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Kurzfassung

Für die Entwicklung und Prüfung von Software-basierenden Selbsttests ist ein geeignetes
Fault Injection Framework unerlässlich. Dies ist besonders von Bedeutung, wenn die Tests
Anforderungen von Sicherheitsstandards einhalten müssen und kommerzielle Prozessoren
ohne öffentlich zugänglichen Quellcode verwendet werden. Aufgrund von kostengünstiger
Hardware werden heutzutage immer öfters gewöhnliche Allzweck-(Mikro-)Prozessoren in
Sicherheitsbereichen, zum Beispiel für Steuerungs- und Regelungsaufgaben, verwendet.
Das Problem dieser Prozessoren ist, dass sie nicht für den Sicherheitsbereich entwickelt
worden sind und somit die korrekte Funktionalität der einzelnen Hardware-Komponenten
durch die Verwendung von geeigneten Maßnahmen oder Methoden gewährleistet werden
muss (Anforderung des Sicherheitsstandards). SBSTs bieten eine ansprechende Lösung um
diese funktionale Sicherheit zu erreichen. Jedoch weisen die meisten Techniken, die vom
Sicherheitsstandard vorgeschlagen werden, eine hohe Laufzeit bzw. Komplexität auf und
können somit nicht auf moderne Systeme bzw. Prozessoren angewendet werden.

Diese Arbeit beschäftigt sich damit, bessere und schnellere SBST-Methoden für die
Hauptkomponenten der CPU (ALU, Register, Schieberegister, Addierer, Multiplizierer,
etc.) sowie für den Arbeitsspeicher (RAM) zu finden und miteinander, anhand ihrer
Fehlerabdeckungsraten, zu vergleichen. Um zu garantieren, dass eine ausreichend-hohe
Fehlerabdeckungsraten erreicht wird, um zumindest eine Sicherheitsanforderungsstufe von
3 (SIL 3) gemäß IEC 61508 zu erreichen, wird ein spezielles Fault Injection Framework in
dieser Arbeit entwickelt. Dieses Framework ermöglicht es, jegliche Art von Fehlern, die von
dem IEC 61508 Sicherheitsstandard gefordert werden, zu jeder Zeit für einen kommerziellen
ARM9-Prozessor, bei dem der Quellcode nicht öffentlich zugänglich ist, zu simulieren.
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Abstract

An appropriate fault injection framework for a closed-source processor is indispensable
for the development and the verification of Software-Based Self-Tests (SBSTs). This
is especially important to be compliant with the requirements of the IEC 61508 safety
standard. Nowadays, the usage of general-purpose (micro-)processors for safety-critical
systems, especially in the control and automation sector, have become a common practice
due to their low hardware costs. The problem is that these general-purpose processors are
not developed for safety issues and hence the correct functioning of the hardware has to be
ensured by appropriate techniques. SBSTs are an attractive solution to achieve functional
safety, but the proposed techniques by the IEC 61508 safety standard are outdated and
not applicable to modern processor-systems, because of their long execution times.

In this master thesis, faster and better SBST techniques for the CPU-core elements
(ALU, register, shifter, adder, multiplier etc.) and the main memory (RAM) are compared
and validated against their fault coverages. In order to guarantee a sufficiently high fault
detection rate to be compliant with at least safety integrity level (SIL) 3 according to
the IEC 61508, a special fault injection framework is developed. This framework is able
to simulate every by the IEC 61508 safety standard required fault at any time for a
closed-source ARM9-processor.
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Chapter 1

Introduction

The compliance with safety standards is a mandatory step for the development of safety-
critical systems. In the case of (micro-) processor-based safety critical systems it is
important to guarantee the correct functionality of the hardware parts. For this purpose
many self-tests have been developed. These self-tests have to been evaluated against the
requirements of the safety standard. Therefore so-called fault injection methods have been
introduced. The aim of this thesis is to develop a suitable fault-injection framework for
an ARM9 core on the one hand and to present self-tests and compare them against the
requirements of the IEC-61508 safety standard on the other hand.

1.1 Motivation

Nowadays, the usage of microprocessors for safety-critical systems in the control and
automation sector has become indispensable. A malfunction of a safety-critical system
can endanger human life and can cause the death of humans in the worst case. The
importance to comply with safety standards can be shown using the example of the Therac-
25 radiation therapy system, which caused the death of humans in six known cases by an
accidental massive radiation overdoses caused by a software error [Pul01]. Hence, different
standardization institutes like the International Electrotechnical Commission (IEC) defined
requirements, which have to be fulfilled by safety-critical systems. These requirements are
specified in safety standards. One common safety standard is for example the IEC 61508,
which provides four Safety Integrity Levels (SIL). The highest safety level (SIL-4) defines
that the probability of a failure per hour (PFH) has to be smaller than 10−8. This means
that for a period of 100 years, the PFH is still under 1% (exact value: 0.8%). In order to
achieve such a SIL, it is important to guarantee that every part of the hardware works
correctly. For this purpose so-called self-tests have been developed, which test the hardware
according to the requirements specified in IEC 61508. To fulfill these requirements for a
specified SIL, a certain percentage of hardware faults (test coverage) has to be detected.

These self-tests could be realized in hardware or software. One big advantages of
Software-Based Self-Tests (SBSTs) is that they are cheaper and easier to implement than
Hardware-Based Self-Tests.

Furthermore, SBSTs have to detect permanent faults like stuck-at-errors caused by
long-term damage of the hardware and transient faults like bit-flips that can be caused
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CHAPTER 1. INTRODUCTION 10

for example by environmental radiation. But the verification of these SBSTs against the
requirements of the IEC 61508 (test coverage) with a sufficiently high fault detection rate
is challenging, because transient faults occur very rarely and are hard to observe during
the regular operation of the system. Therefore, a fault-injection (FI) is needed, which is
able to simulate these faults at every time.

A possible approach to inject faults, is to use a Hardware Description Language (HDL)
code to simulate the target system (processor). But in our case, it is not possible to use
these approaches, because the used CPU core (ARM9) is not an open-source project and
hence the needed HDL code is not public available.

In order to summarize the previous section following main questions have to be answered
in this thesis:

• Is a suitable FI method available, which is able to simulate an appropriate fault
model at every time?

• Is this FI method able to emulate an ARM9 processor?

• Which SBST method can hold the required test coverage for a specific hardware part
(at least a test coverage of 90%)?

• Does the SBST implementation fulfill the safety standards (SIL-3)?

1.2 Goals

The goal of this work is to satisfy the following requirements:

SBSTs for ARM9 processors: A software has to be provided, which tests if the main
parts of the CPU (ALU, registers, shifter, adder and multiplier) and RAM work
correctly.

Verification of the SBSTs: In order to verify that the SBSTs satisfy the required
test coverages, a special injection framework is needed, which is able to simulate an
appropriate fault model (permanent and transient) at every time for the closed-source
ARM9 processor.

IEC 61508 compliant SBSTs: The developed test-methods should satisfy the required
IEC 61508 safety standard at least at SIL-3.

Fully-automated simulation: The self-tests and the FI should run without human
interaction in order to reduce the run-time of simulation and testing.

Easy-to-use: The choice of faults as well as the time of injection and other relevant
parameters should be easy to set up.
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1.3 Outline

This thesis is structured as follows:

Chapter 2 gives the technical background about safety-critical systems and safety stan-
dards with focus on the IEC 61508 standard. It describes the relevant parts of an
ARM9-processor for the IEC 61508 and gives a short architecture overview of the used
processor. This chapter covers also the different FI methods and discusses their advantages
and disadvantages. It presents the SBST methods for the different hardware parts in
Section 2.4. Furthermore, this chapter contains the current available approaches and
theories about FI-methods and SBSTs in the related work section.

Chapter 3 describes the details about the concept and the design for the FI framework
and the different SBSTs. It delivers insights into the chosen FI approach including the
used technologies with their advantages and disadvantages. It gives an overview about the
used QEMU-emulator and explains how a fault injection can be realized by using QEMU.
Furthermore, this chapter describes the chosen SBST for every hardware part in detail
and shows if the SBST can deliver the required test coverage.

In Chapter 4 the implementation details are presented. This includes a listing of the
QEMU source files, where changes are made to achieve the FI. It also describes the
different SBST implementations as well as the used programming languages and toolchains.
Furthermore, a short introduction to the provided system framework is given in this
chapter.

Chapter 5 presents the result of this work. It shows the usage of the FI framework
and verifies the detection rates of the different SBSTs. Furthermore an evaluation of the
performance of the FI framework is given in this chapter and the compliance with the
requirements is verified and discussed.

Chapter 6 summarizes the thesis and gives possible suggestions for the improvement of
this work.



Chapter 2

Technical Background and
Related Work

This chapter covers the basic background knowledge about safety-critical systems and
safety standards, ARM9-core modules, fault-injection techniques, software-based self-tests
and presents the current existing approaches in the related work section.

2.1 Safety-critical Systems

This section gives an overview about the safety-critical systems, defines some basic keywords,
explains the structure of the IEC-61508 safety standard and shows some techniques and
measurements for software-based self-tests.

2.1.1 Introduction to Safety-Critical Systems and Safety Standards

Safety-Critical Systems (SCS) are systems which have influence on the environment
indirectly or directly if they malfunction. A malfunction of a SCS can result in significant
damage of properties or the environment and can also endanger human lifes and result
in loss of life in the worst case. Commonly known cases of some malfunctions of SCS are
listed in [Pul01].

There are many different definitions available of the term SCS in the literature. All
in all they have the same statement in common. As said in [Kni02], a system becomes
safety critical if the consequences of a failure lead to an unacceptable risk. Hence a
computer-based system is not safety-critical by itself without considering the environment.
The traditional application areas of such SCS are for example computer-based control and
automation systems in railways, airplanes, nuclear plants etc. Nowadays, the humankind
moves to a situation in which computers are pervasive and so a further area of SCS arises,
the so-called non-traditional systems. Some examples for that application areas are systems
in transportation control, banking and finance, electricity generation and distribution,
telecommunication and the management of water. The malfunction of such a system would
not endanger human life directly, but can lead to economic loss or loss of services, which
consequences can be serious. For example, a malfunction of the telecommunication network
at the right time, makes it impossible for a person to dial the emergency call, which can
result in serious injuries or death.

12



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 13

These above-named reasons indicate that a computer-based system has to work de-
pendable. The issue is that the current chip sizes of integrated circuits gets smaller and
smaller and hence transient faults caused by environmental radiation occur more and more
frequently, which can lead to unpredictable behavior of the system. In this context the
term functional safety has an important meaning, which is defined as follows:

”
Functional Safety is the part of the overall safety of a system or piece of

equipment that depends on the system or equipment operating correctly in
response to its inputs, including the safe management of likely operator errors,
hardware and software failures and environmental changes. It is an additional
step beyond the traditional product safety assessment and tackles our ever
increasingly complex world of interoperating technologies and the hazards they
cause [TUE14b]. “

There are devices in several domains where functional safety is indispensable and
hence there is an obligation by law to fulfill requirements for ensuring functional safety.
These requirements are specified in safety standards, which are defined by standardization
institutes. There are different national and European standardization institutes, but
the most important ones are the international standardization institutes like the ISO
(International Organization for Standardization) or the IEC (International Electrotechnical
Commission). Figure 2.1 shows that every industrial domain has its own specialized safety
standard like the IEC 62061, which gives requirements related to the machinery domain.
These more specialized safety standards are derived and adapted from the IEC 61508 safety
standard. The IEC 61508 is one of the most important generic safety standard and due to
this fact, the IEC 61508 is often called

”
The mother standard for functional safety.“

Figure 2.1: Overview of safety standards. Every industrial domain has its own safety
standard, which is derived and adapted from the IEC 61508 safety standard. The IEC-61508
is a generic safety standard which is called

”
The mother standard for functional safety.“

This image is adapted from [TUE14a].
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2.1.2 Fault, Error, Failure

This section defines the keywords fault, error and failure and explains the difference between
these words, which is important for understanding the following sections. In the German
language all three words have the same translation, but in the IEC 61508 every word has a
different meaning.

A fault has the following definition in the IEC 61508:
”

An abnormal condition that may
cause a reduction in, or loss of, the capability of a functional unit to perform a required
function [IEC10].“ A fault is a cause, which can rise a system breakdown, but not every
fault leads to a fail of a system. It depends on the systems tolerance, the safety management
and if the part, where the fault occurs, is currently active or processed. An example of a
fault can be a software bug or a permanent or temporary damaged hardware part.

The definition of an error is:
”

A discrepancy between a computed, observed or measured
value or condition and the true, specified or theoretically correct value or condition [IEC10].“
This means that an error is a situation where a fault becomes apparent. An example is, if
the CPU accesses a memory cell where a bit is permanently stuck at a different logic level
as expected from the system.

If a SCS is not able to handle the error and to get the system in a safe state, an error
becomes a failure. A failure is defined in the IEC 61508 as:

”
The termination of the ability

of a functional unit to provide a required function or operation of a functional unit in any
way other than as required [IEC10].“ A failure already has a negative influence on the
environment and is externally observable.

Figure 2.2 visualizes the above mentioned fact that a fault can lead to an error, if the
fault is activated. This error can become a failure if the SCS fails to handle the error and
this can trigger a fault in another hardware part or functional unit and so on. The last
failure in a cascade can lead to a hazard for the environment or a person, which can result
in an accident and in injuries and loss of human life.

Figure 2.2: The image shows the fault-error-failure cascade. An active fault can lead to
error and an error can be propagated to a failure under appropriate circumstances. This
can again activate a fault in another hardware part or functional unit. If the last failure
in the cascade leaves the system level, a hazard can be triggered, which can result in an
accident and furthermore in injuries and loss of human life. This image is adapted from
[Kal05].
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2.1.3 IEC 61508

The IEC 61508 is a safety standard for electrical, electronic, and programmable electronic
(E/E/PE) equipment. The first version of the IEC 61508 was published in the mid-1998
and the actual version is published 2010 by the International Electrotechnical Committee
(IEC). This safety standard consists of the following seven parts:

IEC 61508-1: General requirements

IEC 61508-2: Requirements for electrical / electronic / programmable electronic safety-
related systems

IEC 61508-3: Software requirements

IEC 61508-4: Definitions and abbreviations

IEC 61508-5: Examples of methods for the determination of safety integrity levels

IEC 61508-6: Guidelines on the application of parts 2 and 3

IEC 61508-7: Overview of techniques and measures

The parts 1-4 are about technical requirements and their compliance is necessary to
achieve an IEC 61508 certification. The last four parts (4-7) contain additional information
for supporting the understanding of the standard.

The IEC 61508 is a generic safety standard, which focuses attention on the risk-based
safety-related system design [Exi06]. The objective of this standard is to provide a cost-
effective implementation for the development of E/E/PE safety-related system on the one
hand and to help other industrial domains to develop domain-specific safety standard,
which are based on the IEC 61508 on the other hand.

2.1.4 Safety Integrity Level

The IEC 61508 certification process is based on two basic concepts. The first is the safety
life cycle, which explains the process of developing a safety-related system. It is referred
to [IEC10] for further information. The second concept are the Safety Integrity Levels
(SILs), which define the level of risk reduction. The IEC 61508 defines four SILs, where
SIL1 is the lowest possible level and SIL4 the highest level of risk reduction, which is the
most difficult level to achieve. The IEC 61508 distinguishes between low demand mode, high
demand mode and continuous mode for SIL classification. The choice of these operation
modes are based on the operation frequency and the proof test frequency. If the frequency
of demands for operation is smaller than once per year and smaller than twice of the proof
test frequency, the system runs in a low demand mode. If the frequency of demands for
operation is greater than once per year and greater than twice of the proof test frequency,
the system runs in a high demand mode. For a continuous mode, the system has to run
continuously and can be called as a very high demand mode. Table 2.1 shows such a SIL
classification for a continuous mode, where the risk reduction is presented as a probability
of dangerous failure per hour.
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Safety Integrity Level
Average frequency of a dangerous failure of the

safety function per hour

SIL4 ≥ 10−9 to < 10−8

SIL3 ≥ 10−8 to < 10−7

SIL2 ≥ 10−7 to < 10−6

SIL1 ≥ 10−6 to < 10−5

Table 2.1: The different SILs and the corresponding probabilities of a dangerous failure of
the safety function for a safety-related system, which runs in continuous mode [IEC10].

Furthermore, the SIL classification gives recommendations about the usage of different
techniques and measurements. An example is shown in Table 2.2, where highly recom-
mended means that this technique or measurement has to be applied or used. If a method
is recommended it should be used except there is a good reason, why it cannot be used.
There are also methods, which are labeled with no recommendation and methods which
are not recommended. In this case, the method should not be used, if there is no good
reason for the usage of this technique.

Assessment/Technique SIL1 SIL2 SIL3 SIL4

Checklists R R R R

Decision/truth tables R R R R

Software complexity metrics R R R R

Failure analysis R R HR HR

Common cause failure analysis of diverse software (if
diverse software is actually used)

- R HR HR

Reliability block diagram R R R R

Table 2.2: Functional safety assessment: shows the highly recommended (HR), recom-
mended (R) and assessments or techniques with no recommendation (-), which are defined
in [IEC10].

2.1.5 Techniques and Measurements

The IEC 61508-7 contains different techniques and measurements, which are recommended
to apply for achieving a special test coverage required by the SIL [IEC10]. Furthermore
this part of the safety standard gives further information for the used methods and explains
how they should applied. The seventh part contains the following four subcategories:

Techniques and measures to protect against random hardware failures: These
methods are useful for the compliance with the safety requirements specified in the
second part of the IEC 61508 (hardware development). Some examples for these
methods are software-based self-tests for the functional units of the CPU, RAM
self-tests or tests with redundant hardware.

Techniques and measures to protect against systematic failures: These techniques
try to minimize the failure committed in the project management and the overall
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system design and verification process. Some example techniques are worst-case
analysis or black-box tests.

Techniques and measures to achieve software safety integrity: These parts rec-
ommends different techniques in the development and testing step to achieve a safe
and qualitative product. Examples for these methods are UML, diverse or modular
programming.

Techniques and measures for ASIC design: This part contains methods for the
design and testing of ASICs. Examples are static run-time analysis, burn-in tests or
validation of soft-cores.

2.2 ARM926EJ-S Core Module

This section gives an overview of the used processor and explains the necessary processor
parts for the further understanding of this thesis.

2.2.1 Generic Architecture Overview

The ARM926EJ-S belongs to the general-purpose ARM9 microprocessor family [ARM08].
It has a 32-bit RISC-CPU with an ARMv5TE instruction set architecture (ISA), which
supports 32-bit ARM- and 16-bit Thumb instructions. This ISA allows the user to switch
between a high performance and a high code density (small code size). Furthermore, this
processor module supports instructions for Jazelle Java extension, which allows an efficient
execution of Java byte code. DSP extensions and Floating Point Unit (optional) are also
supported by the processor. The core module has a five stage pipeline and supports AMBA-
AHB interfaces for multilayer AHB-based systems. The ARM926EJ-S has a Harvard-based
caching architecture and a Memory Management Unit (MMU). An overview of all processor
blocks and their interaction among each other can be seen in [ARM08, p. 27].

2.2.2 Memory Management Unit

The MMU of the ARM926EJ-S is an ARMv5 architecture, which provides virtual memory
features and a two-level page table, where a single set is stored in the main memory [ARM08].
This allows the MMU to perform address translations, permission checks and memory
region attributes for instruction and data accesses. The MMU uses a Translation Lookaside
Buffer (TLB) to cache frequently used pages for the avoidance of unnecessary and slow
path table walks. The whole TLB consists of a main TLB and a lockdown TLB. The main
TLB is a two-way, set-associative cache with 32 entries per way. This results in a total
number of 64 entries. The lockdown TLB is an eight-entry fully-associative cache, which
allows to lockdown special address translations to avoid a slow path table walk. The MMU
supports different mapping sizes, like 1 MB as sections, 64 KB as large pages, 4 KB as
small pages and 1 KB as tiny pages. Another feature of the ARMv5 MMU is the hardware
path table walk, which decreases the translation time of a not-cached address translation.
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2.2.3 Register

The ARM9EJ-S CPU has a total number of 37 32-bit registers, where 31 of these registers
are for general-purpose and six registers are status registers [ARM02]. The accessibility of
these registers depends on the processor state and operating mode.

If the CPU is in ARM state and user mode, 16 registers (r0 to r15) and the Current
Program Status Register (CPSR) are directly accessible. The CPSR contains the condition
code flags and the current mode bits. The registers r0 to r13 are for general-purpose, where
the register r13 contains in most cases the stack pointer (SP). The register r14 is the Link
Register (LR), which contains a copy of the Program Counter (PC), if a branch is executed.
The r15 contains the PC. If the CPU switches to the privileged mode, an additional register
is accessible. The Saved Program Status Register (SPSR), which contains condition code
flags and the mode bits saved as a result, if the exception caused entry to the current mode.

If the CPU is in the thumb state and user mode, only the registers r0 to r7 as well as
PC, SP (r13), LR (r14) and CPSR are directly accessible. There are banked SPs, LRs,
and SPSRs for each privileged mode. The higher registers (r8-r15) are not part of the
standard register set, but they can be used for fast temporary storage. For example a
special MOV-instruction can transfer a value from lower to higher register. After this a
CMP-instruction can be applied to compare the value of the lower register with the higher
register.

2.2.4 ARM9EJ-S CPU

As said before, the ARM9EJ-S core implements the ARMv5TE architecture, which supports
a 32-bit ARM and 16-bit Thumb instructions. The CPU is able to switch between these
two states, which enables an optimization between code density and performance. An ARM
study shows that the code size in Thumb state is typically 35% smaller than equivalent
ARM code, while providing 160% of the effective performance in constrained memory
bandwidth operations [ARM02].

The ARM9EJ-S core implements a 32-bit RISC CPU with a 32-bit address space,
32-bit registers, 32-bit barrel shifter and Arithmetic Logic Unit (ALU), enhanced 32-bit
MAC block and a 32-bit memory transfer. Furthermore, the memory system is based on
a Harvard architecture, which allows accessing data and instructions concurrently. This
results in a significant decrease in cycles per instruction. The CPU also implements a
five-stage pipeline in ARM state and a six-stage pipeline in Jazelle state. The processor
core supports DSP-extensions with a single-cycle 16x16 and 32x16 MAC implementations.
This improves the performance over ARM7-based CPUs by a factor of two to three.

2.3 Fault Injection

This section describes the purposes of Fault Injection (FI) platforms and gives an overview
to the generic architecture of a FI. Furthermore, it presents and explains the different
groups of FI approaches. The most information in this section is based on [ZAV04], if it is
not otherwise stated.



CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 19

2.3.1 Objectives of Fault Injection

The main objective of a FI is the assessment of the dependability for a fault-tolerant
system or component. As said in [BDL96], FI approaches can be grouped in static and
dynamic FI. The static FI methods are used to modify the program’s source code text
and the dynamic FI methods are used to modify the state of an executing program. The
most commonly known static FI is the mutation testing, which tests the robustness of a
program. Through small syntactic changes, like an operator exchange, the recovery code
fraction for example could be tested, which is normally not executed during the run-time
of a program. Dynamic FI methods are used to simulate the behavior of a system while a
hardware fault modifies special memory bits or register contents. Dynamic FI is important
to ensure the functional safety of a system or component by testing the implemented fault
detection methods. In order to guarantee that a certain test coverage or fault detection
rate is fulfilled, many tests of the system or component under faulty conditions have to
be executed. The issue is that most of the hardware faults rarely occur. Due to this low
occurrence rate of faults, a fault injection is used to simulate such faults in an adequate
number.

According to [ZAV04], the usage of FI techniques can yield the following seven benefits:

• The functional behavior under faulty condition of the fault-tolerant system.

• The assessment of the efficacy of fault tolerance techniques.

• A forecasting of the system’s behavior in the case of a fault occurrence.

• An estimation of the failure coverage and latency of fault tolerance techniques.

• An assessment of the effectiveness of fault tolerance techniques for different workloads.

• Identification of bottlenecks and weak points in the design (where one fault can crash
the system).

• The analysis of the system’s behavior when and while a fault occurs (fault propagation
for example).

In summary, FI methods can be used to simulate the behavior of a fault-tolerant system
or component while a hardware or software fault occurs. The next sections of this thesis
will focus only on dynamic FI methods, which inject hardware faults.

2.3.2 Overview of the Fault Injection Environment

Figure 2.3 shows the typical architecture of a FI system. It consists of the following nine
components:

Target system: Executes the program or functionality, which should be tested while
faults are injected.

Fault injector: Injects faults in a target system while it executes commands from workload
generator.
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Fault library: Stores the types, durations, locations of faults and the time when the
faults should be triggered.

Workload generator: Generates the workload (instructions or programs) as input for
the target system.

Workload library: Stores sample workloads for the target system.

Controller: Controls the fault injection.

Monitor: Tracks the commands, which are executed and initiates data collector if it is
necessary.

Data collector: Collects and stores the raw test data.

Data analyzer: Analyzes the data and performs a data pre-processing.

Figure 2.3: This image shows the components of a typical FI environment and their
interaction among themselves. This image is adapted from [HTI97].

2.3.3 Hardware-Based Fault Injection

Hardware-Based Fault Injection (HWFI) uses additional hardware to inject faults into the
hardware of a target system. HWFI approaches can be grouped in two main categories,
depending on the faults and their locations:

HWFI with contact: The fault injector has direct physical contact to the target system.
The fault is injected by producing voltage or current, which is injected into a pin of
the target. Pin-level active probes and socket insertion are common examples for
HWFI with contact.

HWFI without contact: The fault injector has no direct physical contact to the target
system. In the most cases, an external source produces a physical phenomenon, like
heavy ion radiation or electromagnetic interference. This phenomenon induces a
spurious current in the target chip.
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Table 2.6 summarizes the advantages and disadvantages of the HWFI methods and
Table 2.3 shows some examples of HWFI with a short description of them.

Name of tool Description

RIFLE Pin-level fault injection system for dependability
validation [MRMS94].

FOCUS Design automation environment used for analyzing a
microprocessor-based jet-engine controller. FOCUS uses a
hierarchical simulation environment for tracing the impact of
transient faults and is able to measure the error propagation
within the chip [Cho92].

MESSALINE Pin-level forcing system, which uses active probe and
sockets [AAA+90].

FIST Inject transient (heavy-ion radiation) and power disturbing faults
by using contact and contactless methods [KLD+94].

MARS Time-triggered, fault-tolerant, distributed system which consists
of several computer nodes with synchronous TDMA and three
level Error Detection Mechanism (hardware-software,
system-software and application-software level) [Fuc96].

Table 2.3: This table presents some examples with a short corresponding description of
common HWFI techniques in the literature.

2.3.4 Software-Based Fault Injection

Software-Based Fault Injection (SWFI) is helpful to assess the consequences of hidden
software bugs. These methods are based on the execution of additional software on the target
system, which modifies the system state. SWFI exploits cooperative and communicative
functions to inject faults in the target system and are more oriented towards implementation
details. SWFI approaches can inject almost all sorts of hardware and software faults, which
are accessible by software. Some example for these faults are, register faults, memory faults,
dropped or replicated network packets, erroneous error conditions and flags, miss-timings,
missing messages, replays or faulty disk reads.

Furthermore, SWFI can be classified in two groups according to the time when faults
are injected:

FI during compile-time: Where and when a fault should be injected, has to be specified
before the program image is loaded and executed. A modified piece of code alters
the program instruction and generates an erroneous software image, which activates
the fault, if the image is executed on the target system.

FI during run-time: This group needs a mechanism to trigger the fault injection during
run-time. Possible mechanism are time-out, exception/trap and code insertion.
Time-out mechanism uses a timer, which generates an interrupt when the timer
expires after a predefined time. The called interrupt handler injects the faults.
Exception/trap mechanisms use a hardware exception or software trap to transfer
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the control to the fault injector. The advantage of this mechanism is that faults can
be injected whenever certain events or conditions occurs. Code insertion techniques
add instructions rather than changing original instructions. The advantage of this
method is that the fault injector can run in user-mode rather than system mode
(higher privileged mode) like the trap method.

Table 2.6 summarizes the advantages and disadvantages of the SWFI methods and
Table 2.4 shows some examples of SWFI with a short description of them.

Name of tool Description

FERRARI FERRARI uses software traps to inject CPU, memory and bus
faults, which are triggered by program counter (location) or timer.
It changes the content of registers or memory and model transient
and permanent faults [KKA92].

FTAPE Injects faults in user-accessible registers of CPU, memory and
disk-subsystems. CPU and memory faults are injected by bit-flips
and faults in the disk-subsystem are realized by routines in the
driver code [TI95].

FIAT FIAT is a real-time distributed accelerated FI, which injects faults
in messages (corrupted, lost, delayed), tasks (delayed, abnormal
termination) and timers [SV+88].

XCEPTION Exploits advanced debugging and performance monitoring
features of modern processors to inject faults. XCEPTION
triggers faults by processors own exception and uses fault masks
in combination with bit-level operations to model stuck-at,
bit-flips and bridging faults [CMS98].

DOCTOR This approach allows injections into CPU, memory and
network-communication. It uses a sophisticated method to modify
memory contents and supports three triggering mechanisms.
Time-out for memory faults, traps for non-permanent CPU faults
and the modification of instructions during compilation for
permanent CPU faults [HSR95].

EXFI EXFI is a FI for embedded microprocessor-based systems based
on trace exception mode of microprocessors. This tool is able to
model single transient bit-flip faults in the memory and in user
registers [BPRR98].

GOOFI GOOFI can perform different FI techniques on different target
systems. It is a user-friendly approach with graphical user
interface and is able to inject single or multiple transient bit-flip
faults [AVFK03].

Table 2.4: This table presents some examples with a short corresponding description of
common SWFI techniques in the literature.
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2.3.5 Simulation-Based Fault Injection

Simulation-Based Fault Injection (SIFI) are based on a simulation model, which is used
to simulate the hardware where fault should be injected (system under analysis). This
simulation model is developed by Hardware Description Languages like VHDL (Very high
speed integrated circuit Hardware Description Language) and faults are injected into this
VHDL model. It exist two different opportunities to realize SIFI. One is to modify the
original VHDL code and the second is to use built-in commands of simulators. Some
examples for VHDL code modifications are approaches based on saboteurs (additional FI
component) or mutants (dormant code, which is activated by fault injection).

Table 2.6 summarizes the advantages and disadvantages of the SIFI methods and Table
2.5 shows some examples of SIFI with a short description of them.

Name of tool Description

VERIFY Uses an extension of VHDL for describing faults in a component.
VERIFY is a multi-threaded FI, which uses checkpoints and
comparison with golden run to improve simulation time of the
faulty run [STB97].

MEFISTO-C Uses a VHDL simulator and injects faults with simulator
commands in variables and signals of a VHDL model [FSK98].

HEARTLESS Is a hierarchical register-transfer-level fault-simulator, which
supports permanent stuck-at faults, transient bit-flips and delay
faults for complex sequential designs like processor
cores [RPB+01].

GSTF Is a VHDL-based, automatic and model-independent FI tool for
injection permanent stuck-at and transient bit-flip faults at gate,
register and chip level. GSTF is based on a commercial VHDL
simulator [BGGG00].

FTI FTI aims to generate a fault-tolerant integrated circuit by an
original VDHL description and some guidelines for the
fault-tolerant techniques and their location in the design provided
by a designer. This approach automatically generates a
fault-tolerant version by inserting hardware and information
redundancy [ELO01].

Table 2.5: This table presents some examples with a short corresponding description of
common SIFI techniques in the literature.

2.3.6 Emulation-Based Fault Injection

The aim of Emulation-Based Fault Injection (EMFI) is to decrease the simulation time of
the SIFI approaches and to take into account the effects caused by the circuit environment.
The circuit under analyze is implemented on an FPGA and the development board is
connected to a host computer, which defines and controls the fault injection experiment
and displays the results.

Table 2.6 summarizes the advantages and disadvantages of the EMFI methods.
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Techniques Advantages Disadvantages

HWFI

• Can access locations, which are not directly acces-
sible.

• High time-resolution for hardware triggering and
monitoring.

• Fast experiments (near real-time).

• Not intrusive (no modification of the target).

• Well suited for low-level fault models.

• No model development or validation are required.

• Modeling of permanent faults at pin level.

• High risk of the damage of the target system.

• Low portability, low observability and limited con-
trollability.

• Requires special-purpose hardware for fault injec-
tion.

• Limited set of injection points and injectable
faults.

• High level of device integration, multiple chip hy-
brid circuit and dense package technologies limit
accessibility.

SWFI

• Is able to test applications and operating systems.

• FI can run near real-time.

• No special-purpose hardware, low complexity, low
development and low implementation costs.

• No model development or validation are required.

• Can model new classes of faults.

• Limited set of injection instants (instruction level
only).

• Cannot inject faults in location, which are not ac-
cessible for the software.

• Modification of the source code is required.

• Limited observability and controllability.

• Very difficult to model permanent faults.

SIFI

• Can support all system abstraction levels (electri-
cal, logical, functional and architectural).

• Not intrusive (no footprint of the testing mecha-
nism).

• Full control of fault models and injection mecha-
nism.

• No special-purpose hardware (low costs).

• High observability and controllability.

• Modeling of transient and permanent faults.

• Allows reliability assessment at different design
stages.

• Large development effort.

• Time consuming (experiment length).

• No real time fault injection.

• Model may not include design faults.

• Accuracy of the results depends on the accuracy of
the model.

• Models are hard to define.

EMFI

• Shorter injection time than SIFI.

• Reduction of run-time by partially or totally imple-
menting the input pattern generation in an FPGA.

• Initial VHDL description must be synthesizable
and optimized to reduce run-time.

• Costs for emulation hardware or/and implementa-
tion complexity.

• Analyzes only the functional consequences and not
the temporal impact of a fault.

• Restricted number of faults by the limited number
of I/O-ports of the FPGA.

• High speed communication between host computer
and emulation board is necessary.

Table 2.6: This table summarizes the advantages and disadvantages of different fault
injection methods [ZAV04].

2.3.7 Hybrid Fault Injection

A hybrid FI method is a combination of two or more of the above-mentioned techniques
which aims to combine the benefits of both or all used techniques. A combination of a
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HWFI and a SWFI can combine the advantage of versatility of the SWFI and the accuracy
of a HWFI. Such a hybrid approach is well suited for measuring extremely short latencies.
A further example is the combination of SIFI and HWFI or SWFI to combine the advantage
of controllability and observability of the SIFI. For hardware parts which are not directly
accessible, like a (Arithmetic and Logic Unit) ALU which is embedded in a CPU, a SIFI
approach can perform an accurate fault injection.

An example for a hybrid FI was developed at the Chalmers University of Sweden
[GS95], which combines a SWFI and SIFI. The execution of code runs at full-speed on
the target system, while no fault injection is triggered. In the case of a fault injection,
the simulator gets active and provides detailed access to the target. This method uses
an operational-profile-based fault injection, which only injects fault in those parts (for
example memory cells) which contains live data.

2.4 Software-Based Self-Test

This section describes the principle of software-based self-tests and explains, which role
they play in the context of safety-critical systems and the IEC 61508. Furthermore, this
section introduces the used fault model and describes the self-testing techniques proposed
by the IEC 61508. Finally, a short overview of the state-of-the-art methods is given in the
related work section.

According to the definition in [GPZ04], a self-test is the ability of an electronic compo-
nent to test itself against occurring faults and to deliver observable results. The availability
of an embedded processor in core-based System on Chip (SoC) architectures, makes it
possible to run test generation, test application and test response capturing of self-tests
as software-routine instead of a specially synthesized hardware modules. These solutions
are grouped as Software-Based Self-Tests (SBSTs), which have some significant advan-
tages against hardware-based self-tests. The first advantage of SBSTs is that they are
non-intrusive. SBSTs do not add additional hardware or performance overhead to the
circuit and do not change the circuit structure or need a modification of the instruction set
architecture (ISA). SBSTs are low-cost and low-power self tests, because SBSTs do not
need external testers, add no additional chip area, delay or power consumption overheads
to the circuit. Furthermore, SBSTs allow at-speed testing of the circuit or components,
because all test patterns are applied with the actual system frequencies. SBSTs are also
very flexible, because the software code is easy to modify or to adapt to other components.

Self-Tests are important techniques to guarantee the right functioning of components
and hence to achieve safety certificates for safety-critical systems. But the development
of SBSTs, especially for embedded processors, includes challenging tasks. Embedded
processors are no simple combinational unit or finite state machine, they are components
with well-optimized designs in term of performance and power consumptions. They consist
of several components like arithmetic units, storage elements, interconnection modules,
which are optimized to achieve the best performance at instruction execution level. Some
components like pipelines or multiplexers are not easy-to-test, because they are not directly
accessible by the instruction set. In the case of memory testing, the challenging task is to
reach high fault coverages with the smallest possible runtime. Nowadays, a small runtime
is even more important, because the memory sizes are drastically increasing.
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2.4.1 Fault Classification

The functional hardware faults of components, which should be detected by SBSTs, can
be classified according to their occurring or active time.

The IEC 61508 safety standard defines two groups of fault types: Permanent Faults
and Transient Faults [IEC10]. Permanent faults reflect long-term damage of hardware
components and can be modeled by a stuck bit of a binary value. These kind of faults are
called Stuck-at Faults. An example of such a stuck-at 0 or 1 fault can be a short between
positive supply VDD or negative supply Vss and an output pin of a combinational unit or
simple a CMOS-Transistor.

A transient fault (or soft-error) is a fault, which appears for a short time at various
locations. They are caused by temporary environmental influences such as neutron and
alpha particles, power supply and interconnect noise, electromagnetic interference or
electrostatic discharge [KML+06]. In contrary to permanent faults, transient faults do not
result in long-term damage of the hardware. These type of faults are drastically increasing,
because of the decreasing size of circuits and the increasing density of hardware components
per area.

[KML+06] defines another third fault type, the so-called Intermittent Faults. These
faults appear repeatedly and periodically at the same location and produce errors in bursts
while they occur. Intermittent faults are caused by unstable hardware, which are mainly
due to process variations and manufacturing residuals.

2.4.2 Self-Tests and IEC 61508

As already mentioned in Section 2.1.4, the IEC 61508 safety standard defines four SIL
levels, which covers the different probabilities of failures. The highest achievable SIL level
is limited by the Hardware Fault Tolerance (HFT) and by the Safe Failure Fraction (SFF)
(see Table 2.7).

SFF
Hardware Fault Tolerance

0 1 2

< 60% - SIL1 SIL2

60%− < 90% SIL1 SIL2 SIL3

90%− < 99% SIL2 SIL3 SIL4

≥ 99% SIL3 SIL4 SIL4

Table 2.7: Maximal allowed SIL for a given Safe Failure Fraction (SFF) depending on the
level of Hardware Fault Tolerance [IEC10].

The SFF is a percentaged ratio of failures that does not result in dangerous situations.
This ratio can be seen in Equation 2.1, where λs are the number of safe failures, λDd

defines the number of detected dangerous failures and λDu covers the number of undetected
dangerous failures.

SFF =

∑
λs +

∑
λDd∑

λs +
∑
λDd +

∑
λDu

(2.1)

The maximal achievable SIL depends in addition to the SFF also on the HFT. The HFT
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of N defines a minimum number of faults N + 1 that can cause the system to lose its safety
functionality. For example, a single processing element that computes a safety-critical
function (N = 1) fails its safety functionality, if two (N + 1) failures occur. Table 2.7 shows
that the higher the HFT is, the lower is the required SFF in order to achieve the needed
SIL.

The goal of SBSTs are to increase the number of dangerous detected failures
∑
λDd

and to decrease the number of undetected dangerous failures
∑
λDu, in order to increase

the overall SFF ratio. In order to achieve safety certificates only dangerous failures are
important and should be detected by SBSTs. Hence, the SFF can be simplified to a new
ratio, the so-called Diagnostic Coverage (DC), which is defined as:

DC =

∑
λDd∑
λD

, (2.2)

where
∑
λDd is the number of dangerous detected failures and

∑
λD is the sum of

all dangerous failures (
∑
λDd +

∑
λDu). The DC (or fault coverage) is a good metric to

evaluate or compare different SBSTs. Before a DC value can be calculated, it is important
to know all possible faults, which can occur in a component. If this component is a new
unknown device, a Failure Mode and Error Analysis (FMEA) should be applied to identify
all possible faults (FMEA is described in [IEC10]-Part 7). For processor-based systems,
the IEC 61508 already defines some fault sources, which have to be handled for achieving a
certain SIL. The next two sections will introduce the reader to these lists, which covers the
fault sources for the CPU-core elements as well as for the memory modules such as RAM.

CPU Test Requirements defined by IEC 61508

Table 2.8 shows the requirements for the safety mechanisms of the processing elements.
These requirements are defined in the IEC 61508 safety standard part 2 and give an
overview of the different fault sources for the three DC classes, which should be covered
for a specific fault coverage by safety mechanisms. For example, if a system with a HFT
value of 1 has to reach SIL 3, then this system requires at least a SFF of 90% according
to Table 2.7. If we assume that all failures are critical, then the system requires a DC
value of at least 90%. Thus, we have to consider the fault types in the middle column
(medium DC) of Table 2.8 and the tests have to detect at least 90% of these faults in order
to achieve SIL 3.

Furthermore, it can be seen that the IEC 61508 focuses on components, which are
responsible for the execution of instructions and/or for the storage of data in register
files or internal memories. In the literature, these components are often grouped to the
so-called CPU-core elements. These CPU-core elements are only a part of the whole CPU
and do not cover arithmetic units, multiplier or barrel shifters. In the most cases, these
components are used to compute outputs based on an algorithm (for example control
parameters). Hence, these components have also a significant influence on the safety issues
and have to be tested too. In some cases of medium and high DC, a so-called DC fault
model has to be considered. This DC fault model is an aggregation of different fault types
and covers stuck-at and stuck-open errors (a special case of stuck-at-errors), open circuits
or outputs with high impedance as well as shorts between two lines.
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CPU
Requirements for claimed DC

low (60%) medium (90%) high (69%)

registers, internal RAM Stuck-at for data
and addresses

DC fault model
for data and
addresses

DC fault model
for data and
addresses

Change of
information
caused by
soft-error

Change of
information
caused by
soft-error

Dynamic
crosstalk between
memory cells

No, wrong or
multiple
addressing

Coding and execution
including flag register

Wrong coding or
no execution

Wrong coding or
wrong execution

No well-defined
fault assumption

Address calculation Stuck-at DC fault model No well-defined
fault assumption

Change of
addresses caused
by soft-errors

Program Counter (PC)
and Stack-Pointer

Stuck-at DC fault model DC fault model

Change of
addresses caused
by soft-errors

Change of
addresses caused
by soft-errors

Table 2.8: Fault sources defined by the IEC 61508 for CPU-core elements [IEC10].

CPU Test Techniques suggested by IEC 61508

The IEC 61508 suggests a few techniques to achieve different DC values. A listing of these
techniques is given in Table 2.9. It can be seen that SBSTs are a proposed solution, but
achieves only low or medium DC. However, SBSTs are still able to achieve high DC values,
but it has to be shown in a verification of these tests by an appropriate fault injection
experiment. The most techniques, which are listed in Table 2.9, depend on hardware
redundancy (comparator, majority voter, reciprocal comparison) or require a special design
for a failure detection unit (coded processing). This work excludes CPU-core techniques,
which requires a modification of or additional hardware. Thus, from the methods shown in
Table 2.9, only SBSTs will be covered.
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Technique / Measure Achievable DC value

Comparator High (99%)

Majority voter High (99%)

Self-test by software: limited number of patterns (one
channel)

Low (60%)

Self-test by software: walking bit (one channel) Medium (90%)

Self-test supported by hardware (one channel) Medium (90%)

Coded processing (one channel) High (99%)

Reciprocal comparison by software High (99%)

Table 2.9: Techniques/measures for testing CPU-core defined by IEC 61508 [IEC10].

Memory Test Requirements defined by IEC 61508

Table 2.10 shows the requirements for the safety mechanisms of variable memories such
as RAMs. These requirements are defined in the IEC 61508 safety standard part 2 and
give an overview of the different fault sources for the three DC classes, which should be
covered by safety mechanisms. In general, it is the same as for the register files or internal
memories of the CPU-core elements shown in Table 2.8.

Memory
Requirements for claimed DC

low (60%) medium (90%) high (69%)

Variable memory Stuck-at for data
and addresses

DC fault model
for data and
addresses

DC fault model
for data and
addresses

Change of
information
caused by
soft-error

Change of
information
caused by
soft-error

Dynamic
crosstalk between
memory cells

No, wrong or
multiple
addressing

Table 2.10: Fault sources defined by the IEC 61508 for variable memory [IEC10].

Memory Test Techniques suggested by IEC 61508

The IEC 61508 safety standard distinguish between variable and invariable memories.
Invariable memories are for example ROMs and Flash memories and variable memories
are register files, caches and every type of RAMs. This thesis will focus only on variable
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memories (RAMs). The IEC 61508 suggests a few techniques to test RAM-modules, which
can be seen in Table 2.11. The detailed description of RAM tests is given in Section
2.4.4. Furthermore, the safety standard suggests techniques, which depend on hardware
redundancy like double RAM with hardware or software comparison or uses a special
coding like parity bits or monitoring with modified Hamming codes or EDC is not covered
in this thesis. This thesis will only focus on test techniques, which can be run as SBSTs.

Technique / Measure Achievable DC value

RAM test checkerboard or march Low (60%)

RAM test Walk-Path Medium (90%)

RAM test Galpat or transparent Galpat High (99%)

RAM test Abraham High (99%)

Parity bit for RAM Low (60%)

RAM monitoring with modified Hamming code or detection
of data failures with errordetection-correction codes (EDC)

Medium (90%)

Double RAM with hardware or software comparison and
read/write test

High (99%)

Table 2.11: Techniques/measures for testing variable memories defined by IEC 61508
[IEC10].

2.4.3 CPU-core Tests

CPU-core tests can be classified in two different categories [PGSR10], [GPZ04]:

Functional testing: The goal of functional testing is not to obtain a high fault coverage
for a physical or structural fault model, but rather the testing of a digital circuit for
the correctness of all known functions. The main idea is to use the Instruction Set
Architecture (ISA) provided by the processor to develop test pattern sets. These
test patterns are applied to the processor and are compared with a precomputed
output of a correct functioning device (for example, the register value at the end of
the computations). The big advantage of this approach is that no low-level details of
the hardware are required. Hence, functional testing is easily applicable and more
portable than structural testing approaches and hence these techniques can be re-used
and have a low development costs. The drawback of functional testing methods is
that it is hard to achieve high fault coverage values due to the limited information of
the hardware.

Structural testing: In contrary to functional testing, structural testing targets a specific
structural fault model and hence, these approaches need low-level details of the
hardware. These low-level details could be information on the Register-Transfer-Level
(RTL) or on the gate-level of the hardware. Structural tests also use the ISA of
processor, but they take further information of the hardware provided by structural
information into account. For example, the geometric arrangement of hardware
components can be used to increase the fault coverage. It is more likely that two
adjacent components influence each other, than components which are physically
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further away. Due to these facts, the advantages of structural testing is that a
high fault coverage can be achieved and that the test programs are faster, because
the instructions are specially tailored to the used hardware. The drawbacks follow
from the advantages. Because these methods are specially tailored to a hardware,
these approaches are hardly portable and have high development costs. A further
disadvantage is that low-level details of the hardware are required.

Furthermore, these CPU tests can be distinguished, if they are deterministic or ran-
domized [GPZ04]:

Deterministic Testing: Deterministic tests apply well-known test sequences, which have
a proven minimum achievable test coverage. These tests use always the same test
sequences and the same test instructions, which tests always the same components.
As an example, pre-developed tests for the most of the functional units of a processor
(ALU, multiplier, divider, shifter) exist, which guarantee a high fault coverage
independent of the actual hardware architecture [PGK+01]. For such tests it is not
necessary to verify the fault coverage by fault injection experiments. The advantages
of these approaches are a high fault coverage and short test sequences and the
drawbacks are that in general a gate-level or RTL-level model has to be known to
develop deterministic tests for a arbitrary component.

Randomized or Pseudorandom Testing: Randomized tests are based on pseudoran-
dom instruction sequences, pseudorandom operands or a combination of both of
them. These testing methods have no proven fault coverage and hence they have
to be verified by an appropriate fault injection experiment. The advantage of these
approaches are that they do not need information about the gate- or RTL-level, but
the disadvantages are that they require long test sequences and only achieves low
fault coverages with these.

Further details about classification schemes, especially for structural testing, can be
seen in [PGSR10].

An effective way to develop SBSTs for processor cores is to divide the CPU into several
main components [GPZ04], [KPGZ02]. For each component a set of instructions is defined
that test the given component. From this set of instructions the best-observable one
is selected and is subsequently applied to develop the SBST for this component. The
output of this process is a set of components, which can be tested by the best-observable
instruction. These components have to be prioritized according to their importance to
quickly reach a sufficient high fault coverage. This is important in context of developing a
low-cost SBST with low development effort. The prioritization depends on the component
size given in gate-counts (number of gates in a special component) and the accessibility
of the components. For this purpose, CPU-core elements can be classified in functional,
control and hidden components. Functional components are directly and explicitly related
to the execution of an instruction. They can be further grouped in computational functional
components (ALUs, adders, shifters, incrementers, subtracter, divider, multiplier etc.),
storage functional components (register and internal RAMs) and interconnect functional
components (multiplexers or tri-state buffer). Control components controls either the flow
of instructions and data inside the processor or the flow of data from and to external
environments like memory subsystems or peripherals. A classical control component is
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the control unit of a CPU, which is responsible for the instruction decoding and for the
producing of the control signals for the functional components. The control components
are not directly related to a specific function or directly implied by the instruction set.
Hence these components can only be tested indirectly by performing test for the functional
units. Hidden components are mainly responsible for increasing the performance and
instruction throughput of a processor. Hidden components are for example pipelines or
branch prediction schemes and are not visible to the assembly language. In order to quickly
achieve a high fault coverage, it is suggested to test the functional units first. They are
visible and easier to test by instructions than control or hidden components. Furthermore,
functional components are the biggest units according to the gate-counts or chip area on a
processor core.

In general, the SBSTs which are considered in this thesis are not based on such an
analysis process. The considered SBSTs are a collection of well-known tests for CPU core
components and commonly used RAM test routines. The considered tests are functional
and not randomized tests. Some of these tests are deterministic tests with a proven fault
coverage and for some other tests the fault coverage has to be verified by fault injection
experiments.

2.4.4 RAM Tests

The achieved fault coverage and the test length of a memory test depends on the used fault
model [HGR02]. In order to define a Functional Fault Model (FFM) it is important to
understand the concept of fault primitives (FPs). Functional faults are the deviation of an
observed and a specified behavior under a number of performed memory operations. This
amount of operations on the memory is called operation sequence and if this operation
sequence results in a deviation of observed and expected memory behavior, then this
operation sequence is called a sensitizing operation sequence (S). The observed memory
behavior that deviates from the expected behavior is called faulty behavior (F). The
combination of S, F and the read result (R) in case of a memory read operation specifies a
certain fault and is called a FP, which is denoted as < S/F/R >.

These FPs can be classified according to:

• The number of simultaneous operations required by S into single- and multi-port
faults.

• The number of sequential operations required by S into static and dynamic faults.

• The way the FP manifest themselves into simple and linked faults.

Single-port faults are FPs that require one port in order to sensitize a fault. In contrary
to single-port faults, multi-port faults are FPs that can only sensitize a fault by performing
two or more operations on different ports. Static faults are FPs that can sensitize a fault
by performing one operation sequentially and dynamic faults have to be sensitized by
more than one operation. Simple faults are faults, which cannot be influenced by other
faults and hence no fault masking can occur. Linked faults are faults, which influence the
behavior of each other and hence fault masking can occur. In this thesis, only single-port,
simple and static as well as dynamic faults with maximal two operations are considered.
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RAM Fault Models

Many FFMs for memories have been introduced in the past [HGR02]. The oldest but
well-known FFM consists of Address decoder Faults (AFs) and Stuck-at Faults (SAFs).
Later, these FFMs are refined by introducing the Data retention fault (DRF)1, Stuck-Open
Fault (SOF), Read Destructive Fault (RDF), Deceptive Read Destructive Fault (DRDF)
and Disturbing Coupling Fault (CFds). In 1999, experimental results were applied to many
memory chips and memory tests. The results show that not all by these tests detected
faults could be described by using the well-known FFMs. Hence, additional FFMs exists
and these new introduced FFMs are described in the following section.

FFMs for RAMs can be classified in Single-cell static FFMs, Single-cell dynamic FFMs,
Two-cell static FFMs and Two-cell dynamic FFMs [AAG01]. Single-cell static FFMs
describe faults, which are sensitized by performing one operation to a single cell. As seen
in Table 2.12, these faults can be grouped, according to their FPs, in State Faults (SFx),
Transition Faults (TFx), Read Disturb Faults (RDFx), Write Disturb Faults(WDFx),
Incorrect Read Faults(IRFx) and Deceptive Read Disturb Faults(DRDFx).

FFMs FPs

SFx SF0 =< 0/1/− >,SF1 =< 1/0/− >
TFx TF↑ =< 0w1/0/− >, TF↓ =< 1w0/1/− >
RDFx RDF0 =< 0r0/1/1 >,RDF1 =< 1r1/0/0 >

WDFx WDF0 =< 0w0/1/− >,WDF1 =< 1w1/0/− >
IRFx IRF0 =< 0r0/0/1 >, IRF1 =< 1r1/1/0 >

DRDFx DRDF0 =< 0r0/1/0 >,DRDF1 =< 1r1/0/1 >

Table 2.12: List of single-cell static FFMs with the according FPs.

Single-cell dynamic FFMs describe faults, which are sensitized by performing more than
one operation to a single cell. There exist 2-operation, 3-operation, and so on dynamic
FFMs, but this thesis will focus only on 2-operation dynamic FFMs. For single-cell 2-
operation dynamic FFMs, there are 30 different possible FPs, but this number can be
reduced to 12 possible FPs, because an isolate write operation may not be sufficient to
detect a fault while the cell has not been read in order to detect the stored value set during
the write operation. This 12 single-cell 2-operation FPs are used to define Dynamic Read
Disturb Faults (RDFxy), Dynamic Incorrect Read Faults (IRFxy) and Dynamic Deceptive
Read Disturb Faults (DRDFxy),which is visualized in Table 2.13.

Two-cell static FFMs describe faults, which are sensitized by performing one oper-
ation to a cell, while observing the effect on another cell. A FP for a two-cell static
FFMs can be defined as < S/F/R >=< Sa;Sv/F/R >a,v, where Sa and Sv are the
sequences performed on the aggressor and the victim cell, respectively (Sa and Sv ∈
0, 1, 0w0, 0w1, 1w0, 1w1, 0r0, 1r1). As Table 2.14 shows, these sequences result in 36 possi-
bles two-cell static FPs, which can be grouped to State Coupling Faults (CFst), Disturb
Coupling Faults (CFds), Transition Coupling Faults (CFtr), Write Disturb Coupling Faults

1DRFs are caused by defective refresh logic in DRAMS or defective pull-up resistors in SRAMs and
result in the loss of data in less than the specified hold time. DRFs can be tested by applying delays
between march sequences and subsequently check the cell content for writing/reading an one and a zero. In
this thesis DRFs will not be handled.
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FFMs FPs

RDFxy RDF00 =< 0w0r0/1/1 >,RDF11 =< 1w1r1/0/0 >,
RDF01 =< 0w1r1/0/0 >,RDF10 =< 1w0r0/1/1 >

IRFxy IRF00 =< 0w0r0/0/1 >, IRF11 =< 1w1r1/1/0 >,
IRF01 =< 0w1r1/1/0 >, IRF10 =< 1w0r0/0/1 >

DRDFxy DRDF00 =< 0w0r0/1/0 >,DRDF11 =< 1w1r1/0/1 >,
DRDF01 =< 0w1r1/0/1 >,DRDF10 =< 1w0r0/1/0 >

Table 2.13: List of single-cell dynamic FFMs with the according FPs.

(CFwd), Read Disturb Coupling Faults (CFrd), Incorrect Read Coupling Faults (CFir)
and Deceptive Read Disturb Coupling Faults (CFdr).

FFMs FPs

CFst CFst0,0 =< 0; 0/1/− >,CFst0,1 =< 0; 1/0/− >,
CFst1,0 =< 1; 0/1/− >,CFst1,1 =< 1; 1/0/− >

CFds CFds0w0,0 =< 0w0; 0/1/− >,CFds0w0,1 =< 0w0; 1/0/− >,
CFds1w1,0 =< 1w1; 0/1/− >,CFds1w1,1 =< 1w1; 1/0/− >,
CFds0w1,0 =< 0w1; 0/1/− >,CFds0w1,1 =< 0w1; 1/0/− >,
CFds1w0,0 =< 1w0; 0/1/− >,CFds1w0,1 =< 1w0; 1/0/− >,
CFds0r0,0 =< 0r0; 0/1/− >,CFds0r0,1 =< 0r0; 1/0/− >,
CFds1r1,0 =< 1r1; 0/1/− >,CFds1r1,1 =< 1r1; 1/0/− >,

CFtr CFtr0,↑ =< 0; 0w1/0/− >,CFtr0,↓ =< 0; 1w0/1/− >,
CFtr1,↑ =< 1; 0w1/0/− >,CFtr1,↓ =< 1; 1w0/1/− >

CFwd CFwd0,0 =< 0; 0w0/1/− >,CFwd0;1 =< 0; 1w1/0/− >,
CFwd1;0 =< 1; 0w0/1/− >,CFwd1;1 =< 1; 1w1/0/− >

CFrd CFrd0,0 =< 0; 0r0/1/1 >,CFrd0,1 =< 0; 1r1/0/0 >,
CFrd1,0 =< 1; 0r0/1/1 >,CFrd1,1 =< 1; 1r1/0/0 >

CFir CFir0,0 =< 0; 0r0/0/1 >,CFir0,1 =< 0; 1r1/1/0 >,
CFir1,0 =< 1; 0r0/0/1 >,CFir1,1 =< 1; 1r1/1/0 >

CFdr CFdr0,0 =< 0; 0r0/1/0 >,CFdr0,1 =< 0; 1r1/0/1 >,
CFdr1,0 =< 1; 0r0/1/0 >,CFdr1,1 =< 1; 1r1/0/1 >

Table 2.14: List of two-cell static FFMs with the according FPs.

For the sake of completeness it should be mentioned that 2-operation dynamic two-cell
FFMs can be denoted with the FP < S/F/R >. For example, < v(0r0)a(1r1)/1/− >
defines a FP, where the fault is sensitized by a 0r0 operation on the victim cell and an
1r1 operation on the aggressor cell. After applying these sequences, an one is read from
the victim cell instead of a zero. Based on the values for S, F and R, 192 possible two-cell
2-operation dynamic FPs can be built. Since these FPs have not been observed in the
experiments in [AAG01], they are not further considered in this thesis.
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Further RAM Test Definitions

RAM tests can be divided in diagnostic and non-diagnostic testing schemes [BNR00].
Diagnostic tests can distinguish between different type of faults (for example between
single-cell and multiple cell faults). A common approach is to use different march tests,
where every march test can detect one certain fault type. Non-diagnostic tests detect fault
types, without determining the type of fault.

Furthermore, RAM tests can be developed for Bit-Oriented Memories (BOMs) or
Word-Oriented Memories (WOMs) [GAC02]. RAM tests for BOMs have a word width of
a single bit (write or read of one bit) and RAM tests for WOMs can read or write more
bits simultaneously. RAM tests for WOMs have the problem that the detection of CFs is
more challenging, because CFs have to be distinguished in intra- and inter-CFs. For an
intra-CF the victim and the aggressor cell belongs to the same memory word and for an
inter-CFs the victim cell and the aggressor cell does not belong to the same cell.

RAM tests can be transparent, which means that the initial content of a memory is
preserved [Nic96]. This feature is very suitable for periodic online testing of memories.
Furthermore, the authors of [Nic96] have proven that the fault coverage for transparent
tests does not decrease for modeled faults. The disadvantage of transparent tests is that
a signature prediction phase is needed to decide if a fault has occurred. This prediction
phase increases the runtime of these tests.

In order to avoid this additional runtime, caused by the prediction phase of transparent
memory tests, [YHW99] introduces a symmetric transparent memory test, which exploits
symmetries of the test data sequences to omit the signature prediction and decreases the
runtime of transparent memory tests.

RAM Test Methods

This section describes the memory testing methods, which are suggested by and explained
in the IEC 61508 part 7 (appendix A) [IEC10].

Checkerboard: The Checkerboard test can detect static bit faults. A checkered (alter-
nating) pattern of zeros and ones is written to the memory. The memory cells are
checked in pairs. The first address of a memory pair is variable and can be chosen
and the address of the second cell of this pair is build by a bit-wise inverting of the
first address. The content of both cells should be the same. The test consists of two
cycles. The first cycle of the test accesses the memory cells in an ascending address
order and the second cycle is performed in a descending address order. After this,
the test is repeated with the inverse initial memory content. The complexity of this
test is about 10N memory accesses, where N is the number of checked bits.

March: March tests for RAMs are described in the IEC 61508 as alternative to the
Checkerboard RAM tests. It is the most commonly used memory test due to its
linear complexity. March tests define a specific order, how a memory cell is accessed,
written or read and are classified in the IEC 61508 with a low DC, but the standard
considers only the simplest march test. There are many march tests, which are
able to detect different types of memory faults. All march tests have a common
structure and notation, which is described in Table 2.15. A march test consists of
a set of March elements, which specifies the addressing order of and the operations
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on a memory cell. Every march element is sequentially applied to one cell and after
finishing this cell, the test is applied to the next cell.

Symbol Description

{...} delimits the beginning and the end of a march test

(...) delimits the beginning and the end of a march sequence

⇑ ascending addressing order (from 0 to N − 1)

⇓ descending addressing order (from N − 1 to 0)

m either ascending or descending addressing order (not relevant)

r0 read the content of a cell with expected value 0

r1 read the content of a cell with expected value 1

w1 write 1 to a memory cell

w0 write 0 to a memory cell

Table 2.15: The commonly used notation of march memory test and their corresponding
description.

Walkpath: The Walkpath RAM test is able to detect static and dynamic bit faults as
well as crosstalk between memory cells. The Walkpath initializes all memory cells
with an uniform pattern (zeros or ones). The first cell is inverted and the remaining
memory cells are checked, to guarantee that the data background is correct. Then the
first cell is inverted one more time to get the original value and the whole process is
continued for the remaining untested memory cells. The second cycle of the walking
bit model is started with the inverse initial memory data background. The Walkpath
memory test requires 2(N2 + 3N) memory accesses.

Galpat: The Galpat RAM test detects static bit faults and many dynamic coupling faults.
The Galpat test starts with an initial phase, where the whole memory is initialized
with zeros or ones. The test starts with the inverting of the first cell and subsequently
all other cells are checked if their content is changed. After every read access of one
of the remaining cells, the inverted cell is checked too. This process is repeated for
every cell until every cell is checked. The second cycle is executed with the inverse
initial configuration. The Galpat RAM test has a complexity of 2(2N2 +N). It is
possible to apply a transparent Galpat test to preserve the memory content. Further
details about the transparent Galpat RAM test can be looked up in the IEC 61508
safety standard - part 7 [IEC10].

Abraham: The Abraham test [NTA78] is able to detect all stuck-at errors and coupling
faults. This test detects more faults than the Galpat memory test and has the best
assessment in the IEC 61508 safety standard (high DC). The Abraham test reads
and writes every cell of a memory in ascending and descending addressing order. The
test writes either a transition from zero to one or vice versa and is comparable with
the march tests. The test requires 30 operation per bit (30N).
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2.5 Related Work

This section gives an overview of the current approaches of QEMU-based Fault Injection
(QEMU-FI) platforms in the literature. Furthermore, this section covers the current
available software-based self-tests, which are used to detect faults on a target system.

2.5.1 QEMU-based Fault Injection Framework

There are many approaches available, which uses an emulator to simulate a closed-source
target system, like an ARM9 core for FI. One possible emulator is the Quick EMUlator
(QEMU), which provides an opportunity to implement a FI by little code modifications.
QEMU is an open source software emulator, which emulates several CPU architecture (x86,
ARM, Sparc, Alpha etc.) on several host platforms (x86, PowerPC, ARM etc.) [Bel05].
QEMU is based on the dynamic translation principle, which provides a fast emulation
(5 to 20 times slower than native code execution). Further details about QEMU will be
presented in the Chapter 3. Due to this fact, QEMU-FI fall into the category of software
simulation-based fault injection (SIFI).

The authors of [Chy09] collect program execution statistics with QEMU to improve
the efficiency of software-based fault injection. It exploits the dynamic code translation of
QEMU, which translates every emulated target instruction to native instructions. This
dynamic code translation is the basis for the good performance of the QEMU. The approach
sends a signal to the translation procedure before the emulated target instruction translation
is executed and dumps the emulated processor state to a statistical module for further
analysis. However, this approach only collects program execution statistics, but does not
implement a FI based on QEMU.

In [WEL+13] an extension of the QEMU is presented with the purpose of evaluating
variability-aware software techniques. The authors use the different processor models
provided by QEMU to emulate variations in power consumption (caused for example by
dynamic frequency scaling), timings and fault characteristics of multiprocessor systems
and to sense and adapt these variations by software. In order to do so, they use a SystemC
wrapper, which instantiates a special number of QEMU single processors. Every execution of
a processor is executed in a SystemC process, which is necessary for a concurrent execution
and an accurate simulation of a multiprocessor system. Furthermore, the wrapper of the
framework provides an interface to define and connect other hardware parts like timer or
shared memory, which are defined in SystemC. All in all, this approach uses the QEMU
emulator only to simulate different processor models, but it is not able to inject faults into
memory or registers neither and hence it is not suitable for a FI framework.

The FI framework developed by [XX12] implements a software SIFI based on the
QEMU emulator to test board-level Built-In-Test (BIT) software of avionics systems. This
paper analyzes functional faults of the memory and defines corresponding fault models and
simulates these memory faults. Furthermore, it uses an XML file as fault library, which
defines the fault parameters. This XML-approach allows the user to easily define duration,
location and type of faults, but this work covers only memory faults and not register faults
or faults in CPU functional units.

In [DC07] a QEMU-FI with the name QInject is introduced. QInject is a QEMU
emulator, which is extended with FI capabilities to test the behavior of self-healing
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operating systems while faults appear. QInject uses the debugging interface of QEMU to
inject faults with the GDB debugger into a target back-end. The advantage of this work is
that a fault injection experiment could be controlled by a remote GDB session through the
network. The drawback of this approach is that the GDB interface to the target back-end
heavily limits the access to the state of the target system (faults in network-devices are
not possible). Furthermore, this approach take only transient bit-flip faults into account to
test exception handling, code reloading or other techniques to recover the system state.

The authors of [BKJ+12] present an approach for mutation-based testing through
binary mutation. These mutations are injected at run-time through dynamic translation
of the QEMU emulator. They propose a taxonomy of mutation operators for the ARM
instruction set. The advantage of using dynamic translation in this approach is that the
mutation testing neither relies on source code nor on a certain compiler. Furthermore, this
approach is able to inject high-level language faults and target specific faults related to
compiler and linker, but it does not cover low-level hardware faults like memory or register
faults.

The work in [YPH13] develops a FI framework based on the QEMU emulator, called
BitVaSim. BitVaSim aims to test BIT software on embedded development boards, which
are equipped with PowerPC or ARM processors. BitVaSim exploits the advantage of
simulation-based approaches, which do not harm or interrupt the real hardware or software.
Another advantage of this approach is that all simulated parts are reachable and so more
fault modes can be achieved. BitVaSim uses abstract key-value pairs, which are defined in
an XML format, to describe the functional fault modes (similar to [XX12]). Furthermore
BitVaSim configures and simulates the hardware target board, which are defined by a
modeling and configuration module and a hardware simulation module. This approach
provides an automatic FI by executing fault defined in an XML-file but it also provides a FI
interface, which allows configuring and injecting faults on demand at run-time. BitVaSim
can inject faults in every process including the kernel of the operating system. For this
reason, this FI method can be used to test the behavior of an operating system while faults
occur. This approach is based on good basic ideas, but there is no sample-code public
available and the authors of this work do not response to emails and due to the sparse
evaluation results the correct functioning of this approach can be doubted.

2.5.2 Software-Based Self-Tests (SBSTs) for CPU

The IEC 61508 suggests the walking bit method for testing the registers of a CPU. The
authors of [TB06] use march tests to develop SBSTs for the register files. This can be
done, because the physical structure of registers is the same as for small SRAMs. Hence,
faults in the register files can be modeled with a memory fault model and every memory
self-test can be applied to register files.

The authors of [KGPZ02] describes an approach, which tries to minimize the developing
effort, code size and runtime of CPU self-tests. This work focuses on developing a low-cost
self-test for the ALU and shifter unit of a Parwan CPU. The authors present deterministic
tests for these components, which uses the best observable and controllable instruction.
These tests are based on a RTL model (VHDL) of the processor and can not be used for
an ARM9-CPU, because no RTL level is public available.

In [TP07] an online self-tests for an ARM7 processor in safety related systems is
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presented. They apply the walking pattern method, which is described in the IEC 61508,
for the RAM testing. For the program memory (flash) the authors use a Cyclic Redundancy
Check (CRC) calculation for verifying the data integrity, which is also suggested by the
IEC 61508. The registers are checked by a Galpat test (also suggested by IEC 61508) and
the ALU, CPU flags and the stack pointer are tested by custom tests. The paper does not
describe how the fault coverages are verified, but claims that the tests achieve the required
fault coverage for an 1oo2 system architecture (at least 90% for SIL3).

The work in [CD01] introduces tests for ALU, shifter and Program Counter (PC) and
the fault coverages of these tests are verified. Furthermore, the fault coverages of other
components (accumulator, controller, instruction register unit, status register etc.) are also
verified. The results of these experiments are a fault coverage of 99% for ALU and shifter,
90% for the PC and the whole Parwan CPU. This shows that also other parts, which are
not directly tested by the tests, can be checked indirectly.

The authors of [PGK+01] describe deterministic SBST for the multiplier, ALU and
shifter of a CPU. In general, deterministic tests require details about the hardware (RTL
or gate level model) of a CPU, but in this case the authors have proven that the achieved
fault coverage for the multiplier is independent of the actual multiplier architecture and is
about 99% or higher. The fault coverages for the shifter and ALU are verified for the most
commonly used architectures and are about 99.9% for the ALU and 100% for the shifter.

The work of [LCL08] uses a combination of deterministic and randomized test method-
ologies. The authors use deterministic tests to check hardware components efficiently,
where an architecture model is available, with a small test code size and randomized tests
for the faults, which can not be easily tested by deterministic tests (hidden components).
The fault coverages are verified for different CPUs and have achieved an average fault
coverage of 92%. For an ARM9-v4 compatible processor, a fault coverage of 97% has
achieved with a combination of deterministic and randomized tests with 5000 basic blocks
(5500 instructions).

2.5.3 Software-Based Self-Tests (SBSTs) for RAM

The authors of [LTW05] provide an algorithm, which describes step-by-step how a bit-
oriented march test can be converted to a word-oriented march test. Furthermore, the
work proves that the fault coverage of the original, bit-oriented march test is preserved by
performing the conversation from bit- to word-oriented march test. A further advantage of
this algorithm is that the time complexity of the tests are reduced. In comparison to the
original transparent BIST theory of [Nic96], the time complexity of a march C- memory
test is reduced from 75N to 43N for a 16bit memory interface (N is the number of bits).

The work of [VES13] describes a transparent online memory test for word-oriented
memories too, but in addition to [LTW05], this test provides a symmetric approach, which
allows skipping the signature prediction phase in order to reduce the time complexity of
memory tests. For a march C- test the complexity of a transparent test is about 14N and
can be reduced to 10N by using symmetric approaches (N is the number of bits). It is
also shown by [YHW99] that the original fault coverage can be increased by applying this
methodology.

In [LESO13] an analysis of industrial SRAM tests is presented. They compare 29 linear
march tests in order to combine two or more test algorithms to achieve high fault coverages
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with low test effort. The experimental results of this work show that 96% fault coverage
can be achieved by combining only two out of the 29 considered algorithms. Furthermore,
the paper presents an overview of all 29 considered march tests with the corresponding
sequences and achieved fault coverages.

In [HGR02] a march test is described, which is able to detect all static simple faults in
RAMs. The test has a complexity of 22N (N is the number of bits) and can detect 100%
of SF, TF, WDF, RDF, DRDF, IRF and all static CFs.

The authors of [SBS08] focus on tests for DDR-SDRAMs, which can detect all static
simple faults in burst-mode operations. The problem in burst-mode accesses of RAMs is
that coupling and/or address decoder faults can be masked. In order to overcome this
issue, the authors describe two possible solutions. The first explicitly masks the write
operation in the memory controller by disabling the data access from memory interface to
array cells. The second solution is to use different start addresses of the data patterns in
the burst sequence.

The work in [GT98] describes an approach for testing word-oriented memories by
converting a bit-oriented march test. The conversion is based on combining a bit-oriented
march test for inter-word faults with a test for intra-word faults. This results in a
more efficient test for the targeted faults (idempotent CFs, disturb CFs and state CFs).
Furthermore, this work gives an example conversion for the march C- and the march LR
memory test.

The authors of [AAG01] focuses on the analysis of faulty effects for spot defects in
embedded DRAMs (eDRAMs). They perform a simulation with an electrical model of the
memory in order to inject defects, which are caused by opens, shorts and bridges. This
paper points out that considering only static FFMs like SAF, AF, TF and CFs are not
enough to describe opens, shorts and bridges in eDRAMs. The authors introduce new
static FFMs (SFx and WDFx) and new dynamic FFMs (RDFxy, IRFxy and DRDFxy)
in order to inject these faults.



Chapter 3

Concept and Design

This chapter covers the concept and design details of the fault injection (FI) and Software-
based Self-Tests (SBST) approaches. The FI concept gives an introduction to the used
emulator framework (QEMU) and describes the basic functionality of QEMU. Furthermore,
the design for all parts of the FI framework (shown in Figure 2.3) is explained.

3.1 System Requirements

This section gives a short recap of the goals for a better understanding of the next sections
that are already stated in introduction section (Section 1.2).

1. SBSTs for ARM9 processors: A software has to be provided, which tests if the
main parts of the CPU (ALU, registers, shifter, adder and multiplier) as well as the
RAM works correctly.

2. Verification of the SBSTs: In order to verify that the SBSTs satisfy the required
test coverages, a special injection framework is needed, which is able to simulate
every possible fault (permanent and transient) at every time for the closed-source
ARM9 processor.

3. IEC 61508 compliant SBSTs: The developed test-methods should satisfy the re-
quired IEC 61508 safety standard at least at SIL-3.

4. Fully-automated simulation: The Self-Tests and the FI should run without human
interaction in order to reduce the run-time of simulation and testing.

5. Easy-to-use: The choice of fault as well as the time of injection and other relevant
parameters should be easy to set up.

3.2 Fault Injection Framework based on QEMU

QEMU1 [Bel05] is a fast, open-source and portable software emulator, which is able to
simulate various architectures (ARM, SPARC, x86, MIPS, PowerPC, etc.) and runs

1Available under: www.qemu.org
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on several host platforms (x86, PowerPC, ARM). QEMU provides techniques for a fast
simulation, which results in a simulation performance of 5 to 20 times slower runtime than
native code execution.

QEMU is in many respects a well-suited solution for realizing a FI framework for
a closed-source processor like the ARM926EJ-S. First of all, the usage of QEMU is
currently the only possible approach to inject faults at low-level (with access to register,
memory and other relevant hardware) in a closed-source target without using any hardware.
Thus, QEMU makes it possible to test hardware and/or software of a project in an early
development stage, where no physical hardware is available. A further advantage is that this
approach does not destroy hardware parts, such as hardware-implemented FIs and does not
have any dependencies, for example, on operating system APIs (Application Programming
Interface), compilers or additional hardware such as JTAG-devices. Furthermore, QEMU
supports innately the used ARM instruction set and various ARM machines like the ARM
Integrator/CP board, ARM Versatile baseboard and several variants of the ARM RealView
baseboard. If there is an undefined machine, it is quite easy to setup or rather define a
new machine type, like the Freescale i.MX28 EVK development board.

In comparison to other suitable simulation-based approaches, QEMU is due to its
translation process easier to extend with FI capabilities. These are the reasons why QEMU-
based FIs are a cheap and low resource costs solution for implementing a FI framework for
a closed-source target-platform.

3.2.1 QEMU Overview

QEMU supports two modes, the user mode and the system mode. The primary usage of
QEMU happens in the system mode, where the entire target is fully emulated including
IO and the complete software stack (boot firmware, operating system, kernel space device
driver). The purpose of this mode is to run different operating systems on others, such as
Linux on Windows or vice versa. A further usage of this mode is the debugging of software,
because the virtual machine (QEMU) can easily be stopped and its state can be inspected,
saved and stored.

In the Linux specific user mode, QEMU runs Linux processes for one target PC on
another CPU. The primary purpose of this mode is to test the functionality of cross
compilers or to test CPU emulators without booting the whole virtual machine.

QEMU supports self-modifying code, precise exceptions and floating point library
(software emulation and native host FPU instructions) and consists of the following six
subsystems:

• CPU emulator (x86, PowerPC, ARM, SPARC etc.)

• Emulated devices (VGA display, serial port, PS/2 mouse and keyboard, IDE hard
disk, network card, etc.)

• Generic devices (block, character and network devices), which connects the target
device to the corresponding host devices

• Machine description (target), which instantiates the emulated device

• Debugger

• User interface
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QEMU provides various features in the full system emulation mode. Firstly, it uses
a full software MMU to guarantee the maximum portability. Furthermore, QEMU can
optionally use an in-kernel accelerator, like kvm. This accelerator executes some guest
code natively, while continuing to emulate the rest of the instructions. QEMU is able to
simulate a symmetric multiprocessor (SMP) system on a single host CPU, but QEMU is
currently not able to use all cores of a SMP host system. In this case, QEMU uses only
one core fully, because, according to [QEM14], it is too difficult to implement an efficient
atomic memory access.

QEMU uses a dynamic translation principle to generate the native code efficiently. In
contrast to static binary translation, such as an Instruction Set Simulator (ISS), dynamic
translation does not translate every instruction directly. It groups instructions to blocks and
executes these blocks only if a branch occurs. Hence, only these instructions are translated,
which are executed at runtime. This avoids unnecessary redundancy (for example error
handling routines, which are rarely executed) and results in a fast execution of source code.
The disadvantage of this method is unfortunately that details of the CPU model’s micro
architecture get lost, due to the generalization.

QEMU is in comparison to bochs [DAF+14] a faster x86 emulator, because of the
usage of dynamic translation. Furthermore, bochs is closely tied to x86-platforms, while
QEMU provides different processor types. Valgrind [Val14] is primary a memory debugger,
while QEMU does not support this feature. However, Valgrind uses a dynamic trans-
lator too, which generates better code than QEMU (see register allocation of QEMU).
The disadvantage of Valgrind’s dynamic translator is that it is specially tailored to x86-
architecture. There are also commercial PC-virtualizer, like VMWare [VMW14], which
are faster than QEMU, but they all need specific, proprietary and potentially unsafe host
driver. In contrast to emulators, these approaches are not able to provide cycle exact
simulations. There are many software approaches available, which are based on QEMU.
Commonly known examples are VirtualBox [Ora14], Xen [FCJ+14], KVM [KVM14] and
QEMU-SystemC [Gre14]. The last one uses QEMU to simulate a system, where special
hardware devices are developed in SystemC. This allows to run native binaries just as on the
real hardware. A more detailed comparison to other emulators can be found in [QEM14].

3.2.2 Details about QEMU’s Translation Process

The following explanation is referred to QEMU versions above 0.9.1, because previous ver-
sions of QEMU implement the dynamic translation by DynGen. The grouped instructions
are converted to C code by DynGen and GNU Compiler Collection (GCC) converts this C
code into host-specific code. The disadvantage of this approach is that DynGen was tightly
coupled to GCC and creates problems, if a newer GCC version is released.

The QEMU translation process is visualized in Figure 3.1. It starts with a check, if
the guest instruction has already been translated or not. If it has been already translated,
the translated guest instruction can be executed without starting a new fetch-execute
cycle by looking up the host instruction in the translation cache. Otherwise, the next
instruction is fetched from the binary and is subsequently decoded. The decoding step
of the target binary generates so-called micro-operations (micro-ops), which are a kind
of non-target-specific intermediate code. This code works on a virtual register set and is
assembled for readability. These micro-ops are subsequently stored in a micro-ops buffer
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until a branch occurs or the CPU state changes. Thus, guest instructions are grouped
to so-called Translation Blocks (TBs), which are translated to host-specific code by the
Tiny Code Generator (TCG). An example of such a translation process can be seen in
Table 3.1. These translated TBs are additionally stored in a translation cache in order to
provide an execution speed close to native execution by avoiding redundant translations.
The translation cache has a size of 16 MB (for ARM instruction set), which should make it
possible that every instruction is fetched and decoded only once. If the cache is full, the
entire cache is flushed instead of using a replacement algorithm. The translation cache
uses a hash-function to map the entry address of a target code block to the corresponding
address of the TB.

Figure 3.1: This image visualizes the basic steps of the QEMU translation process. If
a guest instruction has not already been translated, the instruction is fetched from the
binary. After the decoding of this instruction, so-called micro-operations (micro-ops) are
generated. This micro-ops are a kind of non-target-specific intermediate code, which is
assembled for readability. The translated micro-ops are stored in the micro-ops buffer and
translated by the Tiny Code Generator, if a branch occurs. This translated micro-ops
are subsequently executed. Furthermore, these instructions are grouped to Translation
Blocks (TBs), which are stored in a translation cache for fast subsequent use. This image
is adapted from [GFP09].

QEMU uses the chaining of TBs for further optimization of the emulation speed. This
technique avoids the unnecessary returning form the translation cache to the QEMU code,
which is in general slow. In order to overcome this issue, QEMU chains every TB to the
next TB. If a TB is chained to another, the following TB is directly executed after the first
TB finished its execution without returning to the QEMU code. If a TB has no follower,
the previous TB returns to the QEMU code, which finds, generates and executes the next
TB. After the execution of this TB has finished, this TB is chained to the previous one.
Hence, if the next time the first TB is executed, the next TB follows immediately on the
previous TB without returning to the QEMU code.
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guest
instructions
(ARM)

micro-ops (intermediate
code)

host instructions (x86)

mov r0 r5
mov i32 tmp, r5 mov 0x14 (%ebp), %ebx

mov i32 r0, tmp mov %ebx, 0x0 (%ebp)

bl 0xd768

movi i32 tmp, $0xd720 mov $0xd720, %ebx

mov i32 r14, tmp mov %ebx, 0x38(%ebp)

goto tb $0x0 jmp 0x601be463

movi i32 pc, $0xd768 mov $0xd768, %ebx

exit tb $0xb550fe60 mov $0xb550fe60, %eax

jmp 0x621de9a8

Table 3.1: This table shows an example of the binary translation from front-end ARM code
to back-end x86 code with the micro-ops generation as intermediate step. In this example
the content of register r5 is copied to register r0 and afterwards a branch to address 0xd768
is executed. The names of the register are in general not the same as the names in the
front-end side. The micro-ops code uses a virtual register set, but this is neglected for
visualization purpose in this example. This example is adapted from [BKJ+12].

3.2.3 Design of Fault Injection Components

The following paragraph explains the design of every FI-component and gives an overview
to the basic structure of the whole realized system, including FI-framework, operating
system (OS) and SBSTs.

Figure 3.2 shows the basic structure of the FI-framework. A host (physical computer)
runs a host OS, like MS Windows or Linux. This host OS executes the QEMU-framework,
which includes the necessary FI-modules. The fault injector, which provides the FI-
functions, uses the ARM-specific code of QEMU to catch the encoded instructions. The
necessary parts of these encoded instructions, such as OP-codes or register addresses, can
be subsequently overwritten to simulate register or instruction decoder faults. Furthermore,
the content of the registers, which store the operands, can also be overwritten to simulate
data storage faults. The exploitation of the target-independent intermediate code of QEMU
is not possible, because the abstraction of the hardware does not allow a relation between
the passed variable and the registers containing this variable anymore. Hence, the in this
work developed FI-framework only supports FI on ARM target platforms. The fault-injector
module also parses the XML-file, which specifies the number and parameters of the faults
that should be injected (fault library). The controller retrieves this information from the
fault injector and decides, if and where a fault should be injected. After a successful fault
injection, the controller signals the monitor to print the result to the prompt. Furthermore,
a collector- and an analyzer-module is started, which writes the statistics to a file for
further analysis. QEMU emulates the used development board on which the target OS is
executed. In our case it is a SafeRTOS, which executes the SBST and other additional
software.
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Figure 3.2: This image shows the basic structure of the whole FI-framework. A host platform
(the physical computer) runs an operating system, which executes the QEMU-framework
including the necessary modules for a FI. The fault injector uses the ARM-specific code of
QEMU to inject faults. QEMU emulates the used development board, on which the target
operating system is executed. This target operating system executes the SBST and other
additional software.

Target System

The whole applications and OS should run on a specific embedded hardware board. In our
case this hardware is a development board of the type i.MX28 EVK PCB REV D from
Freescale Semiconductor [Fre11]. It contains an i.MX287 application processor including
an ARM926EJ-S CPU with 454 MHz, 128 KB low-power on-chip SRAM, 128 KB mask-
programmable on-chip ROM and a 16-bit interface to DDR2-SDRAM with a size of 128
MB. Furthermore, the board supports an interface for SPI NAND flash and two sockets for
SD/MMC cards, which can used as data storage. The board also supports other hardware,
which can be looked up in [Fre11]. The i.MX28 EVK board is not innately supported by
QEMU, but a new definition of a hardware machine is not difficult in QEMU and is done
by the following steps:
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1. Initializing of CPU cores: The number and the type of the CPU models can be
specified and initialized with the appropriate function call.

2. Definition of the memory mapping: The RAM memory regions are initialized
and can be further divided into subregions. Furthermore, the initial memory regions
for the I/O can be specified, which call specified callback-functions, if an access to
these regions happen.

3. Connection of the devices: Different devices like LCD-interface, UART, Ethernet,
USB, DMA, GPIO, Timer etc. can be wired up with the memory address specified
in the memory mapping and the name of the device as well as the address of QEMU
IRQ-handler as argument.

4. Specification of kernel/OS image: The name and path of the kernel file, the
additional kernel arguments, the RAM size and the name and path of the (initial
ramdisk) initrd file should be specified here.

The last step is to register the board to QEMU, which is done by one function call with
the board info as argument. Hence, the board can be specified at startup of QEMU with
the board name and the CPU architecture as argument.

Workload Generator and Workload Library

The SBSTs are developed and compiled for a specified CPU model and run on the target
OS executed by QEMU, while faults are injected in the target platform. The SBSTs should
discover faults, which occur in RAM and in the main parts of the CPU, which is required
by Requirement 1.

Monitor

A few features of the monitor are already pre-implemented by the QEMU framework and
can be called by the [Ctrl]+[Alt]+[2] shortcut. The QEMU monitor pre-defines commands
like info registers, which shows the current content of all ARM-registers (see Figure 3.3). A
full list of all commands of the QEMU monitor can be listed by typing the command help
into the monitor console. The features of this monitor have to be extended with commands
to load the fault library or to list the fault statistic.

Data Collector

The data collector redirects the output of the monitor to a file and saves the information or
statistics for further analysis. This allows human-interaction-less fault injection experiments,
which is required by Requirement 4.

Data Analyzer

The data analyzer counts the total number of injected faults and compares this number
with the discovered faults by the SBSTs. It provides statistics for the fault injection
experiments.
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Figure 3.3: This image shows the sample output of the command info registers in the
QEMU monitor console. This command prints all available ARM-registers to the monitor
output.

Fault Library

It is important to decouple the testing from the implementation part. A person, who
wants to run a FI experiment does not have to know development- or implementation-
specific information. Hence, a complexity reduction is important for a successful FI
framework usage. A well-suitable solution, is to use an XML-based formalization for the
fault definitions. XML is a markup language that defines a set of rules for the encoding
of a file. This encoding is a format that is readable by humans and machines and allows
an easy definition of faults and an automated simulation of the FI experiment, which is
required by Requirement 4 and Requirement 5.

Fault Injector

The fault injector contains a set of functions, which provide the capability to inject different
types of faults in a special location (for example a permanent fault in a specific memory cell).
This module takes the memory address or parts of the encoded instruction (OP-code or
register address) as input and overwrites the address or the content, pointed by the address.
The modified instructions, addresses or register contents are translated to intermediate
code and are subsequently passed to the TCG, which translates this intermediate code
to the host-specific ISA. Furthermore, this module parses the XML-file and holds this
information in an appropriate structure. This information is used by the controller, which
decides based on this information, which fault (function) should when, where and how long
been injected (triggered). The Tables 3.2 and 3.3 show, how different faults in different
locations have been realized by the fault injection method. It should be mentioned that
these modelings are targeted on the external data paths (signal lines) and not on the
internal structure of modules. It can be seen that using only stuck-at faults are not sufficient
to model all faults for SIL3 as well as for SIL4 requirements. Only under consideration
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of coupling faults, bit-flips as well as writing new values all faults can be modeled. The
FFMs, which are presented in the technical background section, describe the internal faults
of a RAM-module and are also realized in the fault injection framework.

Controller

The controller includes the basic logic to control the whole FI experiments. It uses the
information of the fault library stored in the fault injector to decide, which function should
be called in the fault injector module. The controller uses a timer to specify when a
transient or intermediate fault should be triggered or stopped. A timer is provided by the
QEMU framework and returns the number of real ticks as timer value. This timer can also
provide this value in milli-, micro or nanoseconds. The controller needs also the information
about the current program counter (PC) for the PC-based fault trigger and the memory
address, which is being accessed for the access-based fault trigger. The PC is stored in the
virtual register set of QEMU, which is an easy-accessible structure. The monitoring, if a
special memory address is accessed by the guest OS or another hardware/software can be
easily achieved in QEMU. QEMU provides a memory API, which allows the modeling of
memory controllers that can dynamically reroute or overwrite physical memory addresses.
The controller also specifies, whether a result should be written to the monitor output or
whether the analyzer- and the collector-module should be activated. The basic process of a
fault injection experiment and the interaction between all these above-mentioned modules
is visualized in Figure 3.4.
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Fault
description

Fault type Component Target Mode Parameter Trigger Type Note

Open in address
line

Address decoder
fault (AF)

RAM Address decoder Stuck-at-0 Address At beginning Permanent

Open decoder Address decoder
fault (AF)

RAM Address decoder Stuck-at-0/1 Address At beginning Permanent SIL4 requirement

Wrong cell are
accessed

Address decoder
fault (AF)

RAM Address decoder Stuck-at-0/1,
bit-flip

Address Address accessed,
at beginning

Permanent,
intermittent,
transient

SIL4 requirement

No access Address decoder
fault (AF)

RAM Address decoder Complete new
value / random
value

Address At beginning Permanent SIL4 requirement

Multiple access Address decoder
fault (AF)

RAM Address decoder Coupling Faults Data Address accessed,
at beginning

Permanent,
transient,
intermittent

SIL4 requirement

Address line
stuck

Address decoder
fault (AF)

RAM Address decoder Stuck-at-0/1 Address Address accessed,
at beginning

Permanent

Cell can be set to
0 and not to 1
(or vice versa),
Special case of
SAF

Transition Faults
(TF)

RAM Memory cell Stuck-at-0/1 (or
Transition
Faults)

Data, address At beginning Permanent

Content of a cell
is influenced by
its neighbors

Neighborhood
Pattern Sensitive
Faults (NPSF)

RAM Memory cell Coupling Faults Data Address accessed Transient SIL4 requirement

Stuck cell Stuck-at-faults
(SAF)

RAM Memory cell Stuck-at-0/1 Data At beginning Permanent

Driver stuck
(sense amplifier)

Stuck-at-faults
(SAF)

RAM Read/write logic Stuck-at-0/1 Data At beginning Permanent

Read/write line
stuck

Stuck-at-faults
(SAF)

RAM Read/write logic Stuck-at-0/1 Data At beginning Permanent

Chip-select stuck Stuck-at-faults
(SAF)

RAM Read/write logic Stuck-at-0/1 Data At beginning Permanent

Data line stuck Stuck-at-faults
(SAF)

RAM Memory cell Stuck-at-0/1 Data At beginning Permanent

Open in data
lines

Stuck-at-faults
(SAF)

RAM Memory cell Stuck-at-0 Data At beginning Permanent

Crosstalk
between data
lines

Coupling Faults
(CF)

RAM Memory cell Coupling Faults Data Address accessed Permanent SIL4 requirement

Shorts in data
lines

Coupling Faults
(CF)

RAM Memory cell Stuck-at-0/1,
Coupling Faults

Data At beginning,
address accessed

Permanent,
transient,
intermittent

Table 3.2: This table visualizes, how different faults in different RAM locations have been realized. The relationships between
functional faults (fault descriptions) and fault models (fault types) are based on the information presented in [SBS08] and [GV90].
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Fault
description

Fault type Component Target Mode Parameter Trigger Type Note

Open in address
line

Register decoder
fault (RF)

CPU Register decoder Stuck-at-0 Address At beginning Permanent

Open decoder Register decoder
fault (RF)

CPU Register decoder Stuck-at-0/1 Address At beginning Permanent SIL4 requirement

Wrong cell are
accessed

Register decoder
fault (RF)

CPU Register decoder Stuck-at-0/1,
bit-flip

Address Address accessed,
at beginning

Permanent,
intermittent,
transient

SIL4 requirement

No access Register decoder
fault (RF)

CPU Register decoder Complete new
value / random
value

Address At beginning Permanent SIL4 requirement

Multiple access Register decoder
fault (RF)

CPU Register decoder Coupling Faults Data Address accessed,
at beginning

Address accessed,
at beginning

SIL4 requirement

Address line
stuck

Register decoder
fault (RF)

CPU Register decoder Stuck-at-0/1 Address Address accessed,
at beginning

Permanent

Open in address
line

Instruction
decoder fault IF)

CPU Instruction
decoder

Stuck-at-0 Address At beginning Permanent

Open decoder Instruction
decoder fault IF)

CPU Instruction
decoder

Stuck-at-0/1 Address At beginning Permanent SIL4 requirement

Wrong cell are
accessed

Instruction
decoder fault IF)

CPU Instruction
decoder

Stuck-at-0/1,
bit-flip

Address Address accessed,
at beginning

Permanent,
intermittent,
transient

SIL4 requirement

No access Instruction
decoder fault IF)

CPU Instruction
decoder

Complete new
value / random
value

Address At beginning Permanent SIL4 requirement

Multiple access Instruction
decoder fault IF)

CPU Instruction
decoder

Coupling Faults Data Address accessed,
at beginning

Address accessed,
at beginning

SIL4 requirement

Address line
stuck

Instruction
decoder fault IF)

CPU Instruction
decoder

Stuck-at-0/1 Address Address accessed,
at beginning

Permanent

Wrong
instruction is
executed

Control function
fault (CFF)

CPU Instruction
execution

Bit-flip,
Stuck-at-0/1

Address (op code
oder pc)

Address accessed,
at beginning

Permanent,
transient,
intermittent

Additional
instruction is
executed

Control function
fault (CFF)

CPU Instruction
execution

not possible Address Address accessed transient,
intermittent

SIL4 requirement

No instruction is
executed
(interruption or
exception)

Control function
fault (CFF)

CPU Instruction
execution

Complete new
value (NOP
address)

Address (op code
oder pc)

Address accessed,
at beginning

Permanent,
transient,
intermittent

Stuck-at for
registers (R/W
line, cell, )

Data storage
fault (DSF)

CPU Register Stuck-at-0/1,
bit-flip

Data Address accessed,
at beginning

Permanent,
intermittent,
transient

A line in the
transfer path is
stuck

Data transfer
fault (DTF)

CPU Register Stuck-at-0/1 Data, address At beginning Permanent

Two lines in the
transfer path are
coupled (shorts,
crosstalk)

Data transfer
fault (DTF)

CPU Register Stuck-at-0/1,
bit-flip, Coupling
Faults

Data Address accessed,
at beginning

Permanent,
intermittent,
transient

function
dependent (wide
variety in
existing designs)

Data
manipulation
faults (DMF)

CPU Interrupt,
ALU,...

Table 3.3: This table visualizes, how different faults in different CPU locations have been realized. The relationships between
functional faults (fault descriptions) and fault models (fault types) are based on the information presented in [TA80] and [SPS+94].
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Figure 3.4: This image shows the basic process of a FI experiment. It starts with the
initializing of the target platform, followed by the parsing of the XML-fault library. Then,
the emulation process starts and the controller is instantiated. If the controller decides to
perform a fault injection, it calls the appropriate function in the Fault Injector module and
signals the monitor to print a fault statistic to the console. Furthermore, the controller
increases the number of injected faults in the analyzer module. The SBST runs concurrently
with the fault injection process and increases the number of detected faults in the analyzer,
if the fault is detected by SBST. These processes are continued until all faults are triggered
once. At the end of the experiment the controller signals the analyzer to create a final
report and saves this report also to the file held by the collector.

3.3 Software-Based Self-Tests (SBSTs)

This section describes the SBSTs for the CPU-core elements and the main memory. The
CPU-core tests consist of deterministic tests with proven or at least experimentally known
high fault coverage, which are taken from literature. The basic tests for the main memory
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are taken from literature too, but they are adapted to increase the performance and/or the
fault coverage ratio of the SBSTs. Furthermore, a comparison between different SBSTs
against test lengths and theoretical detectable FFMs for the main memory is given in this
section.

3.3.1 SBSTs for CPU-core Elements

As explained in [GPZ04], it is advisable to test large processor components first in order
to quickly achieve a sufficient high fault coverage. This is important for low-cost self
testing, because the development effort can be kept as small as possible, while the self-
test programs can be kept small and fast. One possible method for the assessment of
the processor component size is the so-called gate-count. The gate-count is defined as
the number of gates, which are used in the electronic device (the processor in our case).
The issue for an ARM-processor is that these gate-counts are not available, because the
ARM-processors are closed source projects. [PKK11] assumes that the gate-counts for an
ARM926EJ-S core is comparable with an modern pipeline processor and results in 42% for
the register banks, 39% for the multiplier and adder, 3% for the barrel-shifter, 2% for the
ALU and 14% for other components, like multiplexer or pipeline. Due to these gate-counts,
the following testing order should applied for the CPU-core elements:

1. register banks

2. multiplier and adder

3. barrel-shifter

4. ALU

The 14% of the other components are not tested explicitly in this thesis, but they can be
tested indirectly with the other tests. The test coverage for these indirect tests are not
exactly known and it is suggested by the IEC 61508 to assume a Safe Failure Fraction
(SFF) of 50%. However, it can be assumed that in general a high fault coverage ratio is
achieved too.

The tests for adder/ALU, shifter/divider and multiplier are taken from [PGK+01].
This work presents deterministic tests, which have a mathematically proven high and
architectural independent fault coverage for the multiplier unit as well as high fault
coverages for the residual components. All fault coverages are greater or equal 99% and
are verified for an Intel 8051 processor. The exact SFFs for the components can be seen in
Table 3.4. The test programs are translated from Assembler to C-code and are subsequently
executed according to their prioritization sequence. The following paragraphs describe the
used test programs:

Multiplier The test is visualized in Figure 3.5a. For a N×M multiplier, the test pat-
terns have the form X = XN−1...X1X0 = (c7c6c5c4)...(c7c6c5c4)(c7c6c5c4) and
Y = YM−1...Y1Y0 = (c3c2c1c0)...(c3c2c1c0)(c3c2c1c0). This results in a maximal
number of 28 test patterns, which are able to detect 99% of Stuck-at and Coupling
Faults [PKK11]. The results of 256 multiplications are accumulated in a signature
register and compared with a pre-computed value at the end of the test. If this value
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is equal, the test was successful and no faults are detected. Otherwise, a fault has
occurred and is detected by this test.

Divider/Shifter The divider/shifter test can be seen in Figure 3.5b. The test uses a
binary division, which means that a division by two is the same as a bit-shift-right
operation, to test the divider unit. At first, an initial value (one) is multiplied 32
times and subsequently divided 32 times. After each operation, the result of the
shift operation is compared with the mathematical operation result. If one of the 64
results differs, the test fails and hence faults are detected [PKK11].

ALU The test for the ALU is visualized in Figure 3.6a. The ALU can be tested with
or without a multiplier. In this thesis, the test is performed without the usage of
a multiplier by applying the basic logical operations (AND, OR, XOR and NOT)
on different test patterns. The test patterns are generated by building all possible
combination of one-bit operations ([0,0],[0,1],[1,0] and [1,1]). This testing methods
are targeted on testing Stuck-at and Coupling Faults [PKK11].

Adder The test for the adder is included in the test for the multiplier and is visualized
in Figure 3.5a (signature update routine). After calculation of the signature for all
256 multiplications, the adder of the ALU is completely tested and achieves a test
coverage of 99%, which is verified for various architectures. The test vectors aim on
the detection of Stuck-at and Coupling Faults [PKK11].

SBSTs for Condition Code Flags

The condition code flags of the ARM9-CPU can be tested by setting and reseting the
condition flags. An ARM9-CPU has the following five condition flags: Negative/Less than
(N), Zero (Z), Carry/Borrow/Extend (C), Overflow (V) and Sticky overflow (Q), which can
be set by arithmetic and logical operations. These flags are stored in the program status
registers (CPSR and SPSR). Furthermore, the basic structure of this test is visualized in
Figure 3.6b.

SBSTs for Registers and Register Banks

As already mentioned in the related work section, the registers have the same physical
structure as small SRAMs and hence every RAM memory test can be applied in order
to test the registers and register banks. In this thesis, the by the IEC 61508 proposed
methods walking bit and Abraham memory test are compared against two different march
tests (transparent, symmetric march C- and march SS). The reason for this is that the
walking bit method is suggested by IEC 61508 to test the registers, but this test achieves
only a medium fault coverage (about 90%). The Abraham test for variable memories is
suggested by the IEC 61508 too and achieves the best test result (fault coverages ≥ 99%).
The march tests in contrast, only achieve low fault coverages (about 60%), but the IEC
61508 only considers simple march tests. Furthermore, the well-rated Abraham test is only
a modified march test sequence too. Due to these different fault coverages, the SFF rates
for the register can vary, which is visualized in Table 3.4 with a greater than sign.
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(a) CPU: multiplier and adder test (b) CPU: divider and shifter test

Figure 3.5: Basic structure of the multiplier and adder as well as the divider and shifter
test. This image is adapted from [PKK11].

The walking bit method tests all registers, which are accessible by instructions, by
shifting a bit from Least-significant to most significant bit (walking bit). The basic structure
of this test is shown in Figure 3.7. The different march tests as well as the Abraham test
are described in the following section (SBST for RAMs).

Furthermore, the registers R13 to R15 in an ARM-CPU are reserved for special purpose.
R13 contains the linking register, which stores the return address for a branch, R14 stores
the stack-pointer and the R15 contains the Program Counter (PC). These registers are
hard to test, because a modification of these registers can crash the program. For the
linking register and the stack-pointer, one possible solution is to disable all interrupts,
while a transparent test checks these registers. This can be done, because this registers
are only needed during a branch and not during the execution of a subroutine. The R15
register, which contains the PC, can not be tested directly by a software, but this register
is implicitly tested with every executed instruction.
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(a) CPU: ALU test (b) CPU: condition code flags test

Figure 3.6: Basic structure of the ALU as well as the condition code flags test. This image
is adapted from [PKK11].
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Module assumed gate-count SFF

ALU 2% 99.9%

Adder and multiplier 39% 99%

Barrel-shifter 3% 100%

Register banks 42% ≥ 90%

Other components 14% 50%

Overall 100% ≥ 88.4%

Table 3.4: This table shows the SFFs for individual as well as for all tested CPU-core
elements.

Figure 3.7: Basic structure of the Walking Bit method for testing the registers. This image
is adapted from [PKK11].

3.3.2 SBSTs for RAMs

The issue by testing RAMs, especially DDR-SDRAMs, are the increasing memory sizes.
Test lengths with n2, where n is the number of bits, is not feasible for applying these tests
in real-time systems. For example, a DDR-SDRAM with 128 MB and a test length of n2,
has an execution time of a few years. In order to overcome this problem, different march
tests have been developed. In this section, the descriptions of the implemented march tests
as well as the Abraham test is given and furthermore compared against their capability of
detecting different FFMs.

Table 3.5 shows the three implemented memory tests with corresponding operation
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sequences in the common march notation as well as the corresponding test lengths. It can
be seen that the march C- is the simplest memory test, followed by the march SS and
the complexest one is the abraham memory test. Table 3.6 shows that the complexest
memory test does not yield the best fault coverage. The best fault coverage is achieved by
the simpler march SS test and the march C- achieves the worst fault coverage ratio, but
for transparent march C- tests it is also possible to detect unmodeled FFMs, because the
memory content can randomly chance with every test cycle.

Name Algorithm
Test

length

March C- {m (w0);⇑ (r0, w1);⇑ (r1, w0);⇓ (r0, w1);⇓ (r1, w0);m
(r0)}

10n

March SS {m (w0);⇑ (r0, r0, w0, r0, w1);⇑ (r1, r1, w1, r1, w0);⇓
(r0, r0, w0, r0, w1);⇓ (r1, r1, w1, r1, w0);m (r0)}

22n

Abraham
(algorithm
A)

{⇑ (w0);⇑ (r0, w1);⇓ (r1);⇑ (r1, w0);⇓ (r0);⇓ (r0, w1);⇑
(r1);⇓ (r1, w0);⇑ (r0);⇑ (r0, w1, w0);⇓ (r0);⇓
(r0, w1, w0);⇑ (r0);⇑ (w1);⇑ (r1, w0, w1);⇓ (r1);⇓
(r1, w0, w1);⇑ (r1)}

30n

Table 3.5: This table compares the different march algorithms as well as the abraham test
and visualizes the corresponding operation sequences and test lengths.

FFM March C- (%) March SS (%) Abraham - Algorithm A (%)

SF 100 100 100

TF 100 100 100

WDF 0 100 0

RDF 100 100 100

DRDF 0 100 100

IRF 100 100 100

CFst 100 100 100

CFds 66 100 75

CFtr 100 100 100

CFwd 0 100 75

CFrd 100 100 100

CFdrd 0 100 75

CFir 100 100 100

Table 3.6: This table shows the detected fault coverages for different FFMs for the march
tests and the abraham test. The values for the march tests are taken from [HGR02]. The
results for the tests are theoretical values and are not verified by fault injection experiments.
The values are based on the comparison to other tests and operation sequences, which are
theoretically needed to detect different FFMs.
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Data Pattens for Inter- and Intra-word Coupling Faults

The most memory tests are designed and optimized for bit-oriented memories and hence
they can not be applied to word-oriented memories. One possible solution in order to detect
intra- and inter-word CFs is to apply a march test more than one time using different
data backgrounds or data patterns. This results in inefficient execution times and limited
fault coverage. In order to overcome these issues, the approach proposed by [GT98] is
used and adapted for a 16bit memory interface in this thesis. For inter-word CFs, the
word-wide organization of the memory chip will not influence the fault coverage and hence
every inter-word CF can be detected, which is also detected by a bit-oriented memory
test. Intra-word CFs can not be detected by applying bit-oriented march tests and hence
special data patterns are needed. This data patterns are shown in the Tables 3.7 and 3.8
for intra-word idempotent Coupling Faults (CFids) and intra-word state Coupling Faults
(CFsts). Intra-word inversion Coupling Faults (CFins) can not be masked and hence they
can be detected by applying a word-oriented march test using any data pattern, because
the value in the victim cell will be the inverse of the value expected by the read operation.
For the detection of intra-word CFdsts, it is important to apply the data patterns in
a special read/write sequence. These operation sequences with the corresponding data
patterns are shown in Table 3.9.

At first sight, the number of applied data patterns are huge, but the execution time
can be kept low, because the data patterns includes redundancy. For example the data
patterns, which are needed to detect CFsts are already included in the data patterns, which
are needed for the detection of CFdsts. For example the execution time for the march C-
memory tests for detecting CFids changes from 14n to (10 + 6 · dlog2Be) · n/B, where B
is the word width of the memory and n the memory size in bits. For a 16-bit memory
interface, the test lengths for the march C- to detect CFids is about 34n/16.

Number Data pattern (HEX) Level Number Data pattern (HEX) Level

1 0x0000 0 2 0xFFFF 0

3 0x0000 0 4 0x5555 0

5 0xAAAA 0 6 0x5555 0

7 0x3333 1 8 0xCCCC 1

9 0x3333 1 10 0x0F0F 2

11 0x00FF 2 12 0xF0F0 2

13 0xFF00 2 14 0x0FFF 2

15 0x000F 2

Table 3.7: This table shows the used data patterns for detecting intra-word idempotent
Coupling Faults (CFids) with a 16-bit memory interface. The Level-column shows the
different cell pair levels (level 0 means each adjacent cell, level 1 each second adjacent cell
and so on), which are used in [GT98] in order to detect all CFids.
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Number
Data pattern

Normal Inverse

1 0x0000 0xFFFF

2 0x5555 0xAAAA

3 0x3333 0xCCCC

4 0x0F0F 0xF0F0

5 0x00FF 0xFF00

Table 3.8: This table shows the used data patterns for detecting intra-word state Coupling
Faults (CFsts) with a 16-bit memory interface.

Number Operation Data
pattern
(HEX)

Level Number Operation Data
pattern
(HEX)

Level

1 w 0x0000 0 2 w 0xFFFF 0

3 r 0xFFFF 0 4 r 0xFFFF 0

5 w 0x0000 0 6 r 0x0000 0

7 r 0x0000 0 8 w 0x5555 0

9 w 0xAAAA 0 10 r 0xAAAA 0

11 r 0xAAAA 0 12 w 0x5555 0

13 r 0x5555 0 14 r 0x5555 0

15 w 0x3333 1 16 w 0xCCCC 1

17 r 0xCCCC 1 18 r 0xCCCC 1

19 w 0x3333 1 20 r 0x3333 1

21 r 0x3333 1 22 w 0x0F0F 2

23 w 0x00FF 2 24 r 0x00FF 2

25 r 0x00FF 2 26 w 0xF0F0 2

27 r 0xF0F0 2 28 r 0xF0F0 2

29 w 0xFF00 2 30 w 0x0FFF 2

31 r 0x0FFF 2 32 r 0x0FFF 2

33 w 0x000F 2 34 r 0x000F 2

35 r 0x000F 2

Table 3.9: This table shows the operation sequences for detecting intra-word disturb
Coupling Faults (CFdsts) with a 16-bit memory interface. The Level-column shows the
different cell pair levels (level 0 means each adjacent cell, level 1 each second adjacent cell
and so on), which are used in [GT98] in order to detect all CFdsts.

Transparent March Tests

In this thesis, the algorithm proposed in [LTW05] is used to convert a bit-oriented march
test to a conventional transparent word-oriented one. The result of these conversions are
shown in Table 3.10. The notation is the same as in that work, where D is the initial
memory cell content and Da is the bit-wise xor operation applied on the initial data and
the data patterns a. The pattern a is for word-oriented memories a non-empty set of m
data patterns and Tm+1 is used for restoring the initial data of the memory cell.
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Name Algorithm

March C-

T0 : {⇑ (rDa0 , wDā0);⇑ (rDā0 , wDa0);⇓ (rDa0 , wDā0);⇓
(rDā0 , wDa0);m (rDa0)}
T1 : {m (wDa1);⇑ (rDa1 , wDā1);⇑ (rDā1 , wDa1);⇓ (rDa1 , wDā1);⇓
(rDā1 , wDa1);m (rDa1)}
...
Tm : {m (wDam);⇑ (rDam , wDām);⇑ (rDām , wDam);⇓ (rDam , wDām);⇓
(rDām , wDam);m (rDam)}
Tm+1 : {m (wDa0)}

March SS

T0 : {⇑ (rDa0 , rDa0 , wDa0 , rDa0 , wDā0);⇑
(rDā0 , rDā0 , wDā0 , rDā0 , wDa0);⇓ (rDa0 , rDa0 , wDa0 , rDa0 , wDā0);⇓
(rDā0 , rDā0 , wDā0 , rDā0 , wDa0);m (rDa0)}
...
Tm : {m (wDam);⇑ (rDam , rDam , wDam , rDam , wDām);⇑
(rDām , rDām , wDām , rDām , wDam);⇓
(rDam , rDam , wDam , rDam , wDām);⇓
(rDām , rDām , wDām , rDām , wDam);m (rDam)}
Tm+1 : {m (wDa0)}

Abraham

T0 : {⇑ (wDa0);⇑ (rDa0 , wDā0);⇓ (rDā0);⇑ (rDā0 , wDa0);⇓ (rDa0);⇓
(rDa0 , wDā0);⇑ (rDā0);⇓ (rDā0 , wDa0);⇑ (rDa0);⇑
(rDa0 , wDā0 , wDa0);⇓ (rDa0);⇓ (rDa0 , wDā0 , wDa0);⇑ (rDa0);⇑
(wDā0);⇑ (rDā0 , wDa0 , wDā0);⇓ (rDā0);⇓ (rDā0 , wDa0 , wDā0);⇑
(rDā0)}
...
Tm : {⇑ (wDam);⇑ (rDam , wDām);⇓ (rDām);⇑ (rDām , wDam);⇓
(rDam);⇓ (rDam , wDām);⇑ (rDām);⇓ (rDām , wDam);⇑ (rDam);⇑
(rDam , wDām , wDam);⇓ (rDam);⇓ (rDam , wDām , wDam);⇑ (rDam);⇑
(wDām);⇑ (rDām , wDam , wDām);⇓ (rDām);⇓ (rDām , wDam , wDām);⇑
(rDām)}
Tm+1 : {m (wDa0)}

Table 3.10: This table shows the transparent march C-, march SS and abraham test.
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Transparent Symmetric March Tests

In this thesis, the algorithm proposed in [YH99] is used to convert a transparent word-
oriented march test to a symmetric one. The result of these conversions are shown in Table
3.11. The advantage of a symmetric approach is that the signature prediction phase can be
skipped and hence the execution time of these tests can be decreased. The signatures for
the transparent memory tests, presented in Table 3.11, are about m ·#read operations,
which as example results in 5 ·m additional read operations for the march C-. The abraham
test can not be easily converted to a symmetric approach, because this test does not
innately contain symmetries. However, the abraham test is only used as a reference to the
IEC 61508 and is not considered to be implemented in a real system.

Name Algorithm

March C-

T0 : {⇑ (rDā0);⇑ (rDa0 , wDā0);⇑ (rDā0 , wDa0);⇓ (rDa0 , wDā0);⇓
(rDā0 , wDa0);⇓ (rDa0)}
T1 : {⇑ (rDa1 , wDā1);⇑ (rDā1 , wDa1);⇓ (rDa1 , wDā1);⇓
(rDā1 , wDa1);⇓ (rDa1)}
...
Tm : {⇑ (rDam , wDām);⇑ (rDām , wDam);⇓ (rDam , wDām);⇓
(rDām , wDam);⇓ (rDam)}
Tm+1 : {m (wDa0)}

March SS

T0 : {⇑ (rDā0);⇑ (rDa0 , rDa0 , wDa0 , rDa0 , wDā0);⇑
(rDā0 , rDā0 , wDā0 , rDā0 , wDa0);⇓ (rDa0 , rDa0 , wDa0 , rDa0 , wDā0);⇓
(rDā0 , rDā0 , wDā0 , rDā0 , wDa0);⇓ (rDa0)}
...
Tm : {⇑ (rDām , wDām);⇑ (rDam , rDam , wDam , rDam , wDām);⇑
(rDām , rDām , wDām , rDām , wDam);⇓
(rDam , rDam , wDam , rDam , wDām);⇓
(rDām , rDām , wDām , rDām , wDam);⇓ (rDam)}
Tm+1 : {m (wDa0)}

Table 3.11: This table shows the transparent symmetric march C- and march SS test.
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Implementation

This chapter covers the implementation details about the fault injection framework as well
as the details about the Software-Based Self-Tests (SBSTs). Furthermore, a fault injection
example is stated, which shows the workflow of executing a fault injection experiment
including the fault detection by SBST.

4.1 Fault Injection Framework

This section gives an overview to the QEMU implementation and explains how each fault
injection component is integrated in the QEMU-framework and how the interact among
themselves.

4.1.1 Implementation Overview of QEMU

QEMU is an open-source project, where the core-components of QEMU consist of more
than 1000 and the whole project more than 6000 files. This section aims to deliver insight
into the implementation of QEMU’s simulation process, which is needed in the next section
to understand the integration of the fault injection components.

The QEMU’s root directory (symbolized by / ) contains the major source files for the
start of the execution (/vl.c, /cpus.c, /exec-all.c, /exec.c, /cpu-exec.c). The code for the
hardware emulation is localized in the directory /hw/. The target (or guest)-specific files,
which is the currently emulated processor architecture, can be found in /target-xyz, where
xyz is the target architecture (arm). The host (TCG)-specific files are stored in /xyz/,
where xyz is the host architecture (i386 or x86 64).

The following paragraph lists the major files, which are used for the emulation process,
and briefly describes their functionality.

/vl.c: Includes the main-function, which initializes the virtual machine with the given
specifications and starts the CPU execution.

/cpu-exec.c: Implements the functions for finding and executing the next Translation
Block (TB). Starts the generation of a new TB, if the next TB cannot be found.

/target-xyz/translate.c: Converts the guest ISA to architecture independent TCG-
operations (instruction decoding).

63
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/tcg/tcg.c: Includes the main functions for the functionality of the TCG.

/tcg/xyz/tcg-target.c: Converts architecture independent TCG-operations to host-spe-
cific ISA.

QEMU implements a Software Memory Management Unit (SoftMMU), which supports
a fast finding of the mapping between Guest Physical Address (GPA) and Host Virtual
Address (HVA). If the guest operation system (OS) tries to access a virtual address, QEMU
has to translate this Guest Virtual Address (GVA) to GPA. Then, QEMU has to find the
corresponding physical page descriptor in the page table (page table walk). This returns a
physical offset, which is added to GVA to get the HVA. The main idea of the SoftMMU is to
use a Translation Look-aside Buffer (TLB), which stores the corresponding physical offset
of a GVA. If a translation from GVA to HVA is needed, QEMU searches in the TLB for the
corresponding physical offset first. If the entry is found, QEMU can add this offset to GVA
to get the resulting HVA. Otherwise, QEMU has to start a page table walk to find the cor-
responding offset. The TLB is accessed by some bits of the GVA and hence the TLB entries
have to be flushed if a process is switched. The same idea is used for the I/O-emulation,
where a separate IOTLB stores the corresponding index of the I/O-emulation function for
the accessed GVA. The function calls of fetching code from guest memory, would look as
follows: cpu exec(...) → tb find fast(...) → tb find slow(...) → get phys addr code(...) →
(if TLB miss) ldup code(...){softmmu header.h} → ldl mmu(...){softmmu template.h} →
tlb fill(...) → cpu arm handle mmu fault(...) → tlb set page(...) → tlb set page exec(...).

The execution trace of QEMU is visualized in Figure 4.1 with the notation func-
tion name(...){/directory/file name}. As already mentioned, the whole emulation process
starts in main(...){/vl.c}. In here, the arguments are parsed and the virtual machine is
set up. After this, main calls main loop(...){/vl.c}, which creates an execution thread.
This thread runs a do-while loop and can be stopped by calling qemu vmstop requested(),
killed by qemu shutdown requested() and so on. After a few function calls, which are
not relevant for the basic understanding and which are not mentioned here, the function
qemu tcg cpu thread fn(...){/cpus.c} is called. This function calls tcg exec all(...){/cpus.c}
in an infinity loop. tcg exec all selects the active CPU in a round-robin fashion and
due to this reason, QEMU cannot emulate a real multi-core processor, because all
cores are sequentially executed. After this, QEMU chooses the corresponding struct
CPUState{/target-xyz/cpu.h} structure and parses it to tcg cpu exec(...){/cpus.c}. This
structure holds information about the CPU state (standard registers, exceptions, interrupt
handling, processor features and emulator specific internal variables and flags). Then,
tcg cpu exec basically calls cpu exec(...){/cpu-exec.c}. cpu exec is the main execution loop,
which handles exceptions and generates the Translation Blocks (TB). This function calls
tb find fast(...){/cpu-exec.c}, which initiates the search for the next TB. The TBs are stored
as struct TranslationBlock{/include/exec/exec-all.h}, which contains the pc, flags corre-
sponding to the TB, variables for finding the chained TBs and a pointer to the TB that jumps
into this TB. tb find fast gets the program counter (PC) by calling cpu get tb cpu state(),
which parses the value from the CPUState structure (env). The PC-value is used to search
the index of the TB in a hash table (tb jmp cache[]). This TB index is subsequently verified
and if the TB index is invalid, the function calls tb find slow(...){/cpu-exec.c}. Otherwise,
the TB index is returned and executed by calling the functions cpu tb exec(...){/cpu-
exec.c} and tcg qemu tb exec(...){/cpu-exec.c}. If tb find fast fails that means the TB
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is not stored in the TB cache, tb find slow has to find the TB by searching through
physical memory mappings. For this, a physical PC of the Guest OS is delivered by calling
get page addr code(...){/cputlb.c}, which is used to get the TB by searching in a hash table
(tb phys hash(tb phys hash func(pc)). If the TB is not found or is invalidated, QEMU has to
generate a new TB by calling tb gen code(...){/translate-all.c}, otherwise the TB is added to
the TB cache (tb jmp cache[]) and is subsequently executed. tb gen code allocates a new TB,
which corresponds to the physical PC stored in the CPUState structure. Subsequently, the
function cpu gen code(...){/translate-all.c} is called, which calls the target-specific function
gen intermediate code(...){/target-arm/translate.c}. gen intermediate code initializes the
target-specific instruction decoding and calls gen intermediate code internal(...){/target-
arm/translate.c}, which calls disas arm insn(...){/target-arm/translate.c}. disas arm insn
implements the functionality for decoding target-specific instructions to TCG-Ops in
the arm-mode (a long switch-case). Similar functions are available for arm-thumb mode
decoding and for the NEON-extension. gen intermediate code internal groups the decoded
instruction in the TCG code buffer till a branch or an interrupt occurs. Afterward, QEMU
returns to cpu gen code, which calls tcg gen code(...){/tcg/tcg.c}. tcg gen code performs
the conversation from TCG-Ops to host-specific code, which are subsequently executed,
grouped in the new TB and stored in the TB-cache.

The next paragraph explains how the QEMU-monitor can be extended with new
commands. For this, QEMU defines the QEMU Machine or Monitor Protocol (QMP) and
the Human Monitor Protocol (HMP), which are two internal protocols of QEMU. If the
user calls a command from monitor by typing in a command (string), the monitor handler
decides, which function should be called in the HMP. All functions have hmp as prefix
and are stored in hmp.c (hmp *(...){/hmp.c}). The HMP functions should be converted to
use internal QMP commands (QEMU coding requirements). These QMP functions have
the prefix qmp and are principally stored in qmp.c (qmp *(...){/qmp.c}). The QMP can
be seen as a kind of interface to QEMU, which implements the required functionality (for
example the querying of register content, which is finally implemented in the target-specific
part). Instead of taking a string like the HMP, QMP interacts with objects, which are
automatically generated by data structures defined in a JSON format. The process of
including a new command to QEMU, would be done by following steps:

1. Define the command- and type-specification in the QAPI schema file ({/qapi-
schema.json}).

2. Implement the QMP command in /qmp.c or in another QEMU subdirectory.

3. Write the HMP command in /hmp.c, which calls the QMP-command.

A detailed example about implementing a new command is given in Section 4.1.2 -
Monitor.

4.1.2 Implementation of the Fault Injection Components in QEMU

This section gives a detailed explanation, how every FI-component is implemented and
how they interact among themselves. Furthermore, this interaction is visualized in Figure
4.2 and the sequence of a fault injection example is shown in Figure 4.3.
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Figure 4.1: This figure shows the simplified emulation process of QEMU for an ARM-setup
(based on QEMU version 1.7.0).
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Figure 4.2: This figure shows the dependencies of FIES based on a UML-class diagram,
which is modified for visualizing c-code. The classes represent c-files and the private
modifier of methods represent static functions. The class members are static variables for
private class members and global variables symbolize public class members. The use-arrows
model the dependencies of each file, which are basically includes of c-header-files.
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Figure 4.3: This figure visualizes the function call sequence of a fault injection into a
memory cell. The experiment starts with the loading of a fault library initiated by the
user through the monitor. Afterwards, the memory fault is triggered, if an access of the
memory address occurs. The controller decides with the help of the fault library, which
fault should be injected and calls the appropriate function in the fault-injector component.
After returning from fault injector, the fault controller increments the injected fault counter
in the analyzer module. If the user queries the fault statistic by typing the appropriate
command in the monitor, FIES collects the fault parameters from fault library and the
number of injected and detected faults from fault analyzer, computes the fault coverages
and writes these results to the monitor, which visualizes the information.
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Target System

The target system is responsible for the simulation of the emulated hardware. In this thesis
the i.MX28 EVK PCB REV D from Freescale Semiconductor [Fre11] is used, but this board
is not supported by QEMU yet. Hence, the board has to be defined and further hardware-
specific modules have to be simulated in software. First of all, the CPU-type and the number
of cores have to be defined, which is simply calling cpu arm init with the appropriate
cpu-type as string (arm926 in this case). The next step is the definition of the memory
mappings for SRAM, RAM, ROM and SRAM alias. This is realized by calling the function
memory region init ram(...){/memory.c}, which defines the name, owner and the size for
SRAM or RAM. Next the memory region is registered in the virtual machine as global with
the function vmstate register ram global(...){/savevm.c} and subsequently added to the
system memory by calling memory region add subregion(...){/memory.c}, which defines
the addresses for accessing the given memory region. The same process is done for all other
memory regions (SRAM, RAM, ROM and SRAM alias) with the exception that the memory
region for ROM is set to read-only by calling memory region set readonly(...){/memory.c}
and the SRAM alias is initialized by calling memory region init alias(...){/memory.c}
instead of memory region init ram(...){/memory.c}.

Then, the Digital Control module of Freescale has to be added to QEMU, which is
done by writing imx28 digcntr write(...){/hw/misc/imx28 DigCntr.c} and imx28 digcntr
read(...){/hw/misc/imx28 DigCntr.c}. This module is basically a collection of configuration
registers, which are used for reading and modifying the parameters for the Default First
Level Page Table (DFLPT) module implemented by Freescale board1.

The next included module is the DFLPT, which is a hardware-based approach of
Freescale to increase the performance and decrease the power consumption of the board for
the fetching of the first-level page table. The basic idea is to save the first-level page table
in this module instead of saving it in the small onchip-SRAM. The corresponding function
for the functionality of this DFLPT are localized in *(...){/hw/misc/imx28 dflpt.c}.

These two components are created by calling qdev create(...){/hw/core/qdev.c} and
qdev init nofail(...){/hw/core/qdev.c} and are subsequently added to the system memory
with their corresponding memory addresses by calling sysbus mmio map(...){/hw/core/
sysbus.c}.

Furthermore, the components for the Global Interrupt Controller (GIC) and the Timer
have to be added to QEMU. The address of the GIC is defined with the help of sys-
bus create varargs(...){/hw/core/sysbus.c}. The GIC-implementation itself is implemented
at *(...){/hw/intc/imx28 gic.c} and defines a set of registers, which defines if a special
interrupt is active, where the vector address of the active interrupt can be found, status
about the current interrupt and the global configuration of the interrupts. Furthermore,
this component sets the interrupt active by calling qemu set irq(...){/hw/core/irq.c}, which
calls the appropriate implementation of the current IRQ-handler. Last, this component
sets the register status values for the active interrupt. sysbus create varargs returns a
DeviceState structure, which is used to bind special IRQ-GPIO-pins to the correspond-
ing IRQ-handler. This is done for the debug and application UART and for the timer
component, which are explained next.

1In general, it contains configuration registers for other components too, but they are not necessary for
the basic functionality of SafeRTOS and hence they are not implemented in this work.
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The realization of the timer can be found in *(...){/hw/core/timer/imx28 rotary
decoder.c}, which is only used for writing and reading a configuration register, and
*(...){/hw/core/timer/imx28 timer.c}, which is the main file. In here, the function for
reading and writing the timer-value or other timer-specific configuration and status reg-
isters are implemented as well as the functions for incrementing the timer ticks and
updating the timer status by calling the functions qemu irq raise(...){/hw/core/irq.c} and
qemu irq lower(...){/hw/core/irq.c} for raising and lowering the IRQ level.

The debug and application UART as well as the four timers are bounded to their corre-
sponding GPIO-pin by calling sysbus create simple(...){/include/hw/sysbus.c} with the
name of the module, the MMIO-address and the corresponding GPIO-pin (qdev get gpio in(
dev, gpio num)) as argument. The UART-module is already implemented in QEMU and
hence it has not to be included to QEMU.

The last step for the emulation of the hardware, is the specification of the kernel pa-
rameters, which is done in a struct arm boot info{/include/hw/arm/arm.c} structure.
After parsing the RAM size, number of CPUs, kernel filename, kernel cmdline, ini-
trd filename and board id from QEMU startup arguments, this structure is parsed to
arm load kernel(...){/include/hw/arm/boot.c}, which loads the kernel.

Workload Generator and Workload Library

The workload generator and library are realized by the applications (SBSTs), which are
scheduled by the target OS (SafeRTOS) and hence the implementation details for these
components are stated in the next section (Section 4.2).

Data Collector

The data collector holds the file pointer, where the whole monitor in- and output is stored
to. Furthermore, this component implements the function for writing to this file and can be
found under data collector write(...){/fault-injection-collector.c}. The file is opened in the
init-function of the monitor (monitor init(...){/monitor.c}) and the data collector write
function is called every time when monitor puts(...){/monitor.c} is called.

Data Analyzer

The data analyzer is a container, which holds the number of injected and detected faults
and provides the functions for incrementing, setting, reseting and getting these variables.
The corresponding code can be found under *(...){/fault-injection-data-analyzer.c}. The
number of injected faults is incremented by the fault controller and reseted by the fault-
library if a new fault experiment is loaded with the corresponding monitor command. The
number of detected faults is also reseted by the fault-library and incremented in the SBSTs
executed by SafeRTOS. This variable is stored in a certain RAM-address, which is parsed
as argument at the start of QEMU. This RAM-address is read from QEMU, if the fault
analyzer is requested to deliver the number of detected faults.
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Fault Library

The fault library (*(...){/fault-injection-library.c}) holds the fault parameters in a linked
list, which is parsed from a XML-encoded file (fault configuration). The fault configuration
is parsed with the help of an external library (libxml2). This component also provides a
function, which checks the configuration file for correct defined data types (for example
if the component-tag contains a predefined keyword), but it does not check if all needed
parameters are specified. Furthermore, this file contains the implementation of the command
for loading the fault configuration file (qmp fault reload(...){/fault-injection-library.c}),
which is called from HMP.

The XML-encoded fault configuration file supports the following XML-tags, which are
used to describe faults:

<injection>: Defines the start and end of the fault configuration list.

<fault>: Defines the start and end of a fault description.

<id>: Defines the fault id (positive, non-zero integer value).

<component>: Defines the target component of a fault (CPU, RAM or REGISTER).

<target>: Defines the target point of a fault (for CPU: INSTRUCTION DECODER,
INSTRUCTION EXECUTION or CONDITION FLAGS; for REGISTER: ADDRESS
DECODER or REGISTER CELL; for RAM: ADDRESS DECODER or MEMORY
CELL).

<mode>: Defines the fault mode (

Condition Flags: VF, ZF, CF, NF, QF

General fault modes: NEW VALUE, SF, BIT-FLIP

Operation-dependent, static faults: TF0, TF1, WDF0, WDF1, IRF0, IRF1,
DRDF0, DRDF1, RDF0, RDF1

Operation-dependent, dynamic faults: RDF00, RDF01, RDF10, RDF11, IRF-
00, IRF01, IRF10, IRF11, DRDF00, DRDF01, DRDF10, DRDF11

Coupling faults: CFST00, CFST01, CFST10, CFST11, CFTR00, CFTR01, CFTR-
10, CFTR11, CFWD00, CFWD01, CFWD10, CFWD11, CFRD00, CFRD01,
CFRD10, CFRD11, CFIR00, CFIR01, CFIR10, CFIR11, CFDR00, CFDR01,
CFDR10, CFDR11, CFDS0W00, CFDS0W01, CFDS0W10, CFDS0W11, CFDS-
1W00, CFDS1W01, CFDS1W10, CFDS1W11, CFDS0R00, CFDS0R01, CFDS-
1R10, CFDS1R11

).

<trigger>: Defines the triggering method (ACCESS, TIME, or PC)

<timer>: Defines the start time for intermittent and transient faults (string, that contains
a positive, non-zero time value in ms, us or ns - e.g. 1000MS).

<type>: Defines the fault type (can be TRANSIENT, PERMANENT or INTERMIT-
TEND).
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<duration>: Defines the duration for intermittent and transient faults (string that
contains a positive, non-zero time value in ms, us or ns - e.g. 1000MS).

<interval>: Defines the interval for intermittent faults (string that contains a positive,
non-zero time value in ms, us or ns - e.g. 1000MS).

<params>: Defines the start and end of the parameter description.

<address>: Contains the register or memory address (hexadecimal value!) for
access- or time- triggered faults. In the case of a PC-triggered fault, this tag
contains the PC-value that triggers the fault.

<mask>: Defines the mask for determining the position, where the fault should
become active. In the case of a NEW VALUE-mode, this tag contains the new
value, which should be written to the destination target.

<cf address>: Defines the coupling cell address for register and memory coupling
faults (hexadecimal value!). If the address- and the cf address-tag are equal,
the fault configuration defines a intra-coupling fault, otherwise it describes a
inter-coupling fault.

<instruction>: Defines the instruction number, which should be replaced for CPU-
INSTRUCTION DECODER and CPU-INSTRUCTION EXECUTION faults.
0xDEADBEEF injects a NOP operation for simulating a

”
no-execution“. In

the case of a PC-triggered fault, this tag contains the faulty memory or register
address (hexadecimal value!), because the address tag contains the PC-value for
triggering the fault.

<set bit>: Defines if a by the mask selected bit should be set or reseted in a state
fault (for example, a set bit of 0x2 and a mask of 0x3 defines that the first bit
is set to zero and the second bit is set to one). In the case of an intra-coupling
fault, this tag defines the aggressor-bit.

For the correct behavior, it is mandatory to correctly define a fault, which is described
in the next itemize:

• All strings have to be upper-case.

• The id-, component-, target-, mode-, trigger- and type-tag must be defined.

• If the mode is
”
PC“, timer, duration, type and interval must not be defined.

• If the mode is
”
TIME“or

”
ACCESS“, type must be defined.

• If the type is
”
TRANSIENT“or

”
INTERMITTEND“, timer and duration must be

defined.

• If the type is
”
INTERMITTEND“, interval must be defined.

• The address- and mask-tag must be defined for register and memory faults.

• The cf address must be defined for register- and memory-coupling faults.
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• If the fault is configured as PC-triggered fault or the fault is a CPU-instruction
decoding and execution faults, the instruction-tag must be defined.

• For state or intra-coupling faults, the set bit tag must be defined.

• The mask-tag must be defined for faults with
”
NEW VALUE“ mode.

An example of a fault configuration file is given in Appendix A.7

Monitor

The monitor is responsible for the visualization of the by commands requested data, which
is already pre-implemented in QEMU, and the correct decoding and forwarding of monitor-
commands. The monitor is extended with two commands in this thesis: The command for
loading a fault library (fault reload <path-to-fault-configuration>) and an extension of the
pre-implemented info-command for querying the fault statistics (info faults). A further
useful command for the fault injection is info registers, which shows the register content in
the monitor output (already implemented by QEMU).

For the fault reload command, the implementation of the function hmp fault reload(...)
{/hmp.c} has to be added and has to made available to the monitor by adding the command
in {/hmp-commands.hx}. The content of this file defines the needed command parameters
(in Haxe) for the automatic generation of source-code. It defines the name of the command,
which should be typed in the monitor, the name and data type of the arguments, the string,
which should be shown when help <command> is called and the name of the function,
which should be called in the HMP-file. The corresponding code can be seen in Listing A.1

The hmp fault reload function gets the filename of the fault configuration file by using
qdict get str(...){/qobject/qdict.c}, which returns the by a keyword (

”
filename“) requested

variable as defined argument type. This returned filename is parsed to qmp fault reload(...)
{/fault-injection-library.c}, which loads the fault configuration.

The implementation of info faults is more difficult, because this function has to return
a data type. At first, the user-defined data type has to be added to {/qapi-schema.json},
which is shown in Listing A.2. The keyword

”
type“ defines a new QAPI data type and

the keyword
”
data“ defines the corresponding data names and types. In this case, a

structure with the name FaultInfo is generated, which contains the members component
as string (str), is active as integer (int), a nested structure with the name params and so
on. The next step is to define the name and the return type of the implemented function
qmp query faults(...){/qmp.c}, which is visualized in Listing A.3. The keyword

”
returns“

is used to define the data return type of the command and the keyword
”
command“

determines the name of the generated function, which is added to the qmp -prefix. In this
example the function name is qmp query faults(...) implemented in {/qmp.c} and returns
a FaultInfoList (linked list of FaultInfos, which is shown in Listing A.4). In this function,
the whole fault status content, stored in a linked list in the fault library, is parsed to the
FaultInfoList. An important note is that the strings as well as the FaultInfo-elements have
to be dynamically allocated. The head of the FaultInfoList is subsequently returned by
this function. The corresponding HMP-function (hmp info faults(...){/hmp}) calls this
function, iterates through this list and writes this content to the monitor output. This
function computes also the fault coverages and parses the rest of the needed variables and
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the statistic to the monitor output. The corresponding source code can be seen in Listing
A.5. qapi free FaultInfoList(...){/qapi-types.c} is called at the end of this function, which
is a auto-generated function for freeing the in the qmp query faults dynamically allocated
variables. Furthermore,

”
info“ commands are not specified in the {/hmp-commands.hx},

they are specified in the same way in mon cmd t info cmds[]{/monitor.c} as subcommands.
Notice that {/hmp-commands.hx} should be also updated for these subcommands with the
corresponding help-string.

Fault Injector

The fault-injector component contains the functions for the injection of faults, which are
called from fault controller. The main functions are do inject memory register(...){/fault-
injection-injector.c} for injecting faults in a register or memory, do inject insn(...){/fault-
injection-injector.c} for injecting faults in the decoding and execution path of the CPU,
do inject condition flags(...){/fault-injection-injector.c} for injecting faults into a condition
flag and do inject look up error(...){/fault-injection-injector.c} for modifying the PC-value.

The main functions check the type of the simulated target2 and call the appropriate,
target-specific functions. Furthermore, this component defines a FaultInjectionInfo struc-
ture, which is used to decide which kind of fault should be injected in which component
(memory or register level). This structure is set by the controller and parsed to the main
functions of the fault injector. This structure contains the following flags:

fault on address: Is used to decide, if the fault injection should be performed on an
address or on the content of a cell (register or memory). In the case of an injection on
address, the address value is parsed by reference and modified according to the decision
of the controller. In the case of injecting a fault on the content of a cell, the appropriate
functions are called, which use cpu memory rw debug(...){/exec.c} for overwriting or
modifying memory content or ((CPUARMState*)env)->regs[regno] for overwriting
or modifying the register content as well as cpsr write(...)/cpsr read(...){/target-
arm/helper.c} for modifying the content of the Current Processor Status Register
(CPSR).

fault on register: Decides, if the called function aims to modify a register or a memory.

bit flip: Defines, if a bit-flip is performed as fault injection.

injected bit: Determines the bit position, on which a fault should be injected (for example
0x1 defines the first bit, 0x2 defines the second bit and so on).

bit value: Is used for defining, if a bit should be set or reseted in the case of State Faults
(SFs) or contains a new value in the case of

”
NEW VALUE“-mode.

new value: Defines, if a new value should be written to the specified target.

access triggered content fault: Is set for performing faults, which are access-triggered
and do not modify the content of a cell immediately. Especially, in dynamic-operation-
depended fault models, the content is parsed from SoftMMU or access-triggered

2Only ARM-targets are supported in this thesis



CHAPTER 4. IMPLEMENTATION 75

register functions and the possibly-modified content value is returned, which is written
to the cell by subsequently executed functions. In the case of time-triggered faults,
the access-type can not be determined and the faulty values have to be written to
the cells immediately. Hence, operation-depended faults (WDF, TF, RDF,...) can
not be injected in time-triggering mode.

do inject insn just overwrites the decoded instruction number by modifying the by
reference parsed instruction number and hence it makes only sense to call this function for
access-triggered faults. In the case of time-triggering, the function do inject look up error
should be used. This function sets the PC to another specified PC-value to simulate
an instruction or decoding fault. This is the only possibility to simulate instruction or
decoding fault in time-triggering mode, because the decoding-function of QEMU is not
called in this execution step.

do inject condition flags is the function for overwriting the ARM condition flags. This
function uses string-comparing to decide, which of the five ARM condition flags should be
set or reseted.

Fault Controller

The fault controller decides if, when and where a fault should be injected and subsequently
calls the corresponding function in the fault injector module. fault injection controller init(
...){/fault-injection-controller.c} is the main function, which is called from SoftMMU
(*(...){/softmmu template.h}) for the injection of access-triggered memory faults and
from disas arm insn(...){/target-arm/translate.c} for injecting access-triggered instruction
decoding or execution faults. The call of the fault controller for the injection of access-
triggered register faults and time-triggered faults is more complicated. They are defined
as helper functions ( HELPER(fault controller call time)(...){/target-arm/op helper.c},
HELPER(fault controller call reg decoder)(...){/target-arm/op helper.c}, HELPER(fault
controller call store reg)(...){/target-arm/op helper.c} and HELPER(fault controller call
load reg)(...){/target-arm/op helper.c}), which are invoked after every instruction decoding
(gen intermediate code internal(...){/target-arm/translate.c}) and if a register is accessed
(load reg(...)/store reg(...){/target-arm/translate.c}). This helper functions can be seen as
a wrapper function for the fault injection controller init(...) function, which is translated in
intermediate code and afterwards in host-specific code. This means that the fault controller
is dynamically called at runtime, if a register is accessed or after every executed instruction.
The controller has to know, which function calls the fault injection controller init to decide
which fault can be injected. For example, an access-triggered memory faults can only be
injected, if the address is really accessed (caller-function is SoftMMU). In order to realize
this, the fault controller defines a enum InjectionMode{/fault-injection-controller.h}, which
is parsed to the init function. The fault controller can distinguish, based on this variable, if
a memory address decoder fault, a memory content fault, a register address decoder fault,
a register content fault, an instruction decoder or execution fault or another time-triggered
fault (for example condition flags) could be injected.

Furthermore, the controller has a further enum AccessType{/fault-injection-controller.h},
which is used for determining the access type. This is important for the implementation of
operation-dependent faults like the WDF, RDF, TF and so on. The access type is set by
the caller-function and can be read access type, write access type or exec access type.
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After the correct function is determined, the fault controller calls the appropriate
function, which iterates through the fault configuration list (fault library) and checks if
the configured parameters (address or trigger mode) matches. If yes, the fault type is
determined from fault configuration and the appropriate function is called. This function
prepares the variables in the FaultInjectionInfo, which is needed from the fault injector
component, decides if the fault parameters matches with the current execution state (timer
or PC-values), sets the fault active and increments the number of injected faults in the
data analyzer module.

For dynamic, operation-dependent faults, it is important to know the previous operation
types on the cell to trigger the fault. This is realized by the controller with a two-dimensional
array. This array has a length of number of ids × memory bandwidth and contains one of
the four possible operations, which change the memory content, in each entry. The four
possible operations (OPs 0w0, OPs 0w1, OPs 1w0 and OPs 1w1 ) are defined in enum
CellOps{/fault-injection-controller.c}.

The controller implements also a few helper-functions, which are shown in the following
itemization:

ends with(...){/fault-injection-controller.c}: Is used for extracting the timer unit,
which are returned as string(ms, µs, ns).

timer to int(...){/fault-injection-controller.c}: Converts the timer value defined as
string to an equivalent integer value.

fault injection controller getTimer(...) {/fault-injection-controller.c}: Returns
the current timer value (QEMU CLOCK VIRTUAL - is stopped when QEMU-
emulation is stopped)

fault injection controller initTimer(...){/fault-injection-controller.c}: Sets the
start-timer value when the fault library is loaded and this value is substracted from
the current timer value every time when fault injection controller getTimer is called.

time normalization(...) {/fault-injection-controller.c}: Normalizes the different
timer units to ns.

4.1.3 Compiling and Executing FIES

The following manual gives an overview how FIES can be compiled and subsequently
executed with the right arguments. The whole manual is based on a linux-based operating
system. FIES is an extension of the QEMU emulator and hence it has the same dependencies
as QEMU has. Furthermore, FIES needs the libxml2-library, which has to be linked to
QEMU. The following enumeration shows the needed steps, which should be executed in a
linux bash, for compiling FIES:

1. Install the needed libraries (libffi, libiconv, gettext, python, pkg-config, glib, sdl, zlib,
pixman, libfdt, libxml2 )

2. Run configure in the FIES-root directory (./configure –target-list=arm-softmmu
–extra-cflags=

”
<library-include-path>“–extra-ldflags=

”
<library-binary-path>“

–enable-sdl). The paths for cflag and ldflag can be determined by using the commands
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xml2-config –cflags and xml2-config –libs. –target-list= defines the target architecture,
which is in this case an arm-platform with a SoftMMU. –enable-sdl defines that the
SDL-library should be used, which is needed for the VGA-ouput.

3. Running make and make install

After successful compiling, FIES can be started by executing the command qemu-system-
arm -M imx28evk -m 128 -kernel <path-to-SafeRTOS-image> -fi <fault-counter-address>,
<path-to-fault-library>, <sbst-cycle-count-address> in the linux bash. The parameters after
-M defines the target system, which is in this case the implemented Freescale development
board. The number after the argument -m defines the number of physical RAM in MB,
which is in this case 128MB. The -kernel defines the path and the name of the image,
which should be executed by FIES. In this case, the image is the SafeRTOS, which contains
the SBSTs. The last argument -fi activates the data-collector to write the content of the
monitor to a predefined file. Furthermore, this argument requires at least one parameter,
which is the address of the fault counter address (the RAM-address where the number
of detected faults are stored). The second argument defines the path and the name of
the fault library. If this argument is not used, the default value is taken, which is stored
in fault-config.h. The last parameter is used for the automatic test process. It defines
the RAM-address, where the number of SBST cycles are stored. This is used by FIES
to decide, when a fault can be injected or when the virtual machine can be terminated
and the next fault injection experiment can be loaded. This variable can be seen as a
software-to-hardware communication, which signalizes the hardware (FIES) if the system
(SafeRTOS) is successfully booted and the SBST is executed at least on time. The number of
SBST-cycles, before the virtual machine is terminated, can also be defined in fault-config.h.

After FIES is started, a window appears, which is visualized in Figure 4.4. It is possible
to switch between the serial output and the monitor console of FIES with the shortcuts
[CTRL]+[ALT]+[1] and [CTRL]+[ALT]+[2] (can be seen in Figure 4.4a and 4.4b). In the
FIES monitor console, it is possible to use various commands, which are described in the
following paragraph:

info faults: Shows information and statistics about faults

info registers: Prints the register content

fault reload <path-to-XML-fault-config-file>: Loads the parameters for a fault ex-
periments and starts it

q : Terminates FIES

c: Continues the emulation process

stop: Stops the emulation process

help: Lists all commands with a short description3

The bash script for the automatic test process can be seen in Appendix A.6. This script
reads the elf-file (SafeRTOS image) and extract the addresses of the global-defined variables

3 The FIES monitor can be scrolled by using the shortcuts [CTRL]+[ ↑ ] and [CTRL]+[ ↓ ].
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(fault counter and sbst cycle count). The SafeRTOS image, which runs the SBST-method
as well as the corresponding fault configuration file should be stored in a file per line and
separated by commas. The path and the name of this file should be parsed to the bash
script via argument. Every pair of image and fault configuration is sequentially executed
in a do-while loop and the corresponding data-collector file is stored in a ascending way
(data collector 1.txt till data collector n.txt) to the directory, where the bash script is
executed.

(a) The monitor output after loading a
fault configuration

(b) The serial output for the execution
of a SBST (register test)

Figure 4.4: The two consoles of FIES

4.2 Software-Based Self-Tests (SBSTs)

This section gives a short introduction about the used OS (SafeRTOS) and its components
and describes how the SBSTs are included into it. Furthermore, a manual is given, which
should simplify the compiling and the execution of current and further SBSTs.

4.2.1 Overview of SafeRTOS

SafeRTOS is a by WITTENSTEIN high integrity systems [WIT12a] modified version of
FreeRTOS, in order to achieve a SIL3 certified real-time OS. SafeRTOS implements a
preemptive real-time scheduler, which decides based on priorities if a task will be scheduled
or not. Tasks with equal priorities are scheduled in a time sliced round robin fashion.
Furthermore, tasks can block for a fixed period or for a specified time with a specified
timeout period. This OS uses queues for sending data between tasks and for sending data
between tasks and interrupt service routines.

SafeRTOS uses a Memory Management Unit (MMU) for isolating the kernel from the
user task activities and for isolating the user tasks from each other [WIT12b]. The OS only
uses level 1 page table entries and hence the MMU regions have to be defined in blocks
of 1MB (performance issue). This 1MB-blocks can be shared among tasks in so-called
task groups, because the most tasks use less than 1MB RAM. This task blocks have to be
declared in the linker control file. Every task can join a certain task group by placing its
stack in the appropriate memory region and declaring access in the task parameter block.
Every task within this task group has full access to variables that belongs to a task in
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this task group. Furthermore, SafeRTOS uses a flat memory model for the translation of
virtual to physical address (virtual addresses = physical addresses).

SafeRTOS provides so-called hook functions, which are called if a special event occurs
(callback functions). The OS provides these hook functions for error handling (error hook),
for task deleting (task delete hook), for entering the idle task (idle hook) and for executing
the tick handler (tick hook). The error hook function is called, if a corruption within the
scheduler data structures or a potential stack overflow, while performing a context switch,
occurs. This function can be used to implement a specific error handling to ensure that a
certain safe state can be reached. The task delete hook is called if a task is deleted and
can be used to tell the host application that the allocated memory is freed and is available
for other purposes. The tick hook function is called every time, when the tick handler
is called and can be used to execute a periodic task (for example an application timer).
The idle hook function is called, if the idle task is currently executed and can be used to
execute a low priority application specific background tasks. Such a task can be a function,
which gets the processor in a power sleep mode or in our case it can be the execution of a
preemptive SBST.

Figure 4.5 gives an overview of the by SafeRTOS used components. It can be seen that
SafeRTOS uses the Timer0 interrupt for measuring the time. This time are measured in
tick units, where a tick or a tick period is the time between two consecutive timer interrupts.
The number of milliseconds between these ticks can be defined by the member ulTickRateHz
of the xPORT INIT PARAMETERS structure, which is passed in the initializing function
of the scheduler.

In order to create tasks, SafeRTOS provides the API function xTaskCreate(...) and the
API function xTaskDelete(...) for deleting a task. A task code is executed in an infinity
loop and should never return to its caller after termination. If a task has to delete itself,
the function xTaskDelete(NULL) has to be called before reaching the end of the task
code function. Furthermore, the task code function allows a void pointer as parameter for
passing one arbitrary parameter or a pointer to a structure for more than one parameter to
the task code function. The xTaskCreate function needs two parameters: pxCreatedTask,
which returns a handle for referencing a certain task (for example, to change the priority
of a task) and pxTaskParameters, which is a pointer to a structure with the following
members:

pdTASK CODE pvTaskCode: Function pointer to the application code

const signed portCHAR* pcTaskName: Name of the task (for debug purpose)

xTCB* pxTCB : Pointer to the Task Control Block (TCB) of the application

signed portCHAR* pcStackBuffer : Base-pointer of the stack

unsigned portLONG ulStackDepthBytes: The stack size in bytes (must be greater
than configMINIMAL STACK SIZE )

void* pvParameters: The task function parameter as void*

unsigned portBASE TYPE uxPriority : The priority of a task, which can be between
0 and configMAX PRIORITIES - 1 (the lower the value of the priority the lower the
priority of the task)
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xMMUTaskParameters xMMUParameters: Structure that contains the MMU re-
lated task parameters

unsigned portBASE TYPE uxPrivilegeLevel : The privilege level of the task (por-
tUNPRIVILEGED TASK or portPRIVILEGED TASK

xMMUMemoryRegion xRegions[ mmuNUM CONFIGURABLE REGIONS] :
Structure for each of the configurable MMU regions available to the task

unsigned portLONG ulRegionAddress: Start address of the memory region (must be
aligned to 1MB boundaries)

unsigned portLONG ulLengthInBytes: The length of the region in bytes (size must
be a power of two and not greater than 128MB)

unsigned portLONG ulAccessPermissions: Permission settings of the region (mmu
ACCESS PRIV RO USER RO, mmuACCESS PRIV RW USER NA, mmuACCESS
PRIV RW USER RO or mmuACCESS PRIV RW USER RW )

unsigned portLONG ulCacheSettings: Cache settings for the memory region (mmu-
CACHE NOCACHE NOBUFFER, mmuCACHE NOCACHE BUFFER, mmuCA-
CHE WRITE THROUGH or mmuCACHE WRITE BACK )

xTaskCreate returns pdPASS in the case of successful task creation or an error number,
otherwise. Further details can be found in [WIT12a].

Figure 4.5: This figure shows the context diagram of the used Operating System (SafeRTOS)
with the necessary hardware parts (ICOLL, TIMROT and DFLPT), which are simulated
in the FIES framework. The image is adapted from [WIT12b].
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4.2.2 Implementation of SBSTs in SafeRTOS

The SBST tasks are created with the function xCreateSBSTTask(...){/source/Software-
BasedSelfTests.c} and are called in the main-file before xTaskStartScheduler is called.
In order to decide which SBST should be created, an enum SBSTMethod{/include/
SoftwareBasedSelfTests.h} is parsed in xCreateSBSTTask. In xCreateSBSTTask a function
is called, which sets the xTaskParameters structure, based on enum SBSTMethod, to
the appropriates values. After creating this structure the task is created and placed
into the Ready State by calling xTaskCreate. The corresponding source code can be
found in B.1. It should be mentioned that mmuACCESS PRIV RW USER RW and
mmuCACHE NOCACHE NOBUFFER are set in the xTaskParameters structure. This is
important to allow the SBST (memory tests) the access to all memory addresses on the
one hand and to guarantee that every memory access is targeted to the real memory and
not to the cache, on the other hand.

Furthermore, functions for writing data to the debug UART are provided in *(...)
{/source/DebugUtils.c}. These functions delete, allocate or rather reallocate buffers, in
which the data are stored and can be flushed later. These functions are implemented in
order to avoid the blocking UART access, which yields the task and activates the scheduler
to choose another task and hence interrupts the current execution of the SBST.

The current implementation of the SBSTs in SafeRTOS are configured with the same
stack and hence it is not possible to create two or more tasks, which run simultaneously. If
this simultaneously execution of SBSTs it is wanted, the user has to define a separate stack
for each SBST. Furthermore, it is suggested to compile SafeRTOS without any optimization
level (O0-flag), because the instruction order of the single SBSTs are well thought-out and
should not be reordered or other optimized by the compiler.

March Tests

In this thesis, three different march tests (march c-, march ss and abraham) are implemented
in three different ways. The first way is the basic non-transparent march test, which
overwrites the content in a certain memory cell. In order to make this tests transparent
and restore the initial memory content, the initial memory content is temporally saved and
restored after the successful execution of the memory test. Due to the fact that this kind
of tests are not really transparent, they are named WOMPseudoTransparent<name of the
test>(...){/source/MemorySelfTests.c} in the implementation. These pseudo transparent
tests write the data patterns, which are listed in the Section 3.3.2, to the memory cells.
The corresponding source code for the pseudo transparent march c- test can be found in
Appendix B.2.

The second test method is the original transparent memory test (march ss in this case),
which uses a Multiple Input Signature Register (MISR). The MISR has a period of 65535
and can be used for a RAM with a 16bit data interface. The usage of a MISR is a possible
approach how SBSTs can be implemented in practice and is shown in Appendix B.3. At
the beginning of the test, every RAM cell is initialized with random data. This random
data is recovered at the end of the SBST execution, because this test uses only the initial
and the inverse initial memory content. The MISR is initialized with the inverse initial
memory content and for every iteration through the memory, the MISR is feed with the
current memory content. For an ascending iteration thought the memory, misr encode(...)
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is called and for a descending iteration through the memory, misr decode(...) is called. For
a symmetric march test, the signature after execution of the SBST is independent from
the initial memory content and hence it is in every test cycle the same value.

The last test methods are memory tests, which are modified according to the trans-
formation rules presented in [LTW05]. A corresponding implementation of a modified
abraham test can be found in Appendix B.4. This test performs a transparent version of
abraham first and afterwards it executes an additional transparent test, which applies four
data patterns which are xor-linked with the original memory content.

CPU-core Tests

In this thesis, SBSTs for the CPU-core elements are implemented for ALU, condition flags,
divider/shifter and multiplier/adder. All core tests excepting the condition flag testing are
adapted from [Pre13] and the corresponding source code are listed in Appendix B.5.

The SBST for the ALU passing three variables to the test routine, which tests all
possible binary operations with these variable values. In order to simulate a fault in the
ALU, FIES overwrites the passed parameters or the return value, which contains the
resulting signature. These parameters are passed by reference, to ensure that the used
input is read from the same memory value and not from the address, which contains the
local copy of the variable. Furthermore, these values are declared as volatile to ensure that
the compiler knows that these values could be overwritten by hardware (FIES) and has to
be reloaded at every access of these variables.

The SBST for the divider or shifter component is simply a shift-left with a subsequently
shift-right through all bits of the register, which are in every step checked for the right
value.

The test for the condition flags uses inline-assembler statements to perform special
operations (addition instructions) with special register values, which forces the CPU to set
the appropriate condition flags. These condition flags are encoded in the CPSR-register
of ARM, and can only be read in the privileged mode. In order to get in this privileged
mode, a software interrupt ( svc 3/4 ) is generated, which informs the OS to enter or exit
this mode. Furthermore, it is important to add the character s to the end of the assembler
instruction to activate the setting of condition flags (add → adds). It should also be noticed
that the QF-condition flag has to be reseted by software (MSR).

The fourth and last SBST is aimed to test the multiplier or adder unit of the CPU.
This test generates 256 data patterns for the input of the multiplier and compares the
signature at the end of the test with a pre-computed signature. If these signatures differ, a
fault has occurred.

Register Tests

The classical walking bit method and a modified march ss test (according to [LTW05])
is implemented as register tests. The walking bit method simply shifts a one through
the register and compares the register content with a golden signature value, which is
generated by multiplication of the initial value (one) with two. Hence, it is suggested to
test the multiplier before executing this register test. The test patterns are written to the
register by using the inline-assembler statement in combination with the mov-instruction.
The corresponding source code is visualized in Appendix B.6.



CHAPTER 4. IMPLEMENTATION 83

The march ss test for registers is the same as the tests for memories with the exception
that the read- and write-operations are different. As Appendix B.6 shows, are these
operations implemented as separate c-macros instead of function calls as in walking bit
method. This is necessary, because in this case the subsequently read and write can not be
executed due to the fault checking between single read or write operations. If the read
and write operation to registers are implemented as functions, the register content will be
overwritten when calling these functions.



Chapter 5

Results

This chapter covers the single results for all components under test and gives an overview
on the simulation time for a certain number of injected faults of a fault injection experiment.
Furthermore, a summary about the validation of the system requirements is shown at the
end of this section.

5.1 Test Results

The following sections list the test results for the memory tests as well as for the CPU-core
elements and the register banks. All test runs are aimed to show, which kind of faults
are detectable by which self-tests. Hence only permanent faults are injected, because if a
test is able to detect a permanent fault, the same test is able to detect transient faults
of the same type (assumption: the duration of the fault occurrence is greater than the
runtime of the self-test, otherwise the detection of transient faults are unlikely or simply
pure coincidence).

5.1.1 Memory Test Results

A fault injection experiment is applied to the transparent versions of march c- (TMarch
C-), abraham (TAbraham) and march ss (TMarch SS), to the pseudo transparent versions
of march c- (Pseudo TMarch C-), abraham (Pseudo TAbraham) and march ss (Pseudo
TMarch SS) as well as to the modified versions, according to the transformation rules
presented in [LTW05], of march c- (TWM TA March C-), abraham (TWM TA Abraham)
and march ss (TWM TA March SS).

The corresponding test results are compared in Table 5.1 and Table 3.6 shows the
theoretical detection rates for different FFMs for march c-, march ss and abraham memory
test. The comparison of these two tables shows that the results of static FFMs (SFs,
TFs, RDFs and IRF) match for all tests. The WDFs are not detected by the transparent
version of march c- and abraham, because these tests do not contain the needed write/read
sequence to trigger these faults and hence they are not detected by these tests. The
modified versions of these tests (Pseudo TAbraham, Pseudo TMarch C-, TWM TA March
C- and TWM TA Abraham) extend these tests with additional write/read sequences and
additional data patterns for the purpose of detecting coupling faults. These extensions also
trigger WDFs, which result in a detection of these faults. These additional sequences are

84
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also responsible for the detection of DRDFs in Pseudo TMarch C- and TWM TA March
C- memory tests. TMarch C- is also able to detect DRDFs, because it reads the memory
content of a cell before every write operation and uses this content for the next march
steps by inverting it. Hence, after a normal read operation an additional read is executed,
which detects the DRDF.

For the detection of dynamic FFMs (RDF dyn, IRF dyn, DRDF dyn) all tests, except
the transparent version of abraham (TAbraham) and march c- (TMarch C-), achieve the
full detection rate. TAbraham and TMarch C- do not contain all possible sequences to
trigger dynamic faults.

Coupling faults (CF) are split in intra- and inter CFs. All tests detect all intra and
inter CFs with the exception of intra CFtrs and inter and intra CFwds. The detection of
intra CFs depends not only on the read/write sequences of the memory tests, but also on
the used data patterns as well as the initial memory content of transparent memory tests.
For the detection of inter CFwds the right operation sequences are needed, which are not
fulfilled by the transparent march c- and abraham test. Pseudo TAbraham, Pseudo TMarch
C-, TWM TA March C- and TWM TA Abraham partly fulfill these needed operation
sequences by adding additional sequences and data patterns.

All in all, the pseudo transparent memory tests deliver the best results for the given
fault experiment. The best result achieves the Pseudo TMarch SS followed by the Pseudo
TMarch C- and the Pseudo TAbraham. An interesting fact is that the march ss and
even the march c- test deliver better results with shorter runtimes than the abraham test.
The fourth place reaches the TWM TA March SS followed by the transparent march ss
test (TMarch SS), but it should be kept in mind that the detection rate for intra CFs of
transparent tests depend on the initial memory content. TWM TA Abraham and TWM
TA March C- achieves the same detection rate and as before, the TWM TA March C- has a
shorter runtime than the TWM TA Abraham. The last place is shared by the transparent
versions of march c- (TMarch C-) and abraham (TAbraham).
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FFM
(#faults)

TMarch
C- (%)

Pseudo
TMarch
C- (%)

TWM
TA
March
C- (%)

TAbraham
(%)

Pseudo
TAbra-
ham
(%)

TWM
TA
Abra-
ham
(%)

TMarch
SS (%)

Pseudo
TMarch
SS (%)

TWM
TA
March
SS (%)

SF (2) 100 100 100 100 100 100 100 100 100
TF (2) 100 100 100 100 100 100 100 100 100
WDF (2) 0 100 100 0 100 100 100 100 100
RDF (2) 100 100 100 100 100 100 100 100 100
IRF (2) 100 100 100 100 100 100 100 100 100
DRDF (2) 100 100 100 100 100 100 100 100 100

inter CFst (4) 100 100 100 100 100 100 100 100 100
intra CFst (4) 100 100 100 100 100 100 100 100 100
inter CFds (12) 100 100 100 100 100 100 100 100 100
intra CFds (12) 100 100 100 100 100 100 100 100 100
inter CFtr (4) 100 100 100 100 100 100 100 100 100
intra CFtr (4) 50 100 75 50 75 75 50 100 75
inter CFwd (4) 0 75 50 0 75 50 100 100 100
intra CFwd (4) 0 100 0 0 100 0 50 100 50
inter CFrd (4) 100 100 100 100 100 100 100 100 100
intra CFrd (4) 100 100 100 100 100 100 100 100 100
inter CFir (4) 100 100 100 100 100 100 100 100 100
intra CFir (4) 100 100 100 100 100 100 100 100 100
inter CFdr (4) 100 100 100 100 100 100 100 100 100
intra CFdr (4) 100 100 100 100 100 100 100 100 100

RDF dyn (4) 50 100 100 50 100 100 100 100 100
IRF dyn (4) 50 100 100 50 100 100 100 100 100
DRDF dyn (4) 50 100 100 50 100 100 100 100 100

Overall DC 78.26 98.91 92.39 78.26 97.82 92.39 95.65 100 96.73

Table 5.1: This table compares the detection rates for the implemented memory self-tests. The first six rows cover static faults, the
next 14 rows contain intra and inter coupling faults and the last three rows show the dynamic faults. The brackets after every FFM
contains the number of injected faults.
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5.1.2 CPU-core and Register Test Results

The diagnostic coverages (DCs) for ALU, adder, multiplier and shifter are determined by
deterministic test and hence the minimum DCs are proven values. The only DC variability
for CPU-core elements is given by the DC value for the register and register banks. If
it is possible to increase this value at least to 90%, SIL3 can be achieved for the tested
CPU-core elements and the given Hardware Fault Tolerance of one.

Table 5.2 presents these values for the TWM TA March SS and for the by IEC 61508
suggested Walking Bit test. The test runs are only performed on the ARM R10 general
purpose cpu register and hence Table 5.2 only considers intra CFs (no inter CFs). In order
to determine the DC values for inter CFs, the given SBSTs have to be extended with
further adjacent register under test (e.g. R9 or R11). The results show that the march test
achieves a much higher DC value than the Walking Bit method. Furthermore, Table 5.2
shows that march tests can be applied on registers and achieve the equivalent results as for
memories. In comparison to Table 5.1, the TWM TA March SS achieves a smaller DC rate
for intra CFtr faults. The reason for this can be explained by the structure of this test.
A TWM TA-modified test consists of a transparent march test and an extension of this
march test sequences. It is possible that this CFtr is detected by the transparent march
test part in combination with the random initial memory content of the TWM TA March
SS.

FFM (#faults) TWM TA March SS (%) Walking Bit (%)

SF (2) 100 100
TF (2) 100 100

WDF (2) 100 0
RDF (2) 100 100
IRF (2) 100 100

DRDF (2) 100 0

CFst (4) 100 100
CFds (12) 100 66.67
CFtr (4) 50 0
CFwd (4) 50 50
CFrd (4) 100 75
CFir (4) 100 75
CFdr (4) 100 0

RDF dyn (4) 100 50
IRF dyn (4) 100 75

DRDF dyn (4) 100 0
Overall DC 93.75 55.72

Table 5.2: This table compares the detection rates for the implemented register self-tests.
The first six rows cover static faults, the next seven rows contain intra coupling faults and
the last three rows show the dynamic faults. The brackets after every FFM contains the
number of injected faults.

Table 5.3 visualizes the DCs for each single CPU-core element. The overall DC values
result in 53.01% for the applied walking bit method and in 89.98% for the applied march
test as register test. The march test yields a quite near value to the needed 90% for
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achieving SIL3 and the walking bit method achieves in this test experiment just SIL1. As a
conclusion, neither the walking bit nor the march test can achieve the needed 90% for the
CPU-core elements, but it is possible to use the Pseudo TMarch SS as register test, which
will results in 100% test coverage and an overall DC of 92.60%. In order to achieve higher
DC values than 92.60%, it is necessary to test the other components like multiplexer or
pipeline directly.

Module assumed gate-count (%) SFF (%)

ALU 2 99.9

Adder and multiplier 39 99

Barrel-shifter 3 100

Register banks (march) 42 93.75

Register banks (walking bit) 42 55.72

Other components 14 50

Overall with march 100 89.98

Overall with walking bit 100 53.01

Table 5.3: This table shows the achieved Diagnostic Coverages (DCs) for the CPU-core
elements for the fixed DC values for ALU, adder, multiplier and shifter as well as the DC
values for the registers tested by march and walking bit test.

SBSTs, which are developed for a certain target, can also be applied to other different
target points. This indirect testing is performed with the SBSTs for the CPU-core elements
and they are applied to the memory. The achieved DC values are listed in Table 5.4. An
interesting fact is that all tests yield a better result as the walking bit method. The test
for multiplier and adder achieves even a high DC of 98.55%, which is comparable with the
result of a march ss test. The reason for this can be explained by the test structure of this
SBST. The multiplier test applies 256 (16×16) data patterns to test the functionality of
adder and multiplier. This is the same strategy that memory tests or march tests apply to
test intra- and inter CF. But it should be kept in mind that the execution time for applying
the multiplier test to a memory cell is greater than applying march sequences to it.
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FFM (#faults) ALU test (%) Divider/shifter test (%) Multiplier/adder test (%)

SF (2) 100 100 100

TF (2) 100 100 100

WDF (2) 0 50 100

RDF (2) 100 100 100

IRF (2) 100 100 100

DRDF (2) 100 100 100

inter CFst (4) 100 100 100

intra CFst (4) 100 100 100

inter CFds (12) 66.67 50 66.67

intra CFds (12) 83.34 83.34 100

inter CFtr (4) 50 50 100

intra CFtr (4) 50 25 100

inter CFwd (4) 50 25 100

intra CFwd (4) 0 50 100

inter CFrd (4) 100 100 100

intra CFrd (4) 50 75 100

inter CFir (4) 100 100 100

intra CFir (4) 50 75 100

inter CFdr (4) 100 50 100

intra CFdr (4) 50 75 100

RDF dyn (4) 50 75 100

IRF dyn (4) 50 75 100

DRDF dyn (4) 50 75 100

Overall DC 69.56 72.10 98.55

Table 5.4: This table visualizes the results of achieved DC values for the CPU-core element
self-tests, which are applied on memory cells. The first six rows cover static faults, the next
14 rows contain intra and inter coupling faults and the last three rows show the dynamic
faults. The brackets after every FFM contains the number of injected faults.

5.2 Simulation Time

This section covers the evaluation of the simulation times for a fault injection experiment.
The fault injection experiment is executed on a Intel R© CoreTM i7-3770 CPU @ 3.40GHz
× 8 with 16GB RAM and Linux Debian Wheezy with kernel 3.2.0-4-amd64 as operating
system. For this purpose, every implemented test (15 tests) are executed three times
and the memory tests are applied to an 1MB portion. These evaluation runs inject a
certain number of transient and permanent faults and the times, measured by the linux
command time, are determined with serial output for visualizing faults to the serial prompt
and without. The results, presented in Table 5.5, are split in the injection of state faults
and in the injection of operation dependent faults like TF, WDF, RDF and so on. The
simulation times show an exponential relation, because the faults are detected by several
march elements of a march test and every march element accesses the fault counter variable
to increase the number of detected faults and writes an output to a buffer, which is flushed
at the end of the test to the serial output. Furthermore, QEMU/FIES has a decreasing
performance with the increasing of simulation time, which results also in a larger simulation
time for a greater number of injected faults. The operation dependent faults have a shorter
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simulation time than the state faults, because state faults are detected by every memory
test with 100% DC and operation dependent faults (static and coupling faults) are not
detected by every memory test. Hence, not every march element needs to access the
fault counter variable and writes something to the serial buffer, which results in a shorter
simulation time. This is also the reason, why pseudo memory tests take the largest portion
of the whole simulation time, because they have a larger complexity on the one hand, but
also detect more faults on the other hand.

Number of state
faults

Simulation time
with serial output

Simulation time
without serial
output

0 18s 10s

240 5min 47s 5min 28s

1158 26h 30min 10s 26h 34min 22s

Number of
operation dependent
faults

Simulation time
with serial output

Simulation time
without serial
output

0 18s 8s

240 4min 7s 4min 17s

2157 10h 11min 52s 10h 15min 40s

Table 5.5: This table shows the simulation times for a fault injection experiment, which
injects a certain number of state and operation dependent faults. The results are evaluated
with the usage of a serial output and without using it.

5.3 Validation of the System Requirements

The following enumeration summarizes the system requirements and discusses how well
every single goal is satisfied.

SBSTs for ARM9 processors: Component-specific SBSTs for the ALU, adder, multi-
plier, shifter and the condition flags were developed for an ARM9-processor. Further-
more, different tests for the memory as well as for the CPU registers were developed
and evaluated according to their DC rates. The main part of the self-tests were
written in C, except the reading and writing from or to registers were implemented
in assembler code.

Verification of the SBSTs: The SBSTs were verified with the help of fault injection
experiments. For every target component (RAM and CPU-core elements), several
different kind of faults were injected to several bits within a memory-word (intra
CFs) and over different memory-words (inter CF).

IEC 61508 compliant SBSTs: Faults were injected into CPU registers and memory
cells, which covers the by IEC 61508 required DC-model for data and address lines.
The standard requires the injection of transient and permanent faults. Although, the
injection of transient faults is possible with FIES, it does not make sense, because a
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reliable detection of transient faults is only possible if the duration of these faults are
longer than the runtimes of the self-tests and hence transient faults are not injected
for the evaluation of these self-tests. For a reliable detection of transient faults, a
diverse calculation is required. Furthermore, the injection of faults in the coding
and executing path including the condition flags as well as the injection in stack
pointer (SP), linking register (LR) and program counter (PC) is possible by FIES,
but it is hard to evaluate these faults with the corresponding SBSTs. The reason for
this is that a modification of these target points means that the operating system
(SafeRTOS) enters an error handler and the SBSTs are not further executed. All
in all, this work showed that the needed DC rates for SIL3 and a Hardware Fault
Tolerance of one can be achieved with the right choice of SBSTs methods for the
CPU-core elements and the memory. Furthermore, the results proved that methods,
which are higher ranked by the IEC 61508, achieved worser results than methods,
which have a lower rank in the standard.

Fully-automated simulation: The whole simulation process can be configured before
starting the fault injection experiment, which was done by calling the execution script.
This script parsed the needed parameters and executed the configured self-tests with
the corresponding fault parameters. The script ran every self-tests subsequently
until every test was finished. The operator can simply read the corresponding files,
which contains the statistics about the fault injection experiment. Hence, a human
interaction between a fault injection experiment is unnecessary.

Simulation time: The simulation for executing all implemented tests (15 tests) three
times on a RAM size of 1MB needed less than 20 seconds. For the injection of just
a few specific faulty bits, which is needed to show if a SBST is able to detect some
kind of faults, FIES needs just a few seconds till minutes (depends on the number of
injected faults and SBST). For a greater number of injected faults, the simulation
time increases exponentially. The injection of 1158 state faults (stuck-at faults) and
the execution of the corresponding SBSTs needed a few hours. This increase of
simulation time depends on the complexity of the executed SBSTs on the one hand,
but also on the implementation of QEMU/FIES. All in all, the simulation time is still
acceptable, because fault injection experiments can run without human interactions.

Easy-to-use: A fault injection experiment does not require a modification of the QEMU
source code. The configuration of faults can be easily done by defining the necessary
fault parameters in an XML-encoded fault library file. Thus, the operator does not
need the understanding of the QEMU-implementation.
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Conclusion

This thesis gave an overview of the IEC 61508 safety standard, the test methods according
to the standard, as well as the basic architecture of hardware components for an ARM9
processor. Furthermore, this work explained the classifications of Fault Injection frameworks,
showed the corresponding advantages and disadvantages and gave some examples of fault
injection frameworks in the literature for each classification. This thesis also gave insight
into software-based self-tests for testing memory and CPU components.

An appropriate fault injection framework, called FIES (Fault Injection framework
for the Evaluation of Self-tests), which is an extension of the QEMU emulator, was
developed within the scope of this thesis. A short overview of the main parts, the basic
functionality as well as the current implementation of QEMU was given in this thesis.
Based on this knowledge about QEMU, the implementation of FIES was explained and
important relations were visualized in appropriate diagrams. FIES is able to inject transient,
permanent and intermittent faults in the instruction decoding and execution path as well
as in the condition flags of a CPU, in the CPU registers, including stack pointer, linking
register and program counter, and in the address decoding and directly in the memory
cells of RAMs. The fault injection can be triggered by time, which means that after each
instruction a fault can be injected, and by access, which means that a fault can only
be injected if the corresponding memory or register cell is accessed. This allowed us to
implement further operation-dependent faults for memory and register, which was shown
in [AAG01] that these faults are important for the simulation of shorts, open circuits and
bridging faults in a dynamic or static RAM.

Furthermore, a few suitable SBST methods were chosen from a huge pool, presented
in the literature, for testing the CPU-core elements and the memory. For testing ALU,
multiplier, adder and shifters special deterministic tests with proven minimal Diagnostic
Coverages (DCs) were used. For testing memory cells and CPU registers, two march
tests (march c- and march ss) and the Abraham test, suggested by IEC 61508 were used.
Each of these three memory tests was implemented in a transparent version, which allows
to restore the initial memory or register content after testing, in an modified version
presented in [LTW05], which uses further write/read sequences and special data patterns
for the detection of further faults, and in a pseudo transparent version, which backups the
initial content and applies a non-transparent march test with special data patterns for the
detection of further faults.

The SBSTs were executed by a real-time operation system (SafeRTOS), which ran on a
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Freescale i.MX28 EVK development board. FIES simulated this board and injected faults
into it, if necessary. The results of these fault injection experiments showed that march ss
and even a much simpler march c- memory test can perform better or at least equal results
than the by IEC 61508 best-rated Abraham test. Furthermore, the evaluation pointed out
that memory tests, especially march tests, can also be applied to registers and register
banks and they also achieved equivalent results. A further interesting insight was that
CPU-core tests applied on memory cells also achieved high DC values by indirect testing.

In summary, this thesis pointed out that by IEC 61508 worser-rated march tests can
achieve better results than the best-rated Abraham memory test and hence parts of the
safety standard, especially the testing methods, are outdated and should be revised.

6.1 Further Work

There are many ideas which could improve this work:

Support of other CPU architectures and multi-core platforms: The current im-
plementation of FIES supports only one hardware board (i.MX28 EVK) and one
CPU architecture (single-core ARM9). It would be of great interest to emulate
further hardware boards with different CPU architectures. Furthermore, it would
be interesting to extend FIES with multi-core support and evaluate the SBSTs on a
multi-core platform.

Extensions of target points: FIES/QEMU supports many hardware components and
hence FIES could be extended with further fault injection targets like communication
components, which are heavily used in embedded systems (e.g. SPI, USB, ethernet,
etc.). A fault injection into memory storages like SD-card modules or in the Direct
Memory Access (DMA) controller is also possible.

Optimization of the simulation time: A shorter simulation time is always desirable
and could be achieved for example by checking if a time-triggered fault should be
injected. If not, the call of the fault controller after each instruction could be skipped
and hence the simulation time could be decreased.

More self-tests/operating systems: A further improvement could be the usage of
other SBST methods, which run on other operating systems than SafeRTOS (maybe
also non-safety certified ones like FreeRTOS). SBSTs, which are able to test hid-
den components (pipelines, multiplexer, etc.) directly, could further improve the
diagnostic coverage of a processor core.

SBST runtime evaluation: FIES/QEMU operates on a high abstraction level of the
hardware and is optimized for a fast simulation. Hence, it is not possible to say,
how much time a certain SBST needs on a real hardware. It would be interesting
to implement the SBSTs on real hardware board, measure the execution time and
optimize the SBST if necessary.
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FIES Source Code

Listing A.1: Parameter definitions for the fault reload command.

{
. name = ” f a u l t r e l o a d ” ,
. a rg s type = ” f i l ename : s ” ,
. params = ” f i l e ” ,
. he lp = ” load the con f i g f i l e ” ,
. mhandler . cmd = hmp fau l t re load ,

} ,

STEXI
@item f a u l t r e l o a d @var{ f i l e }
@findex f a u l t r e l o a d
load the con f i g f i l e from @var{ f i l e } .
ETEXI

Listing A.2: Definition of the user-defined data types in JSON format

##
# @FaultInfo :
#
# A d e s c r i p t i o n o f the f a u l t s .
#
# @component : d e f i n e s the component , where a f a u l t should be i n j e c t e d
#
# @mode : d e f i n e s which f a u l t should be i n j e c t e d
#
# @target : d e f i n e s the ta rg e t po int
#
# @type : d e f i n e s i f the f a u l t i s permanent , t r a n s i e n t or in te rmi t t end
#
# @params . mask : d e f i n e s b i t s , which should be changed
#
# @params . address : the address o f the bit , which should be changed
#
# @params . i n s t r u c t i o n : d e f i n e s the address o f the rep laced i n s t r u c t i o n
#
# @ i s a c t i v e : shows i f the f a u l t i s cu r r en t l y a c t i v e
#
# Since : 1 . 7 . 0
##
{ ’ type ’ : ’ Fault In fo ’ ,

’ data ’ : { ’ params ’ : { ’mask ’ : ’ int ’ , ’ address ’ : ’ int ’ , ’ c f addr e s s ’ : ’ int ’ ,
’ i n s t ru c t i on ’ : ’ int ’ , ’ s e t b i t ’ : ’ int ’} ,

’ component ’ : ’ s t r ’ ,
’mode ’ : ’ s t r ’ ,
’ target ’ : ’ s t r ’ ,
’ type ’ : ’ s t r ’ ,
’ duration ’ : ’ s t r ’ ,
’ i n t e r va l ’ : ’ s t r ’ ,
’ id ’ : ’ int ’ ,
’ t r i g g e r ’ : ’ s t r ’ ,
’ timer ’ : ’ s t r ’ ,
’ i s a c t i v e ’ : ’ int ’} }
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Listing A.3: Definition of the info faults command in JSON format

##
# @query−f a u l t s :
#
# Returns the f a u l t in fo rmat ions .
#
# Returns : A @Fault In foLi s t ob j e c t d e s c r i b i ng the i n j e c t e d f a u l t s .
#
# Since : 1 . 7 . 0
##
{ ’command ’ : ’ query−f a u l t s ’ , ’ returns ’ : ’ Fau l t In foL i s t ’ }

Listing A.4: Source code for qmp query faults(...)

Fau l t I n f oL i s t ∗ qmp query fau l t s ( Error ∗∗ e r r )
{

Fau l t I n f oL i s t ∗head = NULL, ∗ cur i tem = NULL;
Fau l tL i s t ∗ f a u l t ;
int element = 0 ;

for ( element = 0 ; element < getNumFaultListElements ( ) ; element++)
{

Fau l t I n f oL i s t ∗ i n f o ;
f a u l t = getFaultListElement ( element ) ;

i n f o = g mal loc0 ( s izeof (∗ i n f o ) ) ;
in fo−>value = g mal loc0 ( s izeof (∗ in fo−>value ) ) ;
in fo−>value−>component = g strdup ( f au l t−>component ) ;
. . .
in fo−>value−>i s a c t i v e = fau l t−>i s a c t i v e ;

i f ( ! cur i tem )
head = cur i tem = i n f o ;

else
{

cur item−>next = i n f o ;
cur i tem = i n f o ;

}
}

return head ;
}

Listing A.5: Source code for qmp query faults(...)

void hmp in f o f au l t s ( Monitor ∗mon, const QDict ∗ qd i c t )
{

// i n i t i a l i z i n g o f v a r i a b l e s
. . .

f a u l t l i s t = qmp query fau l t s (NULL) ;

for ( f a u l t = f a u l t l i s t ; f a u l t ; f a u l t = fau l t−>next )
{

mon i t o r p r i n t f (mon , ” id : %d\n” , ( int ) f au l t−>value−>id ) ;
// ou tpu t o f a l l v a r i a b l e s and s t a t i s t i c s
. . .
mon i t o r p r i n t f (mon , ” a c t i v e : %d\n” , ( int ) f au l t−>value−>i s a c t i v e ) ;

}

i f ( f a u l t l i s t == NULL)
return ;

// in− and ou tpu t o f v a r i a b l e s , computat ion o f f a u l t cove rage
. . .

q a p i f r e e F a u l t I n f o L i s t ( f a u l t l i s t ) ;
}

Listing A.6: bash script for the automatic testing

#!/ b in / bash

i f [ ”$#” −ne 1 ]
then

echo ”Usage : . / s t a r tTe s t s . sh <path−to−kerne l−and−f au l t−l i b r a ry−con f ig−f i l e s >”
exit 1

f i

DATA COLLECTOR PATH=” d a t a c o l l e c t o r . txt ”
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CONFIG FILE=$1

counter=1
while read l i n e
do

KERNEL PATH=$ (echo −e ” $ l i n e \n” | cut −f 1 −d , )
FAULT LIBRARY PATH=$ (echo −e ” $ l i n e \n” | cut −f 2 −d , )

FAULT COUNTER ADDRESS=$ ( r e a d e l f $KERNEL PATH −s | grep f a u l t c o u n t e r )
FAULT COUNTER ADDRESS=$ (echo $FAULT COUNTER ADDRESS | cut −f 2 −d : )
FAULT COUNTER ADDRESS=$ (echo $FAULT COUNTER ADDRESS | cut −f 1 −d ’ ’ )
echo ”FAULT COUNTER ADDRESS: $FAULT COUNTER ADDRESS”

SBST CYCLE COUNT=$ ( r e a d e l f $KERNEL PATH −s | grep s b s t c y c l e c o u n t )
SBST CYCLE COUNT=$ (echo $SBST CYCLE COUNT | cut −f 2 −d : )
SBST CYCLE COUNT=$ (echo $SBST CYCLE COUNT | cut −f 1 −d ’ ’ )
echo ”SBST CYCLE COUNT: $SBST CYCLE COUNT”

qemu−system−arm −M imx28evk −m 128 −ke rne l $KERNEL PATH − f i \
$FAULT COUNTER ADDRESS,$FAULT LIBRARY PATH,$SBST CYCLE COUNT
DATA COLLECTOR OUT=” d a t a c o l l e c t o r $ c o u n t e r . txt ”
cat $DATA COLLECTOR PATH > $DATA COLLECTOR OUT
counter=$ ( ( counter +1))

done <$1

echo ” Fault i n j e c t i o n experiment f i n i s h e d ”

Listing A.7: An example for a fault configration file with XML-encoding

<?xml version=” 1.0 ” encoding=”UTF−8”?>

< i n j e c t i o n>
< !−−DRDF0, access−t r i g g e r e d , permanent r e g i s t e r c e l l f a u l t−−>
< f a u l t>

<id>1</ id>
<component>REGISTER</component>
<t a r g e t>REGISTER CELL</ ta rg e t>
<mode>DRDF0</mode>
<t r i g g e r>ACCESS</ t r i g g e r>
<type>PERMANENT</ type>
<params>

<address>0xa</ address>
<mask>0x00FF</mask>

</params>
</ f a u l t>

< !−− time−t r i g g e r e d , permanent c ond i t i o n f l a g (NF) f a u l t−−>
< f a u l t>

<id>2</ id>
<component>CPU</component>
<t a r g e t>CONDITION FLAGS</ ta rg e t>
<mode>NF</mode>
<t r i g g e r>TIME</ t r i g g e r>
<type>PERMANENT</ type>
<params>

<s e t b i t>0x0</ s e t b i t>
</params>

</ f a u l t>

< !−−Access−t r i g g e r e d , permanent in t ra−c oup l i n g s t a t e f a u l t in t h e memory c e l l−−>
< f a u l t>

<id>3</ id>
<component>RAM</component>
<t a r g e t>MEMORY CELL</ ta rg e t>
<mode>CFST00</mode>
<t r i g g e r>ACCESS</ t r i g g e r>
<type>PERMANENT</ type>
<params>

<address>0x40200ab6</ address>
<c f a d d r e s s>0x40200ab6</ c f a d d r e s s>
<mask>0xF003</mask>
<s e t b i t>0x1</ s e t b i t>

</params>
</ f a u l t>

< !−−PC−t r i g g e r e d , i n s t r u c t i o n e x e cu t i on f a u l t , which i n j e c t s a NOP−−>
< f a u l t>

<id>4</ id>
<component>CPU</component>
<t a r g e t>INSTRUCTION EXECUTION</ ta rg e t>
<mode>NEW VALUE</mode>
<t r i g g e r>PC</ t r i g g e r>
<params>

<address>0x40003b8c</ address>
< i n s t r u c t i o n>0xDEADBEEF</ i n s t r u c t i o n>

</params>
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</ f a u l t>

< !−−time−t r i g g e r e d , i n t e rm i t t e n t b i t− f l i p f a u l t in t h e memory c e l l−−>
< f a u l t>

<id>5</ id>
<component>RAM</component>
<t a r g e t>MEMORY CELL</ ta rg e t>
<mode>BIT−FLIP</mode>
<t r i g g e r>TIME</ t r i g g e r>
<type>INTERMITTEND</ type>
<t imer>1000MS</ t imer>
<durat ion>20000MS</ durat ion>
< i n t e r v a l>2000MS</ i n t e r v a l>
<params>

<s e t b i t>0x1</ s e t b i t>
</params>

</ f a u l t>

< !−−time−t r i g g e r e d , t r a n s i e n t i n t e r−c oup l i n g read d i s t u r b f a u l t−−>
< f a u l t>

<id>6</ id>
<component>RAM</component>
<t a r g e t>MEMORY CELL</ ta rg e t>
<mode>CFRD00</mode>
<t r i g g e r>ACCESS</ t r i g g e r>
<type>TRANSIENT</ type>
<t imer>1000MS</ t imer>
<durat ion>10000MS</ durat ion>
<params>

<address>0x40201688</ address>
<c f a d d r e s s>0x40003ba8</ c f a d d r e s s>
<mask>0xFF</mask>

</params>
</ f a u l t>

</ i n j e c t i o n>
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SBST Source Code

Listing B.1: Code for creating a SBST task in SafeRTOS

/∗ Def ine t h e p r i o r i t y a t which t h e t a s k i s to be c r e a t e d . ∗/
#define SBST TASK PRIORITY ( unsigned portBASE TYPE )1
/∗ Dec lare t h e TCB o f t h e t a s k t h a t i s t o be c r e a t e d and t e l l
t h e l i n k e r to l o c a t e i t in a s e c t i o n r e s e r v e d f o r k e r n e l a c c e s s on l y . ∗/
stat ic xTCB xSBSTTaskTCB a t t r i b u t e ( ( s e c t i o n ( ” lnkUserDefKernelData ” ) ) ) = { 0 } ;
/∗ Dec lare r e f e r e n c e to l i n k e r d e f i n e d symbo l s . ∗/
extern unsigned portBASE TYPE lnkStartTaskGroup0 ;
/∗ Dec lare t h e b u f f e r to be used by t he t a s k ’ s s t a c k and ensure t h a t
i t i s l o c a t e d in t h e memory r e g i on s e t up by t he l i n k e r . ∗/
#define SBST STACK SIZE 4096
stat ic signed portCHAR cSBSTTaskStack [ SBST STACK SIZE ]

a t t r i b u t e ( ( s e c t i o n ( ” lnkTaskGroup0” ) , a l i gned ( 8 ) ) ) = { 0 } ;

stat ic xTaskParameters createTransMarchCMinus ( void )
{

xTaskParameters xNewTaskParameters =
{

WOMTransparentMarchCMinus ,
/∗ The f un c t i o n t h a t implements t h e t a s k b e in g c r e a t e d . ∗/
( signed portCHAR ∗ ) ” Transparent March C−” ,
/∗ The name o f t h e t a s k b e in g c r e a t e d . ∗/
&xSBSTTaskTCB,
/∗ The TCB f o r t h e t a s k . ∗/
cSBSTTaskStack ,
/∗ The b u f f e r a l l o c a t e d f o r use as t h e t a s k s t a c k . ∗/
SBST STACK SIZE ,
/∗ The s i z e o f t h e b u f f e r a l l o c a t e d f o r use as t h e t a s k s t a c k . ∗/
NULL,
/∗ The t a s k parameter w i l l be i n i t i a l i s e d l a t e r . ∗/
SBST TASK PRIORITY,
/∗ The p r i o r i t y to be a s s i g n e d to t h e t a s k b e in g c r e a t e d . ∗/
{

portUNPRIVILEGED TASK,
{
{ ( unsigned portLONG ) & lnkStartTaskGroup0 ,

mmuSMALLEST ACTUAL REGION SIZE,
mmuACCESS PRIV RW USER RW, mmuCACHE NOCACHE NOBUFFER,

} ,
{ 0UL, 0UL, 0UL, 0UL } ,
{ 0UL, 0UL, 0UL, 0UL } ,
{ 0UL, 0UL, 0UL, 0UL }

}
}

} ;

return xNewTaskParameters ;
}

// . . . xTaskParameters f o r o t h e r SBSTs . . .

void xCreateSBSTTask ( SBSTMethod method )
{

xTaskParameters xNewTaskParameters ;

switch ( method )
{
case MEMORY TRANS MARCH C MINUS:

xNewTaskParameters = createTransMarchCMinus ( ) ;
break ;
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// . . . o t h e r t e s t s . . .

default :
vDebugUartPutString ( ”Unimplemented SBST!\ r\n” ) ;
break ;

}

i f ( xTaskCreate ( &xNewTaskParameters , ( xTaskHandle ∗)NULL ) != pdPASS )
vDebugUartPutString ( ”Task c r e a t i on f a i l e d \ r\n” ) ;

else
vDebugUartPutString ( ”Task c r e a t i on s u c c e s s f u l \ r\n” ) ;

}

B.1 Pseudo Transparent March C- Test

Listing B.2: Code for pseudo transparent MarchC-

stat ic unsigned short d a t a p a t t e r n s c f i d [NUMB OF CFID PATTERN] =
{0x0000 , 0xFFFF, 0x0000 , 0x5555 ,
0xAAAA, 0x5555 , 0x3333 , 0xCCCC,
0x3333 , 0x0F0F , 0x00FF , 0xF0F0 ,
0xFF00 , 0x0FFF , 0x000F } ;

stat ic unsigned short d a t a p a t t e r n s c f d s t [NUMB OF CFDST PATTERN] =
{0x0000 , 0xFFFF, 0x0000 , 0x5555 ,

0xAAAA, 0x5555 , 0x3333 , 0xCCCC,
0x3333 , 0x0F0F , 0x00FF , 0xF0F0 ,
0xFF00 , 0x0FFF , 0x000F } ;

stat ic void MarchCMinus ( int pattern )
{

// . . . i n i t i a l i z i n g . . .

/∗ M0 ∗/
for ( o f f s e t = 0 ; o f f s e t < MEMORY REGION SIZE; o f f s e t ++)

baseAddress [ o f f s e t ] = pattern ;

/∗ M1 ∗/
for ( o f f s e t = 0 ; o f f s e t < MEMORY REGION SIZE; o f f s e t ++)
{

i f ( baseAddress [ o f f s e t ] != (unsigned short ) pattern )
{

// increment f a u l t coun te r and v i s u a l i z e f a u l t
}
baseAddress [ o f f s e t ] = ˜ pattern ;

}

/∗ M2 ∗/
for ( o f f s e t = 0 ; o f f s e t < MEMORY REGION SIZE; o f f s e t ++)
{

i f ( baseAddress [ o f f s e t ] != (unsigned short )˜ pattern )
{

// increment f a u l t coun te r and v i s u a l i z e f a u l t
}
baseAddress [ o f f s e t ] = pattern ;

}

/∗ M3 ∗/
for ( o f f s e t = (MEMORY REGION SIZE − 1 ) ; o f f s e t >= 0; o f f s e t −−)
{

i f ( baseAddress [ o f f s e t ] != (unsigned short ) pattern )
{

// increment f a u l t coun te r and v i s u a l i z e f a u l t ;
}
baseAddress [ o f f s e t ] = ˜ pattern ;

}

/∗ M4 ∗/
for ( o f f s e t = (MEMORY REGION SIZE − 1 ) ; o f f s e t >= 0; o f f s e t −−)
{

i f ( baseAddress [ o f f s e t ] != (unsigned short )˜ pattern )
{

// increment f a u l t coun te r and v i s u a l i z e f a u l t
}
baseAddress [ o f f s e t ] = pattern ;

}

/∗ M5 ∗/
for ( o f f s e t = (MEMORY REGION SIZE − 1 ) ; o f f s e t >= 0; o f f s e t −−)
{
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i f ( baseAddress [ o f f s e t ] != (unsigned short ) pattern )
{

// increment f a u l t coun te r and v i s u a l i z e f a u l t
}

}
}

stat ic void CFdsTest (void )
{

// . . . i n i t i a l i z i n g . . .

/∗ M0 ∗/
for ( o f f s e t = (MEMORY REGION SIZE − 1 ) ; o f f s e t >= 0; o f f s e t −−)
{

baseAddress [ o f f s e t ] = d a t a p a t t e r n s c f d s [ 0 ] ;
baseAddress [ o f f s e t ] = d a t a p a t t e r n s c f d s [ 1 ] ;
i f ( baseAddress [ o f f s e t ] != d a t a p a t t e r n s c f d s [ 1 ] )
{

// increment f a u l t coun te r and v i s u a l i z e f a u l t
}

}

do
{

/∗ r−w−r ( i n i t i a l i = 1) ∗/
for ( o f f s e t = 0 ; o f f s e t < MEMORY REGION SIZE; o f f s e t ++)
{

i f ( baseAddress [ o f f s e t ] != d a t a p a t t e r n s c f d s [ i ] )
{

// increment f a u l t coun te r and v i s u a l i z e f a u l t
}

baseAddress [ o f f s e t ] = d a t a p a t t e r n s c f d s [ i +1] ;

i f ( baseAddress [ o f f s e t ] != d a t a p a t t e r n s c f d s [ i +1])
{

// increment f a u l t coun te r and v i s u a l i z e f a u l t
}

}

/∗ r−w−w−r ∗/
for ( o f f s e t = (MEMORY REGION SIZE − 1 ) ; o f f s e t >= 0; o f f s e t −−)
{

i f ( baseAddress [ o f f s e t ] != d a t a p a t t e r n s c f d s [ i +1])
{

// increment f a u l t coun te r and v i s u a l i z e f a u l t
}

baseAddress [ o f f s e t ] = d a t a p a t t e r n s c f d s [ i +2] ;
baseAddress [ o f f s e t ] = d a t a p a t t e r n s c f d s [ i +3] ;

i f ( baseAddress [ o f f s e t ] != d a t a p a t t e r n s c f d s [ i +3])
{

// increment f a u l t coun te r and v i s u a l i z e f a u l t
}

}

i += 3 ;
}while ( i < (NUMB OF CFDST PATTERN − 4 ) ) ;

/∗ r−w−r ∗/
for ( o f f s e t = 0 ; o f f s e t < MEMORY REGION SIZE; o f f s e t ++)
{

i f ( baseAddress [ o f f s e t ] != d a t a p a t t e r n s c f d s [ i ] )
{

// increment f a u l t coun te r and v i s u a l i z e f a u l t
}

baseAddress [ o f f s e t ] = d a t a p a t t e r n s c f d s [ i +1] ;

i f ( baseAddress [ o f f s e t ] != d a t a p a t t e r n s c f d s [ i +1])
{

// increment f a u l t coun te r and v i s u a l i z e f a u l t
}

}

/∗ Mend ∗/
for ( o f f s e t = (MEMORY REGION SIZE − 1 ) ; o f f s e t >= 0; o f f s e t −−)
{

i f ( baseAddress [ o f f s e t ] != d a t a p a t t e r n s c f d s [ i +1])
{

// increment f a u l t coun te r and v i s u a l i z e f a u l t
}

}
}

void WOMPseudoTransparentMarchCMinus ( void ∗ pvParameters )
{
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// . . . i n i t i a l i z i n g and sa v i n g i n t i a l memory con t en t . . .

while (1 )
{

for ( pattern num = 0 ; pattern num < NUMB OF CFID PATTERN; pattern num++)
MarchCMinus ( d a t a p a t t e r n s c f i d [ pattern num ] ) ;

for ( pattern num = 0 ; pattern num < NUMB OF CFDST PATTERN; pattern num++)
CFdsTest ( ) ;

// . . . r e s t o r i n g i n t i a l memory con t en t and p r epa r in g end o f t e s t . . .
}

}

B.2 Transparent March SS Test with Multiple Input Signa-
ture Register

Listing B.3: Code for transparent MarchSS with the usage of a Multiple Input Signature
Register (MISR based on the implementation in [PKK11])

stat ic unsigned short c u r r e n t s i g n a t u r e = 42 ;

stat ic void misr encode (unsigned short value )
{

unsigned short carry ;

carry = ( c u r r e n t s i g n a t u r e ˆ
( c u r r e n t s i g n a t u r e >> 2) ˆ
( c u r r e n t s i g n a t u r e >> 3) ˆ
( c u r r e n t s i g n a t u r e >> 5) ) & 1 ;

c u r r e n t s i g n a t u r e = c u r r e n t s i g n a t u r e >> 1 ;
c u r r e n t s i g n a t u r e = c u r r e n t s i g n a t u r e ˆ value ;
c u r r e n t s i g n a t u r e = c u r r e n t s i g n a t u r e ˆ ( carry << 15 ) ;

}

stat ic void misr decode (unsigned short value )
{

unsigned short carry ;

c u r r e n t s i g n a t u r e = c u r r e n t s i g n a t u r e ˆ value ;
carry = ( ( c u r r e n t s i g n a t u r e >> 15) ˆ

( c u r r e n t s i g n a t u r e >> 4) ˆ
( c u r r e n t s i g n a t u r e >> 2) ˆ
( c u r r e n t s i g n a t u r e >> 1) ) & 1 ;

c u r r e n t s i g n a t u r e = c u r r e n t s i g n a t u r e << 1 ;
c u r r e n t s i g n a t u r e = c u r r e n t s i g n a t u r e | carry ;

}

stat ic void TSMarchSS( const unsigned short ∗ i n i t i a l memory content )
{

// . . . i n i t i a l i z i n g . . .

/∗ M0 ∗/
for ( o f f s e t = 0 ; o f f s e t < MEMORY REGION SIZE; o f f s e t ++)

misr encode (˜ baseAddress [ o f f s e t ] ) ;

/∗ M1 ∗/
for ( o f f s e t = 0 ; o f f s e t < MEMORY REGION SIZE; o f f s e t ++)
{

misr encode ( baseAddress [ o f f s e t ] ) ;
misr encode ( baseAddress [ o f f s e t ] ) ;
baseAddress [ o f f s e t ] = baseAddress [ o f f s e t ] ;
misr encode ( baseAddress [ o f f s e t ] ) ;
baseAddress [ o f f s e t ] = ˜ baseAddress [ o f f s e t ] ;

}

/∗ M2 ∗/
for ( o f f s e t = 0 ; o f f s e t < MEMORY REGION SIZE; o f f s e t ++)
{

misr encode ( baseAddress [ o f f s e t ] ) ;
misr encode ( baseAddress [ o f f s e t ] ) ;
baseAddress [ o f f s e t ] = baseAddress [ o f f s e t ] ;
misr encode ( baseAddress [ o f f s e t ] ) ;
baseAddress [ o f f s e t ] = ˜ baseAddress [ o f f s e t ] ;

}
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/∗ M3 ∗/
for ( o f f s e t = (MEMORY REGION SIZE − 1 ) ; o f f s e t >= 0; o f f s e t −−)
{

misr decode ( baseAddress [ o f f s e t ] ) ;
misr decode ( baseAddress [ o f f s e t ] ) ;
baseAddress [ o f f s e t ] = baseAddress [ o f f s e t ] ;
misr decode ( baseAddress [ o f f s e t ] ) ;
baseAddress [ o f f s e t ] = ˜ baseAddress [ o f f s e t ] ;

}

/∗ M4 ∗/
for ( o f f s e t = (MEMORY REGION SIZE − 1 ) ; o f f s e t >= 0; o f f s e t −−)
{

misr decode ( baseAddress [ o f f s e t ] ) ;
misr decode ( baseAddress [ o f f s e t ] ) ;
baseAddress [ o f f s e t ] = baseAddress [ o f f s e t ] ;
misr decode ( baseAddress [ o f f s e t ] ) ;
baseAddress [ o f f s e t ] = ˜ baseAddress [ o f f s e t ] ;

}

/∗ M5 ∗/
for ( o f f s e t = (MEMORY REGION SIZE − 1 ) ; o f f s e t >= 0; o f f s e t −−)

misr decode ( baseAddress [ o f f s e t ] ) ;

i f ( c u r r e n t s i g n a t u r e != PRECOMPUTED MARCHSS SIGNATURE)
{

// s i g n a l i z i n g f a u l t occurence
}
else

c u r r e n t s i g n a t u r e = 42 ;
}

void WOMTransparentMarchSS( void ∗ pvParameters )
{

// . . . i n i t i a l i z i n g . . .

while (1 )
{

TSMarchSS( in i t i a l memory content ) ;

// . . . p r epa r in g end o f t e s t . . .
}

}

B.3 TWM-TA-modified Abraham Test

Listing B.4: Code for TWM-TA-modified Abraham Test

stat ic void TSAbraham( const unsigned short ∗ i n i t i a l memory content )
{

// . . . i n i t i a l i z i n g . . .

/∗ M1 ∗/
for ( o f f s e t = 0 ; o f f s e t < MEMORY REGION SIZE; o f f s e t ++)
{

i f ( baseAddress [ o f f s e t ] != (unsigned short ) i n i t i a l memory content [ o f f s e t ] )
{
// increment f a u l t coun te r and v i s u a l i z e f a u l t
}
baseAddress [ o f f s e t ] = ˜ baseAddress [ o f f s e t ] ;

}

/∗ M2 ∗/
for ( o f f s e t = (MEMORY REGION SIZE − 1 ) ; o f f s e t >= 0; o f f s e t −−)
{

i f ( baseAddress [ o f f s e t ] != (unsigned short ) ˜ in i t i a l memory content [ o f f s e t ] )
{
// increment f a u l t coun te r and v i s u a l i z e f a u l t
}

}

/∗ M3 ∗/
for ( o f f s e t = 0 ; o f f s e t < MEMORY REGION SIZE; o f f s e t ++)
{

i f ( baseAddress [ o f f s e t ] != (unsigned short ) ˜ in i t i a l memory content [ o f f s e t ] )
{
// increment f a u l t coun te r and v i s u a l i z e f a u l t
}
baseAddress [ o f f s e t ] = ˜ baseAddress [ o f f s e t ] ;

}
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/∗ M4 ∗/
for ( o f f s e t = (MEMORY REGION SIZE − 1 ) ; o f f s e t >= 0; o f f s e t −−)
{

i f ( baseAddress [ o f f s e t ] != (unsigned short ) i n i t i a l memory content [ o f f s e t ] )
{
// increment f a u l t coun te r and v i s u a l i z e f a u l t
}

}

/∗ M5 ∗/
for ( o f f s e t = (MEMORY REGION SIZE − 1 ) ; o f f s e t >= 0; o f f s e t −−)
{

i f ( baseAddress [ o f f s e t ] != (unsigned short ) i n i t i a l memory content [ o f f s e t ] )
{
// increment f a u l t coun te r and v i s u a l i z e f a u l t
}
baseAddress [ o f f s e t ] = ˜ baseAddress [ o f f s e t ] ;

}

/∗ M6 ∗/
for ( o f f s e t = 0 ; o f f s e t < MEMORY REGION SIZE; o f f s e t ++)
{

i f ( baseAddress [ o f f s e t ] != (unsigned short ) ˜ in i t i a l memory content [ o f f s e t ] )
{
// increment f a u l t coun te r and v i s u a l i z e f a u l t
}

}

/∗ M7 ∗/
for ( o f f s e t = (MEMORY REGION SIZE − 1 ) ; o f f s e t >= 0; o f f s e t −−)
{

i f ( baseAddress [ o f f s e t ] != (unsigned short ) ˜ in i t i a l memory content [ o f f s e t ] )
{
// increment f a u l t coun te r and v i s u a l i z e f a u l t
}
baseAddress [ o f f s e t ] = ˜ baseAddress [ o f f s e t ] ;

}

/∗ M8 ∗/
for ( o f f s e t = 0 ; o f f s e t < MEMORY REGION SIZE; o f f s e t ++)
{

i f ( baseAddress [ o f f s e t ] != (unsigned short ) i n i t i a l memory content [ o f f s e t ] )
{
// increment f a u l t coun te r and v i s u a l i z e f a u l t
}

}

/∗ M9 ∗/
for ( o f f s e t = 0 ; o f f s e t < MEMORY REGION SIZE; o f f s e t ++)
{

i f ( baseAddress [ o f f s e t ] != (unsigned short ) i n i t i a l memory content [ o f f s e t ] )
{
// increment f a u l t coun te r and v i s u a l i z e f a u l t
}
baseAddress [ o f f s e t ] = ˜ baseAddress [ o f f s e t ] ;
baseAddress [ o f f s e t ] = ˜ baseAddress [ o f f s e t ] ;

}

/∗ M10 ∗/
for ( o f f s e t = (MEMORY REGION SIZE − 1 ) ; o f f s e t >= 0; o f f s e t −−)
{

i f ( baseAddress [ o f f s e t ] != (unsigned short ) i n i t i a l memory content [ o f f s e t ] )
{
// increment f a u l t coun te r and v i s u a l i z e f a u l t
}

}

/∗ M11 ∗/
for ( o f f s e t = (MEMORY REGION SIZE − 1 ) ; o f f s e t >= 0; o f f s e t −−)
{

i f ( baseAddress [ o f f s e t ] != (unsigned short ) i n i t i a l memory content [ o f f s e t ] )
{
// increment f a u l t coun te r and v i s u a l i z e f a u l t
}
baseAddress [ o f f s e t ] = ˜ baseAddress [ o f f s e t ] ;
baseAddress [ o f f s e t ] = ˜ baseAddress [ o f f s e t ] ;

}

/∗ M12 ∗/
for ( o f f s e t = 0 ; o f f s e t < MEMORY REGION SIZE; o f f s e t ++)
{

i f ( baseAddress [ o f f s e t ] != (unsigned short ) i n i t i a l memory content [ o f f s e t ] )
{
// increment f a u l t coun te r and v i s u a l i z e f a u l t
}

}

/∗ M13 ∗/
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for ( o f f s e t = 0 ; o f f s e t < MEMORY REGION SIZE; o f f s e t ++)
{

baseAddress [ o f f s e t ] = ˜ baseAddress [ o f f s e t ] ;
}

/∗ M14 ∗/
for ( o f f s e t = 0 ; o f f s e t < MEMORY REGION SIZE; o f f s e t ++)
{

i f ( baseAddress [ o f f s e t ] != (unsigned short ) ˜ in i t i a l memory content [ o f f s e t ] )
{
// increment f a u l t coun te r and v i s u a l i z e f a u l t
}
baseAddress [ o f f s e t ] = ˜ baseAddress [ o f f s e t ] ;
baseAddress [ o f f s e t ] = ˜ baseAddress [ o f f s e t ] ;

}

/∗ M15 ∗/
for ( o f f s e t = (MEMORY REGION SIZE − 1 ) ; o f f s e t >= 0; o f f s e t −−)
{

i f ( baseAddress [ o f f s e t ] != (unsigned short ) ˜ in i t i a l memory content [ o f f s e t ] )
{
// increment f a u l t coun te r and v i s u a l i z e f a u l t
}

}

/∗ M16 ∗/
for ( o f f s e t = (MEMORY REGION SIZE − 1 ) ; o f f s e t >= 0; o f f s e t −−)
{

i f ( baseAddress [ o f f s e t ] != (unsigned short ) ˜ in i t i a l memory content [ o f f s e t ] )
{
// increment f a u l t coun te r and v i s u a l i z e f a u l t
}
baseAddress [ o f f s e t ] = ˜ baseAddress [ o f f s e t ] ;
baseAddress [ o f f s e t ] = ˜ baseAddress [ o f f s e t ] ;

}

/∗ M17 ∗/
for ( o f f s e t = 0 ; o f f s e t < MEMORY REGION SIZE; o f f s e t ++)
{

i f ( baseAddress [ o f f s e t ] != (unsigned short ) ˜ in i t i a l memory content [ o f f s e t ] )
{
// increment f a u l t coun te r and v i s u a l i z e f a u l t
}
baseAddress [ o f f s e t ] = ˜ baseAddress [ o f f s e t ] ;

}
}

stat ic void ATMarch( const unsigned short ∗ i n i t i a l memory content )
{

short pat te rns [ 4 ] = {0x5555 , 0x3333 , 0x71C7 , 0x0F0F } ;
// . . . i n i t i a l i z i n g . . .

for ( i = 0 ; i < 4 ; i++)
{

pattern = patte rns [ i ] ;

/∗ M1 ∗/
for ( o f f s e t = 0 ; o f f s e t < MEMORY REGION SIZE; o f f s e t ++)
{

baseAddress [ o f f s e t ] = in i t i a l memory content [ o f f s e t ] ˆ pattern ;
baseAddress [ o f f s e t ] = in i t i a l memory content [ o f f s e t ] ˆ ˜ pattern ;

i f ( baseAddress [ o f f s e t ] != (unsigned short ) ( i n i t i a l memory content [ o f f s e t ] ˆ ˜ pattern ) )
{
// increment f a u l t coun te r and v i s u a l i z e f a u l t
}

baseAddress [ o f f s e t ] = in i t i a l memory content [ o f f s e t ] ˆ pattern ;
i f ( baseAddress [ o f f s e t ] != (unsigned short ) ( i n i t i a l memory content [ o f f s e t ] ˆ pattern ) )
{
// increment f a u l t coun te r and v i s u a l i z e f a u l t
}

}

/∗ M2 ∗/
for ( o f f s e t = 0 ; o f f s e t < MEMORY REGION SIZE; o f f s e t ++)

baseAddress [ o f f s e t ] = in i t i a l memory content [ o f f s e t ] ;
}

}

void WOM TWM TA Abraham( void ∗ pvParameters )
{

// . . . i n i t i a l i z i n g and sa v i n g i n t i a l memory con t en t . . .

while (1 )
{

TSAbraham( in i t i a l memory content ) ;
ATMarch( in i t i a l memory content ) ;
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// . . . r e s t o r i n g i n t i a l memory con t en t and p r epa r in g end o f t e s t . . .
}

}

B.4 CPU-core Tests

Listing B.5: Code for CPU-core element tests (adpated from [Pre13])

// . . .

int l o g i c t e s t s u b ( volat i le unsigned int ∗x , volat i le unsigned int ∗y , volat i le unsigned int ∗z )
{

unsigned int a = 0 , b = 0 , c = 0 , d = 0 , e = 0 , f = 0 ;

a = ∗x & ∗y ;
b = ∗x | ∗y ;
c = a ˆ b ;

i f ( c != ∗z )
return −1;

d = ∗x ˆ ∗y ;

i f (d != ∗z )
return −1;

e = ˜(∗x ˆ ∗y ) ;
f = ˜(∗ z ) ;

i f ( e != f )
return −1;

return 42 ;
}

void CPUCoreTestALU( void ∗ pvParameters )
{

// . . . i n i t i a l i z i n g . . .

while (1 )
{

x = 0x00000000 ;
y = 0x00000000 ;
z = 0x00000000 ;
r e tu rn va lu e = re tu rn va lue + l o g i c t e s t s u b (&x , &y , &z ) ;

x = 0 x f f f f f f f f ;
y = 0 x f f f f f f f f ;
z = 0x00000000 ;
r e tu rn va lu e = re tu rn va lue + l o g i c t e s t s u b (&x , &y , &z ) ;

x = 0x00000000 ;
y = 0 x f f f f f f f f ;
z = 0 x f f f f f f f f ;
r e tu rn va lu e = re tu rn va lue + l o g i c t e s t s u b (&x , &y , &z ) ;

x = 0 x f f f f f f f f ;
y = 0x00000000 ;
z = 0 x f f f f f f f f ;
r e tu rn va lu e = re tu rn va lue + l o g i c t e s t s u b (&x , &y , &z ) ;

i f ( r e tu rn va lue != (4 ∗ 42))
{

// increment f a u l t coun te r and v i s u a l i z e f a u l t
}

// . . . p r epa r in g end o f t e s t . . .
}

}

void CPUCoreTestDividerShifter ( void ∗ pvParameters )
{

// . . . i n i t i a l i z i n g . . .

while (1 )
{

x = 1 ;
y = 1 ;
z = 0 ;

while ( z != 32)
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{
x <<= 1;
y ∗= 2;
z++;

i f ( x != y)
// increment f a u l t coun te r and v i s u a l i z e f a u l t

}

while ( z != 0)
{

x >>= 1;
y /= 2 ;
z−−;

i f ( x != y)
// increment f a u l t coun te r and v i s u a l i z e f a u l t

}
// . . . p r epa r in g end o f t e s t . . .
}

}

stat ic i n l i n e unsigned int r ead cps r (void )
{

unsigned int cpsr ;

asm volat i le ( ” svc 3\n\ t ”
”mrs %0, CPSR\n\ t ”
” svc 4\n\ t ”

: ”=r ” ( cpsr ) : ) ;

return cpsr ;
}

stat ic i n l i n e void w r i t e c p s r (unsigned int c p s r v a l )
{

asm volat i le ( ” svc 3\n\ t ”
”msr cpsr , %0\n\ t ”
” svc 4\n\ t ”
: : ” r ” ( c p s r v a l ) ) ;

}

void CPUCoreTestConditionFlags ( void ∗ pvParameters )
{

// . . . i n i t i a l i z i n g . . .

while (1 )
{

/∗
∗ s e t CF and ZF ; r e s e t NF, QF and VF
∗/

asm volat i le (
” l d r r1 , =0 x f f f f f f f f \n\ t ”
” l d r r2 , =0x00000001\n\ t ”
”adds r0 , r1 , r2\n\ t ” ) ;

cpsr = read cps r ( ) ;
// check v a l u e s o f c ond i t i o n f l a g s and , i f neces sary , increment f a u l t
// coun te r and v i s u a l i z e f a u l t

/∗
∗ s e t NF and VF; r e s e t CF, ZF and QF
∗/

asm volat i le (
” l d r r1 , =0 x 7 f f f f f f f \n\ t ”
” l d r r2 , =0x00000001\n\ t ”
”adds r0 , r1 , r2\n\ t ” ) ;

cpsr = read cps r ( ) ;
// check v a l u e s o f c ond i t i o n f l a g s and , i f neces sary , increment f a u l t
// coun te r and v i s u a l i z e f a u l t

/∗
∗ s e t QF;
∗/

asm volat i le (
” l d r r1 , =0 x 7 f f f 7 f f f \n\ t ”
” l d r r2 , =0x00010001\n\ t ”
”qadd r0 , r1 , r2\n\ t ” ) ;

cpsr = read cps r ( ) ;
// check v a l u e s o f c ond i t i o n f l a g s and , i f neces sary , increment f a u l t
// coun te r and v i s u a l i z e f a u l t

/∗ c l e a r QF ( i t remains s e t u n t i l e x p l i c i t l y
∗ c l e a r e d by an MSR i n s t r u c t i o n w r i t i n g to
∗ t h e CPSR.
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∗/
cpsr &= ˜(1 << QF) ;
w r i t e c p s r ( cpsr ) ;

// . . . p r epa r in g end o f t e s t . . .
}

}

void CPUCoreTestMultiplierAdder ( void ∗ pvParameters )
{

// . . . i n i t i a l i z i n g . . .

while (1 )
{

x = 0 ;
y = 0 ;
r e tu rn va lue = 0 ;

while ( x != 0x11111110 )
{

y = 0 ;
while ( y != 0x11111110 )
{

m res = (unsigned long long ) x ∗ (unsigned long long ) y ;
z1 = (unsigned int ) m res ;
z2 = (unsigned int ) ( m res >> 3 2 ) ;

a r e s = z1 + z2 ;
temp = (unsigned long long ) r e tu rn va lue + (unsigned long long ) a r e s ;
r e tu rn va lue = (unsigned int ) temp ;
carry = ( temp >> 32 ) ;
r e tu rn va lue = re tu rn va lue + carry ;

y = y + 0x11111111 ;
}
x = x + 0x11111111 ;

}

i f ( r e tu rn va lu e != 0 x f f f f f f d c )
// increment f a u l t coun te r and v i s u a l i z e f a u l t

// . . . p r epa r in g end o f t e s t . . .
}

}

B.5 Register Tests

Listing B.6: Code for the Register Tests

#define TEST REGISTER NAME r10
#define TEST REGISTER NUM 10
#define TEST REGISTER AUX(X) #X
#define TEST REGISTER(X) TEST REGISTER AUX(X)

unsigned int i n l i n e setAndTestRegister (unsigned int value )
{

unsigned int r e t = 0 ;

asm volat i le ( ”mov ”TEST REGISTER(TEST REGISTER NAME) ” , %1\n\ t ”
”mov %0, ”TEST REGISTER(TEST REGISTER NAME) ”\n\ t ”
: ”=r ” ( r e t ) : ” r ” ( value ) : TEST REGISTER(TEST REGISTER NAME) ) ;

return r e t ;
}

void RegisterTestWalkingBit ( void ∗ pvParameters )
{

// . . . i n i t i a l i z i n g . . .

while (1 )
{

x = 1 ;
z = 0 ;
r e g i s t e r v a l u e = 1 ;

while ( z != 32)
{

read = setAndTestRegister ( r e g i s t e r v a l u e ) ;

i f ( x != read )
// increment f a u l t coun te r and v i s u a l i z e f a u l t
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r e g i s t e r v a l u e <<= 1;
x ∗= 2;
z++;

}
// . . . p r epa r in g end o f t e s t . . .
}

}

#define READ REGISTER(X) \
asm volat i le ( ”mov %0, ”TEST REGISTER(TEST REGISTER NAME) ”\n\ t ” \

: ”=r ” (X) : : TEST REGISTER(TEST REGISTER NAME) ) ;

#define WRITE REGISTER(X) \
asm volat i le ( ”mov ”TEST REGISTER(TEST REGISTER NAME) ” , %0\n\ t ” \

: : ” r ” (X) : TEST REGISTER(TEST REGISTER NAME) ) ;

stat ic void TSMarchSS SingleCell ( const unsigned int i n i t i a l r e g i s t e r c o n t e n t )
{

unsigned int temp = 0 ;

/∗ M1 ∗/
READ REGISTER( temp ) ;

i f ( temp != i n i t i a l r e g i s t e r c o n t e n t )
// increment f a u l t coun te r and v i s u a l i z e f a u l t

READ REGISTER( temp ) ;

i f ( temp != i n i t i a l r e g i s t e r c o n t e n t )
// increment f a u l t coun te r and v i s u a l i z e f a u l t

temp = i n i t i a l r e g i s t e r c o n t e n t ;
WRITE REGISTER( temp ) ;
READ REGISTER( temp ) ;

i f ( temp != i n i t i a l r e g i s t e r c o n t e n t )
// increment f a u l t coun te r and v i s u a l i z e f a u l t

temp = ˜ i n i t i a l r e g i s t e r c o n t e n t ;
WRITE REGISTER( temp ) ;

// . . . o t h e r march e l emen t s . . .
}

stat ic void ATMarch SingleCell ( const unsigned int i n i t i a l r e g i s t e r c o n t e n t )
{

unsigned int pat te rns [ 4 ] = {0x55555555 , 0x33333333 , 0xC71C71C7 , 0x0F0F0F0F } ;
unsigned int pattern = 0 , temp = 0 ;
int i = 0 ;

for ( i = 0 ; i < 4 ; i++)
{

pattern = patte rns [ i ] ;
temp = i n i t i a l r e g i s t e r c o n t e n t ˆ pattern ;
WRITE REGISTER( temp ) ;

temp = i n i t i a l r e g i s t e r c o n t e n t ˆ ˜ pattern ;
WRITE REGISTER( temp ) ;
READ REGISTER( temp ) ;

i f ( temp != ( i n i t i a l r e g i s t e r c o n t e n t ˆ ˜ pattern ) )
// increment f a u l t coun te r and v i s u a l i z e f a u l t

temp = i n i t i a l r e g i s t e r c o n t e n t ˆ pattern ;
WRITE REGISTER( temp ) ;
READ REGISTER( temp ) ;

i f ( temp != ( i n i t i a l r e g i s t e r c o n t e n t ˆ pattern ) )
// increment f a u l t coun te r and v i s u a l i z e f a u l t

WRITE REGISTER( i n i t i a l r e g i s t e r c o n t e n t ) ;
}

}

void RegisterTestMarchSS ( void ∗ pvParameters )
{

// . . . i n i t i a l i z i n g . . .

while (1 )
{

TSMarchSS SingleCell ( i n i t i a l r e g i s t e r c o n t e n t ) ;
ATMarch SingleCell ( i n i t i a l r e g i s t e r c o n t e n t ) ;

// . . . p r epa r in g end o f t e s t . . .
}

}
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[GS95] J. Güthoff and V. Sieh. Combining Software-Implemented and Simulation-Based
Fault Injection into a Single Fault Injection Method. In International Symposium
on Fault-Tolerant Computing (FTCS’95), FTCS’95, pages 196–206, June 1995.

[GT98] A. J. van de Goor and I. B. S Tlili. March tests for word-oriented memories. In
Design, Automation and Test in Europe, pages 501–508, Feb 1998.

[GV90] A. J. van de Goor and C. A. Verruijt. An Overview of Deterministic Functional
RAM Chip Testing. ACM Comput. Surv., 22(1):5–33, March 1990.

[HGR02] S. Hamdioui, A. J. van de Goor, and M. Rodgers. March SS: A Test for All
Static Simple RAM Faults. In Memory Technology, Design and Testing (MTDT
2002), pages 95–100, 2002.

[HSR95] S. Han, K. G. Shin, and H. A. Rosenberg. DOCTOR: an integrated software
fault injection environment for distributed real-time systems. In International
Computer Performance and Dependability Symposium (IPDS’95), pages 204–213,
April 1995.

[HTI97] Mei-Chen Hsueh, T. K. Tsai, and R. K. Iyer. Fault injection techniques and
tools. Computer, 30(4):75–82, April 1997.

[IEC10] International Electrotechnical Commission. Functional safety of electrical/-
electronic/programmable electronic safety-related system. Norm IEC 61508,
2010.

[Kal05] D. Kalinsky. Architecture of safety-critical systems.
http://www.embedded.com/design/prototyping-and-development/

4006464/Architecture-of-safety-critical-systems, 2005. last accessed:
2014-02-23.

[KGPZ02] N. Kranitis, D. Gizopoulos, A. Paschalis, and Y. Zorian. Instruction-based
self-testing of processor cores. In VLSI Test Symposium (VTS 2002), pages
223–228, 2002.

http://www.greensocs.com/projects/QEMUSystemC
http://www.greensocs.com/projects/QEMUSystemC
http://www.embedded.com/design/prototyping-and-development/4006464/Architecture-of-safety-critical-systems
http://www.embedded.com/design/prototyping-and-development/4006464/Architecture-of-safety-critical-systems


BIBLIOGRAPHY 112

[KKA92] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham. FERRARI: a tool for the
validation of system dependability properties. In International Symposium on
Fault-Tolerant Computing (FTCS’92), pages 336–344, July 1992.

[KLD+94] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo. Using
heavy-ion radiation to validate fault-handling mechanisms. Micro, 14(1):8–23,
February 1994.

[KML+06] N. Kranitis, A. Merentitis, N. Laoutaris, G. Theodorou, A. Paschalis,
D. Gizopoulos, and C. Halatsis. Optimal Periodic Testing of Intermittent Faults
In Embedded Pipelined Processor Applications. In Design, Automation and
Test in Europe (DATE’06), volume 1, pages 1–6, March 2006.

[Kni02] J. C. Knight. Safety critical systems: Challenges and directions. In International
Conference on Software Engineering (ICSE’02), pages 547–550, May 2002.

[KPGZ02] N. Kranitis, A. Paschalis, D. Gizopoulos, and Y. Zorian. Effective software
self-test methodology for processor cores. In Design, Automation and Test,
pages 592–597, 2002.

[KVM14] KVM Developers. Kernel Based Virtual Machine (KVM).
http://valgrind.org/, 2014. last accessed: 2014-03-19.

[LCL08] Tai-Hua Lu, Chung-Ho Chen, and Kuen-Jong Lee. A Hybrid Software-based
Self-testing Methodology for Embedded Processor. In ACM Symposium on
Applied Computing, SAC’08, pages 1528–1534, 2008.

[LESO13] M. Linder, A. Eder, U. Schlichtmann, and K. Oberlander. An Analysis of
Industrial SRAM Test Results - A Comprehensive Study on Effectiveness and
Classification of March Test Algorithms. volume PP, pages 1–1, 2013. This
article has been accepted for publication in a future issue of this journal, but
has not been fully edited. Content may change prior to final publication.

[LTW05] Jin-Fu Li, Tsu-Wei Tseng, and Chin-Long Wey. An efficient transparent test
scheme for embedded word-oriented memories. In Design, Automation and Test
in Europe in Europe Conference and Exhibition, volume 1, pages 574–579,
March 2005.

[MRMS94] H. Madeira, M. Rela, F. Moreira, and J. G. Silva. RIFLE: A General Purpose
Pin-level Fault Injector. In European Dependable Computing Conference
(EDCC’94), volume 852 of Lecture Notes in Computer Science, pages 197–216,
June 1994.

[Nic96] M. Nicolaidis. Theory of transparent BIST for RAMs. Computers,
45(10):1141–1156, October 1996.

[NTA78] R. Nair, S.M. Thatte, and J.A. Abraham. Efficient Algorithms for Testing
Semiconductor Random-Access Memories. Computers, C-27(6):572–576, June
1978.

http://valgrind.org/


BIBLIOGRAPHY 113

[Ora14] Oracle Corporation. The VirtualBox PC virtualizer. http://virtualbox.org/,
2014. last accessed: 2014-03-19.

[PGK+01] A. Paschalis, D. Gizopoulos, N. Kranitis, M. Psarakis, and Y. Zorian.
Deterministic software-based self-testing of embedded processor cores. In
Design, Automation and Test in Europe, pages 92–96, 2001.

[PGSR10] M. Psarakis, D. Gizopoulos, E. Sanchez, and M.S. Reorda. Microprocessor
Software-Based Self-Testing. IEEE Design Test of Computerss, 27(3):4–19, May
2010.

[PKK11] Christopher Preschern, Nermin Kajtazovic, and Christan Kreiner. Software
Based Self Tests - Literature Research and Conceptual Test Programs.
Technical report, Institute for Technical Informatics, November 2011.

[Pre13] C. Preschern. Verifying Generic CPU Safety-Tests with Fault Injection. Master’s
thesis, Institute for Technical Informatics, Graz University of Technology, 2013.

[Pul01] L. L. Pullum. Software Fault Tolerance Techniques and Implementation.
Artificial Intelligence. Artech House computing library, 2001.

[QEM14] QEMU developers. QEMU Internals.
http://qemu.weilnetz.de/qemu-tech.html, 2014. last accessed: 2014-03-19,
frequently updated.

[RPB+01] C. Rousselle, M. Pflanz, A. Behling, T. Mohaupt, and H. T. Vierhaus. A
register-transfer-level fault simulator for permanent and transient faults in
embedded processors. In Design, Automation and Test in Europe (DATE’01),
pages 811–, 2001.
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