
Florian Hubner

Development of an interface for fast read
out of high-resolution two-photon images

Master’s Thesis

Graz University of Technology

Institute for Theoretical Computer Science
Head: O. Univ.-Prof. Dr. Wolfgang Maass

Supervisor: O. Univ.-Prof. Dr. Wolfgang Maass

Graz, September 2013

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

iii

Abstract

Novel two-photon microscopes are able to produce images with high res-
olution and frame rate. Usually the images produced by this microscope
are saved to disk and then analysed offline. In the course of this thesis
an interface was developed which allows to send these images over the
network. This way analyses can be done at the same time as the images are
acquired. The online analysis of such images allows to develop experiments
where immediate feedback of the activity of certain neurons is given back
to the monitored animal. For the purpose of the network interface a packet
structure was defined which specifies how the images are sent over the
network. Using this encoding a sender was implemented on top of Scan-
Image[12]. Also a receiver was implemented in MATLAB which is able to
reassemble the images from the data received over the network. To show
that the interface works for real experiments some tests were made and
application which use the interface were developed. The last application,
the auto focus, which was in the beginning also meant to use the network
interface turned out to be more useful if directly implemented as a plugin
for ScanImage.

Keywords: ScanImage, two-photon imaging, real time, calcium traces

v

Zussammenfassung

Neuartige two-photon Mikroskope sind in der Lage Bilder mit hoher
Auflösung und Bildrate zu machen. Normalerweise werden diese Bilder
auf der Festplatte gespeichert und dann offline analysiert. Im Zuge dieser
Arbeit wurde eine Schnittstelle entwickelt, die es möglich macht die Bilder
über ein Netzwerk zu senden. Dadurch können die Daten analysiert werden
während noch Bilder mit dem Mikroskope gemacht werden. Diese online
Analyse erlaubt es Experimente zu gestalten in denen Rückmeldung über
die Aktivität bestimmter Neuronen an das Tier zurückgegeben wird. Für
die Netzwerkschnittstelle wurde eine spezielle Packetstruktur spezifiziert
die genau bestimmt wie die Bilder über das Netwerk geschickt werden. Mit
Hilfe dieser Kodierung wurde dann ein Sender für ScanImage implemen-
tiert. Außerdem wurde ein Empfänger entwickelt, der die Daten die über
das Netzwerk empfangen werden wieder zusammensetzt. Um zu zeigen,
dass die Schnittstell auch in echten Experimenten funktioniert, wurden Tests
gemacht und Anwendungen entwickelt, die die Schnittstelle verwenden.
Die letzte Anwendung, der Auto Focus, sollte am Anfang auch die Netz-
werkschnittstelle verwenden. Es stellte sich jedoch heraus, dass er besser zu
bedienen ist wenn er direkt als Plugin für ScanImage implementiert wird.

Schlüsselwörter: ScanImage, two-photon imaging, real time, calcium traces

vi

Contents

Abstract v

1. Introduction 1
1.1. Two-photon calcium imaging 3

1.1.1. Advantages . 3

1.1.2. The imaging process . 4

2. Interface for fast readout 6
2.1. Setup . 6

2.1.1. ScanImage . 8

2.2. Interface . 9

2.2.1. TCP vs UDP . 9

2.2.2. Packet structure . 11

2.3. Implementation . 12

2.3.1. Sender . 13

2.3.2. Receiver . 14

2.4. Benchmark . 15

3. Applications 18
3.1. Real-time tracer . 18

3.1.1. GUI . 18

3.1.2. Computation of the activity signal 20

3.2. Robot arm control . 20

3.3. Auto focus . 22

3.3.1. Goal . 23

3.3.2. Offset computation . 24

3.3.3. Transformation matrix 25

3.3.4. Results . 29

vii

Contents

4. Conclusion 33

A. Manual 36
A.1. Preparations . 36

A.2. Installation . 37

A.3. Configuration . 38

A.4. Reading out images . 38

A.5. Examples . 39

Bibliography 44

viii

List of Figures

1.1. Two-photon image . 4

2.1. Setup schematic . 7

2.2. Encoding of the data . 12

2.3. Interface with all its components 12

2.4. Assembly time . 16

2.5. Packet loss . 17

2.6. Packet loss vs analysing time 17

3.1. Real-time tracer GUI . 19

3.2. Robot arm . 21

3.3. Robot arm video . 22

3.4. Normalized cross-correlation 25

3.5. Image in microscope coordinates 30

3.6. Auto focus error . 31

ix

1. Introduction

The brain is a very interesting topic of research for many people. It can
perform very complex task, it is flexible and can adapt to the environment,
and it is at the same time very energy efficient. To better understand the
brain scientist developed different methods to analyse what is going on in
this complex organ. These methods reach from observing and measuring
single cells to behavioural studies or psychoanalyses, they can be inversive
or non-inversive, in vivo or in vitro, on a low level or on a high level, and
so forth. All these different approaches are necessary to understand all the
different working levels of the brain.

From the view point of computer science it is also very interesting to find
out how the brain works because it allows to develop new kinds of artificial
intelligence (AI) and technologies. This is important because there are many
tasks which are very easy for humans but very hard for computers. For
example teaching a robot to navigate through a building is very complicated.
Another branch of computer science where brain inspired AIs are interesting
is computer vision. Classifying and categorizing objects in images is a topic
of many publications[1, 3, 4] and understanding the brain can help to come
up with new approaches.
There are also already researches which try to develop hardware based on
the function of the brain[7, 16]. This can lead to a new, very different, kind
of computers which are able to perform tasks that todays computers can
not perform.
There are many more areas where brain inspired hard- and software are
useful, but to be able to develop them we need to better understand how
the brain works.

For a better insight into the brain novel techniques were developed during
the last few decades which allow to directly measure the activity of neurons.

1

1. Introduction

Some examples are functional magnetic resonance imaging (fMRI), mea-
surement with electrodes in the brain, and two-photon imaging[2, 14, 15]. A
quick introduction to two-photon imaging can be found in Section 1.1. With
these methods the behaviour of groups of neurons can be observed more
precisely and correlations to behavioural aspects can be found. This makes
it possible to examine how the brain codes different types of information,
from low level information, like sensory input or motor output, to higher
level information, like memory.

The focus of this thesis lies on the work with images made with a two-
photon microscope. The development has been done in the lab of Daniel
Huber. The goal is to be able to send images acquired with the two-photon
microscope in real time over the network. To achieve this I developed a
network interface which is described in Chapter 2. Before implementing
the interface I specified a packet structure which exactly defines how the
images are sent over the network (see Section 2.2.2). With this encoding
defined it is possible to implement a sender and a receiver. The details
of the implementation of those can be found in Section 2.3. The sender
has been developed as a plugin for ScanImage[12]. The receiver has been
implemented in MATLAB but because of the defined packet structure it
would be possible to use any programming language to implement the
receiver. It offers a nice way for users to add their own analysing functions.
Some test are presented which show that the implementation of the interface
is fast enough to be used in an experimental setup. The results of the tests
can be found in Section 2.4.

Additionally to the tests I developed some application in collaboration
with Mario Prsa from the lab of Daniel Huber. An exact description of the
applications I developed can be found in Chapter 3. The first two of these
application use the network interface. They should in combination with
the test from Section 2.4 show that the interface I developed for this thesis
can be used in real experiments. The first application is called the real-time
tracer. It allows to extract fluorescence traces from the images sent over the
network. In Section 3.1 it is described how this tool works. On top of the
real-time tracer an has been implemented by Mario and me with which
it is possible to move a robot arm depending on the activity of neurons
of a mouse (see Section 3.2). The third one, the auto focus, has also been
planned to use the interface but it turned out that is makes more sense

2

1.1. Two-photon calcium imaging

to directly implement it as a plugin for ScanImage. Its purpose is to help
the experimenter to get to the same position in the brain if experiments on
different days are done. A discussion of the problems and how their are
solved can be found in Section 3.3.

In the last chapter a conclusion for the thesis can be found. It summarizes
findings of these thesis. Additionally some ideas for improvements and
future work are mentioned. In the appendix a user manual can be found. It
gives step by step instructions how the interface is installed, explains how it
is used and shows some programming examples.

1.1. Two-photon calcium imaging

All the data for this thesis is based on images acquired with a two-photon
microscope in brains of mice. For a better understanding of this thesis it is
useful to know how these images are obtained. It will make clear what the
problems are, and why some decisions are made.

1.1.1. Advantages

Two-photon imaging allows to observe the activity of a group of neurons
simultaneously. By monitoring several neurons of a specific brain area
conclusions can be drawn about what the animal is doing. It also allows
to look at neurons of one specific type which helps to understand what
different cell types in the brain are responsible for. Another very important
advantage of this technique is that images can be made in alive (in vivo)
and awake animals. Imaging in awake animals is a very important feature
as cells of dead or anesthetized can behave differently than the cells of
awake animals. analysing the brain also becomes more flexible in vivo
because some errors can be found and correct more easily as in vitro. Newer
microscopes are able to make images with a high resolution and high frame
rates at the same time. This generates a huge amount of data that can be
used for studying the brain.

3

1. Introduction

Figure 1.1.: Example of an image taken with a two-photon microscope.

1.1.2. The imaging process

The whole process of acquiring images with this technique is based on a
laser which excites special fluorescent molecules to emit photons. These
photons are then measured and converted into a single pixel value. The laser
is then moved a bit and another measurement is taken. This is done until a
whole image is ready after which the laser gets back to the starting position
and starts a new image. In Figure 1.1 an example for such an image is
shown where several neurons with different levels of activity can be seen.

To be able to measure the activity the probability that a molecule emits
photon depends on the calcium concentration inside of it. Calcium is a
very good indicator of how big the voltage between inside and outside of a
neuron is which represents the activity of the cell. It is also important that
the fluorescent molecules are only inside the neurons which you want to see
on the image. To achieve this there are mainly two methods. The first is to
inject a special dye[14] which the neurons will absorb. The second method
is to modify the gens[9] of the animal so that it expresses certain kinds of
proteins that are able to fluoresce.

Important factors for the quality of the image are temporal and spatial
resolutions. The necessary temporal resolution is achieved with the laser

4

1.1. Two-photon calcium imaging

which is capable of firing very short burst of photon very fast. Therefor
pixel values can be gather very fast which leads to a high frame rate for
the image. Spatial resolution is achieved by the way how the molecules are
excited. It always takes two photon of the laser for the molecule to emit
one photon. That is why it is called two-photon imaging. When using two
photon for the excitation it is possible to focus the laser on a specific part
of the tissue. If only one photon would be used all neurons on the path of
the laser would emit photons and it would not be possible to measure one
specific point in the tissue.

5

2. Interface for fast readout

The primary goal for this thesis is to find a way to send the images produced
by the two-photon microscope over the network. The microscope is con-
trolled by the acquisition computer where a special acquisition software is
running. It will send the images to another computer that will then be able
to work with the data. Using a network based interface has the following
advantages:

• Move analysis to more powerful machines
• Decouple acquisition from analysis
• Independence of programming language

The data produced by a two-photon microscope can be very large so if it
is possible to send the data to a computer with high computational power
the data can be analysed faster and more complex algorithms can be used.
Processes on the acquisition machine , like analysing the images, can slow
down the acquisition of images which in some cases can lead to errors in the
images or in the worst case even to a crash of the acquisition software. When
using dedicated machines for the analysis this problem can be overcome.
The interface defines a clear structure of how the data have to be encoded.
Therefor it is possible to use an arbitrary programming language for the
implementation of the readout.

2.1. Setup

Figure 2.1 shows a schematic of the general setup for the imaging. Note
that the implementation for this thesis are manly developed in the lab of
Daniel Huber at the University of Geneva but the schematic should also
apply to setups in different labs just the animal used for the experiments

6

2.1. Setup

Figure 2.1.: Schematic that shows the different parts of the imaging setup.

may be different. The first part involved in the setup is the mouse (or animal
used for imaging). Usually its head is fixed that the microscope can take
proper images. The microscope contains the hardware which is necessary to
take two-photon images. The hardware consists of the laser, several optical
devices to control the beam, devices that measure the photons emitted from
the fluorescent molecules, and so forth. Additional equipment can be added
which can be necessary for the experiment. To control the microscope an
acquisition computer is needed. It contains hardware that is able to control
the different devices of the microscope so it is able to change properties of
the imaging process. A special acquisition software is also needed to allow
the user to control the whole imaging process. The software will store the
images usually on the hard disk, but the acquisition software should be able
to not only store the data to disk but also send it over the network. So a
network interface has been developed which allows exactly this. Another
computer can then use this interface to read out the data an work with
them.

7

2. Interface for fast readout

2.1.1. ScanImage

The acquisition software to control the microscope for which the interface
was developed is called ScanImage[12]. It is implemented in MATLAB in an
object oriented style. ScanImage uses special hardware to communicate with
the microscope and also offers a graphical user interface (GUI) which allows
to control every aspect of the imaging process. The GUI actually consists
of several small windows where each is responsible for a specific task. For
example one window allows to control where and when the images are
stored, another one controls the properties of the image, and so on. A very
important feature of ScanImage is that it allows developers to add user
defined function and plugins. Using plugins it is very easy to connect the
interface for the fast readout to ScanImage. A more detailed explanation of
the GUI, user defined functions, plugins, and generally about ScanImage
can be found on the project homepage[6].

ScanImage offers three different modes how images can be made.

• FOCUS
This mode is to take a first look at the neurons.
• GRAB

With this mode a set of images can be acquired.
• LOOP

The LOOP mode allows to do several GRABs.

The first mode allows to go to the region where the imaging should take
place. When imaging an animal the first time the FOCUS-mode can be used
to check if the neurons can be seen properly and to find a suitable region for
the imaging. After finding a suitable region the GRAB-mode can be used to
get first images which will be saved in a single TIF file to the disk. It can
be configured how many images to take, if they should be averaged, how
many slices (images in z-levels) to take, and where the images should be
saved. For experiments it is useful to utilize the LOOP-mode. It allows to
do several consecutive GRABs. In the easiest case the GRABs are just made
one after another. For each GRAB one file is saved in a specified folder. If
making long acquisition this is necessary otherwise the images can get to
big to handle them. The LOOP-mode can also be configured in a way that

8

2.2. Interface

when a external trigger occurs the next GRAB starts. This can be used in an
experiment to start a new acquisition for every trial.

2.2. Interface

For the reasons already mentioned above a defined interface is needed. It
should make clear how the data are encoded and sent over the network. To
be able to do this one has to exactly understand how the data look like. It is
not enough to just send the image over the network. Additional information
is required which is needed to work with them. This information is called
meta data. It contains things like width and height of the image, a timestamp
of when the image was acquired, the number of the image, and several
other parameters of the imaging process. Fortunately ScanImage already
provides all of the necessary information.

The next important thing to think of is how the data are sent over the
network. Computer networks can be very heterogeneous, assume many
different forms, and can strongly vary in size. To control the traffic in this
networks standards have been developed which exactly define how data
have to be encoded before sending them. This way all devices in the network
know how to understand the data they receive. These standards are called
protocols. The most famous are probably TCP and IP but there are many
more. To define the interface it is necessary to decide what protocol should
be used.

2.2.1. TCP vs UDP

For the transportation of the kind of data used here there are mainly two
options that can be used, the Transmission Control Protocol(TCP) and
the User Datagram Protocol(UDP). They are built on top of the Internet
Protocol(IP) and define how two computers exchange data. Both have
different features which can be seen in Table 2.1.

9

2. Interface for fast readout

TCP UDP

Name Transmission Control Protocol User Datagram Protocol

Connection connection oriented connectionless

Ordering correct arbitrarily

Packet loss packet is resent ignored

Table 2.1.: Properties of TCP and UDP

TCP The Transmission Control Protocol if probably the most used protocol
which handles the data exchange between computer. It is a connection
oriented protocol, that means before data can be sent from one client to the
other client it builds up a connection between them and when a session is
finished the two clients disconnect. If data are sent over the network it can
happen that some packets (data pieces) can be faster then others so the right
ordering of the packets is not guaranteed, TCP handles this problem and
reorders them. Another problem that can occur is that some packets can be
lost on the way from one client to the other. When this happens TCP sends
a request to resend this packet.

UDP The User Datagram Protocol is much simpler than the other protocol.
It does not build up a connection between computers but rather just sends
the packets out into the network. It also does not care if a packet arrives at
the other client or if the packets are received in the correct order. At first
this sounds as if UDP is useless compared to TCP but the advantage is that
it is much faster because it has much less overhead. While TCP needs an
extra procedure to build up a connection, which takes some time, UDP can
start sending data right away. Also the resending of packets is very time
consuming because for every packet a client receives it has to send back a
message to the other client that it received it. The reordering of the packets
has to be taken into account by the implementation of the interface.

To sum everything up it can be said that TCP should be used when it is

10

2.2. Interface

important that all pieces of the data are received correctly. UDP on the other
hand should be used if speed is important and the loss of some data bits is
not that crucial. In the case of this thesis UDP is chosen because the speed
is much more important than the correct receiving of the data. As the frame
rate of the images is usually pretty high there will not be to much changes
from one image to another and missing parts could be interpolate from the
previous and the next image.

2.2.2. Packet structure

Now that the shape of the data is known and it is decided which protocol
is used for transmission it can be defined how the data are encoded. First
they have to be split up into smaller pieces because the packets sent over
the network may only have a limited size. Additionally a header will be
added (see Figure 2.2) to each piece to be able to reconstruct the original
data, and to know what data are received. The first four bytes of the header
determine the type, dependent on this the header can contain additional
information. There are four possible packet types.

• FRAM Indicates that the data received are image data. In this case the
header also contains the number of the frame and a number that says
which part of the image this data piece is.
• META This type of packet contains the meta data of the imaging

process. It has no additional information in the header.
• DONE It indicates that a frame is completely sent. The data section of

this packet is empty.
• QUIT Tells the client that the acquisition software has been closed.

The data section is also empty.

These packets can now be sent over the network using UDP. The receiving
client will then know what data it is, how it should handle them, and how
it can reconstruct the images.

11

2. Interface for fast readout

Figure 2.2.: Encoding of the data

Figure 2.3.: Interface with all its components

2.3. Implementation

The next step after deciding how the data are sent over the network is to
implement the interface. Because ScanImage is coded in MATLAB it is also
chosen as the language for the implementation of the interface. Another
reason why MATLAB is used is that it already offers many functions for
image processing which will be useful for the analysis of the data.

The interface consists of two parts, the sender who encodes the data and the
receiver who decodes and reassembles the data. This is necessary because
a network based interface is used. The sender has to communicate with
ScanImage to get the images and the meta data. The receiver should provide
an easy way to read out the reassembled images. Figure 2.3

12

2.3. Implementation

2.3.1. Sender

As mentioned before the sender gets the images and the meta data from
ScanImage. It is implemented as a plugin for ScanImage. This means it
is actually just a function which is called when certain events happen in
ScanImage. The sender then, depending on the event that occurred, performs
the necessary tasks. The events that are important for the sender are:

• appOpen
Indicates that ScanImage has started.
• appClose

Occurs when ScanImage is closed.
• frameAcquired

When an image (frame) is ready this event indicates it.
• acquisitionStarted

This event indicates that the acquisition has started.
• acquisitionDone

All images are done when this event occurs.

At the beginning, when ScanImage is started, the sender needs to initialized
the network components that will be used during the communication. For
this an IP address has to be provided. How this can be done will be shown in
Section A. After that the plugin waits until ScanImage starts an acquisition
which is indicated by the acquisitionStarted-event. In ScanImage a start of an
acquisition is always when a new GRAB starts that means either a GRAB is
directly started by the user or in LOOP-mode when the next GRAB starts.
The FOCUS-mode will not trigger this event. The sender then reads the
meta data and sends them to the receiver using a META-packet. Then one
after the other frame will be ready which is indicated by frameAcquired. Each
frame gets partitioned into several data pieces, put into a packet of the type
DATA, and is then sent over the network. When all the images are done
the event acquisitionDone is triggered which makes the plugin to send a
DONE-packet. Finally, if ScanImage is closed, the used network components
are closed and everything gets cleaned up.

13

2. Interface for fast readout

2.3.2. Receiver

The second part of the interface is called the receiver. It reads incoming pack-
ets from the network, unpacks them and reassembles the data. Depending
on the type of the packet it performs different tasks but before it can do this
some initializations have to be made. So at the beginning, when the receiver
starts, it sets up the necessary network components. After that it waits for
packets from the sender. The first packet which will be sent is of the type
META. The receiver needs this because it contains important information
about size and number of images which are going to be received. The next
packets that are sent are FRAM-packets. Each of them contains a segment
of the image. To be able to reassemble the image additional information
is provided in the packet header. It tells the receiver to which frame the
data in the packet belong and which part of the image it is. When a frame
is ready the receiver triggers an event called frameComplete. It allows the
user to define a function which will be called every time this event hap-
pens. This way the user is able to analyse the data that are received. For a
detailed explanation of how to define these functions see Section A. The
DONE packet indicates that a frame is completely sent. The receiver uses
this type of packet to find out if some packets are lost. When all frames have
been received the receiver waits for another packet. The two types of the
packets it expects are either META or QUIT. If a META packet is received
the process described before is performed again. A packet of the type QUIT
indicates that ScanImage was closed and triggers the receiver to also shut
down. Similar to the sender it will perform some cleaning up before it will
completely terminated.

Note that the frameComplete event does not necessarily mean that all the
data were received because it can happen that some packets are lost. In this
case the respective part of the image will be wrong. At the current version
this case is just ignored, because only a few packets are lost and usually
the images are averaged during the analysis which will correct for the lost
image parts. The decision for ignoring this case is made because for the
first implementation speed is most important and sophisticated methods
for recovering the lost parts would need time.

14

2.4. Benchmark

2.4. Benchmark

For the last section of this chapter some speed test were made to evaluate
how much time is needed to reassemble the images and how much time
is left for analysis. The test were made using a custom made acquisition
computer with which is also used for the experiments. It sends the data
over a small local network to an Acer Aspire 5935g laptop with an Intel
Core 2 Duo CPU T9550 with 2.66 GHz and 4 GB of RAM. Compared to the
computers usually used for the analyses of the data the laptop is rather weak
so the data represented here that depend on the power of the computer
are a rather pessimistic estimate. The interface is designed to be used in
local networks and not for the use over the internet, therefor the test are
done using the network in which the interface will be mainly used. Three
different properties are measured in the benchmark:

• assembly time
Time needed to reassemble the images received from the sender.
• packet loss

Number of packets that are lost in the network.
• packet loss vs processing time

Percent of lost packets over the time used for analysing the data.

The data are measured using the highest possible frame rate of 28.84Hz for
512× 512 images. 10000 images are sent which takes 341 seconds for the
chosen frame rate. Figures 2.4 - 2.6 show the outcome of the benchmark-
ing.

In the first figure it can be seen how much time it takes to reassemble
each of the 10000 frames. The mean assembly time is roughly at 10ms and
there are peaks up to about 22ms. These peaks can appear because of the
different delays each packet has. Another reason why they can show up is
that a process on the receiving computer may need some CPU time thus
increasing the time needed to reassemble the image. Note that the assembly
time depends on the power of the computer.

The data shown in Figure 2.5 represent how many packets are lost in the
network. For this figure no analysis of the data are done meaning that the

15

2. Interface for fast readout

Figure 2.4.: Time needed to reassemble the images. The red line shows the mean assembly
time of 9.8823ms.

images are only sent over the network, reassembled and then discarded. It
clearly shows that the packet loss for small networks is negligible.

The next question is if the packet loss changes if some analysis are done.
This is tested and shown in Figure 2.6. Roughly the first 10ms are needed to
reassemble the image which is indicated with the gray area. The time that
should be left for the analysis can be computed using the frame rate, and
the assembly time. When this is done for these data the time left should be
about 24.8ms which perfectly fits the data shown. If the analysis takes more
time the number of lost packets will increase strongly. This is because the
packets received are first stored into a buffer. The receiver takes the packets
from this buffer and reassembles the images. When an image is ready the
analysing function is called. If this function is not fast enough to handle the
frame rate at which the data are sent the buffer will overflow and therefor
some packets are discarded.

16

2.4. Benchmark

Figure 2.5.: Packet lost in the network when no analysis are done. The percentage of lost
packets is 0.06%

Figure 2.6.: Percentage of packets that are lost for different analysing times. The gray area
shows the time needed for the assembly of the image, the green area is region is
the acceptable time for image analysis, and the red area shows the time where
data are lost because the analysis can not handle the frame rate at which the
images are produced. Blue crosses are measurement points.

17

3. Applications

In the previous chapter it was already shown that the interface should work
but this was under some benchmark conditions which may not resemble
real world conditions. To see if it also works for experiments additional
applications have been developed. They have been tested under real experi-
mental conditions and with real mice. It also shows different ways in which
the interface can be used.

The application have been developed in close collaboration with Mario
Prsa who works at the lab of Daniel Huber. They have been also mainly
developed for this lab. So the applications might not work from scratch in
other labs and may need some changes in the code.

3.1. Real-time tracer

The first thing to do for the analyses is to extract the activity of some
neurons from the images. This application is able to do this in real time as
it receives the images using the network interface. It extracts the activity of
some predefined neurons and generates a signal which can then be used
for further analyses. To make it easier to use it also offers a GUI.

3.1.1. GUI

The GUI shows all the information which is necessary for the user and allows
to adjust some parameters for how the signal is computed. In Figure 3.1
a screenshot of the GUI can be seen. It can work in two different modes.
The first one is to define the regions of interest (ROI) which are the neurons

18

3.1. Real-time tracer

Figure 3.1.: Screenshot of the GUI of the real-time tracer

from which the activity should be extracted. In this mode the upper left plot
shows an averaged image of all the images it receives. It can then be used
to define which are the interesting neurons. The second mode is used to
extract the activity of the neurons from the images. Here the upper left plot
shows the images that are received over the network. The upper right plot
shows a moving average of the received images and the ROIs that have been
defined. In the lower plot the extracted activities of the different neurons
can be seen. The lower right area of the GUI is where the parameters and
modes can be configured.

19

3. Applications

3.1.2. Computation of the activity signal

For further analysis a signal has to be extracted from the imaging data.
Unfortunately the molecules that allow to measure the calcium concentration
with the microscope may vary over different areas and also the setting of
the imaging parameters may change the intensity of a neuron. But the
signal that is produced from the images should represent the activity of
the neuron which is independent from these factors. Thus the signal has
to be normalized in a way that the activity from different areas and from
different images can be compared. This is done in three steps.

• Averaging
• Masking
• Com

The first step is necessary to get rid of any kind of noise which may be
produced by the microscope or to compensate the data which might get lost
over the network. After that the average image in combination with masks
which indicate the ROIs can be used to extract a raw signal. This is done by
just computing the mean pixel value inside each ROI. The signals produced
this way still depend on several factors like the setting for the power of the
laser and the concentration of calcium indicating molecules. To make the
signal comparable a sliding window is used to determine the base activity
which is then subtracted from the raw value. The result is then divided by
the base value to normalize it. This way a signal is produced which can be
used for further analyses.

3.2. Robot arm control

This application demonstrates the capabilities of the interface and also of
the real time tracer. It shows that it is possible to extract the activity of some
neurons and transform into movements of a machine. Controlling devices
using neuronal activity will be important for further experiments where the
mouse is trained to control some device using its mind.

20

3.2. Robot arm control

Figure 3.2.: Robot arm with all controllable joints marked.

Figure 3.2 shows the robot arm that is used for this application. It has a
grabber and five controllable joints which are marked in the figure. The
first one allows to rotate the arm. The next one allows to move the arm
back and forth. Joint 3,4 are used to move the arm and the grabber up and
down and the last joint opens and closes the grabber. For the application
only the joints 1,3,4 are used because it is enough illustrate the purpose of
this application. The three joints are controlled by three neurons that are
selected by hand. To extract the activity of the neurons the real-time tracer
is used. The produced signal can not be directly used as input for robot arm
so it has to be transformed a bit. The transformation consists of two parts.
First it is filtered using a Gaussian filter to make the movements smoother.
Without the filter the changes of the signal are very fast and the movements
would be very abrupt. The filtering also introduces a small delay but this is
in about the same range as the delay from the movement onset in the brain
to the real movement in mice. After that the signal is transformed with a
hyperbolic tangent so that the values are between −1 and 1. The resulting
signal can then be used to control the arm.

On the accompanied CD a video can be found which shows the application

21

3. Applications

Figure 3.3.: Example frame of the robot arm video. Upper left part shows the actions of
the mouse. The upper right part shows images made with the two-photon
microscope. The lower left part shows the extracted calcium trace (upper
plot) and the transformed signal (lower plot). The lower right part shows the
movement of the robot arm.

in action. In Figure 3.3 a frame from the video can be seen. It consists
of four parts. The upper left part shows what the mouse is doing at the
moment. The upper right one shows the activity of the neuron. It is also
indicated which neuron corresponds to which signal in the traces. The
lower left plot shows the extracted activity from the real-time tracer and the
transformed signal that is used to control the robot arm. The last part shows
the movement of the arm. Note that in the video the delay is removed for a
better comparability of the four sub videos.

3.3. Auto focus

The auto focus is a tool that should simplify the process of the experiments.
Often it is the case that images are recorded on different days but in the

22

3.3. Auto focus

same area. Therefor at the beginning of each experiment the same area has
to be found by eye. Of course this is not very exact. That is where the auto
focus should help. First the microscope has to be roughly set to the area
where the images on the last days have been taken. After that it scans the
current location and tells the experimenter where the microscope has to be
moved. It is also important to make it easy to use and not to make it to
slow. In the beginning it was planned that it should also use the network
interface but it turned out that the problem is more complex than thought
and it can be made more user friendly when ran on the same machine. It is
still in a very early state of development and there are some issues which
have to be taken care of.

3.3.1. Goal

To be able to realize the auto focus it first has to be clarified what exactly
should be computed and what is needed to do so. As mentioned above the
auto focus should determine the offset of the current location to a reference
location. The locations are given in form of images. So the task is to find
out how the image of the current location has to be shifted to match the
reference image best. In other words, the shift which maximizes the match
of the two images has to be found. When a single image is used as reference
it is possible to determine the offset in x- and y-direction but the auto focus
should also be able to find the z-offset. Therefor a single reference image is
not enough but a whole stack of images is needed. The reference stack is
actually just a discretized form of a 3D volume. To determine the offset in
all direction again the shift that produces the best match has to be found.

Now the offset in images coordinates, that means pixel, is known. The next
thing to do is to transform these coordinates into the coordinate system of
the microscope. Unfortunately the transformation from the image coordinate
system to the coordinate system of the microscope is not just a simple scaling.
There are several other transformation that has to be done to get from one
coordinate system to the other which are a rotation so that the axis are
aligned, different scalings along x- and y-axis, and a translation so that the
origins are aligned. All these transformations can be done using a single
matrix multiplication. So the problem of how to transform between the

23

3. Applications

two coordinate systems has reduced to finding out a transformation matrix.
To do this the auto focus has to be calibrated at the beginning of each
experiment. Every time something in the setup of the microscope changes,
which also includes mounting an animal into the microscope, the auto focus
has to be recalibrated because the transformation between the coordinate
systems might change.

In conclusion there are two tasks that have to be solved. The first task is to
be able to compute offsets between images. For the second task a calibration
has to be done. It allows to compute the transformation matrix which can
be used to transform from the image coordinate system to the microscope
coordinate system.

3.3.2. Offset computation

The goal of the first task is to find a way how the offsets in all directions
can be computed. For the beginning it is easier to ignore the z-coordinate
and just concentrate on finding out how the offset between two images can
be computed. So the simplest way of doing this is to take one image, shift
it over the other image and compute a measure of similarity between the
images. Exactly this is what the normalized cross-correlation[8] does. It is a
measure of similarity between two images depending on an offset which
is applied two one of the images. When the normalized cross-correlation
is computed for the images a matrix (Figure 3.4) will be produced which
contains values between 1, if the images are the same for the given offset,
and −1, if the images are the exact opposite. Therefor the indices of the
maximum value of that matrix can be used to compute the offset.

The next step is to extend this approach in a way that also the offset in
z-direction can be determined. The simplest way to do this is to compute
the normalized cross-correlation for each image of the stack. After that
the z-offset in image coordinates can be determined by finding the index
of the image that produces the highest value for the normalized cross-
correlation.

24

3.3. Auto focus

Figure 3.4.: Example of the normalized cross-correlation of two images. Dark blue areas
are offsets for which the normalized cross-correlation is low, while red areas
indicate offsets with high correlation. The black circle shows the maximum
correlation.

3.3.3. Transformation matrix

The second important task which has to be solved for the auto focus is
the transformation from image coordinates to microscope coordinates. The
images coordinates consist of the pixel indices in x- and y-direction and the
image index from the stack in z-direction. The coordinates of the microscope
are in µm and can be controlled using ScanImage. Generally these two
coordinate system are not aligned.

To simplify the task of transforming to the microscope coordinates the
z-direction is handled separately. It is possible that there might is some rota-
tional transformation between the z-axis of the two coordinate systems but
this rotation is rather small and can not be recognized by eye. Additionally
it is not possible to change the angle of the z-axis of the microscope without
changing the setup up. Therefor the z-direction is computed by multiplying
the z-offset in image coordinates, which is just an index offset, by the step
size in µm between the stack images. The step size is automatically saved

25

3. Applications

by ScanImage inside the stack file and can be easily accessed.

The remaining problem is to find a transformation from one two-dimensional
coordinate system to another. To be able to express this transformation in
form of a simple matrix multiplication so called homogeneous coordinates[5,
p. 2] are introduced. Homogeneous coordinates extend, in this case, the
two dimensional coordinates by a third one. So the transformation from the
image coordinate system to the microscope coordinates can be written asxm

ym
wm

 = T

xi
yi
wi

 (3.1)

where xm, ym and wm are the homogeneous microscope coordinates, xi, yi
and wi are the homogeneous image coordinates and T is the transformation
matrix. T is a three 3× 3 matrix and can be written the following way

T =

t11 t12 t13
t21 t22 t23
t31 t32 t33

If all the entries can be arbitrarily nine equations would be needed to
determine all of them. Additionally the transformation with this matrix can
produce results that may not be fit the problem. Actually only the following
basic transformations can occur

• translation
• scaling along the x-axis
• scaling along the y-axis
• rotation

These transformations are all simple affine transformations. Therefor the
transformation matrix can be reduced to

T =

t11 t12 t13
t21 t22 t23
0 0 1

26

3.3. Auto focus

Now that the shape of T is known the next step is to find out the entries of
the matrix.

To determine the values of T a calibration has to be done. This means
that some images where the offset in microscope coordinates is known.
From these images the offset in image coordinates can be computed which
gives pairs of corresponding offsets. These correspondences can be used to
compute the values of T. The formula how to compute the entries of the
matrix can be found by using the discrete linear transformation(DLT)[5, p.
88ff]1. As a starting point equation 3.1 is used, rewritten in vector notation,
and transformed.

xm = Txi

xm − Txi = 0

For further rewriting a new notation for the transformation matrix is intro-
duced.

T =

t1ᵀ

t2ᵀ

t3ᵀ

 =

t11 t12 t13
t21 t22 t23
0 0 1

1The approach here is slightly different from the one in the reference. But the goal of
DLT is to get a formula that is linear in the parameter that should be found which is also
achieved here.

27

3. Applications

Where tiᵀ is the i-th row of T.

xm −

t1ᵀ

t2ᵀ

t3ᵀ

 xi = 0

xm −

t1ᵀxi
t2ᵀxi
t3ᵀxi

 = 0

xm − t1ᵀxi
ym − t2ᵀxi
wm − t3ᵀxi

 = 0

xm − t11xi − t12yi − t13wi
ym − t21xi − t22yi − t23wi

wm − wi

 = 0

This formula can be rewritten so that it is a linear equation system in terms
of the parameters that should be found.

−xi −yi −wi 0 0 0 xm
0 0 0 −xi −yi −wi ym
0 0 0 0 0 0 wm − wi

︸ ︷︷ ︸

A

t11
t12
t13
t21
t22
t23
1

︸ ︷︷ ︸

t

= 0

So the final form of the equation system that has to be solved is

At = 0

Note that the solution vector t has an entry that has to be 1. This can be
easily achieved by finding a solution where the last value is arbitrary and
then dividing the whole vector by the last value. That way the last entry
will be 1 and the equation system is still fulfilled.

28

3.3. Auto focus

The equation system is at the moment highly underdetermined and there
are probably many solutions which fulfill the equation system. This is
because only one correspondence pair is used here. So additional points
have to be used. For each point the matrix A has to be computed. Because
the solution vector has to hold for all of these matrices, the equation system
can be extended by just concatenating the matrices row wise. So the final
equation system that has to be solved looks like followed.

A1
A2
...

An

 t = 0

In this equation system Ai is the A matrix for the i-th correspondence pair
and n is number of pairs used. In the implementation four pairs are used.
Note that by doing so the equation system becomes overdetermined. If
there are no errors in obtaining the correspondences the equation system
would have one solution. Unfortunately there there will always be noise
and also the limited amount of resolution alone will already add some
error which leads to the equation system having no solution. Therefor
the system has to be approximated. This can be done using the singular
value decomposition(SVD)[5, p. 585ff]. The eigenvector that belongs to the
smallest eigenvalue is the best solution for the parameters.

To conclude the following steps have to be done for the calibration.

1. Find correspondence pairs
2. Compute the matrix Ai for each pair
3. Concatenate all A1 . . . An and apply the SVD
4. Find the eigenvector with the smallest eigenvalue (the last one)
5. Normalize the solution vector so that the last entry is one
6. Put the parameters into the transformation matrix

3.3.4. Results

To see how well the auto focus performs a reference image and some
test images with different offsets were made. Four of the test images are

29

3. Applications

Figure 3.5.: Plots of the test results for the auto focus. The reference image transformed
into the microscope coordinate system. Red circles mark the real center points
of the test images and green crosses mark the calculated center points.

used for the calibration. Figure 3.5 shows the reference image transformed
into the coordinate system of the microscope. The red circles are the real
center points where the test images were made. The green crosses mark
the computed center points. From this image it can be seen that the major
transformation which has the most influence in the transformation between
the coordinate systems is the rotation. Nevertheless some tests have shown
that the other components are also very important to be able to find the
correct transformation matrix. The plot also shows that the matches are
quite good.

In Figure 3.6 the error that is made for each test image can be seen. It can be
noticed that for all test images the error is lower than 2µm in each direction.
The neurons that can be seen in the previous figure are usually in the range

30

3.3. Auto focus

Figure 3.6.: Error between real center points and the calculated ones.

of 10− 20µm. This result is much better than trying to get to the same
position by eye.

The auto focus is still in an early stage but the fundamental steps for further
developments are taken. Tests have shown that the tools that are used for the
implementation of the auto focus can theoretically produce relatively good
results and have the potential to support the experimentalist. Unfortunately
first test under real conditions have shown that there are still some flaws
that have to be fixed.

Once the auto focus is at a state where it can be used without major problems
one can think about how it can be extended to become even more useful.
At the moment it is used to correctly get to a single position but with some
extensions it would also be possible to define several regions where the auto
focus should go to. This way it is possible to automatically make images

31

3. Applications

from different brain areas during the experiment which can lead to data
that help to understand the interaction of these areas. It is also possible to
extend the auto focus so that it does not just focus once at the beginning
of the experiment but to do this after a fixed amount of time. This would
allow the auto focus to correct for slow drifts of the brain. Additionally this
could be combined with the network interface developed for this thesis so
that the acquisition computer will not get slowed down. These are just a
few examples that should show what can be done with this tool but already
without these extensions it is already useful for the experimentalist and also
for the images that are produced.

32

4. Conclusion

The primary goal of developing a network interface for ScanImage was
achieved. By implementing and testing the interface it was shown that it is
possible to send the high-resolution images fast enough over the network.
To send the images over the network it is necessary to split the data into
smaller data pieces at the sender and reassemble them at the receiver. By
the benchmark tests it was shown that the reassembly of the images is fast
enough that there is still time for analyses even if the data are sent at about
30Hz. To send the data over the network UDP is used. This protocol has
some disadvantages over the other possible choice namely TCP but has
much less overhead and is therefor faster. The reordering of the packets
is done by the implementation of the interface but it is still possible that
some packets are lost. Fortunately the tests showed that the packet loss is
negligible as long as the analyses are fast enough. Off course if the analyses
are slower then the acquisition of the images some data are discarded
because at some point the buffer that will receive the images is filled up.

The network interface implemented for this thesis can be used for many
different applications. Some examples have been shown here but there
are many other ways in which the interface can be used. Especially for
application that should run in real time the network interface is very useful
because it allows the application to run on a different computer which
is not busy acquiring the data. This way the acquisition and the analyses
can run in parallel and they will not influence each other as much as if
the analyses are directly implemented as plugin for ScanImage. Therefor
if the application that analyses the data crashes it will not influence the
acquisition of the images. The biggest strength of this interface is that it
defines exactly how the data have to be encoded when they are sent over the
network. This makes the interface very flexible. For example it is possible to
implement the receiver in any programming language that is able to work

33

4. Conclusion

with network connections. Therefor the application which is used to analyse
the data can be implemented in any arbitrary language as long as there is
an implementation of the receiver in the same language. Although it has
a lot of advantages the interface is designed for local networks. Internet
connections are usually much slower then connection in local networks
therefor it is not possible to use the interface without problems for large
networks. Additionally the latency plays a big role in large networks. The
latency is the time that is needed to send the data from the sending computer
to the receiving computer. In small networks it can be neglected but in larger
networks this might cause more packets to be lost.

The interface should be seen as a prototype that should show that it is
possible to send data over the network and process them in real time. There
are many ideas in which way the interface can be improved or extended.
The receiver is at the moment implemented in MATLAB. This has one major
disadvantage namely MATLAB only runs in a single thread. Because of that
it is not possible to assemble incoming data while the analyses runs. One
could implement the server in C and compile it to a mex-file which would
allow to do the assembly of the images on a different thread. This might
increase the time that can be used for the analyses of the data. Another
possible improvement is to generalize the meta data that are sent. At the
moment the whole meta data of ScanImage are sent. A lot of these data are
actually not needed and it forces the use of ScanImage for this interface.
By generalizing the meta data it could even be possible to exchange the
sender and use different acquisition software as long as it offers a way to
send the images as they are acquired. A very interesting extension of the
sender would be to add multicasting. This allows the sender to broadcast
the data to several receiver which are interested in them. By doing so
different computers can be used for different analyses. Note that only the
generalization of the meta data would introduce a change in the interface.
The other two ideas only require changes in the sender and the receiver can
be used as before.

To show that the interface also works for real experiments additionally some
application were implemented. A very useful one is the real-time tracer
which allows to read out the activity of neurons from the images received
over the network interface. This application was developed in collaboration
with Mario Prsa. The real-time tracer can be used as a starting point for

34

other application that base their analyses on the activity of the neurons. On
top of this the robot arm control was developed. It shows that it is possible
to translate the images received using the network interface into physical
movements. The third application that was developed was the auto focus.
In the beginning it was also intended to use the network interface but it
turned out that it is easier and more user-friendly when it is implemented
directly as a plugin for ScanImage. The auto focus is still a work in progress
project and some work has to be done to make it usable in the experiments
but the core functionality works and is already tested with success. The
benchmark tests together with the applications developed should show that
the interface is a working and useful tool for experimental setups.

35

Appendix A.

Manual

This section covers how the interface for the fast read-out can be used. First
it is explained what has to be done to install it and how ScanImage has to be
configured. At the end it is shown how it can be used to analyse data. It is
assumed that ScanImage and the microscope are already working. The files
that are needed can be found on the CD which comes with this thesis.

A.1. Preparations

Before you start installing the streaming interface make sure that ScanImage
is working properly. Then find the following two zip-files on the CD

• interface.zip

• tcp_upd_ip_2.0.6.zip

and extract them to different folders where you can find them. The first one
contains all the necessary files for the interface. The second one contains the
TCP/UDP/IP Toolbox 2.0.6[13]. It is a free implementation that allows to
send packets, using TCP or UDP, over the network in MATLAB. In order
to use the toolbox a file has to be compiled. Therefor the mex command
in MATLAB has to be setup. To do so type mex -setup into the MATLAB
command line. It will then asked if installed compilers should be located.
Just hit enter to let MATLAB find all the compilers you have installed.
Depending on the platform you are using different compilers will show up.
When you are using Windows 32bit at least a compiler called LCC should be

36

A.2. Installation

in the list and Unix user should see the GCC. But if you are using Windows
64bit you will first have to download a compiler. You can find one on the
support page[11] of MATLAB. Just click the button that says ”Microsoft
Windows SDK 7.1” and start the download. When it is done install the
compiler by double clicking on the downloaded file. After installing it run
mex -setup and a Microsoft Visual C++ compiler should show up in the
list. To continue the setup of the mex command enter the number next to
one of the compilers and press enter. It will then ask to verify your choice
of the compiler. With pressing enter the setup will be finished. A more
detailed explanation of the mex command can be found on the MATLAB
help page[10].

A.2. Installation

When the preparations are done you can start to install the TCP/UDP/IP
Toolbox. To do so open MATLAB and change the directory to the folder
where you extracted the zip-file of the toolbox to. It should contain a folder
called tcp_udp_ip. Inside this folder there are several files one is called
pnet.c. Replace the file with the one you can find in the folder where
you extracted interface.zip to. After that the file has to be compiled.
Depending on the compiler you are using you have to enter the following
command

• LCC
mex -O pnet.c {MATLAB_INSTALL_DIR}\sys\lcc\lib\wsock32.lib -DWIN32

• Microsoft Visual C++
mex -O pnet.c ws2_32.lib -DWIN32

• GCC
mex -O pnet.c

Where {MATLAB_INSTALL_DIR} is the path to the directory where you in-
stalled MATLAB. When the compilation has finished you just have to add
the tcp_upd_ip folder to your MATLAB paths. This can be done in the
menu when you press File→Set Path. . .. A window will show up where
you can find a button that says ”Add Folder. . .”. Press it and chose the
tcp_udp_ip folder.

37

Appendix A. Manual

The installation of the interface is easier then the installation of the TCP/UD-
P/IP Toolbox. Like in the last step before you just have to add the folder
with the contents of interface.zip to the MATLAB paths. Do so within
the same menu as before.

A.3. Configuration

The next thing to do is to tell ScanImage that it should use the sender as
a plugin. First you need to start ScanImage. When it is ready look for the
window with the title ”UserFunctions”. If you do not see it you can open
it from the main menu by selecting View→UserFunctions. In this window
you can define which functions should be called for a specific event. Add
the function udpStreamingPlugin to the following events

• appOpen

• appClose

• frameAcquired

• acquisitionStarted

• acquisitionDone

For the event appOpen you also need to add the IP address of the computer
where the receiver is running as arguments to this method. Just write the IP
address in curly brackets into the argument field of the appOpen event. Save
the settings in a usr-file, close ScanImage and start it again. When it asks for
user settings at start up choose the before saved file. The plugin will now
send the images over the network.

A.4. Reading out images

The last thing to do is to define a function which will read the images from
the receiver and perform some analysis on them. The receiver uses the event
interface of MATLAB to call the function every time a frame is ready. In
order that the receiver calls your function correctly its header has to have a
specific format which looks like this:

38

A.5. Examples

function <name_of_function>(eventSrc, eventData)

where <name_of_function> should be replaced by the name of your func-
tion. If the function is ready you have to create the receiver, register your
function, so that it gets called when a frame is ready, and then start the
receiver. This can be done with the following lines of code:

server = UDPServer(’4242’);

server.addlistener(’frameComplete’, @<name_of_function>);

server.run;

The first line creates the receiver called UDPServer. The receiver needs one
argument which is the port on which the data are sent. At the moment the
port which is used to send the data by the sender is 4242, therefor you will
also tell the receiver it should use this port. The next line tells the receiver
it should call your function when an image is ready. You could also define
more than one function, then you just have to repeat this line for each of
them. Finally the receiver is started with the last line. It will run until a QUIT
packet is received from the sender which will be sent when ScanImage is
closed. You can also force close the receiver by pressing Ctrl-C. It may take
up to 10 seconds until it closes when you use this way.

A.5. Examples

In this section some code examples are shown. They should show how to
write code that uses the interface. These examples from this section can also
be found on the CD accompanied with this thesis.

The first example shows how the image can be read out using the interface.
The code in Listing A.1 uses imshow to plot each image as soon as it is
received. The image that has been received is passed to the function in form
of the variable eventData.image. The command drawnow in line 4 makes
sure that the image is displayed on the screen every time the function is
called. In Listing A.2 it is shown how the receiver can be started. First a
new object which represents the receiver is created then the function from

39

Appendix A. Manual

Listing A.1 is added as callback function for the frameComplete event. This
way it will be called every time a new image is received. Finally the receiver
is started at the last line using the method run.

1 function processFrameImshow (eventSrc , eventData)
2

3 imshow (eventData . image , []) ;
4 drawnow ;
5

6 end

Listing A.1: imshowEx.m

1 c l e a r a l l ;
2 c lose a l l ;
3

4 server = UDPServer (’ 4242 ’) ;
5 server . a d d l i s t e n e r (’ frameComplete ’ ,@imshowEx) ;
6 server . run ;

Listing A.2: startImshow.m

Very often it is necessary to have variables which store some information
that is updated every time the analysing function is called. This can be
achieved in two ways. The first one is to use global variables. MATLAB
allows you to define variables which can be accessed from everywhere in the
current MATLAB session. Listing A.3 shows an example where the variable
counter is increased every time a new image is received. If the variable
would be declared in a normal way it is cleared as soon the function ends
and the information of how many images have been received are lost. By
defining counter as a global variable, as shown in line 3, the information
will be stored until the variable is explicitly cleared. To make sure that the
variable can be used correctly it has to be initialized, which is shown in
Listing A.4. Again the variable is declared as global and is then set to zero.
If this part is omitted the counter would be by default initialized as an
empty matrix and the code from the previous listing would exit with an

40

A.5. Examples

error.

1 function processFrameImshow (eventSrc , eventData)
2

3 global counter ;
4

5 counter = counter + 1 ;
6

7 end

Listing A.3: counterEx.m

1 c l e a r a l l ;
2 c lose a l l ;
3

4 global counter ;
5

6 counter = 0 ;
7

8 server = UDPServer (’ 4242 ’) ;
9 server . a d d l i s t e n e r (’ frameComplete ’ , @counterEx) ;

10 server . run ;

Listing A.4: startCounterEx.m

Global variables are an easy way of storing information over several calls
of the analysing function but for implementations where many of these
variables are needed the code can get very messy. Fortunately the same
goal can be achieved using classes. Listing A.5 shows the code which does
the same as the code above but uses a class instead of a global variable to
store the counter. A class consists of properties, which are variables that
represent the state of the class and store information, and methods, which
are functions that can access the properties and perform actions depending
on them. In the example there are two properties. The variable counter

is again used to store how many images have been received. The variable
server stores the object which represents the receiver. The first method in

41

Appendix A. Manual

the code is the constructor. It will be called every time a new instance of
this class is created which can be done as shown in Listing A.6 on line 4.
So if a new instance is created the counter will be initialized to zero. The
next method starts the server. In the previous examples this was done in
the start script but by creating the receiver inside the class the object can be
saved and the class has access to the methods of the receiver which allows
for example to stop the receiver if anything unwanted happens. The last
method is the one that is used as callback function for the receiver. Note that
the function header here looks a bit different then in the previous examples.
This is because the function is now a method and every method, except the
constructor, has the reference to the current instance as the first parameter.
The second and the third parameter are the same as before. What is also
important is that the class has to be derived from the handle class which
can be seen in the first line. This has to be done to be able to access the
properties from inside the methods. The code in Listing A.6 creates an
instance of ClassesEx and then starts it.

1 c l a s s d e f ClassesEx < handle
2

3 p r o p e r t i e s
4 counter ;
5 server ;
6 end
7

8 methods
9

10 function obj = ClassesEx ()
11 obj . counter = 0 ;
12 end
13

14 function s t a r t (ob j)
15 obj . server = UDPServer (’ 4242 ’) ;
16 obj . server . a d d l i s t e n e r (’ frameComplete ’ , @obj . countUp) ;
17 obj . server . run ;
18 end
19

42

A.5. Examples

20 function countUp (obj , eventSrc , eventData)
21 obj . counter = ob j . counter + 1 ;
22 end
23

24 end
25

26 end

Listing A.5: ClassesEx.m

1 c l e a r a l l ;
2 c lose a l l ;
3

4 exampleClass = ClassesEx () ;
5 exampleClass . s t a r t ;

Listing A.6: startClassesEx.m

These are the basic concepts of how the interface can be used in the code. For
a cleaner implementation the last method is recommended if variables are
needed which keep information over several calls of the analysing function.
If such variables are not needed the first method is the simplest and the
fastest to implement. For quick tests and if only few persistent variables are
needed the second method can be used as it is a bit faster to implement.

43

Bibliography

[1] A. Bosch, A. Zisserman, and X. Muoz. “Image Classification using
Random Forests and Ferns.” In: Computer Vision, 2007. ICCV 2007.
IEEE 11th International Conference on. 2007, pp. 1–8. doi: 10.1109/ICCV.
2007.4409066.

[2] W Denk, JH Strickler, and WW Webb. “Two-photon laser scanning
fluorescence microscopy.” In: Science 248.4951 (1990), pp. 73–76. doi:
10.1126/science.2321027. eprint: http://www.sciencemag.org/
content/248/4951/73.full.pdf. url: http://www.sciencemag.org/
content/248/4951/73.abstract.

[3] Li Fei-Fei, Rob Fergus, and Pietro Perona. “Learning generative vi-
sual models from few training examples: An incremental Bayesian
approach tested on 101 object categories.” In: Computer Vision and
Image Understanding 106.1 (2007). Special issue on Generative Model
Based Vision, pp. 59 –70. issn: 1077-3142. doi: http://dx.doi.org/
10.1016/j.cviu.2005.09.012. url: http://www.sciencedirect.
com/science/article/pii/S1077314206001688.

[4] R. Fergus, P. Perona, and A. Zisserman. “Object class recognition by
unsupervised scale-invariant learning.” In: Computer Vision and Pattern
Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference
on. Vol. 2. 2003, doi: 10.1109/CVPR.2003.1211479.

[5] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Second. Cambridge University Press, ISBN: 0521540518, 2004.

[6] Vijay Iyer. ScanImage. 2013. url: http://www.scanimage.org/.

44

http://dx.doi.org/10.1109/ICCV.2007.4409066
http://dx.doi.org/10.1109/ICCV.2007.4409066
http://dx.doi.org/10.1126/science.2321027
http://www.sciencemag.org/content/248/4951/73.full.pdf
http://www.sciencemag.org/content/248/4951/73.full.pdf
http://www.sciencemag.org/content/248/4951/73.abstract
http://www.sciencemag.org/content/248/4951/73.abstract
http://dx.doi.org/http://dx.doi.org/10.1016/j.cviu.2005.09.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.cviu.2005.09.012
http://www.sciencedirect.com/science/article/pii/S1077314206001688
http://www.sciencedirect.com/science/article/pii/S1077314206001688
http://dx.doi.org/10.1109/CVPR.2003.1211479
http://www.scanimage.org/

Bibliography

[7] Sung Hyun Jo et al. “Nanoscale Memristor Device as Synapse in
Neuromorphic Systems.” In: Nano Letters 10.4 (2010). PMID: 20192230,
pp. 1297–1301. doi: 10.1021/nl904092h. eprint: http://pubs.acs.
org/doi/pdf/10.1021/nl904092h. url: http://pubs.acs.org/doi/
abs/10.1021/nl904092h.

[8] JPl Lewis. “Fast template matching.” In: Vision Interface. Vol. 95. 120123.
1995, pp. 15–19.

[9] Loren L Looger and Oliver Griesbeck. “Genetically encoded neural
activity indicators.” In: Current Opinion in Neurobiology 22.1 (2012).
Neurotechnology, pp. 18 –23. issn: 0959-4388. doi: http://dx.doi.
org/10.1016/j.conb.2011.10.024. url: http://www.sciencedirect.
com/science/article/pii/S0959438811001917.

[10] Mathworks. Build MEX-Files. 2013. url: http://www.mathworks.de/
de/help/matlab/matlab_external/building-mex-files.html.

[11] Mathworks. Supported and Compatible Compilers – Release 2013a. 2013.
url: http://www.mathworks.de/support/compilers/R2013a/index.
html.

[12] T. A. Pologruto, B. L. Sabatini, and K. Svoboda. “ScanImage: flexible
software for operating laser scanning microscopes.” In: Biomed Eng
Online 2 (May 2003), p. 13.

[13] Peter Rydesäter. TCP/UDP/IP Toolbox 2.0.6. 2001. url: http://www.
mathworks.com/matlabcentral/fileexchange/345-tcpudpip-toolbox-

2-0-6.

[14] Christoph Stosiek et al. “In vivo two-photon calcium imaging of
neuronal networks.” In: Proceedings of the National Academy of Sciences
100.12 (2003), pp. 7319–7324. doi: 10.1073/pnas.1232232100. eprint:
http://www.pnas.org/content/100/12/7319.full.pdf+html. url:
http://www.pnas.org/content/100/12/7319.abstract.

[15] Karel Svoboda and Ryohei Yasuda. “Principles of Two-Photon Exci-
tation Microscopy and Its Applications to Neuroscience.” In: Neuron
50.6 (2006), pp. 823 –839. issn: 0896-6273. doi: http://dx.doi.org/
10.1016/j.neuron.2006.05.019. url: http://www.sciencedirect.
com/science/article/pii/S0896627306004119.

45

http://dx.doi.org/10.1021/nl904092h
http://pubs.acs.org/doi/pdf/10.1021/nl904092h
http://pubs.acs.org/doi/pdf/10.1021/nl904092h
http://pubs.acs.org/doi/abs/10.1021/nl904092h
http://pubs.acs.org/doi/abs/10.1021/nl904092h
http://dx.doi.org/http://dx.doi.org/10.1016/j.conb.2011.10.024
http://dx.doi.org/http://dx.doi.org/10.1016/j.conb.2011.10.024
http://www.sciencedirect.com/science/article/pii/S0959438811001917
http://www.sciencedirect.com/science/article/pii/S0959438811001917
http://www.mathworks.de/de/help/matlab/matlab_external/building-mex-files.html
http://www.mathworks.de/de/help/matlab/matlab_external/building-mex-files.html
http://www.mathworks.de/support/compilers/R2013a/index.html
http://www.mathworks.de/support/compilers/R2013a/index.html
http://www.mathworks.com/matlabcentral/fileexchange/345-tcpudpip-toolbox-2-0-6
http://www.mathworks.com/matlabcentral/fileexchange/345-tcpudpip-toolbox-2-0-6
http://www.mathworks.com/matlabcentral/fileexchange/345-tcpudpip-toolbox-2-0-6
http://dx.doi.org/10.1073/pnas.1232232100
http://www.pnas.org/content/100/12/7319.full.pdf+html
http://www.pnas.org/content/100/12/7319.abstract
http://dx.doi.org/http://dx.doi.org/10.1016/j.neuron.2006.05.019
http://dx.doi.org/http://dx.doi.org/10.1016/j.neuron.2006.05.019
http://www.sciencedirect.com/science/article/pii/S0896627306004119
http://www.sciencedirect.com/science/article/pii/S0896627306004119

Bibliography

[16] Carlos Zamarreño-Ramos et al. “On spike-timing-dependent-plasticity,
memristive devices, and building a self-learning visual cortex.” In:
Frontiers in neuroscience 5 (2011).

46

