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Abstract

In this thesis I present results of an evaluation of sensors and perception algorithms in a large-
scale emergency response exercise. I deployed state-of-the art sensors like Lidars and publicly
available mapping approaches in a simulated car accident in a tunnel. The main goal is to
investigate how well existing technologies are accepted by first responders for such scenarios.
A rich sensor data set was recorded during a reconnaissance mission with a robot and later
analyzed off-line. I present results of the representations generated and discuss what techniques
are already accepted by responders. Finally, I raise issues that have to be tackled in order to
increase the acceptance.
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Chapter 1

Introduction

First responder risk their lives whenever they are in action. In cases like the search for injured
people, detecting toxicities or to slack a fire, a special equipped robot could support first respon-
der and take risk off them by using certain sensors for detecting people or by creating a map of
the disaster area. With this help, first responder get a better knowledge about the area and are
able to better estimate the risks of sending men into the place of action.

From that perspective, you can say that ground or aerial robots equipped with advanced sensing
technologies such as 3D laser scanners and advanced mapping algorithms are deemed useful
as a supporting technology for first responders. Lots of excellent research in the field exists,
however, practical applications at real disaster sites are scarce. The reasons are manifold. One
reason is that most systems and algorithms are neither suitable nor robust enough for the harsh
and dynamic environments typically found in disaster relief. Another reason is that the systems
are difficult to operate and a deployment in a real disaster need specially skilled and trained
personnel. Such personnel is usually found at research institutions but can hardly be found in
emergency response units. In order to gain acceptance for such technologies by first responders,
the system has to be suitable, robust and it must be possible being operated by first responders.

A lot of research is conducted to equip robots with advanced capabilities such as autonomous
exploration or object manipulation. In spite of this, realistic application areas for such robots
are teleoperated reconnaissance or search. There is a good chance that new technologies in
these particular fields will find their ways into regular operations in the next years as progress
is made with ground and areal vehicles, sensors and algorithms. In this thesis I investigate how
well state-of-the-art and off-the-shelf components and algorithms are suited for reconnaissance
in disaster relief scenarios. The basic idea is to deploy the most common sensors and algorithms
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Chapter 1 Introduction

in a disaster situation and evaluate how well the components work for these scenarios. For the
initial evaluation we focused on sensors and mapping algorithms; Robot mapping has reached
an advanced status and has a high potential for direct deployment.

Productive years of collaboration between the robotics group at IST and the Austrian fire brigade
and gaining more acceptance year after year, led to an invitation to a large-scale emergency
exercise and the underlying thesis.

Figure 1.1: First Responder entering the tunnel

1.1 Problem statement

As mentioned before, the main goal of this thesis is to get as many sensors as possible in the
tunnel, record all the data and evaluate which sensors and algorithms perform best in disaster
scenarios. The problem with these kind of scenarios is, that one has to cope with monotonic
structures, fire, smoke, humidity and many people moving around which can affect sensor data
or the performance of algorithms. Another goal for this thesis is to evaluate the usefulness of
the resulting maps for first responders, get to know which information is important for them,
and how such a system can support first responders in action. For the evaluation, we equipped a
ground robot with typical sensors ranging from spectral, thermal and stereo cameras, 2D and 3D
laser scanners to the Kinect. The robot can be teleoperated over long distances (up to 1 km) and
sends back and records the sensor data. In order to test the robot in a most realistic scenario it
was deployed as a scout in a large fire brigade emergency exercise in a street tunnel. The robot
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was teleoperated towards an accident site inside the tunnel, see Figure 1.1. Raw and preliminary
processed sensor data were immediately presented to the responders outside the tunnel. More
complex mapping approaches were run off-line after deployment in the tunnel. All available
data of the robot and the sensors have been recorded. This allowed us to evaluate different state-
of-the-art sensors in a challenging realistic environment. Moreover, due to the active integration
of the robot and its data into the mission, direct feedback from the responders to usefulness of
the presented data representations was available.

1.2 Contribution

The main contributions of this thesis are (1) the evaluation of state-of-the-art and off-the-shelf
technologies in a realistic emergency exercise, (2) a direct feedback of first responders on the
acceptance of these technologies in their daily operation, (3) to provide a rich set of data from
the emergency exercise that other researcher easily can reuse for their own work.

Furthermore a paper was accepted by the 11th IEEE International Symposium on Safety, Secu-
rity, and Rescue Robotics [12].

The remainder of the thesis is organized as follows. In the next chapter, the robot and sensors
setup is described followed by a description of the emergency exercise site and the data record-
ings. In Chapter 2, related research on mapping and public datasets is presented. In Chapter 6
we briefly discuss the outcome of different mapping algorithms on the dataset, before we eval-
uate the used algorithms in Chapter 7. Then, we give examples for improvements in Chapter 8
and an outlook on future work and conclude.
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Chapter 2

Related Research

Related research was done by [13, 2, 1] exploring mines or other harsh outdoor environments[14,
15]. Research groups deploying different sensors for mapping tasks are, for instance, G. Brooker [16],
D. Vivet [17] and R. Hahn [18] performing research on radar and thermal sensing technologies.
But this area is not well researched and it could be a problem finding some commonly available
software and hardware.

In the next sections the main points that are relevant for this thesis are discussed regarding related
research.

2.1 Underground Scenarios

Within this section related underground scenarios are examinded. It will be interesting to see if
any special precautions had to be done before running the experiments. It will help prepare the
Loiblpass exercise and to circumvent mistakes that were done before.

Wong et al. [1] compared different kinds of range sensors (Time of Flight, Structured Light,
Stereo Vision) by recovering a scene geometry in an underground area. The work they did is
very closely related, but the environment from which the data for the geometry reconstruction
was taken, was much smaller than our exercise site (see Figure 2.1 left). The corridors had a
length in the range of 20 to 60 meters with nearly no features existing. To have a better mapping
result, they placed blue fiducial cubes in the corridors. This is not possible in a real exercise
scenario and therefore not applicable at the Loiblpass exercise. But in general their main goal
was to evaluate sensors and not mapping algorithms and so the conclusion is that time-of-flight
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Chapter 2 Related Research

sensors like the Sick LMS scanner provide the best results although the Microsoft Kinect camera
outperforms cost greatly.

Figure 2.1: Monotonic structures in the scenarios of Wong et al. [1] (left) and A. Nüchter et al.
[2] (right)

Another experiment was done by A. Nüchter et al. [2]. They explored abandoned mines with
a tilting laser scanner deploying a full volumetric map. The mine consists of two 1.5 km long
corridors which branches into numerous side corridors. Also this group had to cope with mono-
tonic structures and rare features, as seen in Figure 2.1 right. Only the ground had some struc-
ture, railway tracks and other rumble commonly found in mines, which could have helped with
the mapping process. For the robot itself, these obstacles were no problem because it had the
necessary torque to overcome this barriers.

So both research groups have tunnel like structures and long flat walls in their scenarios which
can make the mapping process hard because of lacking features. As this work has also some
mapping processes included, their mapping approaches will be further examined in section 2.2.

6



2.2 Large-Scale Mapping Approaches

2.2 Large-Scale Mapping Approaches

As mentioned before we will further discuss the mapping approaches of Wong et al. and
A. Nüchter et al. and also some other related work regarding mapping in large areas. So Wong
et al. [1] used blue fiducial cubes that were placed in surveyed locations to enable fast stitching
of incremental models and the final alignments were tuned using iterative closest point (ICP),
which is described in Section 5.7.6. The point clouds were taken from static locations but there
is no further information on how they did their mapping or what software was used as their main
goal was to evaluate different kinds of sensors.

A. Nüchter et al. explored abandoned mines with a tilting laser scanner deploying a 6D simulta-
neous localization and mapping (SLAM) algorithm. The data acquisition was done in the mine,
the mapping process was done afterwards when the robot returned. They acquired 3D scans in
a stop and go fashion and registered these scans with a variant of the iterative closest point al-
gorithm which takes roughly 9 seconds per scan. Their method is called simultaneous matching
where the first scan is the master scan and determines the coordinate system. Then a queue is
initialized with the new scan. Afterwards the algorithm repeats three steps until the queue is
empty. 1) If the current scan is the first scan of the queue, it is removed. 2) If the current scan is
not the master scan, a set of all scans that overlap with the current scan is calculated and aligned
with the ICP algorithms. 3) If the current scan changes its location then each single scan of
the set of neighbors is added to the end of the queue. This method is completely automatic, no
manual alignment has to be done.

As the algorithm looks promising, a more advanced version is being used for evaluation in this
thesis and further information can be found in Section 6.2.2.
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Figure 2.2: Comparison between 6DSlam approaches of J.Pellenz et al. (a) and A. Nüchter et
al. (b)

A real-time 3D mapping algorithm was presented by J. Pellenz et al. in [15]. Unlike Nüchter et
al., their approach does not make use of loop closing in their algorithm for performance reasons.
The size of their point clouds was also reduced by using only areas with significant, feature-
rich objects which a extracted by a terrain classification algorithm. A drawback of using this
algorithm is that the data reduction introduces some aliasing, resulting in non optimal matching.
Therefore, the algorithm can be applied in real-time using simple ICP at the cost of a lower map
quality. See Figure 2.2 for comparison between the two algorithms. The left image shows for
example multiple walls at regions that are visited more than once. This is due to the lack of loop
closure techniques.

2.3 Harsh and Dynamic Environments

This section refers to some work that analyzes the effects of environmental influences, like
smoke or dust, on different kinds of sensors.

In [19] the authors investigated how different densities of smoke effect measurements of laser
scanners. In an experimental setup with changing smoke, density range measurements against
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different surfaces were recorded. The smoke density was estimated by the change of the color
saturation of a reference object. The basic observation was that above a certain density the
range measurements suddenly drop to almost zero. The authors used the results to define a
mathematical model and implemented it in a simulation environment for usage in the RoboCup
Rescue League.

Figure 2.3: Static (left) and dynamic (right) test area for camera and laser scanners [3].

The authors of [3] present a similar dataset for sensors in challenging environments. They
recorded data from cameras and laser scanners in outdoor scenarios with different environmental
conditions (e.g., dust, smoke, or rain) as you can see in figure 2.3. Their results show that
lasers are extremely affected by smoke, which leads to false detection of large obstacles. The
same applies to camera images although infrared cameras return slightly better results as the
penetration power is higher. Radar on the other hand performs much better. As radar operates at
a bigger wavelength, it is much less affected by smoke or dust. This approach is similar to our
attempt to provide rich datasets for the evaluation of perception algorithms. In contrast to their
work, we focus on the integration of 3D sensors and the evaluation of sensors and algorithms
(mainly SLAM) in emergency response scenarios. Also the duration of their tests was very short
( about 2 minutes each ) and the area very small in comparison to a long street tunnel like the
Loiblpass.
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Chapter 2 Related Research

2.4 Registration Benchmarking

The acquired point clouds need to be compared against a ground truth, and to allow a quali-
tatively statement on the correctness of these point clouds. This chapter shows some related
research on this topic.

Pomerleau et al. [4] present a dataset of point clouds for the evaluation of registration algorithms.
The dataset comprises series of point clouds recorded in different indoor and outdoor environ-
ments. The point clouds were obtained using a tilting laser scanner. To generate a ground truth
they used a theodolite (see Figure 2.4) to track specialized prisms fixed on a mobile platform to
validate visual odometry performance. The system reduces infrastructure installation, in com-
parison to motion capture systems such as VICON, has a fixed precision (2mm in position, 0.2◦

in attitude) and is independent of environmental location. GPS for example is only usable in free
open outdoor scenarios where no obstacles are between satellites and the GPS module.

Figure 2.4: System of Pomerleau et al. [4]. Perspective view with the positions of the three
prisms around the platform used to reconstruct the global pose.

In [20], the authors used the above dataset as a basis for a well-founded evaluation process for
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ICP-based registration methods for point clouds. The authors provided an open-source library
to customize individual registration approaches. Using the above dataset and a large set of test
runs with varied parameters (e.g., initial pose) a statistical performance evaluation was made.
Although, the process is designed for registration of scans and not for a complete map, it contains
some valuable thought about reliable experimentation. Their conclusion after testing different
variants of the ICP algorithm is, that there is the need for improved ICP methods for information-
deprived and unstructured environments.

In [21], two evaluation methods for verifying the quality of obtained maps for RGB-D SLAM
[11] systems is proposed. These methods are used for performance measurements of visual
odometry and visual SLAM systems. The paper addresses only RGB-D sensors and it is not
clear how the results can be extended to other sensors.

Another approach is to use a fiducial map metric for assessing the quality of the created map [5].
It makes use of a number of artificial objects (fiducials) which are placed in the environment
at known positions, as u can see in Figure 2.5. These fiducial positions are well known and
therefore you can evaluate obtained maps by looking at the fiducial positions and compute a
score. The positive side of this method is, that you don’t need a lot of ground truth information.
Just the relative position of the fiducials to each other have to be known. This leads to the idea
of using natural features, such as service niche in street tunnels, as such fiducials. The problem
with natural features is, that ambiguities can occur if the map contains big localization errors.
This can be avoided by specially placed fiducials.
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Figure 2.5: Map with fiducials as proposed by [5]

Also the SLAM evaluation toolkit developed at the department of computer science in Freiburg [22]
looks promising. The framework allows the user an easy analysis and objective comparisons be-
tween different SLAM approaches. The metric for measuring the error of a SLAM system is
based on the corrected trajectory, it does not rely on a global reference frame and uses only
relative relations between poses. So the performance of a SLAM algorithm is not measured by
comparing the map itself but by considering the poses of the robot itself. Furthermore the metric
allows comparing SLAM approaches with different estimation techniques, the only requirement
is, that the algorithm estimates the trajectory by a set of poses.

A number of further projects is concerned with collecting real-world data and providing ground
truth for them.

For instance, the Radish (Robotic Data Set Repository) [23] repository comprises chiefly a num-
ber of range and annotated image datasets which are useful for localization tasks.
A similar project is Rawseeds (Robotics Advancement through Web-publishing of Sensorial and
Elaborated Extensive Data Sets) [24]. This project focuses also on range-based and vision-based
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SLAM techniques, but also provides benchmark tools and evaluation tests. Rawseeds provides
either benchmark problems which aim at testing algorithms. These datasets include a detailed
description of the task, a multi-sensor dataset and evaluation methodology and tools. Or it pro-
vides complete benchmark solutions which extend benchmark problems with a description of
the algorithm for solving the benchmark problem, algorithm output and an evaluation.
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Chapter 3

System Design

Figure 3.1: Robot Odin
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The aim of the research behind this thesis is to evaluate as many state-of-the-art sensors as
possible simultaneously in an emergency response exercise. Therefore, we needed a reliable
and robust robot platform with a high payload in order to carry a sensor suite with its various
sensors (an overview is shown in Figure 3.2). In this section, we describe the robot and sensor
suite in more details.

Figure 3.2: Overview of the connected sensors

3.1 Robot Platform

We decided to use the robot platform Odin because of its robustness and its load capacity. It is
a military graded ground robot developed by the Communication, Information Processing and
Ergonomic (FKIE) division of the German Fraunhofer Gesellschaft. Odin is a robust, highly
versatile platform for effective support of first responders. The robot can be equipped with all
kinds of payloads, just as needed by different application fields such as reconnaissance or fire
extinguishing. It provides a modular sensor concept (quickly exchangeable instrument boxes)
and is remotely controlled from a station situated in a control vehicle. The main focus is to have
common interfaces for being able to switch payloads in a short period of time on-site. Odin can
be adjusted to the needs of first responders during their mission and becomes a highly effective
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3.1 Robot Platform

supporting system. We use this concept of instrument boxes for our sensor suite.

Figure 3.3: Robot Platform Odin

Figure 3.3 shows the robot without the sensor suite. There is a number of parameters that
makes Odin suitable for such an evaluation and, further, for deployment in real disaster response
missions. It is able to operate for 4 hours and provides a maximum speed of 15 km/h. Because
of its robust design it has a weight of 425 kg and is able to carry a payload of 150 kg. Moreover,
using two 2D laser scanners, it is prepared for autonomous navigation. A summary of the robot’s
characteristics can be seen in Table 3.1.

Robot Characteristics
Maximum Speed 15 km/h
Type of Drive Chain Drive
Operating Time 4 h
Energy Source Fuel cell
Output Voltage 24V
Weight 425 kg
Payload 150 kg

Table 3.1: Summary of the most important features
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3.2 Sensor Suite

The sensor suite consists of a metal payload box with the size of 1x0.6 meters. Inside this box
some energy providing systems like voltage converters, the networking system (Ethernet and
WIFI), electrical wiring, two industrial computers (Intel Core2Duo @ 2GHz) and an inertial
measurement unit (IMU) are mounted. The box is powered from the robot via a standard 24V
connector. The sensor suite is shown in Figure 3.4.

We equipped the box with different kinds of sensors that were mounted on a rack above the box.
In order to be able to evaluate the performance of different sensor technologies in a difficult
environment with smoke and fire, we selected sensors with varying sensor modalities: laser
scanners as they are common sensors in robotics and are very exact, spectral cameras for trying
different mapping approaches, thermal cameras to detect high temperature areas and have a
better sight under smoke, time of flight cameras in the form of a Microsoft Kinect as they are
very cheap and return good results in practice and a radar as this sensor should not be affected
by smoke or fire.
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Velodyne 3D LIDAR

Spectral Omni Camera

Radar

Sick 2D LIDAR

Schunk Powerball Arm

FLIR Thermal Camera

Kinect

Pan−Tilt Unit

Bumblebee Stereo Camera

Modular Instrument Box

Figure 3.4: Front view on the robot and sensors.

As these sensors are very different to each other, the next sections describe them in more detail
with all their features and applications.
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3.2.1 Velodyne HDL-64E

Figure 3.5: Velodyne HDL-64E 3D Laser Scanner.

The Velodyne HDL-64E 3D laser scanner is ideal for the most demanding perception and map-
ping applications because of it’s 360◦ field of view, very high data rate and durability. The design
uses 64 fixed-mounted lasers to measure the surrounding environment. Each laser is mechani-
cally mounted to a specific vertical angle, with the entire unit spinning. This approach leads to
large accurate 3D scans with up to 1.3 million points.[25]

This sensor was selected as a representative of premium-class sensors based on laser scanner
technology. The scanner was mounted on top of the sensor suite and outputs it’s data over
ethernet.

Velodyne HDL-64E Specifications
Field of View (azimuth) 360◦

Angular Resolution (azimuth) 0.09◦

Vertical Field of View (elevation) 26.8◦

Frame Rate 5Hz to 15Hz
Revolutions per Minute 300 rpm to 900 rpm
Range 120m
Power Supply 15V @ 4A
Output UDP Ethernet Packets

Table 3.2: Summary of the most important features
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3.2.2 Schunk Powerball Leight Weight Arm LWA 4P

Figure 3.6: Schunk Powerball Industrial Arm

The Schunk Powerball arm is a compact and flexible aid for stationary and mobile applications.
Central elements of the design are three Powerball modules, which combine the movement of
two axes. It features a weight/paylaod ratio of 2:1 with a weight of 12 kg. [26]

Schunk Powerball Specifications
Max. Payload 6 kg
Number of Axis 6
Repeatability 0.06mm
Drives Brushless DC motors
Power Supply 24V @ avg. 3A
Single Axis Control CANopen

Table 3.3: Schunk Powerball Specifications

These specifications make the arm a good choice for attaching different sensors. In this setup, a
Sick LMS100 Laser Scanner and a Continental ARS308-T2 Radar was mounted on the arm (see
Figure 3.7). As the Sick Scanner is only a 2D Laser Scanner, a connection with the Powerball
and tilting axis movements, will lead to a 3D perception of the environment. Such a setup allows
to record accurate 3D scans but for a cheaper price [27].
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Figure 3.7: Setup of the Powerball with the Sick LMS100 and the ARS308-T2 Radar.

3.2.3 Pan-Tilt Unit

Figure 3.8: Pan-Tilt Unit with mounted Thermal Cam and Kinect

The Pan-Tilt unit is custom-made and consists of two Dynamixel Servo Motors to enable pan-
ning and tilting. It is controllable by software, has automatic moving modes, or is controllable
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with a standard Joystick controller. The unit was equipped with a Microsoft Kinect and a FLIR
PathfindIR Thermal camera. The advantage of this configuration is to being able to target the
cameras directly on areas of interest.

3.2.4 Sick LMS100

Figure 3.9: Sick LMS100 2D Laser Scanner

The Sick LMS100 is a compact 2D Laser Scanner suited for indoor and outdoor applications.
Publicly available software drivers makes it easy to work with the scanner and the combination
with the Schunk Powerball arm allows to record accurate 3D scans but for a cheaper price [27].
Furthermore the LMS100 is a standard sensor in the field of robotics.

Sick LMS100 Specifications
Field of View 270◦

Angular Resolution 0.25◦

Frame Rate 25Hz to 50Hz
Range 20m
Power Supply 10V to 30V
Output RS-232, TCP/IP

Table 3.4: Sick LMS100 features
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3.2.5 Continental ARS308-T2

Figure 3.10: Continental ARS308-T2 Radar Sensor

In order to evaluate alternative technologies that can work in smoke and fire we add the radar
sensor Continental ARS308-T2 to the robot arm. The sensor comes from the automotive industry
and provides up to 64 range measurements based on a 77GHz radar within a field of view of
56◦. Radar waves are assumed to be less affected by smoke than laser beams.

Continental ARS308-T2 Specifications
Field of View 17 ◦ to 56 ◦

Angular Resolution 0.1◦ far field, 1◦ close-up range
Vertical Field of View (elevation) 4.3◦

Cycle Time 66ms
Range 0.25m to 200m
Power Supply 12V to 24V
Output CAN

Table 3.5: Continental ARS308-T2 features
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3.2.6 Point Grey Bumblebee 2

Figure 3.11: Bumblebee 2 Stereo Vision Camera

The Point Grey Bumblebee 2 is a compact stereo vision camera. It provides a good balance
between 3D data quality, processing speed, size and price. The camera is a good choice for
testing mapping and tracking algorithms.

Point Grey Bumblebee 2 Specifications
Field of View 2.5 mm with 97◦ HFOV

3.8 mm with 66◦ HFOV
6 mm with 43◦ HFOV

Resolution 1032 x 776 pixels
Frame Rate 20FPS
Image Data Output 8, 12, 16 and 24-bit digital data
Power Supply 12V
Data Connection IEEE-1394 (FireWire)

Table 3.6: Point Grey Bumblebee 2 features

3.2.7 FLIR PathfindIR

Figure 3.12: FLIR PathfindIR Thermal Camera
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The FLIR PathfindIR is a infrared camera for thermal imaging applications. The small size and
the low weight make it ideal for mounting on the sensor suite. Primary the camera is used in
the automotive sector but can also be integrated into military vehicle designs, or adapted for
applications like this scenario. Thermal images can be used for object detection and visual
mapping algorithms also in smoky environments. The camera was mounted on the pan-tilt unit.

FLIR PathfindIR Specifications
Field of View 36◦ (H) x 27◦ (V) with 19 mm lens
Resolution 324 x 256 pixels
Frame Rate 25FPS
Video Output PAL composite video
Power Supply 12V

Table 3.7: FLIR PathfindIR features

3.2.8 Microsoft Kinect V1

Figure 3.13: Microsoft Kinect V1

The Microsoft Kinect camera is a 3D camera at a much lower cost than traditional 3D-cameras
(such as time-of-flight based cameras, e.g. SwissRanger 4000 [28]). The basic principle behind
the Kinect depth sensor is emission of an IR pattern and the simultaneous image capture of the
IR image with a CMOS camera, called structure from light [29]. The resulting point clouds are
useful for 3D mapping approaches. [30]

As said before the camera was mounted on the pan-tilt unit. The interesting question is how well
such a low-cost sensor performs in a challenging environment.
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Microsoft Kinect Specifications
Field of View 57◦ (H) x 43◦ (V)
Resolution 640 x 480 pixels
Frame Rate 30FPS
Range 0.8m to 3.5m
Connection type USB
Power Supply 5V

Table 3.8: Microsoft Kinect features

3.2.9 Omnicam

Figure 3.14: Omnicam Setup

The Omnicam is a special camera, where a standard rgb camera is pointing upwards at a hyper-
bolic mirror. This setup leads to images with a 360◦ field of view.
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3.2.10 XSens MTi-100

Figure 3.15: XSens MTi-100 Inertial Measurement Unit

The MTi-100 is a high performance IMU was mounted. It is useful for supporting the wheel
odometry to get better results in robot movement.

XSens MTi-100 Specifications
Standard full range gyro 450◦/s
Standard full range acc 50 m/s2

Output frequency ≤ 2 kHz
IP-rating IP 67
Connection type RS232/RS485/422/UART/USB
Input voltage 4.5V - 34V

Table 3.9: XSens MTi-100 features

3.2.11 Computer

For the processing power two industrial computers (Intel Core2Duo @ 2GHz) were installed
to record all the measurements. The sensors were connected to the computers in a way that
guaranteed a balanced load (see Figure 3.2).

3.2.12 WIFI + Analog Radio Control

Finally, in order to be able to send information from the robot to the first responders outside
the tunnel on-line, we had to use special WIFI Routers (G standard, 2.4GHz) and directional
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antennas. This was necessary because of the length of the tunnel (1570m).

In order to control the robot from outside the tunnel, the robot was equipped with a special
analog radio control unit which was capable of controlling the robot over long distances.

3.3 Software Platform

As the underlying software platform, the robot operating system ( ROS ) [31] was used. It is a
flexible framework for writing robot software. The task of ROS is to simplify the creation of
complex and robust robot behavior by supplying the user with a collection of tools, libraries and
conventions. ROS is mainly developed for the use on the Linux distribution Ubuntu.

As a result ROS gained huge popularity over time at universities all around the world which lead
to collaborations and software packages that are simple to integrate in your own projects.

For this reason the platform is well suited for the main task of this thesis, the evaluation of
different mapping algorithms. As before mentioned ROS gives access to the latest research
developments and regarding to this thesis, access to the latest mapping approaches. So the
development of a software environment was accomplished in an acceptable amount of time.

3.4 Summary

So all these sensors had to be merged together in terms of power consumption (see Table 3.10)
and data flow. Two computers with solid state disks were used, as the data flow of the cameras
was so huge, it wouldn’t be possible to record all the data on disk. As a result of using two com-
puters, it was also necessary to synchronize the hardware clock between them, so the collected
sensor data had the right timestamps. For this task the freely available software chrony1 was
used, which runs in background and keeps the time in sync with the master clock.

The electronic part regarding power consumption and voltage conversion for the different sen-
sors was all set up and connected inside the payload box.

1See http://chrony.tuxfamily.org
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Summarizing the payload box is built in such a way that it can operate on different kinds of
robots that have enough space for mounting and the correct power source of 48V. By plugging
the power source in, the system will start automatically and can be accessed over a remote
connection.

Sensor Technology Range FoV (H) Frame Rate Power
Schunk Powerball Industrial Arm - - - 480W
Sick LMS100 Lidar 20m 270◦ 50Hz 19.2W
Continental AR-308 Radar 200m 17 ◦ to 56 ◦ 15Hz 35W
Velodyne Lidar 120m 360◦ 15Hz 48W
2 PC’s Computer - - - 84W
Microsoft Kinect Camera 3.5m 57◦ 30FPS 2.5W
Xsens IMU Motion - - ≤ 2 kHz 0.91W
Bumblebee Camera - 97◦ 20FPS 4W
Thermal Cam Camera - 36◦ 25FPS 5W
Omnicam Camera - 360◦ 25FPS 2W
WIFI Network 2 km - - ∼10W

Total Power Consumption ∼700W

Table 3.10: Summary of the used equipment with most important features.
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Chapter 4

Test Scenario and Data Recording

This chapter will give a description on the scenario where the emergency exercise was taking
place, what environmental conditions had to be coped with and how the gathered information
was made persistent.

4.1 Scenario

The selected scenario for the emergency exercise was an accident of a minivan transporting
hazardous materials and a coach in a tunnel. The exercise was conducted in the street tunnel
Loiblpass located on the border between Slovenia and Austria. The tunnel is located at a height
of 1068m above sea level and has a length of 1570m.
First announcements indicated that the robot will be exposed to fire and smoke in the tunnel, but
on exercise day the conclusion was that it is too dangerous for the people involved and would
also take too much time for cleaning the tunnel afterwards.
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Figure 4.1: Exercise scenario location at Loiblpass.

The main task of the exercise was to secure the hazard materials (see Figure 4.2 middle) and to
rescue about 30 injured and trapped people (see Figure 4.2 bottom). Overall 400 first responders
from police, ambulance, fire brigade, alpine rescue service, and K–9 units were involved.

The task of the robot was to enter the tunnel in a teleoperated fashion, to pursuit towards the
accident location, and send back reconnaissance data including regular and thermal images and
2D and 3D maps. The received data were immediately presented to the incident commander and
the staff.
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Figure 4.2: Exercise scenario - collision of a coach with a minivan transporting hazard mate-
rials in the tunnel. On top robot Odin and the sensor suite entering the tunnel. In
the middle responders secure the hazard materials. On the bottom ambulances take
care of victims in the coach.
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4.2 Data Recording

The software packages used to operate the sensors and record the data are based on the Robot
Operating System (ROS) [31]. Most of the used packages are standard packages and freely
available. We mainly made use of sensor driver packages.

The industrial computers were equipped with a solid state disk in order to be able to handle the
high data rate of the sensors.

The data format used for storing the measurements was the ROS bag format1, which is a stan-
dard format for storing ROS messages in files. Individual sensor measurements were saved in
individual files to ease post-processing (see Table 4.1). Using ROS bag files also facilitates
the dissemination of the recorded data to other interested research groups. All recorded data is
available at our wiki site2 .

Online visualization of data was done with the ROS tool rviz in a multi-host configuration.

ROS Bag Files
Transformations, Odometry and IMU data 10 MB
Kinect data 1.6 GB
Thermal camera data 289 MB
Omnidirectional camera data 104 MB
Velodyne data 16 GB
Radar data 461 kB

Table 4.1: Bag files and file sizes

1See http://www.ros.org/wiki/Bags for details.
2ROS Bag Files http://www.tedusar.eu/cms/de/research/loibl
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Background On Mapping

In this chapter some basic information on the mapping process and vocabulary used, is presented
to the reader.

5.1 What is ”Mapping”?

In the scope of this thesis the term ”mapping” means to capture a bounded area cartographically.
It’s the graphical representation of measuring points. These points can be obtained from different
kinds of sources like laser scans, camera images or point clouds. Most of the time, one exposure
site is not sufficient. Therefore measurements on different positions have to be made, to get a
map rich of information. And these specific measurements have to be stitched together in a way
the real world is represented best. Stitching, or scan matching, will be one of the main tasks in
the following mapping algorithms.

5.2 Laserscan

A laserscan is a crowd of data measured by a laser scanner like the Sick LMS100 described in
Section 3.2.4, has an infrared laser and a rotating mirror inside its enclosure. With the laser, the
distance to the object hit can be measured. In combination with a horizontally rotating mirror,
many different measurement points can be acquired. The resulting set of points expresses the
contours of the area the laserscan was made. See Figure 5.1 for an example.
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Figure 5.1: Example of a 360◦ laserscan.

5.3 Odometry

Odometry is a method for estimating the position and orientation of a vehicle. For the estimation
the revolutions and direction of the wheels are measured and used for computing the travelled
distance. In robotics odometry is one of the easiest methods for localizing a robot. But as this
method can have a huge error because of slipping wheels or low-frequency measurements is
mostly used in combination with other localization techniques such as scan matching or IMU
measurements.

5.4 Octomap

An octomap, presented by Hornung et al. [6], is based on octrees(see Figure 5.2), a tree-based
data structure for visualizing 2D, 2.5D and 3D data. The advantages to simple point clouds are
lossless compression, memory efficient, compact map files and multi-resolution grid maps. This
approach is able to represent volumetric 3D models that include free and unknown space by
using probabilistic occupancy estimation.
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(a) Octree

(b) 3D map structure

Figure 5.2: Octomap representation by A. Hornung et al. [6]. a) Example of an octree storing
free (shaded white) and occupied (black) cells. b) A simulated laser scan (left) is
integrated in the octomap 3D structure (right).

5.5 Inertial Measurement Unit

An inertial measurement unit is an electronic device that measures and reports a craft’s velocity,
orientation, and gravitational forces.
Typically inertial measurement units (IMU) consist in each case of three orthogonally arranged
accelerometers and gyroscopes. Furthermore a magnetic field sensor can be used to gain more
precision and to correct drift errors of the above mentioned sensors.

In robotics an IMU is mostly used for estimating movements but only in interaction with another
localization method as the drift error becomes otherwise too big, so they are normally only one
component of a navigation system. Another scope of function is keeping sensors in balance when

37



Chapter 5 Background On Mapping

for example the underground is not flat and the laser scanner has to be horizontally aligned.

5.6 Sensor Fusion

In general sensor fusion is the combination of outputs from multiple sensors to gain information
of better quality than using the sensors individually. In robotics this term is for instance used to
combine odometry and IMU data for an overall better pose estimation. Sensor fusion is a term
that covers a number of algorithms and methods, including the Kalman filter, which is described
later in Section 5.7.2.

5.7 Mapping Fundamentals

The following methods are the basis for the evaluated algorithms and are important for their
understanding. Hence these methods are described in the following sections in more detail.

5.7.1 RANSAC

RANSAC is an abbreviation for ”RANdom SAmple Consensus” [32]. It is an robust iterative
method to estimate model parameters from a set of observed data evxen if a significant number
of outliers are present.

For example on the left picture in Figure 5.3 is a data set with many outliers and a line has to be
fitted. On the right side you can see the fitted line with RANSAC where outliers were rejected.
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Figure 5.3: Example of the RANSAC algorithm fitting a line in a data set with outliers.

A problem of the algorithm is when the number of iterations is limited, then the probability of a
reasonable result is lower and may not fit the data in a good way.

The algorithm is often used in machine learning, computer vision and robotics. RGBD-SLAM
will be discussed in more detail in 6.2.1.

5.7.2 Kalman Filter

The Kalman filter, described in Thrun et al. [7], is a technique for implementing Bayes filters
for prediction and filtering in linear systems. The filter operates recursively on streams of noisy
input data to produce a statistically optimal estimate of the underlying system state.

In Figure 5.4 the behavior of the algorithm is illustrated. The Kalman filter is alternating two
steps. A measurement update step in which sensor data is integrated into the present belief.
This step decreases uncertainty in the robot’s belief. And a prediction step in which the belief is
modified in accordance to an action, for example a movement. Here the uncertainty is increased.
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Figure 5.4: Illustration of Kalman filters by Thrun et al. [7]: (a) initial belief, (b) a measure-
ment (in bold) with the associated uncertainty, (c) belief after integrating the mea-
surement into the belief using the Kalman filter algorithm, (d) belief after motion
to the right (which introduces uncertainty), (e) a new measurement with associated
uncertainty, and (f) the resulting belief.

An application in robotics would be sensor fusion, as described before in section 5.6, to estimate
the robots position. The problem here is, that robot movement cannot be described by linear
state transitions. For such cases the extended Kalman filter (EKF) is used, where the assumption
is, that the next state probability and the measurement probabilities are governed by nonlinear
functions.

The EKF has become just about the most popular tool for state estimation in robotics. Its strength
lies in its simplicity and in its computational efficiency.
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5.7.3 Particle Filter

Particle filters or Sequential Monte Carlo (SMC) methods, described in Thrun et al. [7], are a
set of on-line posterior density estimation algorithms that estimate the posterior density of the
state-space by directly implementing the Bayesian recursion equations. SMC methods use a
sampling approach, with a set of particles which represent the samples of a posterior distribu-
tion. Each particle has a importance weight assigned to it that represents the probability of that
particle being sampled from the probability density function. A resampling step can be included
when the weights become too uneven. Particles with low weights will then be replaced by new
particles in the proximity of particles with higher weights.

There are some advantages in comparison to the use of Kalman filters. First, instead of rep-
resenting the distribution by a parametric form, particle filters represent a distribution by a set
of samples drawn from this distribution. Such a representation is approximate, but it is non-
parametric, and therefore can represent a much broader space of distributions than, for example,
Gaussians. Second, a particle filter can process raw measurements and third, it can solve global
localization problems. Table 5.1 shows the differences.

In robotics this filter is used in Monte Carlo localization (MCL), described in Thrun et al. [33],
which is an algorithm for robot localization and the most popular approach to date. Given a map
of the environment, the algorithm estimates the position and orientation of a robot as it moves
and senses the environment. The algorithm uses a particle filter to represent the distribution
of likely states, with each particle representing a possible state, i.e. a hypothesis of where the
robot is. The algorithm typically starts with a uniform random distribution of particles over the
configuration space, meaning the robot has no information about where it is and assumes it is
equally likely to be at any point in space. Whenever the robot moves, it shifts the particles to
predict its new state after the movement. Whenever the robot senses something, the particles are
resampled based on recursive Bayesian estimation, i.e. how well the actual sensed data correlate
with the predicted state. Ultimately, the particles should converge towards the actual position of
the robot.

This procedure is illustrated in Figure 5.5. At first a set of pose particles are drawn at random
and uniformly distributed positions over the entire pose space, as seen in Figure 5.5a. As the
robot senses the door, importance factors are assigned to each particle which is shown in Figure
5.5b. The height of each particle shows its importance weight. Beside of this change, the set of
particles is identical to the one in Figure 5.5a.

The particle set after resampling is shown in Figure 5.5c. There is an increased number of
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particles near the three likely places. In Figure 5.5d the new measurement assigns non-uniform
importance weights to the particle set. On the second door most of the aggregated probability
mass is centered, which is also the most likely location. Another resampling step is shown in
Figure 5.5e, as the robot moved further. This example shows the correct approximation of the
posterior.
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Figure 5.5: Visual explanation of the Monte Carlo localization (MCL)

43



Chapter 5 Background On Mapping

EKF MCL
Measurements landmarks raw measurements
Measurement noise Gaussian any
Posterior Gaussian particles
Efficiency (memory) ++ +
Efficiency (time) ++ +
Ease of implementation + ++
Resolution ++ +
Robustness - ++
Global localization no yes

Table 5.1: Comparison between extended Kalman filter and Monte Carlo localization.

Particle filters are also used in Simultaneous Localization and Mapping (SLAM), which is de-
scribed later in Section 5.7.5. As SLAM has a lot of different approaches, the ones using particle
filters are known as FastSlam and grid-based approaches with Rao-Blackwellized Particle filters.
There a single particle has to consist of a pose and a map, where the map is represented by a 2D
Gaussian.

5.7.4 Scan Matching

Figure 5.6: Simple visualization of the working principle of scan matching [8]
.

As stated before odometry and sensors like GPS have errors in their measurements that lead to
faulty locations. Therefore scan matching is used to find the rigid-body transformation, given
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a scan and a map, or a scan and a scan, or a map and a map, that aligns them best. In Figure
5.6 two scans are presented where one of the scans is slightly translated and rotated. The goal
is to find a transformation where both scans overlap the most. Two properties, robustness and
performance, are very important for the realtime capabilities of this principle. Consequently
different methods with it’s advantages and disadvantages are available.

Iterative closest points is the one mostly used, as well as in this thesis and will be described
in section 5.7.6. Other methods would be the ”Correlative Method”[34] and using the Hough
Domain[35].

5.7.5 SLAM

The SLAM problem, short for Simultaneous Localization and Mapping (described in Thrun et
al. [7]), is a method for building a map and estimate a pose at the same time. The problem is,
that neither the position nor the map is known apriori. So it appears to be a chicken-and-egg
problem and both tasks have to be estimated.

The general approach to solve the SLAM problem is addressed using probabilities. SLAM is
usually explained by the conditional probability:

p(xt,m|z1:t, u1:t)

xt = State of the robot at time t
m = Map of the environment

z1:t = Sensor inputs from time 1 to t
u1:t = Control inputs from time 1 to t

There are different approaches for solving SLAM. The most trivial one is to define the current
position of the robot as the origin. So the position is known and the first measurement can be
registered to the yet empty map. Then the robot will move and takes another measurement.
With the overlap between the two measurements, a new absolute position can be computed and
the new unknown measurement data will be added to the map. In consequence the map will be
built incrementally until the whole area is measured, as the robot normally can’t see the whole
environment with just one measurement.
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To implement such an approach, different SLAM techniques are available. The most known
ones are EKF SLAM, FastSLAM (described in Section 6.1.1) or Grid-based approaches with
Rao-Blackwellized Particle Filters (Section 6.1.2).

EKF SLAM applies an extended kalman filter which has some limiting assumptions like feature-
based maps which require significant engineering of feature detectors. The Gaussian noise as-
sumption limits the amount of uncertainty in the posterior to be relatively small as otherwise
intolerable errors will be introduced. Also the approach can only process positive measurements
of landmarks which is a direct consequence of the Gaussian belief representation. EKF SLAM
has been applied with considerable success in a number of robotic mapping problems. Its main
drawbacks are the need for sufficiently distinct landmarks, and the computational complexity
required for updating the filter.

SLAM is important for missions where no map nor an absolute position is available but for
all where the robot should be able to autonomously explore the area and build a map for later
navigation.

5.7.6 Iterative Closest Point

ICP, short for Iterative Closest Point is a powerful algorithm for registering point clouds or
laserscans together. (See Figure 5.6) For the data sets to be fitted, transformations are calculated
so the distances between the data sets are minimized. For this purpose to every point of one data
set, the closest point of the other data set is determined. The sum of squares of the distances is
minimized through adjustment of the transformations. This is an iterative task and is executed
as long as the optimum is found.[36, 37]

As mentioned above this algorithm is used for scan matching but also for localization.

The popularity of the algorithm for matching 3D point clouds has produced many different
variants of the ICP algorithm. As this would go too far, further information on efficient variants
of the ICP algorithm can be found in [38].

46



Chapter 6

Mapping Algorithms

(a) Hector SLAM. (b) Gmapping.

(c) Voting-Based Scan Matching.

Figure 6.1: 2D Maps generated from the tunnel dataset.

In order to evaluate the usefulness of sensors and mapping algorithms for the use in the emer-
gency response scenario, popular 2D and 3D mapping approaches were selected with ready-to-
run implementations available. Beside algorithms that work with 2D and 3D laserscans, also
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included were two approaches that work with the Microsoft Kinect. These sensors are cheap
and light-weight options compared to laser scanners.

6.1 2D Mapping

6.1.1 Hector SLAM

Figure 6.2: Overview of the Hector SLAM system.[9]

Input Data
Laserscan, IMU

Type of Map
2D Grid Map

Hector SLAM [9] combines a robust 2D scan matching approach for laser scans with a full 3D
navigation system (position, orientation and linear velocity) based on data from an IMU. Their
scan matching approach is based on optimization of the alignment of beam endpoints with the
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map learnt so far. A multi-resolution map and an approach that matches scans to the entire
map completes the approach. Although the robot is able to follow a path of full 6D poses,
the algorithm provides only a 2D occupancy grid map. One attribute that differs from other
2D Mapping approaches is, that it leverages the high update rate provided by modern LIDAR
systems. This is possible as the algorithm is keeping computational requirements low and is not
using loop closure methods.
The approach is interesting for two reasons. First, it is available as a free ROS package and
works quite fine for structured environments. Second, the approach is today used as standard
mapping approach in the RoboCup Rescue Robot competition [39].

6.1.2 GMapping

Input Data
Laserscan, Odometry

Type of Map
2D Grid Map

GMapping [10] is a highly efficient Rao-Blackwellized particle filter for SLAM to learn grid
maps from laser range data. This kind of particle filter makes use of the following factorization
to estimate the joint posterior:

p(x1:t,m|z1:t, u1:t−1) = p(m|x1:t, z1:t)p(x1:t|z1:t, u1:t−1)

with x1:t as the trajectory, m as the map, the observations z1:t and the odometry measurements
u1:t−1.

Now the trajectory can be estimated at first and then the map is computed given that trajectory.
This technique is called Rao-Blackwellization. In consequence ”mapping with known poses”
[40] is used to estimate the posterior over maps p(m|x1:t, z1:t). The particle filter is then used
to estimate the posterior p(x1:t|z1:t, u1:t−1) over the potential trajectories, where each particle
represents a potential trajectory of the robot. Also each sample carries an individual map of the
environment. Taking into account not only the movement of the robot but also the most recent
observation, drastically decreases the uncertainty about the robots pose in the prediction step of
the filter (see Figure 6.3).
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Figure 6.3: Typical particle distributions during a mapping process with GMapping. Open
corridor (a). Dead end corridor (b). Raw odometry motion model (c).[10]

The particle filter is used in GMapping as a sampling importance resampling (SIR) filter. The
process can be summarized by the steps sampling, importance weighting, resampling and map
estimation.

In this approach the proposals were improved and adaptive resampling was introduced which
increased the performance of the algorithm significantly. The improved proposal distribution
leads to the generation of samples with an high likelihood, see Figure 6.3. This then again
reduces the number of required samples. The proposal distribution is based on the observation
likelihood of the most recent sensor information, the odometry, and a scan-matching process.
The second improvement, the adaptive resampling is a criterion that decides when to perform
the resampling step. Unnecessary resampling actions are reduced and this consequently reduces
the risk of particle depletion.

6.1.3 Voting-Based Scan Matching

Input Data
Laserscan, Odometry, IMU

Type of Map
2D Grid Map
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To support teleoperated navigation with real-time mapping, voting-based scan matching was in-
troduced by Kleiner and Dornhege [41]. The algorithm is based on incremental scan matching in
combination with gyro measurements which support the estimation of the rotation between suc-
cessive scans. The resulting robot transformations and the scans are then fed into a grid-based
algorithm to optimize the overall trajectory.

To make the mapping process work on embedded systems with lower computational power, the
detection of loop-closures, as seen in GMapping 6.1.2, is missing.
Also because of the voting-based approach, scan matching is stopped early if enough evidence
for a transformation between two scans is found. This trick makes the algorithm quite efficient
in practice. The approach was successfully tested in several emergency response exercises like
in Disaster City and results show that the quality of generated maps is close to that generated by
computational costive algorithms.

6.2 3D Mapping

6.2.1 RGB-D SLAM

Input Data
Monochrome and depth image, colored point cloud

Type of Map
Pose graph with colored point clouds

RGB-D SLAM [11] is an approach for visual SLAM using RGB-D sensors such as the Mi-
crosoft Kinect camera (see 3.2.8).
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Figure 6.4: Schematic overview of the RGB-D SLAM approach [11]
.

Visual key points (SURF or SIFT) are extracted from the color images and depth images are
used to localize them in 3D. The current image is only matched against a subset of previously
acquired images to achieve online processing. RANSAC (described in section 5.7.1) is used
to robustly estimate the transformations between RGB-D frames and optimize the pose graph
using non-linear optimization. The graph’s nodes correspond to camera views and the edges to
the estimated 3D transformations. Finally, a volumetric 3D map of the environment is generated
that can be used for robot localization, navigation and path planning.
So with the use of a hand-held camera, RGB-D SLAM allows to quickly acquire 3D models of
objects and indoor scenes.

Figure 6.5: Resulting maps of an indoor scenario. A 3D point cloud1. (left) Point cloud with
overlayed color information2. (right)

52



6.2 3D Mapping

A beam-based environment measurement model is introduced to improve the reliability of the
transformation estimates by evaluating the quality of a frame-to-frame estimate. With this qual-
ity measure in use, this approach can deal significantly better with highly challenging scenarios.
Detailed experiments were performed to assess the quality of the resulting point clouds and pose
graphs.

All the source code required to run RGB-D SLAM is released as open-source.

6.2.2 The 3D Toolkit

Input Data
3D Poses, Point Clouds

Type of Map
Point Cloud

The 3D Toolkit provides algorithms and methods to process 3D point clouds. It includes auto-
matic precise registration of 3D scans (6D simultaneous localization and mapping, 6D SLAM)
and other tools, e.g., a fast 3D viewer, plane extraction software, etc. The toolbox follows the ap-
proach presented in [42] which is a combination of a 6D pose prediction, a local scan matching
based on ICP together with loop detection and a global map optimization.

2http://ais.informatik.uni-freiburg.de/projects/datasets/octomap
2http://www.hizook.com/blog/2010/03/28/low-cost-depth-cameras-aka-ranging-cameras-or-rgb-d-cameras-

emerge-2010
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Figure 6.6: 3DTK Toolkit - Graphical User Interface3.

There are two categories for 6D matching approaches of 3D surfaces:

Scan matching as optimization problem uses a cost function for the quality of the alignment
of the scans. The range images are registered by determining the rigid transformation (rotation
and translation) which minimizes the cost function. This is also known as the iterative closest
point (ICP) algorithm (see Section 5.7.6).

Feature based scan matching extracts distinguishing features of the range images and uses
corresponding features for calculating the alignment of the scans. Even though this approach
is more intuitive, it cannot be applied to scan matching in mines, since the surface structure of
the mine is too simple. In consequence there are not many features and an algorithm based on
feature matching will fail as only geometric or characteristic information is extracted from the
scans by this method [2]. ICP uses raw measurement data and is therefore more suitable.

As a first step before scan matching, the point clouds have to be reduced to a fixed reduction
percentage of points because on one side the precision gain is very low for a larger number of
points and on the other side the computational time can be reduced dramatically [4].

3http://slam6d.sourceforge.net/html/doc/show.html
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Beside the standard point-to-point variant of ICP there is also a point-to-plane variant that can be
stable in structured environments, when the overlap is kept high and the state estimation remains
within 10 cm and 10◦. These types of conditions are usual for laboratory experiments but are
unlikely to happen in real applications. Also the extraction of surface normal vectors adds more
time to the registration process than the time that can be saved by saving on the number of
iterations [20].

Also, the optimal set of parameters for scan matching vary for different scenarios. In summary,
the use of 6D SLAM software for mapping on an autonomous robot is right now not feasible,
because of the lack of real-time capability and the need for parameter optimization depending
on the environment.

6.2.3 Parallel Tracking and Mapping - PTAM

Input Data
Monochrome or colored image

Type of Map
Pose graph with colored point clouds
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Figure 6.7: A frame with feature points that are tracked by PTAM. The color of a point in-
dicates the size of the feature in the image4. These features appear in the recon-
structed map.

PTAM [43] is a method that can track the 3D position of a moving camera in an unknown scene
in real time. It is a SLAM system that does not need any prior information about the world such
as markers or known natural feature targets. Instead it works out the structure of the world as it
evolves. Beside the tracking ability, PTAM can also build a 3D map of point features, which are
depicted in Figure 6.7. The mapping process is based on keyframes, which are processed using
bundle adjustment.

A thing that needs to be kept in mind is, that this method needs a correct initialization (see Figure
6.8). That means between the first two key-frames, the camera has to be translated to estimate
a ground plane to work on. Also the authors state that the area to be tracked should be mostly
static and small. These limitations could lead to problems in the tunnel exercise.

4http://www.navvis.lmt.ei.tum.de/2012/10/scale-preserving-long-term-visual-odometry-for-indoor-navigation-
2/ptam cam
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Figure 6.8: Correct initialization of PTAM5. The camera must be translated, not just rotated,
between the first two key-frames to initialize the system correctly.

6.2.4 Structure-from-Motion (SfM)

Input Data
Monochrome or colored image

Type of Map
Pose graph with colored point clouds

Hoppe et. al. [44] proposed an online SfM approach, that gives feedback about the reconstruc-
tion quality of 3D models during the image acquisition process. So this system supports users
by telling them if the last acquired image can be used for reconstruction or also if there are some
parts of the scene missing. The underlying framework is principally the same as used in PTAM
(See Section 6.2.3), as the results in Section 7.2.1 will show. The reason this algorithm was used,
is that this method was developed by the Institute for Computer Graphics and Vision (ICG) at
Graz University of Technology. So it was more easy to get feedback from the developer about

5http://www.robots.ox.ac.uk/ gk/PTAM/
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the resulting maps. The downside is, that their approach is only commercially available, so we
couldn’t try it out by ourselves.

6.2.5 2D Localization and 3D Octomapping

Input Data
Laserscan, Point Cloud

Type of Map
2D Grid Map, Point Cloud, Octomap

This method is not an algorithm by itself. It is a combination of different approaches. The idea
is to have a fast 2D localization algorithm like GMapping or Hector Mapping and place the raw
3D data, in the form of an octomap, at 2D poses obtained by the 2D localization.
The positive side when using this approach is that you avoid the computational costly 3D regis-
tration techniques. On the other side the resulting 3D map has not the quality of a map generated
by a 3D mapping process. But as 3D mapping approaches are very rare, it could be a good option
to try out. It is also the only online 3D mapping approach in this thesis.

6.3 Summary

In this chapter all the selected mapping algorithms were described.
To sum it up, Table 6.1 gives a short information about the main aspects of the algorithms:
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Algorithm Input Data Type of Map Real-Time
GMapping Laserscan, Odometry 2D Grid Map Yes
Hector SLAM Laserscan, IMU 2D Grid Map Yes
VBMapping Laserscan, Odometry, IMU 2D Grid Map Yes
RGB-D SLAM Colored Point Cloud, Depth Image Point Cloud Yes
3D Toolkit 3D Poses, Point Cloud Point Cloud No
PTAM Greyscale / Color Image Point Cloud Yes
SfM Greyscale / Color Image Point Cloud Yes
2D Loc with Octomap Laserscan, Point Cloud, Odometry 3D Grid Map Yes

Table 6.1: Summary of the different mapping algorithms
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Chapter 7

Evaluation

The goal of this thesis is to evaluate which sensors and algorithms perform best in disaster
scenarios and how the support for first responders can be improved. This chapter gives an
insight to the methodology and the results of the evaluation task. Furthermore the acceptance
and usefulness for first responders is discussed.

7.1 Methodology

In the evaluation of the sensors and mapping approaches we followed the following procedure.
We first recorded all available data during the reconnaissance mission in the tunnel. The re-
sponders allocated a slot of 20 minutes during the emergency response drill to complete the data
recording. The robot was teleoperated from a parking lot near the tunnel portal along the road
in the tunnel until the accident site for approximately 800 m from the northern Austrian portal.
We recorded data only for the way in. This took about 13 minutes. There was a lot of activity
in front and in the tunnel, e.g., responders and vehicles moved into and out of the tunnel. For
safety reasons we had to stop the robot near the curbs if a vehicle wanted to pass the robot. Ob-
viously, this led to quite noisy and cluttered data. We had to perform the mission in a one-shot
style without a training run like in a real emergency response. This fact led to some technical
difficulties like missing data of the Kinect (see Section 9 for a detailed discussion).
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Figure 7.1: Robot Odin on his way in the tunnel.

Compressed raw data like camera images were immediately sent back to the control station for
quick inspection by the responders. It was not possible to transmit complex data like 3D laser
scans or map due to the limited bandwidth of the wireless connection. These complex data were
processed and analyzed offline after the exercise.

For the evaluation of the sensors and the mapping approach we used well known and publicly
available methods as we are interested in how well available techniques work for such a sce-
nario. For the 3D mapping approaches we used the data of the Velodyne Lidar without any
pre-processing. In the 2D mapping approaches we used a simulated 2D laser scan extracted
from the Velodyne data. In the visual SLAM approaches we use the images of the thermal cam-
era and the RGB camera of the Kinect.

The original idea of the responders to set the tunnel on fire and to generate smoke was discarded
because of the continuous slope of the tunnel towards south. Therefore, all smoke would have
been sucked towards the northern portal like in a chimney. As a result, we were not able to test
the sensors in different environmental conditions.

Due to the fact that the Loibl tunnel is almost 70 years old there is no ground truth data like 2D
or 3D maps available. For that reason, we were only able to qualitatively evaluate the results.
The qualitative evaluation was done in discussions with experienced first responders.
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7.2 Results

7.2.1 Mapping Quality

The map generated with Hector SLAM is depicted in Figure 7.2. Although, the approach is
indented to fuse 2D scan matching with a 6D pose estimation the available implementation1 does
not support the 6D pose estimation (i.e., based on odometry or IMU). Due to this fact the tunnel
portal is mapped well because it provides enough diverse structures for scan matching. Inside
the tunnel the scans become too similar because of the two almost straight walls. Although,
there are some service niches these features are not distinctive enough. Therefore, inside the
tunnel there is no valid estimation for the movement of the robot because odometry and IMU
are not used. As a consequence the robot estimates it is standing still and registers all remaining
scans at the same pose. This leads to a corrupted map with only a correct part of the outer, more
structured area.

Figure 7.2: Generated map by Hector SLAM.

1See http://www.ros.org/wiki/hector slam.
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GMapping overcomes the problems of similar laser scans by also integrating odometry infor-
mation into its computation. This is a great benefit in this specific environment and leads to a
well-defined map from the tunnel portal to the accident site. The resulting entire map is depicted
in Figure 7.3. We used the standard ROS porting of GMapping2.

Figure 7.3: Generated map by GMapping.

The resulting map using Voting-Based Scan Matching is depicted in 7.4. It incorporates also
odometry data and has therefore no problem mapping the monotonic tunnel. Although, it pro-
vides a map with more clear details the curvature of the tunnel is depicted larger in the map
than it is in in reality. We suppose that this fact comes from the low frequency of the odometry

2See http://www.ros.org/wiki/gmapping.

64



7.2 Results

(please refer to Section 9 for details) because the approach heavily uses it for the local scan
arrangement.

Figure 7.4: Map generated by DCMapping.

2D Localization with 3D Octomapping is the only 3D mapping approach that works online. As
stated in Section 6.2.5, there is no 3D point cloud registration. So if the timestamp of the 2D
position of the robot differs slightly to the timestamp of the 3D point cloud data, the 3D data
is not aligned with the underlying 2D map, as depicted in Figure 7.5. The result shows some
rotational errors at distinct locations.

Figure 7.5: Result of 2D Localization with 3D Octomapping.
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The results of the 6D SLAM ICP matching algorithm used in the 3D Toolkit3 are depicted in
Figure 7.6. The approach is able to generate a globally consistent 3D map of the entire tunnel
(see Figure 7.6(a)). Anyhow, there are some registration errors at the end of the tunnel near
the accident site. We suppose this is caused by evasive maneuvers the robot had to execute due
to people and cars moving in the robot’s way. A major drawback of this toolkit is that it not
integrated in the ROS framework. It reads the input from specific scan data and pose estimation
files. The toolkit in its current form is not prepared for real-time mapping. Therefore, it is
currently of limited use of first responders because they need their maps with in a couple of
minutes. An advantage of this approach is the richness of map details. Figure 7.6(c) shows a
detailed view of the portal. There are first responders and their vehicles clearly visible. Details
of the accident site are shown in Figure 7.6(b). Here the service niche and vehicles blocking the
tunnel are nicely recognizable. In general this approach has the disadvantage that due to the high
accuracy of the 3D Lidar and the fact that it only registers point clouds, artifacts like persons
walking by remain in the map.

3See http://slam6d.sourceforge.net.
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(a) Tunnel top view. (b) Accident site.

(c) Tunnel portal.

Figure 7.6: 3D Maps generated from the tunnel dataset with 3D toolkit.

Figure 7.7 depicts the results using the PTAM approach4. The approach uses key points (see
Figure 7.7(c)) in 3D to track the path of the camera. Figure 7.7(a) depicts the path and the key
points for a smaller tunnel segment. While the path (shown in blue) is accurately estimated
the 3D key points have some uncertainty (see Figure 7.7(b)). Although the points are along a
tube-like structure the tunnel is hardly recognizable. Please note this visual SLAM approach
was done with the RGB image of the Kinect. Data from the thermal camera did not provide
any good results. The original idea was that the thermal camera is able to deliver images even
the tunnel is dark or full of smoke. Unfortunately, the thermal images did not contain enough

4See http://www.robots.ox.ac.uk/∼gk/PTAM.
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structure.

(a) Top view. (b) Front view.

(c) Camera view with key points.

Figure 7.7: 3D Maps generated from the tunnel dataset with PTAM.

The Structure-from-Motion approach from the Institute for Computer Graphics and Vision (ICG)
at Graz University of Technology, led to similar results as PTAM as depicted in Figure 7.8.
The alignment of the camera was not optimal and the structure of the tunnel too monotonic.
Consequently the algorithm was only able to compute about 400 correct 3D poses.
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Figure 7.8: Structure-from-Motion approach by ICG.

Because of a problem in the recording of the depth image of the Kinect unfortunately the planned
evaluation of RGBD-SLAM was not possible.

7.2.2 Comparison of maps

To evaluate the quality of the obtained maps, a reference map was needed. As a ground truth,
an exactly measured map of the tunnel, was not available, other sources for street maps were
investigated. The obvious choice was to look at the street mapping service applications available
by Google, Apple and Microsoft, depicted in Figure 7.9.
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Figure 7.9: Reference maps used for evaluating Odin’s results5.

One can see from the images in Figure 7.9, that the street maps of Apple and Microsoft have a
high similarity to each other and also to the maps generated in this thesis. As the tunnel mapped
by Google looks like a straight line, it is regarded as not correct and not further used for evalua-
tion.

In Figure 7.10 the reference map is layed over the acquired maps to better detect errors during
the mapping process. As one can see, only three mapping approaches were used for comparison
here. The other approaches were not used because the mapping failed or did not run till the end
and therefore a more precise analysis is pointless.

5All trademarks and logos are the property of their respective owners
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(a) GMapping

(b) DCMapping

(c) 3D Toolkit

Figure 7.10: Comparison of obtained maps to a reference map (depicted in green).

On the top picture, Figure 7.10(a), GMapping is aligned pretty well to the reference map. After
the first bend, about 100 meters in the tunnel, there is a small rotational error due to the bad
odometry data. Near to the end there is an even bigger rotational error. The reason is the same
as before but additionally at this point the robot had to do some evasive maneuvers which lead
to wrong alignments of scans.

DCMapping, depicted in Figure 7.10(b), has also a good alignment with the reference map for
the first 100 meters. But then the bend shows a too big curvature which in sequence leads to a
wrong heading of the tunnel. The cause for this misalignment seems to be lying in the voting-
based approach, where the scan matching is stopped early when the algorithm detects the scans
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are matching well enough (see Section 6.1.3). The rest of the map looks nearly the same as the
one of GMapping, with the same little bend near the end of the tunnel when the robot had to
evade. This leads to the assumption that the problem here lies not in the mapping approaches
itself but in the odometry data.

In the last picture, Figure 7.10(c), the map obtained by the 3D Toolkit nearly perfectly fits the
reference map. The reason for the good result here is, that the algorithm has 3D scans, where
you have more features to match against. Furthermore, as the algorithm is working offline,
only certain poses with their related laserscans are taken for computation which seems to have
a positive effect on the mapping process. The poses have about 10 meters in distance between
each other whereas in the previous approaches every scan and position was taken into account,
which in the case of problematic areas like at the evasive maneuver, leads to problems during
the mapping process.

7.2.3 Acceptance by First Responders

In order to asses the acceptance of the technology and the provided maps we discussed the
results with first responders of a professional fire brigade. Basically, the first responders judged
the 2D maps of marginal usefulness. The reason is that usually the responders have access to
street maps of tunnels (metric, topological, equipment). 2D maps can be useful if the tunnel in
question is new to the unit and no maps are available at all. Where for instance the length of the
tunnel is less interesting than local details.
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Figure 7.11: Discussion about results with first responders.

The first responders gave a totally different judgment for the 3D maps. Again, the overall map
of the tunnel with information about the length or curvature of the tunnel is less important due
to the same reasons mentioned already above. In contrary the responders pointed out that the
detailed information about entities (vehicles, victims, debris) and their posture inside the tunnel
are extremely useful. This is true in particular if the visibility in the tunnel due to electrical
blackout, fire or smoke is limited. This statement suggests to intensify research not only on
traditional mapping but focus also on semantic mapping approaches. If approaches are able to
automatically label objects or annotate a map with high-level information this, will give a real
benefit to the responders. Also the fusion of mapping with other information sources (e.g., spec-
tral or thermal imaging) as already proposed in [45, 46] are promising. Finally, the responders
judged an interactive presentation (e.g. zoom in, fly trough) of the 3D maps much more useful
than a static presentation.

The responders in charge already invited us to deploy an improved system at the next emergency
exercise.
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7.3 Public Dataset

All data recorded during the exercise are publicly available on the web6. The website provides
the recorded data of all sensors such as Lidar, cameras, radar data and all important static and
dynamic transformations. The data is provided in several ROS bag files as mainly standard
ROS sensor messages respectively standard ROS transformations. For the radar we defined a
proprietary ROS message which definition is also available on the web. Moreover, we provide a
simulated 2D laser scan extracted from the Velodyne data. A detailed description of the recorded
data and an instruction for using them is available. We are convinced that the public data allows
and motivates other researchers to further investigate the data.

7.4 Summary

In this chapter the methodology was described and the results discussed with feedback from first
responders. In Table 7.1 the mapping results are summarized.

Algorithm Used Odometry Type of Map Real-Time Map Quality Acceptance
GMapping Yes 2D Grid Map Yes Very Good Partially
Hector SLAM No 2D Grid Map Yes Failed Failed
VBMapping Yes 2D Grid Map Yes Good Partially
RGB-D SLAM - - - - -
3D Toolkit Yes 3D Point Cloud No Good Good
PTAM No 3D Point Cloud Yes Failed Failed
SfM No 3D Point Cloud Yes Failed Failed
2D Loc with Octomap Yes 3D Grid Map Yes Acceptable Good

Table 7.1: Summary of the evaluation results.

6See http://www.tedusar.eu/cms/en/research/loibl.
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Chapter 8

Lessons Learned

The preparation for and the participation at the large-scale emergency response exercise taught
us valuable lessons that can be used to increase the acceptance of modern technologies for the
daily use across first responders.

Preparation The time slot allocated for the reconnaissance task with a robot is very limited.
There is one run where everything has to work from the beginning. There is no time for testing
the setup, like brightness levels of the camera or even if all sensors are working and logging
their data. Test cases have to be created and executed with the whole system in a time frame
before the mission, so emerging bugs can be fixed in time. As this is nothing new in a common
development cycle, it is often hard to fulfill every development step because time and resources
are scarce.

The same applied to this mission. Much time was needed for setting up all the sensors and inte-
grating them in a modular payload box.
The other problem was, that some parts were available at first the day before the exercise. As
a consequence, the first test with the complete setup could first be made a few hours before the
actual mission. This was a huge gamble and ultimately it didn’t work out for all of the sensors.

Also, the deployed systems should have to follow a push-button setup. What that means is,
that you have a switch on the robot and when you activate it, the whole system is starting up
automatically without any complicated start scripts, on-site software reconfiguration or restart
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of crashed components. The deployed system mainly based on ROS and standard sensors is far
away from that requirement. For instance the depth information of the Kinect were lost due to a
wrong compression flag and we lately found out that the robot’s odometry was only available at
a frame rate of 2 Hz.

Cheap is sometimes not enough Although, there is tremendous progress in computer
vision, visual SLAM and cheap 3D sensors the results still are not able to compete with ex-
pensive Lidar solutions and point cloud registration algorithms. Even if there is hope that in
near future such inexpensive solutions will become mature, for now in order to reach acceptance
by responders, the techniques available need to to give more visually appealing and detailed
information.

Odometry As stated before the robot’s odometry was only available at a frame rate of 2 Hz,
so some simple interpolation had to be done, so the algorithms didn’t complain about a too low
frequency. Furthermore to improve odometry, we integrated IMU measurements with wheel
revolutions. This was done with the help of a publicly available ROS package, Robot Pose EKF,
which is using an extended Kalman filter for sensor fusion. Some adjustments had to be done,
as the package is outputting 3D Poses and the system needed an odometry message type.

2D Localization + Octomap Since there was no working online 3D mapping approach
available at the time, Stefan Kohlbrecher of the university of Darmstadt gave us some ideas on
how to use 2D localization in combination with 3D data in the form of octomaps. With this
solution it was possible to generate 3D maps in real time. For a more detailed description, see
Section 6.2.5.

Sensor alignment Placing the camera at the correct position is also something that has to be
taken care of when using methods like structure from motion and PTAM respectively. Therefore
it is not sufficient to place the camera in driving direction, although the walls of the tunnel were
visible. Christian Mostegel of Graz University of Technology gave us some feedback on the
correct positioning of the camera. So from his point of view the camera should be placed facing
the tunnel wall, slightly upwards or downwards, to get more features from the camera image.
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Chapter 9

Conclusion and Future Work

In this thesis the results of deploying state-of-the-art and off-the-shelf sensors and mapping
approaches in a large-scale emergency scenario were presented. In order to evaluate these tech-
niques and to judge the acceptance of them by first responders, data were recorded during a
reconnaissance mission and offline processed with state of the art mapping algorithms. High
sophisticated sensors like a Velodyne 3D Lidar in combination with point cloud registration pro-
duced results that were accepted by the responders. Cheaper sensors like cameras or 2D laser in
combination with related mapping approaches yet not produce useful results.

Although, we were not able to record all the desired data due to time, technical and tactical
constraints, we provided sensor data and maps that can help to improve the acceptance of novel
technologies by responders. Primarily, the quick and fail-safe deployment of the ROS-based
robot system was a major issue. While most of the packages used are open source, it took a lot
of time to install and configure each package for our needs. All data recorded in the mission
is publicly available and we hope that other researchers will build up on our results. As a
consequence a paper [12] regarding this work was presented at the international symposium on
Safety, Security, and Rescue Robotics (SSRR) 2013 in Sweden.

In November 2014, the tunnel mapping experiment was repeated. The aim was to improve the
evaluation of sensors and algorithms w.r.t. the quality, soundness, and usefulness based on ex-
periences made during the work of this thesis. As the scenario was not an actual emergency
response exercise but maintenance activities in the Plabutsch highway tunnel1 (depicted in Fig-
ure 9.1), the time available for setup and exercise was not as critical as during the thesis work.
The focus was on a subset of promising sensors based on results presented in this thesis.

1See http://www.tedusar.eu/cms/de/research/plabutsch

77



Chapter 9 Conclusion and Future Work

(a) 3D Toolkit inside Plabutsch tunnel.

(b) Entrance view of the Plabutsch tunnel acquired with the 3D Toolkit.

(c) Plabutsch inside generated with GMapping.

Figure 9.1: Maps generated from recordings in the Plabutsch highway tunnel.

For future work we will investigate how environmental conditions (e.g. smoke, fire) affects the
sensors and mapping approaches. Moreover, we have to work on a more stable robot system that
is quickly and easy to deploy. Finally, the extraction of objects and dangers from sensor data is
an important issue raised by responders.
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