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Abstract

In this thesis we approach the topic of monocular SLAM from an active perspective. The

main contribution of this work is bridging the gap between passive monocular SLAM and

autonomous robotic systems. While passive monocular SLAM strives to reconstruct the

scene and determine the current camera pose for any given camera motion, not every

camera motion is equally suited for these tasks. Thus, we propose three novel measures

which allow the analysis of possible camera motions with respect to physical and visual

constraints. The first measure is called ”localization quality” and allows the evaluation of

the stability of the monocular localization at arbitrary virtual camera poses. This generic

measure can be used with every monocular SLAM approach which is based on bundle

adjustment. The purpose of the second measure, the ”point generation likelihood”, is to

evaluate the chance of generating new map points from arbitrary virtual view points. It is

based on our novel variable depth distribution (VDD), which provides a reasonable guess

for the 3D position of yet unmapped 2D features without any prior knowledge of the scene.

The third of our proposed measures allows for an evaluation of the navigational safety of

holonomic aerial vehicles. We use these novel measures in a destination-based planning

approach for multirotor MAVs which makes the resulting system capable of autonomous

explorative navigation. In our experiments we demonstrate the effectiveness of our novel

measures as well as the capabilities of the overall system. We achieve autonomous way-

point navigation with a quadrotor MAV in challenging indoor environments. Furthermore,

we demonstrate that even tasks like a full 360◦ turn in sparsely textured environments can

be achieved through our explorative navigation approach. In all experiments our system

was able to maintain the visual localization at all times.

Keywords. UAV, quadrotor MAV, quadcopter, autonomous explorative navigation, col-

lision avoidance, localization quality, monocular localization, active monocular localiza-

tion, active SLAM, active visual localization
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Kurzfassung

In dieser Arbeit behandeln wir das Thema monokulare ”Simultane Lokalisierung und

Kartenerstellung” (SLAM) von einer aktiven Perspektive. Der wichtigste Beitrag dieser

Arbeit ist die Schließung der Lücke zwischen passiven monokularem SLAM und autonomen

Robotik-Systemen. Während passives monokulares SLAM versucht für jede gegebene

Kamerabewegung die Szene zu rekonstruieren und die aktuelle Kamerapose zu bestimmen,

ist nicht jede Kamerabewegung gleichermaßen für diese Aufgaben geeignet. Um mögliche

Kamerabewegungen hinsichtlich dieser Aspekte zu analysieren wurden drei neue Maße

entwickelt. Das erste Maß nennt sich ”localization quality” und erlaubt die Evaluierung

der Stabilität der monokularen Lokalisierung für beliebige virtuelle Kameraposen. Die

Aufgabe des zweiten Maßes, der ”point generation likelihood”, ist es abzuschätzen wie

hoch die Chancen sind von einem beliebigen virtuellen Blickwinkel aus neue 3D-Punkte

zu generieren. Dieses Maß basiert auf der neuentwickelten ”variable depth distribution”

(VDD), welche die Bestimmung der Tiefe von unkartierten 2D-Punkten auf probabilistis-

che Weise ermöglicht. Mit unserem dritten Maß ist es möglich die Navigations-Sicherheit

von holonomen Fluggeräten zu bestimmen. In dieser Arbeit vereinen wir diese drei neuen

Maße in einem Zielpunkt-basiertem Planungsansatz für Multirotorflugzeuge. In unseren

Experimenten zeigen wir die Effektivität unserer Maße so wie die Fähigkeiten des gesamten

Systems mit einem Quadrotorflugzeug. Selbst in herausfordernden unbekannten Umge-

bungen ist das resultierende System fähig autonom und sicher zwischen Wegpunkten

zu navigieren. Sogar ein volle 360◦ Drehung, welche eine der schwierigsten Aufgaben

für monokulare Systeme darstellt, kann dank der erforschenden Natur unseres Ansatzes

gemeistert werden. In all unseren Experimenten konnte die visuelle Lokalisierung stets

aufrecht erhalten und jegliche Kollisionen vermieden werden.

Schlagwörter. Multirotorflugzeug, autonome erforschende Navigation, Kollisionsver-

meidung, aktive monokulare Lokalisierung, aktive visuelle Lokalisierung
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Chapter 1

Introduction

Monocular reconstruction is a field of growing interest. It allows 3D reconstruction of

objects and environments at minimal cost only using a single passive camera. In order

to achieve a complete reconstruction it is often necessary to acquire images from uncon-

ventional viewpoints, e.g. a bird’s eye view. Images from these special viewpoints can

be very cheaply acquired using Micro Aerial Vehicles (MAVs). To achieve this acquisi-

tion autonomously it is necessary that the system has knowledge of its own whereabouts

(localization) and the capability to move to the desired location (navigation).

For localization most current systems rely on GPS, but in urban surroundings the

signal quality is often too low to achieve an accurate localization. Other sensors, such as

laser scanner or RGBD-cameras, have a very limited depth perception and increase payload

of the MAV, which results in a lower mission time. Recent advances in the augmented

reality (AR) community [12, 37, 54, 71] offer a different path. These works demonstrate

that an accurate localization can also be achieved without any additional senors using

only a single passive camera. This approach is called monocular SLAM (Simultaneous

Localization And Mapping).

Unfortunately, the quality of the monocular localization strongly depends on the avail-

ability of natural landmarks, which can be tracked across a series of images. In general,

it is easy to find such landmarks in regions with rich texture and high contrast, whereas

a lack of texture and low contrast makes it difficult to retrieve suitable landmarks. Fur-

thermore, it is necessary to perceive these landmarks from different viewpoints to obtain

an accurate estimate of the 3D position of the landmarks. As the AR community relies

on the user for the camera motion, current monocular SLAM approaches simply try make

the best of the current situation and fail when the user moves the camera in a wrong

1



2 Chapter 1. Introduction

way, e.g. only rotation without translation. For a human user this does not pose a severe

problem, as he/she still knows where the system last worked and can backtrack the camera

motion to this point. In contrast, a loss of the visual localization is a major problem for

an autonomous system which has no other means to localize itself. This is especially true

for unstable systems like airborne MAVs.

Figure 1.1: Active Visual Localization. Through the analysis of the sparse reconstruction
(black dots) and actively exploring relevant parts of the scene, our system maintains the
visual localization at all times during the way-point navigation.

The aim of this work is to provide means to avoid a localization loss through active

visual localization. This means that instead of assuming that the camera moves in the

correct way, we actively control the camera motion in a way that does not endanger the

visual localization.

For this purpose we propose a novel measure, which we call ”localization quality”.

This measure evaluates the localization stability and can be used to predict a localization

loss. As this measure only depends on the geometry of the reconstruction (map), it can be

calculated for arbitrary viewpoints which makes it possible to respect the need for visual

localization even in the planning phase.

In this work we do not assume that the environment is known at start-up, but instead

treat every flight as an exploration mission. This makes our approach very adaptive to

new environments, but requires the generation of new map points for localization. To

this end, we developed a way of estimating the probability distribution of potential map

points in unmapped regions of the scene. We use this discrete probability distribution to



3

estimate the ”point generation likelihood” for an arbitrary viewpoint. Hence, this novel

measure provides the means for an intelligent generation of new map points.

As an active component, we consider holonomic aerial vehicles in this work. Since we

are aiming for an autonomous navigation system, it is necessary to avoid obstacles and

unknown parts of the scene. In order to achieve navigational safety we build a probabilistic

representation of the environment and use it to estimate the collision probability of the

MAV.

The final contribution of this thesis is a complete active system which is capable

of autonomous explorative navigation using a destination-based planning scheme. The

system can autonomously detect and avoid states with a critical localization stability and

generate new map points whenever necessary.

In the following chapter we discuss research topics which are related to this work.

Chapter 3 outlines our novel measures and Chapter 4 explains how to combine them to an

autonomous explorative navigation system. In Chapter 5 we demonstrate the effectiveness

of our measures and the capabilities of our explorative navigation approach in a series

of experiments. Finally, we conclude this thesis in Chapter 6 with a summary of our

contributions and an outlook for future work.





Chapter 2

Related Work

Contents

2.1 Simultaneous Localization and Mapping (SLAM) . . . . . . . . 6

2.2 Parallel Tracking and Mapping (PTAM) . . . . . . . . . . . . . 9

2.3 View Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Common Navigation Approaches for Monocular Micro Aerial

Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

This work is not limited to a single field of research, but can be regarded as a bridge

between the two very active fields of monocular SLAM and autonomous robots. The first

field, monocular SLAM (Simultaneous Localization And Mapping), is concerned with the

reconstruction of the environment using only a single passive camera and the localization

of the current camera pose in relation to the reconstructed scene. The second field, au-

tonomous robots, is a very versatile and interdisciplinary field of research. Among other

topics, it is concerned with the physical construction of robotic systems, the controlling of

their actuators, ways of perceiving the environment as well as the search for the optimal

plan for a specific task and its execution, i.e. navigation. Of all these topics, this work is

only concerned with the last two; perception and navigation.

As this work creates the bridge between many different research topics, we outline the

most common approaches of each field and relate them to our work. We start with the

topic of robotic perception in Section 2.1. After discussing different perception concepts,

we provide a review of current visual SLAM approaches. In Section 2.2 we use the Parallel

Tracking And Mapping (PTAM) approach of Klein and Murray [37], which we used in

the experimental evaluation of our work, to introduce the reader to relevant aspects of

5



6 Chapter 2. Related Work

feature detection and structure from motion (SfM). After having outlined the perception

model of our system, we discuss the topic of reconstruction uncertainty and relate it to

current approaches of view planning in Section 2.3. The last remaining topic related to

our work is navigation for multirotor Micro Aerial Vehicles (MAVs), which we discuss in

Section 2.4. This topic is not only limited to the execution of motion commands, but also

tackles collision avoidance and path planning.

2.1 Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping (SLAM) is a very active field of research and

grants a system (passive or active) the notion of location awareness in an unknown envi-

ronment. It consists of two tasks, namely localization and mapping, which are strongly

interwoven. On the one hand, the system wants to construct a map using the current

sensor readings and the information of the robot’s current location, whereas on the other

hand, the system wants to estimate the robot’s current location using the current sensor

readings and the already constructed map. As neither the map can be constructed with-

out localization nor localization can be achieved without a map, the two tasks are solved

simultaneously.

Pioneer work in this field of research was done by Smith et al. [66, 67] as well as Durrant-

Whyte et al. [15, 16, 42]. These works formulate SLAM as a probabilistic problem based

on Gaussian noise models for the robot motion as well as the sensor readings. Through

this formulation the solution for both tasks, localization and mapping, can be found by

maximizing the likelihood of the solution. This maximum likelihood solution can be found

through Monte Carlo simulation and particle filtering as described in [51, 74]. This kind of

probabilistic formulation is very general and can be adapted to all kind of range sensors.

Consequently, a range of different sensors for robotic perception have been proposed

over the years. Early works [8, 41] used ultra-sonic sensors, i.e. high-frequency sonars, to

acquire two-dimensional depth estimates around ground robots. Nowadays, these sensors

are still in use, but mostly for one-dimensional problems such as height measurement. In

general, range measurements of sonars contain a high amount of noise and have a very

limited range, i.e. a few meters.

Currently very popular sensors are laser range finders, also known as laser scanners,

which are a special type of lidar1. A lidar sensor illuminates the scene with a laser and

1According to the Oxford University Press [55] the word ”lidar” resulted from the blending of the words
”light” and ”radar”.
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analyzes the reflected light in order to measure distances. In laser scanners the laser

is reflected by a rotating mirror which results in range measurements along the plane

of rotation of the mirror. The accuracy and range of such a sensor strongly depends

on the power of the laser. As aerial vehicles have only a very limited amount of power

available, the range of suitable laser scanners is limited to only a few meters. Compared to

sonar sensors the noise of the measurements is drastically lower and the spatial resolution

significantly higher. Grzonka et al. [25] as well as He et al. [29] have successfully used laser

scanners for MAV localization in indoor environments. The limited range of the sensors

and the fact that range readings are only provided on a single plane limits systems which

exclusively use laser scanners for sensing to the operation in simple indoor environments.

Another type of lidar, namely the Time-of-Flight (ToF) camera, increases the depth

perception from a single plane to a three dimensional cone. These sensors use a regular

image grid similar to passive RGB-cameras, but actively determine the depth value for each

pixel. Other RGBD-camera systems, like the Microsoft Kinect2 or Asus Xtion3, use infra-

red projectors for active depth measurement. Such depth-sensing camera systems have

shown promising results for MAV navigation and exploration in indoor-environments [2,

52, 63]. Unfortunately, ToF- and RGBD-cameras suffer from the same problems as all other

active sensors. Through the active projection of light the maximum depth perception is

limited by the available power of the projected light, which restricts systems depending

on this information to indoor environments.

An alternative to active sensing technologies is passive vision. Passive visual sensors

have two main advantages over active ones. First of all, they have a lower power con-

sumption as they use the available light instead of actively projecting light themselves.

Secondly, the range of passive visual sensors is only limited by atmospheric influences

such as the humidity of the air. This enables high range perception at a low cost, which is

perfectly suited for low-power systems like MAVs. In the following paragraph we discuss

the topic of visual SLAM in more detail.

Visual SLAM. One way to achieve SLAM with passive sensors is to use a stereo camera

pair. In general, such stereo cameras are mounted parallel to each other with a fixed

distance between the cameras, i.e. a fixed baseline. This camera pair can then be calibrated

together and the disparity between the image pairs can be used to estimate the depth of

the scene. Schauwecker et al. [61] have shown that it is possible to control an MAV based

2http://www.microsoft.com/en-us/kinectforwindows/
3http://www.asus.com/Multimedia/Xtion PRO/
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on the readings of a stereo camera and Fraundorfer et al. [23] have even succeeded in

building a stereo-based MAV system which is capable of autonomous outdoor exploration.

However, the maximum depth perception of the system is limited by the width of the

baseline between the cameras and the resolution of the cameras. This property drastically

limits the depth perception for micro aerial vehicles, which can only achieve a very limited

baseline due to their own small size. If we think of the current trend towards even smaller

so called ”nano aerial vehicles” [5, 40], the possible baseline of camera pairs is further

decreasing.

Recent advances in the Augmented Reality community [12, 37, 54, 71] have opened the

door to another way of depth perception which only uses a single camera as exteroceptive

sensor; i.e. monocular SLAM. The depth estimation of this approach is achieved in a

fashion which is very similar to the stereo depth estimation. Instead of using two cameras

at the same time, the monocular approach uses the same camera at different points in time

at different positions in the world. Under the assumption of a static environment, this

enables the system to adapt the baseline between image pairs to achieve an accurate depth

estimate no matter how far away the objects of interest are located. A further advantage

of this approach is that a single camera only consumes half the power of a stereo camera

pair and also adds only half the payload to the MAV. These properties make a monocular

approach very attractive for micro aerial vehicles and even more so for nano aerial vehicles.

There are currently two different ways to approach the topic of monocular SLAM; i.e.

filtering [10, 12, 17] and batch optimization [37, 71]. In general, both ways model the

uncertainty of the camera pose and the 3D correspondences through Gaussian distribu-

tions. The difference is how this uncertainty is used to improve the estimate of the current

state (pose and measurements). On the one hand, the standard algorithm for filtering,

the EKF (Extended Kalman Filter), retains only the current pose and a vector of features

via mean vectors and covariance matrices. On the other hand, the standard algorithm

for optimization, BA (Bundle Adjustment), keeps a subset of past poses and a vector of

features as well as the interconnections between them. This whole graph is then globally

optimized to minimize the reprojection error. As a global optimization technique, BA

shows a cubic complexity to the number of keyframes and was therefore not considered

for real-time SLAM until the introduction of Parallel Tracking and Mapping (PTAM) by

Klein and Murray [37]. In their approach they separate the localization and the mapping

part of SLAM and run them in two distinct threads. Thus, it becomes possible to achieve

real-time localization, while using global bundle adjustment (GBA) to improve the map
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in the background. In order to avoid solely relying on a global optimization with cubic

complexity they additionally use local bundle adjustment (LBA). Holmes et al. [30] show

that LBA can be achieved in constant time by using a relative data representation.

Strasdat et al. [72] have shown that BA-based SLAM outperforms filter-based SLAM

in matters of accuracy, whereas they argue that filter-based SLAM might still be the better

choice in systems with a very limited computing power. Recent advances in the field of

BA-based SLAM [39, 77, 79] soften this minor disadvantage in demonstrating that BA-

based monocular SLAM can be achieved on devices with very limited resources, such as a

mobile phone or onboard an MAV. This and the significant difference in the reconstruction

accuracy motivated us to focus our research on BA-based approaches.

In this work we propose a novel measure which can be used to query the localization

quality for an arbitrary viewpoint. For the calculation of this measure we only use infor-

mation which is available in every BA-based SLAM approach. Consequently, the proposed

measure is independent of the actual implementation and does not only work with a sin-

gle SLAM package. For our experiments we have decided to use Parallel Tracking and

Mapping (PTAM) [37] with some adaptations by Weiss et al. [77] and ourselves. We have

chosen PTAM as it has proven to be well-suited for the task of monocular MAV controlling

as a myriad of works testify [1, 18, 19, 36, 77, 80]. In the next section we use PTAM as

an example to introduce the reader to selected topics of structure from motion and visual

SLAM which are relevant for our work. Furthermore, we use this context to outline the

most important modifications to the original version of Klein and Murray [37].

2.2 Parallel Tracking and Mapping (PTAM)

”Parallel Tracking and Mapping” is a monocular SLAM approach which was originally

developed by Klein and Murray [37]. Due to its good performance and its free availability

it became very popular and now exists in many different versions developed by a variety

of research groups, such as [19, 39, 77, 80]. As a basis for our work we used the version of

Weiss et al. [77], which is available as a ready-to-use ROS package4.

In this section we explain the general characteristics of the PTAM approach and relate

the aspects which have a large impact on our work to other relevant literature in the

corresponding field. We start the section with a general overview of the approach. Then

we provide a detailed survey on visual landmarks, also known as ”features” or ”keypoints”,

as they make up the foundation of the localization, the mapping as well as the optimization

4http://ros.org/wiki/ethzasl ptam
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scheme. We finish this section with a detailed description of the mapping and localization

procedures of the PTAM approach.

2.2.1 Overview

The aim of the approach is to use a constant stream of images (frames) as input and

determine from which viewpoint (camera pose) each frame was taken in relation to a known

coordinate system. To achieve this it is necessary to concurrently solve the localization as

well as the mapping task. This can be seen as a chicken and egg problem. Without a map

the system cannot localize itself and without a proper localization it cannot build a map.

To solve this problem the camera pose of the first frame is assumed to be known.

From a different perspective it could be interpreted that this frame defines the reference

coordinate system. In a next step visual landmarks (features) are detected in the image.

In finding the corresponding landmarks in another frame, which was taken from a slightly

different viewpoint, the system estimates the relative camera motion and the 3D position of

the landmarks. The scale of the reconstruction is arbitrary as it is impossible to determine

the effective scale of the scene without prior knowledge. The collection of 3D landmark

positions (3D points) is then regarded as ”map”.

Using the map it is now possible to track the known landmarks from frame to frame.

In using the 3D information of the landmarks and their 2D location in the current frame,

the approach then estimates the camera pose of the current frame in minimizing the

reprojection error. This procedure implements the localization task of SLAM and has to

be realized in real-time at the frame rate of the camera.

As the camera moves along it is necessary to add new landmarks to the map in or-

der to maintain the localization. Theoretically, it would be possible to search in every

frame for new landmarks. The problem with this approach is that successive frames are

nearly identical to each other which would lead to an unnecessary computational bur-

den. To overcome this problem PTAM selects only ”informative” frames which are called

”keyframes”. The selection is done in a heuristic fashion and only frames are chosen which

are more than a minimum distance away from already added keyframes. To realize the

necessary real-time performance of the localization procedure, a newly added keyframe is

not handled right away, but instead pushed into a queue of potential keyframes, which is

processed in another thread; the mapping thread.

Opposed to the localization thread, the mapping thread has no hard real-time con-

straints. It is no problem if it lags behind a little bit when some new keyframes are added
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in a short time, because it only has to keep up with the average rate of newly added

keyframes. In general, this rate is far lower than the camera frame rate and depends on

the speed of the camera motion.

When a new keyframe is added, the system searches for yet unmapped landmarks

which are also visible in another keyframe. Similar to the initialization it is then possible

to determine the 3D position of these new landmarks and add them to the map. When

there are no new keyframes in the queue of the mapping thread, the system first applies

local bundle adjustment and then global bundle adjustment to improve the map. Thus it

optimizes the map whenever there is time left to do so. In the following subsection we will

discuss the nature of the visual landmarks and how they can be detected and tracked.

2.2.2 Visual Landmarks

Visual landmarks have been used for centuries for nautical localization and navigation in

form of stars or light houses. The advances in recent research have widened the spectrum

of possible visual landmarks drastically. We will call these ”visual landmarks” from here

on simply ”features” to fit the general nomenclature in current literature. Basically every

image structure, i.e. patterns, corners, blobs, regions etc., is well suited to be a feature

if it fulfills the following three conditions: Firstly, a good feature should be repeatably

detectable from different viewpoints and under varying light conditions. Secondly, the

feature should have a precise location in the image and the real world. Finally, the feature

should be well distinguishable from other structures in the image. Note that this definition

already mixes feature detection, description and matching, as these aspects are not always

easy to separate. In the following paragraph we will focus on the feature detection and

neglect the third condition, which is mainly part of the feature description and matching.

Feature Detection. Theoretically, it is possible to skip the feature detection step and

to directly treat each pixel or sub-pixel and its neighborhood as a feature. This approach

easily leads to a vast number of features of which most cannot be unambiguously matched,

e.g. all black patches in an image look very similar. This leads to a strong uncertainty

in the location of the feature correspondences and a very high computational cost in

matching. The main task of the feature detection is to reduce the search space as well as

the location uncertainty for feature matching. For this task many types of features have

been proposed, such as corners, blobs or regions. All detection procedures, no matter

which type of feature they search for, analyze a set of pixels to find some sort of salient
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image structure. To reduce the location uncertainty, many approaches estimate 2D image

coordinates for the salient image structures with sub-pixel accuracy. These 2D image

coordinates are also called ”keypoints”, as they represent a salient feature through a

single point. For corners this would correspond to the intersection between the two edges

that make up the corner and for blobs it would correspond to the centroid. All feature

detectors which output 2D image coordinates for the detected features are consequently

called ”keypoint detectors”. In the following we provide an overview of the most relevant

feature detection approaches for the task of localization.

The most widely used keypoint detectors are the SIFT (Scale-Invariant Feature Trans-

form) [45] and the SURF (Speeded Up Robust Features) [3] detectors. The idea of both

approaches is very similar and both make use of the Hessian Matrix and thusly the sec-

ond derivatives. SIFT uses the Difference of Gaussians (DoG) to detect the characteristic

scale of the blob in a scale space pyramid based on the theory of Lindeberg [44]. To

separate corners and blobs from edges this approach uses the trace and determinate of the

Hessian Matrix to assess the curvature of the region. SURF [3], on the other hand, can

be seen as a further approximation to SIFT which uses integral images instead of image

pyramids. This makes the integer approximation of the Hessian Matrix extremely fast,

and the scale can be determined in using different sized masks. Matas et al.[48] proposed

a completely different type of region detector. They detect Maximally Stable Extremal

Regions (MSERs), which are regions of an arbitrary shape. The regions are obtained by

consecutively thresholding a gray-value image and keeping track of the regions. Regions

which stay the same over a large interval of thresholds are considered maximally stable.

According to [50] the MSER detector achieves the highest score in most cases compared

to other affine region detectors. Donoser and Bischof [13] have also proposed an efficient

way to track MSERs. The biggest drawback of MSERs is that, to our best knowledge,

no efficiently parallelized version exists, which leads to a considerable longer computation

time than SIFT or SURF, which have both been ported to the GPU [7, 65].

Another approach to keypoint detection makes use of the first derivatives using the

second moment matrix. By analyzing the eigenvalues of this matrix edges as well as

corners can be detected, as edges have a large gradient in one direction and corners in

more than one direction. Harris corners [27] avoid the expensive calculation of eigenvalues

in analyzing the determinant and trace of second moment matrix, which made it more

popular than Shi-Tomasi [64] which is based on the eigenvalues.

An approach without derivatives was proposed by Smith and Brady [68] with the SU-
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SAN corners (Smallest Uni-Value Segment Assimilating Nucleus Test). This approach

compares the brightness values of pixels in a circular region to the center pixel. Pixels of

similar brightness form the Uni-Value Segment Assimilating Nucleus (USAN). In subtract-

ing the size of the USAN from a geometric threshold, edges and corners can be detected

(for corners the threshold is lowered). The advantages of this approach are that it is

more robust to noise than approaches based on derivatives, and that it has no expensive

calculations such as eigenvalues. To further speed-up the corner detection for real-time

applications Rosten and Drummond have proposed ”Features from Accelerated Segment

Test”(FAST) [59]. Very similar to SUSAN, FAST compares the center pixel to its neigh-

borhood, but instead of a circular area only a circle of 16 pixels is considered. To simplify

the detection criterion even further, a pixel is considered a corner if a connected set of

nine pixels (FAST-9/16) is either darker or brighter than a threshold which depends on

the brightness of the center pixel. In order to speed up this comparison, a ternary decision

tree is learned, to reduce the number of comparisons for a specific scene. To generalize

this optimization for arbitrary scenes Mair et al. [47] propose the ”Adaptive and Generic

Accelerated Segment Test” (AGAST). They suggest to replace the specialized ternary tree

with two binary trees. One tree is optimized for structured and the second for homoge-

neous image regions. Using dynamic programming the tree can easily be switch at the

leaves of the tree, if a new region is entered.

Feature Detection in PTAM. The feature detection in PTAM happens in the local-

ization thread which has a hard real-time constraint and has to keep up with the camera

frame rate. Thus it is necessary to detect features as fast as possible. Consequently, the

original PTAM [37] uses FAST-9/16 for the feature detection. Prior to the detection,

PTAM builds an image pyramid with four different scale levels as FAST has no inherent

way of scale detection. Then it detects FAST corners on each pyramid level. To reduce

the number of responses, PTAM applies non-maximal suppression and thresholding based

on the Shi-Tomasi [64] score on each pyramid level.

In our implementation we follow the example of Weiss et al. [77] and use AGAST

instead of FAST as Mair et al. [47] report a significantly improved performance compared

to FAST at no additional cost.

Feature Description. Feature detection approaches which were designed to establish

point correspondences across images with a wide baseline, such as SIFT [45] or SURF [3],

calculate a descriptor for each detected feature. These descriptors always try to balance
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two competing goals. On the one hand, descriptors are required to be very descriptive, as

to distinguish similar features from each other. On the other hand, they should be robust

against noise, illumination change and viewpoint variation, which lessens the descriptive-

ness of the descriptor.

The calculation of descriptors which are covariant to viewpoint changes, e.g. SIFT [45]

or SURF [3], comes at a significant computational cost. To realize the extraction in real-

time the algorithms have been parallelized and ported to the GPU [7, 65]. The calculation

of viewpoint covariant descriptors is necessary for wide baseline matching, because they

do not make any assumptions about the camera pose or the world.

As we are doing simultaneous ”localization” and ”mapping”, we have very specific

assumptions about the viewpoint relation between frames as well as a the location of

features in the real world. Therefore, PTAM [37] skips the expensive calculation of a

feature descriptor and uses the original gray-scale image instead. For a detected keypoint,

PTAM only saves the 2D location in the image and the detection level in the image

pyramid and defers the viewpoint and illumination invariance to the matching stage. In

the following two subsections we will discuss the topic feature matching in the context

of mapping and localization. During mapping the system only knows the spatial relation

between frames and has only a limited knowledge of the scene, whereas during localization

the system has very detailed knowledge of the scene but only a rough estimate of the

current camera pose.

2.2.3 Mapping

In PTAM ”mapping” refers to the generation of a sparse reconstruction of the scene.

Through the estimation of the spatial relation between frames and known feature corre-

spondences between them, it is possible to estimate the 3D location of the feature points

in the real world. The less the system knows about the scene and the relation between the

frames, the more effort it takes to extract the necessary information. In this subsection we

first discuss the initialization of the map, where the knowledge of the scene and the rela-

tion between frames is at its minimum. Then we cross over to the case where the current

camera pose is known in relation to the already constructed map because of the localiza-

tion procedure. Finally, we discuss when and how the constructed map is optimized using

bundle adjustment.
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2.2.3.1 Initialization

The initialization of a 3D map with a single pair of images, without knowledge about the

scene or the relative camera motion between the images, is an ill-posed problem. Even in

theory it is not possible to determine the scale of the reconstruction without additional

knowledge. In the next paragraph we explain how the problem of map initialization is

solved in the original version of PTAM by Klein and Murray [37]. Then we cross over to

other PTAM versions which were specifically adapted for the use of micro aerial vehicles

and discuss the possibilities of scale estimation.

Map Initialization by Klein and Murray [37]. In the original version of PTAM the

map initialization is done with two keyframes. The first keyframe is taken when the user

presses a key. In this keyframe they first search for feature points and initialize 1000 tracks

with these points. Then the user is required to translate the camera sideways in a smooth

motion. During this motion they track the initial feature points from frame to frame.

When the user hits the key for the second time, they use the tracked features as corre-

spondences between the first frame and the current frame. With these correspondences

they use the five point algorithm of Stewénius et al. [70] to estimate the essential matrix.

The essential matrix defines the epipolar geometry between two images. If the calibration

of the camera is known this matrix can be used to determine the relative motion of the

camera between the images up to scale. After fixing the pose of the first keyframe in the

origin of the map coordinate system, they triangulate map points using the tracked feature

points. In embedding the essential matrix estimation in a RANSAC [21] procedure, they

robustly estimate the camera pose of the second keyframe as well as the initial map. In

a further step they use bundle adjustment to refine the resulting map. This leads to a

map with an arbitrary scale. In the next paragraph we discuss possibilities to add further

information to achieve a metric reconstruction.

Scale Estimation. The original version of PTAM by Klein and Murray [37] was de-

veloped for the purpose of augmented reality. For tracking a hand-held camera it is not

necessary to reconstruct the scene in a metric scale, but it is sufficient to know the relative

relation between the camera motion and the 3D feature points. Thus, they just assume

that the baseline between the initial pair of keyframes is 10 cm to insert the 3D model in

the AR visualization at roughly the right scale. This kind of inaccurate scale estimation

might be sufficient for augmented reality, but is hardly satisfactory for robotic navigation.
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If the user tells the robot to move 3 meters, the robot should move 3 meters as accurately as

possible and not move a different distance after each initialization. Consequently, several

research groups took different approaches in setting the scale of the reconstruction.

In general, there are two basic ways of achieving metric scale. The first possibility is

to initialize the map with a rough scale estimate (similar to Klein and Murray [37]) and

then correct the scale using sensors with metric information. Achtelik et al. [1] implement

the scale adaption with an EKF which uses accelerometer and pressure sensor information

for the scale estimation. In contrast, Engel et al.[18] use accelerometers and an ultrasonic

altimeter as input for a maximum likelihood estimator of the scale. Both approaches need

significant vertical motion of the MAV for a proper scale estimation.

The second possibility is using a known relation between the first pair of keyframes.

This method has the advantage that no computational power or mission time needs to be

wasted on scale estimation after the initialization. Wendel et al. [80] use an ARToolKitPlus

marker [76] to determine the camera pose relative to the marker. This approach has some

disadvantages. As the marker contains points on a single plane, this approach has problems

in distinguishing rotational from translation motions if the marker is nearly parallel to the

image plane. Furthermore, the depth estimation accuracy strongly depends on the space

the marker occupies in the image. For a very accurate depth estimation the marker has

to be prominent in the image, but in occupying a large area of the image, it is blocking a

large part of the scene, which we want to reconstruct. In this work we take a very simple

but effective approach to fixing the scale. Instead of having an object of a known size in

the scene like Wendel et al. [80], we use an initialization platform with a known baseline.

The two initial frames can then directly be treated like the images of a stereo rig. As

there is no rotational motion between the frames, wide baseline feature matching can be

achieved extremely fast using BRIEF - descriptors of Calonder et al. [6]. These descriptors

consist of a string of binary responses to pair-wise pixel comparisons and can be matched

using the Hamming distance instead of the Euclidean distance. This approach leads to a

very fast initialization of the system at a metric scale.

2.2.3.2 Keyframe Selection

After a successful initialization of the map, the next question of interest is the selection

criterion of the keyframes. In the original version of PTAM [37], a frame is chosen as a

keyframe if the distance to all existing keyframes exceeds a fixed threshold. Weiss et al. [77]

use a different heuristic. Instead of just using the metric distance to the closest keyframe,
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they analyze the median pixel displacement between the current frame and the closest

keyframe. They add a new keyframe if the median pixel distance exceeds a fixed threshold.

This approach leads to problems when the camera is steadily oscillating at the same

position. In this case, more and more keyframes are added due to the pixel motion

although they all contain the same information.

For our explorative approach it is important to have a cue where to look for potential

map points. Thus the keyframe selection criterion is very important. First we analyze the

Euclidean distance to the closest keyframe, similar to the original version of PTAM [37].

Instead of using a fixed distance threshold, we adapt the threshold depending on the

median scene depth. The threshold is set in such a way that if a map point would exists

perpendicular to the camera motion with a depth equal to the median scene depth, then

this point should have a sufficiently large triangulation angle (0.04 rad in our experiments).

Should a frame be too close to an existing keyframe it could still be valuable as it might

look into an unexplored direction. Thus we also add frames if the rotational distance to

all keyframes, which are within the conflicting metric distance, is sufficiently large (0.2 rad

in our experiments).

2.2.3.3 Feature Matching

Due to the localization part of the approach, the pose of camera of each keyframe is already

known when it is added. Additionally, the feature tracking procedure has already estab-

lished some feature correspondences. As the maximum number of concurrently tracked

features is limited by a fixed value, the tracking will very likely miss some of the cor-

respondences. To maximize the number of correspondences, all existing map points are

reprojected into the current keyframe and matched as described in the next paragraph.

Search for Map Correspondences. The search for correspondences of map points in

a new keyframe is based on a template-based matching criterion. An existing map point

is defined by a 2D location in its original keyframe as well as its detection scale. As the

viewpoint might have considerably changed from the original to the current keyframe, it

is necessary to warp the neighborhood of the map point. This warping, which is done

with an affine transformation, tries to answer the question what the region around the

map point would look like in the new keyframe. For answering this question, PTAM

assumes two properties of the region around the map point. Firstly, it is assumed that the

region around the point can be well approximated by a planar patch. Secondly, PTAM
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assumes that the normal of this patch is oriented parallel to the principle axis of the

camera pose of its source keyframe. The matrix for the affine warping transformation is

found by analyzing the effects of unit pixel displacements in the source keyframe on the

reprojection in the new keyframe. Using the determinant of this matrix, it is also possible

to find the right scale level for the template search.

After warping the region around the map point into the image plane of the new

keyframe, PTAM performs a template search using 8 × 8 pixel patches in a fixed range

around the predicted location of the map point in the new keyframe. The search is per-

formed in analyzing the zero-mean sum of squared differences (ZMSSD) score between

the warped patch and the patches of the feature points within the search radius. PTAM

declares a successful match if the score of the best match is below a fixed threshold.

Through this search new correspondences to existing map points can be established for

map optimization.

Search for New Map Points. When the camera is moving away from its initialization

pose it is necessary to add new points to ensure localization. To add new map points

PTAM searches for correspondences between feature points in the new keyframe and the

keyframe whose camera pose is located closest to the new keyframe. Choosing the closest

keyframe has the advantage that the images are very similar to each other and no patch

warping needs to be performed. The search is done using the epipolar geometry between

the images. To speed up the search they do not search along the whole epipolar line for

correspondences, but restrict the search to a likely depth of the map point using the mean

value and the standard deviation of the scene depth. Furthermore, PTAM only searches

for points on the same pyramid level as the candidate feature and rejects points which are

too close to existing map points. PTAM declares a match if the ZMSSD score of the best

correspondence is below a fixed threshold.

In our implementation we have added two further means of point rejection. Firstly,

we do not add map points if they have feature points with a similar appearance close by.

Such points are not very discriminative and will very likely be wrongly matched during

tracking. To achieve this we simply analyze the ratio of the ZMSSD score between the best

match and the second best match. We only accept a map point if the score of the second

best match is twice as high as the score of the best match. The second rejection criterion

is meant to keep the depth uncertainty of the new map points reasonably low. This is

realized through enforcing a minimum triangulation angle of the map points to reject

far away outliers. The theoretical background for this rejection method can be found
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in Section 2.3.1. Note that both rejection methods do not change the computational

complexity of the problem in any way.

2.2.3.4 Map Optimization

PTAM uses a batch optimization technique known as bundle adjustment (BA) for the

map optimization. This method minimizes the overall reprojection error of the whole

map. Given a pair of a 3D map point and a corresponding 2D feature point in a keyframe,

the feature point can be seen as a measurement of the 3D map point. The reprojection

error of this pair is the pixel distance between the actual feature point and where the 3D

point should be visible in the image according to the projection model. Instead of solving

a least-squares problem, PTAM minimizes the overall reprojection error with a biweight

Tukey objective function which makes the optimization more robust to outliers. The opti-

mization is done in an iterative scheme which is called sparse Levenberg-Marquardt bundle

adjustment as described in [28]. This optimization concurrently optimizes the location of

the 3D map points as well as the camera poses of all keyframes. As it is an iterative

optimization approach, it needs a good initialization to converge to the correct solution.

In taking advantage of the sparseness of the optimization problem, the complexity of the

optimization scheme can be reduced to O(N3), where N is the number of keyframes. Al-

though the complexity is independent of the number of map points, it still comes with a

large computational burden for a large set of keyframes. Klein and Murray [37] report

a computation time of tens of seconds for 150 keyframes. In general, this is no problem

if the system is not currently exploring new parts of the scene, as this means that the

system can spend a lot of time on the optimization. On the other hand, if the system

is currently exploring there will be no time to perform a global optimization. To over-

come this problem, PTAM uses local bundle adjustment (LBA) prior to the global bundle

adjustment (GBA). This means that, instead of using the whole set of map points and

keyframes, they reduce the set to a smaller size which is relevant for the current keyframe.

The set of keyframes which is to be optimized is reduced to a fixed size of 5 keyframes; the

new keyframe and the four closest keyframes. The set of points is reduced to all points

which are visible from this subset of keyframes. The set of all keyframes, which contain a

measurement of any of the map points in the selected subset and are not already in the

subset of the 5 variable keyframes, are treated as ”fixed” in the optimization process. The

rest of the keyframes and map points are not considered at all for the LBA. The LBA

approach of Klein and Murray [37] has a worst time complexity of O(NM), where N is
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the number of keyframes and M the number of map points. Holmes et al. [30] show that

in using a relative data representation LBA can be achieved in constant time.

2.2.4 Localization

Camera localization in PTAM is achieved through the tracking of already mapped points

with known 3D coordinates. For the tracking procedure PTAM uses a motion model of the

camera. This means that when a new frame is received, the model assumes that the relative

motion of the camera is similar to the last iteration. PTAM uses this motion propagation

to initialize the camera pose of a new frame. Then it refines the pose in a coarse to fine

manner. In the first step, PTAM searches for a small number of map points on the coarsest

scale level. The search is done in the same manner as the search for already existing map

points in the mapping procedure. This means that they warp the neighborhood of the map

points in the source keyframe into the current frame and compare the resulting patches to

features in a fixed distance around the ”should be” locations of the map points. Then they

use the resulting matches to refine the camera pose using a technique which is very similar

to the map optimization. They use the same Tukey objective function to minimize the

reprojection error, but this time all points treated as fixed and only the current camera

pose is refined. After this coarse optimization, they search for a great number of map

points (1000) and repeat the camera optimization procedure.

Localization Loss and Recovery. As PTAM is a passive localization approach it is

always possible that the motion of the user causes a loss of the visual localization. While

PTAM cannot predict when a loss of the localization is going to happen, it is able to

detect when the localization is lost. In this case it switches to a recovery procedure based

on tiny images [38]. PTAM subsamples every keyframe to a size of 40×30 pixels, blurs the

image with a Gaussian kernel and subtracts the mean intensity of the image. After losing

the visual localization PTAM applies the same procedure on the current frame. Then it

compares this small blurry version of the current frame to the existing keyframes to find

the most similar keyframe based on the SSD score. The camera pose of the current frame

is first initialized with the pose of the most similar keyframe and then the camera rotation

is refined using direct second-order minimization. Finally, the normal tracking procedure

is reinitialized with the found pose.

In our experimental Section 5.2 we provide a detailed analysis on the topic feature

detection probability, localization loss and recovery in conjunction with viewpoint changes.
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In Section 3.1 we demonstrate how this information can be used to predict a loss of

localization before it can occur.

2.3 View Planning

In this work we are aiming for active visual localization. In other words this means that

we aim to plan the motion of the camera in such a way that we maintain the visual

localization. This problem can therefore be seen as a view planning problem. Opposed

to our work, the current literature in the field of view planning solely focuses on the

optimization of the uncertainty and the completeness of the reconstruction. While the

completeness of the reconstruction has no impact on the quality of visual localization, the

reconstruction uncertainty plays an important role as we use the 3D reconstruction for

the localization. As the reconstruction uncertainty directly influences the uncertainty of

the localization, it is important to keep the reconstruction uncertainty as low as possible.

In this section we first discuss the topic of reconstruction uncertainty and then cross

over to the topic of next-best-view (NBV) planning. We survey this field of research

with regard to our work and explain how some of the ideas can be used for active visual

localization.

2.3.1 Reconstruction and Localization Uncertainty

The quality of a reconstruction which was created by a structure from motion approach

depends on many factors. These factors include the uncertainty of the camera calibration,

the 2D image location uncertainty of feature detectors, the percentage of outliers as well

as the uncertainty propagation in space and over time which can lead to a drift in the

reconstruction. Not all factors have the same effect on the overall uncertainty of the

reconstruction.

The uncertainty of the reconstruction in SfM originates from the imperfection of the

visual system (lens distortion, sensor noise, discretization and quantization), the error in

approximation of the lens distortion as well as the location inaccuracy of the response

of the feature detector. The error through the lens distortion and its modeling can be

summed up as the uncertainty of the camera calibration. On the one hand, the very

recent research by Daftry et al. [9] shows that the quality of the camera calibration has a

significant impact on the reconstruction accuracy. On the other hand, Ozog and Ostice [56]

demonstrate that the explicit modeling of the camera calibration uncertainty can improve
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the reconstruction only if the feature detection error is very small (standard deviation of

below 0.3 pixels in a laboratory) and does not lead to a significant improvement for a real

world example using a SIFT [45] feature detector.

The inaccuracy of the feature detector strongly depends on the sensor noise and the

image resolution. Note that the principle of feature detection and matching is a heuristic

which emulates the behavior of human beings as discussed by Kanatani [34]. Consequently,

it is not straight forward to find a suitable mathematical model for the uncertainty of the

feature detection step. The general approach is to assume the location uncertainty follows

a Gaussian distribution as the intensity variation in the neighborhood of feature points is

typically unrelated [34].

Under the assumption of Gaussian noise for the feature point location, it is now possi-

ble to express the uncertainty of 2D feature points through a two-dimensional covariance

matrix. As the 2D points contain noise, it is not possible to directly determine the actual

location of the 3D point through the intersection of image rays. Finding the location of a

3D point from more than two views is an overdetermined problem. To find the best esti-

mate of the 3D point location all approaches try to minimize some kind of error function.

Simply solving the least squares problem of the reprojection error makes the triangulation

very sensitive to wrong matches. PTAM [37] uses the Tukey biweight function to be more

robust to those outliers. Alternatively, it is possible to increase the robustness of the point

triangulation in embedding it in a RANSAC [21] procedure. All these approaches can

be seen as maximum likelihood estimators (MLEs) for the location of a 3D point in a

continuous probability distribution which represents the location uncertainty.

Beder and Steffen [4] model the 3D point uncertainty very similar to the 2D point

uncertainty in assuming a 3D Gaussian distribution. Instead of intersecting image rays,

they project the Gaussian distributions of the 2D feature point uncertainties and basically

intersect the resulting cones to estimate the uncertainty of the 3D point. They represent

the 3D point uncertainty through a covariance matrix. If one would visualize the resulting

uncertainty it would correspond to an ellipsoid. An example is shown in Figure 2.1.

Beder and Steffen [4] then analyze the singular values of the covariance matrix to

determine the best image pair for fixing the scale of the reconstruction. They argue that

the uncertainty of a 3D point is minimal if the shape of the Gaussian distribution resembles

a sphere. Therefore, they analyze the ratio between the largest and the smallest singular

value of the covariance, which reflects the ratio between the largest and the smallest axis

of the ellipsoid representing the distribution. As the 2D Gaussian noise distribution in
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Figure 2.1: Relation between point uncertainty and triangulation angle. A small triangu-
lation angle (left) leads to a large uncertainty along one axis, whereas a large triangulation
angle(right) has a significantly smaller uncertainty. The triangles with the red lines rep-
resent the uncertainty of the projected image measurement. The red ellipses are the
graphical interpretation of the covariance matrices, which are defined through the geo-
metric constellation as well as the variance of the image measurements. The black dots
represent the real world feature point, whereas the black lines represent the projections of
the image measurements.

the images is assumed to be the same overall images, this measure now only depends

on the geometric constellation, i.e. the triangulation angle of the 3D point. That the

point uncertainty is mainly dependent on the triangulation angle was also observed by

Rumpler et al. [60] in the context of stereo reconstruction.

Another way to reduce the uncertainty of a 3D point is using more measurements of

this point; i.e. more views the 3D point is visible in. More measurements would mean that

there a more ”votes” for the 3D point location, which can be seen as more discrete samples

of the underlying probability distribution. Note that a measurement only corresponds to
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a ray and not a point, thus care has to be taken in the selection of the images. Using

images from the same view over and over again can only reduce the uncertainty of the

image ray and does not necessarily lower the depth uncertainty of the 3D point. Moreover,

Sugaya and Kanatani [73] have observed that there is a strong correlation between the

uncertainty over the frames of a video stream. This means that taking a lot of sequential

frames from the same position very likely leads to a convergence to a wrong value as

the independence assumption of the samples is strongly violated. Klein and Murray [37]

overcome this problem by enforcing a minimum spatial and temporal distance between

the keyframes selected for the reconstruction.

Eudes and Lhuillier [20] present a way to propagate the uncertainty of the keyframe

poses and the 3D points in form of covariances in the context of local bundle adjustment

(LBA). They use a Taylor approximation to achieve first order error propagation. This

error propagation is still computational expensive and can only be realized in real-time

with an unrealistic independence assumption and parameter tuning. Furthermore, this

assumption can only be used in combination with a special LBA approach of Eudes and

Lhuillier [20]. They also present a more realistic (weaker) independence assumption which

is more general and can be used with other LBA approaches, but cannot be computed in

real-time.

As we approach the topic of localization and reconstruction from an active and ex-

plorative perspective, it is important that the uncertainty estimation of 3D points can be

calculated in real-time. To achieve the real-time performance, we do not use the expensive

calculation and analysis of covariance matrices, but instead use a heuristic based on the

triangulation angle. This heuristic does not represent the real uncertainty of a 3D point,

but can be used as a cue to determine the relative uncertainty between points.

2.3.2 Next-Best-View Planning

The research topic of Next-Best-View (NBV) planning is concerned with the improvement

of a 3D reconstruction. On the one hand, this means that they aim to remove outliers and

reduce the uncertainty of inliers. On the other hand, this topic is also concerned with the

maximization of the completeness of the reconstruction. As inferable from the name, Next-

Best-View algorithms try to find the next best viewpoint for acquiring the next image given

the current reconstruction state. The definition of ”best” strongly depends on the task

as well as the available information. Consequently, there are a lot of different approaches

to the view selection. Most of the literature is ”only” concerned with the optimization of
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the 3D reconstruction and its completeness, whereas we want to additionally guarantee

localization safety and the generation of high quality map points which allow for a high

accuracy localization.

The general approach in reducing the uncertainty of the reconstruction is to use a

cost function which is based on covariance matrices. Wenhardt et al. [81] analyzed which

optimization criterion based on covariances is better suited for the NBV selection. They

compared three different optimization criteria. The first one, the D-optimally criterion, is

an entropy minimization based on the determinant of the covariance matrix. The second

criterion, the E-optimally criterion, minimizes the largest eigenvalues of the covariance

matrices and the third criterion, the T-optimally criterion, minimizes the trace of the

covariance matrices, which corresponds to a minimization of the sum of eigenvalues. Their

results suggest that all three criteria are equally suited for the NBV selection.

Pioneer work on the topic of active vision was done by Davison and Murray [11] fifteen

years ago. Their EKF-based active vision system consisted of a pair of two movable

cameras on a non-holonomic ground robot. Opposed to more recent approaches, they

only use a handful of feature points for mapping and tracking. They represent the location

uncertainty of the map points through covariance matrices. To decrease the uncertainty

of the map points, they select map points with a high innovation gain for tracking. This

means that they try to observe a map point as perpendicular as possible to the axis of

the highest uncertainty of the point so as to reduce the uncertainty of this point. This

criterion is strongly related to the E-optimally criterion.

Other approaches, such as [14, 31], do not simply optimize the reconstruction uncer-

tainty of a sparse scene representation (point cloud), but use meshing techniques to ad-

ditionally incorporate visibility constraints. Hoppe et al. [31] use the 3D mesh to reduce

the space of possible camera poses and respect the point visibility via ray casting. Using

this additional information they optimize the E-optimally criterion while considering the

necessary camera overlap through counting the number of mesh triangles which are visible

in neighboring cameras. Dunn and Frahm [14] also incorporate the matching probability

into their optimization scheme which consists of three parts. The first part aims to reduce

the reconstruction uncertainty in rewarding orthogonality between the major axis of the

uncertainty and the new viewing direction. This is achieved through penalizing the norm

of the product of the viewing direction vector with the eigenvector matrix. The second

part uses the 3D mesh to determine the visibility of a surface patch. In analyzing the

area which a surface patch occupies in the image projection, they can determine whether
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a patch is visible at all as well as estimating how likely it is for a patch to be recognized.

The third part also incorporates the surface texture saliency by measuring the entropy of

the autocorrelation. These three parts are then combined to a single function so that all

three criteria can be jointly optimized.

Another approach by Trummer et al. [75] uses an extended version of the E-optimally

criterion. In assuming a spherical camera motion they can find the shortest path to the

optimal solution in a closed form. The drawback of this formulation is that it only allows

the optimization of one point at a time.

Haner and Heyden [26] propose a more general approach. They concurrently minimize

the camera path as well as the reconstruction uncertainty. In their cost function they

multiply the trace of the covariance matrix (T-optimally criterion although they call it A-

optimally) with a weighted function of the camera path. In their view planning algorithm

for visual SLAM, they initialize the camera trajectory with a discretely sampled linear

interpolation between the current pose and the target camera pose. Then they use their

cost function in a Levenberg-Marquardt optimization scheme to find the optimal path.

The complexity of the path optimization is O(MN), where M is the number of discrete

samples on the path and N the number of considered feature points. They report that the

optimization is not yet suited for real-time applications without limiting the number of

considered feature points. Note that this approach does not consider the topics of collision

avoidance, point visibility or localization quality.

All of the NBV criteria, which have been proposed up to the present, do not quite fit

our purpose as the main aim of our work is not the improvement of the reconstruction

but the stability of the visual localization. As the localization accuracy depends on the

reconstruction uncertainty, we incorporate a term which penalizes a high point uncertainty

in our optimization criterion. As we aim for real-time performance with thousands of

map points and camera positions, we do not base this term on the expensive analysis

of covariance matrices, but use a heuristic based on the point triangulation angle only.

Inspired by the work of Dunn and Frahm [14], we also incorporate the feature recognition

probability depending on the viewpoint. This probability can be computed extremely fast

without an expensive meshing step through analysis of the geometric constellation of the

feature observation as described in Section 3.1.
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2.4 Common Navigation Approaches for Monocular Micro

Aerial Vehicles

The idea of an autonomous robot which operates only with a single camera has not just

recently appeared. Over the last twenty years many researchers have approached the topic

from various sides. The early work in this field [43, 53, 69] mainly focuses on the detection

and avoidance of obstacles using optical flow and insect-inspired motion patterns. Very

recent work by Ross et al.[58] has demonstrated that a reactive controlling behavior for

MAV flight in cluttered environments can be learned using AI training techniques.

The problem of systems which rely solely on reactive controlling is that they have a

very limited location awareness. This means that they can see that an obstacle is in front

of them, but they do not know e.g. in which part of the forest they are or where they

came from. Simply using inertial sensors for localization is insufficient as these sensors are

in general very inaccurate, which leads to a drastic drift in the pose estimation. To allow

for a drift-free localization other exteroceptive sensors are necessary.

One approach is to use an external high-frequency and high-accuracy tracking system.

Using such a state estimation, impressive results of aggressive flight have been achieved [46,

49]. However, this kind of state estimation limits these approaches to the laboratories,

which is not what we aim for in this work.

A more general approach is to equip the MAV with additional sensors and perform

SLAM for pose estimation. On the one hand, additional sensors can be used for a better

localization, on the other hand, they increase the payload on the MAV. Opposed to ground

robots, MAVs have a very limited maximum payload and also a very limited time frame for

operation. An increase of the payload directly leads to a decrease of the effective operation

time. In this work we aim to achieve autonomous MAV navigation with a minimum of

exteroceptive sensors. This means that we only use a single light-weight low-cost passive

camera to achieve visual localization.

Another important difference between multirotor MAVs and ground robots is that an

airborne MAV is an unstable system. This means that even for a ”simple” task as ”not

moving”, i.e. hovering, it needs permanent pose feedback and controlling efforts. Thus a

lot of current research focuses on the topic of monocular servoing [1, 18, 19, 36, 78, 80].

These works demonstrate that MAV controlling can be achieved with a single passive

camera, although the pose estimates contain significantly more noise and arrive far less

frequently than the pose estimates of external tracking systems.

All the monocular MAV controllers mentioned above can be seen as absolute pose
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controllers. This means that they are aware of the current camera pose with respect to

a world coordinate system and aim to move the MAV towards a predefined pose in this

coordinate system. Such a controller enables the flight on arbitrary linear trajectories.

In this work we make use of this trait in our destination-based local planning scheme

described in Chapter 4. Instead of sending any destination to controller, we send the

optimal reachable destination in the local neighborhood. For our experiments we use the

controller of Wendel et al. [80], but any other pose controller would work just as fine.

In our experiments we demonstrate that our planning approach is very resilient against

navigational imperfection.

2.4.1 Path-Planning and Collision Avoidance

The topics of collision avoidance and path-planning have always been closely related. In

path-planning one seeks to find a path on which the robot can move as safely and as fast

as possible towards a destination.

In dynamic environments it is not sufficient to only consider collision avoidance in the

planning phase, e.g. a path which was available earlier can now be blocked by a person.

Therefore a lot of research is concerned with the topic of reactive obstacle avoidance for

monocular systems [43, 53, 58, 69]. The very recent work of Ross et al. [58] is concerned

with ”teaching” a monocular MAV to ”learn” the right reactions to avoid obstacles. Us-

ing state-of-the-art learning techniques they achieve impressive results for the flight in

cluttered environments.

The drawback of reactive collision avoidance with monocular systems is that it lim-

its the ”allowed” motion patterns to a single direction, which is in this case ”forward”.

Unfortunately, a simple forward motion is insufficient to generate sufficiently large trian-

gulation angles for accurate monocular SLAM. This leads to two competing requirements.

On the one hand, the safest way to move is forward as the camera points in this direction

and thereby allows obstacle detection, on the other hand, an accurate map can only be

constructed if the MAV motion contains a large component perpendicular to this direction.

As obstacle avoidance is not the main goal of this work but more a necessity for

experimental evaluation, we simply assume a static environment. This assumption makes

it possible to remember the location of obstacles and also free space, which drastically

improves the agility of the monocular MAV as it can now fully use all the available degrees

of freedom and is not limited to a narrow motion cone.
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Scene Representation. For ground robots the most popular representation of the en-

vironment is a two-dimensional probabilistic map. For this representation many efficient

local as well as global planners are available as open source5. Such a 2D representation

has also been used for indoor mapping with MAVs [25, 62]. The problem with this repre-

sentation is that it is based on the assumption that the world only consists of horizontal

ground planes and vertical walls. This means that even objects which are typically found

in indoor environments, such as chairs or tables, cannot be represented properly. The

advantage of this approach is that mapping and planning can be achieved with freely

available and well tested approaches, but by using this representation the only advantage

of MAVs over ground robots, i.e. the increased mobility, is unnecessarily reduced.

So as to use the full capabilities of an MAV a 3D scene representation is essential.

Shen et al. [63] demonstrate that autonomous indoor exploration with a quadrotor MAV

in multi-level indoor environments can be achieved with a probabilistic 3D map represen-

tation. Opposed to our work, they soften the problem in using additional sensors, i.e. an

active RGBD-camera and a laser scanner, for the exploration task.

A probabilistic 3D map has the disadvantage of having a memory consumption which

is cubic to the scene size and that it does not inherently provide support for monocular

SLAM. However, this probabilistic representation has one major advantage over other

more efficient representations, such as a point cloud or a surface mesh. This advantage

is the explicit representation of free and unknown space. For a safe navigation it is of

utmost importance to reduce the MAV motion to areas in the scene which are known to be

unoccupied; i.e. free space. Simply avoiding known obstacles can easily lead to collisions

with obstacle in unknown parts of the scene. In order to ensure a safe navigation for

our MAV, we decided to use a probabilistic map alongside with the sparse point cloud

generated by PTAM [37]. In our experiments we used the efficient probabilistic map

implementation of Hornung et al. [32], which is based on an octree representation and keeps

the memory consumption minimal through representing unknown space only implicitly via

null pointers in the tree.

Path-Planning. Path-planning in 3D is a very complex problem. If one would directly

treat the volumetric 3D representation as a graph-optimization problem, the maximum

size of the map would be very limited. Even a small map of 10 m in each dimension with

a coarse resolution of 10 cm would lead to 106 nodes and approximately 14 · 106 bidirec-

tional edges (allowing diagonal transition). To reduce the graph to a feasible size current

5http://www.ros.org/wiki/navigation
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approaches, such as [33, 63], use randomly sampled Probabilistic Roadmaps (PRMs) [24]

or some sort of Rapidly-exploring Random Trees (RRTs) [35]. A suitable and collision

free path can then be extracted using standard graph search algorithms like A* or D*.

The approaches mentioned above aim to find a collision free path for MAVs. In this

work we augment the problem one step further. As we are restricting our system to a

localization based on a single passive camera, it is crucial not only to plan the three-

dimensional trajectory of the MAV with respect to collision avoidance, but additionally

consider the field of view of the camera at all times. Although graph-based path-planning

methods could be extended to the required four-dimensions (3D position + yaw), several

reasons motivated us to take a different approach. While a collision check in a tree-

based probabilistic map can be calculated very fast (O(d) where d is the tree depth),

the evaluation of the visual localization requires the evaluation of the projection of all

map points. Thus, the runtime of a simple validity check of a vertex in the graph now

becomes linear to the number of map points. Furthermore, the evaluation of the visual

localization has not only to be calculated for each vertex in the graph but also each edge

as we have to ensure localization safety at every point in time. As a multirotor MAV is

an unstable system, unforeseen disturbances like turbulences or network lags can always

cause the MAV to stray significantly from the planned path. In such a case the whole

planning procedure has to be repeated which can hardly be achieved with a graph-based

approach in real-time. For these reasons we decided to take a local planning approach,

which can be calculated very fast and thus can be easily repeated. Our proposed adaptive

destination-based planning scheme is described in Chapter 4.

2.5 Summary

In this chapter we discussed several fields of research of which all are related to this work.

The myriad of related research topics shows the complexity of the problem at hand. In the

next chapter we outline three novel measures; the localization quality, the point generation

likelihood, and the collision probability. These three measures are the main contribution

of this work and can be seen as the pillars of the bridge between passive monocular SLAM

and active monocular localization.
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Active monocular localization is a combined expression with a deeper meaning than

the sum of its terms. Nevertheless, we will revisit each term on its own for a better clari-

fication of the combined meaning. The meaning of ”localization” can be simply described

as knowing where something is in relation to a known structure. In our case, this means

knowing the pose of the camera and the MAV in relation to a predefined origin. ”Monoc-

ular” states that the only exteroceptive sensor that is used for this localization is a single

camera. The ”active” component basically means to ”actively” choose a pose to improve

the localization, while performing a certain task,which is in our case reaching a destination

pose. But this raises the question: What pose is the best to choose?

One of the main contributions of this work is providing an answer to exactly this ques-

tion. In this chapter, we concern ourselves with how to measure the quality of a given

camera/MAV pose, in order to find the ”best” pose available.

The task of active monocular localization has two competing aspects. The first aspect

is to keep the overall state of the system safe and sound. On the one hand, the system

should respect the physical availability and safety of a pose and stay away from any objects

31
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and unknown environments. On the other hand, it is necessary to keep the monocular

localization as accurate and stable as possible to ensure a safe navigation.

While the first aspect makes the system stay at a safe and well-known location with

a good localization, the second aspect is concerned with achieving a higher level goal.

In our case, the main goal is to reach a predefined destination pose. However, simply

moving towards the destination pose on the shortest possible path will very likely lead

to a loss of the visual localization, as most of the scene is still unexplored after the

initialization. Consequently, it is necessary to explore the scene up to an extent that

allows for a navigation without localization loss.

Satisfying all aspects concurrently is a non-trivial task, for which this work proposes a

solution. This chapter focuses on how to measure the competing aspects, whereas Chapter

4 describes how to combine those measures to an autonomous explorative navigation

system.

The remainder of this chapter is structured as follows. Section 3.1 describes a novel

measure, called localization quality, which respects the uncertainty as well as stability of

the monocular localization for an arbitrary camera pose. Section 3.2 introduces a novel

measure for the likelihood to generate new points from an arbitrary camera pose with

the aim of ensuring localization safety through the generation of new useful map points.

Section 3.3 outlines a way to estimate the safety of an MAV pose, through the estimation

of the collision probability using a probabilistic occupancy grid. Finally, Section 3.4 closes

this chapter in summarizing the three proposed measures.

3.1 Localization Quality

Monocular localization has mainly been developed by and for the Augmented Reality

community. Consequently, most approaches such as PTAM [37], DTAM [54], MonoSLAM

[12], ScaViSLAM [71] follow a passive localization approach. In other words, this means

that the user can move through the scene and the MonoSLAM system tries to find the

best possible localization. The AR community can hardly restrict the motion of the user

to valid motions, so there was no urgent need to predict the probability of a localization

loss, although the user could also benefit from this information. In contrast, it is clearly

possible to restrict the allowed motions of the active component in the robotics domain.

Most approaches such as [12, 71] simply assume that sufficient information is available

for localization. The closest measure to a localization failure prediction was proposed by

Klein and Murray [37]. They keep track of the ratio between the number of successfully
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tracked points and the number of points considered for tracking. Sadly, this measure

only provides a very limited prediction scope as it is solely based on the current tracking

information. In their implementation (PTAM) the tracking quality is represented by three

states; namely good, dodgy and bad. The states are only separated by fixed thresholds

of the previously mentioned ratio. In practice, the tracking quality tends to switch from

good to bad within a split second without giving any prior warning.

To widen the prediction scope, we design a measure which is independent of the actual

tracking state and can be computed for arbitrary virtual or real camera poses. In order

to avoid the expensive calculation of the reconstruction uncertainty based on covariances

[4, 22], we base this novel measure solely on geometric properties of the reconstructed

scene. All that is needed is a structure that we call a ”linked point cloud”.

A linked point cloud consists of the set of 3D points (map points), the set of cam-

era poses (keyframes) and the information which point was observed from which camera

(links). Basing our novel measure exclusively on the geometric constellation of the linked

point cloud results in another appealing property aside from a fast computation. All the

information needed for the construction of a linked point cloud is available in every point-

based MonoSLAM framework, as this information is essential for the 3D point generation

and optimization. Consequently, it is possible to use the measure in combination with

nearly all currently available MonoSLAM frameworks, such as PTAM [37] or ScaViSLAM

[71].

We call this novel measure ”localization quality” as it represents the inverse likelihood

of losing the visual localization. The localization quality measure itself is based on two

other novel measures. The ”geometric point quality” measure approximates the reliability

and localization uncertainty of a point in the linked point cloud, whereas ”point recognition

probability” measure represents the likelihood of recognizing such a point from a given

viewpoint. The following subsections will explain the necessary steps to calculate the

proposed measures as well as how to combine them in more detail.

3.1.1 Geometric Point Quality

The main purpose of the geometric point quality measure is to provide an estimation of

the reliability and location uncertainty of a point in the linked point cloud structure. This

can be seen as the estimation of the ”reconstruction uncertainty”, which is a very active

field of research. In the next paragraph we shortly summarize the general approach of

modeling the uncertainty of 3D points as well as its relation to the point triangulation
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angle. A thorough survey of current literature in this field can be found in Section 2.3.1.

In general, the location uncertainty of a point can be well modeled with the assumption

of a Gaussian distribution around the location of the detected 2D image correspondence

of a 3D point. For the point projection task, this means that a projection ray is then

accompanied by a cone-like probability distribution. To model the actual location uncer-

tainty of the 3D point, one can use a covariance matrix, which represents the multivariate

Gaussian probability density function of the intersection. The extent of the uncertainty is

mainly dependent on the uncertainty of the 2D image correspondences and their relative

triangulation angle.

As we want to avoid the expensive calculation and analysis of covariance matrices, we

only use the point triangulation angle for our geometric point quality measure. The idea

of our formulation is to reward large triangulation angles as they potentially decrease the

location uncertainty of the 3D points.

Furthermore, we incorporate the probability of a point being an outlier into our quality

measure. Outliers originate from wrongly matched keypoints, which produce 3D points

without a real world correspondence, i.e. a point in thin air. Every SfM approach suffers

to some degree from outliers even if outlier rejection is applied at every step of the recon-

struction chain. It was observed that a high percentage of bad outliers, i.e. map points

that are far away from any object, has only very few image correspondences. An example

is shown in Figure 3.1. We integrate this observation in a heuristic which penalizes points

with too few image correspondences.

The remaining part of this subsection will provide the mathematical formulation of

the geometric point quality measure.

Penalizing the Point Uncertainty. For a fast estimation of the location uncertainty

of a point, we neglect the uncertainty of the individual image measurements and solely

consider the relative triangulation angles of a 3D map point. The proposed angle depen-

dent quality qα of a map point is based on the maximum value of all relative triangulation

angles, as it has the biggest influence in limiting the point uncertainty. The following

formulation keeps the computational cost very low, while still penalizing points with a

high localization uncertainty.

First of all, let the relative triangulation angle αf (i, j) between a 3D map point f and

two keyframes i and j be defined as

αf (i, j) = acos(
vfci · vfcj

‖vfci‖ · ‖vfcj‖
), (3.1)
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Figure 3.1: Example of the relation between outliers and the number of image measure-
ments in a natural scene. Top left: Original image from the MAV of a natural wall with
vegetation. Top right: The same image with tracked points from PTAM [37]. Row 2-4:
The point cloud reconstructed from 28 keyframes viewed from the side. The red points are
severe outliers, without any real world correspondence, whereas the black points can be
seen as valid map points. The blue object symbolizes the camera of the MAV at its cur-
rent location facing the wall. Each reconstruction figure only shows points with a specific
number of keyframe measurements (links).
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where vfci and vfcj are the vectors from the currently concerned 3D map point f to the

camera centers ci and cj of the keyframes i and j.

Then we only consider the maximum angle between a point f and its keyframes, as it

has the biggest influence in limiting the point uncertainty

αmax = max{αf (i, j) : i, j ∈ Kf}, (3.2)

where Kf is the set of keyframes, which contain a measurement of point f .

Thus, we can define the triangulation angle dependent point quality qα as

qα =







αmax/αcap if αmax ≤ αcap

1 otherwise
, (3.3)

where αmax is the maximum angle, which is scaled and capped by the angle αcap. The

limitation of the angle through αcap has two main reasons. Firstly, it is necessary to scale

the quality between 0 and 1. Secondly, it is wise to limit the power of the angle rewards

and penalties, as it was observed that the largest triangulation angle is often found on

outliers which appear very close to the camera. The parameter αcap basically defines which

triangulation angle can be regarded as ”sufficiently large”. In matters of uncertainty this

can be interpreted as a ”sufficiently low” point uncertainty.

Note that the value of αcap does not have to be defined by hand, but can be inferred

at start up. In our experiments we set this parameter in a ”what you see is what you get”

manner. To infer the value of αcap we analyze the linked point cloud when we start our

autonomous mission. First, we push the maximum triangulation angle of each point into

an array and sort the array according to these angles in an ascending order. In order to

be robust to outliers, we do not set αcap equal to the maximum value of this array, but

instead use the nth element. This nth element is selected very similar to the median value.

The only difference is the instead of choosing the element at 1
2 ·N , where N is the size of

the array, we choose the element at 3
4 · N . In other words this means that we disregard

the quarter of the array with the largest triangulation angles. This automatic inference

renders a manual parameter adaption to new scenes unnecessary and helps the system to

adapt to the present flight scenario.

Respecting the Outlier Probability. An image measurement of a map point can be

seen as a proof of its existence. Hence, the probability of a point being an outlier decreases
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with its number of linked keyframes. The proposed quality qout aims to penalize map points

that have a low number of links as they have insufficient proof of their existence. Thus,

we define the outlier penalizing point quality qout as

qout =







1 if |Kf | ≥ Ng

|Kf |/Ng otherwise
, (3.4)

where |Kf | is the total size of the keyframe set of point f . Ng represents a ”good” minimum

size for the set for which the outlier probability is sufficiently low.

The Geometric Point Quality. Finally, we define the overall geometric point quality

as a product of the angle dependent and the outlier penalizing quality measures. This

leads to the resulting quality qf of a 3D map point f as

qf = qα · qout. (3.5)

Through this definition a point can only get a high score if its maximum triangulation

angle is sufficiently large and it has a sufficient number of image measurements to attest

its existence. An example of the two dimensional quality function for Ng = 4 is illustrated

in Figure 3.2.

Figure 3.2: Example of the geometric point quality function qf for Ng = 4 as in Equation
3.5. The function itself is color coded and dependent on the number of linked keyframes
|Kf | (horizontal axis) as well as the maximum relative triangulation angle αmax (vertical
axis) of a 3D map point f .
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3.1.2 Point Recognition Probability

For monocular tracking and localization it is very important that already generated 3D

map points can be repeatedly recognized over a series of images. Consequently, it is

important to know if a certain map point will be recognizable from a certain viewpoint.

For instance, consider a richly textured wall which is represented in our reconstruction

through a notable amount of coplanar map points. Let these map points all be generated

from the same pair of keyframes. If we simply translate the camera a few centimeters

from the original position, then nearly all map points will be recognized. In contrast, if

the camera is moved farther, this can significantly change the viewing direction as well as

the distance to the map points. This changes the appearance of the associated real world

features of the map points in the 2D image, which results in a decrease in the number of

recognized map points.

Note that the recognition probability strongly depends on the type of the used features.

For our experiments we set the parameters of our model to fit the feature detection system

of PTAM [37]. In our model, we respect the scale difference as well as the angle variation

from the original viewpoint of the key frame to the viewpoint of an arbitrary query frame.

Viewing Angle Dependency. Let us assume that the world can be approximated by

planar patches. Then the projection of a patch in the image contains a maximum of

information if the principle axis of the camera is oriented parallel the patch normal. If we

increase the relative angle between those two vectors, i.e. change the viewing angle, this

means that area of projection shrinks. Hence, the larger the relative angle grows the less

information is contained in the image. When the relative angle reaches 90◦ or more, the

image contains no information about the patch.

Thus, it is plain that there exists a relation between the viewing angle and the

point recognition probability for every detection approach. The evaluation of Mikola-

jczyk et al. [50] on affine region detectors suggests that this relation has nearly linear

properties between 20◦ and 60◦. Our own experiments with feature detection system of

PTAM [37] in Section 5.2 support this notion. Therefore, we model the recognition proba-

bility with a piecewise linear function. We define the viewing angle dependent probability

function pα(k, i) between a keyframe k and an arbitrary query frame i for a map point f
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as

pα =



















1 if αf (k, i) < α0

1−
αf (k,i)−α0

α1−α0
if αf (k, i) ≥ α0 and αf (k, i) < α1

0 otherwise

, (3.6)

where αf (k, i) is the angle between the keyframe k and a query frame i as defined in

Equation 3.1, and α0 and α1 are constants which can be determined experimentally.

Scale Dependency. Changing the distance to a map point inherently changes the scale

of the associated feature of the map point in the image. Respecting scale is more complex

than the angle, as most systems (including PTAM [37]) are based on an image pyramid.

Thus, one has to respect at which scale the original feature was detected to know at which

scale the recognition probability starts to decay. For instance, if the feature of a map

point is extracted at the finest scale (the original image), it is possible to detect the map

point on a coarser level if the camera is moved closer to the feature. On the other hand,

if the camera is moved farther away it is not possible to detect the same map point on a

finer scale level as there is no such level. Consequently, there is a strong difference in the

resilience to scale changes depending on the pyramid level the map point was originally

detected on.

Similar to the viewing angle dependent case, we use a piecewise linear function to

approximate the recognition probability observed in our experiments. In contrast to the

angular case, the shape of this function is very similar to the silhouette of a hill with a

flat top. Furthermore, the parameters of this function vary for each possible scale level.

Let the relative scale change of a feature point f between a keyframe k and an arbitrary

query frame i be defined as

s(k, i) =
d(f, i)

d(f, k)
, (3.7)

where d(f, i) and d(f, k) are distances from the feature point f to the camera centers of

the frames i and k respectively. Then the recognition probability of a map point f depends

on the scale level l on which the associated feature was originally extracted in keyframe k

and the relative scale change from keyframe k to the query frame i. Thus, we define the
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scale dependent recognition probability as

ps =



































s(k,i)−S0,l

S1,l−S0,l
if s(k, i) ≥ S0,l and s(k, i) ≤ S1,l

1 if s(k, i) > S1,l and s(k, i) < S2,l

1−
s(k,i)−S2,l

S3,l−S2,l
if s(k, i) ≥ S2,l and s(k, i) ≤ S3,l

0 otherwise

, (3.8)

where S∗,l are experimentally determined constants of the extraction scale level l of the

concerned map point f .

Point Recognition Probability. The final recognition probability is a two dimensional

function which depends on the relative angle and scale difference between the extraction

keyframe of a map point and a query frame. An illustration of the resulting probability

function can be found in Figure 3.3.

The overall recognition probability pf of a map point f can then be simply defined as

pf = pα · ps. (3.9)

Figure 3.3: Recognition probability function for map points detected on the finest pyramid
level. The recognition probability is color-coded and depends on the viewing angle (vertical
axis) and change in scale (horizontal logarithmic axis).
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3.1.3 Localization Quality Measure

The main aim of the localization quality measure is to prohibit the system from losing

the visual localization. In that sense, it is very important that the measure does not

only represent the inverse localization uncertainty, but also incorporates the localization

robustness of a given pose. Our proposed measure is designed to express the robustness

against three important disturbances: First of all, the measure incorporates the feature

recognition probability with respect to viewpoint changes, as discussed in the previous

subsection. A second relevant disturbance is unpredictable occlusion. Although the task

of this work is the navigation in a static environment, a system which is very sensitive to

occlusion can only be used under laboratory conditions. Under normal conditions, e.g. in

urban areas, there will always be motion in the scene, in terms of people, cars, or trains.

Consequently, it is always possible that parts of the scene will become unpredictably

occluded during the execution. Finally, it is crucial for our autonomous system to respect

navigational imperfection. Even if the MAV has reached a pose, it will never stay at the

exact same position, but always move slightly, as it is a highly dynamic system and even

holding a position in the air is an instable state. To respect all three disturbances as well

as the position uncertainty of the 3D map points, we propose a grid based measure. The

main purpose of the grid is to group and reduce the data for further processing. On the

one hand we want to maximize the data reduction, on the other hand it is necessary to

retain sufficient location information for our further processing steps. In our experiments,

we set the side length of the grid to 8 bins in each direction. Empirically, we found that

this size is the smallest power of two which still retains sufficient location information. An

example of the 8x8 grid is shown in Figure 3.4.

Figure 3.4: Image with tracked map points. Blue lines represent the borders of the 8x8
image bins, which are used to simplify the data.
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Data Reduction. Firstly, we project the already mapped points back into the virtual

image of the query frame. Then we sum the information of all map points inside a bin b

to a single score s0(b)

s0(b) =
∑

f∈b

pf · qf , (3.10)

where pf is the point recognition probability of a point f as defined in Equation 3.9 and

qf is the point quality as defined in Equation 3.5. Note that by this definition, the score of

a bin with only one high quality point can be equal to the score of a bin containing a lot

of low quality points. As not to over-reward huge amounts of points in a bin, we limit the

maximum quality of a bin to s0,max. This value, very much like αcap, can be automatically

set at start up. When we receive the command that starts our autonomous mission, we

analyze the bin scores for the current camera position. Then we use the maximum score

of all analyzed bins as s0,max. Using the maximum score, we can define the normalized

quality qb of a bin b as

qb =







s0(b)
s0,max

if s0(b) < s0,max

1 otherwise
. (3.11)

Localization Uncertainty Reduction. The general approach for the monocular lo-

calization uses the reprojection error to optimize the camera pose estimate. Similar to the

depth uncertainty of a 3D point, the location uncertainty of a camera pose increases if

the relative angles between the camera and its linked 3D points decreases. As the relative

angles get smaller the spatial distance between the 2D image correspondences of the 3D

points declines as well. This leads to an increasing influence of the 2D location uncertainty

and consequently an increased depth uncertainty of the pose estimate.

To ensure that the influence of the 2D uncertainty is kept minimal, we want to reward

large distances between the image correspondences of the 3D map points. Hence, we define

the relative score of a bin not only on its own value, but in relation to the other bins and

their geometric constellation.

Each bin b has a distance dmax(b), which is defined as the maximum possible distance

from this bin to any other bin. Using this measure we then define the relative score sr(x)

of a bin x from the total set of bins B as

sr(x) = qx ·max
y∈B

{qy ·
d(x, y)

dmax(x)
}, (3.12)

where d(x, y) is the relative distance between the bins x and y. Through this formulation
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a bin can only score high, if it has a good quality score itself and there exists another bin

with a high quality which is located far-away in the image. In averaging over all bins we

can then obtain what we call level-0-quality

q0 =
1

|B|
·
∑

x∈B

sr(x). (3.13)

Note that through averaging this measure rewards views with well distributed image cor-

respondences as these views are very robust to unpredictable occlusion.

Robust Grid Pyramid. The level-0-quality measure is a very good basis but has two

major drawbacks. Firstly, to achieve a high score nearly all bins have to contain features,

which in urban surroundings will hardly ever be the case and does not necessarily have to

increase the localization quality. Secondly, it does not incorporate the robustness against

the positioning error in any sense.

Figure 3.5: ”Robust” grid pyramid. The red lines mark the borders of the image bins.
The green rectangles mark the areas which are considered for the bin calculation. The
higher levels (1 to 3) are calculated from the maximum value of the bins below.

To overcome this problem, we build a ”robust” pyramid of the 8x8 bin set as depicted
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in Figure 3.5. The pyramid is based on maximum values rather than the mean. This

leads to a better score for scenes that have good features, which are evenly distributed in

the image, but do not cover all of the scene. Furthermore, we disregard the outer regions

of the image in the higher pyramid levels. Thus, the localization quality becomes more

robust to pose displacements, as they are more likely to survive translational and rotational

navigation errors. For our experiments, we have chosen to disregard the outmost ring of

bins on level 1 and 2 and an additional ring on level 3. The scores of each pyramid level

are then averaged and each level-x-quality represents the localization quality with respect

to a different level of feature density and distribution as well as robustness. The final score

can be simply obtained by averaging all levels as

qlocalization =
1

4
·

3
∑

i=0

qi. (3.14)

3.2 Point Generation Likelihood

Another topic which is neglected in current passive MonoSLAM approaches is the fact

that not every scene or viewpoint is equally suited for the map generation. Yet again, the

current approaches originate mainly from the AR domain and rely on a human user to move

the camera in such a way that the system has enough information to produce a reasonable

pose estimation and an estimate of the current environment. Most present MonoSLAM

approaches rely on some sort of salient features to find correspondences and to be able to

perform structure from motion. No matter which salient feature is concerned, the scene as

well as the visual projection of the scene (the image) have to contain enough information.

Information is not found in equality and repetition, but in change and variation. Especially,

this means that large homogeneous regions always pose a problem for feature matching

and localization, as they only contain information at their borders. If these homogeneous

regions get too large or the camera gets too close, no borders are visible and the image

does not contain any information which could be used for map generation or localization.

In human-built environments homogeneous regions appear everywhere, e.g. uniformly

colored walls or floors. But they are also present in natural environments in the shape of

a blue sky, a field covered with snow or just a low textured region in the shade. In order

not to lose the visual localization, it has to be ensured that the camera only adopts poses

which contain enough useful information.

In this work, we do not assume that all relevant 3D map points are known from the
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start, as this would require the user to explore the scene by hand in advance and would

consume a considerable amount of time for every new scene. Quite contrary, we treat

every ”mission” as an explorative task. This means that after a short initialization of

the system, only a small fraction of the scene is known. Consequently, new points have

to be generated, in order to reach the destination without losing the visual localization.

As mentioned above, homogeneous regions do not contain enough information for visual

localization. This results in the possibility that some paths cannot be taken to reach a

destination, or worse, that some destinations cannot be reached without losing the visual

localization. In order to find a suitable path to a destination, and determine if along this

path enough new points can be generated, it is crucial to have an estimate where to look

for new points.

In the general structure from motion approach, the first step is to detect salient 2D

feature points, which are used in a later step to establish correspondences across multiple

images. We propose to make use of these 2D feature points, as well as the already mapped

3D points, to locate unmapped areas which are well-suited to create new map points. For

the generation of potential 3D points two main steps are necessary.

First, one has to separate already mapped areas from the unmapped ones. Given a

new keyframe, we found that it is not sufficient to simply find correspondences to other

images, and treat all unmatched feature points as potential new points. This approach

leads to numerous potential points in regions which are very rich in texture, even if they

have already been mapped very thoroughly. To overcome this problem, we propose to

use a binning approach to reject points in already mapped areas. Our approach rejects

all potential points of a bin if the bin contains more than a threshold t reprojected map

points. An example can be seen in Figure 3.6.

Secondly, it is necessary to get a depth estimate for the new potential points, in order

to find a suitable viewpoint for the point generation. Without prior knowledge about the

topology of the scene, the best guess for the depth of unmapped parts of the scene is

given by the already mapped points. One approach would be to simply take the mean or

the median depth value of all currently visible map points as a guess for yet unmapped

feature points in the image. But in assigning a single depth value to all feature points in

the unmapped parts of the image, the system becomes incapable to handle multi depth

scenes. For instance, imagine a scenario where 50 percent of the map points lie on a

prominent foreground object with a mean depth of 2 meters and the other 50 percent are

part of a far away background with a depth of 20 meters. Then this simple approach would
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Figure 3.6: 2D feature point rejection scheme for the potential point map generation.
Top: Original image from PTAM [37], where the colored dots represent tracked 3D points.
Middle: The original image overlain with an 8×8 grid and green fields. The intensity of
the green color corresponds to the number of feature points located in the bin. Note
that homogeneous regions do not contain any information and therefore no feature points.
Bottom: The blue overlays represent bins for which no potential 3D points are projected,
as the bin already contains enough map points.
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either search for new map points in a depth of 11 meters for the mean value or in a depth

of 2 or 20 meters for the median value. The mean depth approach would search for points

in thin air 9 meters away from any object, whereas the median depth approach would

disregard either the fore- or the background. Both approaches do not use the available

information to its full extent.

As a solution for this problem, we use the available depth information of the currently

tracked map points to estimate a depth probability distribution of the current view. To

keep the computational effort manageable, we use a discrete depth approximation scheme.

First of all, we generate a histogram of the depth values. Unlike normal histograms, this

one has a fixed number of bins, but adapts the value range to the current scene. The

maximum value range is set equal to the maximum depth value of the tracked points.

Then the thresholds of the histogram bins are set so that they split the maximum range

into equal parts. Thus, the histogram automatically adapts to the present scene. To avoid

a degeneration of the histogram through far-away outliers, we insert only map points with

a sufficiently large triangulation angle.

Then we calculate a probability for each histogram bin according to the percentage of

points it contains. Furthermore, we assign a depth value to each bin, which is equal to the

mean depth of all points contained in the bin. We call this collection of mean depth and

probability values ”variable depth distribution” (VDD). A detailed schematic example of

the VDD construction process can be found in Figure 3.7.

Using the set of 2D feature points, the VDD and the pose of the keyframe camera,

one can generate a map of potential 3D points. Opposed to a normal point cloud, a point

in this map does not only hold information about the location of the point but also its

probability of existence. This is achieved through projecting n 3D points for each 2D

feature point, where n is the number of bins in the VDD with a point occurrence greater

than zero. A real world example can be seen in Figure 3.8.

The MonoSLAM framework used for our experiments (PTAM [37]), detects thousands

of feature points per frame, if the scene is richly textured. Using all these points would

be very costly and result in a very large potential point cloud. Empirically we found that

a small random subset of points (n = 100) is sufficient to represent areas which are well-

suited for point generation. This keeps the amount of potential points reasonably low,

while still carrying sufficient information.

During the execution, the potential point map is always kept up to date. Firstly, every

new keyframe adds new potential points to the map. Secondly, after each change of the
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camera center

bin 0 bin 1 bin 2 bin 3

probability 0.00 0.33 0.07 0.60

mean depth -

1.42m

0m 0.99m 1.98m 2.97m 3.96m

2.53m 3.85m1.42m

2.53m 3.85m

2D feature point

3D map point

3D potential point (p=0.60)

3D potential point (p=0.07)

3D potential point (p=0.33)

Bin border

Mean depth plane

Projection ray to the camera

Projection ray from the camera

Image border

Image plane

maximum depth  

(3.96m)

tracked points 0 5 1 9

Figure 3.7: Potential point map generation. Construction of the variable depth
distribution (VDD): Step 1: Of all currently tracked 3D map points find the point with
the maximum depth value in relation to the current image plane and set the maximum
value range to this value. Step 2: Split the depth value range into k equal parts (here:
k = 4, experiments: k = 20). Step 3: Assign each tracked 3D map point to one of the k
bins according to its depth value. Step 4: For each bin calculate the probability of a map
point being in this bin. Step 5: Calculate the mean depth of all points contained in a bin.
Potential point projection scheme: Step 1: Find suitable 2D feature points. Step 2:
For each suitable feature point project n potential points. n is the number of bins with a
point occurrence greater than zero (here: n = 3).
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Figure 3.8: Example of the potential point generation for a natural scene. 1st row: On
the left, earlier view of the MAV and, on the right, tracked points of PTAM [37] for the
same view. 2nd row: On the left, current view of the MAV and, on the right, tracked
points of PTAM [37] for the same view. Note that the upper part of the image is not
yet mapped, therefore potential points will be generated for the unmapped part. 3rd and
4th row: Simulated scene from different viewpoints. The black points are already mapped
feature points, whereas the colored points are potential points. The color symbolizes the
probability of a point being at this location (red stands for a low probability and blue for
a high one). Note that for each potential 2D feature point, multiple potential 3D points
on a common ray are projected. These potential points are projected on planes parallel
to the keyframe they originate from, where the depth of these planes is defined through
the VDD.



50 Chapter 3. Quality Measures for Active Monocular Localization

actual point map, previously inserted potential points can be rejected by reevaluating

the bin based proximity criterion depicted in Figure 3.6. Finally, one can use additional

information about empty space to further reject potential points. One possible source of

extra information is a probabilistic volumetric map, which can be efficiently constructed

with the information of the linked point cloud with a framework such as OctoMap [32].

Point Generation Likelihood. The purpose of the point generation likelihood is to

evaluate which camera pose of a given set of real or virtual poses has the greatest chance

of generating new useful map points. In order to calculate the score, we make use of the

probability of existence of the potential points, which is defined through the VDD, as well

as the triangulation angle.

We define the score salpha(fp) of a potential 3D point fp based on its triangulation

angle between its source keyframe k and the query frame i as

salpha(fp) =



































0 if αf (k, i) < αmin

αf (k,i)
α0

if αf (k, i) ≥ αmin and αf (k, i) < α0

1−
αf (k,i)−α0

α1−α0
if αf (k, i) ≥ α0 and αf (k, i) < α1

0 otherwise

, (3.15)

where αf (k, i) is the triangulation angle as defined in Equation 3.1, and αmin, α0 and α1

are predefined constants. αmin is automatically defined through the properties of the used

MonoSLAM approach, whereas α0 and α1 are the exact same values as in Equation 3.6

and represent the angle dependent recognition probability. Through this formulation we

reward large triangulation angles, as they can improve the quality of the resulting points,

up to the point where the feature recognition probability starts to decay.

The score of a single potential point fp can then be defined as

sfp = salpha(fp) · pfp , (3.16)

where pfp is the probability of existence defined through the related VDD.

Very similar to the calculation of the localization quality, we disregard potential points

which lie too close to the image margin ( < 1
8 on each side). This leads to the following

formulation for the point generation likelihood score sq,gen for a given query pose q,
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sq,gen =
∑

fp∈Fq

sfp , (3.17)

where Fq is the set of all relevant potential points, which have a 2D projection within the

image frame of the query pose q minus the mentioned margin. Note that there is no need

to normalize this score, as it is only necessary to find the camera pose with the maximum

point generation score in a given set of poses. The matter of how to sample this set of

possible camera poses as well as the topic of which subset of potential points is currently

relevant for the desired motion direction is described in Section 4.3.

3.3 Collision Probability

For every autonomous system, it is important to achieve navigational safety. To this end,

it is crucial to detect obstacles and avoid states which could endanger the environment,

the robot, or simply the mission success. Firstly, this section explains how the information

of the linked point cloud is used to construct a volumetric occupancy representation of the

scene, and secondly, it outlines a way to use this information to estimate the probability

of a collision.

3.3.1 Obstacle Representation

Linked point clouds, as used in this work, are very efficient in matters of memory consump-

tion, but are ill-suited for the task of obstacle avoidance as points by definition have no

volume, area, or length. One might argue that it is sufficient to check for the closest point

and decide from this information alone if a position is dangerous or safe. This approach

would have two major drawbacks. Firstly, outliers are always present in structure from

motion approaches, even if outlier rejection is applied at every step of the reconstruction

chain. Consequently, the lack of robustness against this disturbance is a major problem.

Imagine an empty corridor, where the robot should simply move in a straight line along

the corridor, but it cannot or is not allowed to, because a single outlier is blocking its way.

Secondly, given only this representation, it is impossible to determine which parts of the

scene are still ”unknown” and which parts are known to be ”empty”. For an autonomous

exploration task, it is vital to memorize this ”empty space”, so that the robot can safely

use this space for further navigation and it is not limited to a user defined space. In

contrast, simply avoiding known feature points would be very unsafe, as the robot might
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collide with an object in an unexplored part of the scene. Both problems can be solved

by using a probabilistic volumetric occupancy map.

A volumetric map is a discrete representation, where the world is represented by a

3D grid of cubes, which are also called voxels. Each voxel has an occupancy value which

represents the probability of this voxel being part of an object. The occupancy value is

defined by all measurements which influence this voxel. In our case, the probability of

being part of an object is determined by the linked point cloud and the current position

of the MAV.

The only way to increase the occupancy value of a voxel is the measurement of an

object. In our case these measurements are the 3D map points of the point cloud, where

each point inside a voxel makes it more likely for this voxel to be part of an object. On

the other hand, there are two ways to ”vote” for a voxel to be empty. Firstly, each voxel

in a direct line from the camera to the 3D feature point has to be empty, as otherwise the

measurement could not have been obtained. This can be done for all point-camera pairs

in the linked point cloud as well as for the current camera pose and the tracked points.

Secondly, the space which the MAV traversed has to be empty, as otherwise it could not

have passed. The resulting occupancy map can be used to predict the probability of a

collision for an arbitrary MAV pose. The remainder of this chapter explains how the

collision probability can be modeled to reflect the flight properties of a quadrotor MAV.

3.3.2 Collision Probability

For aerial vehicles such as a quadcopter, one cannot assume a perfect execution of motion

commands, not even in the task of simply holding a position. The quadcopter will always

oscillate around the desired location as it is a highly dynamic system, even if one does

not consider the possibilities of external disturbances such as wind. This behavior has

many reasons such as the noise on the pose estimation. Even the rotors of the MAV are

sufficient to cause severe turbulences, especially when the MAV is flying very close to the

ground. Consequently, it is necessary to keep a safety distance to all obstacles, in order

to compensate for the imperfection of the navigational system.

To this end, it is necessary to define the concept of an obstacle in our volumetric

representation. In the probabilistic map each voxel is assigned an occupancy value, which

represents the probability of this voxel being part of an object. This information is then

used, in the general approach, to threshold the map. A voxel can be either classified as

”free” if it is below the threshold, as ”occupied” if it is above and ”unknown” if there has
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not yet been any information about this specific voxel.

This raises the topic of how to treat ”unknown space”. The safest way would clearly

be to treat each unknown voxel as occupied. In our experiments, we have noticed that

this approach is very restrictive, limiting the navigational space of the MAV basically to

its initialization space, as using a single camera and sparse features only leads to spatially

unevenly sampled rays, which results in a lot of unknown voxels. In order to enlarge the

navigational space, we decided to relax the unknown space criterion and treat unknown

space and occupied space separately at first.

Handling Unknown Space. Respecting the nature of the volumetric occupancy rep-

resentation, we decided to consider the unknown space in a cuboidal region around the

MAV to ensure its navigational safety. The rotation of the cuboid is not dependent on the

MAV rotation, but is aligned with the world coordinate system to speed up the queries.

We propose the usage of two cuboids: a tight cuboid with a hard constraint and a larger

cuboid with a soft constraint. The collision probability of the tight cuboid is set to the

maximum occupancy value of all contained voxels. In contrast, the collision probability of

the larger cuboid represents the mean occupancy value of all contained voxels. Thus, we

define the collision probability of the unknown space pcoll|unknown as the maximum of the

two cuboids. In setting the threshold of the accepted collision probability appropriately,

it is possible to restrict the navigational space of the MAV to parts of the scene which are

mostly known and thus avoid large unknown areas which potentially contain obstacles.

Handling Obstacles. Following the general approach with occupancy maps, we con-

sider voxels above a predefined threshold as part of solid objects. Due to the imperfection

in the navigational execution, it is necessary to keep a certain safety distance to obstacles.

One approach to achieve the safety distance is to set a hard distance threshold. The main

disadvantage of this approach is its sensibility to noise. We have observed great problems

if the MAV was very close to the limit, as the pose estimation is always varying a little bit

depending on the random selection of map points for tracking at each frame. This led to

the behavior of jumping back and forth across the threshold, locking the MAV in place.

To overcome this problem, we added a linear function, which provides a smooth tran-

sition between zero collision probability and the obstacle threshold. Opposed to ground

robots, MAVs have to consider obstacles in the three dimensional space. Once again, the

obvious approach of using simply the Euclidean distance and a threshold is not well-suited

for quadrotor MAVs. It was experimentally observed (Section 5.3) that the pose variance
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in the vertical direction is significantly smaller than the variance parallel to the surface.

Consequently, a spherical buffer region does not represent the pose covariance very well.

Thus, we decided to use an ellipsoidal safety distance as it is displayed in Figure 3.9.

(a) Nadir view (b) Side view

Figure 3.9: Collision probability field surrounding the MAV from two different views.

Note that this representation does not come with additional costs, but can still be

computed the same way as the spherical measure. The only difference is the usage of

an ellipsoidal distance measure instead of the Euclidean. This distance measure d ∈ R

can be obtained by simply scaling the vertical dimension z. This leads to the following

formulation.

Let the vector between two points p1,p2 ∈ R
3 in the three-dimensional ellipsoidal

space be defined as

v12 = [1, 1, svert]
T • (p2 − p1), (3.18)

where svert is the scaling factor for the vertical dimension and • is the symbol for the point

wise product operator. As for the Euclidean space, the distance can then be calculated as

the square root of the dot product of the relative vector v12 with itself

d12 =

√

v
T

12
· v12. (3.19)

Using this metric, we then define the collision probability with known objects based on
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the distance from the MAV center to the closest ”occupied” labeled voxel dclosest as

pcoll|obstacle =



















0 if dclosest > dmax

dmax−dclosest
dmax−dmin

if dclosest ≤ dmax and dclosest > dmin

1 otherwise

, (3.20)

where dmin and dmax are constants which represent the navigational uncertainty of the

system.

Finally, the collision probability of obstacles pcoll|obstacle and unknown space

pcoll|unknown are then combined by taking the maximum of both values, to obtain the

overall collision probability pcoll.

3.4 Summary

In this chapter we have outlined three measures which play a vital role in achieving our

task of active visual localization and autonomous explorative navigation.

Our first novel measure, the localization quality, can be used to avoid camera poses

which are very likely to cause a loss of the visual localization. It incorporates not only the

localization uncertainty, but also respects the viewpoint dependent recognition probability

of the 3D map points. Furthermore, it implicitly represents the resilience of the camera

pose to rotational and translational positioning errors in using a robust grid pyramid.

The second presented novelty, the point generation likelihood, estimates the chance of

generating new 3D points in yet unmapped regions of scene from an arbitrary viewpoint.

This is achieved through calculating the variable depth distribution (VDD) of the tracked

map points of a keyframe. The VDD is then used to discretely sample the probability

distribution of potential map points in 3D. This approach can estimate the point generation

likelihood without any prior knowledge about the topology of the scene.

Finally, we presented a way of estimating the collision probability for a given MAV

pose. This approach is based on a volumetric representation of the scene which only

requires the linked point cloud for its construction. The collision probability measure

does not only respect the distance to already known objects, but also explicitly handles

unknown areas close to the MAV.

This chapter has shown how to measure the most important aspects for active visual

localization, whereas the next chapter describes how these measures can be combined to

an autonomous explorative navigation system which requires no other exteroceptive sensor
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but a single camera.
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Every autonomous robotic system has to solve two main problems. Firstly, the system

has to find a general plan to achieve a predefined goal. Secondly, the system has to

interact with the world to realize this plan. In our case of active visual localization these

two problems are strongly interwoven.

In this work the task of the system is to reach an arbitrary destination pose without

losing the visual localization. One of the properties that sets this work apart from other

navigation approaches is that at the time of initialization the system knows only a very

small portion of its environment. Consequently is the system, even in theory, unable to

decide whether or not a destination pose can be reached directly after the initialization.

This leads to some kind of chicken and egg problem. On the one hand, the system has

to move in order to devise a reasonable plan, whereas on the other hand the system

cannot move without a plan. To make this task even harder, it is not only necessary to

avoid collisions during the navigation, but additionally it is crucial to maintain the visual

localization at all times.

In this chapter we describe our solution for this challenging problem by making use of

57
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our novel measures described in the previous chapter. We commence the description of

our approach, which we call ”autonomous explorative navigation”, with an explanation of

its basic navigation scheme in Section 4.1. This is followed by description of our modular

system architecture in Section 4.2. In Section 4.3 we then explain how we logically combine

our novel measures in a local planning scheme to an autonomous navigation system. We

conclude this chapter with a summary of our autonomous explorative navigation approach

in Section 4.4.

4.1 Destination-Based Navigation

The most popular approach of controlling a ground robot is to send a motion command

in the shape of a vector of velocities. The ground robot then executes the command with

an uncertainty which depends on the robot type as well as the type and topology of the

floor. Unfortunately, this is totally infeasible for multirotor MAVs.

The main reason for this is that a multirotor MAV, opposed to a ground robot, is a

highly dynamic and unstable system. Consequently, it is necessary to use a controller to

achieve even a simple task such as hovering. For this reason, most multirotor MAVs, such

as the AR.Drone or the AscTec Pelican, are equipped with onboard attitude and height

controllers to facilitate the controlling interface. Opposed to ground robots, multirotor

MAVs are even with these low-level controllers still not controllable by velocities, but

rather take a vector of target angles for the attitude control as input (except for the

vertical direction). Sending such a motion command does not result in a fixed velocity

of the MAV but in a nonconstant acceleration. Even if one would thoroughly model the

complex system of the MAV, it would still be very hard to predict the exact MAV pose in

the future due to the uncertainties of the onboard controllers and external influences such

as wind.

Luckily, recent advances in the field of visual servoing [1, 18, 19, 36, 78, 80] present a

new way of controlling a multirotor MAV. These ”high-level” controllers make it possible

to define a destination pose in world coordinates instead of a vector of angles and velocities.

Through this type of controlling it is now possible to navigate the MAV along piece-wise

linear trajectories.

In this work we make use of this destination-based type of navigation. To allow for

a seamless realization of our plans, our planning logic does not generate arbitrary paths,

but instead generates destination poses. During the planning process our approach takes

the resulting trajectory to a destination pose into account, but the visual controller never
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has to consider anything but a single destination pose at every point in time.

This type of navigation has one major advantage. The fact that we only have to provide

the visual controller with new destination poses instead of motion commands drastically

softens the real-time constraint of the planning logic. As the controller takes over the task

of outputting motion commands multiple times per seconds, it is now possible to spend

a significantly longer time on finding the best plan available. The resulting plans can

then be transmitted to the controller as simple destination poses. In the following section

we will outline all modules of our system architecture and describe the communication

between them.

4.2 System Architecture

The system architecture proposed in this work has several appealing properties. Aside

from providing the necessary functionality for a working system, the design offers a high

degree of modularity. In total our system consists of five independent modules as depicted

in Figure 4.1. In our implementation each module runs in its own process and they

communicate via messages using the ROS framework6. The advantage of this approach

is two-fold. Firstly, in using multiple processes we can make use of physical parallelism

provided by currently available CPUs. Secondly, the modularity divides the functionality

in independent parts. This makes it possible to replace modules with minimal effort. For

example, if in the near future we want to use a different type of MAV we can simply

replace the MAV driver module and do not necessarily have to alter the other modules.

The same is true for any of the other modules. In the following paragraphs we will shortly

outline each module.

MAV. The MAV module consists of the physical multirotor MAV itself as well as the

corresponding driver. The MAV has to be equipped with a camera and be able to stream

the image data to the base station, so that this data is available for the other modules. Fur-

ther, we assume that the MAV can be controlled by a four dimensional motion command,

e.g. (yaw/pitch/roll/thrust). The IMU data can be seen as a supplementary feature of

the MAV as all our modules are fully functional without this additional information. The

only difference is that without the IMU data the system has no way to recover in the case

of a loss of the visual localization. In our experiments we used a Parrot AR.Drone 2.0 as

robotic component.

6http://www.ros.org
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Figure 4.1: System architecture. Each block presents a module of our overall system and
the arrows visualize the information flow between them. The only information which is
not generated by our system is the ”client defined destination pose” which is marked with
a red dashed border and defines the high-level goal of the system.
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Monocular SLAM. The purpose of the monocular SLAMmodule is two-fold. Firstly, it

should create a sparse reconstruction of the environment based on keypoints and, secondly,

it should estimate the current pose of the camera relative to the sparse reconstruction.

To achieve this task the module should not require anything but the raw images from

the camera. In our experiments, we used a slightly modified version of PTAM [37] which

provides all the necessary data.

Obstacle Detection. We assume that the obstacle detection module can create a suf-

ficiently accurate estimation of free and occupied space only based on the information of

the linked point cloud. Based on this data only, it should provide the functionality which

enables other modules to query the collision probability of an arbitrary MAV pose. The

obstacle detection module in our experiments uses the Octomap framework [32] for the

generation of a volumetric representation of the scene.

Controller. The purpose of the controller is to send raw motion commands to the MAV

such that the MAV moves towards a destination pose. As a multirotor MAV is an unstable

system, the controller needs a high frequency pose estimate as input. In our experiments

we used the fuzzy control logic of Katusic [36] as control module.

Explorative Navigation. This module contains the entire ”high-level” logic of the

system. The module takes arbitrary client defined destination poses as input which define

the high-level goal of the system. During the navigation phase the logic evaluates all

available data in order to find the ”best” possible move for the current situation. This

move is then transmitted to the controller in form of a reachable destination pose. In the

following section we provide a detailed description of how our system evaluates the current

state of the world and uses our novel measures to find the next best possible move in a

local planning approach.

4.3 Planning Logic

For most ground robots the path planning task can be reduced to a simple two-dimensional

problem for which it is possible to find an optimal solution in an acceptable amount of

time. In contrast, a monocular MAV system has to consider at least two more dimensions;

the vertical dimension and the horizontal rotation (yaw). To make the problem even more

complex, the visual localization adds an additional reprojectional requirement. This means
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that it is not only necessary to consider the pose of the MAV with respect to obstacles and

unknown parts of the scene, but additionally consider the projections of our virtual map

at any point in time. The complexity of the problem makes it computationally infeasible

to find a globally optimal solution for the path-planning problem with currently available

algorithms within a real-time setting such as ours. Additionally, the fact that most of the

scene is still unexplored after start up, motivated us to take a local planning approach

rather than a global one.

During the autonomous navigation our system has to fulfill a range of requirements

simultaneously. First of all, the MAV should close the distance to a predefined destination

pose. Secondly, it should keep a safe distance to any obstacles to avoid collisions. Addi-

tionally, the system is required to maintain the visual localization at all times. Without

the localization the system is basically ”blind” and can neither properly avoid obstacles

nor reach the destination pose. In order to ensure a localization-safe navigation it might be

necessary to generate new useful map points. To ensure that all requirements are fulfilled

simultaneously we designed our operation logic in a hierarchical fashion. Our system can

be seen as a state machine, but each state has its own position in the hierarchy depending

on its importance for the overall safety of the system as shown in Figure 4.2. Further on,

we will call the ”states” of the state machine ”modes” to avoid a confusion with the term

”system safety state” which is concerned with the physical state of the MAV in the real

world.

We can split the space of the system modes into two logical parts; the modes of

explorative navigation and emergency modes. The modes of the first type want to achieve

a high-level goal and do not have any hard real-time constraints. In contrast, if the

system enters an emergency mode this means that some of the basic needs of the system

are violated and need immediate attention. While we respect the basic needs of the system

for collision avoidance and localization during our planning stage, external influences can

always lead to an unpredictable violation of these needs. Therefore we designed our

system in such a way that a mode of high importance can interrupt a mode with a lower

importance at any point in time.

4.3.1 Explorative Navigation Logic

The purpose of our explorative navigation module is to safely reach a predefined destina-

tion pose without losing the visual localization. Who or what defines these so-called client

defined destinations does not matter. In our experiments the destinations were provided
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Figure 4.2: Diagram of the basic system logic and the corresponding system modes. The
system modes can be categorized into two types of planning logic; the emergency response
logic and the explorative navigation logic. If the system enters an emergency mode this
means that one of the basic needs of the system is not satisfied and needs immediate
attention. The order in the decision tree can be seen as a ranking of the modes by their
importance. This order defines which mode can be interrupted by another mode. E.g. the
Localization Recovery mode has the highest importance and cannot be interrupted at all,
whereas the Hold Position mode can be interrupted by any of the other modes.

by the human user, but they could as easily originate from a next-best view algorithm.

As our system uses the definition of a destination pose to control the motion of the

MAV, the straight-forward approach would be to simply send the client defined destination

to the controller. This might even work if this destination is good-natured, the scene

has been sufficiently explored prior to the mission and the scene does not contain any

obstacles. In any other case, this approach will result in a mission failure in the best case
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and damaged property or persons in the worst case. Consequently, we do not take any of

the three properties above for granted.

To ensure localizational as well as navigational safety, our system generates additional

destinations which enable us to navigate on arbitrary piece-wise linear trajectories towards

a client defined destination. These system generated destinations do not only prevent the

MAV from entering dangerous situations, but also ensure that the MAV has sufficient free

space for a safe navigation and enough map points for a stable localization.

In the remainder of this subsection we explain how we generate temporary destinations

to realize an autonomous explorative navigation system. We structure our explanation

according to the three system modes of the explorative navigation and move from the

mode with the lowest priority to the mode with the highest. We show under which

circumstances a certain mode is entered, explain the purpose of each mode and how we

fulfill this purpose through the intelligent generation of reachable destinations.

4.3.1.1 Hold Position (HP)

The HP mode is the most basic mode of our system. We only enter this mode after

successfully reaching a destination. The purpose of the HP mode is to keep the MAV

safely hovering at the destination pose. On the one hand, this mode gives the system

a purpose after completing the mission and, on the other hand, it relaxes the real-time

constraint for planning as it ensures that the MAV stays at the destination pose while the

system is generating a new plan. As the MAV is already at the desired location when this

mode is entered, the original destination is send to the controller. Note that if for some

reason the MAV strays too far from the destination, e.g. through the influence of wind

or a human pushing the MAV, this causes the system to leave this mode and invoke our

goal-striving navigation.

4.3.1.2 Goal-Striving (GS)

The main purpose of the GS mode is to close the distance to a client defined destination

and thus complete the mission. Therefore, this mode holds the basic planning logic of our

approach.

The goal of our approach is to find a safe path towards a client defined destination on

which the visual localization is always maintained. As these client defined destinations are

in general not directly reachable, it is necessary to generate, what we call, intermediate

destinations. These intermediate destinations can be regarded as some kind of safe step
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stones towards a client defined destination and enable us to navigate on arbitrary piece-

wise linear trajectories. During the planning phase we analyze the current state of the

world and choose the best available pose as an intermediate destination. This pose is

then transmitted to the controller for execution. During the execution phase it is very

likely that new map points will be generated, which may lead to the case that a different

destination is now the better choice. For this reason we do not wait for an intermediate

pose to be reached before looking for a new destination, but replan after a fixed amount

of time (10 seconds in our experiments).

This leads to the question: What is the best pose to choose? The answer to this

question strongly depends on what someone wants the MAV to achieve. In our case,

we want the system to move safely towards a destination pose while avoiding a loss of

the visual localization. This means that, aside from two safety aspects, the best pose to

choose is clearly the one that minimizes the distance to the client defined destination.

The distance between two points in a three dimensional space is well defined. In our case

however, we additionally have to consider the rotation of the MAV (yaw). Mathematically,

this additional value cannot be simply treated as a fourth dimension. Aside from a unit

mismatch between radiant and meter, we also have to be aware that the rotation is only

defined on the interval ]− π, π] whereas all other dimensions are defined on ]−∞,∞[.

In our case, it is not necessary to know the actual distance value in meter or radiant,

what we are really interested in is the cost to perform a certain motion. If we know the

difference in the navigational speed between a rotational motion and a linear motion, we

can use the ratio to transform them into a common four dimensional cost space. In this

cost space we can simply calculate the Euclidean distance between two poses. Given a

fixed set of possible destination poses, we can now decide which of those poses is the

”closest” to the client defined destination. The next paragraph describes how we reduce

the set of possible destination poses to a manageable size.

Reducing the Search Space. In a first step of our local planning scheme, we aim to

reduce the four-dimensional continuous search space to a fixed sized set of destination

poses. First of all, we check if the client defined destination itself is reachable without

any problems. In this case there is no need for any further efforts as we already found

the optimal solution. In any other case, we sample MAV poses in a fixed interval around

the current MAV pose. In our experiments, we sample the poses in a regular grid with

intervals of 30 cm up to a distance of 1.2 m and the rotation in steps of 0.2 rad up to

0.6 rad. This leads to a total number of 5103 sampled poses. In Figure 4.3a we display
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an example of the sampling scheme with a reduced number of poses for visualization.

Additionally to this set of regularly sampled poses we add the closest reachable pose on

a direct trajectory to the client defined destination to the set of destination poses. Note

that all possible destination poses should be located sufficiently far away from the current

MAV pose. If they are sampled too close to the MAV, this can lead to a tediously slow

navigation speed when the MAV comes close to losing the visual localization.

(a) Regularly sampled possible destination
poses.

(b) Regularly sampled trajectory.

Figure 4.3: Sampling scheme for local path planning. (a) In a first step we regularly sample
possible MAV poses around the current MAV pose. (b) After finding the best available
destination pose for a certain task, we also sample the trajectory to the best destination
pose to check for a violation of our safety constraints along the path. The black dots are
already mapped 3D points, whereas the colored dots represent potential map points. Note
that in this figure we actually displayed the sampled camera poses rather than the MAV
poses, because they are more important for visual path-planning than MAV poses.

Finding the Optimal Destination. In the next step we have to find the optimal

destination in the given discrete set of destination poses. Therefore, we first evaluate the

estimated collision probability of each pose in the set and use it to reject dangerous poses

with a fixed threshold. Then we estimate the localization quality for the remaining set

of poses and reject poses with a poor localization quality in a similar fashion. Thus, we

receive a subset of safe poses with a good localization quality. In this subset the optimal

pose for the task of moving towards a destination, is the pose which minimizes the distance

to this destination.

Up to this point we neglected one important property of the destination poses; the
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reachability. This means even if we found the optimal destination in the previous step,

it still might be that this destination is not reachable in the sense of collision avoidance

or localization maintenance. We deferred the evaluation of this property up to this point,

because it does not come very cheaply. In order to maintain the visual localization it is

necessary to check whether the localization quality is high enough at each point along the

trajectory to the destination. To this end, we sample the estimated MAV trajectory in

short intervals (10cm in our experiments) and evaluate the localization quality as well as

the collision probability for each sampled pose. An example of this trajectory sampling

scheme is shown in Figure 4.3b. If both values are far from critical for each sampled pose

along the trajectory, we have found the optimal reachable destination. In the opposite

case, we retreat to the previous step, select the next best destination and check this

reachability constraint again. This procedure is repeated until we find a pose, or until no

more useful poses are in the set of possible destinations. In our experiments we treat a

destination pose as useful if its collision probability is low enough, the localization quality

high enough, and it is closer to the client defined destination than the current MAV pose.

If we are unable to find a useful destination, our system switches into its explorative mode

so as to explore unknown parts of the scene which might be used for a localization-safe

navigation.

4.3.1.3 Strategic Exploration (SE)

As our only exteroceptive sensor is a single camera, the field of perception of our MAV

is significantly smaller compared to other robotic setups which are often equipped with

laser scanners. Furthermore, our monocular approach needs to generate a reasonable

baseline between the keyframes to receive an accurate depth estimation through structure

from motion. The aim of this system mode is to overcome these limitations through the

generation of strategic destinations which provide the necessary baseline to generate new

useful map points.

In our approach we consider two types of strategic destinations. The purpose of the

first type is to ensure that enough map points are available for the further navigation

through the active generation of new map points. The second type, on the other hand,

is not concerned with localization-safety but with the navigational safety. Its purpose is

to ensure that the way towards a client defined destination is free of obstacles in actively

carving free space. The following two paragraphs will explain the two types of destinations

in more detail.
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Active Map Generation. In general, the monocular mapping system (PTAM [37])

generates new map points passively. This means that while the MAV is moving, the sys-

tem automatically builds a map through the triangulation of feature points. In order to

get a reasonable depth estimate for the map points, it is crucial that the images used for

the triangulation were taken from different viewpoints to provide a sufficiently large trian-

gulation angle. The closer the viewpoints are to each other, the smaller the triangulation

angle becomes and the higher the depth uncertainty of the resulting map point rises. This

means that especially a pure rotational motion, which does not provide any triangulation

angle at all, is ill-suited for the map generation. Through our local planning scheme we

are able to detect situations in which it is necessary to generate new ”useful” map points.

In the following we describe how we actively search for map points in relevant regions of

the scene.

As described in the previous chapter, we estimate a distribution of potential map points

additional to the normal map points. Using this distribution of potential map points we

are able to calculate the likelihood of generating new points from an arbitrary MAV pose.

But to ensure that we generate ”useful” new map points it is necessary to decide in which

direction it is necessary to generate new map points.

For this purpose, we first simulate the motion of the MAV if we would directly send the

client defined destination to the controller. Then we estimate at which point along this

trajectory the visual localization will very likely get lost. We use the pose at this point to

determine which subset of the potential points is relevant for the further navigation. This

means that we only considered potential points, whose projections lie inside the image

frame of this pose. To avoid being overly restrictive we enlarge the image frame for the

reprojection task by a constant factor ke (we used ke = 1.2 in our experiments), which

leads to a greater field of perception. This strategy leads to a ”useful” subset of potential

points. The purpose of generating new useful map points can now be fulfilled by finding

a pose which maximizes the point generation likelihood of this ”useful” subset.

To find the optimal destination pose we use the same local planning approach as in

the Goal-Striving mode with a minor change. Instead of the distance to the client defined

destination, we now optimize the point generation likelihood of the destination poses while

still respecting the localization quality and the collision probability.

Of course, there remains the possibility that the ”useful” subset is empty if there are

simply no suitable features available on the direct path to the client defined destination.

In this case we force the MAV from this path by sending it on an exploration mission by
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using the whole set of potential points instead of a subset.

In practice, it is not always necessary to reach this strategic pose entirely, because

the system also generates new map points on the way to this pose. As these points

might already be enough for a localization safe navigation, we limit the validity of the

strategic destination. In our case, this means that the system tries to reach this pose for

a considerable amount of time, but after failing to do so in the given time frame, it can

ignore this pose and return to its previous task.

Active Free Space Carving. To ensure the navigational safety of our system, we

only allow the MAV to pass through parts of the scene which very likely do not contain

any obstacles; i.e. free space. In order to grant our system enough free space to navigate

towards a client defined destination, we use a simple but effective strategy. After receiving

a client defined destination we want the MAV to look in the direction of the newly received

destination. This procedure reflects very much the behavior of a human in an unknown

environment. If you tell someone to move to a certain position in e.g. a corridor, normally

the person will first take a look towards the specified position before actually starting to

move. In our case we make use of this behavior to ensure that no obstacles are blocking our

way. To achieve this, we define a destination pose at the current xyz-position of the MAV,

which is rotated such that the camera is directly looking at the client defined destination.

Then we treat this if this newly generated destination as a client defined destination,

which invokes our Goal-Striving navigation. While moving towards this newly generated

destination, the system automatically generates map points in the direction of the client

defined destination through our local planning scheme and the active map generation

described in the previous paragraph. The visibility information of the newly generated

map points can be used to carve a corridor of free space in the direction of the client

defined destination. The MAV can then use this free space for a safe navigation.

4.3.2 Emergency Response Logic

Although we respect the matter of navigational safety and localization maintenance in

our planning phase, it is highly likely that due to external disturbances some of the safety

constraints will be violated during the execution. In order to avert imminent danger, it is

important to react as fast as possible to an approach to a dangerous situation. The more

time is wasted before reacting, the more likely it becomes that either the mission fails

or, even worse, a collision might occur. Therefore, we check the safety constraints in a
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fixed interval and interrupt the explorative navigation logic in the case of a violation. To

resolve the safety problems we generate temporary emergency destinations. Opposed to

the other types of destinations, the purpose of an emergency destination is not so much to

pull the MAV towards a certain destination but rather to drag it away from a dangerous

situation. When the system state is sufficiently safe again, we resume with the explorative

navigation.

In this work we distinguish in total three emergency scenarios, where each scenario is

linked to a specific emergency mode.

4.3.2.1 Collision Avoidance (CA)

In this first emergency scenario the MAV is physically in a dangerous situation. This

means that it moved either too close to a known obstacle or unknown parts of the scene

which might contain obstacles. To detect such situations we use our novel collision prob-

ability measure. In our experiments we treat this physical safety constraint as violated

if the collision probability rises above a value of 0.4. In this case the system enters the

Collision Avoidance mode and tries to secure the physical position of the MAV, while still

maintaining the visual localization.

As it is crucial in such a situation to react immediately, we do not invoke a complex

planning procedure, but instead choose the closest keyframe pose which is sufficiently safe

(collision probability < 0.3 in our experiments). This strategy has two nice properties.

First of all, it is very fast because we reduce the search space to the set of keyframes.

Secondly, the motion towards our emergency destination is very likely to be safe, not only

with respect to collisions, but also in regard to localization maintenance. As we sample

keyframes in fixed intervals, choosing the closest safe keyframe pose as a destination will,

more probably than not, cause the MAV to retreat a short distance along the path that

led to this emergency situation. In practice, this emergency behavior has prevailed over

other more sophisticated and ”in theory” safer approaches, because the reaction speed

seems to be the most important factor for collision avoidance.

4.3.2.2 Localization Improvement (LI)

In this emergency scenario the system enters a state with an increased chance of losing

the visual localization. Although a loss of the localization does not directly endanger the

MAV or its physical surroundings, it basically renders our system ”blind”. To detect such

a situation we use our novel localization quality measure, which was specifically designed
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for this purpose.

In the case that localization quality reaches a critical level (below 0.35 in our experi-

ments), our system enters the Localization Improvement mode. In this mode the system

strives to improve the stability of the localization while it concurrently takes care to keep

the collision probability reasonably low.

As it is not necessary to prevent an imminent collision, it is possible to invest a bit

more time in the destination generation. But to keep the computational time reasonably

low, we once again restrict the search space to the current set of keyframe poses. Opposed

to the Collision Avoidance mode, we do not only respect the collision probability at the

destination, but additionally ensure that the collision probability is reasonably low along

the whole simulated MAV trajectory. Thus, we choose the closest keyframe pose which has

a sufficiently high localization quality (> 0.4 in our experiments) and is safely reachable

without any intermediate destinations.

4.3.2.3 Localization Recovery (LR)

Losing the visual localization can be seen as the worst case scenario for our system. In

this case the system is absolutely ”blind” and can only estimate its own motion with its

inertial sensors. Unfortunately, the inertial sensors are in general quite inaccurate and

are prone to drift over time. Consequently, we can trust the pose estimate with inertial

sensors only for a short period of time (10 seconds in our experiments).

Our system considers the visual localization lost if the time since the last update has

exceeded a certain threshold (1 second in our experiments). Under normal conditions our

planning scheme prevents this scenario from occurring, but in a real world experiment

external disturbances and network lags can always move the MAV far from its desired

location.

In this scenario we do not to waste any valuable time and immediately set the closest

keyframe pose as a destination. Then we assume that inertial sensors are accurate enough

for this short time navigation so that the system is able to restore the visual localization. If

the system is not able to recover in the given time frame, we simply send hover commands

to the MAV as we can no longer trust our pose estimate due to the considerable drift of

the inertial sensors. In this case a human operator can manually return the MAV to a

safe location where the visual localization can be restored.
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4.4 Summary

In this chapter we have presented our novel explorative navigation approach. The pro-

posed navigation scheme does not only respect the physical constraints with regard to

collision avoidance, but also strives to maintain the visual localization at all times. Con-

sidering the visual localization during planning is a very complex task, which requires the

system to respect the reprojection of the already mapped points along a continuous four

dimensional trajectory. With our local planning approach we present a way to drastically

reduce the search space which enables visual path planning within the tight boundaries

of a real-time setting. Opposed to conventional navigation approaches which assume the

localization to be given at all times, our approach is able to detect the need for a local-

ization improvement using our localization quality measure. Through evaluation of the

point generation likelihood it is then possible to explore yet unknown parts of the scene.

In simulating the motion of the MAV we make sure that we only explore parts of the scene

which are relevant for further navigation. This leads to a navigation approach which is

fully capable to decide which parts of the scene need to be explored to ensure the visual

localization. The resulting navigation system can autonomously move through arbitrary

unknown environments while avoiding collisions and maintaining the visual localization at

all times.

In the next chapter we provide the details of our experimental setup and experimentally

prove the capabilities of our monocular navigation approach.
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Every complex robotic system is a combination of many hardware and software mod-

ules, which can have many abstraction layers. Consequently, the performance of the overall

system strongly depends on the performance of each module of the system. Thus, we de-

cided to analyze the most important parts of the system individually with the least possible

number of dependencies on other modules. After outlining our experimental system setup,

we present our experiments in four parts.

We start off our experiments with a thorough analysis of the viewpoint dependency

of the localization system in Section 5.2. More specifically, the section analyzes the fea-

ture recognition probability of the PTAM system [37] in relation to viewing angle and

scale changes. In this experiment we demonstrate that, even under ideal settings, the fea-

ture recognition probability declines if the difference between the original and the current

viewpoint increases. This information can then be used to improve the estimation of the

localization quality as described in Section 3.1.2.

The second experiment described in Section 5.3 analyzes the performance of the visual

controller of Katusic et al. [36], which was used as the navigation module in all our exper-

73
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iments. In this experiment we use a set of simple trajectories to infer information about

the navigational performance of the system. We do not only analyze the response time

of the system, but also investigate the deviation from the ideal trajectory. Through this

experiment we demonstrate that an ellipsoidal metric as proposed in this work leads to a

more realistic model for the collision probability than a simple Euclidean metric. Further-

more, we describe how the newly obtained knowledge about the navigational imperfection

of the system can be used to improve the safety and performance of the overall system.

In our third experiment (Section 5.4) we evaluate the performance of the localization

quality measure in a controlled environment. Through this experiment, we demonstrate

that this novel measure is well suited for detecting states which are very likely to result

in a loss of the visual localization.

Finally, Section 5.5 analyzes the performance of the overall system in two challenging

scenarios. In the first scenario we show that our monocular system can autonomously

perform a full 360◦ turn in a barely textured scene. Through this experiment we do not

only demonstrate that our localization quality measure can be used to prevent states which

might result in a loss of the visual localization, but also show that our point generation

likelihood measure can be used to generate new useful map points in an intelligent fashion.

In the second scenario we let the MAV autonomously navigate in a complex and narrow

scene which contains multiple floor levels. In this challenging scene we show that the

system is able autonomously find a safe path in an unknown environment and can even

manage a safe flight across a narrow staircase without losing the visual localization. Aside

from simply proving our concept in these challenging scenes, we also use this experiment

to evaluate the localization and mapping performance of our system.

5.1 System Setup

Our general system setup consists merely of three components as shown in Figure 5.1. We

can classify the three parts into an active component (MAV), a computational component

(notebook) and a human interface (notebook and/or gamepad). In our experiments we

used a Parrot AR.Drone2.0 as an active component, but for our implementation the type

of MAV hardly matters as long as it fulfills a few requirements. Firstly, it should be a

multirotor MAV which can be controlled with a four-dimensional vector (e.g. velocities

in three dimensions and one rotational axis). Secondly, the MAV should have the ability

to communicate with a base station such as a notebook. Thirdly, the MAV should be

equipped with inertial sensors and a camera. Last but not least, our system requires
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the IMU data and the camera images to be streamed in real-time to the base station for

control.

Figure 5.1: General system setup. The setup consists of three main parts: The most
important part is the MAV, for which we used a Parrot AR.Drone2.0 in our experiments.
The second part is a preferably mobile computer which is able to establish a Wi-Fi con-
nection to the MAV. The last part of our setup is a gamepad, which allows the user to
take over in the case of an emergency.

In our experiments we used a notebook of the type HP EliteBook 8570w as the com-

putational unit. It consists of a 2.4 GHz quadcore processor of the type Intel CORE i7, a

memory module of 8GB DDR3 RAM, a 750GB HDD and an NVIDIA Quadro K2000M

graphics card with 2GB RAM. Of course this component can be replaced by any CUDA-

capable system with comparable computational power.

The last component is a human interface, such as a keyboard or a gamepad. The main

purpose of this component is to allow the user to intercept the autonomous execution in

the event of an emergency. In our experiments we used a wireless gamepad to offer the

user an increased degree of mobility during the execution opposed to a bulky keyboard.

5.1.1 AR.Drone 2.0

All our experiments were conducted with an unmodified model of the Parrot AR.Drone 2.0

as active system component. It is a quadrotor MAV which was primarily developed as a

toy to be used in combination with a smart phone. Due to the availability of an SDK, the

drone can be controlled by any device which can establish a Wi-Fi-connection. Via this

wireless link the AR.Drone receives the control commands and streams back the images
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and IMU data.

Figure 5.2: Parrot AR.Drone 2.0 with its protective indoor hull.

On the one hand, using a Wi-Fi connection for controlling the MAV has the advantage

of being independent of the platform of the controlling device. On the other hand, a Wi-Fi

connection often suffers from unpredictable lag spikes. For stabilization, the AR.Drone is

equipped with an onboard Linux system and a set of internal and external sensors [57].

Using this data, the onboard controller can keep the MAV in a hovering position in the

case of a communication loss and also compensate wind to a certain extend. Although the

hovering abilities are useful in the case of a connection loss, the MAV pose significantly

drifts while hovering.

As internal sensors the AR.Drone provides a gyroscope, an accelerometer, a magne-

tometer and a pressure sensor. Additionally, the AR.Drone is equipped with ultrasound

sensors for the height estimation, and a vertical camera, which is used for ground speed

measurement [57]. Finally, the AR.Drone has a forward looking HD camera, which is the

only exteroceptive sensor used by our implementation.

Camera Details. The main camera, which is looking in the forward direction, has

a maximum resolution of 1280×720 px and a maximum frame rate of 30 fps. In our

experiments we used a smaller resolution of 640×360 px at a frame rate of 10 fps. Note

that, in the case of the AR.Drone2.0, using a smaller image size does not necessarily lead

to less information in the image. In order to sustain a resolution of 1280×720 px at 30 fps

over a Wi-Fi connection, the AR.Drone2.0 is forced to use a very high compression rate,

which leads to an image with clearly visible compression artifacts.
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The main camera is a fish-eye camera with a diagonal field of view of 92◦ [57]. For our

experiments we also measured the field of view along the central axes of the camera. We

found that along the horizontal axis the camera’s perception is limited to a field of view

of approximately 60◦, and to 40◦ along the vertical axis.

5.1.2 Vicon

For our evaluation, we did not solely rely on the pose estimate of PTAM [37], but also used

a Vicon tracking system7. The tracking setup consists of 15 M-Series cameras, which are

mounted along the wall of a non-rectangular 120 m2 room. The effective tracking volume

of this setup is approximately 5×5×3 meters.

Each vicon camera is equipped with an array of infra-red (IR) LEDs. The light emitted

by the cameras is used to track small reflective balls in the tracking volume. To estimate

the location as well as the rotation of a rigid object, it is necessary to use at least three

reflective balls. To increase the robustness against self-occlusion we decided to use seven

reflective balls, as depicted in Figure 5.3. The Vicon system measures the pose of the

MAV with a frequency of approximately 120 Hz.

Figure 5.3: Parrot AR.Drone 2.0 with its protective indoor hull and seven reflective balls
for tracking with the Vicon system.

To determine the accuracy of the setup, we analyzed the noise of the system over

5 seconds, while the MAV remained motionless on the floor. The results are shown in

Table 5.1. In summary, the system has a location uncertainty of approximately 0.1 mm

and a rotation uncertainty of approximately 0.001 rad.

7http://www.vicon.com
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x y z yaw pitch roll

unit mm mm mm rad rad rad

STD 0.08401 0.07375 0.06245 0.9811 · 10−3 0.7252 · 10−3 0.5199 · 10−3

max−min 0.6242 0.4847 0.3914 0.5426 · 10−2 0.4026 · 10−2 0.3142 · 10−2

Table 5.1: Accuracy of the Vicon tracking setup. Standard deviation and the difference
between maximum and minimum value of 589 pose measurements, which were recorded
over 5 seconds, while the MAV was standing completely still on the floor.

5.2 Determining the Point Recognition Probability

The main purpose of this work is the design of a system which does not lose the visual

localization while navigating towards a destination pose. In our case, the localization is

considered lost if the system is unable to determine its current position through tracking

the already mapped point cloud. For this purpose it is beneficial to know from which

viewpoint it is possible to perceive and recognize a map point.

In order to get a reliable guess whether or not a map point is visible from an arbitrary

viewpoint, it is crucial to know how a viewpoint change influences the recognition proba-

bility of features. This chapter describes the analysis of the point recognition probability

for the PTAM [37] system, which we used for all our experiments.

The next paragraph will shortly outline the most important properties of the PTAM

tracking procedure to clarify the scope of this experiment, which is described in the sub-

sequent paragraph.

PTAM Tracking Procedure. In PTAM each map point has an associated source

keyframe, which is the first keyframe this map point was observed in, and a 2D location

within this keyframe. Furthermore, the system records on which scale the map point was

detected. For tracking a map point the system uses the relative transform between its

source keyframe and the estimate of the current camera pose to determine what the patch

around the map point should look like in the current image. To this aim, PTAM assumes

that the surface normal of a map point is parallel to the optical axis of the camera pose

of its source keyframe and applies an affine warping transform. After creating a suitable

template patch, the system searches for the map point within a fixed range from its

predicted image location. A patch is considered found if the zero-mean SSD score is

beneath a predefined threshold.
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Experimental Scope. In general, it is not possible to find the effective point recognition

probability for all possible scenes and scenarios as the assumptions made by PTAM can

be violated in many ways. Therefore, we only aim to set an upper bound on the point

recognition probability in this experiment. To determine this upper bound, which we use

to set the parameters of our model (see Section 3.1.2) adequately, we do not violate the

assumptions made by the PTAM system. First of all, we restrict the scene to a single well

textured plane, which means that each 3D map point can be well represented by an image

patch. Secondly, we set the orientation of the this textured plane parallel to the image

plane for the initialization, which leads to a perfect surface normal estimate for the map

points. Note that in a real world example these two assumptions will be severely violated.

For our analysis, we split the whole spectrum of possible perspective transformations

into two parts which directly fit our model. First of all, we analyze the influence on the

point recognition probability of viewing the same map points from an increasingly steep

angle. Then we conduct the same experiment for varying the distance between the map

points and the camera, which results in a variation of the feature scale.

Note that for the following two experiments we only used the initial pair of keyframes

and disabled any further keyframe generation as well as the outlier removal procedure of

the PTAM system.

5.2.1 Angle Dependency

Let us consider a planar 3D patch which is located parallel to the image plane. If then

the patch is rotated around e.g. the vertical axis, the area of the projection of the patch

on the image plane decays, and with this also the possible information about the patch.

After a patch rotation of 90 degrees, the image does not contain any information about

the patch. Let us assume that every object can be approximated through a set of planar

patches. Under this assumption, we want to analyze how the degree of off-plane rotation

of patches influences the probability of recognition.

Experimental Procedure. Instead of actually rotating the feature target in the real

world, we decided to rotate the camera around the object at a fixed distance, which leads

to the same image projection. We initialize the PTAM system parallel to a planar feature

target with the size 0.5 m x 1 m, where the first keyframe is taken central to the feature

target and the second keyframe shifted 20 cm to the right. Then we move the camera

back to the central position. From this position we move the camera to the left in steps
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5 degrees along an arc with a distance of 2 m to the center of the feature target. At

each step we record the number of tracked points versus the number of possibly tracked

map points. The procedure is depicted in Figure 5.4 for clarification. After the loss of

tracking the camera is moved back along the same arc to analyze the recovery behavior

of the system. To obtain reliable results the procedure was repeated seven times.

20 cm

2 m

50 cm

5°

Figure 5.4: Experimental procedure to evaluate the impact of angle variation on the
tracking performance. The red box symbolizes the feature target, whereas the arrows
symbolize the camera of the MAV. The first key frame is taken from the position of the
central arrow, the second keyframe from the position of the green arrow. Then the camera
is moved back to the central position. From this position we move the camera in steps 5
degrees (blue lines) along an arc with a distance of 2 m to the center of the feature target.
At each step we record the number of tracked points versus the number of possibly tracked
map points.

Results. For the evaluation of the angle dependency of the point recognition probability,

we analyzed the averaged percentage of tracked points over the map points that could

have been tracked. The overall results can be found in Figure 5.5. The remainder of this

paragraph will outline the most important findings of this experiment.
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The outcome of the experiment shows that after the initialization the tracking per-

formance stays nearly constant up to 30◦ with a very low decline of approximately 0.3

percent per degree. Above 30◦ the steepness of the decline increases drastically and hits

its maximum above 60◦ with nearly 3 percent per degree. The average angle at the point

of a localization loss is 71.875◦ and above 80 degrees the tracking failed in all seven runs.

After the loss of localization the system cannot recover until on average 30.714◦. For

a further decrease of the angle the probability of recovery increases further, and reaches

100 percent at 20◦. Note that after a successful recovery the number of tracked points is

approximately the same as if the localization would not have been lost.
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Figure 5.5: Point recognition probability with varying viewing angle. After initialization
(blue line) the angle between the normal of the feature plane and the optical axis is
subsequently increased until the localization is lost. After the loss of localization (green
line) the angle is decreased again until the initial pose is reached.

5.2.2 Scale Dependency

Scale invariance in PTAM is achieved through an image pyramid. The system uses four

pyramid levels, where each higher level has half the side lengths of the previous level. We

will call the level containing the original image ”level 0” and the smallest resolution of the

image ”level 3”.

Using an image pyramid the system can only adapt the scale within the layers of the

pyramid. This means that features, which are detected on different pyramid levels, show
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different properties in the recognition probability in relation to scale changes. Conse-

quently, we decided to analyze the features of each layer individually by only using the

features of one layer at a time for tracking. Unfortunately, it was not possible to achieve a

successful pose estimation solely based on features of the coarsest pyramid level. Because

of the very small size of the image at this level (80×45 pixels), we could not extract mini-

mum number of features that PTAM needs for successful tracking. Therefore, we neglect

this layer in our experiments, which does not harm the evaluation overly much as this

layer can be extrapolated from the other three layers.

We split the evaluation into two parts, one where we move the camera closer to the

feature target and one where we move farther away.

Experimental Procedure. For both parts of the experiment we used a planar feature

target with a size of 1m x 0.5m, and initialized the point cloud with two key frames, which

have an image plane parallel to the target. For the experiment where the camera is moved

closer to the target, we used an initial distance to the target of 80cm and a keyframe

baseline of 8cm, whereas for the second experiment we used an initial distance of 20cm

and a keyframe baseline of 2cm.

Results. In this experiment we analyzed the relation between scale changes and the

point recognition probability. Similar to the previous experiment, each part of the exper-

iment was repeated four times. The averaged results can be found in Figure 5.6.

For the first experiment, we decreased the distance to feature target. In this case

the scale of the features grows finer inverse to the distance change. In moving closer

features start to disappear at the edges of the image and only features in the central part

of the image remain for detection. For this experiment, we used our projection model

to determine, how many points should be visible for a given camera pose. We use this

information to get comparable results to the next case.

For the second experiment, we increased the distance to feature target. As apparent

from Figure 5.6b, each layer has a different capability to adapt to the scale changes.

Features, which were detected on a higher level of the image pyramid, can be detected on

lower levels if the camera is moved farther away. The lowest level of the pyramid can still

adapt to scale changes up to the factor 2, where still 80 percent of the features can be

recognized, although it has no other layer it can turn to. The other levels show a similar

behavior. The capability to adapt to scale changes between adjacent levels appears to

be approximately 2, which directly corresponds to the information reduction between the
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pyramid levels. For features detected on the highest pyramid level, which could not be

analyzed directly, this means that the system can handle scale changes up to a factor of

16.

Overall, the approach appears to be less robust against moving closer than moving

farther away. In contrary to increasing the distance, the system has troubles even finding

the feature points on the highest / coarsest pyramid level, much less extending further.

This behavior could be explained with the very limited size of the coarsest level (80×45

pixels). As PTAM matches patches of the size 8×8 pixels and only considers patches

which are fully visible in the image, many features at the margins of the image are only

partly visible and are therefore not detected.
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(a) Decreasing distance to the feature target.

 

 
n
u
m
b
er

of
tr
ac
ke
d
p
oi
n
ts

/
n
u
m
b
er

of
m
ap

p
oi
n
ts

[1
]

level 2
level 1
level 0

relative distance change to feature target [1]

tracking performance

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Increasing distance to the feature target.

Figure 5.6: Point recognition probability with varying distance to feature target.

5.2.3 Conclusion

The aim of this series of experiments was to evaluate the influence of viewpoint changes

on the point recognition probability of the tracking system. We evaluated the ideal case

which means that all keyframes have an image plane parallel to the plane of the planar

target. Note that in general environments the surface can have an arbitrary topology

and a single image patch could even contain projections of overlapping objects with very

different depth values. Nevertheless, an evaluation of the ideal case makes sense to set an

upper bound on the system performance.

For the angle dependency, we found that the recognition probability stays nearly con-



84 Chapter 5. Experiments

stant up to an angle of 30◦ and that the average angle at the point of a localization loss

is 71.875◦.

For the scale dependency, we discovered a significant difference between increasing and

decreasing the scale. It appears that the PTAM system can handle a decrease of the scale

(moving farther away) much better than increasing the scale (moving closer). While a

decrease can be handle up to a factor of 2 without using other pyramid levels, an increase

can only be handle up to a factor of approximately 4
3 . Furthermore, the system appears

to be unable to detect points of the coarsest pyramid level. The most likely cause for this

discrepancy seems to be that, in moving closer, regions around many keypoints become

only partly visible in the image, which does not happen in the other case.

As described in Section 3.1.2, we model our feature recognition probability using piece-

wise linear functions to speed up the calculation. Without any prior knowledge about the

scene, we recommend to set the constants of the model such that they are clearly beneath

the upper bound values displayed in Figures 5.5 and 5.6. For our experiments we set the

values α0 = 0.5 rad and α1 = 1.2 rad for the angle dependency as in Equation 3.6. For

the scale dependency we chose an equal relative spacing between the layers. The actually

used values can be found in Table 5.2.

pyramid level l → 0 1 2 3

S0,l 0.1 0.2 0.4 0.8

S1,l 0.2 0.4 0.8 1.0

S2,l 1.5 3.0 6.0 12.0

S3,l 2.5 5.0 10.0 20.0

Table 5.2: Chosen values for the scale dependency model in Equation 3.8.
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5.3 Navigational Imperfection

Every dynamic robotic system suffers from an imperfect execution. The extent of this

imperfection depends on many factors such as the manufacturing accuracy of the hardware,

the level of detail of the system model or environmental influences. In this work we aim

to design an autonomous explorative navigation system. For every autonomous system

it is crucial to keep a safety distance to obstacles and unknown environments in order to

avoid states which endanger the robot or the environment.

The main purpose of the set of experiments described in this section is to evaluate

the navigational imperfection of the system in well defined scenarios. Through these

experiments we aim to derive information which is needed for safe navigation. First and

foremost, we are interested in the deviation from predefined trajectories such as they

are generated by the planning logic of our explorative navigation module. Opposed to

Katusic [36], we do not only evaluate trajectories which are parallel to the x- and y-

axis, but extend the evaluation to the flight in diagonal patterns for trajectories parallel

to the surface as well as for trajectories, which vary significantly in the height. With

this information it is possible to generate a realistic model of the collision probability.

Secondly, we use this experiment to analyze the controller reaction speed. Ultimately, this

information can then be used to derive a reasonable planning frequency for the explorative

navigation module. As we noticed that the overall system suffers from severe lag spikes,

we provide a separate analysis on this topic to relate the navigational imperfection to the

lag spike occurrence.

For the plan execution in this work, we make use of a human-inspired fuzzy-logic

controller of Katusic [36]. The controller was originally designed for the usage with a

different quadrotor MAV (AscTec Pelican), consequently, some minor changes were applied

to adapt the controller to the AR.Drone 2.0.

5.3.1 Experimental Procedure

For this experiment, we chose to use a richly textured scene, as depicted in Figure 5.7. The

baseline for the initialization was chosen be the 20 cm and the depth of the feature points

in the scene is approximately 4m. In this experiment we used in total 3 flight patterns.

The first two are horizontal motion trajectories and the third one is a vertical trajectory.

The flight plan with all three trajectories is shown in Figure 5.8.
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Figure 5.7: Chosen scene for the analysis of the navigational imperfection.
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Figure 5.8: Flight plan with three different trajectories. The black dots represent interme-
diate destinations, whereas the blue-yellow dots symbolize the start and final destination
positions. The numbers in the diagrams stand for the sequential order during the exper-
iment. Note that the first two trajectories only contain motions parallel to the surface
whereas the last trajectory is oriented vertically and does not contain any forward motion
(x-direction).

5.3.2 Results

As it was not the task to implement or improve the navigation module, the main purpose

of this evaluation is not a comparison to other controlling approaches, but to document

the performance of the used controller. The performance of a robotic system strongly

depends on the accuracy and speed of the navigation module, thus we deemed it necessary

to evaluate the navigation module on its own to document its performance independent

of our autonomous explorative navigation logic.



5.3. Navigational Imperfection 87

Trajectory Flight Performance. For the calculation of the navigation error, it was

necessary to sample the ideal trajectories, which are denoted as ”optimum” in the figures.

Following the example of Katusic et al. [36], we chose a sampling step size of 0.5 mm, but

opposed to their work, we do not consider the shortest distance to the whole trajectory,

but the shortest distance to the current partial trajectory. Each partial trajectory corre-

sponds to a straight line from the last destination to the current destination as depicted

in Figure 5.8. When the system considers a destination as reached, we switch to the next

trajectory.

The experiment was conducted for three different target trajectories. The real tra-

jectories, which were independently measured by the PTAM and the Vicon system, are

depicted in Figure 5.9. Note the different scaling of the graphs. From these trajecto-

ries alone, one can see that the MAV trajectory shows a greater deviation parallel to the

surface (xy plane) than in the vertical direction (z direction). This behavior is affirmed

by the statistics in Table 5.3. In all three experiments the absolute mean and maximum

deviation as well as the RMS error are significantly lower for the vertical direction than

for the horizontal plane. The values of the absolute mean deviation support the notion

that the navigational uncertainty in the horizontal plane is at least twice as large as the

uncertainty in the vertical direction.

If we analyze the overall distance to the target trajectory, we see that the mean distance

is below 14 cm with a standard deviation of approximately 10 cm. As the distance from

the trajectory is not an independent random variable but depends on the current state

of the MAV (position, velocity, acceleration ...), it is not possible to draw any conclusion

in terms of the central limit theorem. Nevertheless, we can use the maximum values of

this experiment to set the recommended distance to obstacles in a reasonable range. The

farthest distance from the optimal trajectory was recorded with 0.53m. Consequently, if

we set the minimum distance to known obstacles to the double of the maximum value the

probability of collision should be sufficiently low.

Controller Reaction Time. The planning module proposed in this work, generates

nearby destination poses which can be safely reached without losing the visual localization.

Generating new poses at a very high speed causes more harm than good to the overall

system as the internal state of the PID controller needs finite time to adapt its internal

state. In this experiment we analyze the time it takes the controller to close a distance

of 20cm towards a newly received destination pose. This distance was chosen because it

corresponds to the minimum planning distance in our other experiments.
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Figure 5.9: PTAM and Vicon pose for three different trajectories.
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trajectory dimension RMSE absolute mean STD absolute max

horizontal 1 x 0.075 0.054 0.052 0.272
y 0.112 0.066 0.091 0.430
z 0.027 0.022 0.017 0.127
all 0.138 0.107 0.086 0.430

horizontal 2 x 0.108 0.067 0.084 0.373
y 0.129 0.101 0.081 0.373
z 0.035 0.025 0.025 0.140
all 0.172 0.138 0.103 0.527

vertical 1 x 0.090 0.064 0.064 0.319
y 0.118 0.094 0.071 0.336
z 0.065 0.029 0.058 0.261
all 0.162 0.137 0.086 0.377

Table 5.3: Statistics of the minimum distance to the optimal path for three different
trajectories. The minimum Euclidean distance to the current trajectory was calculated
for every ground truth pose which was measured by the Vicon system at approximately 120
Hz. For this purpose the trajectories were sampled in steps of 0.5 mm. The statistics for
the 3D Euclidean distance are denoted as all and are printed with a bold face. Additionally,
the table contains the same statistics for each dimension on its own. The x dimension
in this experiment can be interpreted as ”forward/backward”, y as ”left/right” and z as
”up/down”.

flight mean STD min max

unit [s] [s] [s] [s]

horizontal 1 9.90 2.97 5.02 13.86

horizontal 2 6.83 1.43 5.52 8.79

vertical 1 13.10 3.78 9.19 17.30

overall 9.94 3.63 5.02 17.30

Table 5.4: Controller reaction time. The table shows the statistics of the time it effectively
took the MAV to close a distance of 20cm towards a newly received destination for the
three different trajectories.

The results in Table 5.4 show that the mean reaction time is approximately 10 seconds

with a high standard deviation of nearly 37 percent. On the one hand, the reaction time

strongly depends on the current motion vector of the MAV as there is a great discrepancy

between making a 90 degree turn or reversing the direction. On the other hand, it can be

influenced by the occurrence of unpredictable lag spikes as the pose controller is running

on a separate computer and depends on the Wi-Fi connection to the MAV. To this end, we

analyzed the occurrence of severe lag spikes for each trajectory flight. We consider a lag

severe if there is neither a new frame nor any IMU data coming through to the system for
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flight severe lags severe lags per minute maximum lag

unit [1] [ 1
min

] [s]

horizontal 1 12 6.26 1.43

horizontal 2 2 1.94 0.88

vertical 1 37 16.95 1.32

overall 51 9.94 1.43

Table 5.5: Lag statistics of the three experiments. We consider a lag severe if there is
neither a new frame nor any IMU data coming through to the system for at least 0.5
seconds.

at least 0.5 seconds. The results are shown in Table 5.5. If we compare the reaction time

to the lag occurrence, we can see a clear relation. For the flight ”vertical 1” we recorded

by far the slowest reaction time, but also the highest frequency of lag spikes with nearly

17 lags per minute. On the other hand, the flight ”horizontal 2” shows the fastest reaction

time, but during this flight the system only had to cope with 2 lags per minute.

5.3.3 Conclusion

The aim of this series of experiments was to analyze the extent of the navigational imper-

fection of the system. In this experiment we recorded three different trajectories, which

do not only contain axis parallel motions parallel to the surface, but also diagonal and

vertical motions. We discovered that the deviation in the vertical direction is significantly

smaller than parallel to surface. This means that an ellipsoidal metric, as discussed in

Section 3.3.2, is better suited for the task of collision avoidance than a simple Euclidean

metric. As the maximum deviation from the optimal trajectory in our experiments was

0.53m, we recommend to keep the distance from the planned trajectory to obstacles in

the horizontal plane at approximately 1m, and 0.5m for the vertical direction, to keep the

probability of a collision reasonably low. Note that the MAV is controlled over a Wi-Fi

connection, and consequently it is impossible to make guarantees for the topic of collision

avoidance. In fact, we measured communication disruptions of up to 1.5 second during

this experiment and recorded a frequency of up to 17 severe lags per minute. This issue

can only be fixed by using a more reliable data link. Finally, we analyzed the effective

reaction time of the system to a new destination. We measured a mean time of 10 seconds

to close a distance of 20cm towards a new destination pose. The experiments confirm

that the reaction time of the system is influenced by the frequency and duration of the

communication lags.
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5.4 Localization Quality

The main aim of this work is to design a system which does not lose the visual localization

during execution. To this aim, we devised a measure that we call ”localization quality”. It

has the purpose of indicating the likelihood of a localization loss for an arbitrary camera

pose. In this chapter, we evaluate the performance of the measure in forcing the tracking

system into extreme situations, which result in a localization loss. In a static environment

the easiest way to lose the visual localization is not translation but rotation. Consequently,

we focus our evaluation on the effects of rotation.

5.4.1 Experimental Procedure

For this experiment, the camera of the MAV is the only necessary source of information,

thus we decided to perform this experiment in a hand operated manner. The experiment

was conducted with two different setups. The first setup is a fairly low textured laboratory

scene (see Figure 5.10) and for the second setup we added highly textured feature targets to

the scene to increase the number of feature points (see Figure 5.11) . To establish a ground

truth for the MAV pose, we used the Vicon tracking system described in Section 5.1.2.

For both setups, we initialized the system with a baseline of 20cm mounted on a table

with a height of 70 cm and a width of 120 cm. Then we produced in total 7 keyframes by

moving the camera in vertical-rectangular motion above the table. After the generation

of the 7 keyframes, the keyframe creation is deactivated to lock the state of the virtual

scene representation. The parameters of the localization quality are automatically tuned

after the initialization to adapt to the current scene.

After the initialization, we rotate the camera in a hand-held manner into 8 different

directions as depicted in Figure 5.10 and 5.11. For each direction, we start with a central

view and rotate the camera in the chosen direction until the localization is lost. Afterwards

the camera is returned to the central view for the next direction. During the experiment,

we record the MAV pose which is tracked by the Vicon system at a rate of 120 Hz and

the camera pose of the PTAM system at a rate of 10 Hz. Using our MAV model, we can

calculate the relative error between the MAV pose estimated by the PTAM system and

the pose tracked by the Vicon system.
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Figure 5.10: Localization quality evaluation procedure in a sparsely textured scene. The
images are views of the PTAM system. The image in the center of the figures is the view
after initialization and is the start point for the motion in each individual direction. In the
outer images, one can see the same scene after the rotation in one of the 8 directions. The
images were taken just before the system loses the visual localization. The colored dots
represent the currently tracked map points. The black numbers stand for the experimental
order for the rotations.

5.4.2 Results

In our experiment we consider two different scenes. The first one is sparsely textured and

contains approximately 300 map points. The second one has the same background, but 4

feature targets were added, which roughly doubles the number of map points.

Figures 5.12 and 5.13 plot the pose error as well as the localization quality during the

experiment. If we consider the curve of the localization quality, we can see that each loss

of the visual localization is preceded by a significant drop in the localization quality. This

is exactly the behavior that is needed for an active system to prevent a localization loss,

as it enables the system to detect the approach to such a ”dangerous” state before it is

too late.

If we take a look at the statistics in Table 5.6, we can observe that for both scenes

the localization quality is always clearly beneath 20 percent at the time of the localization
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Figure 5.11: Localization quality evaluation procedure in a richly textured scene. The
images are views of the PTAM system. The image in the center of the figures is the view
after initialization and is the start point for the motion in each individual direction. In the
outer images, one can see the same scene after the rotation in one of the 8 directions. The
images were taken just before the system loses the visual localization. The colored dots
represent the currently tracked map points. The black numbers stand for the experimental
order for the rotations.

scene mean STD min max

sparsely textured 0.112 0.061 0.036 0.183

richly textured 0.049 0.054 0.002 0.177

Table 5.6: Localization quality as in Equation 3.14 at the point of localization loss for the
richly and the sparsely textured scene.

loss.

If we compare the curves of the pose error to the localization quality, we can note that

not every localization loss is preceded by rise of the localization error. This means that

even if we could somehow determine the real localization error, it would be no indicator

for an imminent localization loss.
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Figure 5.12: MAV pose error and localization quality for a sparsely textured scene. The
black stems mark points where the localization is lost. The experiment was conducted 9
times in 8 different directions. The first and the last direction are the same.

5.4.3 Conclusion

The main purpose of this work is to maintain the visual localization at all times during the

autonomous mission. Therefore it is crucial to avoid motions which will very likely lead to

a loss of the localization. In this experiment we have demonstrated that an approach of the

camera to such a ”dangerous” state can be predicted using our novel localization quality

measure. During our experiment the localization was never lost above a localization quality
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Figure 5.13: MAV pose error and localization quality for a richly textured scene. The
black stems mark points where the localization is lost. The experiment was conducted 9
times in 8 different directions. The first and the last direction are the same.

value of 20 percent, neither for the sparsely textured scene nor for the richly textured scene.



96 Chapter 5. Experiments

5.5 Autonomous Explorative Navigation

In this work we devised a monocular system which can navigate towards a destination

pose in an arbitrary environment. We do not assume that the environment is known

before hand, but acquire the relevant information during the execution. The proposed

system is able to autonomously decide whether a destination pose can be safely reached

without risking a collision or the loss of the visual localization given the currently available

information about the environment. In the case that insufficient information is available,

the system autonomously attempts to generate the relevant information.

This chapter is concerned with the evaluation of the overall autonomous system. We

evaluate the performance of the system in two different scenes with two different high level

objectives (missions).

(a) vicon laboratory (b) multi-level living room

Figure 5.14: Experimental scenes.

The first scene is a controlled environment of a laboratory (Figure 5.14a) which allows

us to capture the ground truth pose of the MAV using the Vicon tracking system. The main

purpose of this experiment is to demonstrate the advantages of our explorative approach.

We will demonstrate that our approach enables a monocular MAV to perform a full 360◦

turn in a low textured laboratory. The exact details of the experiment are described in

Subsection 5.5.1.

For the second scene we have chosen a multi-level living room (Figure 5.14b). In this

experiment we will demonstrate the full capabilities of our approach. During this mission

the MAV is required to perform a 90◦ turn and then move across the staircase without

losing the visual localization. In order to successfully complete the mission the system does

not only have to generate 3D map points for localization, but also has to decide which
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parts of the scene are not occupied by any objects and can be used for a safe navigation.

A detailed description of this experiment is provided in Subsection 5.5.2.

5.5.1 Full 360◦ Turn Experiment

Most of the current work with monocular MAVs [1, 18, 19, 36, 78, 80] is concerned with

visual servoing. For evaluation they all use predefined trajectories which do not include

any rotational motion. We assume that one of the main reasons for this choice is the fact

that the easiest way to lose the visual localization is a plain rotational motion. As it is

the aim of this work to avoid a loss of the visual localization, we choose a 360◦ turn as

a high level objective for this experiment. This objective can only be achieved through

generating a ”reasonable” baseline which allows the construction of new 3D map points

with a sufficiently large triangulation.

The aim of this experiment is to demonstrate the advantages of the explorative nature

of our approach in a monitored environment as well as to draw conclusions in regard to

the accuracy of the localization and map generation. We show that our approach can

autonomously explore the necessary parts of the environment and can handle severe navi-

gational imprecision as well as extensive network lags without losing the visual localization.

The remainder of this section is structured as follows.

First of all, we provide the details on the experimental procedure and how the high-

level objective of a 360◦ can be translated into a set of destination poses. Secondly,

Subsection 5.5.1.2 analyzes the planning and emergency behavior of our approach. Thirdly,

Subsection 5.5.1.3 evaluates the localization and mapping performance of the system with

respect to the Vicon ground truth and the building floor plan, respectively. Finally, we

draw conclusions from this experiment in Subsection 5.5.1.4.

5.5.1.1 Experimental Procedure

For this experiment we used a weakly textured scene as depicted in Figure 5.15. Additional

to the internal visual pose estimate of the system, we also track the position of the MAV

with the Vicon system. The PTAM system is initialized with a baseline of 0.5m in the

center of the room with a distance of approximately 4.5m to the wall in front of the MAV.

To provide some navigational space for the MAV, we defined an initial free space cube

with a side length of 2m. The center of the cube is placed 1m above the initialization

position. In order to achieve a 360◦ turn we send 4 destination poses to the system. Each

pose has the same xyz-position (0/0/1.2), but the yaw angle is increased by 90◦ from one
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destination pose to the next. This leads to destination poses with a yaw angle in this

order: 90◦, 180◦, 270◦ and 0◦. The system has to reach each destination pose in this

order, but in between it can freely choose its path.

Figure 5.15: Experimental scene. A 360◦ view of the experimental scene captured from the
MAV during the experiment. The MAV was initialized with the view in the 0◦ direction.
During the experiment the MAV turns counter-clockwise until it has turned a full circle.
This behavior is achieved through the definition of 4 intermediate destination poses. Each
pose has the same xyz-position, but the yaw angle is increased by 90◦ from one destination
pose to the next.

5.5.1.2 System Logic

In this subsection we aim to explain and demonstrate the functionality of our system logic

using the data of this 360◦ turn experiment. To this end, we illustrate the path planning

scheme and the changes of the system safety and the system state during the experiment.

Planning. For our navigation we do not generate a global plan which defines the whole

trajectory towards the destination, but rather short time plans. These short time plans

have the advantage that they do not necessarily have to be completed during the execution,

but can be replanned when new information is available. Furthermore, these short time
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plans are calculated considering the current MAV pose. These two properties lead to a set

of unconnected trajectories, as the MAV hardly ever reaches one of these ”intermediate

destinations” before it replans and moves towards a new destination.
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Figure 5.16: Short time plans and the trajectory recorded by PTAM. The asterisks sym-
bolize the position of the intermediate destinations. The blue lines connect the pose of
the MAV at the time of the destination generation to the related destination. They can
be seen as ”ideal” trajectories. The green line is the effectively recorded trajectory by the
PTAM system.

Figure 5.16 displays the planned trajectories of our planning scheme as well as the

trajectory of the system’s own localization module (PTAM). Note that most of the inter-

mediate destinations are very close to the position on which we defined the four high-level

destinations. More importantly, it can be observed that the system intentionally chose to
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leave this position to generate new high quality map points for further execution. This

occurs when the system decides that a localization-safe navigation towards the current

destination can no longer be guaranteed. In this case the system selects a ”relevant”

subset of potential points and tries to find a pose in the neighborhood of the MAV that

maximizes the likelihood to generate new map points. During this experiment this event

occurred five times and Figure 5.17 shows the ”relevant” subset of potential points for

each case as well as the ”strategic pose” which maximizes the point generation likelihood.

In all five cases the system was in fact able to generate new useful map points without

losing the localization, which finally led to a successful completion of the 360◦ turn.

System Modes. In Figure 5.18 one can see the changes of the system safety state as well

as the system mode. The 6 modes can be split into two parts; the explorative navigation

and the emergency response. The modes of explorative navigation, Hold Position (HP),

Goal-Striving (GS) and Strategic Exploration (SE), want to complete a high-level task,

whereas the emergency modes, Localization Improvement (LI), Collision Avoidance (CA)

and Localization Recovery (LR), want to keep the MAV safe and sound.

The HP mode simply signalizes that a destination has been reached. If further desti-

nations are available the system directly switches back to GS. During the GS execution

the system can generate intermediate destinations to close the distance to the current

high-level destination. If no useful intermediate destination with a safe trajectory to the

current MAV location can be generated the system mode switches to SE and starts to

generate new useful map points.

The planned trajectories as depicted in Figure 5.16 consider all safety aspects, but

due to the significant imprecision of the navigational system, it can occur that the safety

constraints are violated nonetheless. Therefore it is possible to intercept the modes of the

explorative navigation at every point in time. This interception is done in a top-down

manner.

The highest priority is given to the time since the last pose estimate. The chart in

Row 1 of Figure 5.18 shows the time that has past since the last frame was received from

the MAV. The curve shows in total five groups of lag spikes of which all have peaks greater

than 0.5 seconds. Four groups exceed 1 second, three groups 1.5 seconds and one major

lag has a duration of nearly 20 seconds. These severe lags cause the system to switch in

the LR mode in which it tries to stay at a safe position only using the IMU data. This

mode was given the highest priority as we cannot reliably perform any task without a

reasonable pose estimate.
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Figure 5.17: Strategic point generation. Each row depicts the ”world” state at a point
in time at which the system decided that it needs to improve the point cloud to ensure
a localization-safe navigation towards the destination pose. The dark blue cells can be
regarded as known obstacles. The colored dots on the left hand side represent potential
3D map points. The color of these dots codes the likelihood of existence of a point at
this location (”red” means high probability and ”green” the opposite). The columns in
the center and on the right side depict the subset of potential points which the system
deemed to be ”relevant” for the current task. The column on the right side additionally
shows a special intermediate destination which could also be called ”strategic pose” as it
maximizes the chance of generating new useful map points while localizing successfully at
the same time.
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Figure 5.18: System state analysis. Row 1: The time since the last frame is used to
detect lag spikes. Note that there are 4 lag spikes with a duration greater than 1 second
and a major lag of nearly 20 seconds. Row 2: Collision probability over time. Due to
the probabilistic model it can never drop below 20 percent. Row 3: Localization quality
changes during the experiment. Row 4: System mode changes over time. The top 3 modes
are emergency responses, whereas the others are part of the explorative navigation.
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The mode with the second highest priority is the CA mode. This mode is enabled

when the collision probability (Row 2 of Figure 5.18) exceeds a predefined threshold and

prevents the system from getting too close to obstacles or unknown space. Note that there

are no obstacles close to the MAV in this experiment. Therefore only the unknown space

criterion causes this state to be entered. Due to the discrete nature of the volumetric map

and the fast reaction of our system the collision probability never exceeds the threshold

of 0.4 in this experiment.

The last of the emergency modes is LI which is entered if the localization quality (Row

3 of Figure 5.18) drops too low. Note that only significant navigational imprecision causes

this mode to be entered. Through our planning scheme the system tries to avoid such

states. In this experiment the system switches five times into the SE mode to create

new useful map points and keep the localization quality high, whereas it only enters the

LI mode two times. This means that, despite the extensive lags and the navigational

imprecision, the system was able to prevent states with a low localization quality, in more

cases than not, before they actually could occur.

5.5.1.3 Localization and Mapping

In this subsection we analyze the accuracy of the visual localization by comparing the pose

estimate of the PTAM system to the ground truth provided by the Vicon system. The

main purpose of this part of the evaluation is to demonstrate that the pose estimation

with PTAM is very close to the optimum and does not show any significant drift in this

full loop experiment.

Figure 5.19 shows the trajectories of the MAV recorded by the PTAM system as well

as the Vicon system. One can see that for most of the time the pose estimate of the PTAM

system is very close to Vicon ground truth, but a few times the pose estimation of the

PTAM system is totally wrong. The reason for this large error can be found in Figure 5.20.

All major localization errors in this experiment were directly caused by severe lags. One of

these lags lasted nearly 20 seconds. During this time the system did not receive any frames

from the MAV and could not confirm its location visually. Note that after the visual input

resumed, the system was in all cases able to fully recover its current pose. Despite from

these major lag spikes the mean pose error was in an acceptable range with 0.25m and

0.08rad. The full error statistics of this experiment can be found in Table 5.7. During the

experiment no significant drift could be detected. The error curve in Figure 5.20 shows

that the system also successfully recognized its initial pose after a full 360◦ turn, which



104 Chapter 5. Experiments

 

 

ptam
vicon

y
[m

]

x [m]

MAV trajectory

−2−1.5−1−0.5 0 0.5 1 1.5 2 2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

(a) xy view

 

 

ptam
vicon

z
[m

]

x [m]

MAV trajectory

−1 −0.5 0 0.5 1 1.5 2
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

(b) xz view

 

 

ptam
vicon

z
[m

]

y [m]

MAV trajectory

−2.5−2−1.5−1−0.5 0 0.5 1 1.5 2
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

(c) yz view

z
[m

]

y [m]
x [m]

MAV trajectory

−0.5
0

0.5
1

1.5

−2
−1.5

−1
−0.5
0

0.5
1

1.5

0.5

1

1.5

(d) xyz view

Figure 5.19: Comparison of the trajectories recorded by the monocular localization
(PTAM) and the ground truth (Vicon system).

results in a significant drop in the localization error at the end of the experiment.

error type unit RMSE mean STD max

linear [m] 0.334 0.248 0.225 1.953

angular [rad] 0.109 0.078 0.076 0.876

Table 5.7: Localization error statistics. The error for the linear position (xyz) and the an-
gular position (yaw) have been treated separately. The error was calculated by comparing
the PTAM pose estimate to the Vicon ground truth.

In Figure 5.21 we compare the sparse reconstruction to the 2D ground truth plan of the

room. From this comparison it is possible draw several conclusions. First of all, the system
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Figure 5.20: Localization error changes during the experiment. The error was calculated by
comparing the PTAM pose estimate to the Vicon ground truth. Top: Linear error. Middle:
Angular error. Bottom: Time since the last frame from the MAV reached the system. Note
that all major localization error peaks are directly caused by severe communication lags.
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Figure 5.21: Sparse reconstruction compared to 2D ground truth. The black dots are
the 3D map points of the point cloud after the full 360◦ turn. The red and green lines
represent the inner and outer wall surface of the laboratory according to the building floor
plan. For the alignment of the wall ground truth with the point cloud only translation and
rotation were taken under consideration to maintain the scale. Note that the wall in the
bottom of the figure contains a lot of windows which have a sun blind several centimeters
away from the outer wall surface.

was able to successfully close the loop after the 360◦ turn. Secondly, the reconstruction

successfully represents the skewed angles between the walls of the room. Thirdly, we can

say that the scale of reconstruction is very close to the real scale. Note that some point

groups along the bottom wall in the figure lie within as well as outside of the wall. These

points are no outliers, but are valid map points on the windows and sun blind. The sun

blind is positioned several centimeters away from the outer surface of the wall.
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5.5.1.4 Conclusion

Simply turning is one of the hardest tasks for a monocular system as it needs a baseline

between the camera positions to infer the depth of the scene. In this experiment we have

shown that the proposed system is able to perform a full 360◦ degree turn in a barely

textured scene without losing the visual localization. Due to the dynamic explorative

nature of our approach the system was able to create a high quality map which allowed

for a localization without any significant drift. Furthermore, this experiment once again

demonstrates that our system is very robust against communication disruptions and can

even recover from lags up to 20 seconds.

5.5.2 Multi-Level Experiment

The previous experiment mainly focused on the maintenance of the monocular localization

and the generation of new useful map points. In contrast, this experiment additionally

evaluates the capability of the system to avoid collisions. We have chosen this multi-level

scene for two main reasons. Firstly, it shows that even in indoor environments airborne

vehicles can have a significant advantage over ground robots due to their increased mobility.

Secondly, the flight across the staircase is more challenging for the navigation module. The

transition between the flat ground and the stairs causes the air stream beneath the MAV

to change, which leads to turbulences that have to be compensated by the controller.

While the staircase inherently increases the navigational imprecision, the frame around

the stairs drastically limits the available space for navigation. In this experiment we show

that our proposed system is able to safely navigate through such a challenging scene due to

the detection of dangerous states with our collision probability measure and our recovery

strategy. Furthermore, this experiment demonstrates once again that our localization

quality measure and our point generation scheme enable a localization-safe navigation.

To increase the expressiveness of this experiment, we repeated this experiment six times.

We split this section into four parts. Firstly, we start this section by providing the

exact details of the experiment. Secondly, we demonstrate the functionality of our system

in analyzing the MAV trajectory and the system logic. Thirdly, we use the repetitions of

the experiment to estimate the scale uncertainty of the resulting reconstruction. We close

this section by drawing conclusions from this experiment.
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5.5.2.1 Experimental Procedure

For this experiment we initialize the system with the MAV positioned in the lower room

with the camera facing the curtains as shown in Figure 5.22. For the initialization we use a

baseline of 20cm. Due to the limited space available, we only grant the system a very small

initial free space cuboid with 1.2m in the x-direction (towards the curtains), 1.6m in the

y-direction and 2m in the z-direction (from the floor upwards). The high-level objective in

this scenario is to reach the destination pose up the stairs. The destination pose is defined

as (−0.5/−3.5/1.8/−1.57) in (x/y/z/yaw)-coordinates relative to the initialization pose.

In plain words this means that the MAV should move across the staircase and face the

antique desk as shown in Figure 5.22.

Figure 5.22: Mission for the multi level experiment. After initialization the MAV only
has map points on the curtains. The mission is to safely move up the stairs and reach the
destination facing the antique desk.

5.5.2.2 System Logic

The main aim of this subsection is to demonstrate the functionality of our approach in

this challenging scenario through a detailed analysis of a single flight, and to review the

most important statistics of all six flights.

Figure 5.23 visualizes the trajectory in sampling the MAV pose once per second. This

figure connects all three representations of the same scene. The top most image illustrates

the MAV trajectory in the ”real” scene as a human would perceive it. In the middle

one can see the sparse representation of the scene; the point cloud. The system uses
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Figure 5.23: Trajectory sampled with a frequency of 1 Hz. Each image shows the same
discretely sampled trajectory with a different background. The background in the top
most image is the actual scene, whereas the center only shows the sparse reconstruction
of the scene (point cloud). The bottom most image shows the volumetric representation
of the scene. Blue means that a cell is occupied (obstacle) and transparent green means
that a cells is very likely to be free of obstacles (free space).
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this representation to localize itself in the scene. The bottom most figure depicts the

volumetric representation of the scene. This representation is used to detect obstacles and

ensure a safe navigation through parts of the scene which are known to be free of obstacles.

These parts of the scene are called ”free space” and are visualized with transparent green

cells. Note that the MAV never leaves the ”free space” during the whole autonomous

flight. This figure also demonstrates that prior to translating towards the destination, the

system turns in the direction of the destination. This is done automatically to carve free

space in the direction of the destination. Without this intentional free space carving the

MAV would not be able to safely navigate towards the destination.

In Figure 5.24 we depict not only the trajectory recorded with PTAM, but also the

generated short-time plans which influence the trajectory. From the figure we can draw

several conclusions. Firstly, the nadir view in Figure 5.24a shows that the strategic desti-

nation (red dot) does not help to close the distance to the destination, but instead helps to

generate new relevant points in the room upstairs. Secondly, one can see in Figure 5.24a

that the transition between the flat surface of the room and the steep structure of the stairs

causes great navigational problems for the MAV (y value between −0.5 and −1). During

the navigation across the narrow path above the stairs (y value between −0.5 and −1.5)

the turbulences cause the system to enter the CA state as it gets too close to walls on the

side. This leads to the eight trajectories leading towards the pose at (0.42/− 0.06/1.4) as

this pose is the safest keyframe pose in the neighborhood with best localization quality.

Note that this pose does not necessarily have to be reached, but rather defines a safe

recovery trajectory until the overall state of the system is safe enough to resume to the

normal execution. This recovery strategy ensures that the system does not lose the visual

localization while moving to a safer position.

Figure 5.25 illustrates the changes in the system state during the experiment. The top

most chart shows that the system suffered from severe lags in the interval between 80 and

90s, which did not pose a serious problem for our system. If we take a look at the chart

with the collision probability, we notice a major spike at the time of 48 seconds. This spike

was caused by an outlier which could be erased from the probabilistic map in less than a

second after its appearance. During the navigation above the staircase ( approximately 95

to 125s) the turbulences cause the system to enter the CA state nine times. This behavior

keeps the MAV always far enough from any obstacle to avoid collisions. The localization

quality only drops one time at 62s at the end of the 90◦ rotation, which caused the system

to switch into the SE mode to generate new points in the room upstairs.
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Figure 5.24: Short time plans and the trajectory recorded by PTAM. The asterisks sym-
bolize the position of the current intermediate destination. The blue lines connect the
current pose of the MAV at the time of the destination generation to the related destina-
tion. They can be seen as ”ideal” trajectories. The green line is the effectively recorded
trajectory by the PTAM system. In (a) and (b) we marked one destination with a red
dot. This type destination is called ”strategic” as it does not help to close the distance
to the user defined destination, but has the purpose of generating new useful map points.
In (a) and (c) we additionally depict the floor levels and stairs to make the figures more
comprehensible.
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Figure 5.25: System state analysis. Row 1: The time since the last frame is used to
detect lag spikes. Note that during this experiment the system suffered from serious
communication problems in the interval of 80 to 90s. Row 2: Collision probability over
time. Row 3: Localization quality changes during the experiment. Row 4: System mode
changes over time. The top 3 modes are emergency responses, whereas the others are part
of the explorative navigation.
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In the selected flight it took the MAV approximately 100 seconds after the receipt of

the destination pose to reach this destination. Overall six flights it took the MAV on

average 187.3 seconds to reach the destination, with a standard deviation of 68.7 seconds.

In all flights the MAV successfully explored all relevant parts of the scene and managed to

reach the destination while keeping the visual localization steady at all times. On average

the system entered 1.33 times the SE mode to generate new points (STD: 1.03). Our

collision probability measure enabled our system to detect dangerous states and helped to

keep the MAV far away from any obstacles while always respecting the need for the visual

localization. In all experiments the MAV was able to reach the destination without any

collision or loss of the visual localization.

5.5.2.3 Scale Uncertainty

In this part of the analysis we use the repetition of the experiment to draw conclusions

about the scale uncertainty of the reconstruction. For this purpose we consider the result-

ing point clouds of all six experiments as depicted in Figure 5.26 . If we take a look at

Figure 5.26, we can see that all reconstructions agree on the same topology of the scene.

The reconstruction of the room on the lower level (y < 2), which is close to the initial pose

of the MAV, is nearly the same for all flights. All reconstructions agree on the same level

for the upper floor, but the wall on the upper floor (y ∈ [5, 6]) shows a great variation in

its depth value.

This motivated us to take a closer look at the variation of this wall. Note that the wall

in question is perpendicular to the wall with the curtains in the lower room which was used

for the initialization. To analyze the variation of the wall depth we only consider a part of

the scene which only contains features on this specific wall and no other objects. In this

scene this corresponds to the volume of x ∈ [−2, 0], y ∈ [5, 6.5] and z ∈ [2.3, 3], which we

displayed in Figure 5.27. Using this representation it is very easy to see that the individual

reconstructions do not agree on the exact position of the wall. The average depth value

(y-axis) of the wall is 5.98m with a standard deviation of 0.19m. This means that the

relative depth uncertainty of the wall is 3.2 percent, which can be seen as an indicator

for the scale uncertainty of the resulting reconstruction. Note that this uncertainty does

not cause any problems for the navigation per se, but can lead to problems if the client

defined destination does not respect this scale uncertainty. In the worst case this can lead

to client defined destinations inside an obstacle, which then of course can never be reached

by the MAV.



114 Chapter 5. Experiments

sparse reconstruction

x
[m

]

y [m]
−2 0 2 4 6 8

−4

−3

−2

−1

0

1

2

3

4

(a) xy view

sparse reconstruction

z
[m

]

y [m]
−2 0 2 4 6 8

−3

−2

−1

0

1

2

3

4

5

6

(b) yz view

Figure 5.26: Resulting point clouds of all six flights. The point cloud of each flight is
depicted in a different color. Note that we flipped the y-axis in all figures to create a view
which corresponds to the real world. Thus, (a) can be seen as a top-down view and (b)
looks in the direction in which the system was initialized.
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Figure 5.27: Depth uncertainty of the wall in the upper room. The colored dots represent
the map point on the wall. All dots of a specific flight have the same color. The colored
lines represent the mean depth of the wall.
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5.5.2.4 Conclusion

With this scenario we have shown that our system is capable of autonomous navigation

through an unknown complex environment. Even in the situation of severe navigational

disturbances the system is not only able to avoid collisions, but also to maintain the

visual localization at all times due to the inherent robustness of our proposed measures.

Through repetition of the experiment, we estimated the scale uncertainty of reconstruction

to be under four percent. This scale uncertainty is too small to have an impact on the

navigational behavior of our system, but should be respected during the creation of client

defined destination poses.

5.6 Summary

In this section we did not only demonstrate the overall functionality of our system for the

task of active monocular localization, but also evaluated the individual modules of our

system as independently as possible.

In our first series of experiments we showed that the point recognition probability of

the tracking system (PTAM) is strongly influenced by viewpoint changes. For a change

in the viewing angle we found that the recognition probability significantly declines above

an angle of 30◦ and drops below 25 percent above 70◦. We also showed that the relative

scale change of a feature point can only be handled within a certain range. This range

was proven to vary strongly depending on the scale at which the feature was originally

extracted. In our experiments the PTAM system was able to handle a decrease of the

scale (moving farther away) much better than increasing the scale (moving closer). The

outcome of this experiment enabled us to device a realistic but still computationally cheap

model of the point recognition probability.

The main purpose of our second series of experiments was to analyze and document the

performance of the navigational module in combination with PTAM and the AR.Drone 2.0.

The experiments have shown that navigation accuracy in the vertical direction is signif-

icantly higher than in the horizontal direction. This leads to the conclusion that an

ellipsoidal metric, as proposed in this work, is better suited for the task of collision avoid-

ance than a simple Euclidean metric. Our experiments show that the mean navigational

error during the execution is below 14cm, but can under certain circumstances even exceed

0.5m. Furthermore, we measured a mean time of 10 seconds to close a distance of 20cm

towards a new destination pose. The experiments confirm that the reaction time as well
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as the navigational precision of the system are influenced by the frequency and duration

of the communication lags. Due to these unpredictable communication disruptions, it is

not possible to make any guarantees regarding the collision avoidance.

In our third experiment we forced our system into extreme situations, which led to a

loss of the visual localization. In any case it was possible to predict the loss of the visual

localization with our novel localization quality measure. At the time of the loss of the

visual localization the localization quality was always clearly below 20 percent.

In our final series of experiments we demonstrate the capabilities of our approach in

two different scenarios. In the first scenario we showed that our active system was able

to autonomously perform one of the hardest tasks for a monocular system. Our system

successfully completed a full 360◦ degree turn in a barely textured scene without losing

the visual localization although it suffered from severe communication disruptions of up

to 20 seconds. Due to the dynamic explorative nature of our approach the system was

able to create a high quality map which allowed for an automatic loop closure. In the

second scenario we demonstrated that our system is able to safely explore and navigate

through complex indoor scenes containing multiple floor levels. This experiment showed

that even in the situation of severe navigational disturbances the system is able not only to

avoid collisions but also to maintain the visual localization at all times due to the inherent

robustness of our proposed measures.

In the following section we will conclude this work in summarizing the most important

facts and providing an outlook to our future work.



Chapter 6

Conclusion and Future Work

In this thesis we bridge the gap between monocular SLAM and autonomous robotic sys-

tems. This bridge is build on the solid pillars of our novel measures which enable the

system to evaluate the localization stability, the likelihood of generating new points as

well as the physical safety for arbitrary camera and MAV poses. All that is needed for the

calculation of these measures is the information which is available in every bundle adjust-

ment based monocular SLAM approach; i.e. a sparse reconstruction of the scene (map

points), the set of cameras poses which observe the map points, the 2D feature points and

the information which map point was observed from which camera.

Using our novel measures we developed a monocular MAV system which is capable

of autonomous way-point navigation in unknown environments. The resulting system

respects the constraints for localization as well as physical safety along every planned

trajectory. To ensure a localization safe navigation the system does not only avoid states

which could lead to a loss of the visual localization, but actively generates new points so

that the way-points can be safely reached.

In our experiments we demonstrate the effectiveness of our novel measures and capa-

bilities of our autonomous explorative navigation approach. We show that our system can

autonomously navigate between way-points in challenging unknown environments while

maintaining the visual localization at all times. Through the explorative nature of our

approach, we are able to complete tasks like a full 360◦ turn in a sparsely textured envi-

ronment which is one of the hardest tasks available for a monocular system. Furthermore,

we demonstrate that our navigation approach as well as our novel measures are very ro-

bust against a high degree of navigational imperfection which suggests that our approach

is well suited to cope with changing dynamics and external influences such as wind and

117



118 Chapter 6. Conclusion and Future Work

turbulences.

Future Work. In our future work we want to combine our explorative navigation ap-

proach with a Next-Best-View algorithm and thus develop a fully autonomous exploration

system which does not require any exteroceptive sensors except from a monocular camera.

To improve the scalability of our approach, it is necessary to remove the cubic memory

consumption of the volumetric representation. This can be very likely achieved through

the construction of a surface mesh. Up to now the main purpose of surface meshes is to

model solid objects, but in order to achieve navigational safety its is necessary to explicitly

model unknown parts of the scene. Such mesh, which yet has to be proposed, could reduce

the memory consumption drastically and concurrently provide an unlimited resolution for

obstacle avoidance.
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Acronyms

List of Acronyms

AGAST Adaptive and Generic Accelerated Segment Test

AR Augmented Reality

BA Bundle Adjustment

BRIEF Binary Robust Independent Elementary Features

CA Collision Avoidance

CPU Central Processing Unit

DoG Difference of Gaussian

EKF Extended Kalman Filter

FAST Features from Accelerated Segment Test

FPS Frames Per Second

FOV Field Of View

GBA Global Bundle Adjustment

GPS Global Positioning System

GPU Graphics Processing Unit

GS Goal-Striving

HDD Hard Disk Drive

HP Hold Position

IR InfraRed

IMU Inertial Measurement Unit

LBA Local Bundle Adjustment

LI Localization Improvement
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LR Localization Recovery

MAV Micro Aerial Vehicle

MLE Maximum Likelihood Estimator

MSER Maximally Stable Extremal Region

NBV Next-Best-View

PRM Probabilistic RoadMap

PTAM Parallel Tracking and Mapping

RAM Random-Access Memory

RANSAC Random Sample Consensus

RGB Red, Green, Blue (color space)

RGBD Red, Green, Blue, Depth

RMS Root Mean Square

RMSE Root Mean Square Error

RRT Rapidly-exploring Random Tree

ROS Robot Operating System

SfM Structure from Motion

SDK Software Development Kit

SE Strategic Exploration

SIFT Scale Invariant Feature Transform

SLAM Simultanious Localization and Mapping

SSD Sum of Squared Differences

STD STandard Deviation

SURF Speeded Up Robust Features

SUSAN Smallest Uni-Value Segment Assimilating Nucleus Test

ToF Time-of-Flight

UAV Unmanned Aerial Vehicle

USAN Uni-Value Segment Assimilating Nucleus

VDD Variable Depth Distribution

VSLAM Visual SLAM

WiFi Wireless Fidelity

ZMSSD Zero-Mean Sum of Squared Differences
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