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Abstract

The aim of this thesis is to study the behaviour of regularized image reconstruction
of parallel MR data subjected to Gaussian noise for different grades of undersam-
pling. As reconstruction method sensitivity encoded parallel imaging (SENSE)
with a Tikhonov image prior is used. This reconstruction approach is one of the
simplest, but has the advantage that many results can be obtained analytically.
For this type of image reconstruction the question of how to find the optimal regu-
larization parameter is answered from the Bayesian point of view and an equation
to extract the optimal parameter is presented. Two methods - the pseudo replica
method and MCMC sampling - are employed to generate samples in image space
from a single MR-dataset in order to gain information about the noise statistics in
image space. For both sampling methods the analytic expressions for the posterior
PDF are computed and the general Rician distribution for magnitude images of
correlated complex Gaussian random variables is derived. Furthermore, a relative
statistical image quality measures which use the covariance matrix of the image
samples is applied to datasets with different degrees of undersampling. It is shown
that pixel correlation effects can not be neglected for undersampled data without
justification.
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1 INTRODUCTION

1 Introduction

MR scans are a common examination technique in today’s clinical practice. MRI technology
considerably simplifies medical diagnosis and helps to detect health problems in various cases.
Unfortunately - due to motion artifacts - the examination of certain body parts like the gas-
trointestinal system, the lung or even the heart is either difficult or requires long scanning
times. Another fact is that MR-scanners and their maintenance are very costly. From the
health economical point of view it is therefore desirable to give as many patients as possible
access to this medical service. Hence reducing the time per scan can increase comfort for pa-
tients as well as it can be beneficial for the health system. However, it raises a main question:

(1) ”How far can scanning time be reduced such that quality and reliability of the images
can still be guaranteed?”

To deal with this problem several parallel imaging techniques have been developed such as
Sensitivity Encoding For Fast MRI (SENSE). To obtain reliable images a certain minimum
resolution is necessary. In order to achieve the desired resolution the signal from a certain
number of k-space points needs to be acquired. Due to the excitation and read-out sequence
design one k-space data point takes a certain minimum time to be measured. That requires a
certain minimum total scanning time which can be up to an hour or more. Furthermore also
the noise in k-space plays an important role. Even though the resolution might be sufficient,
very noisy data due to low signal-to-noise-ratio (SNR) might be amplified in certain regions
during image reconstruction. This can result in totally useless images with bad (or mislead-
ing) diagnostic information. Hence a high SNR of k-space data is also necessary. Usually this
is achieved by scanning the object paralleley with multiple receiver coils such that the effects
of noise are reduced due to averaging. As such the described setup provides reliable images
but will not give any speedup because in each coil still the whole k-space is sampled.

That is where another idea comes into play: Only half of the k-space is sampled which
speeds up the scan by the factor 2. If the undersampled data received at each coil was going
to be reconstructed individually, backfolding-artifacts would appear in the image because the
sampling theorem gets violated. That is due to the properties of the Fourier transform. A
certain spatial resolution imposes a minimal sampling stepsize in k-space. Given the fact that
the spatial sensitivities of the receiver coils are known, the trick now is to reconstruct the im-
age collectively by combining the data of all coils. The knowledge of the spatial dependencies
of the coils can be used to remove the backfolding artifacts from the reconstructed image.
If the parallel coils were perfectly linear independent (and hence contain no redundancy)
theoretically the scanning time can maximally be reduced by the factor equal to the number
of parallel coils without leading to any backfoldings artifacts. Techniques that perform MRI
image reconstructions in that way are called parallel MRI and they are widely used by radi-
ologists in today’s clinical practice.

Numerous more advanced techniques have been developed to reduce scanning time beyond
the bounds of the sampling theorem, e.g. compressed sensing in cardiovascular MRI. They
are mostly based on the common idea to use prior information about some structure of an
MR image like smoothness. The loss of information in data acquisition for faster scanning
and the decrease in SNR is balanced by regularization terms within image reconstruction.
This approach has been widely accepted in the scientific community but has not made its
step into clinical application yet. The reason for that is that the quality of the regularized
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1 INTRODUCTION

and reconstructed image (or a certain region of interest (ROI)) is not known. A structure in
the ROI subject to diagnosis might vanish due to excessive regularization (overfitting) and a
possible pathology could become invisible. To avoid situations like that we take a look at the
character of the image reconstruction which is performed solving an optimization problem
with data-fidelity and regularization term. The latter is weighted with a certain constant
which is usually chosen empirically to suite expectations best. The question that one is con-
fronted with here is:

(2) ”What is the optimal (non-empirical) regularization parameter based only on the infor-
mation we have about the problem?”

To answer this question it would be convenient to have a profound derivation of how to
find the optimal regularization parameter, only with respect to given information (model of
measurement process, noise statistics and type of regularization). An equation can be derived
by applying Bayesian probability theory that makes it possible to compute the optimal pa-
rameter from raw MRI data before performing a Tikhonov regularized SENSE reconstruction.
This will help to put the choice of the regularization parameter on a profound statistical basis.
Still reconstructed images can have highly biased ROIs due to noise amplification. Also for
undersampling beyond the Nyquist boundary using regularizations noise amplification arti-
facts might still appear. The question a radiologist is going to face in such a case is:

(3) ”How reliable is a structure in the ROI?”

Therefore it is desirable to have a mathematical precisely defined quality measure that as-
sesses the quality of the ROI of a single scan. Since a measure of that kind is relative to the
chosen regularization and the forward model with its noise characteristics, there can never
exist an absolute measure. That becomes clear by looking at the following example: If the
regularization favors leopard-patterns the quality of the reconstruction can be 100% but the
image is still nonsense when looking at human MRI data. However, within the given assump-
tions (noise statistics, MRI model, type of regularization) it would be still very helpful for a
radiologist to know the relative quality of the reconstruction in order to decide whether he is
diagnosing the patient or rather sending him back to do another fully sampled scan. Such a
measure is already found in literature [20] as (geometry) g-factor maps and it can be computed
pixelwise from a single dataset by using the pseudo replica method. It has one fundamentally
drawback: it lacks the consideration of pixel correlation effects which are of great importance
in practice. In MR images that have been reconstructed from undersampled data the pixels in
a ROI are not fully uncorrelated anymore which can lead to fatal errors in quality assessment
by using diagonal elements of the covariance matrix only. Therefore a quality measure is pre-
sented that incorporates pixel correlations with the help of the full covariance matrix which
allows to differentiate a real structure from noise amplifications. Since magnitude images
are often used for diagnosis, also the case of computing the covariance matrix for correlated
magnitude pixels from a multidimensional Rice distribution is explored. This is a general-
ization to the (uncorrelated) pixel by pixel approach and can be used to justify simplifications.

Another approach to compute the covariance matrix of the reconstructed images is to sample
from their probability distribution directly. The optimization problem is expressed in the
Bayesian sense in terms of likelihood function and prior which is equivalent to the original
problem. Then a Metropolis Hastings sampler can be used to draw samples from the posterior
distribution. The reconstructed image appears to be the mean of the samples and addition-
ally the covariance matrix can be extracted. This inversion based on MCMC methods is an

10



1 INTRODUCTION

independent reconstruction method for MRI that inherently provides a quality measure.

11



2 THEORY OF IMAGE RECONSTRUCTION IN MRI

2 Theory of image reconstruction in MRI

2.1 Theory of MRI

MRI enables to reconstruct the internal structure of an object in terms of its nuclear spin
density by creating a macroscopic signal from a large number of atoms. The microscopic
basis of this resulting signal is the energy splitting of a spin system in an external magnetic
field. This splitting can be used to create a spatially variable resonance frequency by applying
stationary magnetic field gradients in all three spatial directions. With the help of special
excitation pulses a macroscopic magnetization can be induced in a defined region within
the object. This macroscopic signal can be detected which makes it possible to reconstruct
tomographic images of the nuclear spin density of the sample. Therefore the whole process
provides a visualization of the internal structure in the end. Since the wavelength of the
occurring radiation is in the radio frequency range MRI is a preferable choice compared to
techniques using ionizing radiation.

2.1.1 A spin-1
2 particle in a magnetic field

The simplest element with total nuclear spin quantum number I = 1
2 is the Hydrogen atom

which is also one of the main elements in biological tissue (others are 13C, 19F, 31P ). Since
angular momentum is quantized (with respect to a given z-direction) the expectation value
of the z-component of the spin operator Ŝ can only take 2I + 1 discrete values. The total
nuclear spin quantum number of the Hydrogen nucleus is I = s = 1

2 , so in total 2 different
orientations are expected. Expressing this geometrical interpretation in mathematical terms,
the z-component of the spin operator Ŝz has eigenvalues m~, where m can take the values
−s,−s+ 1, ..., s− 1, s. Then the 2 eigenvalues are ±~

2 [5].

Figure 2: Zeeman effect: Quantization of angular momentum and energy level splitting of a
spin 1

2 particle in a magnetic field.

The behavior of a spin-1
2 particle in a magnetic field is described by its magnetic moment

operator µ̂ = γnŜ. The eigenvalues of the z-component of the nuclear magnetic moment is
given by µz = ±γn ~

2 where γn is the gyromagnetic ratio of the nucleus given by γn = gn
e

2mp
.

12



2 THEORY OF IMAGE RECONSTRUCTION IN MRI

The subscript p means proton because it carries the spin and gn is the g-factor of the nucleus.
For the Hydrogen nucleus the gyromagnetic ratio is γn = 2.675 108 rad s−1 T−1.

Since there are two different states a spin-1
2 particle can occupy, in the presence of an ex-

ternal magnetic field there are also two energetic states. The potential energy of a magnetic
moment subject to an external magnetic field is classically E = −µB0. If the magnetic field
is directed in z-direction like B0 = B0ez, the energy becomes E = −µzB0. According to the
eigenvalues there are two possible energies E = ±γn ~

2B0 for a spin-1
2 particle in an external

magnetic field. This is called Zeeman effect. The energy difference between those two states
is ∆E = γn~B0 corresponding to the Larmor frequency ω0 which can be interpreted as a
precession frequency of a spin around the z-axis. The occupation numbers of these energy
levels according to the Boltzmann fraction are given by

N↑
N↓

= exp
(
− ∆E

kbT

)
[18].

2.1.2 Bloch equations - The motion of a spin system

The classical equation of motion for a rotating object in an external field F in terms of torque
T and angular momentum L reads T = dL

dt = r × F. Applying this general equation to the
special case of a magnetic moment µ in an external magnetic field B yields:

dL

dt
= µ×B (2.1)

Figure 3: Precession of the magnetic moment around a magnetic field with Larmor frequency
ω0.

Since we want to describe nucleons, we need to find a proper quantum mechanical represen-
tation. In the Heisenberg picture this task can be achieved by taking the classical equation
of motion for precession and replacing variables with the averages if the according operators.
The angular momentum L will be mapped to the angular momentum operator of the nucleus
which is the spin operator Ŝ in this case. It can be written in terms of magnetic moments
as Ŝ = 1

γn
µ̂, where γn = gn

e
2mp

is a combination of physical constants. Multiplying equation

(2.1) with γn on both sides gives:

d〈µ̂〉
dt

= γn〈µ̂〉 × 〈B̂〉 (2.2)

13



2 THEORY OF IMAGE RECONSTRUCTION IN MRI

To describe the macroscopic magnetization, the the sum over the expectation values of the
magnetic moment of all N microscopic spins is taken: M = 1

N

∑N
i=1〈µi〉. Now the equation

can be split into a transverse and a longitudinal part (in z-direction). In the absence of
relaxation processes (non-interacting spins) we get

dM⊥
dt

= γnM⊥ ×B

dMz

dt
= 0

The above equation is valid for a magnetization formed by a large number of non-interacting
spins which is equivalent (up to a factor) to a single spin. Usually the considered spins
are interacting with each other such that the system will go back to equilibrium after an
external excitation and the equations get damping factors due to spin-spin and spin-lattice
interactions. If we identify spin-spin interactions as a process affecting the transverse part
only and spin-lattice interactions affecting the longitudinal part only and we model those
processes as linear relaxations with (spatially dependent) relaxation times T1 and T2, we
obtain the Bloch equations for interacting spins.

dM⊥
dt

= γM⊥ ×B− M⊥
T2

dMz

dt
= −Mz −Mz,0

T1

(2.3)

They describe the motion of the macroscopic magnetization formed by the ensemble of mi-
croscopic nuclear spins back to equilibrium after an excitation pulse in the presence of an
external magnetic field.

2.1.3 Spatial excitation and detection of the induced magnetization

In the following a short summary of the most essential steps in the derivation of the equation
that describes MRI signal acquisition is shown. It mainly follows the presentation given in
the book Magnetic Resonance Imaging: Physical Principles and Sequence Design by Haacke,
Brown, Thompson and Venkatesan [3].

Figure 4: Transverse (M⊥) and longitudinal part (Mz) of the macroscopic magnetization
vector (M) with excitation pulse Bexc in the transverse plane.

14



2 THEORY OF IMAGE RECONSTRUCTION IN MRI

A spin ensemble in the external magnetic field will not generate any measurable signal without
transitions from between the lower and the upper level. So the spins from the lower level need
to be pumped to the upper level and then their their relaxation can be measured. Another
difficulty is that the total transverse magnetization cancels to zero since the phases of the
spins are distributed randomly. Therefore the spins do not only have to be excited but also
they have to have the same phase. In practical applications the spins are excited by switching
on a short external EM-excitation pulse Bexc = B1(cos(ω0t)ex−sin(ω0t)ey) in the transverse
plane. This will generate a net magnetization in the transverse plane by tilting all spins into
this plane having the same phase. As soon as the external pulse is switched off again, the spin
system moves back to equilibrium and the transverse net magnetization decays according to
the solutions of the Bloch equations.

Figure 5: Principle MRI-setup: A coil loaded with a certain load I corresponds to a magnetic
field B(r′) which is interacting with the magnetization M(r′) of a sample. A decay
of the induced magnetization in the sample according to the Bloch equations leads
to an (additional) voltage in the coil according to Faraday’s law. The quantity that
is measured in MRI is the magnetic energy at a point r′, formed by the coil’s field
and the magnetization. This can also be interpreted as the principle of reciprocity
(see 2.1.3).

The detection of the macroscopic magnetization can be measured in a receiver coil. According
to Faraday’s law of induction, a temporal change of magnetic flux (due to the decay of
magnetization) creates an electromotive force (voltage) EMF ∝ − d

dtΦ(t). Magnetic flux is
defined as Φ(t) =

∫
coilarea Bdf , where B = ∇×A. With Stokes theorem that can be rewritten

as Φ(t) =
∮
wire Adl. For Coulomb gauge and quasi-stationary fields and with the contribution

of the magnetization to the current density jM (r, t) = ∇r×M(r, t), the vector potential reads

A(r, t) =
µ0

4π

∫
V

jM (r′, t)

‖r− r′‖
d3r′ =

µ0

4π

∫
V

∇r′ ×M(r′, t)

‖r− r′‖
d3r′

The magnetic flux is defined as the integral of the vector potential over the wire

Φ(t) =

∮
wire

Adl =

∮
wire

µ0

4π

∫
V

∇r′ ×M(r′, t)

‖r− r′‖
d3r′dl =

∫
V

µ0

4π

∮
wire

∇r′ ×M(r′, t)

‖r− r′‖
dld3r′

=

∫
V

M(r′, t)
µ0

4π

∮
wire

dl× (r− r′)

‖r− r′‖3
d3r′︸ ︷︷ ︸

B(r′)

=

∫
V

M(r′, t)B(r′)d3r′

(2.4)

With the help of some vector identities the surface integral was reformulated such that B(r′)
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represents Biot-Savart’s law for a constant current I = 1:

B(r′) =
µ0

4π

∮
wire

Idl× (r− r′)

‖r− r′‖3
(2.5)

Replacing M in equation (2.4) with the solutions of the Bloch equations and pulling and exe-
cuting the negative time-derivative for the EMF inside the integral yields the time dependent
signal in the receiver coil. Taking into account that the Larmor frequency ω0 is orders of
magnitude larger than 1

T1
and 1

T2
, a simplified solution can be derived where the z-component

of M is zero. The remaining components Mx and My can be expressed as real and imaginary
part of a complex quantity M+ whose magnitude is M⊥. Depending on the RF-pulse, φ0(r′)
is the initial phase of the spins at a certain position. With the help of a projection parameter
θB(r′) the magnetic field becomes B⊥(r′) and after using some trigonometric formulas the
EMF becomes

EMF ∝ ω0

∫
V
M⊥(r′, t)B⊥(r′)sin

(
ω0t+ θB(r′)− φ0(r′)

)
d3r′

Demodulation and representation as a complex signal

The EMF is measured as a voltage in a receiver coil. It represents the macroscopic transverse
magnetization vector M⊥ of the given sample. It is convenient to assemble the x-component
of the vector as Re(s(t)) and the y-component as Im(s(t)) of a complex valued signal. This
can be obtained by performing a quadrature amplitude demodulation (QAD), where the sig-
nal is split into two equivalent ones which are multiplied by sin(ω0t+ δωt) and cos(ω0t+ δωt)
respectively. δω is a small frequency offset from the Larmor frequency ω0 and Ω = ω0 + δω
is the demodulation frequency. After passing them through a low-pass filter, the two signals
are reassembled again as a complex signal s(t) = sRe + isIm which has the form

s(t) ∝ ω0

∫
V
M⊥(r′, 0)B⊥(r′)ei((Ω−ω0)t+φ0(r′)−θB(r′))d3r′

Above’s magnetization magnitude is time-independent since the exponential T1 and T2-
relaxations have been neglected. The magnitude of the transverse magnetization is pro-
portional to the spin density one is interested in. When the static magnetic field B0 (which
corresponds to a Larmor frequency ω0) is sufficiently homogeneous, θB(r′) and φ0(r′) are spa-
tial independent and can - as well as the proportionality constant - merged with M⊥(r′, 0)
to form the spin density ρ(r′). That procedure leads to the signal equation for one distinct
Larmor frequency ω0 and one demodulation frequency Ω.

s(t) =

∫
V
ρ(r′)B⊥(r′)ei((Ω−ω0)t)d3r′ (2.6)

Coil sensitivities and the principle of reciprocity

The expression B⊥(r′) can be interpreted as the coil sensitivity of the receiver coil and will
be denoted as c3D(r′) in the following. Given a defined current in the coil (coil load) and a
certain coil geometry, a spatial dependent magnetic field is created according to Biot-Savart’s
law according to equation (2.5). On the other hand a given magnetic field will also create
a defined current in the coil. This is called principle of reciprocity or antenna theorem [22].
It basically states that the sensitivity of a transmitting RF-unit at a point r′ is equal to the
sensitivity of the same arrangement used as a receiving unit. In equation (2.4) this principle
can be observed: the MRI-signal is formed by an integral over magnetic field energies, it does
not matter how these energies are formed (be it by the classical MRI-setup using the coils
as receivers or the other way around). That insight can be useful by calculating the coil
sensitivities c3D(r′), which need to be known for SENSE image reconstruction.
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2.1.4 The signal equation

For spatial encoding of the sample volume B-field gradients are switched on in the x-, y- and
z-direction for a certain time period. The Gradients are defined as Gi(t) := ∂Bi(t)

∂xi
for i ∈ x, y, z

such that the magnetic field that encodes in z-direction will be Bz(z, t) = B0 + zGz(t). That
means that the Larmor frequency will be a function of space and time now. For the z-
direction only this denotes as ω(r, t) = ω0 + ωG(r, t) = ω0 + γzGz(t). If we define a phase
φ(r, t) = −

∫ t
0 ω(r, t′)dt′ and set the demodulation frequency Ω := ω0 (with no offset δω) the

exponent in equation (2.6) is rewritten as

s(t) =

∫
V
ρ(r)c3D(r)e−iγz

∫ t
0 Gz(t′)dt′d3r′

For 3D-encoding 3 gradients are needed which extends the exponent by 2 more integrals.
With a redefinition of these integrals as k-vectors ki(t) = γ

2π

∫ t
0 Gi(t

′)dt′ the full 3D-encoding
MRI signal equation can be written down. It turns out to be the Fourier-transform of the
product of the spin density with the coil sensitivity:

s(k(t)) =

∫
V
ρ3D(r)c3D(r)e−i2πk(t)rd3r′

For simplification reasons only 2-dimensional signals will be considered in the following. That
means that a certain slice in the z-direction of the scanned object has been fixed and ρ and
c are reduced to 2D-functions now. Integrating over the z-direction yields

s(kx(t), ky(t)) =

+∞∫
−∞

+∞∫
−∞

ρ(x, y)c(x, y)e−i2π(kx(t)x+ky(t)y)dxdy

For the sake of a more convenient notation this equation will be rewritten once more as the
2-dimensional signal equation for a single coil.

s(k) =

∫
Slice

ρ(r)c(r)e−i2πkrdxdy (2.7)

omitting the time dependence of k and keeping in mind that its z-component is constant
which can be absorbed in ρ because of proportionality. Care has to be taken that the spin
density ρ(r) and the coil sensitivity c(r) are complex numbers.

2.1.5 The signal equation for parallel MRI (PRMI)

In PMRI multiple receiver coils are used which are spatially distributed around the scanned
object to measure the signal parallely. Each coil will record the signal from another direction
and hence has a certain coil sensitivity cj(x, y) in image-space. The coil sensitivity for coil
j is a map cj(x, y) from R × R → C because the spin density is a complex signal. The coil
sensitivity represents the spatial resolution of the receiver coil j in the tomograph in image
space as a complex number. Equation (2.7) is valid for each coil j and we can write

sj(k) =

+∞∫
−∞

+∞∫
−∞

ρ(r)cj(r)e−i2πkrdxdy (2.8)
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2.2 Numerical Implementation of parallel MRI: The forward operator

The numerical implementation of the model for parallel MRI is given by the forward operator.
For SENSE (compare the original paper of Pruessmann [19], [14] and [2]) it consists of (1)
the Fourier transform, (2) the coil sensitivities and (3) the sampling trajectory which defines
the undersampling pattern. In principle all these parts could be given as matrices but matrix
sizes of 128 x 128 and more prohibit that due to memory problems. That is why in the
implementation used for this thesis the forward operator is given by a function with two
subarguments. The Fourier transform is given by a FFT whereas the sampling trajectory, the
coil sensitivities, the argument and the target of the operator are given by matrices. That
has the drawback that for operations that need the matrix representation of the forward
operator (like condition number and eigenvalues) the matrix has to be created first from the
canonical base vectors. Still speed and memory arguments are more convincing. The forward
operator represents the model relating measurements with the underlying physical process. In
the case of MRI this is the Fourier transform according to equation (2.7). For discretization
purposes we rewrite this equation and interpret the signal sj(t) as a data vector yj , where for
Cartesian sampling the elements in this vector are ordered starting with the signal coming
from the upper left part of k-space going down in the same column and then starting again in
the second column with the first element and so on. The spin density is the actual image of
interest, so we will store its values in a vector x where the elements are ordered in a similar
fashion. Accordingly we will reorder the values of the coil sensitivities and write them as a
vector cj .

Figure 6: Arrangement scheme of k-space data.

After the introduction of the 2D discrete Fourier transform - which is written as a matrix F
- a discrete version of equation (2.7) is obtained.

yj = F
(
cj ◦ x

)
The operator ◦ depicts the Hadamard-product which is an elementwise multiplication of the
elements of two vectors (or matrices) of the same size. In the operator notation this writes

yj = Ajx

18



2 THEORY OF IMAGE RECONSTRUCTION IN MRI

where Aj is a Fourier matrix that matrix-multiplies the Hadamard product of the coil sensi-
tivities with the argument. The coil sensitivities are assumed to be known, e.g. they can be
approximated before or during the scan.

Aj := Fcj◦

In parallel MRI multiple coils are used to increase SNR or to obtain more information at
the same time. Then the image x is composed of all the coils’ information. Therefore it is
necessary to assemble a data vector y with Nc components yj . The operator R generates Nc

copies of x and is a matrix with Nc rows formed by unity matrices.

y =

 y1
...

yNc

 =

 F
(
c1 ◦ x

)
...

F
(
cNc ◦ x

)
 =

 A1x
...

ANcx

 =

 A1
...
ANc

R

︸ ︷︷ ︸
A

x

Figure 7: Graphical representation of the forward problem y = Ax.

The (generalized) forward operator A for multiple coils has the following shape:

A =

 A1
...
ANc

R =

 A1
...
ANc


1

...
1

 =

 Fc1◦
...

FcNc◦


1

...
1


For the CG-SENSE inversion also the Hermitian conjugate of the forward operator is needed.
The complex conjugate transpose operator of the forward operator is composed of the matrix
of the inverse Fourier transform F−1 and the complex conjugate of the coil sensitivities.

A† =

1
...
1


† A1

...
ANc


†

=
(
1 . . . 1

) A
†
1

...

A†Nc



=
(
1 . . . 1

)
(
Fc1 ◦

)†
...(

FcNc ◦
)†
 =

(
1 . . . 1

) c∗1 ◦ F−1

...
c∗Nc ◦ F

−1
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Applied to an argument y with Nc components formed by row-vectors yj corresponding to the
data collected by each coil (and using a replicating operator R consisting of unity matrices)
this can be rewritten as

A†y =

Nc∑
j=1

c∗j ◦ F−1yj (2.9)

Figure 8: Graphical structure of the forward problem for parallel MRI with k-space data of
the individual coils y1, . . . ,y4, the sampling operator S (which generates the k-space
trajectory), a 2D-DFT-matrix F , the individual coil sensitivities c1, . . . , c4 and the
image x (which is replicated by R).

2.2.1 Sampling trajectories

A sampling trajectory is basically the sampling pattern in k-space. In this thesis only Carte-
sian sampling is considered, whilst others like radial, spiral or random sampling exist. The
following figure shows sampling patterns for different acceleration factors where whole k-space
lines have been left out where the k-space center remains fully sampled.

Figure 9: Sampling trajectories for different acceleration factors: acc = 2 (left), acc = 4
(middle), acc = 8 (right).
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2.2.2 Coil sensitivities

For multiple detector coils in Parallel MRI (PMRI) the coil sensitivities can be determined
experimentally from the scanner by estimating them in image space (SENSE, compare [19]).
This is done in a preliminary measurement. That is why in the following figure the structure
of the measured phantom is visible - though not very precisely because only the body coil of
the scanner is used.

(a) Phase of typical coil sensitivities. (b) Magnitude of typical coil sensitivities.

2.2.3 Decorrelation using the Cholesky transform

The weighted LSQ problem in equation 3.10 uses the covariance matrix of the data noise
in the cost functional. One practical way to include it in the problem formulation from
the beginning is to decorrelate the data and alter the model operator. This is achieved by
applying the Cholesky decomposition to the covariance matrix. For every positive-definite
and hermitian matrix A exists a Cholesky decomposition as

A = L†L

Applying this to A := C−1 we get for the data fidelity term in the cost functional(
y −Ax

)†
C−1

(
y −Ax

)
=
(
y −Ax

)†
L†L

(
y −Ax

)
=
(
Ly − LAx

)†(
Ly − LAx

)
=
(
ỹ − Ãx

)†(
ỹ − Ãx

)
Now the problem is rewritten as uncorrelated data ỹ := Ly and with an altered forward
operator Ã := LA. The transform can be done after acquiring data at input level of any
further algorithms and leads to uncorrelated noise with unity covariance. It can also be seen
as a preconditioner of the problem that will increase convergence. Especially for MCMC
methods that can increase speed since in the symmetric case of uncorrelated components the
chain can move into the region of interest with one big step instead of many small ones.
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Figure 11: Correlated noise covariance (Left): The Markov chain moves slowly due to asym-
metric region of acceptance. Uncorrelated noise covariance (Right): The Markov
chain moves in big steps due to symmetric region of acceptance.

3 Inverse Problems

3.1 Introduction and definitions

Usually certain measured data like the gravitational field of the earth is linked to a physical
quantity like the earth’s mass density with the help of a physical model - in this case Newton’s
gravitational law. Mathematically speaking we consider a physical model represented as a
matrix A ∈ Cm×n with n model parameters assembled in a vector x ∈ Cn×1 and m given
data points assembled to a vector y ∈ Cm×1.

y = Ax

We have a linear model operator A which lets us calculate the data y given the model
parameters x as input. This is called forward problem. However, more frequently we are
facing the opposite task: We have certain data y obtained by a measurement and want to
determine our model parameters y according to A. If the measurement could be done without
errors and we knew the inverse of our model operator A, it would be easy to accomplish that.
Unfortunately in the most cases these conditions are not fulfilled: The measured data is
corrupted by a certain noise n. Additionally the model operator A might be ill-conditioned
such that we cannot simply invert it. So the complexity of finding x increases. Denoted by
the following equation 3.1 an inverse problem is defined as: ”Given the measurement y
with noise n, find x such that y = Ax + n is fulfilled”. [21].

y = Ax + n (3.1)

For solving the inverse problem the solutions x of equation (3.1) have to be found. Depending
on the condition of the matrix A and therefore on the ill-posedness of the problem, it has
either a unique solution, many solutions or no solution at all. A definition of an ill-posed
problem has been given by Jaques Hadamard in 1902 [11].

A problem is called ill-posed problem when it meets either one of the following criteria:

1. the solution does not exist

2. the solution is not unique

3. the solution is extremely sensitive with respect to initial data
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In the following some general tools for analyzing and solving (more or less) ill-posed problems
are briefly discussed, mostly following the books of Per Christian Hansen [12] and David G.
Luenberger [16].

3.1.1 The Moore-Penrose pseudo-inverse

The Moore-Penrose pseudo-inverse is the generalized inverse of a matrix. For any matrix
A ∈ Cm×n there exists a unique matrix A+ ∈ Cn×m - the Moore-Penrose pseudo-inverse -
with the following properties:

1.
(
AA+

)†
= AA+

2.
(
A+A

)†
= A+A

3. AA+A = A

4. A+AA+ = A+

From the first two properties follows that AA+ and A+A are hermitian, from the last two it
follows that AA+ is the identity map for column vectors (which is not necessarily the identity
matrix 1). Only if A has full rank AA+ is the identity matrix 1. Then A is invertable and
the Moore-Penrose pseudo-inverse is identical with the inverse matrix A−1. Furthermore for
full rank matrices the condition

(
AB
)+

= B+A+ holds.

3.1.2 The singular value decomposition (SVD)

The singular value decomposition works for general matrices. As an example we consider a
rectangular matrix A ∈ Cm×n. Without loss of generality for m ≥ n there exists a decompo-
sition of A such that

A = UΣV † =

rank(A)∑
i=1

uiσiv
†
i

For matrices with m < n this decomposition can be applied to the complex conjugate trans-
pose of A in the same manner. The matrices U ∈ Rm×m and V ∈ Rn×n are always full-rank
matrices assembled by the left-singular vectors (u1,u2, . . . ,um) and the right-singular vec-
tors (v1,v2, . . . ,vn). The columns of each U and V are orthogonal and the matrices obey
the property U †U = 1m and V †V = 1n. The matrix Σ ∈ Rm×n is a diagonal matrix of the
real singular values of A with non-increasing diagonal elements σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. The
result of the SVD can be used to compute the pseudo-inverse. For this purpose the following
relation is useful:

A+ = V Σ+U † =

rank(A)∑
i=1

viσ
−1
i u†i

The pseudo-inverse of Σ is still a real-valued diagonal matrix with the reciprocal elements
σ−1
i as diagonal elements. When the matrix has full rank the limit in the sum will become

min(m,n) and A+ = A−1.
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Furthermore the SVD is an important tool to quantify the ill-conditioning of a matrix. Ana-
lyzing the singular values assembled in Σ provides information on the rank-deficiency of the
matrix. If there is a bunch of high singular values separated of another region with com-
parably small ones, it is a strong hint that the matrix contains redundant information and
therbefore has low rank. In the case of a smooth decay of the singular values the opposite
cannot be deduced and A might still have low rank.

3.1.3 The condition number of a matrix

With respect to a linear system y = Ax the condition number of A is a measure of how
sensitively it maps small changes in the argument x to the target space. In other words it
gives an idea about how much the output vectors y will vary if the input parameter x is
varied. The condition number is a measure for the third criterion for well-posed problems -
next to (1) existence and (2) number of solutions. If the condition number is high, A is very
sensitive to perturbations in x. The condition number is defined with the help of the results
of the SVD.

cond(A) = ‖A‖2‖A+‖2 =
σmax

σmin
(3.2)

The notation ‖•‖2 is the extension of the L2-vector norm to matrices. It is defined as

‖A‖2 := sup
x 6=0

{
‖Ax‖2
‖x‖2

}

Since the relation above is valid for any vector x, the denominator plays the role of a normal-
ization. It can be shown that the supremum corresponds to the square of the largest singular
value.

From the first part of equation (3.2) one can see that the condition number of a matrix
and of its pseudo-inverse are identical. That plays an important role for the solution of the
inverse problem x = A−1y where one’s task is to find the parameters x given certain input
data y. If and only if A has full rank and therefore its inverse is the pseudo-inverse, the
sensitivity of the solution with respect to small perturbations in the data is the same for the
forward and the backward problem due to the identity of the condition number of A and A+.
However, in most cases A is rank-deficient and for getting information about the sensitivity
of the solution with respect to small changes in the data (for example due to noise in the data
measurement process) when solving the inverse problem one needs to compute the condition
number of A−1 or its approximation.

3.2 The Bayesian approach to inverse problems

The task of solving an inverse problem is to find those parameters of a given model which
approximate the measured data best, taking into account that the measurement process
underlies noise according to a certain distribution. Usually the problem is not (too) well
conditioned such that the inversion of matrix A is not possible. From the Bayesian probability
theory’s point of view all the information about the problem can be used to construct a
probability density function (PDF) for the solution x (posterior PDF). Its maximum is the
most probable solution (MAP-solution) and will therefore solve the problem in the statistical
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sense. To construct the posterior PDF one can apply the Bayesian theorem to the inverse
problem. Generally, for two propositions X,Y it reads

P (Y |X) P (X) = P (X|Y ) P (Y )

If we assume that Y and X are based on another proposition Z (for example all the additional
information we have about the problem), we can rewrite that as

P (Y |X,Z) P (X|Z) = P (X|Y, Z) P (Y |Z) (3.3)

Now we will assign each proposition with a specific meaning according to the problem (com-
pare [4]). It consists of a model A with its parameters x to describe data y. Since every
physical measurement is biased with a certain uncertainty (thermal noise, finite precision of
an ADC, etc.) the data has a certain known noise distribution given by a covariance matrix
C. We define:

X −→ x n parameters written as x = (x1, x2, ..., xn−1, xn)
Y −→ y m data points written as y = (y1, y2, ..., ym−1, ym)
Z −→ A, C mathematical model and information about noise in the data

All the information about the character of the measurement process is included in above’s
propositions. Using equation (3.3) for probability densities yields

p(y|x,A, C)︸ ︷︷ ︸
Likelihood function

p(x|A, C)︸ ︷︷ ︸
Prior distribution

= p(x|y,A, C)︸ ︷︷ ︸
Posterior distribution

p(y|A, C)︸ ︷︷ ︸
Evidence (constant)

As mentioned above, the PDF we are interested in for solving the inverse problem is the
posterior PDF. It can be extracted from equation 3.4 easily. The evidence term does not
depend on the parameters and can be treated as a proportionality for the posterior.

p(x|y,A, C) =
p(y|x,A, C) p(x|A, C)

p(y|A, C)
∝ p(y|x,A, C)p(x) (3.4)

Up to now we are using general PDFs without having specified a certain type of function for
any PDF. The prior PDF can be set equal to one if we do not have any a priori information
about the structure of the solutions. In this case the posterior PDF looks like

p(y|x,A, C) = e−
1
2

(
y−Ax

)†
C−1
(
y−Ax

)
(3.5)

The MAP solution in this case is called maximum likelihood (ML) solution because the prior
is flat. If we have more specific information about the solutions we can include them to the
problem by choosing an according prior. For testable information it has been proven that the
signal power prior is the only valid prior from probability theory’s point of view. It consists
of a Gaussian with exponent α (regularization parameter) where the solution x is weighted
by a matrix B. Also in the MRI community a bit more specific version of the signal power
prior is used: the Tikhonov regularization approach (B = 1). The prior does not depend on
the model or the covariance, so we can omit them. It writes:

p(y|x,A, C) = e−
1
2

(
y−Ax

)†
C−1
(
y−Ax

)
p(x) = e−αx

†Bx
(3.6)

Finally this is the posterior PDF that can be used to compute the MAP-solution. For the
signal power prior as well as for the flat prior this is possible analytically, whereas in a more
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general case a number of samples can be generated by a Markov Chain Monte Carlo run.
Interestingly, the Bayesian interpretation has been proven to be the only correct interpretation
of tackling a problem. Any other approach is either wrong or equivalent. That leads us to an
interesting connection to least squares optimization which is just an equivalent formulation
of the Bayesian picture.

3.3 Inverse problems as optimization problems

3.3.1 Weighted complex least squares optimization

In section 3.1.1 about the pseudo inverse only problems with ideal noiseless measurements
have been dealt with. For any real physical application the data is influenced by a certain
kind of additive noise. Following [17], our problem writes as

y = Ax + n

The noise n be of multivariate Gaussian type with known covariance matrix C = cov(n).
This information about the noise distribution can be used to find a solution of the linear
system. In the noiseless case the solution was computed straight-forwardly with the help of
the pseudo-inverse and the SVD as long as the problem had full rank. For problems that
do not have full rank anymore a common approach is to solve them in the least squares
sense. This is achieved by minimizing the residual function Φ(x) which is the weighted sum
of squares of the components of n. From equation (3.1) follows that n = y − Ax which are
weighted with the inverse of the covariance matrix C. Then the residual function Φ(x) reads

Φ(x) =
(
y −Ax

)†
C−1

(
y −Ax

)
(3.7)

and the solution of the linear system in weighted least squares sense is

x̂ = min
x

{
Φ(x)

}
= min

x

{(
y −Ax

)†
C−1

(
y −Ax

)}
This is exactly the same problem formulation like in the Bayesian picture: Φ is the exponent
of the likelihood function in equation 3.5 up to the factor 1/2 - which has no importance for
the optimization. Minimizing Φ is the same as maximizing the likelihood PDF. The analytic
solution of above’s equation (which is the ML-solution) can be computed by requiring the
gradient vector of Φ with respect to x to be the zero vector.

∇xΦ(x) = −
(
y†C−1 − x†A†C−1

)
A !

= 0

Because the the first derivative is the complex conjugate of the second, either one will be zero
if the other one is. C is a covariance matrix and therefore C−1 = (C−1)† holds. If A†A is
positive definite such that Φ has positive sign for all nonzero x, the solution x̂ minimizes f and
is not a saddle point. Using the complex conjugate of the gradient we get the backprojected
problem:

A†C−1Ax = A†C−1y (3.8)

So far no constraints whether A has full rank or not have been made. In the following these
two cases will be discussed.
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Full rank

To derive an explicit solution for above’s equation A†C−1A needs to be invertable (has full

rank) such that (A†C−1A
)−1

exists. This is the case when the columns of C−
1
2A are linear

independent which means C−
1
2A has full column rank. Then A†C−

1
2 is also invertable and

has full rank. The following conditions hold:

1. (A†C−1A
)−1

=
(
A†C−1A

)+
2.
(
A†C−

1
2

)−1
=
(
A†C−

1
2

)+
3.
(
C−

1
2A
)−1

=
(
C−

1
2A
)+

4. C−
1
2A
(
C−

1
2A
)+

= 1

The explicit solution x̂ of the weighted complex least squares problem is then uniquely given
by multiplying equation (3.8) with

(
A†C−1A

)−1
from the left. It can be shown that this is

equivalent with multiplying with
(
C−

1
2A
)+

.

x̂ =
(
A†C−1A

)−1A†C−1y

=
(
A†C−

1
2C−

1
2A
)−1A†C−

1
2C−

1
2 y Cholesky

=
(
C−

1
2A
)−1(A†C− 1

2
)−1A†C−

1
2C−

1
2 y

(
AB
)−1

= B−1A−1

=
(
C−

1
2A
)+ (A†C− 1

2
)+A†C− 1

2︸ ︷︷ ︸
1 because of 4.

C−
1
2 y (1)

=
(
C−

1
2A
)+
C−

1
2 y

with the pseudo-inverse defined as:(
C−

1
2A
)+

=
(
A†C−1A

)−1A†C−
1
2 (3.9)

The pseudo-inverse of C−
1
2A can be computed efficiently with the help of SVD if the matrix

size is not too big. A remarkable property of the weighted least-squares solution x̂ is that
it does not only minimize the sum-of-squares functional Φ(x) but it also solves the original

linear system (3.1). Since
(
A†C−1

)−1
exists, the multiplication of equation (3.8) from the

left with
(
A†C−1

)−1
proves that statement.

Deficient rank

In the case that the matrix C−
1
2A has linear dependent columns due to redundant infor-

mation, C−
1
2A
(
C−

1
2A
)+

is not the identity matrix anymore. The solutions x of the linear
system - if any exist - are not unique. The minimizer x̂ of the weighted least squares functional
can still be calculated using the pseudoinverse like in equation (3.9) but it does not solve the
original linear system like in the full-rank case. Though it minimizes Φ(x) and therefore gives
a lower bound for all solutions x of the linear system. In the following a method will be
discussed that enables us to convert a rank deficient problem into a full-rank one such that
the convenience of using the pseudo-inverse for the solution can still be enjoyed. Of course,
that requires to bring further assumptions about the shape of the solution into play.
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3.3.2 Tikhonov regularization

A way of transforming a rank-deficient problem into a full-rank problem is to add a reg-
ularization term. One of the most common regularizations is the Tikhonov regularization
which puts an additional constraint in the form of a matrix T on the solution. This can also
be seen as a confinement of the space of solutions to a certain subspace. When T = 1 the
global smallness of the solution will be emphasized. Another possible way of choosing T is to
interpret it as a covariance matrix of the parameters x and using the correlation between the
parameters as prior information if they are known. The regularization parameter α weights
the Tikhonov-constraint compared to the data fidelity term for the weighted least squares
case. A way of choosing the optimal α in the sense of Bayesian statistics is presented in one
of the following chapters. The altered minimization problem reads

x̂T ik = min
x

{(
y −Ax

)†
C−1

(
y −Ax

)
+ α‖Tx‖22

}
for α > 0 and α ∈ R. The residual function for a general Tikhonov regularization with
B := T †T is

Φ(x) =
(
y −Ax

)†
C−1

(
y −Ax

)
+ αx†Bx (3.10)

This cost function is - up to the factor 1/2 - again exactly the same as the exponent for the
posterior PDF for the signal power prior in equation 3.6. Writing this cost function similarly
to equation (3.8) yields the full rank regularized backprojected problem.(

A†C−1A+ αB
)
x = A†C−1y (3.11)

Rearranging the matrices in the weighted least squares problem above yields an equation
where the solution can be extracted in analogy to the unregularized problem.

x̂T ik = min
x

{(( y
0

)
−
( A√

αT

)
x

)†(
C−1

0

)(( y
0

))
−
( A√

αT

)
x

}

Therefore the explicit solution of the weighted least squares problem with Tikhonov regular-
ization is:

x̂T ik =
(
A†C−1A+ αB

)−1A†C−1y (3.12)

The inverse matrix in above’s equation can be computed either with the SVD or directly
because it has full rank. The solution is equivalent to the MAP solution of equation 3.6.

3.3.3 Conjugate gradient

Computing the pseudo-inverse matrix in equation (3.12) gets exhausting for high-dimensional
problems because direct inversion as well as SVD requires O(n3) operations for a n × n
matrix which can soon require too much time or memory. Since equation (3.12) is still a
convex optimization problem, any iterative algorithm for solving this class of problems can
be applied instead. We will concentrate on the conjugated gradient method here because it
is used in the numerical SENSE-implementation that was used in the numerical studies. The
conjugate gradient algorithm minimizes cost functions of the type f(x) = 1

2x†Ax − b†x + c
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(as in [6]). Comparing that with the residual function Φ in equation (3.10) for the Tikhonov
regularized least squares case, we identify

A = A†C−1A+ αB

b = A†C−1y

c =
1

2
y†C−1y

Minimizing Φ is equivalent to solving the backprojected problem (3.11), which reads Ax = b
with above’s definitions. The conjugate gradient method is related to the steepest descent
method where the minimum of f is found by searching along the direction of the steepest
descent rk = −∇f = b − Axk. However, this method can have a very slow convergence for
ill-conditioned problems. If the condition number of A is high, there is a wide range between
small and big eigenvalues. This asymmetry also shows in the plot of the contour lines of f
which have a strong non-spherical shape such that the minimum is approached very slowly
in zig-zag lines. The idea of conjugate gradient is now that all consecutive search directions
d0,d1, ...,dN−1,dN have to be orthogonal and therefore are not necessarily equivalent to the
negative gradient of f . The solution is formed in a Krylov space formed by the vectors dk and
the coefficients λk. The residual at step k is the deviation of the current solution from the
b-vector. A new basis vector dk+1 of the Krylov space is found by taking a combination of the
previous basis vector and the residual where the factor βk ensures orthogonality. Convergence
can be detected for example by setting a lower bound for |rk|.

Algorithm 1: Conjugate gradient algorithm

Choose x0 as initial vector.
Choose r0 := b−Ax0 as initial residual.
Set d0 := r0 as initial search direction.
k ← 1
for k = 1 to N do do

ak = Adn

λk ←
r†krk

d†kak
xk+1 ← xk + λkdk
rk+1 ← rk − λkxk
βk ←

r†k+1rk+1

r†krk
dk+1 ← rk+1 + βk+1dk
if Converged then

Stop
end
k ← k + 1

end

3.4 Markov chain Monte Carlo (MCMC)

MCMC is a technique to sample from a multidimensional PDF by generating consecutive
configurations from a Markov chain whose stationary distribution corresponds to the desired
distribution. The sampled configurations will be highly correlated and especially dependent
on the initial state so convergence needs to be monitored carefully to obtain solid results.
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The sampling itself can be implemented by different algorithms. If the PDF that is sampled
from can be split into all its conditional distributions, a Gibbs-sampler is applicable (compare
[13] ). That has the additional advantage that it saves computational costs, because it can
be paralleled. Unfortunately in the case of MRI Gibbs-sampling is not possible because the
model contains a Fourier transform which correlates each pixel with all the others. Therefore
another sampling algorithm is used which is presented in the following section.

3.4.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings method has been used in statistical physics to compute the equilib-
rium distribution of a 2D ferromagnetic spin lattice according to the Boltzmann distribution.
Since an MR image can also be seen as a 2D object with an arbitrary number of possible
states per pixel (in contrast to 2 spin states in the lattice), there is already an intuitive anal-
ogy between the two topics. In the first the energy at a certain temperature according to the
interactions of the spins in the lattice is used as cost function. In MRI this place is taken by
the cost function that contains likelihood and prior function.

The algorithm starts by evolving from an initial state x0 and explores the state space by
proposing new states according to a proposal probability q(xa → xn). The proposal PDF
has to be chosen in such a way that the Markov chain is ergodic (that is irreducible and
aperiodic), because otherwise certain parts of the state space might not be reached and the
chain does not converge to p. Each new state xn will be accepted with the probability

pacc(xn) = min

(
1,
p(xn) q(xn → xa)

p(xa) q(xa → xn)

)
(3.13)

which satisfies detailed balance. That ensures that also a certain ratio of new states with lower
probability than their predecessors are going to be accepted to give the chain the chance to
escape from local maxima. Choosing a Gaussian PDF (with a certain standard deviation that
defines the efficiency of the sampler) for the proposal PDF makes sure that the chain is also
ergodic. Therefore - after a sufficient amount of steps - the chain will converge to the desired
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stationary distribution p.

Algorithm 2: Metropolis-Hastings algorithm

Define proposal distribution q(xa → xn).

Define target distribution p(x).

Set maximal number of states K.

Choose x0 at random as initial state.

k ← 0

while k ≥ K do

Set old state xa ← xk

Draw new proposal state xn from q(xa → xn)

Compute acceptance probability pacc(xn) = min

(
1, p(xn) q(xn→xa)

p(xa) q(xa→xn)

)
if pacc(xn) ≥ 1 then

Accept proposal state xk+1 = xn
else

Draw r ∝ Uniform(0,1)
if pacc(xn) ≥ r then

Accept proposal state xk+1 = xn
else

Keep old state xk+1 = xa
end

end

k ← k + 1

end

3.4.2 Error estimation and convergence

The initial state of a MCMC run can be chosen for example at random or by evaluating a
simple approximation of the model. Then the sampler is started and the chain will move
towards the stationary distribution, if the chain is ergodic and satisfies detailed balance. The
first samples will be highly dependent on the initial state. Therefore it is important to discard
those correlated since they carry less information about the target distribution than later ones.
Usually the first 20 − 50% of a MCMC run are ignored. After the chain has overcome this
Burn-in period, statistical inference makes sense and the generated samples can be evaluated.
For a detailed discussion see [23].
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Figure 12: Schematic MCMC-run.

However, waiting for the chain to overcome the Burn-in is not sufficient for convergence. De-
pending on the proposal distribution and the number of iterations the chain might still be far
off of the stationary distribution. Any measurements taken in this situation would be useless
and lead to wrong results. That is why convergence and autocorrelation of the chain have
to be monitored thoroughly. In the following two approaches are presented that will help to
check the correlation of the samples and how far the chain is away from convergence.

Autocorrelation function
This part is mostly inspired by the lecture notes [6]. The autocorrelation function can be
used to check if the chain is sufficiently burnt in and it is used to correct the error for an
observable. It basically describes the correlation of N realizations X1, X2, ..., XN of a (one-
dimensional) stochastic process Xj at time j and j + t separated by a time lag t. The
autocorrelation function ρ(t):R+ → [−1, 1] is defined as the covariance between Xj and Xj+t,

where σj =
√
V ar

(
Xj

)
:

ρ(t) : =
Cov

(
Xj , Xj+t

)
σjσj+t

=
E
[(
Xj − E

[
Xj

])(
Xj+t − E

[
Xj+t

])]
σjσj+t

(3.14)

Given a sufficiently big number N of realizations of Xj an estimate for the expectation value
E
[
Xj

]
is found in the average value. For convenience a new random variable Yj = Xj+t is

introduced. Indicating the t-dependence by explicitly writing it as a function of time the
averages are defined as:

X(t) =
1

N − t

N−t∑
j=1

Xj

Y (t) =
1

N − t

N−t∑
j=1

Yj =
1

N − t

N∑
j=t+1

Xj

The estimators for the standard deviations σj and σj+t become

σj(t) =

√√√√N−t∑
j=1

(
Xj −X(t)

)2
σj+t(t) =

√√√√N−t∑
j=1

(
Yj − Y (t)

)2
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Replacing means and variances in equation 3.14 with their estimators yields and expression
for the estimator for the autocorrelation function:

ρE(t) :=

N−t∑
j=1

(
Xj −X(t)

)(
Yj − Y (t)

)
√√√√(N−t∑

j=1

(
Xj −X(t)

)2)(N−t∑
j=1

(
Yj − Y (t)

)2)

This result can be generalized directly from one-dimensional to M -dimensional random vari-
ables Xj and for this case it looks like

ρE(t) :=

N−t∑
j=1

(
Xj −X(t)

)T (
Yj −Y(t)

)
√√√√(N−t∑

j=1

(
Xj −X(t)

)2)(N−t∑
j=1

(
Yj −Y(t)

)2) (3.15)

Equivalently the averages are defined componentwise:

X(t) =
1

N − t

N−t∑
j=1

Xj

Y(t) =
1

N − t

N−t∑
j=1

Yj =
1

N − t

N∑
j=t+1

Xj

ρE(t) is also defined in the interval [−1, 1]. Negative values indicate that Xj and Xj+t are
anti-correlated, positive values indicate correlation which is just another way of describing
a (in-)direct relationship of two variables. In general, the absolute value of the estimated
autocorrelation function (which will be referred to as autocorrelation function for the sake of
brevity) is the property that is most interesting since it serves as a measure for the corre-
lation of samples in a time series. For the establishment of solid averages from the Markov
chain - and therefore for the extraction of a useful result from our simulation - the generated
samples need to be as uncorrelated as possible. Observing the evolution of the autocorre-
lation function live during the simulation gives an idea when a sufficiently small correlation
of the samples has been reached. Computing the autocorrelation live during the simulation
has to be as computationally efficient as possible to keep simulation time to a minimum. In
6.1 in the appendix more detailed considerations for efficient evaluation of ρE(t) can be found.

A Markov chain has always a certain amount of autocorrelation - even after the chain has for-
gotten its initial state - because each step depends on the one before. This fact has to be taken
into account when computing errors and is quantified by using the integrated autocorrelation
time τint.

Cov
(
X
)

=
〈XX†〉 − 〈X〉〈X〉†

N
2τint

τint :=
1

2
+

N∑
t=1

ρE(t)
(

1− t

N

)
The factor 2τint is equal to one if the samples were uncorrelated. The autocorrelation function
can be expanded as a series of decaying exponentials exp(−t/τi) over simulation time. The
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integrated autocorrelation time is approximately τ1. That is why it has to be taken care that
the simulation time tend is bigger than the integrated autocorrelation time. Otherwise the
Markov chain is still very correlated.

Parallel chains and cross-chain variance
A very simple and useful way to check how far a chain is away from convergence is to run
multiple parallel chains. This idea is presented in the Handbook of Markov Chain Monte Carlo
by Gelman and Shirley [1] but roots back to Fosdick in 1959. The main idea is that chains
starting from different initial states are going to converge to the same target distribution.
Depending on the starting configuration some chains might converge faster than others.

Figure 13: Parallel chains: A single initial guess can be replicated and altered with noise to
obtain different starting configurations. Then for each chain the MCMC run can
be started.

The variances σ2
O(i) of a certain observable at the ith chain (denoted by O(i)) can be averaged

over all c chains (σ2
av) and compared to the variance of the same observable O computed from

all chains mixed together (σ2
mix). The fraction D is equal to 1 if convergence is reached.

σ2
mix := 〈O2〉 − 〈O〉〈O〉

σ2
av :=

1

c

c∑
i=1

σ2
O(i)

D :=
σ2
av

σ2
mix

One single chain can still be very close to the initial state and therefore it might have a con-
siderably ”good” (small) variance which can be misleading. Taking multiple chains is useful
to provide graphical checks by monitoring the movement of many chains started at different
states. That is necessary to prevent the case of having multiple chains with the same variance
but at totally different regions in search space (D would also be approximately 1!). It can
also help to find bugs in the acceptance rate computation. Running parallel chains has an
additional advantage: they generate more samples at once so the simulation time after over-
coming the Burn-in period is reduced. More detailed information on Burn-in selection and
on an alternative stopping criterion for the special case of image denoising based on MCMC
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is found in the PHD-thesis of Cecile Louchet [15].

Optimal step size for the proposal distribution

The convergence rate of a Markov chain depends on the proposal distribution q(xa → xn). If
its steps are too big, most of the new states will be rejected, whereas if they are too small the
chain will only be able to explore a small part of the search space. Usually it is a common
practice to let the chain make rather big moves in the Burn-in phase such that it forgets
about the initial state quickly and is able to explore large parts of the space of possible so-
lutions with low acceptance rate (compare [9]). A good strategy to guess the step size is to
reconstruct the dataset with conjugate gradient (or any another optimization algorithm like
primal dual etc.) which is not costly. The pixel values of this reconstruction can be used
to make a guess of the expected order of magnitude. For the step size during Burn-in one
can use 10 or 20 % of this characteristic value. After Burn-in the step size needs to be even
smaller such that the acceptance rate is around 23 %. This optimal scaling of the proposal
step size is derived in Rosenthal and Roberts ([8]).
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4 Methods

In this section methods that try to answer the questions raised in the introduction 1 are
presented, in particular for question (2) by finding an optimal regularization parameter and
for question (3) by presenting a relative quality measure for reconstructed images by obtaining
the covariance matrix of the posterior PDF from two different methods.

4.1 Optimal choice of regularization parameter

How to choose the parameter for regularization is a question that is often avoided answering.
From the Bayesian point of view it can be tackled in a very general way that only takes avail-
able information into account. That means it only focuses on the structure of the problem
itself. In particular it does not even require any further assumptions like human perceptual
models or pathological classifications. Given (a) the theoretical model of MRI (e.g. SENSE
with coil sensitivities), (b) the measured k-space data, (c) the k-space noise distribution based
on the scanner hardware and (d) the regularization method (prior information), the optimal
reconstruction parameter can be deduced.

In particular this is achieved by finding an expression for the probability distribution function
(PDF) for the regularization parameter α. Via marginalization over all possible images x and
with Bayes theorem the general PDF for α becomes

p(α|y, C, I) =

∫
p(α|x,y, C, I)p(α)dNx

=
1

Z

∫
p(y|α,x, C, I)︸ ︷︷ ︸

Likelihood

p(x|α,C, I)︸ ︷︷ ︸
Prior

p(α)dNx

In the above expression two of the three PDFs in the integral are already defined. The
Likelihood does not depend on the regularization parameter and hence gets

p(y|α,x, C, I) = p(y|x, C, I) =
1

Z ′
e
− 1

2

(
y−Ax

)†
C−1

(
y−Ax

)
The prior is independent of the covariance and the model and yields

p(x|α,C, I) = p(x|α) =
1

Z ′′
(
α
)e−αR(x)

In the following a quadratic regularization term (Tikhonov, see (4.9)) is assumed which has
the form

R
(
x
)

= x†Bx (4.1)

For this quadratic prior the normalization can be computed analytically as

Z ′′
(
α
)

=

∫
e−αR

(
x
)
dNx =

∫
e−

1
2
x†2αBxdNx

=

√ (
2π
)N

det(2αB)
=

√√√√ (
2π
)N(

2α
)N
det
(
B
)

=
(π
α

)N
2
det(B)−

1
2
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The third - and still unknown - PDF is the prior for the hyperparameter α. Since the latter
is a scale parameter - its value depends on the chosen units - and there is no additional
information about it, the appropriate prior is Jeffrey’s scale prior

p(α) =
1

α
(4.2)

Now that all three parts are known the integral can be assembled.

p(α|y, C, I) =
1

Z

∫
1

Z ′
e−

1
2

(
y−Ax

)†
C−1
(
y−Ax

)(π
α

)−N
2
det(B)

1
2 e−αR(x) 1

α
dNx

=
1

Z̃

(π
α

)−N
2
det(B)

1
2

∫
e−

1
2

(
y−Ax

)†
C−1
(
y−Ax

)
−αR(x) 1

α
dNx

=
1

Z̄
α
N−2

2

∫
e−

1
2

Φ(x,α)dNx

For the quadratic image prior in equation (4.1) the integral above is Gaussian and can be
computed analytically (compare section 3.3.2 on weighted complex LSQ with Tikhonov reg-
ularization).

Φ(x, α) :=
(
y −Ax

)†
C−1

(
y −Ax

)
+ 2αR(x)

= y†C−1y − 2x†A†C−1y + x†
(
A†C−1A+ 2αB

)︸ ︷︷ ︸
=:H(α)

x

with H(α) := A†C−1A+ 2αB

(4.3)

To compute the integral in general a saddle point approximation is applied to the exponent.
This can be done for general regularizations R(x), for the quadratic (Tikhonov) it is exact
when breaking the expansion after second order terms. The exponent Φ(x, α) is approximated
by a Taylor series around its global minimum x∗. Since H has full rank it can be computed
by inversion.

∇xΦ(x, α) = 2
(
Hx−A†C−1y

)
= 0

x∗ = H−1A†C−1y

Plugging the global minimum into the second-order Taylor approximation for Φ gives the
following expression

Φ(x, α) = Φ(x∗, α)︸ ︷︷ ︸
y†C−1y−2x∗†A†C−1y+x∗†Hx∗

+(x− x∗)†∇xΦ(x, α)
∣∣
x=x∗︸ ︷︷ ︸

2
(
Hx∗−A†C−1y

) +
1

2
(x− x∗)†∇x∇xΦ(x, α)

∣∣
x=x∗︸ ︷︷ ︸

=2H

(x− x∗)

= y†C−1y − x∗†Hx∗ − 2x†A†C−1y + 2x†Hx∗ + (x− x∗)†H(x− x∗)

= y†C−1y − y†C−1AH−1†H︸ ︷︷ ︸
1

H−1A†C−1y − 2x†A†C−1y + 2x†HH−1︸ ︷︷ ︸
1

A†C−1y+

+ (x− x∗)†H(x− x∗)

= y†C−1y − y†C−1AH−1A†C−1y + (x− x∗)†H(x− x∗)
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Now this (exact!!) approximation can be plugged into the integral again, which reads

p(α|y, C, I) =
1

Z̄
α
N−2

2

∫
e−

1
2

Φ(x,α)dNx

=
1

Z̄
α
N−2

2

∫
e−

1
2
y†C−1ye

1
2
y†C−1AH−1A†C−1ye−

1
2

(x−x∗)†H(x−x∗)dNx

=
1

Z̄
α
N−2

2 e−
1
2
y†C−1ye

1
2
y†C−1AH−1A†C−1y

∫
e−

1
2

(x−x∗)†H(x−x∗)dNx︸ ︷︷ ︸√
(2π)N

det(H)

where Ẑ is a normalization constant with all the α-independent terms. The PDF for the
regularization parameter α then is:

p(α|y, C, I) =
1

Ẑ
α
N−2

2 e
1
2
y†C−1AH−1A†C−1ydet(H)−

1
2 (4.4)

To obtain the optimal regularization parameter the MAP-solution of above’s PDF is be com-
puted. Therefore the PDF p(α|y, C, I) is reformulated as a log-PDF L(α) which looks like

L(α) := ln(p(α|y, C, I)) = C0 +
N − 2

2
ln(α) +

1

2
y†C−1AH−1A†C−1y − 1

2
ln(det(H))︸ ︷︷ ︸
tr(ln(H))

∂

∂α
L(α) =

N − 2

2α
+

1

2

∂

∂α
y†C−1AH−1A†C−1y − 1

2

∂

∂α
tr(ln(H)) = 0

2−N
α

=
∂

∂α
y†C−1AH−1A†C−1y − ∂

∂α
tr(ln(H))

(4.5)

Now the derivatives on the right hand side can be simplified.

∂

∂α
y†C−1AH−1A†C−1y = y†C−1A ∂

∂α
z

z := H−1b

b := A†C−1y

The expression ∂
∂αz can be determined from b = Hz. Since b is independent from α, we can

write

0 =
∂

∂α
b =

( ∂

∂α
H
)
z +H

∂

∂α
z

∂

∂α
z = −H−1

( ∂

∂α
H
)
z

= −H−1
( ∂

∂α
H
)

︸ ︷︷ ︸
2B

H−1b

= −2H−1BH−1A†C−1y

Hence the first derivative gets

∂

∂α
y†C−1AH−1A†C−1y = −2y†C−1AH−1BH−1A†C−1y = −2x∗†Bx∗
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The second derivative we need is

∂

∂α
tr(ln(H)) = tr(

∂

∂α
ln(H)) = 2tr(H−1B)

Then the equation to extract the optimal α from is

2−N
α

= −2y†C−1AH−1(α)BH−1(α)A†C−1y − 2tr
(
H−1(α)B

)
(4.6)

4.2 Methods for obtaining a samples in images space for a statistical quality
measure

To assess the quality of an MR image statistically in the Bayesian sense first all the given in-
formation needs to be taken into account. This is basically the same information when looking
for the best regularization parameter: (a) the theoretical model A for SENSE (together with
coil sensitivities c(x, y)), (b) the measured data y0, (c) the k-space noise distribution based
on the scanner hardware in the form of its covariance matrix C and (d) the regularization
method (prior information) with the optimal reconstruction parameter α. All the information
(apart from the optimal α) can be exported from the MR scanner. To enable data simulation
for various cases without the necessity to perform a real scan and to save computational costs
whilst the validation of the presented methods the data acquisition process can be simulated.
For that one real, fully sampled dataset is taken which is then transformed to image space.
There it can be cropped to the desired size and location of the ROI which is then transformed
back to k-space. Additionally any type of undersampling can be applied to the data now.
The dataset obtained in such a way now is the input for all further methods. At this point the
simulated data is equivalent to arbitrary real data because the MRI model is well conditioned
for fully sampled data. That is why the simulation procedure does not introduce a bias to the
data. In the following figure a schematic representation of the data acquisition is presented.
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Figure 14: Input data for quality measure methods is either raw MRI-data or a cropped
version thereof for flexibility and speedup. It covers: (a) theoretical model A for
SENSE together with coil sensitivities c(x, y), (b) measured data y0, (c) the k-
space noise covariance matrix C and (d) the regularization method reconstruction
parameter α.
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4.2.1 Pseudo-replica (PR) method

A brute force method to get an error estimation for any image reconstruction algorithm is to
take a certain number of independent measurements and apply the algorithm to each of these
data sets. The mean and the variance of the outcome will represent a reconstruction with a
quality measure which can be used to quantify the quality of the reconstruction for a certain
region of pixels. Additionally it can also be used to compare the results of reconstructions
from the same data obtained by different algorithms. For linear reconstruction algorithms for
MRI-data this method has been presented in [20]. Gaining a sufficient number of independent
MRI-datasets is experimentally impractical since it would consume too much time. A work-
around for this problem is to take only one measurement of the patient and add artificial
noise in order to generate new measurement samples. This works because the noise of the
k-space signal is known to be Gaussian noise in real and imaginary part. Measuring the noise
distribution of the scanner setup without spatial encoding in a pre-scan and then taking one
measurement y0 of the desired object is therefore enough to reproduce the results of any
number of independent measurements. That works as long as the noise has a multivariate
Gaussian distribution with unity STD (the distribution is symmetric in all dimensions). From
the symmetry between y and y0 follows that N (y|y0, C) = N (y0|y, C) which allows us to
use a single measurement y0 as the mean of the Gaussian noise distribution and generate PRs
{y} according to

y = y0 + z

where z is sampled from the mulivariate normal distribution:

p(z|C) =
1

Z
e−

1
2
z†C−1z (4.7)

Artificial measurements generated in such a way can be reconstructed by any method. Such
a procedure is also called bootstrapping in statistics. From the resulting image samples mean
and covariance are computed which can be analyzed to get information about the relative
reconstruction quality. The following figure shows a graphical scheme of this concept.

Figure 15: Pseudo replica method: The noise distribution C and a single measurement y0 are
used to generate noisy data samples {y} (pseudo replicas) for the reconstruction.
The reconstructed images {x} are used to calculate mean and covariance.
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4.2.2 Posterior distribution for general (nonlinear) reconstructions

The target now is to compute the covariance matrix of the posterior PDF given the model
for SENSE, the experimental data y0 acquired in a procedure presented in figure 14, its
noise statistics and the regularization method. First of all the expression for the posterior
is derived without any assumptions about the noise statistics or the specific kind of the cost
function. Let f : Cy → Cx be a linear reconstruction function such that x = f(y) is the
reconstructed image x from the k-space data y. The density of the reconstructed image x
given the noiseless true data y0 and any additional information I (e.g. about the distribution
of y) can be calculated by marginalizing over all possible noisy measurements y′.

p(x|y0, I) =

∫
p(x|y′,y0, I)︸ ︷︷ ︸
δ
(
x−f(y′)

) p(y′|y0, I)dNy′

The first PDF in the integral is a Dirac-delta centered its unique reconstruction given by f .
A variable transform y′ = f−1(x′) in the integral introduces the determinant of the Jacobian
matrix Jf−1(x′) of the inverse reconstruction function f−1. Then the PDF reads

p(x|y0, I) =

∫
δ
(
x− f(y′)

)
p(y′|y0, I)dNy′

=

∫
δ
(
x− f(f−1(x′))

)︸ ︷︷ ︸
δ
(
x−x′)

) p(f−1(x′)|y0, I)
∣∣∣df−1(x′)

dx′

∣∣∣︸ ︷︷ ︸
Jf−1 (x′)

dNx′

= p(y|y0, I)Jf−1(x)

(4.8)

This result describes the form of the posterior PDF p(x|y0, I) for images x given the noiseless
data y0 for any reconstruction method f (e.g a nonlinear one). The PDF p(y|y0, I) describes
the noise distribution of the data. In practice the difficulty in this general case is to find the
inverse reconstruction function f−1 and calculate its Jacobian.

4.2.3 Mean and variance of the posterior distribution for the signal power prior

The PR method can be applied to the signal power regularization approach. This is advan-
tageous because the reconstruction function in this case is linear and the explicit solution for
the minimizer of the least squares problem is known. That makes it possible to evaluate mean
and covariance of the posterior PDF analytically without actually having to generate pseudo
replicas and reconstructing them. Let us take a look at the general expression of the posterior
in equation 4.8 now. For a linear reconstruction function the Jacobi determinant Jf−1(x) is
a constant. If the noise distribution of y and the Jacobian are known, the posterior can be
evaluated directly. However it is more practical to use the general integral expression because
it does not require the knowledge of the Jacobian which might be hard to find in practice.
The more general expression of equation 4.8 reads

p(x|y0, I) =

∫
δ
(
x− f(y′)

)
p(y′|y0, I)dNy′

The cost functional is a multivariate Gaussian data fidelity term with an image smallness
prior. In the special case of B = 1 it is the Tikhonov regularization approach. However, it is
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also possible to use other types of priors, for example a discretized first or second derivative
matrix for smoothness or curvature. In such a case only the matrix B in the results have to
be replaced.

Φ(x) =
(
y −Ax

)†
C−1

(
y −Ax

)
+ 2αx†Bx

The solution that minimizes Φ is given by equation (3.12). Hence the reconstruction function
f reads

f(y) = x =
(
A†C−1A+ 2αB

)−1A†C−1y = H−1A†C−1y

H := A†C−1A+ 2αB

The Likelihood for the data is given by

p(y′|y0, I) =
1

Z
e−

1
2

(y′−y0)†C−1(y′−y0) (4.9)

These two specifications are now plugged into in equation (4.9), where the explicit dependence
on the covariance matrix C is denoted.

p(x|y0, C, I) =

∫
δ
(
x−f(y′)

)
p(y′|y0, C, I)dNy′ =

1

Z

∫
δ
(
x−f(y′)

)
e−

1
2

(y′−y0)†C−1(y′−y0)dNy′

With a coordinate transform z′ := y′− y0, using the linearity of f and f(y0) = x0 we obtain

p(x|y0, C, I) =
1

Z

∫
δ
(
x− f(z′)− x0

)
e−

1
2
z′†C−1z′dNz′

Now we can calculate the mean as follows

〈x〉 =

∫
x p(x|y0, C, I)dNx =

∫
x

1

Z

∫
δ
(
x− f(z′)− x0

)
e−

1
2
z′†C−1zdNz′dNx

=
1

Z

∫ (
x0 + f(z′)

)
e−

1
2
z′†C−1zdNz′

= x0 +H−1A†C−1 1

Z

∫
z′e−

1
2
z′†C−1z′dNz′︸ ︷︷ ︸
0

= x0

That means that for computing the mean of the PR method no multiple reconstructions
are needed. It simply the reconstruction of the experimentally measured dataset y0. With
the definition ∆x := x − x0 and using the fact that C is symmetric, the covariance can be
computed per definition as

Cov(x) = 〈∆x∆x†〉 =

∫ (
x− x0

)(
x− x0

)† 1

Z

∫
δ
(
x− f(z′)− x0

)
e−

1
2
z′†C−1z′dNz′dNx

=
1

Z

∫
f(z′)f(z′)†e−

1
2
z′†C−1z′dNz′

= H−1A†C−1 1

Z

∫
z′z′†e−

1
2
z′†C−1z′dNz′︸ ︷︷ ︸

C

(
H−1A†C−1

)†
= H−1A†C−1C

(
H−1A†C−1

)†
= H−1A†C−1CC−1AH−1

= H−1A†C−1A︸ ︷︷ ︸
H−2αB

H−1

= H−1 −H−1BH−1
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The last expression is always positive (H−1BH−1 ≤ 0 and α > 0), which means that for any
regularization B the covariance will be reduced to the non-regularized case. Let’s summarize
the results for the PR-method applied to the signal power prior case. For B = 1 this is
equivalent to the Tikhonov regularization.

〈x〉 = x0

Cov(x) = H−1 − 2αH−1BH−1
(4.10)

4.2.4 Bayesian reconstruction via MCMC

In the MCMC-approach the reconstructions are sampled from the posterior distribution which
has been formulated in the Bayesian interpretation of the problem. That can be done for any
model with any regularization method. Here we will apply it to SENSE using a signal power
prior regularization with cost function Φ in equation 3.6. To make the notation consistent
and comparable with the one used for the PR-method y is replaced with y0 which is the
single measurement that is going to be reconstructed. The posterior has the form

p(x|y0, C, I) =
1

Z
p(y0|x, C, I)p(x|C, I)

=
1

Z ′
e−

1
2

Φ(x)

Φ(x) :=
(
y0 −Ax

)†
C−1

(
y0 −Ax

)
+ 2αx†Bx

(4.11)

The above expression uses data y0, noise covariance C and the model A as well as the
regularization matrix B. An efficient numerical evaluation is presented in the appendix (see
6.2). However, to calculate mean and covariance analytically it has to be reformulated using
the explicit solution of the problem in the form of the matrix H. With H = A†C−1A+ 2αB
and Hx0 = A†C−1y0 the cost function can be written as

Φ(x) = y†0C
−1y0 − y†0C

−1Ax− x†A†C−1y0 + x†A†C−1Ax + 2αx†Bx

= y†0C
−1y0 − x†0Hx− x†Hx0 + x†Hx

= y†0C
−1y0 − x†0Hx + x†H(x− x0)

Adding and subtracting x†0Hx0 and ∆x := x− x0 leads to

Φ(x) = y†0C
−1y0 + (x− x0)†H(x− x0)− x†0Hx0

= y†0C
−1y0 + ∆x†H∆x− y†0C

−1AH−1A†C−1y0

Terms depending on y0 can be absorbed in a constant when plugging Φ back into the PDF.
Then the posterior PDF for the Bayesian reconstruction with signal power prior (Tikhonov)
regularization is a multivariate normal distribution with the following properties:

p(x|y0, C, I) =
1

Z ′′
e−

1
2

∆x†H∆x

〈x〉 = x0

Cov(x) := 〈∆x†∆x〉 = H−1

(4.12)

That shows that the PR method and the Bayesian method have the same mean but different
covariance. In particular the covariance of the Bayesian method is generally by H−1BH−1

greater than the one of the PR method. Only for B = 0 (no regularization) they are equiva-
lent.
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4.3 Noise statistics in image space

The essential quantity of all the quality measures presented in this thesis is the covariance
matrix of noise in image space. Pixels of MR images are complex numbers in principle
but in many applications their magnitude is displayed as the ”MR image”. In a clinical
situation a radiologist would base his diagnosis on such a magnitude image. For ROIs where
he is not sure about the reliability of structures he sees, a quality measure - be it a scalar
number or a quality map - can be helpful. It is important here to quantify the quality of the
magnitude image rather than the complex because that is what the radiologist sees. Since
the transformation from complex to magnitude data is nonlinear, also the covariance matrix
changes. For single, uncorrelated pixels in MRI a derivation for the correct expression of the
noise statistics for magnitude data has been given by Gudbjartsson in [10]. It turns out to
be a Rician distribution if real and imaginary part of the reconstructed images are Gaussian
distributed with identical covariance. In the following the the derivation for correlated pixels
- which is a generalization of [10] - is given.

4.3.1 Complex multivariate Gaussian random variables

Let N complex valued pixels be assembled to a vector

z = x + iy

in which the j-th pixel is a complex number zj = xj + iyj . Real and imaginary parts of z are
both multivariate Gaussian with means x(0) and y(0), uncorrelated with each other and have
the same covariance matrix C ∈ R. Then the joint PDF is the product of the PDFs for x
and y and reads

p(x,y|x0,y0) =
1

Z
exp
(
− φ

2

)
φ = ∆xTC−1∆x + ∆yTC−1∆y

∆x = x− x(0)

∆y = y − y(0)

Z = (2π)N |C|
To evaluate mean and covariance of the complex multivariate Gaussian we are interested in
the marginal PDFs of

1. a single pixel zi (to calculate mean and variance) −→ N0 = 1

2. two pixels (zi, zj) (for the covariance matrix) −→ N0 = 2

The evaluation of both cases can be simplified by renumbering the pixels of z such that the
inverse covariance matrix becomes an (N0N1×N0N1) block structure for each zi or each pair
of (zi, zj). The switch for above’s cases N0 is either 1 or 2 and N1 = N − N0. The inverse
covariance matrix is then written in block form as

C−1 =

(
A0 B
BT A1

)
A0 is the upper left (N0 × N0) block, A1 is the lower right (N1 × N1) block and B is the
remaining off-diagonal block.
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Figure 16: Renumbering of C−1 for each pixel (N0 = 1) or each pair of pixels (N0 = 2) (left),
Block form of inverse covariance matrix (right).

The block matrix can be transformed to a block diagonal matrix with the help of the Schur
complement matrix S and the LDU decomposition. The fact that C is a covariance matrix,

hence C = CT , and the general identity of
(
MT

)−1
=
(
M−1

)T
have been used.

C−1 =

(
A0 B
BT A1

)
=

(
1 −F
0 1

)(
S 0
0 A1

)(
1 0
−F T 1

)
= V TDV

F = −BA−1
1

S = A0 −BA−1
1 BT

V =

(
1 0
−F T 1

)
The the covariance matrix itself can be written as

C =

(
A0 B
BT A1

)−1

= V −1D−1
(
V −1

)T
=

(
1 0
F T 1

)(
S−1 0

0 A−1
1

)(
1 F
0 1

)
=

(
1 0
F T 1

)(
S−1 S−1F

0 A−1
1

)
=

(
S−1 S−1F

F TS−1 F TS−1F +A−1
1

)
The desired PDF is either p(zi) or p((zi, zj)). It will be denoted as p(z0), where subscript-0
variables are going to refer to the according case of either a single pixel (z0 = zj = scalar)
or a pair (z0 = (zi, zj) = 2D-vector). By splitting the whole vector z into two parts (z0, z1),
the PDF can be computed by marginalizing over the remaining N1 variables in z1. Real and
imaginary parts x1 and y1 are uncorrelated and can therefore be split and both calculated in
the same way. For the real part the PDF gives

p(x0) ∝
∫

exp
(
−∆xTC−1∆x

)
dN1x1

∝
∫

exp
(
− (V∆x)TDV∆x

)
dN1x1
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With the variable transform V : ∆x→ ∆x̃ that only affects the subscript-0 part the marginal
PDF gets

p(x0) ∝
∫

exp
(
−∆x̃TD∆x̃

)
dN1 x̃1 ∝ exp

(
−∆xT0 S∆x0

)

∆x̃ := V∆x =

(
1 0
−F T 1

)(
∆x0

∆x1

)
=

(
∆x0

∆x1 − F T∆x0

)
because the integration only targets the N1 variables in the lower block and |V | = 1. With
correct normalization the mean is given by the subscript-0 part of the original mean x(0)

- denoted as x0 - and the marginal covariance matrix C0 := S is given by the upper left
(N0×N0) block of the original covariance matrix C. For the imaginary part the calculation is
the same such that both can be put together for the whole complex number z0. That yields
the statistics for a single complex pixel or a pair of complex pixels.

p(z0) =
1

Z ′
exp
(
− 1

2

(
∆xT0 C

−1
0 ∆x0 + ∆yT0 C

−1
0 ∆y0

))
Z ′ = (2π)N0 |C0|
〈z0〉 = x0 + iy0

Cov(z0) = C0

(4.13)

4.3.2 Mean and variance of the magnitude of a single pixel

From this starting point the statistics for the magnitudes can be derived. As a start mean and
variance of a single pixel j (case 1) can be calculated. For the complex pixel value zj the real

and complex means are given by x0,j = x
(0)
j and y0,j = y

(0)
j and the variance is σ2

j = Cjj . The
index j will be suppressed from now onward. We are looking for the PDF for the magnitude
r := |z| =

√
x2 + y2. The PDF for complex pixels above can be marginalized over all the real

and imaginary parts by using a Dirac-delta for the magnitude.

p(r) =
1

Z ′

∫
δ
(
r −

√
x′2 + y′2

)
exp
(
− 1

2σ2

(
(x′ − x0)2 + (y′ − y0)

)2)
dx′dy′

Now all variables are expressed in units of σ such that x′ = σξ′, y′ = ση′, x0 = σξ0, y0 = ση0

and r = σρ.

p(r) =
1

2π

∫
δ
(
σ(ρ−

√
ξ′2 + η′2)

)
exp
(
− 1

2

(
(ξ′ − ξ0)2 + (η′ − η0)

)2)
dξ′dη′

=
1

2πσ
I(ρ|ξ0, η0)

I(ρ|ξ0, η0) :=

∫
δ
(
ρ−

√
ξ′2 + η′2

)
exp
(
− 1

2

(
ξ′2 + η′2 + ξ2

0 + η2
0 − 2

(
ξ′ξ0 + η′η0

))
dξ′dη′

The fact that for a single pixel Z ′ = 2πσ2 and δ(σx) = δ(x)/|σ| have been used. The pairs
(ξ′, η′) and (ξ0, η0) can be considered as vectors of length ρ′ and ρ0. Using polar coordinates
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(ρ′, ϕ′) the integral is written as

I(ρ|ξ0, η0) :=

∞∫
0

ρ′dρ′
2π∫
0

δ
(
σ(ρ− ρ′)

)
exp
(
− 1

2

(
ρ′2 + ρ2

0 − 2ρ′ρ0cosϕ′
)
dϕ′

= ρe−
ρ2+ρ20

2

2π∫
0

exp
(
ρρ0cosϕ′

)
dϕ′

Here the integral representation of the modified Bessel function I0

(
z
)

:= 1
π

π∫
0

exp
(
±zcosϕ′

)
dϕ′

is used. The integration from [0, 2π] is equal to [−π, π].

I(ρ|ξ0, η0) = ρe−
ρ2+ρ20

2

2π∫
0

exp
(
ρρ0cosϕ′

)
dϕ′

= ρe−
ρ2+ρ20

2

π∫
−π

exp
(
ρρ0cosϕ′

)
dϕ′

= 2πρe−
ρ2+ρ20

2 I0

(
ρρ0

)
The result is the Rician distribution for the magnitude of single pixels.

p(r) =
r

σ2
e−

r2+r20
2σ2 I0

(rr0

σ2

)
σ2 = Cjj

r = |zj |

r0 =
∣∣z(0)
j

∣∣
(4.14)

4.3.3 Covariance of the magnitudes of two pixels

The full covariance matrix for the magnitudes of complex multivariate Gaussian random
variables can be computed element by element from the joint PDF for two pixels which can
expressed by marginalizing over all pixels except the ones in question. The renumbering of
the original matrix was performed in such a way that the pixels (i, j) get i → 1 and j → 2.
Then for any pixel pair we get

p(r1, r2) ∝
∫
δ(r1 − |z′1|)δ(r2 − |z′2|) exp

(
− 1

2σ2
Φ
)
dz′1dz

′
2

Φ := ∆xTA∆x + ∆yTA∆y

A := C−1
0 =

(
C(i, i) C(i, j)
C(j, i) C(j, j)

)
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where Φ is rewritten as

Φ := ∆xTA∆x + ∆yTA∆y

= xTAx + yTAy + xT0 Ax0 + yT0 Ay0 − 2xTAx0 − 2yTAy0

= (x2
1 + y2

1)A11 + (x2
10 + y2

10)A11 + (x2
2 + y2

2)A22 + (x2
20 + y2

20)A11 + 2(x1x2 + y1y1)A12+

+ 2(x10x20 + y10y10)A12 − 2(x1x10 + y1y10)A11 − 2(x2x20 + y2y20)A22 − 2(x1x20 + y1y20)A12−
− 2(x2x10 + y2y10)A12

= (r2
1 + r2

10)A11 + (r2
2 + r2

20)A22 + 2zT1 z2A12 + 2zT10z20A12 − 2zT1 z10A11 − 2zT2 z20A22−
− 2zT1 z20A12 − 2zT2 z10A12

The vector zα is defined as zα :=

(
xα
yα

)
. Collecting terms that are independent of z1 and z2

in a constant C̃ and separating terms depending on z1 to perform the integral over pixel 1
analytically yields

Φ = C̃ + r2
1A11 + r2

2A22 + 2zT1
[
z2A12 − (z10A11 + z20A12)

]︸ ︷︷ ︸
=:c

−2zT2 [z20A22 + z10A12]︸ ︷︷ ︸
=:d

The PDF gets then

p(r1, r2) ∝ e−
1
2

(A11r21+A22r22)

∫
dz′2 δ(r2 − |z′2|) exp

(
z′T2 d

)∫
dz′1 δ(r1 − |z′1|) exp

(
− z′T1 (z′2A12 − c)

)
︸ ︷︷ ︸

=:T

The integral over T can be evaluated by transforming z′1 into polar coordinates:

T = r1

π∫
−π

dϕ′ exp
(
− r1|b|cosϕ′

)
= 2πr1I0(r1|b|)

b := z′2A12 − c

|b| =
√
A2

12r
2
2 + c2 − 2A12z′T2 c

The PDF simplifies to

p(r1, r2) ∝ r1e
− 1

2
(A11r21+A22r22)

∫
dz′2 δ(r2 − |z′2|) exp

(
z′T2 d

)
I0(r1|b|)

The remaining integral can be simplified a bit by modifying the two scalar products z′T2 c and
z′T2 d. The direction of d can be written as a unit vector e

e :=
d

|d|
=

(
e1

e2

)
A second unit vector, orthogonal to e, is defined as

e⊥ :=

(
−e2

e1

)
Embedding these vectors in R3 by adding a 0 as the third component enables us to form a
vector product

e× e⊥ =

e1

e2

0

×
−e2

e1

0

 = ez
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After introducing an integration angle ϕ′ and expanding c in terms of the two unit vectors,
the scalar products can be written explicitly as

z′T2 d = r2 d cosϕ′

c =
(
dTe

)︸ ︷︷ ︸
c1

e +
(
dTe⊥

)︸ ︷︷ ︸
c2

e⊥

z′T2 c = c1z
′T
2 e + c2z

′T
2 e⊥ = r2(c1 cosϕ′ + c2 sinϕ′)

The integral in polar coordinates collapses in r′2 due to the Delta. Finally the remaining
integral - from which the non diagonal elements of the Rician covariance matrix can be
computed - becomes

p(r1, r2) ∝ r1r2e
− 1

2
(A11r21+A22r22)

2π∫
0

dϕ′ exp
(
r2d cosϕ′

)
I0(r1b(ϕ

′))
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√
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12r
2
2 + c2 − 2A12z′T2 c

=
√
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12r
2
2 + c2 − 2A12r2(c1cosϕ′ + c2sinϕ′)

=
√
α+ β1cosϕ′ + β2sinϕ′)

α = A2
12r

2
2 + c2

β1 = −2A12r2c1

β2 = −2A12r2c2

c = z10A11 + z20A12

d = z20A22 + z10A12

e =
d

|d|
=

(
e1

e2

)
e⊥ =

(
−e2

e1

)
c1 = dTe

c2 = dTe⊥

(4.15)

As a test this general expression can be compared to the expression for the variance (A12 = 0).
In this case the constants become

b(ϕ′) = A11r10

α = c2 = r2
10A11

β1 = β2 = 0

d = r20

p(r1, r2) ∝ r1r2 e
− 1

2
(A11r21+A22r22) I0(r1r10A11) I0(r2r20A22)

∝ r1

σ2
11

e
− r

2
1+r

2
10

2σ211 I0

(r1r10

σ2
11

) r2

σ2
22

e
− r

2
2+r

2
20

2σ222 I0

(r2r20

σ2
22

)
= p(r1) p(r2)

This is the expected result for the marginal PDF of two uncorrelated pixels, formed by the
product of the PDFs for the two single pixels. The evaluation of the remaining integral over
ϕ in order to compute the 2× 2 covariance matrix has to be done numerically.
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4.4 Statistical image quality measures

4.4.1 G-factor maps

As defined in a paper by Pruessmann in [19], geometry factor maps are a quality measure
of MR image reconstructions from undersampled data. The idea is basically to compare the
sample reconstruction (of which the quality needs to be estimated) with the reconstruction of
the fully sampled dataset. The latter therefore serves as a relative ”gold standard”. Precisely
the g-factor map of a reconstruction is given by the fraction of the pixel-wise SNR in the image
domain from the gold standard and the sample. The result is a map of SNR amplification
with respect to the fully sampled image. The SNR in image space can be deduced analytically
for certain problems (see 4.2.3) or obtained by the PR method (see 4.2.1) or an MCMC run
(see 4.2.4). The acceleration factor acc is defined as the fraction of the full number of k-space
points and the reduced number when undersampling.

g(x, acc) :=
1√
acc

SNRfull(x)

SNRacc(x)
=

1√
acc

〈xfull〉
σfull(x)

〈xacc〉
σacc(x)

with g ≥ 1

acc :=
Ny,full

Ny,acc

(4.16)

Hence g-factor maps represent a pixel-wise quality measure with respect to a fully sampled
gold standard. The higher g is in a certain pixel (or ROI), the worse is the quality. However
this quality measure does not take pixel correlations into account.

4.4.2 The covariance quality measure

A general way to answer the question whether a certain structure in given data is ”real” or
due to noise is to use the covariance quality measure. It does not only take into account the
STD of the pixel but also considers correlations between them. Therefore it is a generalization
of SNR used in g-factor maps. To derive a covariance matrix of reconstructed images either
the PR-method or a MCMC-reconstruction has to be applied. That means that the pixel
values are interpreted as random variables. Given a certain number of positive pixel values
xi from a certain region I of the image (e.g. the magnitude), a new random variable F can
be defined as the integral over these pixels.
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Figure 17: Covariance quality measure for a region I of the image to differentiate between
”real” and noisy structures.

The area under the curve can be approximated by a sum over the pixel values, setting ∆i = 1,
and we arrive at the following expressions:

F :=
∑
i∈I

xi

〈F 〉 = 〈
∑
i∈I

xi〉 =
∑
i∈I
〈xi〉

Cov(F ) = 〈(F − 〈F 〉)2〉 =
〈(∑

i∈I
xi −

∑
i∈I
〈xi〉

)2〉
=
〈(∑

i∈I
xi − 〈xi〉︸ ︷︷ ︸

∆xi

)2〉
=
∑
i,j∈I
〈∆xi∆xj〉 =

∑
i,j∈I

Cov(xi, xj)

(4.17)

It is intuitive now to assume that the structure in region I is of ”real” origin when ∆F =√
Cov(F ) is of orders smaller than F . Otherwise it is very likely that the structure I we see

is due to noise and must be regarded as unreliable. A special case of equation 4.17 is the case
where all pixels are uncorrelated. Then only the variances contribute to F .

Quality =

{
good, if ∆F

F << 1

bad, if ∆F
F ≈ 1 or > 1

(4.18)

52



5 RESULTS AND DISCUSSION

5 Results and Discussion

5.1 Noise statistics in k-space

The noise of the signal in k-space is determined by measuring noise samples in the absence
of magnetic gradients (no spatial encoding) with nc parallel receiver coils. That is equivalent
to taking measurements in the k-space center only, because for k = 0 the signal equation
collapses. Any k-space signal captured by the receiver coils is encoded by the scanner as a
complex number like n = a + bi, so the noise samples are complex nc × 1 vectors: one data
point at k-space center per coil. That is why we the scanner returns a nc×nc coil covariance
matrix. Ideally the coils are independent from each other so the coil covariance matrix for
the complex noise samples n should be diagonal. For further considerations it is useful to
split the noise samples {n} into real and imaginary part and analyze the covariance matrix of
the real and imaginary part on their own. Doing so it turns out that Cov(a) and Cov(b) are
not only diagonal but also identical. In figure 18 the covariance matrices Cov(a) and Cov(b)
of the real and imaginary part of a noise sample are shown. The fact that Cov(a) ≈ Cov(b)
is underlined by the histograms in figure 19 and 20 and they show that real and imaginary
part of the k-space noise is Gaussian.

Figure 18: Covariance matrices Cov(a) (left) and Cov(b) (right) of real and imaginary part of
the complex noise samples n = a+ ib. It shows that they are identical for the real
and imaginary part. Also the nc = 4 coils are relatively independent.
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Figure 19: Histogram of the real part of k-space noise (in k = 0) for nc = 4 receiver coils.

Figure 20: Histogram of the imaginary part of k-space noise (in k = 0) for nc = 4 receiver
coils.
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For covariance matrices of complex random variables x = a+ib the following statement holds
if Cov(a) ≈ Cov(b):

Cov(x) = Cov(a + ib) = 〈(a + ib− 〈a + ib〉)(a + ib− 〈a + ib〉)†〉
= 〈(a + ib− 〈a〉 − i〈b〉)(a† − ib† − 〈a〉† + i〈b〉†)〉
= 〈(a− 〈a〉)2 + (b− 〈b〉)2〉
= Cov(a) + Cov(b)

(5.1)

These insights are very useful because they can be included in further procedures. When re-
constructing an image the knowledge of the k-space noise distribution (in the form of weighted
LSQ) will increase the condition of the problem because any measured data will be subject
to such noise. Also for generating artificially noised data for the PR-method this information
is crucial. So it is necessary to know the covariance matrix of the noise that corrupts k-space
data - which is actually a huge nxnync × nxnync matrix. The nc × nc covariance matrix ob-
tained by the scanner does not seem to fit into that concept. In fact, it is only a compressed
version of the ”full” matrix because every k-space point has the same noise level. That is due
to the fact that noise is defined as the signal without spatial encoding (the k-space center
k = 0). Therefore the ”full” k-space covariance matrix is formed by copies of the ”small”
one like shown in figure 20. Numerically it is still more convenient to rearrange the data such
that the small covariance matrix can be used.

Figure 21: The full covariance matrix is formed by replicating the elements of the ”small” one
provided by the MR scanner. Here nc = 4 coils are used and only the replication
of the diagonal elements is shown.

In the following figure 22 the sparsity pattern and a detailed view of the covariance matrix of
k-space noise is shown for different acceleration factors. It has been calculated using simulated
data samples with additive Gaussian noise according to the 4 × 4 coil covariance matrix in
figure 18. A data simulation process of this kind is used for the PR method (see section 4.2.1).
As expected, it turns out that the nxnync×nxnync matrix is also diagonal. A closer look also
reveals the sampling trajectory, which fully samples the k-space and leaves out every accth

point in one k-space direction.
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Figure 22: Covariance matrix of k-space noise: The sparsity pattern of the full nxnync ×
nxnync matrix is plotted in the first column and shows that the covariance matrix
is diagonal for different accelerations (acc = 1, 2 and 5). Elements smaller than
10 % of the maximal value are neglected. In the second column a detailed view is
plotted which reveals the sampling trajectory for a single k-space line. According
to the acceleration factor, k-space points are left out periodically whilst sampling,
only the k-space center remains fully sampled.
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5.2 Model validation

A straight forward check to see whether the reconstructed image together with the model fits
the data is to compute the number of degrees of freedom (DoF) via the χ2-test and compare it
with the theoretically expected number. For the following graphs a 40 x 40 dataset measured
by 4 coils with Cartesian sampling trajectory have been used. For different acceleration
factors each 2nd, 3rd, 4th, ... k-space line in kx-direction was omitted for reconstruction,
whilst ky-direction was fully sampled. The k-space center was fully sampled by keeping 5%
of the lines in kx direction. The theoretical number for the DoF of the problem is known
as N = cSnxnync − nxny. It is a lower bound for χ2, because the 4 coils are not fully
linear independent. Therefore the effective number of DoF will be higher. The factor cS
depends on the undersampling trajectory and is equal to 1 for a fully sampled k-space (for
undersampling cS < 1). N and χ2 decrease with enforced undersampling because less data
is collected. Figure 24 shows that the model is fitting the data well for small accelerations
with deviation towards higher accelerations. Theoretically it is expected that undersampling
according to acceleration factor 4 should still be possible with 4 receiver coils if the coil
sensitivities are linear independent. However, this is not the case in reality: For acceleration
factors of 3 and higher the reconstructions in figure 24 become more and more governed by
noise because the problem gets increasingly ill-conditioned. The coil sensitivities as the source
of linear dependency start corrupting the result of the reconstruction, the effective number of
DoF decreases. With increasing acceleration it becomes necessary to regularize in order to get
reliable images. Figure 23 shows the connection between the condition number of the problem
and the deviation of the effective number of DoF with respect to the theoretically expected
one. Both numbers grow exponentially with increased undersampling. The right plot explains
the increasing noise corruption of the reconstructed images in figure 24 for acc > 2: It shows
that the difference in theoretical and expected DoF has a kink at acc = 3.

Figure 23: Left: Condition number of the problem: For the fully sampled case the condition
number is 1.2338, then it increases approximately exponentially with the acceler-
ation factor. Right: Deviation of the effective number of DoF with respect to the
theoretically expected one. The kink at acc = 3 reflects the deteriorating visual
impression of the images for acc > 2.
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Figure 24: Model validation via misfit analysis for a dataset with nx = 40, ny = 40 measured
by 4 coils: The misfit χ2 (full line) is compared with the theoretically expected
number of degrees of freedom N (dashed line) for different acceleration factors
without regularization. For a given Gaussian noise statistics in k-space the recon-
struction is shown (weighted CGSENSE). The effective number of DoF tends to
be a bit higher than the expected one due to not fully linear independent coils.
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5.3 Finding the optimal reconstruction parameter

The PDF for the regularization parameter of the Tikhonov approach has been derived in
chapter 4.1 and has the shape

L(α) := ln(p(α|y, C, I)) = C0 +
N − 2

2
ln(α) +

1

2
y†C−1AH−1A†C−1y − 1

2
ln(det(H))︸ ︷︷ ︸
tr(ln(H))

Then the optimal parameter αopt obeys the equation

2−N
α

=
∂

∂α
y†C−1AH−1A†C−1y − ∂

∂α
tr(ln(H))

and can be determined directly if H(α) and H−1(α) can be implemented efficiently as func-
tions of α. To prove this principle a 100 x 100 dataset from 4 coils with acceleration factor
5 was taken. As we have seen in section 5.2 the problem is too ill conditioned so that the
plain reconstruction leads to misleading images. That is why it needs to be regularized (here
with the Tikhonov approach). A brute force method to obtain the optimal regularization
parameter is to scan the parameter α in a large range and evaluate L(α). That avoids the
generation of H and H−1 for every α and helps to get an idea of the behavior of the PDF.
Figure 25 shows the region of the optimal α. The PDF for α) is similar to a Gaussian. The
width of the peak region of σα ≈ 0.2 is very small compared to its location on the α-axis
(αopt = 9.62 108).

Figure 25: Detail of the peak of the log-PDF L(α) (left) with the reconstructed image for αopt
(right). Note the logarithmic scale!

The optimal reconstruction plotted in figure 25 looks pretty unblurred and without any visible
noise or artifacts. However, there is no information about how the visual image quality gets
when we move away from the optimum. That is why we zoom out a bit and plot the whole
α-range in figure 26. The log-PDF L(α) is flat except in the small peak region which gives the
hint that the solution for the optimal parameter is unique. The misfit χ2 is also plotted and
shows the transition between over- and underfitting. For most problems the first guess of the
optimal parameter would be the turning point of χ2. Here this is not the case: The optimal
parameter is located in the region where χ2 begins to grow. Looking at the reconstructed
images, it turns out that for weak regularizations the image is governed by noise and aliasing
artifacts in the vertical direction. The acceleration factor is 5 so we see 5 backfoldings. Shortly
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before the region of αopt is reached, the noise gets weaker and the structure of the measured
phantom becomes visible. When approaching the vicinity of the peak region the visual image
quality gets better and the aliasing effects disappear. As soon as α exceeds this region, the
images get blurrier and other artifacts become visible. For α > αopt the structure of the
phantom still remains but the numerical values for the pixels converge to zero (enhanced
smallness). Here the Tikhonov term only allows solutions close to zero. One remarkable
feature in this region is that the structure of the image is still preserved up to a certain level
(not visible in figure 26 due to scaling), but the image can be more than 5 orders of magnitude
smaller than in the optimal case.

Figure 26: Overview of the misfit χ2(α) and the log-PDF L(α) for Tikhonov regularization
with according image reconstructions. Note the logarithmic scale for the regular-
ization parameter α. For all reconstructions the same scaling of the colormap has
been used.
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5.4 Evaluation of statistical quality measures

For the quality measures presented in section 4.4 either the PR-method or MCMC-sampling
can be used to generate samples from which a covariance matrix Cov(x) can be estimated.
In the following discussions the Tikhonov prior is used for the SENSE model to reconstruct
a 128 × 128 dataset from nc = 4 coils for acceleration factors acc = 1, 3 and 5. The reason
for that is that for the Tikhonov approach (or more generally the signal power prior) mean
and covariance can be computed analytically. However, a straight forward matrix inversion
is needed for evaluation of the analytic expressions (see 4.10 for the PR-method and 4.12 for
MCMC), which takes a lot of time if it is not optimized. That is why the following results
have been sampled starting from a 128 x 128 x 4 dataset and not been computed via the
analytic expression. Bayesian probability theory yields the correct posterior for this purpose
but direct sampling via MCMC requires fine tuning and convergence control to obtain reliable
results. That is why the PR-method is the sampling method of choice here even though it
samples from a different posterior. Fortunately the means of both sampling methods are
identical, only the covariance of the PR-method is underestimated compared to its true value
found by Bayesian inference. Finally the reconstruction of each pseudo replica is done by
minimizing the Tikhonov functional with the conjugate gradient method.

5.4.1 Noise distribution in complex images

For any reconstruction method the covariance matrix of magnitude images can be computed
from the covariance matrix of the real/imaginary part of the complex images with the Rician
distribution presented in equation 4.15 - as long as Cov(a) ≈ Cov(b). If this is the case, also
Cov(a) ≈ Cov(b) ≈ 1/2Cov(x) holds (see equation 5.1). Figure 27 shows Cov(a) and Cov(b)
for acc = 1, 3 and 5: It is clear that the needed identity is given.
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Figure 27: Left: The values of Cov(a) and Cov(b) are shown. Right: The difference between
Cov(a) and Cov(b) is plotted and compared with the maximal value (red dashed
line). It is below 10 % for all elements. That means that the covariance matrices
of real and imaginary part of the image for acc = 1, 3, 5 are identical. Note that
for acc = 1 only diagonal elements are plotted since they are the only non-zero
ones.
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A more detailed insight is the plot of the histograms of real and imaginary part of a single
pixel value. Both show a Gaussian distribution with identical variance for each acceleration.
This is another condition for the application of the Rician distribution. As one might expect
the STD increases with the acceleration factor.

Figure 28: The distribution of a random pixel in real and imaginary part is shown for acc =
1, 3 and 5. Plotted is a not-normalized histogram for xi − 〈xi〉.

As a summary the following can be stated:

1. The calculation of the covariance of the magnitude with the Rician statistics according to
4.15 can be applied for the Tikhonov regularized SENSE model because the distribution
of real and imaginary part of the pixels is Gaussian with identical covariance matrix.

Finally the covariance matrix for magnitude images can be computed. It turns out that
the nonzero elements of the covariance matrices of real and imaginary part are sparsely
centered around the main diagonal. For acc = 1 only the main diagonal is nonzero, for higher
accelerations the nonzero elements are located on the main diagonal and s sub-diagonals
where s is equal to nx = ny, the number of pixels in x or y direction of the image. A more
detailed look identifies N = nxny square sub-blocks of the size nx × ny. The following plots
affirm that statement: Only elements greater than 0.1 times the maximal absolute value are
considered which are sparsely concentrated around the main diagonal.
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Figure 29: Structure of the covariance matrices of real and imaginary parts for different ac-
celerations: The covariance matrices of real and imaginary part of the image for
acc = 1, 3 and 5 are sparsely concentrated around the main diagonal.
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That leads to another important result:

� The covariance matrix is sparsely centered around the main diagonal in nx × ny sub-
blocks. That speeds up the calculation of the magnitude covariance by evaluating the
Rician distribution.

In figure 30 the magnitude of the mean of the reconstructed 5000 pseudo replicas is shown
for different accelerations. Next to it the STD maps according to the magnitude images are
plotted to give an idea about pixelwise uncertainties even though this might be misleading
because it does not take correlations into account (for more details see section 5.4.3). STD
maps are somehow unpractical when it comes to the question of assessing the image quality
in a certain ROI because for that the quantity of interest is actually the ratio of the pixels
and their STDs. That is why in figure 31 the SNR maps of the magnitude for the same 3
datasets are shown. Here it is more obvious to see the quality: ROIs with high SNR have
probably better quality than ROIs with low SNR.

Figure 30: Rician STD maps of magnitude images for acceleration factors 1, 3 and 5 with the
according means of 5000 reconstructed pseudo replicas: The first row shows the
magnitude of the reconstruction, the second one the STD maps in the identical
colormap and the third row shows the STD maps in their individually scaled
colormaps for structural details.
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Figure 31: The pixelwise SNR-map of magnitude images (computed with the according Rician
STD) is plotted for acceleration factor 1, 3 and 5 in the colormap of acc = 1, which
has the highest SNR. With increasing acceleration the SNR gets lower. Regions of
high SNR have tendentious better quality than low SNR regions.

In figure 32 the g-factor defined in equation 4.16 - which uses the not accelerated case as a
gold standard - is also plotted for acc = 3 and acc = 5. It shows the map of noise amplification
with respect to the unaccelerated case. This quality map is very useful - given the fact that
a full reconstruction is available. In this case the quality of every pixel with values greater
than 1 is worse than the optimal quality.

Figure 32: The pixelwise g-factor map of magnitude images (computed with the according
Rician STD) is plotted for acceleration factor 3 and 5. It is basically the noise
amplification factor compared to the reconstruction of the unaccelerated data set.

5.4.2 Comparison of Pseudo replica and MCMC

Based on Bayesian inference MCMC sampling is the method that correctly estimates the
covariance and the mean for a certain dataset. An analysis of the image samples generated
by MCMC turns out that they have again identical covariance in real and imaginary part of
the image x. A typical time evolution of a single pixel is shown in figure 33. The results
of MCMC applied to the Tikhonov regularization with the SENSE model can be directly
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compared with the PR method according to equations 4.10 and 4.12. Both methods return
the same mean but their covariances differ: The PR method’s covariance is always smaller or
equal to the MCMC’s because H−1BH−1 ≥ 0. The reason for that is because the PR-method
yields only an approximation for the true posterior of the problem. The following equation
summarizes the results again:

CovPR(a) ≈ Cov(b) ≈ 1

2
CovPR(x) =

1

2

(
H−1 −H−1BH−1

)
CovMCMC(a) ≈ Cov(b) ≈ 1

2
CovMCMC(x) =

1

2
H−1

Figure 33: Time evolution of the real part of a single pixel during the evaluation phase of
MCMC: The pixel (blue line) approaches a stationary distribution (cyan line)
whose mean converges to the true ground truth value (red dashes) which was used
to verify the results of the MCMC algorithm during coding.

In figure 35 the averages of both the PR method and the MCMC method are compared. The
PR-method is easier to apply in practice because it does not require any fine tuning, Burn-in
selection, optimal scaling of the step size and convergence control like MCMC. PR-sampling
does not yield the correct covariance matrix but the the result for the mean is correct. The
mean of the MCMC run were obtained from 500 samples, whereas the PR method’s mean was
extracted from 5000 samples. That is due to the fact that only every nxny steps every pixel
is changed (or at least got a new proposal state) which makes the MCMC run unfortunately
very time consuming. The MCMC reconstructions are very accurate: Even the phase image
is reconstructed accurately. In figure 34 the STD maps for magnitude images of both methods
are compared after the covariance of the real/imaginary part has been transformed with the
Rician distribution.

Figure 34: Comparison of the STD maps from PR method and MCMC: The PR method
results in lower STD than MCMC, which is generally expected by the analytic
results in equation 5.2.
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Figure 35: Comparison of reconstructions from PR method and MCMC for a 128 x 128 dataset
from 4 coils at acceleration factor 5: The left column shows the means of 5000
samples obtained by the PR-method. In the right column the means of 500 samples
from a MCMC run of the same dataset is plotted. The MCMC reconstruction is
still a bit noisy because compared to the PR-method only a 10th of the samples
were used and the chain did not converge fully.

68



5 RESULTS AND DISCUSSION

5.4.3 Evaluation of the covariance quality measure

Now the quality measure based on the covariance of the magnitude image - which was pre-
sented in equation 4.17 - is evaluated on the full image and on 2 different ROIs. Again the
same 128 x 128 datasets from 4 coils is used. The measure is both valid for correlated and
uncorrelated pixels. As pointed out in figure 29, the covariance matrices are not diagonal
for accelerations greater than 1. Therefore it is expected that for accelerated datasets the
evaluation of the quality measure using the full covariance matrix will differ from the case
when only its main diagonal (the variances) are used. This consideration is confirmed. In
figure 32 the quality for reconstructions of datasets acquired at acceleration factor 1, 3 and
5 is shown. For each of these three datasets the quality obtained by the variance and the
covariance measure is compared for 3 different ROIs: the full image, Region 1 and Region 2
(see figure 36).

Figure 36: Two different ROIs to test the quality measures in which the covariance and the
variance quality measure was evaluated: Region 1 (left) and Region 2 (right).

It turns out that the quality decreases generally for increased acceleration as one might expect.
On top of that it underlines the fact that pixel correlations are important to take into account
when assessing the quality of an image of higher accelerations than acc = 1. If the variance
based quality of the images - which neglects pixel correlations - is compared with the ”true”
one obtained by the covariance in the same ROI, it turns out that the variance based quality
is always higher. That is because pixel correlations come into play and lower the quality.
That can be misleading if one wants to assess the quality of a ROI based on the variance only.
The comparison between the case of using the diagonal elements of the covariance only and

acc Full Region 1 Region 2
- Cov Var Cov Var Cov Var
1 2.8469e-6 2.8469e-6 0.12394e-3 0.12394e-3 2.3e-3 2.3e-3
3 1e-3 7.0091e-6 7.4e-3 0.29769e-3 28.9e-3 6.5e-3
5 2.6e-3 17.654e-6 20.4e-3 1.5e-3 3e-3 1e-3

Table 1: Quality according to equation 4.17 for the case of neglected correlations (Var) and
the one with included (Cov) for different acceleration factors in the full image and 2
other ROIs.

the case of neglecting them shows significant differences for datasets with acceleration factor
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higher than 1.

Figure 37: Quality of reconstruction for variance and covariance measure in different ROIs
for acceleration factor 1, 3 and 5: The quality obtained by the variance measure
is always higher than the quality measured by the covariance measure because the
first ignores pixel correlations.

5.5 Summary of the results and conclusion

� Optimal regularization parameter for the signal power prior
From the Bayesian point of view the optimal regularization parameter has been derived
for the SENSE model of parallel imaging for the signal power prior approach. The
general solution was applied to Tikhonov regularization but can also be used for priors
using the derivative or curvature of the image by simply replacing a matrix. The op-
timal parameter depends on the k-space data, the covariance of k-space noise and the
coil sensitivities and can be used for any acceleration factor. Given those input vari-
ables in 4.5 an equation is presented which can be solved for the optimal regularization
parameter. In the field of MR image reconstruction this is a new result.

� Analysis of noise samples in k-space and image space and sampling methods
to obtain image samples
The known result that k-space noise is uncorrelated Gaussian noise with identical co-
variance matrices of real and imaginary part of the signal has been shown. Two dif-
ferent known methods to generate image samples from a single k-space dataset are
presented and used: Markov Chain Monte Carlo sampling using the posterior predicted
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by Bayesian inference and the bootstrap approach via Pseudo Replica sampling. For
both methods the posterior probability distributions as well as their means and covari-
ances are derived analytically (see equations 4.10 and 4.12). It turns out that the image
samples are also multivariate Gaussians and that the means of the images generated
from the MCMC and the PR sampling are identical but the covariance is underesti-
mated for the PR-method. The reason for the error of the PR-method is that it does
not exactly sample from the ”true” posterior predicted by Bayesian inference. In general
the covariance matrix in image space is not uncorrelated anymore. Only for the fully
sampled k-space this is still the case. That means that in image space pixel correlation
effects play a role and cannot be neglected for accurate results.

� Derivation of the Rician distribution for the magnitude of Gaussian random
variables
Since the magnitude of the complex valued image is the representation that is mostly
used in clinical practice, the covariance matrices calculated for the images samples -
which consist of complex valued pixels - need to be converted to the covariance of the
magnitude images. This is achieved for single pixels by using the known Rician distri-
bution. However, for correlated pixels this approach does not work anymore. That is
why a general derivation of the PDF for magnitudes obtained from correlated complex
images is given in equation 4.15 - a new result in MRI.

� Application of the covariance quality measure for MR reconstructions and
pixel correlations
To save the time needed to measure and reconstruct multiple datasets to get informa-
tion about its statistical behavior the PR and the MCMC sampling methods are able to
produce samples in image space from only one single dataset. From these samples the
covariance matrix can be estimated and the covariance measure presented in equation
4.17 can be used to asses the relative reconstruction quality of an image. Compared to
the widely used STD or SNR maps it has the additional advantage that it takes pixel
correlations into account. Only in the unaccelerated case the STD or SNR map already
contains the full information about uncertainties in the image. For accelerated datasets
the use of variances only can lead to misleading inferences and their usage has to be
considered and justified thoroughly. This fact was underlined with an example where
the quality of a certain ROI was evaluated by taking the off-diagonal elements of the
covariance into account and by neglecting them. The comparison confirms the concern.

� General considerations about quality measures
The wish of assessing the quality of a reconstructed image is obvious given various rea-
sons presented in the introduction. For the sake of generality a quality measure based
on a gold standard needs to be avoided because it biases the outcome with the cho-
sen standard. However, in MRI there still exists an unbiased gold standard which is
the unaccelerated image. For a fully sampled dataset - given the fact that the SNR is
sufficiently high to avoid further ill-conditioning - the image can be reconstructed with
almost absolute reliability because the MRI model is known and the experimental im-
plementation is sophisticated. That is the reason why unaccelerated MRI techniques are
licensed for clinical use. Therefore the reconstruction from the according fully sampled
dataset is the perfect gold standard. But for assessing the quality of MRI sequences
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with increased speed due to undersampling it is still useless because a fully sampled
k-space is always always required. That leads to the idea of developing a relative qual-
ity measure. In the statistical sense such is given by the covariance quality measure.
Its additional advantage next to its applicability for undersampling protocols is that it
takes pixel correlation into account - which is not the case in g-factor maps. It returns
a scalar value for a given ROI that basically compares the cumulative amount of uncer-
tainty with the cumulative amount of signal and can therefore be used to differentiate
between ”real” and ”noisy” structures in the image. Unfortunately it does not pro-
vide any absolute reference. Even if the optimal regularization parameter for a certain
combination of regularization, data, undersampling and noise has been chosen and also
the quality of a certain ROI is good according to the covariance quality measure, the
image can still have undesirable artifacts that are not ”real”. The reasons for that is
the the wrong image prior or regularization is used that either can not compensate the
ill-conditioning of the problem anymore or introduces artifacts into the solutino itself.
At this point a conceptual problem comes up: If we knew the perfect prior that would
not have any of the described properties, we would already have a lot of information
about the solution. In other words, there exists some kind of conservation law of in-
formation: If we do not have enough information about the problem (little data, ill
conditioned problem matrix) we need to balance this lack of information by choosing
a ”good” prior. The same problem occurs with quality measures: In the extreme case
of knowing the solution we have the perfect measure in our hands - but it is useless. If
we do not know the solution but we want to assess the quality of a guess-solution, we
do not have a proper quality measure. That means: Having a reliable quality measure
for guess-solutions is equivalent to the optimal solution itself. As a conclusion it can be
stated that the presented statistical quality measures are only useful within the frame
that is spanned by the problem formulation itself - which is MRI model, prior and noise
statistics - and that they cannot go beyond that.
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6 Appendix

6.1 Efficient evaluation of the autocorrelation function

This section follows the lecture notes Computer Simulations [6]. The autocorrelation function
for M -dimensional random variables is defined as

ρ(t) :=
Cov

(
Xj ,Xj+t

)
σjσj+t

Rewritten for finite sample sizes we obtain the empirical autocorrelation function as

ρE(t) :=

N−t∑
j=1

(
Xj −X(t)

)T (
Yj −Y(t)

)
√√√√(N−t∑

j=1

(
Xj −X(t)

)2)(N−t∑
j=1

(
Yj −Y(t)

)2)

=

N−t∑
j=1

XT
j Yj −XT

j Y(t)−X
T

(t)Yj + X
T

(t)Y(t)√√√√(N−t∑
j=1

X2
j − 2XT

j X(t) + X
2
(t)

)(
N∑

j=t+1
X2
j − 2XT

j X(t) + X
2
(t)

)

where we will define the averages as

X(t) =
1

N − t

N−t∑
j=1

Xj

Y(t) =
1

N − t

N−t∑
j=1

Yj =
1

N − t

N∑
j=t+1

Xj

This formulation is called ”two-pass algorithm” in literature. Now we replace all the terms
regarding the random variable Yj with the according terms in Xj and plug in definitions of
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the averages. We get for the denominator:

N−t∑
j=1

XT
j X(t) =

N−t∑
j=1

XT
j

1

N − t

N∑
j=t+1

Xj

=
1

N − t

N−t∑
j=1

XT
j

N∑
j=t+1

Xj

N−t∑
j=1

X
T

(t)Xj+t =
1

N − t

N−t∑
j=1

XT
j

N∑
j=t+1

Xj

N−t∑
j=1

X
T

(t)X(t) = (N − t)XT
(t)X(t)

=
N − t
N − t

N−t∑
j=1

XT
j

1

N − t

N∑
j=t+1

Xj

=
N−t∑
j=1

XT
j

1

N − t

N∑
j=t+1

Xj

=
1

N − t

N−t∑
j=1

XT
j

N∑
j=t+1

Xj

This shows that two terms cancel out. For the argument of the square-root of the nominator
we get in similar fashion:(

N−t∑
j=1

X2
j − 2

N−t∑
j=1

XT
j X(t) +

N−t∑
j=1

X(t)2

)(
N∑

j=t+1

X2
j − 2

N∑
j=t+1

XT
j X(t) +

N∑
j=t+1

X(t)2

)
=

(
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X2
j − 2

1
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XT
j

N−t∑
j=1

Xj +
N − t
N − t

N−t∑
j=1

XT
j

1

N − t

N−t∑
j=1

Xj

)
(

N∑
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X2
j − 2

1
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j=t+1
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j
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N − t
N − t
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j

1
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Canceling unnecessary terms yields a simplified result for the autocorrelation function:

ρE(t) =

N−t∑
j=1

XT
j Xj+t − 1

N−t

N−t∑
j=1

XT
j

N∑
j=t+1

Xj√√√√(N−t∑
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X2
j −

1
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)(
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)
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With the following definitions these typographic monsters get a bit prettier:

a :=

N−t∑
j=1

Xj

b :=
N∑

j=t+1

Xj

ρE(t) =

N−t∑
j=1

XT
j Xj+t − 1

N−ta
Tb√√√√(N−t∑

j=1
X2
j −

1
N−ta

Ta

)(
N∑

j=t+1
X2
j −

1
N−tb

Tb

)

Since the sums in a and b overlap they can be computed conveniently with a cumulative-sum
command. In the same way the sum of squares can be computed. Only the first sum over
mixed terms in the denominator needs further attention since it carries computational costs of
order N2. If we rewrite Xj as a vector function in time f(tj) the sum represents a convolution
in the time domain.

N−t∑
j=1

XT
j Xj+t =

N−t∑
j=1

fT (tj)f(tj + t)

After Fourier-transforming the sum into frequency space the convolution becomes a simple
product. Then the inverse Fourier-transform is taken to get the sum we were looking for.
This trick brings the costs for calculating the sum down to the order of maximal 2Nlog(N)
for FFT/IFFT.

One further consideration has to be made: The convolution theorem works for periodic func-
tions. Since the random variable Xj is not periodic, it has to be modified by zero-padding
that it becomes periodic. We assume a periodicity with period L, where L is defined in the
range 2N ≥ L ≥ N + tmax. Now we can replace f(tj) with the zero-padded function F(tj)
which is defined as

F(tj) =

{
f(tj) 1 ≤ j ≤ N
0 N + 1 ≤ j ≤ L

That makes the convolution theorem work in the desired range of arguments. Note: The
absolute value in the equation below is calculated element-wise and is not the length of the
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vector! We can write

N−t∑
j=1

XT
j Xj+t =

N−t∑
j=1

fT (tj)f(tj + t)

=
L∑
j=1

FT (tj)F(tj + t)

=
L∑
j=1

N∑
k=1

Fk(tj)Fk(tj + t)

=
N∑
k=1

L∑
j=1

Fk(tj)Fk(tj + t)

=
N∑
k=1

√
L

1√
L

L∑
j=1

eiωijt
∣∣f̃k(ωij)∣∣2

This operation has computational costs of Llog(L) which can be maximal 2Nlog(2N) since
L ≤ 2N .

6.2 Efficient evaluation of the acceptance rate

For the computation of the acceptance rate the posterior given in equation 4.11 has to be
evaluated for the old and the newly proposed state. This can be simplified considerably by
rearranging terms and precalculating its all possible values of its effective expression. This is
shown for Likelihood and prior individually. In the following it is assumed that the inverse
covariance matrix C−1 has already been included into data and model such that the resulting
covariance is the identity matrix.

6.2.1 Likelihood (flat prior)

For posterior distribution consisting of the Likelihood-term only (with flat prior) the accep-
tance rate becomes:

Acc =
p(xn)q(xa|xn)

p(xa)q(xn|xa)
When the proposal distribution is chosen symmetric such that q(xn|xa) = q(xa|xn), e.g. as
a Gaussian or Uniform distribution, the proposal terms cancel out and the acceptance ratio
gets

Acc =
e
− 1

2

∣∣∣∣y−Axn∣∣∣∣2
2

e
− 1

2

∣∣∣∣y−Axn

∣∣∣∣2
2

= e
− 1

2

(∣∣∣∣y−Axn∣∣∣∣2
2
−
∣∣∣∣y−Axa∣∣∣∣2

2

)
= e−

1
2

Φ0
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If we write xn as the sum of the old vector and a difference vector xn = xa + ∆ and define
v := y −Axa and z := A∆, Φ0 can be rewritten as

Φ0 =
∣∣∣∣∣∣y −Axn

∣∣∣∣∣∣2
2
−
∣∣∣∣∣∣y −Axa

∣∣∣∣∣∣2
2

=
∣∣∣∣∣∣y −Axa︸ ︷︷ ︸

v

−A∆︸︷︷︸
z

∣∣∣∣∣∣2
2
−
∣∣∣∣∣∣y −Axa︸ ︷︷ ︸

v

∣∣∣∣∣∣2
2

=
(
v − z

)†(
v − z

)
− v†v

= v†v − v†z− z†v + z†z− v†v

= z†z−
(

v†z︸︷︷︸(
z†v
)†︸ ︷︷ ︸

a+bi

+ z†v︸︷︷︸
a−bi

)

= z†z− 2Re
(
z†v
)

= z†z− 2Re
(
z†y − z†Axa︸︷︷︸

w

)
= z†z− 2Re

(
z†y − z†w

)
Computational cost for the evaluation of z could be saved if all possible values of ∆ were
pre-calculated before entering the loop. Unfortunately this is not possible since ∆ is sampled
from the proposal distribution. However it is still possible to pre-calculate z = A∆ for a
change of 1 in a single pixel only. If a certain pixel is changed at step k in the MCMC run,
the according result for z for this single pixel will be

zk = A∆k = Avk1s = vkA1s

where vk is sampled from the proposal distribution and 1s is a sparse vector with one non-zero
element with value 1 for the selected pixel. This is possible due to the linearity of the FFT
in A. Then any displacement vk can be obtained by a simple scalar multiplication within
the loop ifA1s has been pre-calculated and stored in a matrix Z outside the loop for each pixel.

A similar trick is used for computing wk at MCMC-step k. w0 := Ax0 can be calculated once
before entering the MCMC-loop and then just passed on from k to k+1 by a matrix addition
with complexity N compared to a full evaluation of Axa which is of order Nlog(N) when A
represents some FFT.

wk+1 := Axk+1 = A(xk + ∆) = wk +A∆ = wk + vA1s = wk + zk

It is important to note here that the addition must only be done if the new suggested value
for the pixel has been accepted. These two tricks avoid an explicit usage of the operator A
inside the MCMC-loop as long its linearity is provided.

6.2.2 Signal power prior (Tikhonov)

The acceptance ratio for a problem with signal power or Tikhonov prior is

Acc = e
− 1

2

(
Φ0+2αΦT

)
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The first part is already known and for ΦT the argumentation analogous to above.

ΦT = x†nBxn − x†aBxa

=
(
xa −∆

)†
B
(
xa −∆

)
− x†aBxa

= x†aBxa + ∆†Bxa + ∆†B∆ + x†aB∆− x†aBxa

= ∆†B∆ +
(
x†aB∆

)†
+ x†aB∆

= ∆†B∆ + 2Re
(
x†aB∆

)
In the case a new proposal state xn is generated for each pixel i independently, each ∆ is
sparse vector with the i-th element being the only non-zero element. B is a given regularization
matrix.
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