysis.

Also the experts from the Ludwig Boltzmann Institute for Lung Vascular Research found

the centerlines suitable for further analysis. However, in case of the VESSEL12 challenge,

where we occupy a midfield position among all participating teams, the vessel enhancement

filter is not sensitive enough to small vessels which have a very low contrast. Reasons are

that our image filters do not yet take the anisotropy of the VESSEL12 data sets into

account, and our algorithm is optimized for the contrast enhanced setup.
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Analysis of the Vessel Tree
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Vascular morphology has been used as diagnostic parameter and to quantify disease

severity in several studies. The works in [15] and [16], for example, attempt to quantitate

carotid stenosis by analysis of vessel morphology. Bullit et al. [8] distinguishes malignant

from benign brain tumors by calculating the tortuosity of the vessels. In another work,

Gerig et al. [19] aims to characterize aortic aneurysms using the topology of vessels in the

brain. In this chapter we will investigate two readouts to describe the lung vessel struc-

ture and complexity. We will also correlate the calculated measures with actual clinical

parameters derived from right heart catheterisation, and assess the usefulness of these

parameters for pulmonary hypertension diagnosis and for monitoring disease progression.

4.1 Fractal Dimension

Images representing morphologically complex structures can be described using the fractal

dimension (FD). The first object with fractal structure described in literature was the

coast line of Britain [39]. From then on the FD was used for image analysis in the field

of neuroscience, for complexity analysis of the vascular tree in the human retina [40], and

for complexity analysis of the pulmonary vessel tree [21]. Haitao et al. [23] and Moledina

et al. [42] showed that pulmonary hypertension is correlated with the two dimensional

fractal dimension of the pulmonary vessel tree. However, their results are contradictory.
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These two papers inspired us to extend the fractal dimension into three dimensions and

apply it for vascular analysis.

4.1.1 Theory

In the 1960s Benoit Mandelbrot introduced the term “fractal” to better measure rough

shapes and irregular surfaces, from graphs of the stock market to coastlines. The most

important property of a fractal is self-similarity [21]. An object is self-similar if you

can break the object down into an arbitrary number of smaller pieces and each of those

pieces is a replica of the entire structure. The Sierpinski triangle in Figure 4.1 is a typical

example for a fractal structure. The fractal dimension can be described theoretically by the

Hausdorff dimension [12]. Given the fact that the Hausdorff dimension can not be directly

assessed, an approximation is possible, using the concept of self-similarity. Consider an

object consisting of distinct segments. If each segment is divided into r smaller segments,

the resulting number N of smaller objects follows a power law:

N = r−FD (4.1)

Hence,

FD = − log N
log r

(4.2)

where FD is the dimension of the power law. For Euclidean objects, FD equals the

Euclidean dimension (D=1,2,3,. . . n). Fractal objects obey a metric scaling relation, where

the exponent is not equal to the Euclidean dimension and is usually non integer.

Figure 4.1: Sierpinski triangle, the small scale-form appears similar to its large-scale form
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4.1.2 Box Counting

The 3D fractal dimension can be approximated by a 3D extension of the well-validated

box counting method [41]. Box counting consists of dividing a binary image into a grid of

boxes with equal size δ×δ×δ and counting the number of non-empty boxes Nδ containing

part of the structure. This process is repeated for different box sizes (Figure 4.2). With

increasing box size, the number of non-empty boxes exponentially decreases. The fractal

dimension is equivalent to the slope of a line fitted to a double logarithmic plot of the

number of non-empty boxes Nδ against the box size δ (Figure 4.3).

To reduce the influence of the discretization in the image, box counting is performed

multiple times. In each iteration the starting position of the grid is shifted by an offset

(0, 1, 2 and 3 pixels in each dimension). The FD is

FD =
1

N

N∑
i=1

FDi

where FDi is the fractal dimension calculated at iteration i.

(a) (b) (c) (d)

Figure 4.2: Box counting method: the fractal structure is covered with boxes of varying
size δ. The number of non-empty boxes Nδ (light blue) is counted. (a) number of boxes
N = 1 (b) N = 4 (c) N = 16 (d) N = 64.

For estimation of the fractal dimension from the log-log plot, the slope of a fitted line

has to be calculated. However, due to the limited CT resolution and the limited size, two

effects have to be considered: finite N plateaus and staircasing/finite size plateaus (Figure

4.3). To account for limitations in resolution for line fitting, only the linear part was used

(Figure 4.5b, red dots).
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Figure 4.3: Real-world example of a log-log plot of the number of non-empty boxes Nδ

against the box size δ. Because of a limited amount of data points N (limited resolution),
a point is reached where one data point is covered with a single box. This leads to a finite
N plateau. The other extreme is when boxes become bigger than the object and cover it
completely. This leads to finite size plateaus. When the boxes are a little bit smaller than
the object, staircasing is visible [32]. For a reasonable estimation of the fractal dimension,
only the linear part of the curve should be considered.

4.1.3 Experiments and Results

First, we calculated the FD on two synthetic images, then we applied the box counting

algorithm to the vessel centerlines of our patient cohort from the clinical PH study (n=24).

For the clinical interpretation of the fractal dimension results see Section 5.

For validation of our box counting implementation, we created a 3D Sierpinski Triangle

(3 iterations, FD = 2, Figure 4.4a) and a Menger Sponge (3 iterations, FD = 2.726, Figure

4.4c) using Wolfram Alpha∗. The results show very good agreement with the theoretical

FD values. For the Sierpinski Triangle our estimated FD was FDest = 1.9917, and for the

Menger Sponge it was FDest = 2.701. The mean 3D fractal dimension from the pulmonary

vessels of the patients from the PH study was FD = 2.35±0.06 (range: 2.21 - 2.44), see

Table 4.1 for all values. The values are in good agreement with previously published FD

of vessels in mice [34]. Figure 4.5a shows a 3D rendering of the vessel centerlines obtained

from one patient. Figure 4.5b is the corresponding log-log plot from where the FD was

estimated.

∗www.wolframalpha.com
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(a) (b)

(c) (d)

Figure 4.4: (a) 3D Sierpinski gasket, FD = 2, (b) double logarithmic plot from the slope of
the fitted red line corresponds to FDest = 1.9917, (c) 3D Menger Sponge, FD = 2.726, (d)
double logarithmic plot from the slope of the fitted red line corresponds to FDest = 2.701

(a) (b)

Figure 4.5: (a) 3D rendering of lung vessel centerlines from one patient (b) double loga-
rithmic plot of the number of non-empty boxes Nδ versus the box size δ. The slope of the
fitted green line corresponds to the fractal dimension.
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4.2 Tortuosity

Another quantifiable property of the vessels is their tortuosity, which is a readout of

twistedness [8]. Vessels with high tortuosity are bent (“C”- or “S”-shape) and full of

twists. The distance metric (DM) is a very common measure, which provides a ratio of

the actual path length dl to the linear distance between curve endpoints de. We use for

tortuosity quantification of our vessel segments. One disadvantage of the DM is, that

it is insensitive to the number of twists (related to the frequency) with which a vessel

bends. More sophisticated measures like the sum of angle metric (SOAM [8]) do not have

this drawback. However, the vessels in the lung that we are examining, show no high

bending frequencies (at most C- or S-shape) and thus the more simple DM is sufficient to

characterise them.

4.2.1 Distance Metric Computation

From the extracted vessel tree, see Section 2.3.7, we compute the actual length dl of

each vessel segment and divide it with the Euclidean distance between the endpoints de

(Figure 4.6), resulting in a dimensionless number. Completely straight vessels will give

a value of 1, highly bent and twisted vessels show high DM values. To find one value

characterising the state of the whole vessel tree, we fitted an exponential curve to the

histogram of the DM values. The parameter for the exponential fit µ, which is equivalent

to the mean DM, is taken for quantitative analysis.

Figure 4.6: 3D Rendering of the lung, vessel centerlines (red), the heart (red) and the
airways (blue). Inset shows the computation of the distance metric. The length of the
vessel segment is divided by the Euclidean distance between the two endpoints, DM = dl

de
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4.2.2 Experiments and Results

Figure 4.7 shows the error of the exponential fit for all patients in our cohort. In Table

4.1 all results are listed.

Figure 4.7: DM for all patients from the PH study cohort, including the 95% confidence
interval of the fit.
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Table 4.1: Values of the fractal dimension and the distance metric for all 24 patients from
the clinical PH study.
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Our clinical application is the non-invasive detection of pulmonary hypertension (PH)

in patients from a clinical pilot study. Pulmonary hypertension is a type of disease pre-

senting high blood pressure in the lung arteries and is defined as a mean pulmonary artery

pressure (mPAP) ≥ 25 mmHg [18]. In severe cases, PH leads to a markedly decreased

exercise tolerance and ultimately heart failure due to the high load in the right heart. The

diagnostic marker for pulmonary hypertension is the mPAP, which is determined during

invasive right-heart catheterisation (RHC) [54]. A non-invasive alternative to RHC would

be beneficial for diagnosis of PH. Our hypothesis is, that the pulmonary vascular tree

shows quantifiable differences between patients with and without PH. We correlate the

readouts calculated from the vascular tree (distance metric, fractal dimension and num-

ber of vessel segments) with the patient’s clinical parameters obtained during right heart

catheterization.

5.1 Correlation with Clinical Parameters

24 patients (female:male = 14:10) were examined during this clinical pilot study, which was

performed at the Ludwig Boltzmann Institute for Lung Vascular Research, Graz. Patient

characteristics are listed in Appendix C. The patient group consisted of 18 patients with

PH (4 with idiopathic pulmonary arterial hypertension (IPAH), 5 with pulmonary arterial

hypertension other than IPAH, 2 with PH associated with lung disease, 7 with chronic
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thromboembolic pulmonary hypertension) and 6 patients without PH (4 with systemic

sclerosis, 1 with interstitial lung disease and 1 patient, who presented without PH after

pulmonary endarterectomy).

Statistical analysis was performed in GraphPad Prism (Version 5.04, GraphPad Soft-

ware, Inc., La Jolla, California) with Pearson correlation; differences between PH and

non-PH patients were determined with Students t-test. Receiver-operator analysis was

used to determine the conclusiveness of the parameters to determine the presence of PH.

We considered p-values p ≤ 0.05 as significant.

We found a correlation between mean pulmonary artery pressure (mPAP) and the

distance metric (DM) of r = 0.69 (Figure 5.1a). As expected, there was a correlation of

DM with the pulmonary vascular resistance (PVR; r = 0.66, Figure 5.1b) as this parameter

strongly correlates with mPAP. The receiver operator curves showed a discriminative power

of DM. The area under the curve (AUC) was 0.87 (sensitivity: 0.72, specificity: 0.83, cut-

off value: > 1.202, Figure 5.2). There was a significant difference between the DM of

patients with and without PH (Table 5.1). The mean value of the 3D fractal dimension in

our patient cohort was 2.35 (range 2.21−2.44, Table 5.1), which is in good agreement with

previously reported values from similar studies [34]. However, there was no correlation of

FD neither with mPAP nor with PVR which are the main diagnostic parameters of PH

(Figure 5.3a,b).

Moreover, beside the main diagnostic parameters, there was a correlation of DM with

other hemodynamic parameters determined during RHC, like the difference between ar-

terial and venous oxygen content (AVDO2, r = 0.57, Figure 5.4a) or arterial (artSO2,

r = −0.67, Figure 5.4c) or venous oxygen saturation (venSO2, r = −0.6, Figure 5.4e).

Finally, there was no correlation with age or body surface area (BSA), showing the speci-

ficity of the distance metric (Table 5.2). Interestingly, in the case of fractal dimension we

obtained a weak correlation with artSO2 (r = 0.44), but no other parameters correlated

(Figure 5.4b, d, f). Despite our expectations, neither the distance metric nor the fractal

dimension showed correlation with disease type (Figure 5.6).

The number of vessel segments extracted from the CT dataset does not correlate with

any parameter (mPAP, PVR, AVDO2, artSO2 or venSO2, Figure 5.5). This shows the

robustness of the vessel detection algorithm, and that the other readouts are not influenced

by a different number of detected vessels.
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(a) (b)

Figure 5.1: Correlation of distance metric(DM) with (a) mean pulmonary artery pressure
(mPAP), and (b) pulmonary vascular resistance (PVR; R = linear correlation coefficient,
r = Pearson correlation coefficient, **/*** p < 0.01/0.001).

Figure 5.2: Receiver-operator-characteristic curve for DM determining mPAP > 25 mmHg
(AUC: area under the curve).

(a) (b)

Figure 5.3: Correlation of fractal dimension (FD) with (a) mean pulmonary artery pressure
(mPAP), and (b) pulmonary vascular resistance (PVR; R = linear correlation coefficient,
r = Pearson correlation coefficient, ns - not significant).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Correlation of distance metric (DM) (a, c, e) and 3D fractal dimension (b, d,
f) with arterio-venous difference in oxygen content (AVDO2: a, b), arterial (artSO2: c,
d) and venous (venSO2: e, f) saturation of oxygen (R = linear correlation coefficient, r =
Pearson correlation coefficient, */**/***/ns p < 0.05/0.01/0.001/notsignificant).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Correlation of number of vessel segments with mean pulmonary artery pres-
sure (mPAP, a), ROC curve (b), pulmonary vascular resistance (PVR, c), arterio-venous
difference in oxygen content (AVDO2, d), arterial (artSO2, e) and venous (venSO2, f) sat-
uration of oxygen (R = linear correlation coefficient, r = Pearson correlation coefficient,
ns - not significant).
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Table 5.1: Values of distance metric, fractal dimension and number of vessel segments.

Data is presented as mean±SD (range). */ns: significant (p < 0.05)/ non-significant difference between

PH and non-PH patients

Table 5.2: Correlations with patient clinical parameters (Pearson r and p-value) for n = 24
patients.

mPAP: mean pulmonary artery pressure, PVR: pulmonary vascular resistance, AVDO2: arterial-venous

difference in oxygen content, artSO2: arterial oxygen saturation, venSO2: venous oxygen saturation, CO:

cardiac output, BSA: body surface area after Dubois and Dubois

5.2 Discussion and Limitations

In adult patients we have found that tortuosity instead of FD is correlated with pulmonary

hypertension, proving the feasibility of non-invasive detection of PH with our vessel extrac-

tion and analysis algorithm using contrast enhanced CT. We found a significant correlation

between mPAP and DM of r = 0.69 (Pearson correlation coefficient, p < 0.01). There was

a significant difference between the DM of patients with and without PH (Table 5.1), thus

enabling to discriminate the two groups on our data set of 24 patients. The correlations
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(a) (b)

Figure 5.6: Sub-group analysis of FD and DM based on disease type. Distribution of (a)
distance metric (DM) and (b) fractal dimension (PH: pulmonary hypertension, CTEPH:
chronic thromboembolic pulmonary hypertension, IPAH: idiopathic pulmonary arterial
hypertension, PAH: pulmonary arterial hypertension other than IPAH, PH-LD: pulmonary
hypertension associated with lung disease).

of FD reported in [23] are likely due to their patient cohort consisting of children, where

the lung is still under development, changing its complexity. In [42] the correlations might

be due to the MIP’s used in the study. One of the limitations of this study is the small

number of patients, which allows only a preliminary conclusion, despite considering a wide

range of diseases. A large scale prospective study is necessary to determine the true ben-

efits and constraints of this method. Further, due to radiation exposure one cannot test

the repeatability of the method. This would be necessary to determine its ability for use

in disease monitoring and follow-up examinations.





Chapter 6

Summary and Conclusion

We presented an automatic segmentation approach for pulmonary vessels from contrast-

enhanced CT scans using a multi-scale vessel enhancement filter and including information

from a lung- and airway-segmentation. The algorithm was tested on phantom data, the

publicly available VESSEL12 challenge datasets as well as on 24 patients from a clinical

pulmonary hypertension (PH) study. In case of the VESSEL12 challenge, our algorithm

occupies a midfield position among all participating teams. Reasons for this performance

of the algorithm are the optimization for the contrast-enhanced setup and for isotropic CT

scans, which is not the case in all VESSEL12 dataset. We see room for improvement for the

detection of very small vessels, which are currently hardly recognized. We achieved good

segmentation results on our 24 patients from the clinical PH study. Because we had no

ground truth for this dataset, we evaluated the segmentation results qualitatively together

with the experts from the Ludwig Boltzmann Institute for Lung Vascular Research (LBI-

LVR).

Due to a parallelized CUDA implementation, our whole vessel tree segmentation and

centerline extraction has a run-time of about 10 minutes without the need for computing

on reduced resolutions, thus enabling the potential use in daily clinical routine.

From the vessel segmentations, we created a graph representing the vascular structure

and computed the fractal dimension and the distance metric, a measure for complexity

and a measure for tortuosity of the vessels, respectively. In cooperation with the LBI-LVR

we correlated the measures with actual clinical parameters of patients from the PH study.

As an important outcome of our work, we showed that tortuosity is correlated with mean

pulmonary arterial pressure and our vessel segmentation algorithm can detect the presence

of PH.
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Further improvement of the vessel detection algorithm could include a two-stage ap-

proach, first detecting large vessels and in a second step detecting small vessels. This

could reduce wrong connections and even distinction between arteries and veins could be

possible. The vessel connection step would also benefit from a segmentation of the lung

lobes. For the clinical application of the detection of pulmonary hypertension, investi-

gation of the distribution of the vessel radii could lead to new insights when correlating

with clinical parameters. A large scale prospective study including additional 55 patients

during the next two years to determine the true benefits and constraints of this method is

currently planned at the LBI-LVR, and we intend to reproduce our results on this larger

patient cohort.
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Appendix B

Framework Setup

The algorithm was implemented in C++ and tested under Ubuntu 12.04 LTS and

Windows 7 64 bit. All open-source/free libraries used were compiled for 64 bit. As

IDE Code Composer Studio was used under Ubuntu, and Visual C++ 2010 Express

Edition under Windows (a problem with Express Edition and NVCC solved by Amitabh

Mritunjai’s answer: http://stackoverflow.com/questions/2970493/cuda-linking-error-

visual-express-2008-nvcc-fatal-due-to-null-configuratio, Microsoft Windows SDK for

Windows 7 is needed for Visual C++ express edition to be able to compile 64bit). Table

B.1 lists all used open source libraries and tools.

Table B.1: Libraries and tools required for compilation of the framework
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Appendix C

Patients Characteristics

The clinical PH study was approved by the local ethics committee and written informed

consent was obtained from all 24 patients. All patients undergoing right heart catheteriza-

tion (RHC) at the Department of Pulmonology between June 2011 and January 2013 with

indication for diagnostic CT were included. The CT examination was carried out within

one and 18 days of RHC, with a median of one day. No change in therapy occurred during

these time points. Patients with and without pulmonary hypertension were included. Ex-

clusion criteria were renal insufficiency, known adverse reactions against iodinated contrast

material, a recent diagnostic CT and pregnancy.
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Table C.1: Patient characteristics

Data are presented as mean±SD (range). The significance was tested with t-test. PH: pulmonary

hypertension, BSA: body surface area after Dubois and Dubois, mPAP: mean pulmonary artery pressure,

PAWP: pulmonary artery wedge pressure, CO: cardiac output, PVR: pulmonary vascular resistance,

AVDO2: arterial-venous difference in oxygen content, art SO2: arterial oxygen saturation, ven SO2:

venous oxygen saturation, */**/***/ns: significant (p < 0.05/0.01/0.001)/ non-significant difference

between PH and non-PH patients
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