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Abstract

Faces are the most distinctive feature of human beings. Accurate and efficient face
modeling has always been an active research area in computer vision. Applications range
from facial recognition over tracking to photo-realistic modeling.

Real world data is often noisy and incomplete which can be better handled by employing
prior knowledge from a model. We employ 3D Morphable Models (3DMMs) to model
faces and present a robust and extendable pipeline for fitting 3DMMs for facial scans.

3DMMs are well known statistical models in computer vision and constitute an efficient
facial representation. We present the basic concepts of 3DMMs to aid the reader’s
understanding of the topic.

An existing cost function to fit 3DMMs is extended by point-to-plane constraints. The
existing cost function acquires correspondences for fitting by means of a non-rigid
registration and does not incorporate possible better correspondence. We tackle this issue
and propose two methods that incorporate updated correspondences. Furthermore we
adapt an existing non-rigid 3D registration method to provide reliable correspondences
for the fitting cost functions. The proposed methods alternately fit a 3DMM and register
the input sample to the previously 3DMM, allowing the usage of better correspondences.
The algorithms behave like Iterative Closest Point (ICP) and iteratively converge to a
local minimum.

We collect a dataset of 10 persons using a handheld 3D scanner to acquire real world
data and evaluate the proposed methods with it. Our methods achieve superior results
in comparison to the original method and are faster.



Zusammenfassung

Das Gesicht ist das markanteste Erkennungsmerkmal eines Menschen. Die dreidimensiona-
le Computermodellierung eines Gesichts ist seit jeher ein aktives Forschungsgebiet in der
maschinellen Bildverarbeitung. Anwendungsgebiete erstrecken sich von Gesichtserkennung
über Nachverfolgung bis hin zu fotorealistischer Modellierung.

Aufgenommene Datensätze sind oft verrauscht und unvollständig, was eine Verarbeitung
schwierig macht. Eine Methode, um diese Probleme zu bewältigen, ist der Einsatz eines
statischen Modells als a priori Wissen. In dieser Arbeit verwenden wir ein 3D Morphable
Model um Gesichter zu modellieren und präsentieren eine robuste und einfach erweiterbare
Pipeline zur Anpassung von 3D Morphable Models an 3D Scans von Gesichtern.

3D Morphable Models sind wohlbekannte statistische Modelle in der maschinellen Bild-
verarbeitung und ermöglichen eine kompakte Gesichtsrepräsentation. Wir erläutern das
grundlegende Konzept von 3D Morphable Models in dieser Arbeit und zeigen verschiedene
Methoden um die Modellparameter für 3D Scans zu finden.

Wir erweitern eine existierende Kostenfunktion zur Anpassung von 3D Morphable Mo-
dels mit einem Punkt-zu-Fläche Fehlerterm. Die ursprüngliche Kostenfunktion gewinnt
Punkt-zu-Punkt Korrespondenzen durch eine einmalige nicht rigide Registrierung. Wir
erweitern diese Methode um aktualisierte und möglicherweise bessere Punkt-zu-Punkt
Korrespondenzen zu erhalten. Unsere Methode führt abwechselnd eine Modellanpassung
und Korrespondenzsuche zum Modell der vorherigen Iteration durch. Der Algorithmus
verhält sich vergleichbar zu dem Iterative Closest Point (ICP) Algorithmus.

Um diese Arbeit zu evaluieren, erstellen wir einen Datensatz von 10 Gesichtsscans mit
einem Handscanner. Unsere entwickelten Methoden erreichen bessere Ergebnisse als die
ursprüngliche Methode.
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1. Introduction

Computer Vision often has to deal with objects that belong to the same category (e.g.
cars, buildings), but differ a lot in shape and texture. Human beings can easily detect and
distinguish between different categories of objects and different groups within a category.
On the other hand, it is difficult for computers to recognize, detect and classify object
categories, and to differentiate objects within them. The amount of different categories
is basically unlimited. Human beings learn a new category by only a few samples and
intuitively learn a model for a specific category. We know the typical properties and
possible variants, and learning the typical shape and/or texture and possible variants for
an object is the idea that statistical shape and appearance models are based on.

This work deals with the “category” faces which is one of the strongest features to
distinguish between human beings. Automatic processing of facial images has become
very important for biometry, recognition, surveillance, facial animation and many other
application areas. Many different models like Active Appearance Models (AAMs), Active
Shape Models (ASMs) have been developed and heavily used to deal with faces in many
different applications. AAMs and ASMs model 2D shape and appearance, in this work
we focus on 3D shape, which offers the 3D Morphable Model (3DMM) to be used. The
3DMM is a well-known tool for 3D face reconstruction from either 2D data or 3D data.
It models the shape and appearance of a 3D object. It was successfully used for many
tasks concerning faces Prominent applications are:

• synthesizing 2D face images from different views [10, 45],
• facial animation [55]
• tracking [45, 55],
• face recognition [2] and
• avatar generation [59].

1.1. Problem Definition

All these very promising applications come with the challenge of fitting a 3DMM. Fitting
means finding the model parameters that make the fitted model as similar as possible to
the input data. This very imprecise definition of fitting will be refined later in Section 2.1.
This task is quite difficult due to complexity of the input data and high variability of
faces. For example an algorithm that fits a facial 3DMM to a photograph, has to be able
to recover the missing 3D information. Algorithms that fit 3DMMs to 3D data have to
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1. Introduction

deal with different head poses, light conditions, noise, etc.. The high variability of faces
makes this task difficult even without the previously mentioned challenges.

Since cheap consumer depth cameras are available, fitting to 3D depth data has become
popular. Depth cameras are cameras that give, in addition to color values, the distance
from the camera to every pixel in world space. Leveraging some of the difficulties of
fitting a 3DMM to 2D data, a 3D based fitting algorithm still has to deal with a variety
of problems. Cheap cameras come with the disadvantage of often incomplete and noisy
depth data. Small, yet very distinctive details like the nose tip, or even whole parts like
ears might be missing.

Nevertheless, the fitting algorithm has to be robust to that and accurately fit the model.
Robust fitting of 3DMMs to 3D data is the challenge we want to approach in this work.

1.2. Thesis Structure

This thesis is structured as follows: Chapter 1 motivates and defines the problem this
work is dedicated to. A brief historical overview about the research that led to the
3DMM gives the reader insights into its appearance. The related work in Section 1.3
part informs the reader about different fitting methods and developments that were most
relevant recently.

Chapter 2 presents the structure of a 3DMM. Model training and certain fitting methods
require dense point-to-point correspondence and therefore also contain a non-rigid regis-
tration scheme. 3DMMs possess very desirable properties that are usable as a fitting
prior. We show how to utilize these properties and also elaborate on the expressive power
of the used model.

The core part of this work is presented in Chapter 3. We present three different fitting
methods. The first method extends an existing method. The second method iteratively
acquires better model fits by finding a better correspondence set. The third method uses
a more sophisticated pose estimation method and solves several linear subproblems.

All methods are evaluated in Chapter 4 and discussed in detail. Chapter 5 concludes the
thesis with a final discussion of learned lessons and future work.

1.3. Related Work

In Section 1.3.1 we give a historical overview of the 3DMM and briefly refer to competing
models. We continue with different fitting strategies for 3DMM that are the actual topic
of this thesis. We structure them into two groups: Fitting to pure 2D data and fitting to
3D data. Section 1.3.2 starts with image-based model fitting and Section 1.3.3 continues
with methods that incorporate 3D data.

2



1. Introduction

1.3.1. Appearance and Current Trends of Statistical Shape Models

The underlying idea of statistical shape models is that unseen samples of the model’s
category can be expressed as weighted linear combinations of the model’s training samples.
A new face could for instance be

faceunseen = 0.1 · facea + 0.2 · faceb + 0.7 · facec (1.1)

Such a very basic model has many disadvantages. First the dimensionality of the model
is very high. Second, the number of samples in the model has to be very high to be able
to cover enough variance to gain reasonable expressive power. The need to have many
samples in the model can result in high redundancy between the samples.

Kirby et al. [29] tackled the problems of the native approach by applying Principal
Component Analysis (PCA) to the vectorized training images. PCA is a classical
statistical procedure that gives a more compact data representation by projecting the
original high dimensional data into a lower dimensional coordinate space. The so called
“Eigenfaces” is another application of PCA for faces. “Eigenfaces” are used for face
representation, detection and recognition [54].

The previously mentioned approaches neglect model specificity for gaining high variability.
This impacts the robustness during interpretation of images [18]. Cootes et al. [18]
incorporate category specific knowledge into his ASM by generating a point distribution
model. It learns the variability pattern of annotated feature data points. ASMs are also
PCA-based models.

The AAM is the main result evolving from previous models. It is also strongly related to
the 3DMM that can be seen as a three dimensional variant of the AAM [10]. ASMs have
the shortcoming of not modeling and incorporating both texture and shape. AAMs model
the shape using feature points and the texture using texture patches at the underlying
feature points. They have been successfully applied to many different computer vision
tasks, among them medical imaging [7, 36] and face recognition [19].

In 1999 Blanz et al. [10] proposed the 3DMM. It was originally developed for modeling
textured 3D faces [10] and is like the AAM a statistical shape and appearance model.
This inherently means that a broad range of realistic faces can be modeled by a few
coefficients. The main difference is a much denser model of corresponding points and the
extension to 3D.

Since the emergence of 3DMMs, developing robust fitting methods to different kinds
of inputs has been an ongoing research topic. Early fitting methods reconstructed the
model parameters from photographs. Fitting to photographs is inherently an ill-posed
problem, because all 3D information is lost and has to be recovered by various techniques.
Fitting to 3D data has become more popular since cheap consumer depth cameras have
become available. Earlier, acquiring 3D data was more difficult and was mostly done
using laserscanners [40]. Among the most prominent depth cameras are Microsoft Kinect
and Primesense. The first generations of depth cameras were quite large external devices.
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1. Introduction

Recently Intel announced their RealSense depth cameras that are small enough to be
integrated in notebooks and tablets. This opens a whole new range of applications.

Wide-spread usage of 3DMMs in the scientific community was also detained by the
complexity of model generation. To tackle this issue the Basel Face Model (BFM) was
created in 2009 and made available to the scientific community [40]. This model is
considered to be the state of the art 3DMM [37] and is used in many recent publications
[1, 37, 55].

The previous paragraphs inform the reader about the appearance and the evolution
that led to the 3DMM. Following we want to state related work concerning existing
fitting methods. We focus on image-based fitting methods in Section 1.3.2 and on
point cloud-based methods in for image-based and point cloud-based fitting methods in
Section 1.3.3.

1.3.2. Image-based Model Fitting for 2D

“Analysis by synthesis” denotes fitting methods that synthesize the model for the current
parametrization and use it to further improve the fitting. Or more precisely, denotes fitting
a parameter update, calculated by a model synthetization of the current parameters.

Fitting to pure 2D data is inherently an ill-posed problem. By projecting from 3D to 2D,
all depth data is lost and has to be recovered by analysis by synthesis techniques.

The first 3DMM is that of Blanz et al. [10] and introduced the term “morphable head
model”. They use Stochastic Newton Optimization (SNO) and analysis by synthesis to
fit the 3DMM to a 2D photograph of a face.

Optimizing by SNO is quite slow. Improving the fitting efficiency is the motivation
behind Inverse Compositional Image Alignment (ICIA) based approaches. Romdhani
et al. [44] extends ICIA to fit 3DMMs. They change the cost function in a way that keeps
the Jacobian constant. The Jacobian is a matrix containing the derivatives for every
variable (see Appendix A). Consequently updating the Jacobian in every iteration is not
necessary which greatly increases the fitting performance. However, ICIA is developed
for AAMs that only model shape and texture. Image phenomenas like illumination can
not be modeled properly.

Kang et al. [28] propose a multi-resolution fitting approach based on ICIA. First, the
authors estimate the parameters on a low resolution model. The fitting procedure of
a next higher resolution model is initialized by the previously estimated parameters.
A newer multi-resolution fitting approach is presented by Hu et al. [25]. They denote
it as Resolution-Aware 3DMM (RA-3DMM) and perform a 3 level multi-resolution
fitting, based on Multi-Feature Fitting (MFF) [45]. Multi-resolution fitting reduces the
probability of getting stuck in a local minimum [24].

4



1. Introduction

Speeding up the performance is the intention of Romdhani et al. [46], proposing Linear
Shape and Texture (LiST). The authors’ basic idea is to update the gradients of the
shape and texture by solving a linear system. The illumination and rigid transformation
parameters are optimized in a non-linear way, because this aspect of the fitting problem
can not be converted to a linear problem [46].

Romdhani [45] later extends the original SNO based optimization by including image
features like edges, specular highlights and texture constraints. This smooths the cost
function and removes the need for using SNO to avoid local minima. MFF [45] is currently
the best fitting strategy in terms of accuracy [24].

Recently Hu et al. [24] extended MFF with a facial symmetry constraint prior. They use
the fact that a human face is roughly symmetric. The additional constraint enabled to
recover better illumination parameters and to outperform the original MFF [24].

Aldrian et al. [1] decompose the image formation process into geometric and photometric
parts. They fit the BFM to a single photograph of a face by formulating the problem as
a multi-linear system. The face recognition performance is slightly inferior to MFF, but
computationally less expensive.

Blanz et al. [9] incorporate the range data of face scans in the cost function. In each
iteration a random pixel subset is synthesized. The algorithm aims to make these pixels
as similar as possible to the color and depth values of the scan.

1.3.3. Point cloud-based Model Fitting

Fitting 3DMMs to 3D data has become a more active research topic since 3D facial scans
can be acquired by relatively cheap depth cameras.

Finding Correspondence

A general challenge with this kind of approache is that the source (e.g. scan) must be
semantically consistent with the target (model). Semantical consistency means that a
point of the sample must semantically correspond to the same point in the template, e.g.
tip of the nose.

Finding these correspondences is often performed by means of non-rigid registration. A
non-rigid registration aligns two meshes, called target and template, as closely as possible
by manipulating the pose and shape of the template. This class of methods usually
mimic the properties of an elastic material that can be deformed within certain limits
(regularization) [33, 48].

The most relevant methods rely on the Iterative Closest Point (ICP) algorithm [2, 3, 6,
8, 58] and on probabilistic modeling [6]. Further references for probabilistic registration
approaches are given in [6]. As we use an ICP-based method we limit the related work
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to such. ICP is sensitive to outliers and initialization, but improvements to the original
ICP algorithm have been made. The authors of [47] evaluate different variants of ICP
in terms of convergence speed. Robustness to outliers and bad initialization has been
improved by using probabilistic methods [6, 16].

Fitting Methods

Amberg et al. [2] fit an expression-invariant 3DMM to noisy laser scans using an optimal
step non-rigid ICP registration method [3]. In every iteration of the non-rigid ICP
algorithm, a 3DMM is fitted to the current set of correspondences. A non-linear objective
function recovers the model parameters, rotation and translation. Fitting a 3DMM in
every iteration enables to recover expressions of the sample [2].

Zollhöfer et al. [59] aim to fit a 3DMM directly to aggregated data of a consumer depth
camera. The authors use facial landmark detection on the 2D color data to find the face
and crop it. They deform the mean shape of a 3DMM to the aggregated depth data
using the non-rigid registration method from [51]. After the deformation, the template
does not represent a realistic face, but point-to-point correspondence is available. The
authors use dense correspondences to fit a 3DMM by a linear system. Texturization is
done in a vertex-by-vertex manner for the 2D color data. Their approach is not real-time
capable, but finishes within a minute.

Weise et al. [55] present a method for real-time facial animation. Microsoft Kinect
captures the user’s facial performance. They use ICP for rigid alignment of the face
with a presegmented template where the chin and eyes are excluded. This stabilizes the
rigid-registration, because the eyes and chin cause the strongest deformations in a face.
They wrap the template to the user’s facial expression using a modification of [33]. To
track the facial expressions a blendshape rig [31] is used. A dynamic expression priors
regularized the blendshape weights to prevent unrealistic face poses. A user-specific
expression model is generated as prerequisite. In a later work, PCA-based learning
obsoletes this [32].

The authors of [48] propose two ICP-based algorithms for registering 3D laser scans
of human heads. They linearly optimize by a first-order approximation of the original
non-linear objective function. An ICP-framework replaces a non-rigid registration and
solves the pose and shape estimation at once.

A newer approach is the method from Arellano et al. [6] that works completely without
point-to-point correspondences. The sensitivity of ICP to outliers is the motivation behind
this approach. They redefine the registration problem as a density estimation problem.
The target and template data sets are considered as two separate Probability Density
Functions (PDFs). Rigid registration and reconstruction of the model is performed by
minimizing the Euclidean distance between these two PDFs. Experiments show that this
approach is robust and accurate, but computationally expensive [6].

6



1. Introduction

Chapter Summary

The first chapter of this work gave an introduction into the work. It outlined the thesis’
structure, defines the problem we want to tackle and motivates why it is worth to do
this. Furthermore an overview about related work is given. Chapter 2 continues with
presenting background knowledge of the formulation of a 3DMM and necessary tools for
solving the fitting optimization problem.
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2. Background

Chapter 1 motivates the purpose of this work. This work is using a 3DMM as model for
faces, hence we describe the 3DMM in Section 2.1. Dense point-to-point correspondence
is necessary for our fitting method and is achieved by non-rigid registration. The used
method is proposed in Section 2.2. As fitting the model comes down to an optimization,
Section 2.3 formulates this using Bayes statistics.

2.1. 3D Morphable Models

The aim of a 3DMM is to represent the appearance of a face in a mathematical way.
A face can be considered as a class of objects. The selected model should be able to
represent any valid face while staying in the space of valid faces.

3DMM is a class of generative statistical models. Generative models can be built by
examples. The representational power greatly depends on the variations in the training
samples. Generative models were successfully used for many other applications like
modeling skulls [41], bodies [5, 56] and for registration [48, 50]. Empirical evaluations
showed that several hundred examples are enough to create a model with reasonable
representative power [39]. In the context of 3DMM example data is the shape and the
texture of the faces. Shape and albedo (skin color) are treated independently, which
is not absolutely correct [39]. There are some correlations between shape and albedo,
although the assumption of statistical independence is in general good enough for fitting
realistic faces.

The core statistical tool for generating a 3DMM is PCA. PCA is often used for dimension-
ality reduction. In this application it is used to generate a parametrizable representation
by an uncorrelated set of coefficients. Fitting a PCA model can be interpreted as fitting
a multivariate Gaussian distribution. This gives the possibility to use the model as
statistical prior. This fact is useful to prevent the generation of unrealistic faces and will
be discussed in Section 2.1.3.

A 3DMM is a parametric model based on a vector space representation of the shape and
texture. The shape and texture are represented as vectors

s = (x1, y1, z1, . . . , xn, yn, zn)ᵀ (2.1)
t = (r1, g1, b1, . . . , rn, gn, bn)ᵀ, (2.2)

8



2. Background

where n is the number of vertices.

The 3DMM itself is given by the mean shape/texture (µ ∈ R3n), the principal components
(U ∈ R3n×m) and the corresponding standard deviation (σ ∈ Rm), which correspond to
the sample data’s eigenvalues. Ms is the shape model and Mt is the texture model.

Ms = (µs,σs,Us)
Mt = (µt,σt,Ut) (2.3)

The shape and texture model are independent of each other and can be used individually.
As we only fit a shape model in this work, subsequently we omit the subscript s and
denote the shape model simply as M .

Figure 1 visualizes three model principal components. We render the first three principal
components of the model with ±5σi. Mathematically formulated we render the following
model realizations:

µ±Ui5σi, i = 1, 2, 3

2.1.1. Describing Faces

Previously we explained the components and construction of a 3DMM. This section
comments on the way a parametrized 3DMM expresses a face. As the description is
analogous for texture and shape, we describe it jointly for completeness.

A face shape / texture vs,t ∈ R3n can be described as linear combination of the mean
shape / texture µ ∈ R3n and a weighted sum of m principal components Us,t ∈ R3n×m.
The principal components are weighted by the real valued coefficients θs,t ∈ Rm. For
easier reading, we omit the subscripts s, t:

v =
m∑
i

uiσiθi + µ = U diag(σ)θ + µ (2.4)

The closed form solution for the model parameters θ is as follows [39]:

U diag(σ)θ + µ = v (2.5)
U diag(σ)θ = v − µ (2.6)

U ᵀU︸ ︷︷ ︸
I

diag(σ)θ = U ᵀ(v − µ) (2.7)

θ = diag
( 1
σ

)
(U ᵀ(v − µ)) (2.8)

Since U is orthogonal U−1 = U ᵀ.

As the coefficients θ are real valued, continuous morphing in face space is possible. This
property can be used to modify e.g. the age in a certain range or give the face the
appearance of a comic [10].

9
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U1

U2U3

Mean face µ

−5σ +5σ

−5σ

+5σ

−5σ

+5σ

Figure 1.: Visualization of Principal Components: Rendered with ±5σ of a single
principal component.
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2. Background

2.1.2. Training a 3DMM

After clarifying the basic structure, we want to describe the model construction.

It is required that the samples have dense correspondences. Correspondence means
semantical consistence between point pairs of the sample and the model.

We denote the m example vectors with n vertices as

vi ∈ R3n, i = 1, . . . ,m
vi = (x1, y1, z1, . . . , xn, yn, zn)ᵀ

From all examples the mean is computed by

µ = 1
m

m∑
i=1
vi (2.9)

Next the mean-centered samples are arranged in a matrix X ∈ R3n×m

xi = vi − µ, i = 1, . . . ,m (2.10)
X = (x1, . . . ,xm) (2.11)

To compute the PCA, X is then decomposed by Singular Value Decomposition (SVD).
The SVD decomposition of the n×m matrix X has the form

X = UWV ᵀ.

U and V are n × m and m × m orthogonal matrixes. The columns of U span the
column space of X and the columns of V span the row space of X. The m×m diagonal
matrix D, with diagonal entries d1 ≥ d2 . . . ≥ dm ≥ 0, contains the singular values of
X [26, p. 64pp]. U and V are orthonormal matrices, hence U ᵀU = UU ᵀ = I and
V ᵀV = V V ᵀ = I

Using the SVD formulation the covariance matrix Σ of X can be expressed as follows:

Σ = 1
m
XXᵀ (2.12)

= 1
m

(UWV ᵀ)(UWV ᵀ)ᵀ (2.13)

= 1
m
UW V ᵀV︸ ︷︷ ︸

I

W ᵀU ᵀ (2.14)

= 1
m
UW 2U ᵀ (2.15)

= UΛU ᵀ (2.16)

ui are the eigenvectors of the covariance matrix Σ and Λ = diagi(λi) = diagi( 1
m
w2
i ). The

eigenvalues are ordered by their magnitude: λ1 ≥ λ2 . . . ≥ λm.

11



2. Background

The eigenvalues λi are the variance of the covariance matrix. The face space is given by
the orthonormal n×m matrix U with the standard deviation:

σi =
√
λi =

√
1
m
w2
i = wi√

m
(2.17)

Refering to Equation 2.3, a 3DMM is given by the principal components U , the mean
shape µ and the standard deviation diag(σ).

2.1.3. Face Distribution

Retrospective to the previous section, not every θ ∈ Rm represents a realistic face. The
statistical properties of the model lend itself to formulate a prior that constrains the
model parameters within the space of valid faces.

The real distribution of face shapes and textures is unknown. However, it is a common
assumption that shapes and textures are normally distributed around a mean. This
assumption makes it possible to create a distribution prior. We assume that the faces v
are distributed by a multivariate normal distribution v ∼ N (µ,Σ) The probability of
vi being a face can be written as follows. We drop the index i for easier reading:

Pr(v) = 1√
(2π)n|Σ|

exp
(
−1

2(v − µ)ᵀΣ−1(v − µ)
)

(2.18)

∝ exp
(
−1

2(v − µ)ᵀU ᵀΛ−1U(v − µ)
)

(2.19)

= exp
(
−1

2(v − µ)ᵀU ᵀ diag
( 1
σ2

)
U(v − µ)

)
(2.20)

= exp
(
−1

2

(
(v − µ)ᵀU ᵀ diag

( 1
σ

))(
diag

( 1
σ

)
U(v − µ)

))
(2.21)

= exp
(
−1

2θ
ᵀθ
)

= exp
(
−1

2‖θ‖
2
)

(2.22)

In Equation 2.20 Λ was substituted by Equation 2.17. Equation 2.21 contains the closed-
form solution for θ and θᵀ from Equation 2.8 and is therefore substituted. Equation 2.22
gives the probability for a face, parametrized by θ, being a realistic face.

The coefficients θi ∼ N (0, 1) are assumed to be distributed by the standard normal
distribution (µ = 0, σ = 1). This assumption can be used as a prior for v being a
realistic face.

2.1.4. Explanation Power of the Principal Components

PCA is widely used for dimensionality reduction by performing an orthogonal projection
into a vector space spanned by the axes with most variance. Usually a low number of

12
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principal components is sufficient to represent a large amount of the total variance, if
the data correlation is high. Additionally the computational costs for fitting depend on
the number of used principal components. The more principal components are used,
the larger the equation system to solve is. We evaluate the explanatory power of the
model in this section and provide a basis for deciding the number of necessary principal
components in the fitting.

It is possible to measure the explained variance of the individual principal components.
The proportion of variance explained by principal component i is given by

var explained(i) = λi∑
λ
. (2.23)

Figure 2 shows the cumulated explained variance of the used 3DMM on a logarithmic
scale. We clearly see that it is not necessary to use the full amount of 199 principal
components. Over 90% of the variance is explained by only 20 principal components
and over 95% percent by 25 components. The computational costs of the model fitting
greatly depend on the number of used principal components.

2.2. Registration

In the previous sections we mention that dense point-to-point correspondences are
necessary for fitting. We will later present a fitting method that retrieves them from a
deformed template. We gather the correspondences by a modified variant of the non-rigid
registration method from [3], which is a template-based registration. The authors named
it with the acronym NICP-A. 3D registration is a very active research topic, but further
registration algorithms are beyond the scope of this thesis. The reader is referred to [27]
for a comprehensive survey of shape correspondence methods.

Usually correspondences between template and sample are unknown. Good point-
to-point correspondence is a crucial requirement to perform accurate model fitting.
Wrong correspondences lead to bad fitting results, because the optimization tries to find
parameters for a shape that the model can not synthesize properly. As an example,
think about a nose vertex in the model that falsely corresponds to a chin vertex in the
sample.

A 3DMM lends itself to be used as a template for registration [3, 33]. We use the model’s
mean face as deformation template in the registration.

2.2.1. Non-rigid ICP-A

NICP-A is an optimal step non-rigid registration algorithm based on the ICP framework
[3]. Sophisticated regularization of the template deformation is a crucial task to achieve
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Figure 2.: Cumulated Explained Variance: A low number of principal components
explains a large percentage of the variance.

good registration results. NICP-A includes a locally affine regularization by modeling
the mesh as graph.

The algorithm calculates the optimal template deformation in an iterative manner. In
every iteration the optimal template deformation for a given stiffness is found. The
stiffness controls the allowed non-rigid deformations of the template. The stiffness weight
decreases during the iterations and allows stronger non-rigid deformations when the error
can not be further reduced with the current regularization.

NICP-A behaves like ICP in the beginning and allows stepwise more non-rigid deforma-
tion.

Nonrigid optimal step ICP algorithm

In this section we describe the structure of NICP-A. We stick to the notation of [3].
Table 2.1 states the used symbols for the algorithm.
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2. Background

Symbol Explanation
n Number of template vertices
α Stiffness weight (deformation regularization)
S = (V , E) Template
V Template vertices ({vi})
E Template edges
T Target surface
vi Template vertex (vi ∈ V)
wi Weight of vertex vi
dist2(T ,vi) distance of vi to the closest vertex on T
X 4n× 3 matrix of unkowns

Table 2.1.: Symbols NICP-A

The aim of the algorithm is to find for every vertex i on the template an affine 3 × 4
transformation matrix R. The number of vertices on the template is denoted as n. These
transformation matrices are organized in a 4n× 3 matrix

X = [R1,R2, . . . ,Rn]ᵀ

The optimization is performed in an iterative ICP-style method. In every iteration
point-to-point correspondence between the target surface (T ) and the deformed template
surface (V(Xj−1)) is found. V(Xj−1) is the original template surface deformed by the
optimal deformation found by the previous iteration (j − 1).

The following pseudo code describes the algorithm:

Algorithm 1 NICP-A
Initialize X0
for all αi ∈ {α1, α2, . . . , αn}, αi > αi+1 do

do
Find correspondences for V(Xj−1)
Weight correspondences
Find optimal transformation Xj for the correspondences

while ‖Xj −Xj−1‖ < ε
end for

The optimal transformationXj is acquired by a quadratic function that can be optimized
directly.

The cost function consists of two parts: A distance term Ed(X) and a stiffness term
(regularization) Es(X). The original publication of NICP-A includes a landmark term,
we omit it, as we do not have landmarks to steer the optimization and it converges also
without them [3].
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The distance term reflects the natural demand of registration algorithms that the
distance between the target and the template should be small. It is given by:

Ed(X) =
∑
vi∈V

wi dist2(T ,Xivi) (2.24)

Xivi is the transformed template vertex vi with the currently determined optimal
transformation Xi. dist2(T ,v) is the squared point-to-point distance between the closest
vertex on surface T and vertex v.

The stiffness term regularizes the non-rigid deformation of the template. This is the
actual reason why NICP-A behaves like rigid ICP in the beginning. A high stiffness
weight αi reflects a high penalization of non-rigid template deformation. The weighted
difference of the transformations of neighboring vertices is penalized under the Frobenius
norm (‖·‖F ). The set E is given by tuples of all neighboring vertices in the template
mesh. Assuming vertex vi and vj are connected by an edge, E contains the tuple (vi,vj).
G = diag(1, 1, 1, γ) is a weighting matrix using the weighting factor γ.

Ed(X) =
∑

(i,j)∈E
‖(Xi −Xj)G‖2

F (2.25)

The full cost function for the registration is given by:

E(X) = Ed(X) + αEs(X) (2.26)

In Equation 2.26 α is the stiffness weight. In Equation 2.27 the cost function from
Equation 2.26 is rearranged in a way that can easily be optimized by the normal
equations. The first row is the stiffness term Es, the second the distance term Ed. The
matrix M is a node-arc incidence matrix and represents the neighborhood in the mesh.
D is a block diagonal sparse matrix,

D =


vᵀ1

vᵀ2
. . .

vᵀn

 .

U is the correspondence points of the template vertices and W weights the correspon-
dences.

E(X) =

∥∥∥∥∥∥∥
αM ⊗G
WD
βDL

X −
 0
WU
UL


∥∥∥∥∥∥∥

2

F

= ‖AX −B‖2
F (2.27)

The solution for this optimization problem

arg min
X
‖AX −B‖2

F (2.28)
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is the widely known solution of a linear least-squares problem. Deriving the minimum of
E(X) by calculating ∂‖AX−B‖2

F

∂X
= 0 [23, p. 12] leads to:

X = (AᵀA)−1AᵀB

A proof that A has rank 4n and hence AᵀA is invertible is given in [3].

2.3. Bayesian Model Fitting

For the problem formulation and derivation of the mathematical formulation we follow
Amberg [4] and Weise et al. [55]. Their formulation is very clear and provides a framework
for different fitting methods.

Fitting a 3DMM might be interpreted as estimating the parameters θ that were used
to generate an facial image V. We denote all measurements of the 3D object as image.
More precisely we want to determine the distribution over the parameters θ that were
used to generate V , assuming that V was generated by the model.

This kind of problem can be formulated in a clean way using maximum a posteriori
probability (MAP).

2.3.1. Formulating as Maximum a Posteriori Probability Problem

To derive the formulation we assume that image V was generated by the model G. As
this it not true for fitting the model to a real face, we add an error term ε. We assume
that the observed image V is generated as

V = G(θ) + ε

by G parametrized by θ with error ε. We want to maximize the probability Pr(θ|V) of
the model parameters θ given the observed image V. We therefore solve the following
MAP problem:

θ∗ = arg max
θ

Pr(θ|V) (2.29)

= arg max
θ

Pr(V|θ) Pr(θ)
Pr(V) (2.30)

= arg max
θ

Pr(V|θ) Pr(θ) (2.31)

= arg min
θ
− ln(Pr(V|θ) Pr(θ)) (2.32)

= arg min
θ
− ln Pr(V|θ)− ln Pr(θ) (2.33)
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The probability Pr(V) of V being a face is constant for all θ and does not have any influence
on optimizing θ. Therefore we simplify by discarding the term after Equation 2.30.

In the further work we define the fitting energy as

Efit = − ln Pr(V|θ) (2.34)

and the prior energy as
Eprior = − ln Pr(θ) (2.35)

Efit is the energy related to how well the model describes the given sample V . The prior
energy Eprior is low if the parameters θ are realistic parameters for the model. Section 2.4
describes the design of the prior in more detail.

We use Equation 2.33 as base framework for minimizing different fitting energies and
priors. Section 2.4 presents more insights into the shape of the prior.

2.4. Modelling the Prior

Not all parameters θ represent a realistic face, therefore a regularization is necessary.
Following we present two priors.

The prior probability Pr(θ) regularizes θ. Referring to Equation 2.22 we know that the
prior of the 3DMM is

Pr(θ) ∝ exp
(
−1

2‖θ‖
2
)
∝ exp

(
−‖θ‖2

)
. (2.36)

This is proportional to a Gaussian Distribution (see Section 2.1.3).

However, Amberg [4] observed that better fitting results are achieved by modeling the
prior as

Pr(θ) = exp
(
−

m∑
i

max(|θi| − 1, 0)2
)
. (2.37)

This prior assigns equal probability to all faces whose coefficients have an absolute
value smaller than 1. Outside of the [−1, 1]d-cube the distribution drops off like a
standardnormal Gaussian [4].

For better clarification we give a plot for a two dimensional θ in Figure 3. Figure 3(a)
shows the prior in Equation 2.36, Figure 3(b) respective for Equation 2.37.
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Figure 3.: Prior Distributions

2.5. Point Distances

A cost function usually models some kind of error that should be minimized. In our
case we want to minimize the distance between two point clouds and define the distance
function as ϕ. The point clouds are given by the model and respectively the sample.
We present two distance measures for points, namely the point-to-point distance in
Section 2.5.1 and the point-to-plane distance in Section 2.5.2.

2.5.1. Point to Point Distance

The most common distance measure for points is the point-to-point distance, also known
as the Euclidean distance. For a point x and another point p ∈ P , where P is the target
surface, the point-to-point distance ϕ is defined as follows:

d(x,p) ≈ ‖p− x‖2 (2.38)

Calculating the distance to a first-order approximation of the target surface leads to the
point-to-plane distance.

2.5.2. Point to Plane Distance

The point-to-plane error measure can be seen a first-order approximation of the surface.
Rusinkiewicz et al. [47] observed experimentally that the point-to-plane ICP variant has
better convergence speed and is more robust than the point-to-plane variant. Subsequently
Pottmann et al. [43] demonstrated formally that the classic ICP has linear, respective
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quadratic convergence speed. This was achieved using the following Taylor expansion of
the point-to-point distance:

For a “foot point” p̄, i.e. the closest point onto the surface P to the point x, the Taylor
expansion of d is given as

d̃(x, p̄) ≈ d(x, p̄) + ∆d(x0)ᵀ · (x− p̄) (2.39)

= ‖x0 − p̄‖2 +
(
x0 − p̄
‖x0 − p̄‖2

)ᵀ

· (x− p̄) (2.40)

As x approaches p̄ ∈ P, the term ‖x − p̄‖2 approximates 0 and vanishes. The term(
x0−p̄
‖x0−p̄‖2

)ᵀ
is the unit surface normal n in point p ∈ P . Hence Equation 2.40 can be

written as
d̃(x, p̄) ≈ nᵀ · (x− p̄), (2.41)

which describes the well known point-to-plane distance [21].

One can see the point-to-plane distance as allowing a source point si to “slide” on
the normal plane of a target point ti, while the distance is constant. This property is
especially useful when the template and target mesh have different densities. Figure 4
illustrates the difference between the point-to-point and point-to-plane distance.

Figure 4.: Point to Point/Plane distance: ti are the target vertices and si the source
vertices. The black dashed lines are the tangential planes of the normals.
The red lines are the point-to-plane distance, the blue lines the point-to-point
surface.

Calculating point normals for a mesh is straightforward. Assuming a triangular mesh
we compute the normals for a triangle (v1,v2,v3) as follows:

n1,2,3 = (v1 − v2)× (v1 − v3) (2.42)

The unit length normals n̂i are consequently computed as

n̂i = ni
‖ni‖

. (2.43)
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Chapter Summary

Recapitulating the previous chapter, we introduce the formulation of the 3DMM in
Section 2.1. Moreover we present how faces are described in Section 2.1.1. An obvious
prerequisite is training a model. The way to do this and why this is a challenging task
is presented in Section 2.1.2. The model also has an inherent statistical prior. The
derivation of it is described in Section 2.1.3. Section 2.1.4 shows why the used 3DMM is
a compact model with strong expressive power. How to solve the fitting problem in a
probabilistic way is described in Section 2.3.
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Chapter 2 gives the foundation for the main part of this work. This chapter describes
the proposed pipeline and different fitting methods. A high-level overview of the fitting
method is given in Section 3.1. Three different fitting methods that can be embedded
are presented in the consecutive sections.

The first method establishes correspondence by non-rigidly deforming the model’s mean
shape and then recovers the model coefficients using a non-linear least-squares opti-
mization. We describe it in Section 3.3. We developed a correspondence weighting and
rejection scheme for the registration method to increase the robustness. We explain it in
Section 3.4.

The second method, described in Section 3.7, is based on the same non-linear least-
squares optimization, but does not need a non-rigid template deformation to acquire
dense correspondence. It finds the correspondences and model parameters in an iterative
manner.

An advancement of method one and two constitutes the third method: Section 3.8
explains a fully linear fitting method. This method is faster and easier to optimize,
because no non-linear optimization is needed.

3.1. Fitting Strategy

After stating the necessary foundation, we describe the fitting pipeline that constitutes
the core part of this work.

Figure 5 shows the structure of the pipeline, which we describe following in more detail.
The input is a mesh and the outputs are coefficients of the fitted model.

Rough initial alignment is a prerequisite for all other steps. A sufficient initial alignment
is necessary for all subsequent steps to converge.

Finding correspondence is necessary to fit the model parameters in a least-squares
manner.

Fitting the model comes down to a linear or non-linear optimization problem that aims
to find the model parameters for a given set of point correspondences.
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Mesh

Rough alignment

Finding cor-
respondence

3DMM Fitting

Fitted Model

Figure 5.: Pipeline Structure

Rough alignment is in general a requirement for ICP based methods. ICP is quite
sensitive to initialization [47]. The current version of this pipeline requires a manual rough
alignment to succeed. Different solutions to this problem are discussed in Section 5.3.1.

Before describing the different fitting functions, we state the used notation in Section 3.2
for common understanding.

3.2. Notation of Objective Functions

We denote f(·) as the objective function. The model parameters are denoted as θ ∈ Rm.
The model data is denoted as introduced in Equation 2.3. The rotation R is parametrized
by 3 Euler angles and is evaluated in the objective function with a 3× 3 rotation matrix.
The translation is a 3-element vector, corresponding to tx, ty, tz.

3.3. Non-linear Fitting from a Deformed Template

The first method can be seen as extension of the work from [2] and [59]. We modify
the cost function of Amberg et al. [2] to minimize the point-to-plane error which is
known to be more robust [47]. For recovering the model parameters, dense point-to-point
correspondence is required. This is achieved by non-rigidly deforming the model’s mean
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shape (see Section 2.1.1) to the sample. As the sample can be incomplete and noisy,
the deformed template might look unnatural. The deformed mean shape is then used
to recover the model parameters in a non-linear least-squares optimization. As the
deformed mean shape has the same point topology and number of points, we have dense
correspondence.

Considering the last paragraph, this fitting method consists of two steps. First, non-
rigidly deforming the model’s mean shape to the sample. Second, recovering the model
parameters using a non-linear least-squares optimization. We describe these steps in
Section 3.4 and respectively Section 3.5. We extend the original cost function by point-
to-plane constraints in Section 3.6.

3.4. Finding Correspondences by Deforming the Mean
Shape

The model fitting needs dense correspondences. More specifically, we need the semantically
correct correspondence of the model’s vertices and the target’s vertices. To achieve this,
the mean face of the 3DMM gets registered towards the sample in a non-rigid fashion.

The non-rigid ICP framework of NICP-A [3] is used in this work. ICP methods are
sensitive to outliers and bad correspondences [12, 47]. To decrease the influence of bad
correspondences and outliers, often a correspondence weighting and rejection scheme is
introduced [47]. The next sections present a correspondence scheme that both rejects
outliers and weights correspondences based on their distance. To avoid clustering of several
sample points on the template, we also present a method that rejects correspondences
that are likely to cause point clustering.

3.4.1. Rejecting of Correspondences

Weighting and rejection scheme improves the convergence rate and helps to avoid getting
stuck in local minima.

Looking at Equation 2.27 and 2.24 we are able to weight the correspondences. We denote
setting the weight of a correspondence to zero as rejecting it.

Border Vertices

We reject border vertices in order to avoid unravelled edges of the deformed template.
By rejecting border vertices the border of the template mesh stays smooth.
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Calculation of the border vertices is performed by employing mesh connectivity constraints:
Boundary edges of a triangular mesh are only referenced by single triangle. By finding
the unique edges we get the border vertices.

Incompatible Surface Normals

Rejecting points with incompatible surface normals is a widespread approach in the
literature [3, 47, 55]. A correspondence pair gets rejected if the angle between the surface
normals exceeds a certain threshold.

Calculating the angle between two vectors a, b ∈ R3 is performed by the well known
formula:

cosα = a · b
‖a‖‖b‖

(3.1)

If the normals have unit length, the denominator may be omitted.

Cross-side Matching

The cross-side matching (CSM) method was developed to prevent self intersections
of the template and point clustering: The face model also models the inner parts of
the nose. A facial scan does usually not model inner parts of the nose properly, so
inner part nose points can correspond to points such that a self intersection occurs.
Successively this leads to unnatural template deformations. Deformations that cluster
template points together happen when several template points have a single target point
as correspondence. The proposed cross-side matching method also efficiently rejects a
great part of these correspondences.

Both unnatural deformation and point clusters have negative influence on successive
steps. Especially the model fitting, which minimizes a quadratic function, is sensitive
to outliers. In order to avoid that, we present cross-side matching. This method rejects
correspondences by checking the closest points from two sides: From the template side
and from the sample side. This section explains the method. We begin by stating the
notation.

CT (vi) denotes the nearest neighbor of point vi on the target T . CV (vi, n) returns a set
of the n-nearest neighbors on T . CV (vi) gives the nearest neighbor of vi on in the set of
template points V . d(·) is a distance operator that gives the distance of a given vertex to
the nearest neighbor on the other surface, hence d(vi), vi ∈ V gives the distance to the
nearest point on the target for template vertex vi.
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CSM-hard is the most restrictive method. Correspondences are only accepted when
the corresponding point on the template and on the target are the same, seen from both
sides. Equation 3.2 gives a mathematical definition of CSM-hard. The vertex weight is
set to one in the following case: Template vertex vi has target vertex ti as closest vertex.
The closest vertex on the template of vertex ti is vi. Equation 3.2 states the above in a
more formal way.

wi =

1 if vi = CV (CT (vi))
0 else

(3.2)

A clear disadvantage of this method is that a lot of vertices get rejected if the target
is sparser than the sample. It prevents association of multiple template vertices to the
same template vertex.

CSM-soft is similar to CSM-hard. It rejects a correspondence pair, if vi is not in the
set of the n-nearest neighbours given by CV (pi, n). pi denotes the nearest neighbour of
vi on the target (pi = CT (vi)). Equation 3.3 describes the above more formal.

wi =

1 if vi ∈ {CV (CT (vi), n)}
0 else

(3.3)

CSM-distance accepts correspondence pairs, if the distance between the nearest neigh-
bor of vi on the target (pi = CT (vi)) and the distance of the nearest-neighbor of pi on
the template is smaller or equal than dist2(V ,vi) plus a small tolerance. We use the
squared Euclidean point-to-point distance. Equation 3.4 gives a more formal description
of this textual description.

This is especially important, if the sample vertices are sparser than the template vertices.
In this case multiple template vertices can be assigned to the same vertex on the target.

wi =

1 if dist2(T ,vi) ≤ dist2(V , CT (vi, 1)) + ∆d
0 else

(3.4)

3.4.2. Robust Correspondence Weighting

The registration has to provide robustness to outliers and missing regions. We use a
robust correspondence weighting similar to [2].

The weight wi of the correspondence of template vertex vi is defined as follows in every
iteration of the registration algorithm. dist2(T ,vi) is the squared distance of template
vertex vi to the closest vertex on the target surface T .
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wi =


dist2(T ,vi) if dist2(T ,vi) ≤ max linear weight distance
1/ dist2(T ,vi) else if dist2(T ,vi) ≤ max pair distance
0 else if dist2(T ,vi) > max linear weight distance

This method is suitable, because it rejects points that are too far away and does not
overweigh very close points. Overweighting very close points which are most probably
already well registered, results in clustering of points. As we estimate a transformation for
every point, also the mesh topology is changed. We want to preserve the mesh topology
as well as possible. As non-rigid ICP (NICP) minimizes the point to point distance
point, point clustering is a problem when registering meshes with different densities.
Good weight selection does not solve this problem completely, but decreases the influence.
Another desirable property of this weighting scheme is that it weighs points that are
likely correct correspondences, but not yet registered higher.

Consider the following examples: A point which has a distance of 3mm to its correspon-
dence is weighted with 1/0.0003 ≈ 3333. If the majority of all points is for example
within 2mm and an outliers point is 6mm away, it has a weight of ≈ 1666, but most
other points have ≈ 5000. The weighting scheme underweights this point and makes it
contribute less to the transformation estimation.

Summarizing this section, the output of the non-rigid registration is a deformed mean
shape of the 3DMM. Figure 6 shows a typical result of the non-rigid registration. The
eye and mouth regions show unnaturally deformed regions and the ear is completely
destroyed. This is due to holes in the sample and/or bad correspondences. In order to
acquire a natural and complete facial mesh, we fit the 3DMM to the deformed mean
shape.

Figure 6.: Deformed mean shape: Registered model mean shape. Unnatural deforma-
tions due to holes in the scan are clearly visible in the eye and mouth area.
The ear is completely crimped.
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For this template deformation approach, we present a point-to-point and a point-to-
plane constrained cost function. The first is presented in Section 3.5 and the latter in
Section 3.6.

3.5. Point-to-Point Non-linear Model Fitting

After having acquired dense point correspondence by means of the non-rigid registration,
we can fit the 3DMM to the deformed mean shape.

Fitting a 3DMM in a point-to-point manner is the most straight forward approach for
fitting a 3DMM. Our point-to-point cost function is the same as Amberg et al. [2] use.

Following our problem formulation and Equation 2.33, we define the fitting energy Efit
and the prior energy Eprior as follows. Index i denotes the error for the i-th point.

Efit =
∑
i

‖R(µi +Ui diag(σ)θ) + t− vi‖2 (3.5)

Eprior = λ‖θ‖2 (3.6)

The prior is weighted by the regularization weight λ. For a derivation of the prior see
Section 2.4. As the registration can introduce additional rotation and translation, the
cost function also optimizes for a rotation and a translation. The full cost function is
given by

E = Efit + Eprior (3.7)

The aim of the optimization is to find the arguments R, t,θ that minimize E, more
precisely

arg min
R,t,θ

∑
i

‖R(µi +Ui diag(σ)θ) + t− vi‖2 + λ‖θ‖2 (3.8)

Equation 3.8 is a non-linear function, hence can not be optimized directly by setting the
derivatives zero. We optimize using the Levenberg-Marquardt (LM) algorithm, which is
an iterative algorithm to solve non-linear least-squares problems. For faster computation,
we optimize using analytical derivatives instead of numerical derivatives.

To ease the computation of derivatives, the rotation is inversed and the objective function
is reformulated as follows:

f(R, t,θ) =
∑
i

‖µi +Ui diag(σ)θ + t′ −R′vi‖2 + λ‖θ‖2 (3.9)

R′ = Rᵀ t′ = Rᵀt

While performing an iterative optimization, the Jacobian matrix has to be evaluated
every iteration. For the cost function in Equation 3.9, the Jacobian can be split up into
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a constant and a dynamic part [2]. The dynamic part of the Jacobian Jd has to be
evaluated in every iteration. The constant part Jc can be precomputed.

Jc =
[
U diag(σ) 1⊗ I3

I 0

]
(3.10)

Jd =
[
I ⊗ ∂R′

∂r1
vᵀ I ⊗ ∂R′

∂r2
vᵀ I ⊗ ∂R′

∂r3
vᵀ

0 0 0

]
(3.11)

The full Jacobian is given by
J =

[
Jc Jd

]
. (3.12)

The derivation of the derivatives is stated in Section A.1 in the appendix.

We evaluate and discuss the results of this cost function in Chapter 4 and continue with
extending it by using point-to-plane constraints.

3.6. Point-to-Plane Non-linear Model Fitting

We extend the point-to-point based cost function presented in Section 3.5 with a point-
to-plane constraint. Point-to-plane distance is derived and explained in Section 2.5.2. In
a nutshell, cost functions using point-to-plane constraints often converge faster and are
more robust [43, 47].

We employ point-to-plane constraints by extending the fitting energy term Efit from
Equation 3.9 and writing it as

Efit =
∑
i

((µi +Ui diag(σ)θ + t′ −R′vi) · ni)2
. (3.13)

R′ = Rᵀ t′ = Rᵀt

ni ∈ R3 is the unit length normal of sample point vi ∈ R3. Without changing the prior
energy Eprior the full cost function is given by

f(R, t,θ) =
∑
i

((µi +Ui diag(σ)θ + t′ −R′vi) · ni)2 + λ‖θ‖2 (3.14)

R′ = Rᵀ t′ = Rᵀt.

As the result of the dot product is a scalar, we replace the sum of norms with a sum
over the squared signed point-to-plane distances.

The optimization is performed in the same way as for the point-to-point objective function
in Section 3.5. The analytical derivatives can be found in appendix Section A.2.

Summing up, we extended the cost function of Amberg et al. [2] with a more robust
error metric. Both solve the correspondence problem by non-rigid registration method.
This method has two main disadvantages: First it is computationally expensive. Second
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possibly better correspondences, acquired using a fitted model, can not be used. These
disadvantages encourage us to fit the model in an iterative way, which enables us to
use possibly better correspondences in every iteration. We continue by tackling this
limitation in Section 3.7.

3.7. Non-linear Iterative Fitting

In the previous sections we introduced a method that deforms the model’s mean shape
non-rigidly and then uses it to recover the model parameters. The registration is limited
by its deformation capabilities by a regularization. This means that the model’s mean
shape can only be deformed to a certain extent. As the deformed template represents the
correspondences used for model fitting, it is possible that there are better correspondences
available. We approach this issue by putting the cost function into an iterative framework
that refines the model iteratively with better correspondences.

The difference to the previous method is that we directly work with noisy correspondences.
We do not fit to the already registered mean shape. Registering the template avoids
fitting to outliers and noisy points. The `2 norm is known to be sensitive to outliers [12,
47]. An often used method to reduce the influence of outliers and bad correspondences is
to use a weighting and rejection scheme. Therefore we extend Equation 3.14 by a weight
wi ∈ R for every correspondence. The weight is selected by a distance-based threshold.

The cost function for iterative non-linear fitting is given by
f(R, t,θ) =

∑
i

wi ((µi +Ui diag(σ)θ + t′ −R′vi) · ni)2 + λ‖θ‖2 (3.15)

R′ = Rᵀ t′ = Rᵀt.

The fitted model iteratively approaches the sample points. We acquire the best model fit
by alternating between model fitting and acquiring correspondences. In every iteration
the acquired model fits the sample more closely. Listing 2 shows the algorithm in
pseudocode. K denotes the closest points for model points M on sample T . The trailing
modelM is initialized with the model’s mean shape. The algorithm iterates then between
finding new correspondences and fitting the model until the absolute difference between
the fitting error of the current and the previous iteration is below a threshold.

Algorithm 2 Iterative non-linear model fitting
M = µ
while |E − Eold| < threshold do

Find closest points K for M on T .
M = Fit model to correspondences K.
Eold = E
E = Evaluate model error for M on T .

end while
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This section explains a method that solves the correspondence problem in an iterative
fashion. The motivation behind this is to acquire possibly better correspondences by
performing iterative steps. As an `2 norm is minimized in our cost function, we introduce
correspondence weighting for robustness. This reduces the influence of outliers and speeds
up the convergence.

Minimizing continuous non-convex error functions involves the risk of getting stuck in
local minima. As a 3DMM is a linear model that can be optimized by solving a linear
equation system, we present a method that fits the 3DMM fully linear including rigid
pose estimation. We derive and present this method in Section 3.8.

3.8. Linear Iterative Fitting

All previously presented cost functions are non-linear. Minimizing a continous non-convex
function has always the risk of getting stuck in a local minima. Minimizing a convex
cost function is in most cases easier, faster and not subject to get stuck in local minima.
A 3DMM is in fact a linear model that can be optimized by solving a linear equation
system. Previously used cost functions also solve for the model’s pose. We demonstrate
in this section that we can solve alternately for correspondences, pose and the model
coefficients by solving several linear problems.

We decompose the previously used fitting energy

Efit =
∑
i

((R(µi +Ui diag(σ)θ) + t− vi) · ni)2 (3.16)

into a term solving for the rigid pose and a second term solving for the model coefficients.
We solve for the rotation matrix R, translation T and model coefficients θ.

arg min
R,t,θ

∑
i

((R(µi +Ui diag(σ)θ) + t− vi) · ni)2 (3.17)

We reformulate the cost function into two parts, where mi = µi +Ui diag(σ)θ

arg min
R,t,θ

∑
i

((Rmi + t− vi) · ni)2 + ((R(µi +Ui diag(σ)θ) + t− vi) · ni)2 (3.18)

Subsequently decompose this into two independent steps:

Step 1: arg min
R,t

∑
i

((Rmi + t− vi) · ni)2 (3.19)

Step 2: arg min
θ

∑
i

((R(µi +Ui diag(σ)θ) + t− vi) · ni)2 (3.20)

We alternately solve step 1 and step 2. In the first step the model is fixed and the only free
parameters are R, t. This problem is the classical discrete pairwise registration problem
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and can be solved using the ICP algorithm [12, 58]. We give a short overview about ICP
in Section 3.8.1 and explain how to recover the optimal transformation. In the second
step, R and t are fixed and we only solve for θ. Solving step 2 is explained in Section 3.8.2.
We perform this two-step optimization alternately until the algorithm converges and
there are no significant changes in the residual errors. This method is related to the
Expectation-Maximization (EM) algorithm and the Concave-Convex Procedure (CCCP)
[57]. Both solve a problem by splitting it up and solving easier subproblems.

3.8.1. Iterative Closest Point

ICP is an algorithm that iteratively finds the optimal transformation that establishes
correspondence between two datasets, assuming a coarse alignment. Equation 3.21 and
3.22 use the point to plane distance which is known to have better convergence speed [43,
47]. The ICP algorithm essentially solves two problems: First it finds correspondences
and second it finds the optimal transformation between two datasets. In each iteration
the registration error decreases and converges to a local minimum [58]. We directly
employ point-to-plane constrained ICP for faster convergence and better results [47].

Step 1.1: arg min
Y

n∑
i=0

((Rxi + t− y) · ni)2 (3.21)

Step 1.2: arg min
R,t

n∑
i=0

((Rxi + t− y) · ni)2 (3.22)

The correspondences in Equation 3.21 are computed by finding the closest points yi ∈ Y
to xi. Finding correspondences can be sped up by efficient data structures, e.g. KD-Tree
[8, 12, 58]. Equation 3.22 computes the optimal transformation between xi ∈ X and
yi ∈ Y . ni is the normal of point yi.

Step 2.2 is efficiently solved by linearizing the rotation matrix. The rigid transformation
is then parametrized by the Euler angles α, β, γ and translation t, stacked in a vector
c.

The solution to the rigid pose estimation in Equation 3.22 is given by setting the
derivatives zero. We refer the reader to the work of Chen et al. [15] and Low [34] for a
comprehensive derivation of the derivatives. We briefly state how the rigid-transformation
is recovered. For better readability, we introduce pi = xi × ni, where × denotes the
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cross product. After rearrangement, we write our problem using matrices

A =
∑
i



pi,xpi,x pi,xpi,y pi,xpi,z pi,xni,x pi,xni,y pi,xni,z
pi,ypi,x pi,ypi,y pi,ypi,z pi,yni,x pi,yni,y pi,yni,z
pi,zpi,x pi,zpi,y pi,zpi,z pi,zni,x pi,zni,y pi,zni,z
ni,xpi,x ni,xpi,y ni,xpi,z ni,xni,x ni,xni,y ni,xni,z
ni,ypi,x ni,ypi,y ni,ypi,z ni,yni,x ni,yni,y ni,yni,z
ni,zpi,x ni,zpi,y ni,zpi,z ni,zni,x ni,zni,y ni,zni,z


, (3.23)

c =
(
α β γ tx ty tz

)ᵀ
, (3.24)

b =
∑
i



pi,x(xi − yi) · ni
pi,y(xi − yi) · ni
pi,z(xi − yi) · ni
ni,x(xi − yi) · ni
ni,y(xi − yi) · ni
ni,z(xi − yi) · ni


. (3.25)

Matrix A ∈ R6×6 and coefficient vector c ∈ R6 and depending vector b ∈ R6 constitute
the following linear system:

arg min
α,β,γ,tx,ty ,tz

= Ac− b = 0 (3.26)

As A is a positive-definite symmetric matrix, Equation 3.26 can be efficiently solved by
a Cholesky decomposition. Using Cholesky factorization we write

A = LL∗, (3.27)

where L is a lower triangular matrix with real and positive diagonal entries and L∗ its
conjugate transpose. Solving

Lq = b (3.28)
by forward substitution and

L∗c = q (3.29)
by backward substitution, efficiently calculates the solution for c. Fixing the computed
rigid-transformation in Equation 3.20, we continue computing the model coefficients
θ.

3.8.2. Linear Model Fitting

Step 1 in Equation 3.19 computes the rigid transformation aligning the model with the
sample. Step 2 in Equation 3.20 computes the model coefficients. (µ is a 3n vector and
U a 3n×m matrix. To simplify the parameter computation, we change the direction of
the rigid transformation and rewrite step 2

arg min
θ

∑
i

((R(µi +Ui diag(σ)θ) + t− vi) · ni)2
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as

arg min
θ

∑
i

((µi +Ui diag(σ)θ +Rᵀt−Rᵀvi) ·Rᵀni)2 (3.30)

Notice that R is an orthogonal matrix, therefore RᵀR = I. Further rearrangement leads
to

arg min
θ

∑
i

(µi +Ui diag(σ)θ ·Rᵀni +Rᵀt ·Rᵀni −Rᵀvi ·Rᵀni)2 (3.31)

= arg min
θ

∑
i

Ui diag(σ)θ ·Rᵀni + µi +Rᵀt ·Rᵀni −Rᵀvi ·Rᵀni︸ ︷︷ ︸
bi


2

. (3.32)

(3.33)

We can apply Rᵀni directly on U , before we evaluate the model, therefore, we write

= arg min
θ

∑
i

Ui diag(σ) ·Rᵀni︸ ︷︷ ︸
Ai

θ − bi


2

. (3.34)

Collecting the terms in matrix notation, results in a matrix A ∈ Rn×m and b ∈ Rn. In
matrix notation we state the final linear equation system as

= arg min
θ
‖Aθ − b‖2

2. (3.35)

The solution to this linear system is computed by

∂‖Aθ − b‖2
2

∂θ
= 0 (3.36)

= (AᵀA)−1Ab = θ (3.37)

Equation 3.37 is a least-squares problem, which is sensitive to outliers and bad corre-
spondences. See Section 3.7 for a more detailed explanation of the inherent problematic.
To stabilize the optimization and increase the robustness, we employ the same simple
correspondence rejection scheme as in Section 3.7.

The previous section illustrates one of the key contribution of this work. We presented an
ICP-style formulation for fitting the model which computes the optimal model parameters
by alternately recovering the optimal transformation between sample and model and
fitting the model parameters. We derived and stated the solution as two subproblems
that can be solved as linear least-squares problems. Another notable fact is that the
model is fitted in a point-to-plane fashion.
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Chapter Summary

This chapter describes the core part of this work. We start by outlining a high level
overview in Section 3.1. That section presents the basic fitting method, starting from
the input and resulting model parameters.

The fitting can be embedded into a non-rigid registration to acquire more robust cor-
respondences. Therefore we extended the NICP registration scheme (see Section 2.2.1)
with methods for correspondence weighting and rejection and present them in Section 3.4.
Recovering the model parameters is accomplished by minimizing objectives function:
Section 3.5 presents an existing point-to-point cost function from the literature. We
modify this cost function to minimize a point-to-plane error in Section 3.6.

In Section 3.7 we develop an iterative framework embedding the point-to-plane based cost
function from Section 3.6. We linearize this method for faster computation in Section 4.6.
Linearizing the rigid pose estimation and linear model fitting obsoletes the non-linear
least-squares optimization.
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Previous sections described theoretical background and developed methods. We present
this work’s results in the following sections. To provide a fair evaluation with real world
data, we collected a small dataset of facial scans.

Section 4.1 describes and motivates the selected evaluation methods. All methods in this
work minimize a point-to-point and/or point-to-plane error. For better understanding
of the fitting quality, we evaluate a third error measure: We propose evaluating using
the mean angular error in Section 4.1. The pipeline parameters used for evaluation are
stated in Section 4.2.

The dataset itself and the capturing modalities are presented in Section 4.3.

For all evaluations we exclude the 10% most distant correspondences and all border
points. The intention is to achieve a fairer evaluation for samples with missing regions,
e.g. ears or parts of the nose. We use millimeters as length unit in all measurements.

4.1. Evaluation Method

We perform a qualitative evaluation of the proposed methods. Furthermore we want to
interpret the results and analyze them in detail.

For this purpose a good error measure has to be found. A good error measure for 3DMM
facial fits is an ongoing research issue. Many publications perform an empirical evaluation
by visual inspection of the fitted models. We also provide quantitative results for better
comparison.

The most obvious choice is the squared sum over the Euclidean distance of all n corre-
sponding vertices

d(xi,xj) = 1
n

n−1∑
k=0
‖xi,k − xj,k‖2, (4.1)

where xi,k and xj,k are corresponding vertices of the two surfaces. Equation 4.1 is
the point-to-point distance. A similar error metric is the point-to-plane error (See
Section 2.5.2), given by the squared sum between a point on the source surface and the
tangent plane at its corresponding point.
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Standard error measures like point-to-point or point-to-plane do not give a good statement
about the accuracy of a fit. Using e.g. mean squared error (MSE) with these kind of
error measures does not give any information about a good facial reconstruction with a
realistic curvature.

To tackle this issue we follow [13] and [38] and use the MSE of the difference of the
surface normals of two corresponding vertices. The rationale is that two similar surfaces
should have rather similar surface normals at corresponding points. This error metric
gives evidence about the similarity of the overall curvature of the reconstructed face.
Knothe evaluated a similar work with a mean curvature distance metric and stated that
the results were similar to the normal distance [30].

Hence we define the following error measure, following [38]. i, j are two meshes, vn is a
function that returns the normalized surface normal of vertex k in mesh i. The parameter
for arccos is given by Equation 3.1, assuming the normal vectors are normalized, hence
the denominator might be omitted.

MSE(i, j) = 1
n

n∑
k=0

arccos(vn(i, k) · vn(j, k))2 (4.2)

Furthermore, it is a neutral measure, because it is not minimized in the cost function.

Summarizing, we present for every method the mean point-to-point, point-to-plane and
angular error and discuss the results. We begin the actual result presentation by stating
the used pipeline parameters.

4.2. Pipeline Parameters

The proposed pipeline has three components where parameters can be adjusted. Namely:
Rough alignment, Registration and Fitting. The Rough alignment has to be performed
manually in the current implementation.

First, we state the parameters for the Registration in Section 4.2.1. Secondly, the
parameters for the model fitting are presented in Section 4.2.2.

4.2.1. Registration

The Registration (see Section 2.2.1) has the most adjustable parameters. We tuned them
empirically.

More stiffness steps than necessary do not influence the registration quality, they just
increase the computational time [3]. We empirically evaluated that |α| = 5 is enough for
a good registration result.
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As minimum stiffness we use 1× 101 and as maximum 1× 103. It is lowered when the
‖Xj −Xj−1‖ < ε, where ε = 30. The weighting parameter in the stiffness term is set
γ = 1.

Correspondence Rejection

We reject all correspondences with a difference of the surface normals greater than 45°.
The threshold is constant for all iterations, therefore a high threshold is necessary to
prevent rejection of too many correspondences in the beginning.

Correspondence Weighting

We manually determined the parameters in a way that the registration result is both
accurate and has minimal vertex topology changes. max linear weight distance = 20mm
and max pair distance = 30mm. See Section 3.4.2 for details.

Cross-side Matching

Among the three evaluated approaches CSM-distance performs best. The other two
approaches are too restrictive and reject too many correspondence. We empirically
evaluated that 5mm is a good distance tolerance value.

4.2.2. Model Fitting

The Fitting is mainly the minimization of the presented cost functions in Chapter 3. We
use a downsampled face model with 2733 vertices.

Referring to Figure 2 we set θ ∈ R25. 25 principal components explain 95% of the total
variance of all training samples. We consider this as a good trade-off between fitting
speed and explanatory power.

The only directly tunable parameter in the cost function is the regularization strength λ.
We emprically evaluated that λ = 10 gives the fitting results.

4.3. Dataset

In order to provide evaluations using real world data, we scanned 10 persons, 8 male and
2 female. A Creaform Go!SCAN 3D Scanner was used. It is a portable handheld scanner
using structured light. The age of the samples is between 20 and 30 years.
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4.3.1. Scanning Procedure

Figure 7 shows the three steps. The person sits down and positions the head within a
set of markers on the wall (Figure 7(a)). The markers are necessary for the scanner to
perform reliable tracking. Next the person leans the head towards the wall, closes the
eyes and remains as steady as possible.

The scanning itself takes about 3-5 minutes. The quality of the resulting scan greatly
depends on how steady the person remains during the scan. The scanning itself is quite
annoying for the person due to the continous blinking of the structured light pattern
projector. Figure 7(b) shows that the scans are noisy and contain artifacts. Areas that
are covered by hair result in holes in the final mesh.

Last the scans are manually cleaned and aligned (Figure 7(c)). We do no further
postprocessing like cleaning holes or smoothing.

(a) Person placed between
markers

(b) Uncleaned scan with
noise and artifacts

(c) Scan aligned and cleaned
from artifacts

Figure 7.: Dataset Acquisition Procedure Example: Three steps of the data acquisition.
The most right step gives the input for the pipeline.

4.4. Non-linear Template Deformation Fitting

This Section presents the results of the non-linear template deformation fitting method.
First, the model’s mean template is non-rigidly deformed to the input mesh. Second, the
deformed mean template is used as input for a non-linear fitting method that recovers
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the model parameters. The reader is referred to Section 3.7 for more details about this
method.

We discuss the fitting performance using a visual inspection in Section 4.4.1 and present
quantitative results in Section 4.4.2.

4.4.1. Visual Evaluation

Figure 8 shows the fitting results for a sample from the dataset. Figure 8(a) is the
input to the fitting method. Rough alignment was preformed manually before as a
preprocessing step. The first step of this fitting method is a non-rigid deformation of the
model’s mean shape onto the sample.

(a) Input sample (b) Model’s mean template
registered onto the sam-

ple

(c) Fitted model overlayed
on sample

Figure 8.: Non-linear template deformation fitting example: Shows the input sample,
the deformed mean template with deformed ears and the overlayed fitted
model.

We see the result in Figure 8(b). It is clearly visible that the registration was successful
and the mean template is closely registered with the sample. The non-rigid registration
also deformed the ears, but due to bad correspondences, the ears were unnaturally
deformed.

The last step is recovering the model parameters by minimizing a non-linear objective
function that minimizes either a point-to-point or a point-to-plane error. Figure 8(c)
shows the original sample from Figure 8(a) overlayed with the fitted model. Comparing
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to Figure 8(b), the ears are modeled in a natural way and are no longer deformed. It is
evident that the fitted model does not overlay as closely as the registered template. We
think that the naturally deformed ears have strong negative influence on the least-squares
optimization.

4.4.2. Quantitative Evaluation

Figure 9.: Fitted model overlayed on sam-
ple 7

Table 4.1 states the quantitative results of
the template deformation fitting method.
All evaluated point-to-plane errors are, as
expected, lower than point-to-point errors.
As Figure 8 suggests, the non-rigidly reg-
istered mean shapes, model the face much
better than the model, but still have de-
formed ears.

Sample 7 has a lot higher errors than the
other samples. This is mostly caused by
the incompleteness of the scan, see Figure 9.
As stated at the beginning of Chapter 4,
we exclude 10% of the most distant cor-
respondences to allow a fairer evaluation.
Although this does not completely remove
the effect of holes in the scan. Hence the
numerical results have to be considered
with caution while comparing against each
other. Very incomplete samples have many
unsuitable correspondences, even after ex-
clusion of the worst 10%. Hence the calcu-
lated means can not be seen as final result
of the fitting performance on their own.

4.5. Non-linear Iterative Fitting

This method can be seen as natural evolution of the previous method. Previously we
non-rigidly deformed the model’s mean shape and then performed a single fitting step.

The driving idea of this method is that there are better correspondences in each iteration
available. This encourages us to fit the model in an iterative way and acquire a new set
of correspondences in each iteration. See 3.7 for a detailed description of this method.
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Test # R: MAR
[°]

R: Pt2Pt
[mm]

R: Pt2Pl
[mm]

F: MAR
[°]

F: Pt2Pt
[mm]

F: Pt2Pl
[mm]

0 21.67 0.93 0.54 29.04 6.83 3.69
1 18.44 0.20 0.10 27.91 6.77 4.59
2 20.28 0.26 0.13 30.26 7.73 4.82
3 17.98 0.42 0.26 26.01 4.35 2.71
4 23.24 0.45 0.25 30.79 9.24 5.21
5 17.02 0.40 0.22 25.91 5.62 3.07
6 19.86 0.33 0.16 28.05 10.97 6.49
7 27.67 11.18 5.83 34.92 33.49 15.45
8 19.61 0.45 0.24 27.10 9.40 4.64
9 19.15 0.41 0.21 28.50 7.60 4.70
mean 20.49 1.50 0.79 28.85 10.20 5.54
stddev 2.93 3.23 1.68 2.53 7.97 3.46
median 19.74 0.42 0.23 28.28 7.66 4.67

Table 4.1.: Test results template deformation fitting: R stands for registration, F for
fitting, Pt2Pl is the Point-to-Plane error metric, Pt2Pt the Point-to-Point
and MAR is the mean angular error between the corresponding surface
normals.

Table 4.2 shows the results for our dataset. The bad scores of Sample 7 have the same
reasons as for the previous method: The input mesh is so noisy that even rejecting 10%
of the worst correspondences does not allow a fair comparison.

It is evident that all error scores in Table 4.2, are much lower than in Table 4.1 which
states the results of the template deformation fitting method. These results demonstrate
that fitting the model iteratively, leverages iteratively found correspondences. Looking
at the point-to-plane error, non-linear iterative fitting gives about 15% better results.
The improvement for point-to-point and mean angular errors is comparable.

We omit pictures of the fitting results, because by means of visual inspection, no strong
difference between the two presented methods is visible.

The two previous methods used a cost function to minimize a point-to-plane constrained
error. As the used cost function can be separated into several independent steps, we
reformulated and linearized the cost function in Section 3.8. We evaluate this method in
the following section.

4.6. Linear Iterative Fitting

Previously presented fitting methods required a non-linear optimization. This means
that the cost function has to be linearized in every iteration and solved.
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Test # F: MAR [°] F: Pt2Pt [mm] F: Pt2Pl [mm]
0 29.52 7.31 3.47
1 26.17 6.90 3.72
2 29.23 6.52 2.85
3 26.22 4.39 2.53
4 30.00 10.18 4.64
5 25.05 6.53 2.85
6 28.67 23.39 7.56
7 35.01 30.52 11.90
8 25.72 10.56 3.95
9 26.57 6.28 3.29
mean 28.22 11.26 4.68
stddev 2.82 8.19 2.77
median 27.62 7.10 3.59

Table 4.2.: Test results non-linear iterative fitting: F for fitting, Pt2Pl is the Point-to-
Plane error metric, Pt2Pt the Point-to-Point and MAR is the mean angular
error between the corresponding surface normals.

Section 3.8 presented a fitting method that achieves the fitting without any non-linear
optimization. This is achieved by reformulating the cost function and linearizing the
non-linear parts. We optimize it by alternatively solving every step.

Figure 10 shows the model fitting and rigid pose estimation point-to-plane MSE over
iterations. The plot shows that our fitting method converges iteratively to a local
minimum. In the beginning the rigid pose estimations from ICP change the error a lot,
as the model is not correctly registered with the model. Later iterations show hardly
any difference between the model fitting and pose estimation error. The optimal rigid
transformation is already recovered and decreasing errors can only be achieved by a better
model fit. The error curve is not monotone decreasing. Refitting to a new correspondence
set in every iteration and assuming 10% as noise by default breaks the monotony.

The results for this method are stated in Table 4.3. The mean errors are comparable
with the non-linear iterative fitting method. The median errors for point-to-point and
point-to-plane distance are slightly lower. The mean is higher, because the linear fitting
method converges to a bad local minimum for Sample 6.

Figure 11 clarifies that. It shows the difference of the point-to-plane errors of the linear
iterative fitting method and the non-linear iterative fitting method. For the majority of
tests the MSEs are lower, significantly lower for Sample 7.

For better understanding why the fit for Sample 6 failed, we perform a visual inspection
of the input mesh and the fitting result. Figure 12(a) shows the input sample for Test 6.
It is evident that the scan is quite incomplete and has many holes. Especially the ears
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Figure 10.: Point-to-plane Errors over iterations: The algorithm converges iteratively
to a local minimum. Increasing errors occur from fitting the model to new
correspondences.

are nearly missing. Figure 12(b) visualizes the fitting result. The fitting process finished
with a degenerated model. The figure’s colormap visualizes the point-to-plane error.

The colorization indicates that the biggest errors are in the ear and mouth regions.
Figure 13 shows a boxplot of the first ten model parameters. According to Section 2.4,
we want to keep the squared sum of the model parameters small, as this increases the
probability of getting a realistic result. As the linear iterative fitting method is currently
not regularized, the solution can easily be an unrealistic face. This greatly depends
on the quality of correspondences and has a higher sensitivity to outliers. Figure 13
shows that many parameters are higher than three times the standard deviation of the
particular principal component. See 2.1 for more details about the structure of a 3DMM.
Possible solutions to this problem are discussed in Section 5.3.
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Test # F: MAR [°] F: Pt2Pt [mm] F: Pt2Pl [mm]
0 31.22 8.32 3.71
1 28.13 5.82 3.41
2 30.93 6.34 2.74
3 26.36 4.38 2.62
4 31.55 10.66 4.45
5 25.68 5.78 2.54
6 37.38 28.14 10.28
7 39.23 18.48 10.41
8 27.33 10.48 4.00
9 27.91 5.68 3.03
mean 30.57 10.41 4.72
stddev 4.34 7.08 2.87
median 29.53 7.33 3.56

Table 4.3.: Test results linear iterative fitting: Pt2Pl is the Point-to-Plane error metric,
Pt2Pt the Point-to-Point and MAR is the mean angular error between the
corresponding surface normals.
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Figure 11.: Error difference linear iterative fitting and non-linear iterative: The mean
squared errors of the linear iterative fitting method are for the majority of
samples lower, but much stronger on Sample 6.
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(a) Input sample (b) Fitted model, colormap is the
point-to-plane error

Figure 12.: Iterative linear fitting Sample 6 : The fitted model is degenerated and shows
high errors for the ears.
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Figure 13.: Boxplot of the first ten model parameters of Sample 6: The high values
suggest unrealistic parameters.
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Figure 14.: Registered scan with
artifacts: Mean face
non-rigidly registered
to an incomplete scan
with several artifacts.

This chapter concludes this thesis by a discussion
of the results and findings. In the previous chapter
we presented the results in visual and quantitative
ways. Following we interpret and discuss the results.
Section 5.1 discusses the results of the registration
and their implications. Section 5.2 discusses the
fitting results, especially the difficulties of selecting
a good error measure. Furthermore we describe
future work in Section 5.3 and conclude the thesis
with Section 5.4.

5.1. Discussion
of Registration Results

The registration is a necessary prerequisite for the
fitting method presented in Section 3.3. It provides
the fitting process with the correspondences. To
achieve this the 3DMM’s mean face is non-rigidly
deformed to the sample.

5.1.1. Robustness of the Registration

Several figures within this work showed that the
scanned faces are quite incomplete and contain ar-
tifacts. Figure 14 shows a zoomed in version of
sample 2. It is clearly visible that the scan is very
incomplete in the nose area and contains artifacts.
Nevertheless the registered template captures the
shape of the face very accurately and fills in missing
regions.

Despite the robustness, the registration is done by
minimizing a point-to-point cost function. We discuss the issue of this in Section 5.1.2.
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5.1.2. Caveat of Minimizing a Point-to-Point Error

Table 4.1 states the quantitative results of the registration. The point-to-point, point-
to-plane and angular error are very low after the registration and would suggest a good
registration result. We discovered that low error rates do not represent another factor
that describes the quality of a registration: The deformation of the mesh topology itself
is not represented by these measures. Following we shortly discuss reasons for this.
Potential solutions are presented in the future work section.

NICP-A minimizes the point-to-point error between the model’s mean face and the target
surface. A non-rigid registration changes the mesh topology to some extent, but it should
preserve the mesh topology as well as possible.

Optimizing for a point-to-point error directly minimizes the distance between two corre-
sponding vertices. This leads to problems when having meshes with different densities.

Figure 15 shows an example of the previously mentioned mesh topology deformation.
Figure 15(b) shows the deformed template and Figure 15(a) a clipping of the model’s
mean face. The mesh topology in Figure 15(a) is symmetric and smooth. Figure 15(b)
shows a clipping of the mean face registered to a sample. The topology changed in a
non-smooth way. The influence of mesh topology deformations on the fitting result is
subject to further investigations.

(a) Mesh topology of the model’s mean face:
Shows the template before registration.
The vertice topology is quite uniform.

(b) Strong point clustering after the registra-
tion in the model’s mean face.

Figure 15.: Unnaturally Deformed Mesh: Influence of the registration to the mesh
topology of the model’s mean face.

Without detailed analysis we still state the following assumption: The purpose of the
registration process is to find correspondences. The template gets deformed in a non-rigid
fashion to accomplish this. When the registration is performed on a sparse target mesh,
multiple template vertices get deformed to the same target point. This results in a
clustering or even congruence of multiple template vertices towards a single target point.
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Moving along to the actual fitting, the outcome is that biased correspondences are
supplied to the fitting process.

5.1.3. Unnatural Deformations of Missing Regions

NICP-A uses the template’s mesh topology regularization. In iterations with low stiffness
weights, unnatural deformations of regions with wrong correspondences might happen.

Figure 16 shows an example of this. The sample’s ear contains large missing regions and
the template’s ear got badly deformed towards the remaining parts of the sample’s ear
and parts of the cheek.

Figure 16.: Unnaturally deformed ear due to wrong correspondences: The blue mesh
is the registered template, light gray the sample. The red points have
correspondences, the blue points were rejected.

The red dots are correspondences with a non-zero weight for the registration. The blue
dots are excluded from the current iteration. The white dots are corresponding vertices
on the sample. Figure 16 also shows that many template vertices have been transformed
in a way that made them congruent with sample vertices. This issue is discussed in detail
in Section 5.1.2. Registration results like this are avoided as much as possible by the
correspondence rejecting and weighting scheme, explained in Section 3.4.1 and 3.4.2.

5.2. Discussion of Fitting Results

Following we discuss the robustness of the fitting and the influence of different error
metrics in the cost function.
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5.2.1. Robustness of the Fitting

A non-convex optimization runs the risk of getting stuck in local minima. Good initial
guesses of the parameters reduce this risk greatly.

We initialize the model coefficients θ ∈ Rm randomly using a standard normal distribution.
This is reasonable, because the construction of the 3DMM can be interpreted as fitting
multivariate Gaussian distribution (see Section 2.1). Translation and rotation is initialized
with zero. We empirically evaluated that these are suitable starting conditions.

5.2.2. Results in Terms of Different Error Measures

In Section 4.1 we discussed the difficulties of finding a good error metric for facial model
fitting. In this Section we discuss by suitable examples and state the influence of different
factors to them.

We want explain different error measures on the results of sample 1, which is the most
complete scan in our dataset. Figure 17 shows sample 1 overlayed with the fitted model.

Figure 17.: Sample 1 overlayed with fitted model: The lips could not be modeled
accurately.

Figure 18 illustrates the errors as colormap on the fitted model. Following we discuss the
informations that each of the error measures gives.
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(a) Angular Error (b) Point-to-point Error (c) Point-to-plane Error

Figure 18.: “Error faces” for different error measures: The angular error informs about
the surface similarity between fit and input mesh. Point-to-point and
point-to-plane are rather similar and show the distance to the closest point.

The mean angular error in Figure 18(a) does not directly express the distance of two
corresponding points. This is clearly visible in the mouth and forehead area of Sample 1.
Despite the fact that there is clearly a bigger distance between the sample and the
fitted model, the surface curvature is similar. The aim of the angular error is to give a
statement about the similarity of the curvature. The angular difference does not reflect
minor translations of a connected area. Not only the similarity of the surface, but also
its position defines the accuracy of a fit. The red areas in the “angular error face” are
areas that contain the highest 15% of angular errors.

The point-to-point (Figure 18(b)) and point-to-plane (Figure 18(c)) distance overcome
the issue of the angular error measure, but do not indicate the similarity of the curvature.
Looking at the images, the area under the lips is now clearly marked as erroneous. We
see that the error in the point-to-point “error face” is significantly higher than in the
point-to-plane images. The meaning of the red area is the same as for the angular error
images.

Concluding we believe that none of the evaluated error measures on its own gives a strong
enough statement about the fitting quality of a face. We think that a combination of the
angular error and the point-to-plane error measure gives a better judgment.

5.2.3. Weighted Least-Squares Optimization

The accuracy of the fitting result greatly depends on the quality of the correspondence.
Our cost functions minimize a least-square error, which is sensitive to outliers.
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5. Discussion

Experiments showed that correspondences weighting is not necessary for the template
deformation based fitting method described in Section 3.3. This is not surprising, as
the correspondences for this method are given by the non-rigidly registered model mean
shape.

The non-linear iterative and linear iterative fitting methods presented in Section 3.7,
respectively Section 3.8 require correspondence weighting. We observed that these
methods fail without it and return degenerated fits.

Others used robust functions to increase the robustness of ICP [20, 35, 53, 58]. These
methods can be employed to increase the robustness of our fitting methods. Another
approach can be the usage of sparsity inducing norms [12].

5.2.4. Comparing the Fitting Methods

We presented three different fitting methods in this work. The first method (Section 3.3)
acquires correspondences by non-rigid registration [2]. A 3DMM is fitted by performing
a non-linear least-squares optimization. The second method (Section 3.7) iteratively
acquires new correspondences and refits the model, using the method as above. As third
method (Section 3.8) we solve the rigid-pose estimation and model fitting in a fully linear
way.
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(a) Error comparison: The point-to-plane
error of our methods is about 18%
lower than of the original method.
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(b) Time comparison: Our proposed itera-
tive methods are up to 5 times faster

than the original method.

Figure 19.: Time and error comparison of the evaluated methods: Our proposed iterative
methods are both more accurate and faster.

Figure 19(a) compares the point-to-point and point-to-plane errors of our proposed
methods with the original method. Our iterative methods perform about 18% better in
terms of point-to-plane error than the original method from [2]. The curvature of the
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resulting models does not differ significantly between the different methods. Therefore
the mean angular error is similar for all methods.

The original method, requiring a non-rigid registration, need about 15 seconds to fit a
model. The non-rigid registration takes the most time of the process. Method 2 takes
about 6 s and method 3 about 3 seconds for fully fitting a model. Figure 19(b) shows a
plot of the timings. Currently, the framework is implemented in Python. We think that
using a faster implementation, method 3 can reach real-time speed. Especially faster
correspondence search and better convergence checks for the algorithm can give a big
speedup. Fitting methods 2 and 3 are at risk of fitting a degenerated model, due to
the lack of a regularization. We stated this issue in Section 4.6 and present solutions in
Section 5.3.2 as future work.

5.3. Future Work

In the previous two sections we discussed results and findings of this thesis. Consecutively
we state and motivate potential future work.

5.3.1. Automated Rough Alignment

To achieve a fully automated model fitting, an adequate rough alignment has to be
provided. In the current pipeline version this step has to be done manually. For
automating this step, many efficient methods exist.

If texture data is available as well, it is possible to run a fast 2D facial landmark detection
on it. The detected landmarks can be projected into 3D space and used to estimate
a transformation to align the sample with the model’s mean face. Running the 2D
facial landmark detection on several frames and then estimate the transformation in a
least-squares manner increases the robustness.

When having only range data, other approaches have to be pursued. The nose is a very
distinctive part of a face. Algorithms for detection of the nose tip are quite robust and
fast. Peng et al. [42] presented state of the art results in their recent publication. Their
approach is accurate and the authors state that a real-time implementation could be
possible.

5.3.2. Different Model Parameter Regularization

Not every k-sized parameter vector θ ∈ Rk models a realistic face. The statistical
properties of a 3DMM provide opportunities for parameter regularization (see Section 2.4).
The fitting methods incorporating non-linear model parameter estimation use a parameter
penalty term of the form λ‖θ‖2. This is also called Tikhonov regularization or ridge
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regression. It penalizes big parameters, which is desirable due to the model properties
(see Section 2.1).

Figure 20(a) shows the final parameters of the non-linear iterative fitting method for
Sample 6. The parameters values are quite small in comparison to Figure 20(b), which
was fitted without regularization. Furthermore the parameters changed within a bigger
interval than the regularized fitting.

1 2 3 4 5 6 7 8 9 10
Principal Component

3

2

1

0

1

2

3

V
a
lu

e

(a) Boxplot of the first ten model param-
eters of Sample 6 fitted with regular-
ization: The parameters are small and
jumped less during the optimization.
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(b) Boxplot of the first ten model param-
eters of Sample 6 without regulariza-
tion: Fitted using the linear iterative
method. The high values suggest unre-
alistic parameters. Strong parameter

changes during the optimization.

Figure 20.: Comparison of the first ten parameters of two fitting methods: The boxplots
show the resulting parameters and the value range they had during the
fitting.

The principal components U of the 3DMM are sorted by the variance in the dataset.
Considering how the model describes faces, αi with a lower component index i models
stronger deformation. Section 2.1.4 showed that 25 components describe over 90% of
the model’s variance. This means that high i just add more details. Intuitively we want
a sparse parameter solution, meaning that a solution with as few components as possible
should be found. Tikhonov regularization penalizes big values, but the parameters will
still be non-zero. The Lasso regularization method adds a term λ‖θ‖1 which causes more
and more parameters driven to be zero [52].

Employing a Lasso regularization can increase the fitting robustness in presence of
outliers. Additionally better results without changing the regularization method could
be possible by the prior distribution presented in Equation 2.37.
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5.3.3. Segmenting the Model

Figure 21(b) shows that nose, eyes and mouth areas have in comparison to other areas
quite high errors. The 3DMM described in Section 2.1 has m degrees of freedom. The
expressiveness of the model can be increased by dividing the face model into different
subregions. Figure 21(a) shows the segmentation of the BFM. These subregions can be
morphed individually. To achieve a good result, the transitions between the individually
fitted regions have to be smooth. The authors of [49] successfully used the method from
[50] to ensure a smooth segment region transition by an additional regularization.

(a) Segmented Face Model [40]: Seg-
mentation increases the model’s

flexibility.

(b) Angular error image sample:
High errors are visible in the nose,

mouth and eyes area.

Figure 21.: Increased flexibility by a segmented model: Segmenting the model decouples
the individual regions and enables individual fitting in regions with high
errors.

5.3.4. Better Acquisition of Dense Correspondence

The quality of the dense point-to-point correspondence is a crucial factor for the fitting
quality. In Section 5.1.2 we explained caveats of minimizing a point-to-point based
cost function. We further discussed issues caused by unnatural template deformation in
Section 5.1.3.
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To tackle the first issue, a different registration method with a point-to-plane based cost
function could be used, e.g. [33]. Furthermore the model fitting can be embedded into
the registration algorithm as prior, like [11, 48].

Direct model fitting without acquiring dense point-to-point correspondence is also possible
[6, 49]. The fitting performance is degraded when there are too many outliers in the target
mesh. To address this problem, we would like to replace the one-to-one correspondence
assumption by a one-to-many and fit for fuzzy correspondences [17, 22].

The second issue is closely related to the point-to-point based registration. A mesh
simplification that preserves the symmetric properties [37] of the face model could be
beneficial to improve this issue.

5.3.5. Benchmarking

Benchmarking and comparing different approaches and methods requires good ground
truth data. The dataset (see Section 4.3) can be considered as noisy real world dataset. On
the other hand it is not possible to conduct a fair comparison between the samples, because
the quality of the scans varies a lot. For future evaluations it would be advantageous to
use a publicly available dataset, like the UND database [14]. We were unable to obtain
one of the public face databases for this thesis.

5.4. Conclusion

We presented an extendable framework to fit 3DMMs for faces. We extended an existing
non-linear cost function by point-to-plane constraints. Lower fitting errors are achieved by
alternatively fitting the 3DMM and search for new correspondences. For faster computing,
we linearized the cost function and embedded the model fitting in a point-to-plane ICP
framework. A robust correspondence weighting and rejection scheme for an existing
non-rigid registration algorithm was proposed. We carefully evaluated all used methods,
stated issues and possible solutions to them.

Summarizing, the proposed fitting methods are 18% more accurate and 5 times faster
than the existing method [2].
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A. Derivation of Jacobians

The Jacobian of a real valued function F : Rm → Rn is defined by the n ×m matrix
J . The partial derivates of the component functions of F with respect to the variables
x1, . . . , xm are organized as follows:

J =


∂F1
∂x1

· · · ∂F1
∂xn... . . . ...

∂Fn

∂x1
· · · ∂Fn

∂xm

 (A.1)

A.1. Analytic Derivative Point-to-Point Error Function

In this section we give the derivation of the analytic Jacobian for the point-to-point
fitting function. LM optimizes an objective function F in the following least-squares
manner:

min
x∈Rm
‖F (x)‖2

2

Therefore we do not have to derive the least-squares function, just the inner part of the
least-squares problem. We ignore the regularization part of the objective function for now
to make the derivation simpler. Fi is the evaluation of f for the i-th vertex. Hence,

Fi = µi +Ui diag(σ)α+ t′ −R′vi (A.2)
R′ = R−1 t′ = R−1t

∂Fi
∂α

= Ui diag(σ) ∂Fi
∂t′

= I3
∂Fi
∂ri

=
∂R′r1,r2,r3

∂ri
vi (A.3)

The derivative of the regularization part is given by:

∂α

∂(α, t′, ri)
=
[
I 0 0 0 0

]
(A.4)

In equation A.3 we see directly that only the derivatives of the rotation change in every
iteration. We might use this to split up the Jacobian into the following static and
dynamic part. We rewrite the above in matrix formulation and add the derivation of the
regularization part at the correct positions.

57



A. Derivation of Jacobians

Jc =
[
U diag(σ) 1⊗ I3

I 0

]
(A.5)

Jd =
[
I ⊗ ∂R′

∂r1
vᵀ I ⊗ ∂R′

∂r2
vᵀ I ⊗ ∂R′

∂r3
vᵀ

0 0 0

]
(A.6)

J =
[
Jc Jd

]
(A.7)

The full Jacobian has the dimensions (3n+m)× (m+ 6), where m denotes the number
of used PCA dimensions and n the number of vertices. The static part Jc has to be
calculated only once.

Detailled Jacobian Derivation

The following equations state the derivation of the Jacobian. Fi is the evaluation of f for
the i-th vertex. m denotes the number of used principal components (see Section 2.1.1)
and n the number of vertices.

The Jacobian J has the dimensions (3n+m)× (m+ 6) and is derived as follows:

J =


∂F1
∂θ

∂F1
∂t′

∂F1
∂ri... ... ...

∂Fn

∂θ
∂Fn

∂t′
∂Fn

∂ri
∂θ
∂θ

∂θ
∂t′

∂θ
∂ri

 (A.8)

=



∂F1x

∂θ1
· · · ∂F1x

∂θm

∂F1x

∂tx

∂F1x

∂ty

∂F1x

∂tz

∂F1x

∂r1

∂F1x

∂r2

∂F1x

∂r3
∂F1y

∂θ1
· · · ∂F1y

∂θm

∂F1y

∂tx

∂F1y

∂ty

∂F1y

∂tz

∂F1y

∂r1

∂F1y

∂r2

∂F1y

∂r3
∂F1z

∂θ1
· · · ∂F1z

∂θm

∂F1z

∂tx
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∂ty
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∂tz

∂F1z

∂r1
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∂r2
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∂θ1
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∂θm

∂Fnx

∂tx
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∂ty
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∂tz

∂Fnx

∂r1
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∂θm

∂Fny

∂tx
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∂ty
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∂tz

∂Fny

∂r1
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∂Fnz
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∂θm

∂Fnz

∂tx
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∂ty
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∂tz
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∂r1
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∂r3
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∂θ1

· · · ∂θ1
∂θm

∂θ1
∂tx

∂θ1
∂ty
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∂tz

∂θ1
∂r1

∂θ1
∂r2

∂θ1
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∂θm

∂θ1
· · · ∂θm

∂θm

∂θm

∂tx
∂θm

∂ty
∂θm

∂tz
∂θm

∂r1
∂θm

∂r2
∂θm

∂r3



(A.9)
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=
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(
∂R′

∂r1
vᵀn
)
x

(
∂R′

∂r2
vᵀn
)
x

(
∂R′

∂r3
vᵀn
)
x

Un1y · · · Unmy 0 1 0
(
∂R′

∂r1
vᵀn
)
y

(
∂R′

∂r2
vᵀn
)
y

(
∂R′

∂r3
vᵀn
)
y

Un1z · · · Unmz 0 0 1
(
∂R′

∂r1
vᵀn
)
z

(
∂R′

∂r2
vᵀn
)
z

(
∂R′

∂r3
vᵀn
)
z

1 0 0 0 0 0 0 0 0
... . . . ... ... ... ... ... ... ...
0 · · · 1 0 · · · · · · · · · · · · 0



(A.10)

=
[
U 1⊗ I3

∂R′

∂r1
vᵀ ∂R′

∂r2
vᵀ ∂R′

∂r33v
ᵀ

I 0 0 0 0

]
(A.11)

A.2. Analytic Derivative Point-to-Plane Error Function

There are only minor changes on the analytical derivatives. Hence the reader is referred
to Section A.1 for a more detailed derivation.

We start again with the inner function Fi

Fi = (µi +Ui diag(σ)α+ t′ −R′vi)ni (A.12)
R′ = R−1 t′ = R−1t

and split up the derivatives into a static (Jc) and dynamic part (Jd).

∂Fi
∂α

= Mi diag(σ)ni
∂Fi
∂t′

= I3ni = ni
∂Fi
∂ri

=
(
∂R′r1,r2,r3

∂ri
vi

)
ni (A.13)

Jc =
[
inner3 (U diag(σ),N ) N

I 0

]
(A.14)

Jd =
[
diag

(
v ∂R

′

∂r1
N
)

diag
(
v ∂R

′

∂r2
N
)

diag
(
v ∂R

′

∂r3
N
)

0 0 0

]
(A.15)

The inner3 operator is a special multiplication operator. For it’s definition refer to
Section A.2.1. The calculation of the component-wise inner product of two 3×n matrices
is formulated as computing the dot product and extracting the diagonal. The diagonal
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A. Derivation of Jacobians

represents the component-wise dot product. We derived this method by modifying the
Kronecker product.

The reader might notice that it is rather inefficient to compute a component-wise inner
product like this. We implemented this efficiently using numpy.

Detailled Jacobian Derivation

The derivation of the Jacobian for Point-to-Plane metric follows the same scheme as
Point-to-Plane.

The main difference is that the resulting Jacobian matrix is a (n+m)× (m+ 4) matrix.
The dot product between the vertices and the normals “reduces” a vertex to a scalar,
therefore reduces the number of rows of the Jacobian by a factor of 3. Furthermore

∂Fi
∂t′

= I3ni = ni

causes a reduction by two columns.

All other derivation steps are analogous to Point-to-Point metric.

A.2.1. Inner3 Operator

We define the operator inner3 as follows:

A =



a1,1x
. . . a1,mx

a1,1y
. . . a1,my

a1,1z
. . . a1,mz... . . . ...

an,1x
. . . an,mx

an,1y
. . . an,my

an,1z
. . . an,mz


B =


b1x b1y b1z

... ... ...
bnx bny bnz



inner
3

(A,B) =


s1,1 . . . s1,m
... . . . ...
sn,1 . . . sn,m


s1,1 = a1,1x

b1x + a1,1y
b1y + a1,1z

b1z

s1,m = a1,mx
b1x + a1,my

b1y + a1,mz
b1z

sn,1 = an,1x
bnx + an,1y

bny + an,1z
bnz

sn,m = an,mx
bnx + an,my

bny + an,mz
bnz
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Acronyms

3DMM 3D Morphable Model.

AAM Active Appearance Model.
ASM Active Shape Model.

BFM Basel Face Model.

CCCP Concave-Convex Procedure.
CSM cross-side matching.

EM Expectation-Maximization.

ICIA Inverse Compositional Image Alignment.
ICP Iterative Closest Point.

LiST Linear Shape and Texture.
LM Levenberg-Marquardt.

MAP maximum a posteriori probability.
MFF Multi-Feature Fitting.
MSE mean squared error.

NICP non-rigid ICP.

PCA Principal Component Analysis.
PDF Probability Density Function.

RA-3DMM Resolution-Aware 3DMM.

SNO Stochastic Newton Optimization.
SVD Singular Value Decomposition.
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