
Stefan Kohl, BSc

Design and Development
of a Modular Widget Toolkit

Master’s Thesis

Graz University of Technology

Institute for Computer Graphics and Vision
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Dieter Schmalstieg

Supervisor: Univ.-Prof. Dipl.-Ing. Dr.techn. Dieter Schmalstieg

Graz, August 2014

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

I

The purpose of this work is to design and implement a GUI toolkit for the ap-
plication framework “Murl Engine”, a 3D and multimedia engine that focuses on
cross-platform application development for mobile devices and desktops. A GUI
toolkit provides common widgets and utilities for developers to implement graphi-
cal user interfaces in applications. Most of the available GUI toolkits are based on
desktop environments and do not run in 3D context. They further require certain
operating systems or third-party libraries. Therefore, a solution is required that is
only based on the Murl Engine itself and that can be integrated into its scene graph
structure. The first chapter introduces the engine and states the requirements for
the toolkit. An evaluation of existing GUI toolkits is given in the second chapter.
The results will be used to deduct a concept for the toolkit to implement, which
will be introduced in the third chapter. The main aspects of implementing a GUI
toolkit (which traditionally lies in the 2D domain) in a scene graph oriented 3D
framework is the topic of chapter four. Finally, chapter five demonstrates example
applications written with the toolkit, before chapter six concludes this thesis. The
realization of this work has shown that the capabilities of the Murl Engine and its
scene graph system provides great effort in implementing a state-of-the-art 2D GUI
toolkit, with some limitations though. Another challenge was to bridge the gap
between the event-based paradigm of common toolkits with tick-based polling used
in 3D engines. The result covers most common features evaluated in other toolkit
and provides a strong foundation for future extensions.

Contents

Statutory Declaration I

Abstract III

Contents V

List of Figures IX

List of Tables XI

1 Introduction 1
1.1 Initial Situation . 1
1.2 Definition and Requirements . 2
1.3 Methods . 3
1.4 Murl Engine Architecture . 4

1.4.1 Engine Architecture Layers 4
1.4.2 Resource Files and Packages 6
1.4.3 Scene Graphs . 7
1.4.4 Processors . 9

2 Evaluation Of Existing Toolkits 11
2.1 Overview . 11

2.1.1 Android SDK . 11
2.1.2 Apache Pivot . 12
2.1.3 Abstract Window Toolkit . 12
2.1.4 DirectGUI . 13
2.1.5 Fast, Light Toolkit . 13
2.1.6 FOX Toolkit . 14
2.1.7 GIMP Toolkit+ . 14
2.1.8 JUCE . 15
2.1.9 OpenGL User Interface Library 15
2.1.10 Qt . 17
2.1.11 Standard Widget Toolkit . 18
2.1.12 Swing . 18
2.1.13 UIKit . 19
2.1.14 UnityGUI . 20
2.1.15 Windows Presentation Foundation 21
2.1.16 wxWidgets . 21

2.2 Featured Widgets . 22
2.3 Rendering . 25

V

Contents

2.3.1 Using Native Widgets . 25
2.3.2 Using 2D and 3D APIs . 25
2.3.3 Using X Window System . 26

2.4 Skinning . 26
2.4.1 Skin Properties . 27
2.4.2 Skin Classes . 27
2.4.3 Skin Description Files . 27

2.5 Event Handling . 28
2.5.1 Polling . 28
2.5.2 Callbacks . 29
2.5.3 Observers and Messages . 29
2.5.4 Signals and Slots . 29

2.6 Layout Control . 30
2.6.1 Layouts as Widgets . 30
2.6.2 Layouts as Controllers . 30
2.6.3 Layouts as Macros . 30

2.7 Summary . 31

3 Design 33
3.1 Toolkit Architecture . 33

3.1.1 Basic Structure . 33
3.1.2 Toolkit Object Types . 34

3.2 Event Handling . 39
3.2.1 Polling vs. Dispatching . 39
3.2.2 Events . 40
3.2.3 Device Polling Logic . 46
3.2.4 Event Dispatch Table, Event Pipeline, and Event Channels . . 47
3.2.5 Event Handlers . 49
3.2.6 Event Handler Table . 50

3.3 Data Management . 50
3.3.1 Entities . 50
3.3.2 Entity Events and Selection Events 53

3.4 Widgets . 53
3.4.1 The Widget Node . 54
3.4.2 Menu Bars, Menu Strips, and Menu Items 54
3.4.3 Components and Containers 57
3.4.4 Tab Controls and Tab Pages 60
3.4.5 Windows, Dialogs, and the App Window 62
3.4.6 Buttons And Controls . 64
3.4.7 Other Widgets . 73

3.5 Layouts . 74
3.5.1 Basic Idea . 74
3.5.2 Null Layout . 74
3.5.3 Flow Layout . 75
3.5.4 Grid Layout . 76
3.5.5 Page Layout . 78

VI

Contents

3.6 Skinning . 81
3.6.1 Basic idea . 81
3.6.2 Elements of a Skin . 83
3.6.3 Definition and Integration of a Skin 86

3.7 Extension Concept . 87
3.7.1 Extending Widgets and Components 87
3.7.2 Extending Layouts . 88
3.7.3 Extending Entities . 88

4 Implementation 91
4.1 Project Structure . 91
4.2 GUI Graph Nodes . 92

4.2.1 Graph Node Implementation 92
4.2.2 Widget Nodes . 97
4.2.3 Component Nodes . 100
4.2.4 Container Nodes . 108
4.2.5 Control Nodes . 116
4.2.6 Layout and Layout Directive Nodes 131
4.2.7 Drag-and-Drop Related Nodes 132

4.3 Event Handling . 136
4.3.1 Event Triggers . 137
4.3.2 Events and Event Handlers 137
4.3.3 Event Channels . 138
4.3.4 Event Dispatch Table . 139
4.3.5 Event Pipeline . 140
4.3.6 Event Handler Table . 141

4.4 Entities . 143
4.4.1 Primitive Entities . 144
4.4.2 Selections . 146

4.5 Skinning . 147
4.5.1 Loading the Skin Package . 147
4.5.2 Configure Geometries . 147
4.5.3 Generate Geometries . 148
4.5.4 Setup State Sets . 154

5 Results 157
5.1 Widget Showcase . 157
5.2 Layout Showcase . 159
5.3 Drag-and-Drop Demo . 160
5.4 Shader Effects Demo . 162

6 Conclusion 163

Bibliography 165

VII

List of Figures

1.1 The layers of an application based on the Murl Engine 5
1.2 An example of a scene graph in the Murl Engine 8

2.1 GUI of three Android apps . 11
2.2 Apache Pivot Example . 12
2.3 DirectGUI Example (Epoch) . 13
2.4 FLTK Example (Giada) . 14
2.5 FOX Toolkit Example (Xfe) . 15
2.6 GTK+ Example (GIMP) [GPLv3] . 16
2.7 GLUI Example . 16
2.8 SWT Example (TuxGuitar) [GPLv3] 17
2.9 SWT Example (TuxGuitar) [FDLv12] 18
2.10 Swing Example [FDLv12] . 19
2.11 iOS Architecture Layers . 20
2.12 iOS/UIKit Example Applications . 20
2.13 UnityGUI Example (Unity3D Editor) 21
2.14 wxWidgets Example (Dolphin) [GPLv2] 22
2.15 Apache Pivot demo: “Component Explorer” 23

3.1 Component diagram of the MGT . 34
3.2 Event classes and interfaces . 35
3.3 Entity classes and interfaces . 37
3.4 Widget classes and interfaces . 38
3.5 Component classes and interfaces . 39
3.6 Drag-and-Drop control classes and interfaces 40
3.7 Control classes and interfaces . 41
3.8 Layout classes and interfaces . 42
3.9 Layout Directive classes and interfaces 43
3.10 Device Polling Logic, Contexts, and Focus 47
3.11 Pushing Contexts active . 48
3.12 Event dispatching . 48
3.13 Event Handler classes and interfaces 50
3.14 Control updating through Entity Events (sequence diagram) 53
3.15 Menus, Menu Items, and Menu Strips 55
3.16 Menus, Menu Items, and Menu Strips 56
3.17 Collapse Container . 59
3.18 Scroll Container . 60
3.19 An inventory menu of an iOS RPG. 61
3.20 Tab Control with Tab Pages . 62

IX

List of Figures

3.21 Window and Dialog . 65
3.22 Button states . 66
3.23 List View with List Items . 67
3.24 Option Buttons . 68
3.25 Progress Indicator (Progress Bar) . 68
3.26 Sliders . 70
3.27 Input Fields (Text Field and Stepper) 71
3.28 Switch (Check Switch and Slide Switch) 71
3.29 Table View . 73
3.30 Absolute and relative coordinates with Null Layout. 75
3.31 Fill modes supported by the Null Layout 76
3.32 Flow Layout spacing . 77
3.33 Flow Layouts in both directions with and without auto-wrapping. . . 78
3.34 Grid Layout fill modes . 79
3.35 Page Layout sections . 79
3.36 Page Layout scale factors . 80
3.37 Page Layout scaled sections . 80
3.38 Nine Patch . 84

4.1 Menu Bar Subgraph . 99
4.2 Component Subgraph . 101
4.3 Collapse Container Subgraph . 110
4.4 Scroll Container Subgraph . 112
4.5 Dialog Widget Subgraph . 115
4.6 Check Switch Subgraph . 119
4.7 Slider Subgraph . 125
4.8 The Diamond Problem and its Solution 133
4.9 Vertex indices of a nine-patch geometry 153

5.1 Demo: Widget Showcase . 157
5.2 Demo: Widget Showcase (Window Layering) 158
5.3 Demo: Layout Showcase . 159
5.4 Demo: Drag-and-Drop . 160
5.5 Demo: Layout Showcase (Layout Composition 1) 161
5.6 Demo: Layout Showcase (Layout Composition 2) 161
5.7 Demo: Shader Effects . 162

X

List of Tables

2.1 Comparison of featured widgets . 24

3.1 Event type categorization . 44
3.2 XML attributes available for XML tags 51
3.3 Widget properties . 54
3.4 Menu Strip properties . 55
3.5 Menu Item properties . 56
3.6 Component properties . 57
3.7 Container properties . 58
3.8 Collapse Container properties . 58
3.9 Scroll Container properties . 59
3.10 Tab Control properties . 61
3.11 Tab Page properties . 62
3.12 Window properties . 64
3.13 Dialog properties . 64
3.14 App Window properties . 65
3.15 Button properties . 66
3.16 List Item properties . 67
3.17 Option Button properties . 67
3.18 Progress Indicator properties . 68
3.19 Slider properties . 69
3.20 Stepper properties . 70
3.21 Text Field properties . 70
3.22 Switch properties . 71
3.23 Table View properties . 72
3.24 Table Cell properties . 72
3.25 Activity Indicator properties . 73
3.26 Label properties . 74
3.27 State Set Nodes required in the /Gui/Skin namespace 82

XI

1 Introduction
The main objective of this thesis is the engineering of a graphical user interface
(GUI) toolkit for an existing application framework and 3D engine. A GUI toolkit
is a library for composing GUIs in applications. This first chapter explains the initial
situation of the framework to extend and the company behind it, before giving a
definition of what a GUI toolkit is (and what it is not) and which requirement it
must fulfill. After that, the methods applied in this work will be described. Finally,
an introduction to the framework is given to learn more about the basic concepts
and ideas behind it.

1.1 Initial Situation
The Murl1 Engine (ME) is a cross-platform framework for native applications driven
by 3D graphics and multimedia content. Supported desktop platforms are Windows,
Linux, and OS X. On mobile devices, Android and iOS are targeted, Windows Phone
support is in development. Although running on both device classes, it is mainly
optimized for mobile platforms. The engine is a product of the Austrian startup
company Spraylight GmbH in Graz and is in development since 2011. The project
itself is closed source, although many parts of the engine (e.g., the platform code,
see section 1.4) are open. Source code licenses can be negotiated, otherwise free
licenses with a fading banner and premium licenses are available for any developer.
[Spraylight GmbH 2014f]

The goals of the ME are to provide a framework with high flexibility and trans-
parency for developers to create high-performance programs for multiple platforms.
The official website lists the following fields of application [Spraylight GmbH 2014a]:

• Indie Game Developers
• App Developers
• Visualization Components in the field of Medicine, Architecture, Simulation,

Advertising etc.
• Research and Teaching
• Presentation Layer on Embedded Systems

A huge set of features is already covered by the engine, including 3D graphics,
animation, physics, audio, networking, and others [Spraylight GmbH 2014b]. How-
ever, it completely lacks functionality for easily creating simple or complex GUIs,

1The word “Murl” is a colloquialism in Austrian slang, literally meaning “engine” or “motor”.
Source: http://www.ostarrichi.org/buch-3274-15194-Mearle.html

1

http://www.ostarrichi.org/buch-3274-15194-Mearle.html

CHAPTER 1. INTRODUCTION

allowing users to interact with the application by sending the input to widgets. Wid-
get is short for “window gadget” and is a general term for many kinds of interactive
visible elements in an user interface.2 GUIs are composed of widgets like buttons,
sliders, checkboxes, menus, tables, lists, and many others. It is possible to handle
user input from keyboards, mice, or touch devices with the ME. However, it requires
some effort to build a complete slider or checkbox, and even more, if a whole form
needs to be written. GUI toolkits aim to support developers with this task by pro-
viding a set of customizable widgets that work out of the box. GUI elements are
nearly indispensable for all kinds of applications, even for games or scientific visu-
alization programs. Therefore, the goal of this thesis is to provide a GUI toolkit for
the ME, from here on called Murl GUI Toolkit (MGT). The term “GUI toolkit” is
used ambiguously on the Internet. Therefore, the next section will clarify what the
concrete tasks of a GUI toolkit are. Although this definition may not be universally
applicable, it helps to set focus for the main topics covered in the following chapters.

1.2 Definition and Requirements
When evaluating existing GUI toolkits available on the internet, one might learn
that many popular products not only contain GUI functionality, but also many other
libraries used for software development. Those examples are more like application
frameworks rather than GUI toolkits. Some toolkits do not contain certain features
that may be seen as essential for GUI programming. Since there is no definition of
official characteristics of a GUI toolkit, the following requirements and demarcations
were determined for the MGT. A GUI toolkit, with special consideration of the ME,
must meet these demands:

• The toolkit is an extension to an existing application framework (here: the
ME). It is neither an application framework itself nor does the targeted engine
depend on it.
• All common widgets shall be available for developers to build modern GUIs.
• The toolkit shall be capable of handling modern user input patterns, e.g., drag

and drop, or multitouch.
• A transparent event handling system shall assist the toolkit users in handling

input events or other actions.
• A flexible layout system shall be optionally available to automatically layout

widgets in consideration of space and a given scheme.
• The appearance of both single widgets and complete GUIs shall be customiz-

able. The process of defining the appearance is called “skinning” or “theming”.
• An extension concept is required to allow programmers to easily extend the

toolkit in case of missing features in particular situations.

2The word “widget” as it is used in this thesis will always refer to the term “GUI widget”, unless
otherwise noted. In general, “widget” may also refer to tiny pieces of software, that is driven
by a widget environment, often included in operating systems. Other names for the latter are
“gadget”, “applet”, or “desk accessory”.

2

1.3. METHODS

The following points are not part of the requirements, since there is no direct
relation to GUI development, but rather to particular applications or special tasks.
Furthermore, many of these features are provided by the ME, so there is another
reason not to implement them:

• Providing a framework for an application,
• providing libraries for special tasks (e.g., scientific, productivity),
• handling and conversion of specific file formats, and
• granting access to platform or hardware features (e.g., threading, networking,

file access).

1.3 Methods
The concept of the MGT is the result of evaluating existing GUI toolkits, analyzing
their features, finding similarities and differences, both in implementation strategies
and range of functionality. The first step was to create a list of toolkits that shall
be considered for evaluation. As many possible candidates exist out there, some
criterions were needed to reduce the samples to a small set of toolkits relevant to
the MGT. The criterions are related to the characteristics of the ME and have been
defined as follows:

• Based on OpenGL or any other 3D API or (game) engine,
• platform agnostic,
• modular and easy to use,
• consideration of mobile devices,
• being renowned for a particular concept, and
• support for declarative GUI definitions (e.g., via XML).

At least two of these criterions had to be fulfilled by a toolkit to be evaluated.
Since there were still too many candidates left, toolkits without enough relevance
(presence, popularity, and market share) were dropped, as well as candidates with
an unacceptable lack of documentation or information available (e.g., “libnui”). As
mentioned before, the actual set of features between the evaluated toolkits differ
significantly in some aspects, but the requirements identified in the previous section
can be seen as a common subset, as they are implemented (with some variations)
in most examples. The final candidates have therefore been evaluated one after
another regarding the following list of aspects:

• History and general information,
• supported platforms,
• programming language and used libraries,
• included widgets,
• event handling techniques,
• layout management, and
• skinning support.

3

CHAPTER 1. INTRODUCTION

The results will be presented in the next chapter. The following section will now
give an introduction to the ME and its basic ideas. While the concept of the MGT
(see chapter 3) was deducted from the evaluation results, the actual implementation
of the toolkit (see chapter 4) strongly depends on the concepts and technologies
behind the ME.

1.4 Murl Engine Architecture
Applications based on the ME are written in C++ and run therefore natively (i.e.,
executed by the CPU without any intermediate stages like an interpreter) on the
supported platforms. This brings greater performance by avoiding the overhead
produced by the primary programming languages and frameworks on each platform.
Android apps are usually written in Java and need to be interpreted on runtime.
Less but still noticeable overhead is also caused by Objective-C programs as they
are used in iOS: Class methods are called by sending “messages” to objects, with
the actual targeted method being unknown during compile time. This requires a
dynamic lookup process on runtime.

To understand how the engine works, the different layers of its architecture will
be introduced in the next section. The following sections will give an overview of
some main concepts realized by the engine, particularly with regard to the features
important for the MGT.

1.4.1 Engine Architecture Layers
Figure 1.1 depicts the layers of an application based on the Murl Engine. An expla-
nation on each layer will be given below, going from bottom to top.

Native Applications

As the name already suggests, every platform has its own (native) application for-
mat, which bundles the app’s final resources and binaries ready for execution. A
cross-platform application is not a single executable that runs on multiple platforms,
moreover it uses cross-platform sources and resources which are compiled and packed
into the respective executable file format for each targeted platform. The main idea
behind this solution is to write source code only once and just build it for the desired
platform(s), whenever a debug or a release build is wanted. This requires the engine
to abstract the common features available on all platforms.

Platform Abstraction

The platform code is unique for each target platform and must be included in ap-
plications that are contemplated to be built for that platform. The ME framework
is shipped with project files for the supported platforms, which are set up to auto-
matically include the appropriate platform code during the build process. Platform
code serves two purposes:

4

1.4. MURL ENGINE ARCHITECTURE

Figure 1.1: The layers of an application based on the Murl Engine
The user code written for an application resides on the top layer. The ME comprises the
second and third layers. Building the project for a specific platform generates the native
application bundle.

Source: http://murlengine.com/usersguide/en/_user_guide_short_introduction.php

• It wraps the user-level C++ code into the proprietary bundle format used on
each platform to integrate the application into its app ecosystem. Hence, the
platform code acts as entry point during the app launching process. This pro-
cess differs from one operating system to another. After launch, the platform
code yields execution to the engine. On Android, this is done by the Native
Development Kit (NDK). For iOS builts, the Objective-C++ extension of the
compiler front-end is used to bridge Objective-C and C++.
• The platform code is further responsible for abstracting the platform-dependent

APIs, acting as a gateway between the engine and the operating system. A
function provided by the engine (e.g., sending TCP packages) will probably
use an API call different on each target. The user, however, just needs to call
the engine function without any concern on which platform this line of code
will be executed.

The platform code for every supported target is included in the framework and
can be adopted by the developer to implement additional platform-level features.
Nevertheless, this layer of the framework can be ignored, if no adaption is needed.

Framework Engine

The framework code is the core of the ME and built upon the platform code. It
facilitates the main engine features for the app developer to use in her application.

5

http://murlengine.com/usersguide/en/_user_guide_short_introduction.php

CHAPTER 1. INTRODUCTION

It is entirely written in C++ and contains many functional packages (organized in
namespaces). The classes of the following namespaces are of special interest for the
implementation of the MGT:

• Graph: scene graph nodes and scene graph related classes
• Resource: classes for managing package resources (assets)
• Logic: classes for implementing the (tick-based) application logic
• Input: classes for handling input devices (including gyroscopes and location

services)
• Output: classes for accessing device and system features (e.g., telephone, vi-

bration motor, E-mail client, ...)
• Util: supporting classes and templates for easily realizing common program-

ming tasks

Others are App, Math, Audio, Core, Debug, Physics, Video, Net, System, and
Platform. The App namespace includes classes representing the app and are the
entry point for the engine to execute user code. It is therefore necessary for the
developer to attach her user code to this namespace by implementing a designated
app class.

Application Code

The user code is written by the developer(s) of the application. They are responsible
for providing an entry point for the engine to invoke logic execution after launch as
well as for setting up the engine depending on their needs. Since the ME is tick-
based, at least one engine processor (sometimes simply called logic) is required. The
engine processor’s interface defines an obligatory callback method that is invoked
on each tick to update the logic state according to input events or other parameters.
The app developer is responsible for writing the user code by relying on the features
provided by the framework. There is no need to care about the platforms at this
layer since the abstraction is done by the framework code. It is strongly advised
against including and utilizing any other libraries than the framework itself.

This concludes the section about how source code is organized in the engine
architecture. Beside the source files, most multimedia applications require additional
assets to be presented as content or as interface. The way they are managed in the
ME will be explained in the next section.

1.4.2 Resource Files and Packages
Assets are called resources in the terminology of the ME and refer to all kinds of files
loaded and processed by the application on runtime. Resource files are extensively
used in modern computer games, as most contents (images, sounds, models, etc.)
created by artists require a huge amount of memory and are therefore loaded and
freed on demand. Resources are bundled into packages. A package (identified by
its file name extension .murlpkg) is a binary file which contains custom resources,
optimized for efficiently loading them at runtime. Packages are generated by the

6

1.4. MURL ENGINE ARCHITECTURE

utility program resource_packer shipped with the ME. The program requires an
input folder which contains a file package.xml for specifying all resource files (im-
ages, sounds, graphs, etc.) that are part of the package. An example is shown by
listing 1.1. In the C++ code and the scene graph XML code resources are referred
to by a package name prefix, followed by a colon and a custom identifier string (e.g.,
assets:box_texture).

1 <?xml version ="1.0" ?>
2
3 <Package id=" assets ">
4
5 <!-- Graph resources -->
6 <Resource id="main" fileName =" graphs /main.xml"/>
7
8 <!-- Image resources -->
9 <Resource id=" box_texture " fileName =" textures /box.png"/>

10
11 <!-- Graph instances -->
12 <Instance graphResourceId ="main"/>
13
14 </Package >

Listing 1.1: Definition of resource packages

Resources must be put in action somehow to appear on the output device. An
image, for example, needs to be assigned to a texture that will be rendered to
a geometry. Both texture and geometry are part of a scene, a term used in 3D
modeling to address the union of all perceptible objects, the lighting setup, and the
camera of a 3D world. Scenes are organized as scene graphs, which is a common
concept used in 3D applications just as in the ME.

1.4.3 Scene Graphs
Scene graphs are directed acyclic graphs (DAG) used in object-oriented program-
ming languages to organize objects of a 3D scene as nodes [Miaoulis and Plemenos
2009, p. 13]. Scene graphs first occurred 1989 as structure in Open Inventor (Sili-
con Graphics) to facilitate programming of OpenGL scenes by using object-oriented
programming paradigms. In 1991, Silicon Graphics released IRIS Performer, an-
other scene graph library, that focuses on performance rather than on ease of use
[DeLoura 2001, p. 201]. Today, scene graphs are supported by many game engines
(e.g. Panda3D3, Unity4, Ogre3D5), as well as in dedicated scene graph libraries (like
OpenSceneGraph6, Coin3D7, OpenSG8).

One main feature of scene graphs is the inheritance of a node’s transformation to
its children, thus allowing geometric objects that belong together in a spatial sense

3http://www.panda3d.org/
4http://unity3d.com/unity
5http://www.ogre3d.org/
6http://www.openscenegraph.org/
7http://www.coin3d.org/
8http://www.opensg.org/

7

http://www.panda3d.org/
http://unity3d.com/unity
http://www.ogre3d.org/
http://www.openscenegraph.org/
http://www.coin3d.org/
http://www.opensg.org/

CHAPTER 1. INTRODUCTION

to be aligned with each other. For example, consider the 3D model of a motorbike
to be translated to a specific position in the world. When attaching a character
model to the vehicle, the character node will be inserted as child node of the object
to inherit the transformation from it. The child node may now be transformed
relatively to the parent’s transform. In some engines, like in Unity, the scene graph
structure does not serve any other purposes. However, scene graphs allow many
more possibilities of scene manipulation to be realized. The extent of how much
can be achieved solely by defining a scene graph structure depends on the actual
framework that is used.

The ME offers a versatile collection of nodes which can be used to setup even
complex scenes entirely in the scene graph XML resource file. This allows logic
classes to be free from any lines of codes that creates or configures scene objects.
On initialization, only references to nodes need to be set up. Figure 1.2 shows an
example of how a scene graph may be set up in the ME.

Figure 1.2: An example of a scene graph in the Murl Engine
Source: http://murlengine.com/usersguide/en/_user_guide_short_introduction.php

On each tick, the scene graph is entirely traversed by two different threads, logic
and output, using depth-first traversal. The logic thread updates the internal state
of all nodes while the output thread processes the presentation of the scene for the
output devices. Output processing is done for the state one tick behind. So while
one state will be drawn, the subsequent state will be processed. The ME provides
some node types to control the traversal process in a smart way. The following list
describes some of them, especially those interesting for the toolkit:

Instance: An Instance creates a parametrized copy of an dedicated sub-graph (de-
fined in a separate file). It allows complex sub-graphs to be reused over and
over again.

8

http://murlengine.com/usersguide/en/_user_guide_short_introduction.php

1.4. MURL ENGINE ARCHITECTURE

Reference: A Reference is a node referring to another already traversed target node
to traverse the target again. This can be used to render geometry nodes more
than once or to cause a state change triggered by the target.

Switch: A Switch has an index property to set exactly one (or none) immediate
child node as active and visible, thus causing the other children to be ignored
by the traverser.

Materials, parameters9, and textures are implemented as nodes and are used for
rendering geometry nodes. There are two ways to define the appearance of a geom-
etry through materials, parameters, and texture nodes:

1. Structural by parenting the geometry nodes with one or more texture/parame-
ters node and (at least) the material node.10 This affects all descendant nodes
until another texture/parameters node or material node gets inserted into the
hierarchy.

2. Temporal by using material states and texture/parameters states. Those nodes
refer to previously11 defined material or texture nodes and activate them for
the following nodes regardless even if there is no parental relationship. States
can be overwritten by other states or by using strategy 1.

The example in figure 1.2 uses a MaterialState to render the CubeGeometry and
the PlaneGeometry. The material state refers to the sibling Material node one
index before. Neither of the two geometries is a descendant of the material state,
but since the state node was traversed before and no other node did overwrite the
material state, both geometries will be rendered according to the material defini-
tion. The same effect can be produced by attaching the geometries as children of
Material.

1.4.4 Processors
Processors are classes that run the application logic. Similar to the scene graph,
they can be structured hierarchically. On each tick, the OnProcessTick() method
is called to execute custom application logic. Every portion of code that is part of the
application logic (so virtually everything except the initial setup functions) will be
held by a processor. Therefore, they play a vital role during runtime, as there needs
to be at least one processor for applications to do something interesting. Processors
are allowed to retrieve references (“node observers”) to scene graph nodes, allowing
them to query or modify referenced nodes.

9Parameters represent the OpenGL material lighting properties as described in Shreiner and
Group 2009.

10Note that textures and parameters are not necessary at all to render geometry. For example,
materials can be built from shaders without input data. However, the common practice followed
by the MGT always uses textures or parameters in conjunction with materials, thus there will
not be paid attention to this special case in this chapter.

11In the context of scene graphs, “previous” refers to a node that will be traversed chronologically
before another node according to depth-first search.

9

2 Evaluation Of Existing Toolkits

2.1 Overview
An overview of all evaluated toolkits shall be given in this section. I will outline the
major characteristics and state the reason for choosing a particular toolkit.

2.1.1 Android SDK
By the time of writing, Android reached a market share of about 80 percent in
the mobile phone sector [Heisler 2013], making it obvious to take a closer look
on the standard GUI toolkit of Android. GUIs are developed with the aid of the
Android SDK, which is the foundation for Android app development. Android uses
a proprietary GUI API, optimized for mobile devices, which is part of Dalvik VM,
the Java implementation used on Android machines. Common Java GUI APIs like
AWT, Swing, or SWT (see below) are not available in Dalvik VM. Furthermore,
the Android GUI is only available on Android platforms and not suitable for cross-
platform applications. Figure 2.1 shows some GUI-based applications typical for
Android.

Figure 2.1: GUI of three Android apps
From left to right: “video2brain”1, “Eigene Dateien”, and “TU Graz Suche”2.

11

CHAPTER 2. EVALUATION OF EXISTING TOOLKITS

2.1.2 Apache Pivot

Apache Pivot is self-classified as an “open-source platform for building installable In-
ternet applications” [Apache Software Foundation 2014a]. Installable Internet appli-
cations (IIAs) are cross-platform Java-based applications deployed via web browsers.
They differ from applets in how they are executed – IIAs can both run standalone and
embedded in browsers. Based on Java, Pivot applications are platform-independent
and just require a web browser with Java support. However, due to the lack of
JRE support on the dominant mobile operating systems Android and iOS, Pivot
is primarily used for desktop applications. Figure 2.2 shows an example of a GUI
application embedded in a browser.

Figure 2.2: Apache Pivot Example

Source: http://pivot.apache.org/demos/itunes-search.html

2.1.3 Abstract Window Toolkit

The Abstract Window Toolkit (AWT) is part of the Java Foundation Classes (JFC)
and abstracts the native GUI API of the respective operating system. It does not
define or render widgets itself. This result is only a small set of features. AWT is
almost outdated by now and is not supported on mobile platforms. However, it is
still relevant as foundation for Swing (see below).

12

http://pivot.apache.org/demos/itunes-search.html

2.1. OVERVIEW

2.1.4 DirectGUI

DirectGUI is the name of GUI toolkit integrated in open-source game engine Panda-
3D. Panda3D is a cross-platform framework written in C++, but with Python as
primary language for developing applications. GUIs therefore need to be scripted
like the whole application logic as well. The reason for evaluating DirectGUI is
not the toolkit itself, but Panda3D. The framework, like the Murl Engine, is a
platform-agnostic and scene graph oriented 3D game and multimedia engines based
on OpenGL. Panda3D, however, is rather optimized for rapid application develop-
ment (RAD) than for mobile platform distribution. Code is not compiled into an
executable binary, but runs as script that is parsed on runtime. Figure 2.3 shows
DirectGUI used in a game called “Epoch”.

Figure 2.3: DirectGUI Example (Epoch)

Source: http://www.panda3d.org

2.1.5 Fast, Light Toolkit

Fast, Light Toolkit (FLTK) is a backronym that has its origins in Forms and the
Forms Library (FL). Forms was a GUI toolkit for SGI machines that inspired the
founder of FLTK to rewrite his own toolkit, later called FL, to base it on Forms.
FL was then mainly used in Linux applications, which lead to the decision to drop
the rendering code written for OpenGL and replace it with X. Though, support for
rendering OpenGL scenes is still an included and promoted feature. FLTK runs
on Windows, (Mac) OS X, and on common Unix and Linux derivates. There is no
support for mobile devices. [Spitzak 2012b] The audio software “Giada” (see figure
2.4) is one example of software based on FLTK.

13

http://www.panda3d.org

CHAPTER 2. EVALUATION OF EXISTING TOOLKITS

Figure 2.4: FLTK Example (Giada)

Source: http://www.giadamusic.com

2.1.6 FOX Toolkit

The FOX Toolkit (FOX) is a window-based widget toolkit written in C++ and
available for desktop operating systems, especially Windows and many Unix/Linux
derivates. FOX stands for “Free Objects for X” and uses the X Window System to
render GUIs rather than wrapping native widgets. [Zijp 2013b] FOX also follows a
similar philosophy as the Murl Engine in trying to “[e]liminate all platform specific
header files” for easier portability. [Zijp 2013c] However, there is neither support for
mobile platforms nor for OS X. An example application that uses FOX is depicted
in figure 2.5.

2.1.7 GIMP Toolkit+

The GIMP Toolkit+ (GTK+) was originally intended as GUI library for the GNU
Image Manipulation Program (GIMP). It was then released in the late 90’s as free
widget library and became very popular on Linux platforms. Beside the GIMP
(see figure 2.6), another famous example of software that is based on GTK+ is the
Gnome desktop environment. GTK+ requires the GIMP Drawing Kit (GDK), an
abstraction layer between GTK+ and the low-level windowing and drawing API
of the operating system. [Clasen 2004] It has been ported for X Window System,
Windows API, and Quartz, making it available on Linux, Windows, and OS X.

14

http://www.giadamusic.com

2.1. OVERVIEW

Figure 2.5: FOX Toolkit Example (Xfe)

Source: http://roland65.free.fr/xfe

2.1.8 JUCE
Jules’ Utility Class Extensions (JUCE) is a cross-platform toolkit written in C++
that was first released in 2003. Beside GUI functionality and an OpenGL-based 2D
engine, many other modules are included or optionally available. Ports exist for all
major desktop platforms (Windows, Linux, OS X) and mobile operating systems
(Android, iOS) and is thus one of the few evaluated toolkits that work fully on
both device classes. [Raw Material Software Ltd. 2014a] Originally used for audio
software, its predominant field of application still lies within this domain and is also
commercially used by many notable manufacturers.

2.1.9 OpenGL User Interface Library
The OpenGL User Interface Library (GLUI) is light-weight GUI library based on
OpenGL Utility Toolkit (GLUT) and therefore platform-independent, since the wid-
gets are entirely rendered in OpenGL. GLUI only features some basic widgets and
is not intended to use for complex GUI-based applications. The latest stable re-
lease has been on July 2006, so it is presumably not working on mobile devices.

15

http://roland65.free.fr/xfe

CHAPTER 2. EVALUATION OF EXISTING TOOLKITS

Figure 2.6: GTK+ Example (GIMP) [GPLv3]

Source: http://commons.wikimedia.org

[Rademacher, Stewart, and Baxter 2006] There is also no evidence that GLUI is
compatible with OpenGL ES. However, it is used in Box2D, a cross-platform 2D
game engine, for in-game physics testing during development. An example applica-
tion is shown in figure reffig:evaluation-overview-glui. Because GLUI uses OpenGL
for rendering, just like the ME, it will evaluated though.

Figure 2.7: GLUI Example

Source: http://glui.sourceforge.net/

16

http://commons.wikimedia.org
http://glui.sourceforge.net/

2.1. OVERVIEW

2.1.10 Qt

Qt is a widely used cross-platform library featuring both a GUI toolkit and libraries
for other tasks. Its origins are in the early 1990s when it was initiated by a company
that was later named Trolltech. Qt became the primary toolkit used in KDE (now
KDE Software Compilation, see figure 2.8). This is comparable to the relation
between GTK+ and Gnome, which is an important factor to the library’s popularity.
If available, Qt uses the native widget set of the platform, or its own rendering
engine otherwise. One unique feature of Qt is its Meta Object Compiler (MOC),
that is executed before compilation to expand some macros that are not supported
by common C++ compilers. The macros add some new constructs to C++, e.g.,
the “signals and slots” concept, which is an easy-to-implement observer pattern. A
newer feature of Qt is the declarative Qt Modeling Language (QML) for designing
GUIs as hierarchical element trees. QML is the default modeling format on the
upcoming Ubuntu Phone OS. On desktop environments, Qt has been ported for
Windows, OS X, and all Linux/Unix variants that run the X Window System.
It is also available in Maemo and S60, two mobile operating systems by Nokia.
Support for other mobile platforms – iOS and Android – is in development and still
experimental by now. [Qt Project Hosting 2014] Qt has been chosen for evaluation
because of its wide cross-platform support (on both desktop and mobile devices)
and its sophisticated features.

Figure 2.8: SWT Example (TuxGuitar) [GPLv3]

Source: http://commons.wikimedia.org

17

http://commons.wikimedia.org

CHAPTER 2. EVALUATION OF EXISTING TOOLKITS

2.1.11 Standard Widget Toolkit
The Standard Widget Toolkit (SWT) is, similar to AWT, an abstraction of the native
widget API on the respective platform. Nevertheless, SWT has always been seen as
a competitor to Swing (see below). Its development was initiated in 2001 by IBM to
provide a cross-platform widget toolkit for Eclipse, an IDE with a GUI also based on
SWT. Widgets that are not supported by the target platform’s API will be emulated,
which improves portability, but reduces the overall performance on some systems.
[Stanchfield 2012] On desktop machines, SWT is available for Windows (Windows
API), Linux/Unix derivates (GTK+), and OS X (Cocoa), using the respective native
GUI APIs. The only mobile platform supported is the already outdated Windows
CE. See figure 2.9 for an example of SWT.

Figure 2.9: SWT Example (TuxGuitar) [FDLv12]

Source: http://commons.wikimedia.org

2.1.12 Swing
Swing is part of Java Standard and Enterprise Edition (J2SE and J2EE) since version
1.2 and is an alternative to AWT, but also based on it. Swing uses the AWT window
class which wraps a native window object generated from the primary platform API.

18

http://commons.wikimedia.org

2.1. OVERVIEW

All other Swing widgets, however, are drawn by the library itself into the window
using Java 2D (“lightweight UI”). This results in better portability compared to
AWT. [Niemeyer and Leuck 2013, S. 589–626] There is no official support of Swing
in Java 2 Mobile Edition (J2ME), but a third-party library called Swing ME is
available. Swing ME is also ported to Android (Android ME) and BlackBerry
(BlackBerry ME). Layout managers are often associated with Swing, which is the
reason why it is part of the evaluation. An example application is shown in figure
2.10.

Figure 2.10: Swing Example [FDLv12]

Source: http://commons.wikimedia.org

2.1.13 UIKit
The main frameworks available for developers writing iOS applications is the fourth
layer on Apple’s iOS platform architecture – Cocoa Touch (see figure 2.11). Cocoa
Touch is based on Cocoa, the related framework for Apple’s desktop operating sys-
tem OS X, and adopted to fulfill the requirements of mobile devices. The primary
framework for GUI development upon Cocoa Touch is called UIKit. UIKit has been
chosen for evaluation because the UI idioms brought by UIKit had an huge impact
on the design principles of mobile GUIs for the last few years, for example by omit-

19

http://commons.wikimedia.org

CHAPTER 2. EVALUATION OF EXISTING TOOLKITS

ting the touch screen stylus in favor of fingers and the reduction and enlargement of
interface elements. [Apple Inc. 2013b] Example applications are shown figure 2.12.

Figure 2.11: iOS Architecture Layers
Source: https://developer.apple.com/library/ios/documentation/
Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.
html

Figure 2.12: iOS/UIKit Example Applications

2.1.14 UnityGUI
Unity3D is a widely used game engine and comes in conjunction with a full-scale
project/asset management tool, a scene (graph) editor, and an IDE. Products can
be built for all common desktop and mobile target platforms. The ME aims for
a similar goal, as well as the Panda3D engine introduced above. Having a closer
look on UnityGUI, the GUI toolkit of Unity3D, seems therefore reasonable. The

20

https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html

2.1. OVERVIEW

best known software realized with UnityGUI is probably the cross-platform Unity3D
editor itself, which is shown in figure 2.13.

Figure 2.13: UnityGUI Example (Unity3D Editor)

2.1.15 Windows Presentation Foundation
The Windows Presentation Foundation (WPF) is a framework for both standalone
and web-based applications depending on Microsoft .NET 3.0 or higher. The frame-
work not only covers a widget toolkit, but several APIs for realizing multimedia,
2D and 3D graphics, text effects and data handling. If 3D-accelerated hardware is
available, WPF uses DirectX for rendering the output of an application. Compos-
ing GUIs can be done either programmatically (as in most toolkits) or by describ-
ing them through an XML format called Extensible Application Markup Language
(XAML). [Microsoft Corporation 2014a] Microsoft deploys WPF only for Windows
and there are currently no intentions to implement WPF support in Mono. [Mono
2014]

2.1.16 wxWidgets
wxWidgets is a framework written in C++ that wraps around the native GUI API
and makes code cross-platform ready. Ports are officially available for Windows,
Linux, Unix derivates, OS X, and some mobile platforms like iOS, but not for
Windows Phone and Android. The project was started in 1992 to support cross-
platform development between Windows and Unix. [wxWidgets 2014b] According
to the datasheets, wxWidgets also has an own set of widgets (“wxUniversal”) that

21

CHAPTER 2. EVALUATION OF EXISTING TOOLKITS

does not depend on an underlaying GUI API, e.g. for use in X11 [wxWidgets
2014d]. Many bindings exist for wxWidgets, making it possible to access the API
with scripting language. Figure 2.14 shows an application that has been realized
using wxWidgets. This toolkit has been evaluated because of its popularity and
cross-platform support for both mobile and desktop platforms.

Figure 2.14: wxWidgets Example (Dolphin) [GPLv2]

Source: http://commons.wikimedia.org

2.2 Featured Widgets
Table 2.1 sums up the survey on available widgets among the evaluated toolkits.
This chart is neither complete nor completely accurate. First of all, some exotic
widgets only exist in single toolkits and do usually not occur in daily experience.
Those have been dropped in order to provide a more general list. Furthermore, ad-
ditional simplifications were necessary because there is no direct 1:1 correspondence
between the implementations of particular widgets among the different toolkits. For

22

http://commons.wikimedia.org

2.2. FEATURED WIDGETS

example, some toolkits provide simple one-line text field widgets and additional
multi-line, scrollable text area implementations, while in other toolkits both are
just configurable variations of one and the same widget type. Another example is
the radio button, which may either occur as dedicated widget or as the result of
configuring a more general option button widget. During evaluation, further prob-
lems occurred because of different terminology, inadequate documentation, or the
lack of a comprehensive widget list like the “Component Explorer” of Apache Pivot
(see figure 2.15).

Figure 2.15: Apache Pivot demo: “Component Explorer”

Interpreting of the presented results led to the following assumptions:

• Buttons, radio/option buttons, textfields, labels, list views, and checkboxes
(or its variation – the toggle switch) occur in all toolkits. They can be seen
as the most basic widgets of a GUI. As as side node, they are also part of the
HTML specification, which only features a few widgets.
• Another formerly basic widget, the combo box (also known as drop-down

field), seemingly disappears on newer toolkits (e.g. UIKit) and on those which
are part of a 3D engine (e.g. Unity3D). One reason might be the growing
popularity of list views, driven by the design paradigm shift initiated by Apple.
• Sliders and progress bars are included in all recent toolkits (toolkits that have

been introduced or updated during the last five years). Spinners are found in
mobile GUI toolkits (where they make most sense) and in a few up to date
examples for desktops.

23

CHAPTER 2. EVALUATION OF EXISTING TOOLKITS

A
nd

ro
id

SD
K

A
pa

ch
e
Pi
vo
t

AW
T

D
ire

ct
G
U
I

FL
T
K

FO
X

G
T
K
+

JU
C
E

G
LU

I

Q
t

Sw
in
g

SW
T

U
IK

it

U
ni
ty
G
U
I

W
PF

w
xW

id
ge
ts

In
pu

t

Button 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Checkbox 4 4 4 4 4 4 4 4 4 4 4 4 8 4 4 4

Combo box 4 8 8 8 4 4 4 4 8 4 4 4 8 8 4 4

Radio/Opt. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Slider 4 4 8 4 4 4 4 4 8 4 4 4 4 4 4 4

Spinner 4 4 8 8 8 8 4 8 8 8 8 8 4 8 8 8

Stepper 4 4 8 8 4 4 4 8 4 4 4 4 4 8 8 4

Switch 4 8 8 8 4 4 4 4 8 8 4 4 4 8 8 4

Textfield 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

O
ut
pu

t

Image 4 4 8 4 4 4 4 4 8 4 4 4 4 4 4 4

Label 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Progressb. 4 4 8 4 4 4 4 4 8 4 4 4 4 8 4 4

Separator 8 4 8 8 8 4 4 8 4 8 4 8 8 8 4 4

Statusbar 4 8 8 8 4 4 4 8 8 4 8 4 4 8 4 4

Tooltip 8 4 8 8 4 4 4 4 8 4 4 4 8 8 4 4

C
m
ds
. Hyperlink 4 4 8 8 8 8 4 4 8 4 8 4 4 8 4 4

Menubar 4 4 4 8 4 4 4 4 8 4 4 4 4 8 4 4

Popupmenu 8 4 4 4 4 4 4 4 8 4 4 4 8 8 4 4

Toolbar 8 4 8 8 8 4 4 4 8 4 4 4 4 4 4 4

D
at
a List View 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Table View 4 4 8 8 4 4 8 4 8 4 4 4 4 8 4 4

Tree View 8 4 8 8 4 4 4 4 8 4 4 4 8 4 4 4

C
on

ta
in
er
s

Dialog 4 4 4 4 4 4 4 4 8 4 4 4 4 4 4 4

Folding 4 4 8 8 8 4 4 8 4 8 8 4 8 8 4 4

Grouping 4 8 8 8 8 4 4 4 4 4 4 4 8 8 4 4

Scrolling 4 4 4 4 4 4 4 4 8 4 4 4 4 4 4 4

Splitting 8 4 4 8 4 4 4 4 8 4 4 8 8 8 4 4

Tabbing 4 4 8 8 4 4 4 4 8 4 4 4 4 8 4 4

Sp
ec
ia
l Calendar 4 4 8 8 8 4 4 8 8 4 4 4 4 8 4 4

Colorwheel 8 4 8 8 4 4 4 4 8 4 4 4 8 8 8 4

Drag/Drop 8 4 8 8 4 4 4 4 8 4 8 8 8 8 4 4

File dlg. 8 4 4 8 4 4 4 4 4 4 4 4 8 8 8 4

Table 2.1: Comparison of featured widgets

24

2.3. RENDERING

• Scrollable containers are supported by all toolkits except GLUI. In contrast
to containers with folding, grouping, splitting, and tabbing accessories or ca-
pabilities, scrolling appears to be a quite common feature.
• Drag-and-Drop does not seem to be a must-have feature. Even Android SDK

and UIKit do not have built-in functions for this task.

2.3 Rendering
There are several different ways on how to cast a rendered GUI onto the screen. The
methods described in this section are a summary of those identified in the evaluated
toolkits.

2.3.1 Using Native Widgets
When using the set of widgets provided by a native API, i.e., the default GUI API
shipped with the operating system (e.g., Cocoa on OS X), toolkits provide an own
library of widgets and features, usually represented as set of classes. However, theses
classes are some kind of “wrappers”, which produce native widgets by calling the
interfaces of the provided API. This part of code is usually referred to as “platform
code”, and each port of a toolkit must define its own portion of platform code that
instantiates and manages the native widgets. In the SWT, for example, the platform
code consists of a set of Java classes doing JNI calls. These classes are used by the
actual feature implementation classes and have the same signature on each platform,
but different method bodies. [Northover 2001]

The method described here is primary used by the AWT, the SWT, wxWidgets,
and by newer versions of Qt. wxWidgets uses 2D rendering as fallback, if the
native GUI framework does not support a particular widget [wxWidgets 2014c].
The opposite is done by WPF, which usually orders DirectX to draw its own set of
widgets: Some particular widgets, like the file dialog, are wrappers around Win32
API components.

2.3.2 Using 2D and 3D APIs
The most common method is drawing widgets with 2D or 3D graphic APIs. This
leads to greater flexibility and easier portability, as only the engine that communi-
cates with the graphics APIs needs to be ported. There are also drawbacks: Much
effort must be put into the creation of resources and routines because all widgets
must be built from scratch, normally by using graphic primitives. If someone also
intents to provide the native look and feel of the targeted platform, even more work
needs to be done. However, preferring the native look and feel as opposed to an
universal GUI style is a matter of taste and in discussions it is mentioned both as
advantage and disadvantage, depending on the point of view.

25

CHAPTER 2. EVALUATION OF EXISTING TOOLKITS

Different graphics APIs are used among the toolkits, strongly depending on the
platform they are ported for. The Android SDK GUI uses a service called Sur-
faceFlinger for drawing. SurfaceFlinger, a display service developed by Google,
internally calls native libraries based on OpenGL ES to fulfill its tasks. Swing and
Apache Pivot render widgets with Java 2D. [Apache Software Foundation 2014d]
Java 2D is part of the AWT, which has already been introduced as a toolkit that
abstracts native widgets. DirectGUI and UnityGUI are using the graphic libraries
of the game engines they belong to for rendering. GLUI is based on the OpenGL
Utility Toolkit (GLUT). GTK+ has its own rendering framework, GDK, which ab-
stracts the native 2D rendering API on the appropriate platform. Qt uses both 2D
rendering and native widgets. When rendering the widgets by itself, Qt imitates the
style of the operating system it runs on. This was once the only method for Qt to
render widgets, while in newer versions, wrapping the native API is also supported.
UIKit is built upon other Cocoa Touch frameworks provided on a lower level, most
notably the 2D rendering framework Core Graphics, which uses OpenGL on a lower
level. WPF widgets are rendered by a vector-based engine using DirectX [Microsoft
Corporation 2014a].

2.3.3 Using X Window System
X Window System is an open specification of a “distributed, network-transparent,
device independent, multitasking windowing and graphics system” [Pountain 1989].
The most popular implementation of this standard is X.Org (also called X11) and is
available on all common Unix derivates and Linux distributions. X Window uses a
client-server structure. The X server is the foundation of many GUI-based desktop
environments and can be seen as a layer between the GUI (software) and the graphics
hardware. The main tasks GUI clients are delegating to X server are windowing and
2D drawing. Windowing describes the whole pattern of having concurrent programs
writing their output to distinct “windows”, which are dedicated rectangle areas on
the screen. X Window is also responsible for well-known idioms such as layering or
mouse pointing.

The X Window System is also preferred by many GUI toolkits for its 2D capabili-
ties and windowing features, most notably the FLTK and the FOX toolkit. GTK+,
which already has been mentioned in the previous section, also uses the X Window
System on its Unix/Linux ports, while in Windows and OS X drawing commands
are put to the native drawing libraries. There also exists a port of wxWidgets called
“wxX11” that uses the wxUniversal widget set for rendering GUIs with X11 [Smart
et al. 2011].

2.4 Skinning
Skinning (also called “theming”) is the process of customizing the appearance of
single widgets or whole GUIs. There might be other definitions of when to talk
about skinning or not, but for this thesis, skinning begins when changing the text
color of a widget. Among all toolkits, most widgets, when represented as objects,

26

2.4. SKINNING

have properties that can be manipulated in order to produce a different appearance
of the rendered widget. Some toolkits provide more flexible and cleaner tools for
skinning a GUI, with a central skin definition that usually affects all widgets without
explicitly assign properties to single objects. This section will sum up some common
practices on skinning that were detected on the evaluated toolkits.

2.4.1 Skin Properties
Manipulating object properties is the easiest way to grant developers the opportunity
for visual tuning. The number of available options varies, and there are different
ways on how this is done. Assigning values to object properties is often used in
terms of colors, fonts, or sizing. Manipulating the background plane of a widget is
often more complicated, because of pre-rendered borders or other kind of ornaments.
In the FOX toolkit, for example, skinning the entire theme requires subclassing of
all needed widgets and overriding their onPaint() methods. This can also be done
in UIKit, if manipulating the public properties is not sufficient, by overriding the
drawRect: message of an UIView class. Other toolkits, like FLTK3 or DirectGUI,
try to provide as much flexibility as possible by exposing many properties. Due
to their nature, both AWT and SWT are limited to the properties which were
abstracted from the widget set of the low-level API.

2.4.2 Skin Classes
Skin classes are a centralized approach. There is usually one class or global ob-
ject that is queried by widgets for skin properties. The properties are set by code
statically or dynamically. In some cases, skin classes even play a greater role in ren-
dering. In Pivot, for example, skinning is done by subclassing abstract skin classes
and implementing the skin’s rendering routine with Java 2D [Apache Software Foun-
dation 2014d]. This is comparable to Swing, where skins are called look and feels
(LAF). Although there are usually more LAFs available to choose from, writing a
custom LAF is a quite complex tasks, as there are many callbacks to implement.
Another more restrictive possibility is the configuration of existing LAFs. [Oracle
Corporation 2014a] Similar, but more transparent, is the skinning strategy in JUCE.
A class called LookAndFeel exists, which can be instantiated and configured before
being propagated globally as skin to use. It is further possible to extend this class
and override it with custom drawing methods. [Raw Material Software Ltd. 2014b]
In iOS 5, Apple introduced a complete set of features around their UIAppearance
class to define so called “appearance proxies”. Developers use them to configure the
appearance of widgets programmatically once for the whole app. [Apple Inc. 2013c]

2.4.3 Skin Description Files
Some toolkits include resource files defined by the developer to gain information
about the theme. This is comparable to the HTML/CSS technology used in web

3Beside property-based appearance configuration, it is also possible to switch between a selection
of hardcoded skins in the current stable version 1.3.x. A new skinning system is planned for
FLTK 2.0.

27

CHAPTER 2. EVALUATION OF EXISTING TOOLKITS

development, with content and structure being separated from style. In WPF, for
example, a widget’s visual property is defined either individually as XML attribute
in XAML or as object property in source code or as dedicated style entity in XAML.
Styles define the appearance of the widgets they get attached to. Furthermore, in-
heritance is also possible to extend existing styles. [Microsoft Corporation 2014c]
The Android SDK follows a similar approach, but is even more inspired by HTM-
L/CSS. The style (as it is called there) is defined as an XML resource file separated
from the layout file. The Android API Guides show an example of how this may
look like. [Android Developers 2014c] Since version 3 of GTK+, a new skinning en-
gine is available that allows actual CSS files to be loaded as skins [Garnacho 2011].
CSS is also supported by GTK+’s competitor Qt [Qt Project Hosting 2013b]. Also
Pivot, which supports skin classes as mentioned above, additionally has its own file
format, which resembles CSS in many aspects, for defining the style of GUI [Apache
Software Foundation 2014b]. Finally, in Unity, so called “GUI Skin” assets can be
created to configure the skin of the GUI using the Unity editor [Unity Technologies
2014b].

None of these strategies were found in GLUI and wxWidgets, despite the fact that
there may exist some external tools, which are not part of the framework.

2.5 Event Handling
Event handling is mandatory for all GUI toolkits. It enables the developer to specify
the behavior of a GUI on user interaction. As an example, consider a piece of code
that should be executed after the user clicked on a certain button. The assignment
of the code to the button and the invocation of the code by the button are actually
the tasks an event handling system is responsible for. Event handling is realized
in many different way, and this section will sum up the most common practices
discovered.

2.5.1 Polling

Polling is both used in hardware and software design and is defined by Gehani 1991,
p. 94 as “repeated checking, to determine the occurrence of an event or to wait until a
condition becomes true”. In GUI programming, polling was superseded by message-
based event handling systems.4 Nonetheless, it still makes sense to use polling
in particular cases, most likely in frameworks with tick-based execution callbacks.
Unity is one example, and the UnityGUI is affected by it [Unity Technologies 2014a].
In Unity, a list of methods is invoked in a particular order within each frame cycle
to handle the game’s physics, logics, etc. A method called OnGUI() is both called
for rendering and polling widgets.

4In literature, polling is not seen as an event handling strategy, but opposed to it. Since polling
is used in one of the evaluated toolkits, it is mentioned here to compare it with others.

28

2.5. EVENT HANDLING

2.5.2 Callbacks
Callbacks are the simplest way of event handling: A widget provides methods to
register function pointers or lambda functions (depending on the programming lan-
guage and the toolkit) for being called by the widget itself after it discovered the
occurrence of certain events. DirectGUI, for example, defines one primary “com-
mand” related to the basic usage pattern behind a particular widget (e.g., clicking
a button, or pressing a key on text fields). When this certain event occurs, the call-
back is invoked. [Carnegie Mellon University 2010] The same is done in GLUI, where
a single function can be registered to receive events from multiple sources, distin-
guished by an integral ID value [University of Alaska Fairbanks 2006]. FLTK goes
one step further by allowing any number of callbacks to be added to (or removed
from) a list, supporting more than one event handler for a single event [Spitzak
2012a]. UIKit uses an Objective-C construct called “selectors”5 to also allow multi-
ple methods being called for event handling [Apple Inc. 2013a].

2.5.3 Observers and Messages
Toolkits preferring this approach vary in their terminology and in many implemen-
tation details, but in fact it is derived from the observer pattern described by the
“Gang of Four” (GoF) in Gamma et al. 1995. Another term for observer is “listener”
or “target”, and messages are also called “notifications” or just “events”. Message-
based event handling is an extended version of the callback strategy described above.
Most notably, callbacks are replaced by objects of classes which implement dedicated
interfaces. Different methods (specified by the interface) can be called on different
event types (e.g., mouse click and move move). There is also an n : m relation pos-
sible between observers and observables. This pattern is prevalent on Java-based
GUI toolkits, where observers are called “event listeners” and are used in an event
handling concept that shares many similarities among the evaluated examples, viz.
Apache Pivot [Apache Software Foundation 2014c], the Android SDK [Android De-
velopers 2014a], AWT/Swing6, and the SWT [Eclipse contributors and others 2011]
[Oracle Corporation 2014c]. Other toolkits using an object-oriented event handling
system based on the observer pattern are FOX [Zijp 2013a], JUCE [Raw Material
Software Ltd. 2014c], WPF [Microsoft Corporation 2014b], and wxWidgets [wxWid-
gets 2014a].

2.5.4 Signals and Slots
Signals and slots are found in GTK+ [The GNOME Project 2014a] and Qt [Qt
Project Hosting 2013c] and are comparable to callbacks and observers. What makes
signals and slots special is their realization by meta-programming C++. The com-
mands used to connect signals with slots are not C++ compliant but macros that
need to be resolved by a meta object compiler (MOC). Roughly speaking, connect-
ing signals with slots (both are function callbacks) results in the slot callback being
invoked after the signal function has been called. Signals and slots are said to be

5Although technically not the same as callbacks, selectors are used similarly.
6Note that Swing uses the event handling architecture of AWT.

29

CHAPTER 2. EVALUATION OF EXISTING TOOLKITS

more flexible and safer than callbacks and require less code than observer-related
approaches, resulting in an improved code readability. [Thompson 2013]

2.6 Layout Control
This section will cover a general description on common layout managers that appear
in most toolkits. They often differ in name and in how many aspects a layout
may be configured. Before summarizing on the common subset identified, another
question has to be answered: How are layouts actually implemented? The following
approaches have been detected.

2.6.1 Layouts as Widgets
Layout managers are derived from widget base classes or vice versa. The widgets
to layout are attached as child components to the layout manager. This done by
FOX. In Pivot, layout managers are container subclasses and thus part of Pivot’s
component-container hierarchy [Apache Software Foundation 2014e]. Layouts as
subclasses of container widgets are also found in the Android SDK [Android De-
velopers 2014b], JUCE, GTK+ [The GNOME Project 2014b], and WPF [Microsoft
Corporation 2014a].

2.6.2 Layouts as Controllers
Layouts are instances of layout classes (based on a common interface) attached
to widgets. In Qt the layout handling interface is part of the base widget class
[Qt Project Hosting 2013a]. In other cases, especially if the toolkit defines explicit
container classes, layouts are most likely passed to them. This is done in AWT,
Swing (both using the same layout managers) [Oracle Corporation 2014b], SWT
[MacLeod 2009], wxWidgets [Victor 2014], and also in the UIKit, which allows
custom and built-in layout managers to be assigned to its UICollectionView [Apple
Inc. 2014] widget. The layout system of UnityGUI belongs to this category too,
although it works a bit different due to the procedural GUI setup on each tick
[Unity Technologies 2014c].

2.6.3 Layouts as Macros
This strategy, used by FLTK, is unusual and depends on the graphical GUI editor
tool “Fluid” [Spitzak 2012c]. With Fluid, the developer can compose the GUI and
set up constraints for widgets on how to behave on container size updates. The
GUI is then saved in a proprietary file format and converted to C++ source files for
compilation. On runtime, the generated code will manage the layout according to
the properties set in Fluid.

No strategies for layout control were found in DirectGUI and GLUI.

30

2.7. SUMMARY

2.7 Summary
Many toolkits exceed their main purpose as a GUI library and offer additional
components for frequent tasks. This includes file handling, database access, XML
parsing, scripting support, etc. However, the MGT is an extension of an existing
multimedia engine, which is supposed to already have most of these components
on board. The toolkit will therefore focus on the main tasks of GUI development.
Their details will be discussed in the next chapter. A final discussion on the most
important aspects and strategies learned will now conclude the evaluation.

Featured Widgets: There exist many different type of widgets and even more ways
how they have been realized. However, the importance of a particular widget and
its “mechanics” can be estimated by finding commonalities among all candidates.
For the MGT, it makes sense to implement basic widgets that are assumed to be
provided by a toolkit. It is also not the goal of the MGT to compete with the market
leaders in terms of feature richness, but to demonstrate on how to realize a GUI
toolkit with a scene graph based graphic engine.

Rendering: The evaluated toolkits revealed three approaches of how to present
widgets. Although all three can be used for cross-platform development, the highest
grade of portability is facilitated by using 2D/3D rendering APIs or libraries. X
Window Server is not available on all platforms and particular native widgets differ
too much from platform to platform. Sticking with graphics APIs is even more
emphasized by the fact that the ME uses OpenGL to display content. Additionally,
by using the ME preferably for mobile games and multimedia apps, native widgets
with their default look and feel are even less attractive for artists who are responsible
for the GUI design.

Skinning: Three skinning philosophies were identified during evaluation. Decen-
tralized skinning and skin classes are both done in user code, where the first approach
only affects single widgets and the second one sets global rules. Alternatively, skin
description files also have global effect, but in comparison to skin classes, they are
defined by special file formats, which makes them easier to maintain and to ex-
change. The third method is most preferable for the MGT, since the ME has a very
flexible resource handling system and a versatile scene graph XML format.

Event Handling: Event handling has been identified as a variant of the observer
pattern. Depending on the language, the notification of the observer is done by
callbacks (function pointers) or interface implementations (methods). This also
seems reasonable for the MGT. The signal-slot concept operates on a higher level
and requires the integration of a MOC into the toolchain of the ME. This would
violate the requirement that the toolkit may depend on the engine, but not vice
versa. Furthermore, the efforts of writing clean and easily readable standardized
C++ code (as proposed by the ME) would also be affected.

31

CHAPTER 2. EVALUATION OF EXISTING TOOLKITS

Layout Control: Similar to widgets, layout managers exist in many varieties, shar-
ing some resemblances across different toolkits. Some samples only differ in name
or customization properties. The more interesting part, however, is how layouts are
integrated in an existing hierarchy of widgets. Extending the container class is one
option, but writing separate layout controllers is a more lightweight solution, since
layouts primarily perform some spacing arithmetics on widgets. Another objection
to layout widgets is the fact that containers are also base classes of richer containers
with particular functions or accessories (e.g. scroll containers). A controller can just
be attached to any container subclass, while layout containers must be embedded
into extended containers.

The next chapter will present the concepts of the MGT that are based on the
knowledge gained during the evaluation phase and adopted to the demands of the
ME.

32

3 Design

This chapter will cover the main concepts of MGT. Based on the evaluation results
from the previous chapter, the MGT attempts to cover the basic features and sub-
systems of modern GUI toolkits. The strategies behind the implementations are
discussed here. Which strategy actually was preferred for a feature strongly de-
pends on the usefulness of the feature within the primary field of application (i.e.,
multimedia applications on mobile platforms) and on the capabilities of the ME. As
said before, the MGT is built upon the ME and the third-party libraries included in
the engine. Hence the toolkit cannot be used with any other engine or standalone.

3.1 Toolkit Architecture

The implementation of the MGT entirely resides on the level of the user code layer
introduced in section 1.4.1. It is therefore connected to the engine only through
the public interfaces. This is sufficient for implementing all features covered in
this chapter. Moreover, a toolkit written on the user code layer is more modular,
since it does neither penetrate the underlaying engine nor does it create unnecessary
dependencies. This is also one of the requirements the MGT must fulfill.

3.1.1 Basic Structure

Figure 3.1 shows a component diagram representing the distinct parts and their
connection. The architecture is mainly flat, even if the diagram may suggest the
opposite. However, the outlined, third level is the actual implementation of the
toolkit, while the upper level consists of public interfaces, which are derived from
some base interface classes. Those make up the basic entity types that are part
of the toolkit. The user of the toolkit only accesses the instantiated entities (i.e.,
objects) through their public interfaces, after they have been created by a factory.
The source code of the implementation will not be shipped by the distribution of the
engine to developers with basic licenses. This strategy is also used by the ME itself,
following the abstract factory design pattern drafted by the Gang of Four. The next
section will give an overview of the different kinds of classes implemented in the
MGT. A detailed explanation of the concept behind will be given in the subsequent
sections. There are, of course, some more classes and functions available in the
toolkit, which were not taken into account by the component diagram in figure 3.1
because they are merely used as utilities to loosely support other classes. A closer
look on the utilities will be given in chapter 4, Implementation.

33

CHAPTER 3. DESIGN

Figure 3.1: Component diagram of the MGT

3.1.2 Toolkit Object Types

Events

The Event types are implementations of IEvent and describe objects holding data
about events occurred on Event Triggers (i.e., instances of IEventTrigger), at
which one object represents one event. Events1 are created by Event Triggers and
dispatched to Event Handlers by a singleton Event Pipeline, which realizes an ob-
server pattern. This process will be described in section 3.2.4. For now, it is sufficient
to know that there is an Event class for each type of event the MGT is able to han-
dle. This is shown in the class diagram of figure 3.2. The abstract base class Event
implements the interface IEvent and provides access to the object that triggered
the Event. All derived classes add further information depending on the kind of the
event occurred. There is no other purpose of Events beyond their informational use
case. Event class implementations are not available directly. Instead, the interfaces
of the various Event types can be queried. Details on the different Event types will
be provided in section 3.2.2.

1When using the term Event (uppercase), I refer to the implementation of event description
objects in the MGT. The term event (lowercase) is used when discussing events in a more
general (toolkit-independent) context.

34

3.1. TOOLKIT ARCHITECTURE

Figure 3.2: Event classes and interfaces
Event is an abstract class that provides access to the Event Trigger. This class as well as
any other implementation of the Event type is hidden and not accessible from user code
(gray area).

35

CHAPTER 3. DESIGN

Entities

An Entity is an object for wrapping and managing data that is processed by GUIs.
The base class Entity implements the IEntity interface which is a subclass of
IEventTrigger. Hence, Entities can be identified as the origin of certain types
of Events, namely EntityEvents. An Entity fires an Event, whenever the data it
holds has been changed. In general, there is no specification about the data structure
below an Entity, so an object conforming to IEntity can hold any possible data.
However, there are some Entity subclasses available to satisfy basic data handling
for some controls included in the toolkit. The Entity inheritance tree is depicted
in figure 3.3. The abstract factory pattern is utilized here. Accessing an Entity
is therefore only possible through its public interface. A further explanation on
Entities will follow in section 3.3.1. There will also be an outline on the purpose of
some special Entity classes.

Widgets

The base interface of all widgets of the MGT is called IWidget. Like the IEntity
interface, IWidget inherits from IEventTrigger. A Widget2 is a renderable geom-
etry that is able to receive and handle user input events as well as to create events
itself. Figure 3.4 shows a class diagram which depicts the immediate inheritance of
the IWidget interface.3 Subclassing IEventTrigger allows a Widget to create an
Event, or – more precisely – allowing a Widget to identify itself as the Event Trigger
of an Event.
Most of the Widget interfaces are subclasses of IComponent (as seen in figures 3.5

and 3.7), whereas the other Widget interfaces IMenu and IMenuStrip are on their
own. A Component simply refers to a Widget that is described as rectangle by its
position and dimension. Moreover, Components can be put into a Container, that
is another Component which implements the IContainer interface. A Container
inherits the properties of a Component and can therefore be used to build an UI
with hierarchically structured Components. It may be clear now why IMenu and
IMenuStrip are not Components at all: Their intent as menus in a GUI (main
menus, context menus, popup menus4, etc.) is not compatible with the idea of
laying out Widgets hierarchically. Figure 3.5 shows Containers and simple render-
only Components.

The MGT realization of the Drag-and-Drop concept is linked to Components
and Containers, so the involved classes shall be introduced here, although they are
no Widgets. Components can be dropped into Containers, when using both in

2When using the term Widget (uppercase), I refer to the implementation of widgets in the
MGT. The term widget (lowercase) is used when discussing widgets in a more general (toolkit-
independent) context.

3Note: For reasons of brevity, the class diagram does not include the getter and setter methods.
They are just listed as public properties. Since there are no actual public properties used in
the classes and interfaces, all public properties in the class diagram may be interpreted as
property accessors/mutators. There are also no protected and private properties since their use
is implementation specific and not relevant for the concept itself.

4One popular example of a popup menu is the UIActionSheet included in Cocoa Touch.

36

3.1. TOOLKIT ARCHITECTURE

Figure 3.3: Entity classes and interfaces
The gray area marks the classes (all implementations) that are not visible to the developer.
Due to the abstract factory pattern, objects can only be accessed through their public
interfaces.

combination with the same Drag Drop Family Node instance, which handles the
logic behind Drag-and-Drop. A Drag Drop Family is an extension of Node and has
its separate class hierarchy as shown in figure 3.6

There exists a special group of Widgets within the Component inheritance tree.
They are called Controls and are vital elements to make a GUI capable of receiving
user interaction. A button is the most important control of a toolkit, since trig-

37

CHAPTER 3. DESIGN

Figure 3.4: Widget classes and interfaces

gering actions by clicking or touching UI elements is the primary idiom of GUIs.
The button of the MGT implements the IButton interface and is a subclass of
StatefulComponent. All other Controls are subclasses of Control, which imple-
ments the IControl interface. Figure 3.7 shows the Control inheritance class dia-
gram. Section 3.4 will cover each Widget in greater detail.

Layouts and Layout Directives

Layouts5 are attached to Container widgets to control size and position of contained
Component widgets. The base interface is called ILayout and is implemented by
the abstract class BaseLayout, which serves as base class to all concrete Layout
implementations. A developer may specify Layout Directives for each Component
to explicitly control the layout process run by the parented Container. A Layout
Directive is an implementation of an interface subclassed from ILayoutDirective,
providing one interface type for each Layout type. Layouts and Layout Directives
are both subclasses of Node, allowing them to be instantiated in a scene graph XML
resource. Figures 3.8 and 3.9 show class diagrams revealing the relations between

5When using the term Layout (uppercase), I refer to the implementation of layouts in the
MGT. The term layout (lowercase) is used when discussing layouts in a more general (toolkit-
independent) context.

38

3.2. EVENT HANDLING

Figure 3.5: Component classes and interfaces

all Layout and Layout Directive types. Information on the Layout handling process
itself will be covered in section 3.5.

The next two sections will illustrate the concept of two important MGT features,
event handling and data management. An adequate understanding of those concepts
is necessary, before having a closer look on the node types provided by the MGT
for implementing GUIs in a scene graph.

3.2 Event Handling
3.2.1 Polling vs. Dispatching
A GUI is generally event-driven, meaning only user input events cause functions
or methods to invoke. The event handling system of a GUI toolkit is generally a
realization of the observer pattern. The ME, however, uses polling to query user
interaction, device states, and logic states. To provide a convenient and transparent
high-level API for developers familiar with event-driven programming, a message-
based event handling system has been implemented as part of the MGT.Widgets and

39

CHAPTER 3. DESIGN

Figure 3.6: Drag-and-Drop control classes and interfaces

logics poll input information via the methods provided by the ME and encapsulate
it into Event objects. Afterwards, these objects are passed to the event handlers
through an Event Pipeline. Similar concepts are found in Java’s AWT event handling
or in the Core Foundation’s NSNotificationCenter. This process will be described
in detail in the next few sections.

However, the low-level alternative to this message-based approach, polling, is
also available and equally informative. This means that everything that could be
learned from dispatched Event objects can also be queried from Widgets or other
Event Triggers directly. Which strategy to use depends on the application logic: Is
it tick-based or event-based? Computer games are usually tick-based, so to keep
things consistent, input actions on a game HUD shall be polled on each tick. As
many game logics are implemented as finite state machines (FSM), a state transition
shall be started from a state logic (e.g., by polling button presses) rather than being
initiated externally (without knowledge of the state) at an undefined time. Other
apps, such as image viewers or news readers, are idle until user interaction happens.
In this case, event handling will just be fine for this job.

3.2.2 Events
Before explaining the dispatching system of the MGT, this section will describe the
purpose of all available Event types already introduced in section 3.1.2. Events
(uppercase!) are instances of Event and IEvent describing an event. They are
dispatched to Event Handlers, which will then process the information according to
the developer’s needs. Events can be grouped into three categories, depending on
how they were created. Table 3.1 classifies the Event types introduced below. The
three categories are:

40

3.2. EVENT HANDLING

Figure 3.7: Control classes and interfaces
Controls can be seen as an own category within the Component inheritance tree. They are
subclasses of StatefulComponent, which is an indirect subclass of Node. All non-abstract
Control classes shown in the diagram can therefore be instantiated as Node in the scene
graph XML resource. Note: For reasons of brevity, this class diagram only shows the class
extensions of the Control classes. The implemented interfaces declare the same methods
as their implementations and are named after the related classes, preceded by an I.

41

CHAPTER 3. DESIGN

Figure 3.8: Layout classes and interfaces
A Layout is a subclass of BaseLayout, which is an implementation of ILayout, and a
subclass of the ME base node class Node. Additionally, there are specific interfaces for
each Layout to implement, as well as interfaces to access the respective Layout Directive
information. The gray-shaded classes are private implementations and hidden to the user.

42

3.2. EVENT HANDLING

Figure 3.9: Layout Directive classes and interfaces
Layout Directives are subclasses of Node and implementations of ILayoutDirective or
rather of one of its subclassed interfaces. They provide access to properties used for
parameterizing the layout process. The gray-shaded classes are private implementations
and hidden to the user.

• Local input events are generated from pointing input devices (e.g., mice, touch
screens). The screen coordinate hit by the input device will be transformed to
the local model coordinates of the Widget after applying reverse Model-View-
Projection transformation and ray casting to find the objects intersected by
the ray extruded from the input point. The resulting coordinates are always
part of the information gained from local input events.
• Global input events are generated from non-pointing input devices like key-

boards, gyroscopes, or mouse wheels. In contrast to input generated from
pointing devices, there is no spatial context when using non-pointing devices,
as they do not point to a specific position on the screen. The target Wid-
get therefore needs to be determined by the Device Polling Logic (see below)
included in the MGT after a global input event has been detected.
• High-level events can be generated from local or global input events or pro-

grammatically. Rather than describing the input event itself, they are focusing
on the effects of the input event. For example, a Slide Event does not describe
the involved touch gesture of the pointing device, but the thumb movement
relative to the track.

Entity Event: Entity Events are fired after the data of an Entity has been changed.
The Entity involved in the update can be retrieved from the IEntityEvent interface.

43

CHAPTER 3. DESIGN

Event type Event category
Entity Event high-level
Focus Event high-level
Keyboard Event global input
Menu Event high-level
Mouse Event local input
Point Event local input
Selection Event high-level
Slide Event high-level
Step Event high-level
Touch Event local input
Wheel Event global input
Window Event high-level

Table 3.1: Event type categorization

Focus Event: Focus Events are invoked whenever a Widget receives or yields the
focus of the input devices. No more than one Widget may have the focus in the
same time. Thus, two Focus Events will be fired if the focus moves from one Widget
to another. The Event Handler is able to query the receiver and the yielder of the
focus. The IFocusEvent interface is used to get information about the Widgets
involved in passing the focus.

Keyboard Event: Keyboard Events are detected by the Device Polling Logic and
invoked by the focused Widget after a key was pressed on the keyboard. The
IKeyboardEvent interface provides information on the keyboard hit, e.g., which key
was pressed.

Menu Event: Menu Events are fired by IMenuBar and IMenuStrip instances after
a contained IMenuItem was selected. A pointer to the selected Menu Item can be
retrieved from the Menu Event object, accessed by the IMenuEvent interface.

Mouse Event: Mouse Events are invoked on pressing or releasing a mouse button
on a Component. The IMouseEvent provides access on information of this Event
about the click position relative to the Component boundaries, the mouse button
which performed the clicked, and the phase (“event type”) of the click. The following
event types are handled and propagated by the toolkit for all pointing devices:

• PRESS: The user presses down the pointing instrument (e.g., mouse button,
finger) inside the boundaries of the area defined for point input.
• RELEASE_INSIDE: The user releases the previously pressed down pointing in-

strument inside the boundaries of the area defined for point input.
• RELEASE_OUTSIDE: The user releases the previously pressed down pointing

instrument outside the boundaries of the area defined for point input.

44

3.2. EVENT HANDLING

Point Event: Point Events are an abstraction of Mouse Events and Touch Events,
limited to simple, common properties. There will be no information about mouse
buttons and only the touch event with the lowest tracked event ID6 will be consid-
ered. Point Events are preferred in situations where the dedicated device properties
do not affect the input idiom, i.e., the user points to an object and selects it. More
comfort in event handling is therefore assured for GUIs, which are designed for both
mouse and touch input devices, as only one type of event needs to be observed. This
tackles a common problem on platform-agnostic application frameworks, which re-
quire developers to write dedicated code for both mouse and touch input handling.
However, Point Events will only abstract mouse inputs, if the left mouse button was
involved. Point Events invoked by multi-touch inputs will only handle the touch
with the lowest tracked event ID. Information is accessible via the IPointEvent
interface.

Selection Event: Selection Events are fired by instances of ISelection, which
contains a list of items (e.g., Entities, see section 3.1.2) and an index pointing to a
selected item, marking it as “selected”. Widgets related to Selections usually provide
options to choose from. The item related to the chosen option is then marked as
selected by assigning the item index to the selection index. The previously selected
index will be overwritten. A Selection Event provides a pointer to the ISelection
instance and both indices: the index of the selected item and the index of the item
that has been deselected in favor of the new selection. Information is accessible via
the ISelectionEvent interface.

Slide Event: Slide Events are fired by Slider widgets (see section 3.4.6), if the
thumb of the Slider is moved by the user or programmatically. The ISlideEvent
interface allows to query the slide value, i.e., the relative thumb movement on the
track. This value is normalized to [−1, 1], where a negative sign means a decremental
move (left or up). Slide Events do not propagate information about the current
Entity value the Slider represents. This information can be retrieved from the Entity
itself, which will fire a separate Entity Event.

Step Event: Step Events are fired by a Stepper (instances of IStepper) after its
step up/down button has been pressed, but before the Entity updated the internal,
numerical state representation. The IStepEvent will inform the Event Handler
about the step direction, whereas a negative sign means a negative step. This
information is available through the IStepEvent interface. Step Events do not
propagate information about the current Entity value the Stepper represents. This
information can be retrieved from the Entity itself, which will fire a separate Entity
Event.

Touch Event: Touch Events occur on devices with touch screens or track pads
when the user performs press or release actions on the input sensor. Compared to

6A tracked event is an input event of a pointing device that was started by pressing down within
a given boundary. Examples are touch screen gestures and mouse clicks. On multi-touch input,
each single touch will be identified by an unique tracked event ID.

45

CHAPTER 3. DESIGN

Mouse Events and Point Events, Touch Events are able to track an infinite number
of simultaneous inputs, only limited to the capabilities of the device. Coordinates
and event types (same as on Mouse Event, see above) can be queried from the
ITouchEvent interface.

Wheel Event: Wheel Events occur on any Widget that is focused in the current
Context after a mouse wheel input happened. They are detected by the Device
Polling Logic. Information is available via the IWheelEvent interface.

Window Event: Window Events are fired by Window widgets after a Window has
been opened or closed. This information is provided by the IWindowEvent interface.

3.2.3 Device Polling Logic
As mentioned before, global input events must be polled by a Widget-independent
logic. Local polling is done by the Widget logic itself for mouse or touch events and
any other events that originate from the Widget itself. Polling mouse and touch
events is possible because the ME provides nodes to define clickable/touchable areas
within a scene graph. This node is called Button (not to confuse with the MGT
Widget with the same name) and allows to query common pointing device input
actions that happened during the most recent tick. Furthermore, other local events
like stepping, sliding, or focusing are generated from pointing device inputs on child
node button areas. Global polling is necessary for all kinds of events that do neither
happen on a local button area (local input events) nor originate from the logic of
the Widget (high-level events).

The EventPollingLogic class is a logic processor for polling global input events
and delegating them to the active Context. A Context is a node implementing the
IContext interface that manages the Focus of descendant Widget nodes. A Focus
is a pointer to a Widget that will be notified on global input events and will then
create the appropriate Event objects. It can be moved from one Widget to another
by either selecting it with the pointing input device or by pressing TAB (forward)
or SHIFT+TAB (backward) on the keyboard. The following constraints are defined
for this concept of Context and Focus7:

1. No more than one Widget per Context can be focused at a time.

2. No more than one Context per app session can be active at a time.

3. Inactive Contexts do not have any Widget focused.

A fourth constraint can be deducted from the first three: No more than oneWidget
per app session can be focused at a time. This abstract explanation just describes
a common GUI behavior every user is familiar with. One can navigate through the

7Be aware not to confuse with the focus-plus-context technology, allowing both an overview (the
context, e.g. a map) and a detail (the focus, e.g. a building) to be displayed simultaneously on
a screen.

46

3.2. EVENT HANDLING

Figure 3.10: Device Polling Logic, Contexts, and Focus
The Device Polling Logic polls the device handler for input events on each tick. If there
has been input on the most recent tick, the gathered information will be passed to the
active Context. The active Context then creates the Event object by declaring the focused
Widget as Event trigger. It will then be passed to the pipeline.

GUI widgets with the TAB key and focus a particular widget by clicking or touching
it. But navigating only works for widgets within the same window or tab page and
only if the window or tab page “is in front”. In the MGT, the Context is a realization
of this constraint, though it is not restricted to windows or tab pages. Contexts have
implicit sort orders for rendering GUI layers, whereas the Context with a higher sort
order will occlude the Context with a lower sort order. The active Context is always
on the top layer of stacked Contexts and thus not occluded by the Widgets of any
other Contexts. The effect can be seen in figure 3.10. Activating another Context
pushes it onto the top of the stack and moves down the previous active Context for
one layer. This implies that Contexts with lower sort orders have been inactive for
a longer time than Contexts with a higher sort order (despite the possibility that
they might have been initialized with a lower sort order). Figure 3.11 illustrates
how these push operations affect the Context ordering on the stack. Note that the
terminology of stacks has been chosen for reasons of comprehensibility, unaware of
the actual algorithm implemented.

Finally, it is also possible to lock the active Context. No other Context can then
be pushed active unless the lock is undone by the logic. A common use case for this
feature is showing a dialog window, which blocks all other user interaction apart
from pressing one of the dialog buttons.

3.2.4 Event Dispatch Table, Event Pipeline, and Event Channels
The EventPipeline singleton is in charge for dispatching Events to Event Handlers.
Event objects are passed to the pipeline together with a reference to an instance of
EventChannel. An Event Channel is used to identify the origin of an Event and
can be mapped to an array of targeted Event Handlers. Each Event Trigger has one
Event Channel for each type of Event that can be created by the Event Trigger. For
example, a mere Component can trigger six different types of Events, thus every single

47

CHAPTER 3. DESIGN

Figure 3.11: Pushing Contexts active
The active Context always has the highest order on the stack (marked sea green). Pushing
Context B will affect the order of all Contexts in the stack above B (marked light lime
green) as they need to fill up the gap left by B (marked dark gray). B will be pushed on
the top of the stack afterwards.

instance will have six Event Channels in use. The EventDispatchTable is another
singleton that manages the assignment of Event Handlers to Event Channels. The
cardinality of their relationship ism : n. One Event Channel can be used to dispatch
an Event to one or more Event Handlers, one Event Handler may receive Events
from one or more Event Channels. The complete process of Event dispatching to a
single Event Handler, depicted in figure 3.12, can be described as follows:

Figure 3.12: Event dispatching
The blue arrows symbolize parameter passing by calling a method. The red arrows mark
the retrieving of an object, i.e., by creating one.

48

3.2. EVENT HANDLING

1. An instance of IEventHandler, the Event Handler, is created by user code.

2. The Event Handler is passed to the appropriate registration method of the
Event Trigger.

3. The Event Trigger passes its appropriate Event Channel and the Event Han-
dler to the Event Dispatch Table, which maps both objects. This is called
registration.

4. The Event Trigger discovers the occurrence of an event and creates an Event
object.

5. The Event Trigger passes the Event and the corresponding Event Channel to
the Event Pipeline.

6. The Event Pipeline retrieves a list of all Event Handlers mapped to the given
Event Channel from the Event Dispatch Table.

7. The Event Pipeline iterates over all Event Handlers and calls their Perform()
method using the Event object as parameter.

3.2.5 Event Handlers
An Event Handler is an implementation of the IEventHandler interface, which de-
clares the abstract method Perform() to implement (see figure 3.13). This method
is called to handle the Event, passed as parameter, by a custom implementation.
The interface is unified for all kind of Events, thus the developer must take care to
handle the correct type (e.g., by applying dynamic casting). There are two different
ways to implement an Event Handler:

• Event Handlers can be written by implementing the IEventHandler inter-
face either as a dedicated class or as an arbitrary class. This is similar to
implementing the EventListener interface in Java AWT.
• Event Handlers can be written as custom methods with the same parameters

and return values as the Perform() method declared in the IEventHandler
interface. An instance of the CallbackEventHandler template class will then
wrap the function pointer to this method and the object the method shall
be called on (see figure 3.13). The CallbackEventHandler instance will be
treated as the Event Handler since it is an implementation of IEventHandler.
Calling Perform() on this instance will simply invoke the method the function
pointer points to.

Event Handlers must be registered to receive Events. The registration is done
by calling dedicated registration methods of IEventTrigger instances, which re-
quire the Event Handler to be passed as argument. Event Triggers are Widgets,
Entities, or Selections. The class diagrams in figures 3.3 and 3.4 give information
about which interfaces provide registration methods (Register*EventHandler())
for what Event types.

49

CHAPTER 3. DESIGN

Figure 3.13: Event Handler classes and interfaces

3.2.6 Event Handler Table
The EventHandlerTable is not an integral part of the event handling subsystem but
offers a method for global mapping of identifier strings to IEventHandler instances.
This can be very useful for GUIs defined entirely in XML resources, allowing Widget
nodes to specify which Event Handler will handle certain kind of Events. The Event
Handler to use must first be registered by the Event Handler Table on application
startup by assigning an unique identifier string. On deserialization, the identifier
string gained from an attribute of the Widget’s XML node will be used to lookup
the Event Handler. If found, the Widget will take care of the registration, sparing
the developer from doing this in a logic processor. Table 3.2 shows which attribute
is defined for what Widget.

This concludes the explanation on a basic feature of the MGT. The next section
will describe the data handling concept, which relies on the event handling subsystem
introduced above.

3.3 Data Management
The extent of data management features provided by a GUI toolkit depends on
the primary fields of application. This varies from simple widget object properties
to full support of relational databases. The next two sections explain which data
management concepts are provided by the MGT.

3.3.1 Entities
Some widgets shipped with the MGT are called Controls (after their common base
class), see section 3.1.2 for more details. Their main purpose is to present data, while
processing output, and to manipulate data, while processing logic (this is when user
interaction is parsed). Text fields are the most obvious examples for this kind of
widgets. They are able to process user input and update an internal string value
as well as display the current string on screen. The evaluation has shown that data
handled by control widgets can be categorized the following way:

50

3.3. DATA MANAGEMENT

fo
cu

sE
ve

nt
Ha

nd
le

r

ke
yb

oa
rd

Ev
en

tH
an

dl
er

wh
ee

lE
ve

nt
Ha

nd
le

r

mo
us

eE
ve

nt
Ha

nd
le

r

po
in

tE
ve

nt
Ha

nd
le

r

to
uc

hE
ve

nt
Ha

nd
le

r

sl
id

eE
ve

nt
Ha

nd
le

r

st
ep

Ev
en

tH
an

dl
er

me
nu

Ev
en

tH
an

dl
er

wi
nd

ow
Ev

en
tH

an
dl

er

en
ti

ty
Ev

en
tH

an
dl

er

se
le

ct
io

nE
ve

nt
Ha

nd
le

r

ActivityIndicator 4 4 4 4 4 4 8 8 8 8 8 8

Button 4 4 4 4 4 4 8 8 8 8 8 8

CollapseContainer 4 4 4 4 4 4 8 8 8 8 8 8

Component 4 4 4 4 4 4 8 8 8 8 8 8

Container 4 4 4 4 4 4 8 8 8 8 8 8

Dialog 4 4 4 4 4 4 8 8 8 4 8 8

Label 4 4 4 4 4 4 8 8 8 8 8 8

ListItem 4 4 4 4 4 4 8 8 8 8 4 8

ListView 4 4 4 4 4 4 8 8 8 8 8 4

Menu 4 4 4 8 8 8 8 8 8 8 8 8

MenuItem 4 4 4 4 4 4 8 8 4 8 8 8

MenuStrip 4 4 4 8 8 8 8 8 8 8 8 8

OptionButton 4 4 4 4 4 4 8 8 8 8 8 4

ProgressIndicator 4 4 4 4 4 4 8 8 8 8 4 8

ScrollContainer 4 4 4 4 4 4 8 8 8 8 8 8

Slider 4 4 4 4 4 4 4 8 8 8 4 8

Stepper 4 4 4 4 4 4 8 4 8 8 4 8

Switch 4 4 4 4 4 4 8 8 8 8 4 8

TabControl 4 4 4 4 4 4 8 8 8 8 8 8

TabPage 4 4 4 4 4 4 8 8 8 8 8 8

TableView 4 4 4 4 4 4 8 8 8 8 8 4

TextField 4 4 4 4 4 4 8 8 8 8 4 8

Window 4 4 4 4 4 4 8 8 8 4 8 8

Table 3.2: XML attributes available for XML tags
This table shows which XML tag (rows) supports which XML attribute (column). The
tags represent an instance of Widget while the attributes refer to Event Handler instances
that must be registered by their identifier on application startup.

51

CHAPTER 3. DESIGN

• Switch: A boolean value representing an on/off state of an arbitrary option.
• Number: A fixed or floating point number value within given limits.
• Text: An arbitrary string value.
• List: A list of values of any type, including those described in a category

above.

Instead of immediately storing their raw data as object properties of a Widget,
a proxy object that wraps the data will be used. Those objects are called Entities
and are subclasses of the abstract type Entity and implementations of the IEntity
interface. The class hierarchy of the Entity type has already been outlined in figure
3.3. The role of the Entity types are best described in the following paragraphs by
having a closer look on the provided methods.

Entity: The abstract superclass defines methods for registering and unregistering
Event Handlers on Entity Events. Events are fired by the protected method Notify,
which is called by all subclasses on data updates.

Number Entity: The Number Entity (class NumberEntity, an implementation of
INumberEntity) wraps a raw number stored as fixed point or floating point value.
Beside changing the number itself, methods for incrementing, decrementing, and
altering the step size (which defines the incremental/decremental step) are available
for manipulating the value.

Switch Entity: The Switch Entity (class SwitchEntity, an implementation of
ISwitchEntity) holds a boolean value and provides methods to read, write, or
toggle the value.

Text Entity: The Text Entity (class TextEntity, an implementation of IText-
Entity) contains a string and provides some basic methods for string manipulation.

Selection: A Selection (class Selection, an implementation of ISelection) is
a common view on a set of indexed items, where an arbitrary number of items
(identified by their indices) can be marked as selected. The interpretation of the
Selection depends on how this Entity is used. The MGT uses Selections for Option
Buttons and List Views (see section 3.4.6) to track which option or List Item is
currently selected. At this level of abstraction, the Selection does not define which
kind of data is handled or stored. Selections may refer to arrays, but their common
description only consists of the number of contained items and the selection indices.

Although the provided implementation of the Entities just wraps raw data types,
the interfaces themselves do neither define where to store data nor from where to
retrieve it. Thus, custom implementations of Entities can wrap around any kind of
raw data (as an example, consider the system audio volume level) as long as their
usage conforms to the implemented interface.

52

3.4. WIDGETS

3.3.2 Entity Events and Selection Events
The communication between Widgets and Entities is primary done by Events. The
Widget parses user interaction and forwards the update directly to the Entity rather
than updating its own appearance. After the update, the Entity fires an Entity
Event. Controls handle Entity Events of their Entities by default, so the fired event
will be handled by the Widget which has been in charge for the update. Figure 3.14
shows this behavior as sequence diagram. Selection Events work similar, but are
used for Option Buttons and List Views.

Figure 3.14: Control updating through Entity Events (sequence diagram)

This cyclic process might seem strange. However, on closer examination, it is
a clean and efficient way to keep data and appearance consistent and transparent.
The one-way synchronization from Entity to Widget ensures consistency. There is
no way to update the appearance independently from the Entity, and every Entity
update (caused by user interaction or programmatically) yields an Event that is
handled by the Widget. Transparency is achieved by keeping the number of LOCs8

low. An Entity Event will be fired by any means, so if the Widget updates its
appearance before it updates the Entity, it will finally receive an Entity Event after
the Entity update. This causes the Widget to refresh its appearance again. This
can be prevented by unregistering the Event handler before updating the Entity and
registering it again afterwards, which is, in fact, not a perfect solution either.

3.4 Widgets
Widgets are subclasses of the engine’s basic node class Node, making a GUI created
by the MGT part of the scene graph. This allows the Widgets to be affected by most
scene graph features of the ME, for example, key-frame animations, transformations,
rendering effects, and traversal manipulators (see section 1.4.3). Furthermore, as a
consequence of Widgets being Nodes, Widgets must be designed as a composition
of other Nodes. To accomplish this, the complete palette of Nodes available in the
ME can be used for this purpose, with transformations, geometries, and surface
rendering nodes being the most important ones. The following sections will describe
the properties of each Widget and their internal composition.

8LOC, lines of code

53

CHAPTER 3. DESIGN

3.4.1 The Widget Node
The abstract base class of any Widget available in the MGT is called Widget. It
extends the Node class and implements the IWidget interface, which is an subclass of
IEventTrigger. It does not handle any geometry, as its subclasses differ too much
in this aspect. However, common to all Widgets is the ability to push the Context
they belong to (see section 3.2) and to manage registration of Event Handlers for
the following Event types: Focus Event, Keyboard Event, and Wheel Event. These
Events are not generated by the Widget itself, but by the Context it belongs to.
However, they will be informed by the Context, if a global input Event or a Focus
Event occurs. By default, the Widget just updates its internal focus flag to whether
it received or yielded the Focus. Table 3.3 contains a list of all properties common to
all Widget subclasses. The property names refer to the XML attribute names of the
corresponding Node. More XML attributes are specified in table 3.2. Properties may
also be accessed via the appropriate getter/setter methods defined in the appropriate
class. Please note that all property tables in this section only describe properties
which are defined by the corresponding Widget itself.

Name Type Description

depthOrder integer The depth sorting order used to control the layering, while
rendering the Widget geometry.

tag string The custom (and preferably unique) tag of the Event Trigger,
which may be used in custom Event Handlers to distinguish
between Widgets.

Table 3.3: Widget properties

3.4.2 Menu Bars, Menu Strips, and Menu Items
Menu Bars and Menu Strips are both implementations of the IMenu interface or,
more precisely, of its descendant interfaces IMenuBar and IMenuStrip. Their com-
mon property abstracted by IMenu is the capability of containing an arbitrary num-
ber of Menu Items (IMenuItem). Menu Bars and Menu Strips differ in presentation
and in field of usage. Further, Menu Strips may be attached to Menu Items to pop
up as submenu. With these node types, custom hierarchical menus can be defined
for many purposes. Figure 3.15 is a mockup illustrating the usage of Menu Bars,
Menu Strips, and Menu Items.
Menu Bars are main menus displayed below the title bar of a window. This is a

widely used pattern in desktop GUI applications, but not so in mobile applications.
The output generated from Menu Bars is a flat bar with horizontally arranged Menu
Items going from left to right. Selecting a Menu Item will highlight the label with
a different background and open a submenu, if a Menu Strip is attached.

54

3.4. WIDGETS

Figure 3.15: Menus, Menu Items, and Menu Strips
A Menu is a menu bar below the window title bar. A Menu Item represents a single item
within a Menu or a Menu Strip. A Menu Strip is a vertically arranged list of Menu Items
that is either attached to a Menu Item within a Menu or a Menu Item within another
Menu Strip.

Menu Strips serve multiple purposes. They can be used as

• submenus of Menu Items,
• context menus of Components, and as
• popup menus on the bottom of App Windows (used in mobile GUIs, see figure

3.16 for an example).

Menu Strips can be attached to Menu Items, Components, and App Windows by
their Menu (Strip) Node Target property. Table 3.4 sums up all properties available
to Menu Strips.

Name Type Description

menuItemSizeX real The width of a contained Menu Item, equal to the width of
the Menu Strip.

menuItemSizeY real The height of a contained Menu Item. The total height of
the Menu Strip is calculated from the Menu Item height
times the number of Menu Items.

Table 3.4: Menu Strip properties

Menu Items represent selectable items in both Menu Bars and Menu Strips. On
selection, they fire a Menu Event. This requires the Menu Item to be in an enabled
state. It is also possible to use a Menu Item as parent of a submenu created from
a Menu Strip. A graphical icon (e.g., an arrow) will then indicate the existence

55

CHAPTER 3. DESIGN

Figure 3.16: Menus, Menu Items, and Menu Strips
Popup menus are widely used in mobile apps. Cocoa Touch offers the class UIActionSheet
to create popup menus that appear at the bottom of the screen (left). On Android, this
is done by the class android.view.Menu (right).

of a submenu, which will open on hover or touch. Menu Items are not subclassed
from Widget. The node itself does not present anything, it just provides informa-
tion for the containing Menu Bar or Menu Strip. The rendering of Menu Items
is actually done by Menu Bars and Menu Strips. Menu Strips will also consider
the type property of Menu Items, which defines their presentation either as TEXT
or as SEPARATOR_LINE. Separator lines are not selectable though. The full list of
properties of a Menu Item is shown in table 3.5.

Name Type Description

title string The title to be displayed in the Menu containing the Menu
Item.

enabled boolean If true, the Menu Item can be selected by the user.
menuItemType enum The type of the Menu Item (ignored by Menu Bars).

Table 3.5: Menu Item properties

56

3.4. WIDGETS

3.4.3 Components and Containers
The key to compose complex GUIs is the Component/Container concept adopted
from AWT and Swing. In the MGT, Components are rectangular Widgets with cus-
tom size, origin, and appearance. Containers are Components capable of containing
other Components. Furthermore, Containers can use Layouts (see section 3.5) for
arranging child Components automatically by controlling their size and origin.

Component: Components are instances of the Component class, subclass of Widget
and implementation of IComponent. Mere Components are already aware of some
Event types (see table 3.2) and can be customized in means of size, origin, and
appearance. They also support drag and drop and provide access to the dimension
property, which is used by Layouts as input/output parameter on layout computa-
tion. However, there is no further logic behind them. A probable field of use may
be the presentation of flat images, e.g. icons in a GUI. A Component is described
by the properties listed in table 3.6.

All other Widgets, except those introduced in section 3.4.2, are descendants of
Component and will therefore inherit its properties. This is essential for a unified
Component/Container concept that supports layout management and composing.

Name Type Description

customGraphResourceId string The ID of the graph to instantiate instead of
the default subgraph.

dragControllerId string The Node ID of the drag controller (see below).
buffered boolean If true, the Component and all its children are

rendered into a frame buffer and displayed onto
a plane geometry.

dimension vector Size (width, height) and origin (x, y) of the
Component.

buttonShape enum The shape of the click/touch area surrounding
the Component.

geometryType enum The geometry type of the Component (see sec-
tion 3.6).

patchAtlasName string The ID of the atlas used to create a generic
geometry (see section 3.6.2).

patchStateSetId string The state set to use for rendering a generic ge-
ometry (see section 3.6.2).

planeStateSetId string The state set to use for rendering a plane ge-
ometry (see section 3.6.2).

referenceTargetId string The Node ID to refer to for rendering a pre-
defined geometry (see section 3.6.2).

Table 3.6: Component properties

57

CHAPTER 3. DESIGN

Container: Containers are instances of the Container class, subclass of Component
and implementation of IContainer. Containers extend Components by the capa-
bility of containing other Components as child nodes. Furthermore, Layouts can be
used by Containers for automatically manipulating size and position of contained
Components according to the Layout parameters. Layouts are covered in more de-
tail in section 3.5. Containers have a property to refer to a Layout node (specified
by the ID) to use for the layout process. Therefore, a Layout node must be created
before the Container node in the scene graph. Layout nodes usually are not part of
the Component-Container hierarchy. Since Layouts keep track of the Components
laid out, having two or more Containers referring to the same Layout will lead to
an undefined behavior. Table 3.7 contains a list of dedicated properties used by
Containers.

Name Type Description

layoutId string The Node ID of the Layout to use for arranging con-
tained Components.

dropControllerId string The Node ID of the drop controller (see below).

Table 3.7: Container properties

Collapse Container: Collapse Containers are instances of the CollapseContainer
class, subclass of Container and implementation of ICollapseContainer. In ad-
dition to the default Container behavior and properties, Collapse Containers come
along with a control bar on the top, containing a title label and a button to toggle
between the collapse/expand state. The expand state is the default state and indi-
cates that the Container itself and its content is fully visible. The collapsed state,
however, hides the Container and its content, while the control bar remains visible.
This will also cause the Widget dimension to collapse to the size of the control bar.
A Collapse Container is described by the properties listed in table 3.8.

Name Type Description

collapsed boolean If true, the Collapse Container is collapsed, otherwise ex-
panded.

controlSize real The vertical size of the control bar. The effective Container
size will be reduced by this value to fit into the Widget size.

Table 3.8: Collapse Container properties

58

3.4. WIDGETS

Figure 3.17: Collapse Container
A Collapse Container includes a control bar above the container area. The control bar
contains a customizable title label and an expand/collapse button to show or hide the
container area. The button icon indicates the current expand/collapse state.

Scroll Container: Scroll Containers are instances of the ScrollContainer class,
subclass of Container and implementation of IScrollContainer. In contrast to
other Container types, the area containing the child Components, the inner con-
tainer, is not constrained to the size of the Scroll Container widget. The Scroll Con-
tainer acts as “window” that only shows a segment of the inner container. Scrollbars
are available on the right (vertical) and bottom (horizontal) edge of the Scroll Con-
tainer, allowing the user to move the viewing window continuously over the inner
container. This process is known as scrolling. In some situations, the inner con-
tainer may be smaller than or equal to the size of its window. Scrolling does then
have no effect as the entire content is fully visible. The visibility of the scrollbars
may be customized, especially with regard to such situations. Table 3.9 mentions
all dedicated properties of Scroll Containers. A schematic of a Scroll Container is
shown in figure 3.18.

Name Type Description

innerSizeX real The total width of the inner container.
innerSizeY real The total height of the inner container.
horizontalScrollbarVisibility enum Determines when the horizontal scroll-

bar shall be displayed: ALWAYS, NEVER,
or ON_DEMAND.

verticalScrollbarVisibility enum Determines when the vertical scrollbar
shall be displayed: ALWAYS, NEVER, or
ON_DEMAND.

Table 3.9: Scroll Container properties

Drag Drop Family: Drag Drop Families9 are instances of the DragDropFamily
class, subclass of Node and implementation of IDragDropFamily, which provides

9The term “family” was preferred over “group” because the latter term probably implies a struc-
tural purpose of the node.

59

CHAPTER 3. DESIGN

Figure 3.18: Scroll Container
A Scroll Container consists of one or two optional scrollbars, an inner container area of
any size, and a plane (“window”) that shows a segment of the inner container.

access to the IDragController and IDropController interfaces. They are no Wid-
gets themselves, but an extension of the Component/Container model introduced
above. Drag-and-drop support is available through the GUI scene graph XML re-
source to minimize programming effort. To use drag-and-drop, the developer must
at least set up the following nodes:

• A Component with a Drag Controller Node Target.
• A Container with a Drop Controller Node Target.
• A Drag Drop Family which serves as Drag/Drop Controller.

All Components are draggable, if they refer to a Drag Controller, which is an
instance of IDragController. Similarly, all Containers can “catch” Components
dropped “above” them and add those as a child, if they refer to a Drop Controller,
which is an instance of IDropController. The Drag Drop Family is a special Node,
which implements both the IDragController and the IDropController interfaces,
so it will act as node target for Components and Containers. Components can only
be dropped into Containers, which belong to the same Drag Drop Family, hence
both Components and Containers must refer to the same Drag Drop Family Node
Target.

Multiple Drag Drop Families can be created to define which Components are
“compatible” with which Container. As an example, consider an inventory/equip-
ment menu of a role-playing game (RPG). Different types of equipment may be
provided to move objects (Components) from the inventory (a grid-structured Con-
tainer) to the equipment slots (single-cell Containers). An existing example is shown
in figure 3.19.

3.4.4 Tab Controls and Tab Pages
Tab-based GUIs can be created by using Tab Controls and Tab Pages. In desktop
applications, tabs are often embedded in GUIs to switch between forms focusing on

60

3.4. WIDGETS

Figure 3.19: An inventory menu of an iOS RPG.
(c) 2009 Pixel Mine, Inc.

different aspects. Tabs behave the same in mobile applications, but in contrast to
desktop applications, they are even more used for navigating through the app on the
top navigation level. Nevertheless, Tab Controls and Tab Pages are used in both
cases. Figure 3.20 shows a possible result generated by a Tab Control with some
Tab Pages.

Tab Control: Tab Controls are instances of the TabControl class, subclass of
Component and implementation of ITabControl. They are responsible for grouping
Tab Pages that belong together and generating the tab bar according to the icon
and label properties of the Tab Pages. In the scene graph, Tab Controls are parent
nodes of Tab Pages. Tab Pages can also be added or removed programmatically
during the initialization process. Table 3.10 lists all dedicated properties of Tab
Controls.

Name Type Description

selectedTabIndex integer The zero-based index of the tab button currently se-
lected.

tabBarSize real The height of the tab bar. The effective Tab Page size
will be reduced by this value to fit into the Widget
size.

Table 3.10: Tab Control properties

61

CHAPTER 3. DESIGN

Tab Page: Tab Pages are instances of the TabPage class, subclass of Container
and implementation of ITabPage. The content of a tab is held by a Tab Page, which
is similar to the Container Widget. Additionally, there are two properties describing
the appearance of the tab button on the tab bar, as explained in 3.11.

Name Type Description

tabIconTargetId string The Node ID of the plane geometry (possibly generated
by the texture atlas generator) that presents the tab icon
(optional).

tabLabelText string The text to be displayed as label in the tab button.

Table 3.11: Tab Page properties

Figure 3.20: Tab Control with Tab Pages
The Tab Control generates the tab buttons from information provided by the Tab Pages
and switches between them whenever the user presses a tab button. Tab Pages are just
Containers with tab information.

3.4.5 Windows, Dialogs, and the App Window
Widgets of type IWindow inherit from Container and come along with a title bar
and a close button in it. A Window can be moved around by dragging the title bar.
Dragging the lower right corner allows the user to resize the Window. Windows
are provided by most toolkits in some variations and are addressed by the term
modal (e.g., modal view, modal form, modal window, etc.). Dialogs are special
purpose derivates of Windows with some additional restrictions. Another window-
related kind of object only included in the MGT is the App Window proxy, which
is actually not a Widget. Windows, Dialogs, and App Windows define separate
Contexts (see section 3.2) for each instance, which groups the contained Widgets in
consideration of event handling for user interaction. See below for more details.

Window: Windows are instances of the Window class, subclass of Container and
implementation of IWindow. Figure 3.21 shows the elements of a Window widget
which were added to the default Container:

62

3.4. WIDGETS

• A title bar for dragging the Window,
• a label for custom title strings,
• a close button to close the Window,
• and a drag button to change the Window’s size.

A Window, in contrast to the base Container, provides a Context for all contained
Components. Multiple Windows can overlap each other, having the Window of the
active Context (i.e., the window which is receiving user input) above all others.
As a subclass of Container, a Window can use Layouts to automatically arrange
its child Components. Additionally, the Menu Node Target of the Window may
refer to a previously defined Menu to be included as main menu of the Window.
The MGT includes some default animations for opening and closing a Window, but
the developer is free to assign any animation for this purpose. Proprietary ME
animations are defined as keyframes in an animation XML file. As a side note,
opening and closing a Window also yields a Window Event. Table 3.12 lists all
supported properties of a Window.

Dialog: Dialogs are instances of the Dialog class, subclass of Window and imple-
mentation of IDialog. Dialogs are supplemented by some other Components, in-
tended to act as a message box with a Label and one or more Buttons. This spares
some effort to the developer, since there is no need to build it from the ground up.
The most important feature of a Dialog is the behavior of “locking” the Context
when showing up. This prevents all other Widgets outside the Dialog to receive
events, which is an expected behavior. Dismissing the Dialog can be achieved by
hitting one of its buttons. After dismissal, the Context will unlock. Dialogs do not
have draggable corners to resize them. Their size depends on the content or on
customized settings. A schematic Dialog is illustrated in figure 3.21. The dedicated
Dialog properties are listed in table 3.13.

AppWindow: App Windows are instances of the AppWindow class, subclass of
Context and implementation of IAppWindow. An App Window is a proxy to the
actual application window and can be used for assigning a main menu (Menu Bar
or Menu Strip) and Layouts. It also defines a Context for all contained Widgets,
except Window and Dialog instances. This class shares similarities with the Window
class, although there is no inheritance or direct relation between these two. The App
Window is technically no Widget at all, but it offers a handy way for customizing
the app (seen as windowed application) similarly to modal windows (i.e., Window
instances). The most common use case for App Windows are GUI-based applica-
tions rather than games or other kinds of 3D-driven applications. The properties
defined by App Window are listed in table 3.14.

63

CHAPTER 3. DESIGN

Name Type Description

menuBarId string The Node ID of the Menu Bar to use as
main menu. After initialization, the Menu
Bar can be set or queried via the Menu Bar
Node Target of the Window.

title string The text to be displayed as title in the title
bar.

animationResourceId string The name of the animation resource to use
for both opening and closing the Window.

openAnimationResourceId string The name of the animation resource
to use for opening the Window. If
set, this property is prioritized over
animationResourceId.

openingAnimationStartTime real The start time in seconds of the Window
opening animation defined in the anima-
tion resource.

openingAnimationEndTime real The end time in seconds of the Window
opening animation defined in the anima-
tion resource.

closingAnimationResourceId string The name of the animation resource
to use for closing the Window. If
set, this property is prioritized over
animationResourceId.

closingAnimationStartTime real The start time in seconds of the Window
closing animation defined in the animation
resource.

closingAnimationEndTime real The end time in seconds of the Window
closing animation defined in the animation
resource.

Table 3.12: Window properties

Name Type Description

text string The text to be displayed as Dialog message.

Table 3.13: Dialog properties

3.4.6 Buttons And Controls

This section will cover the most important kind of Widgets regarding user interac-
tion: Buttons and Controls. Buttons and Controls are derived from Stateful Com-
ponent, which itself is a Component enriched by four states of user interaction. The
states are defined by the ME itself and are part of the native Button node, which is
a vital element of the Component node composed by the MGT. The following states
are available according to the API documentation of the ME [Spraylight GmbH
2014d]:

64

3.4. WIDGETS

Figure 3.21: Window and Dialog
Windows

Name Type Description

backgroundAtlasName string The name of the atlas resource used for building a
generic, patched background geometry. If not set,
a plane geometry will be generated instead.

backgroundStateSetId string The Node ID of the state set to use for rendering
the background plane.

layoutId string The Node ID of the Layout to use for arranging
contained Components. After initialization, the
Layout can be set or queried via the Layout Node
Target of the App Window.

menuId string The Node ID of the Menu (Menu Bar or Menu
Strip) to use as main or popup menu. After ini-
tialization, the Menu can be set or queried via the
Menu Node Target of the App Window.

Table 3.14: App Window properties

• A Button is in Up state, if it is not disabled and no event is tracked within
the Button’s boundaries.
• A Button is in Down state, if it is not disabled and there is a tracked event

within the Button’s boundaries.
• A Button is in Hover state, if it is not disabled and there is an active event but

no tracked event within the boundaries, or if a tracked event moved outside
the boundaries.
• A Button is in Disabled state, if this state was set explicitly.

States are primarily used for customizing the appearance or behavior of the ge-
ometry within the Button area. More sophisticated manipulations are also possible.
From a more general point of view, the Button acts as a switch, which activates
sub-graphs depending on the active state. The MGT utilizes this mechanism to
activate certain states for widget rendering according to the Button state.

65

CHAPTER 3. DESIGN

A closer look has to be taken on the Control class, since it acts as superclass for
many basic interactive widgets. A Control is a Stateful Component that manages
an Entity. The type of the Entity and the modality of how to present and manip-
ulate data are specified by the subclasses. A Control sends an update to its Entity
whenever the Control node detects user interaction (e.g., dragging a slider thumb),
while processing logic. Subsequently, after the Entity has updated the raw data it
holds, an event will be sent back to the Control node. The Control node receives
the event and updates its display representation according to the Entity state.

Buttons: Buttons are instances of the Button class, subclass of StatefulCompo-
nent and implementation of IButton. A Button extends the Stateful Component by
a Label and a suitable skin setup. The required event handling for Buttons is already
inherited from Component and Widget, so this class adds only little functionality
to the base classes. The supported properties of Buttons are listed in table 3.15.
Figure 3.22 schematically shows the four Button states.

Name Type Description

text string The initial value of the nested Label.

Table 3.15: Button properties

Figure 3.22: Button states
A Button is a rectangular plane with a Label in it. The presentation is different for each
state of user interaction.

List Views and List Items: List Views are instances of the ListView class, sub-
class of Control and implementation of IListView. List Items are instances of the
ListItem class, subclass of Control and implementation of IListItem. List Items
are Controls for displaying the serialized Entity data as text. The Entity type itself
does not matter. List Views make use of Scroll Containers to provide a vertically
arranged, scrollable list of List Items. The List View refers to a Selection instance
to handle the selection of List Items. List Views do not have any specific proper-
ties. The List Item properties are outlined in table 3.16. Figure 3.23 schematically
illustrates List Views and List Items.

66

3.4. WIDGETS

Name Type Description

title string The optional title to display instead of the serialized Entity data.

Table 3.16: List Item properties

Figure 3.23: List View with List Items
List Views vertically arrange List Items in a Scroll Container.

Option Buttons: An implementation of the IOptionButton interface is provided
by the OptionButton class, which is a subclass of Control. An Option Button allows
the user to select exactly one option from a list of options by clicking/touching the
Widget. Therefore, an Option Button always needs to be used together with other
instances of the same type, forming a group that has at most one Option Button
selected. In most widget toolkits, there is a dedicated widget for grouping radio
buttons (see chapter 2). The MGT, however, uses a different approach by utilizing
Entities for this purpose. The Entity type used for Option Buttons is ISelection,
similar to List Views. Each Option Button belonging to the same option group
must refer to the same Selection, which is usually created by the OptionButton
Node instance defined first, O0. Subsequent Option Buttons O1...n just refer to O0
to get access to the Selection. The according property is described in table 3.17,
which provides an overview of all available Option Button properties. Figure 3.24
illustrates Option Buttons with the appearance of radio buttons.

Name Type Description

sharedSelectionControlId string The Node ID of the Control that will share
its Selection with the current Option Button,
instead of creating a new one. Only available
as XML attribute. Once initialized, no other
Selection can be assigned.

Table 3.17: Option Button properties

67

CHAPTER 3. DESIGN

Figure 3.24: Option Buttons
Option Buttons without customization look like radio buttons known from other toolkits.

Progress Indicators: An implementation of the IProgressIndicator interface
is provided by the ProgressBar class, which is a subclass of Control. Progress
Indicators are Widgets visualizing the relative value of a Number Entity within its
limits normalized to [0, 1]. This interface does not specify how the output of the
implementation should look like. The Progress Bar Widget of the MGT follows the
idiom of figure 3.25. The supported properties are listed in table 3.18.

Name Type Description

value real The initial value of the Number Entity. Af-
ter initialization, the value is only accessible
through the Number Entity.

sharedEntityControlId string The Node ID of the Control that will share its
Number Entity with the current Progress In-
dicator, instead of creating a new one. Only
available as XML attribute. Once initialized,
no other Entity can be assigned.

Table 3.18: Progress Indicator properties

Figure 3.25: Progress Indicator (Progress Bar)
A Progress Bar is just an example implementation of a Progress Indicator, displaying
a horizontal bar with progress indication. Other implementations with different output
results (e.g., a round progress meter) are possible and independent from logic.

Sliders: Sliders are instances of the Slider class, subclass of Control and im-
plementation of ISlider. They provide an continuous input method for numbers,
managed by a Number Entity. A Slider consists of a track, a thumb, and two op-
tional step buttons, one on each side (left and right on horizontal Sliders, top and
bottom on vertical Sliders) of the track, to increment or decrement the number.

68

3.4. WIDGETS

There are many possibilities to customize the appearance of a Slider, even track and
thumb can both be styled independently. The MGT itself takes advantage of this:
The scrollbars of the Scroll Containers are customized Sliders with step buttons and
an adopted appearance. Table 3.19 shows a full list of properties made available
by the Slider widget. Please note that the properties regarding the internal value
(value, maximumValue, and minimumValue) are not values stored by the Slider ob-
ject itself, but are passed to the Number Entity during Node initialization. Possible
results can be seen in figure 3.26.

Name Type Description

value real The initial value of the Number Entity.
maximumValue real The maximum value of the Number Entity.
minimumValue real The minimum value of the Number Entity.
sharedEntityControlId string The Node ID of the Control that will share its

Number Entity with the current Slider, instead
of creating a new one.

orientation enum The orientation of the Slider, either
HORIZONTAL (left-to-right) or VERTICAL
(top-down).

enableStepButtons boolean If true, the Slider will have a decrement button
on the left and an increment on the right side.

relativeThumbLength real The length of the thumb geometry relative to
the track.

thumbAtlasName string The name of the atlas resource used to create a
generic thumb geometry.

thumbStateSetId string The Node Id of the state set used for skinning
the thumb geometry.

trackAtlasName string The name of the atlas resource used to create a
generic track geometry.

trackStateSetId string The Node Id of the state set used for skinning
the track geometry.

Table 3.19: Slider properties

Steppers and Text Fields: Steppers are instances of the Stepper class, subclass
of InputField and implementation of IStepper. Text Fields are instances of the
TextField class, subclass of InputField and implementation of ITextField. Both
Controls are keyboard input fields, abstracted to InputField. While Text Fields can
receive any input, Steppers will only accept numeric characters. A Stepper handles
discrete numeric values, in contrast to the continuous method of the Slider. By
default, Steppers use floating point numbers. Forcing integer values can be done by
setting the integral property. Additionally, Steppers have two buttons to increment
or decrement the number by the step defined in the Number Entity (default is 1).

69

CHAPTER 3. DESIGN

Figure 3.26: Sliders

Sending input characters or pressing the step buttons will immediately update the
Control’s Entity. Text Fields support secure flags to prevent the current value to
be revealed on display. This is commonly used in password input fields. A scheme
of how both Widgets look like is shown in figure 3.27. Tables 3.20 and 3.21 outline
their supported properties.

Name Type Description

value real The initial value of the Number Entity.
integral boolean If true, the number is represented by an integer

type, thus not supporting floating point values.
sharedEntityControlId string The Node ID of the Control that will share its

Number Entity with the current Stepper, in-
stead of creating a new one.

Table 3.20: Stepper properties

Name Type Description

text string The initial text of the Text Entity.
secure boolean If true, the characters of the input text are re-

placed by a placeholder.
sharedEntityControlId string The Node ID of the Control that will share its

Text Entity with the current Text Field, instead
of creating a new one.

Table 3.21: Text Field properties

70

3.4. WIDGETS

Figure 3.27: Input Fields (Text Field and Stepper)

Switches: A Switch is a Widget that represents a boolean value which is toggled on
user interaction. Implementations of the associated ISwitch interface are provided
by the CheckSwitch and the SlideSwitch classes, both are subclasses of Control.
A switch can be presented by different metaphors, each depending on the device
class and the application itself. Traditionally, switches are realized by checkboxes.
The advent of touch devices brought the slideable switch, with UISwitch of Cocoa
Touch being the most famous example, later followed by the ToggleButton of An-
droid. Another metaphor, used in many software audio mixers, is the toggle switch.
Nevertheless, the paradigm of the switch remains the same in all three examples.
This nature is abstracted by the ISwitch interface. The MGT includes two differ-
ent implementations of ISwitch to demonstrate how a single UI paradigm (and a
single interface) can be reused for different widgets. A CheckSwitch imitates the
checkbox widget, while a SlideSwitch is composed by a thumb that moves along a
track, inspired by the switches used on touch devices. Figure 3.28 shows schematics
of both Widgets. The list of properties required by the interface is outlined in table
3.22.

Name Type Description

activated boolean If true, the initial state of the Switch Entity is
set to “on”.

sharedEntityControlId string The Node ID of the Control that will share its
Switch Entity with the current Switch, instead
of creating a new one.

Table 3.22: Switch properties

Figure 3.28: Switch (Check Switch and Slide Switch)
On the left side is an example of both active and inactive Check Switches. The Slide
Switches on the right side have the same internal state on their Switch Entity as their
Check Switch counterpart.

71

CHAPTER 3. DESIGN

Table Views, Table Rows, and Table Cells: Table Views are instances of the
TableView class, subclass of Component and implementation of ITableView. Table
Views are a rudimentary implementation of editable data matrices. Be aware not
to confuse them with the sophisticated list views provided by Cocoa Touch, called
UITableView. The MGT Table Views are two-dimensional, so they require rows
and cells to be defined. The immediate child nodes of Table View are Table Rows,
at which one instance represents one row.

Name Type Description

numberOfRows integer The number of Table Rows. The array of
Table Row instances will be expanded or
trimmed according to the difference between
its size and this parameter.

numberOfColumns integer The number of Table Cells per Table Row.
The array of Table Cell instances will be
expanded or trimmed according to the dif-
ference between its size and this parameter.

columnWidth real The uniform width of all columns in the Ta-
ble View.

columnWidths array The individual widths for each column in
the Table View. If set, the uniform width is
ignored.

columnWidthsAreRelative boolean If true, the uniform or individual width val-
ues are interpreted as width relative to the
Table View width.

Table 3.23: Table View properties

Table Rows are instances of the TableRow class, subclass of Node and implemen-
tation of ITableRow. They serve a structural purpose as parent nodes of Table
Cells.

Name Type Description

data string A string representing the data held by the Table Cell.
isEditable boolean If true, the data string may be edited by the user.

Table 3.24: Table Cell properties

Table Cells are instances of the TableCell class, subclass of Node and imple-
mentation of ITableCell. One Table Cell represents one concrete cell in the Table
View, identified by its row and column indices. Table Cells provide access to the
data string stored by them.

72

3.4. WIDGETS

Neither Table Rows nor Table Cells are rendered directly. Instead, this is done by
the Table View, which creates all the geometry necessary to render all cells including
their content. If the Table Cell has the editable flag set, an Input Field Widget will
be created automatically inside the cell to manipulate its data. Besides, Table Views
make use of Scroll Containers to allow an arbitrary number of rows or columns to
be defined independently of the Table View size. The available properties of Table
Views and Table Cells are listed in tables 3.23 and 3.24.10 Figure 3.29 illustrates
Table Views schematically.

Figure 3.29: Table View

3.4.7 Other Widgets

Activity Indicators: Activity Indicators are instances of the ActivityIndicator
class, subclass of Component and implementation of IActivityIndicator. Their
main purpose is to tell the user to wait until an ongoing, time-consuming process
is finished. There is no logic behind this Widget. The icon and the animation are
customizable resources of the Widget. The default skin includes the image of a
circle and an animation that rotates the object for an infinite number of times, or
until the user code explicitly stops the animation. Table 3.25 outlines the available
properties of this Widget.

Name Type Description

geometryId string The Node ID of the geometry to display as in-
dicator icon.

animationResourceName string The name of the animation resource to animate
the indicator icon.

animating boolean If true, the Activity Indicator is animating.

Table 3.25: Activity Indicator properties

10Table Rows do not have any properties.

73

CHAPTER 3. DESIGN

Labels: Labels are instances of the Label class, subclass of Component and im-
plementation of ILabel. They are used to display custom texts. Labels are just
wrappers of a Node type already included in the ME – TextGeometry [Spraylight
GmbH 2014e, see] – allowing text-textured plane geometries to be treated as Compo-
nents, making them accessible for Layouts. The available properties for this Widget
are outlined in table 3.26.

Name Type Description

text string The text to render.
systemFontName string The name of the system font to use for rendering

the text.
fontSize real The point size of the rendered text.
textColor vector The color of the rendered text.
backgroundColor vector The background color of the rendered text.
horizontalAlignment enum The horizontal alignment of the text within the

label boundaries.
verticalAlignment enum The vertical alignment of the text within the label

boundaries.

Table 3.26: Label properties

3.5 Layouts

3.5.1 Basic Idea
Layout management is done by Layout nodes. These are dedicated classes derived
from the common scene graph Node. Like the Layout Managers available in the
Java GUI toolkits, different kinds of layouts are implemented in different classes.

3.5.2 Null Layout
Null Layouts are used by Containers on default, thus, if no other Layout is targeted.
A Null Layout simply grabs the intrinsic position properties of a Component to use
them as local position within the Container. There is no further logic when using
them in this way. This may seem quite useless, but some more advanced options
are available due the Null Layout Directives.

Using Relative Positions: Positions defined in Directives will overwrite the Com-
ponent’s intrinsic position properties. This makes sense, if a given position shall
be interpreted as relative position, which can be done by setting an appropriate
flag. A relative position PR(C,P) = (xR, yR) ∈ R2 of a Component C with respect
to its parent Container P maps to an absolute position PA(C) using the following
computation:

74

3.5. LAYOUTS

Figure 3.30: Absolute and relative coordinates with Null Layout.
Container A uses a Null Layout with absolute coordinates (−160, 160) for Component 1
and (160,−160) for Component 2. Container B uses a Null Layout with relative coordi-
nates (−1, 1) for Component 1 and (1,−1) for Component 2.

PA(C) =
(
xR
2 · (w(P)− w(C)), yR2 · (h(P)− h(C))

)
Since (0, 0) is the center of a Container, relative positions within the vertical

and horizontal boundaries must be in [−1, 1], with (−1,−1) being the lower-left
corner and (1, 1), the upper-right. An absolute position of a Component is the local
position of its center point in the Container. Thus, as in the formula above, we
also must consider the size of the Component itself to prevent it from being placed
(fully or partially) outside the Container boundaries. By subtracting the Component
size from the Container size, the Null Layout achieves a corner-by-corner or edge-
by-edge arrangement, if the relative position is −1 or 1. Someone who wants to
place Components outside the boundaries by intention may accomplish this by using
relative positions beyond [−1, 1]. Figure 3.30 illustrates the usage of both absolute
and relative coordinates.
Keep in mind that although the relative positions of two Components in the same

Container might be equal (PR(C1,P) = PR(C2,P)), the absolute positions PA(C1)
and PA(C2) are not equal if their sizes S(C1) 6= S(C2).

Resize Components to Fill the Container: Another property of the Null Layout
Directive is the fill mode. The fill mode specifies which dimension of the Component
will be resized to exactly fit the Container’s dimension. The available options are
horizontal, vertical, both, and none. The default value is none, meaning that a
Component will not be resized. Figure 3.31 shows the different results when varying
the parameter.

3.5.3 Flow Layout
A simple but popular layout mechanism is provided by Flow Layouts. The Flow
Layout of the MGT is capable of both arranging Components in a horizontal and in
a vertical flow direction. Depending on the flow direction, Components are placed
one after another beneath or below each other.

75

CHAPTER 3. DESIGN

Figure 3.31: Fill modes supported by the Null Layout
The effect of each fill mode supported the Null Layout can be seen in the following ex-
amples: none (Container A), horizontal (Container B), vertical (Container C), and both
(Container D, bottom right).

Customizing Flow Layouts: The vertical and horizontal gap spacings between
Components are customizable properties of a Flow Layout. Figure 3.32 shows the
result of both Flow Layouts with and without spacing.

Controlling the Flow Behavior: As mentioned before, the flow direction is a prop-
erty of the Flow Layout and within the developer’s control. Another option is called
auto-wrapping which is enabled by default. If the Container’s boundary will be
exceeded by a Component to layout, auto-wrapping causes the flow to continue ar-
ranging Components on the next “row” (horizontal flow) or “column” (vertical flow).
Each flow is then bounded by one dimension (e.g., the horizontal flow is bounded to
the Container’s width), so the Flow Layout will arrange Components towards infin-
ity of the contrary dimension as shown in figure 3.33. If auto-wrapping is disabled,
the flow arranges Components towards the infinity of the corresponding dimension.
Despite to any other Layout, there is no actual use for Flow Layout Directives.

The node implementation is provided for reasons of completeness, though.

3.5.4 Grid Layout
Another atomic layout is the well-known Grid Layout. It defines a grid which splits
the container into a two-dimensional field of cells addressed by column and row

76

3.5. LAYOUTS

Figure 3.32: Flow Layout spacing
The flow of Container A and B is horizontal, Container C and D use vertical flowing. The
effects of spacing a spacing value greater than zero can be seen in Container A and C,
while Container B and D show the results of zero-spacing.

indices. The Layout fits each Components into a dedicated cell. If the number
of Components exceeds the number of cells (which is columns times rows), the
Components carried over will not be considered. The number of columns and rows
may be changed any time, the whole layout will be recomputed, though.

Customizing Grid Layouts: Similar to Null Layouts, fill modes are also available
for Grid Layouts. Again, the available modes are horizontal, vertical, both, or none,
but for Grid Layouts they indicate which dimension(s) will be resized to fit the
Component’s cell, rather than fitting the whole container. Component dimension
which will not be resized may cause the Component to overlap with Components of
neighbor cells. Figure 3.34 illustrates the effects of all available fill modes.

Controlling the Cell Assignment: Components are assigned to cells from top
to bottom and from left to right in the sequence they appear as child nodes of
the Container in the scene graph. The developer can assign Components to cells
manually by using Grid Layout Directives. These Directives offer properties for
setting the column and row index of the Component that needs to be laid out.

77

CHAPTER 3. DESIGN

Figure 3.33: Flow Layouts in both directions with and without auto-wrapping.
The flow of Container A and B is horizontal, Container C and D use vertical flowing. The
effects of auto-wrapping can be seen in Container A and C, while Container B and D show
the results of auto-wrapping turned off.

3.5.5 Page Layout

Page Layouts follow a more practical approach and are essential for designing GUIs
with a more sophisticated layout. They are similar to Border Layouts, which are
available in Swing or many other toolkits. A Page Layout splits the Container into
up to five distinct sections, which are similar to the main sections of web page. The
sectioning may also be compared to the sections of any other kind of document.
Figure 3.35 outlines the five pre-defined sections of a Page Layout.
Each section is optional and may be omitted. However, it is not possible to

layout more than five Widgets in total or more than one Widget for the same
section. This restriction keeps the logic of the Page Layout simple and efficient.
Putting more than one Component into a single section can be achieved by using a
Container as sectioned Component. Using this strategy is the first step in composing
complex GUIs with sophisticated layouts. In many cases, top-level containers use
Page Layouts to layout sub-containers. The sub-containers themselves use other
layouts depending on their needs.

78

3.5. LAYOUTS

Figure 3.34: Grid Layout fill modes
Horizontal filling sets each Component’s width to the width of the respective cell (Con-
tainer A). Vertical filling sets each Component’s height to the height of the respective
cell (Container B). It is also possible to combine both filling modes (Container C) or use
neither of them (Container D).

Figure 3.35: Page Layout sections

Customizing Page Layouts: The scale factors of both dimensions of each section
can be customized by setting each scale factor sC relative to the Container size s,
whereas sC ∈ [0, 1] and s ∈ R. Scale factors do not refer to explicit sections but
to a grid-like scheme which defines 3 rows and 3 columns, as shown in figure 3.36.
The actual size for each section is computed by the according scale factors of each
dimension and the absolute Container size.
If a section will not be used for any Component, a gap that fits the section space

will be visible. Gaps can be closed by setting the proper scale factor to 0. The

79

CHAPTER 3. DESIGN

Figure 3.36: Page Layout scale factors
The scale factors of the Page Layout refer to a virtual grid scheme. The relative width of
the top and the bottom sections is the sum over all horizontal scale factors (left, center,
right).

remaining scale factor(s), however, shall sum up to 1, otherwise the Layout will
not fill the whole container. The following setup defines a Page Layout which only
consists of a left and a right section:

V = {0, 1, 0}

H = {1, 0, 1}

More examples are depicted in figure 3.37. From here on, many variations of com-
plex layouts can be generated by using this technique in combination with nested,
laid out Containers (e.g., a Container with a Page Layout inside another Container
with another Page Layout).

Figure 3.37: Page Layout scaled sections
The first example Container (left) uses a Page Layout with default configuration. The
second Container is the result of setting the horizontal scale factors to H = {0, 1, 0},
causing the left and right sections to disappear and giving the center section full width.
The third Container is generated from the vertical scale factors V = {0, 1, 0}, which hides
the top and bottom sections and stretches the others to full height.

80

3.6. SKINNING

Controlling the Section Assignment: To assign an arbitrary Component to a
specific section, a developer can use Page Layout Directives to do so by setting their
section property. The Page Layout will consider this property, when computing
the layout of a Component. If no Directive was defined, the Components will be
sectioned depending on their child index within the Container graph in the following
order: center, top, bottom, left, right. As an example, the third Component defined
will therefore be arranged in the bottom section.

3.6 Skinning
Skinning is a key feature for applications to customize the GUI elements according to
the designer’s specifications and can be found in nearly every GUI toolkit introduced
in the previous chapter. This section introduces the skinning concept of the MGT.

3.6.1 Basic idea
Implementing skinning in an 3D engine based on OpenGL simply means providing
an abstraction of setting up materials and textures used for rendering the Widget
geometry (usually a plane). There are many ways for building a scene graph that
applies materials and textures on geometries. The ME defines some node classes
for activating materials, parameters, and textures defined previously somewhere
in the scene graph: MaterialState, ParametersState, and TextureState. As
the name already suggests, these node types overwrite the current OpenGL state,
causing following-up geometry to be rendered with the properties these nodes refer
to. The recommended texturing practice in scene graph engines is to define materials
and textures once as loose nodes that are visited during an early traversal state.
Whenever they will be used, a Reference Node must be set before rendering the
designated geometry (see section 1.4.3 for an explanation on References).

The MGT follows this approach, but goes one step further: It bundles the state
nodes into a new empty node that entirely describes the appearance of a certain
widget. This nodes are called State Sets and are defined in a dedicated Skin
package that needs to be included by the application on the initialization pro-
cess. State Sets are just instances of the Node class and only contain state ma-
nipulation nodes. The identifier of a State Set (needed for References to find the
targeted Node) is similar to the class name of the Widget and automatically ref-
erenced within the Widget’s subgraph. Widgets with more than one geometry
(like a Slider, which consists of a track and a thumb) often use more than one
State Set. A dot-notation will then be used to group and specify the State Sets
of the individual elements a Widget consists of. For example, a Slider uses the
Skins named /Gui/Skin/Slider.Horizontal.Thumb and /Gui/Skin/Slider.Ho-
rizontal.Track. Table 3.27 shows a list of all Nodes that need to be supplied by
a Skin package.

81

CHAPTER 3. DESIGN

State Set Node ID Description

ActivityIndicator Activity Indicator icon
AppWindow App background
Button.Up Up-state Button
Button.Down Down-state Button
Button.Hover Hover-state Button
Button.Disabled Disabled-state Button
CheckSwitch.Up Up-state Check Switch
CheckSwitch.Down Down-state Check Switch
CheckSwitch.Hover Hover-state Check Switch
CheckSwitch.Disabled Disabled-state Check Switch
CollapseContainer Collapse Cont. content background
CollapseContainer.Control Collapse Cont. control bar backgr.
Container.Patch Container patched geom. backgr.
InputField Text Field / Stepper background
ListItem List Item background
ListItem.Selection Selected List Item background
ListView List View background
MenuBar.Background Menu Bar background
MenuBar.SelectedItem Selected Menu Item background
MenuStrip.Background Menu Strip background
MenuStrip.Foreground.Up Up-state Menu Item in Menu Strip
MenuStrip.Foreground.Hover Hover-state Menu Item in M.Strip
MenuStrip.Foreground.Separator Separator Menu Item in M.Strip
OptionButton.Up Up-state Option Button
OptionButton.Down Down-state Option Button
OptionButton.Hover Hover-state Option Button
OptionButton.Disabled Disabled-state Option Button
ProgressBar.Background Progress Bar background
ProgressBar.Gauge Progress Bar gauge
ScrollContainer.Horizontal.Thumb Horizontal scrollbar thumb
ScrollContainer.Horizontal.Track Horizontal scrollbar track
ScrollContainer.Vertical.Thumb Vertical scrollbar thumb
ScrollContainer.Vertical.Track Vertical scrollbar track
Slider.Horizontal.Thumb Horizontal Slider thumb
Slider.Horizontal.Track Horizontal Slider track
Slider.Vertical.Thumb Horizontal Slider thumb
Slider.Vertical.Track Horizontal Slider track
Stepper.DecrementButton Stepper decrement button
Stepper.IncrementButton Stepper increment button
TabControl.TabButton.Background Not-selected tab button
TabControl.TabButton.Foreground.Inner Selected inner tab button
TabControl.TabButton.Foreground.Left Selected left-most tab button
TabControl.TabButton.Foreground.Right Selected right-most tab button
TabPage Tab Page background
Window.Frame Window frame with title bar
Window.Buttons Top-right window control buttons
Window.ResizeButton Bottom-right resize dragger

Table 3.27: State Set Nodes required in the /Gui/Skin namespace

82

3.6. SKINNING

Applying a State Set to a Widget can be done the following ways:

1. Defining a complete Skin package which contains all Nodes using the identifiers
of table 3.27.

2. Defining a single State Set and assign its ID to the Widget’s State Set ID
property.

(1) is used whenever the designer creates a whole new theme for the app that
differs from the default skin in a large part. There is no need to update attributes
of Widgets in the scene graph XML or in the C++ code. They “know” the appro-
priate State Sets by the given identifiers as mentioned above. However, sometimes
instances of the same kind of Components may require different skins (where it does
not matter which Skin package is actually used). This can be fulfilled by method
(2). Components define a State Set ID attribute to overwrite the default State Set
an instance refers to. For example, a designer may want to use three buttons, each
in a different color.

3.6.2 Elements of a Skin
Geometries

For greater flexibility in sizing Widgets, we must also consider their geometry, even
if they appear to be flat. It is easy to create materials and textures for fixed-
size Widgets such as OptionButtons or CheckSwitches by just preparing an image
texture that fits exactly into the geometry. But using the same approach in Widgets
with flexible geometry (e.g., Buttons) will result in an image scaled by OpenGL to
fit into the plane. Widgets larger than the texture will have their borders and other
features blurred, while in smaller Widgets the borders and features get squeezed.
Depending on the design that will actually be used for skinning, the MGT provides
three different kind of geometry types to set up a Component with.

Plane Geometry: A PlaneGeometry is a node of the ME for rendering double-
faced rectangular planes. They are described by their position and extent.
Plane geometries are suitable for fixed-size Widgets with an arbitrary skin. For

example, if the designer creates a fancy button image with 300× 120 pixels, a plane
geometry of the same size is sufficient.11 But plane geometries can also be used with
any materials insensitive to scaling, like plain diffuse colors or gradients. Plain colors
without texture are becoming popular GUI styles on mobile devices (and maybe also
on desktops) nowadays due to the new design guidelines of the main manufacturers.

Generic Geometry: If plane geometries do not satisfy the designer’s needs, so-
called generic geometries can help out. A GenericGeometry is a node class part of
the ME that manages a custom geometry defined by the developer. The developer
11Keep in mind that the texture must be padded to fit a power of two dimension. Therefore, it is

also necessary to set the texture coordinates of the rectangle vertices properly, which is done
by the MGT.

83

CHAPTER 3. DESIGN

must setup a vertex buffer and an index buffer explicitly. This kind of geometry was
used in the MGT to implement a patched geometry. The idea of patched geometry
was inspired by the NinePatch class which is part of the Android SDK. A nine-
patch divides a texture into a 3× 3 grid. Each sub-image created this way (nine in
total) is defined by the texture coordinates of its vertices. A nine-patched geometry
is a rectangular plane but subdivided by additional vertices and edges within the
plane, also resulting in a 3 × 3 grid of cells. On creation or size update, each
vertex position is calculated accordingly to the features the adjacent cells represents
(e.g., the left bottom corner). This can be used to prevent blurring or squeezing of
features represented by single pixels (like one-pixel-borders). Particular cells have
one or two fixed dimensions equal to the cell dimensions of the texture image. Figure
3.38 illustrates this idea. The corner cells cannot be scaled in any direction, while
edge cells can scale either horizontally or vertically. The center cell may be scaled
both horizontally and vertically.

Figure 3.38: Nine Patch
The left plane is the input image divided into patches. The arrows within the cells indicate
directions the cell may be stretched along. A dot means that the cell can not be stretched
in any direction. The right plane represents a possible result.

Some variants of the nine-patch pattern exist in the MGT. The Slider widget
for example uses a 3× 1 patched geometry, with the first and the third cell defining
both (fixed-size) ends of the track. Only the second cell will be scaled to the Slider
dimension minus the size of the first and the third cell.

Referenced Plane Geometry: In many GUI themes, the same kind of widgets
have similar appearance both in size and surface. This fact applies especially to
checkboxes and radio buttons. There is simply no need for the designer to create
multiple varieties, since there only exists a small and limited number of representa-
tions (e.g., the states on, off, disabled). In contrast to widgets like progress bars,
which may differ in length, or buttons with different captions, a single pre-rendered
image can be used for example to display all active checkboxes. The ME can utilize
this circumstance to (1) reduce scene graph complexity and (2) to speedup asset cre-
ation. (1) is due to the fact that the same textured plane geometry (i.e., a flat image)
used in different Widgets only needs to be defined once as a Node. The engine’s

84

3.6. SKINNING

Reference or ReferenceTransform nodes can then be used to include12 the image
anywhere in the scene graph. In the previous example, instead of defining State Sets
in the Skin package, like it needs to be done for the two geometry types introduced
before, the Skin package only needs to provide a plane geometry node with material
slot, texture slots, and texture coordinates already set. (2) is because the ME comes
along with an atlas generator tool. The atlas generator creates a single texture im-
age from a bunch of input images. The atlas corresponding to the compiled image
defines regions within the texture to outline every single source image for texture
mapping. Additionally, a graph containing plane geometry definitions, one for each
input image, will be created. Reducing the number of textures by using atlases
provides great performance improvements, especially on devices without NPOT13

texture support in situations with many small textures. Texture atlases are a widely
used technique, especially in two-dimensional tile-based rendering.

Materials

Material nodes are vital not only for skinning, but also for making Widgets visible,
as they instruct the underlaying OpenGL API how to render the geometry. Because
materials are a huge topic in OpenGL rendering, I will just focus on the most basic
ways on how to create skins with materials, parameters, and textures.

A material in the ME uses a Program (i.e., an instance of the abstract Program
node class), which is either a predefined program (FixedProgram, comparable to the
almost outdated fixed function pipeline) or a program of vertex shaders and fragment
shaders (ShaderProgram) [The Khronos Group 2014]. Fixed function programs
are sufficient for rendering common GUI skins. However, many GUI effects are
possible with shaders, although they might cause problems on mobile devices due
to restrictions of OpenGL ES.

Plain materials: Skins made with plain materials are the simplest to create and to
render. The most basic installment just uses a fixed program with coloring enabled
and assigned to a simple material (see listing 3.1). The outcome is a white surface
without any effects. As minimalistic designs become increasingly popular, this might
already be sufficient for, e.g., the background of a Container.

1 <FixedProgram id=" prg_white "/>
2 <Material id=" mat_white " programId =" prg_white "/>

Listing 3.1: A plain material for rendering white, unlit surfaces.

FixedParameters can be used in conjunction with a FixedProgram to set up
custom ambient, diffuse, specular, or emissive color as well as shininess [Spraylight
GmbH 2014c]. See listing 3.2 for an example:
12There is no actual inclusion of the referenced geometry though. References are resolved during

graph traversal, causing the visitor to “jump” to the targeted node, traversing it again, and
finally returning to the Reference node, continuing traversal straightforward.

13NPOT, non power of two

85

CHAPTER 3. DESIGN

1 <FixedProgram id=" prg_color " coloringEnabled ="yes"/>
2 <Material id=" mat_color " programId =" prg_color "/>
3 <FixedParameters id=" par_green " diffuseColor ="0.0f, 1.0f, 0.0f, 1.0f"/>

Listing 3.2: A plain material for rendering colored, unlit surfaces. A
FixedParameters node is used to specify the rendering parameters (i.e.
surface colors).

Textured materials: Materials for texturing need a FixedProgram with at least
one texture unit enabled. The texture itself is defined by a FlatTexture node which
refers to an image resource included by the package. Blending can be configured by
the attributes/properties of the Material node as shown in example 3.3.

1 <FixedProgram id=" prg_texture0 " textureUnit0Enabled ="yes"/>
2 <Material id=" mat_texture0 + alpha " programId =" prg_texture0 " visibleFaces ="

FRONT_AND_BACK " blendMode =" ALPHA " depthBufferMode ="NONE"/>

Listing 3.3: A textured material with alpha blending and rendering enabled for both
sides of the geometry.

Custom shaders: As mentioned before, the ME allows custom GLSL programs to
be incorporated into a ShaderProgram, which requires a vertex shader and frag-
ment shader. Parameterization of single Skin nodes can be done by preparing
Parameters nodes and refer to them using ParametersState. If the Material
uses the ShaderProgram, the developer is free to create any effect on the Widget
through the shader programs. This can be used for more advanced rendering effects
with or without textures and/or parameters. Some examples will be provided in the
results chapter.

3.6.3 Definition and Integration of a Skin
State Set nodes are bundled into a dedicated Murl package – the Skin package.14

State Sets can be used interchangeably, as long as they follow the conventions of
the MGT. This includes the availability of a set of Nodes with certain identifiers.
The required Node identifiers and their usage can be looked up in table 3.27. One
or more graph resources are needed to define the Nodes, with each Node having the
appropriate state nodes attached. Listing 3.4 shows an example of how to define a
State Set node.

1 <Node id=" Button .Up">
2 <MaterialState materialId =" TextureAlpha " slot="0"/>
3 <TextureState textureId =" Textures / Button .Up" slot="0" unit="0"/>
4 </Node >

Listing 3.4: Definition of Skin nodes in a custom package.

14Note that there are many ways to build a scene graph with a certain structure from XML
resources. The way described here is considered to be the most modular and intuitive one.

86

3.7. EXTENSION CONCEPT

The Nodes must not be part of any Namespace, otherwise the toolkit will not be
able to find them. To hook the State Sets into the MGT, a special attribute, of
which the ME is aware, is needed in the package definition file within the graph
instantiation tag (see 3.5 for an example). This directive tells the deserializer not to
instantiate the graph in-place, but to attach it to another (already existing) Node.
That Node is a Namespace called /Gui/Skin and is defined by the MGT common
package. After loading the Skin package, all Skin nodes are available within this
namespace. Using this strategy, Skins can easily be exchanged by just including
another Skin package. Whenever a Skin package is properly included, a Widget
node will find its Skin nodes in /Gui/Skin. Including more than one Skin package
will likely lead to an error, as the ME does not accept duplicate Node identifiers.

1 <Instance graphResourceId =" skin_nodes " parentNodeId ="/Gui/Skin"/>

Listing 3.5: Integration of Skin nodes into the toolkit.

3.7 Extension Concept
Extending the MGT is strongly tied to the possibilities of object-oriented inheri-
tance. Thus, this section focuses on groups of classes which are easily extendible
and modular in a sense of functional independence. The following types are meant
to be extended:

• Widgets (IWidget) and Components (IComponent)
• Layouts (ILayout) and Layout Directives (ILayoutDirective)
• Entities (IEntity)

In fact, adding a new Widget, Layout, Layout Directive, or Entity can easily
be done by just implementing the base interface. However, for productional use,
the extension of existing implementations is only possible by obtaining a source
code license. An implementation solely based on interfaces will suffer from the
lack of access to many hidden implementation details. This section ignores those
restrictions and assumes that the developer has full access to the source code, since
the conception of license models is not part of the thesis.

3.7.1 Extending Widgets and Components
Component is a subclass of Widget as shown in figure 3.4. Due to the fact that a
developer most likely wants to extend a Component class rather than Widget, this
section focuses especially on Components. Adding a custom Component definition
requires two steps:

1. Implementing a node class based on Component and

2. registering the node class through the GraphFactoryRegistry of the ME.

87

CHAPTER 3. DESIGN

The Component class defines some protected methods that are called in certain sit-
uations during the Component’s life-time. The Widget generated by the Component
class itself is just a rectangular, interaction-aware area with a configurable appear-
ance. Extending these properties requires the developer to override some of the
protected methods of Component as they are introduced in section 4.2.3.

3.7.2 Extending Layouts
Layouts are nodes, thus adding new layouts consists of

1. implementing a node class based on ILayout and

2. registering the node class through the GraphFactoryRegistry of the ME.

The same steps must be done for Layout Directives by implementing the interface
ILayoutDirective if the developer intents to provide such nodes.

The developer who implements a Layout must be aware of how they work inter-
nally. The following methods must be implemented and behave as described:

+ LayoutComponent(component: IComponent,
boundary: Dimension): Bool
This method layouts the Component within the given boundary by considering
the internal layout state. It also needs to track the Component and update
the internal layout state.

+ LayoutComponent(component: IComponent,
boundary: Dimension,
directive: ILayoutDirective): Bool
This method layouts the Component within the given boundary by considering
the given Layout Directive. It also needs to track the Component.

+ UpdateLayout(boundary: Dimension): Bool
This method re-layouts all previously tracked Components within the given
boundary. It is called automatically after the Container has been resized.

Layouts are expected to keep track of all Components that had been laid out so
far in order to recalculate their new dimensions iteratively, after the Container size
did change.

3.7.3 Extending Entities
New Entity types can be added by subclassing the public Entity class. If a source
code license is available, extension can also be done by implementing the IEntity
interface. The developer must then assure that the Entity Event is dispatched to
the Event Pipeline, which cannot be done without access to the full source code.
The Entity class has one pure virtual method named GetSerializedData(). The
developer must implement this method by returning a string representation of the
current Entity state. There are no additional requirements. The new Entity can

88

3.7. EXTENSION CONCEPT

be used as handler for any kind of data. This may also include representations
of database entities including full model management. The Core Data framework
follows a similar strategy below its main concept, the object graph.

Extending concrete built-in Entity like SwitchEntity or NumberEntity is only
possible with a source code license since their implementation is hidden.

89

4 Implementation
The previous chapter described the entire set of features and functionalities of the
toolkit, deducted from the requirements the MGTmust fulfill. The following sections
will now explain some implementation strategies that were important to achieve the
goal. This chapter focuses on major challenges in the context of writing a GUI
toolkit for 3D engines, especially for the Murl Engine, rather than providing a
complete documentation of the source code, which contains about 220 files and
approximately 18.000 source lines of code (SLOC). The ME encourages a clean and
consistent style of coding and problem solving. The MGT tries to adopt this style,
thus many patterns were inspired directly by the engine itself.

4.1 Project Structure
The organization of the source files is kept flat and follows the conventions of the ME.
The public interfaces are kept separated from the implementation code and their
header files in the dedicated directory ./base/include relative to the root directory
of the engine. Implementation files can be found in ./base/source. Therefore,
the public interfaces are kept in ./base/include/gui, while their implementation
resides in ./base/source/gui. In order to keep the header path configuration
simple and transparent, no other subfolders were introduced.

This flat hierarchy has also been considered in the namespace policy. The ME
uses the top-level namespace Murl which contains the common classes and inter-
faces. Submodules of the engine are grouped into second-level namespaces, for ex-
ample scene graph related source code is found in Murl::Graph. The MGT defines
its own namespace Murl::Gui where the complete implementation is found. During
this chapter, all mentioned class types are prefixed by their second-level namespace
to identify their affiliation. This is consistent to the names used in the implementa-
tion which omit the top-level namespace Murl as a result of the using namespace
directive at the beginning of each C++ file. As an example, the Button widget of
the MGT is implemented by Gui::Button (Gui::IButton), while the Button node
of the engine is called Graph::Button (Graph::IButton).

The MGT requires two Murl packages to be loaded on startup: gui_base and
gui_skin. The base package defines some common resources and scene graph nodes
that are mandatory for the toolkit to run. The Skin package contains an exam-
ple/template Skin that can be modified or replaced by another package that con-
forms to the requirements defined in section 3.6. Package contents are stored in
folders named after the package and suffixed by the extension .murlres. For pro-
ductional use, the packages must be compiled to the proprietary .murlpkg format.

91

CHAPTER 4. IMPLEMENTATION

Both resource folders and packages are stored in ./common/data/packages. Thus,
the following files/folders can be found there:

• ./common/data/packages/gui_base.murlres
• ./common/data/packages/gui_base.murlpkg
• ./common/data/packages/gui_skin.murlres
• ./common/data/packages/gui_skin.murlpkg

4.2 GUI Graph Nodes
The MGT takes advantage of the engine features regarding scene graph definition
with XML resource files. This is why most features are encapsulated in graph nodes.
As outlined in section 3.1, most classes provided by the toolkit are subclasses of
the graph node base class Graph::Node. Exceptions are Entity classes and classes
related to event handling. Before having a closer look on the Node implementations,
some general annotations on the Node life-cycle of the ME have to be made.

4.2.1 Graph Node Implementation
Adding a graph node type based on Graph::Node to the repertory of the engines
requires a few steps to be done. Although scene graphs can be built programmati-
cally, the default way of doing this in the ME is defining scene graphs as an XML
resource. Consequently, the registration of custom Node types for the XML parser
is also a necessary step explained here. Furthermore, understanding the Node life-
cycle is vital for adding custom behavior. The full process is exemplified by the
Gui::Widget and Gui::Button nodes.

Extending Graph::Node: Custom Nodes must inherit from Graph::Node, a class
that is publicly available in the ME. As already mentioned before, the implemen-
tation of classes in the MGT is hidden, therefore a toolkit node class must also
implement a public interface that grants the developer adequate access to the ob-
ject. All Node classes provided by the MGT will hence follow the declaration scheme
of listing 4.1. Of course, in many cases they inherit from Gui::Widget (or its sub-
classes) instead directly from Graph::Node.

1 namespace Murl
2 {
3 namespace Gui
4 {
5 class Widget : public IWidget , public Graph :: Node
6 {
7 static INode * Create (const Graph :: IFactory * factory);
8
9 // member declaration

10 };
11 }
12 }

Listing 4.1: Example declaration of a node class.

92

4.2. GUI GRAPH NODES

Providing Factory Information: Creation of graph nodes is done by a factory ob-
ject called Graph Factory (Graph::IFactory), which needs to know some common
information about the Node it creates, especially when deserializing a graph from
an XML resource. Declaration and definition of these information access methods
is done by some macros provided by the ME. Listing 4.2 shows the declarational
usage in the header file, embedded in the code listed in 4.1.

1 MURL_DECLARE_FACTORY_OBJECT_BEGIN (Gui :: Widget)
2 MURL_DECLARE_FACTORY_OBJECT_PROPERTY (PROPERTY_DEPTH_ORDER)
3 MURL_DECLARE_FACTORY_OBJECT_PROPERTY (PROPERTY_TAG)
4 MURL_DECLARE_FACTORY_OBJECT_END (Gui :: Widget)

Listing 4.2: Declaration of class information and properties.

Both the full, namespace’d class name and the bare class name will later be avail-
able as XML tag identifier.1 The properties in listing 4.2 will be resolved as enum
constants and correspond to attributes available in XML. Listing 4.3, located in the
CPP file, shows the appropriate definition, which also includes the the mapping from
XML attribute name strings to enum values. The factory uses them to deserialize
the property that belongs to the XML attribute (see below).

1 MURL_DEFINE_FACTORY_OBJECT_BEGIN (Gui :: Widget)
2 MURL_DEFINE_FACTORY_OBJECT_PROPERTY (PROPERTY_DEPTH_ORDER , " depthOrder ")
3 MURL_DEFINE_FACTORY_OBJECT_PROPERTY (PROPERTY_TAG , "tag")
4 MURL_DEFINE_FACTORY_OBJECT_END (Gui :: Widget)

Listing 4.3: Definition of XML attributes.

Registering Node Class: The App::AppBase class (i.e., the base class of the app’s
custom main class) defines two methods that are called on startup/termination to
register/unregister custom node classes: RegisterCustomFactoryClasses() and
UnregisterCustomFactoryClasses(). The developer who wants to add her own
node types must override these methods and call the registration methods of the
factory registry (IAppFactoryRegistry). This must be done for every node type
the developer wants to register as shown in listing 4.4. GetClassInfo() was defined
by the macros introduced in the previous paragraph.

1 Bool App :: GuiTestApp :: RegisterCustomFactoryClasses (IAppFactoryRegistry *
factoryRegistry)

2 {
3 Graph :: IFactoryRegistry * graphRegistry = factoryRegistry ->

GetGraphFactoryRegistry ();
4
5 graphRegistry -> RegisterNodeClass (Gui :: ActivityIndicator :: GetClassInfo ());
6 graphRegistry -> RegisterNodeClass (Gui :: Button :: GetClassInfo ());
7 graphRegistry -> RegisterNodeClass (Gui :: CheckSwitch :: GetClassInfo ());
8 graphRegistry -> RegisterNodeClass (Gui :: CollapseContainer :: GetClassInfo ());
9

1As you may have noticed, Gui::Widget is not a valid XML tag name. However, the engine
XML format is not compliant to the W3C XML standard. Instead the format has been slightly
adopted in favor of the engine’s features.

93

CHAPTER 4. IMPLEMENTATION

10 // [...]
11
12 return true;
13 }

Listing 4.4: Implementation of RegisterCustomFactoryClasses()

This, however, is not possible unless the developer owns the source code of the
MGT. Furthermore, doing this for every single app is unreasonable overhead. There-
fore, the class Gui::Main can be instantiated to handle registration/unregistration
in a single call (see listing 4.5). The declaration of this class is available in a public
header file, the implementation is hidden, allowing the node types to remain opaque.

1 Bool App :: GuiTestApp :: RegisterCustomFactoryClasses (IAppFactoryRegistry *
factoryRegistry)

2 {
3 mGuiMain -> RegisterGuiGraphClasses (factoryRegistry);
4 return true;
5 }

Listing 4.5: Implementation of RegisterCustomFactoryClasses() with GUI main
class.

Deserializing Attributes: Listing 4.6 shows how XML attribute values are deseri-
alized into Node object properties. This method is called for each attribute detected
while parsing the markup. The tracker already contains methods for parsing string
representations of common types, so only a reference to the targeted member vari-
able needs to be passed.

1 Bool Gui :: Widget :: DeserializeBaseAttribute (Graph :: IDeserializeAttributeTracker *
tracker)

2 {
3 switch (tracker -> GetBaseAttributeProperty (GetProperties ()))
4 {
5 case PROPERTY_DEPTH_ORDER :
6 tracker -> GetAttributeValue (mWidgetDepthOrder);
7 return true;
8
9 case PROPERTY_TAG :

10 tracker -> GetAttributeValue (mEventTriggerTag);
11 return true;
12
13 default :
14 return Graph :: Node :: DeserializeBaseAttribute (tracker);
15 }
16 }

Listing 4.6: Implementation of DeserializeBaseAttribute()

Initializing the Node: The OnInit() method is a callback declared by the Graph-
::INode interface that gets called once for each node while initializing the graph.
Initialization happens after deserialization (if any). The engine recursively initial-
izes the graph nodes by calling OnInit(), which delegates this responsibility to

94

4.2. GUI GRAPH NODES

OnInitSelf() and on OnInitChildren(). The latter method carries on the re-
cursion while OnInitSelf() is reserved for setting up the current node. Because
nearly all Widgets are dynamically composed of other nodes to provide greater flex-
ibility for a wide range of customization, initialization plays a major role in the
toolkit. Widgets of type Gui::Component split up this phase into a few virtual
methods, e.g., for referencing State Sets or for geometry creation. A Component
subclass then overrides these methods rather than InitSelf() to run its specific
setup. In many cases, the appearance setup of Gui::Component is sufficient and
already customized by the properties, but there may still be some extra node re-
quired to add. Listing 4.7 shows the initialization of Gui::Button, which inherits
the appearance and behavior of Gui::Component, but additionally needs to create
a Label node to display text on a Button. Nodes can be dynamically created by
calling CreateNode() on the Graph::IRoot instance provided during initialization.
After configuration, the node must be added to the existing hierarchy by calling
AddChild() on a node that is a qualified parent. When layering plane geometries,
the geometry that lies “below” another is suitable. Here, the Label is put upon
the Component Geometry node (the background plane of the Button). To ensure
proper layering, the depth order of the geometry “above” another must be greater
than zero.2

1 void Gui :: Button :: InitSelf (Graph :: IInitTracker * tracker)
2 {
3 Gui :: Component :: InitSelf (tracker);
4
5 Graph :: IRoot * root = tracker -> GetRoot ();
6
7 mButtonLabel = dynamic_cast <Gui :: ILabel *>(root -> CreateNode ("Gui :: Label "));
8
9 if(mButtonLabel != 0)

10 {
11 mButtonLabel -> SetText (mButtonText);
12 mButtonLabel -> SetHorizontalTextAlignment (:: IEnums ::

HORIZONTAL_TEXT_ALIGNMENT_CENTER);
13 mButtonLabel -> SetVerticalTextAlignment (:: IEnums ::

VERTICAL_TEXT_ALIGNMENT_CENTER);
14 mButtonLabel -> GetComponentInterface () -> GetWidgetInterface () ->

SetDepthOrder (1);
15 mButtonLabel -> GetComponentInterface () ->SetPosition (Real (0) , Real (0));
16 mButtonLabel -> GetComponentInterface () ->SetSize (mComponentInnerDimension .

mSizeX , mComponentInnerDimension . mSizeY);
17
18 if(mComponentUsesFrameBuffer)
19 {
20 mButtonLabel -> GetComponentInterface () ->SetBuffered (false);
21 }
22
23 mComponentGeometry -> GetNodeInterface () ->AddChild (mButtonLabel ->

GetNodeInterface ());
24 }

2In 2D rendering, depth ordering is a replacement for depth buffering. Explicit integer values are
used to define the order of rendering, where a lower value means an earlier draw call. Objects
drawn later will overlay the existing output and result in a layer effect. A depth order of
zero means that the transformation has the same depth order as its parent node. Like other
transformation properties, depth orders also affect child nodes.

95

CHAPTER 4. IMPLEMENTATION

25 }

Listing 4.7: Example of a virtual SetupGeometry() implementation, called from
Gui::Component::InitSelf()

Processing Node Logic: The method ProcessLogicSelf() is declared as part of
the Graph::INode interface and is called on each tick to update the internal state
of the node. Widgets that are aware of user interaction are likely to override this
method, at least Components and all its subclasses do so to handle Drag and Drop
(if enabled). There are some user input events though that are easier to handle in a
later period of the frame (see next paragraph). In most cases, ProcessLogicSelf()
is used to handle drag gestures like in Gui::Slider or Gui::Window. More details
will follow in the upcoming sections.

Finishing Node Logic: The finish logic phase happens after traversing the entire
scene graph for logic processing. At this point, all nodes have been updated. The
FinishLogic() method will then be called for nodes which explicitly signed up for
this step in the preceded traversal. This is where the Event objects are created
and dispatched, regardless of when the actual event has been detected. For exam-
ple, the flags indicating press or release events during the most recent tick on a
Graph::Button instance are not set until the logic traversal is finished, other than
the drag movement of a Slider that will be fully parsed during the Node’s logic
process.

De-initializing the Node: Destruction of a graph leads to the destruction of all at-
tached Nodes. This phase is called “de-initializing” and is handled in DeInitSelf().
Since a Node of the MGT is a composition of other Nodes that were created during
initialization, the created child Nodes must finally get destroyed again as a conse-
quence of proper memory management. This is done bottom up by detaching them
one by one from their parent before calling the DestroyNode() method as it is done
in listing 4.8.

1 Bool Gui :: Button :: DeInitSelf (Graph :: IDeInitTracker * tracker)
2 {
3 mComponentGeometry -> GetNodeInterface () ->RemoveChild (mButtonLabel ->

GetNodeInterface ());
4
5 tracker -> GetRoot () ->DestroyNode (mButtonLabel -> GetNodeInterface ());
6
7 return Gui :: Component :: DeInitSelf (tracker);
8 }

Listing 4.8: Implementation of DeInitSelf()

This concludes the description on how custom node types are integrated in the
scene graph system of the ME. The points mentioned here were all considered during

96

4.2. GUI GRAPH NODES

the implementation of the classes covered in the following sections, although it might
not be mentioned explicitly.

4.2.2 Widget Nodes
Widget nodes are derived from their base class Gui::Widget, as shown in figure 3.4.
This means that all properties and behaviors described here will also apply to all
other Widget types among this chapter. Gui::Widget is subclass of Graph::Node,
which makes all Widgets of the MGT to node types available for building scene
graphs in the ME. Like other nodes, the Widget’s active (for logic traversal) and
visible (for rendering traversal) flags can be manipulated. They are also fully affected
by the transformations and state passes through the graph. In regard to the MGT
functionality, Gui::Widget provides registration methods for Event Handlers of the
global input events that were delegated to the Widget by its Context (see section
3.1.2). Widgets usually do not only dispatch Events on global input events to Event
Handlers, but also handle these events by themselves. The focus flag, for example,
which is defined by Gui::Widget, will be set on reaction to a Focus Event, as
shown in listing 4.9. HandleKeyboardEvent() and HandleWheelEvent() are also
implemented, but with an empty body, since there is no default behavior among all
Widgets.

1 Bool Gui :: Widget :: HandleFocusEvent (Gui :: IEvent :: ConstSharedPtr event)
2 {
3 Gui :: IFocusEvent :: ConstSharedPtr focusEvent = Gui :: IFocusEvent ::

ConstSharedPtr :: DynamicCast (event);
4 mWidgetIsFocused = focusEvent -> IsReceiverOfFocus (this);
5 return true;
6 }

Listing 4.9: Implementation of Gui::Widget::HandleFocusEvent()

Another important feature implemented by this base class is the Context han-
dling. The method FindRespondingContext() can be used to traverse the graph
bottom up (beginning from the current Widget node) to find the first implementa-
tion of Gui::IContext. Alternatively, if the Widget is not within the subgraph of
a Gui::Context node, the Widget Context Node Target can be set explicitly. The
full implementation is available in listing 4.10. Through dynamic casting, parent
Widget nodes are detected to invoke a recursive call on them. If a parent is of type
Gui::IContext, it will be returned as result, otherwise it will be traversed at the
end of the ongoing iterations. 0 will be returned if no Context has been found.

1 Gui :: IContext * Gui :: Widget :: FindRespondingContext ()
2 {
3 if(mWidgetContextNodeTarget . GetNumberOfNodes () != 0)
4 {
5 return mWidgetContextNodeTarget . GetNode (0);
6 }
7 else
8 {
9 Graph :: INodeArray parents = GetParents ();

10 for(SInt32 index = 0; index < parents . GetCount (); index ++)
11 {

97

CHAPTER 4. IMPLEMENTATION

12 Graph :: INode * parent = parents [index];
13 Gui :: IWidget * widget = dynamic_cast <Gui :: IWidget *>(parent);
14 if(widget != 0)
15 {
16 return widget -> FindRespondingContext ();
17 }
18 else
19 {
20 Gui :: IContext * context = dynamic_cast <Gui :: IContext *>(parent);
21 if(context != 0)
22 {
23 return context ;
24 }
25 else
26 {
27 parents .Add(parent -> GetParents ());
28 }
29 }
30 }
31 return 0;
32 }
33 }

Listing 4.10: Implementation of Gui::Widget::FindRespondingContext()

The responding Context is primarily used in another important method. Push-
Context() tells the responding Context to activate itself and “push” itself in front
of all other Contexts. PushContext() is called whenever an unfocused Widget
receives an user input event (most probably local input events). As a result, it will
also receive the focus. This is a well-known behavior, e.g., from input fields: the
user first clicks into an input field to focus and then uses the keyboard to write
characters into it. If the window of the input field was in the background, it will
also have been pushed to front. Listing 4.11 contains the MGT implementation of
this pattern. Dialogs can set the lockContext flag to prevent other Contexts from
pushing until the Dialog is closed (see below).

1 void Gui :: Widget :: PushContext (Bool lockContext)
2 {
3 Gui :: IContext * context = FindRespondingContext ();
4 if (context != 0)
5 {
6 if (! context -> IsActive ())
7 {
8 context -> PushActive ();
9 context -> SetContextLocked (lockContext);

10 }
11 if (! mWidgetIsFocused && IsFocusable ())
12 {
13 context -> Focus (this);
14 }
15 }
16 }

Listing 4.11: Implementation of Gui::Widget::PushContext()

Gui::Widget does not contain any renderable geometry or material definitions.
This is part of the responsibility of the Widgets derived from this class.

98

4.2. GUI GRAPH NODES

Menu Bars and Menu Items

A Menu Bar acts as container to Menu Items. Menu Items are pure informational
nodes that do not contain any geometries to render. An instance of Gui::MenuBar
therefore takes this information from the Gui::MenuItem and generates the appro-
priate node to create the desired outcome. In the scene graph XML resource, Menu
Items are simply defined as child elements of Menu Bars. The first step on initial-
ization is the registration of these nodes to track them as Menu Items. This is done
by iterating over all immediate child nodes and check their type by doing dynamic
casts as shown in listing 4.12.

1 Graph :: INodeArray children = GetChildren ();
2 for(SInt32 index = 0; index < children . GetCount (); index ++)
3 {
4 Gui :: IMenuItem * menuItem = dynamic_cast <Gui :: IMenuItem *>(children [index]);
5 if(menuItem != 0)
6 {
7 mMenuItems .Add(menuItem);
8 }
9 }

Listing 4.12: Registration of all Gui::MenuItem nodes attached as child nodes.

Later on, the geometry for the Menu Bar background will be created, as well
as the nodes for rendering every single Menu Item. Figure 4.1 shows an example
subgraph of an initialized Menu Bar with two Menu Items.

Figure 4.1: Menu Bar Subgraph

99

CHAPTER 4. IMPLEMENTATION

Menu Bars are also responsible for parsing pointing device input by querying the
button nodes (e.g. Menu Item 1 Button in the figure above) iteratively on each
tick. Menu Events will then be created. If the Menu Strip Node Target is set for a
particular Menu Item, the referred Menu Strip will be displayed beneath the Menu
Item button.

One limitation of Menu Bars is the fact that there is currently no possibility to
find out the width of a rendered text through the engine. Therefore, all Menu Items
are assumed to be equally wide (60 virtual pixels). Menu Items with longer label
texts will be trimmed, smaller texts will look like padded text. This issue will also
affect other Widgets, as it will be learned in the following sections of this chapter.
A feature to tackle this problem has been staged after finalizing the implementation
though.

Menu Strips

Like Gui::MenuBar, Gui::MenuStrip is also an implementation of Gui::IMenu, but
in contrast to Menu Bars, Menu Strips arrange Menu Items in a vertical manner.
Though, Menu Strips have much in common with Menu Bars in terms of event han-
dling. They mostly differ in the way they are used. Menu Strips replace Menu Bars
on mobile devices. Additionally, they can be hierarchically structured by attaching
other Menu Strips to contained Menu Items. For the proper effect, Menu Strips
must be defined as child nodes of an inactive/invisible node in the scene graph.
Menu Item use Graph::ReferenceTransform nodes to present Menu Strips as sub-
menus at the correct position. If the Menu Strip shall be rendered and processed,
the reference node will be set active and visible, otherwise inactive and invisible.
This is a common practice propagated by the ME: A complex node is defined within
an inactive and invisible branch of the scene graph before its first use. Reference
nodes are then used to render the complex node whenever and wherever they are
needed.

4.2.3 Component Nodes
Gui::Component extends Gui::Widget by a specific scheme of subgraphs. As most
Widgets are Component derivates, this class defines the common subset of features
used by them. As stated in the previous chapter, (1) a Component is a Widget with
rectangular dimensions and a position. (2) They have a custom appearance rendered
onto their geometry. And finally, (3) Components are aware of local input events.
The base class Gui::Component provides default setup and event parsing methods
to assist derived Widgets in these three aspects. Component nodes themselves are
already very versatile Widgets for rendering custom output and doing basic event
handling. Before explaining the special adaptions of Components in their subclasses,
a closer look on the base class shall be given here. Note that the most substantial
topic regarding Components – Skinning – is covered in section 4.5 due to the fact
that skinning was formulated as one of the major requirements the MGTmust satisfy
and therefore deserves its own section.

100

4.2. GUI GRAPH NODES

Figure 4.2: Component Subgraph

The subgraph shown in figure 4.2 is generated by InitSelf() on initialization
of the Component node. The gray elements are optional and depend on the frame
buffer settings (enabled or disabled) of the Component. Using frame buffers for
Component means that the output geometry is not rendered directly to screen but
into a frame buffer texture that is put on a simple plane geometry. This produces
additional cost in time and memory performance for Components that only consist
of a texture and a simple plane geometry. However, performance improvement can
be achieved on Widgets with many sub-elements, e.g., composed Widgets. Instead
of drawing all planes on each tick, the output is once written into the frame buffer
for one tick before the entire subgraph will be set to invisible until the next update
of the appearance. Depending on the complexity of the GUI and the Widgets, this
may reduce the number of processed vertices from dozens, hundreds, or thousands
down to four. The developer is responsible for proper handling this feature. It can
be turned on or off by the method SetFrameBufferEnabled().
The other nodes of the Component subgraph make up the default setup. Since

many derived Widgets refer to those in order to query or manipulating certain
properties, their usage shall be described as follows:

• Component Root is a Graph::SubState node for sandboxing all state manip-
ulations (probably quite a lot) within the Component subgraph. This ensures
that the nodes outside the Component are not affected by any states of the
subgraph. It must therefore be used as the root node of all other nodes.
• Component Button defines the input area of pointing devices. It has usually

the same height and width as the bounding box of the contained geometry
(see below). If the geometry is a plane geometry or a multi-patch geome-
try, the dimensions of button, bounding box, and geometry are equal and
thus always updated together. Graph::Button nodes are subclassed from

101

CHAPTER 4. IMPLEMENTATION

Graph::Transform, which gives them a second important role: The Compo-
nent Button holds the transformation of the Component, that depends on the
X and Y position properties manipulated by users or by layouts.
• Component State Set is a reference to a State Set node defined in the skin

package.
• Component Geometry refers to the node that holds the Widget geometry to

render. Its node type is not specified, as there are three possible candidates
per default (from the three geometry types as introduced in section 3.6.2) and
any number of arbitrary geometries theoretically. The surface of the geometry
is determined by the State Set (see above). Plane and generic geometries are
affected by size updates. Furthermore, if Components contain any decorative
child geometries or child Widgets, they are attached to this node.

The basic structure is adopted by child classes according to their needs. To provide
a consistent interface for all Component derivates in order to built a proper subgraph,
some callback methods are defined that may be partially or fully overridden by child
classes.

ApplyPositionUpdate()
A callback method that is called after the position properties of a Component
changed. If the Component has already been initialized, this method propa-
gates the updated values to the transform node of the Component (Component
Button).

ApplySizeUpdate()
A callback method that is called after the size properties of a Component
changed. If the Component has already been initialized, this method propa-
gates the updated size values to the Component Geometry (as long as it is not
an instance of Graph::Reference). Finally, ReCalculateInnerDimension()
and ReLayoutChildren() will be executed, allowing subclasses to update their
custom geometries.

GetDefaultComponentGeometryType(): ComponentGeometryType
Returns the default/desired geometry type (see section 3.6.2) of the Compo-
nent.

GetEffectiveComponentGeometryType(): ComponentGeometryType
Returns the actual geometry type to use for the Component. This allows the
Component subclass to force a certain type by ignoring the default or custom
value. By default, this method just returns the current value of the related
property.

ReCalculateInnerDimension()
A callback method that is called after the size of a Container changed. This
method can be used to calculate a new inner dimension according to the up-
dated outer dimension and the Component-specific insets. If not overridden,
this method just assigns the outer dimension to the inner dimension.

102

4.2. GUI GRAPH NODES

ReLayoutChildren()
A callback method that is called after the size of a Component changed. This
method can be used to update additional geometry or Widgets attached to the
Component. For example, a Window uses this method to update the position
of the title bar buttons.

SetupDimension(tracker: Graph::IInitTracker): Bool
A callback method that is called once on initialization to setup the dimension
of the Component geometry. This method can be used to ensure proper size
values and to calculate size and position of child geometries.

SetupStateSet(tracker: Graph::IInitTracker): Bool
A callback method that is called once on initialization to setup the Component
State Set. This method can be used by subclasses to create even more complex
State Sets or materials if references to skin packages are not sufficient.

SetupFrameBuffer(tracker: Graph::IInitTracker): Bool
A callback method that is called once on initialization to setup the Component
frame buffer. If frame buffering is enabled for the Component, this method
can be used to customize the frame buffer nodes. However, there is hardly any
use for this opportunity.

SetupGeometry(tracker: Graph::IInitTracker): Bool
A callback method that is called once on initialization to setup the Component
geometry. This method can be used to add additional geometries or to setup
the base geometry apart from the default rectangle.

Another important task of Gui::Component is handling local input events and
dispatching Event objects. This is done in FinishLogic(), as otherwise the input
events would not be parsed yet by Graph::Button. If there is only a single tracked
event on the Component Button, the algorithm reads the events flag from the button
(e.g., WasPressed()). It is also possible that no certain point event type (press,
release inside, or release outside) was detected, which is the case if the pointing
instrument is currently dragging. Even then, Event objects must be dispatched –
as someone might want to know the current drag position. There is no distinction
between device types yet. If there is more than one tracked event (multitouch), the
algorithm must keep track of every single “tracked event ID” and event position.
The ID list of the previous tick will then be compared with the current one. If there
are new entries, the event type of the Events to dispatch must be set to PRESS.
On the other side, if event IDs are missing in the newer list, RELEASE_INSIDE or
RELEASE_OUTSIDE (depending on the positions) must be assigned instead. Again,
there will probably be events without any of these types. They will just propagate
their drag positions. Finally, if all tracked events have been parsed, the collected
data will be put into an instance of Gui::TouchEvent and additionally abstracted
to Gui::PointEvent. All created Event objects will then be dispatched iteratively.

As a last point, Components are involved in the Drag-and-Drop logic of the MGT.
Their role is to handle dragging, while their counterparts, Containers, are watching

103

CHAPTER 4. IMPLEMENTATION

for “dropped” Components. Details on this feature will be covered in a separate
section at 4.2.7.

Activity Indicators

The Component subclass Gui::ActivityIndicator restricts the geometry type to
COMPONENT_GEOMETRY_TYPE_REFERENCE and extends the SetupGeometry() method
by interposing a Graph::Timeline and Graph::Transform node between the Com-
ponent Geometry and its parent. The result of this configuration is an animating
activity icon. The icon is obtained from the skin atlas, where it is defined as tex-
tured Graph::PlaneGeometry node, so only a reference has to be created. Listing
4.13 furthermore demonstrates the dynamic configuration of keyframe animation on
nodes.

1 void Gui :: ActivityIndicator :: SetupGeometry (Graph :: IInitTracker * tracker)
2 {
3 Gui :: Component :: SetupGeometry (tracker);
4
5 Graph :: IRoot * root = tracker -> GetRoot ();
6 Graph :: INode * hook = mComponentGeometry -> GetParent (0);
7
8 // Rebuild graph after default geometry setup .
9

10 hook -> RemoveChild (mComponentGeometry);
11
12 mIndicatorTimeline = dynamic_cast < Graph :: ITimeline *>(root -> CreateNode ("

Timeline "));
13 mIndicatorTimeline -> SetStartTime (Real (0));
14 mIndicatorTimeline -> SetEndTime (Real (1));
15 mIndicatorTimeline -> SetStartOnActivateEnabled (true);
16 mIndicatorTimeline -> SetNumberOfLoops (-1);
17 mIndicatorTimeline -> GetNodeInterface () ->SetActive (mIndicatorAnimating);
18 hook -> AddChild (mIndicatorTimeline -> GetNodeInterface ());
19
20 mIndicatorTransform = dynamic_cast < Graph :: ITransform *>(root -> CreateNode ("

Transform "));
21 mIndicatorTransform -> GetNodeInterface () ->AddChild (mComponentGeometry);
22 mIndicatorTimeline -> GetNodeInterface () ->AddChild (mIndicatorTransform ->

GetNodeInterface ());
23
24 Graph :: IController * controller = tracker -> GetGraphFactory () -> CreateController

(" AnimationController ", mIndicatorTransform -> GetNodeInterface ());
25 mIndicatorAnimationController = dynamic_cast < Graph :: IAnimationController *>(

controller);
26 mIndicatorAnimationController -> GetAnimationResourceTarget () -> AddResourceId (

MURL_GUI_ACTIVITY_INDICATOR_ANIMATION_RESOURCE_ID);
27 mIndicatorTransform -> GetNodeInterface () -> AddController (

mIndicatorAnimationController -> GetControllerInterface ());
28 }

Listing 4.13: Implementation of Gui::ActivityIndicator::SetupGeometry()

A few words on how to animate scenes in the ME need to be given now. Anima-
tions are stored as XML files in the proprietary format of the ME. An example is
available in listing 4.14. This file contains a sequence of animation keys, each with
an exact keyframe time and the value(s) of the key at the given time. The values
between two consecutive keyframes are interpolated linearly by default (like in the
example), but it is also possible to explicitly set the interpolation function. The

104

4.2. GUI GRAPH NODES

Activity Indicator wants a counter-clockwise rotation around the z-axis, which is
the default viewing direction used in the MGT.

1 <?xml version ="1.0" ?>
2
3 <Animation >
4
5 <RotationKey time="0.0" axisX ="0" axisY ="0" axisZ =" -1" angle ="0deg"/>
6 <RotationKey time="1.0" axisX ="0" axisY ="0" axisZ =" -1" angle ="360 deg"/>
7
8 </Animation >

Listing 4.14: Animation resource of the Activity Indicator.

To make animations come to life, a Gui::Timeline node must be set as par-
ent of the subgraph that shall be animated. Timelines have a definite start and
end time and further properties like time scale and loop configuration. After start-
ing, the timeline updates its time value every frame by the time passed since the
most recent tick. Afterwards, it updates all descendant nodes with instances of
Graph::AnimationController assigned. Nodes with controllers must also specify
the animation resource to use. The controller then updates the properties of the
node according to the keys of the animation file and the current time of the time-
line. The example above affects the rotation of transformable nodes. The Activity
Indicator therefore needs to create a Graph::Transform node with an animation
controller as parent of the icon geometry and attach it to the timeline to achieve the
desired effect. By setting the number of loops to -1, the timeline will loop infinitely
or until it becomes inactive.

Labels

Labels are rendered as plane geometries textured by Graph::FlatTextTexture
nodes. No other geometry types are allowed or possible, since Gui::Label overrides
the effective geometry type getter of Gui::Component. Graph::FlatTextTexture
instances are dynamically generated texture nodes which contain the rendering out-
put of customizable text. The surface is created by the operating system on the
CPU, before being copied to the video memory. This has to be considered when
creating many Labels or long text paragraphs. Another drawback will probably oc-
cur on devices without NPOT texture support because text textures must be padded
from the actual text size to the next power of two size in both dimensions.

As extension of Gui::Component, the setup of Labels is mainly done in the virtual
method SetupStateSet(). This is where the text texture is created and configured.
Listing 4.15 reveals that most properties are taken from Gui::Label which can be
seen as MGT compliant wrapper class for text textures. The reason for a dedicated
Label node was the compatibility with the Layout handlers and the Component/-
Container concept of the MGT.

1 void Gui :: Label :: SetupStateSet (Graph :: IInitTracker * tracker)
2 {
3 Graph :: IRoot * root = tracker -> GetRoot ();

105

CHAPTER 4. IMPLEMENTATION

4
5 mLabelTextureSizeX = Gui :: CalculateNextPowerOfTwo (mComponentOuterDimension .

mSizeX);
6 mLabelTextureSizeY = Gui :: CalculateNextPowerOfTwo (mComponentOuterDimension .

mSizeY);
7
8 // create texture
9

10 mLabelTextTexture = dynamic_cast < Graph :: ITextTexture *>(root -> CreateNode ("
FlatTextTexture "));

11 mLabelTextTexture -> GetTextureInterface () -> SetPixelFormat (:: IEnums ::
PIXEL_FORMAT_R8_G8_B8_A8);

12 mLabelTextTexture -> GetTextureInterface () -> SetAlphaEnabled (true);
13 mLabelTextTexture -> GetTextureInterface () ->SetSlot (0);
14 mLabelTextTexture -> GetTextureInterface () ->SetUnit (0);
15 mLabelTextTexture -> GetTextureInterface () -> SetHorizontalWrapMode (:: IEnums ::

TEXTURE_WRAP_MODE_CLAMP_TO_EDGE);
16 mLabelTextTexture -> GetTextureInterface () -> SetVerticalWrapMode (:: IEnums ::

TEXTURE_WRAP_MODE_CLAMP_TO_EDGE);
17 mLabelTextTexture -> SetText (mText);
18 mLabelTextTexture -> SetTextColor (mTextColor);
19 mLabelTextTexture -> SetBackgroundColor (mBackgroundColor);
20 mLabelTextTexture -> SetFontId (mSystemFontName);
21 mLabelTextTexture -> SetFontSize (mFontSize);
22 mLabelTextTexture -> SetHorizontalTextAlignment (mHorizontalTextAlignment);
23 mLabelTextTexture -> SetVerticalTextAlignment (mVerticalTextAlignment);
24 AddChild (mLabelTextTexture -> GetNodeInterface ());
25
26 // Add texture to widget graph .
27
28 mComponentStateSet = Gui :: CreateTextureMaterialState (root , mLabelTextTexture

-> GetTextureInterface ());
29
30 Component :: SetupStateSet (tracker);
31 }

Listing 4.15: Implementation of Gui::Label::SetupStateSet()

Also note the private utility functions Gui::CalculateNextPowerOfTwo() and
Gui::CreateTextureMaterialState() used here and in some other parts of the
toolkit. Gui::CalculateNextPowerOfTwo() is a one-liner that rounds up an arbi-
trary number k to the smallest power of two number ≥ k. Example: f(75) = 128

1 UInt32 Gui :: CalculateNextPowerOfTwo (Real number)
2 {
3 return UInt32 (Math :: Pow (2.0f, Math :: Ceil(Math :: Log(number) / MURL_MATH_LN_2))

);
4 }

Listing 4.16: Implementation of Gui::CalculateNextPowerOfTwo()

Gui::CreateTextureMaterialState() is used to create a graph that instantiates
a fixed program, a material, a material state, and a texture state that refers to the
texture passed as parameter. The resulting graph can then be used as State Set for
the Widget and is independent from skin package definitions. However, even though
the overhead is negligible, the same function and material nodes will be instantiated
over and over again.

Finally, some calculations on texture coordinates are necessary for rendering cor-
rect text output. Depending on the horizontal and vertical text alignment, the plane

106

4.2. GUI GRAPH NODES

size, and the texture size, the texture coordinates of the plane geometry must be cal-
culated by taking these factors into account. The method ReCalculateTextureCo-
ordinates() will be called on initialization and whenever the Label properties did
change. u1, v1, u2, and v2 are calculated using the following formulas, where wt and
ht denote the width and height of the texture, and wL and hL the width and height
of the Label:

u1 =


wt−wL

2 if horizontal alignment is center
0 if horizontal alignment is left
wt − wL if horizontal alignment is right

u2 =


wt − u1 if horizontal alignment is center
wL if horizontal alignment is left
wt if horizontal alignment is right

v1 =


ht−hL

2 if vertical alignment is center
0 if vertical alignment is top
ht − hL if vertical alignment is bottom

v2 =


ht − v1 if vertical alignment is center
hL if vertical alignment is top
ht if vertical alignment is bottom

The version of the engine used to implement the MGT did not support querying
the GPU driver for the availability of NPOT textures, so texture mapping is treated
equally on all platforms by using the calculations above. Another issue that has
already been mentioned before is the missing feature for querying the size of a
string by using certain fonts and point sizes. The developer is therefore responsible
for manually setting a Label size that fits the assigned text.

Tab Controls

Tab Controls contain a number of Tab Pages and a control bar to switch between
them. They are extensions of Gui::Component, because they are no Containers at
all, but a utility to control Containers. The rendering of the Tab Pages and their
content is handled by Gui::TabPage, so the Tab Control is responsible for a correct
transformation of the Containers held. This means that the size of the Tab Page
(wP× hP) depends on the size of the Tab Control (wC× hC) and on the size of the
tab bar (wB × hB):

wP = wB = wC

hP = hC − hB
This holds for horizontal tab bars. No other formats are supported yet, but it is

possible to add this feature at low cost. The relative position of the Tab Pages must
also be moved down by half of the tab bar’s height. The more complicated part is
to handle the toggling between Tab Pages and the visual adoption of tab buttons to
indicate which tab is active. As learned in the previous chapter, the ME provides a
node type called Graph::Switch for switching between child nodes, i.e., setting all

107

CHAPTER 4. IMPLEMENTATION

nodes deactivated and invisible unless the one that is considered to be selected by
the Switch. At most one child node will be active and visible at a time, or none,
if the Switch switches to an invalid child node index. Grouping all Tab Pages in a
Switch node will yield the desired result. The index of the Switch will then be set
on initialization and whenever the user presses a tab button.

4.2.4 Container Nodes
Containers

Containers are extensions of Gui::Component and inherit the property of being
configurable in size and position. The Components added to the Container are
attached to a dedicated Node within the Container subgraph that is called Container
Node Parent internally. This could be any Node generated for this purpose and
attached to the Component Button node to inherit the transformation. Nonetheless,
the Component Geometry will be referenced to use for this purpose. All contained
Components will therefore be children of the geometry node. Adding Components
is only possible before the Container has been initialized, since the engine does not
allow to restructure the graph after the initialization phase. There are also some
other things that need to be considered.

First of all, the whole subgraph of a Widget will be created during initialization.
This means that nothing more than the bare Node will exist immediately after
creation. A Container deserialized from an XML file has the contained Components
attached as immediate children.3 As explained before, the Components are required
to be children of the Container Node Parent though, otherwise they will not be
affected by the transformation of the Component Button. The reorganization is
done in InitSelf() as shown in listing 4.17

1 Graph :: INodeArray children = GetChildren ();
2 for(SInt32 index = 0; index < children . GetCount (); index ++)
3 {
4 Gui :: IComponent * component = dynamic_cast <Gui :: IComponent *>(children [index]);
5 if(component != 0)
6 {
7 AddComponent (component);
8 RemoveChild (component -> GetNodeInterface ());
9 }

10 else
11 {
12 Gui :: ILayoutDirective * directive = dynamic_cast <Gui :: ILayoutDirective *>(

children [index]);
13 if(directive != 0)
14 {
15 Graph :: INodeArray layoutedChildren = directive -> GetNodeInterface () ->

GetChildren ();
16 for(SInt32 jndex = 0; jndex < layoutedChildren . GetCount (); jndex ++)
17 {

3It is also possible to attach any Node regardless of its type to Containers or even Widgets.
Parent-child relationships are a basic feature of the engine’s Graph::Node type and can not be
turned off. The MGT ignores this fact and delegates the awareness to the developer. There
might indeed be some situations for exploiting this relation usefully, e.g. by appending particle
systems to Widgets.

108

4.2. GUI GRAPH NODES

18 Gui :: IComponent * layoutedComponent = dynamic_cast <Gui :: IComponent
*>(layoutedChildren [jndex]);

19 if(layoutedComponent != 0)
20 {
21 AddComponent (layoutedComponent , directive);
22 directive -> GetNodeInterface () ->RemoveChild (layoutedComponent

-> GetNodeInterface ());
23 }
24 }
25 }
26 }
27 }

Listing 4.17: Reorganization of Container child nodes in Gui::Container::-
InitSelf()

This algorithm iterates over the immediate child nodes and checks if they are
Components by dynamic casting, which will return 0 if not. The Component is
then removed from its position in the graph and re-added with AddComponent().
This method does a proper registration of the Component for internal purposes and
adds it as a child of Container Node Parent. If the node is not a Component, it
may be a Layout Directive that is wrapped around one or more Components. If so,
an overloaded version of AddComponent() is called that accepts both Component
and Layout Directive. This method puts the Component to its right place, passes
it to the Layout instance to fit it into the layout and also maps the Component
to the Layout Directive for prospective re-computations of the Layout (see next
paragraph). AddComponent() can also be called for adding Components program-
matically instead of using XML. The Components are stored in an array and will
become added to the graph while InitSelf() is executed. This will fail, however,
if the Container has already been initialized (see above).

If the size of a Container changes, the Layout has to be refreshed. A Component
will automatically invoke its virtual callback method ApplySizeUpdate(), which is
overridden by Gui::Container (see listing 4.18). At first, the new inner dimension
(outer dimension minus borders) will be calculated by the superclass. After that,
the result will be passed to the Layout using the UpdateLayout() method, which
hints the new boundaries and updates the size and/or position of all previously laid
out Components.

1 void Gui :: Container :: ApplySizeUpdate ()
2 {
3 Gui :: Component :: ApplySizeUpdate ();
4
5 if (IsInitialized ())
6 {
7 mContainerLayoutNodeTarget . GetNode (0) -> UpdateLayout (

mComponentInnerDimension);
8 }
9 }

Listing 4.18: Implementation of Gui::Container::ApplySizeUpdate()

109

CHAPTER 4. IMPLEMENTATION

Collapse Containers

Gui::CollapseContainer is a subclass of Gui::Component and has a composi-
tional relation to Gui::Container. It consists of a background plane (Component
Geometry), a Gui::Container node that holds the content and a control bar that
is made of a multi-patch Graph::GenericGeometry, a State Set reference, a La-
bel, and a Graph::Switch with two Graph::Reference nodes, all sandboxed into a
Graph::SubState node. Figure 4.3 illustrates the subgraph of a Collapse Container.

Figure 4.3: Collapse Container Subgraph
Collapse Containers use additional nodes to generate a control bar. Child Components
are put into the nested Container node.

The public methods Collapse(), Expand() are used to collapse (hide) and expand
(show) the nested Container. Listing 4.19 shows the implementation of Collapse()
as an example. When collapsing the Widget, the size of the Component has to set
to the size of the control bar as it is the only visible element. Because of the origin
being centered in planes, the Y-position has to be moved up by the half of the nested
Container height. The Container itself is turned off and the control button switch
activates the expand button. The counterpart method, Expand(), undoes these
operations. A third method, Toggle(), executes the right method to invert the
current collapse state and is either called programmatically or in FinishLogic(), if
the collapse/expand button of the control bar has been pressed.

1 Bool Gui :: CollapseContainer :: Collapse ()
2 {
3 if (! mIsCollapsed)

110

4.2. GUI GRAPH NODES

4 {
5 mIsCollapsed = true;
6
7 if (IsInitialized ())
8 {
9 Gui :: Component :: SetSizeY (mControlSize);

10 SetPositionY (mComponentOuterDimension . mPositionY + (mExpandedSize -
mControlSize) / Real (2));

11
12 mControlGeometry -> GetTransformInterface () -> SetPositionY (Real (0));
13 mContainer -> GetNodeInterface () -> SetActiveAndVisible (false);
14 mControlButtonSwitch -> SetIndex (0);
15 }
16
17 return true;
18 }
19 else
20 {
21 return false ;
22 }
23 }

Listing 4.19: Implementation of Gui::CollapseContainer::Collapse()

Collapse Containers are responsible for propagating size changes to its child Com-
ponents. The control bar width depends on the inner width of the Collapse Con-
tainer, which is equal to the outer width, if no multi-patch geometry is used to
render the background plane. The Container dimension is both dependent from the
width of the Collapse Container and the heights of the control bar and the Collapse
Container. The Label within the control bar is stretched to the full width, and
the control button is always arranged on the right side of the bar. All of these con-
straints are handled on initialization and on size updates in the Component callback
method ApplySizeUpdate() (see listing 4.20).

1 void Gui :: CollapseContainer :: ApplySizeUpdate ()
2 {
3 Gui :: Component :: ApplySizeUpdate ();
4
5 if (IsInitialized ())
6 {
7 mControlGeometry -> GetTransformInterface () -> SetPositionY (Gui ::

CalculateTopAlignmentPosition (mComponentOuterDimension .mSizeY ,
mControlSize));

8 mMultipatchFactory . SetSize (mComponentOuterDimension .mSizeX , mControlSize)
;

9
10 mControlLabel -> GetComponentInterface () ->SetSize (mMultipatchFactory .

GetInnerDimension ().mSizeX , mControlSize);
11
12 mControlButton -> GetTransformInterface () -> SetPositionX (

CalculateRightAlignmentPosition (mMultipatchFactory . GetInnerDimension
().mSizeX , mControlButtonSizeX));

13
14 mContainer -> GetComponentInterface () ->SetPositionY (mControlSize / Real (-2)

);
15 mContainer -> GetComponentInterface () ->SetSize (mComponentOuterDimension .

mSizeX , mExpandedSize - mControlSize);
16 }
17 }

Listing 4.20: Implementation of Gui::CollapseContainer::ApplySizeUpdate()

111

CHAPTER 4. IMPLEMENTATION

The implementation of Gui::CollapseContainer has a serious drawback. Al-
though the Gui::IContainer interface is accessible through Gui::ICollapseCon-
tainer, the accessor method will return 0, if the node has not been initialized, since
this class has a Container but not is a Container. As said before, child nodes can
not be created by the node itself before invoking InitSelf() (or, more precisely:
Init()). However, adding Components to Containers is not possible any longer af-
ter that step, as mentioned above. Developers are therefore forced to define Collapse
Containers in XML resources. There are ways to tackle this issue. One possibility
would be the implementation of a proxy class that implements Gui::IContainer
for private use only. When creating the actual Container, the properties will then
be copied from the proxy to the Widget. However, since no flawless solution has
been found yet, the issue is still open.

Scroll Containers

The Gui::ScrollContainer class has the most complex implementation among
all Widgets. Scroll Containers display a rectangular aperture of a Container (and
its Components) that has usually a bigger area than the “window” of the Scroll
Container. The aperture is moved along the Container surface in both directions
according to the scrollbar movements. A simple translation of the Container con-
tent will not be sufficient, since there is no way to clip the Components outside the
borders of the Container. Therefore, a solution based on frame buffers has been
implemented. Figure 4.4 illustrates the node hierarchy of a single Scroll Container.
Scroll Containers consist of two subgraphs. The first is similar to most other Com-
ponents, the second one represents a scene of contained Widgets that are rendered
into a frame buffer texture (Frame Buffer Texture). This texture is referenced by
the Scroll Container Texture State node, which causes the frame buffer to be drawn
onto the Component Geometry.

Figure 4.4: Scroll Container Subgraph

112

4.2. GUI GRAPH NODES

The structure of the frame buffered scene is similar to the one that is optionally
made available by Gui::Component. In this case, however, the frame buffer subgraph
is mandatory for the Scroll Container to work. The following list outlines the purpose
of the required nodes that are needed for a proper use of frame buffers in the ME:

• The Graph::Camera (or rather one of its concrete subclasses) is used to capture
the scene according to its transformation. It is aligned with the Z-axis and
looks into the positive direction. One virtual coordinate unit maps to one
rasterized pixel.
• The Graph::View writes the output pixels produced by a camera to a specified

buffer, i.e., the frame buffer in this case.
• The Graph::FrameBuffer node manages an OpenGL frame buffer object

(FBO) and is used to define the render texture target.
• The Graph::FrameBufferTexture stores the output of the frame buffer in a

two-dimensional texture.

The nodes must be defined in reversed order, as they are listed here because of
reference dependencies. The camera has to be the parent node of scene itself (i.e.,
the aligned Components of the Container), otherwise the scene will be rendered by
the main camera. The output of the rendered sub-scene is finally available via the
texture. By using Graph::TextureState nodes, a reference to the texture will be
set within the visible sub-graph of the Scroll Container to map it onto the window
plane.

The scrollbars are customized Gui::Slider objects. Their Number Entity will
generate Entity Events, whenever the user drags the thumb. In other words, scrolling
is performed by handling Entity Events of two Sliders within Scroll Containers. The
“horizontal” Slider interpolates its values between [−wC−w′C

2 ,
wC−w′C

2], the “vertical”
between [−hC−h′C

2 ,
hC−h′C

2], with w and h denoting width and height of the Scroll
Container C and w′ and h′ the width and height of its aperture. To achieve a scroll
effect, the frame buffer camera that records the content must now be moved to a
position derived from the Number Entities of the Sliders after an Event has been
emitted. The virtual X-coordinate is hereby equal to the value of the horizontal
Slider. The virtual Y-coordinate is the negative value of the vertical Slider. The
sign inversion has to be done in order to accommodate to the OpenGL coordinate
system, with a positive Y moving upwards. Vertical Sliders will increment their
value when moving the thumb downwards, because they are 90 degree clockwise
rotated horizontal Sliders. Also note that the Slider interval does not extend to
the full dimensions of the Container surface, but is cut off by the half width of the
aperture on both ends. Again, the reason for this is OpenGL: The camera position
in a 2D projection is the center of the view. So moving the frame buffer camera
to ±wC

2 , for example, will align the camera upright to the left or right edge of the
surface. One half of the view will then capture the void outside the Container, or –
even worse – overflowing Components that were intended to be clipped.

113

CHAPTER 4. IMPLEMENTATION

Setting up the Gui::Slider instances to work as scrollbars requires some effort.
In the default skin of the MGT, they differ in appearance and look more like the
classical scrollbars of Microsoft Windows. The settings are taken from the skin
package (which defines dedicated State Sets and atlases for scrollbar Sliders) and
passed to the Sliders during Scroll Container initialization. The scrollbars are aligned
on the right and bottom edge of the Container and have a higher depth order than
the Component Geometry to generate an overlay effect upon the rendered content.
Their visibility either depends on the size of the inner container (that means a
scrollbar must be visible if the inner container is bigger than the aperture) or can
be manually set on or off. If both scrollbars are visible, each one’s length has to
be reduced by the width of the other, preventing them to overlap on the bottom-
right corner. The size of the scrollbars has to be updated whenever the size of the
aperture (which is the Component’s size property of the actual Scroll Container)
changes. Additionally, the upper and lower limits of the Number Entities of both
Sliders must be updated if the inner size changes.4 This is both done in a protected
method called UpdateScrollbar(), which is invoked during initialization and after
the mentioned updates occur.

There is an important aspect that has to be considered in order to make all
Widgets in the frame buffer scene ready for user interaction. As they are not visible
to the main camera, interaction with Graph::Button nodes does not work. To solve
this problem, the ME introduced a feature of the button node type called “Frame
Buffer Node Target” (FBNT). If the FBNT of a button is set to a frame buffer
node, the button forwards the input to the targeted frame buffered scene and also
does a correct view transformation of the ray. For this purpose, the Component
Button is configured with a FBNT that refers to the frame buffer node of the second
sub-graph.

As a final note, areas that are not occluded by Components will occur as transpar-
ent pixel in the texture. So, depending on the content, the rendered Scroll Container
might not be opaque. The default and effective geometry type of the Scroll Con-
tainer (seen as Component) is set to COMPONENT_GEOMETRY_TYPE_PLANE, so there
is no way to customize the appearance of the background immediately. To add a
background anyway, the recommended solution is to put the Scroll Container into
an ordinary Container with equal dimensions and a custom background.

Tab Pages

The implementation of Gui::TabPage is derived from Gui::Container and just
adds two additional properties to set the tab label text and the tab icon. The
rendering of the tab button is done by Gui::TabControl, which reads the properties
from the Tab Page. The properties (both strings) can be set by calling the mutators

4Since Entity updates will fire Entity Events that cause the Slider to update the thumb position
automatically, no extra adjustment needs to be done in order to synchronize the inner container
size with the scrollbar thumbs.

114

4.2. GUI GRAPH NODES

or by deserializing the corresponding XML attributes. The default geometry type
of the Component is set to COMPONENT_GEOMETRY_TYPE_MULTIPATCH.

Windows and Dialogs

Gui::Window is an extension of Gui::Container that adds some accessories and
the ability to resize and drag. The effective geometry type is locked to COMPONENT_-
GEOMETRY_TYPE_MULTIPATCH. Windows therefore require a nine-patch texture that
contains a title bar represented by the first three patches. The height of the first
patch row defines the height of the title bar, while the height of the bottom row
and the width of the middle left and middle right patches define the border insets
of the Window. The inner dimension of the Window will therefore be equal to the
dimension of the vertically and horizontally centered patch that is fully stretchable.

The right top corner contains a close button. This button is composed by a
Graph::Button that holds a Reference to a textured plane geometry generated by
the atlas generator. The plane geometry has the appearance of a typical closing
icon. Pressing it will start the Window Closing Animation. After the animation
has finished, the Window subgraph turns itself inactive and invisible. A user can
change the Window’s position by dragging its title bar. The implementation of this
behavior is covered in section 4.2.7 about the Drag-and-Drop feature.

Gui::Dialog is an extension of Gui::Window that overwrites the resizable flag
to false and defines some additional properties for setting up a Label and an Ok
Button. The resulting Dialog subgraph is a composition of Widgets and Layouts.
Figure 4.5 shows the graph structure that is attached to the Container Node Parent
of Gui::Container as explained above. Since Dialogs are also Containers, a Page
Layout is assigned automatically to align the Label and the Button.

Figure 4.5: Dialog Widget Subgraph
A Dialog, which is also a Container, uses the Page Layout to align a predefined Label and
a Button. Layout Directives are used to put the Label into the center section and the
Button to the bottom.

115

CHAPTER 4. IMPLEMENTATION

4.2.5 Control Nodes
The abstract base class Gui::Control is a subclass of Gui::Component and adds
the Entity property as well as some accessor methods that were declared by its
interface Gui::IControl:

1 virtual Bool SetEntity (IEntity :: SharedPtr Entity);
2 virtual IEntity :: SharedPtr GetEntity ();
3 virtual IEntity :: ConstSharedPtr GetEntity () const ;

Listing 4.21: Getter and setter methods of the Entity.

The Entity is not accessed directly, instead, a shared pointer is passed. Shared
pointers are so called smart pointers for managing allocation and deallocation of
objects. They are implemented as templates to wrap pointer types. A shared
pointer holds the pointer and an internal reference counter to keep track of how
many pointers to the object exist. If the counter reaches zero by destructing the
last existing shared pointer, the object will be deallocated automatically. The ME
provides implementations for each smart pointer type. Shared pointers are very
important for Entities, because they are not bound to a specific Control and can be
shared amongst many. This, of course, relieves the developer from the responsibility
to destruct objects. Even if manually allocated, an explicit deallocation will most
probably lead to an illegal memory access later on.

Beside the Entity property, Gui::Control also declares two pure virtual methods
to be implemented by its subclasses:

1 public :
2 virtual Bool HandleEntityEvent (IEvent :: ConstSharedPtr event) = 0;
3
4 protected :
5 virtual void SetupDefaultEntity () = 0;

Listing 4.22: Pure virtual methods of Control.

HandleEntityEvent() is a Callback Event Handler (see section 4.3.2) for Entity
Events. A Control must handle them in order to update the appearance of the
Widget according to the Entity state. The second method SetupDefaultEntity()
is called on initialization, if neither an explicit Entity has been set nor another
Control has been referred to in order to obtain its (shared) Entity. The upcoming
sections will now provide information on the implementation of specific Control
subclasses.

Buttons

Gui::Button is a subclass of Gui::Component, but not of Gui::Control, since
Buttons do not make use of Entities. However, they are generally seen as controls,
which is the reason for covering them in this section. The event handling done in
Gui::Component is sufficient for Buttons to work properly, so the subclass does not

116

4.2. GUI GRAPH NODES

override its parent in context of this aspect. The difference is found in the setup
of the State Sets, because a Button must react on user interaction related to the
four button events defined by the engine. Instead of having a single node assigned
toComponent State Set (which are Graph::Reference nodes in most cases), the
Button instantiates four references, each pointing to a certain State Set node defined
by the skin. They will be attached to the Component Button and referred to as
state-dependent nodes from the parent. To accomplish this, Gui::Button overrides
SetupStateSet() without calling the base method. Note that the mComponent-
StateSet pointer will remain uninitialized, pointing to NULL. This will cause the
base class to ignore the node, especially on de-initialization. Listing 4.23 contains
an excerpt of the Gui::Button::SetupStateSet() implementation. For reasons of
brevity, only the configuration of the up state is shown in the code, but the other
three states work similar.

1 void Gui :: Button :: SetupStateSet (Graph :: IInitTracker * tracker)
2 {
3 Graph :: IRoot * root = tracker -> GetRoot ();
4 ComponentGeometryType geometryType = GetEffectiveComponentGeometryType ();
5
6 if (geometryType == IEnums :: COMPONENT_GEOMETRY_TYPE_REFERENCE)
7 {
8 return ;
9 }

10 else if (geometryType == IEnums :: COMPONENT_GEOMETRY_TYPE_MULTIPATCH)
11 {
12 if (mButtonUpStateSetId . IsEmpty ())
13 {
14 mButtonUpStateSetId = MURL_GUI_BUTTON_MULTIPATCH_UP_STATE_SET_ID ;
15 }
16 [...]
17 }
18 else if (geometryType == IEnums :: COMPONENT_GEOMETRY_TYPE_PLANE)
19 {
20 if (mButtonUpStateSetId . IsEmpty ())
21 {
22 mButtonUpStateSetId = MURL_GUI_BUTTON_PLANE_UP_STATE_SET_ID ;
23 }
24 [...]
25 }
26
27 mButtonUpStateSetReference = dynamic_cast < Graph :: IReference *>(root ->

CreateNode (" Reference "));
28 [...]
29
30 mButtonUpStateSetReference -> GetNodeTarget () ->SetNode (root -> FindNode (

mButtonUpStateSetId));
31 [...]
32
33 mComponentButton -> GetNodeInterface () ->AddChild (mButtonUpStateSetReference ->

GetNodeInterface ());
34 [...]
35
36 mComponentButton -> SetStateChildIndex (:: IEnums :: BUTTON_STATE_UP , 0);
37 [...]
38 }

Listing 4.23: Implementation of Gui::Button::SetupStateSet()

Another extension to the Component class provided by Gui::Button is the nested
Label instance. Buttons have an own text property that is forwarded to the Label’s

117

CHAPTER 4. IMPLEMENTATION

text property on initialization or when the property is modified. The Label is
created in InitSelf() and attached to the Component Geometry, with a relative
depth order of 1.

Check Switches

Class Gui::CheckSwitch provides an implementation of a checkbox, based on a
Switch Entity. A Check Switch always uses a predefined plane geometry for ren-
dering, since there are usually no variations within the same skin. Therefore, the
GetEffectiveComponentGeometryType() of Gui::Component has been overridden
to return constantly COMPONENT_GEOMETRY_TYPE_REFERENCE. Similar to Buttons
(see previous section), Check Switches must consider up to four button states that
are handled by the ME. Multiplied by the two switch states on and off, eight possible
graphics must be ready for rendering. This differs from the situation of Buttons,
which only have one background geometry to consider. Furthermore, Check Switches
refer to plane geometries instead of State Sets, so no Component State Set node is
not needed. But, instead of using a single node that represents the geometry, a hier-
archy of two Graph::Switch nodes is required to switch between the button states
and the switch states. As already mentioned, Graph::Button internally works like
a switch node, if child nodes are explicitly associated with button states. Hence,
Gui::CheckSwitch must only define four Graph::Switch nodes and two child nodes
for each. This is done in listing 4.24. Figure 4.6 illustrates the resulting subgraph.

1 void Gui :: CheckSwitch :: SetupGeometry (Graph :: IInitTracker * tracker)
2 {
3 Graph :: IRoot * root = tracker -> GetRoot ();
4
5 SInt32 childCounter = 0;
6
7 for(SInt32 state = 0; state < :: IEnums :: NUM_BUTTON_STATES_VISIBLE ; state ++)
8 {
9 if(mCheckSwitchOnReferenceTargetIds [state]. GetLength () > 0 &&

mCheckSwitchOffReferenceTargetIds [state]. GetLength () > 0)
10 {
11 Graph :: INode * offStateTarget = root -> FindNode (

mCheckSwitchOffReferenceTargetIds [state]);
12 Graph :: INode * onStateTarget = root -> FindNode (

mCheckSwitchOnReferenceTargetIds [state]);
13
14 if (offStateTarget != 0 && onStateTarget != 0)
15 {
16 Graph :: ISwitch * toggleSwitch = dynamic_cast < Graph :: ISwitch *>(root

-> CreateNode (" Switch "));
17 Graph :: IReference * offStateReference = dynamic_cast < Graph ::

IReference *>(root -> CreateNode (" Reference "));
18 Graph :: IReference * onStateReference = dynamic_cast < Graph ::

IReference *>(root -> CreateNode (" Reference "));
19
20 toggleSwitch -> GetNodeInterface () ->AddChild (offStateReference ->

GetNodeInterface ());
21 toggleSwitch -> GetNodeInterface () ->AddChild (onStateReference ->

GetNodeInterface ());
22 offStateReference -> GetNodeTarget () ->SetNode (offStateTarget);
23 onStateReference -> GetNodeTarget () ->SetNode (onStateTarget);
24
25 mComponentButton -> GetNodeInterface () ->AddChild (toggleSwitch ->

GetNodeInterface ());
26 mComponentButton -> SetStateChildIndex (:: IEnums :: ButtonState (state)

, childCounter);

118

4.2. GUI GRAPH NODES

27 childCounter ++;
28
29 mCheckSwitchToggleSwitchNodes .Add(toggleSwitch);
30 }
31 }
32 }
33 }

Listing 4.24: Implementation of Gui::CheckSwitch::SetupGeometry()

Figure 4.6: Check Switch Subgraph

The Component Button handles the switching between referenced geometries with
respect to user interaction. The switching between the representation of the on
and off state is done in the Entity Event Handler of the Check Switch, which is
required by Gui::IControl. HandleEntityEvent() calls another method called
UpdateSwitchAppearance() (see listing 4.25). This method simply determines
the desired Graph::Switch index by converting the Gui::SwitchEntity state to
an integer (0 or 1) and propagates it to all switch nodes created by the code
shown above. Since those switches also need to be set up on initialization of the
Check Switch, this step is encapsulated in an own protected method, rather than in
HandleEntityEvent().

1 void Gui :: CheckSwitch :: UpdateSwitchAppearance ()
2 {
3 SInt32 switchIndex = SInt32 (IsActivated ());
4
5 for (SInt32 index = 0; index < mCheckSwitchToggleSwitchNodes . GetCount ();

index ++)
6 {
7 mCheckSwitchToggleSwitchNodes [index]-> SetIndex (switchIndex);

119

CHAPTER 4. IMPLEMENTATION

8 }
9 }

Listing 4.25: Implementation of Gui::CheckSwitch::UpdateSwitchAppearance()

The toggling of the Check Switch is implemented in the FinishLogic() callback.
If a button release on the Component Button has been detected, the Toggle()
method of the Switch Entity will be called. It performs the boolean inversion and
emits an Entity Event that causes the Check Switch to update its appearance.

List Views and List Items

Gui::ListView is a Control that is composed of other Widgets. It does neither use
an own Component Geometry nor a State Set. Instead, the rendering is done by
a wrapped Gui::ScrollContainer instance that is configured for List Views. The
Scroll Container uses a Grid Layout with 1×n grids, with n representing the number
of contained List Items. Gui::ListItem is a subclass of Gui::Control and consists
of a background plane (the Component Geometry) and a Gui::Label. List Items
are vertically arranged top down by the Grid Layout. Their width is equal to the
width of the Scroll Container, so a horizontal scrollbar is not needed and therefore
turned off. Their height is a custom value and equal among all List Items.

The Entity instantiated by List Views is a Gui::EntitySelection that contains
Gui::TextEntity objects. List Items, which are Controls just like List Views and
thus require Entities, will be connected to the Text Entities of the Entity Selection.
In this way, the relation between List Views and List Items will be the same as the
relation between the assigned Entity Selection and its Text Entities. The string held
by Text Entities will be passed to the Label of a single List Item. Other Entity types
are also possible, because the string is retrieved by calling the GetSerializedData()
method of the Gui::IEntity interface.

The List View is responsible for handling Selection Events of the Gui::Entity-
Selection object. It uses the SetSelected() method declared by the Gui::IList-
Item interface to set the selection state of the selected and the deselected List Items
(if available). This is merely done for updating the appearance of the List Items,
e.g. by setting a proper highlighting of the background that indicates selection. The
implementation is shown in listing 4.26. This subgraph of the List View contains a
Graph::Switch node to switch between two State Sets for rendering its background
plane (Component Geometry) according to the selection state. If an Entity of the
Entity Selection is updated, the List Item is responsible for handling the Entity
Event by simply updating the text of its Label child node to the string gained with
GetSerializedData().

1 Bool Gui :: ListView :: HandleEntityEvent (Gui :: IEvent :: ConstSharedPtr event)
2 {
3 Gui :: ISelectionEvent :: ConstSharedPtr selectionEvent = Gui :: ISelectionEvent ::

ConstSharedPtr :: DynamicCast (event);
4 SInt32 deselectedIndex = selectionEvent -> GetDeselectedIndex ();
5 SInt32 selectedIndex = selectionEvent -> GetSelectedIndex ();

120

4.2. GUI GRAPH NODES

6
7 if (deselectedIndex != -1 && mListItems . GetCount () > deselectedIndex)
8 {
9 mListItems [deselectedIndex]-> SetSelected (false);

10 }
11 if (selectedIndex != -1 && mListItems . GetCount () > selectedIndex)
12 {
13 mListItems [selectedIndex]-> SetSelected (true);
14 }
15
16 return true;
17 }

Listing 4.26: Implementation of Gui::ListView::HandleEntityEvent()

The developer that uses List Views must consider that the set of List Items
assigned to the List View and the items of the Selection are handled separately
and follow an adopted version of the MVC pattern. List Items (views) are used
to present the content of a Selection item (model), e.g., another Entity. They
are tied together by a List View (controller). As instances of Gui::ListItem are
nodes, all required objects must be allocated not later than the initialization of
the List View. Gui::ListView::OnInit() synchronizes the contained List Items
(added either programmatically or in XML) with the Selection. This means that
each List Item gets mapped to a Selection item in the order they are stored in the
corresponding arrays. If there are more Selection items than List Items, the lacking
List Items will be automatically created. If there are more List Items than Selection
items, the spare List Items will be set to inactive and invisible and may be used after
initialization when adding more Entities to the Entity Selection. This is the only
way to add items even if the List View has already been initialized. However, the
maximum number of presented List Items can not be changed after initialization,
because no extra nodes can be added to the subgraph of the List View. Adding
further Entities will only expand the Entity Selection.

Although List Views generally involve much complexity, this implementation is
rather simple, as many functional requirements have been delegated to other Widgets
or classes of the toolkit.

Option Buttons

In the default skin, Option Buttons are resembling radio buttons as they are provided
by most toolkits. In the MGT, the rendered texture may be replaced by any other
image. That is why Option Buttons are not called radio buttons in the MGT. The
appearance configuration is similar to Check Switches. First, the only geometry type
supported is COMPONENT_GEOMETRY_TYPE_REFERENCE, i.e., a fixed-size, pre-defined
image plane, preferably from the atlas generator. Further, the Component Button
has four children, one for each button state. Each child is a Graph::Switch node
that switches between two images (“on” and “off”) according to the selection state
of the Option Button. Please refer to listing 4.25 for an exemplification of how the
subgraph is built. The update of the appearance is shown in listing 4.27.

121

CHAPTER 4. IMPLEMENTATION

1 void Gui :: OptionButton :: UpdateOptionButtonAppearance ()
2 {
3 Gui :: ISelection :: SharedPtr selection = Gui :: ISelection :: SharedPtr ::

DynamicCast (GetEntity ());
4 SInt32 switchIndex = (selection -> GetSelectedIndex () == mOptionButtonIndex) ?

1 : 0;
5
6 for (SInt32 index = 0; index < mOptionButtonToggleSwitchNodes . GetCount ();

index ++)
7 {
8 mOptionButtonToggleSwitchNodes [index]-> SetIndex (switchIndex);
9 }

10 }

Listing 4.27: Implementation of
Gui::OptionButton::UpdateOptionButtonAppearance()

This implementation resembles the one used by Check Switches, but handles
another Entity type: Selections (Gui::ISelection). Each Selection has a certain
number of items associated with it and each Option Button has an option index.
An Option Button is selected, if the selection index of the Selection is equal to
the option index of the Option Button. If there is a shared Entity assigned, the
Option Button adds an item to the Selection and retrieves its option index from
the number of currently registered items. Otherwise, a new Selection will be created
with a single item that represents the Option Button. Like in any other Control, this
happens during InitSelf() execution. Note that per default the Gui::Selection
Entity type is used, which does not contain actual items. It is rather a counter with
a selected index property that points to a virtual or exterior item. However, the
developer is free to replace this by any other implementation of Gui::ISelection
programmatically, e.g., Selections that wrap array data.

In Gui::OptionButton::FinishLogic(), the Component Button is checked. If
it has been released in the most recent tick, the selection index of the Selection
is set to current option index. This will fire an Entity Event (and a Selection
Event), which is handled by Option Buttons by default, resulting in an invoca-
tion of UpdateOptionButtonAppearance() for all Options Buttons within the same
Selection.

The usage of Selections as Entity type for this Control has a great advantage over
many other radio button solutions in other toolkits. Obviously, the amount of code
is very small since there is no extra logic required for handling the interconnection
between different Widgets with the same Entity. Many toolkits use additional ob-
jects (radio button groups) instead. Here, each Option Button is still on its own, it
just queries its Entity. This leads to another point, the conceptual consistency with
other Controls, since the Entity concept fully satisfies the Option Buttons’ require-
ments. Selections and shared Entities are no particular feature of Option Buttons,
but occur in many other Widgets also.

122

4.2. GUI GRAPH NODES

Progress Indicators

The default implementation of Progress Indicators provided by the MGT is the
Gui::ProgressBar widget. It consists of a background plane and a foreground plane
that covers the background from left to right to a degree related to the normalized
value of the used Number Entity (GetNormalizedValue()). The background geom-
etry is the default Component Geometry and automatically configured by the base
classes. An additional geometry needs to be created and added to the existing one
as a child node for rendering the foreground. This is done in listing 4.28, which also
adds the proper State Set of the foreground bar. If the geometry is a multi-patch
type, a factory is used to create the geometry. Otherwise, it will be a plane geometry
(no references are allowed here).

1 void Gui :: ProgressBar :: SetupGeometry (Graph :: IInitTracker * tracker)
2 {
3 Gui :: Control :: SetupGeometry (tracker);
4
5 Graph :: IRoot * root = tracker -> GetRoot ();
6
7 mProgressBarStateSet = dynamic_cast < Graph :: IReference *>(root -> CreateNode ("

Reference "));
8 mProgressBarStateSet -> GetNodeTarget () ->SetNode (root -> FindNode (

mProgressBarStateSetId));
9 mComponentGeometry -> AddChild (mProgressBarStateSet -> GetNodeInterface ());

10
11 if (GetEffectiveComponentGeometryType () == Gui :: IEnums ::

COMPONENT_GEOMETRY_TYPE_MULTIPATCH)
12 {
13 mProgressBarGeometryFactory .Init(root , mComponentMultipatchRectangles ,

mComponentOuterDimension .mSizeX , mComponentOuterDimension .mSizeY , 3,
4);

14 mProgressBarGeometry = mProgressBarGeometryFactory . GetMultipatchPlane () ->
GetNodeInterface ();

15 mProgressBarGeometryFactory . GetMultipatchPlane () -> GetTransformInterface ()
-> SetDepthOrder (1);

16 }
17 else
18 {
19 Graph :: IPlaneGeometry * planeGeometry = dynamic_cast < Graph :: IPlaneGeometry

*>(root -> CreateNode (" PlaneGeometry "));
20 planeGeometry -> GetTransformInterface () -> SetDepthOrder (1);
21 mProgressBarGeometry = planeGeometry -> GetNodeInterface ();
22 }
23
24 mComponentGeometry -> AddChild (mProgressBarGeometry -> GetNodeInterface ());
25 }

Listing 4.28: Implementation of Gui::ProgressBar::SetupGeometry()

During initialization and after each Entity Event, the private ApplyProgress-
Update() method of listing 4.29 is called to update the appearance of the Progress
Bar. The foreground bar width is calculated from the background width times the
normalized Number Entity value. After resizing, the geometry must be realigned to
match the left edge of the background using the Gui::CalculateLeftAlignmentPo-
sition() utility function. Both plane geometry and multi-patch geometry types
must be handled separately due to their different interface.

1 void Gui :: ProgressBar :: ApplyProgressUpdate ()

123

CHAPTER 4. IMPLEMENTATION

2 {
3 Graph :: ITransform * transform = 0;
4 Gui :: ComponentGeometryType geometryType = GetEffectiveComponentGeometryType ()

;
5 Gui :: INumberEntity :: SharedPtr numberEntity = Gui :: INumberEntity :: SharedPtr ::

DynamicCast (GetEntity ());
6 Real normalizedValue = numberEntity -> GetNormalizedValue ();
7 Real backgroundSizeX = mComponentOuterDimension . mSizeX ;
8 Real foregroundSizeX = normalizedValue * backgroundSizeX ;
9

10 mProgressBarGeometry -> SetActiveAndVisible (normalizedValue > Math :: Limits <Real
>:: Epsilon ());

11
12 if(geometryType == Gui :: IEnums :: COMPONENT_GEOMETRY_TYPE_MULTIPATCH)
13 {
14 transform = dynamic_cast < Graph :: IGenericGeometry *>(mProgressBarGeometry)

-> GetTransformInterface ();
15 mProgressBarGeometryFactory . SetSize (foregroundSizeX ,

mComponentOuterDimension . mSizeY);
16 }
17 else if(geometryType == Gui :: IEnums :: COMPONENT_GEOMETRY_TYPE_PLANE)
18 {
19 transform = dynamic_cast < Graph :: IPlaneGeometry *>(mProgressBarGeometry)->

GetTransformInterface ();
20 dynamic_cast < Graph :: IPlaneGeometry *>(mProgressBarGeometry)->

SetScaleFactor (foregroundSizeX , mComponentOuterDimension .mSizeY , Real
(1));

21 }
22
23 if(transform != 0)
24 {
25 Real positionX = Gui :: CalculateLeftAlignmentPosition (backgroundSizeX ,

foregroundSizeX);
26 transform -> SetPositionX (Util :: Max(positionX , mComponentInnerDimension .

mSizeX / Real (-2)));
27 }
28 }

Listing 4.29: Implementation of Gui::ProgressBar::ApplyProgressUpdate()

Slide Switches

Gui::SlideSwitch provides an alternative implementation for Gui::ISwitch, re-
sulting in a switch that is much more associated with mobile devices. Due to the
same interface, there is no difference for the developer to handle this Widget’s logic.
There are, however, differences in the internal setup of the subgraph. Most sig-
nificantly, no button states are considered here. The current state of the switch is
indicated by the position of the thumb and the visible part of the track. The thumb’s
movement is animated by a controller and triggered on pressing the Widget. Again,
only referenced geometries are supported – Slide Switches do usually not vary in
appearance within the same skin.

Sliders

A Slider consists of a track geometry (background), a thumb geometry (foreground),
and two optional increment/decrement buttons (aside). Gui::Slider uses the Com-
ponent Geometry node of its parent class as track. It therefore needs to add a
Graph::Button that contains a plane or generic geometry for the thumb object as
well as for each of the two optional buttons, if activated. The generated subgraph

124

4.2. GUI GRAPH NODES

is sketched in figure 4.7. As mentioned above, Sliders are also used as scrollbars
for Scroll Containers. This is the reason why some more flexibility has to be imple-
mented, for example the increment/decrement buttons and the variable geometry
type of the thumb. The whole configuration is done in SetupGeometry().

Figure 4.7: Slider Subgraph
Sliders use additional buttons and geometries to add a draggable thumb and optional
increment/decrement buttons (here: gray).

Listing 4.30 contains the ProcessLogicSelf() method that is primarily used to
handle the thumb dragging. The dragging algorithm is an adopted version of the
one used by Gui::Window and by the Drag-and-Drop implementation (see below).
A flag is used to remember if a drag input has been detected during the last tick,
and the Slider Thumb Button is queried for the number of tracked events. Both
parameters may create four different situations:

1. A tracked event has been detected and the flag is set to false: This indicates
the beginning of the drag movement. The flag is set to true and the position
of the tracked event is stored for later use. This is the origin position of the
drag.

2. A tracked event has been detected and the flag is set to true: The user has
already started the interaction and now proceeds with the drag movement.
The current drag distance is the difference between the origin position and
the current position of the tracked event. The value of the Number Entity is
interpolated between minimum and maximum at the relative position of the
dragged thumb. Finally, a Slide Event is emitted.

3. No tracked event has been detected, but the flag is set to true: The user
interacted with the Slider until the previous tick and then released the thumb.
Reset the flag and the origin position.

4. No tracked event has been detected and the flag is set to false: The user is not
and was not interacting with the Slider. Do nothing.

125

CHAPTER 4. IMPLEMENTATION

1 Bool Gui :: Slider :: ProcessLogicSelf (Graph :: IProcessLogicTracker * tracker)
2 {
3 if (! Gui :: Control :: ProcessLogicSelf (tracker))
4 {
5 return false ;
6 }
7
8 UInt32 numberOfTrackedEvents = mSliderThumbButton -> GetNumberOfTrackedEvents ()

;
9

10 if (numberOfTrackedEvents > 0)
11 {
12 UInt32 eventID = mSliderThumbButton -> GetTrackedEventId (0);
13
14 if (mSliderThumbIsDragged)
15 {
16 Gui :: INumberEntity :: SharedPtr model = Gui :: INumberEntity :: SharedPtr ::

DynamicCast (GetEntity ());
17 Gui :: Number maximum = model -> GetMaximum ();
18 Gui :: Number minimum = model -> GetMinimum ();
19 Real eventPosition = mSliderThumbButton -> GetLocalEventPosition (

eventID).x;
20 Real slidePosition = mSliderThumbButton -> GetTransformInterface () ->

GetPositionX () + eventPosition - mSliderThumbDragOriginPosition ;
21
22 slidePosition = Util :: Min(Util :: Max(slidePosition , -mSliderConstraint

), mSliderConstraint);
23
24 Real slide = slidePosition / (2.0f * mSliderConstraint) + 0.5f;
25
26 if (model -> GetValue (). IsReal ())
27 {
28 model -> SetValue (slide * (Real(maximum) - Real(minimum)) + Real(

minimum));
29 }
30 else
31 {
32 model -> SetValue (SInt64 (slide * ((SInt64 (maximum) - SInt64 (minimum

)) + SInt64 (minimum))));
33 }
34
35 mSliderThumbButton -> GetTransformInterface () -> SetPositionX (

slidePosition);
36
37 SKIP_ONCE_IF (mIsRelaxed)
38 {
39 Gui :: ISlideEvent * slideEvent = new Gui :: SlideEvent (this , slide);
40 Gui :: IEvent :: ConstSharedPtr pointer = Gui :: IEvent :: ConstSharedPtr

(slideEvent -> GetEventInterface ());
41 Gui :: EventPipeline :: GetInstance () -> DispatchEvent (pointer ,

mSlideEventChannel);
42 }
43
44 PushContext (false);
45 }
46 else
47 {
48 mSliderThumbIsDragged = true;
49 mSliderThumbDragOriginPosition = mSliderThumbButton ->

GetLocalEventPosition (eventID).x;
50 }
51 }
52 else if(mSliderThumbIsDragged)
53 {
54 mSliderThumbIsDragged = false ;
55 mSliderThumbDragOriginPosition = 0.0f;
56 }
57
58 return true;

126

4.2. GUI GRAPH NODES

59 }

Listing 4.30: Implementation of Gui::Slider::ProcessLogicSelf()

In FinishLogic(), the increment and decrement buttons are checked, if available.
If a button event has been detected, the Increment() or Decrement() method of the
Slider’s Number Entity will be called, resulting in an Entity Event. Similar to the
drag actions, UpdateThumbGeometry() will be called in the Entity Event Handler of
the Slider. Gui::Slider also provides an overridden HandleWheelEvent() method
that reads the Y-axis of the wheel rotation and calls Increment() on the Number
Entity if the rotation is greater than zero or Decrement() otherwise. This is just
a demonstration on how the Slider can be improved considering alternative input
sources. Similar extensions are possible, for example by overriding the Keyboard
Event Handler and parsing the arrow buttons.

Table Views, Table Rows, and Table Cells

The Gui::TableView node is a subclass of Gui::Component and, similar to List
Views, a composition of other Widgets and Layouts. Its Component Geometry is
used as background plane while the foreground content is put into a Scroll Con-
tainer that uses a Grid Layout. The cells are represented by Text Fields for both
manipulating and presenting the two-dimensional data array. An array of col-
umn widths can be passed to the Table View object. They will be forwarded to
Gui::GridLayout::SetGridScaleFactorsX(), which will tell the Layout to set the
Text Fields’ width to the corresponding column values.

The hierarchy of Table Row nodes and Table Cell nodes exists beneath the Com-
ponent hierarchy established during the Table View initialization. They are not
rendered, but serve a structural purpose when deserializing scene graph XML files
and store the data strings. A Table Row simply keeps track of its Table Cells and
provides this information to the Table View. A Table Cell only holds the properties
for the data itself and its editable flag. The InitSelf() method of Gui::TableView
iterates over the Table Views and Table Cells to build the subgraph of this struc-
ture’s visual counterpart. Further, a Callback Event Handler will be prepared and
assigned to each created Text Field in order to react on Entity updates. On Entity
Event occurrence, the Event Handler synchronizes the looked up Table Cell node
with the updated data string to keep data consistent (see listing 4.31).

1 Bool Gui :: TableView :: HandleEntityEvent (Gui :: IEvent :: ConstSharedPtr event)
2 {
3 Gui :: IEntityEvent :: ConstSharedPtr entityEvent = Gui :: IEntityEvent ::

ConstSharedPtr :: DynamicCast (event);
4 const Gui :: ITextField * textField = dynamic_cast < const Gui :: ITextField *>(

entityEvent -> GetEventInterface () ->GetTrigger ());
5
6 SInt32 index = mTableViewTextFields .Find(textField);
7
8 if (index != -1)
9 {

127

CHAPTER 4. IMPLEMENTATION

10 SInt32 row = index / mTableNumberOfColumns ;
11 SInt32 column = index % mTableNumberOfColumns ;
12
13 SetCellData (textField -> GetText () , column , row);
14 }
15 }

Listing 4.31: Implementation of Gui::TableView::HandleEntityEvent()

Input Fields, Text Fields and Steppers

Gui::InputField is the base class for alphanumeric user input Controls, allowing
character input from hard or virtual keyboards. The base class itself configures and
manages the subgraph that is common to both derived Widgets, Gui::TextField
and Gui::Stepper. Both Widgets consist of a background plane (in most toolkits,
also here, input fields are rendered as white rectangles with a one-pixel-border) and a
text-textured geometry on the front. The background is set up by Gui::Component
as Component Geometry. The overridden SetupGeometry() method additionally
generates a Graph::FlatTextTexture and a Graph::PlaneGeometry node to put
it on the top of the background geometry. The depth ordering of the plane is set
to 1 (relative to the background) to ensure proper overlaying. As a result, the text
texture is rendered to the plane geometry that is in front of a background geometry.
The subclasses are responsible for the logic and will modify a dedicated protected
string property and set a modify flag to update the rendered text according to the
processed input during the next logic traversal (see listing 4.32).

1 Bool Gui :: InputField :: ProcessLogicSelf (Graph :: IProcessLogicTracker * tracker)
2 {
3 if (Control :: ProcessLogicSelf (tracker))
4 {
5 if (mInputFieldTextWasUpdated)
6 {
7 mInputFieldTextWasUpdated = false ;
8 mInputFieldTextTexture -> SetText (mInputFieldText);
9 }

10 return true;
11 }
12 else
13 {
14 return false ;
15 }
16 }

Listing 4.32: Implementation of Gui::InputField::ProcessLogicSelf()

Text Fields: Text Fields store their content in a Text Entity. The subgraph setup
of its base class is sufficient for presenting a qualified Text Field. The required
behavior is achieved by implementing some Event Handlers and logic as described
here. Gui::TextField overrides the HandleKeyboardEvent() method inherited
from Gui::Widget. Its implementation (see listing 4.33) provides a minimalistic
keyboard input handling. The input keys can be read from Gui::IKeyboardEvent
and appended to the existing string in the Entity by using the AppendString()

128

4.2. GUI GRAPH NODES

method. If a backspace input was detected, the RemoveLastCharacter() method
of the Entity is called instead. Both methods are wrappers to the string types native
manipulation operations, but in addition, they also invoke an Entity Event to imply
an update of the string. Note that tab keys are already parsed by Gui::Context.

1 Bool Gui :: TextField :: HandleKeyboardEvent (Gui :: IEvent :: ConstSharedPtr event)
2 {
3 Gui :: IKeyboardEvent :: ConstSharedPtr keyboardEvent = Gui :: IKeyboardEvent ::

ConstSharedPtr :: DynamicCast (event);
4 Gui :: ITextEntity :: SharedPtr textEntity = Gui :: ITextEntity :: SharedPtr ::

DynamicCast (GetEntity ());
5 String key = keyboardEvent -> GetKey ();
6
7 if(key [0] == :: IEnums :: KEYCODE_BACKSPACE && textEntity -> GetText (). GetLength ()

> 0)
8 {
9 textEntity -> RemoveLastCharacter ();

10 }
11 else
12 {
13 textEntity -> AppendString (key);
14 }
15 return true;
16 }

Listing 4.33: Implementation of Gui::TextField::HandleKeyboardEvent()

Like other Controls, the Text Field must handle Entity Events to react on interior
and exterior Entity manipulation. Since rendering of the text is done by the base
class, the Text Field must set an update flag and overwrite the string property
provided by Gui::InputField, as it is done in listing 4.34.

1 Bool Gui :: TextField :: HandleEntityEvent (Gui :: IEvent :: ConstSharedPtr event)
2 {
3 Gui :: IEntityEvent :: ConstSharedPtr entityEvent = Gui :: IEntityEvent ::

ConstSharedPtr :: DynamicCast (event);
4 const Gui :: ITextEntity * textEntity = dynamic_cast < const Gui :: ITextEntity *>(

entityEvent -> GetEntity ());
5
6 mInputFieldText = textEntity -> GetText ();
7 mInputFieldTextWasUpdated = true;
8
9 return true;

10 }

Listing 4.34: Implementation of Gui::TextField::HandleEntityEvent()

The blinking cursor of the Text Field is implemented as underscore that oscillates
its visibility every second. Thus, when the tick time is right, the underscore is
simply appended to the string property that is used as input for text rendering. The
update flag also needs to be set here. Listing 4.35 contains the cursor code. Also
the implementation of the security feature is shown here, which simply generates a
string of asterisks with the same length of the actual string.

1 Bool Gui :: TextField :: ProcessLogicSelf (Graph :: IProcessLogicTracker * tracker)
2 {
3 if(InputField :: ProcessLogicSelf (tracker))
4 {

129

CHAPTER 4. IMPLEMENTATION

5 UInt32 time = Math :: Round (tracker -> GetCurrentLogicTickTime () * Real (2));
6 if(mWidgetIsFocused && mTextFieldTickTime != time)
7 {
8 if (! mTextFieldSecure)
9 {

10 mInputFieldText = GetText ();
11 }
12 else
13 {
14 mInputFieldText = String (’*’, GetText (). GetLength ());
15 }
16
17 if(time % 2 == 0)
18 {
19 mInputFieldText .Cat("_");
20 }
21 mInputFieldTextWasUpdated = true;
22 mTextFieldTickTime = time;
23 }
24 return true;
25 }
26 else
27 {
28 return false ;
29 }
30 }

Listing 4.35: Implementation of Gui::TextField::ProcessLogicSelf()

Additional consideration must be made in consequence of the cursor implemen-
tation. If the Component loses focus, while the text cursor is in displaying phase,
it will remain visible until the next text update. Therefore, Text Field must also
override HandleFocusEvent() from Gui::Widget to handle this case. When the
Widget loses focus, the text will be set to the string without cursor and marked as
updated (see listing 4.36).

1 Bool Gui :: TextField :: HandleFocusEvent (Gui :: IEvent :: ConstSharedPtr event)
2 {
3 Gui :: InputField :: HandleFocusEvent (event);
4
5 if (! mWidgetIsFocused)
6 {
7 mInputFieldText = GetText ();
8 mInputFieldTextWasUpdated = true;
9 }

10 return true;
11 }

Listing 4.36: Implementation of Gui::TextField::HandleFocusEvent()

The solution explained here is neither sophisticated nor aesthetically appealing.
Moreover, it is an provisional solution since the engine did not allow to query the size
of the rendered text (not the size of the texture!) at the time of implementation.
The desired solution would be the usage of an cursor image or geometry overlay
with an animation controller to oscillate visibility. The position of the cursor would
simply be deducted from the rendered text size. Another important feature that
has been omitted due to the lack of engine features is the marking of text or parts
of it.

130

4.2. GUI GRAPH NODES

Steppers: Steppers are numerical input fields with additional increment/decre-
ment buttons. The data is held by a Number Entity. The existing subgraph
of Gui::InputField will be extended by two Graph::Button nodes, each with a
Graph::PlaneGeometry for rendering the increment and decrement buttons. Both
buttons are placed one upon the other on the inner right side of the Widget using
the Gui::CalculateRightAlignmentPosition() utility method. The buttons are
queried in the FinishLogic() method. If they were pressed, the increment/decre-
ment method of the Number Entity is called, which will lead to an Entity Event
that is handled by the Stepper as shown in listing 4.37. Again, the update flag will
be set, notifying the base class that the text for rendering has been changed.

1 Bool Gui :: Stepper :: HandleEntityEvent (Gui :: IEvent :: ConstSharedPtr event)
2 {
3 mInputFieldText = GetEntity () -> GetSerializedData ();
4 mInputFieldTextWasUpdated = true;
5 return true;
6 }

Listing 4.37: Implementation of Gui::Stepper::HandleEntityEvent()

This concludes the discussion about the implementation of Widget nodes. The
second collection of GUI node types are Layouts and Layout Directives, covered in
the next section.

4.2.6 Layout and Layout Directive Nodes
The MGT introduces eight Layout-related node types, four Layouts and one Layout
Directive for each. Figure 3.8 shows the four Layout implementations Gui::FlowLay-
out, Gui::GridLayout, Gui::NullLayout, and Gui::PageLayout being subclassed
from the abstract Gui::BaseLayout. Gui::BaseLayout implements the common
Gui::ILayout interface, which declares methods for registering Components and
updating the Layout. It unifies the handling of Components and Layout Directives
and reduces the subclasses to pure algorithm implementations. The subclasses just
need to implement their dedicated interfaces and the following pure virtual methods
declared by Gui::BaseLayout:

1 virtual Bool CalculatePosition (IComponent * component) = 0;
2 virtual Bool CalculatePosition (IComponent * component , const ILayoutDirective *

directive) = 0;

Listing 4.38: Pure virtual methods declared by Gui::BaseLayout.

CalculatePosition() requires the Layout to update the position of the Com-
ponent according to a Layout Directive or an internal state. This method is called
within the implementation of the public LayoutComponent() methods, which han-
dles registration of Components and Layout Directives, but also updates the already
laid out Components, if the boundary size has changed:

1 Bool Gui :: BaseLayout :: LayoutComponent (Gui :: IComponent * component ,

131

CHAPTER 4. IMPLEMENTATION

2 const Gui :: Dimension & boundary ,
3 const Gui :: ILayoutDirective * directive)
4 {
5 Real epsilon = Math :: Limits <Real >:: Epsilon ();
6 Real deltaSizeX = Math :: Abs(mBoundary . mSizeX - boundary . mSizeX);
7 Real deltaSizeY = Math :: Abs(mBoundary . mSizeY - boundary . mSizeY);
8
9 if(deltaSizeX > epsilon || deltaSizeY > epsilon)

10 {
11 UpdateLayout (boundary);
12 }
13 mComponentList .Add(component);
14 mDirectiveTable .Add(component , directive);
15
16 return CalculatePosition (component , directive);
17 }

Listing 4.39: The LayoutComponent() method. The overloaded version without the
third argument works similar, but ignores Layout Directives.

As said above, the subclasses mainly focus on the implementation of the layout
schemes described in section 3.5, which consists of some straight-forward calcu-
lations with no need for describing them here. A look at figure 3.9 also reveals
that Layout Directives do nothing more than holding information for the Layout
to process, thus, their implementation mainly consists of property getters and the
DeserializeBaseAttribute() method, which does its work simply as described in
section 4.2.1.

Note that a concrete Layout class implements its respective interface, but not the
common Gui::ILayout. This interface is implemented by their common base class
Gui::BaseLayout and made accessible by the GetLayoutInterface() methods,
as the implementation hidden by the abstract factory pattern obscures the actual
inheritance. This spares the developer from doing explicit dynamic casts on objects
that do not provide any hint on their implementation details. This pattern is found
in many classes of the ME and the MGT. It is a fail-safe solution to the diamond
problem illustrated in figure 4.8.

4.2.7 Drag-and-Drop Related Nodes
Drag-and-Drop is a feature of Component and Container instances, allowing Com-
ponents to be dragged into Containers. Section 3.4.3 explains this in greater detail.
The involved classes and interfaces are outlined in figure 3.6. The role of Compo-
nents is described by the Gui::IDragController interface, while Containers ob-
tain their behavior from Gui::IDropController. Both interfaces are accessible
via the Gui::IDragDropFamily interface, which is implemented by the node class
Gui::DragDropFamily. As stated in the previous chapter, the unification of both
controllers has been done in order to group Components and Containers within the
same Drag-and-Drop context. Implementing the Drag Drop Family as Node was
not necessary, but makes it easier for the developer to implement Drag-and-Drop in
the XML scene graph description. In this way, Drag-and-Drop works out of the box
without further configuration.

132

4.2. GUI GRAPH NODES

Figure 4.8: The Diamond Problem and its Solution
The classes on the left are involved in a double diamond problem. The problem was
resolved by cutting off two direct interface implementations. Instead of explicitly represent
the private inheritance within the public interfaces, only the base classes will implement
the common interface. To drop the necessity of dynamic casting (which would require
knowledge on the hierarchy of hidden classes), interface accessor methods are declared by
the former child interface.

Drag-and-Drop must be handled by both Component and Container involved si-
multaneously. The Drag Drop Family acts as a communication channel, allowing
Components to query available drop targets and Containers to check if a Com-
ponent has been dragged/dropped recently. This requires both sides, Component
and Containers, to notify the controller about current events. Components talk to
Drag Drop Families, seeing them as Drag Controllers, by calling the methods de-
clared in Gui::IDragController as it is done in listing 4.40. Handling drag input
is the main purpose of Gui::Component::ProcessLogicSelf() by considering the
following situations and reacting on them as follows:

• No tracked events are detected on the Component Button, and the mComponent-
IsBeingDragged flag is not set: There is no user interaction, so do nothing.
• Tracked events are detected on the Component Button, and the mComponent-

IsBeingDragged flag is not set: This is possibly the beginning of a drag
movement. The Component must propagate its pointer and the tracked event
ID to the Drag Controller by calling BeginDrag(). The local event position
must be stored in order to calculate the relative movement later on. Further-
more, the drag flag is set and the Component Button is permitted to pass
input events onto buttons that lie “behind” it, i.e., have a lower depth order.
This is necessary for the targeted Container to receive input events, allowing
it to handle drop actions.5

5PushNodeToFinishLogic() causes the traverser to call FinishLogic() after traversal, which
does the event handling for the current Component. This has nothing to do with Drag-and-
Drop at all, but it is necessary to push the node at each tick, otherwise it will be ignored and
no common event handling would be possible. However, to reduce overhead, this will only be
done if tracked events are available.

133

CHAPTER 4. IMPLEMENTATION

• Tracked events are detected on the Component Button, and the mComponent-
IsBeingDragged flag is already set: Dragging has been started and is going
on. The event position will be used to move the Component to the position
of the pointing device. The new position is calculated by adding the current
event position relative to its original event position to the current Component
position.
• No tracked events are detected on the Component Button, and the mComponent-

IsBeingDragged flag is set: The Component has been released (“dropped”).
It now has to ask the Drag Controller if there is a Container in the same fam-
ily that is ready to “catch” the Component. If so, it tells the Drag Controller
to mark the Component as dropped, otherwise it will be moved back to its
original position.

1 Bool Gui :: Component :: ProcessLogicSelf (Graph :: IProcessLogicTracker * tracker)
2 {
3 if (! Gui :: Widget :: ProcessLogicSelf (tracker))
4 {
5 return false ;
6 }
7
8 if (mComponentButton -> GetNumberOfTrackedEvents () > 0)
9 {

10 if (mComponentDragControllerNodeTarget . GetNumberOfNodes () > 0)
11 {
12 UInt32 eventId = mComponentButton -> GetTrackedEventId (0);
13 Math :: Vector <Real > position = mComponentButton -> GetLocalEventPosition

(eventId);
14
15 if (! mComponentIsBeingDragged)
16 {
17 mComponentDragControllerNodeTarget . GetNode (0) ->BeginDrag (this ,

eventId);
18 mComponentDragOriginPositionX = position .x;
19 mComponentDragOriginPositionY = position .y;
20 mComponentBeforeDragPositionX = mComponentOuterDimension .

mPositionX ;
21 mComponentBeforeDragPositionY = mComponentOuterDimension .

mPositionY ;
22 mComponentIsBeingDragged = true;
23
24 mComponentButton -> SetPassEventsEnabled (true);
25 }
26 else
27 {
28 Real positionX = mComponentOuterDimension . mPositionX + position .x

- mComponentDragOriginPositionX ;
29 Real positionY = mComponentOuterDimension . mPositionY + position .y

- mComponentDragOriginPositionY ;
30
31 SetPosition (positionX , positionY);
32 }
33 }
34
35 tracker -> PushNodeToFinishLogic (this);
36 }
37 else if (mComponentIsBeingDragged)
38 {
39 Gui :: IDragController * dragController = mComponentDragControllerNodeTarget

. GetNode (0);
40
41 if (! dragController -> IsAboveDropContainer (this))
42 {

134

4.2. GUI GRAPH NODES

43 dragController -> EndDrag (this , false);
44 SetPosition (mComponentBeforeDragPositionX ,

mComponentBeforeDragPositionY);
45 }
46 else
47 {
48 dragController -> EndDrag (this , true);
49 }
50
51 mComponentButton -> SetPassEventsEnabled (true);
52
53 mComponentDragOriginPositionX = Real (0);
54 mComponentDragOriginPositionY = Real (0);
55 mComponentIsBeingDragged = false ;
56 }
57
58 return true;
59 }

Listing 4.40: Implementation of Gui::Component::ProcessLogicSelf()

Similar to Components, the ProcessLogicSelf() method is also used in Con-
tainers for Drag-and-Drop handling. It asks its Drop Controller (if any) how many
dragged Component are registered. The Drag Controller and the Drop Controller
are the same object, so it keeps track of all Components that were registered through
BeginDrag(), but not yet unregistered with EndDrag(). If there are dragged Com-
ponents, the Container queries every single event ID that has been propagated
and checks if the appropriate event is also inside its own boundary. This is done
by the method IsEventInside() invoked on the Component Button of the Con-
tainer. If the event is inside (and thus the Component “above” the Container),
the Container registers itself as drop target and sets an internal flag to remem-
ber its registration state. RegisterDropContainer() will cause a positive answer
when the dragged Component asks if it IsAboveDropContainer(). Finally, if no
Components are dragged, but the flag has been set, indicating a released drag, the
Container retrieves a pointer to the dropped Component from its Drop Controller
(CatchDroppedComponent()) and puts it into the right place before unregistering
itself as drop target. The whole process is listed in 4.41.

1 Bool Gui :: Container :: ProcessLogicSelf (Graph :: IProcessLogicTracker * tracker)
2 {
3 if (! Component :: ProcessLogicSelf (tracker))
4 {
5 return false ;
6 }
7
8 if (mContainerDropControllerNodeTarget . GetNumberOfNodes () > 0)
9 {

10 Gui :: IDropController * dropController = mContainerDropControllerNodeTarget
. GetNode (0);

11 SInt32 numberOfDraggedComponents = dropController ->
GetNumberOfDraggedComponents ();

12
13 if (numberOfDraggedComponents > 0)
14 {
15 for (SInt32 index = 0; index < numberOfDraggedComponents ; index ++)
16 {
17 UInt32 eventId = dropController -> GetDragEventId (index);
18
19 if (mComponentButton -> IsEventInside (eventId))
20 {

135

CHAPTER 4. IMPLEMENTATION

21 if (! mContainerIsTrackingDragComponent)
22 {
23 dropController -> RegisterDropContainer (this , eventId);
24 mContainerIsTrackingDragComponent = true;
25 }
26 }
27 else
28 {
29 if (mContainerIsTrackingDragComponent)
30 {
31 dropController -> UnregisterDropContainer (this);
32 mContainerIsTrackingDragComponent = false ;
33 }
34 }
35 }
36 }
37 else if (mContainerIsTrackingDragComponent)
38 {
39 UInt32 eventId = 0;
40 Gui :: IComponent * component = dropController -> CatchDroppedComponent (

this , & eventId);
41 Math :: Vector <Real > position = mComponentButton -> GetLocalEventPosition

(eventId);
42
43 component -> GetNodeInterface () ->GetParent (0) ->RemoveChild (component ->

GetNodeInterface ());
44 component -> SetPosition (mComponentOuterDimension . mPositionX ,

mComponentOuterDimension . mPositionY);
45
46 dropController -> UnregisterDropContainer (this);
47 mContainerIsTrackingDragComponent = false ;
48 }
49 }
50
51 return true;
52 }

Listing 4.41: Implementation of Gui::Container::ProcessLogicSelf()

Unfortunately, the Drag-and-Drop implementation is not working correctly due to
framework restrictions: It is not possible to change the hierarchy of graph nodes after
initialization. Other strategies have been tested, but led to an incomplete support
of Drag-and-Drop. For example, updating the transformation of the Component
according to the targeted Container (for demonstration purposes, this workaround
has been implemented in the code listed above) only works on GUIs without any
animation. Since there will be no direct parent-child relationship between Container
and Component, scene graph transformations of the Container will not be passed
on to the Component, or at least not the way the user expects. An update of the
ME regarding this behavior is required to make Drag-and-Drop work.

4.3 Event Handling

This section covers implementation details of the event handling subsystem. It is the
only self-contained subsystem of the MGT and does not rely on other component,
while the Widgets and Entities rely on this messaging approach.

136

4.3. EVENT HANDLING

4.3.1 Event Triggers
Event Triggers are implementations of the Gui::IEventTrigger interface and are
used to identify the origin of an Event. The only property described by the interface
is the tag property, a custom string that helps identifying Event Trigger instances.
In the MGT, Gui::IEventTrigger is extended by the Gui::IEntity and Gui::-
IWidget base interfaces. Therefore, all Entities and Widgets are Event Triggers,
which allows them to dispatch Events as described in section 3.2.4. The getter and
setter methods for the tag property as well as the property itself are implemented
by the respective base classes Gui::Event and Gui::Widget. Furthermore, Wid-
get node types are able to parse the tag attribute that may be specified in XML
resources.

4.3.2 Events and Event Handlers
Events are concrete implementations of the public interface Gui::IEvent and are
informative objects carrying data about certain events that occurred during the
most recent tick. The whole process of dispatching is unaware of the actual Event
type, even the Perform() method of an Event Handler only receives a pointer to
the Gui::IEvent interface. The developer is therefore responsible for casting and
validating Event objects properly. The Gui::IEventHandler interface only has
one concrete implementation (see below) and is mainly provided for developers by
allowing them to wrap custom methods into Event Handlers.

This section will not focus on the implementation of concrete Event types, since
they only consist of properties and accessor methods. The class implementations are
not part of the public interface, as it is not intended for developers to create Event ob-
jects at will. However, their properties can be read by casting a Gui::IEvent pointer
to the public interface of the respective Event type. Note that shared pointers are
used instead of raw pointers, thus Events must be cast by calling the DynamicCast()
method of the pointer instance. An example is shown in listing 4.42.

1 Bool EntityEventHandler :: Perform (Gui :: IEvent :: ConstSharedPtr event)
2 {
3 Gui :: IEntityEvent :: ConstSharedPtr entityEvent = Gui :: IEntityEvent ::

ConstSharedPtr :: DynamicCast (event);
4 const Gui :: IEntity * Entity = entityEvent -> GetEntity ();
5
6 // perform logic here
7
8 return true;
9 }

Listing 4.42: Example of how to use Event objects.

Event objects are directly created by Event Triggers through the constructor of
the Event type. Since there are no setter methods defined, the complete Event
description must be passed as constructor arguments. Event Triggers are also re-
sponsible for wrapping the objects into shared pointers and pass them to the pipeline
for further processing.

137

CHAPTER 4. IMPLEMENTATION

Callback Event Handlers: Writing classes for each Event Handler required by an
application may lead to an unhandy number of small classes. The alternative is
writing a single Event Handler for an arbitrary number of Events and distinguish
between Event Triggers through their tag property and between Event types through
dynamic casting. Despite the probably undesired growth of line numbers, string
comparison may become rather expensive if many Events and Event Triggers are
involved. Both strategies are commonly used in Java. However, the MGT makes
use of function pointers to provide a more flexible way of defining Event Handlers.
Any method can be used as Event Handler as long as it has the same parameters
and return type as the Gui::IEventHandler::Perform() method. A pointer to
the method and to an instance the method shall be called on will be passed to the
constructor of the template class Gui::CallbackEventHandler. Callback Event
Handlers are in fact Event Handlers that only invoke method calls on objects in
their implementation of Perform(), forwarding the Event object to the actual event
handling method. The full implementation is available in listing 4.43.

1 template < class TargetClass >
2 class CallbackEventHandler : public IEventHandler
3 {
4 public :
5 CallbackEventHandler (TargetClass * instance , Bool (TargetClass ::* method)(

IEvent :: ConstSharedPtr))
6 : mInstance (instance)
7 , mMethod (method)
8 {
9 }

10
11 virtual Bool Perform (IEvent :: ConstSharedPtr event)
12 {
13 return (mInstance ->* mMethod)(event);
14 }
15
16 protected :
17 TargetClass * mInstance ;
18 Bool (TargetClass ::* mMethod)(IEvent :: ConstSharedPtr);
19 };

Listing 4.43: Implementation of the CallbackEventHandler template class

4.3.3 Event Channels
Gui::EventChannel is used to create unique identifiers for each Event type that
may occur on a certain Event Trigger. It only stores a consecutive identification
number and the number of registered Event Handlers. The Event Dispatch Table
(see below) is responsible for managing the assignment of Event Handlers to Event
Channels and takes care of the subscriber count, which represents the total number
of Event Handlers registered for a certain Event Channel. The subscriber count
is a protected member, but it is possible to query if at least one Event Handler is
registered (Gui::EventChannel::HasSubscribers()). This is a performance mea-
sure for Event Triggers, allowing them to ignore events if the Event Channel has no
subscribers. Listing 4.44 contains the declaration of Gui::EventChannel.

138

4.3. EVENT HANDLING

1 class EventChannel
2 {
3 public :
4 EventChannel ();
5 virtual ~ EventChannel () {}
6
7 virtual UInt64 GetId () const ;
8
9 virtual Bool IncrementSubscriberCount ();

10 virtual Bool DecrementSubscriberCount ();
11 virtual Bool ResetSubscriberCount ();
12
13 virtual Bool HasSubscribers () const ;
14
15 protected :
16 static UInt64 mNextId ;
17 UInt64 mId;
18 UInt32 mSubscriberCount ;
19 };

Listing 4.44: Declaration of the EventChannel class

Event Channels are usually instantiated as member variables of Event Triggers, so
no explicit initialization is necessary. As a consequence, destroying the Event Trigger
will also result in destroying the Event Channel. So, the only thing an Event Trigger
must be aware of is to pass the appropriate Event Channel reference when registering
or unregistering Event Handlers or dispatching Events. This process is described in
more detail in the following section.

4.3.4 Event Dispatch Table
The singleton instance of Gui::EventDispatchTable is accessible through Gui-
::EventDispatchTable::GetInstance() and manages the mapping from Event
Channels to arrays of Event Handlers. The Event Dispatch Table is used by Event
Triggers to forward the registration of Event Handlers by calling Gui::EventDis-
patchTable::RegisterEventHandler() and passing the appropriate Event Chan-
nel. This is exemplified in listing 4.45, which shows the registration of Event Han-
dlers for Point Events on Components. Every registration method works the same
way.

1 Bool Gui :: Component :: RegisterPointEventHandler (const Gui :: IEventHandler *
eventHandler)

2 {
3 Gui :: EventDispatchTable * eventDispatchTable = Gui :: EventDispatchTable ::

GetInstance ();
4
5 if (eventDispatchTable != 0 && eventHandler != 0)
6 {
7 return eventDispatchTable -> RegisterEventHandler (* eventHandler ,

mPointEventChannel);
8 }
9

10 return false ;
11 }

Listing 4.45: Implementation of
Gui::Component::RegisterPointEventHandler()

139

CHAPTER 4. IMPLEMENTATION

The Gui::EventDispatchTable::RegisterEventHandler() method is shown in
listing 4.46. Each Event Channel is mapped to an array of Event Handlers. The
registration method creates the array if not available and pushes the Event Handler
on top. Finally, the subscriber count of the Event Channel is incremented. The
unregistration method works similar and reverts the steps done on registration,
which includes decrementing the subscriber count.

1 Bool Gui :: EventDispatchTable :: RegisterEventHandler (const IEventHandler &
eventHandler , EventChannel & eventChannel)

2 {
3 SInt32 index = mEventHandlerMap .Find(eventChannel . GetId ());
4 EventHandlerArray * eventHandlers = 0;
5 if (index == -1)
6 {
7 eventHandlers = new EventHandlerArray ();
8 mEventHandlerMap .Add(eventChannel . GetId () , eventHandlers);
9 }

10 else
11 {
12 eventHandlers = mEventHandlerMap .Get(mEventHandlerMap . GetKey (index));
13 }
14
15 if(eventHandlers ->Find(const_cast < IEventHandler * >(& eventHandler)) == -1)
16 {
17 eventHandlers ->Add(const_cast < IEventHandler * >(& eventHandler));
18 eventChannel . IncrementSubscriberCount ();
19 }
20
21 return true;
22 }

Listing 4.46: Implementation of
Gui::EventDispatchTable::RegisterEventHandler()

Following up the registration, Event Triggers will dispatch Events to the Event
Pipeline, which also uses the Event Dispatch Table to lookup the associated Event
Handlers. This process is described in the next section.

4.3.5 Event Pipeline
The Gui::EventPipeline class manages a singleton that is accessible through
Gui::EventPipeline::GetInstance() for Event Triggers to dispatch Event ob-
jects by passing them to the method Gui::EventPipeline::DispatchEvent(). An
Event Pipeline holds a pointer to the Event Dispatch Table singleton, which will be
used to get an array of Event Handlers that are associated with the Event Channel
passed together with the Event object to dispatch. The dispatch logic iterates over
the Event Handlers and calls their Perform() method, passing the Event object
as parameter. The code is straight forward and shown in listing 4.47. Note that
the Event object is passed as constant shared pointer. It is constant because Event
Handlers are not allowed to change the information supplied by the Event Trigger.
The decision of using shared pointers is based upon the fact that it is not known
what happens to the Event objects after performing the unknown Event Handler
logic. It is possible, though not likely, that they will keep track of the object beyond
the current tick.

140

4.3. EVENT HANDLING

1 void Gui :: EventPipeline :: DispatchEvent (Gui :: IEvent :: ConstSharedPtr event , const
Gui :: EventChannel & eventChannel)

2 {
3 const EventHandlerArray * eventHandlers = mEventDispatchTable ->

GetEventHandlersOfEventChannel (eventChannel);
4 if (eventHandlers != 0)
5 {
6 for (SInt32 index = 0; index < eventHandlers -> GetCount (); index ++)
7 {
8 IEventHandler * eventHandler = (* eventHandlers)[index];
9 eventHandler -> Perform (event);

10 }
11 }
12 }

Listing 4.47: Implementation ofGui::EventPipeline::DispatchEvent()

This class has no public interface and is therefore not available in user code.

4.3.6 Event Handler Table
The class Gui::EventHandlerTable is public and can be used by developers to re-
duce effort in connecting Widgets from XML resources with Event Handlers. In
contrast to the Event Dispatch Table, which maps Event Channels to Event Han-
dlers, an Event Handler Table maps a global string identifier to an Event Handler.
Finding the corresponding Event Handler to an event does not happen during pro-
cess time (i.e., after the initialization and before the termination of the application
logic) but on initialization of the Widget. If the Widget has an Event Handler
property (or XML attribute) set, the Widget tries to get a pointer to the Event
Handler from the table and, in case of success, associates this Event Handler with
its corresponding Event Channel. The code in listing 4.48 shows this process for
Gui::Components and Point Events. The steps are the same for all combinations of
Widget types and Event types as summarized in table 3.2.

1 if (mComponentPointEventHandlerIdentifier . GetLength () > 0)
2 {
3 Gui :: EventHandlerTable * eventHandlerTable = Gui :: EventHandlerTable ::

GetInstance ();
4 const Gui :: IEventHandler * eventHandler = eventHandlerTable -> GetEventHandler (

mComponentPointEventHandlerIdentifier);
5
6 eventHandlerTable -> RegisterEventHandler (* eventHandler , mPointEventChannel);
7 }

Listing 4.48: Example of Event Handler registration.

The implementation of Gui::EventHandlerTable is nothing more than a wrapper
for the internally used map object that is of type Map<String, const Gui::IEvent-
Handler*>. However, the actual comfort is brought by a macro defined in the header
file:

1 # define MURL_GUI_REGISTER_EVENT_HANDLER (object , className , methodName) \
2 { \
3 Gui :: CallbackEventHandler <className >* eventHandler = new Gui ::

CallbackEventHandler <className >(object , & className :: methodName); \

141

CHAPTER 4. IMPLEMENTATION

4 Gui :: EventHandlerTable :: GetInstance () -> RegisterEventHandler (# className "::" #
methodName , eventHandler); \

5 }

Listing 4.49: Definition of macro to register an Event Handler.

This macro requires a method name of a method that may act as a callback of
a Callback Event Handler, the class name the method belongs to, and a concrete
object that is an instance of that class. An instance of Gui::CallbackEventHandler
is then created and registered as Event Handler identified by a string composed from
the class name, a double colon, and the method name, similar to the C++ notation
of function references. A Widget defined the way as shown in listing 4.50 will be
properly set up by using the code in listing 4.51 on app initialization.

1 <Gui :: Button id=" myButton " pointEventHandler =" MyLogic :: MyPointEventHandler "/>

Listing 4.50: Example of how to assign global Event Handler identifiers in XML
resource files.

1 MURL_GUI_REGISTER_EVENT_HANDLER (mMyLogic , MyLogic , MyPointEventHandler);

Listing 4.51: Example of how to register Callback Event Handlers with an
automatically composed global identifier.

mMyLogic is an instance of the example logic class MyLogic, which has a method
named MyPointEventHandler() that will act as a callback on Point Events for
the Button named myButton. The Event Handler will be identified by the string
MyLogic::MyPointEventHandler, which will be looked up by the Button as con-
sideration of its Point Event Handler XML attribute. For reasons of proper object
deallocation, the macro’s counterpart needs to be called on termination of the app
and is defined as follows:

1 # define MURL_GUI_UNREGISTER_EVENT_HANDLER (className , methodName)\
2 { \
3 Gui :: IEventHandler * eventHandler = Gui :: EventHandlerTable :: GetInstance () ->

GetEventHandler (# className "::" # methodName); \
4 if (eventHandler != 0) \
5 { \
6 Gui :: EventHandlerTable :: GetInstance () -> UnregisterEventHandler (# className

"::" # methodName); \
7 delete eventHandler ;\
8 } \
9 }

Listing 4.52: Definition of macro to unregister an Event Handlers.

The curly brackets are used to restrict the scope of the local variable eventHandler.

142

4.4. ENTITIES

4.4 Entities
The abstract Entity base class Gui::Entity is a public implementation of Gui-
::IEntity that has already implemented some pure virtual methods common to all
Entity types. The class declaration is as follows:

1 class Entity : public IEntity
2 {
3 public :
4 Entity ();
5 virtual ~ Entity ();
6
7 virtual IEntity * GetEntityInterface ();
8 virtual const IEntity * GetEntityInterface () const ;
9

10 virtual void ResetData ();
11
12 virtual Bool RegisterEntityEventHandler (const IEventHandler * eventHandler

);
13 virtual Bool UnregisterEntityEventHandler (const IEventHandler *

eventHandler);
14
15 virtual Bool SetTag (const String & tag);
16 virtual const String & GetTag () const ;
17
18 protected :
19 virtual void Notify () const ;
20
21 private :
22 class Private ;
23
24 Private * mPrivateThis ;
25 };

Listing 4.53: Declaration of the Gui::Entity class

There is not much logic behind these methods. ResetData() is supposed to
be called by overriding methods to unify the effect of resetting Entity data. The
effect is the invocation of an Entity Event by calling Notify() in the base class
implementation, while subclasses are responsible to reset data to a proper initial
state. The Notify() method can be used by subclasses, whenever it is needed to
send Entity Events, especially after data has been modified. The following piece of
code shows how Entity Events are created and dispatched by Notify():

1 void Gui :: Entity :: Notify () const
2 {
3 const Gui :: IEntityEvent * event = new Gui :: EntityEvent :: EntityEvent (this , this

);
4 Gui :: IEvent :: ConstSharedPtr pointer (event -> GetEventInterface ());
5 Gui :: EventPipeline :: GetInstance () -> DispatchEvent (pointer , mPrivateThis ->

mEntityEventChannel);
6 }

Listing 4.54: Implementation of Gui::Entity::Notify()

Additionally, trivial setter and getter methods for the tag property specified by the
Gui::IEventTrigger interface and Event Handler registration methods are imple-
mented by Gui::Entity. The method GetSerializedData() is abstract and needs

143

CHAPTER 4. IMPLEMENTATION

to be implemented by the subclasses to generate a suitable string representation of
the encapsulated data.

The declaration of this class is considered to be public to allow Entity subclassing
for anyone. However, some implementation details must remain private, because
of its connection to the private event handling system. While the access to the
dispatcher happens in the C++ file that will be compiled into the MGT binary,
the declaration of an Event Channel property would require Gui::EventChannel
to be public. This has been solved by a forward declaration of the private class
Gui::Entity::Private and the declaration of a pointer to an instance of this class.
Declaring pointers to forward declared types is a legal technique in C++. Listing
4.53 shows this at the declaration of mPrivateThis. Listing 4.55 defines the private
class and allocates/deallocates the object, which has already been used in listing
4.54.

1 class Gui :: Entity :: Private
2 {
3 public :
4 EventChannel mEntityEventChannel ;
5
6 String mEventTriggerTag ;
7 };
8
9 Gui :: Entity :: Entity ()

10 : mPrivateThis (new Gui :: Entity :: Private ())
11 {
12 }
13
14 Gui :: Entity ::~ Entity ()
15 {
16 delete mPrivateThis ;
17 }

Listing 4.55: Definition and instantiation of the Gui::Entity::Private class

4.4.1 Primitive Entities
The Control Widgets of the MGT require the following primitive Entity types (i.e.
Entities that wrap primitive data types): Gui::NumberEntity, Gui::SwitchEntity,
and Gui::TextEntity. A Switch Entity just wraps a boolean value and pro-
vides convenient property accessors and mutators, for example Toggle() to in-
vert the value. Text Entities also provide some string manipulation functions like
AppendString() and allows to set or get the maximum string length. As noted
before, Entity types must also implement GetSerializedData() declared by Gui-
::IEntity. While Text Entities simply pass through their wrapped string, a Switch
Entity returns the string true or false according to the value. Both Entity types
will emit Entity Events after manipulating the boolean or string value by calling the
parent’s Notify() method.

Number Entities are a bit more complicated as they must handle both integer and
floating point types. Beside the number itself, they also store the boundaries (min-

144

4.4. ENTITIES

imum and maximum values) and the step size for incrementing and decrementing
the value. These additional properties are a consideration of the Controls which use
Number Entities as their default Entity, namely Gui::Slider and Gui::Stepper,
and can be accessed or modified by the following methods:

1 virtual Bool Decrement ();
2 virtual Bool Increment ();
3 virtual Number GetMaximum () const ;
4 virtual Number GetMinimum () const ;
5 virtual Number GetStep () const ;
6 virtual Number GetValue () const ;
7 virtual Real GetNormalizedValue () const ;
8 virtual Bool SetMaximum (Number maximum);
9 virtual Bool SetMinimum (Number minimum);

10 virtual Bool SetStep (Number step);
11 virtual Bool SetValue (Real value);
12 virtual Bool SetValue (SInt64 value);

Listing 4.56: Public methods of Gui::NumberEntity

Through a Stepper, a user is able to increment and decrement the value as well as
directly typing it into the number field. Both increment and decrement are limited
by the maximum and the minimum value, moving toward the limits by the step size
on each button press. A Slider, however, is not interested in absolute values, but in
relative ones, since the thumb is located on a fixed-size track that is unaware of the
actual Entity boundaries. Thus, GetNormalizedValue() will return a value between
0 and 1, where the minimum value is mapped to 0 and the maximum to 1. The
implementation of the Number Entity is straight forward and done in a few lines of
code, since the utility functions of the ME help to reduce common coding tasks. As
an example, see the implementation of the required GetSerializedData() method:

1 String Gui :: NumberEntity :: GetSerializedData () const
2 {
3 if(mValue . IsReal ())
4 {
5 return Util :: DoubleToString (static_cast < const Double >(mValue));
6 }
7 else
8 {
9 return Util :: SInt64ToString (static_cast < const SInt64 >(mValue));

10 }
11 }

Listing 4.57: Implementation of Gui::NumberEntity::GetSerializedData()

The SetValue() methods will call Notify() to fire an Entity Event, but only if
the previous value differs from the new one. This also happens on Increment() and
Decrement(), as both methods internally call SetValue() to add or subtract the
step size.

Note the Gui::Number type that occurs in listing 4.56. This class was introduced
by the MGT to simplify the handling of numbers that are not specified as integers
or floats explicitly. This approach tries to compensate the possible inadequacy of
integers and the precision noise of floating point values when obtaining the value

145

CHAPTER 4. IMPLEMENTATION

from the Entity. The casting operators for SInt64 and Real are overridden, allowing
the developer to query the value as a type that matches her needs. The implemen-
tation is not complete in regard to operator overriding but is a foundation to more
advanced use cases.

4.4.2 Selections

The Selection classes Gui::Selection and Gui::EntitySelection are subclassed
from Gui::Entity. The general implementation Gui::Selection does not describe
a selection of concrete objects, but a selection of arbitrary items, which are neither
defined nor accessible. The set of items is described by its count value, with zero
indicating the empty set, and a virtual selection index, with -1 meaning no item
is selected. Although this class seems to be trivial, all pure virtual methods of
the Gui::ISelection are implemented with a proper behavior (see figure 3.3 for
an overview). Beside common getter, setter, and Event Handler registration meth-
ods, Add() increments the counter and ResetData() calls Empty(), which sets the
counter to 0 and the selected index to -1. This lightweight Selection type is suitable
for selection Widgets like Option Buttons, if the developer is only interested in the
selected index rather than any data. In general, the index of an Option Button
within a Selection is the actual data.

It is possible to associate selection indices with concrete data objects. This will be
useful for more sophisticated selection Widgets like List Views, which also present
data. In such situations, developers are encouraged to use more sophisticated sub-
classes instead of Gui::Selection. The MGT comes along with an example called
Gui::EntitySelection. Keep in mind that Selections are Entities themselves, so
an Entity Selection is an Entity that maintains a list of other Entities. The fol-
lowing methods were implemented for Gui::EntitySelection as an extension to
Gui::Selection:

1 virtual Bool Add(IEntity * entity);
2 virtual Bool Remove (IEntity * entity);
3 virtual Bool Set(SInt32 index , IEntity * entity);
4 virtual IEntity * Get(SInt32 index);
5 virtual const IEntity * Get(SInt32 index) const ;
6 virtual SInt32 Find(const IEntity * entity) const ;

Listing 4.58: Public methods of Gui::EntitySelection

These methods are simple wrappers for the underlaying array (which is of type
Murl::Array) that contains the pointers to the Entities known to the Selection. The
developer can access the listed Entities for example in Event Handlers by casting the
Event to a Selection Event and read both the selected index and the Gui::IEntity
object stored at the index.

146

4.5. SKINNING

4.5 Skinning
The skinning concept of the MGT was introduced in section 3.6. As already men-
tioned, the process of skin creation is kept compliant to asset handling, as it is done
by the ME. The regular package format of the engine will be used to define skin
packages, which is completely sufficient for this purpose. This section now focuses
on how the graph nodes of the skin packages are used by Widgets. Applying a skin
to a Widget is done by setting up the geometry and the State Sets as described
below.

4.5.1 Loading the Skin Package
Loading a Skin package is similar to loading any other package in the ME. The
example below includes a skin called gui_skin. Despite this custom package, an
additional mandatory package called gui_base must be loaded before. This package
contains basic resources (e.g., animations, or materials) independent from the skin.

1 Bool App :: SomeApp :: Init(const IAppState * appState)
2 {
3 ILoader * loader = appState -> GetLoader ();
4 loader -> AddPackage (" gui_base ", ILoader :: LOAD_MODE_LOAD_MODE_STARTUP , 0);
5 loader -> AddPackage (" gui_skin ", ILoader :: LOAD_MODE_LOAD_MODE_STARTUP , 0);
6
7 return true;
8 }

Listing 4.59: Code for loading Skin and GUI package.

4.5.2 Configure Geometries
The following piece of code defines three Buttons with different geometry types:

1 <Gui :: Button id=" button1 " geometryType =" MULTIPATCH " multipatchAtlasResourceId ="
gui_skin : button_atlas " stateSetId ="/Gui/Skin/ Button "/>

2 <Gui :: Button id=" button2 " geometryType =" PLANE " stateSetId ="/Gui/Skin/
CustomButtonStateSet "/>

3 <Gui :: Button id=" button3 " geometryType =" REFERENCE " referenceTargetId ="/Gui/Skin/
CustomButtonPlane "/>

Listing 4.60: Example of how to define Widgets (here: Buttons) with different
geometry types in XML.

Depending on the attribute geometryType, further attributes are required. They
are parsed to properties defined and handled by Gui::Component, allowing their use
for all Widgets that are Component types. However, even if a certain property is
set, it only has an effect on the rendering if the respective geometry type is used.
Their correct usage is demonstrated in the listing above. The following list provides
a summary on them:

147

CHAPTER 4. IMPLEMENTATION

1. multipatchAtlasResourceId refers to an atlas resource that defines the lay-
out of a multi-patch plane. The atlas rectangles are processed by Gui::Multi-
patchFactory as described below.

2. stateSetId contains the node ID of the State Set container node that shall
be referred to in order to configure the rendering process of the Widget’s
geometry. This property is both used for multipatch and plane geometries.

3. referenceTargetId contains the node ID of a prepared geometry node that
shall be referred to in order to generate output for the Widget.

These properties can also be mutated by calling the appropriate setter methods
on Components. This only works with instances that have not been initialized yet,
because it depends on the configuration which nodes will be dynamically created
for the Widget subgraph. The ME does not allow attaching or detaching nodes to
an initialized graph, thus no modifications are possible by the engine.

4.5.3 Generate Geometries
Generating the geometry (or the reference) is done in the virtual protected method
Gui::Component::SetupGeometry(), which is called by Gui::Component during
initialization. Subclassed Widgets may override this method. However, most Wid-
gets that do so just execute custom code to create further geometries (e.g., the thumb
of a Slider) and invoke the parent method additionally. If they also need to prepare
the main geometry (Component Geometry, referenced by mComponentGeometry),
the default geometry creation must be omitted. In all other cases, the following
code will be executed:

1 void Gui :: Component :: SetupGeometry (Graph :: IInitTracker * tracker)
2 {
3 if (mComponentGeometry == 0)
4 {
5 Gui :: ComponentGeometryType geometryType =

GetEffectiveComponentGeometryType ();
6
7 if (geometryType == Gui :: IEnums :: COMPONENT_GEOMETRY_TYPE_MULTIPATCH)
8 {
9 [...]

10 }
11 else if (geometryType == Gui :: IEnums :: COMPONENT_GEOMETRY_TYPE_PLANE)
12 {
13 [...]
14 }
15 else if (geometryType == Gui :: IEnums :: COMPONENT_GEOMETRY_TYPE_REFERENCE)
16 {
17 [...]
18 }
19 }
20
21 mComponentContentHook -> AddChild (mComponentGeometry);
22 }

Listing 4.61: Structure of Gui::Component::SetupGeometry()

148

4.5. SKINNING

The most complicated geometry type is the patched geometry. The complexity
has been hidden from the Component and outsourced to Gui::MultipatchFactory
which will be described later on. The Component is still responsible for loading
the atlas resource and passing the rectangles and the Component dimension to the
factory before retrieving the generic geometry. The factory manages the geometry
for the whole life-time of the Component, but the Component must propagate size
updates for the changes to be applied on the geometry.

1 if(mComponentStylePatchedRectangles == 0 && mComponentMultipatchAtlasResourceId .
GetLength () != 0)

2 {
3 const Resource :: ICollection * collection = tracker -> GetResourceCollection ();
4 mComponentStylePatchedAtlas = collection -> GetAtlas (

mComponentMultipatchAtlasResourceId);
5 mComponentStylePatchedRectangles = mComponentStylePatchedAtlas -> GetRectangles

();
6
7 if(mComponentStylePatchedRectanglesCount == 0)
8 {
9 mComponentStylePatchedRectanglesCount = mComponentStylePatchedAtlas ->

GetNumberOfRectangles ();
10 }
11 }
12
13 mComponentMultipatchFactory .Init(tracker -> GetRoot () ,

mComponentStylePatchedRectangles ,
14 mComponentOuterDimension .mSizeX , mComponentOuterDimension .mSizeY ,
15 mComponentStylePatchedRectanglesCount , mComponentStylePatchedRectangleOffset)

;
16
17 mComponentGeometry = mComponentMultipatchFactory . GetMultipatchPlane () ->

GetNodeInterface ();
18 mComponentInnerDimension = mComponentMultipatchFactory . GetInnerDimension ();

Listing 4.62: Implementation of the multi-patch geometry generation in
Gui::Component::SetupGeometry()

In contrast to multi-patch geometries, planes and references are set up pretty
straight forward. The ME node types Graph::PlaneGeometry and Graph::Refer-
ence are used for this purpose:

1 Graph :: IPlaneGeometry * planeGeometry = dynamic_cast < Graph :: IPlaneGeometry *>(
tracker -> GetRoot () ->CreateNode (" PlaneGeometry "));

2
3 planeGeometry -> SetScaleFactor (mComponentOuterDimension .mSizeX ,

mComponentOuterDimension .mSizeY , Real (1));
4
5 mComponentGeometry = planeGeometry -> GetNodeInterface ();
6 mComponentInnerDimension = mComponentOuterDimension ;

Listing 4.63: Implementation of the plane geometry generation in
Gui::Component::SetupGeometry()

1 Graph :: IReference * reference = dynamic_cast < Graph :: IReference *>(tracker -> GetRoot
() ->CreateNode (" Reference "));

2 Graph :: INode * target = tracker -> GetRoot () ->FindNode (mComponentReferenceTargetId);
3
4 reference -> GetNodeTarget () ->SetNode (target);
5
6 mComponentGeometry = reference -> GetNodeInterface ();

149

CHAPTER 4. IMPLEMENTATION

7 mComponentInnerDimension = mComponentOuterDimension ;

Listing 4.64: Implementation of the geometry reference generation in
Gui::Component::SetupGeometry()

An appropriate node object is created and configured according to the passed
attributes. The node is then assigned to mComponentGeometry, which will later be
used to build the subgraph of the Widget. Finally, the inner dimension is set to the
outer dimension, since planes and referenced geometries do not specify any insets or
borders. The pointer type of mComponentGeometry is Graph::INode, the common
base interface of all nodes. Whenever there is mutating access to the geometry, a
distinction of cases has to be done to accommodate the different mutation patterns
of the three geometry types. In most cases, the reference type will be ignored, since
the target node is not intended to be modified. The following listing, for example,
is an excerpt from Gui::Component::ApplySizeUpdate() and demonstrates the
consideration of different geometry types in case of size updates. The Component
Button defines the input area and does not depend on the geometry. However,
generic geometries are modified through the multi-patch factory they belong to,
while the size of plane geometries is set directly.

1 ComponentGeometryType geometryType = GetEffectiveComponentGeometryType ();
2
3 mComponentButton -> SetScaleFactor (mComponentOuterDimension .mSizeX ,

mComponentOuterDimension .mSizeY , 1.0f);
4
5 if (geometryType == Gui :: IEnums :: COMPONENT_GEOMETRY_TYPE_MULTIPATCH)
6 {
7 mComponentMultipatchFactory . SetSize (mComponentOuterDimension .mSizeX ,

mComponentOuterDimension . mSizeY);
8 }
9 else if (geometryType == Gui :: IEnums :: COMPONENT_GEOMETRY_TYPE_PLANE)

10 {
11 Graph :: IPlaneGeometry * planeGeometry = dynamic_cast < Graph :: IPlaneGeometry *>(

mComponentGeometry);
12 planeGeometry -> SetScaleFactor (mComponentOuterDimension .mSizeX ,

mComponentOuterDimension .mSizeY , Real (1));
13 }

Listing 4.65: Example of handling different geometry types in
Gui::Component::ApplySizeUpdate()

The Gui::Component::SetupGeometry() method introduced above is sufficient
for most Component types. However, some overriding methods exist that do not
even call the method of the base class because of a completely different appearance
behavior. As an example, consider Gui::CheckSwitch, the checkbox implementa-
tion of the MGT. A checkbox is represented by an image that does not vary in size or
content among its instances within the same application. But, usually, checkboxes
react to mouse events, e.g., by highlighting on hover. Also there are two possible
states to represent: on and off. To sum up, the implementation must handle the
following requirements:

1. Only use References to image geometries defined in the Skin package since
there is no need for resizable planes.

150

4.5. SKINNING

2. Switch between different References according to the button state.

3. Switch between the images representing a boolean state for each button state.

This is why Widgets like Check Switch or Option Button differ from most other
Component types and require different setup routines (an example has already been
shown in listing 4.24) to generate a subgraph like the one illustrated in figure 4.6.

Multipatch Factory

Patched geometries are instances of the Graph::GenericGeometry Node. This class
allows customized composition of vertex data and access to the geometry’s vertex
buffer and index buffer. The MGT uses a factory class for creating and managing
generic geometries according to the needs of Widgets which use a patched geometry:
Gui::MultipatchFactory. This is a pure helper class for implementing the toolkit
and not available via the public interfaces. Its purpose is to hide the complexity of
creating vertex and index buffer objects representing patched planes that were built
from rectangle data provided in an atlas XML resource file. Further, it handles the
manipulation of vertex data (most likely position attributes) on size updates after
creation. From outside, the program simply needs to call SetSize(), as it is done
in listing 4.65. The instantiation of the generic geometry node happens once for
each multi-patch plane by calling the Gui::MultipatchFactory::Init() method,
which is declared as follows:

1 virtual void Init(Graph :: IRoot * root , const Resource :: IAtlas :: Rectangle *
rectangles , Real sizeX , Real sizeY , UInt32 numberOfRectangles , UInt32
rectangleOffset = 0);

Listing 4.66: Declaration of Gui::MultipatchFactory::Init()

The root points to the graph root and is used to instantiate nodes dynamically.
rectangle points to an array of atlas rectangles. A rectangle is a section of a texture
specified by the top-left and bottom right corner. sizeX and sizeY are the initial
dimensions. numberOfRectangles tells how many rectangles shall be processed and
rectangleOffset is used when multiple definitions of patched planes occur in the
same atlas and texture. After configuring the internal used parameters, the Init()
method instantiates a Graph::GenericGeometry node, allowing the program to
create and manage VBOs and IBOs comfortably. The following piece of code gives
an idea of how this works:

1 UInt32 byteOffset = 0;
2 mGeometry = dynamic_cast < Graph :: IGenericGeometry *>(root -> CreateNode ("

GenericGeometry "));
3 mGeometry -> AddAttribute (IEnums :: ATTRIBUTE_ITEM_COORD , IEnums ::

ATTRIBUTE_TYPE_FLOAT_VECTOR_3 , byteOffset);
4 mGeometry -> AddAttribute (IEnums :: ATTRIBUTE_ITEM_TEXCOORD_0 , IEnums ::

ATTRIBUTE_TYPE_FLOAT_VECTOR_2 , byteOffset);
5 mGeometry -> SetVertexByteSize (byteOffset);
6 mGeometry -> SetIndexType (IEnums :: INDEX_TYPE_UINT16);
7 mGeometry -> SetPrimitiveType (IEnums :: PRIMITIVE_TYPE_TRIANGLES);
8
9 mGeometry -> SetMaxNumberOfVertices (mVertexCount , false);

151

CHAPTER 4. IMPLEMENTATION

10 mGeometry -> SetNumberOfVertices (mVertexCount);
11 SetupVertexBuffer ();
12
13 mGeometry -> SetMaxNumberOfIndices (mIndexCount , false);
14 mGeometry -> SetNumberOfIndices (mIndexCount);
15 SetupIndexBuffer ();

Listing 4.67: Creating and configuring a generic geometry node in
Gui::MultipatchFactory::Init()

The vertex attributes are added subsequently to the node by specifying a pre-
defined variable binding and the data type. The byte size of the attribute will be
added to an offset that contains the final vertex byte size after all attributes have
been set. In this case, the vertices need a position and texture coordinates. The
geometry will be composed of triangles, thus a triple of three indices will refer to
a single polygon of the geometry. Note that an index must be a 16 bit unsigned
integer to work correctly on with OpenGL ES on mobile devices. After setting the
number of vertices and indices, a pointer to the reserved memory can be retrieved
and filled with data. This is done in separate methods, SetupVertexBuffer() and
SetupIndexBuffer(). The latter one is just a straight-forward implementation of
iteratively adding six indices per patch, each with a certain offset:

1 void Gui :: MultipatchFactory :: SetupIndexBuffer ()
2 {
3 UInt16 * indexBuffer = static_cast < UInt16 *>(mGeometry -> GetIndexData ());
4 UInt32 nextRow = mPatchesX + 1;
5 UInt32 index = 0;
6 UInt32 offset = 0;
7
8 for(UInt32 indexY = 0; indexY < mPatchesY ; indexY ++)
9 {

10 for(UInt32 indexX = 0; indexX < mPatchesX ; indexX ++)
11 {
12 indexBuffer [index ++] = offset ;
13 indexBuffer [index ++] = offset + nextRow ;
14 indexBuffer [index ++] = offset + 1;
15 indexBuffer [index ++] = offset + nextRow ;
16 indexBuffer [index ++] = offset + 1;
17 indexBuffer [index ++] = offset + nextRow + 1;
18 offset ++;
19 }
20 // Skip last vertex in row.
21 offset ++;
22 }
23
24 mGeometry -> SetIndicesModified ();
25 }

Listing 4.68: Implementation of Gui::MultipatchFactory::SetupIndexBuffer()

For each row of patches and each patch in that row, six indices will be created,
forming a rectangle patch composed of two triangles. With the top left vertex index
of a patch given, the indices of the other three vertices can simply by calculated,
since all vertices are indexed from left to right and from top to bottom as shown in
figure 4.9.
A bit more logic is involved when generating vertex data. The first step is to

calculate the horizontal and vertical vertex positions. The patches form a regular

152

4.5. SKINNING

Figure 4.9: Vertex indices of a nine-patch geometry

grid consisting of columns and rows, so it is not necessary to calculate X and Y
separately for each vertex. Z is always 1. The texture coordinates are directly taken
from the rectangles passed initially. The vertex data is put into the array iteratively
similar to feeding the IBO as it was done above. The most critical part here is the
consideration of the aspect that makes patched planes so useful: the ability to stretch
certain regions while keeping others constant. The flexible patches are determined
implicitly for both directions, horizontal and vertical: Assuming the columns and
rows of patches are numbered from 1 to the number of patches in one dimension.
Patches with even column numbers are flexible on the horizontal axis, patches with
even row numbers are flexible on the vertical axis. If the plane only consists of
one patch per row, this patch will be stretched to the full width. The same holds
for one patch per column, which will then stretch to the full height. For a better
understanding, only the horizontal axis shall now be considered (e.g., 1×1, 3×1, or
5× 1 planes). The reason for the flexibility alternating between neighbored patches
comes from the insight that it does not make sense having two constant patches
among each other, as they could simply be combined into one. A 3 × 1-patch, for
example, will have a flexible second patch, while patch 1 and 3 have a constant
width, making them borders. A 5 × 1-patch consists of a stretchable second and
fourth patch, the first and fifth patches are now the borders and the third element
is some kind of dividing space between the two flexible patches. Somebody might
complain that an opposite configuration (e.g., patch 1 and 3 being flexible, patch 2
constant) is not possible. However, since the MGT does not need this variant and
the class is private anyway, this possibility has been dropped. When now building
the patches, the fixed amount of space is calculated for each dimension at first. This
is done by summing up the distances between the u1 and u2 texture coordinates of
odd numbered rectangles and subtracting it from the total width of the geometry.
The remaining space is then equally divided up into the flexible patches. Optionally,
the developer may pass an array of custom weighting values (which sum up to 1).

153

CHAPTER 4. IMPLEMENTATION

After initialization, the generic geometry may be obtained from the factory.
Whenever a size update is necessary, the factory calls SetupVertexBuffer() again,
overwriting the existing vertex data with new values.

4.5.4 Setup State Sets
Similar to geometry initialization, State Sets are set up during the initialization
phase of the Widget node when Gui::Component::SetupStateSet() (or an over-
riding method) is called. The following implementation checks if the State Set has
already been set by a subclass:

1 void Gui :: Component :: SetupStateSet (Graph :: IInitTracker * tracker)
2 {
3 if (mComponentStateSet == 0)
4 {
5 Graph :: IRoot * root = tracker -> GetRoot ();
6 Gui :: ComponentGeometryType geometryType =

GetEffectiveComponentGeometryType ();
7
8 if (geometryType != Gui :: IEnums :: COMPONENT_GEOMETRY_TYPE_REFERENCE)
9 {

10 if (geometryType == Gui :: IEnums :: COMPONENT_GEOMETRY_TYPE_MULTIPATCH)
11 {
12 mComponentStateSetId = mComponentMultipatchStateSetId ;
13 }
14 else if (geometryType == Gui :: IEnums :: COMPONENT_GEOMETRY_TYPE_PLANE)
15 {
16 mComponentStateSetId = mComponentPlaneStateSetId ;
17 }
18
19 if (mComponentStateSetId . GetLength () > 0)
20 {
21 mComponentStateSet = root -> CreateNode (" Reference ");
22 dynamic_cast < Graph :: IReference *>(mComponentStateSet)->

GetNodeTarget () ->SetNode (root -> FindNode (mComponentStateSetId)
);

23 }
24 else
25 {
26 mComponentStateSet = CreateSimpleStateSet (root);
27 }
28 }
29 }
30
31 if (mComponentStateSet != 0)
32 {
33 mComponentButton -> GetNodeInterface () ->AddChild (mComponentStateSet);
34 }
35 }

Listing 4.69: Implementation of Gui::Component::SetupStateSet()

If it has not been set and the geometry type is no reference, the Node ID of the
State Set according to the geometry type will be chosen to build a Reference to the
Node. If no ID is set, a trivial State Set (for rendering a white plane) will be created
in-place. Finally, the the created Node will be added to the Component subgraph.
There are two different State Set node ID properties, one for multi-patch planes and
one for simple planes. This is because of the default values defined for a certain
Component. A Component that can handle both geometry types will have different

154

4.5. SKINNING

State Sets for each, e.g., a non-bordered texture for the plane type. This way, only
the geometry type attribute has to be set when working with default State Sets.

This concludes the chapter about implementation details of the MGT. In the next
chapter, some sample applications will be shown in order to demonstrate the final
results of the toolkit.

155

5 Results
This chapter will demonstrate four sample applications using the ME and the MGT,
that has been introduced and discussed in the previous two chapters.

5.1 Widget Showcase

Figure 5.1: Demo: Widget Showcase

The application captured for figure 5.1 is a demonstration of the available wid-
gets and their interaction. This is a typical example of desktop applications featur-
ing so called modal windows. Below the title bar is a main menu, an instance of
Gui::MenuBar, which contains menu items and menu strips. The six modal windows
are initially arranged by a Gui::PageLayout that is assigned to the Gui::AppWindow
proxy. The upper left window contains a table view with scroll bars. Below is a
window with a tab control and three tab pages, each contains sliders and steppers to

157

CHAPTER 5. RESULTS

manipulate the transformation of a 3D object. The labels and controls are arranged
by a horizontal flow layout. Also note that each slider shares its entity with the
stepper right of it, so each pair is simultaneously affected by user input. The re-
sulting 3D object is shown in the center window, which contains a Gui::Component
node skinned by a frame buffer texture. The upper right window has a list view for
selecting the actual surface to render on the geometry. Selecting an item yields an
event that is handled by an event handler. The event handler reads the selection
index and forwards this value to a Graph::Switch node to activate the correspond-
ing texture state affecting the cube geometry. The lower right window demonstrates
collapse containers with check switches and options buttons. The check switches
refer to the node flags “active” and “visible”. For example, when unchecking the
visibility box, the event handler will cause the geometry node to become invisible.
The bottom section contains a window with a progress bar in it. The progress sim-
ply increments over time, the value is updated by the OnProcessTick() method of
the engine processor.

Figure 5.2: Demo: Widget Showcase (Window Layering)
This example on context layering reveals the inverse order of when a particular window (or
most probably one of its widgets) has received input from the user: “Materials”, “Prop-
erties”, “A Useless But Nice Timeline”, “Transformation”, “Geometry”, and “Window”.

Figure 5.2 shows the similar application, but now demonstrates the overlay effect
of window instances, handled by contexts. After sending an input event to a widget

158

5.2. LAYOUT SHOWCASE

via the pointing device, the widget finds its corresponding context (which is held by
the respective window, in this case) and pushes it to the “front”.

5.2 Layout Showcase

Figure 5.3: Demo: Layout Showcase

The “GUI Layouts Demo” application (see figure 5.3) uses windows, layouts,
layout directives, and button nodes to demonstrate the effects of automatic layout
management. The top left window uses a grid layout configured to produce four
grid cells equal in width and height on both axes. The upper right window shows
a page layout with a section space ratio of 1 : 2 : 1 for both width and height.
Horizontal and vertical flow layouts are demonstrated in the lower windows, both
with the same set of widgets. Finally, a null layout sample is available in the top
center window. The corner elements use a relative position, causing them to “stick”
beneath the corner even after resizing the window. The buttons in the center are
positioned with absolute coordinates, so they will always be aligned by the same
distance around the origin. Resizing a window will instantly lead to relayout the
entire content according to the new boundaries in all five examples.
Figure 5.5 shows the results of nested layouts: The window itself uses a page

layout that aligns five container widgets into sections. The containers in the top

159

CHAPTER 5. RESULTS

and left sections use horizontal and vertical flow layouts. The elements in the center
container are arranged by a grid layout. Null layouts are used in the right and bottom
section, with the first using absolute and the latter relative positions. When resizing
a container on a higher level (like the window in this example), the nested layouts
will be updated iteratively to the size of the nested container they are assigned to.
The result is shown in figure 5.6.

5.3 Drag-and-Drop Demo

Figure 5.4: Demo: Drag-and-Drop

Figure 5.4 shows an iOS application that demonstrates Drag-and-Drop, running
on iPhone 4. This demo is an example for a traditional inventory menu of role-
playing games (RPG). The bottle in the middle (a Gui::Component node with tex-
ture) can be dragged and dropped into one of the four containers on each side. The
actual Gui::Container instances are invisible, but they have the same boundaries
as the four darkened squares at the background image. The screenshots depict three
phases of Drag-and-Drop. The component is placed at its origin position in the ini-
tial situation (left). On dragging, the user can move the component freely around.
A drag can be completed if the drag input position (e.g., mouse or touch position)
intersects both the component and the container (center). After releasing, the con-
tainer obtains the component and passes it to the layout, which, in this case, places
the object at the containers origin (right). As mentioned in the previous section,
Drag-and-Drop support is incomplete due to engine restrictions. After a compo-
nent has been dropped into a container, the position of the component is updated
to appear at the origin of the container (or whatever the layout has calculated).
However, this scene graph structure remains unchanged, with the component still
being attached to the same parent as before. This might work in the example shown
here, but flaws will occur when performing transformations or other manipulations
on either the actual parent container or the targeted container.

160

5.3. DRAG-AND-DROP DEMO

Figure 5.5: Demo: Layout Showcase (Layout Composition 1)

Figure 5.6: Demo: Layout Showcase (Layout Composition 2)

161

CHAPTER 5. RESULTS

5.4 Shader Effects Demo
The final demo application shows one of many possibilities on how to apply standard
3D graphic manipulation on a GUI made by the MGT (see figure 5.7). Here, shaders
are used to define materials for rendering the widget geometry. The example consists
of two containers (left and right), with the first one holding four option buttons, and
the second contains a regular button that uses a referenced geometry. The material
used by the containers is generated from a default vertex shader and a fragment
shader that produces a gradient of two colors among the geometry. When selecting
one of the four options, the selection event handler sets the index of a Graph::Switch
node placed in the state set node of the button to yield one of four available different
materials – one default material and three shader programs (sparkles, color inversion,
and grayscale).

Figure 5.7: Demo: Shader Effects

162

6 Conclusion
This work has shown the development of the Murl GUI Toolkit, the GUI toolkit
extension of the cross-platform application framework Murl Engine. The ME in-
cludes a scene graph based 3D engine on the top of OpenGL and focuses primary
on the development of visualization, multimedia, and game applications for mobile
devices. To provide a GUI toolkit that lives up to contemporary expectations in user
interface design, a selection of existing GUI toolkits has been evaluated to identify
common features and implementation strategies. This lead to the development of
the following five concepts:

Although 3D applications are generally tick-based, the MGT includes (1) a light-
weight event handling system based on the observer design pattern. This allows
developer to do event-based programming, which is much more common in GUI-
driven applications than polling. The most obvious aspect is (2) the set of widgets
available. Not all widgets discovered during evaluation have also been implemented
by the MGT. Especially complex high-level widgets like calendars or file dialogs have
been dropped in favor of basic widgets and because of the fact that those widgets
are unlikely to appear in heavily 3D-oriented mobile applications. However, basic
widgets for both desktop and mobile platforms have been successfully integrated in
the toolkit by using simple 3D primitives, textures and materials, and incorporate
them into the scene graph. It is now possible to combine the flexibility of a high-
performance scene graph engine with the needs of a 2D GUI toolkit. The declaration
of even complex GUIs in an XML resource is fairly simple (comparable to writing
HTML markup) and, since it is part of the scene graph, decorative 3D effects are also
possible to attach. There are some limitations though: Manipulating and rendering
of text is an important task in GUIs, but not so in 3D rendering. So, more work needs
to be done in order to abstract native text rendering APIs on different platforms
(e.g., Core Text). While the engine is still in beta stadium during the time of
writing, particular challenges (like marking of text or getting a text’s width and
height) could not be solved. Another requirement has been (3) automatic layout
management. Just like (2), layouts are completely integrated in the scene graph
as container nodes that handle the transformation of their children in order to fit
into a desired layout scheme. (4) Skinning also strongly uses the engine’s graph
capabilities by defining so called State Set nodes (nodes that activate materials,
textures, lighting parameters, etc.) that are referred to by widgets in order to
render their geometry surface. Finally, (5) the Entity concept has been implemented
to unify the representation and handling of data used by widgets.

For productional use, some additions and improvements have to be made. First
of all, the toolkits needs to be updated to a newer version of the ME, which con-

163

CHAPTER 6. CONCLUSION

tains features that have not been available during the time of implementation (e.g.,
auto-alignment and text size queries). The next step would be the extension of
existing widgets with more options for a greater flexibility and a better support of
mobile UI guidelines. Also some new kind of widgets shall be considered, especially
those known from iOS and Android, like the calendar spinner or the navigation bar.
As a further suggestion, by optionally including the SQLite library “libsqlite3” into
the ME and by providing wrapping interfaces on engine layer, the Entity system
of the MGT can be extended to a database abstraction layer, serving as model
logic between a database and particular widgets (e.g. List Views or Table View).
The MGT is already a good foundation for GUIs in 3D applications. But further
improvement of the current toolkit by including more features developers ask for
when writing pure GUI-based mobile apps – like REST/JSON tools and the al-
ready mentioned database abstraction layer –, mobile developers outside the games
industry will probably show their interest in the ME as an opportunity to develop
cross-platform, native applications.

164

Bibliography
Android Developers (2014a). Input Events (Android API Guides). url: http://

developer . android . com / guide / topics / ui / ui - events . html (visited on
08/01/2014).

– (2014b). Layouts (Android API Guides). url: http://developer.android.com/
guide/topics/ui/declaring-layout.html (visited on 08/01/2014).

– (2014c). Styles and Themes (Android API Guides). url: http://developer.
android.com/guide/topics/ui/themes.html (visited on 07/31/2014).

Apache Software Foundation (2014a). Apache Pivot. url: http://pivot.apache.
org (visited on 07/31/2014).

– (2014b). Component & Container. url: http://pivot.apache.org/tutorials/
component-and-container.html (visited on 07/31/2014).

– (2014c). Event Handling. url: http://pivot.apache.org/tutorials/stock-
tracker.events.html (visited on 08/01/2014).

– (2014d). Frequently Asked Questions (FAQ). url: http://pivot.apache.org/
faq.html (visited on 07/31/2014).

– (2014e). Layout Containers. url: http://pivot.apache.org/tutorials/layo
ut-containers.html (visited on 08/01/2014).

Apple Inc. (2013a). About Events in iOS. url: https://developer.apple.com/
library/ios/documentation/EventHandling/Conceptual/EventHandlingiPh
oneOS/Introduction/Introduction.html (visited on 08/01/2014).

– (2013b). About the iOS Technologies. url: https://developer.apple.com/
library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOver
view/Introduction/Introduction.html (visited on 07/31/2014).

– (2013c). UIAppearance Protocol Reference. url: https://developer.apple.co
m/library/ios/documentation/uikit/reference/UIAppearance_Protocol/
Reference/Reference.html (visited on 07/31/2014).

– (2014). UICollectionView Class Reference. url: https://developer.apple.
com / library / ios / documentation / UIKit / Reference / UICollectionView _
class/Reference/Reference.html (visited on 08/01/2014).

Bishop, Judith (2004). “Developing Principles of GUI Programming Using Views”.
In: 35 th SIGCSE Technical Symposium on Computer Science Education. ACM-
SIGCSE, Wiley, pp. 373–377.

165

http://developer.android.com/guide/topics/ui/ui-events.html
http://developer.android.com/guide/topics/ui/ui-events.html
http://developer.android.com/guide/topics/ui/declaring-layout.html
http://developer.android.com/guide/topics/ui/declaring-layout.html
http://developer.android.com/guide/topics/ui/themes.html
http://developer.android.com/guide/topics/ui/themes.html
http://pivot.apache.org
http://pivot.apache.org
http://pivot.apache.org/tutorials/component-and-container.html
http://pivot.apache.org/tutorials/component-and-container.html
http://pivot.apache.org/tutorials/stock-tracker.events.html
http://pivot.apache.org/tutorials/stock-tracker.events.html
http://pivot.apache.org/faq.html
http://pivot.apache.org/faq.html
http://pivot.apache.org/tutorials/layout-containers.html
http://pivot.apache.org/tutorials/layout-containers.html
https://developer.apple.com/library/ios/documentation/EventHandling/Conceptual/EventHandlingiPhoneOS/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/EventHandling/Conceptual/EventHandlingiPhoneOS/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/EventHandling/Conceptual/EventHandlingiPhoneOS/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/uikit/reference/UIAppearance_Protocol/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/uikit/reference/UIAppearance_Protocol/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/uikit/reference/UIAppearance_Protocol/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UICollectionView_class/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UICollectionView_class/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UICollectionView_class/Reference/Reference.html

Bibliography

Carlisle, Martin C. (1999). “A Truly Implementation Independent GUI Development
Tool”. In: SIGAda Letters, Vol XIX 3, pp. 47–52.

Carnegie Mellon University (2010). Panda3D Manual: DirectButton. url: https://
www.panda3d.org/manual/index.php/DirectButton (visited on 08/01/2014).

Clasen, Matthias (2004). GTK+ History. url: http : / / people . redhat . com /
mclasen/Usenix04/notes/x29.html (visited on 07/31/2014).

DeLoura, Mark (2001). Game Programming Gems 2. Rockland, MA, USA: Charles
River Media, Inc. isbn: 1584500549.

Eclipse contributors and others (2011). Interface Listener. url: http : / / help .
eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%
2Freference%2Fapi%2Forg%2Feclipse%2Fswt%2Fwidgets%2FListener.html
(visited on 08/01/2014).

Gamma, Erich et al. (1995). Design Patterns: Elements of Reusable Object-oriented
Software. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc. isbn:
0201633612.

Garnacho, Carlos (2011). Styling GTK+ with CSS. url: http://thegnomejournal.
wordpress.com/2011/03/15/styling-gtk-with-css/ (visited on 07/31/2014).

Gehani, Narain (1991). Ada: Concurrent Programming. Summit, NJ: Silicon Press.
isbn: 9780929306087.

FDLv12 (2002). GNU Free Documentation License. Version 1.2. Free Software Foun-
dation. url: http://www.gnu.org/licenses/fdl-1.2.

GPLv2 (1991). GNU General Public License. Version 2. Free Software Foundation.
url: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html.

GPLv3 (2007). GNU General Public License. Version 3. Free Software Foundation.
url: http://www.gnu.org/licenses/gpl.html.

Heisler, Yoni (2013). IDC report: iPhone lost marketshare to Android in Q2 2013.
url: http://www.tuaw.com/2013/08/07/idc-report-iphone-lost-marketsh
are-to-android-in-q2-2013/ (visited on 07/31/2014).

Johnson, Daniel and Janet Wiles (2003). “Effective Affective User Interface Design
in Games”. In: Ergonomics 46, pp. 1332–1345.

Landay, James A., James A. L, and Todd R. Kaufmann (1993). User Interface Issues
in Mobile Computing.

Leisegang, Christoph (2011). “Schlüsselfigur. Model View Presenter: Entwurfsmuster
für Rich Clients”. In: iX 1, pp. 128–133.

MacLeod, Carolyn (2009). Understanding Layouts in SWT. url: http://www.ec
lipse.org/articles/article.php?file=Article-Understanding-Layouts/
index.html (visited on 08/01/2014).

166

https://www.panda3d.org/manual/index.php/DirectButton
https://www.panda3d.org/manual/index.php/DirectButton
http://people.redhat.com/mclasen/Usenix04/notes/x29.html
http://people.redhat.com/mclasen/Usenix04/notes/x29.html
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fswt%2Fwidgets%2FListener.html
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fswt%2Fwidgets%2FListener.html
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fswt%2Fwidgets%2FListener.html
http://thegnomejournal.wordpress.com/2011/03/15/styling-gtk-with-css/
http://thegnomejournal.wordpress.com/2011/03/15/styling-gtk-with-css/
http://www.gnu.org/licenses/fdl-1.2
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl.html
http://www.tuaw.com/2013/08/07/idc-report-iphone-lost-marketshare-to-android-in-q2-2013/
http://www.tuaw.com/2013/08/07/idc-report-iphone-lost-marketshare-to-android-in-q2-2013/
http://www.eclipse.org/articles/article.php?file=Article-Understanding-Layouts/index.html
http://www.eclipse.org/articles/article.php?file=Article-Understanding-Layouts/index.html
http://www.eclipse.org/articles/article.php?file=Article-Understanding-Layouts/index.html

Bibliography

Miaoulis, Georgios and Dimitri Plemenos (2009). Intelligent Scene Modelling Infor-
mation Systems. 1st. Springer Publishing Company. isbn: 9783540929017.

Microsoft Corporation (2014a). Einführung in WPF. url: http://msdn.microsof
t.com/de-de/library/aa970268.aspx (visited on 07/31/2014).

– (2014b). Events (WPF). url: http://msdn.microsoft.com/en-us/library/
ms753115(v=vs.110).aspx (visited on 07/31/2014).

– (2014c). Styling and Templating. url: http://msdn.microsoft.com/en-us/
library/ms745683(v=vs.110).aspx (visited on 07/31/2014).

Mono (2014). WPF. url: http : / / www . mono - project . com / WPF (visited on
07/31/2014).

Niemeyer, Patrick and Daniel Leuck (2013). Learning Java. O’Reilly Media. isbn:
9781449372507.

Northover, Steve (2001). SWT: The Standard Widget Toolkit. PART 1: Implemen-
tation Strategy for Java Natives. url: http://www.eclipse.org/articles/
Article-SWT-Design-1/SWT-Design-1.html (visited on 07/31/2014).

Oracle Corporation (2014a). How to Set the Look and Feel. url: http://docs.
oracle.com/javase/tutorial/uiswing/lookandfeel/plaf.html (visited on
07/31/2014).

– (2014b). Lesson: Laying Out Components Within a Container. url: http://
docs.oracle.com/javase/tutorial/uiswing/layout/index.html (visited on
08/01/2014).

– (2014c). Lesson: Writing Event Listeners. url: http : / / docs . oracle . com /
javase/tutorial/uiswing/events (visited on 07/31/2014).

– (2014d). Trail: Creating a GUI With JFC/Swing. url: http://chimera.labs.
oreilly.com/books/1234000001805/ch16.html (visited on 07/31/2014).

Pausch, Randy et al. (1992). Lessons Learned from SUIT, the Simple User Interface
Toolkit.

Pountain, Dick (1989). The X Window System. url: http://www.guidebookgall
ery.org/articles/thexwindowsystem (visited on 07/31/2014).

Qt Project Hosting (2013a). Layout Management (Qt Project Documentation). url:
http://qt-project.org/doc/qt-4.8/layout.html (visited on 08/01/2014).

– (2013b). Qt Style Sheets (Qt Project Documentation). url: http://qt-project.
org/doc/qt-4.8/stylesheet.html (visited on 07/31/2014).

– (2013c). Signals & Slots (Qt Project Documentation). url: http://qt-project.
org/doc/qt-4.8/stylesheet.html (visited on 08/01/2014).

– (2014). Qt Project Documentation. url: http://qt-project.org/doc/ (visited
on 07/31/2014).

167

http://msdn.microsoft.com/de-de/library/aa970268.aspx
http://msdn.microsoft.com/de-de/library/aa970268.aspx
http://msdn.microsoft.com/en-us/library/ms753115(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms753115(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms745683(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms745683(v=vs.110).aspx
http://www.mono-project.com/WPF
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html
http://docs.oracle.com/javase/tutorial/uiswing/lookandfeel/plaf.html
http://docs.oracle.com/javase/tutorial/uiswing/lookandfeel/plaf.html
http://docs.oracle.com/javase/tutorial/uiswing/layout/index.html
http://docs.oracle.com/javase/tutorial/uiswing/layout/index.html
http://docs.oracle.com/javase/tutorial/uiswing/events
http://docs.oracle.com/javase/tutorial/uiswing/events
http://chimera.labs.oreilly.com/books/1234000001805/ch16.html
http://chimera.labs.oreilly.com/books/1234000001805/ch16.html
http://www.guidebookgallery.org/articles/thexwindowsystem
http://www.guidebookgallery.org/articles/thexwindowsystem
http://qt-project.org/doc/qt-4.8/layout.html
http://qt-project.org/doc/qt-4.8/stylesheet.html
http://qt-project.org/doc/qt-4.8/stylesheet.html
http://qt-project.org/doc/qt-4.8/stylesheet.html
http://qt-project.org/doc/qt-4.8/stylesheet.html
http://qt-project.org/doc/

Bibliography

Rademacher, Paul, Nigel Stewart, and Bill Baxter (2006). GLUI User Interface
Library. url: http://http://glui.sourceforge.net (visited on 07/31/2014).

Raw Material Software Ltd. (2014a). About JUCE. url: http://www.juce.com/
about-juce (visited on 07/31/2014).

– (2014b). LookAndFeel Class Reference. url: http://www.juce.com/api/class
LookAndFeel.html (visited on 07/31/2014).

– (2014c). MessageManager Class Reference. url: http://www.juce.com/api/
classMessageManager.html (visited on 07/31/2014).

Schmidt, Vincent A. (2010). User interface Design Patterns. Tech. rep. Warfighter
Interface Division.

Shreiner, Dave and The Khronos OpenGL ARB Working Group (2009). OpenGL
Programming Guide: The Official Guide to Learning OpenGL, Versions 3.0 and
3.1. 7th. Addison-Wesley Professional. isbn: 0321552628, 9780321552624.

Smart, Julian et al. (2011). wxX11 port. url: http://docs.wxwidgets.org/2.8/
wx_wxx11port.html (visited on 07/31/2014).

Spitzak, Bill (2012a). Common Widgets and Attributes. url: http://www.fltk.
org/doc-1.3/common.html (visited on 08/01/2014).

– (2012b). Introduction to FLTK. url: http://www.fltk.org/documentation.
php/doc-1.1/intro.html (visited on 07/31/2014).

– (2012c). Programming with FLUID. url: http://www.fltk.org/doc- 1.3/
fluid.html (visited on 08/01/2014).

Spraylight GmbH (2014a). About the Murl Engine. url: http://murlengine.com/
?murlpage=about&murllang=en (visited on 07/31/2014).

– (2014b). Murl Engine Feature List. url: http://murlengine.com/?murlpage=
features&murllang=en (visited on 07/31/2014).

– (2014c). Murl::Graph::FixedParameters Class Reference. url: http://murlengi
ne.com/api/en/class_murl_1_1_graph_1_1_fixed_parameters.php (visited
on 08/01/2014).

– (2014d). Murl::Graph::IButton Interface Reference. url: http://murlengine.co
m/api/en/class_murl_1_1_graph_1_1_i_button.php (visited on 08/01/2014).

– (2014e). Murl::Graph::TextGeometry Class Reference. url: http://murlengine.
com/api/en/class_murl_1_1_graph_1_1_text_geometry.php (visited on
08/01/2014).

– (2014f). Price of the Murl Engine. url: http://murlengine.com/?murlpage=
free&murllang=en (visited on 07/31/2014).

Stanchfield, Scott (2012). What is the difference between AWT and SWT? url:
http://www.jguru.com/faq/view.jsp?EID=507891 (visited on 07/31/2014).

168

http://http://glui.sourceforge.net
http://www.juce.com/about-juce
http://www.juce.com/about-juce
http://www.juce.com/api/classLookAndFeel.html
http://www.juce.com/api/classLookAndFeel.html
http://www.juce.com/api/classMessageManager.html
http://www.juce.com/api/classMessageManager.html
http://docs.wxwidgets.org/2.8/wx_wxx11port.html
http://docs.wxwidgets.org/2.8/wx_wxx11port.html
http://www.fltk.org/doc-1.3/common.html
http://www.fltk.org/doc-1.3/common.html
http://www.fltk.org/documentation.php/doc-1.1/intro.html
http://www.fltk.org/documentation.php/doc-1.1/intro.html
http://www.fltk.org/doc-1.3/fluid.html
http://www.fltk.org/doc-1.3/fluid.html
http://murlengine.com/?murlpage=about&murllang=en
http://murlengine.com/?murlpage=about&murllang=en
http://murlengine.com/?murlpage=features&murllang=en
http://murlengine.com/?murlpage=features&murllang=en
http://murlengine.com/api/en/class_murl_1_1_graph_1_1_fixed_parameters.php
http://murlengine.com/api/en/class_murl_1_1_graph_1_1_fixed_parameters.php
http://murlengine.com/api/en/class_murl_1_1_graph_1_1_i_button.php
http://murlengine.com/api/en/class_murl_1_1_graph_1_1_i_button.php
http://murlengine.com/api/en/class_murl_1_1_graph_1_1_text_geometry.php
http://murlengine.com/api/en/class_murl_1_1_graph_1_1_text_geometry.php
http://murlengine.com/?murlpage=free&murllang=en
http://murlengine.com/?murlpage=free&murllang=en
http://www.jguru.com/faq/view.jsp?EID=507891

Bibliography

The GNOME Project (2014a). Events. url: https://developer.gnome.org/gtk-
tutorial/2.90/x182.html (visited on 08/01/2014).

– (2014b). Layout Containers. url: https://developer.gnome.org/gtk3/stabl
e/LayoutContainers.html (visited on 08/01/2014).

The Khronos Group (2014). OpenGL Shading Language. url: http://www.opengl.
org/documentation/glsl (visited on 08/01/2014).

Thompson, Sarah (2013). sigslot - C++ Signal/Slot Library. url: http://sigslot.
sourceforge.net/ (visited on 08/01/2014).

Unity Technologies (2014a). GUI Basics (Unity Documentation). url: http://
docs.unity3d.com/Documentation/Components/gui-Basics.html (visited on
07/31/2014).

– (2014b). GUI Skin (Unity Documentation). url: http://docs.unity3d.com/
Manual/class-GUISkin.html (visited on 07/31/2014).

– (2014c). Layout Modes (Unity Documentation). url: http://docs.unity3d.
com/Manual/gui-Layout.html (visited on 08/01/2014).

University of Alaska Fairbanks (2006). GLUIControlClassReference. url: https:
//www.cs.uaf.edu/2006/fall/cs381/ref/glui/classGLUI__Control.html
(visited on 08/01/2014).

Victor, Brian (2014). What Do These Sizer Things Do? url: http : / / neume .
sourceforge.net/sizerdemo/ (visited on 08/01/2014).

Walsh, Rory (2008). “Cabbage, a new GUI framework for Csound”. In: Proceedings
of the Linux Audio Developers Conference KHM.

Wang, L. J. and A. S M Sajeev (2006). “Abstract interface specification languages
for device-independent interface design: classification, analysis and challenges”.
In: Pervasive Computing and Applications, 2006 1st International Symposium on,
pp. 241–246.

wxWidgets (2014a). Events and Event Handling. url: http://docs.wxwidgets.
org/trunk/overview_events.html (visited on 11/30/2013).

– (2014b). What is wxWidgets? url: http://docs.wxwidgets.org/3.0/page_
introduction.html (visited on 07/31/2014).

– (2014c). wxRendererNative Class Reference. url: http://docs.wxwidgets.org/
trunk/classwx_renderer_native.html (visited on 07/31/2014).

– (2014d). wxWidgets Datasheet. url: http://www.wxwidgets.org/about/datas
heets.html (visited on 11/30/2013).

Zijp, Jeroen van der (2013a). Fox Toolkit: Documentation: Messages. url: http:
//www.fox-toolkit.org/messages.html (visited on 07/31/2014).

– (2013b). Fox Toolkit: Foreword. url: http://www.fox-toolkit.org/foreword.
html (visited on 07/31/2014).

169

https://developer.gnome.org/gtk-tutorial/2.90/x182.html
https://developer.gnome.org/gtk-tutorial/2.90/x182.html
https://developer.gnome.org/gtk3/stable/LayoutContainers.html
https://developer.gnome.org/gtk3/stable/LayoutContainers.html
http://www.opengl.org/documentation/glsl
http://www.opengl.org/documentation/glsl
http://sigslot.sourceforge.net/
http://sigslot.sourceforge.net/
http://docs.unity3d.com/Documentation/Components/gui-Basics.html
http://docs.unity3d.com/Documentation/Components/gui-Basics.html
http://docs.unity3d.com/Manual/class-GUISkin.html
http://docs.unity3d.com/Manual/class-GUISkin.html
http://docs.unity3d.com/Manual/gui-Layout.html
http://docs.unity3d.com/Manual/gui-Layout.html
https://www.cs.uaf.edu/2006/fall/cs381/ref/glui/classGLUI__Control.html
https://www.cs.uaf.edu/2006/fall/cs381/ref/glui/classGLUI__Control.html
http://neume.sourceforge.net/sizerdemo/
http://neume.sourceforge.net/sizerdemo/
http://docs.wxwidgets.org/trunk/overview_events.html
http://docs.wxwidgets.org/trunk/overview_events.html
http://docs.wxwidgets.org/3.0/page_introduction.html
http://docs.wxwidgets.org/3.0/page_introduction.html
http://docs.wxwidgets.org/trunk/classwx_renderer_native.html
http://docs.wxwidgets.org/trunk/classwx_renderer_native.html
http://www.wxwidgets.org/about/datasheets.html
http://www.wxwidgets.org/about/datasheets.html
http://www.fox-toolkit.org/messages.html
http://www.fox-toolkit.org/messages.html
http://www.fox-toolkit.org/foreword.html
http://www.fox-toolkit.org/foreword.html

Bibliography

Zijp, Jeroen van der (2013c). Fox Toolkit: Goals and Approach. url: http://www.
fox-toolkit.org/goals.html (visited on 07/31/2014).

170

http://www.fox-toolkit.org/goals.html
http://www.fox-toolkit.org/goals.html

	Statutory Declaration
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Initial Situation
	Definition and Requirements
	Methods
	Murl Engine Architecture
	Engine Architecture Layers
	Resource Files and Packages
	Scene Graphs
	Processors

	Evaluation Of Existing Toolkits
	Overview
	Android SDK
	Apache Pivot
	Abstract Window Toolkit
	DirectGUI
	Fast, Light Toolkit
	FOX Toolkit
	GIMP Toolkit+
	JUCE
	OpenGL User Interface Library
	Qt
	Standard Widget Toolkit
	Swing
	UIKit
	UnityGUI
	Windows Presentation Foundation
	wxWidgets

	Featured Widgets
	Rendering
	Using Native Widgets
	Using 2D and 3D APIs
	Using X Window System

	Skinning
	Skin Properties
	Skin Classes
	Skin Description Files

	Event Handling
	Polling
	Callbacks
	Observers and Messages
	Signals and Slots

	Layout Control
	Layouts as Widgets
	Layouts as Controllers
	Layouts as Macros

	Summary

	Design
	Toolkit Architecture
	Basic Structure
	Toolkit Object Types

	Event Handling
	Polling vs. Dispatching
	Events
	Device Polling Logic
	Event Dispatch Table, Event Pipeline, and Event Channels
	Event Handlers
	Event Handler Table

	Data Management
	Entities
	Entity Events and Selection Events

	Widgets
	The Widget Node
	Menu Bars, Menu Strips, and Menu Items
	Components and Containers
	Tab Controls and Tab Pages
	Windows, Dialogs, and the App Window
	Buttons And Controls
	Other Widgets

	Layouts
	Basic Idea
	Null Layout
	Flow Layout
	Grid Layout
	Page Layout

	Skinning
	Basic idea
	Elements of a Skin
	Definition and Integration of a Skin

	Extension Concept
	Extending Widgets and Components
	Extending Layouts
	Extending Entities

	Implementation
	Project Structure
	GUI Graph Nodes
	Graph Node Implementation
	Widget Nodes
	Component Nodes
	Container Nodes
	Control Nodes
	Layout and Layout Directive Nodes
	Drag-and-Drop Related Nodes

	Event Handling
	Event Triggers
	Events and Event Handlers
	Event Channels
	Event Dispatch Table
	Event Pipeline
	Event Handler Table

	Entities
	Primitive Entities
	Selections

	Skinning
	Loading the Skin Package
	Configure Geometries
	Generate Geometries
	Setup State Sets

	Results
	Widget Showcase
	Layout Showcase
	Drag-and-Drop Demo
	Shader Effects Demo

	Conclusion
	Bibliography

