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Abstract

Unmanned Aerial Vehicles (UAVs) have become considerably popular over the last years

due to cheap and powerful available hardware and a widespread field of application. An

important step towards autonomous flight capabilities is to detect obstacles and to avoid

potential collisions during flight. In this master thesis we present a novel system for col-

lision avoidance on UAVs based on visual input from the monocular on-board camera.

Besides the image stream we utilize data from the Inertial Measurement Unit (IMU) for

short-term pose estimation of the UAV. Three dimensional information is extracted with

an efficient Structure-from-Motion (SfM) approach based on sparse feature matching. A

meshing technique is then utilized to fill gaps between sparse points leading to a more com-

plete reconstruction of the ambient structure. Subsequent reconstructions are integrated

into a probabilistic occupancy map that models free, occupied, and unknown space. In

case of close obstacles proper reactive actions are taken to avoid a collision. The system

is evaluated in terms of accuracy and real-time capabilities and we illustrate results of

fully-autonomous and semi-autonomous flights.

Keywords: UAV, collision avoidance, obstacle, autonomous, drone, quad-rotor heli-

copter, occupancy map.
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Kurzfassung

Unbemannte Flugdrohnen, sogenannte UAVs (Unmanned Aerial Vehicles), wurden

in den letzten Jahren immer beliebter. Sinkende Hardwarekosten und ausgereifte

Technik forcieren zahlreiche Anwendungsgebiete im privaten, militärischen oder

akademischen Bereich. Ein wichtiger Schritt in Richtung “autonome Flugfähigkeiten”

ist die automatische Erkennung von Hindernissen und die Vermeidung von Kollisionen

während eines Fluges. In dieser Abschlussarbeit präsentieren wir ein neuartiges

System zur Kollisionserkennung und -vermeidung für unbemannte Flugdrohnen. Das

System detektiert potentielle Hindernisse anhand des visuellen Inputs der On-Board

Kamera. Neben den Kamerabildern werden Daten der Inertial Measurement Unit (IMU)

verwendet um Position und Orientierung der Drohne abzuschätzen. Tiefeninformation

wird aus den Kamerabildern durch ein effizientes Structure-from-Motion (SfM) Verfahren

gewonnen, welches korrespondierende Bildpunkte dreidimensional rekonstruiert. Die

entstehende Punktwolke wird mit Hilfe eines Meshing-Algorithmus verdichtet um ein

vollständigeres Bild der Umgebung zu erhalten. Alle Rekonstruktionsergebnisse werden

in eine probabilistische Landkarte integriert, welche freie, besetzte und unbekannte

Bereiche der Umgebung modelliert. Im Falle von nahen Hindernissen werden dem

Anwendungsfall entsprechende Maßnahmen getroffen um einer Kollision vorzubeugen.

Das System wurde bezüglich Genauigkeit und Echtzeittauglichkeit evaluiert und es

wurden autonome sowie semi-autonome Flüge durchgeführt.

Stichworte: UAV, Kollisionserkennung, Hindernis, autonom, Drohne, Quadrocopter,

probabilistische Landkarte.
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Chapter 1

Introduction

Contents

1.1 Overview and Motivation . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Unmanned aerial vehicles (UAVs) have become a topic of great interest over the last

years. Especially small models, called micro aerial vehicles or MAVs, have become af-

fordable and constitute an evolving robot platform. Low costs, advancing hardware, and

various on-board sensors are only a few reasons for their increasing popularity. Those fly-

ing drones are used in manifold applications of both academic and non-academic nature.

Common applications include surveillance, photogrammetry, inspection tasks, 3D model-

ing, or search and rescue operations. To promote powerful UAV applications, autonomous

flight capabilities are highly desired. In this work we tackle the problem of detecting

obstacles and preventing collisions during a flight, which is known as collision avoidance.

1.1 Overview and Motivation

Typical UAV applications require a human operator who ensures safe and target

oriented flights. Many processes could be automated by defining waypoints in the

three-dimensional space, which the UAV visits subsequently. Autonomous flights could

reduce the required human interaction and create opportunities for enhanced applications

on unmanned aerial vehicles. To enable safe, autonomous flights it is necessary to take

1



2 Chapter 1. Introduction

care of 3 fundamental problems – localization, obstacle detection and flight control.

Localization. Localization is the task of estimating the UAV’s current pose, i.e.

position and orientation, in the three-dimensional space. This task is also referred to as

pose estimation and is essential for flying along pre-defined paths. Using the global

positioning system (GPS) is a widespread method for localization of ground and airborne

robots. However, it requires the UAV to be equipped with an appropriate receiver and

is restricted to outdoor scenarios. Furthermore, the accuracy of GPS is in the range of

a few meters, which is not satisfactory for precise waypoint flights. Localization must

therefore be obtained in an alternative way, for example from visual landmarks. Visual

methods are beneficial since they only need a camera as input sensor, which most current

UAVs are equipped with by default.

Obstacle Detection. Assuming adequate localization capabilities, information about

the environment is required to assure collision-free flights. Prior knowledge about the

environmental structure can be utilized only in some scenarios. In cluttered or dynamic

environments this might not be enough to ensure safe flights. Unexpected obstacles or

inaccurate localization can cause collisions despite the presence of prior information.

It is therefore beneficial to detect potential obstacles during flight using on-board

sensors. Sensing devices as laser range finders or ultrasonic sensors are well-suited but

not available on most standard UAVs. Thus, utilizing an available on-board camera for

obstacle detection is of great benefit.

Flight Control. An autonomous operating UAV needs a control mechanism to account

for obstacles along the desired flight path. Assuming accurate localization and reliable

obstacle information, it is possible to employ global path planning algorithms. Such

algorithms are able to find collision-free paths in a given environment model. However,

incomplete or noisy environment models restrict the feasibility of those methods in

practice. Alternatively, low-level control mechanisms as reactive controllers can be

applied. Such controllers only perform local path modifications or simply initiate the

UAV to stop in case of close obstacles.
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Solving those tasks are key requirements to enable autonomous flights. The CONSTRUCT

project1 constitutes one example of an ambitious UAV application that would highly

benefit from autonomous flight capabilities [25, 27]. A micro aerial vehicle is used as image

capturing platform to obtain imagery of construction sites from various viewpoints. From

the set of aerial images a detailed 3D model is created using a sophisticated Structure-

from-Motion (SfM) algorithm. Such models are created on a regular basis for progress

monitoring and documentation throughout the construction process. Figure 1.1 illustrates

sample images captured from the UAV and Figure 1.2 illustrates the resulting 3D model.

Figure 1.1: Sample images captured with the UAV from different viewpoints [25].

(a) (b)

Figure 1.2: The airborne images are utilized to reconstruct high quality 3D models.
(a) Sparse reconstructed point cloud (black) and viewpoints from where the images were
captured (white frustums). (b) The sparse point cloud is refined to a dense 3D model
including texture [25].

To achieve high quality 3D models, the viewpoints from which aerial images are captured

1The CONSTRUCT project is a collaborative research project at Graz University of Technology funded
by Siemens AG and the Austrian Research Promotion Agency.



4 Chapter 1. Introduction

must fulfill certain requirements [27]. Therefore, it is reasonable to plan paths in advance

that contain those desired positions [25]. Flight planning is also important to fully exploit

the limited flight time of the UAV. An autonomous flight along a 3D path would there-

fore facilitate the image capturing process significantly. However, it is essential that an

autonomous operating UAV is able to detect unforeseen obstacles such as trees or con-

struction cranes along its path. Using the camera as primary sensor for collision avoidance

requires no additional sensors to be mounted on the UAV. This motivates our work on a

system that is able to detect obstacles during a flight from visual input.

1.2 Thesis Goals

The goal of this thesis is to develop a system that detects obstacles close to the UAV

during a flight. Moreover, it should be aware of obstacle-free space and be able to

perform local path corrections towards a safer region. Obstacles should be detected

purely from visual input of the on-board camera without using additional sensing

devices, as ultrasonic or laser range sensors. In particular, we use a single, monocular

camera and do not use a stereo setup or any kind of depth camera (as Microsoft Kinect
TM

).

Our system should not be limited to work with one specific application scenario (e.g.

modeling construction sites). Instead, it should run independently from the main task

and provide a clear interface for inter-task communication. Proper reactive actions can

be taken based on the characteristics of the flight mission. In some tasks it might be best

to stop and wait for human interaction whereas other tasks allow local modifications of a

given flight path.

We aim to use off-the-shelf hardware without any custom hardware modifications. The

system design should be flexible enough to be applicable on multiple platforms and with

several applications. Importantly, the entire process of detecting obstacles and taking

appropriate actions should work in real-time in order to be of practical use.

1.3 Contributions

In this work we present a novel system for UAV collision avoidance based on visual input

from the on-board camera. The main contributions are:
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IMU-based Localization. We utilize data from the drone’s Inertial

Measurement Unit (IMU) for short-term localization. Our flexible system

design also allows to use other localization methods, such as localization from visual

landmarks. Benefits and drawbacks of our IMU-based localization approach are discussed.

Fast 3D Point Extraction. We implemented an efficient method to extract 3D points

from the image stream. A meshing technique is used to interpolate 3D points at locations

with high obstacle evidence and reject outliers at the same time.

Probabilistic Mapping. The environment is modeled as free, occupied, and

unknown space using a three-dimensional occupancy map. This map incorporates

3D information collected during a flight and its probabilistic fashion makes it

robust to noisy sensor data. We countervail global pose estimation drift as we

only maintain parts of the map that are within a small volume around the UAV’s position.

Reactive Controller. A controller periodically checks for obstacles in the probabilistic

map. It can initiate reactive actions as guiding the drone towards free space or holding

the current position. The actual reactive behavior can be customized to fit the needs of a

certain application or environment.

Modular System Design. The core parts of the system are encapsulated into modular

components. The individual components communicate over clearly defined interfaces and

allow simple extension or exchange of system components.

1.4 Outline

The remainder of this work is organized as follows. In Chapter 2 we introduce topics related

to our work and give an overview of recent collision avoidance methods. Chapter 3 focuses

on localization and illustrates how we estimate the UAV’s pose in a world coordinate

system. In Chapter 4 we describe how 3D information is efficiently extracted from the

image stream. Later in Chapter 5 we introduce the probabilistic occupancy map that

models the environment near the UAV. We show our experiments in Chapter 6, where the

core system parts are evaluated and example flights are illustrated. Finally, we conclude

the work in Chapter 7 and give an outlook to possible improvements and future work.





Chapter 2

Related Work

Contents

2.1 Basics of 3D Reconstruction . . . . . . . . . . . . . . . . . . . . . 7

2.2 Simultaneous Localization and Mapping . . . . . . . . . . . . . . 14

2.3 Map Representations . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Current Research on UAV Collision Avoidance . . . . . . . . . 18

Collision avoidance on unmanned aerial vehicles is a research topic of high interest.

Using the camera as primary sensor requires Computer Vision methods to extract in-

formation, such as the environmental structure, from camera images. In Section 2.1 we

explain Computer Vision principles and show how 3D information can be gathered from

images. Subsequently, in Section 2.2 we introduce Simultaneous Localization and Mapping

(SLAM) methods, which solve the problems of localization and map building at the same

time. In Section 2.3 we describe different 3D map representations and discuss benefits

and drawbacks of the individual approaches. Finally, we introduce current methods for

collision avoidance on unmanned aerial vehicles in Section 2.4.

2.1 Basics of 3D Reconstruction

Computer Vision is an emerging scientific field including methods to acquire, process,

and analyze digital camera images. The goal is to “teach a computer to see”, i.e. to

gather certain information from images. Cameras and acquired imagery are therefore

central components in this field. To comprehend how information can be extracted from

images it is necessary to understand how cameras work. The function principle of a

7



8 Chapter 2. Related Work

camera can be explained with a simple model, called the pinhole camera model.

The pinhole camera model. In a mathematical sense a camera is a mapping between

the 3D world and a 2D image [21]. Three-dimensional points are mapped onto a two-

dimensional plane by central projection. The center of projection is termed camera center

and the plane is named image plane. Assume the setup in Figure 2.1, with the camera

center C at the origin of a world coordinate system. The camera’s viewing direction is

called principal axis (sometimes optical axis) and goes along the positive z-axis. The

image plane lies normal to the principal axis at a distance f , called focal length, from the

camera center. Points in 3D space are mapped onto the image plane through a central

projection to the camera center. Specifically, a world point X is mapped to image point

x, where a line from X to C intersects the image plane.

Figure 2.1: The pinhole camera model. World point X is mapped to image point x on
the image plane through a central projection to camera center C. Image taken from [21].

The camera maps a 3D point X = (X,Y, Z)T to the point (fX
Z , fYZ , f)T on the image plane.

Since all points are mapped onto the image plane, i.e. having z = f , it is convenient to

define a separate 2D coordinate system on this plane, called image coordinate system. The

simplest method is to omit the z-coordinate, which automatically defines the 2D origin

at principal point p, as shown in Figure 2.1. In general, the image coordinate origin is

defined with a certain offset from this point, called principal point offset. The mapping

from 3D space to 2D image is then defined as
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X

Y

Z

→
[

fX
Z + px
fY
Z + py

]
(2.1)

where px and py denote the principal point offset in the image coordinate system. The

parameters f , px, and py that describe this camera can be combined into a matrix

K =


f px

f py

1

 (2.2)

which is termed camera calibration matrix. The matrix K allows a compact representation

of the mapping from 3D to 2D according to

x = K[I|0] ·X, (2.3)

assuming homogeneous coordinates. The camera calibration matrix can be extended from

three to five parameters, which is beneficial when modeling real-world cameras. f is

divided into fx and fy to model non-quadratic pixels [2] and the skew parameter s is

introduced to account for non-perpendicular x- and y-axis. This leads to the general form

of the camera calibration matrix

K =


fx s px

fy py

1

 (2.4)

with 5 parameters. Those parameters in K are called the intrinsic camera parameters. In

general, a camera can be translated and rotated with six degrees of freedom (6DOF) in

the world coordinate system. Three degrees of freedom account for the camera’s position

and three for its orientation respectively. Position and orientation together determine the

pose of a camera. The pose can be specified mathematically by a 3 × 3 rotation matrix

R and a translation vector t, which constitute the extrinsic camera parameters. Intrinsic

and extrinsic parameters can be combined to form the 3× 4 camera projection matrix

P = K[R|t]. (2.5)

The mapping from world point X to image point x is fully specified by P , according to
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x = P ·X. (2.6)

Throughout this work we will represent a camera by its corresponding projection matrix P .

When a point is mapped from 3D space to a 2D image, information regarding the point’s

depth is lost. However, the depth can be reconstructed if there exist two or more images

showing the same point from different views. The according camera views must be known

in terms of their camera projection matrices. This technique of depth reconstruction is

known as triangulation or multi-view reconstruction.

Reconstruction from 2 cameras. Assume two cameras in a world coordinate system

with known projection matrices P and P ′. A world point X is mapped to image point x

by the first camera and x′ by the second camera respectively. The image point x restricts

the three-dimensional position of X to a ray from camera center C through x. Another

ray is defined by the second camera center C ′ and image point x′ accordingly. The point

X can be reconstructed in 3D space at the intersection point of both rays, as shown in

Figure 2.2.

X

x x'

C
R R' C'

Figure 2.2: Triangulation principle. Both x and x′ define a ray from the according camera
center to restrict the position of X. The intersection of two rays determines the 3D position
of X and reconstructs depth information. Image modified from [46].

In practice, one has to face the problem of imperfectly measured image points x and x′.

Therefore, two rays will be skew and not intersect in a point in 3D space generally. In

this case an approximate solution X̂ can be obtained in a least squares manner. This

requires the definition and minimization of a suitable cost function. A simple solution is

to reconstruct X̂ as the point closest to both rays, as exemplified in Figure 2.3. Better

results are generally obtained by minimizing the reprojection error. It can be obtained by
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projecting the approximated point X̂ back into both images at x̂ and x̂′. The reprojection

error is then defined as d(x, x̂)2 + d(x′, x̂′)2, where d(∗, ∗) denotes the Euclidean distance

between two image points [21].

C

x

X

R C'
R'

x'

^

Figure 2.3: Triangulation in practice. The point X̂ minimizes the distance to both rays
and constitutes an approximate reconstruction result. Image modified from [46].

When using approximation methods, the extension of reconstruction to more than two

views is straightforward [21]. Reconstruction from more than two views can improve

results considerably. In case of two views, the triangulation angle, i.e. the angle

between back-projected rays, is a good indicator for the expected reconstruction quality.

Small triangulation angles generally yield poor results but depth uncertainty decreases

significantly with larger triangulation angles [44].

The great challenge in 3D reconstruction is to find image correspondences x↔ x′, where

both image points result from the same point X in 3D space. While correspondence

identification among images is a simple task for humans it is still a challenging problem

for computer algorithms. Finding correspondences is furthermore a computationally

expensive problem. Generally, for a given image point x it is necessary to search

over the entire corresponding image for point x′. This search space can be reduced

significantly if the relative geometry between both cameras is known, which is called

epipolar geometry. The epipolar geometry describes the relation between two camera

views. It is independent of the captured scene and only depends on the intrinsics

and the relative pose between both cameras. Importantly, it allows to derive con-

straints where corresponding image points x and x′ can be found, as depicted in Figure 2.4.

The point X is mapped to x from the first and x′ from the second camera. World

point X, both image points and both camera centers are coplanar and lie on a plane π.
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(a) (b)

Figure 2.4: (a) The two cameras are indicated by their camera centers C and C ′ and
image planes. The 3D world point X and its image points x and x′ lie on a common
plane π. (b) Image point x back-projects to a ray through C and x. This ray maps to
the epipolar line l′ in the second image. Images taken from [21].

Assuming that only image point x is known, it can be seen that the corresponding point

x′ has to lie on a line l′. This line is the image of the back-projected ray from the first

view and is called epipolar line of x. Thus, the epipolar geometry results in a map x 7→ l′

and the actual correspondence point x′ is restricted to lie on epipolar line l′.

The point to line mapping can be formulated mathematically with the fundamental matrix

F . This 3 × 3 matrix has 7DOF and encapsulates the relative geometry between both

views. Corresponding image points x and x′ are restricted to point pairs that satisfy the

equation

x · F · x′ = 0, (2.7)

assuming homogeneous image coordinates. The fundamental matrix can be obtained

uniquely from known camera projection matrices P and P ′. Conversely, P and P ′

cannot be determined uniquely from F . This is because F only comprises information

regarding the relative pose between cameras (lacking any absolute pose information) and

there exists an overall scale ambiguity.



2.1. Basics of 3D Reconstruction 13

A known relative pose between two cameras can be ensured, if two physical cameras

in a fixed setup are used, which capture images simultaneously. Such a rigid camera

configuration is called a stereo camera setup or stereo rig. The fixed relative pose and

known intrinsics uniquely determine the fundamental matrix F , which in turn simplifies

the correspondence search. A special case of a stereo configuration is the canonical stereo

setup. In this setup both cameras are arranged side-by-side having parallel principal axes,

as shown in Figure 2.5. The distance between both camera centers is called baseline. In

a canonical stereo setup the epipolar lines run horizontally and hence allow efficient and

robust correspondence search. Many current stereo reconstruction algorithms assume this

configuration [19]. Next, we will investigate how reconstruction can be achieved if only

one camera is present.

C C'

X

B

Figure 2.5: Top view of a canonical stereo setup. Both cameras are arranged side-by-side
and have aligned orientations. The distance between camera centers is called baseline B.
This setup restricts the correspondence search space to horizontal lines.

Reconstruction from a single camera. Typical stereo reconstruction requires the

presence of two physical cameras in a fixed setup. In cases where only one camera is

present, one can apply the same methods to images that were captured at different points

in time. However, reasonable results can only be achieved if image pairs fulfill the following

requirements:

1. The camera has to move between capturing the first and second image.

2. The motion must be in a way such that images exhibit sufficient parallax and overlap.

3. The scene must remain mostly static during capturing.

Since a motion of the single camera is required, this approach is also known as Structure-

from-Motion. In contrast to a stereo setup, the relative pose between two views of the
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same camera is unknown. To reconstruct 3D points it is therefore necessary to estimate

the unknown relative pose between the views. It has been shown that a known camera

geometry, represented as fundamental matrix F , can be exploited to restrict the corre-

spondence search space. Reversely, it is possible to estimate F from 8 or more known

correspondences {xi ↔ x′i} using the normalized 8-Point algorithm [20]. If the intrinsic

camera parameters are known, the problem is simplified and only 5 correspondences are

required. This can be accomplished robustly with the Five-Point algorithm [38]. As previ-

ously explained, the relative pose between cameras (R and t) can be obtained from F up

to an overall scale ambiguity. To get a metrically correct reconstruction, it is necessary to

determine the missing scale factor as well as the absolute pose of one camera additionally.

2.2 Simultaneous Localization and Mapping

Systems for autonomous robot navigation in unknown environments must solve two

main tasks, namely localization and mapping. Localization is the problem of estimating

a robot’s 6DOF pose with respect to a world coordinate system. Mapping denotes the

task of perceiving the environment structure from sensor readings and model information

in an appropriate representation. Both tasks are highly dependent on each other and

are usually solved simultaneously using SLAM (Simultaneous Localization and Mapping)

methods.

SLAM methods build a map in an unknown environment while keeping track of the

current robot position relative to this map. Methods that utilize a camera as input

sensor are called visual SLAM (VSLAM) methods. Early VSLAM systems used filtering

techniques based on an Extended Kalman Filter (EKF) or particle filter respectively.

Davison et al. [13] utilized an EKF to update probability distributions of both pose

estimates and visual landmarks at frame rate. However, the EKF assumes motion and

observation model to exhibit Gaussian noise, which is often not the case in practice.

Particle filters, as used in [37] and [40], use a set of independent hypotheses that are

weighted by their likelihood. All filtering methods enforce tracking and mapping to be

thoroughly linked since pose estimates and landmarks are updated together at each

frame. This is computationally expensive and the high redundancy between subsequent

frames cannot be exploited. Motivated by this observation a novel approach to visual

SLAM, called Parallel Tracking and Mapping (PTAM), was introduced in 2007.
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Parallel Tracking and Mapping. PTAM is a real-time VSLAM method

introduced by Klein and Murray [31]. It decouples the tasks of tracking camera

pose and mapping the environment into two separate threads. The key observation

is that subsequent video frames contain highly redundant information, thus

using every single frame for mapping is not beneficial. Instead, only a few

useful frames, called keyframes, are utilized for map building. Pose estima-

tion on the other hand is performed at full frame rate in a separate thread. This

thread tracks known map points among frames and derives the 6DOF camera pose from it.

PTAM’s tracking thread requires an initial map, which is built at startup and needs

user interaction. The user has to press a button, then smoothly translate the camera

and perform a second key-press. This initiates the system to capture the first two

keyframes. Image correspondences are obtained by tracking features between first and

second key-press and an initial map of 3D points is triangulated. After map initialization

the tracking thread constantly tries to find map points in the current frame. In each

frame, FAST corner points [43] are detected at four levels of an image pyramid and 8x8

pixel patches are extracted. The 3D map points are projected into the current image,

based on the last pose estimate and a decaying velocity model. Image patches that are

stored together with each map point are warped and scaled according to the projection.

Such a patch is compared against spatially close patches extracted from the current

frame in terms of zero-mean SSD scores. If a correspondence is found within a fixed

search radius of its expected position, the map point is considered successfully tracked.

A camera pose update is then estimated from the set of tracked points in a two-stage

coarse-to-fine procedure. Tracking quality is constantly monitored by observing the ratio

of feature observations that have been matched successfully. Two threshold values allow

to classify tracking quality to be either “good”, “poor” or “lost”. Whenever tracking

is considered “lost”, no pose estimates can be generated and a recovery routine is initiated.

PTAM’s mapping thread extends and maintains the initial map. New 3D points are

generated only after a new keyframe has been added. A keyframe is added if

• tracking quality is “good”,

• the last keyframe has been added at least 20 frames ago, and

• the current camera position has a minimum distance to the nearest map point.
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This leads to high quality keyframes and new map points are generated through

triangulation with previously added keyframes. During times where no keyframe

is processed the map is refined using local and global bundle adjustment [48].

PTAM achieves outstanding results for small AR environments and is considered a

state-of-the-art VSLAM method. In the upcoming section we investigate how 3D

environments can be modeled properly.

2.3 Map Representations

The term mapping is often used as synonym for obtaining three-dimensional

information from sensor readings. However, mapping also comprises the modeling

of 3D information in an appropriate representation. The simplest representation is

a three-dimensional point cloud, i.e. an unordered set of 3D points. Each point

results from a distance measure between a sensor to a certain object point. A

major drawback of a point cloud representation is that no information regarding

free or unknown space is stored in the map. Moreover, incorporation of noisy

sensor data leads to inexact maps so point clouds should mainly be used with

high precision sensors. Memory consumption of point clouds increase linear with

the number of measurements and the simple representation is not well-suited for

further processing. Therefore, representations other than point clouds are often beneficial.

Surface representations, such as Digital Surface Models (DSMs) [45] or Elevation

Maps [22], constitute another way to model the environment. The idea is to model

environmental structures as a continuous surface instead of a three-dimensional point set.

Such a representation is often better suited for further processing, compared to a point

cloud that exhibits gaps between individual points. Surfaces can be created by merging

range images or applying meshing techniques to a given point cloud. However, models

with a continuous surface such as simple DSMs can not deal with complex structures as

bridges or tunnels. More flexible representations as multi-level surface maps [47] exist

that allow more general surface-based modeling. Surface maps have like point clouds the

drawback that free and unknown space are not explicitly modeled. Moreover, noisy sensor

data often requires computationally expensive optimization steps to achieve decent results.

Occupancy maps [14, 52] are a probabilistic representation where the environment
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is modeled as volumetric blocks. The 3D space is subdivided into fixed size volume

elements, called voxels or cells. Each cell is assigned a probability that an obstacle

is present in this space. The cell probabilities are obtained from integrating

measurements into the map. Discretization and the probabilistic nature of the

map makes this representation robust to noisy sensor data. Voxel elements can be

classified according their particular cell probability to be “free” or “occupied”. A

third state “unknown” can also be used for cells where no information regarding

obstacles is present, e.g. undiscovered space. Distinguishing free, occupied, and

unknown space gives a more complete representation of the environment and

the probabilistic nature allows to deal with sensor noise. Therefore, we utilize

an occupancy map framework called OctoMap [52] in our system for environment mapping.

OctoMap. OctoMap2 is an efficient implementation of a 3D occupancy mapping

framework. It is based on octrees [35, 50], a tree-based data structure for 3D space

subdivision. An octree is a tree with up to 8 child nodes representing the subdivision

of a volume into 8 subvolumes. This recursive subdivision ends at a given minimum

voxel size, known as resolution. The tree structure implicitly gives a multi-resolution

representation since cutting the tree at any depth leads to a coarser subdivision of the

space, as depicted in Figure 2.6.

(a) (b)

Figure 2.6: (a) An octree storing free (shaded white) and occupied (black) cells. The
volumetric and the corresponding tree representation are illustrated. (b) Coarser resolu-
tions can easily be obtained in OctoMap by cutting the tree at any depth level. Images
taken from [52].

OctoMap was used in our work because we found it to be the best suited map represen-

tation. The probabilistic map structure allows to deal with noisy sensor readings, which

2Downloaded from http://octomap.github.io

http://octomap.github.io
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is expected when using monocular vision. Modeling of occupied, free, and unknown space

gives a complete representation of the 3D environment. Maps are built incrementally

without the need to specify the map extent in advance. Furthermore, OctoMap allows

to work on different resolution levels, which can be exploited to meet speed or accuracy

requirements. The efficient implementation produces maps that are compact in size and

allow fast map operations. Details on the usage of OctoMap in our system are described

in Section 5.1.

2.4 Current Research on UAV Collision Avoidance

A lot of research is focusing on collision avoidance and autonomous navigation of

unmanned aerial vehicles. We will now give a short summary of recent methods and

discuss merits and drawbacks of the individual approaches. Collision avoidance methods

can be divided based on the primary sensor into non-vision based and vision based

techniques.

Non-vision Based Techniques. Such techniques use other than visual sensors to

detect obstacles in the environment. Bouabdallah et al. [10] used four ultrasound sensors

on a quad-rotor helicopter for obstacle detection. Distance measurements are conducted

to a flight controller that aims to stay distant to obstacles or performs evasive maneuvers

when obstacles are already close. Ultrasound sensors give robust distance measures but

they constitute an additional payload for the UAV. Bachrach et al. [3] utilized a laser

range finder (LRF) for obstacle detection and fused measurements using an extended

Kalman filter. Other recent works [5, 15, 18] also demonstrated the feasibility of laser

sensors on UAVs. Like ultrasound sensors, LRFs represent an additional payload and

hence reduce flight times and influence flight dynamics. Moreover, laser sensors are

expensive and have a small field of view compared to cameras.

Vision Based Techniques. Techniques based on vision use one or more cameras as

primary sensor for obstacle detection. Meier et al. [36] utilized a stereo camera setup

to detect obstacles and used artificial markers for robust localization. Additionally,

they exploit IMU sensor data to refine pose estimates relative to the markers.

The fast on-board computer allows to perform obstacle detection and localization

on the UAV. Stereo is also used by Hrabar in [26] where dense reconstructions

are obtained with 25 Hz using stereo on chip (STOC) technology. 3D points are



2.4. Current Research on UAV Collision Avoidance 19

integrated into a three-dimensional occupancy map. A global path planning algorithm

based on probabilistic roadmaps [29] is used to navigate in cluttered environments.

The problem of localization and limited load capacity is not tackled since the

approach is evaluated on an air vehicle simulator. Methods based on stereo vision

yield fast and accurate reconstruction results but require two physical cameras on the UAV.

Another popular approach is to use RGB-D cameras on aerial vehicles such as the

Microsoft KINECT
TM

sensor. Bachrach et al. [4] presented a real-time SLAM system on

a micro aerial vehicle based on KINECT. A visual odometry algorithm runs on-board

to obtain real-time pose estimates while costly tasks as global pose correction or loop

closure detection run decoupled on a ground station computer. They also integrate

measurements into a three-dimensional occupancy map for a robust and compact

environment representation. The KINECT sensor is cheap, lightweight, and provides

real-time depth images. Unfortunately, it uses an IR structured light pattern for depth

perception that restricts the sensor to indoor usage.

Recent work also includes methods for collision avoidance that use a conventional

monocular camera. Call et al. [11] extracted Harris corner points and tracked them over

several frames to triangulate a map of sparse three-dimensional points. They used an

agglomerative clustering algorithm to group points to obstacles. Point clusters that are

spatially close to the UAV are avoided using a reactive sliding mode control law. A

similar approach was published by Lee et al. in [32]. They extracted multi-scale oriented

patches (MOPS) at Harris corner points and combined them with SIFT [34] feature

points. Points of both kind are triangulated to a sparse 3D point cloud. Their method

presumes that MOPS patches are mainly extracted at the obstacle boundaries while

SIFT features appear mostly at the obstacle’s interior. Volumetric obstacle information is

gathered by merging both types of 3D points following this assumption. Both mentioned

methods assume accurate reconstruction of sparse 3D points but do not address problems

as outlier handling, small triangulation angles or lacking texture.

In contrast to map building methods, Ross et al. [42] proposed a system for

autonomous MAV navigation, which does not extract 3D information from images.

Instead, they use a state-of-the-art imitation learning strategy and train a reactive

flight controller directly on 2D images. The controller learns a strategy to mimic
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actions that a human pilot would take in the same situation. Training data (sample

images) and supervision (human pilot’s commands) are collected during an iterative

training phase. The method allows autonomous MAV navigation through woods.

However, the control strategy is limited to environments that have been learned

during training. Bills et al. [8] also navigated a small MAV through indoor scenes

without map building. They first classify which type of environment is currently

observed, e.g. corridor, by extracting and analyzing Hough lines [16] in the images.

Based on the classified environment, the desired flight direction is obtained from

perspective cues. In corridors for example, they estimate the vanishing point of lines

and navigate towards this point to progress through the corridor. Their method is

restricted to a few scene categories and can not deal with unforeseen obstacles on the path.

In this Chapter has been shown how 3D information can be obtained from camera im-

ages. Furthermore, we have investigated the related topics of localization and mapping

and discussed different kinds of 3D map representations. Finally, we have summarized

current methods that address collision avoidance and autonomous UAV operations. In

the following chapters we describe our proposed collision avoidance system.
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Localization
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Localization is the task of estimating the aerial vehicle’s 6DOF pose, which is

required for two reasons. First, relative poses between multiple views are needed to

reconstruct 3D information from images. Second, the pose is essential to navigate with a

map that collects the gathered 3D information.

An intuitive method is to exploit the global positioning system (GPS) for this purpose,

but its feasibility is severely limited. The GPS signal can only be utilized outdoors and

even there it might be disturbed by high buildings or walls. Moreover, GPS can only

determine the position but not the orientation of the UAV. Another major drawback

is the limited accuracy, which is in the range of a few meters. This makes it hard to

navigate in cluttered environments and impossible to estimate accurate camera poses for

multi-view reconstruction. Thus, more accurate localization methods are required.

Visual Simultaneous Localization and Mapping (VSLAM) methods can build a map

from visual landmarks and estimate the camera pose with respect to that map. The

PTAM system is a state-of-the-art implementation and has proven to deliver accurate

6DOF pose estimates in real-time. Its internal map of registered 3D points also contains

valuable information of the environmental structure. This motivates the strategy to

obtain localization from PTAM. In Section 3.1 we describe how this can be achieved, but

also illustrate limitations and problems with this method. Therefore, we subsequently

21
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present an alternative localization method that overcomes many of those problems. It is

based on the Inertial Measurement Unit (IMU) of the drone and is described in Section 3.2.

3.1 Localization from PTAM

Parallel Tracking and Mapping, shortened PTAM, is currently one of the most

promising VSLAM systems. It was mainly designed for augmented reality (AR)

applications. A typical AR scenario includes a moving handheld camera that

faces a small scene. As the camera moves, PTAM triangulates three-dimensional

points and integrates them into its internal map. Simultaneously, it estimates the

camera pose at frame rate based on visible map points. The pose estimates and the

environmental structure are then utilized to overlay the video stream with virtual ob-

jects in typical AR applications. Figure 3.1 shows the system operating in a desktop scene.

(a) (b)

Figure 3.1: PTAM in a typical AR environment. (a) The colored dots show map points
that are currently tracked. The grid depicts the dominant plane, which could be used to
draw virtual objects on the table. (b) The three-dimensional point map is built incre-
mentally from triangulation between spatially distributed images, called keyframes. The
coordinate frames depict the camera poses of those keyframes. Images taken from [28].

The two main tasks of PTAM – tracking and mapping – highly depend on each other.

The tracking thread estimates the current camera pose by identifying and tracking
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known map points among camera images. Simultaneously, the mapping thread tries

to extend and refine this map based on known camera poses. This can be seen as a

“chicken-and-egg problem” and requires to define a starting point. For this purpose

PTAM employs an initialization procedure at startup to create an initial map of 3D points.

Standard Initialization. The standard initialization procedure of PTAM works the

following way. The user faces the initial scene with the camera and presses a key. Then the

user translates (and maybe rotates) the camera smoothly and again presses the same key.

This results in the first two keyframes to be added. The translation between the keyframes

is necessary to provide a sufficient parallax between both images. Corresponding points

in the image pair are determined by tracking salient points from the first to the second

keyframe during the smooth motion. Successfully tracked points constitute a set of image

correspondences {xi ↔ x′i} that are triangulated to an initial map of 3D points.

X

x x'

'

x

R, t

R, t

x'

Figure 3.2: Standard PTAM initialization. The user translates and possibly rotates the
camera between the first two keyframes according to R, t. Without prior knowledge it is
not possible to determine this initial motion with correct scale. A motion according to
R, t is not distinguishable from any scaled version R, t′. This leads to arbitrarily scaled
map points and pose estimates.

The problem with this initialization procedure is that initial map and pose estimates can

only be determined up to scale. The arbitrary scale is a consequence of the unknown

initial camera motion employed by the user. Without additional knowledge it is not

possible to obtain this scale factor from a set of image correspondences, as shown
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in Figure 3.2. While a correct (metric) scale might not be of importance in certain

AR applications, it is of vital importance in our system. Therefore, the initialization

procedure had to be modified to obtain the missing scale factor.

Metric Initialization. The correct scale can be assessed if the relative motion

between first and second keyframe is known in terms of R and t. For this purpose we

put the UAV on a board that contains two marked positions. The relative pose between

the two positions is known and incorporated into the modified initialization procedure.

Furthermore, we replaced the tracking from first to second keyframe with an epipolar

search strategy given the known relative pose. This leads to more robust results and does

not require a smooth and trackable initial motion. The resulting initial map is metrically

scaled and so are the pose estimates from the tracking thread. Figure 3.3 illustrates the

metric initialization procedure on the unmanned aerial vehicle.

On-board camera

(a)

Known R,t

(b)

Figure 3.3: Metric PTAM initialization. (a) The UAV is placed on the left marked
position from where the first keyframe is captured. (b) The second keyframe is captured
from the right position, which is also marked on the board. The relative motion between
the keyframes is known in terms of R and t, which results in a metrically scaled initial
map.

Fixing the relative motion between first and second keyframe leads to an initial

map with metric scale. Consequently, the pose estimates from the tracking thread

exhibit correct scale, which is required in our context. An estimated pose describes

position and orientation of the on-board camera with respect to a world coordinate

system. The world coordinate system is chosen to be aligned with the first keyframe
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pose. Mathematically spoken, the extrinsic camera parameters corresponding to

the first keyframe are t = [0, 0, 0]T and R = I, where I denotes the 3 × 3 identity

matrix. To localize an unmanned aerial vehicle using PTAM it is necessary to employ

the initial procedure on the ground. Once the initial map is created, the UAV is

ready to take off and the pose of its on-board camera can be estimated at frame

rate. Figure 3.4 shows a scenario where PTAM is employed on the unmanned aerial vehicle.

Figure 3.4: PTAM used for localization of an unmanned aerial vehicle. Top row: 3 views
from the on-board camera after take off. Tracked points are illustrated as colored dots
in the image. Bottom row: The corresponding pose estimates of the UAV relative to the
three-dimensional map points.

Limitations. The example above illustrates a scenario where localization with PTAM

works considerably well. The shown scene is static, limited in depth, and provides enough

texture for successful image feature tracking. Such conditions can be assumed in many

augmented reality scenarios, for which PTAM was originally designed. However, those

optimal preconditions cannot be assumed for UAV applications in general, as exemplified

in Figure 3.5. Problems arise in several situations, especially in case of:

• Large Scenes: Scenes with a depth exceeding a few meters are difficult to handle.

Small triangulation angles lead to inaccurate maps. Consequently, the pose estimates

relative to this map are of low quality.

• Dynamic Scenes and Occlusions: PTAM incrementally builds a map of 3D

points and implicitly assumes that the environment remains static. Major scene
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changes or occlusions from moving objects violate this assumption.

• Lack of Texture: Image features can only be found and tracked in well-textured

regions. Homogeneous areas (e.g. sky, untextured walls) provide no interest points

for tracking.

• Sharp Turns: Sharp turns of the UAV during flight cause all tracked points to

vanish from the field of view (FOV). Mostly, this leads to an inevitable loss of

tracking and no pose estimates can be generated.

(a) (b)

Figure 3.5: Some situations showing the limited feasibility of PTAM on unmanned aerial
vehicles. (a) Large scenes cannot be mapped accurately due to small triangulation an-
gles. (b) Lack of texture or missing map points in the field of view cause PTAM to lose
localization.

Conclusion. Those limiting scenarios are likely to happen with UAV applications,

especially when operating outdoors. When PTAM cannot find enough points to track it

loses localization. In this state it is not able to provide pose estimates at all. Although the

map of PTAM is extendable it would require highly strategic flight planning to extend the

map systematically without losing localization. The mentioned limitations are clearly not

acceptable for a reliable collision avoidance system. Hence, we need a more robust way of

estimating the UAV pose, which is described in the subsequent section. Nevertheless, our

modular system design allows to utilize PTAM in scenarios where those limitations are

admissible. Summarized, PTAM is not an essential component but a valuable extension

to our overall system.



3.2. Localization using the Inertial Measurement Unit 27

3.2 Localization using the Inertial Measurement Unit

In the previous section has been shown that localization from visual landmarks is

problematic in certain situations. When PTAM loses localization it cannot deliver any

pose estimates until the system recovers (which is not guaranteed to happen). While

lost, PTAM cannot perceive 3D information either, due to lacking information regarding

the current motion. So the entire system would be “blind” whenever localization is lost.

Therefore, we need an alternative method that can deal better with the aforementioned

situations.

Unmanned aerial vehicles, such as quad-rotor helicopters, require certain internal sensors

to ensure stable flight behavior. UAVs are therefore equipped with sensors including

accelerometers, gyroscopes or magnetometers. The combination of those sensors

constitutes the Inertial Measurement Unit (IMU). The IMU reports the vehicle’s current

state in terms of orientation, velocity, and gravitational forces to an internal controller,

which requires this information to control the UAV’s dynamics. Many platforms allow to

intercept and utilize IMU data for external tasks. In our case, we exploit this data to

estimate the 6DOF pose of the UAV and this section illustrates how this is achieved.

IMU Data Format. In this work we use the Parrot AR.Drone 2.0 quad-rotor

helicopter3 as unmanned aerial vehicle. It is equipped with 3 accelerometers, 3 gyroscopes,

a magnetic compass, and 2 ultrasonic altitude sensors. Sensor data is fused and filtered

in a black-box manner from a low-level process that runs on the UAV. This process

delivers accurate estimates of the quad-rotor’s momentary orientation and momentary

velocity. Information is encapsulated into messages, called IMU messages, that we

intercept and exploit for pose estimation. Those messages are received at a high rate of

approximately 170 Hz. Each message consists of an accurate timestamp, three rotation

angles rotx, roty, rotz, and 3 momentary velocity values vx, vy, vz. Rotation angles and ve-

locity values are with respect to a quad-rotor coordinate system, as illustrated in Figure 3.6.

The 3 rotation angles rotx, roty, rotz are given in radiant from the interval [−π, π]. Each

angle specifies the amount of rotation around the corresponding axis. Together they

determine the absolute orientation of the quad-rotor helicopter. This representation,

known as Euler angles or Tait-Bryan angles [41], is ambiguous unless the order of

3http://ardrone2.parrot.com
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Figure 3.6: IMU messages and the quad-rotor coordinate system. (a) Data from multi-
ple sensors is fused, filtered, and published as IMU message periodically. Each message
contains an accurate timestamp as well as momentary rotation angles and velocity. (b)
Rotation angles and velocity are with respect to a quad-rotor coordinate system, indicated
by the index Q. The origin is located at the quad-rotor’s center of gravity and the axes
configuration (x: front, y: left, z: up) is common in aeronautics.

individual rotations is known. We assessed empirically that the correct rotation order is

rotz, followed by roty, followed by rotx.

The momentary velocity values vx, vy, vz describe the velocity components towards x-, y-,

and z-axis respectively. They compose the momentary velocity vector v(Q) = [vx, vy, vz]
T .

In the next step we describe how we relate this information to the primary sensor for

depth perception, the on-board camera, and how the fixed world coordinate system is

defined.

Camera and World Coordinate System. The quad-rotor helicopter contains a

rigid, forward-looking camera at its front side. Images from this camera will be used

to extract 3D information, presuming accurate 6DOF pose estimates. We define a

camera coordinate system with its origin at the camera center, as illustrated in Figure

3.7. The axes follow a common convention for cameras, where the z-axis is aligned

with the optical axis, the y-axis faces downwards, and the x-axis goes to the right hand side.

Since the camera is rigidly mounted on the quad-rotor, there exists a fixed transform

between camera and quad-rotor coordinate system. We choose the camera system to be
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Figure 3.7: The camera coordinate system. (a) We follow the common coordinate system
convention for cameras, where the z-axis is aligned with the optical axis. (b) Applying
this convention to the quad-rotor leads to the camera coordinate system, indicated by the
index C. The order of individual rotations needs to be considered.

the dedicated object coordinate system for pose estimation. In other words, any position

estimate will refer to the camera center rather than to the quad-rotor’s center of gravity.

This is beneficial since we can utilize camera poses for subsequent tasks as multi-view

reconstruction without conversion. Therefore, we express information from IMU messages

in terms of the camera coordinate system. The rotation angles with respect to the camera

coordinate system can easily be obtained by switching the corresponding axes according

to

rot(C)
x = −rot(Q)

y

rot(C)
y = −rot(Q)

z

rot(C)
z = rot(Q)

x .

(3.1)

Considering the camera coordinate system axes, the individual rotations have to be applied

in the order (y → x → z) to determine the correct camera orientation, as illustrated in

Figure 3.7. In the same manner we express the momentary velocity vector in camera

coordinates. For pure translational motion the velocity of the camera is equal to the

velocity of the quad-rotor’s center of gravity and the following equation holds true.
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v(C) =


v
(C)
x

v
(C)
y

v
(C)
z

 =


−v(Q)

y

−v(Q)
z

v
(Q)
x

 (3.2)

For rotational quad-rotor motion this equation is not correct due to the offset between

camera center and center of gravity. Unfortunately, the exact offset distance is hard to

determine and thus a small error is inevitable. Since the distance is in the range of a few

centimeters, we approximate the camera’s momentary velocity according to Equation 3.2.

Additionally, a fixed world coordinate system is required, which constitutes the reference

frame for localization. This system can be defined arbitrarily. We follow the example of

PTAM and fix the world coordinate system to the initial camera pose at system startup.

World and camera coordinate system are illustrated in Figure 3.8.

y

x

z

z

x

y

(C)

(W)

(C)

(W) (C)

(W)

Ground 
plane

Figure 3.8: The world coordinate system, indicated by the index W, is fixed to the initial
pose of the quad-rotor’s camera. Therefore, the xz-plane of the world system constitutes
the ground plane approximately. A pose estimate specifies the transformation between
world and camera coordinate system.

Pose Estimation from IMU Data. So far we have defined a world and a

camera coordinate system and receive rotation angles and momentary velocity from

periodic IMU messages. The goal is to exploit this data and estimate orientation

and position of the camera from it. Orientation can be determined directly from

the rotation angles rot
(C)
x , rot

(C)
y , and rot

(C)
z . By definition, the initial camera



3.2. Localization using the Inertial Measurement Unit 31

pose is aligned with the world coordinate system. Therefore, the initial rotation

angles (before take-off) constitute a constant offset that must be subtracted from

the current angles. Considering the correct order of rotation, the angles are con-

verted to a 3×3 rotation matrix RW,C , which fully specifies the orientation of the camera.

Besides orientation, the camera position needs to be determined. IMU messages provide

accurate estimates of the momentary velocity. The idea is to obtain the absolute position

by integrating velocities over time. Since velocity values can only be estimated relative

to the current orientation, we first have to convert from camera to world system. Given

the velocity vector v(C) in camera coordinates and current orientation RW,C , the velocity

vector in world coordinates is calculated as

v(W ) = RW,C · v(C). (3.3)

Velocity is defined as the rate of change of an object’s position over time. Conversely, the

position can be determined by integration of velocity. This way, we obtain the camera’s

absolute position x(W ) as we integrate over the velocity v(t)(W ) over time. We approximate

this integration by a sum of piecewise constant velocity values v
(W )
i multiplied by the

corresponding duration ∆ti. The duration results from the timestamp difference between

two consecutive IMU messages at times ti and ti−1. Thus, the absolute position x(W ) at

time step N is calculated as

x(W ) =
N∑
i=1

(v
(W )
i ·∆ti). (3.4)

The absolute position x(W ) and the rotation matrix RW,C fully specify the 6DOF pose

of the camera with respect to the world coordinate system.

Conclusion. The proposed localization method utilizes IMU sensor data to determine

the camera pose in a world coordinate system. In contrast to PTAM, this method is not

dependent on the presence of visual features. Therefore, it can be applied in scenarios

where visual SLAM methods are not applicable. The drawback of this method is that

no global reference is present and the position estimate tends to drift. In other words,

the position error accumulates over time due to the successive integration process. It is
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therefore to expect that real and estimated position drift apart, making this approach

inaccurate for large-scale localization. However, to detect and avoid close obstacles it

is not necessary to achieve accurate localization over large distances. Unless we aim to

utilize a global path planner, we are only interested whether obstacles are present inside

of a small volume around the UAV. Within a small spatial region we expect the effect of

drift to be negligible, which will be verified in our experiments. In the map building stage,

described in Section 5, we will countervail the effects of drift by discarding parts of the

map that are spatially distant from the UAV. This makes the IMU-based approach the

preferred localization method in our collision avoidance system.
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The main task of the collision avoidance system is to detect obstacles that are

spatially close to the quad-rotor helicopter. This requires to obtain three-dimensional

information of the environment. If PTAM is employed for localization, it would be

possible to access its internal map of 3D points. However, since PTAM is only feasible in

constrained scenarios (as described previously), we do not presume 3D information to

be available at this point. Thus, we created our own method for efficient 3D reconstruction.

Extracting three-dimensional information from a single, moving camera requires to match

images captured at different points in time. It has been discussed that reconstruction

can only yield good results if such images exhibit an appropriate baseline. Otherwise,

small triangulation angles cause high depth uncertainty in the reconstruction process.

In order to promote high quality results it is necessary to select appropriate images

from the video stream. Those images are called key images4 and the selection process is

described in Section 4.1 elaborately.

The actual 3D reconstruction process utilizes those key images. Whenever such an image

is selected, a reconstruction step is triggered immediately. The reconstruction works on

consecutive key image pairs, i.e. each key image and its predecessor are processed in a

4The idea of selecting a set of spatially distributed images is closely related to the keyframe concept of
PTAM. In order to avoid confusion we use the term key image instead.

33
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stereo fashion, as described in Section 4.2. The entire reconstruction process is illustrated

in Figure 4.1.

Camera  
pose  

estimate 
Localization 

 

Key Image 
Generation 

Reconstruction 
from Key  

Image Pairs 

Video data Key images 

3D points 

IMU 
data 

Figure 4.1: Overview of the 3D reconstruction process. The aerial vehicle supplies video
and IMU data. The key image generation routine selects appropriate images based on the
estimated camera pose. Subsequent image pairs are utilized to extract 3D information in
a stereo fashion.

4.1 Key Image Generation

During operation of the unmanned aerial vehicle we employ a routine that constantly

selects key images from the video stream. For the following explanation, the i-th

selected key image is denoted as Ii. Whenever the routine selects a new key image,

it is immediately used for reconstruction together with its predecessor. This means,

the pair {Ii−1, Ii} is treated like a stereo image pair, from which 3D information is

extracted. Accordingly, the successor key image Ii+1 will form an image pair with Ii
after its selection. This way, we successively extract 3D information on regular bases.

The question is now: When should we generate the next key image Ii+1 given the current

key image Ii?

Assume that Ii was captured from camera pose Pi = [Ri|ti]. For each camera frame the

routine has to decide whether it becomes the next key image or not. This depends on Pi
as well as on the current camera pose Pcam = [Rcam|tcam]. In particular, we are interested

in how far and in which direction the camera has been translated from Pi. Therefore, the

translation vector t(W ) ∈ R3 that describes this motion in world coordinates is determined.

Since the motion direction is of interest, we express this translation with respect to the



4.1. Key Image Generation 35

camera coordinate system of Pi, as

t(C) = Ri
−1 · t(W ). (4.1)

As already mentioned, good reconstruction results require an appropriate baseline

between the images. Besides the translation distance, the motion direction needs to be

considered, as shown in Figure 4.2. A pure forward motion (along the optical axis) for

example does not lead to increased triangulation angles, whereas horizontal or vertical

motion increases the baseline and promotes good reconstruction results.

(a) Horizontal motion (b) In-depth motion

x

(c) Motion overview

Figure 4.2: (a) Horizontal camera motion promotes good triangulation angles whereas
in-depth motion, as in (b), does not. (c) Summarized, left-, right-, up- or down-motion
improve the baseline and forward- or backward-motion does not.

The translation vector t(C) = [t
(C)
x , t

(C)
y , t

(C)
z ]T is used to assess if an appropriate base-

line has been achieved. Following our coordinate system conventions, horizontal motion

(right/left) is indicated by t
(C)
x , vertical motion (up/down) by t

(C)
y , and in-depth motion

(forward/backward) by t
(C)
z . Since horizontal or vertical motion is desired, a distance

threshold is set on the according components of the translation vector. If either |t(C)
x | or

|t(C)
y | becomes greater than this threshold value, the current frame is selected as new key

image Ii+1. The according threshold is called minimum baseline and denoted as Bmin. It

constitutes an important parameter in our system and its value affects rate and quality of

generated key images. A small value leads to fast key image generation, whereas a large

value results in fewer images with greater baselines. Figure 4.3 summarizes the entire

key image generation process. In the upcoming section we show how 3D information is

obtained from pairs of key images.
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Figure 4.3: Key image generation process (top view). (a) Key image Ii has been captured
from pose Pi = [Ri|ti]. (b) The minimum baseline Bmin defines a region relative to this
pose (yellow). No key image is generated as long as the camera remains within this region.
(c) As soon as the horizontal (or vertical) translation exceeds Bmin to either side, the next
key image Ii+1 is added. (d) The new key image Ii+1 and its predecessor Ii form an image
pair for stereo reconstruction.

4.2 Reconstruction from Key Image Pairs

Whenever a key image has been selected, we immediately utilize it for 3D reconstruction

together with its predecessor. From the corresponding camera poses and the intrinsic

camera parameters (which are assessed in a one-time calibration step), the camera

projection matrices are determined. Given a pair of images with known camera matrices

allows to apply sophisticated stereo reconstruction methods. There exist various

algorithms for stereo reconstruction and a good overview is given on benchmark dataset
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sites, such as KITTI5 or Middlebury6. Some state-of-the-art algorithms have been

assessed and tested for feasibility in our system.

Most proposed algorithms create dense reconstruction results that obtain a 3D point

for each pixel in an image. Although this gives a more complete representation

than triangulating individual correspondence points, the amount of data is hardly

manageable in a real-time system. While this issue could be countervailed by a

down-scaling of the input images, the major problem is that most real-time capable

methods presume a canonical stereo setup. The Efficient Large-Scale Stereo Algorithm

[19] creates reconstruction results from canonical stereo images very efficiently. Small

deviations to a canonical stereo configuration can be compensated by an according

image rectification step [33]. However, it has been discovered that rectification is

not applicable if the epipolar geometry differs significantly from such a canonical

configuration. We also investigated stereo algorithms that can handle arbitrary

stereo configurations, such as the planesweep algorithm [12]. Unfortunately, the

results of this algorithm are quite noisy and require a total-variation (TV-L1) based

smoothing [49]. Such global smoothing operations are computationally expensive and

therefore not feasible in a real-time system. For those reasons, we created our own

reconstruction method and specifically designed it to meet the requirements in our system.

Our 3D reconstruction method consists of the following steps: First, local image features

are extracted from both key images and correspondence points are obtained. We exploit

those correspondences to further refine the relative pose between the cameras using the

Five-Point algorithm [38]. This improves the results of the next step, which is the trian-

gulation of 3D points. The reconstructed 3D points are densified to get a more complete

representation of the environment. For this purpose, we employ a meshing algorithm

on the sparse point cloud, called Ball Pivoting Algorithm [7]. The individual steps for

reconstruction are now elaborated in more detail.

4.2.1 Feature Extraction and Correspondence Matching

Stereo reconstruction requires to find corresponding points in the image pair. For this

reason, local image features need to be extracted from both images. Feature extraction

includes detection and description of interest points. Detection is the task of finding

5http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
6http://vision.middlebury.edu/stereo/data/

http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
http://vision.middlebury.edu/stereo/data/
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a set of image points at recognizable locations (e.g. at corner points). Each point is

then described based on its local appearance, utilizing local information such as color,

shape or texture. It depends on the used feature descriptor which kind of information is

actually incorporated. As a result, each point is described as individual feature vector.

Feature Extraction. There exist numerous methods for image feature extraction.

The feasibility of a certain method is always related to the task that needs to be solved.

PTAM for example detects FAST corner points [43] and describes each point as 8 × 8

pixel patch (i.e. as vector of intensity values). This method is highly efficient and allows

PTAM to extract and track feature points at frame rate. Efficiency is important for our

reconstruction method as well, although the performance requirements are weaker. This

is because we neither employ tracking nor need to perform reconstruction at full frame

rate, since key images come at a much lower rate. It enables us to use a less efficient but

highly discriminative feature descriptor, namely SIFT [34].

SIFT (Scale Invariant Feature Transform) is known to be an extraordinarily robust

feature descriptor. It works on Difference of Gaussian (DoG) interest points, which are

detected at different scales of an image pyramid. Around the interest point location,

the image gradient is calculated in terms of magnitude and orientation. Gradient

orientations are weighted with a Gaussian function and accumulated into multiple

gradient orientation histograms. The histograms describe the distribution of edge

directions in a certain sub-region. After normalization, all histogram values are combined

into a 128-dimensional vector representing the interest point, as illustrated in Figure 4.4.

Obtained feature vectors are very robust to noise or illumination effects and can handle

significant changes of viewpoint and scale. The highly discriminative description allows

to achieve outstanding matching results.

Extracted SIFT features are highly discriminative and robust, but the extraction process is

computationally expensive. However, significant speedups can be achieved if the parallel

processing power of a Graphics Processing Unit (GPU) is exploited. An efficient GPU

implementation for SIFT feature extraction exists, which is called SiftGPU [51]. GPU

processing is usually not possible on-board of an unmanned aerial vehicle, but in case of a

distributed system design, this task can be carried out on an appropriate ground station.

In our system we employ SiftGPU on a ground station computer to speed up the feature
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Figure 4.4: The SIFT image descriptor. Gradient magnitude and orientation are computed
in a region around the interest point, as shown on the left. The blue circle indicates
the Gaussian smoothing to avoid boundary effects. The gradients are accumulated into
orientation histograms that summarize the contents over subregions, as shown on the
right. This Figure shows a 2 × 2 array of histograms, each having 8 directional bins. In
its standard configuration, SIFT creates a 4× 4 histogram array with 8 bins, leading to a
128-dimensional feature vector. Image taken from [34].

extraction process. A CPU variant is also implemented, such that a GPU-capable machine

is not a necessary requirement. We evaluate the effective speedup that can been achieved

with SiftGPU in Section 6.4. Interest points that have been detected in a pair of key

images are shown in Figure 4.5. The next step is to match features between images to

find corresponding image points.

Figure 4.5: SIFT feature extraction on key images. The colored circles show the image
locations where DoG interest points have been detected. The size of the circle indicates
the scale, based on the DoG image pyramid level. A 128-dimensional feature vector is
extracted at each interest point location.

Correspondence Matching. After extracting SIFT feature vectors from both images

corresponding points need to be identified. Therefore, each descriptor vector {vi}i=1...N in
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the first image is compared against all descriptor vectors {vj}j=1...M in the second image.

The Euclidean distance between two feature vectors vi and vj is calculated as

di,j = ‖vi − vj‖2. (4.2)

The discriminative SIFT descriptor is expected to achieve small distances if vi and vj

show the same point in both images, and large distances for non-corresponding points.

The simplest strategy is to match each point in an image to the point that gives the

smallest distance di,j in the other image. However, this leads to inevitable mismatches

despite the highly discriminative feature descriptor, as shown in Figure 4.6.

Figure 4.6: Simple feature matching. Matching each image point to the point with the
smallest feature distance leads to numerous mismatches.

In order to reduce mismatches we use a more sophisticated method, namely a ratio matcher

with backmatching. This means that a potential match is confirmed only if

• the ratio between smallest and second smallest distance is below a threshold Tratio

and

• the same potential match is found in both directions (from first to second image and

vice versa).

This restriction rejects ambiguous matches and mainly correct correspondences remain.

We empirically assessed that best results are achieved with a distance ratio threshold

Tratio of 0.7. Further rejection of mismatches could be achieved by a spatial match

verification, for example by verifying if epipolar constraints are met. However, the

proposed matcher achieved results with very few mismatches making further verification

unnecessary, as illustrated in Figure 4.7. Feature matching has a complexity of O(N ·M),

where N and M denote the number of extracted features in each particular key image.
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This task can also be performed on a GPU in a parallelized manner. Again, we evaluate

which speedup can be achieved with a GPU implementation in our experiments.

Figure 4.7: Using a ratio matcher with backmatching leads to high quality
correspondences. We used a distance ratio threshold Tratio of 0.7.

4.2.2 Epipolar Geometry Refinement

At this point a pair of key images, I1 and I2, and a set of high quality image

correspondences {xi ↔ x′i} have been established. Furthermore, the camera projection

matrices P 1 and P 2 according to the images are known. Basically, this is all the

information required to triangulate 3D points. However, the accuracy of the estimated

camera poses in P 1 and P 2 depends on the quality of localization. As explained in the

previous chapter, localization might be inaccurate due to drift effects. Thus, we exploit

the image correspondences {xi ↔ x′i} to refine the epipolar geometry leading to more

accurate 3D reconstruction results.

Epipolar geometry refinement is based on the Five-Point algorithm [38]. This algorithm

estimates the relative pose [R|t] between two cameras from 5 image correspondences,

assuming known camera intrinsics. If more than 5 correspondences are given, a robust

estimate on a consensus set is found using RANSAC [17]. As previously explained,

the relative pose can only be estimated up to scale from image correspondences. To

obtain the missing scale factor we exploit the pose estimates in P 1 and P 2. Precisely,

the scale factor is chosen such that the Euclidean distance between the camera centers

is preserved. This way, we determine a refined epipolar geometry based on image

correspondences, which is usually more accurate than the epipolar geometry specified

by P 1 and P 2. Taking absolute pose information into account, we effectively determine
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a refined second camera P2
′ adopting a relative pose [R|t] to the first camera P 1.

Triangulation is employed from cameras P 1 and P2
′, as illustrated in Figure 4.8. We

show that this refinement step leads to improved reconstruction quality in Section 6.3.

P1

P2'

P2

[R|t]

Figure 4.8: Epipolar geometry refinement. The cameras specified by P 1 and P 2 are given
and constitute a prior estimate on the epipolar geometry. Using the Five-Point algorithm,
we obtain the relative pose [R|t] between the cameras, where the scale is determined from
the priors. Triangulation is based on camera P 1 and the refined camera P2

′ adopting the
assessed relative pose.

4.2.3 Triangulation and Point Cloud Densification

After the refinement step we triangulate [21] correspondences to 3D points from the

camera pair specified by P 1 and P2
′. We assure good triangulation results by demanding

a minimum triangulation angle of 2◦ (otherwise the point is rejected). This threshold

constitutes a good tradeoff between accurate reconstruction and sufficient scene depth.

Finally, we ensure that each reconstructed point lies in front of both cameras and can

actually be projected into both images. This way, we obtain a high quality 3D point

cloud in world coordinates, as illustrated in Figure 4.9.

A sparse point cloud is not a good representation to detect obstacles because the lack

of surface information between individual points is problematic. Each reconstructed

point origins from a region in the image where an interest point has been detected.

Consequently, no 3D points are obtained in regions where interest points are lacking

(e.g. homogeneous areas). Further processing is required to close gaps and get a more

meaningful environment model. For this reason, we employ a triangular meshing

algorithm on the sparse points. This mesh is then used to interpolate additional points

and establish a densified point cloud.
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P1

P2'

Figure 4.9: Sparse 3D point reconstruction. Sparse points are obtained from triangulation
of image correspondences based on cameras P 1 and P2

′. The few points cannot be used
directly for reliable obstacle detection and are therefore densified.

The first step of the densification process is to create a triangular mesh upon the sparse

3D points. Mathematically, a triangular mesh is represented as a set of vertices V and

a set of faces F . Each vertex v ∈ V represents a 3-dimensional point in R3 and each

face f ∈ F defines a triangle spanned by three vertices. The process of finding a set of

faces F for a given vertex set V is called Meshing or Surface Reconstruction. There

exist manifold algorithms to establish a set of faces from a given point cloud. Individual

surface reconstruction algorithms differ in computation time, size and shape of the

created triangles, as well as completeness and connectivity of the resulting mesh.

Surface Reconstruction Algorithms. A widely used surface reconstruction

algorithm is the 3D Delaunay Triangulation7 described in [9]. It is an extension of the 2D

Delaunay Triangulation, where 2D points are connected to triangles such that no point is

inside the circumcircle of any other triangle. Adapted to 3D, it partitions the convex hull

of points into tetrahedra with the condition that no point is inside the circumsphere of

any other tetrahedron. However, this approach requires to carve away numerous trian-

gles that are not part of the surface and is significantly influenced by noisy outliers [24, 39].

Another popular method is the Poisson Surface Reconstruction algorithm [30], which

creates a watertight, triangular surface mesh. First, the algorithm requires to estimate

7Obtaining a triangular mesh from a point set is sometimes referred to as 3D triangulation. It should
not be confused with the process of reconstructing a 3D world point from two views.
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the normal vectors of all given points. Then, it finds the indicator function χ : R3 → R,

whose gradient best approximates the normal vector field, by solving a Laplacian

equation iteratively. Finally, the surface is extracted as an appropriate isosurface of χ.

The obtained surface mesh is watertight and looks visually appealing. However, one

fully connected mesh is often not suitable to model multiple, non-connected objects.

Furthermore, finding normal vectors and the indicator function are computationally

expensive tasks.

A meshing algorithm for our aims should connect gaps at regions with high point density

to emphasize the evidence of an obstacle there. Contrarily, it should not create faces at

regions with low point density (i.e. allow holes in the mesh) and ignore isolated outliers

(i.e. allow non-connected vertices). Moreover, the algorithm needs to perform efficiently,

which can be quite challenging in the three-dimensional domain. After investigating

different meshing algorithms we found the Ball Pivoting Algorithm [7] to best meet those

requirements.

(a) Given point cloud (b) 3D Delaunay (c) Poisson

Figure 4.10: Comparison of common surface reconstruction methods. (b) The 3D Delau-
nay Triangulation is sensitive to outliers and creates many inner triangles that need to be
carved away. (c) The Poisson Surface Reconstruction achieves visually appealing results,
but the watertight surface is too restrictive in many scenarios.

The Ball Pivoting Algorithm. The idea of the Ball Pivoting Algorithm (BPA) is

fairly simple. Three vertex points form a triangle if a ball with a user-specified radius ρ

is able to touch them simultaneously. Starting at a seed triangle, the ball pivots around

an edge while still touching both edge endpoints. When the ball touches another point,

a triangle is created by adding two edges to this point. The algorithm converges after all

edges have been traversed. The idea is illustrated in 2D in Figure 4.11.
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(a) (b) (c)

Figure 4.11: The Ball Pivoting Algorithm in 2D. (a) A ball with fixed radius ρ pivots
from point to point and connects them with edges (red lines). (b) At regions with reduced
sampling density, some edges will not be created and holes remain. (c) Some points might
not be reached where the curvature of the manifold is larger than 1/ρ resulting in missing
details. Images modified from [7].

The Ball Pivoting Algorithm is very efficient in terms of execution time and memory

consumption. It exhibits linear time performance O(n) with respect to the number of

input points. A great advantage is that only one parameter needs to be specified, which

is the ball radius ρ. A large ball radius results in more and larger triangles whereas a

small radius leads to smaller triangles and more gaps in the piecewise connected mesh,

as shown in Figure 4.12. Thus, the ball radius can be adjusted to create faces only at

regions where points are sufficiently dense while ignoring isolated points.

(a) ρ = 0.25m (b) ρ = 0.50m (c) ρ = 0.75m

Figure 4.12: The same point cloud is meshed with the Ball Pivoting Algorithm, which
only creates triangles between spatially close points. The distance threshold is implicitly
determined by the chosen ball radius ρ.
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Basically, the faces introduced with the BPA connect 3D points with a small spatial

distance compared to the fixed ball radius ρ. Assuming obstacles to be sufficiently

textured8, it is likely that the created faces connect points at the obstacle’s surface and

(partially) reconstruct the obstacle shape. 3D points that lie very isolated from other

points will not become part of any triangular face. Such points are mostly outliers

and should remain unconnected to the created surface elements. Summarized, the

BPA creates triangular surface elements at obstacle-evident regions and rejects isolated

outliers at the same time.

For obstacle detection it is not necessary to obtain geometrically correct surface

reconstructions of obstacles. The purpose of creating faces is to emphasize the evidence

of obstacles at certain regions and close gaps between points there. Although a surface

mesh is a more compact representation than a point cloud, it is beneficial to convert the

created faces into points, which is achieved by dense surface-sampling of the triangular

faces. The reason for this sampling step is that points are easier to fuse and integrate into

a common map than surface elements. Surface-sampling of faces leads to a semi-dense

point cloud. This means, the resulting point cloud exhibits high point density at some

regions whereas no points are present in other regions, as depicted in Figure 4.13.

(a) Sparse point cloud (b) Semi-dense point cloud

Figure 4.13: Visualization of the point cloud densification. The semi-dense point cloud
contains more valuable information and is beneficial for obstacle detection.

8Every algorithm based on feature extraction and matching is only feasible in scenes, where enough
discriminative features can be extracted.
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Summary. In this chapter we have shown how 3D information is obtained from the

video stream. Starting from an initial key image, we wait until the camera has moved by

a sufficient horizontal or vertical distance Bmin and select the next key image. We extract

discriminative SIFT features from both key images and establish high quality correspon-

dences using a ratio matcher with backmatching. The correspondences are used to further

refine the epipolar geometry between cameras from which sparse points are triangulated.

We interpolate between spatially close points using the Ball Pivoting Algorithm and ob-

tain a semi-dense point cloud. The next chapter will show how semi-dense point clouds

are fused into a common map, which is used for collision avoidance.
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The reconstruction process establishes semi-dense point clouds from pairs of camera

images. The next step is to fuse those point clouds by incorporating them into one

common map. This map models the environment and constitutes the basis for collision

avoidance. As a map representation we use a 3D occupancy grid to model free,

occupied, and unknown space in a probabilistic fashion. In Section 5.1 we give a detailed

explanation about how the map is gradually built and maintained throughout the

operation of the unmanned aerial vehicle.

The occupancy map combines the environmental information that is obtained throughout

a flight. Obstacle information can be retrieved from this map via map queries over a clearly

defined interface. Querying the map and triggering appropriate actions is accomplished

by a dedicated reactive controller process. This process needs to be closely related to the

main task of the UAV (e.g. power pylon inspection) in order to initiate adequate reactive

actions. We implemented two types of reactive controllers, which are explained in Section

5.2. The first one enables autonomous operations of the aerial vehicle and the second one

assists on human-operated flights. An overview of the mapping and control tasks and its

relation to the reconstruction process is given in Figure 5.1.

49
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Figure 5.1: Mapping and control overview. The reconstruction process generates semi-
dense point clouds from key image pairs. All point clouds are incorporated into a common
occupancy map constituting the basis for collision avoidance. An independent controller
process retrieves information from this map and sends appropriate reactive actions to the
UAV.

5.1 Probabilistic Occupancy Grid Mapping

To provide a reliable map for collision avoidance, we integrate 3D points into a

three-dimensional occupancy map. For this purpose we utilize the OctoMap [52]

framework, which has been described in Chapter 2. OctoMap has proven to be a

fast and flexible framework for occupancy grid mapping. It subdivides the 3D space

recursively into discrete cells and each cell n is assigned an occupancy probability P (n).

The individual cell probabilities result from integrating 3D points into the map, which is

subsequently described in detail.

Map Integration. The occupancy map is built of cubic cells with a fixed size. The

cube edge length is known as the resolution of the map. Each cell has a probability value

of being occupied that results from integration of points. When a 3D point is integrated,

the occupancy probability of the cell that contains this point increases. Mathematically,

the probability P (n|z1:t) of cell n being occupied, given the measurements z1:t and prior
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probabilities P (n) is

P (n|z1:t) =

[
1 +

1− P (n|zt)
P (n|zt)

· 1− P (n|z1:t−1)
P (n|z1:t−1)

· P (n)

1− P (n)

]−1
. (5.1)

Calculations can be simplified by using log odds notation, which is an alternative way of

representing probabilities. Probabilities P can be converted to log odds L and vice versa,

according to

L = ln

(
P

1− P

)
. (5.2)

Using log odds notation and assuming uniform prior probabilities of P (n) = 0.5 simplifies

Equation 5.1 to

L(n|z1:t) = L(n|z1:t−1) + L(n|zt). (5.3)

The term L(n|zt) represents the update of cell n according to the current measurement zt.

Its value results from the inverse sensor model that is used. We use a beam-based inverse

sensor model, where a ray from the sensor origin to a reconstructed 3D point is inserted.

Since each point is obtained from two camera views, we insert one ray from each camera

center to the 3D point. All cells along a ray are determined efficiently using a 3D version

of the Bresenham algorithm [1] and updated as follows:

L(n|zt) =

locc, for the cell that contains the 3D point

lfree, for all other cells along the ray
(5.4)

The beam-based model increases the occupancy probability of the cell containing the 3D

point and decreases the probabilities of all other cells along the ray, as illustrated in

Figure 5.2. The two parameters locc and lfree determine the impact of a measurement

and have been fixed to values of locc = 0.4 and lfree = −0.4. After a certain cell has been

updated multiple times, its probability value might become very high (occupied) or very

low (free). In order for the map to remain updateable (e.g. due to changing environment)

an upper and lower bound of cell probabilities is defined. This clamping update policy

[53] avoids map overconfidence by ensuring that cell confidences L(n|z1:t) remain in the

interval [lmin, lmax]. We set those values to lmin = −1.4 and lmax = 1.4 respectively.
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Reconstructed point 
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Figure 5.2: Integration of a 3D point into the occupancy map (top view). According to the
beam-based sensor model, one ray is inserted from each camera center to the reconstructed
3D point. The probability of the cell that contains the point is increased. Probabilities of
all other cells along the rays are decreased.

In this manner, two rays are inserted for each point of a reconstructed semi-dense point

cloud. OctoMap updates the occupancy probabilities of all affected cells according to the

beam-based sensor model. All cells that have not been affected by any ray are assumed

to be unknown space. Unknown cells do not require any memory, which is important for

efficiency and flexibility, i.e. the spatial extent of the map adapts to the integrated points.

The map can be visualized in a nice way by classifying each cell having a probability

lower than 0.5 as free and otherwise as occupied . Figure 5.3 illustrates the map after one

semi-dense point cloud has been integrated. As a next step we investigate effects that

arise when multiple point clouds are inserted and describe the need for map cropping.

Map Cropping. Whenever a semi-dense point cloud has been reconstructed, it is

immediately integrated into the occupancy map. Multiple point clouds usually show a

lot of redundant information, i.e. the same environmental structures. Assuming perfect

localization and reconstruction, those structures are mapped to the exact same cells in

the occupancy map each time. Unluckily, we have to face the problem of pose estimation

uncertainty and erroneous 3D reconstruction results. While the probabilistic nature of

the map allows to deal with reconstruction errors, the pose uncertainty constitutes a
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(a) Rear view: Occupied space only (b) Rear view: Occupied and free space

(c) Side view: Occupied space only (d) Side view: Occupied and free space

Figure 5.3: The occupancy map after integrating one semi-dense point cloud. Occupied
cells are shown in blue and free cells are shown in green. All remaining space is considered
to be unknown.

severe problem. It has been shown that global pose estimates are drifting, which leads to

misaligned structures or multiple occurrence of structures in the map, as exemplified in

Figure 5.4.

This degeneration of the map caused by drift needs to be countervailed. For this purpose

we crop the map each time before a new point cloud is integrated. The cropping provokes

that only cells within a small volume around the UAV’s current position remain, while

cells outside the volume are rejected (i.e. reset to the initial unknown state). This strategy

is motivated by two observations. First, there is no need to build a large-scale map of the

environment (except when global path planning is desired). In our system we employ a



54 Chapter 5. Mapping and Reactive Control

(a) 1 point cloud inserted (b) 3 point clouds inserted

(c) 5 point clouds inserted (d) 7 point clouds inserted

(e) 11 point clouds inserted (f) 15 point clouds inserted

Figure 5.4: The effect of pose estimation drift on the occupancy map. Integration of
multiple point clouds worsens the map due to drift of the estimated camera poses.
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reactive controller that only takes local environment information into account. Second,

the effect of drift increases with the distance that the UAV has covered. This means that

the estimated pose is fairly accurate for short-range motion only. Thus, before integrating

a semi-dense point cloud, we clear all cells outside of a fixed size volume around the current

position, as shown in Figure 5.5. This volume is called volume of interest (VOI) and its

size determines the “spatial memory” of the occupancy map.

Volume of interest 

Figure 5.5: Map cropping with respect to the volume of interest (VOI). Only a small
volume around the UAV is of interest for collision avoidance. Before integrating a point
cloud into the occupancy map, all cells outside the VOI are reset to the unknown state.
Shifting this volume through the map countervails the effect of global pose drift.

Summarized, this crop-before-insert strategy reduces the effects of localization drift

on the occupancy map. Hence, the occupancy map only adheres local environment

information. Rejecting spatially distant cells also keeps the memory consumption

bounded to support fast map operations. As a next step an adequate way to query the

map for obstacles needs to be established.

Map Querying. The probabilistic map consists of free, occupied, and unknown

cells resulting from continuous point cloud integration and map cropping. Map

information needs to be available to a controller process in order to initiate appropriate

actions in case of close obstacles. Therefore, the mapping process provides a
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service interface to enable map queries. Any controller process can initiate a

map query by sending a request to the mapping process. The mapping process

handles this request, retrieves information from the occupancy map, and returns

abstracted information in a response message to the calling process, as shown in Figure 5.6.

Mapping 
process 

Controller 
process 

Request 

Response 

1 

2 

Figure 5.6: Map queries are carried out using a service interface. A controller process
sends an appropriate request to the mapping process, which handles the request and
returns certain information in a response message.

When the mapping process handles a service request, it abstracts information from the

occupancy map by casting rays. A ray in 3D space is defined by a start point and a

propagation direction. The ray propagates until the first occupied cell is hit and the

distance from the start point is determined. It can be thought of measuring a distance

with a laser sensor, where only occupied cells reflect the laser beam. Casting a single ray

cannot provide reliable information and therefore multiple rays are casted at once. Their

start points and the propagation direction are determined from the current pose of the

unmanned aerial vehicle and certain information in the query message. In particular,

we calculate a bounded rectangle through the center of the UAV, called collision check

rectangle. The query specifies two angles, α and β, to determine the orientation of this

rectangle relative to the UAV’s pose. The start points are uniformly distributed on this

rectangle and rays are casted normal to it, as illustrated in Figure 5.7.

The start points of all rays are determined from sampling the collision check rectangle.

For logical reasons we use a sampling distance equal to the occupancy map resolution

(i.e. cell size). Specification of the rectangle’s rotational offset (α and β) allows collision

checks in arbitrary directions. Furthermore, a query needs to specify a critical distance

value dcrit. Casting all rays in the desired direction leads to one distance measure per

ray. Each ray that hits a cell at a distance closer than dcrit is called a hit. Rays that
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Casted rays Ray start points 

α 

β 

Figure 5.7: The collision check rectangle is an imaginary rectangle through the center of
the quad-rotor helicopter. Angles α and β determine the rotation of this plane around
the quad-rotor’s height or side axis respectively. The rectangle is sampled at equidistant
points from where perpendicular rays are casted into the map.

hit a cell at a greater distance or exceed a maximum distance are called a miss. As a

result, the hit rate HR is obtained, which gives the fraction of hits among all casted

rays, as illustrated in Figure 5.8. Additionally, the median distance dmedian to all hit

cells is calculated. Hit rate and median distance constitute the map query result and are

returned in an appropriate response message.

Any process can query the map via the provided service interface. The query needs

to contain the parameters {α, β, dcrit} and the response consists of hit rate and median

distance {HR, dmedian}. It is the task of a controller process to initiate appropriate map

queries on regular bases and react accordingly. Such a process is called a reactive controller

and is topic of the upcoming section.

5.2 Reactive Controllers

The final component in our collision avoidance system is a reactive controller that closes

the loop to the UAV. Such a controller needs to initiate map queries and influence the flight

path accordingly. The behavior of this controller has to be adapted to a given application

or flight scenario. Based on the scenario a controller can be optimized by determining
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Figure 5.8: (a) A set of rays is casted from the imaginary rectangle into the map and each
ray measures the distance to the closest occupied cell. Rays that hit a cell closer than
the critical distance dcrit count as hit (red), otherwise as miss (green). The hit rate HR
gives the fraction of hits among all rays and indicates the hazard due to obstacles. (b)
Visualization of a map query. Hit cells are colored in red.

• at which rate the map is queried,

• which query parameters are used,

• how query results are interpreted, and

• which actions are taken based on the query results.

In this work we implemented two different reactive controllers. The first one enables

autonomous forward flights, as desired in surveillance operations for instance, and is de-

scribed in Section 5.2.1. The second controller assists a human operator and notifies him

of hazardous obstacles, which is described in Section 5.2.2. We give a short summary and

an outlook towards more sophisticated controller strategies in Section 5.2.3.
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5.2.1 Reactive Controller for Autonomous Forward Flights

One goal of this work is to enable autonomous UAV operations using the collision

avoidance system. We created a reactive controller to achieve this goal assuming the

following scenario.

Scenario. The mission of the unmanned aerial vehicle is to progress forwards safely

through an unknown environment. The focus is on safe and collision free navigation

and a slow pace is acceptable. As a practical example, one can think of a surveillance

drone that gradually moves ahead while recording video footage. The target flight path

goes straight forward and deviations should only occur to avoid obstacles. In particular,

obstacles should be evaded by guiding the UAV sideways around it, as shown in Figure 5.9.

Figure 5.9: Scenario for autonomous forward flights. The target flight path of the UAV is
straight forward. In case of obstacles on the target path (gray boxes) the controller guides
the UAV sideways around those obstacles.

Controller Implementation. When progressing straight forward, we face the

problem that no key images are generated due to insufficient baseline. To overcome

this problem the controller periodically initiates a short up- and down-motion, called

baseline motion. After this baseline motion the controller queries the map in forward

direction and progresses if no close obstacle is evident. Motion of the quad-rotor is

accomplished by sending velocity commands in an open-loop manner. For example, to let

the quad-rotor ascend by one meter it can send a velocity command of “1m/s upwards”

for one second. We do not have a closed-loop control mechanism to ensure that the
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target location is actually reached. However, it is enough to assume that the actual

motion based on the velocity commands is fairly accurate.

After the up- and down-motion the controller initiates a map query in forward direction

(α = 0◦, β = 0◦). Based on the query response it decides whether a forward motion is

safe or not. The motion is considered safe if the obtained hit rate HR is smaller than

a threshold value HRmax. In this case, the controller sends velocity commands to move

the UAV a fixed distance forward. If HR is greater than HRmax, an obstacle is assumed

and an evasive motion has to be performed. For this reason, it checks whether it is safe

to move half-right, i.e. 45◦, or half-left respectively, by employing two more map queries

(α = ±45◦, β = 0◦). The first query that gives a hit rate smaller than HRmax results in

an according motion. To keep evasion to both sides balanced, we keep track of how often

the UAV moved to either side and first check in the less frequent direction. However,

if neither half-left nor half-right motion is safe, no forward motion is initiated. Instead,

the controller moves the quad-rotor slightly to the left or right hand side, where the less

frequently evaded side is preferred again. After any motion of the UAV, the entire process

is repeated. The controller strategy is illustrated as state machine diagram in Figure 5.10.

5.2.2 Reactive Controller for Assisted Flights

Another reactive controller has been implemented in the context of this work. In contrast

to the previous controller it does not enable fully autonomous flights, but assists a human

operator to achieve collision-free flights.

Scenario. In this scenario a human operator is required to control the UAV manually.

The operator utilizes a gamepad for this purpose to generate velocity commands. The

reactive controller acts as middleware layer between operator and quad-rotor helicopter.

It intercepts the velocity commands and verifies each one with a map query. The

command is only forwarded to the quad-rotor if the map query approves the command.

If the collision check indicates a hazardous obstacle, the controller provokes the aerial

vehicle to hover immediately. The human operator is informed about this circumstance

through an acoustic signal and can reset the position hold with a key-press. Figure 5.11

illustrates the described scenario.
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Figure 5.10: Controller for autonomous forward flights. Orange boxes: Map queries.
Yellow diamonds: Controller decisions. Green boxes: Resulting motion of the UAV.



62 Chapter 5. Mapping and Reactive Control

Collision  
avoidance  

system 

(a)

Collision  
avoidance  

system 

H
o

v
e
r 

(b)

Figure 5.11: Scenario for assisted flights. (a) The collision avoidance system including
the reactive controller acts as middleware layer between human and UAV. It forwards the
velocity commands (indicated by the green arrow) only after a map query has indicated
no hazardous obstacles. (b) If the velocity command is dangerous according to the map
query, the reactive controller sends a hover command instead and informs the human
operator with an acoustic signal.

Controller Implementation. As with the previous controller, an important

requirement is to ensure that key images are generated reliably. Of course, the human

operator could take care of this by avoiding pure forward motion and flying zig-zag

patterns. However, to simplify the operators task we implemented an automatic baseline

motion feature. If this feature is activated, a constant up- and down-motion is added to

the velocity commands of the user. This way, the UAV constantly ascends and descends

slightly to achieve sufficient baseline without requiring user-interaction.

The velocity commands from the operator are analyzed and the desired flight direction is

obtained. A map query is initiated to check the map in the assessed direction, by setting

angles α and β accordingly. Again, we use a threshold on the hit rate to decide whether

the velocity command is safe or not. If the hit rate is smaller than this threshold, the

velocity command is forwarded to the UAV immediately. Otherwise, the controller sends

permanent hover commands to the quad-rotor and informs the operator with an acoustic

signal. The operator can get a glance of the situation and reset the position hold by

pressing a key. This also clears the cells of the occupancy map in order to get rid of

potential erroneous information. The flight can be continued and the controller verifies
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each velocity command with the map again, which is successively rebuilt by integrating

new 3D information.

5.2.3 Summary and Future Work

In this chapter we proposed two reactive controller implementations. It has been

shown that a reactive controller can be customized for a certain scenario in order to

initiate appropriate rective actions. Such reactive actions include stopping the UAV by

sending hover commands or guiding it towards safer regions. The proposed controllers

are fairly simple but arbitrarily complex strategies can be implemented for a given scenario.

However, developing mature controller strategies is a topic on its own and goes beyond

the scope of this work. Such controllers can also exploit additional information from the

map queries. For example, the median distance of hit cells dmedian could be considered to

adapt subsequent map queries. Furthermore, the map query service interface can easily

be extended to retrieve supplemental map information. Distinguishing between free and

unknown cells in ray casting operations or exploiting lower OctoMap resolutions are only

a few ideas to promote more sophisticated reactive controllers. We suggest that future

work should concentrate on the development of such mature controllers.
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We performed several experiments to evaluate the proposed collision avoidance system.

In Section 6.1 we give an overview of the experimental setup. We assess the quality of our

IMU-based localization method and compare it against the PTAM system in Section 6.2.

Later in Section 6.3 those two methods are compared again, but we evaluate how accurate

the relative motion between subsequent key images can be estimated. In Section 6.4 the

entire system is evaluated in terms of computational speed. First, we break the system

down into individual tasks and determine the average processing time of each task. Then,

we assess the response time of the system to rapidly emerging obstacles. In Section 6.5

we present the results of fully autonomous UAV flights. Finally, we show the outcomes of

assisted flights in Section 6.6 to conclude the experimental chapter.

6.1 Experimental Setup

The unmanned aerial vehicle we use throughout this work is the Parrot AR.Drone

2.0 quad-rotor helicopter. It is equipped with 2 rigidly mounted cameras – one

65



66 Chapter 6. Experiments and Results

looking forward and the other one facing downwards. We only utilize imagery

from the forward looking camera that supports a resolution of 1280x720 pixels.

The quad-rotor’s Inertial Measurement Unit (IMU) consists of accelerometers,

gyroscopes, and magnetometers. Sensor data is fused and filtered on-board

resulting in time-stamped IMU messages, which are exploited for IMU-based

localization. During flight, video frames and IMU messages are constantly streamed

to a Wi-Fi connected ground station computer. To avoid congestion we stream

the image frames with a reduced resolution of 640x360 pixels at 10 frames per second (fps).

The ground station computer is a laptop with a 2.4 GHz Intel Core i7 processor running

Linux. It performs all collision avoidance related tasks and can interfere by sending

control commands back to the drone. The laptop is equipped with an NVIDIA GeForce

GTX 660M Graphics Processing Unit (GPU) that allows to run costly tasks in a

parallelized manner. For manual or assisted flights we utilize a Logitech
TM

gamepad to

communicate with the UAV via the ground station, as depicted in Figure 6.1.

The experiments in Section 6.2 and 6.3 require a ground truth of the aerial vehicle’s pose.

For this reason we utilize a Vicon
TM

motion tracking system. This outside-in tracking

system consists of 15 cameras to track certain markers and assess highly accurate 6DOF

pose estimates. Such markers have been mounted on the UAV to establish ground truth

poses, as illustrated in Figure 6.1. In the following experiment we evaluate the accuracy

of UAV localization.

6.2 Localization Accuracy

In this experiment we compare the localization accuracy of the visual SLAM system PTAM

to our IMU-based localization method described in Section 3.2. Throughout a flight, we

constantly compare pose estimates from PTAM as well as from our IMU-based approach

against the ground truth pose acquired with the Vicon system. First, we employ flight

paths that meet the requirements of PTAM, i.e. we constantly face a small, well-textured

scene. Then, we violate those constraints by performing a 360 degree turn and assess the

effect on either localization method. In the subsequent section we describe the evaluation

criteria for this experiment.
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Figure 6.1: Experimental setup. (a) The AR.Drone 2.0 communicates with the ground
station laptop over a Wi-Fi link. For manual control we utilize a gamepad to communicate
with the drone via the ground station. (b) Special markers on the drone allow highly
accurate 6DOF pose estimates using the Vicon motion tracking system.

6.2.1 Evaluation Criteria

The localization accuracy is evaluated by determining translational error and rotational

error. The translational error is measured in terms of the Euclidean distance

εtrans = ‖x̂− x‖, (6.1)

where x̂ denotes the estimated position and x denotes the ground truth position from

the Vicon system. The rotational error gives the difference of orientations between es-

timated and real pose. Orientations are represented as quaternions q̂ = [q̂0, q̂1, q̂2, q̂3]
T

and q = [q0, q1, q2, q3]
T respectively. The difference between two orientations can also

be represented as a quaternion q̃ = q̂ · q−1 . The rotational error is obtained from

q̃ = [q̃0, q̃1, q̃2, q̃3]
T as

εrot = 2 · arccos(q̃3), (6.2)

which gives the minimum required angle to rotate from the first to the second orientation

geometrically.

The Vicon system provides ground truth poses at a rate of about 120 Hz. We measure the
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overall performance of an entire flight in terms of the Root Mean Squared (RMS) error,

computed as

RMS =

√
1

N

∑
n

‖εn‖2, (6.3)

where εn denotes the translational or rotational error respectively at time step n. In the

first experiment we compare the performance on flight paths that promote good localiza-

tion with PTAM.

6.2.2 PTAM-friendly Flight Paths

In this experiment we initialized PTAM metrically, while the camera faces a small and

well-textured scene. Then we manually controlled the UAV along flight paths, such

that the initial scene remained in the camera’s field of view, as shown in Figure 6.2.

This promotes highly accurate pose estimates of the PTAM system, which are compared

against our IMU-based localization method.

(a) Camera image (b) Tracked feature points

Figure 6.2: The rich-featured scene remains visible throughout the entire flight. Numerous
visual features can be tracked to ensure optimal conditions for PTAM localization.

We performed 4 independent flights to assess the pose estimation quality of each method.

The trajectories of both approaches together with the ground truth trajectory are illus-

trated in Figure 6.3. The overall RMS error (combining all 4 flights) is shown in Table 6.1.

This experiment proves that pose estimation with PTAM clearly outperforms the IMU-

based localization if the flight path meets certain constraints. Specifically, the initial
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IMU
PTAM
Vicon
Start point

z[
m
]

x[m]
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(d) Flight #4

Figure 6.3: Trajectories of all 4 flights in the localization experiment (top view). It can be
seen that the IMU-based trajectories drift significantly, whereas PTAM estimates remain
close to the ground truth position.

Method Transl. error [m] Rot. error [rad]

PTAM 0.3962 0.1871
IMU-based 0.7888 0.5823

Table 6.1: Overall RMS localization error for flight paths that meet PTAM’s requirements.
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scene remained visible throughout each flight, such that PTAM’s tracking could always

find enough points for accurate pose estimation. The trajectories illustrate that the IMU-

based method suffers from drift while PTAM remains close to the ground truth. However,

the good localization quality is only possible due to the constrained flight paths. In the

following experiment we show the effect when those constraints are violated.

6.2.3 Violation of PTAM Constraints

The previous flight paths were specifically designed to meet the requirements of PTAM. In

case of more general flight paths those constraints are usually violated. In this experiment

we let the UAV turn around its height axis by 360 degree. As soon as the initial scene

vanishs from the field of view, PTAM loses its localization because the tracking thread

cannot find map points anymore. In this state, PTAM cannot generate any pose estimates

until known map points become visible again and the system recovers. Figure 6.4 illustrates

the localization error during a 360 degree turn.
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Figure 6.4: Localization error during a 360 degree turn. The turn starts at 25s and PTAM
loses localization at 28s, after known map points have vanished from the camera’s field of
view. During this time, PTAM is not able to establish pose estimates. Recovery starts at
40s and the localization is successfully recovered at 42s. At 43s the turn is complete and
the entire initial scene is faced again.

The experiment demonstrates that PTAM cannot handle maneuvers such as sharp turns

without losing the localization. This is because its internal map of 3D points only

contains world points near the initial scene. Although the map is extendable, it would
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require highly strategic path planning to extend the map during a turn without loss of

localization. Therefore, the feasibility of PTAM for UAV localization is restricted to

constrained flight paths.

In contrast, our IMU-based localization method is not dependent on the presence of

visual features. It is solely based on sensor data from the Inertial Measurement Unit.

Since this method lacks any global reference information, it suffers from global pose drift.

However, since we do not need to build a globally consistent large-scale map, this drift is

acceptable in our system. Nevertheless, it is essential that the relative motion between

key images is estimated accurately to achieve high quality reconstructions, which is

assessed in the following experiment.

6.3 Relative Motion Estimation

Each multi-view reconstruction method that uses a single camera requires an accurate

estimate of the relative motion between images to match. The accuracy of this estimate

has a major impact on the reconstruction quality. In our system we constantly perform

reconstruction between pairs of subsequent key images. In this experiment we evaluate

the quality of relative motion estimation between those key images. Again, we obtain

the ground truth from the Vicon motion tracking system. Since a relative motion

can also be specified as a 6DOF pose, we use the same error measures as described in 6.2.1.

We compare 3 different methods against the ground truth. The first method estimates

the relative motion using PTAM. Again, we initialize PTAM on a well-textured scene

and avoid sharp turns to prevent localization loss during flight. When the i-th key image

is selected, the camera pose Pi according to PTAM is stored. The relative motion is

then obtained as the transformation between pose Pi−1 and Pi. The second method

works accordingly, but the individual camera poses are obtained from our IMU-based

localization technique. The difference to the previous experiment is that not the global

6DOF pose is of interest but the relative pose between subsequent key images. The

third method refines the purely IMU-based estimate, as described in Section 4.2.2.

In particular, the relative motion is estimated from image correspondences using the

Five-Point algorithm [38], where the missing scale factor is obtained from the IMU-based

estimate.
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An important parameter in this experiment is the minimum baseline Bmin. This value

determines the required motion in horizontal or vertical direction that results in a new key

image. We varied the minimum baseline between 0.1m and 1.0m and assessed the relative

motion error of all 3 methods. The results are graphically illustrated in Figure 6.5.
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Figure 6.5: Translational and rotational error of the relative motion estimation. For small
values of Bmin the accuracy of all 3 methods are comparable. Thus, the effect of drift on
the IMU-based methods is negligible for short-range motion.

The experiment proves that each method can estimate small relative motions accurately.

For small values of Bmin, the pure IMU-based estimates show comparable accuracy to

PTAM. Earlier experiments have shown that IMU-based localization tends to drift. How-

ever, small motions can be estimated accurately using IMU data and are not noticeably

affected by drift. Refinement of the IMU pose using the Five-Point algorithm leads to

slightly improved results. When a small value of Bmin is used, our proposed method is

more accurate and can potentially triangulate better 3D points than PTAM. Furthermore,

we do not require expensive tracking and flight paths do not need to be constrained. In

the following section we evaluate the entire system in terms of computational speed.

6.4 System Speed Evaluation

Computational efficiency is an essential requirement for our system in order to perform in

real-time. We evaluate the speed of the system in two ways. First, the processing time of
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each main system task is determined and the impact of exploiting the GPU is assessed.

Then we measure the time it takes to detect obstacles that are rapidly placed in front of

the UAV in real-world experiments.

6.4.1 Execution Time of System Tasks

In this experiment we assess the average execution time of each task in the system;

starting from frame arrival until feedback is sent to the UAV. The collision avoidance

system is therefore divided into subsequent tasks and execution time is broken down

into those tasks. Our ground station computer is able to perform some tasks on its

Graphics Processing Unit (GPU). We investigate the benefits of this ability by comparing

execution times when GPU capabilities are enabled and disabled, respectively.

The proposed collision avoidance system can be broken down into the following logical

tasks. Tasks that are marked with a star(∗) can be executed on the GPU.

1. Baseline verification: The system receives a frame and determines whether it

provides a sufficient baseline to the last key image. Only if this is the case, the

frame becomes a keyframe and is processed; otherwise the frame is dropped.

2. Image conversion and undistortion: If the baseline is sufficient, the key image

is converted into an appropriate data format and camera lens distortion is corrected.

3. Feature extraction*: Interest points in the current key image are detected and

SIFT image features are extracted.

4. Correspondence matching*: Extracted feature vectors are matched with features

from the previous key image, resulting in a set of image correspondences.

5. Five-Point pose estimation*: Given the image correspondences, the relative pose

is estimated using the Five-Point algorithm.

6. Sparse point triangulation: A set of sparse 3D points is triangulated from image

correspondences and the previously assessed relative pose.

7. BPA densification: Sparse 3D points are densified to a semi-dense point cloud

using the Ball Pivoting Algorithm (BPA).

8. Map cropping: The map is cropped such that only cells around the current UAV

position remain in the occupancy map.
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9. Ray insertion: Rays are integrated into the occupancy map by updating cells

according to the inverse sensor model.

10. Collision check: The map is queried for obstacles by casting rays. Although

collision checks are usually initiated by a separate controller, we check right after

insertion here to complete a full system cycle.

Execution without GPU Capabilities. First, we analyze the execution times when

all tasks are performed on the CPU. Therefore, we recorded 50 seconds of a flight along an

arbitrary flight path. The minimum baseline was set to 0.2m, which results in 31 generated

key images throughout the flight. The individual execution times of all tasks were logged

and the average time of each task was determined, as shown in Figure 6.6.
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Figure 6.6: Average execution times with disabled GPU-capabilities. SIFT feature ex-
traction is clearly the most costly task. An entire system cycle takes 0.55 seconds.

The most costly task is obviously the extraction of SIFT features from an image.

Feature extraction took 0.46 seconds on average, which constitutes more than 80

percent of an entire system cycle. An average cycle took 0.55 seconds so that the

system can roughly handle two key images per second. Luckily, our ground station is

able to perform some tasks on the GPU and the resulting speedup is assessed subsequently.

Execution with GPU Capabilities. Now we analyze the effect of enabling GPU

capabilities on the execution times. As previously explained, three tasks can be carried

out on the GPU, which are feature extraction, correspondence matching, and five-point

pose estimation. We observed that the pose estimation task runs faster on the CPU and
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therefore only the first two tasks were actually executed on the Graphics Processing Unit.

We analyzed the exact same 50 seconds of the recorded flight and assessed the execution

times, as shown in Figure 6.7.

A
ve
ra
ge

ti
m
e
[s
]

Task
1 2 3 4 5 6 7 8 9 10

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Figure 6.7: Average execution times with enabled GPU-capabilities. SIFT feature extrac-
tion and correspondence matching are significantly speeded up. An entire system cycle
only takes 0.15 seconds now.

The experiment proves that exploiting the GPU leads to significant speedups. Extraction

of SIFT features only took 0.08 seconds on average, which is 6 times faster than on the

CPU. Furthermore, correspondence matching took 0.012 seconds compared to 0.025

seconds on the CPU, which is still twice as fast. In this configuration an entire system

cycle took 0.15 seconds. Thus, our system is able to handle more than 6 key images per

second and can clearly meet real-time requirements.

If no GPU-capable ground station is available, it is still possible to speedup the execution

by using a less complex feature descriptor. Replacing SIFT with the more efficient SURF

[6] descriptor speeds up the feature extraction task from 0.46 to 0.16 seconds and still yields

good reconstruction results. This makes the system feasible to use with ground stations

that are not able to perform tasks on the GPU. In the next experiment we determine the

response time of the system to rapidly emerging obstacles.

6.4.2 Response Time to Dynamic Obstacles

To complete the speed evaluation we analyze the system’s response time to rapidly

appearing real-world obstacles. For this purpose we let the UAV fly up and down
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constantly in an environment without close obstacles. The constant up-down-motion is

necessary to generate key images on a regular basis. At time t0 we rapidly place an

obstacle in front of the up- and down-moving quad-rotor helicopter. Instead using a

separate reactive controller we employ a collision check each time after rays have been

inserted into the map. It is expected that the collision avoidance system successfully

detects the obstacle at time t1. The response time ∆t = t1− t0 is measured and evaluated

in the experiments. Figure 6.8 illustrates the experimental setup.

(a) (b)

(c) (d)

Figure 6.8: (a) First, the quad-rotor constantly moves up and down seeing no close obsta-
cles. (b) During this time the map contains mainly free space (green) and a few occupied
cells (blue) far away. (c) At time t0 an obstacle is placed rapidly in front of the UAV.
(d) After the obstacle has been reconstructed and inserted into the occupancy map it is
detected at time t1. Free space is not shown for better visibility here.

Besides the processing time of the system tasks, the response time mainly depends on

the rate at which key images are generated. A key image is generated if the horizontal or

vertical distance to the previous keyframe exceeds the fixed value of Bmin. Large values
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of Bmin or slow UAV motion are therefore causing long response times. Consequently, a

fast moving UAV or a small Bmin value result in shorter response times due to faster

key image generation. In the performed experiments the UAV moved up and down

with a velocity of approximately 0.5m/s. We recorded 5 instances of the experiment

and determined the response times for different values of Bmin. Precisely, we set the

minimum baseline Bmin to 0.1m, 0.2m, and 0.3m respectively. Table 6.2 shows the entire

parameter setting used throughout these experiments.

Parameter Value

Localization method IMU-based
GPU processing Enabled
Minimum baseline Bmin 0.1m, 0.2m, and 0.3m respectively
OctoMap resolution 0.1m
BPA radius ρ 0.3m
Maximum ray length 5m
Volume of interest 5m × 5m × 5m
Collision check rectangle 1.0m × 0.5m (width × height)
Critical distance dcrit 2m
Hit rate threshold HRmax 0.1

Table 6.2: Parameter setting for the response time experiments. Five instances of the
experiment have been performed and the response time ∆t was assessed.

Response time. We recorded 5 independent instances of the experiment. The recorded

data was fed to our collision avoidance system and the response time ∆t was determined

manually. We assessed the influence of Bmin on the response time of the system. Our

system was able to detect the obstacle successfully in all five experiments. Table 6.3

shows the response times that we measured.

Bmin = 0.3m Bmin = 0.2m Bmin = 0.1m

Experiment #1: 1.9s 1.6s 1.1s
Experiment #2: 2.4s 1.5s 1.2s
Experiment #3: 1.8s 1.7s 1.0s
Experiment #4: 1.9s 1.6s 1.7s
Experiment #5: 2.6s 1.9s 1.4s

Average: 2.12s 1.66s 1.28s

Table 6.3: Response time ∆t to rapidly emerging obstacles.
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The experiments prove that our system is able to detect dynamic obstacles without

significant delay. As expected, the response times are shorter when key images are

generated faster due to a small value of Bmin. However, the quality of reconstructed 3D

points decrease when Bmin is very small as a result of the short baseline between key

images. When using Bmin = 0.1m we observed one false positive detection in Experiment

#3, which means the system detected an obstacle before it was visible. Furthermore,

in Experiment #4 the response was slower than for Bmin = 0.2m. The reason was that

despite key images have been generated faster, it required more image pairs until the

obstacle was successfully detected.

Another thing to keep in mind when using small baselines is computational effort. If key

images are generated faster than the system can process them, real-time requirements are

violated. Our speed evaluation showed that key images can be processed in 0.15 seconds

when exploiting the GPU. Thus, the system could easily handle even the smallest baseline

of 0.1m. However, without GPU-capabilities the system would have been pushed to its

limits. We found that a good tradeoff between speed and accuracy is achieved with a

minimum baseline of 0.2 meters. In the next experiment we present results of autonomous

UAV flights.

6.5 Autonomous Flight Results

In this section we present the results of fully autonomous flights in a cluttered

environment. We utilized two inflatable pylons as obstacles and placed them 2 meters

in front of the quad-rotor’s start point. To provide sufficient texture on the obstacles

we covered both pylons with newspaper. As described in Section 5.2.1, the target flight

path is straight forward and in case of an obstacle the reactive controller should guide

it sidewards past the obstacle. To achieve a sufficient baseline between key images, the

unmanned aerial vehicle performs a baseline motion, i.e. a short up- and down motion,

before progressing forwards. We set the minimum baseline parameter Bmin to 0.2m and

the remaining parameters according to Table 6.2. The experimental setup is depicted in

Figure 6.9.

We performed 6 autonomous flights towards the inflatable pylons and utilized the Vicon

motion tracking system to record the trajectories. The reactive controller periodically

initiated a baseline motion before checking for obstacles in the occupancy map. Based on
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Figure 6.9: Setup of the autonomous flight experiment. (a) Two inflatable pylons were
used as obstacles and placed in front of the quad-rotor helicopter. (b) The goal is that the
collision avoidance system detects the obstacles during the flight and guides the quad-rotor
sidewards past the pylons.

the query results it proceeded either straight forward or evaded to the right or left hand

side. The system was able to detect the obstacles and guide the UAV collision-free past

them in all 6 experiments. The trajectories of 3 flights are illustrated in Figure 6.10.

Discussion. The experiments prove that our collision avoidance system can detect

and avoid obstacles in real-time during a flight. It is evident that the trajectories

of individual flights vary significantly, which is a result of the slightly different start

positions. Furthermore, it can be seen that the resulting trajectories deviate from the

target path, which is straight forward, even after the obstacle has passed. This is

mainly due to turbulences from the rotor-airstream, which cause little displacements or

rotations of the UAV. If this affects the quad-rotors heading, it progresses towards an

offset direction, as shown in the first two rows of Figure 6.10.

A correction of this heading error is difficult for two reasons. First, the IMU-based lo-

calization method might not always be aware of such a rotational offset, as illustrated in

the top left image in Figure 6.10. Second, the system can only guide the quad-rotor by

sending velocity commands in an open-loop manner. Accurate motion maneuvers (e.g.

“correct the heading by 5 degree and progress exactly 1m in forward direction”) would

clearly require a closed-loop control mechanism. However, despite following a target flight
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Figure 6.10: Resulting flight paths of 3 autonomous flight experiments. Each row illus-
trates the resulting path of one autonomous flight. The left column shows a top view
where the global position drift of the IMU-based localization method is apparent. The
right column shows appropriate side views and the baseline motion can be seen.
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path is problematic, our experiments prove that well-textured obstacles can be detected

and avoided reliably. In the subsequent section, we evaluate the performance on different

types of obstacles and assess its influence on the detection reliability. To avoid path devi-

ations we employ assisted flights, which means the unmanned aerial vehicle is controlled

manually and stops in case of close obstacles.

6.6 Assisted Flight Results

Finally, we investigate the performance of the system in terms of reliable obstacle

detection. Therefore, we performed several assisted flights in an outdoor environment

and utilized the reactive controller described in Section 5.2.2. The UAV was controlled

manually using a gamepad and the reactive controller assists the human operator. As

previously described the controller constantly adds a slight up- and down-motion (called

automatic baseline motion) to the operator’s commands to ensure key image generation.

The controller verifies each command from the operator in terms of safety with the occu-

pancy map. If the command has been approved it is forwarded to the UAV. Otherwise,

the controller stops the UAV immediately and informs the operator with an acoustic signal.

The goal of these experiments was to assess how good different obstacles can be

detected by the system. Four different obstacles were used, which clearly differed

in terms of surface texture, as shown in Figure 6.11. We performed 10 independent

flights towards each obstacle and assessed whether the system was able to stop the

UAV before colliding with it. We evaluate the quality by determining the achieved

success rate, which gives the fraction of successful experiments among the flights. An

experiment was considered successful if the UAV was stopped before touching the obstacle.

Each flight started at a distance of 5 meters from the respective obstacle. The critical

distance dcrit was set to 2m and we demanded that the controller has to stop the UAV

within this distance. If it is stopped earlier, the result is interpreted as a false positive

detection and the experiment is not considered successful. We observed that false

positives are more likely in the specific outdoor scene and thus increased the hit rate

threshold HRmax to 0.15. The minimum baseline parameter Bmin was set to 0.2m again.

The forward speed of the UAV was approximately 0.5m/s and the altitude deviation due

to automatic baseline motion was ±0.2m. All remaining parameters were set according

to Table 6.2.
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(a) Well-textured
pylon

(b) Weakly-textured
pylon

(c) Person (d) Wiry model

Figure 6.11: The obstacles used in the assisted flight experiments. In our experiments we
assessed how often each obstacle is detected among 10 flights.

Results on different obstacles. First, we used one inflatable pylon covered with

newspaper as obstacle. The purpose of the newspaper was to provide a well-textured

surface on the object promoting good detection results. In fact, the system had no

problems to detect this rich-featured object and stop the UAV before a collision occured.

The controller was able to stop the UAV successfully in all 10 flights and thus achieved a

success rate of 100%.

Next, we removed the newspaper from the pylon and repeated the entire experiment.

The pylon has a homogeneous orange surface with a few black letters on it, as shown

in Figure 6.11(b). Compared to the previous setting the amount of surface texture was

clearly reduced. Again, we performed 10 flights towards the obstacle and achieved a

success rate of 50%.

In the third experiment series we assessed the sucess rate when using a human person as

obstacle. The system was able to succeed in 8 of 10 flights. In the remaining two flights

it stopped the UAV but slightly too late, such that the UAV had already touched the

person. However, since we only consider an experiment successful where the UAV was

stopped before contact, the achieved success rate is 80%.
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Finally, we used a wiry, wooden model as our last obstacle. Although this object was

larger than the previous ones, it was the most challenging obstacle due to its wiry

structure and lack of texture. The system could achieve a success rate of 30%. A

summary of the achieved success rates is given in Table 6.4. Moreover, some screenshots

from the experiments with different obstacles are shown in Figure 6.12.

Obstacle Success rate

Well-textured pylon 100%
Weakly-textured pylon 50%
Person 80%
Wiry model 30%

Table 6.4: Success rates of the assisted flight experiments on four different obstacles.

Discussion. The proposed experiments prove that a successful detection is heavily

dependent on the provided texture of an obstacle. We demonstrated the ability of our sys-

tem to detect and avoid well-textured obstacles reliably. Untextured or weakly-textured

objects are problematic, which is a result of our approach to reconstruct 3D information

from image feature correspondences. However, future work can focus on the incorporation

of additional information, such as optical flow [54] or line segments [23]. The speed evalu-

ation in Section 6.4 demonstrated the computational efficiency and proved that real-time

requirements are clearly met. Thus, there are still resources to incorporate additional

information while adhering real-time capabilities.
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(a) Well-textured pylon (success rate: 100%) (b) Weakly-textured pylon (success rate: 50%)

(c) Person (success rate: 80%) (d) Wiry model (success rate: 30%)

Figure 6.12: Screenshots from the assisted flight experiments. (a) The pylon covered with
newspaper provided rich features and could reliably be detected. (b) The uncovered pylon
could be detect when the black letters were clearly visibly in subsequent key images.
(c) A person could be detected in most experiments since enough image features were
present. (d) The wiry model was problematic since only a few points on the object could
be reconstructed.
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In this work we have presented a system for collision avoidance on unmanned aerial

vehicles. We use a monocular camera as visual input device and efficiently obtain three-

dimensional information from the video stream. The 3D information is integrated into a

probabilistic occupancy map and a reactive controller utilizes this map to give appropri-

ate feedback to the UAV. To conclude our work, we give a short summary of our main

contributions and present an outlook to future work.

7.1 Conclusion

We have shown that UAV localization based on data from the Inertial Measurement Unit

(IMU) is feasible for our system. In contrast to visual SLAM methods, this approach is

not dependent on visual landmark tracking and is therefore superior for unconstrained

flight paths. Despite our method is affected by global drift, we have assessed that

short-range motion can be estimated sufficiently. Since only spatial regions close to the

UAV are of interest, the global drift has little negative impact on the quality of the system.

In the computational speed evaluation we have shown that our system can meet

real-time requirements. Exploiting a ground station with GPU processing capabilities

enables the system to process more than 6 key images per second. Furthermore, we

have demonstrated that the system achieves fast response times to rapidly emerging
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real-world obstacles. The promising speed of the system allows further extensions

without compromising real-time capabilities.

We have shown that the collision avoidance system can be used with diverse UAV tasks by

employing customized reactive controllers. Two reactive controller strategies have been

implemented to enable safe autonomous forward flights as well as assisted flights. In

our experiments we have proven that the system can detect and respond accordingly to

different hazardous obstacles.

7.2 Future Work

We have assessed that visual SLAM methods can achieve very accurate global localization

as long as enough visual landmarks can be tracked. The overall localization quality could

be improved if such a method is combined with our IMU-based technique. This way, the

localization drift could be reduced, which allows to build large-scale maps for enriched

applications.

In our experiments we have encountered that autonomous waypoint flights

are difficult when the UAV is controlled by sending open-loop velocity com-

mands. The reason is that effects as airstream cause considerable deviations

from a desired flight path. Thus, autonomous flights could be improved by

establishing a closed-loop method for controlling the UAV. Together with an accurate lo-

calization this would enable autonomous waypoint flights in large, cluttered environments.

Future work should also aim to create enhanced reactive controller strategies. A lot of

additional information could be incorporated, such as the spatial distribution of free,

occupied, and unknown cells or map query results on lower occupancy map resolutions.

The long-term goal should be to go from the reactive controller scheme towards global

path planning. However, accurate localization and a closed-loop UAV control method

are prerequisites to achieve this goal.

We have shown that the proposed system is able to detect sufficiently textured obstacles in

a reliable way. However, detecting weakly-textured or wiry obstacles is still a challenging

problem and requires to gather additional information. Incorporation of optical flow or

line elements are only a few possibilities that could improve the detection quality.



Appendix A

Acronyms

List of Acronyms

AR Augmented Reality

BA Bundle Adjustment

CPU Central Processing Unit

DoG Difference of Gaussian

DSM Digital Surface Model

EKF Extended Kalman Filter

FAST Features from Accelerated Segment Test

FPS Frames Per Second

FOV Field Of View

GPS Global Positioning System

GPU Graphics Processing Unit

IR Infrared

IMU Inertial Measurement Unit

LRF Laser Range Finder

MAV Micro Aerial Vehicle

PTAM Parallel Tracking and Mapping

RANSAC Random Sample Consensus

RMS Root Mean Square

ROI Region Of Interest

SfM Structure from Motion

SIFT Scale Invariant Feature Transform
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SLAM Simultanious Localization and Mapping

STOC Stereo On Chip

SURF Speeded Up Robust Features

UAV Unmanned Aerial Vehicle

VSLAM Visual SLAM

VOI Volume Of Interest

WiFi Wireless Fidelity
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