
Manuel Wallner, BSc

Specification by Example
of the Broadcast Mechanism of Catrobat

Master’s Thesis

Graz University of Technology

Institute for Softwaretechnology

Supervisor: Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Graz, August 2014

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Acknowledgments

Ich möchte mich bei allen bedanken, die mich während meines Studiums
unterstützt haben.

In erster Linie bedanke ich mich bei meinen Eltern Franz und Roswitha für
ihre endlose Geduld und ihre Unterstützung.

Mein Bruder Michael war mit seinem Fleiß und seiner Zielstrebigkeit immer
ein Vorbild.

Meiner Freundin Johanna danke ich besonders für ihren Zuspruch in schwie-
rigen Zeiten.

Ich bedanke mich bei Christine für alles, was sie für mich getan hat.

Zu guter Letzt bedanke ich mich bei Professor Wolfgang Slany und dem
gesamten Catrobat Team.

iii

Abstract

Catrobat is a visual programming language intended to create and run
programs by solely using mobile devices. Visual elements are arranged
on-screen in order to form scripts. As scripts cannot communicate directly,
a broadcast mechanism is used for communication between scripts. This
broadcast mechanism is an important part of Catrobat and needs therefore
to be properly specified. The concept of “Specification by Example”, mani-
fested in behavior-driven development, aims for creating a living, machine-
executable documentation. This work introduces the concept of Specification
by Example and presents its application to the broadcast mechanism of
Catrobat. Initially, an overview of the visual programming language Catro-
bat is given. A text-based language is introduced for textually specifying
Catrobat programs. Furthermore, the approach of behavior-driven devel-
opment is introduced as manifestation of Specification by Example. Finally,
the behavior-driven testing tool Cucumber is used to specify the broadcast
mechanism of Catrobat by the means of examples.

iv

Kurzfassung

Catrobat ist eine visuelle Programmiersprache, dafür ausgelegt, Programme,
einzig durch Verwendung von mobilen Geräten, zu erstellen und aus-
zuführen. Visuelle Elemente werden auf dem Bildschirm angeordnet, um
Skripte zu bilden. Weil Skripte nicht direkt kommunizieren können, wird ein
Broadcast-Mechanismus für die Kommunikation zwischen den Skripten ver-
wendet. Dieser Broadcast-Mechanismus ist ein wichtiger Teil von Catrobat
und muss daher korrekt spezifiziert werden. Das Konzept von ”Spezifikati-
on durch Beispiele“, das in der verhaltensgetriebenen Softwareentwicklung
manifestiert ist, zielt darauf ab, eine lebendige, ausführbare Dokumentation
zu erschaffen. Diese Arbeit stellt das Konzept von Spezifikation durch Bei-
spiele vor, und präsentiert die Anwendung auf den Broadcast-Mechanismus
von Catrobat. Zunächst wird ein Überblick über die visuelle Programmier-
sprache Catrobat gegeben. Eine textbasierte Sprache wird eingeführt, um
Catrobat Programme textuell zu spezifizieren. Zudem wird der Ansatz der
verhaltensgetriebenen Softwareentwicklung als Manifestation von Spezifika-
tion durch Beispiele vorgestellt. Schließlich wird das verhaltensgetriebene
Test-Werkzeug Cucumber verwendet, um den Broadcast-Mechanismus von
Catrobat durch Beispiele zu spezifizieren.

v

Contents

Abstract iv

1. Introduction 1

2. Terminology 2

3. Visual Programming Languages for Children 4
3.1. Scratch . 5

3.2. Snap! . 6

3.3. Catrobat . 7

3.4. Text-based Catrobat Language Syntax 9

3.5. Static and Dynamic Programming Languages 11

3.6. Scratch, Snap!, and Catrobat as Dynamic Programming Lan-
guages . 13

4. Behavior-Driven Development 16
4.1. Test-Driven Development . 16

4.2. Acceptance Test-Driven Development 17

4.3. Introduction to Behavior-Driven Development 19

4.3.1. JBehave and Executable Specification 20

4.3.2. User Stories in Behavior-Driven Development 20

4.3.3. Specification by Example 21

4.4. The Role of Documentation in Behavior-Driven Development 22

4.5. Cucumber . 23

4.5.1. Cucumber and Gherkin 23

4.5.2. Scenario Outline . 26

5. Catroid and Behavior-Driven Testing 28
5.1. Cucumber Android . 28

vi

Contents

5.2. Test-driven Development in Catroid 28

5.3. Catroid and Cucumber Feature Files 29

5.3.1. Waiting Periods in Cucumber Features 34

5.3.2. Using Descriptive Strings as Broadcast Messages . . . 35

5.3.3. Cucumber and Continuous Integration 35

5.3.4. Regression Testing with Cucumber Features 36

5.3.5. Cucumber and Concurrency 37

5.4. Correcting Undesired Behavior in the Catroid Broadcast Mes-
saging System . 38

5.4.1. Overview of the Broadcast Messaging System in Catroid 38

5.4.2. Uncovering Misbehavior with Cucumber 42

5.4.3. Correcting Misbehavior of Catroid 43

5.5. Specifying the Broadcast Mechanism of Catrobat by Example 44

6. Conclusion and Outlook 63
6.1. Workflow of Behavior-Driven Testing with Cucumber in Catroid 63

6.2. Further Examples of Using Cucumber for Specifying Catroid
Elements . 65

6.2.1. Hide Brick . 65

6.2.2. If Brick . 66

6.2.3. PlaceAt Brick . 67

6.2.4. WhenIReceive Script . 68

6.3. Advantages and Disadvantages of Using Cucumber as a
Behavior-Driven Framework in Catroid 69

6.4. Future Work . 70

Bibliography 72

A. Acronyms 76

vii

List of Figures

3.1. Scratch block types. 5

3.2. Scratch version 2.0 (offline editor). 6

3.3. A user defined block. 7

3.4. Pocket Code main menu. 8

3.5. Catroid program. 8

3.6. Catroid Formula Editor. 15

5.1. Catroid program which is created by a Cucumber scenario. . 33

5.2. Test report from the Jenkins Cucumber plugin. 36

5.3. Catrobat program demonstrating the use of BroadcastAndWait. 41

5.4. Scratch program. 42

5.5. Full test run of the Cucumber feature. 44

viii

List of Listings

4.1. What’s in a Story? . 21

4.2. A sample Cucumber feature. 24

4.3. Sample step definitions. 25

4.4. Sample implementation of a step definition. 26

4.5. A Cucumber feature with two similar scenarios. 27

4.6. A Cucumber feature with a scenario outline. 27

5.1. A Cucumber feature specifying some behavior. 30

5.2. Replace Gherkin keywords with “*”. 31

5.3. Shorter and more expressive steps. 32

5.4. Script adding Gherkin keywords to step definitions. 34

5.5. Cucumber scenario with two scripts running concurrently. . . 37

5.6. Sequential execution of three scripts. 38

5.7. Demonstrating the usage of a Broadcast brick. 39

5.8. Demonstrating the usage of a BroadcastAndWait brick. 40

5.9. Failure upon execution of a Cucumber feature. 43

5.10. Description of the BroadcastWaitBlockingBehavior feature. . 45

5.11. Background steps. 45

5.12. A BroadcastAndWait brick without a corresponding WhenIReceive

script. 46

5.13. When the same broadcast message is sent again, a waiting
BroadcastAndWait brick gets unblocked. 47

5.14. A waiting BroadcastAndWait brick can also be unblocked by
another BroadcastAndWait brick. 48

5.15. A BroadcastAndWait brick is correctly unblocked when there
are two WhenIReceive scripts. 49

5.16. Repeatedly trigger a WhenIReceive script. 50

5.17. A Broadcast brick repeatedly triggers a WhenIReceive script. 51

ix

List of Listings

5.18. A BroadcastAndWait brick behaves correctly after it was in-
terrupted. 52

5.19. A BroadcastAndWait brick behaves correctly after it was in-
terrupted and there are two WhenIReceive scripts present. . . 53

5.20. A BroadcastAndWait brick behaves correctly after it was trig-
gered once. 54

5.21. A BroadcastAndWait waits for a short and a long WhenIReceive

script. 55

5.22. The WhenIReceive script is present in a different object. 56

5.23. A BroadcastAndWait brick behaves correctly, when there are
two WhenIReceive scripts. 57

5.24. Two WhenIReceive scripts are in two different objects. 58

5.25. A broadcast message is sent from a Broadcast brick after a
BroadcastAndWait has finished. 59

5.26. A broadcast message is sent from a BroadcastAndWait brick
after a Broadcast has finished. 60

5.27. BroadcastAndWait chain. 61

5.28. A BroadcastAndWait brick interacts with two WhenIReceive

scripts . 62

6.1. A Cucumber feature specifying the behavior of a Hide brick. . 65

6.2. A Cucumber feature specifying the behavior of an If brick. . 66

6.3. A Cucumber feature specifying the behavior of a PlaceAt brick. 67

6.4. A Cucumber feature specifying the behavior of a WhenIReceive

script. 68

x

1. Introduction

Delivering the right software product is of utmost importance in modern
software development. Plenty of unsuccessful software projects have proven
that there is still a demand for enhancement in the field of software develop-
ment. Over the past few decades several agile methods have been evolved
to support developers in their effort of delivering the software product the
customer has asked for. Behavior-driven development is an attempt to bring
together developers and customers, as well as all other stakeholders, to
specify the requirements of the desired software product. The specifications
are communicated in an ubiquitous language shared by all stakeholders.
Supported by the usage of examples developers gain a deep understanding
of the problem. Furthermore, examples written in an ubiquitous language
act as living documentation. Behavior-driven testing can also support and
complement an existing testing framework.

Catrobat is a visual programming language inspired by Scratch and in-
tended to create and execute programs by solely using mobile devices like
smartphones or tablet computers. Instead of writing statements like in a text-
based programming language the programmer arranges visual elements to
create a program. Special elements of the programming language provide
the possibility of sending and receiving broadcast messages which allow
communication between objects.

The following chapters provide an overview of the concept of behavior-
driven development. Exemplary Catrobat programs are used to demonstrate
the principle of executable specification. A text-based language syntax is
introduced for specifying the exemplary Catrobat programs. Finally, the
behavior-driven test framework Cucumber is used to specify the behavior
of the broadcast mechanism of Catrobat.

1

2. Terminology

The terms defined in this chapter are used consistently throughout the
remainder of this work.

Visual programming language

In a text-based programming language the programmer writes textual
statements which, taken together, constitute the program. In a “visual
programming language”, however, the programmer, instead of writing
textual statements, composes visual elements on the screen to create a
program. Scratch, Snap!, and Catrobat are examples of visual programming
languages.

Block, brick

The smallest elements of the aforementioned visual programming languages
are called “blocks” or “bricks”. Each of those elements has a special meaning
and function. They are combined in certain ways to create a program.

Ubiquitous language

In a software project many people need to share their knowledge and
communicate with each other. While domain experts communicate in a
jargon of their field of expertise, developers usually understand and discuss
the system in descriptive, functional terms, devoid of the meaning carried
by the experts’ language [13]. By agreeing upon a “ubiquitous language” all
stakeholders of a project can communicate over a language understood by
everyone involved.

Specification by example

A specification provides all relevant information to implement and use a
system correctly. “Specification by example” is a set of process patterns

2

2. Terminology

aiding in successfully creating and changing a software product [3]. The
outcome is a machine-executable specification which represents a living doc-
umentation. Behavior-driven development is a manifestation of specification
by example.

Cucumber

A famous testing framework for behavior-driven testing is “Cucumber”.
The test cases in Cucumber are called scenarios and are machine-executable.
They serve as living documentation.

Story

“Stories” are representations of requirements. In behavior-driven develop-
ment stories express some desired behavior. In Cucumber stories are called
features. Features consist of one or more scenarios.

3

3. Visual Programming Languages
for Children

In a visual programming language, the programmer arranges visual ele-
ments on the screen in order to form a program, instead of writing text-
based statements. Catrobat is a visual programming language developed
for mobile devices. Due to the dynamic nature of the language, which
will be discussed further in section 3.6, children easily learn to program
without having to worry about drawbacks like syntax errors or complicated
workflows [31].

Inspired by Scratch, Catrobat also defines blocks which can be snapped
together in order to create a program. Unlike Scratch, Catrobat programs
can be created and executed by solely using mobile devices. A text-based
Catrobat language is introduced in section 3.4, which is then utilized in
chapter 5.

An interesting extension to Scratch is Snap! which allows to create user
defined blocks. With user defined blocks, several programming language
concepts, which are not realizable with Scratch, can be implemented.

This chapter also provides an introduction to statically and dynamically
typed languages and highlights advantages as well as disadvantages in
the usage of either. The last section of this chapter presents an analysis
of whether Scratch, Snap!, and Catrobat could be defined as dynamic
programming languages.

4

3. Visual Programming Languages for Children

3.1. Scratch

Scratch is a visual programming environment created by the “Lifelong
Kindergarten Group” at the “MIT Media Lab”1. Programming is done by
snapping together blocks. Those blocks control 2-D graphical objects called
“sprites” which are moving on a background called “stage” (see figure 3.2).
Sprites encapsulate state by using variables and behavior via scripts [30].

command block function block

trigger block control structure

Figure 3.1: Scratch block types (adapted from
Maloney et al. [23]).

There are four kinds of blocks in
Scratch which are visually distin-
guishable by their color and their
shape (see figure 3.1). “Command
blocks” can be connected to form a
sequence of commands. They corre-
spond to statements in a text-based
programming language. “Function
blocks” are not joined in sequences
like command blocks are. They act as functions and return values. A script
is run upon the occurrence of a certain event defined by its “trigger block”.
“Control structure blocks” hold nested command sequences [23].

The blocks can only be snapped together in certain ways according to their
shapes. There are no syntax errors in Scratch as blocks fit together only in
ways that make sense. Blocks which take parameters have parameter slots.
The parameter slots are shaped according to the type of the parameter they
require (see section 3.6 for an overview of data types in Scratch).

Command blocks, together with control structures, are attached to trigger
blocks in order to form a script. The scripts describe the behavior of the
sprite, and the state is encapsulated by variables. All scripts of all sprites
run concurrently. The correct handling of thread switches, which may occur
between any two instructions, is challenging in concurrent environments.
The Scratch threading model, however, eliminates side effects from the
interleaved execution of parallel running scripts by allowing thread switches
only at the end of a loop or on a command that explicitly waits [23].

1http://scratch.mit.edu (visited on 2014-07-14)

5

http://scratch.mit.edu

3. Visual Programming Languages for Children

Figure 3.2: Scratch version 2.0 (offline editor).

Scripts of one sprite cannot call scripts from another sprite directly. Instead
a broadcast mechanism is used. Any sprite can broadcast a message, which
triggers all matching scripts containing the corresponding trigger block.
Since all scripts run in parallel there is no obvious way to directly control
threads. However, sometimes it is important to pause the execution of one
script until another script has been executed. The broadcast and wait block
provides this ability by pausing the execution of one script until all scripts
with the corresponding trigger blocks have finished their execution.

3.2. Snap!

“Snap!”2 is an extended reimplementation of Scratch. The former name of
Snap! – BYOB (Build Your Own Blocks) – indicates that it allows to build

2http://snap.berkeley.edu (visited on 2014-07-14)

6

http://snap.berkeley.edu

3. Visual Programming Languages for Children

user defined blocks. Hence it is possible with Snap! to use programming
language concepts by creating the appropriate blocks using the Block Editor.
An example of an user defined block can be seen in figure 3.3. It specifies a
block which draws a circle, when triggered.

Figure 3.3: A user defined block.

Another concept, which Scratch is
lacking, is recursion. In Snap! a new
custom block can be dragged into
its own definition forming a recur-
sion.

In Scratch, only Boolean, numbers,
and strings are first class types. A
data type is first class, if data of that
type can be the value of a variable,
an input to a procedure, the value
returned by a procedure, a member
of a data aggregate, and anonymous (not named). In Snap! all data is first
class [16]. This means, that in Snap! lists are also first class, which allows to
have lists of lists.

Snap!, like Scratch, runs several scripts concurrently. It is usually not neces-
sary to care about the threading system as thread switches happen at the
end of loops and therefore cannot cause race conditions. In Snap!, however,
it is possible to create a custom threading model by defining “thread” and
“yield” blocks [16].

3.3. Catrobat

Catrobat is a visual programming language inspired by Scratch. The main
difference between Scratch and Catrobat is, that Scratch requires a personal
computer to run programs, whereas Catrobat programs are created and
run by solely using smartphones or tablets. There is also a version in
development which can be run in any HTML5-compatible browser, be it on
a desktop computer, or a smartphone, or a tablet.

7

3. Visual Programming Languages for Children

Figure 3.4: Pocket Code main
menu.

Figure 3.5: Catroid program.

The version of Catrobat which is developed for Android smartphones is
named Catroid and is available on Google’s Play Store as “Pocket Code”3.
Figure 3.4 displays the main menu of Pocket Code.

Similar to Scratch, programs in Catroid are created by snapping together
command blocks which are called “bricks” (see figure 3.5). The bricks
are arranged in “scripts” which can run in parallel allowing concurrent
execution. Just like in Scratch, Broadcast messages in Catrobat are used to
ensure sequential execution of scripts [32].

3https://pocketcode.org (visited on 2014-07-14)

8

https://pocketcode.org

3. Visual Programming Languages for Children

3.4. Text-based Catrobat Language Syntax

In this section the text-based Catrobat language syntax is analyzed. This
language is mainly used to textually specify Catrobat programs which
are used in Cucumber feature files (see section 5.3 for more information
about Cucumber feature files in Catrobat). The language elements are
organized into the categories “Control”, “Motion”, “Sound”, “Looks”, and
“Variables”.

• Control: Elements of this category are responsible for the program
flow. By using bricks of this category broadcast messages can be sent
and received, loops can be defined, and events can be caught.

• Motion: Elements of this category can modify the position and the
orientation of an on-screen object.

• Sound: These elements play or stop a predefined sound file (sounds
may also be recorded via the internal sound recorder) and alter the
volume. Google’s speak engine is used to read out some text.

• Looks: The visual appearance of objects can be defined with these
elements. The size of an object can be set as well as transparency and
brightness.

• Variables: Setting and changing the value of a variable is possible
with elements of this category.

The language elements are referred to as bricks. Bricks are arranged in
virtual containers called scripts. A brick is always part of a script and can-
not exist stand-alone, except for the script bricks “when program started”,
“when tapped”, and “when I receive”, which can form an empty script by
themselves. A Script starts with one of the bricks “when program started”,
“when tapped”, or “when I receive”, followed by any other brick, except
for another script brick, or nothing. Two or more scripts may follow consec-
utively. The list of scripts may also be empty. The elements “forever” and
“repeat 10 times” introduce loops and end with an “end of loop” brick.
They contain zero or more other elements except for script bricks. They also
may contain more “forever” and “repeat 10 times” bricks. The element
“if 1 is true then” introduces a conditional path of execution. The alter-
native path is introduced by the element “else”. The end of the conditional
path is signaled by the element “end if”. There are zero or more other

9

3. Visual Programming Languages for Children

elements in between “if 1 is true then” and “else” as well as between
“else” and “end if” except for script bricks. Those other elements may also
be other “if 1 is true then”, “else”, and “end if” brick sequences.

The following list displays all brick elements of the Catrobat programming
language (bricks which require a parameter are provided with arbitrary
values). Notice, that the elements “when program started”, “when tapped”,
and “when I receive ’message 1’” denote the beginning of scripts. The
element “end of loop” cannot exist stand-alone, but is required by the
elements “forever” and “repeat 10 times”. Similar, the elements “else”
and “end if” cannot exist stand-alone, but are required by the element “if
1 is true then”.

• Control

– when program started

– when tapped

– when I receive ’message 1’

– wait 1 second

– broadcast ’message 1’

– broadcast ’message 1’ and wait

– note ’add comment here...’

– forever

– repeat 10 times

– end of loop

– if 1 is true then

– else

– end if

• Motion

– place at X: 100, Y: 200

– set X to 100

– set Y to 200

– change X by 10

– change Y by 10

– move 10 steps

– turn left 15 degrees

– turn right 15 degrees

10

3. Visual Programming Languages for Children

– point in direction 90 degrees

– point towards ’test object’

– glide 1 second to X: 100, Y: 200

• Sound

– start sound ’record’

– stop all sounds

– set volume to 60%

– change volume by -10

– speak ’Hello!’

• Looks

– switch to look ’look 1’

– next look

– set size to 60%

– change size by 10

– hide

– show

– set transparency to 50%

– change transparency by 25

– set brightness to 50%

– change brightness by 25

– clear graphic effects

• Variables

– set variable ’variable 1’ to 0

– change variable ’variable 1’ by 0

3.5. Static and Dynamic Programming Languages

Programming languages are often categorized into dynamically and stati-
cally typed languages. Statically typed languages define and enforce types
at compile-time while dynamically typed languages check types at run-time.
Bracha [8] states, that a dynamically typed languages is one that has no
effect on the run-time semantics of the programming language, and does
not mandate type annotations in the syntax. Hence, the main difference

11

3. Visual Programming Languages for Children

between statically and dynamically typed languages is, when types are en-
forced [34]. Harper [15] depicts, that some candidate programs written in a
statically typed language might be ill-typed and ruled out at compile time,
whereas every program written in a dynamically typed language would be
well-formed. An example for a dynamically typed languages is Lisp, which
is also the earliest of its kind.

Some advantages of statically typed languages are described by Bracha [8].
He states, that types provide a form of machine-checkable documentation.
Moreover, types provide a conceptual framework for the programmer, that
is extremely useful for program design, maintenance, and understanding.
Types also support early error detection. Another profit gained from lan-
guages with mandatory types might be a significant performance advantage
due to optimization based on type information.

Tratt [34] states also some disadvantages of statically typed languages. He
mentions, that type systems make languages excessively complex. There
is a risk that type systems are overly restrictive or overly permissive. Type
systems are a complex part of a programming language’s specification.
Errors in type systems might lead to impossible run-time behavior [9].
Static types make changing a system difficult, which may lead to premature
ossification, making successive changes harder. Statically typed languages
are mostly incapable of meaningful reflection, because compilers might
discard information about a programs structure and its types in the process
of optimization.

Dynamically typed languages, on the other hand, might be simpler to learn
and to use because there are less corner cases to be aware of [34]. They often
trade run-time efficiency for programmer productivity. Dynamically typed
languages often provide high level features like build-in data types – lists,
strings, or dictionaries, for example. Many dynamically typed languages also
provide automatic memory management. The concept of garbage collection
was first introduced by the Lisp programming language. Nowadays also
many statically typed languages provide some kind of automatic memory
management.

Some disadvantages might also be experienced in dynamically typed lan-
guages. Performance might be an issue, as the speed of execution is usually
slower than with statically typed languages. However, highly optimized

12

3. Visual Programming Languages for Children

libraries, dealing with performance critical work, are often provided with
dynamically typed languages. The performance issue of dynamically typed
languages might also be less problematic when programming can be done
faster by programmers, which can focus on improving algorithms on a high
level, instead of dealing with low-level coding [34].

Type systems are a form of documentation though, therefore the lack of
explicit types might be a disadvantage in the expressiveness of dynami-
cally typed languages. However, most expected types may be recognized
informally [34].

3.6. Scratch, Snap!, and Catrobat as Dynamic
Programming Languages

Scratch

Scratch has three first class data types, which are Boolean, number, and
string. These data types can be used in expressions, stored in variables,
or returned by functions (see section 3.2 for a definition of first class data
types). However, Scratch variables can hold values of any data type, which
avoids the requirement of explicitly specifying the type. The data type of a
variable is converted between numbers and strings depending on context
[23]. Additionally to variables, Scratch also defines lists. Lists also can
contain the data types Boolean, number, and string. It is also possible to
define lists of lists.

According to the definition of dynamic programming languages in section
3.5, Scratch can be seen as dynamic programming languages. The data
types of variables are not required to be explicitly defined. Scratch even
converts between data types at run-time, if possible. However, some kind
of type checking is done at programming-time, concerning the data types
of parameters. Blocks of functions, which take parameters, have parameter
slots, which are shaped accordingly to the data type they require (see section
3.1). Boolean functions are the most strict, accepting only Boolean function
blocks, whereas number and string parameter slots are less strict, accepting

13

3. Visual Programming Languages for Children

a function block of any type, converting the parameter to the target type, if
necessary [23].

Snap!

Similar to Scratch, Snap! would also be classified as dynamic programming
language. Data types are not enforced and if possible are converted to
something useful at run-time. Parameter slots are shaped according to the
type they require. Hence it is not possible to provide a wrong type since the
language simply would not allow it. When defining a new block using the
Block Editor, the shape of the parameter slot can be defined according to
the data type which is required.

Catrobat

In Catroid, the implementation of the Catrobat language for Android de-
vices, a special module, the Formula Editor (see figure 3.6), is used to input
values into the parameter slots. The Formula Editor displays formulas textu-
ally and resembles a pocket calculator [17]. It provides only valid characters,
functions, variables, object values, and sensor values. It is not required to
explicitly specify a type, although the type of a formula is always numeric.
Before saving the formula for a certain parameter, the expression is checked
for syntactical correctness. When syntactically correct, the value of the for-
mula can be calculated. Values of variables in Catroid are also set via the
Formula Editor and do not require a type to be explicitly specified.

The bricks NoteBrick and SpeakBrick provide a free form text input field.
The text is internally stored as string data type, however it is not required
to explicitly declare the input as string. The NoteBrick stores a string for
informative purpose, as its name implies. The SpeakBrick also takes the
input as a string which may of course also contain numeral characters.

Some bricks store internally a list of strings. These bricks, like the Broadcast

brick for example, take a string as input and append it to the internal list.
Again, it is not required to care about the data type as it is defined by the
language.

14

3. Visual Programming Languages for Children

Figure 3.6: Catroid Formula Editor.

15

4. Behavior-Driven Development

Testing is an important part of software development. Good quality of a
software product can only be assured if testing accompanies the entire
development process. By involving every stakeholder of a software product
chances are good that the right product will be created. Behavior-Driven
Development is an approach to bring together developers, testers, and
customers to create the specification of the product together. This can be
achieved by communicating in a ubiquitous language which is understood
by every stakeholder.

4.1. Test-Driven Development

Testing is vital important for successfully delivering software products. Beck
[5] goes even a step further and states, that a software feature without
an automated test simply does not exist. In an ideal agile development
environment, tests would be written before even writing any code. Hence,
the desired behavior of a feature has to be well-defined beforehand.

Koskela [20] states, that test-driven development (TDD) turns around the
traditional design–code–test sequence:

Design // Code // Test

Test // Code // Design

The intent of putting design after code might not be obvious at first glance,
but refactoring might be considered a powerful design technique [6]. Thus
the TDD development sequence becomes test–code–refactor. This sequence

16

4. Behavior-Driven Development

is also often referenced to as red–green–refactor. As developers are encour-
aged to write tests before writing code, new added tests will fail. Failing
tests are often displayed as red bars. By adding code and making the tests
pass the bar will turn green. Once the bar turns green it is safe to refactor.

Astels [4] describes TDD as a style of development where:

• an exhaustive suite of Programmer Tests is maintained,
• no code goes into production unless it has associated tests,
• the tests are written first,
• the tests determine what code is needed to be written.

4.2. Acceptance Test-Driven Development

While TDD is a developer technique, acceptance test-driven development
(ATDD) is a whole-team technique, hence they must not be confused. Both
write tests first, but their goals are unalike [21]. Similar, Koskela [20] elabo-
rates, that TDD is a technique for improving the software’s internal quality,
whereas ATDD keeps a product’s external quality upright.

McConnell [24] provides a definition for internal and external software
quality:

Internal characteristics of software quality:

• Maintainability
• Flexibility
• Portability
• Reusability
• Readability
• Testability
• Understandability

External characteristics of software quality:

• Correctness
• Usability
• Efficiency

17

4. Behavior-Driven Development

• Reliability
• Integrity
• Adaptability
• Accuracy
• Robustness

Some of the characteristics of internal and external software quality may
influence each other. A high internal quality makes software easy to under-
stand and therefore easy to extend and to test. It states how well the needs
of the developers and administrators are met [14]. TDD ensures that the
internal quality stays upright. External characteristics of quality, however,
measures how well the requirements of the stakeholders are held. ATDD
ensures just that the external characteristics of quality are held upright.
An external user of the system does not care about how well the source
code or the tests can be read or how reusable some modules are. From an
external point of view, a system needs to be correct and easy to use, as well
as reliable.

Adzic [1] describes the process of acceptance testing as a pattern where
examples become acceptance tests. First, real-world examples are used to
build a shared understanding of the domain. A set of these examples is
then selected to be a specification and acceptance tests. The verification of
the acceptance tests has to be automated. Software development can then
focus on the acceptance tests. Finally, the set of acceptance tests might be
used as base for discussion about future change requests, and a new cycle
of development can start.

Pugh [29] emphasizes the importance of having testable requirements.
Acceptance tests are a communication medium between several roles in a
software development team. A test that passes is a specification of how the
system works.

ATDD is also called behavior-driven development (BDD) or specification
by example (SbE) [3]. The goal of ATDD is to specify executable require-
ments. Acceptance tests written as Cucumber features serve as executable
specifications [18]. Cucumber features will be described in section 4.5.1.

While unit tests are aimed at developers, acceptance tests are aimed at the
whole team including developers, testers, or business stakeholders. Instead

18

4. Behavior-Driven Development

of having business stakeholders passing requirements to the developers
without opportunity for feedback, business stakeholders and developers
collaborate to write automated tests [18].

Acceptance tests act as living documentation. They can be read and written
by all stakeholders of a team, but they also can be automatically verified
by a computer at any time. Instead of being written once and going out of
date, they become a living thing and reflect the state of the project [18].

4.3. Introduction to Behavior-Driven
Development

The idea of BDD was originally introduced by North [26] as an evolution
of TDD. As practices of TDD left many questions unanswered, he came
up with several techniques and practices which provided answers to those
questions and resulted in software that had a value for a stakeholder. With
the concept of business value in mind it is always clear what the next
most important thing would be, a system does not do yet. So a developer
would always know what to implement next. A further concept, which was
introduced, was the naming scheme of test methods. Test method names
should be sentences so that it is absolutely clear, what behavior a test method
ensures. Furthermore, the method name should be in the language of the
business domain to assure that every person involved can communicate
over it. Evans [13] uses the term “ubiquitous language” to describe this
shared vocabulary.

BDD provides answers to questions like “where to start”, “what to test”,
“what not to test”, “how much to test”, “what to call the tests”, and “how
to understand why a test fails”. If a test fails, either a bug was introduced,
or the specified behavior is no longer valid, or the behavior is still valid but
had moved somewhere else.

It was pointed out by Keogh [19], that BDD is strongly aligned with Lean
principles. BDD focuses on learning because it encourages questions, con-
versations, creative exploration, and feedback. A common (ubiquitous)

19

4. Behavior-Driven Development

language empowers the team by creating a shared understanding of a
domain.

The importance of interaction between business and software design was
also emphasized by Lazăr et al. [22]. They combine a model-driven develop-
ment context with the principles of BDD and present a domain model of
the main BDD concepts.

Solı́s and Wang [33] investigated related work on BDD and extracted the
main characteristics of BDD. They affirm the importance of a ubiquitous
language to be used to describe the behavior of a system. Through an
iterative decomposition process several user stories can be derived from a
defined business value. User stories and scenarios are described in plain text
with the use of predefined templates (see also section 4.3.2). An acceptance
test in BDD validates the behavior of a system via executable specification.
The code is part of the system’s documentation. Finally, BDD happens at
different phases of software development, from the initial planing phase to
analysis phase to implementation phase.

4.3.1. JBehave and Executable Specification

North [26] created a tool called JBehave. Derived from JUnit it emphasizes
the principles of BDD. The specification is in a sense executable, as the
object model allows a direct mapping of the scenario fragments to Java
classes.

4.3.2. User Stories in Behavior-Driven Development

A story is a description of a requirement and its business benefit. Moreover
it represents a set of criteria by which all involved project members agree
that a task is done. North [27] suggests that a story should contain at least a
title, a narrative, and some acceptance criteria. The title would be one line
describing the story. The narrative describes a role, a feature, and a benefit
gained from this feature. North suggests to use the “Connextra” format
(after the company where it was used first): “As a [role] I want [feature] so

20

4. Behavior-Driven Development

that [benefit]”. Thus, it is always clear that a requested feature is in some
way beneficial for a person in a certain role. Finally, the acceptance criteria is
presented as one or more scenarios. A scenario starts with a title describing
the desired behavior. The scenario then is described in terms of Givens,
Events, and Outcomes. A story template containing the minimal suggested
content can be seen in listing 4.1.

Title (one line describing the story)

Narrative:

As a [role]

I want [feature]

So that [benefit]

Acceptance Criteria: (presented as Scenarios)

Scenario 1: Title

Given [context]

And [some more context]...

When [event]

Then [outcome]

And [another outcome]...

Scenario 2: ...

Listing 4.1: What’s in a Story? (adapted from North [27])

4.3.3. Specification by Example

The concept of specifying software by the means of examples was intro-
duced by Parnas [28], who proposes, that a specification must provide all
information necessary to implement and use a system correctly, and nothing
more. Moreover, it must be sufficient formal that it can be machine tested.
It also should make use of terms normally used by user and implementer
alike.

Adzic [3] states that all stakeholders and delivery team members must
understand what needs to be delivered in order to deliver the right software

21

4. Behavior-Driven Development

product. Examples act as a living documentation, which facilitates changes
in the software as well as in the team.

By communicating via a ubiquitous language, customers are able to con-
verse in their own domain language [29]. Examples are also important as a
communication instrument between developers among each other. Practice
has shown that SbE can help to straighten out inconsistencies in specifica-
tions and successfully support communication between all involved project
members [2]. Examples might be also be helpful to illustrate corner cases.

Adzic [3] derives a set of process patterns that go along with SbE. He locates
the initial starting point of a software project within the business goals of
a customer. The scope of the project is then derived from these business
goals. Key examples help defining the scope and can be easily obtained
by specifying collaboratively. Once the key examples are agreed upon the
specification may be refined. In order to make the specification executable
the examples have to be automated without changing the specification. To
have an executable specification of a software system means to be able to
validate it frequently. Another benefit of an executable specification is, that
it further acts as a living documentation system.

4.4. The Role of Documentation in
Behavior-Driven Development

The function and design of a system will always be changing. Hence, a
written documentation will always be out of date and not in sync with
the code. At the same time, designers need to remember and express
their design ideas [11]. Thus, there might be need for documentation but
following the principles of agile software development [7] working software
is more important.

The outcome of SbE is machine-executable documentation. While hav-
ing working software guaranteed by the test first principle, the machine-
executable examples also serve as a documentation, which is easy to under-
stand and consistent. This form of documentation always reflects the actual
state of the project and can be automatically validated at any time.

22

4. Behavior-Driven Development

4.5. Cucumber

RSpec was created as a successor of JBehave. Hellesøy rewrote the “Story
Runner”, a component of RSpec, as Cucumber [18]. Originally written
in the Ruby programming language Cucumber nowadays supports many
programming languages [12].

4.5.1. Cucumber and Gherkin

Like mentioned in section 4.3.2, stories usually have a title, a narrative, and a
number of scenarios. The stories in Cucumber are called features. Cucumber
features are written in the Gherkin language. The Gherkin grammar defines
only a few keywords which are mandatory. The rest of the feature is free-
form text. The summarized Gherkin keywords are:

• Feature
• Background
• Scenario
• Scenario outline
• Scenarios (or Examples)
• Given
• When
• Then
• And (or But)
• *

Reserved characters include “|”, which is used for defining tables, “"""”,
used for defining strings spanning multiple lines , and “#”, marking com-
ment lines [10]. The keywords “Given”, “When”, “Then”, “And”, “But”,
and “*” mark the beginning of a step. The Gherkin keywords taken by them-
selves have no special meaning to Cucumber and are freely interchangeable.
Hence it does not matter if several “Given” steps each start with the keyword
“Given” or the keyword “And” – or simply any other of the keywords.

Upon execution, Cucumber parses the steps in a given feature file and tries
to match them to a step definition. The step definitions can be written in any

23

4. Behavior-Driven Development

programming language supported by Cucumber. When using Java1, the step
definitions start with @Given(), @When(), and @Then() as Java annotations.
The annotations take a regular expression string, which is used to match
the steps of the feature to the corresponding step definition.

A sample feature which can be parsed by Cucumber is shown in listing
4.2. The feature starts with the keyword “Feature” followed by a short
description. The keyword “Background” tells Cucumber to execute the
following steps before every scenario. The only scenario in this example
contains two steps. The second step uses a data table which can combine
data from several steps into one table. Instead of writing “Then I should

see the ’Continue’ button”, “And I should see the ’New’ button”, et
cetera, all the steps can be expressed compact in one step.

Feature: Main menu

In order to give the user a starting point

The main menu offers a number of distinctive options

Background:

Given I have a Program

Scenario: The main menu has a list of labeled buttons

Given I am in the main menu

Then I should see the following buttons

| Continue |

| New |

| Programs |

| Help |

| Explore |

| Upload |

Listing 4.2: A sample Cucumber feature describing some UI components of the main menu
of the Catroid application.

The feature describes some UI components of the main menu of the Catroid
application (compare figure 3.4 in section 3.3).

1Java is used in this examples because Catroid is an Android application. Android
applications are mainly written in Java. See section 3.3 for more information about Catroid.

24

4. Behavior-Driven Development

When the feature gets parsed by Cucumber, the text after the Gherkin
keywords is extracted and matched to the regular expression strings of
the step definitions. If Cucumber finds no suitable step definition, it then
suggests a regular expression and an empty method body which can be
used as a starting point for implementing this step (see listing 4.3). The step
is therefore marked as “pending”. This is indicated in Java by throwing a
PendingException.

@Given("^I have a Program$")

public void i_have_a_Program() throws Throwable {

// Write code here that turns the phrase above into concrete actions

throw new PendingException();

}

@Given("^I am in the main menu$")

public void i_am_in_the_main_menu() throws Throwable {

// Write code here that turns the phrase above into concrete actions

throw new PendingException();

}

@Then("^I should see the following buttons$")

public void i_should_see_the_following_buttons(DataTable arg1)

throws Throwable {

// Write code here that turns the phrase above into concrete actions

// For automatic conversion, change DataTable to List<YourType>

throw new PendingException();

}

Listing 4.3: Step definitions matching the steps in listing 4.2.

Listing 4.4 shows an exemplary step definition which implements the “I
am in the main menu” step. As can be seen in the example listing, Cucum-
ber can work together with other testing libraries like Robotium2, a test
automation framework for the Android platform. In the step definitions the
Robotium class “Solo” is called. The Activity returned by the call to Solo is
then assured to be of the desired type. If the comparison fails, an exception
is thrown notifying Cucumber to mark the step as failed. If the comparison

2https://code.google.com/p/robotium (visited on 2014-07-14)

25

https://code.google.com/p/robotium

4. Behavior-Driven Development

holds true, the method completes without exception signaling that the step
succeeded.

@Given("^I am in the main menu$")

public void I_am_in_the_main_menu() {

Solo solo = (Solo) Cucumber.get(Cucumber.KEY_SOLO);

assertEquals("I am not in the main menu.", MainMenuActivity.class,

solo.getCurrentActivity().getClass());

}

Listing 4.4: Implementation of a step definition introduced in listing 4.3.

4.5.2. Scenario Outline

Repetition of steps which follow the same pattern and only differ in input
values, makes scenarios hard to read and to maintain. When specifying sev-
eral scenarios following the same scheme, Cucumber provides a mechanism
for compacting these scenarios into one scenario by using a scenario outline.
Listing 4.5 shows a Cucumber feature with two similar scenarios. They only
differ in the value of the coordinate.

The same feature can be rewritten by using a scenario outline. Listing 4.6
illustrates the usage of this property. The terms in angle brackets indicate the
placeholder and the data table labeled “Examples” provides the exemplary
values for the scenario. Internally, each row of the “Examples” table gets
converted into a Cucumber scenario, but the readability is greatly increased
by using a scenario outline. An important advantage of using a scenario
outline is, that gaps in examples can easily be spotted [18]. By having the
examples in a table it can be clearly determined, for example, if there are
enough corner cases present.

26

4. Behavior-Driven Development

Feature: A brick setting the x coordinate of an Object

Background:

Given I have a Program

And this program has an Object ’test object’

Scenario: Set x coordinate of an Object

Given ’test object’ has a Start script

And this script has a Set x to 100 brick

When I start the program

And I wait until the program has stopped

Then ’test object’ should be at x position 100

Scenario: Set x coordinate of an Object

Given ’test object’ has a Start script

And this script has a Set x to 500 brick

When I start the program

And I wait until the program has stopped

Then ’test object’ should be at x position 500

Listing 4.5: A Cucumber feature with two similar scenarios.

Feature: A brick setting the x coordinate of an Object

Background:

Given I have a Program

And this program has an Object ’test object’

Scenario Outline: Set x coordinate of an Object

Given ’test object’ has a Start script

And this script has a Set x to <xPosition> brick

When I start the program

And I wait until the program has stopped

Then ’test object’ should be at x position <xPosition>

Examples:

| xPosition |

| 100 |

| 500 |

Listing 4.6: A Cucumber feature with a scenario outline.

27

5. Catroid and Behavior-Driven
Testing

Catroid is an Android application for creating and running programs in the
Catrobat programming language. Section 3.3 provides an introduction to
Catrobat. The concept of BDD is introduced in chapter 4. This chapter is
about introducing the concept of BDD into Catroid. The behavior-driven
testing framework Cucumber is used to create a test suite which specifies
the broadcast mechanism of Catrobat.

5.1. Cucumber Android

As mentioned in section 4.5.1, Android applications are mainly written in
Java. However, Android does not directly use a Java Virtual Machine but
a derivation named “Dalvik Virtual Machine”, optimized for running on
mobile devices.

The module “Cucumber-JVM”1 of the Cucumber framework contains a sub-
module “Cucumber-Android” allowing the execution of step definitions
directly on the Dalvik Virtual Machine.

5.2. Test-driven Development in Catroid

Following the agile principles of Extreme Programming (XP) concerning
testing and continuous integration (CI), the Catroid tests are run at least

1https://github.com/cucumber/cucumber-jvm (visited on 2014-07-14)

28

https://github.com/cucumber/cucumber-jvm

5. Catroid and Behavior-Driven Testing

once a day on a CI server. The tests cover functionality as well as UI design.
Every Catroid developer is encouraged to follow the TDD principles defined
in section 4.1 and write tests before writing or changing any code.

What is currently missing in the Catroid testing framework is a possibility
to easily test behavior. Although it is possible to test behavior with unit
tests, they are often hard to maintain and hard to understand for people
lacking technical knowledge. For this reason Cucumber is established in
Catroid as a behavior testing framework.

5.3. Catroid and Cucumber Feature Files

Cucumber feature files are introduced in section 4.5.1. Listing 5.1 displays
another Cucumber feature file. It specifies a scenario, which assures that a
BroadcastAndWait brick is unblocked when the broadcast message is sent
again (see section 5.4.1 for an overview of the broadcast messaging system
in Catroid and a description of the BroadcastAndWait brick). Note, however,
that the Print brick is not part of the Catrobat language, but was introduced
for debugging purpose. The Print brick is placed at key positions after
other bricks. Once the message of a particular Print brick gets printed it
is certain, that the preceding brick was finally handled. This is especially
useful to visually express the termination of a BroadcastAndWait brick’s
waiting phase.

The scenario documents how the system should behave for this particular
event. It is specified in terms of bricks which are added to scripts and scripts
which are added to a Catroid program. However, the Gherkin keywords
together with the repetition of text like “this script has a” make the
scenario quite noisy. It may take the reader a considerable amount of time to
understand the meaning of the scenario in question. Replacing the Gherkin
keywords with “*”, as shown in listing 5.2, removes some of the clutter,
however, some of the meaning is lost too. It is not instantly clear, which
steps specify the presumed context, the events, or the expected outcome.
The repetition of phrases like “this script has a” is also still present.

29

5. Catroid and Behavior-Driven Testing

Feature: BroadcastAndWait blocking behavior (like in Scratch)

Background:

Given I have a Program

And this program has an Object ’test object’

Scenario: A waiting BroadcastAndWait brick is unblocked when the

broadcast message is sent again.

Given ’test object’ has a Start script

And this script has a BroadcastAndWait ’Print a after 0.1 seconds,

and then b after another 0.3 seconds’ brick

And this script has a Print brick with ’c’

Given ’test object’ has a Start script

And this script has a Wait 200 milliseconds brick

And this script has a Broadcast ’Print a after 0.1 seconds, and

then b after another 0.3 seconds’ brick

Given ’test object’ has a WhenBroadcastReceived ’Print a after 0.1

seconds, and then b after another 0.3 seconds’ script

And this script has a Wait 100 milliseconds brick

And this script has a Print brick with ’a’

And this script has a Wait 300 milliseconds brick

And this script has a Print brick with ’b’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’acab’

Listing 5.1: A Cucumber feature specifying the behavior of a BroadcastAndWait brick
when the broadcast message is sent again.

The approach taken for integrating Cucumber features with Catroid is
to omit the Gherkin keywords within a scenario except for “When” and
“Then”. The remaining part of the steps is rephrased in order to make them
more expressive (see listing 5.3).

By omitting the Gherkin keywords and the repetitive part of the steps the
scenario now rather can be read as a Catroid program (compare figure 5.1
for the corresponding Catroid program). Thus it takes the reader less time
to fully understand the meaning of the scenario.

However, the feature as it is now is not able to be run by Cucumber di-

30

5. Catroid and Behavior-Driven Testing

Feature: BroadcastAndWait blocking behavior (like in Scratch)

Background:

* I have a Program

* this program has an Object ’test object’

Scenario: A waiting BroadcastAndWait brick is unblocked when the

broadcast message is sent again.

* ’test object’ has a Start script

* this script has a BroadcastAndWait ’Print a after 0.1 seconds,

and then b after another 0.3 seconds’ brick

* this script has a Print brick with ’c’

* ’test object’ has a Start script

* this script has a Wait 200 milliseconds brick

* this script has a Broadcast ’Print a after 0.1 seconds, and

then b after another 0.3 seconds’ brick

* ’test object’ has a WhenBroadcastReceived ’Print a after 0.1

seconds, and then b after another 0.3 seconds’ script

* this script has a Wait 100 milliseconds brick

* this script has a Print brick with ’a’

* this script has a Wait 300 milliseconds brick

* this script has a Print brick with ’b’

* I start the program

* I wait until the program has stopped

* I should see the printed output ’acab’

Listing 5.2: Replace Gherkin keywords with “*”.

rectly because Cucumber would not properly recognize the steps when the
Gherkin keywords are missing. Hence, a script is used, which adds Gherkin
keywords and is run before Cucumber parses the feature file.

The script in question (see listing 5.4) is just a simple call to the Unix-Tool
Stream Editor (sed) scanning for line beginnings followed by certain trigger
words and adding the Gherkin keyword “And” if needed (like already men-
tioned in section 4.5.1, Gherkin keywords are interchangeable and it makes
no difference to Cucumber which keywords are in use). A full description
of the syntax of this new Catrobat Language can be found in section 3.4.
The complete feature specifying the behavior of the “BroadcastAndWait”

31

5. Catroid and Behavior-Driven Testing

brick is discussed in section 5.5.

Feature: BroadcastAndWait blocking behavior (like in Scratch)

Background:

Given I have a Program

And this program has an Object ’test object’

Scenario: A waiting BroadcastAndWait brick is unblocked when the

broadcast message is sent again.

Given Object ’test object’ has the following scripts:

when program started

broadcast ’Print a after 0.1 seconds, and then b after another

0.3 seconds’ and wait

print ’c’

when program started

wait 0.2 seconds

broadcast ’Print a after 0.1 seconds, and then b after another

0.3 seconds’

when I receive ’Print a after 0.1 seconds, and then b after another

0.3 seconds’

wait 0.1 seconds

print ’a’

wait 0.3 seconds

print ’b’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’acab’

Listing 5.3: Shorter and more expressive steps.

By taking this approach and keeping step lines as short as possible the
readability of the features is increased. Omitting Gherkin keywords when
writing scenarios may increase the readability further because scenarios de-
scribe Catroid programs and can thus be read as such. As Cucumber cannot
parse steps without Gherkin keywords, they are added by a script which
can run automatically before Cucumber starts parsing the file. Certainly, the
regular expressions of the step definitions have to be adapted to match the
new steps.

32

5. Catroid and Behavior-Driven Testing

Figure 5.1: Catroid program which is created by the Cucumber scenario in listing 5.3.

33

5. Catroid and Behavior-Driven Testing

#!/bin/sh

for f in $(find assets -name ’*.source’); do

sed -r ’s/^([[:space:]]*)(when |broadcast |print |wait

|repeat |end of loop)/\1And \2/g’ $f > $f.feature;

done

@echo off

for /R "assets" %%f in (*.source) do (

sed.exe -r "s/^([[:space:]]*)(when |broadcast |print |wait

|repeat |end of loop)/\1And \2/g" %%f > %%f.feature

)

Listing 5.4: Script adding Gherkin keywords to step definitions for all files ending in
.source in the directory assets as Unix shell script (top) and Windows batch
script (bottom).

5.3.1. Waiting Periods in Cucumber Features

Fast feedback is especially important for testing in an agile environment.
Developers are encouraged to run tests often, ideally before and after every
change in code. When tests tend to take too long to run, developers would
merely skip them altogether.

Listing 5.3 in section 5.3 displays a Cucumber feature specifying the behavior
of a BroadcastAndWait brick. Notice, that the values for the waiting periods
are chosen to be as small as possible yet still assuring the desired order of
execution. Within one and the same scenario different values for different
waiting periods are taken. Those are 0.1 seconds apart. It is thereby obvi-
ous that the waiting periods have nothing in common and serve different
purposes.

Choosing the waiting periods as small as possible but adding small amounts
of time to make them unique is a trade-off between a short overall testing
time and an unmistakable meaning.

34

5. Catroid and Behavior-Driven Testing

5.3.2. Using Descriptive Strings as Broadcast Messages

Like mentioned in section 3.3 Catrobat makes use of a broadcast mechanism
to provide means of communication between scripts. Arbitrary strings are
used as broadcast messages, distinctively identifying broadcasts. Broadcast
messages in the Cucumber features are chosen to be descriptive because the
features also serve as documentation. An example of a broadcast message,
taken from listing 5.3, would be:

’Print a after 0.1 seconds, and then b after another 0.3 seconds’

The message describes that “a” should be printed after 0.1 seconds, and
then “b” after another 0.3 seconds. Thus it is absolutely clear what scripts
will be triggered and which actions will be performed after a particular
broadcast message has been sent.

5.3.3. Cucumber and Continuous Integration

Jenkins2 is a tool, providing CI for software development. Like already
mentioned in section 5.2 the whole Catroid test suite runs at least once a
day on a dedicated CI server using Jenkins. Every developer is encouraged
to follow the test-first principle and to write tests before every code change.
Upon requesting a merge of a code change into the code base, the developer
runs all tests on the CI server.

After enabling the Cucumber plugin, the CI server is also able to process
Cucumber feature files. See figure 5.2 for a successful test run of a Cucumber
feature on the Jenkins CI server. The green background of the steps indicates
that the steps passed.

The Cucumber plugin also reports the time taken by each step. Therefore
it would be easy to spot bottlenecks taking a significant amount of time to
execute. The most steps in this example take zero milliseconds to execute
because they only set up the Catroid program which is then run via step
“When I start the program”.

2http://jenkins-ci.org (visited on 2014-07-14)

35

http://jenkins-ci.org

5. Catroid and Behavior-Driven Testing

23 ms
83 ms

0 ms
0 ms
0 ms
0 ms
0 ms
0 ms
0 ms
0 ms
0 ms
0 ms
0 ms

2 secs and 430 ms
738 ms

0 ms

Scenarios Steps

Feature Total Passed Failed Total Passed Failed Skipped Pending Duration Status

BroadcastAndWait Blocking Behavior (like in Scratch) 1 1 0 16 16 0 0 0 3 secs and 277 ms passed

Feature: BroadcastAndWait Blocking Behavior (like in Scratch)

If there exists no WhenBroadcastReceived script, a BroadcastAndWait should not wait at all. If there are one or more
matching WhenBroadcastReceived scripts, execution of the script containing the BroadcastAndWait is paused until all
WhenBroadcastReceived scripts are finished. If a broadcast is sent while a BroadcastAndWait brick is waiting for the
same message, the responding WhenBroadcastReceived scripts is restarted; the BroadcastAndWait brick stops waiting
and immediately continues executing the rest of the script. The same applies for a BroadcastAndWait brick which is
unblocked by another BroadcastAndWait brick; the first one continues while the seconds one starts waiting. Just
like a Broadcast brick, a BroadcastAndWait brick triggers all matching WhenBroadcastReceived in all Objects of the
current program.

Background:
Given I have a Program
And this program has an Object 'test object'

Scenario: A waiting BroadcastAndWait brick is unblocked when the broadcast message is sent again.
Given 'test object' has a Start script
And this script has a BroadcastAndWait 'Print a after 0.1 seconds, and then b after another 0.3 seconds' brick
And this script has a Print brick with 'c'
Given 'test object' has a Start script
And this script has a Wait 200 milliseconds brick
And this script has a Broadcast 'Print a after 0.1 seconds, and then b after another 0.3 seconds' brick
Given 'test object' has a WhenBroadcastReceived 'Print a after 0.1 seconds, and then b after another 0.3 seconds' script
And this script has a Wait 100 milliseconds brick
And this script has a Print brick with 'a'
And this script has a Wait 300 milliseconds brick
And this script has a Print brick with 'b'
When I start the program
And I wait until the program has stopped
Then I should see the printed output 'acab'

Figure 5.2: Test report from the Jenkins Cucumber plugin.

What also can be seen in figure 5.2 is the description of the feature following
the “Feature” keyword. Notice that this description not only refers to the
single scenario visible in this figure, but also to the whole feature specifying
the behavior of the BroadcastAndWait brick. The whole feature is discussed
in section 5.5.

5.3.4. Regression Testing with Cucumber Features

Regression testing is performed after making a functional improvement or
repair to the program [25]. Erroneous behavior of Catrobat can be easily
reproduced by using the text-based language defined in section 3.4. When
a bug is discovered the workflow from section 6.1 may be applied and a
text-based Catrobat program simulating the erroneous behavior may be

36

5. Catroid and Behavior-Driven Testing

created in a Cucumber feature. This would also serve as regression test to
assure that no other behavior is influenced by the correction of this error.

5.3.5. Cucumber and Concurrency

Like mentioned in section 3.3 scripts in Catrobat run in parallel. When two
scripts run concurrently it is not determinable which script finishes first.
Listing 5.5 shows a Cucumber feature specifying two WhenIReceive scripts.
The scripts are supposed to run concurrently and it is not determinable if
the Print brick with “a” or the Print brick with “b” gets executed first. This
is expressed by the expected outcome: “Then I should see the printed

output ’ab’ or ’ba’”.

Feature: Concurrency in Catroid

Scenario: A Broadcast brick sends a message in a program with two

WhenBroadcastReceived scripts. The order of the execution

of the WhenBroadcastReceived scripts is arbitrary.

Given I have a Program

And this program has an Object ’test object’

Given ’test object’ has the following scripts:

when program started

broadcast ’message’

when I receive ’message’

print ’a’

when I receive ’message’

print ’b’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’ab’ or ’ba’

Listing 5.5: Cucumber scenario describing the ambiguous outcome of two scrips running
concurrently.

37

5. Catroid and Behavior-Driven Testing

5.4. Correcting Undesired Behavior in the Catroid
Broadcast Messaging System

Like mentioned in section 3.3 scripts cannot call other scripts directly. Instead
a broadcast mechanism is used to intercommunicate with other scripts. The
broadcast messages can also be used to ensure sequential execution of
scripts. Listing 5.6 shows an example of how the sequential execution of
three scripts can be ensured by the usage of broadcast messages.

Feature: Scripts communicating via broadcast messages

Scenario: Sequential execution of three scripts

Given I have a Program

And this program has an Object ’test object’

Given ’test object’ has the following scripts:

when program started

print ’a’

broadcast ’message one’

when I receive ’message one’

print ’b’

broadcast ’message two’

when I receive message two’

print ’c’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’abc’

Listing 5.6: Sequential execution of three scripts. The broadcast messages ensure the correct
order of execution.

5.4.1. Overview of the Broadcast Messaging System in
Catroid

The bricks Broadcast, BroadcastAndWait, and WhenIReceive are responsi-
ble for handling broadcasts in Catroid. While the bricks Broadcast and

38

5. Catroid and Behavior-Driven Testing

BroadcastAndWait are sending broadcast messages, WhenIReceive denotes
a script responding to the broadcast messages. The actions appended to this
script are triggered when the broadcast message is received.

The difference between Broadcast and BroadcastAndWait bricks is that the
former is non-blocking which means that the broadcast message gets sent
and the script containing the Broadcast brick directly continues with its
execution. The BroadcastAndWait brick, however, is blocking, meaning that
the containing script is paused until all scripts listening to the message
sent by the BroadcastAndWait brick have returned. Listings 5.7 and 5.8
show Cucumber scenarios demonstrating the usage of either broadcast
brick. Notice the difference in the expected outcome. Figure 5.3 shows the
corresponding Catroid program.

Feature: Demonstration of a Broadcast brick

Scenario: A Broadcast brick sends its message and the containing

script directly continues with its execution.

Given I have a Program

And this program has an Object ’test object’

Given ’test object’ has the following scripts:

when program started

broadcast ’message’

print ’a’

when I receive ’message’

wait 0.1 seconds

print ’b’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’ab’

Listing 5.7: A Cucumber Scenario demonstrating the usage of a Broadcast brick.

39

5. Catroid and Behavior-Driven Testing

Feature: Demonstration of a BroadcastAnd Wait brick

Scenario: A BroadcastAndWait brick pauses the containing script until

all scripts listening to the broadcast message have returned.

Given I have a Program

And this program has an Object ’test object’

Given ’test object’ has the following scripts:

when program started

broadcast ’message 1’ and wait

print ’a’

when I receive ’message 1’

wait 0.1 seconds

print ’b’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’ba’

Listing 5.8: A Cucumber Scenario demonstrating the usage of a BroadcastAndWait brick.

The broadcast system in Catroid is implemented using the “libgdx”3 library.
Catroid scripts can be thought of as “libgdx” Actions. Whenever a Catroid
script is run the corresponding BroadcastAction fires a BroadcastEvent.
A BroadcastListener listens for BroadcastEvents and notifies the class
BroadcastHandler about the event. The BroadcastHandler reacts to the
BroadcastEvent and takes care of it.

If the BroadcastEvent originates from a BroadcastAndWait brick special
treatment is required. A special Action is appended to each script reacting
to this very broadcast message – the BroadcastNotifyAction notifies the
BroadcastHandler when the corresponding script has finished. After the
BroadcastNotifyAction has been appended to the scripts they get noti-
fied that they now can start executing. Every script finishing execution
then notifies the BroadcastAndWait brick. When all scripts are finished,
the BroadcastAndWait has received a BroadcastNotifyAction from every

3http://libgdx.badlogicgames.com (visited on 2014-07-14)

40

http://libgdx.badlogicgames.com

5. Catroid and Behavior-Driven Testing

Figure 5.3: Catrobat program demonstrating the use of BroadcastAndWait. The output
will be “ba” – the BroadcastAndWait brick doesn’t continue execution until the
script WhenIReceive finishes.

41

5. Catroid and Behavior-Driven Testing

script. This signals the script containing the BroadcastAndWait brick to
resume with its own execution.

5.4.2. Uncovering Misbehavior with Cucumber

Catroid endeavors to implement the behavior of the most language com-
ponents just like Scratch. Scratch can therefore be taken as a reference for
when it is not clear how some parts of the language should behave.

As an example the behavior of the BroadcastAndWait brick is analyzed. By
definition the BroadcastAndWait brick sends out a broadcast message and
pauses its own execution until all WhenIReceive scripts listening to this very
broadcast message have completed. But how should the BroadcastAndWait

brick react if the same broadcast message is sent again by a different
Broadcast brick, while the BroadcastAndWait brick still waits for some
scripts to finish? The answer can be found by creating a Scratch program,
which reflects the desired behavior. The Scratch program displayed in figure
5.4 defines a “broadcast and wait” block which is activated right at the start
of the program.

Figure 5.4: Scratch program defining a
“broadcast and wait” block which
gets interrupted by another
broadcast.

A receiver script reacts to the broad-
cast message and reports its receipt.
The broadcast message is then sent
after 0.2 seconds from within an-
other script, just after the receiver
script has reported “a”. Next “c”
is output meaning that after the
broadcast message is sent again the
waiting block, waiting for the same
message, is unblocked. The receiv-
ing script is also restarted. So the
complete output is “acab” and the
behavior of the BroadcastAndWait

brick is clear. It stops waiting and
resumes execution if it is in its waiting state and the same message is sent
again.

42

5. Catroid and Behavior-Driven Testing

See listing 5.3 as well as figure 5.2 for the specification of the desired
behavior regarding the recurrence of the same broadcast message when
there is already a BroadcastAndWait brick in a waiting state. The “Then”
step is derived from the behavior of the corresponding Scratch program
displayed in figure 5.4.

Upon execution of feature 5.3 Cucumber reports a failure (see listing 5.9).
This indicates that the BroadcastAndWait brick behaves not like desired.
When sending the broadcast message for the second time the receiver script
is restarted, but the BroadcastAndWait brick does not continue execution.
After correcting the behavior in Catroid, the test run finishes successfully,
like already shown in figure 5.2. See section 5.4.3 for how the found misbe-
havior is corrected in Catroid. Section 5.5 discusses the specification of the
broadcast mechanism of Catroid.

junit.framework.ComparisonFailure: The printed output is wrong.

expected:<a[cab]> but was:<a[abc]>

at junit.framework.Assert.assertEquals(Assert.java:85)

at org.catrobat.catroid.test.cucumber.ProgramSteps.

I_should_see_printed_output(ProgramSteps.java:361)

at org.catrobat.catroid.test.cucumber.ProgramSteps.

I_should_see_printed_output_s(ProgramSteps.java:354)

at *.Then I should see the printed output ’acab’

(features/bricks/BroadcastWaitBlockingBehavior.feature:56)

Listing 5.9: Failure upon execution of the Cucumber feature in listing 5.3.

5.4.3. Correcting Misbehavior of Catroid

Like described in section 5.4.2 some undesired behavior was uncovered
in Catroid. The BroadcastAndWait brick did not correctly response to a
broadcast message from another Broadcast brick when it already was in its
waiting state. Upon uncovering this circumstance, an appropriate Cucumber
scenario was created with assistance of Scratch. A Scratch program con-
taining broadcast blocks and simulating the Catroid program in question
was created and observed. From the behavior of the Scratch program the

43

5. Catroid and Behavior-Driven Testing

Figure 5.5: Full test run of the Cucumber feature in the IDE “Eclipse”.

“Then” step of the Catroid program could be derived. Thus the incorrect
behavior of Catroid could be corrected. Figure 5.5 shows a full test run of
the Cucumber feature from within the integrated development environment
(IDE) “Eclipse”.

5.5. Specifying the Broadcast Mechanism of
Catrobat by Example

This chapter describes the specification of the broadcast mechanism of
Catrobat by the means of examples. Each scenario describes some particular
situation and the expected behavior of Catrobat. The examples represent
Catrobat programs.

The header of the Cucumber feature file with the “Feature” keyword and
the feature description is shown in figure 5.10.

44

5. Catroid and Behavior-Driven Testing

Feature: WhenBroadcastReceived blocking behavior (like in Scratch)

If there exists no WhenBroadcastReceived script, a BroadcastAndWait

should not wait at all. If there are one or more matching

WhenBroadcastReceived scripts, execution of the script containing

the BroadcastAndWait is paused until all WhenBroadcastReceived

scripts are finished. If a broadcast is sent while a

BroadcastAndWait brick is waiting for the same message, the

responding WhenBroadcastReceived scripts is restarted; the

BroadcastAndWait brick stops waiting and immediately continues

executing the rest of the script. The same applies for a

BroadcastAndWait brick which is unblocked by another

BroadcastAndWait brick; the first one continues while the seconds

one starts waiting. Just like a Broadcast brick, a BroadcastAndWait

brick triggers all matching WhenBroadcastReceived in all Objects of

the current program.

Listing 5.10: Description of the BroadcastWaitBlockingBehavior feature.

The background steps displayed in listing 5.11 are valid for all subsequent
scenarios. Each scenario has a Catrobat program and at least one object
called “test object”.

Background:

Given I have a Program

And this program has an Object ’test object’

Listing 5.11: Background steps.

45

5. Catroid and Behavior-Driven Testing

Scenario: A BroadcastAndWait brick without a corresponding

WhenIReceive script should *not* wait for anything.

Given Object ’test object’ has the following scripts:

when program started

broadcast ’This message does not matter as there is no receiver

script’ and wait

print ’a’

when program started

wait 0.1 seconds

print ’b’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’ab’

Listing 5.12: A BroadcastAndWait brick without a corresponding WhenIReceive script.

The scenario in listing 5.12 simply demonstrates, that a BroadcastAndWait

brick does not wait at all, if there is no corresponding WhenIReceive script
present. The expected output is “ab” because the two WhenProgramStarted

scripts run concurrently but the second one waits for 0.1 seconds before
printing “b”.

46

5. Catroid and Behavior-Driven Testing

Scenario: A waiting BroadcastAndWait brick is unblocked when the

broadcast message is sent again.

Given Object ’test object’ has the following scripts:

when program started

broadcast ’Print a after 0.1 seconds, and then b after another

0.3 seconds’ and wait

print ’c’

when program started

wait 0.2 seconds

broadcast ’Print a after 0.1 seconds, and then b after another

0.3 seconds’

when I receive ’Print a after 0.1 seconds, and then b after another

0.3 seconds’

wait 0.1 seconds

print ’a’

wait 0.3 seconds

print ’b’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’acab’

Listing 5.13: When the same broadcast message is sent again, a waiting BroadcastAndWait

brick gets unblocked.

The scenario in listing 5.13 shows, that a BroadcastAndWait brick is un-
blocked, when the broadcast message is sent again. First “a” gets printed.
Then the second WhenProgramStarted script sends the same broadcast mes-
sage again after 0.2 seconds. Because of that message the BroadcastAndWait

brick is unblocked and “c” gets printed. Finally the WhenIReceive script is
restarted and prints “ab”.

47

5. Catroid and Behavior-Driven Testing

Scenario: A waiting BroadcastAndWait brick is unblocked via another

BroadcastAndWait brick.

Given Object ’test object’ has the following scripts:

when program started

broadcast ’Print b after 0.2 seconds’ and wait

print ’a’

when program started

wait 0.1 seconds

broadcast ’Print b after 0.2 seconds’ and wait

print ’c’

when I receive ’Print b after 0.2 seconds’

wait 0.2 seconds

print ’b’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’abc’

Listing 5.14: A waiting BroadcastAndWait brick can also be unblocked by another
BroadcastAndWait brick.

The scenario in listing 5.14 shows, that a BroadcastAndWait brick also
is unblocked, when the broadcast message is sent again from another
BroadcastAndWait brick. The first BroadcastAndWait brick sends its mes-
sage and waits, but gets interrupted by the second BroadcastAndWait brick
and therefore prints “a”. The second BroadcastAndWait brick then waits for
the WhenIReceive script, which prints “b”, to finish. It then prints “c”.

48

5. Catroid and Behavior-Driven Testing

Scenario: A waiting BroadcastAndWait brick is unblocked when the

same broadcast message is sent again and there are two

WhenIReceive scripts responding to the same message.

Given Object ’test object’ has the following scripts:

when program started

broadcast ’Print b and c from different scripts’ and wait

print ’a’

when I receive ’Print b and c from different scripts’

wait 0.3 seconds

print ’b’

when I receive ’Print b and c from different scripts’

wait 0.4 seconds

print ’c’

when program started

wait 0.1 seconds

broadcast ’Print b and c from different scripts’

wait 0.2 seconds

print ’d’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’adbc’

Listing 5.15: A BroadcastAndWait brick is correctly unblocked when there are two
WhenIReceive scripts.

The scenario in listing 5.15 shows, that a BroadcastAndWait brick is correctly
unblocked, when there are two WhenIReceive scripts and the broadcast
message is sent again. First, the BroadcastAndWait brick sends it broadcast
message and waits for the scripts. It then gets interrupted by another
broadcast message and continues with printing “a”. Due to the waiting
periods, “d” gets printed next. Finally, “b” and “c” are printed from the
WhenIReceive scripts.

49

5. Catroid and Behavior-Driven Testing

Scenario: A BroadcastAndWait brick repeatedly triggers a

WhenIReceive script which is restarted immediately.

Given Object ’test object’ has the following scripts:

when program started

repeat 3 times

broadcast ’Send the BroadcastAndWait message’

end of loop

when I receive ’Send the BroadcastAndWait message’

broadcast ’Print a, then b after 0.1 seconds’ and wait

print ’c’

when I receive ’Print a, then b after 0.1 seconds’

print ’a’

wait 0.1 seconds

print ’b’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’aaabc’

Listing 5.16: Repeatedly trigger a WhenIReceive script.

The scenario in listing 5.16 shows a BroadcastAndWait brick which repeat-
edly sends the broadcast message. The corresponding WhenIReceive script
prints “a” and is then restarted due to the next broadcast message. When
the BroadcastAndWait sends its broadcast message for the last time, it then
waits for the WhenIReceive scripts to finish. The WhenIReceive scripts prints
“ab” and, finally, “c” gets printed.

50

5. Catroid and Behavior-Driven Testing

Scenario: A Broadcast brick repeatedly triggers a WhenIReceive

script which is restarted immediately.

Given Object ’test object’ has the following scripts:

when program started

repeat 3 times

broadcast ’Send the second broadcast message’

wait 0.2 seconds

print ’c’

end of loop

when I receive ’Send the second broadcast message’

broadcast ’Print b after 0.1 seconds, then d after another 0.3

seconds’

print ’a’

when I receive ’Print b after 0.1 seconds, then d after another 0.3

seconds’

wait 0.1 seconds

print ’b’

wait 0.3 seconds

print ’d’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’abcabcabcd’

Listing 5.17: A Broadcast brick repeatedly triggers a WhenIReceive script.

The scenario in listing 5.17 shows a Broadcast brick which repeatedly
triggers a WhenIReceive script. The second WhenIReceive script is restarted
whenever it receives the broadcast message and the sequence “abc” gets
printed repeatedly. When the broadcast message is sent for the last time, the
second WhenIReceive script finishes and finally prints “d”.

51

5. Catroid and Behavior-Driven Testing

Scenario: A BroadcastAndWait brick is unblocked by a Broadcast brick.

After that the BroadcastAndWait is triggered again.

Given Object ’test object’ has the following scripts:

when program started

repeat 2 times

broadcast ’Send the BroadcastAndWait message’

wait 0.6 seconds

end of loop

when I receive ’Send the BroadcastAndWait message’

broadcast ’Print a after 0.1 seconds, then b after another 0.2

seconds’ and wait

wait 0.2 seconds

print ’d’

when program started

wait 0.3 seconds

broadcast ’Print a after 0.1 seconds, then b after another 0.2

seconds’

print ’c’

when I receive ’Print a after 0.1 seconds, then b after another 0.2

seconds’

wait 0.1 seconds

print ’a’

wait 0.4 seconds

print ’b’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’acadabd’

Listing 5.18: A BroadcastAndWait brick behaves correctly after it was interrupted.

The scenario in listing 5.18 demonstrates, that a BroadcastAndWait brick
is correctly restarted after it was interrupted by a Broadcast brick. At
first the BroadcastAndWait sends its broadcast message and waits for the
WhenIReceive script to finish. The WhenIReceive script prints “a”. Then the
broadcast message is sent again, “c” gets printed, and the BroadcastAndWait
brick gets unblocked. The next output is “a” from the restarted WhenIReceive

script and “d” from the unblocked BroadcastAndWait brick. Then the sec-
ond round of the Repeat brick starts and the BroadcastAndWait block sends

52

5. Catroid and Behavior-Driven Testing

the broadcast message again. This time it does not get interrupted and the
WhenIReceive script prints “ab”. Finally, “d” gets printed.

Scenario: A BroadcastAndWait brick waits for two WhenIReceive

scripts to finish and is unblocked by a Broadcast brick.

After that the BroadcastAndWait is triggered again.

Given Object ’test object’ has the following scripts:

when program started

repeat 2 times

broadcast ’Print a and b from two different scripts’ and wait

wait 0.3 seconds

print ’c’

end of loop

when program started

wait 0.1 seconds

broadcast ’Print a and b from two different scripts’

when I receive ’Print a and b from two different scripts’

print ’a’

when I receive ’Print a and b from two different scripts’

wait 0.2 seconds

print ’b’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’aabcabc’

Listing 5.19: A BroadcastAndWait brick behaves correctly after it was interrupted and there
are two WhenIReceive scripts present.

The scenario in listing 5.19 show, that a BroadcastAndWait brick correctly
behaves after it was interrupted and there are two WhenIReceive scripts
present. The BroadcastAndWait brick sends it message and waits for the
WhenIReceive scripts to finish. The first WhenIReceive script prints “a”.
Then the broadcast message is sent again. The two WhenIReceive scripts
are restarted and print “ab”. The BroadcastAndWait brick then gets un-
blocked and “c” gets printed. In the second round of the Repeat brick, the
BroadcastAndWait brick still behaves correctly. It waits for the WhenIReceive
scripts to print “ab”. Finally, “c” gets printed.

53

5. Catroid and Behavior-Driven Testing

Scenario: Correct consecutive executions of one BroadcastAndWait brick.

Given Object ’test object’ has the following scripts:

when program started

repeat 2 times

broadcast ’Print a immediately’ and wait

print ’b’

end of loop

when I receive ’Print a immediately’

print ’a’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’abab’

Listing 5.20: A BroadcastAndWait brick behaves correctly after it was triggered once.

The scenario in listing 5.20 shows, that a BroadcastAndWait brick cor-
rectly behaves after it was triggered once. When the BroadcastAndWait

brick sends its broadcast message, the WhenIReceive script prints “a”. The
WhenIReceive script finishes, the BroadcastAndWait brick gets unblocked,
and “b” gets printed. The Repeat brick starts the second round and the
BroadcastAndWait brick still behaves correctly.

54

5. Catroid and Behavior-Driven Testing

Scenario: A BroadcastAndWait brick waits for a short and a long

WhenIReceive script. The same BroadcastAndWait is

triggered again before the long one finishes.

Given Object ’test object’ has the following scripts:

when program started

repeat 2 times

broadcast ’Send the BroadcastAndWait message’

wait 0.2 seconds

end of loop

when I receive ’Send the BroadcastAndWait message’

broadcast ’Print a immediately and b after 0.3 seconds’ and wait

print ’c’

when I receive ’Print a immediately and b after 0.3 seconds’

print ’a’

when I receive ’Print a immediately and b after 0.3 seconds’

wait 0.3 seconds

print ’b’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’aabc’

Listing 5.21: A BroadcastAndWait waits for a short and a long WhenIReceive script.

The scenario in listing 5.21 shows a BroadcastAndWait brick which waits for
a short and a long WhenIReceive script to finish. When the broadcast mes-
sage is sent, the first WhenIReceive script prints “a”. The BroadcastAndWait

brick sends its broadcast message again before the second WhenIReceive

script finishes. The scripts are restarted properly and “ab” gets printed. Then
the BroadcastAndWait brick gets unblocked and finally “c” gets printed.

55

5. Catroid and Behavior-Driven Testing

Scenario: A BroadcastAndWait brick sends a message and a different

Object contains the corresponding WhenIReceive script.

Given Object ’test object’ has the following script:

when program started

repeat 2 times

print ’a’

broadcast ’Print b immediately’ and wait

print ’c’

end of loop

And this program has an Object ’2nd test object’

Given Object ’2nd test object’ has the following script:

when I receive ’Print b immediately’

print ’b’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’abcabc’

Listing 5.22: The WhenIReceive script is present in a different object.

The scenario in listing 5.22 demonstrates, how a BroadcastAndWait brick
behaves, if the corresponding WhenIReceive script is present in a different
object. At first “a” gets printed. Then the BroadcastAndWait brick sends
its broadcast message and the WhenIReceive script from the second object
reacts to it by printing “b”. Then the BroadcastAndWait brick is unblocked
and “c” gets printed. Finally, the sequence is run again to ensure still correct
behavior.

56

5. Catroid and Behavior-Driven Testing

Scenario: A BroadcastAndWait brick waits for two WhenIReceive

scripts to finish.

Given Object ’test object’ has the following scripts:

when program started

print ’a’

broadcast ’Print b and c from two different scripts’ and wait

print ’d’

when I receive ’Print b and c from two different scripts’

print ’b’

when I receive ’Print b and c from two different scripts’

wait 0.1 seconds

print ’c’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’abcd’

Listing 5.23: A BroadcastAndWait brick behaves correctly, when there are two
WhenIReceive scripts.

The scenario in listing 5.23 simply shows, that a BroadcastAndWait brick
behaves correctly, when there are more than one WhenIReceive scripts. At
first “a” gets printed. Then the BroadcastAndWait brick sends its broadcast
message and the WhenIReceive scripts print “b” and “c” respectively. Then
the BroadcastAndWait brick is unblocked and “d” gets printed.

57

5. Catroid and Behavior-Driven Testing

Scenario: A BroadcastAndWait brick waits for two WhenIReceive

scripts from two different objects to finish.

Given Object ’test object’ has the following script:

when program started

print ’a’

broadcast ’Print b and c from two different objects’ and wait

print ’d’

And this program has an Object ’2nd test object’

Given Object ’2nd test object’ has the following script:

when I receive ’Print b and c from two different objects’

print ’b’

And this program has an Object ’3rd test object’

Given Object ’3rd test object’ has the following script:

when I receive ’Print b and c from two different objects’

wait 0.1 seconds

print ’c’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’abcd’

Listing 5.24: Two WhenIReceive scripts are in two different objects.

The scenario in listing 5.24 shows, similar to the scenario in listing 5.23, that a
BroadcastAndWait brick behaves correctly, when there are two WhenIReceive

scripts. This time, the scripts are in two different objects. At first “a” gets
printed. Then the BroadcastAndWait brick sends its broadcast message
and the WhenIReceive scripts print “b” and “c” respectively. Then the
BroadcastAndWait brick is unblocked and “d” gets printed.

58

5. Catroid and Behavior-Driven Testing

Scenario: A Broadcast is sent after a BroadcastAndWait has finished.

Given Object ’test object’ has the following script:

when program started

print ’a’

broadcast ’Print c immediately’ and wait

print ’b’

And this program has an Object ’2nd test object’

Given Object ’2nd test object’ has the following script:

when program started

wait 0.3 seconds

print ’d’

broadcast ’Print c immediately’

And this program has an Object ’3rd test object’

Given Object ’3rd test object’ has the following script:

when I receive ’Print c immediately’

print ’c’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’acbdc’

Listing 5.25: A broadcast message is sent from a Broadcast brick after a BroadcastAndWait

has finished.

The scenario in listing 5.25 shows that the broadcast system behaves correctly,
when a Broadcast brick broadcasts a message, after a BroadcastAndWait

brick already has sent the same broadcast message. At first “a” gets printed.
Then the BroadcastAndWait brick sends its broadcast message and the
WhenIReceive script prints “c”. The BroadcastAndWait brick is unblocked
and “b” gets printed. After 0.3 seconds “d” gets printed and a Broadcast

brick sends the same broadcast message. Finally, “c” gets printed again.

59

5. Catroid and Behavior-Driven Testing

Scenario: A BroadcastAndWait is sent after a Broadcast has finished.

Given Object ’test object’ has the following script:

when program started

wait 0.2 seconds

print ’a’

broadcast ’Print c immediately’ and wait

print ’b’

And this program has an Object ’2nd test object’

Given Object ’2nd test object’ has the following script:

when program started

print ’d’

broadcast ’Print c immediately’

And this program has an Object ’3rd test object’

Given Object ’3rd test object’ has the following script:

when I receive ’Print c immediately’

print ’c’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’dcacb’

Listing 5.26: A broadcast message is sent from a BroadcastAndWait brick after a Broadcast

has finished.

The scenario in listing 5.25 is similar to the scenario in listing 5.26. This time
the broadcast message is first sent from the Broadcast brick. At first “d” gets
printed. Then the Broadcast brick sends the broadcast message and “c” gets
printed. Then the sequence “acb” gets printed when the BroadcastAndWait

brick and the WhenIReceive script interact.

60

5. Catroid and Behavior-Driven Testing

Scenario: BroadcastAndWait still behaves correctly when there are

more than one Broadcast messages at the same time.

Given Object ’test object’ has the following scripts:

when program started

broadcast ’Run second script’ and wait

print ’a’

when I receive ’Run second script’

broadcast ’Run third script’ and wait

print ’b’

when I receive ’Run third script’

broadcast ’Run fourth script’ and wait

print ’c’

when I receive ’Run fourth script’

print ’d’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’dcba’

Listing 5.27: BroadcastAndWait chain.

The scenario in listing 5.27 shows, that the broadcast mechanism works
correctly, when there are more BroadcastAndWait bricks waiting at the
same time. The first BroadcastAndWait brick sends its broadcast message
and waits for the corresponding WhenIReceive script to finish. The cor-
responding WhenIReceive script contains another BroadcastAndWait brick
which sends another broadcast message. This sequence continues until
the last WhenIReceive script finally prints “d” and finishes. The waiting
BroadcastAndWait brick unblocks and “c” gets printed. This sequence goes
on until “b” and “a” are printed and all scripts are finished.

61

5. Catroid and Behavior-Driven Testing

Scenario: A BroadcastAndWait brick repeatedly triggers two

WhenIReceive scripts

Given Object ’test object’ has the following script:

when program started

repeat 3 times

broadcast ’Print a from different scripts’ and wait

And this program has an Object ’2nd test object’

Given Object ’2nd test object’ has the following script:

when I receive ’Print a from different scripts’

print ’a’

And this program has an Object ’3rd test object’

Given Object ’3rd test object’ has the following script:

when I receive ’Print a from different scripts’

print ’a’

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’aaaaaa’

Listing 5.28: A BroadcastAndWait brick interacts with two WhenIReceive scripts

The scenario in listing 5.28 shows the interaction of a BroadcastAndWait

brick with two WhenIReceive scripts, which are located in two different
objects. The BroadcastAndWait brick sends its broadcast message and the
two scripts print “a” each. This cycle is repeated three times to ensure the
correct restarting of the BroadcastAndWait brick.

62

6. Conclusion and Outlook

The previous chapters have provided an overview over the concept of
behavior-driven development. The visual programming language Catrobat
and the behavior-driven testing framework Cucumber were used to demon-
strate some of the key ideas of specification by example. The broadcast
system of Catrobat was thoroughly specified by examples. Some misbehav-
ior in the existent system could be uncovered and corrected.

6.1. Workflow of Behavior-Driven Testing with
Cucumber in Catroid

To utilize Cucumber in Catroid the following workflow is suggested. This
workflow follows the principles of TDD. Cucumber features are written
before any changes to the existing system are made.

1. Derive scope from goals:
This step is based on the first step of the key process patterns defined
by Adzic [3]. For Catroid this may mean to observe some behavior in
Scratch and decide to adapt the behavior of Catroid alike. Adapting
the behavior of Catroid to conform to Scratch might also denote the
“business value” for this step.

2. Create Cucumber feature:
The next step would be to formulate a Cucumber feature containing
one or more scenarios. When speaking about Catrobat programs, the
text-based language, which was introduced in section 3.4 should be

63

6. Conclusion and Outlook

used. During this stage of the workflow, some Cucumber step defi-
nitions might be reused, for example for adding bricks to a Catrobat
program.

3. Implement missing step definitions:
Some of the step definitions might be reusable from other Cucumber
features. Step definitions which are sill missing have to be imple-
mented.

4. Convert the steps to Gherkin language:
When using the text-based language from section 3.4 like described
in section 5.3 to specify the steps of a Catrobat program, the Gherkin
keywords are missing. To add them back, adapt and use the script
shown in listing 5.4. In order to automate as many tasks as possible
and keep validation time as short as possible, this step could be carried
out automatically once the Cucumber framework is fully integrated in
the Catroid testing process.

5. Run the Cucumber feature:
Running the Cucumber feature would probably result in a failure as
the Catroid project has not been adapted yes. However, if specifying
some already existing behavior, the test run might already succeed at
this stage.

6. Implement the specified behavior:
At this stage the code to make the Cucumber tests pass should be
written.

7. Run the Cucumber feature again:
Now the Cucumber feature should pass and the system should behave
as specified.

8. Run all Cucumber features:
To make sure that the new added code did not break something else
this step is necessary. If all Cucumber features succeed at this stage
the system behaves as specified and nothing else broke.

64

6. Conclusion and Outlook

6.2. Further Examples of Using Cucumber for
Specifying Catroid Elements

It has been demonstrated in chapter 5 that the broadcast mechanism of
Catroid is easily specifiable by the means of examples using the behavior-
driven testing framework Cucumber. This section provides additional exam-
ples of Cucumber features, specifying Catroid bricks, as a starting point for
future specifications. The text-based Catrobat language defined in section
3.4 is used for specifying exemplary Catrobat programs.

6.2.1. Hide Brick

Feature: Hide brick

A brick setting its Object invisible.

Background:

Given I have a Program

And this program has an Object ’test object’

Scenario: After executing the Hide brick the object should not be

visible

Given ’test object’ is visible

And ’test object’ has the following script:

when program started

hide

When I start the program

And I wait for at least 200 milliseconds

Then I should not see ’test object’

Listing 6.1: A Cucumber feature specifying the behavior of a Hide brick.

Listing 6.1 shows a Cucumber feature with one scenario specifying a Catro-
bat program with a Hide brick. This feature demonstrates, how Cucumber

65

6. Conclusion and Outlook

can be used to specify the behavior of Catrobat bricks. Instead of describing
the procedure of checking the visibility of an object in technical terms, the
phrase can simple be stated as “Then I should not see ’test object’”.
Of course the technical representation is still present, but abstracted and
put out of the way into the step definitions.

6.2.2. If Brick

Feature: If brick

An If brick decides which path of execution to follow depending on a

condition.

Background:

Given I have a Program

And this program has an Object ’test object’

Scenario Outline: An If brick decides on which path to take base on

the value of a user variable

Given ’test object’ has the following script:

when program started

set variable ’<variable>’ to ’<value>’

if ’<condition’> is true then

print ’if path’

else

print ’else path’

end if

When I start the program

And I wait until the program has stopped

Then I should see the printed output ’<path>’

Examples:

| variable | value | condition | path |

| myVariable | 5.3 | myVariable > 5.3 | else path |

| yourVariable | 2 | yourVariable = 2.0 | if path |

| ourVariable | 4.3 | ourVariable < 1 | else path |

Listing 6.2: A Cucumber feature specifying the behavior of an If brick.

66

6. Conclusion and Outlook

The Cucumber feature in listing 6.2 demonstrates conditional execution in
Catroid. The concept of user variables is also exemplified. Via a scenario
outline several configurations of input values can be tested (the concept of
scenario outline is introduced in section 4.5.2).

6.2.3. PlaceAt Brick

Feature: PlaceAt brick

A brick placing an Object at a given position

Background:

Given I have a Program

And this program has an Object ’test object’

Scenario Outline: Place an Object at a given position

Given ’test object’ the following script:

when program started

place at X: <xPosition>, Y: <yPosition>

When I start the program

And I wait until the program has stopped

Then ’test object’ should be at position <xPosition> <yPosition>

Examples:

| xPosition | yPosition |

| 200 | 100 |

| 2147483647 | 2147483647 |

| -2147483648 | -2147483648 |

Listing 6.3: A Cucumber feature specifying the behavior of a PlaceAt brick.

A feature specifying a PlaceAt brick can be viewed in listing 6.3. This feature
uses a scenario outline to test several sets of input values. It demonstrates
the use of corner cases to properly specify the behavior of the PlaceAt

brick for values corresponding to the Java constants Integer.MAX VALUE and
Integer.MIN VALUE.

67

6. Conclusion and Outlook

6.2.4. WhenIReceive Script

Feature: Restart WhenIReceive script

A WhenIReceive script should be restarted when the message

is broadcast again from within the script.

Background:

Given I have a Program

And this program has an Object ’test object’

Scenario: A WhenIReceive script is restarted when the broadcast message

is sent again from within the script

Given Object ’test object’ has the following scripts:

when program started

broadcast ’print a immediately and send broadcast message again’

when I receive ’print a immediately and send broadcast message again’

print ’a’

broadcast ’print a immediately and send broadcast message again’

When I start the program

And I wait for at least 1 second

Then I should see at least 10 times ’a’

Listing 6.4: A Cucumber feature specifying the behavior of a WhenIReceive script.

The feature shown in listing 6.4 specifies the behavior of a WhenIReceive

script when the same broadcast message is sent again from within the script.
Because the broadcast message is sent from within the WhenIReceive script
the script gets restarted immediately. This sending and restarting process
would continue endlessly.

68

6. Conclusion and Outlook

6.3. Advantages and Disadvantages of Using
Cucumber as a Behavior-Driven Framework
in Catroid

The preceding chapters discuss many aspects of using Cucumber as a
behavior-driven framework in Catroid. This section sums up the advantages
and disadvantages of specifying Catroid by example.

One of the main advantages is, that Cucumber scenarios can be written and
read by every single person involved with Catroid. Every developer, tester,
designer, and manager can easily maintain existing scenarios as well as
create new ones. The scenarios are written in a ubiquitous language, which
every member of the Catroid team understands. New team members are
able to understand the system faster by reading the scenarios. The text-based
Catrobat language defined in section 3.4 is used when specifying Catrobat
programs.

The necessity of writing new step definitions will decrease over time because
existing step definitions can be reused in further scenarios. The specification
of the behavior of a certain brick is defined once and can be used over
again.

The external quality of Catroid can he held upright by using Cucumber
scenarios as examples. This means that the behavior of Catroid can be
adjusted to the behavior of Scratch. The examples describe how Scratch
behaves in certain situations which means that Catroid should behave
alike.

However, there are also drawbacks in the introduction of Cucumber into
Catroid. First, the Cucumber framework can coexist with the already existent
unit tests. But this requires a strict policy about what to test through unit
tests and what to test via Cucumber scenarios. It also is tedious to maintain
two testing systems in parallel. Another option would be, to establish
Cucumber as solely testing system in Catroid. Yet this would mean to
rewrite all the unit tests into Cucumber scenarios. Due to the large amount
of existent tests this would require many hours of developers’ time.

69

6. Conclusion and Outlook

To sum up, a practicable solution would be to keep and maintain the unit
tests of Catroid to guarantee a stable internal quality level of the project,
and establish the Cucumber testing-framework additionally. This would
also guarantee a high external quality level of Catroid. If the Cucumber tests
and the unit tests overlap more and more over time, the number of unit
tests could be reduced and eventually the Cucumber framework establishes
as exclusive testing framework in Catroid.

6.4. Future Work

As has been shown in the previous chapters the behavior of the broadcast
system of the Catrobat language is easily specifiable by the means of Cu-
cumber features. A living documentation has evolved from examples. The
examples are mostly text-based Catrobat programs which can easily be
read and understood by all people involved in Catrobat. Following those
examples, other parts of Catrobat might also be straightforward specifiable
by the means of examples.

The Catrobat team might be interested in expanding the language in the
future. Self defined blocks, like in Snap!, would be an exciting enhancement
to have in the Catrobat language. The specification of such an enhancement
could be compassed by the means of examples. The examples could be
written in Gherkin and tested with the already present Cucumber testing
framework.

As steps from different features can share the step definitions, the organiza-
tion of the step definitions into files has to be reconsidered. It could be an
option to have one file per brick.

The Cucumber testing framework was already introduced into Catrobat.
The integration into the Jenkins test environment was also set up and tested
manually. What is, however, still missing is the automatic execution of the
Cucumber features upon each Jenkins test run. It needs to be considered,
that adding the Cucumber tests might extend the testing period. But the
Cucumber test suite could be executed on an emulated device and run in

70

6. Conclusion and Outlook

parallel to the already existing unit tests. Putting this proposed set up into
practice, the additional tests would not prolong the testing period at all.

A noble goal for future work would also be to implement the Cucumber
framework for other platforms. Currently there exist implementations of
the Catroid programming language, besides the Android version, for Mi-
crosoft Windows Phone and Apple iOS. There is also an HTML5 version in
development. Cucumber features could be specified once and serve as refer-
ence for the implementation of the steps for all platforms. Hence, the same
behavior of the language could be verified on all different implementations
of Catrobat.

71

Bibliography

[1] Gojko Adzic. Bridging the Communication Gap. Specification by Ex-
ample and Agile Acceptance Testing. Neuri Limited, Jan. 2009. isbn:
9780955683619.

[2] Gojko Adzic. Examples make it easy to spot inconsistencies. May 2009.
url: http://gojko.net/2009/05/12/examples-make-it-easy-to-
spot-inconsistencies/. (visited on 2014-07-14).

[3] Gojko Adzic. Specification by Example: How Successful Teams Deliver the
Right Software. Manning Publications, 2011. isbn: 9781617290084.

[4] David Astels. Test-Driven Development: A Practical Guide. Prentice Hall,
2003. isbn: 9780131016491.

[5] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley, 1999. isbn: 9780201616415.

[6] Kent Beck. Test-Driven Development: By Example. Addison-Wesley, 2002.
isbn: 9780321146533.

[7] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, An-
drew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin,
Steve Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas. Mani-
festo for Agile Software Development. 2001. url: http://agilemanifesto.
org/. (visited on 2014-07-14).

[8] Gilad Bracha. Pluggable Type Systems. OOPSLA Workshop on Revival
of Dynamic Languages. Oct. 2004.

[9] Luca Cardelli. “Type Systems.” In: Handbook of Computer Science and
Engineering. Ed. by Allen B. Tucker. CRC Press, 1997. Chap. 103.

72

http://gojko.net/2009/05/12/examples-make-it-easy-to-spot-inconsistencies/
http://gojko.net/2009/05/12/examples-make-it-easy-to-spot-inconsistencies/
http://agilemanifesto.org/
http://agilemanifesto.org/

Bibliography

[10] David Chelimsky, Dave Astels, Zach Dennis, Aslak Hellesøy, Bryan
Helmkamp, and Dan North. The Rspec Book: Behaviour-Driven Devel-
opment with Rspec, Cucumber, and Friends. Pragmatic Bookshelf, 2010.
isbn: 9781934356371.

[11] Alistair Cockburn. Crystal Clear A Human-Powered Methodology for
Small Teams. Addison-Wesley Professional, 2004. isbn: 9780201699470.

[12] Ian Dees, Matt Wynne, and Aslak Hellesøy. Cucumber Recipes: Auto-
mate Anything with BDD Tools and Techniques. Pragmatic Bookshelf,
2013. isbn: 9781937785017.

[13] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Professional, 2003. isbn: 9780321125217.

[14] Steve Freeman and Nat Pryce. Growing Object-Oriented Software, Guided
by Tests. Addison-Wesley Professional, 2009. isbn: 9780321574442.

[15] Robert Harper. Practical Foundations for Programming Languages (Draft).
2nd ed. Cambridge University Press, 2014. isbn: 9781107029576.

[16] Brian Harvey and Jens Mönig. Snap! Build Your Own Blocks.

[17] Annemarie Harzl, Vesna Krnjic, Franz Schreiner, and Wolfgang Slany.
“Comparing Purely Visual with Hybrid Visual/Textual Manipulation
of Complex Formula on Smartphones.” In: DMS. Knowledge Systems
Institute, 2013, pp. 198–201. isbn: 1891706349. url: http://dblp.uni-
trier.de/db/conf/dms/dms2013.html#HarzlKSS13.

[18] Aslak Hellesøy and Matt Wynne. The Cucumber Book: Behaviour-Driven
Development for Testers and Developers. Pragmatic Bookshelf, 2012. isbn:
9781934356807.

[19] Elizabeth Keogh. “BDD: A Lean Toolkit.” In: Lean Software & Systems
Conference. Atlanta, GA, USA, 2010.

[20] Lasse Koskela. Test Driven: Practical TDD and Acceptance TDD for Java
Developers. Manning Publications, 2007. isbn: 9781932394856.

[21] Craig Larman and Bas Vodde. Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development with Large-Scale
Scrum. Addison-Wesley Professional, 2010. isbn: 9780321685117.

73

http://dblp.uni-trier.de/db/conf/dms/dms2013.html#HarzlKSS13
http://dblp.uni-trier.de/db/conf/dms/dms2013.html#HarzlKSS13

Bibliography

[22] Ioan Lazăr, Simona Motogna, and Bazil Pârv. “Behaviour-Driven De-
velopment of Foundational UML Components.” In: Electronic Notes
in Theoretical Computer Science 264.1 (2010). Proceedings of the 7th
International Workshop on Formal Engineering approaches to Soft-
ware Components and Architectures (FESCA 2010), pp. 91–105. issn:
1571-0661. url: http://www.sciencedirect.com/science/article/
pii/S1571066110000666.

[23] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and
Evelyn Eastmond. “The Scratch Programming Language and Envi-
ronment.” In: ACM Transactions on Computing Education 10.4 (Nov.
2010), 16:1–16:15. issn: 1946-6226. doi: 10.1145/1868358.1868363.
url: http://doi.acm.org/10.1145/1868358.1868363.

[24] Steve McConnell. Code Complete. 2nd ed. Microsoft Press, 2004. isbn:
9780735685819.

[25] Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software
Testing. 3rd ed. John Wiley & Sons, Nov. 2011. isbn: 9781118031964.

[26] Dan North. Introducing BDD. Mar. 2006. url: http://dannorth.net/
introducing-bdd/. (visited on 2014-07-14).

[27] Dan North. What’s in a Story? Feb. 2007. url: http://dannorth.net/
whats-in-a-story/. (visited on 2014-07-14).

[28] David Lorge Parnas. “A Technique for Software Module Specification
with Examples.” In: Communications of the ACM 15.5 (May 1972),
pp. 330–336. issn: 0001-0782. doi: 10 . 1145 / 355602 . 361309. url:
http://doi.acm.org/10.1145/355602.361309.

[29] Kenneth Pugh. Lean-Agile Acceptance Test-Driven Development: Better
Software Through Collaboration. Addison-Wesley Professional, 2011.
isbn: 9780321714084.

[30] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay Silver, Brian Silverman, and Yasmin Kafai. “Scratch: Pro-
gramming for All.” In: Communications of the ACM 52.11 (Nov. 2009),
pp. 60–67. issn: 0001-0782. doi: 10 . 1145 / 1592761 . 1592779. url:
http://doi.acm.org/10.1145/1592761.1592779.

74

http://www.sciencedirect.com/science/article/pii/S1571066110000666
http://www.sciencedirect.com/science/article/pii/S1571066110000666
http://dx.doi.org/10.1145/1868358.1868363
http://doi.acm.org/10.1145/1868358.1868363
http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/
http://dannorth.net/whats-in-a-story/
http://dannorth.net/whats-in-a-story/
http://dx.doi.org/10.1145/355602.361309
http://doi.acm.org/10.1145/355602.361309
http://dx.doi.org/10.1145/1592761.1592779
http://doi.acm.org/10.1145/1592761.1592779

Bibliography

[31] Wolfgang Slany. “A mobile visual programming system for Android
smartphones and tablets.” In: 2012 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). Sept. 2012, pp. 265–266. doi:
10.1109/VLHCC.2012.6344546.

[32] Wolfgang Slany. “Catroid: A Mobile Visual Programming System for
Children.” In: Proceedings of the 11th International Conference on Inter-
action Design and Children. IDC ’12. New York, NY, USA: ACM, 2012,
pp. 300–303. isbn: 9781450310079. doi: 10.1145/2307096.2307151.
url: http://doi.acm.org/10.1145/2307096.2307151.

[33] Carlos Solı́s and Xiaofeng Wang. “A Study of the Characteristics of
Behaviour Driven Development.” In: 2011 37th EUROMICRO Confer-
ence on Software Engineering and Advanced Applications (SEAA). Aug.
2011, pp. 383–387. doi: 10.1109/SEAA.2011.76.

[34] Laurence Tratt. “Dynamically Typed Languages.” In: Advances in
Computers 77 (July 2009). Ed. by Marvin V. Zelkowitz, pp. 149–184.

75

http://dx.doi.org/10.1109/VLHCC.2012.6344546
http://dx.doi.org/10.1145/2307096.2307151
http://doi.acm.org/10.1145/2307096.2307151
http://dx.doi.org/10.1109/SEAA.2011.76

Appendix A.

Acronyms

ATDD acceptance test-driven development

BDD behavior-driven development

TDD test-driven development

SbE specification by example

UI user interface

XP Extreme Programming

CI continuous integration

76

	Abstract
	Introduction
	Terminology
	Visual Programming Languages for Children
	Scratch
	Snap!
	Catrobat
	Text-based Catrobat Language Syntax
	Static and Dynamic Programming Languages
	Scratch, Snap!, and Catrobat as Dynamic Programming Languages

	Behavior-Driven Development
	Test-Driven Development
	Acceptance Test-Driven Development
	Introduction to Behavior-Driven Development
	JBehave and Executable Specification
	User Stories in Behavior-Driven Development
	Specification by Example

	The Role of Documentation in Behavior-Driven Development
	Cucumber
	Cucumber and Gherkin
	Scenario Outline

	Catroid and Behavior-Driven Testing
	Cucumber Android
	Test-driven Development in Catroid
	Catroid and Cucumber Feature Files
	Waiting Periods in Cucumber Features
	Using Descriptive Strings as Broadcast Messages
	Cucumber and Continuous Integration
	Regression Testing with Cucumber Features
	Cucumber and Concurrency

	Correcting Undesired Behavior in the Catroid Broadcast Messaging System
	Overview of the Broadcast Messaging System in Catroid
	Uncovering Misbehavior with Cucumber
	Correcting Misbehavior of Catroid

	Specifying the Broadcast Mechanism of Catrobat by Example

	Conclusion and Outlook
	Workflow of Behavior-Driven Testing with Cucumber in Catroid
	Further Examples of Using Cucumber for Specifying Catroid Elements
	Hide Brick
	If Brick
	PlaceAt Brick
	WhenIReceive Script

	Advantages and Disadvantages of Using Cucumber as a Behavior-Driven Framework in Catroid
	Future Work

	Bibliography
	Acronyms

