
Putting Together What Fits Together - GrÆStl
A Combined Hardware Architecture for AES and Grøstl

Markus Pelnar, BSc.
m.pelnar@student.tugraz.at

pelnarm@student.ethz.ch

Institute for Applied Information
Processing and Communications (IAIK)

Graz University of Technology
Inffeldgasse 16a

8010 Graz, Austria

Integrated Systems Laboratory (IIS)
Swiss Federal Institute of Technology

Gloriastrasse 35
CH-8092 Zurich, Switzerland

Master Thesis

Supervisors: Dipl. Ing. Michael Mühlberghuber, ETH Zürich
Dipl. Ing. Beat Muheim, ETH Zürich

Dr. Michael Hutter, TU Graz
Assessor: Dr. Karl-Christian Posch, TU Graz

Dr. Norbert Felber, ETH Zürich

May, 2012

ii

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

iii

iv

Acknowledgements

First of all I would like to thank my supervisors Michael Hutter from Graz University of
Technology (TUG), Michael Mühlberghuber and Beat Muheim from Swiss Federal Insti-
tute of Technology (SFIT) Zurich and all members of the Microelectronics Design Center
from the Department of Information Technology and Electrical Engineering (D-ITET) for
their outstanding support during the last months I was working on this thesis and the
possibility to gain experience on taping out a functional chip. I would particularly like
to thank Michael Hutter for the excellent advices on writing scientific papers. A special
thanks also to Frank K. Gürkaynak for giving me tips for the future and sharing pieces of
his knowledge regarding Application-Specific Integrated Circuit (ASIC) design. I am sure
some tips will help me out in the future. Christian Pendl a former tutor of mine and from
the master studies on a steady companion receives a special thanks too. Working with him
on projects was always a pleasure whilst (at the same time) a challenge as targets were
always set very ambitious. Two highlights from this collaboration must be highlighted.
First, a scientific paper which got accepted and also presented at the RFIDSec 2011. Sec-
ond, going together abroad to write the master thesis at the SFIT Zürich. Last but not
least the biggest thanks goes to my family and my girlfriend for the patience and support
during the whole studies, especially during the time of being abroad to write the master
thesis. A special thanks to my big brother who was and will always be a shining example.
I know it was not always easy to understand my decisions and acting but they got always
behind me. Because of this I want to dedicate this thesis to my family.

v

vi

Abstract

This thesis comprises of two constructive parts. First, GrÆStl, a combined hardware
architecture for the Advanced Encryption Standard (AES) and Grøstl, developed for low-
resource devices and aiming for high flexibility by targeting both Application-Specific
Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA) platforms. The
former is the most important encryption specification known so far, which was announced
by the National Institute of Standards and Technology (NIST) in November 2001. Grøstl
on the other hand is one of the final candidates of the cryptographic hash-algorithm
competition initiated by NIST. The winner will augment the Federal Information Process-
ing Standard (FIPS) 180-3, Secure Hash Standard (SHA) and become therefore maybe
as important as AES. Combining these two primitives looks promising for the future as
the integration of AES-128 into Grøstl-224 can be achieved with an area overhead of only
10 % when aiming for ASIC platforms and furthermore might be used for authenticated en-
cryption in resource-constrained environments. Using a 0.18 µm fabrication process while
targeting a maximum frequency of 125 MHz delivered a complexity for GrÆStl of around
17.1 kGE after the backend design. The stand-alone versions for AES-128 and Grøstl-224
from which GrÆStl was build upon require 15.5 kGE and 5 kGE , respectively. All designs
were realized with standard cells only and no technology or platform-dependent compo-
nents such as Random Access Memory (RAM) macros, Digital Signal Processors (DSPs),
or Block RAMs were used. On FPGA platforms even better results can be reported as
the stand-alone versions for both AES and Grøstl outperform all existing work by a factor
of 4.8 and about 1.6. This impressive results were achieved through exploiting the Shift
Register Logic (SRL) functionality of Xlinix FPGAs. AES-128 and Grøstl-224 occupy
therefore only 442 and 488 slices on a Xilinx Spartan-3. The combined version requires
956 slices. With respect to timing the results on the two platforms are equal. An AES
encryption can be fulfilled within 652 clock cycles. Decryption on the other hand requires
by default 1,269 clock cylces whereas a reduction to 955 clock cycles occurs when an AES
operation with the same master key has been applied immediately before. Grøstl requires
3,061 clock cycles to process one message block.

Second, an FPGA system encompassing a programmable microcontroller, namely the
openMSP430 and the dedicated hardware components from the first part designed to eval-
uate the impact of the highly flexible four-phase handshaking protocol and to enable a
fair hardware/software comparison. The FPGA system was evaluated by increasing the
frequency of the dedicated hardware components from 5 to 20 MHz while leaving the mi-
crocontroller constantly at 5 MHz , which resulted in a speedup reduction from 4 to only
1.3 up to 1.6. On the other hand, outsourcing of software routines on dedicated hardware
accelerates the computation by a factor of 50 up to 360.

Keywords: AES, Grøstl, GrÆStl, SRL-16, ASIC, FPGA

vii

viii

Kurzfassung

Diese Abschlussarbeit besteht aus 2 aufeinander aufbauenden Teilen. Erstens, GrÆStl, ei-
ne kombinierte Hardware-Architektur für den Advanced Encryption Standard (AES) und
Grøstl, die für Geräte mit stark beschränkten Ressourcen entwickelt wurde und weiters auf
eine hohe Flexibilität bezüglich dem Einsatz auf Application-Specific Integrated Circuit
(ASIC) und Field Programmable Gate Array (FPGA) Plattformen abzielt. Ersteres ist
die bis jetzt wichtigste Verschlüsselungsspezifikation welche im November 2001 vom Na-
tional Institute of Standards and Technology (NIST) angekündigt wurde. Grøstl ist auf der
anderen Seite einer der Finalisten eines vom NIST gestarteten Wettbewerbes für krypto-
graphische Hash-Algorithmen, wo der Gewinner den Federal Information Processing Stan-
dard (FIPS) 180-3, auch Secure Hash Standard (SHA) genannt, erweitern und deswegen
womöglich auch gleichbedeutend wie AES wird. Eine Kombination dieser beiden Primitive
schaut für die Zukunft vielversprechend aus, da eine Integration von AES-128 in Grøstl-224
auf ASIC Plattformen mit einem zusätzlichen Flächenmehraufwand von nur 10 % möglich
ist. Des weiteren könnte dadurch eine authentifizierte Verschlüsselung in Umgebungen
mit beschränkten Ressourcen ermöglicht werden. Bei einem 0,18 µm Fabrikationsprozess
und einer Auslegung auf maximal 125 MHz weißt GrÆStl nach dem Backend-Design eine
Komplexität von rund 17,1 kGE auf. Die autarken Versionen für AES-128 und Grøstl-224,
auf welchen GrÆStl aufbaut, benötigen 15,5 kGE beziehungsweise 5 kGE . Alle Designs
wurden nur mit Standardzellen und ohne die Benutzung von Technologie oder plattfor-
mabhängigen Komponenten wie zum Beispiel Random Access Memory (RAM) Makros,
Digital Signal Processors (DSPs) oder Block-RAMs realisiert. Auf FPGA-Plattformen
können sogar noch bessere Resultate erzielt werden, da die autarken Versionen für AES
und Grøstl bestehende Arbeiten um den Faktor 4,8 bis 1,6 übertreffen. Diese eindrucksvol-
len Resultate konnten durch das Ausnutzen der Shift Register Logic (SRL) Funktionalität
von Xlinx FPGAs erreicht werden. AES-128 und Grøstl-224 verbrauchen hierbei auf ei-
nem Xlinx Spartan-3 nur 442 beziehungsweise 488 Slices. Die kombinierte Version benötigt
956 Slices. Bezüglich des zeitlichen Verhaltens sind die Resultate auf den beiden Plattfor-
men identisch. Eine AES-Verschlüsselung kann mit 652 Taktzyklen erfüllt werden. Eine
Entschlüsselung benötigt standardmäßig 1.269 Taktzyklen, wobei eine Reduktion auf 955
Taktyzklen erfolgt, sofern eine AES-Operation mit dem selben Hauptschlüssel unmittelbar
davor durchgeführt wurde. Grøstl benötigt 3.061 Taktzyklen um einen Nachrichten-Block
zu verarbeiten.

Zweitens, ein FPGA-System welches einen programmierbaren Mikrocontroller, den
openMSP430, und die dedizierte Hardware aus dem ersten Teil enthält. Es wurde dazu
entwickelt um die Auswirkung des höchst flexiblen 4-Phasen Handshake-Protokolls aufzu-
zeigen und einen fairen Hardware/Software vergleich zu ermöglichen. Das FPGA-System
wurde durch das Erhöhen der Frequenz der dedizierten Hardwarekomponenten von 5 auf
20 MHz evaluiert, während der Mikrocontroller konstant mit 5 MHz betrieben wurde und

ix

lieferte als Resultat eine Beschleunigungsreduktion von 4 auf nur 1,3 bis 1,6. Auf der an-
deren Seite konnte eine Beschleunigung durch das Auslagern der Software-Routinen auf
die dedizierte Hardware im Bereich von 50 bis 360 erreicht werden.

Stichwörter: AES, Grøstl, GrÆStl, SRL-16, ASIC, FPGA

x

Contents

1 Introduction 1

2 Selected Chapters of Cryptography 3

2.1 Symmetric-Key vs. Public-Key Cryptography 3

2.1.1 Unsecured Communication and Its Risks 3

2.1.2 Requirements for Secure Communication 4

2.1.3 Symmetric-Key Cryptography . 5

2.1.4 Public-Key Cryptography . 5

2.2 Block Ciphers . 6

2.2.1 Electronic Code Book (ECB) Mode 7

2.2.2 Cipher Block Chaining (CBC) Mode 8

2.3 Stream Ciphers . 10

2.3.1 Cipher Feedback (CFB) Mode . 10

2.3.2 Output Feedback (OFB) Mode . 10

2.3.3 Counter (CRT) Mode . 11

2.4 Message Authentication Codes (MAC) . 12

2.5 Hash Functions . 14

2.6 Hash-Based Message Authentication Code (HMAC) 16

3 Rijndael - Winner of the NIST AES Competition 17

3.1 Round Transformation . 18

3.1.1 SubBytes/InvSubBytes . 19

3.1.2 ShiftRows/InvShiftRows . 19

3.1.3 MixColumns/InvMixColumns . 20

3.1.4 AddRoundKey . 20

3.2 Round-Key Generation . 21

4 Grøstl - A NIST SHA-3 Competition Finalist 23

4.1 Compression Function . 24

4.2 Output Transformation . 24

4.3 Permutations P and Q in Detail . 25

4.3.1 AddRoundConstant . 25

4.3.2 SubBytes . 26

4.3.3 ShiftBytes . 26

4.3.4 MixBytes . 26

5 Related Work 29

xi

6 Asynchronous Interfaces 33

6.1 Synchronous Digital Circuits . 33

6.2 Asynchronous Interfaces for Synchronous Digital Circuits 36

6.2.1 Inconsistent Data . 36

6.2.2 Measures Against Inconsistent Data 37

7 Basics on Xilinx FPGAs 41

7.1 General Structure . 41

7.1.1 Configurable Logic Block (CLB) . 42

7.1.2 Slice . 42

7.2 Memory Variants for Spartan-3 FPGAs . 43

7.2.1 Block RAM (BRAM) . 43

7.2.2 Distributed RAM (LUT RAM) . 44

7.2.3 Shift-Register Logic (SRL16) . 45

8 GrÆStl - A Combined AES/Grøstl HW Architecture 49

8.1 On the Search for Optimal Resource Management 49

8.2 Hardware Architecture . 55

8.2.1 Top Layer . 55

8.2.2 Common Datapath . 58

8.3 Results . 62

8.3.1 Application-Specific Integrated Circuit (ASIC) 62

8.3.2 Field Programmable Gate Array (FPGA) 66

8.4 Comparison with Related Work . 68

8.4.1 Comparison of ASIC Results . 68

8.4.2 Comparison of FPGA Results . 69

9 FPGA System for HW/SW Evaluation 71

9.1 General System Requirements . 71

9.2 System Architecture . 72

9.2.1 Xilinx Spartan 3 . 72

9.2.2 openMSP430 . 73

9.2.3 Cryptographic Modules . 76

9.2.4 Cryptographic Library . 80

9.3 Results . 83

9.3.1 Influence of External Data Transfer on Overall Timing 83

9.3.2 Software/Hardware Evaluation . 85

10 Conclusions 87

A Definitions 91

A.1 Abbreviations . 91

B Chameleon - ASIC 93

B.1 General Features . 93

B.2 Pinout . 95

B.3 Pad Description . 96

B.4 Interface Description . 97

xii

C Chameleon - FPGA 99
C.1 Xilinx Spartan-3 and Spartan-6 Results . 99
C.2 Xilinx Virtex-5 and Virtex-6 Results . 99

D FPGA System - AddOn 101
D.1 Basic Linker Script for openMSP430 MCUs 101
D.2 Installation Script for MSPGCC Toolchain 105
D.3 Test Program for Verifying Cryptographic Modules 114

E Original Assignment 123

Bibliography 131

xiii

xiv

Chapter 1

Introduction

Among the most commonly used cryptographic primitives in classical communication
protocols are block ciphers and hash functions. The Advanced Encryption Standard
(AES) [51] is by far the most widely spread block cipher since its standardization in 2001
by the National Institute of Standards and Technology (NIST). Grøstl [15] on the other
hand is one of the final round candidates of the Secure Hash-Algorithm (SHA) competi-
tion [50], which will announce its winner in late of 2012. Therefore, AES is already and
Grøstl could become an algorithm widely used to achieve data confidentiality, integrity
and authenticity. In short, these three data properties can be fulfilled through authen-
ticated encryption which plays a major role in the world of communication systems. In
combination with the trend for ultra-mobile devices—containing evermore confidential
information—equipped with an arbitrary communication interface there is the need for
compact and power-efficient implementations. Due to the fact that AES and Grøstl fea-
ture several similarities such as a common S-box or similar diffusion layers an integration
into one module looks promising for the future. In addition to the cost savings regarding
area occupation, authenticated encryption could be fulfilled within one step. The conse-
quential drawback that a parallel computation of an encryption/decryption and a hash
computation is not supported anymore is mitigated by the circumstance that the most
limiting factor in such ultra-mobile devices is area and low energy and not performance.

This work has been split into two constructive parts. First, GrÆStl a hardware ar-
chitecture combining the functionality of AES-128 and Grøstl-224 in one piece of silicon.
The design aims for high flexibility supporting both Application-Specific Integrated Circuit
(ASIC) and Field Programmable Gate Array (FPGA) platforms without using technology-
dependent components such as Random Access Memory (RAM) macros, Digital Signal
Processors (DSPs), or Block RAMs. Various optimization techniques were exploited to
reduce the area footprint, for example, by sharing registers and a common datapath.
The ASIC version of the design with the name Chameleon has been fabricated using the
0.18 µm Complementary Metal Oxide Semiconductor (CMOS) process technology from
UMC and represents the first taped-out version of a combined AES/Grøstl architecture in
literature. It requires only 17.1 kGE —backend results including eight parallel scanchains
and clock gating—in total and needs 652/1,269 clock cycles for AES encryption/decryp-
tion and 3,061 clock cycles for hashing. The stand-alone implementations of AES and
Grøstl consume around 5 and 15.5 kGE . Due to the chosen design were all large register
banks are based on shift registers, backend results differ in only about 3 % to the syn-
thesis results. This nearly negligible overhead is reasonable as the storage elements are
already connected together in a favourable manner. The small area requirements and

1

2 CHAPTER 1. INTRODUCTION

also the low power consumption of about 20 µW at 100 kHz make the design applicable
to resource-constrained devices. Porting the implementation on an FPGA was easy as
no platform-dependent components were used. Due to a recommendation from Xilinx
regarding the removal of the reset functionality from shift registers, c.f. [7], the design was
altered in a suitable manner to ease the usage of the SRL-16 mode where the Look-Up
Tables (LUTs) of slices can be reconfigured to form an 16-bit shift register. As the design
perfectly fits this mode, it shows that the implementations outperform existing FPGA
solutions in terms of low area. They require up to 79 % less resources on a Spartan-3
compared to existing implementations. In addition, it shows that for FPGA platforms it
is recommended to prefer the single versions as they are in sum smaller as the shared one.
The reason for this is the state matrix which had to be adapted in order to integrate the
AES state as well as also the master key and the actual round key, respectively.

In the second part an FPGA system was designed to enable a hardware/software com-
parison of the stand-alone implementations and the combined implementation. For this a
microcontroller was required which was taken from OpenCores, c.f. [16]. The chosen Mi-
crocontroller Unit (MCU) is named openMSP430—RAM and ROM are located externally
and connected to the core over two buses—and is compatible to the MSP430 of Texas
Instruments, c.f. [61]. It is supported by the port of the GCC toolchain for the Texas In-
struments MSP430 family (MSPGCC) which is important for setting up the design flow.
Additionally, an interface to the cryptographic modules described in part one was required
which was realized over the peripheral bus and a piece of software. For verification of the
system, two test ROMs including testvectors for AES-128 and Grøstl-224 were attached
to the design. As different clock domains were used for the MCU and the cryptographic
modules a four-phase handshaking was incorporated to handle the communication. The
clock of the cryptographic modules was designed for 5 and 20 MHz , respectively and is
switchable over software. The expected speedup due to the increase of the clock frequency
was reduced from 4 to about 1.3 up to 1.6 depending on the operation applied. Comparing
software implementations targeting a low-memory footprint with the low-area implemen-
tations from part one resulted in a speedup between 50 and 360 depending on the mode
of operation and the clock frequency used for the cryptographic modules.

The remainder of this thesis is organized as follows. In Chapter 2, an overview of
symmetric-key and public-key cryptography is given. Furthermore, basic cryptographic
primitives used in classical cryptography like block ciphers, secure hash functions and
message authentication codes are explained. Chapter 3 presents the NIST AES competi-
tion and describes in detail its winner, the Advanced Encryption Standard (AES) followed
by the NIST SHA-3 competition in Chapter 4 with a detailed explanation of Grøstl, one
of the five finalists. Afterwards in Chapter 5 related work targeting low-area ASIC and
FPGA implementations for AES and Grøstl are summarized. As an FPGA system with
different clock domains is required in the second part of the thesis problems with interfaces
between two independent subsystems—clock signals not synchronized—are addressed in
Chapter 6 before in Chapter 7 basics on Xilinx FPGAs are stated. In Chapter 8 details on
the taped-out chip, named Chameleon are given. Results and a comparison with related
work is given for the ASIC as well as for the version ported on various Xilinx FPGAs.
Afterwards, Chapter 9 presents the developed FPGA system targeting a Xilinx Spartan-3
FPGA, which contains an MSP430 MCU and the previously developed cryptographic mod-
ules. Finally, in Chapter 10 a summary of the results combined with drawn conclusions is
given.

Chapter 2

Selected Chapters of
Cryptography

This chapter gives a short introduction into the field of cryptography, especially targeting
symmetric-key cryptography and public-key cryptography. Furthermore, it explains in
detail general cryptographic primitives like block ciphers, hash functions and (hash-based)
message authentication codes.

2.1 Symmetric-Key vs. Public-Key Cryptography

Symmetric-key and public-key cryptography are both used in various fields of application.
In order to understand their need this section first introduces the risks of an unsecured
communication. Afterwards, a list of requirements for secured communication is given.
These requirements on the one hand can be fulfilled partly by symmetric-key cryptography
and on the other hand fully by public-key cryptography. The reason why still both schemes
are used should be clear after the subsections targeting these primitives.

2.1.1 Unsecured Communication and Its Risks

Before going into details of symmetric-key cryptography and public-key cryptography one
must understand the basic communication scenario all further explanations will be based
on. This scenario is given in Figure 2.1. Alice and Bob represent the two parties aiming
to exchange data with each other without getting eavesdropped by a third party named
Eve. All data exchange is established over an unsecure channel which means that it is not
fully under control of the communication partners and therefore at risk that an adversary
gets access to it. State-of-the-art mobile phones featuring several interfaces like Wi-Fi,
bluetooth, infrared and so on are the best example for an infinitely seeming connectivity.
This convenient way of exchanging data features also a drawback as all communication
paths are not fully under control of the user because no one can tell on which path data is
transmitted from Alice to Bob and vice-versa. Therefore a smart adversary could modify
one stage of the path to eavesdrop the communication without the knowledge of either
Alice or Bob, modify parts of the data or even exchange the whole. Impersonating Alice or
Bob is in addition possible. These serious threats in combination with keeping a message
secret—data confidentiality—were the reason cryptography was developed for.

3

4 CHAPTER 2. SELECTED CHAPTERS OF CRYPTOGRAPHY

Alice Bob

Eve

Unsecured channel

Figure 2.1: Basic communication model.

2.1.2 Requirements for Secure Communication

Through the mentioned attack scenarios the following fundamental objectives for a secure
communication were revealed and stated by several authors, e.g., Hankerson et. al. [20]:

• Confidentiality
Data should be only readable by parties to which access was granted to. Therefore,
messages sent from Alice to Bob should not be readable by Eve.

• Data integrity
Third parties like Eve should not be able to modify the message sent from Alice
to Bob without getting detected by Bob.

• Data origin authentication
Bob should be able to verify that data purportedly coming from Alice was indeed
originated from Alice.

• Entity authentication
Alice and Bob should be convinced of the identity of each other.

• Non-repudiation
If Alice sends a message to Bob, Alice cannot deny of having sent this message
and Bob can prove this to others. Furthermore, Bob is able to recognize if the
message was originated from Alice.

In the early days of cryptography secured communication was all done with symmetric-
key cryptography as it was the only scheme known so far. As the technical aids and
the mathematical knowledge were not as sophisticated as today, the efforts were all on
the side of finding more efficient and more secure symmetric-key primitives than as to
find an alternative to it. With the technical improvement and the better mathematical
background, the key-distribution problem and the unreachable non-repudiation were
not negligible any more. Therefore, industry and cryptographic community focused more
on finding an alternative which solves all the shortcomings of symmetric-key cryptography
than improving the efficiency of it. In 1975, such a variant named public-key cryptography
was introduced by Diffie, Hellman and Merkle, c.f. [38]. Today, around 37 years later, still
both schemes are widely spread which seems awkward when remembering the mentioned

2.1. SYMMETRIC-KEY VS. PUBLIC-KEY CRYPTOGRAPHY 5

Alice Bob

Eve

Unsecured channel

Secret and authenticated channel

Figure 2.2: Symmetric-key communica-
tion model.

Alice Bob

Eve

Unsecured channel

Authenticated channel

Figure 2.3: Public-key communication
model.

problems. The reason for this is the much higher efficiency of symmetric-key cryptography
compared to public-key cryptography. Therefore, most communication protocols are based
on both primitives. As example public-key cryptography could be used for exchanging the
secret key required for symmetric-key cryptography. Both primitives are described in
Subsection 2.1.3 and Subsection 2.1.4.

2.1.3 Symmetric-Key Cryptography

Symmetric-key cryptography is based on a shared secret over which encryption/decryption
of data is being enabled. The basic scheme is shown in Figure 2.2. Alice and Bob want
to communicate in a secure way over an unsecure channel. In order to establish this
behavior, in addition a secret and authenticated channel is required to distribute the
secret key. This additional channel is one of the shortcomings. The reason for this is the
difficult and expansive way of establishing such a channel. The other drawback is the key-
management problem. In the basic model where only Alice and Bob—two persons—are
communicating with each other, only one secret key is required. Adding another person
which should be able to communicate with the other two implicates that already three
secret keys are necessary. An alternative would be an on-line trusted third-party which
creates and distributes the keying material on demand to prevent storing of unnecessary
keys. Finally, as communication between multiple persons is still possible—sharing all
the same secret key—the possibility of impersonating communication partners is given.
Therefore non-repudiation would be desirable which in fact cannot be established with
this primitive.

2.1.4 Public-Key Cryptography

Public-key cryptography uses a key pair—a public and a private key—instead of a single
secret key. It was developed to eliminate all the shortcomings of symmetric-key cryptog-
raphy and fulfills therefore all the security goals mentioned in Subsection 2.1.2. The basic
scheme is shown in Figure 2.3. Alice and Bob want to communicate again in a secure
way over an unsecure channel. The only difference in the communication model between
the symmetric-key and the public-key scheme is in the additional channel between the
two communication partners. For the public-key cryptography the channel must only
be authentic and not secure. Therefore, it is possible for everyone to read the content
but not to modify it in an unperceived manner. The authenticity is highly important as
otherwise an adversary would be able to distribute wrong public keys, namely ones from

6 CHAPTER 2. SELECTED CHAPTERS OF CRYPTOGRAPHY

which the corresponding private key is known. In such a scenario the encrypted message
would not be safe anymore. If the channel is authentic then the instance which receives
the public key can be sure that the corresponding private key is in possession of the right
instance. Therefore, sending an encrypted message only intended to be readable by the
receiver is easy as the encryption step can be fulfilled through the exposable public key of
the receiver. The encrypted message can be afterwards decrypted with the corresponding
private key which must be in possesion of the receiver only.

Public-key cryptography is much more complex as symmetric-key cryptography. As
public-key cryptography eliminates all the shortcomings of symmetric-key cryptography
and furthermore requires only an additional authenticated but not secure channel it makes
sense to use this primitive to distribute a secret key between two parties that want to
communicate in a secure way. Through this combination the high efficiency of symmetric-
key cryptography can be used while avoiding the need for a secret and authenticated
channel.

2.2 Block Ciphers

Block ciphers are widely spread throughout various communication protocols which are
based on symmetric-key cryptography. The reason for is the high efficiency for encrypt-
ing/decrypting data with a secret key, from now on called k. Basic idea is that the trans-
formation step operates on a full data block and not on single bits. Therefore, it must
be guaranteed that the input data can be split up in a multiple of the data-block size.
This is done through a padding function which is specially defined for each block-cipher
algorithm. The output of a block cipher is determined by the input data, the secret key k
and the chosen algorithm. As block ciphers are deterministic algorithms—no randomness
included—two instances stimulated with the same data set consisting of the input data
and the secret key k deliver the same output.

Noteable algorithms are the Data Encryption Standard (DES) [47], Triple DES [47],
Rivest Cipher 5 (RC5) [55], Blowfish [58] and Rijndael [10] which became in 2000 the
Advanced Encryption Standard (AES) [51]. DES, triple DES and AES are algorithms
standardized by the National Institute for Standards and Technology (NIST). DES was
introduced first followed by the Triple DES variant which is simply an improved version of
DES to mitigate weaknesses found during cryptanalysis. Triple DES, as the name implies,
operates on three single DES units whereas either two or three independent secret keys can
be used. The three-key variant has the advantage of a higher bit-security compared to the
two-key version and should therefore be preferred. The cryptographic community still was
not satisfied with these algorithms and their corresponding bit-security levels. Hence a
competition was started to find a successor of these two variants. In 2000, NIST announced
the Rijndael algorithm [10] as winner which became after some small modifications—e.g.
block size fixed to 128 bits, key size selectable between 128/192/ 256 bits—the most
valuable and widespread block cipher AES [51].

Still the question remains how to act on block ciphers in detail. Figure 2.4 represents
the easiest way to encrypt data through the aid of a block cipher. The data to be encrypted
is first padded up to a multiple of the block length before it gets split up in blocks of
same size. These represent in combination with the secret key k—remains the same
for each block to be encrypted—the input data to the block cipher instance . As the
transformations are independent from each other either one instance or multiple instances
can be used. The maximum speedup can be achieved when as many block cipher instances

2.2. BLOCK CIPHERS 7

Plaintext

Ciphertext

Arbitrary
block cipher

(Encryption)

Ciphertext

Plaintext

Arbitrary
block cipher

(Decryption)

Block size

Block size Block size

Block size

Key size

Secret key

Figure 2.4: Encryption and decryption with an arbitrary block cipher.

as input blocks exist as then the encrypted data is available after the computation time
of one block. The full ciphertext is received through a concatenation of the block-cipher
outputs.

As this variant—called the Electronic Code Book (ECB) mode—exhibited some secu-
rity flaws during the last years, modes of operation were introduced in order to increase
the security level. Two modes during which the instances are still operated as block ci-
phers are explained in detail in the next two subsections. For more explanations on Block
Ciphers, c.f. [35, 39].

2.2.1 Electronic Code Book (ECB) Mode

How to encrypt/decrypt data regarding the Electronic Code Book (ECB) mode is shown
in Figure 2.5 and Figure 2.6. It represents the native mode as the data to be encrypted/de-
crypted is first padded up to a multiple of the block length—not explicitly shown—before
it gets processed by the chosen block cipher instance in combination with the secret key k.
As this key remains the same for all encryption/decryption procedures, the security level
decreases as more plaintext/ciphertext pairs—generated with the same secret key k—are
available to an attacker from which information on the used secret key can be revealed.
Furthermore, as block ciphers are deterministic algorithms identical plaintext blocks are
being transformed to identical ciphertext blocks and vice versa if the pair consisting of
the block-cipher algorithm and the secret key k remains the same. Therefore, the message
confidentiality is not unconditionally given as if a plaintext/ciphertext pair once is being
revealed it gets easily recognized if no change in the secret key k or the block-cipher al-
gorithm has been applied. Last but not least it hides poorly data patterns. For example,
a change in the first data block gets isolated as the change cannot propagate into other
blocks as well [35, 39].

8 CHAPTER 2. SELECTED CHAPTERS OF CRYPTOGRAPHY

Key size

Secret key

Plaintext

Ciphertext

Block size

Block size

Block cipher
(Encryption)

Key size

Secret key

Block size

Block size

Block cipher
(Encryption)

Key size

Secret key

Block size

Block size

Block cipher
(Encryption)

(1st part)
Plaintext
(2nd part)

Plaintext
(3th part)

(1st part)
Ciphertext
(2nd part)

Ciphertext
(3th part)

Figure 2.5: Encryption according Electronic Code Book (ECB) mode.

Block size

Block size

Block Cipher
(Encryption)

Block cipher
(Decryption)

Key size

Secret key

Block size

Block size

Block Cipher
(Encryption)

Block cipher
(Decryption)

Key size

Secret key

Block size

Block size

Block Cipher
(Encryption)

Block cipher
(Decryption)

Key size

Secret key

Ciphertext
(1st part)

Ciphertext
(2nd part)

Ciphertext
(3th part)

Plaintext
(1st part)

Plaintext
(2nd part)

Plaintext
(3th part)

Figure 2.6: Decryption according Electronic Code Book (ECB) mode.

2.2.2 Cipher Block Chaining (CBC) Mode

In order to mitigate the security flaws introduced through the ECB mode, the Cipher Block
Chaining (CBC) mode was invented. In that mode of operation the plain text is never
directly applied to the block cipher as shown in Figure 2.7. Instead, an initial vector—
ideally changes each time—gets XORed with the first input data block. The output of
the block cipher represents afterwards on the one hand a part of the ciphertext and on
the other hand the value which gets XORed with the second input block. Therefore, a
change in the initial vector propagates through all steps. If this initial vector changes
each time it is guaranteed that the same input data never corresponds to the same output
data. Hence one of the security flaws of the ECB mode namely the confidentiality has
been resolved. The other problem regarding the pattern hiding was improved but not fully
removed. A change of one bit in the initialization vector will affect the whole ciphertext.
Changes in the plaintext instead affect only following ciphertext blocks but not the already
processed ones. If an attacker somehow achieves to apply multiple times the same initial
vector it would be able to identify patterns through changing bits at various locations
and observing the corresponding output. This improvement related to the ECB mode

2.2. BLOCK CIPHERS 9

Key size

Secret key

Ciphertext

Block size

Block cipher
(Encryption)

Key size

Secret key

Block size

Block cipher
(Encryption)

Key size

Secret key

Block size

Block cipher
(Encryption)

Initialization
vector (IV)

Plaintext
(1st part)

Plaintext
(2nd part)

Plaintext
(3th part)

Block size Block size Block size

(1st part)
Ciphertext
(2nd part)

Ciphertext
(3th part)

Figure 2.7: Encryption according Cipher Block Chaining (CBC) mode.

Key size

Secret key

Plaintext

Block size

Block Cipher
(Encryption)

Initialization
vector (IV)

Block cipher
(Decryption)

Key size

Secret key

Block Cipher
(Encryption)

Block cipher
(Decryption)

Key size

Secret key

Block Cipher
(Encryption)

Initialization

Block cipher
(Decryption)

Ciphertext

Block size Block size Block size

(1st part)
Ciphertext
(2nd part)

Ciphertext
(3th part)

Block size Block size Block size

(1st part)
Plaintext
(2nd part)

Plaintext
(3th part)

Figure 2.8: Decryption according Cipher Block Chaining (CBC) mode.

has also a drawback regarding performance as a parallelization of the encryption is not
possible anymore as the various steps are depending on their predecessors. This changes
for the decryption shown in Figure 2.8 as there a plaintext can be computed out of two
ciphertext blocks and so a parallelization is again feasible. The computation of the first
plaintext block differs from the rest as there is only one ciphertext block and the initial
vector. Therefore, if a wrong initial vector is applied only the first plaintext block is
invalid. This differs from the encryption process where the whole ciphertext would be
wrong. Furthermore, a change of one bit in a ciphertext block would make the whole
corresponding plaintext block invalid whereas only one bit of the following plaintext block
will be flipped. All the other following plaintext blocks will be valid again [35, 39].

10 CHAPTER 2. SELECTED CHAPTERS OF CRYPTOGRAPHY

2.3 Stream Ciphers

Block ciphers are algorithms which take as input the plaintext and a secure key k and
deliver as result the corresponding ciphertext. As these operations are block based a
parallelization generally can be applied through multiple instances of the same algorithm.
Stream ciphers instead compute a pseudorandom keystream which is combined bit-by-bit
with the plaintext. This combination step itself represents the encryption of the plaintext
and delivers therefore the corresponding ciphertext. As stream ciphers are also used in
symmetric-key cryptography both the transmitter and receiver must be able to compute
the same keystream. This is done over an initial value from which the keystream can be
derived, for instance, through digital shift registers. Therefore, the initial value can be
seen as secret key k. Furthermore, both sides must have agreed before the transaction on
the algorithm used to derive the pseudorandom keystream. Another difference is the fact
that stream ciphers require for both encryption and decryption an encryption-only unit
whereas block ciphers need both. The keystream is generally computed over a digital shift-
register circuit like for example with a Linear Feedback Shift Register (LFSR). Another
possibility is to use block ciphers as explained in the next three subsections. For more
explanations on Stream Ciphers, c.f. [35, 40].

2.3.1 Cipher Feedback (CFB) Mode

Figure 2.9 and Figure 2.10 present encryption and decryption for the Cipher Feedback
(CFB) mode which uses an arbitrary block cipher for the keystream generation. The
stimulation of the first instance takes place with the initial vector IV which must be
known to both the transmitter and receiver and therefore represents the secret key k. The
ouput of the first block cipher is afterwards combined with the plaintext and forms the
corresponding ciphertext. Furthermore, this result is the input data to the next instance
in order to create a keystream depending on the previous result. As the encryption step
itself is simply an XOR operation of the block-cipher output with the plaintext, it can
be easily reversed by exchanging the plaintext with the ciphertext. In order to perform a
complete decryption the input to the next instance is again the ciphertext as the keystream
must be exactly the same for both the encryption and the decryption procedure. An
advantage of this scheme is the fact that it contains a self-synchronization as only the
initial value must be known to both the transmitter and the receiver. The internal state
doesn’t matter as both sides are able to encrypt/decrypt the data independently from each
other. Furthermore, a parallelization of the decryption can be applied as the keystream
is derived from the different already known ciphertext parts. A drawback is that a loss of
data permanently throws off decryption. Regarding pattern hiding flipping one bit of the
plaintext during data encryption produces a flipped bit in the corresponding ciphertext.
Furthermore, this modification propagates along as the ciphertext represents the data
input to the next block cipher unit and therefore modifies up from this position the derived
keystream. Flipping one bit of the ciphertext during the decryption effects at maximum
two plaintexts and stays therefore locally restricted as the modification doesn’t propagate
further [35, 40].

2.3.2 Output Feedback (OFB) Mode

The Output Feedback (OFB) mode is very similar to the CFB mode and is shown in
Figure 2.11 and Figure 2.12. Difference is that the keystream modification is achieved

2.3. STREAM CIPHERS 11

Key size

Secret key

Ciphertext

Block size

Initialization
vector (IV)

Block cipher
(Encryption)

Plaintext

Key size

Secret key

Ciphertext

Block cipher
(Encryption)

Plaintext

Key size

Secret key

Ciphertext

Block cipher
(Encryption)

Plaintext

Block sizeBlock size Block size Block size

(1st part) (2nd part) (3th part)

Block size Block size Block size

(1st part) (2nd part) (3th part)

Figure 2.9: Encryption according Cipher Feedback (CFB) mode.

Key size

Secret key

Block size

Initialization
vector (IV)

Block cipher
(Encryption)

Ciphertext

Key size

Secret key
Block cipher

(Encryption)
Key size

Secret key
Block cipher

(Encryption)

Plaintext Plaintext Plaintext

Ciphertext Ciphertext

Block size Block size Block size

(1st part) (2nd part) (3th part)

Block sizeBlock size Block size Block size

(1st part) (2nd part) (3th part)

Figure 2.10: Decryption according Cipher Feedback (CFB) mode.

without taking the plaintext or ciphertext into account. On the first sight this looks like an
improvement regarding performance but it isn’t as the decryption cannot be parallelized.
The reason for is that the input to a block-cipher unit is originated from the previous
one which has to be computed first. Furthermore, pattern hiding is also lagging behind
as flipping one bit of the plaintext during encryption or one bit of the ciphertext during
decryption has only a locally restricted impact [35, 40].

2.3.3 Counter (CRT) Mode

Last but not least the Counter (CRT) mode gets described where the input to the various
block-cipher units originates from a counter function as shown in Figure 2.13 and Fig-
ure 2.14. A requirement for this is that it produces a long sequence which is allowed to
repeat afterwards. The keystream can therefore be computed in parallel as only the initial
counter value and the corresponding function must be known. As both the plaintext for
encryption or the ciphertext for decryption are simply combined with the pseudorandom
keystream in order to achieve the desired output, the pattern hiding lags in the same way

12 CHAPTER 2. SELECTED CHAPTERS OF CRYPTOGRAPHY

Key size

Secret key

Ciphertext

Block size

Initialization
vector (IV)

Block cipher
(Encryption)

Plaintext

Key size

Secret key

Ciphertext

Block cipher
(Encryption)

Plaintext

Key size

Secret key

Ciphertext

Block cipher
(Encryption)

Plaintext

Block sizeBlock size Block size Block size

(1st part) (2nd part) (3th part)

Block size Block size Block size

(1st part) (2nd part) (3th part)

Figure 2.11: Encryption according Output Feedback (OFB) mode.

Key size

Secret key

Ciphertext

Block size

Initialization
vector (IV)

Block cipher
(Encryption)

Plaintext

Key size

Secret key

Ciphertext

Block cipher
(Encryption)

Plaintext

Key size

Secret key

Ciphertext

Block cipher
(Encryption)

Plaintext

Block size Block size Block size

(1st part) (2nd part) (3th part)

Block sizeBlock size Block size Block size

(1st part) (2nd part) (3th part)

Figure 2.12: Decryption according Output Feedback (OFB) mode.

behind as described in the modes of operation before.[35, 40]

2.4 Message Authentication Codes (MAC)

Message authentication codes can be used to achieve data integrity by computing a check-
sum over the message while using a secret key k. As only the transmitter and the receiver
are aware of this key it is not possible to modify the transmitted message by a third party
without getting recognized. In order to achieve this, the transmitter computes a checksum
over the message using the secret key k. Afterwards the message and also the computed
checksum is transmitted to the receiver which computes the checksum on its own and
compares it to the received one. It they match no modification of the message has been
taken place.

2.4. MESSAGE AUTHENTICATION CODES (MAC) 13

Key size

Secret key

Counter (h00)

Ciphertext

Block size

Block cipher
(Encryption)

Key size

Secret key

Counter (h01)

Ciphertext

Block size

Block cipher
(Encryption)

Key size

Secret key

Counter (h02)

Ciphertext

Block size

Block cipher
(Encryption)

Plaintext Plaintext Plaintext

Block sizeBlock size Block size Block size

(1st part) (2nd part) (3th part)

Block size Block size Block size

(1st part) (2nd part) (3th part)

Figure 2.13: Encryption according Counter (CTR) mode.

Key size

Secret key

Counter (h00)

Ciphertext

Block size

Block cipher
(Encryption)

Key size

Secret key

Counter (h01)

Ciphertext

Block size

Block cipher
(Encryption)

Key size

Secret key

Counter (h02)

Ciphertext

Block size

Block cipher
(Encryption)

Plaintext Plaintext Plaintext

Block size Block size Block size

(1st part) (2nd part) (3th part)

Block sizeBlock size Block size Block size

(1st part) (2nd part) (3th part)

Figure 2.14: Decryption according Counter (CTR) mode.

Block ciphers for instance can be used to achieve this behaviour like for example
with the Cipher Block Chaining Message Authentication mode (CBC-MAC) shown in
Figure 2.15. This mode of operation is very similar to the CBC mode with the difference
that the initial vector is set to zero and that only the last cipherblock is used. An available
block cipher in CBC mode can therefore be easily reconfigured for MAC computation.
Regarding security only fixed-length messages should be allowed for the standard CBC-
MAC mode as an attack exists during which an attacker is able to append an arbitrary
message which delivers as result the same MAC as before. For this, two messages and
their corresponding MACs are required. A remedy would be to encode the data length
into the first block. With this modification also variable lengths can be supported [35, 41].

14 CHAPTER 2. SELECTED CHAPTERS OF CRYPTOGRAPHY

Key size

Secret key

Block cipher
(Encryption)

Key size

Secret key

Block cipher
(Encryption)

Key size

Secret key

MAC

Block size

Block cipher
(Encryption)

Plaintext

Block size

(1st part)
Plaintext

Block size

(2nd part)
Plaintext

Block size

(3th part)

Figure 2.15: Computing the Message Authentication Code (MAC) for an arbitrary mes-
sage using the CBC-MAC mode.

2.5 Hash Functions

Cryptographic hash functions compute of a given message m the corresponding hash
h = hash(m) which is referred to in literature as message digest or simply digest. The
length of it depends only on the algorithm used and not on the length of the given message
m. Through this functionality data integrity of a message can be assured.

The cryptographic hash functions Message-Digest 4 (MD4) [56], MD5 [54], Secure Hash-
Algorithm 1 (SHA-1) [48], SHA-2 [48] and also some candidates of the SHA-3 competition
like Grøstl [15], Skein [12] or Blake [2] operate similarly to block ciphers on blocks of data
which implies the need for a padding function. For the sake of completeness it must be
stated that also other approaches exist, like for example, JH or Keccak which are also
both final candidates for the SHA-3 competition.

Secure cryptographic hash functions must fulfill the following three requirements:
preimage resistance, second-preimage resistance and collision resistance. More
details on each of these requirements are given in the following list.

• Preimage resistance
Given a message digest h it should be difficult to find any message m such that
h = hash(m) is fulfilled (similar to one-way functions).

• Second-preimage resistance
Given a message m1 it should be difficult to find any message m2—m2 must be not
equal to m1—such that hash(m1) = hash(m2).

• Collision resistance
It should be difficult to find any two messages m1 and m2—m2 must be not equal
to m1—such that hash(m1) = hash(m2).

The simplest scheme for achieving data integrity would be to transmit the message m1

and also its message digest h1 to the receiver, which can recompute the message digest
and obtains therefore h2. If these digests coincide, no modification of the message has

2.5. HASH FUNCTIONS 15

Hash function

Message digest h1

Hash size

Plaintext m1

Block size

h1

me

he

Hash function

Plaintext me

Block size

Comparator

(he = he′)

m1

m1

h1

me

h′
e

Transmitter ReceiverAttacker

Hash function

me

he

Figure 2.16: Man-in-the-middle attack on a communication scheme using only hash func-
tions to obtain data integrity.

Key size

Secret key

Plaintext m1

Ciphertext c1

Block size

Block size

Block cipher
(Encryption)

Hash function

Message digest h1

Hash size

Transmitter Receiver

m1 m1

c1 h1

Key size

Secret key

Plaintext m′
1

Ciphertext c1

Block size

Block size

Block Cipher
(Encryption)

Block cipher
(Decryption)

Hash function

Message digest h′
1

Hash size

Message digest h1

Hash size

Comparator

(h1 = h′1)

c1 m′
1 h1

m′
1 h′

1
h′
1

Figure 2.17: Communication scheme using cryptographic hash function in combination
with symmetric-key encryption in order to obtain data integrity and data origin authen-
tication (if only two instances knowing the secret key k).

occurred. The only drawback is the fact that a man-in-the-middle attack as shown in
Figure 2.16 is possible where a third party exchanges both the original message m1 and
the corresponding digest h1 with it’s own message me and the corresponding digest he.
The receiver is only in the position of checking message modifications but not from whom
the message was originated.

A better approach is given in Figure 2.17 where first the message m1 is encrypted using
the secret key k which is only known to the transmitter and receiver. The plaintext on the
other hand gets hashed and forms therefore the message digest h1. Both the encrypted
message c1 and the digest h1 get transferred. After receiving both data blocks the receiver
first decrypts the ciphertext c1 to obtain m′1 which should be the original message sent by
the transmitter. In order to proof the validity of the data the receiver computes out of
the decrypted message m′1 the hash value h′1 and compares it to the received one. If they
match it is guaranteed that no modification of the data has occurred [36, 42].

16 CHAPTER 2. SELECTED CHAPTERS OF CRYPTOGRAPHY

2.6 Hash-Based Message Authentication Code (HMAC)

Hash-based message authentication codes are another variant how to achieve data integrity
and data origin authentication. The last aspect only applies if the instances knowing the
secret key k is limited to two. General idea behind is that the keying material k is
combined (e.g., using XOR operation) with the message m. The so gained message digest
h = Hash(m||k) and the original message m get transferred to the receiver. In contrast to
the scheme in Figure 2.17, the data is transmitted in a readable manner. After receiving
the message m it gets again combined with the keying material k over the same function
used at transmitter side. If the received digest and the computed one match, no corruption
of the message has occurred [36, 43].

Chapter 3

Rijndael - Winner of the NIST
AES Competition

In the early 1990s the U.S. Government stated its interest in a more secure way of en-
crypting data. Therefore, the National Institute of Standards and Technology (NIST) in
combination with industry and the cryptographic community started the search for a stan-
dardized symmetric-key scheme in January 1997. Their goal was a Federal Information
Processing Standard (FIPS) for an unclassified, publicly disclosed and worldwide royalty-
free block cipher with a minimum supported block size of 128 bits and key sizes of 128,
192 and 256 bits. In August 1998, the First AES Candidate Conference (AES1) was held
with the outcome of 15 potential candidates going for a detailed review. The results of the
analysis conducted by the global cryptographic community were presented in March 1999
at the AES2 followed by a public comment period. NIST used both the analysis and the
comments to select the five finalists, namely MARS [4], Rivest Cipher 6 (RC6) [57],
Rijndael [10], Serpent [1] and Twofish [59]. This selection was also the end of round
one and the starting shot for round two. The first initiative in the second round was a
detailed analysis of the five finalists followed by a search for public comments including
cryptanalysis, intellectual property and much more. For the last conference, the AES3,
held on April 13-14, 2000 all submitters were invited to take a stand on comments of their
algorithms. With the gained information from the last conference NIST announced in
October 2000 Rijndael as winner of the competition [52].

As last step NIST published in February 2001 the Federal Information Processing
Standard (FIPS) 197 [51] describing the algorithm nowadays known under the name Ad-
vanced Encryption Standard which restricts the block size to 128 bits and the key size
to 128, 192 and 256 bits. Dependent on the key size used the algorithm is referred to as
AES-128, AES-192 or AES-256. The original Rijndael algorithm [9] alternatively allows
the independent choice of the key and block size out of the set of 128, 160, 192, 224 and
256 bits.

The AES algorithm was developed for symmetric-key cryptography and is a block
cipher which encrypts blocks of data independent from each other. As this block cipher
requires always 128 bits of data for encryption/decryption a padding function which fills up
the data to a multiple of 128 bits is inevitable. Afterwards the data is split up into blocks
of 128-bits size and iteratively or parallel processed by AES implementations consisting of
the round transformation described in Section 3.1 and the round-key generation described
in Section 3.2. For more details see [51].

17

18 CHAPTER 3. RIJNDAEL - WINNER OF THE NIST AES COMPETITION

AddRoundKey(round)

MixColumns

ShiftRows

SubBytes

1...Nr

o0,0 o0,1 o0,2 o0,3

o1,0 o1,1 o1,2 o1,3

o2,0 o2,1 o2,2 o2,3

o3,0 o3,1 o3,2 o3,3

i0,0 i0,1 i0,2 i0,3

i1,0 i1,1 i1,2 i1,3

i2,0 i2,1 i2,2 i2,3

i3,0 i3,1 i3,2 i3,3

Initial state Output state

Round transformation

Figure 3.1: Scheme of the AES encryption.

3.1 Round Transformation

The round transformation is build upon four operations: SubBytes, MixBytes, MixColumns
and ShiftRows. As both encryption and decryption are supported the inverse operations
are required in addition. Figure 3.1 and Figure 3.2 show the AES encryption and de-
cryption scheme. Both are slightly simplified as the initial key addition, the round-key
generation and also the last round (MixColumns/InvMixColumns operation skipped)
are not illustrated.

The initial state matrix for encryption is obtained through the initial AddRoundKey
operation where the master key is added (XORed) with the input message. Afterwards, the
round transformation starts executing iteratively the SubBytes, ShiftRows, MixColumns
and AddRoundKey operations as shown in Figure 3.1. For the AddRoundKey operation
the appropriate round key is required which can be computed on-the-fly or precomputed
and stored in memory. The on-the-fly computation is described in Section 3.2. The num-
ber of rounds to be executed depends on the key size. A key size of 128 bits implies 10
rounds, 192 bits 12 rounds and 256 bits 14 rounds. The last round is slightly different as
the MixColumns operation is bypassed. The final state matrix represents the encrypted
message.

Decryption is the inverse operation of encryption and is used to obtain the plaintext
from a ciphertext. In order to achieve this behaviour a few modifications are necessary.
First of all, the initial AddRoundKey operation requires the last round-key instead of the
master key as for the decryption the round keys must be applied in an inverse manner to
the encryption. Consequently an on-the-fly generation requires a longer computation time.
At least as much longer as the time required to derive the last round key from the master
key. The order of the round keys can be seen in Figure 3.9. Next, instead of the operations
used during encryption their counterparts InvShiftRows, InvSubBytes, AddRoundKey,
InvMixColumn must be used. The AddRoundKey transformation stays the same as only
the input changes according to the previously described round-key generation. Last but
not least the sequence of the round transformation must be adapted as shown in Figure 3.2.
Similar to the encryption step the InvMixColumns operation is bypassed during the last
round. The final state matrix represents the decrypted message. In the following, the
components of the round transformation are described in more detail.

3.1. ROUND TRANSFORMATION 19

InvMixColumns

InvShiftRows

InvSubBytes

1...Nr

o0,0 o0,1 o0,2 o0,3

o1,0 o1,1 o1,2 o1,3

o2,0 o2,1 o2,2 o2,3

o3,0 o3,1 o3,2 o3,3

i0,0 i0,1 i0,2 i0,3

i1,0 i1,1 i1,2 i1,3

i2,0 i2,1 i2,2 i2,3

i3,0 i3,1 i3,2 i3,3

Initial state Output state

Round transformation

AddRoundKey(Nr − round)

Figure 3.2: Scheme of the AES decryption.

s′0,0 s′0,1 s′0,2 s′0,3

s′1,0 o1,1 s′1,2 s′1,3

s′2,0 s′2,1 s′2,2 s′2,3

s′3,0 s′3,1 s′3,2 s′3,3

s0,0 s0,1 s0,2 s0,3

s1,0 i1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s1,1 s′1,1

InvSubBytes

SubBytes

Figure 3.3: An InvSubBytes transformation is the
inverse of the SubBytes transformation.

(Affine transformation)−1

Affine transformation

X−1

Encrypt s

s′

1 0

1 0

Figure 3.4: Scheme of the
SubBytes/InvSubBytes
transformation.

3.1.1 SubBytes/InvSubBytes

The SubBytes and InvSubBytes transformation, respectively is a non-linear byte substi-
tution that substitutes each byte of the state as shown in Figure 3.3. They can be realized
either over a Look-Up Table (LUT) or by an on-the-fly computation. The latter is shown
in Figure 3.4. In order to get the SubBytes functionality the encryption signal must be
set to one which implies that first the multiplicative inverse in the finite field GF (28) is
taken followed by a subsequent affine transformation. In order to get the InvSubBytes
functionality this sequence must be reversed. For more details see [51].

3.1.2 ShiftRows/InvShiftRows

Both transformations are rotate operations and equal regarding the offset of each row.
The only difference is the rotate direction because it is a left rotate for the ShiftRows
and a right rotate for the InvShiftRows transformation. The impact of the ShiftRows

20 CHAPTER 3. RIJNDAEL - WINNER OF THE NIST AES COMPETITION

Shift by 0

Shift by 1

Shift by 2

Shift by 3

Figure 3.5: The effect of the ShiftRows
transformation on the state.

Shift by 0

Shift by 1

Shift by 2

Shift by 3

Figure 3.6: The effect of the
InvShiftRows transformation on the
state.

transformation and the InvShiftRows transformation on the state matrix is shown in
Figure 3.5 and Figure 3.6.

3.1.3 MixColumns/InvMixColumns

These transformations can be seen as a matrix multiplication and operates on a complete
column instead of a single byte. The matrices used for both transformations are circulant
meaning that each row has the same content but is shifted to the right by one with respect
to the row above. In short, we may write for the MixColumn matrix

B = circ(02, 03, 01, 01) (3.1)

and for the InvMixColumn matrix

B = circ(0e, 0b, 0d, 09). (3.2)

The detailed notation for the MixColumns multiplications can be seen in Formula 3.3
and for the InvMixColumns multiplication in Formula 3.4.

s′0,c
s′1,c
s′2,c
s′3,c

 =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

s0,c

s1,c

s2,c

s3,c

 (3.3)

s′0,c
s′1,c
s′2,c
s′3,c

 =

0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e

s0,c

s1,c

s2,c

s3,c

 (3.4)

3.1.4 AddRoundKey

The AddRoundKey transformation XORes each byte of the round key—either available
over an on-the-fly computation or through a lookup in the memory in case of precomputation—
with the appropriate byte of the state. Details on the generation can be found in Sec-
tion 3.2.

3.2. ROUND-KEY GENERATION 21

k′0,0 k′0,1 k′0,2 k′0,3

k′1,0 k′1,1 k′1,2 k′1,3

k′2,0 k′2,1 k′2,2 k′2,3

k′3,0 k′3,1 k′3,2 k′3,3

k0,0 k0,1 k0,2 k0,3

k1,0 k1,1 k1,2 k1,3

k2,0 k2,1 k2,2 k2,3

k3,0 k3,1 k3,2 k3,3

Rcon

3232 32 32 32 32 32 32

RotWord

SubWord

Figure 3.7: Scheme of the forward round-
key generation.

k′0,0 k′0,1 k′0,2 k′0,3

k′1,0 k′1,1 k′1,2 k′1,3

k′2,0 k′2,1 k′2,2 k′2,3

k′3,0 k′3,1 k′3,2 k′3,3

k0,0 k0,1 k0,2 k0,3

k1,0 k1,1 k1,2 k1,3

k2,0 k2,1 k2,2 k2,3

k3,0 k3,1 k3,2 k3,3

Rcon

3232 32 32 32 32 32 32

RotWord

SubWord

Figure 3.8: Scheme of the backward
roundkey generation.

3.2 Round-Key Generation

All round keys can be computed with the aid of a SubWord transformation that applies
four times the SubBytes function, a RotWord transformation that rotates four bytes to the
left by one and a small Look-Up Table (LUT) named Rcon containing the round constants
(one for each round).Details on the round constants can be found in FIPS-197 [51]. The
scheme for the forward round-key generation and also its inverse are shown in Figure 3.7
and Figure 3.8. Both can be computed on-the-fly.

For the forward round-key generation it is the easiest to start with the first column
of the key matrix which can be updated through an XOR operation with the modified
values–RotWord, SubWord and Rcon applied—of the last column. Afterwards, the rest
is straight forward as always the previously gained result is taken and XORed with the
next column until all are updated.

For the backward round-key generation the last column must be saved in a temporary
place as it is required later on. Afterwards, it is updated through an XOR operation with
the column before. This is repeated another two times (third column is updated with
second column and afterwards the second column is updated with the first column). The
final step is achieved by taking the temporary values, applying the RotWord, SubWord
and Rcon and XORing it afterwards to the first column. In that way the predecessor from
a specific round key can be computed.

Restricted environments typically claim for an on-the-fly computation of the round
keys as the storage is simply often not available. Hence, it is important to know that a
decryption has a big drawback regarding computation time. The reason for this is that the
order of the round keys must be applied in a reverse manner. As most of the time an AES
implementation obtains the master key and a ciphertext to be decrypted, it is necessary
to first compute all the round keys down to the last one before the real computation can
start. This fact is also illustrated in Figure 3.9.

22 CHAPTER 3. RIJNDAEL - WINNER OF THE NIST AES COMPETITION

RndKey Nr

RndKey 1

MasterKey

RndKey Nr − 1

RndKey Nr

RndKey 1

MasterKey

RndKey Nr − 1

Encryption Decryption

Figure 3.9: Order of the round keys depending on the mode of operation.

Chapter 4

Grøstl - One of the Finalists of the
NIST SHA-3 Competition

The Federal Information Processing Standard (FIPS) 180-3 [48] specifies cryptographic
hash algorithms converting a variable-length message into a fixed-length message digest.
The algorithms specified can be grouped into SHA-1 and SHA-2. SHA-0 is no longer
included as it contains a weakness which has been fixed in SHA-1 that is now its re-
placement. SHA-2 encompasses the functions SHA-224, SHA-256, SHA-384 and SHA-512
and is significantly different to SHA-1, which is the most widely used secure hash algo-
rithm. In 2005, a possible mathematical weakness of SHA-1 was identified. As SHA-2 is
algorithmically similar, it is assumed that this security flaw might occur in the group of
algorithms summarized as SHA-2 too. Until today no successful attacks on SHA-2 have
been reported. Because of the advances in cryptanalysis and the disclosed weaknesses of
SHA-1 and probably SHA-2, NIST started a public competition searching for a successor
of these algorithms in November 2007. The winner will be named SHA-3 and will extend
the algorithms currently specified in FIPS 180-3. 64 candidates were submitted by Oc-
tober 2008 but only 51 of them were selected for the official first round which started in
December 2008. 14 out of 51 candidates made it to the second round with the starting shot
in July 2009. NIST allocated a year for public comments and internal reviews on the 14
chosen candidates. Based on the information gained, 5 finalists were selected for the third
and also final round, namely BLAKE, Grøstl, JH, Keccak and Skein. This last round
started in December 2010 and is still ongoing. From the beginning of round three until
January 2011 submitters of the final candidates were allowed to make minor changes on
their algorithms to incorporate improvements gained through public comments and inter-
nal reviews. NIST planned afterwards again an additional year for public comments. The
final SHA-3 conference was held in March 2012. Submitters of the final candidates were
invited to take a stand on comments to their algorithms. The winner of the competition
is planned to be announced in late 2012 [44, 48, 53].

Grøstl is one of the finalists of the SHA-3 competition and is used to compute a
fixed-length message digest out of a message with variable length. During the SHA-3
competition all the authors were allowed to make once minor changes on their algorithms
in order to incorporate improvements triggered by public comments and internal reviews.
Due to that, the specification from the 31st of October, 2008 was adapted to the newer one
from the 2nd of March, 2011. The former one is since then known as Grøstl-0 specification.
The following algorithmic description is targeting the newer specification from the 2nd of

23

24 CHAPTER 4. GRØSTL - A NIST SHA-3 COMPETITION FINALIST

m1 m2 m3 mt

Initial vector Ωff f f
l

l

l n

In
te
rm
ed
ia
te
ve
ct
or

In
te
rm
ed
ia
te
ve
ct
or

In
te
rm
ed
ia
te
ve
ct
or

In
te
rm
ed
ia
te
ve
ct
or

H(m)

Figure 4.1: The Grøstl hash function.

March 2011. Differences to Grøstl-0 will be highlighted through an information field.

4.1 Compression Function

Grøstl supports the variants Grøstl-224, Grøstl-256, Grøstl-512 and Grøstl-1024. The
appended number represents the bit length of the message digest from now on called n.
For Grøstl-224 and Grøstl-256 the input width represented by l is 512 bits whereas it
is increased to 1024 bits for Grøstl-512 and Grøstl-1024. The basic concept of the hash
function is shown in Figure 4.1 and reminds on a block cipher in cipher-block chaining
mode (CBC). A padding function is inevitable for the same reason as for block ciphers
(input width must be always of same size - either 512 bits or 1024 bits). Figure 4.1 assumes
that the padding has been already applied. The message is furthermore split up in blocks
of size 512 bits and 1024 bits, respectively. As no intermediate hash value is available for
the first compression function f a well defined initial vector is used.

Info: In order to improve the overall security the initial vectors differ to the ones from
the Grøstl-0 specification.

The output of the compression function represents an intermediate hash value acting in
combination with the next message block as input to the subsequent compression function.
After processing of the last message part an output transformation is applied to reduce
the amount of bits to the desired digest size.

The compression function is shown in detail in Figure 4.2 and consists mainly of two
blocks P and Q, both l-bit permutations. For the input to the Q-block no computational
effort is required as the message part goes straight in. This differs to the P -block as there
the input is the result of the intermediate hash value XORed with the input message.
Both outputs are XORed to the intermediate hash value and form so the new one.

4.2 Output Transformation

Figure 4.3 presents the output transformation Ω. The intermediate hash value—output
of the last compression function—is applied to the P -block and the result is afterwards
XORed to it. Last but not least a truncation step is required as the message digest must
have a size of 224, 256, 512 or 1024 bits. Therefore, as many leading bits as to form the
desired digest size are cut off. For more information see the Grøstl specification [15].

4.3. PERMUTATIONS P AND Q IN DETAIL 25

P Q

hi−1

hi

mi

f

Figure 4.2: The compression function f
build upon a pair of l-bit permutations
(P/Q).

P

hx

h

Ω

Figure 4.3: The output transformation
computes P (hx) ⊕ hx and cuts off the
leading bits to obtain the n-bit message
digest.

4.3 Permutations P and Q in Detail

The l-bit permutations P and Q come each in two variants from now on named P512 and
P1024 as well as Q512 and Q1024. The reason for is the input size l which can be either 512
bits or 1024 bits depending on the variant used. For Grøstl-224 and Grøstl-256 an input
size of 512 bits is mandatory whereas for the other two variants the size must be extended
to 1024 bits. The inner structure of a permutation is shown in Figure 4.4 and is equal
for P and Q. It consists of four round transformations: AddRoundConstant, SubBytes,
ShiftBytes and MixBytes. The execution order is also presented in Figure 4.4. Beside,
note the similarity between the permutation structure and the AES round transformation.
The difference between the two variants of each permutation is the number of rounds and
the behaviour of the four round transformations. For the small variants including Grøstl-
224 and Grøstl-256 10 rounds are mandatory which increases to 14 rounds for the other
two variants. The behaviour of the round transformations will be explained for Grøstl-224
and Grøstl-256 only. Details for the others can be found in the Grøstl specification, cf. [15].

4.3.1 AddRoundConstant

The AddRoundConstant transformation adds a round-dependent constant to the state
matrix. Equation 4.1 presents the round constant used for a P permutation whereas
Equation 4.2 targets the Q permutation.

Info: In order to improve the overall security the round constants differ to the ones
from the Grøstl-0 specification. In Grøstl-0, only a single byte gets modified for both
permutations.

26 CHAPTER 4. GRØSTL - A NIST SHA-3 COMPETITION FINALIST

1...Nr

Initial state Output state

Round transformation

SubBytes

ShiftBytes

MixBytes

AddRndCnsti0,0 i0,1 i0,2 i0,3 i0,4 i0,5 i0,6 i0,7

i1,0 i1,1 i1,2 i1,3 i1,4 i1,5 i1,6 i1,7

i2,0 i2,1 i2,2 i2,3 i2,4 i2,5 i2,6 i2,7

i3,0 i3,1 i3,2 i3,3 i3,4 i3,5 i3,6 i3,7

i4,0 i4,1 i4,2 i4,3 i4,4 i4,5 i4,6 i4,7

i5,0 i5,1 i5,2 i5,3 i5,4 i5,5 i5,6 i5,7

i0,0 i0,1 i0,2 i0,3 i0,4 i0,5 i0,6 i6,7

i7,0 i7,1 i7,2 i7,3 i7,4 i7,5 i7,6 i7,7

o0,0 o0,1 o0,2 o0,3 o0,4 o0,5 o0,6 o0,7

o1,0 o1,1 o1,2 o1,3 o1,4 o1,5 o1,6 o1,7

o2,0 o2,1 o2,2 o2,3 o2,4 o2,5 o2,6 o2,7

o3,0 o3,1 o3,2 o3,3 o3,4 o3,5 o3,6 o3,7

o4,0 o4,1 o4,2 o4,3 o4,4 o4,5 o4,6 o4,7

o5,0 o5,1 o5,2 o5,3 o5,4 o5,5 o5,6 o5,7

o6,0 o6,1 o6,2 o6,3 o6,4 o6,5 o6,6 o6,7

o7,0 o7,1 o7,2 o7,3 o7,4 o7,5 o7,6 o7,7

Figure 4.4: Structure of the P and Q l-bit permutation.

CP512

[
i
]

=

00 ⊕ i 10 ⊕ i 20 ⊕ i 30 ⊕ i 40 ⊕ i 50 ⊕ i 60 ⊕ i 70 ⊕ i
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

(4.1)

CQ512

[
i
]

=

ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff
ff ⊕ i ef ⊕ i df ⊕ i cf ⊕ i bf ⊕ i af ⊕ i 9f ⊕ i 8f ⊕ i

(4.2)

4.3.2 SubBytes

The SubBytes transformation of Grøstl substitutes each byte of the state matrix in the
same manner as in AES. See Section 3.1.1 for more details.

4.3.3 ShiftBytes

The ShiftBytes transformation rotates in a similar manner as AES each row of the
state matrix. Simply the matrix is four times bigger and the offsets—see Figure 4.5 and
Figure 4.6—are different.

4.3.4 MixBytes

This transformation can be seen as a matrix multiplication and operates therefore on a
complete column instead of a single byte. The matrix used is circulant meaning that each

4.3. PERMUTATIONS P AND Q IN DETAIL 27

Shift by 4

Shift by 5

Shift by 6

Shift by 7

Shift by 0

Shift by 1

Shift by 2

Shift by 3

Figure 4.5: Offsets for the ShiftBytes transformation in the P permutation.

Shift by 0

Shift by 2

Shift by 4

Shift by 6

Shift by 1

Shift by 3

Shift by 5

Shift by 7

Figure 4.6: Offsets for the ShiftBytes transformation in the Q permutation.

row has the same content but it is shifted to the right by one with respect to the row
above. In short, we may write for the MixColumn matrix

B = circ(02, 02, 03, 04, 05, 03, 05, 07). (4.3)

The detailed notation for a MixBytes column multiplication can be seen in Formula 4.4.

s′0,c
s′1,c
s′2,c
s′3,c
s′4,c
s′5,c
s′6,c
s′7,c

=

02 02 03 04 05 03 05 07
07 02 02 03 04 05 03 05
05 07 02 02 03 04 05 03
03 05 07 02 02 03 04 05
05 03 05 07 02 02 03 04
04 05 03 05 07 02 02 03
03 04 05 03 05 07 02 02
02 03 04 05 03 05 07 02

s0,c

s1,c

s2,c

s3,c

s4,c

s5,c

s6,c

s7,c

(4.4)

28 CHAPTER 4. GRØSTL - A NIST SHA-3 COMPETITION FINALIST

Chapter 5

Related Work

There exist many papers in literature that present low-resource hardware implementa-
tions of AES or Grøstl. Since publication of the algorithms in 1998 and 2008, several
optimization techniques have been proposed that reduce the area requirements for both
ASIC and FPGA platforms. One example is the optimized AES S-box implementation
of Canright [5] that has been also used by Feldhofer et al. [11] to realize a very compact
version of AES-128.

Feldhofer et al. reported in 2005 a design requiring only 3.4 kGE for both encryption
and decryption. The results stated are after synthesis to the gate level using a 0.35 µm
CMOS process from Philips Semiconductors and are using standard cells only. The taped-
out version including clock tree, filler cells and other layout overhead has a complexity of
around 4.4 kGE. Performance measures of the produced chip showed that it works correctly
with a supply voltage larger than 0.65 V. The gained frequency is thus reduced to around
2 MHz. When supplied with the full supply voltage of 3.3 V a maximum frequency of
80 MHz is reached. The design based on an 8-bit datapath requires 1,032 clock cycles to
encrypt one 128-bit block. Decryption requires 1,165 clock cycles. The throughput for
encryption at the maximum supply voltage—maximum frequency of 80 MHz is reached—
amounts to 9.9 Mbps. Reducing the power consumption was a big aspect of the authors
to enable AES in environments not imaginable at the time the paper was written. With
the incorporated power-reduction measures the power consumption of the chip operated
at a frequency of 100 kHz amounts to only 4.5 µW.

Similar results have been reported by Hämäläinen et al. [19] in 2006. They presented
an encryption-only design which occupies 3.1 kGE of chip area. In contrast to Feldhofer
et al. [11] no backend design was applied as the target was not a chip for production.
Therefore all numbers stated are gained after synthesis to the gate level using a 0.13 µm
standard-cell CMOS technology. Their design was based on an 8-bit datapath and requires
only 160 clock cycles per block. With the maximum frequency of 152 MHz a throughput
of 121 Mbps was achieved. Furthermore they performed a gate-level power analysis based
on switching activities when stimulated with random test vectors resulting in a power
estimation of 37 µW/MHz . Supporting AES decryption was estimated with an additional
chip area of 25 % resulting in 3.9 kGE.

Kaps et al. [29] and Kim et al. [34] reported encryption-only designs requiring around
4 kGE in total after synthesis to the gate level. Kaps et al. used a 0.13 µm ASIC library
from TSMC, specially characterized for low power. The design based on an 8-bit datapath
and supporting CBC mode is capable of encrypting one block of data (128 bits) within 534
clock cycles consuming a total power of around 24 µW when operated at 500 kHz. Kim et

29

30 CHAPTER 5. RELATED WORK

al. on the other hand used a 0.25 µm standard-cell CMOS process from Hynix Corp. and
Samsung Electronics. Their design encrypts one 128-bit block of data in 870 clock cycles.
For the power estimation Synopsys PowerCompiler was used resulting in 21.4 µW for the
Samsung Electronics technology and 4.85 µW for the Hynix Corp. technology. For both
estimations 2.5 V supply voltage were applied in combination with a clock frequency of
100 kHz.

At EUROCRYPT 2011, Moradi et al. [45] presented an area-optimized implementa-
tion of encryption-only AES which needs about 2.4 kGE after synthesis to the gate level
using the standard cell library UMCL18G212T3 which is based on the UMC L180 0.18 µm
process technology operating with a typical supply voltage of 1.8 V. For the power esti-
mation Synopsys Power Compiler version A-2007.12-SP1 was used. Both synthesis and
power estimation were applied with a target frequency of 100 kHz. Their work was split in
two parts targeting different goals, namely first solely low area and second to protect the
previous developed design against side-channel attacks (first order DPA). The unprotected
version occupies 2.4 kGE of chip area and requires only 226 clock cycles to encrypt one
data block, which marks the lowest level of state-of-the-art AES implementations. The
throughput and the power consumption amount to 57 Kbps and 7 µW, when operated with
100 kHz. The protected version on the other hand requires around 11 kGE. An encryp-
tion is performed within 266 clock cycles. The achieved throughput for 100 kHz operating
frequency amounts so to 48 Kbps and the power consumption to around 24 µW.

As opposed to AES, there exist only a few publications so far that describe low-
area optimizations for Grøstl on ASIC devices. Tillich et al. [62] have been the first who
presented an implementation requiring 14.6 kGE after synthesis to the gate level using
a 0.35 µm technology from Austriamicrosystems. They acquired their results with the
Cadence PKS shell with enabled low-power option. Their design requires 196 clock cycles
to compute the message digest out of one block of data with size of 512 bits. With
the maximum frequency of around 55 MHz a throughput of around 146 Mbps is capable.
The power consumption was estimated with around 221 µW when operated with a clock
frequency of 1 MHz. This achieved result also corresponds well to the area estimations
given in the Grøstl specification from Gauravaram et al. [15] which reported a size of less
than 15 kGE. Further implementations have been presented by Katashita et al. [31], Guo
et al. [18] and Henzen et al. [21] which require between 34.8 and 72 kGE after synthesis to
the gate level. The most recent work done by Kavun et al. [32] was presented in the scope
of the third SHA-3 conference in March 2012. Their design bases on an 8-bit datapath
has been synthesized to the gate level using a 90 nm technology and occupies 9.2 kGE of
chip area. For hashing a single block with size of 512 bits 1,280 clock cycles are required.
The throughput of 40 Kbps was achieved with a clock frequency of 100 kHz.

In view of FPGA platforms, large effort has been made to reduce the complexity by
reusing existing hardware components, e.g., Block RAMs, LUTs and DSPs. One of the
first low-resource AES implementations on FPGAs has been presented by Chodowiec and
Gaj [8] in 2003. Their AES-128 implementation needs 222 slices and 3 Block RAMs on
a low-cost Xilinx Spartan II XC2S30 FPGA supporting both encryption and decryption
with a throughput of 150 Mbps. The maximum frequency varies between 50 up to 60 MHz
depending on the speed grade of the FPGA. Besides other optimization techniques, they
made use of Look-Up Tables (LUTs) to efficiently implement shift registers such that
intermediate values can be easily shifted without generating additional address logic.

In the upcoming years, the design has been improved by several authors, e.g., by Good
et al. [17] who presented a design needing only 124 slices and 2 Block RAMs of size 4 Kb on

31

a Xilinx Spartan II XC2S15-6. Their design was based on an 8-bit datapath and achieved
an average throughput of 2.2 Mbps. The maximum frequency was limited to 68 MHz.
Other implementations have been reported by Chi-Wu et al. [22] and Bulens et al. [3]. The
former reported a design with an 32-bit datapath occupying 148 slices and 11 Block RAMs
on a Spartan-3 XC3S200. As througput and maximum operating frequency 647 Mbps and
287 MHz were stated. The latter reported a design which uses no Block RAMs and stated
results for a Virtex-5 and a Spartan-3 FPGA. The design supporting both encryption and
decryption occupies on a Virtex-5 550 slices in contrast to 2,150 slices on a Spartan-3.
As maximum frequency 350 MHz for the Virtex-5 and 150 MHz for the Spartan-3 were
presented. The througput is limited to 4.1 and 1.7 Gbps, respectively.

A very compact FPGA implementation of Grøstl has been presented by Jungk et
al. [25, 26, 27] in 2010, 2011 and 2012. The latest work has been presented at the third
SHA-3 conference. They applied several optimization techniques on Grøstl that have been
previously applied on AES. Their design based on an 64-bit datapath needs 1,125 slices
on a Spartan-3 FPGA (note that the design needs only 967 slices without Fast Simplex
Link (FSL) interface) and 470 slices on a Virtex-5 FPGA (355 slices without Fast Simplex
Link (FSL) interface) requiring no Block RAMs. The interface affects the throughput only
minimal. For the Spartan-3 FPGA the throughput is limited to around 580 Mbps and the
maximum frequency to around 180 MHz. Exchanging the Spartan-3 through an Virtex-5
FPGA roughly doubles both the throughput and the maximum frequency.

Sharif et al. [60] reported results for Grøstl on four different FPGA types in 2011. For
the Virtex-5 they reported 1,627 slices (without Block RAMs) and 1,141 slices (using 18
Block RAMs). In the same year, Kerckhof et al. [33] presented an implementation that
needs only 343 slices on a Spartan-6 and 260 slices on a Virtex-6 FPGA (without using any
Block RAMs or DSPs). This design exhibits a maximum frequency of 240 and 280 MHz,
respectively depending on the FPGA used. Same applies for the throughput as it features
either 548 Mbps or 640 Mbps. In 2012, Kashif et al. [37] presented an efficient hardware
design for Grøstl providing a good trade off between area and throughput. The area
occupied on a Virtex-5/Virtex-6 FPGA was reported with 1,419/1,467 slices. Regarding
throughput 6.20/9.62 Gbps were achieved.

The state-of-the-art regarding low-area implementations of Grøstl targeting FPGAs
was presented at the third and last SHA-3 conference. Kaps et al. [30] reported two designs,
one using Block RAMs and one without where all Block RAMs were exchanged through
distributed RAM. The latter variant needs 357 clock cycles to compute the message digest
for a message consisting of 512 bits of data. They furthermore listed results for Xilinx
Spartan-3 and Spartan-6 as well as for Xilinx Virtex-5 and Virtex-6 FPGAs. The logic-only
version occupies on a Spartan-3 xc3s50-5 766 slices and achieves a maximum throughput
of 97.9 Mbps. On a Spartan-6, Virtex-5 and Virtex-6 FPGA 230, 313 and 263 slices are
required.

While there exist several papers that analyze the combination of different block ci-
phers and hash functions (mostly combining MD5 with SHA-1, e.g., [6, 14, 24, 63]), there
exist only one publication that focuses on the combination of AES and Grøstl on FPGA
platforms. Järvinen [23] analyzed various resource-sharing techniques to reduce the area
requirements for an Altera Cylcone III. Their smallest design needs 12,387 Logic Cells
(LCs) whereas AES takes an overhead of about 2.5 %, i.e., 300 LCs.

A combined ASIC version of AES and Grøstl has been not reported so far. To the
best of our knowledge this master thesis presents the first taped-out combination of AES
and Grøstl.

32 CHAPTER 5. RELATED WORK

Chapter 6

Asynchronous Interfaces

Complex systems—e.g., a system on chip (SOC)—can no longer be designed in one step.
Therefore, a modular achitecture is inevitable. As the various subsystems do not necessar-
ily have to be operated with the same clock frequency, problems with data exchange can
occur. The reason for is that the possibility of synchronizing the clock is not always given.
In order to understand the arising problems, an introduction to synchronous digital circuits
and basic terms used within is given. Afterwards, the threats of data exchange between
subsystems where no clock information or synchronization is given will be addressed.

6.1 Synchronous Digital Circuits

In the field of digital circuits two different logic variants exist. The first variant named
combinational logic contains only components where the output changes immediately with
the input. Examples for are XORs, ANDs and the like which take the input and deliver
the appropriate output. Sequential logic instead is built upon elements which are able
to store information, e.g., flip flops or latches. The output of such storage elements
changes therefore only at the positive clock edge in case of a positive edge-triggered one-
phase clocking scheme. Nowadays, many of such schemes exist. Chapter 6 of the book
“Digital Integrated Circuit Design” [28] gives a deeper insight into the various possibilities
of operating a digital circuit. This chapter will concentrate on the edge-triggered one-
phase clocking scheme only as shown in Figure 6.1. This means that the output of a flip
flop changes only at the positive edge of the clock signal.

The clock distribution in such systems is difficult to establish as the clock signal should
arrive at each component at the same time. Due to physical and process-technical reasons
this cannot be guaranteed. Also the humidity, ambient temperature, local on-chip tem-
perature trend, constant supply voltage and the like influence this behaviour. Therefore,
tools have been developed to hold the difference between point-of-time arrivals at various
components as low as possible. This aspect is also called clock skew and strongly influ-
ences the maximum clocking rate. Another fact regarding the clock arrival times is called
clock jitter and describes the local clock deviation at a single component from cycle to
cycle.

• Clock skew - Deviation of clock arrival times at various components.

• Clock jitter - Deviation of clock arrival times at a single component (deviation
between consecutive clock cycles).

33

34 CHAPTER 6. ASYNCHRONOUS INTERFACES

Storage elements like flip flops, latches and the like must be provided with a stable and
constant clock in order to gain a reliable operation. In addition, a few more terms must
be introduced. The most important ones for storage elements are the setup time and the
hold time. Through these times a window named data-call window is being stretched
around the clock cycle. During that interval no change of the input value at the receiver flip
flops is allowed. Otherwise, a malfunction of the storage element—unpredictable output
or extended time until output has been settled—could occur. This input value is further
provided by the output of the transmitter flip flop. As both are triggered with the same
clock it is important that the hold-time condition of the receiver is fulfilled. Therefore, two
more terms must be introduced, namely the contamination delay and the propagation
delay. Both times target the signal propagation in combinational circuits only.

Figure 6.3 presents, for example, such a combinational network. The functionality
is a two-input AND function built upon NOR gates. Both inputs can change either at
an arbitrary moment in time or at the positive clock edge if coming from the output of
a storage element like a flip flop. The assumption for the following explanation is that
both inputs to the combinational network are gained through outputs of storage elements
triggered with the same clock. Depending on the clock skew, clock jitter, length of the
signal line and further the specific properties of each storage element, changes in the storage
elements output very probably do not arrive at the same moment of time at the inputs
to the combinatorial network. The components of the combinatorial network exhibit also
different properties. Further, the length of the signal lines must be not equal. As already
the inputs to the combinatorial network do not exactly change at the same moment in
time the signal variation is enhanced. As signal lines can be combined over combinatorial
logic elements and the fact that changes to their inputs can occur at different moments in
time an output of the combinatorial network can change more than once per clock cycle.

With this knowledge the terms contamination delay and propagation delay are finally
ready to be explained. The contamination delay is the time from the positive clock edge
until the input of the receiver’s flip flop changes the first time. This time period depends on
the network between the transmitter and the receiver (each element on a network’s signal
line contributes to the contamination delay). A change in the output of the transmitter’s
flip flop shows therefore a delayed impact on the input of the receiver’s flip flop. This
time is exactly what is understood as contamination delay. The propagation delay is the
time until the output of the combinatorial network—input of the receiver’s flip flop—has
settled. The time in between the first change of the input to the receiver’s flip flop and
until it has settled is critical as there changes of the signal are allowed to occur which
implies that the data-call window is not allowed to overlay with this area. The inverse
time on the other hand is called data-valid window as no changes at the receiver’s input
occur. These terms are also presented in detail in the Anceau diagram in Figure 6.2.

• Setup time (tsu)
Time before the positive clock edge the input is not allowed to change.

• Hold time (tho)
Time after the positive clock edge the input is not allowed to change.

• Contamination delay (tcd)
Time from the positive clock edge to the first change of the receiver’s input.

• Propagation delay (tpd)
Time from the positive clock edge to the last change of the receiver’s input.

6.1. SYNCHRONOUS DIGITAL CIRCUITS 35

D Q

ClkxC

D QC

Delay Delay

tdi xmt tdi rcv

Transmitter Receiver

≤

Figure 6.1: Edge-triggered one-phase
clocking scheme with included clock
skew.

tsu tho

tcd

tpd

Hold margin

Setup margin

Active edge
at receiver

Active edge
at transmitter

Clock skew

Figure 6.2: Anceau diagram of the edge-
triggered one-phase clocking scheme.

In IxDI

OutxDO

In IIxDI

Figure 6.3: Combinatorial logic for a two-input AND function built upon NOR gates.

• Data-call window
Time interval spanned up through the setup time and the hold-time condition (time
where the receiver’s input must be constant).

• Data-valid window
Time interval spanned up through the contamination delay and the propagation
delay (time where the receiver’s input is constant).

Each digital circuit must be designed with keeping the timing analysis in mind which
can be fulfilled with an Anceau diagram. For a better understanding a closer look at
the Anceau diagram of Figure 6.2 is given. The time is propagating clockwise with the
circumference as reference to one clock cycle. As first step both clock triggers—one for the
transmitter and one for the receiver flip flop—must be registered. Afterwards, the setup
time and hold time—values given through the characterization of the manufacturer—
of the receiver’s flip flop must be entered around its active clock edge. Therefore, the
data-call window is implicitly stretched represented through the dark-gray segment of the
Anceau diagram. Afterwards, the contamination delay—encompassing all delays given
on the shortest way from the transmitter to the receiver—and the propagation delay—
summed up delays on the longest path—are entered starting each at the active clock edge
of the transmitter and forming so the data-valid window represented through the light-
gray segment. The white segment in between forms the time interval where the data input
of the receiver is not constant which implies that a valid operation can be guaranteed only

36 CHAPTER 6. ASYNCHRONOUS INTERFACES

if the data-call window is fully encompassed by the data-valid window as for instance in
the example in Figure 6.2.

In Figure 6.1 a combinational network is included between the receiver and the trans-
mitter flip flop. On the one hand it is a positive effect for the hold time as the contamina-
tion delay gets increased but on the other hand it reduces the maximum frequency as also
the propagation delay increases. In the case of lag elements—various flip flops connected
together in series—where no combinatorial networks are available the characteristics of the
chosen flip flops must be inspected carefully as the contamination delay must be larger
than the hold time.

6.2 Asynchronous Interfaces for Synchronous Digital Cir-
cuits

In Section 6.1 an introduction to synchronous digital circuits was given. A bigger problem
depicts the communication between systems or subsystems where no information about the
clock cycle is shared. This section dedicates to asynchronous interfaces for synchronous
digital circuits and the problems coming with them. Additionally, it addresses how to
resolve and mitigate these problems. For easing the description the clock-distribution
network is seen as ideally. Therefore, neither clock jitter nor clock skew is considered.

6.2.1 Inconsistent Data

Figure 6.4 shows the basic hardware organization of a single-edge triggered one-phase sys-
tem similar to the one in Section 6.1. For easing the analysis the delay components one
to four combine all the delays—flip flop delay as well as connection-line delay—between
the receiver and the transmitter flip flop. Furthermore, as no combinational network is
included the contamination delay is equal to the propagation delay. With these simpli-
fications and the single-clock domain the timing analysis can be applied very easily. In
addition to the Anceau diagram presented in Figure 6.6 also the timing diagram is given
in Figure 6.5. In both diagrams it is easily recognizable that the data is taken over in a
correct manner.

Now the system is split up into two clock domains as shown in Figure 6.7. Both
subsystems are single-edge triggered one-phase systems where the right unit (clock domain
II) contains a plain bit-parallel synchronization. The difficulty for exchanging data is
that no clock information is shared between the two subsystems and therefore successful
transferring of data is not guaranteed. If this fact gets overlooked troubles regarding
the validity of the data received and stored in subsystem two can occur as presented in
Figure 6.8. Two times the data is taken over at moments where the data-call window is
not fully encompassed in the data-valid window. The first time this condition gets violated
the data stays constant all over the data-call window thus no data inconsistency can be
observed. During the second time DataxD[1] changes during the data-call window and
therefore a crossover pattern is taken over. Furthermore, as the input to the flip flop stays
not constant over the setup and hold time a metastable behaviour could occur manifesting
in intermediate voltages or extensive delays for settling to a valid output value.

6.2. ASYNCHRONOUS INTERFACES FOR SYNCHRONOUS DIGITAL CIRCUITS37

D Q

Clock domain I

Clk IxC

D Q

D Q

4

Delay 0

Delay 1

Delay 2

Delay 3

D Q

D Q

4 4
DataxD[3]

DataxD[2]

DataxD[1]

DataxD[0]

Figure 6.4: Basic hardware organization of a single-edge triggered one-phase system.

Clock I

DataxD[3]

DataxD[2]

DataxD[1]

DataxD[0]

06h 07hDataxD

D
el
ay
3

D
el
ay
2

D
el
ay
1

D
el
ay
0

D
el
ay
3

D
el
ay
2

D
el
ay
1

D
el
ay
0

D
el
ay
3

D
el
ay
2

D
el
ay
1

D
el
ay
0

tsu
tho

tsu
thotho

Figure 6.5: Timing diagram for a single-edge triggered
one-phase system.

Active edge
at clock terminal

tsu tho

max{tpd 0, tpd 1,
tpd 2, tpd 3}

min{tcd 0, tcd 1,
tcd 2, tcd 3}

Figure 6.6: Anceau diagram
of a single-edge triggered one-
phase system.

6.2.2 Measures Against Inconsistent Data

In order to prevent taking over inconsistent data various methods have been developed.
One is called unit-distance coding where each change of the data is at maximum one
step in either direction (data value changes only by one), which limits the applicability
to acquisition of position, angle encoder and such like. Furthermore, a data converter is
necessary to transform the binary representation into a coding scheme where for each step
only one bit changes which is equal to a hamming distance of one. Another possibility

38 CHAPTER 6. ASYNCHRONOUS INTERFACES

D Q

Clock domain I Clock domain II

Clk IxC Clk IIxC

Clock boundary

D Q

D Q

4

Delay 0

Delay 1

Delay 2

Delay 3

Synchronizer

D Q

D Q

4 4
DataxD[3]

DataxD[2]

DataxD[1]

DataxD[0]

Figure 6.7: Basic hardware organization of two independent single-edge triggered one-
phase systems.

would be the suppression of crossover patterns. Therefore, the data is only taken over if
in two consecutive cycles the data stays constant. Advantage compared to the previous
method is that the data must not be converted into another representation. Drawback on
the other hand is the delayed data acquisition. Both approaches allow that inconsistent
data enter the receiver’s circuit. This contrasts with handshaking protocols where the
updating—transmitter’s circuit—and sampling of data—receiver’s circuit—is regulated
by control lines. For a full handshaking two of them are required: request REQ and
acknowledge ACK. Partial handshaking instead requires only the request control line.
This section targets only at full handshaking protocols, namely the two-phase and the four-
phase handshaking. Further details about partial handshaking can be found in Chapter 7
of the book “Digital Integrated Circuit Design” [28].

For easing the description of the two/four-phase handshaking Figure 6.10 presents the
basic hardware organization. Both circuits contain a finite state machine controlling the
handshaking procedure. Furthermore, each of these circuits contains additionally a scalar
synchronizer subcircuit which is required for storing the state of the control line and to
prevent metastable signals entering the circuits.

Next, the sequence of the four-phase handshaking is described by referencing to Fig-
ure 6.11. In order to transfer valid data the transmitter must first rise the request line.
The receiver on the other side listens as long as it recognizes this event which is represented
by the first cycle of the request line. At the next positive clock edge of clock domain II—
both systems are again single-edge triggered one-phase systems—the receiver takes over
the data and additionally rises the acknowledge line to signal the transmitter that the
data has been successfully taken over. Now the same applies for the transmitter as before
for the receiver, namely that it listens as long as it recognizes that the acknowledge signal
has changed represented by the first circle on the acknowledge line. At the next positive
clock edge of the first clock domain the request line is set back to its original state. The
receiver again waits for this event (second circle on the request line) and resets with the
next clock of its clock domain the acknowledge signal. Now both control lines are back

6.2. ASYNCHRONOUS INTERFACES FOR SYNCHRONOUS DIGITAL CIRCUITS39

tsu
tho

tsu
tho

tsu
tho

tsu
tho

D
el
ay
3

D
el
ay
2

D
el
ay
1

D
el
ay
0

Clock I

Clock II

DataxD[3]

DataxD[2]

DataxD[1]

DataxD[0]

06h 07hDataxD

D
el
ay
3

D
el
ay
2

D
el
ay
1

D
el
ay
0

D
el
ay
3

D
el
ay
2

D
el
ay
1

D
el
ay
0

tsu
tho

(a) (a) (a)(b) (b)

Figure 6.8: Timing diagram for the two independent
single-edge triggered one-phase systems.

Active edge
at clock terminal

tcd

tpd

Clk IxC

Active edge

at clock terminal

tsu

tho

Clk IIxC

tsu

tho

Active edge
at clock terminal

Clk IIxC

(a) (b)

Figure 6.9: Anceau dia-
gram for the two indepen-
dent single-edge triggered
one-phase systems.

in their original state. After the transmitter recognizes the original states of the control
lines (second circle on the acknowledge line) it applies with the next clock cycle of clock
domain I the next valid data to be transferred and starts the next transaction.

Taking a closer look at this scheme shows that it is not optimal regarding time con-
sumption as both control lines must be set back to their original state after the data has
been taken over. The two-phase handshaking protocol resolves this drawback—next valid
data is applied after recognizing that the data has been successfully taken over—with
the impact of a slightly higher area consumption as a more complex finite state machine
is required. The time for one transaction therefore can be cut in half compared to the
four-phase handshaking as the control signals must not be set back.

40 CHAPTER 6. ASYNCHRONOUS INTERFACES

Finite
state

machine

Finite
state

machine

ENA

D Q
C

(Optional)

Scalar

subcircuit
synchronizer

Scalar

subcircuit
synchronizer

ACK

REQ

Data

ENA

D Q
w

Clock boundaryClock domain I Clock domain II

Figure 6.10: Basic hardware organization of four-phase handshaking.

Clock domain I

Clock domain II

Request

Acknowledge

Data

1st transfer 2nd transfer

Figure 6.11: Representative timing diagram of four-phase handshaking.

Chapter 7

Basics on Xilinx FPGAs

FPGAs in general are devices that feature a very regular structure of various logic elements.
The main components are flip flops with a combinational network in front in order to
realize the desired functionality. Furthermore, these components can be linked together
to build more complex functions. The input width of these LUTs depends on the FPGA’s
level of complexity and is therefore strongly addicted from the chosen FPGA family. In
most of the cases the logical switches and storage elements are realized through Static
Random Access Memory (SRAM) storage cells which lose their content when switching
off the power. Devices built upon these cells require an initial phase—i.e., a configuration
process—during which the LUTs and logical switches are configured. This information is
stored typically in a special Flash ROM.

The first company that introduced this kind of programmable devices was Xilinx.
Nowadays, Xilinx is the leader regarding FPGA devices. The second most important
manufacturer is Altera. Both offer a broad spectrum of various FPGAs starting with low-
cost devices and ending up with high-tech devices. Therefore, all areas of application can
be covered. The differences between the various FPGA families of each manufacturer are
mainly the number and complexity of available logic cells. In respect of the manufacturers
peculiarities various minor and major differences exist. One example for a minor difference
is the clock divider structure—creating from a reference (input) frequency a desired output
frequency—which is done on the one hand via delay-locked loops (DLLs) for Xilinx FPGAs
and on the other hand by phase-locked loops (PLLs) for Altera FPGAs. For the list of
major differences the routing structure is noteworthy to be mentioned. As this work is
partly based on a Xilinx Spartan-3 XC3S400 all further explanations target this special
FPGA device [13].

7.1 General Structure

The general structure of a Xilinx Spartan-3 FPGA is shown in Figure 7.1. Around the
internal logic all the Input/Output Blocks (IOBs) are located controlling the data flow
between the I/O pins and the internal logic. Furthermore, the IOBs can be configured
for bidirectional data flow and 3-state operation, respectively. Main part of the internal
logic are the Configurable Logic Blocks (CLBs) which contain storage elements—can be
used as flip flops or latches—and combinational logic networks in order to implement
logical functions. These networks are built from RAM-based LUTs. The Xilinx Spartan-
3 XC3S400 contains in sum 896 of these CLBs arranged in an array of 32 rows and

41

42 CHAPTER 7. BASICS ON XILINX FPGAS

IOBs

IOBs

IO
B
s

IO
B
s

IOBs

Spartan-3

FPGA

MultiplierBlock RAM

CLB DCM

X0Y3

X0Y2

X1Y3

X1Y2

X0Y1

X0Y0

X1Y1

X1Y0

X2Y3

X2Y2

X3Y3

X3Y2

X4Y3

X4Y2

X5Y3

X5Y2

X2Y1

X2Y0

X3Y1

X3Y0

X4Y1

X4Y0

X5Y1

X5Y0

Figure 7.1: Arrangement of CLBs and Slices within a Xilinx Spartan-3 FPGA.

28 columns. Further details on CLBs are given in Subsection 7.1.1. In order to provide
various clock signals—potentially required for the internal logic—generated from reference
signals this special Xilinx FPGA features four Digital Clock Managers (DCMs). These are
fully digital solutions for distributing, delaying, multiplying, dividing and phase shifting
of clock signals. Furthermore, 16 dedicated multiplier blocks exist which accept two 18-bit
binary numbers and deliver the product as output. Last but not least another variant of
storing data namely Block RAMs (BRAMs) is provided. In addition to distributed RAM
where the maximum storage space is 56 Kb—storage elements of the CLBs are connected
together—another 288 Kb of data can be stored in BRAM. More details on both storage
variants are given in Subsection 7.2.1 and Subsection 7.2.2. Numbers and details for
the other devices of the Spartan-3 family can be looked up in the Spartan-3 Generation
FPGA User Guide [68]. Same applies for all components as only CLBs and Slices will
be explained in detail. The reason for this is that this thesis is concerned with low-area
and low-memory footprints, respectively where knowledge about the storage possibilities
of FPGAs is necessary.

7.1.1 Configurable Logic Block (CLB)

CLBs represent the major blocks for implementing sequential as well as combinational
circuits. Figure 7.2 shows the structure for a CLB of the Spartan-3 XC3S400 in detail. It
consists of four slices interconnected with each other. In addition these slices are grouped
in pairs named Left-Hand SLICEM and Right-Hand SLICEM. Difference is that the
former pair has two additional functions, one for storing data using distributed RAM and
one for shifting data with 16-bit registers, or in short Shift-Register Logic (SRL). Both
functions are explained in detail in Subsection 7.2.2 and Subsection 7.2.3.

7.1.2 Slice

Each slice has the following elements in common: two logic function generators, two
storage elements, wide-function multiplexers, carry logic and arithmetic gates. The two

7.2. MEMORY VARIANTS FOR SPARTAN-3 FPGAS 43

S
ta
te

m
a
tr
ix

Slice
X0Y1

X0Y0
Slice

X1Y1
Slice

x1Y0
Slice

Shift in/out

X0Y1

X0Y0

X1Y1

X1Y0

CLB

In
te
rc
o
n
n
e
ct

to
n
e
ig
h
b
o
rs

CIN

CIN

COUT

COUT

Left-hand SLICEM Right-hand SLICEL

(logic, distributed RAM,
shift register)

(logic only)

Figure 7.2: Arrangement of Slices within a CLB.

logic function generators are realized through LUTs and build the main resource for im-
plementing logic functions. In some cases the functional complexity reached with these
elements is not enough and must therefore be extendable. A solution is given over the
wide-function multiplexer which combines LUTs to realize more complex logic functions.
This is even more important on low-cost devices as there the complexity—size of LUTs—is
quite limited. Sequential circuits can be realized with the two storage elements which can
be configured as either D-type flip flop or level-sensitive latch. The carry chain, together
with various dedicated arithmetic logic gates represent a powerful combination in order
to support fast and efficient implementations of mathematical operations. Summarizing,
with these components, logic, arithmetic and ROM functions can be realized.

7.2 Memory Variants for Spartan-3 FPGAs

Hardware designs are often limited by their required storage size. In order to overcome
these limitations and to address further challenges like high-speed designs, low-area foot-
print and the like various possibilities are provided by the manufacturers. Three kinds of
memory are therefore addressed in the next subsections: Block RAMs, distributed RAM
and SRL16.

7.2.1 Block RAM (BRAM)

Generally, state-of-the-art FPGAs feature—independent of the manufacturer—Block RAMs
which are simply large on-chip memories. Focusing on the Xilinx Spartan-3 FPGA family
further configurations can be applied to use this storage as RAM, ROM, FIFOs, large
look-up tables, shift registers, data width converters and circular buffers. Each of these
special modes of operation additionally features various data widths and depths and can

44 CHAPTER 7. BASICS ON XILINX FPGAS

Table 7.1: Details about the Block-RAM sizes for Xilinx Spartan-3 FPGAs.

Device RAM RAM Blocks Total RAM Total RAM
Columns per Column Blocks Bits

XC3S50 1 4 4 73,728

XC3S200 2 6 12 221,184

XC3S400 2 8 16 294,912

XC3S2000 2 20 40 737,280

XC3S5000 4 26 104 1,916,928

therefore be adapted for nearly every application. In order to ease accessibility and us-
age, Xilinx provides so-called Core Generators where the developer is able to generate
the modules by a graphical wizard which leads in a convenient way through the whole
configuration. Another possibility targeting experts only is the configuration over VHDL
or Verilog instantiations. From experience it showed that it is more practical to use the
graphical user interface as from time to time updates of the libraries, design tools (Xilinx
ISE) and the Core Generator in special are provided. Newer versions of the Core Genera-
tor allow to implicitly update the components generated with an older version. Therefore,
a straightforward way of updating the whole toolchain in an appropriate manner is given.

In order to get an overview of the available storage gained through the usage of BRAMs
Table 7.1 summarizes the numbers for the various Xilinx Spartan-3 FPGA variants. These
numbers are taken from the application note for the Spartan-3 FPGA family [65].

Figure 7.3 gives an overview of the BRAM locations for the Xilinx Spartan-3 XC3S400
device. As stated in Table 7.1 this special type features two columns with each having 8
BRAMs. Therefore, beside the CLBs in sum an additional storage size of 294,912 bits is
available. Further details on the various modes of operation and the accessibility can be
found in the application note for Xilinx BRAMs [65].

Summarizing, BRAMs are a welcome improvement regarding storage-size extensions
and their accessibility. Nonetheless, also drawbacks exist as for example they are not
recommended for high-speed designs. The reason for this is their fixed location which
implies longer signal lines. This differs to distributed RAM where the storage can be
placed directly beside the logic. More details on distributed RAM follow in the next
subsection.

7.2.2 Distributed RAM (LUT RAM)

Beside Block RAMs Xilinx FPGAs feature another possibility of storing data called dis-
tributed RAM where the LUTs of slices are reused as 16 x 1-bit synchronous RAM.
Limitation for this mode of operation is the fact that only slices in the SLICEM group are
supported. A CLB of a Spartan-3 FPGA contains up to 64 bits of single-port RAM and
32 bits of dual-port RAM, respectively. Write operations are synchronous which contrasts
to asynchronously read operations. Should a synchronous read operation be inevitable,
the register associated with each LUT can be used to resolve this problem. Furthermore,
each 16 x 1-bit RAM is combinable with other RAM types of same kind and is therefore
cascadable for deeper and/or wider memory applications. The only drawback is a minimal
timing penalty through specialized logic resources.

In order to create primitives such as single-port and dual-port RAMs, the Xilinx Core
Generator is used. The advantage is that it outputs already optimized distributed RAMs

7.2. MEMORY VARIANTS FOR SPARTAN-3 FPGAS 45

IOBs

MultiplierBlock RAM

DCMCLB2 CLBs

Figure 7.3: Arrangement of Block RAMs for Xilinx Spartan-3 XC3S400 FPGA.

targeting the desired FPGA structure. Summarizing, distributed RAM is fast, localized
and ideal for small data buffers, FIFOs, or register files [66].

Single-Port/Dual-Port RAMs

Dual-port RAMs are a special kind of RAMs where a read and a write operation can be
applied simultaneously on the same storage space. Xilinx FPGAs handle this by allocating
the double of the size as usually required. For example, if a dual-port RAM with 16 x
1-bit memory is desired, the Xilinx Core Generator allocates two LUTs both of size 16-bit.
As Figure 7.4 shows two read outputs are available but only one write input. The reason
for this is that the storage space gets mirrored and the write operation is applied on both
of them. Hence, both address spaces contain always the same data which enables the
functionality of an independent read operation.

7.2.3 Shift-Register Logic (SRL16)

Figure 7.5 shows the basic configuration of a slice’s LUT which is realized through common
flip flops. It represents an arbitrary logical function which is expressible through a truth
table fitting in the size of the LUTs and their appropriate input width of four bits. An
example is given in Figure 7.5 a.) where the truth table of a four-input AND function
is stored in the LUT. The input variables to the logical function are given through the
address input. The output D represents the result of the four-input AND function with

46 CHAPTER 7. BASICS ON XILINX FPGAS

R/W Port
D

Address

Write

WCLK

O

Read

Single-port RAM

R/W Port
D

Address

Write

WCLK

SPO

Read

Dual-port RAM

Address

Read

Read Port
DPO

Figure 7.4: Single-port and dual-port distributed RAM.

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 11001011 1101 1110 1111A[3:0]

D

0 0 0 0 0 0 00 0 0 0 0 0 0 0 1

Constant value programmed in LUT

A[3:0] D=LUT(A[3:0])

LUT

a) b)

Figure 7.5: LUT modeled as 16:1 multiplexer. Schematic is shown in a) whereas the
equivalent circuit diagram is presented in b).

address lines acting as input variables.

The SRL16 mode is similar to distributed RAM as it reuses the LUTs of SLICEMs
as 16-bit shift registers. This mode of operation is shown in Figure 7.6. In contrast to
the common mode the outputs of the flip flops are connected in addition to the input
of the next flip flop. Therefore, a shift-register scheme is achieved. One LUT of the
Spartan-3 XC3S400 can contain at most an 16-bit shift register. In this case the output is
provided from the last flip flop (Q15). The size can be adapted through a dynamic length
adjustment. For this purpose the 16:1 multiplexer can be used as each output of the flip
flops is connected to it. In order to achieve an 8-bit shift register the output of the 8th flip
flop is chosen through the address inputs. This adjustment is also shown in Figure 7.6.

The structure of such an SRLC16 cell is shown in Figure 7.7. Each LUT is associated
with a further flip flop in order to create a synchronous output. If this behaviour is not
required than the flip flop can be skipped ending up with a combinational output.

Sometimes it is required to build shift registers exceeding the maximum size of one
LUT (16 bits). In that case it is possible to connect more shift registers together in order
to achieve the desired size. Such a construction is shown in Figure 7.8. In detail one
CLB contains in sum four slices grouped in pairs of two. These are called SLICEM and
SLICEL. Only slices in the SLICEM group can be reconfigured to operate in shift-register
mode of operation. The others are designated for logic only. Therefore, the maximum
shift-register width for one CLB is limited to 64 bits as only four of the eight LUTs can
be reconfigured. [67]

With this mode of operation, cost savings of an order of magnitude can be achieved. As
the SRL16 mode is mainly automatically inferred by the software tools it is important to

7.2. MEMORY VARIANTS FOR SPARTAN-3 FPGAS 47

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 11001011 1101 1110 1111A[3:0]

D or Q7

LUT configured as 8-bit shift register

D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q D QDIN

CLK

Q15 or MC15D Q D Q D Q D Q D Q D Q D Q D Q

Figure 7.6: LUT configured as 8-bit shift register.

Shift register

A[3:0]

WS

DI

Q15/MC15

D

D Q

(Optional)

WSG

WE

CK

DI

CE

A[3:0]

CLK

Shiftin

Shiftout

Output

Registered
output

4

SRLC16

Figure 7.7: Structure of the SRLC16 cell.

write the code in an appropriate manner. For example, the flip flops used to build the slice
LUTs have no reset functionality. If code for shift registers is written for ASIC designs
and overtaken for FPGA design flows targeting the SRL16 mode, the efficiency of the
automatically inferred design is mitigated. The reason for this is the reset functionality
as the software tool is not able to decide if it is required out of design reasons or not.
Adapting the code snippet can lead to additional cost savings as therefore the software
tools should be able to recognize more possibilities to instantiate SRL16 cells. Further
details on writing appropriate code for the SRL16 mode can be found in the white paper
“Saving Costs with the SRL16E” [7].

48 CHAPTER 7. BASICS ON XILINX FPGAS

SRLC16

DDI

MC15/Q15

SRLC16

DDI

MC15/Q15

SRLC16

DDI

MC15/Q15

SRLC16

DDI

MC15/Q15

D Q

D Q

D Q

D Q

In

Out

SLICEM S1

SLICEM S0

Figure 7.8: Cascading SRLC16 cells inside a CLB in order to extend the shift-register
width up to 64 bits.

Chapter 8

GrÆStl - a Combined AES/Grøstl
Hardware Architecture

This chapter concentrates on the development of a combined AES/Grøstl hardware ar-
chitecture targeting ASICs and FPGAs. For easing the design flow no technology or
platform-dependent components such as RAM macros, DSPs, or Block RAMs are used.
All design decisions were affected by keeping the target of a small area footprint—occupied
die area for ASICs and number of occupied slices for FPGAs—in mind.

This chapter is organized as follows. In Section 8.1 an examination of various AES and
Grøstl variants is presented in order to gain information about the best way to combine
AES and Grøstl. In Section 8.2 the taped-out chip named Chameleon containing the
cryptographic modules AES-128, Grøstl-224 and GrÆStl is described. The starting point
is the top-level module of the chip which handles the communication with the external
world over a four-phase handshaking and additionally the data distribution to the various
modules. As the focus of this work was the development of GrÆStl and the fact that the
single versions for AES-128 and Grøstl-224 are contained in the common architecture, a
detailed description is only given for the shared variant. Finally Section 8.3 presents the
results for both platforms—ASIC and FPGA—before a comparison with related work is
given in Section 8.4.

8.1 On the Search for Optimal Resource Management

In order to gain an optimal resource sharing hardware architecture supporting AES-128 as
well as Grøstl-224 both algorithms must be analysed regarding their resource requirements.
This process is done on an abstract level as for a detailed analysis concrete implementations
would be required. For time saving-reasons the architecture is simply reduced to the
components and their size regarding the used datapath width and their corresponding
cycle count. Details on both algorithms can be found in Section 3 and Section 4. As AES
decryption uses similar hardware resources as its counterpart the AES encryption, only
the latter is considered during this analysis phase. Noticeable differences would be the
higher cycle count for the decryption in order to compute from the master key to the last
round key before the actual decryption can be computed and also a slightly more complex
MixColumns operation.

To stay on an abstract level, values for the component sizes have to be assumed.
Therefore first the size (complexity) for a flip flop was determined with respect to a 2-

49

50 CHAPTER 8. GRÆSTL - A COMBINED AES/GRØSTL HW ARCHITECTURE

input NAND gate. According to the standard-cell library and a 2-input NAND gate
a single flip flop exhibits a size of 6.25 GE. Afterwards, the size of registers was com-
puted through a linear approximation. An 128-bit register is therefore of size 800 GE
(800 GE = 128×6.25 GE). The size of a SubBytes component is well known and was
estimated according the paper from Wolkerstorfer et al. [64] to around 300 GE. The
MixColumns/MixBytes component was evaluated through existing work and an exam-
ple implementation. The size was so determined to around 200 GE and 400 GE, respec-
tively. As the MixColumns/MixBytes component can be used with different output
widths a possibility must be given to easily recompute the size in an appropriate manner
(the input size must be either 32 bits for AES or 64 bits for Grøstl as it operates always on
a full state column). In order to keep the analysis simple the factor required to get from
the base width to the target width is used. For example, if the MixColumns component
with an 32-bit output is required the size is computed to 800 GE (800 GE = 4×200 GE).
The assumed values for the various components are given in the following list:

• 128-bit register → 800 GE

• 512-bit register → 3200 GE

• 8-bit SubBytes → 300 GE

• 8-bit MixColumns (AES) → 200 GE

• 8-bit MixBytes (Grøstl)→ 400 GE (as resources can be shared, size is only roughly
doubled compared to the AES variant)

Next, various hardware architectures for AES-128 (encryption only) and Grøstl-224
are examined regarding their required resources. AES decryption is not considered. The
reason for is that an AES encryption/decryption features a similar structure. Only the
sequence of operations is slightly modified and the components used are the inverse as for
the encryption. The encryption-only consideration is therefore enough to determine the
optimal resource sharing variant.

To stay compliant throughout all variants it is assumed that for AES both the message
to be encrypted and the masterkey as well as for Grøstl only the message are already loaded
into the system (not constantly applied from external!). Furthermore, for Grøstl only the
P/Q computation is considered as it represents the core of the system and the fact that
the truncation is based on resources already contained in the P -block. Regarding only the
hardware resources is not enough as these must be connected together in an appropriate
manner. Due to this fact an additional overhead (20 percent of the hardware resources)
is added to the overall size.

Starting point for the examination is an AES architecture with full-size datapath. In
that case two 128-bit registers are used in order to store the message and the actual round
key. The latter is computed in parallel on-the-fly. To avoid latencies caused by compu-
tation delays of the round key, the architecture must be carefully designed. Therefore,
to the 16 SubByte units of the encryption module—substitution step is done in only one
cycle—another four are added for the round-key generation. These are needed to deliver
the next round key in time. Furthermore, as the datapath width is fully blown up, the
MixColumns component receives 128 bits as input and must therefore compute immedi-
ately all column multiplications. As AES is based on 10 rounds the result is also available
within 10 cycles. Next, the datapath width is reduced to 64 and 32 bits which effects in

8.1. ON THE SEARCH FOR OPTIMAL RESOURCE MANAGEMENT 51

general only the amount of SubByte units and the size of the MixColumns component
as well as the cycle count for one computation. A reduction of the datapath to only 16
bits width results in addition to the previous mentioned effects in another 32-bit register
used to store the values of one column. This is required as the MixColumns component
requires always a full column as input. Besides the additional hardware resource the cycle
count is comparable higher to the previous versions. The reason for is that the 32-bit
register has to be filled with valid data (cycle count required depends on the datapath
used) before the MixColumns component is able to compute the corresponding output
and updates then the state matrix in an appropriate manner. For one column four cycles
(two cycles to fill the 32-bit register in front of the MixColumns unit and another two for
updating the state matrix) are required which ends up in 16 cycles as the state matrix
encompasses four columns. The smallest variant built around an 8-bit datapath features
the same behaviour as the 16-bit version. More details on these variants can be found in
Table 8.1.

Similar to the AES examination the Grøstl architecture started with a version that
is based on the full datapath width of 512 bits and the two permutations P and Q, re-
spectively computed in parallel. This implies two separate instances of the permutations
and the need for three 512-bit registers. Two of them are used to store the State of the
P/Q-blocks whereas the other is used for the intermediate hash value. Due to the full
datapath width and the separate instances for the permutations, one message block can
be handled in only 10 cycles. Drawback is the immense hardware effort as for example
the 64 SubBytes instances or the 512-bit MixBytes component have to be duplicated.
Next step is the merging of the P/Q-block into one instance and therefore the need for a
sequential computation. On the one hand the hardware effort is so nearly halved but on
the other hand the cycle count gets doubled. It has to be noted that still three 512-bit
registers are designated although one has been saved due to the fact that the parallel com-
putation of the permutations was altered to a sequential one. Problem is that a sequential
computation entails another 512-bit register as the message is required for both the P and
the Q permutation (assumption is that the message is not externally applied during the
computation itself). The other two 512-bit registers are used to store on the one hand the
intermediate hash value and on the other hand the internal state of the permutation. Next
the datapath width is reduced to 128 and 64 bits, respectively which effects in general in
the same way as before for AES only the amount of SubByte units and the size of the
MixBytes component as well as the cycle count for one computation. Smaller datapath
widths require another 64-bit register in front of the MixBytes component. The reason
for that is that this component operates always on full columns and therefore before a
computation can be started the register in front must be filled with valid data. More
details on these variants can be found in Table 8.2.

The AT-characteristics for all examined AES designs as well as for all Grøstl designs can
be found in Figure 8.1 and Figure 8.2. These plots help to make a decision which versions
should be combined in order to achieve the smallest hardware architecture—keeping the
efficiency in mind—featuring AES and Grøstl functionality.

Attention: Consider the different scaling of the axes in Figure 8.1 and Fig-
ure 8.2.

The characteristics for the AES designs show that it is best to use an 8-bit datapath

52 CHAPTER 8. GRÆSTL - A COMBINED AES/GRØSTL HW ARCHITECTURE

instead of an 16-bit datapath as around 1 kGE of area can be saved. This reduction from
around 5 kGE to only 4 kGE represents an area saving of around 20 %. In respect of the
Grøstl design a reduction of the datapath width from 16 bits to 8 bits results in an area
reduction from around 14 kGE to 13 kGE which corresponds to an area saving of around
7 %. Both datapath width reductions would result additionally in an excessive cycle count
penalty. Targeting only low-area consumption it is recommended to use an 8-bit datapath
for the stand-alone versions of AES and Grøstl. In view of the combination step and
in addition keeping efficiency in mind it makes sense to use for the combined version an
8-bit datapath for AES and an 16-bit datapath for Grøstl. This difference in the datapath
width brings beside the faster computation of Grøstl another advantage regarding the
usage of the SubBytes units. Grøstl with an 16-bit datapath width requires two SubByte
components which coincides perfectly with an 8-bit AES architecture if the round keys
are generated on-the-fly. Reason for is that one SubByte unit of the Grøstl design can be
reused for the encryption and the other for the round-key generation.

8.1. ON THE SEARCH FOR OPTIMAL RESOURCE MANAGEMENT 53

T
ab

le
8.

1:
R

es
ou

rc
e

an
al

y
si

s
of

va
ri

ou
s

A
E

S
h

ar
d

w
ar

e
ar

ch
it

ec
tu

re
s.

D
a
ta

p
a
th

W
id

th
#

R
e
g
.

#
S

u
b

B
y
te

#
M

ix
C

o
lu

m
n

C
y
c
le

C
o
u

n
t

S
iz

e
T

h
ro

u
g
h

p
u

t[
1
]

A
T

-p
ro

d
u

c
t

[b
it

s]
[b

it
s]

[U
n

it
s]

[b
it

s]
[c

y
c
le

s]
[k

G
E

]
[M

b
it

/
s]

G
a
te

/
(b

it
/
µ
s)

12
8

2
x

12
8

16
(4

)[2
]

1
x

12
8-

b
it

10
=

10
x

1
13

.0
1
2
.8

1
,0

1
5

64
2

x
12

8
8(

4)
[2

]
1

x
64

-b
it

20
=

10
x

2
9.

0
6
.4

1
,4

0
6

32
2

x
12

8
4(

4)
[2

]
1

x
32

-b
it

40
=

10
x

4
6.

5
3
.2

2
,0

3
2

16
2

x
12

8
+

2(
2)

[2
]

1
x

16
-b

it
16

0
=

10
x

16
5.

0
0
.8

6
,2

5
0

1
x

32
[3

]

8
2

x
12

8
+

1(
1)

[2
]

1
x

8-
b

it
32

0
=

10
x

32
4.

0
0
.4

1
0
,0

0
0

1
x

32
[3

]

[1
]

T
h

ro
u

gh
p

u
t

gi
v
en

fo
r

1
M

H
z

cl
o
ck

.
[2

]
T

h
e

te
rm

in
b

ra
ck

et
s

re
p

re
se

n
ts

th
e

n
u

m
b

er
of
S
u
bB
y
te

u
n

it
s

fo
r

th
e

ro
u

n
d

-k
ey

g
en

er
a
ti

o
n

.
[3

]
M
ix
C
ol
u
m
n
s

ca
n

on
ly

b
e

co
m

p
u

te
d

fr
om

a
fu

ll
co

lu
m

n
.

T
ab

le
8.

2:
R

es
ou

rc
e

an
al

y
si

s
of

va
ri

ou
s

G
rø

st
l

h
ar

d
w

ar
e

ar
ch

it
ec

tu
re

s.

D
a
ta

p
a
th

W
id

th
#

R
e
g
.

#
S

u
b

B
y
te

#
M

ix
B

y
te

C
y
c
le

C
o
u

n
t

S
iz

e
T

h
ro

u
g
h

p
u

t[
1
]

A
T

-p
ro

d
u

c
t

[b
it

s]
[b

it
s]

[U
n

it
s]

[b
it

s]
[c

y
c
le

s]
[k

G
E

]
[M

b
it

/
s]

G
a
te

/
(b

it
/
µ
s)

51
2

3
x

51
2

2
x

64
2

x
(1

x
51

2-
b

it
)

10
=

10
x

1
12

0.
0

5
1
.2

2
,3

4
3

51
2

3
x

51
2

64
1

x
51

2-
b

it
20

=
2

x
(1

0
x

1)
65

.0
2
5
.6

2
,5

4
4

12
8

3
x

51
2

16
1

x
12

8-
b

it
80

=
2

x
(1

0
x

4)
25

.0
6
.4

3
,9

0
6

64
3

x
51

2
8

1
x

64
-b

it
16

0
=

2
x

(1
0

x
8)

19
.0

3
.2

5
,9

3
7

32
3

x
51

2
+

4
1

x
32

-b
it

64
0

=
2

x
(1

0
x

32
)

15
.5

0
.8

1
9
,3

7
6

1
x

64
[2

]

16
3

x
51

2
+

2
1

x
16

-b
it

12
80

=
2

x
(1

0
x

64
)

14
.0

0
.4

3
5
,0

0
0

1
x

64
[2

]

8
3

x
51

2
+

1
1

x
8-

b
it

25
60

=
2

x
(1

0
x

12
8)

13
.0

0
.2

6
5
,0

1
9

1
x

64
[2

]

[1
]

T
h

ro
u

gh
p

u
t

gi
v
en

fo
r

1
M

H
z

cl
o
ck

.
[2

]
M
ix
B
y
te
s

ca
n

on
ly

b
e

co
m

p
u

te
d

fr
om

a
fu

ll
co

lu
m

n
.

54 CHAPTER 8. GRÆSTL - A COMBINED AES/GRØSTL HW ARCHITECTURE

0.5 1 1.5 2 2.5
0

2

4

6

8

10

12

14

Faster

More Efficient

Smaller

128-bit

64-bit

32-bit

16-bit
8-bit

100
bit/s/gate

200 bit/s/gate

500 bit/s/gate1000 bit/s/gate

Time [µs/bit]

A
re
a

[k
G
E

]

AT-products for the AES architectures

Figure 8.1: AT-characteristics of the various AES architectures.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

Faster

More Efficient

Smaller

128-bit

64-bit

32-bit
16-bit 8-bit

15
bit/s/gate

25 bit/s/gate

50 bit/s/gate

100 bit/s/gate200 bit/s/gate

Time [µs/bit]

A
re
a

[k
G
E

]

AT-products for the Grøstl architectures

Figure 8.2: AT-characteristics of the various Grøstl architectures.

8.2. HARDWARE ARCHITECTURE 55

8.2 Hardware Architecture

The hardware architecture was designed to operate in environments containing more than
one clock domain. In order to mitigate the problems of asynchronous interfaces described
in detail in Chapter 6, a common four-phase handshaking was used as presented in Chapter
7 of the book “Digital Integrated Circuit Design” [28]. Details on the implementation itself
and furthermore on an implementation vulnerability—jump to wrong state in Finite State
Machine (FSM) makes the interface only operable in a test environment—can be found
in Appendix B.4. Due to this implementation flaw the taped-out chip, named Chameleon
is not recommended for use in different clock domains. This differs to the FPGA version
as there the corrected interface is used enabling so each possible system arrangement.
The I/O interface is shared by all cryptographic modules. Changes in the interface effect
therefore all cryptographic modules that have it included.

Chameleon was designed as reference platform in order to evaluate in a fair manner
the efficiency of combining AES-128 with Grøstl-224. The top layer of the architecture is
shown in Figure 8.3. On the first sight it appeals suspicious that no I/O registers can be
found. This is due to the fact that they are included in each cryptographic module itself in
order to reuse them for the architecture design. Due to that more efficient implementations
are possible. Drawback is the need for additional signals (SelUnitxSI and SelModexSI)
as the interface has no direct access to the I/O registers. The SelUnitxSI signal enables
only one cryptographic unit at a time. Due to power saving reasons all other modules
are switched off over clock gating. The dedicated signals for this are EnAESModulexS,
EnGroestlModulexS and EnSharedModulexS. As only one component at a time is
active the input data can be directly guided through. The SelModexSI is responsible for
the handshaking process itself as it controls the number of required data items. Grøstl
needs to read 64 bytes whereas for AES in both modes only 32 bytes are required. Due
to area-saving reasons, the sequence of input/output data is strictly defined in order
to avoid the need for address lines. The I/O registers were therefore designed as shift-
registers. Drawback is the need for another signal (NewInDataxS) informing the active
cryptographic module to store a value applied from external and this only once per data
item. After the computation, the result is stored in the output register from which it must
be read out. Similar to reading data, a signal is required triggering the component to
reveal a data item. This is fulfilled by the NewOutDataxS signal. As more cryptographic
modules may be instantiated, the possibility is given that values of the output port get
overwritten. In order to avoid this, a multiplexer controlled by the SelUnitxS signal is
used, guiding through only values of the active component.

8.2.1 Top Layer

GrÆStl has been designed with the aim for a very compact solution that supports both
AES-128 and Grøstl-224 in one piece of silicon. Target was a low-resource design (primarily
area and power optimized) which features additionally high flexibility so that the design
can be applied on both ASIC and FPGA platforms. In order to achieve high flexibility
the use of process-dependent technologies like RAM macros or the use of Block RAMs
or DSPs on FPGA architectures was avoided. The reason for this is the drawback of
these technologies as they might not be available in all CMOS libraries and that they
have to be recreated in case of a possible CMOS-process change. Moreover, in case of
FPGAs, resources such as Block RAMs or DSPs might be already used by other system

56 CHAPTER 8. GRÆSTL - A COMBINED AES/GRØSTL HW ARCHITECTURE

ScanEnxTI

RstxRBI

ClkxCI

InxDI OutxDO

8

1

1

1

8

Testability
AES − 128
Grøstl − 224

GrÆStl

InxDI

SelModexSI

EnModulexSI

StartxSI

NewOutDataxSI

NewInDataxSI

HandshakingCntxSI

RstxRBI

ClkxCI

OutxDO

DonexSO

ProcessingxSO

Chameleon

InReqxSI

OutAckxSI
1

1

Handshaking

SelUnitxSI

SelModexSI

StartxSI

1

3

2

Control

OutReqxSO

InAckxSO

1

1

Handshaking

Control
DonexSO

1

AesDonexD

GrøstlDonexD

GrÆStlDonexD

1

1

1

AesOutxD

GrøstlOutxD

GrÆStlOutxD

8

8

8

FSM

FSM
3

1

1

1

1

1

1

Figure 8.3: Top layer of the Chameleon chip managing the accessibility of the crypto-
graphic modules AES, Grøstl and GrÆStl.

components such that the applicability of the design depends on their availability. In order
to avoid those dependencies, the design was based on standard cells and generic hardware
components in order to make it very flexible and portable to other platforms.

Since Grøstl needs per se more resources than AES, it is advisable to reuse existing
Grøstl hardware components such that the overhead for providing AES functionalities
can be kept as small as possible. Therefore, the idea was to efficiently integrate the AES
datapath into the one of Grøstl. The 8-bit interface (four-phase handshaking) at the chip’s
top level that is used to exchange data with the external world was already described in
Section 8.2. On that level the data is simply guided through as the I/O registers are
directly located in the cryptographic modules.

An overview of the GrÆStl architecture is given in Figure 8.4. The main components
are a common datapath (denoted as Core unit) that combines most of the round trans-
formations for AES and Grøstl, the I/O shift registers both of size 512 bits and the logic
required to achieve the functionality for either AES or Grøstl. In order to keep the area
requirements low, the permutations P and Q are computed sequentially instead of com-
puting them in parallel. This reduces the performance of hashing but allows to implement
only one shared permutation instance in hardware. The need for the two 512-bit I/O
shift registers is compensated by the fact that they are needed anyway. First to store the
original message (needed by the second permutation Q) . Second to store the output of
the first permutation P and the intermediate hash value (in case of mesages not fitting one
block), respectively. Additionally, AES decryption can be accelerated by storing the last
round key—gained during an AES encryption/decryption operation—and the master key
in the output register. At the beginning of an AES decryption a check is being applied if
the stored master key fits the one which got applied. In that case the Core receives instead
of the applied master key the already computed and stored last round key. Therefore the
forward round-key generation can be skipped.

8.2. HARDWARE ARCHITECTURE 57

8 8 8 8

Core
Zero vector

I
n
pu

t

O
u
tp
u
t

I
n
pu

t
re
g
is
te
r

(5
12

bi
ts
)

O
u
tp
u
t
re
g
is
te
r

(5
12

bi
ts
)

Initial vector

Figure 8.4: Overview of the GrÆStl architecture containing the I/O shift-registers, the
Core implementing AES and the permutations P and Q as well as the logical connections
required to achieve the desired functionality (AES or Grøstl).

In order to compute an AES encryption/decryption operation the data in big-endian
representation—consisting of 16 bytes for the master key and 16 bytes for the data—
must be read in which is handled by the interface located at on the chip’s top level. The
data is there forwarded to the active cryptographic unit containing the input register. In
order to avoid additional address lines the I/O registers are implemented as shift-registers.
Therefore, the data must be strictly submitted in the following manner. First comes the
master key with 16 bytes—highest byte must be applied first (big endian)—followed by 16
bytes of data. As the read data is smaller than the register size—only 32 of 64 bytes are
allocated—additional cycles are required to shift the data to the start position. This can
be done in 32 cycles as exactly half of the input storage is occupied. Afterwards, the data
is shifted into the Core component which has been configured for either AES encryption
or decryption. The result is afterwards stored in the first 16 bytes of the output register
which must be shifted by 48 cycles before it can be read out.

The drawback of an AES decryption optimized for low area is the fact that the round
keys must be computed on-the-fly. This implies that first computation time must be
offered to compute the last round key out of the master key as the round keys are required
in the inverse manner as compared to the encryption process. Through the integration
of AES in the Grøstl datapath additional storage space is available which can be used to
improve the decryption performance. Therefore, each AES encryption/decryption reuses
the output register to store besides the result also the master key and the computed last
round key. A special restructuring of the register into four parts all of size 16 bytes has
therefore been applied and is shown in Equation 8.1.

output register = master key|last round key|...|result (8.1)

An AES decryption proceeds in the following way. First a check is applied if the last
round key corresponding to the applied master key is known. This is fulfilled by comparing
the read master key with the first 16 bytes of the output register. If they match the 16
bytes following the master-key entry in the output register represent the corresponding
last round key. The Core unit obtains therefore instead of the master key the already
known last round key which implies that the cycles otherwise required for computing the
last round key can be already used for the decryption process itself.

A Grøstl computation on the other hand is much more complex regarding logical

58 CHAPTER 8. GRÆSTL - A COMBINED AES/GRØSTL HW ARCHITECTURE

16

8

16 64 16
8

8

16

16

8

8

8

8

8

8

State matrix

stage

AddRound−
Constant stage

SubBytes

stage

MixBytes

stage

Key scheduler

M
ix
B
y
te
s
re
g
is
te
r

(6
4
bi
ts
)

S
ta
te

m
a
tr
ix

(5
12

bi
ts
)

Data out

Data in

SubKey
byte

RotWord
output

A
d
d
I
n
it
ia
lK

ey
A
d
d
R
ou

n
d
C
n
st

S
−

B
ox

I
−

/S
−
B
ox M

ix
B
y
te
s

16

16

Figure 8.5: Core datapath w/o round-key generation and un-/loading of the state matrix.

connections on the top layer of GrÆStl and Grøstl, respectively. First of all the data to
be hashed is again read in through the interface which saves the data in the cryptographic
unit, in this case in the GrÆStl component. As the architecture was designed for a
sequential computation of the P/Q-permutation first the original message contained in the
input register is XORed with the output register containing the initial vector for Grøstl-
224 before it gets applied to the Core unit which has been configured for P -permutation.
Afterwards, the output register is updated through XORing its own content with the result
from the Core computation. Next, the Core unit is reconfigured to Q-permutation and
gets the original message as input. The result updates again the output register in the same
way as before and represents now the new intermediate hash value. In case of a message
fitting not into one block, the procedure starts from the beginning with the difference
that the output register contains now instead of the initial vector the intermediate hash
value. Otherwise the truncation step must be executed which is simply achieved through
configuring the Core for P -permutation and applying the actual intermediate hash value
to it. The result is afterwards again XORed with the output register. In order to finalize
the truncation step a shift operation of the output register by 36 positions is applied.
Afterwards, the result is ready to be read out.

Note: Grøstl-224 and Grøstl-256 can be easily exchanged through each other as their
difference is simply another initial vector and the number of truncated bytes.

8.2.2 Common Datapath

Through the AT-plots for various AES and Grøstl architectures presented in Section 8.1,
the decision was made to implement the common datapath based on 16/8 bits. The corre-
sponding architecture is shown in Figure 8.5. It has been separated into four main compo-
nents according to the round transformations of AES and Grøstl: a shared state implicitly
performing the ShiftBytes/ShiftRows operation, anAddRoundConstant/AddInitialKey
stage, a SubBytes stage and a MixBytes unit.

Sharing the State. One of the most obvious ways to share resources between AES
and Grøstl is to share the memory resources for the state. The size of the state for AES

8.2. HARDWARE ARCHITECTURE 59

RotWordData Key

a7,4 a7,5 a7,6 a7,7

a6,4 a6,5 a6,6 a6,7

a4,4 a4,5 a4,6 a4,7

a3,0 a3,1 a3,2 a3,3

a2,0 a2,1 a2,2 a2,3

a1,0 a1,1 a1,2 a1,3

a0,0 a0,1 a0,2 a0,3

a3,4 a3,5 a3,6 a3,7

a2,4 a2,5 a2,6 a2,7

a1,4 a1,5 a1,6 a1,7

a0,4 a0,5 a0,6 a0,7a0,4 a0,5 a0,6 a0,7

a7,0 a7,1 a7,2 a7,3

a6,0 a6,1 a6,2 a6,3

a4,0 a4,1 a4,2 a4,3

D Q

Clk

En

D Q

Clk

En

D Q

Clk

En

D Q

Clk

En

D Q

Clk

En

D Q

Clk

En

D Q

Clk

En

8 8 8 8 8
D Q

Clk

En

8 8 8 8 8

In1

In2

Out1

Out2

a5,4 a5,5 a5,6 a5,7a5,0 a5,1 a5,2 a5,3

Figure 8.6: Mapping the AES structure into the Grøstl structure and the construction of
a single state-matrix row.

is 128 bits, i.e., a 4 × 4-byte matrix. Grøstl, in contrast, needs 512 bits (for variants
returning a message digest of a size up to 256 bits), i.e., an 8 × 8-byte matrix. Thus,
up to four AES States can fit into one Grøstl State which allows to integrate up to four
AES encryption/decryption units in parallel to speed up the computation with minimal
overhead. In order to keep the area requirements as low as possible parallel computations
were strictly avoided. Thus, only one AES structure was mapped into the Grøstl state
as illustrated in Figure 8.6, i.e., the data (requiring the upper left 4 × 4 byte) and the
round key (requiring the lower left 4×4 byte). In addition to these memory locations, four
bytes of the upper right 4×4 matrix were reused as temporary registers for the round-key
generation, further on denoted as RotWord shift register. The round keys can therefore
be computed on-the-fly without the need for a further memory bank.

The common state has been implemented using shift registers which has several advan-
tages. First, they reduce the area requirements on common FPGA platforms (e.g., Xilinx
FPGAs) since the Look-Up Table (LUT) in certain logic blocks can be configured as a shift
register without using the flip flops available in each slice as also noticed by Chodowiec et
al. [8]. Detailed informations on this mode called SRL-16 can be found in Section 7.2.3.
Second, they are very flexible and can be used for both ASIC and FPGA designs as op-
posed to other memory architectures such as RAM macros or Block RAMs. Third, due
to automatic shifts of intermediate values, additional address logic and multiplexer stages
can be avoided. Thus, no ShiftRows or ShiftBytes units are needed because they are
implicitly performed by the applied shift registers.

Each row in the State has been implemented as an 8-byte shift register that can be
split into 4-byte shift registers with two independent inputs. Figure 8.6 shows one internal
row composed of two 4-byte shift registers. When AES is performed, only 4-byte shift
registers are used, 8-byte shift registers are used only during Grøstl computations. In
order to reduce the power consumption during AES computation, an operand isolation
technique was applied which switches off unused parts of the matrices, e.g., the lower right
4 × 4 byte of the state matrix. Furthermore, clock gating cells were applied to minimize
toggling activity.

60 CHAPTER 8. GRÆSTL - A COMBINED AES/GRØSTL HW ARCHITECTURE

Tweaked AddRoundConstant Stage. For Grøstl, the state is modified through
the AddRoundConstant function, which varies with the type of the required permutation.
In case of the P permutation, the first row gets modified through fixed constants whereas
the rest stays untouched. This changes for the Q permutation, where instead of the
first row, the last row gets modified. Additionally, the rest of the state bits get flipped,
cf. [15]. Note that in contrast to the Grøstl-0 specification (from the 31st of October
2008) where only a single byte gets modified (for both permutations), in the tweaked
Grøstl version (from the 2nd of March 2011, version 2.0.1) multiple bytes get modified.
Compared to existing work, which mostly presents solutions for Grøstl-0, e.g., in [62],
this work presents an implementation that considers the tweaked variant including the
modified round constants and initial vectors.

For AES, the state gets modified through the AddRoundKey function, which simply
adds (XOR operation) the round key located in the lower left 4 x 4 bytes of the State
matrix to the data in the upper left 4 x 4 bytes.

Reusing SubBytes for AES Round-Key Generation. The SubBytes transfor-
mation in Grøstl can be efficiently combined with the S-Box operation of AES, because
both algorithms make use of the same S-box transformation. Minor effort has to be made
in order to provide the inverse S-Box transformation required for AES decryption.

There exist several implementation optimizations for the AES S-box, e.g., given in [5],
[49] or [64]. Most of the related work transformed the finite-field operations over GF (28)
into a composite of smaller fields, i.e., GF ((24)2). This work uses the method proposed by
Wolkerstorfer et al. [64], where a S-box is composed of two transformations, namely the
calculation of a multiplicative inverse in the finite field GF (28) and an affine transforma-
tion. An abstract view of the implementation is shown in Figure 8.7. For AES decryption,
the affine transformation is exchanged with its counterpart and executed after computing
the multiplicative inverse. As the Grøstl version is based on an 16-bit wide datapath, two
S-boxes were implemented, one of them providing both transformation directions. AES is
based on an 8-bit datapath, thus presence of an additional S-box was exploited in order to
improve the performance of the AES round-key generation as described in the following.

Basically, there exist two possibilities to generate the round keys for AES encryption
and decryption. First, the round keys are pre-computed and stored in non-volatile memory.
Second, the round keys are computed on-the-fly. While the first option provides fast access
to existing round keys, the second option is cheaper in terms of area requirements since
no memory is needed to store the keys. Therefore, the second option was implemented.

While one S-box is used to perform the SubBytes operation of AES, the second S-box
can be reused to calculate the round keys in parallel. For the round-key generation, one
S-box, XOR operations and a small LUT that holds the round constants are required.
Figure 8.8 and Figure 8.9 illustrate the general forward and backward round-key genera-
tion.

The forward round-key generation is done as follows. First, during the initialization
of the common state, the last four bytes of the master key are loaded into the RotWord
shift register (located in the upper right 4× 4 matrix as shown in Figure 8.6). The output
of the RotWord shift-register gets substituted by the shared S-box and modified with the
round dependent constant Rcon before it gets added to the output of the first row of the
key matrix (located in the lower left 4×4 matrix as shown in Figure 8.6). Afterwards, the
result is loaded back into the RotWord shift-register and the first row of the key matrix
before both get shifted. This is done for the first byte of each row of the key matrix in

8.2. HARDWARE ARCHITECTURE 61

(Affine transformation)−1

Affine transformation

GF (28) inversion

Encrypt s

s′

1 0

1 0

8

8

Figure 8.7: Architecture of the S-box supporting both transformation directions [64].

k′0,0 k′0,1 k′0,2 k′0,3

k′1,0 k′1,1 k′1,2 k′1,3

k′2,0 k′2,1 k′2,2 k′2,3

k′3,0 k′3,1 k′3,2 k′3,3

k0,0 k0,1 k0,2 k0,3

k1,0 k1,1 k1,2 k1,3

k2,0 k2,1 k2,2 k2,3

k3,0 k3,1 k3,2 k3,3

88 8 8 88 8 8

Rcon

RotWord

SubWord

Figure 8.8: Scheme for the forward round-
key generation.

k′0,0 k′0,1 k′0,2 k′0,3

k′1,0 k′1,1 k′1,2 k′1,3

k′2,0 k′2,1 k′2,2 k′2,3

k′3,0 k′3,1 k′3,2 k′3,3

k0,0 k0,1 k0,2 k0,3

k1,0 k1,1 k1,2 k1,3

k2,0 k2,1 k2,2 k2,3

k3,0 k3,1 k3,2 k3,3

88 8 88 8 8

Rcon

RotWord

SubWord

Figure 8.9: Scheme for the backward
round-key generation.

order to obtain the highest four bytes of the next round key. The following three columns
of the next round key get calculated by applying the same procedure while bypassing the
S-box and Rcon modifications. Due to the similarity of the forward and backward round-
key generation, the latter will not be explained in detail.

Combined MixColumns and MixBytes. MixColumns and MixBytes have been
combined to a common MixBytes function with 64 bits as input. As the datapath width
was set to only 8 bits for AES and 16 bits for Grøstl, respectively an additional shift
register with 16 bits as input and 64 bits as output was placed in front of the MixBytes

62 CHAPTER 8. GRÆSTL - A COMBINED AES/GRØSTL HW ARCHITECTURE

function. This register is implemented in such a way as to shift not byte wise instead it
shifts always two bytes per time. This special mode is required as during Grøstl operation
MixBytes computes always an 16-bit output by internally shifting the data by one and
the use of two separate 8-bit datapaths. Therefore, after one computation a shift by two
bytes is required to avoid re-evaluating one value twice. Due to the datapath widths both
algorithms require four clock cylces to load the MixBytesReg with the modified data from
one state column. The MixBytes function stores the output into the state matrix needing
four clock cylces in addition. Note that the MixColumns operation for AES encryption
comes for free as it is implicitly computed during a Grøstl MixBytes operation. Only
additional effort had to be made for AES decryption as there larger coefficients compared
to the Grøstl version exist. Furthermore the power consumption of the MixColumns
function can be lowered during AES operation due to the fact that only 32 bits of the 64
bits of the MixBytesReg are valid. Therefore, one of the two separate datapaths inside
the MixColumns function can be switched off.

8.3 Results

Chameleon was implemented in VHDL and synthesized for both ASIC and FPGA plat-
forms. In order to evaluate the efficiency of GrÆStl compared to separate implemen-
tations, results for stand-alone variants of AES and Grøstl are provided. However, it
has to be noted that a fair comparison of the stand-alone variants with related work is
largely infeasible since target was the combined version and therefore optimization tech-
niques were integrated that do not affect the single-implementation variants. Nevertheless,
still a statement regarding the efficiency of the combination can be given since all three
components—the stand-alone variant for AES, the stand-alone variant for Grøstl as well
as the combined version named GrÆStl—are contained on Chameleon. Results for the
ASIC design are given in Subsection 8.3.1 whereas details on the FPGA version can be
found in Subsection 8.3.2.

8.3.1 Application-Specific Integrated Circuit (ASIC)

Results for functional simulations (RTL and post-layout verification) and synthesis were
achieved usingMentor Graphics ModelSim 6.5c and Synopsys Design Compiler 2010.03.
The design was further mapped on a standard-cell library based on the 0.18µm CMOS
process by UMC. One single Gate Equivalent (GE) corresponds to the area of a 2-input
NAND gate, i.e., 9.3744 µm2.

Table 8.3 lists the area occupation by AES, Grøstl and GrÆStl for a target frequency of
100 MHz. GrÆStl needs 16,550 GE of area not including an interface which would occupy
another 200 GE. This is about 16% less than the sum of the two separate implementations.
Furthermore, it shows that the overhead for AES is only 1.5 kGE which is in fact about the
factor 2.3 smaller than the yet smallest known AES implementation reported by Feldhofer
et al. [11] in 2005. Their design requires 3.4 kGE for both encryption and decryption.
Comparing this work with the encryption-only designs presented by Hämäläinen et al. [19]
in 2006 and the encryption-only design presented by Moradi et al. [45] in 2011 an area
reduction by the factor 2 and 1.6 can be reported.

Figure 8.11 shows graphically the area distribution between the major components of
the GrÆStl unit. As it was expected the biggest part is occupied by the I/O shift registers,
both of size 512 bits and the Core containing the state matrix with another 512 bits of

8.3. RESULTS 63

Table 8.3: ASIC area results after synthesis.

Component AES Grøstl GrÆStl
[GE] [GE] [GE]

Top Level Glue Logic 50 460 800
Input/Output Reg. - 8,250 8,250
Core 2,550 6,340 7,500

State Matrix 1,100 4,200 4,350
AddRndCnst. - 100 100
SubBytes 330 540 600
MixBytes 490 900 1,100
Core Glue Logic 630 600 1,350

Round-Key Gen. 2,150 - -

Overall 4,750 15,050 16,550

Figure 8.10: Chip layout of Chameleon.

45% Core
24% Input Reg.

24% Output Reg. 4% Glue Logic

3% Interface

Figure 8.11: Synthesis results for the area consumption of the GrÆStl component.

data. In detail the complexity of the I/O shift registers is evaluated to 8,250 GE. The Core
on the other hand occupies 6,340 GE whereas 4,200 GE are required for the state matrix.
Therefore, the logic for the P/Q-permutation as well as for AES encryption/decryption
(containing the on-the-fly computation of the round keys) are both realized with only
2,140 GE.

64 CHAPTER 8. GRÆSTL - A COMBINED AES/GRØSTL HW ARCHITECTURE

Execution times are given in Table 8.4, which presents only numbers for GrÆStl as
their corresponding counterparts, the stand-alone versions for AES and Grøstl exhibit the
same cycle counts. Therefore, a detailed description of the timings is only given for the
combined hardware architecture.

AES encryption needs 940 clock cycles for processing one block of data. This includes
an 8-bit four-phase handshaking that needs 288 clock cycles to load and unload the data
and the key into the I/O registers of the GrÆStl component. As both of these registers are
of size 64 bits and the data and the key for AES is only half of it, additional clock cycles
are required in order to place the data in the shift registers on the right location. These
cycles are already considered in the cycle count of the interface. Next, the data and the
key must be loaded into the State matrix of the Core which takes another 32 time steps.
Afterwards, the actual AES encryption starts with adding the initial key to the message.
This is simply an XOR operation of the bottom left quarter of the state matrix with the
top left quarter and takes another 33 clock cycles. Now the round computation starts by
shifting the data area of the state matrix within 4 cycles according the AES Specifications,
cf. [51]. As the datapath width is only 8-bit and due to the hardware architecture four sub
rounds are required whereas each of these updates one column of the State. A sub round
requires 13 clock cylces, whereas four clock cycles are required for updating the MixBytes
register, 7 clock cycles are needed for updating the state and two further clock cycles for
shifting the MixBytes register and the whole state by one. This results in a cycle count
of 593 (encryption only not considering loading/unloading of the state, etc.), but
due to the fact that the last round of AES differs (MixBytes is skipped) it reduces to
588. Finally, 32 clock cycles are required to update the output register in an appropriate
manner. 16 clock cycles for the result and 16 clock cycles for the last round key that is
stored in order to increase the performance of a decryption operation.

Decryption on the other hand requires 1,558 clock cycles, whereas the behaviour of
the interface stays the same. Due to two facts time consumption is increased. First,
the decryption process requires (according to the AES specification, cf. [51]) the round
keys in an inverse manner which implies that the last round key has to be first computed
from the master key before the actual decryption can be started. Second, the on-the-fly
computation of the round keys in an inverse manner is due to the given hardware resources
slightly more time consuming. The procedure in detail is as follows. After loading the
data from the input register into the state matrix of the Core, first the last round key is
computed within 330 clock cycles followed by another 33 clock cycles to XOR the bottom
left quarter of the state matrix with the top left quarter (initial AddRoundKey function).
Afterwards, the round computation starts by shifting the state according to the AES
specification, which takes 4 cycles. Again, due to the reduced datapath width and the
chosen hardware architecture four sub rounds are required, whereas each of them updates
one column of the state within 21 clock cycles. In detail, 13 clock cycles are needed for
updating the MixBytes register, 7 clock cycles for updating the state and one clock cycle
for shifting the MixBytes register. Furthermore, an additional cycle is required for each
of the first nine sub rounds. This results in a cycle count of 1,164. The last round is
again shorter and therefore only 57 cycles must be added, resulting in 1,221 cycles in
total (decryption only not considering loading/unloading of the state, etc.). Finally,
the result has to be transferred to the output register which requires 16 clock cycles. An
important fact not explained so far is that the last round key is written into the output
register as soon as it gets available. Through this improvement the decryption process
can be shortened if an encryption/decryption with the same master key has been executed

8.3. RESULTS 65

Table 8.4: Execution times for the different stages and modes of the GrÆStl unit.

Stage AES Encryption AES Decryption Grøstl
[Cycles] [Cycles] [Cycles]

Interface 288 288 404
Load StateMatrix 32 32 3× 64
Unload StateMatrix 32 161 3× 64
Core 588 9072/1221 3× 880

Overall 940 1,2432/1,557 3,4653

1) Last round key is immediately shifted out after it gets available. Different to encryption
where it is shifted out at the end of the computation.
2) Last round key stored in output register. Therefore, forward round-key generation can be
skipped.
3) Padded message fits one block. For each additional message block 2,277 clock cycles are
necessary.

immediately before. In that case the 330 clock cycles required to compute the last round
key can be avoided. Overall the cycle count reduces to 1,243 clock cycles only. For the
stand-alone version this improvement is not an option as therefore additional storage space
would be required (no I/O registers are available as the data is immediately transferred
to the state matrix).

Hashing of a single block takes for both the stand-alone version of Grøstl as well as
for GrÆStl 3,465 clock cycles. This cycle count results from the interface, additional I/O
register shifts, loading/unloading of the state matrix and the Core itself. The four-phase
handshaking occupies 404 clock cycles. As Grøstl-224 has been implemented the first
36 bytes of the output have to be truncated. Therefore, additionally 37 clock cycles are
needed. The state matrix composed of shift registers to 8 rows has a size of 64 bytes
and can be loaded and unloaded in 64 clock cycles. Due to the fact that first the P
permutation followed by the Q permutation has to be computed before in the finalization
step (since only one message block to hash) another P permutation is required, the loading
and unloading of the state is executed three times. Both P and Q permutation are based
on an internal round function with a width of 10 rounds (rnds = 10) and require 880
clock cycles. At the beginning of each round, first the ShiftBytes function must be applied
which takes 8 clock cycles (shiftbytes = 8). Afterwards, 8 sub rounds are applied whereas
each is responsible for one column (subrnds = 8) . During the sub rounds for each row
four clock cycles are required to load the 64-bit shift register in front of the MixBytes
function (regupdate = 4). The next 4 clock cycles are responsible for updating the actual
column of the state matrix with the result from the MixBytes function (stateupdate = 4)
followed by another clock cycle for shifting the state matrix by one in order to gain the
next column to be computed (stateshift = 1). Equation 8.2 presents the computation of
the cycle count for the Core configured for either P or Q permutation. By replacing the
variables with their assigned values the cycle count computes to 880 clock cycles.

CoreP,Q = ((tmp regupdate+stateupdate)∗sub rnds+stateshift)+shift bytes)∗rnds (8.2)

Message padding is not supported at all as the assumption was taken that the padding
is done externally. Therefore, all submitted data must already be padded.

Chameleon was taped-out successfully. For this, the target frequency was increased
from 100 MHz to 125 MHz which represents the maximum possible frequency of the design

66 CHAPTER 8. GRÆSTL - A COMBINED AES/GRØSTL HW ARCHITECTURE

(during synthesis 100 MHz were choosen for an easier comparability with results stated in
literature). This in combination with clock gating and eight scan chains (not considered
in the results stated before) required an additional amount of only 750 GE of chip area,
ending up with around 17.1 kGE. Eight parallel scan chains were chosen as exactly the
same amount of I/O pins is available. Reusing them for the scan paths itself has two
advantages. First, another 16 pins on the chip can be avoided. Second, the test complexity
can be reduced by orders of magnitude. More details on the test I/O pins can be found
in Appendix B.3.

Information: Scan chains are a conecpt used in design for testability (DFT) to enable
verification of a produced chip. The principle is that sequential storage elements and
combinatorial logic are separated in order to ease the finding of appropriate testvec-
tors (testvector = stimulus vector + expected response vector) Evaluating sequential
circuits—containing storage elements and combinatorial logic—is much more complex
as evaluating combinatorial circuits only!
In order to obtain this feature all the storage elements (full scan path) are replaced by
special scan chain storage elements during the backend design. These feature two data
inputs. The selection of which to use is done over the testmode signal. In order to
create a scanpath—all the storage elements are connected in a row—the output of each
storage element is additionally connected to the test input of the next storage element
in the line. Verification of the system functionality can be reached by activating the
testmode and loading the stimulus vector into the system. Afterwards, one cycle of
normal operation (test mode disabled) is applied. The result is unloaded (shifted out)
and compared with the expected response vector. If they match no failure has been
detected. In order to reduce the complexity further multiple parallel scan paths can
be used. Therefore, the test effort can be reduced by orders of magnitude. A good
approach is to multiplex the data I/O pins and use them during test mode as I/O pins
for the various scan paths.

The remarkable small difference between synthesis results and back-end results (in fact
it is even negligible when comparing synthesis results and back-end results both targeting
the same frequency) between the synthesis results and the back-end results are due to the
design which is largely build upon shift registers. The layout of the chip, highlighting the
floorplan of the three different modules, is illustrated in Figure 8.10. Regarding power
consumption, GrÆStl requires for an AES encryption/decryption 130 µW/MHz and for a
Grøstl computation 200 µW/MHz. These values were achieved through a power analysis
with a value change dump (VCD) file containing the switching profile of a previously
executed gate-level simulation for the various modes of operation. The produced chip
on the other hand exhibits a maximum frequency of around 133 MHz and delivered for
an AES encryption an average power consumption of 63 µW/MHz. To the best of our
knowledge, there is no ASIC design for an AES and Grøstl combination available so far,
which targets a low-resource implementation and has finally been taped-out.

8.3.2 Field Programmable Gate Array (FPGA)

All stated FPGA synthesis results have been achieved withXilinx ISE Design Suite 12.1.
In order to get comparable numbers the parameter set “Area Reduction with Physical
Synthesis” was used. Results for the architectures with and without an interface included
were acquired for Xilinx Spartan-3, Spartan-6, Virtex-5 and Virtex-6 FPGAs whereas

8.3. RESULTS 67

Table 8.5: Post place-and-route results for various Xilinx FPGAs not considering the
interface (original design without adaption for SRL-16 mode).

Spartan-3 Virtex-6
AES Grøstl GrÆStl AES Grøstl GrÆStl

Number of slice LUTs 806 976 1,798 505 650 1,247
Number used as logic 796 823 1,676 424 490 1,024
Number used as shift reg. 8 128 64 5 76 64
Number used as a route-thru 2 25 58 76 84 159

Number of slice registers 277 543 841 272 541 722
Frequency (MHz) 35 40 30 110 115 80

Number of occupied slices 493 643 1,166 169 228 371

only the results for the Spartan-3 as well as for the Virtex-6 are described in detail.
Numbers for the others can be found in Appendix C.1 and Appendix C.2. As the overall
architecture was designed in a way to simply add and remove the support for each of
the cryptographic modules, the area numbers stated were always achieved with only one
component instantiated.

Table 8.5 shows the place-and-route results of the original design (interface not included
and no modification due to the SRL-16 mode) on a Spartan-3 (low-cost device) and a
Virtex-6 (high-end device). GrÆStl occupies here on a Spartan-3 1,166 slices running with
a maximum frequency of 35 MHz. As easily noticeable through the occupied slice registers
not even a single 512-bit register is available (e.g., to store the Grøstl state). Hence, the
information must be stored in a different way which is called SRL-16 (by default enabled).
There, besides slice registers also shift registers are used to store information. The amount
of used 16-bit shift registers can be found in Table 8.5. During synthesis of the design the
Xilinx tools map shift registers onto reconfigured LUTs of slices which are not reserved
for logic only. Such a reconfigured LUT can be used as an 16-bit-wide shift register (the
width is variable). One CLB of a Spartan-3 contains for example four slices whereas two
of them can be used for distributed RAM, SRL-16 or the like. A slice contains two LUTs.
Hence, a shift register with a width up to 64 bits can be provided. Through a connection
the LUTs of more than one CLB even wider shift registers can be provided. As the LUTs
inside a slice do not support a reset functionality an improved automatic mapping can be
achieved by removing the reset from shift registers where it is not absolutely required. In
that way (normally more) shift registers get automatically recognized. Table 8.6 presents
the results for the modified design where the reset was removed from the I/O registers and
the state matrix. For the GrÆStl design so nearly 200 slices on a Spartan-3 and around
70 slices on a Virtex-6 can be saved.

On the first sight it looks like that the Spartan-3 is more efficient regarding this mode
of operation. In fact it is not as the complexity of one CLB can greatly differ between
various FPGA families (e.g., number and size of the available LUTs in a slice).

Another interesting point to mention is the fact that the stand-alone Grøstl version
is much smaller as GrÆStl which differs greatly to the ASIC design where only about
16 percent overhead was required to embed AES into Grøstl. Also the relation between
AES and Grøstl on ASIC and FPGA platforms is completely different. For example, AES
requires only a third of the Grøstl resources if targeting an ASIC design flow whereas it
requires about five sixths if targeting the Xilinx Spartan-3 FPGA. The reason for that
is that a major difference exists between ASIC and FPGA designs. On FPGA platforms

68 CHAPTER 8. GRÆSTL - A COMBINED AES/GRØSTL HW ARCHITECTURE

Table 8.6: Post place-and-route results for various Xilinx FPGAs not considering the
interface (modified design due to SRL-16 mode).

Spartan-3 Virtex-6
AES Grøstl GrÆStl AES Grøstl GrÆStl

Number of slice LUTs 838 896 1,805 455 531 1,046
Number used as logic 788 743 1,554 419 443 927
Number used as shift reg. 48 128 192 24 64 96
Number used as a route-thru 2 25 59 12 24 23

Number of slice registers 48 293 407 169 279 360
Frequency (MHz) 35 40 30 110 115 80

Number of occupied slices 442 488 956 142 202 302

storage space comes nearly for free. For ASICs, storage space is always a limiting factor
as it concurrently implies an increase in the overall area. Referring to the pie-chart in
Figure 8.11 it is easily recognizable that GrÆStl is dominated by storage space and not by
logic. Furthermore, if summing up the slices of the stand-alone versions of AES and Grøstl
it shows that they are together smaller as GrÆStl. This can be explained through the fact
that the state matrix of GrÆStl is split up in the half. Therefore, twice as much resources
are required as it is not possible to reuse the unused space of a LUT reconfigured for a
shift register. For example, if such a LUT is used as 4-bit shift register it is not possible
to use the rest as a 10-bit shift register.

8.4 Comparison with Related Work

In this section the achieved results are set in contrast with publications targeting the
same goal, namely low-area implementations of AES and Grøstl. Therefore no results for
high-throughput variants or the like are included. Furthermore, no results are listed which
are based on platform or technology-dependent components as this would be not a fair
comparison to the design developed in this work (targeting low-area and high flexibility). A
comparison with ASIC publications targeting low-area implementations of AES and Grøstl
is given in Subsection 8.4.1. Last but not least, Subsection 8.4.2 lists implementations
based on Xilinx FPGAs and low-area variants for AES and Grøstl and puts them in
contrast with the designs developed in this work.

8.4.1 Comparison of ASIC Results

Table 8.7 gives a comparison of the ASIC results with related work. While the stand-alone
implementation of AES is about 1 kGE larger than existing work [11, 19], only a small
overhead is required for Grøstl to support also AES, i.e., 10 %. Moreover, the GrÆStl
implementation is only slightly larger than the work of Tillich et al. [62] but supports
AES and implements the tweaked version of Grøstl instead of Grøstl-0. The work from
Kavun et al. [32] on the other hand outperforms both, the stand-alone version of Grøstl
and also GrÆStl. As their design is very similar to this one and they do not explicitly
state the number of used 512-bit registers it is assumed the results were achieved by
applying constantly the message on the input as therefore a reduction from three 512-bit
registers to only two is possible (in case of computing the P/Q-permutation sequentially).
Regarding power consumption, it shows that the design meets most requirements even

8.4. COMPARISON WITH RELATED WORK 69

Table 8.7: ASIC comparison of AES-128 (incl. decryption) and Grøstl-224.

Source Width Techn. fmax Enc. Dec. Hash Power Area
[bits] [µm] [MHz] [cycles] [cycles] [cycles] [µW / MHz] [kGE]

Hämäläinen et al. [19] 8 0.13 153 160 n/a - 37 @ 1.2 V 3.91
}

AESFeldhofer et al. [11] 8 0.35 80 1,032 1,165 - 45 @ 1.5 V 3.4
This work - AES 8 0.18 100 742 1,025 - 130 @ 1.8 V 4.75

Tillich et al. [62] 64 0.35 56 - - 196 2,210 @ 3.3 V 14.6
}

GrøstlKavun et al. [32] 8 0.09 n/a - - 1,280 n/a 9.2
This work - Grøstl 16 0.18 100 - - 3,061 200 @ 1.8 V 15.05

This work - GrÆStl 8/16 0.18 100 742 1,025 3,061 200 @ 1.8 V 16.55
}

GrÆStl

1 The area for the design, including the decryption has been estimated with
additional 25 % of the original (encryption only) AES design.

for a contactless operation, e.g., for contactless smart cards. However, due to different
fabrication technologies and supply voltages, a fair comparison to the given numbers is
not possible.

8.4.2 Comparison of FPGA Results

Table 8.8 provides a comparison of the FPGA results with related work. It shows that
the stand-alone AES implementation is the smallest on the Spartan-3 occupying only 442
slices. For the Virtex-6, the design needs only 142 slices. The Grøstl implementation
needs 488 slices on the Spartan-3 and is therefore about 2 times smaller than the work
of Jungk et al. [27] with 967 slices. The smallest state-of-the-art implementation so far
was presented by Kaps et. al [30] at the final SHA-3 conference. Their implementation
requires only 766 slices which is about 300 slices larger than the implementation presented
in this work. Compared to the work of Kerckhof et al. [33], we only need 202 slices on
the Virtex-6 instead of 260, i.e., a factor of about 1.3 smaller. The implementation of
Kaps et al. [30] on a Virtex-6 is in the same region and therefore also considerable larger.
Considering the area occupation only, this work presents the so far smallest stand-alone
versions for AES and Grøstl without using Block RAMs. For a fair comparison it must
be stated that the computation times of the implementations are much larger due to the
reduced datapath width.

70 CHAPTER 8. GRÆSTL - A COMBINED AES/GRØSTL HW ARCHITECTURE

Table 8.8: FPGA comparison of AES-128 (incl. decryption) and Grøstl-224.

Source Width Digest Device fmax Enc. Dec. Hash Area
[bits] [bits] [type] [MHz] [cycles] [cycles] [cycles] [slices]

Bulens et al. [3] 128 128 Spartan-3 150 12 12 - 2,150
AESThis work - AES 8 128 Spartan-3 35 742 1,0251 - 442

Bulens et al. [3] 128 128 Virtex-5 350 11 11 - 550
This work - AES 8 128 Virtex-6 110 742 1,0251 - 142

Jungk et al. [27] 64 224/256 Spartan-3 182 - - 160 967

Grøstl

Kaps et al. [30] 32 256 Spartan-3 150 - - 357 766
This work - Grøstl 8/16 224 Spartan-3 40 - - 3,061 488
Kerck. et al. [33] 64 256 Virtex-6 280 - - 450 260
Kaps et al. [30] 32 256 Virtex-6 360 - - 357 263
This work - Grøstl 8/16 224 Virtex-6 115 - - 3,061 202

This work - GrÆStl 8/16 224 Spartan-3 30 742 1,0251 3,061 956
}

GrÆStlThis work - GrÆStl 8/16 224 Virtex-6 80 742 1,0251 3,061 302

1 Decryption with stored last round key.

Chapter 9

Building an FPGA System for
Hardware/Software Evaluation

This chapter is concerned with a hardware/software comparison of the cryptographic prim-
itives AES, Grøstl and GrÆStl. The hardware components already described in the pre-
vious chapter must be incorporated in the FPGA system. With the general goal of a
low-area design combined with highly restricted environments a low-budget FPGA was
chosen as target platform. Therefore, the decision was to implement the system on a
Xilinx Spartan-3 XC3S400-4FTG256C.

The rest of this chapter is structured in the following way. An overview over the general
system requirements for establishing a fair hardware/software comparison is given in Sec-
tion 9.1 followed by a general description of the developed system in Section 9.2. Details
for the target FPGA are given subsequently in Subsection 9.2.1. Subsection 9.2.2 presents
details about the used microcontroller, the supported toolchain and the developed sys-
tem toolchain. The used cryptographic modules and their interface to the microcontroller
is described in Subsection 9.2.3. Furthermore, it contains details about the verification
strategy, for both the simulation and the real device. An insight to the developed crypto-
graphic library is given in Subsection 9.2.3. Last but not least the results in Section 9.3 are
split up into two parts. The first part presents in Subsection 9.3.1 the influence of exter-
nal data transfer on the overall timing. The second part concerns the hardware/software
comparison and follows in Subsection 9.3.2

9.1 General System Requirements

In order to obtain a FPGA system which can be used for a hardware/software comparison
a few system requirements are necessary. These are as follows:

• Synthesizable microcontroller

• Toolchain supporting chosen microcontroller

• Cryptographic modules for AES, Grøstl and GrÆStl (hardware and software)

– Hardware components running with either 5/20 MHz switchable over software

• Verification of cryptographic modules

• Cryptographic library for accessing the three units in all modes of operation

71

72 CHAPTER 9. FPGA SYSTEM FOR HW/SW EVALUATION

openMSP430

Figure 9.1: FPGA system for hardware/software comparison.

9.2 System Architecture

The developed system architecture is presented in Figure 9.1. As basis the Xilinx Spartan-3
XC3S400-4FTG256C FPGA is used. On top of it an 16-bit syntesizeable microcontroller
taken from OpenCores, namely the openMSP430 [16] is working, which is compatible
to the MSP430 family from Texas Instruments (TI) [61]. Both variants are supported
from the toolchain “GCC 4.x toolchain for Texas Instruments MSP430 MCU”, or in short
MSPGCC4 [46]. The newer version is named MSPGCC. In this work still the old toolchain,
the MSPGCC4 was used as initial linker problems with the newer version occured. It
turned out that the problems resulted from incorrect configurations which were solved
at the end. Therefore, both versions can now be used for generating the ROM content
(stores the program code). Setting up on these toolchains, a script was developed which
builds the ROM background for the simulation and the real device as described in detail
in Subsection 9.2.2. ROM and RAM for the synthesizeable microcontroller are located
externally and can be accessed over two busses named Program Memory Interface and
Data Memory Interface both of 16-bit size. The ROM further features 12 kB of memory
and the RAM 1 kB. Therefore, enough space is available for implementing the software
routines for AES and Grøstl. Both memories are outsourced into the BRAMs of the
FPGA to reduce the utilized number of slices. The memory mapping for accessing the
ROM/RAM and the peripherals is described in Subsection 9.2.2. Via this mapping, an
additional hardware interface and the peripheral bus access to the cryptographic modules
AES, Grøstl and GrÆStl was established. Same applies for the two ROMs containing
information (test vectors) used for verifying the functionality of the system.

9.2.1 Xilinx Spartan 3

Detailed informations and explanations can be found in Chapter 7 and the Spartan-3
Generation FPGA User Guide [68].

9.2. SYSTEM ARCHITECTURE 73

(Serial debug
interface)

openMSP430 (16-bit microcontroller)

Frontend

ALU

Execution
unit

Register
file

UART

SDI

HW break
unit

M
e
m
o
ry

b
a
ck

b
o
n
e

Program memory interface

Data memory interface

SFRs

BCM Watchdog

Peripheral bus

Figure 9.2: Structure of the openMSP430 from OpenCores [16].

9.2.2 openMSP430

Figure 9.2 shows the structure of the openMSP430 which is compatible to the MSP430
family of Texas Instruments [61]. It features a full instruction set which is supported by
the old MSPGCC4 and the newer MSPGCC toolchain. Furthermore, interrupts that were
originally available were removed in order to reduce the overall size of the microcontroller to
fit the complete system within the target FPGA. Power-saving modes can be additionally
addressed over software to save energy, for example, during times of low workload. As
the memory size for both program and data is easily configurable it can be fitted to
each application requirement. The microcontroller was designed in a modular way where
peripherals like the “16x16 hardware multiplier” can be accessed over the peripheral bus.
Same applies for the basic clock module, watchdog, timer A and GPIO (port 1 to 6). As
many 8 and 16-bit peripherals can be connected as these fit into the peripheral address
space. As the target FPGA is quite limited regarding the available resources, watchdog and
timer A were removed. Also the GPIO ports were limited to only two. On the other hand
the two test roms containing test vectors for AES and Grøstl as also the cryptographic
modules were made accessible in this way.

The basic memory mapping is shown in Figure 9.3. It starts at the bottom with the
peripheral registers followed by the data memory with a size of 1 kB. At the top a space is
reserved for the interrupt vector table which is not occupied as interrupts are not enabled.
Below, the program memory with a size of 12 kB follows. The stack of the system starts
at the end of the RAM and grows in the direction of its beginning. Therefore, a careful
programming style must be used in order to avoid an overwriting of return addresses
through allocated memory or conversely an overwriting of data through the stack.

74 CHAPTER 9. FPGA SYSTEM FOR HW/SW EVALUATION

Start:

End:

0000h

00FFh

0100h

01FFh

0200h

05FFh

CFE0h

FFDFh

FFE0h

FFFFh

Start:

End:
Start:

End:

Start:

End:
Start:

End:

8-bit Peripheral Modules

16-bit Peripheral Modules

Data Memory (RAM)

Unused

Program Memory (ROM)

Interrupt Vector Table

Memory Address Description

Figure 9.3: Memory mapping of openMSP430 with 12 kB of ROM and 1 kB of RAM.

The test roms and the cryptographic modules are both accessible over the 8-bit pe-
ripheral bus. The base address for the test roms and the cryptographic modules is set to
0080h and 0090h, respectively. Detailed information can be found in Subsection 9.2.3.

MSPGCC Toolchain

The MSPGCC4 toolchain is the porting of the GCC toolchain for the Texas Instruments
MSP430 family and is no longer supported as the contributions have been incorporated
into the newer version named MSPGCC. During this work the old version, which is the
MSPGCC4-20110312 was used. The package can be downloaded from Sourceforge.net [46]
and includes an installation script named buildgcc.pl. The newer version is slightly more
difficult to install as no explicit install script is delivered. Therefore, such a script was
developed which is presented in Appendix D.2. Both scripts can be executed by a user
as long as the access to the installation path is not restricted. The following libraries and
files are available after installation:

• GNU Mulitple Precision Arithmetic Library (GMP)

• GNU MPFR Library (MPFR)

• Multiprecision Library (MPC)

• PPL

• CLoog

• GCC Toolchain for MSP430

– BINUTILS

– GCC Library

9.2. SYSTEM ARCHITECTURE 75

– GDB Library

– MSP430MCU Files

– MSP430-LIBC Files

System Toolchain

The system toolchain shown in Figure 9.4 and represented through the perl script “build system.pl”
generates the content for the ROM located in the BRAMs of the target FPGA. As both
the simulation and the real device must be supported, two different file types are required
namely .mif and .coe. The former represents the ROM initialization data for simulation
and the latter for the FPGA itself. The procedure of the script is as follows. First, it
obtains as input the desired program and data memory size, a linker file for the open-
MSP430 as presented in Appendix D.1—contained in the package from openCores—and
the sources themselves. With the input information the script adjusts three lines of the
linker script: text area, data area and the stack offset.

• text (rx) : ORIGIN = 0xF800, LENGTH = 0x800

• data (rwx) : ORIGIN = 0x0200, LENGTH = 0x080

• PROVIDE (__stack = 0x280) ;

The adjusted linker file and the sources themselves form the input for the msp430-gcc
compiler. With the linker option of the compiler enabled both steps the compilation and
the linking are performed at once resulting in the executable sandbox.elf , which gets sub-
sequently transformed into a .ihex format. As the create msp430 rom.pl script requires
a .mem format an additional transformation step is necessary which is done through
the ihex2mem tool. The output of the create msp430 rom.pl represents afterwards the
initialization data for the simulation (.mif) and also for the FPGA itself (.coe) and is
automatically named after the size of the generated block-ram initialization files. For a 12
kB BRAM two output files with the names rom 8x6kB hi.mif and rom 8x6kB lo.mif
are generated as this 16-bit microcontroller supports single-byte access. Therefore, both
files together form the whole memory space where, for example, the first byte of each file
are tied together and so on.

These files are only helpful in combination with the fitting framework for the BRAMs.
In order to get these the Xilinx LogicCore IP Block Memory Generator v6.3 was used.
The wizard requires only basic data like the size of the block memory or if an enable signal
is desired. Additionally, it offers the possibility of initializing the BRAM with files of type
.coe which in fact were generated from the build system.pl script before. The output of
the wizard are the files shown in Figure 9.4. They can be used for executing a simulation
or for the back-end design to generate the bitstream.

For the FPGA target it is necessary to re-build the framework for the ROM each time
another background should be used. For the simulation instead a trick was used to avoid
these rebuild process. Therefore, the framework for the ROM was build once with the
.coe files used as initialization data. The output files of the Core Generator can be seen
in Figure 9.4. The .mif files must be located in the base Modelsim directory as they are
loaded from there each time the simulation is executed. As no difference exists between
the .mif files generated from the build system.pl script and the Core Generator with the
.coe files as input a symbolic link can be used to reference each time to the .mif files

76 CHAPTER 9. FPGA SYSTEM FOR HW/SW EVALUATION

Program memory size

Data memory size

Linker definition file

Sources

sandbox.elf

sandbox.ihex

pmem.mem

build system.pl

create msp430 rom.pl

ihex2mem

msp430-objcopy

msp430-gcc

Update of linker file

linker.def

Program memory size

rom 8x6kB hi.mif
rom 8x6kB lo.mif

rom 8x6kB hi.coe
rom 8x6kB lo.coe

Xilinx LogiCORE IP

Block memory generator

v6.3

Simulation Real device

rom 8x6kB hi.mif
rom 8x6kB lo.mif
rom 8x6kB hi.vhd
rom 8x6kB lo.vhd

rom 8x6kB hi.ngc
rom 8x6kB lo.ngc

Figure 9.4: Creating the ROM files for the simulation and the real device.

generated by the build system.pl script. In that way it is possible to avoid the rebuild
process through the Core Generator.

9.2.3 Cryptographic Modules

The cryptographic modules have been taken over from Chapter 8 of this thesis. The
work which had to be done was to develop an interface for establishing a communication
between the openMSP430 and the cryptographic modules as well as the ROMs, containing
test vectors for the AES/Grøstl verification.

Linkage to openMSP430

The connection between the openMSP430 and the cryptographic modules was established
over a shared interface as presented in Figure 9.5. For that purpose four register banks,
all with a size of 8 bits, are introduced which can be accessed on the one hand by the
openMSP430 over the peripheral bus and on the other hand over general connections
(wires) by the cryptounit itself. The memory mapping for the registers is presented in
Figure 9.6. Through content modifications of memory location 0090h both the status
of the cryptounit as well as the I/O handshaking can be managed. 0091h controls the
behaviour of the cryptounit in terms of selecting the desired unit and mode of operation
as well as the frequency at which the cryptounit should operate. Each I/O byte is further

9.2. SYSTEM ARCHITECTURE 77

openMSP430
ClkxCI ClkxCO

InxDI OutxDO

StartxSI

SelModexSI

SelUnixSI

InReqxSI

OutAckxSI

InAckxSO

OutReqxSO

ClkxCI

DonexSO

Cryptounit

Status register

7 6 5 4 3 2 1 0

Configuration

7 6 5 4 3 2 1 0

InReqData

3

OutReqData

ProcessingxSO

DCM
SelClkxSI

ClkxCI

ClkxCO

7 6 5 4 3 2 1 0

7 6 5 4 2 1 03

37 6 5 4 2 1 03

37 6 5 4 2 1 03

Interface for cryptounit

DCMClkxCI ClkxCO

Peripheral bus

5MHz

5/20MHz

60 MHz from USB 2.0
transmitter

ClkxC

Figure 9.5: Peripheral bus used for connecting the cryptounit to the openMSP430 core.

Table 9.1: Description of the status register.

Bit Name Description Access

7 RFU - -

6 OutAck Acknowledge signal for unloading of data Software

5 OutReq Request signal for unloading of data Peripheral

4 InAck Acknowledge signal for loading of data Peripheral

3 InReq Request signal for loading of data Software

2 Processing High if processing is going on Peripheral

1 Done High for duration of output handshaking Peripheral

0 Start Must be high for duration of input handshaking Software

buffered at memory location 0093h/0094h to establish a secure handshaking as the clock
domains for the microcontroller and the cryptounit differ. The registers of the shared
interface always operate with the same clock frequency as the microcontroller.

An arbitrary—AES/Grøstl/GrÆStl—computation can be started through software in
the following way. First the content of the configuration register is written according
Table 9.2. As an example, for an AES encryption with 20 MHz the content must be
modified to 0024h. For the rest of the computation this value must not be changed.

Afterwards the Status register and the InReqData register control the input hand-
shaking. Table 9.1 explains the meaning of the individual bits in the status register in
detail. First, the Start bit of the Status register must be set to high to signal the be-

78 CHAPTER 9. FPGA SYSTEM FOR HW/SW EVALUATION

Start:

End:

0000h

00FFh

0100h

01FFh

0200h

05FFh

CFE0h

FFDFh

FFE0h

FFFFh

Start:

End:
Start:

End:

Start:

End:
Start:

End:

8-bit peripheral modules

16-bit peripheral modules

Data memory (RAM)

Unused

Program memory (ROM)

Interrupt vector table

Memory address Description

Cntrl ROM offset (L)

Cntrl ROM offset (H)

Status

Configuration

InReqData

OutReqData

0090h

0091h

0092h

0093h

0080h

0081h

0082h

0083h

Cntrl Grøstl ROM

Cntrl AES ROM

Figure 9.6: Memory mapping of the interface registers.

Table 9.2: Description of the configuration register.

Bit(s) Name Description Access

7:6 RFU - -

5 SelClock Select Clock Frequency Software
1...20 MHz
0... 5 MHz

4:2 SelUnit Select cryptounit Software
000...Disable all modules
001...AES
010...Grøstl
011...GrÆStl in AES mode of operation
100...GrÆStl in Grøstl mode of operation

1:0 SelMode Select AES mode of operation Software
0X...Encryption
1X...Decryption

Select Grøstl mode of operation
00...Intermediate block
01...First block
10...Last block
11...First and last block

ginning of the input handshaking. Afterwards, this bit stays high until the end of the
input handshaking. Next the InReqData register is written with the input byte for the
computation before the InReq bit of the Status register is set in addition to the Start bit
signalling the core that valid input data is available. Until this step all bits were modified
through software which changes next as the core sets the InAck bit of the Status register
to high after it has recognized that a request is pending and signals therefore that it has
taken over the valid input data. This information is written to the Status register always

9.2. SYSTEM ARCHITECTURE 79

Table 9.3: Status of the FPGA on-board LED during the test phase.

Status of LED Description

Enabled After a reset the LED is enabled for a few milliseconds
before it gets disabled. At that moment of time the test
procedure starts. Only two subsequent LED states are
possible. Either the LED is again enabled (test procedure
finished successful) or it starts blinking (failure occured).

Disabled Test procedure active.

Blinking Failure occured and test program aborted.

at the positive clock edge of the microcontroller and not at the clock edge of the cryp-
tounit. Additionally, the core sets the Processing bit of the Status register to signal that
a computation is actually ongoing. As a four-phase handshaking is used the signals on
the request and acknowledge line must be brought back into the original state. Therefore,
the software checks periodically if the hardware has set the InAck bit to high. If so it
resets the InReq bit. Same applies for the cryptounit which resets the InAck bit after
recognizing the original state of the InReq bit. Afterwards, the InReqData is updated
through software with the next input byte. This procedure takes place until all input
bytes—either 32 for AES or 64 for Grøstl—have been taken over by the cryptounit. The
lowest bit of the Status register is additionally reset to zero signalling the end of the input
handshaking. Afterwards, it takes some time until the computation has finished which is
signalled through the cryptounit by setting the Done bit to high. This bit stays set until
the output handshaking has finished. Furthermore, the OutReq bit of the Status register
is set to high by the cryptounit which represents the request for reading out data. The
software polls in the meanwhile for this value. After recognizing this state the software
saves the output byte and sets the OutAck bit to high to acknowledge the request of the
cryptounit. The cryptounit recognizes the acknowledge and resets the OutReq bit accord-
ing to the standard four-phase handshaking followed by resetting the OutAck bit through
the software. This procedure takes place through the whole process of reading out the
result. For finalizing the computation the Done bit is reset to zero.

Verification of Modules

Functional verification of the cryptographic modules is a very important aspect as oth-
erwise the achieved results are not reliable. As no debug interface is available another
simple way had to be found. Therefore, the hardware resources of the FPGA board were
analyzed with the outcome of available I/O ports, one LED and one button. Simplest
solution regarding this resources is to use the LED for giving information on the state
of execution. Table 9.3 shows the description for each LED state during the verification
process.

Using the LED as status signal is only helpful with a test program and reliable test
vectors. The former is presented in Appendix D.3. It tests all software and hardware
modules in each permissible configuration by applying stimuli vectors and checking the
results against the expected response vectors. The test vectors can either be stored in the
same ROM as the program code or separately in explicit dedicated ROMs. In this work
the test vectors are stored in dedicated ROMS in order to avoid congestion of the program
space. For this two test ROMs each with a size of 8 kB were used to store test vectors

80 CHAPTER 9. FPGA SYSTEM FOR HW/SW EVALUATION

openMSP430
ClkxCI ClkxCO

AES ROM

7 6 5 4 3 2 1 0

Grøstl ROM

7 6 5 4 3 2 1 0

Offset L

3

Offset H

7 6 5 4 3 2 1 0

7 6 5 4 2 1 03

37 6 5 4 2 1 03

37 6 5 4 2 1 03

Interface for verification ROMs

DCMClkxCI ClkxCO

Peripheral bus

5MHz

ClkxC

60 MHz from USB 2.0
transmitter

InxDI OutxDO

EnxSI

AddrxSI

WrEnxSI

ClkxCI

Grøstl ROM
(test vectors)

0

InxDI OutxDO

EnxSI

AddrxSI

WrEnxSI

ClkxCI

AES ROM
(test vectors)

8

0
8

1

0

0

1

Figure 9.7: Peripheral bus used for connecting the verification ROMs to the openMSP430
core.

for AES-128 and Grøstl-224. The connection to the microcontroller was established again
over the peripheral bus as presented in Figure 9.7.

Due to the limited peripheral address space of 512 bytes a direct access to the 8 kB
address space of the two test ROMs was not possible. For bypassing this problem four
registers were introduced. Two of them are dedicated for the address itself and get modified
via software. The other two store the content of the AES or Grøstl ROM at the position
represented by the address in the first two registers. These are written by hardware and
read by software.

For accessing a test vector sequence the following procedure has to be applied. First,
the start address of the test vector is written into the dedicated registers of the interface.
Both test ROMs—AES and Grøstl—deliver the corresponding data to the applied address
as both are enabled all the time. These values enter the two registers of the interface which
must be in addition accessible over software. In order to ease the data access, each read
access on these registers increases the address by one. Therefore, no explicit increment
functionality is required. Caution has to be exercised due to the fact that the address
registers for AES and Grøstl are shared (read access on AES test vector increases also the
address for Grøstl).

9.2.4 Cryptographic Library

For establishing a fair hardware/software comparison a cryptographic library had to be
developed in addition. Goal was to support the same cryptographic primitives in hardware
and software.

9.2. SYSTEM ARCHITECTURE 81

Cryptographic Hardware Wrappers

For the cryptographic hardware primitives various wrappers were introduced which han-
dle the communication (handshaking) as well as the configuration (select unit, mode of
operation and frequency) with/of the hardware modules. As for both AES and Grøstl no
padding function is available, the data size must be either 16 bytes (AES) or a multiple
of 64 bytes (Grøstl). The keysize for AES must be always 16 bytes. Furthermore, both
variants overwrite the input data with the result. Each method is additionally available
as slow and fast variant. The slow method configures the hardware unit for 5 MHz. The
fast method on the other hand configures the hardware unit for 20 MHz. The available
wrappers for computing AES-128 and Grøstl-224 in hardware are listed below:

• int hw single aes encrypt w slow clock(unsigned char *msg, unsigned char *key)

• int hw single aes encrypt w fast clock(unsigned char *msg, unsigned char *key)

• int hw single aes decrypt w slow clock(unsigned char *msg, unsigned char *key)

• int hw single aes decrypt w fast clock(unsigned char *msg, unsigned char *key)

• int hw single groestl w slow clock(unsigned char *msg, int length)

• int hw single groestl w fast clock(unsigned char *msg, int length)

• int hw shared aes encrypt w slow clock(unsigned char *msg, unsigned char *key)

• int hw shared aes encrypt w fast clock(unsigned char *msg, unsigned char *key)

• int hw shared aes decrypt w slow clock(unsigned char *msg, unsigned char *key)

• int hw shared aes decrypt w fast clock(unsigned char *msg, unsigned char *key)

• int hw shared groestl w slow clock(unsigned char *msg, int length)

• int hw shared groestl w fast clock(unsigned char *msg, int length)

Cryptographic Software Primitives

The straightforward software variants were written completely in C with keeping a low-
memory footprint in mind. Therefore, no execution speed optimizations like loop unrolling
and the like were used. Padding again was excluded to be compatible with the hardware
components. The AES specification [51] and the Grøstl specification [15] served as guide-
lines for the implementations.

AES encryption was realized in the following way. Message and key are both stored
in an 16-byte unsigned char buffer to initialize the state matrix and the key matrix that
consist of a two-dimensional unsigned char array (4×4 matrix). Afterwards, the state
matrix is updated with the key matrix containing the master key for encryption. This
step represents the initial add round key. As the master key no longer is needed the key
matrix is updated through the key generation with the next round key. The initial phase
has now been completed and is followed by the round transformation consisting of the
ShiftRows, SubBytes, AddRoundKey and MixColumns steps, executed nine times in

82 CHAPTER 9. FPGA SYSTEM FOR HW/SW EVALUATION

this order. ShiftRows modifies the state matrix by shifting each row to the left by the
given offset as stated in the AES specification. Afterwards, each byte of the state matrix
is substituted through the AES Sbox which was realized as Look Up Table (LUT). The
AddRoundKey step followed next updates the state matrix with the actual stored round
key which gets updated in the following as it is not needed anymore. The MixColumns
operation transforms each column of the State matrix separately as this computation is
equal to a matrix multiplication. In order to realize the various coefficient multiplications
temporary values were computed representing either a multiplication by two of a previous
value or a combination (XOR) of two previously computed values. The multiplication by
two was chosen as it is easy to realize in hardware.

Hardware Multiplication by Two:
First, the highest bit is checked if it is set. If not only a shift operation by one to the
left is performed. In the other case the shift operation is followed by an XOR operation
with an irreducible polynomial of the finite field (GF (28)), represented by the value
0x1B.

After executing the round transformation nine times a final round follows whereas the
MixColumns operation is skipped. Afterwards, the state matrix contains the encrypted
message which gets written back into the input buffer and represents so the result of the
computation.

The AES decryption is build quite similarly. Differences are that for the initial add
round key step first the last round key has to be computed from the master key by
which the state matrix gets updated next. Furthermore, the round keys are computed
by the round-key generation in inverse order compared to the AES encryption operation.
The round transformation consists of the same functions with a different order of execu-
tion, namely that the MixColumns is executed before the AddRoundKey. Furthermore,
ShiftRows shifts the rows of the state matrix to the right. SubBytes additionally exhibits
a different LUT representing the inverse operation for the forward Sbox. As mentioned
before the AddRoundKey operation computes always the previous round key instead of
the next one. MixColumns just uses different coefficients but is realized in the same way
as for encryption. After the round transformation was applied again a final round follows
where MixColumns is skipped.

As Grøstl must be capable of computing the hash for messages containing more than
512 bytes (block size), the first step is to compute the number of message blocks from
the given length. Next, the intermediate hash-value buffer consisting of 64 unsigned chars
is initialized according to the Grøstl specification. Afterwards, a for loop is required to
compute subsequently each message block whereas always first a P permutation is applied
followed by a Q permutation. These permutations have the following structure. First, the
state matrix consisting of a two-dimensional unsigned char array (8×8 matrix) is initialized
either for a P permutation by XORing the intermediate hash value with the message or
simply with the message alone for the Q permutation. Afterwards, a round transformation
with 10 rounds is applied consisting of AddRoundConstant, SubBytes, ShiftBytes and
MixBytes operations. The AddRoundConstant operation XORs different fixed values
with the state matrix depending on the actual round and the kind of permutation. In
order to perform SubBytes the same LUT as used for the AES encryption is deployed.
ShiftBytes is similar to ShiftRows of the AES encryption operation as it shifts also
each row by a given offset to the left. Differences are the offsets and furthermore that
they are different for both permutations. The last operation of the round transformation

9.3. RESULTS 83

is MixBytes which has its equivalent in the AES MixColumns operation. Only the ma-
trix is bigger and contains different constants. The implementation on the other hand
was handled in the same way. In order to finalize a permutation the intermediate hash
value is XORed with state matrix. After processing each message block a truncation step
follows. There, the P permutation is executed again with a zero message block and the
intermediate hash value as input. The output gets truncated so that the last 28 bytes
remain. Moreover, the output is stored to the input message buffer.

The function calls for the previous described software variants are listed below:

• void aes encrypt(unsigned char *msg, unsigned char *key);

• void aes decrypt(unsigned char *msg, unsigned char *key);

• void groestl hash(unsigned char *msg, unsigned int length);

9.3 Results

After the description of the system and its components we are now in a position for going
into details of the acquired results. Therefore, first the influence of external data transfer
on the overall timing will be analyzed in Subsection 9.3.1 followed by the Software/Hard-
ware comparison in Subsection 9.3.2.

9.3.1 Influence of External Data Transfer on Overall Timing

Generally, each engineer should be aware of the timing drawbacks if going externally
from a system (e.g., reading/writing from/to external memory) and the problems which
can occur as mentioned in Chapter 6. It makes no sense to realize each small (simple)
component as a separate chip and connect it to the system where it is needed. Furthermore,
several ways exist to connect components with each other. Some offer a high flexibility
and others are quite restricted depending on their field of application. In this work all
external data transfer is handled over a four-phase handshaking as a simple integration
into various environments—also including different clock domains—should be possible.
This protocol is not the fastest but highly reliable (each data transfer must be requested
and acknowledged) which is more important in the field of secure applications. The high
time consumption is easy to explain as both the transmitter and the receiver have to
change a signal twice in order to successfully transfer a single byte. Other protocols have
for example only an initial phase after which the bytes are transferred cycle by cycle (in
case of a synchronous system).

Table 9.4 and Table 9.5 present the timings for all hardware modules operated at a
frequency of either 5 MHz or 20 MHz. The lower frequency is named from now on fL
and the higher frequency fH . As the shared version (GrÆStl) requires for all modes of
operation exactly the same amount of cycles as the single versions, it will not be targeted
separately anymore. Furthermore, for the numbers taking the interface (Ifc.) into account
it is important to know that the microcontroller is operated at the lower frequency.

With the presented timings for both frequencies the speed-up (S) factors for all modes
of operation and additionally for either taking the interface into account or leaving it out

84 CHAPTER 9. FPGA SYSTEM FOR HW/SW EVALUATION

Table 9.4: Timing for all modes of opera-
tion at 5 MHz clock frequency.

Operation w/o Ifc. w/ Ifc.
[µs] [µs]

AES enc. 147 487

AES dec. 2701 6102

Grøstl 613 1,268
1,2 205µs and 545µs, respectively if last round
key is stored in output register. Only available
for GrÆStl unit.

Table 9.5: Timing for all modes of opera-
tion at 20 MHz clock frequency.

Operation w/o Ifc. w/ Ifc.
[µs] [µs]

AES enc. 36.75 375

AES dec. 67.51 4052

Grøstl 153.25 805
1,2 51.25µs and 388.75µs, respectively if last
round key is stored in output register. Only
available for GrÆStl unit.

Table 9.6: Speed-up comparison for all modes of operation with and without the interface
taken into account.

Operation Sw/o Ifc. Sw/ Ifc.

AES encryption 4 ∼1.3

AES decryption 4/4 ∼1.5/∼1.4

Grøstl 4 ∼1.6

can be computed. Therefore, Equations 9.1 and 9.2 were used. The so gained results are
presented in Table 9.6.

Sw/o Ifc. =
Tw/o Ifc.@fL
Tw/o Ifc.@fH

(9.1)

Sw/ Ifc. =
Tw/ Ifc.@fL
Tw/ Ifc.@fH

(9.2)

For the variant not taking the interface into account a linear speed-up factor of four
is obtained represented through the Sw/o Ifc. column in Table 9.6 and represents also the
natural influence one would expect through the given frequency increase from fL to fH .

This speed-up factor is not informative at all when keeping a functional system in mind.
Therefore, the handshaking procedure has to be taken into account which is represented
through the Sw/ Ifc. column in Table 9.6. As the microcontroller is operated with the lower
frequency heavy losses regarding the speed-up factor can be observed. The reason for that
is that the increase of the frequency for the hardware units from fL to fH only shortens
the time for the core computation but not for the handshaking. This circumstance entails
that Grøstl with 3,061 core cycles exhibits a higher speed-up factor than AES in all modes
of operation (652 core cycles for encryption and 955/1,269 core cycles for decryption).

Regarding this numbers a bigger difference between the speed-up factors of AES and
Grøstl as presented in Table 9.6 would be expected. The explanation for this unexpected
small difference is the handshaking procedure for AES and Grøstl which is negligible
affected by the frequency increase of the hardware units. AES requires 32 input bytes
(data + master key) and 16 output bytes whereas Grøstl needs 64 and 28 bytes ending
up in 1,700 MCU clock cycles for the AES handshaking and 3,275 MCU clock cycles for
Grøstl handshaking when operated with the lower frequency fL. Switching from fL to
fH negligibly influences the cycle counts as the bottleneck is always the microcontroller
which is operated all over with the lower frequency fL and has additional work to do
(polling I/O pins, interrupt handling, ...) reflected through short breaks in the processing

9.3. RESULTS 85

Table 9.7: Results for the AES-128 and Grøstl-224 software routines targeting a low-
memory footprint. They were achieved on the dedicated target platform, the openMSP430
running at a frequency of 5 MHz.

Operation Time ROM Usage
[µs] [Bytes]

AES enc. 30,000 2,200

AES dec. 32,000 2,200

Grøstl 290,000 1,200

of the peripheral bus. The hardware units instead react immediately on changes of the
handshaking control lines. Therefore, increasing the frequency of the hardware units while
leaving the frequency of the microcontroller constant entails no real profit as the reaction
of the hardware units may occur earlier but gets processed by the microcontroller at the
same moment as it would be with the lower frequency. Choosing a frequency for the
hardware units which is lower than the one from the microcontroller increases for the
same reason the number of required cycles of the handshaking. This fact explains why the
speed-up for the Grøstl computation is nearly the same as for the AES computation.

9.3.2 Software/Hardware Evaluation

The software versus hardware evaluation is based on the straightforward implementation
of AES-128 and Grøstl-224 on the openMSP430 with the focus on a low-memory footprint
and the appertaining hardware modules both already described. The comparison is only
concerned with the time required to compute AES/Grøstl from reading in the first byte
until reading out the last byte. Table 9.7 presents the achieved results for the software
routines.

Comparing the software routines with the hardware-accelerated computations shows
that they need at least around 50 times longer which can also be seen in Table 9.8. With
the computational complexity measured for example by the amount of cycles required by
the hardware components to fulfil a desired computation also the efficiency of the hardware
accelerated computation raises. The lowest computational effort is represented by AES
whereas Grøstl exhibits the highest complexity. Regarding the AES algorithm encryption
was expected to feature a lower hardware-acceleration efficiency than the decryption which
is in fact in this software/hardware version not the case. The reason for that is the
key scheduler which computes in the software variant always all round keys in advance
which contrasts to the hardware version where each byte of the round key is computed
consecutively. Therefore the software variant features the same computational effort for
computing the next/previous round key. The hardware components on the other hand
exhibit a higher complexity for computing the previous round key.

86 CHAPTER 9. FPGA SYSTEM FOR HW/SW EVALUATION

Table 9.8: Comparison of the AES-128 and Grøstl-224 software routines/hardware com-
ponents executed/connected to the dedicated target platform, which is the openMSP430
running at a frequency of 5 MHz. The hardware components are operated with a speed of
either 5 MHz or 20 MHz.

Operation Speed-up through HW Speed-up through HW
running at 5 MHz running at 20 MHz

AES enc. 61 80

AES dec. 521 792

Grøstl 229 360
1,2 59/82 if last round key is stored in output register. Only available for GrÆStl unit.

Chapter 10

Conclusions

This work has been split into two constructive parts. First, GrÆStl a combined hardware
architecture for the Advanced Encryption Standard (AES) and Grøstl. GrÆStl was devel-
oped for low-resource devices and aims for high flexibility by targeting both Application-
Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA) plat-
forms. In order to obtain an expressive statement about the benefit of combining AES
and Grøstl, a chip named Chameleon was produced. Chameleon contains the designs of the
stand-alone versions for AES and Grøstl as also the combined version GrÆStl. The chip
was taped-out, produced and verified successfully. In the second part an FPGA system
was developed containing the openMSP430 microcontroller and the ported cryptographic
modules. Target was to establish a reliable system for making a fair hardware/software
comparison and to show the influence of the used interface on the overall computation
time.

In detail, the first part targets the benefits of combining AES and Grøstl. AES on the
one hand is the by far most widely spread block cipher since its standardization in 2001
by the National Institue of Standards and Technology (NIST). Grøstl on the other hand
is one of the final-round candidates of the SHA-3 hash-function competition, which will
announce its winner in late of 2012. Therefore, AES is already and Grøstl could become
an algorithm widely used to achieve data confidentiality, integrity and authenticity. Due
to the fact that AES and Grøstl feature several similarities such as a common S-box or
similar diffusion layers an integration into one module looks promising for the future. In
addition to the cost savings regarding area occupation authenticated encryption could be
fulfilled in one step with such a design.

The whole design is based on standard cells only and contains therefore no process-
dependent technologies like Random Access Memory (RAM) macros, Block RAMs or
Digital Signal Processors (DSPs) as they might not be available on all Complementary
Metal-Oxide Semiconductor (CMOS) platforms and furthermore would have to be recre-
ated in case CMOS-process is changed. Moreover, in case of FPGAs, resources such as
Block RAMs or DSPs might be already used by other system components. Therefore, the
design is highly flexible and portable to other platforms.

In order to lower the area requirements the following optimization techniques are inte-
grated in the combined hardware architecture: (1) the AES datapath was integrated into
the Grøstl one, starting with a mapping of the AES state into the Grøstl state matrix
(one half of the Grøstl matrix is occupied by the AES state and the actual AES round
key) to avoid the need of additional memory, (2) the I/O registers as well as the complete
state matrix are made out of shift registers in order to provide high flexibility (for ASICs

87

88 CHAPTER 10. CONCLUSIONS

as well as FPGAs) and to avoid the implementation of ShiftBytes and ShiftRows, (3)
the AddRoundConstant function was implemented according to the tweaked Grøstl spec-
ification, cf. [15], instead of the Grøstl-0 specification (from the 31st of October 2008) as
given in most of the related work, (4) the S-boxes were reused for AES and Grøstl and fur-
ther they were also reused to increase the performance of AES round-key generation, (5)
MixBytes and MixColumns were combined and finally (6) the I/O registers are shared
in order to avoid forward round-key generation during decryption reducing the overall
number of clock cycles by 330.

As result, a chip named Chameleon was taped-out and produced on a 0.18 µm CMOS
process technology from UMC. Chameleon contains GrÆStl, the first combined hardware
implementation fabricated as ASIC, occupying 17.1 kGE in total. In order to establish a
fair comparison, AES-128 and Grøstl-224 were also included as stand-alone versions. It
showed that the integration of AES into Grøstl needs an overhead of only 10 % which
corresponds to 1.5 kGE. The smallest AES version for both encryption and decryption
was presented by Feldhofer et al. [11] in 2005. Their design requires 3.4 kGE after the
synthesis and 4.4 kGE after the backend design. Moradi et al. [45] reported in 2011 an
AES encryption-only version with a complexity of about 2.4 kGE after synthesis. The
result of this work is a combined hardware architecture in which AES (encryption and
decryption) was implemented with about 60 % and 40 % less resources than the designs
from Feldhofer et al. and Moradi et al.. The small area requirements and the low power
consumption (gate-level power analysis based on switching activities) of about 13 µW
for AES encryption/decryption and 20 µW for Grøstl at 100 kHz make the design highly
suitable for low-resource devices. Chameleon was successfully verified after production and
features a maximum frequency of about 133 MHz. The power consumption for GrÆStl in
AES encryption mode is 63 µW at 100 kHz.

The efficiency of Chameleon on FPGA platforms was evaluated through porting the
design on various Xilinx FPGAs. The only modification was the removal of the reset
functionality from the registers in order to lower the area requirements according to the
SRL-16 [7, 67] mode. In particular, on a Spartan-3 FPGA, the stand-alone AES and
Grøstl implementations outperform existing solutions by a factor of 4.8 and about 1.6. To
the best of our knowledge the stand-alone versions are the smallest designs known so far.
GrÆStl instead is in fact about 2 % larger than the sum of the stand-alone versions for
AES and Grøstl. The reason for that is the state matrix which had to be split up in the
half in order to establish the integration of AES into Grøstl. Therefore, the SRL-16 mode
can not be fit to the design as optimal as otherwise.

In the second part of the thesis an FPGA system containing the openMSP430 micro-
controller and the ported cryptographic modules was developed. The target was to show
the influence of the used interface on the overall computation time using two different
clock frequencies and to establish a fair hardware/software comparison. Therefore, the
cryptographic modules were connected to the openMSP430 and made accessible through
software routines. Moreover, the stand-alone software versions of AES-128 and Grøstl-224
were developed with keeping a low-memory footprint in mind. It showed that the four-
phase handshaking makes the design highly flexible regarding various clock domains but
reduces the efficiency of the outsourced computations substantially. The speedup through
an increase in the clock frequency of the cryptographic modules from 5 to 20 MHz by
holding the frequency of the openMSP430 constantly at 5 MHz reduced therefore from 4
(without interface) to only 1.6 in case of Grøstl and to only 1.3 for AES encryption. The
software variants for AES encryption/decryption occupied 2,200 Bytes of ROM whereas

89

Grøstl needs only 1,200 Bytes due to the missing round-key generation. In view of execu-
tion time, AES encryption needs around 30,000 µs, AES decryption 32,000 µs and Grøstl
290,000 µs. The speedup through outsourcing the computation into dedicated hardware
was therefore expected to be highest for Grøstl, which turned out to be true. A speedup
of 229 for Grøstl and only 61/52 for AES encryption/decryption was achieved. If the
last round key is already known at the beginning of a decryption (forward round-key
computation can be skipped) the speedup is increased to 82.

Summarizing, this work achieved an integration of the AES-128 datapath into the
Grøstl-224 datapath with an overhead of only 10 % which corresponds to 1.5 kGE. The
benefit of the combination process is therefore the smallest AES encryption and decryption
unit known so far. Regarding FPGA platforms the smallest stand-alone versions for AES-
128 and Grøstl-224—not using distributed RAM or Block RAMs—have been created.
Further, through the FPGA system of part two a hardware accelerated speedup for AES
encryption, AES decryption and Grøstl of 61, 52 and 229 was achieved. The influence
of the interface for the cryptographic modules—frequency of cryptographic modules was
increased from 5 to 20 MHz while leaving the frequency of the microcontroller constantly
at 5 MHz—showed a speedup reduction from 4 to only 1.6 in case of Grøstl and 1.3 for
AES encryption.

90 CHAPTER 10. CONCLUSIONS

Appendix A

Definitions

A.1 Abbreviations

AES Advanced Encryption Standard
ASIC Application-Specific Integrated Circuit
BRAM Block RAM
CBC Cipher-Block Chaining
CFB Cipher Feedback
CLB Configurable Logic Block
CMOS Complementary Metal-Oxide Semiconductor
CRT Counter
DES Data Encryption Standard
D-ITET Department of Information Technology and Electrical Engineering
DSP Digital Signal Processor
ECB Electronic Code Book
FIPS Federal Information Processing Standard
FF Flip Flop
FPGA Field Programmable Gate Array
FSM Finite State Machine
GE Gate Equivalent
HW Hardware
MAC Message Authentication Codes
MCU Microcontroller Unit
MD Message Digest
MSPGCC Port of the GCC Toolchain for the Texas Instruments MSP430 Family
NIST National Institute of Standards and Technology
OFB Output Feedback
RAM Random-Access Memory
RC Rivest Cipher
RFID Radio-Frequency Identification
ROM Read-Only Memory
SFIT Swiss Federal Institute of Technology
SHA Secure Hash Algorithm
SLICEL SLICEL (L = logic)
SLICEM SLICEM (M = memory)
SOC System On Chip

91

92 APPENDIX A. DEFINITIONS

SRL Shift-Register Logic
SRAM Static Random-Access Memory
SW Software
TUG Graz University of Technology
UMC United Microelectronics Corporation
VCD Value Change Dump
VHDL Very High Speed Integrated Circuit Hardware Description Language

Appendix B

Chameleon - ASIC

B.1 General Features

• Package

– QFN 56 (8x8), only 48 pins used

• Pads/Padframe1

– 4-pad power-supply pins

– 4-pad core power-supply pins

– 40 I/O pins

• Chip size

– 1.565 mm x 1.565 mm (including seal ring)

• Core size

– 1.09926 mm x 1.09926 mm = 1.21 mm2 (incl. global and power routing)

– Conforms to logic complexity of 90,000 GE estimated for 70 % occupation of
maximum core area.

• Supply Voltages

– 3.3 V pad supply voltage

– 1.8 V core supply voltage

• Max. operating speed

– 125 MHz @ max. supply voltage for both pads and core.

• Core area occupation2

– AES-128: 5,035 GE

– Grøstl-224: 15,551 GE

1Spacings and the location of the power pads and the clock pad have been predefined through the used
standard bonding diagram provided by the Microelectronics Design Center of ETH Zürich.

2Complexity of cryptographic modules exclusive interface (four-phase handshaking)

93

94 APPENDIX B. CHAMELEON - ASIC

– GrÆStl: 17,137 GE

– Overall: 38,2543 GE

• Cryptographic performance (number of cycles without interface)

– AES-128 (enc./dec.): 652/1,269 cycles

– Grøstl- 224 (hash): 3,061 cycles

– GrÆStl (enc./dec./hash): 652/1,2694/3,061 cycles

• Estimated power consumption5 for the cryptographic modules

– AES-128: 13.4 µW/MHz

– Grøstl- 224: 20.3 µW/MHz

– GrÆStl (enc. and dec./hash): 20.2/21.6 µW/MHz

3Including the three cryptographic modules and their shared interface set on top of them.
4955 cycles if enc./dec. with same master key was carried out immediately before.
5Estimations based on toggling counts of the nodes gained through a gate-level simulation with random

test vectors.

B.2. PINOUT 95

B.2 Pinout

1

15

2
9

43

2

16

3
0

44

3

17

3
1

45

4

18

3
2

46

5

19

3
3

47

6

20

3
4

48

7

21

3
5

49

8

22

3
6

50

9

23

3
7

51

1
0

24

3
8

52

1
1

25

3
9

53

1
2

26

4
0

54

1
3

27

4
1

55

1
4

28

4
2

56

NOT_BONDED

pad_InReqxSI

pad_InxDI_0

pad_InxDI_1

pad_InxDI_2

pad_InxDI_3

pad_gnd_c1

pad_vcc_c1

pad_InxDI_4

pad_InxDI_5

pad_InxDI_6

pad_InxDI_7

pad_OutAckxSI

NOT_BONDED

p
a

d
_

v
c
c
_

p
1

p
a

d
_

R
n

d
C

n
tx

S
O

_
3

p
a

d
_

R
n

d
C

n
tx

S
O

_
2

p
a

d
_

R
n

d
C

n
tx

S
O

_
1

p
a

d
_

R
n

d
C

n
tx

S
O

_
0

p
a

d
_

In
H

a
n

d
s
h

a
k
in

g
S

ta
rt

e
d

x
S

O

N
O

T
_

B
O

N
D

E
D

N
O

T
_

B
O

N
D

E
D

p
a

d
_

C
o

lu
m

n
C

n
tx

S
O

_
2

p
a

d
_

C
o

lu
m

n
C

n
tx

S
O

_
1

p
a

d
_

C
o

lu
m

n
C

n
tx

S
O

_
0

p
a

d
_

L
o

a
d

S
ta

te
x
S

O

p
a

d
_

O
u

tH
a

n
d

s
h

a
k
in

g
S

ta
rt

e
d

x
S

O

p
a

d
_

g
n

d
_

p
1

NOT_BONDED

pad_OutReqxSO

pad_OutxDO_7

pad_OutxDO_6

pad_OutxDO_5

pad_OutxDO_4

pad_gnd_c2

pad_vcc_c2

pad_OutxDO_3

pad_OutxDO_2

pad_OutxDO_1

pad_OutxDO_0

pad_InAckxSO

NOT_BONDED

p
a

d
_

v
c
c
_

p
2

p
a

d
_

S
ta

rt
x
S

I

p
a

d
_

R
s
t

p
a

d
_

D
o

n
e
x
S

O

p
a

d
_

S
c
a

n
E

n
x
T

I

p
a

d
_

C
lk

N
O

T
_

B
O

N
D

E
D

N
O

T
_

B
O

N
D

E
D

p
a

d
_

S
e

lM
o

d
e

x
S

I_
0

p
a

d
_

S
e

lM
o

d
e

x
S

I_
1

p
a

d
_

S
e

lU
n

it
x
S

I_
0

p
a

d
_

S
e

lU
n

it
x
S

I_
1

p
a

d
_

S
e

lU
n

it
x
S

I_
2

p
a

d
_

g
n

d
_

p
2

Figure B.1: Pinout of the taped-out chip named Chameleon.

96 APPENDIX B. CHAMELEON - ASIC

B.3 Pad Description

Pad(s) Description

pad vcc p1, pad vcc p2
Power supply for the padframe (3.3 V).

pad gnd p1, pad gnd p2

pad vcc c1, pad vcc c2
Power supply for the core (1.8 V).

pad gnd c1, pad gnd c2

pad InReqxSI, pad InAckxSO
I/O-handshaking signals for un-/loading data.

pad OutReqxSO, pad OutAckxSI

pad InxDI [7:0]1
8-bit parallel data I/O (reused as scanchain I/O)

pad OutxDO [7:0]

pad ScanEnxTI If set to high chip operates in test mode in which the
functionality can be verified using eight parallel
scanchains accessible over the data I/O pads.

pad Clk Clock Input
pad Rst System Reset (Asynchronous)

pad SelUnitxSI [2:0] Select cryptounit
000...Disable All Units
001...AES
010...Grøstl
011...GrÆStl in AES mode of operation
100...GrÆStl in Grøstl mode of operation

pad SelModexSI [1:0] Select AES mode of operation
0X...Encryption
1X...Decryption

Select Grøstl mode of operation
00...Intermediate block
01...First block
10...Last block
11...First and last block

pad StartxSI Must be high for duration of input handshaking
pad DonexSO High for duration of output handshaking

pad RndCntxSO [3:0] Computation progress in term of actual round
pad ColumnCntxSO [2:0] Detailed computation progress in term of actual

column of actual round

pad InHandshakingStartedxSO High if input handshaking active
pad OutHandshakingStartedxSO High if output handshaking active

pad LoadStatexSO High during loading of internal state
→AES Unit: Internal state loaded during reading

in of data
→Other Units: Internal state loaded after reading

in of data into input registers

B.4. INTERFACE DESCRIPTION 97

B.4 Interface Description

Chameleon was designed in a way offering high flexibility regarding various platforms
as well as clock domains. Therefore, the I/O interface was implementing via a four-
phase handshaking. This scheme is on the one hand highly flexible regarding various
clock domains but on the other hand also slower as other interfaces like, for example, the
two-phase handshaking. A detailed overview of the finite state machine representing the
four-phase handshaking that is used in Chameleon is presented in Figure B.2.

The interface of the taped-out chip named Chameleon has three vulnerabilities re-
garding its reliability. These are highlighted by red lines and dashed lines in the detailed
representation of the finite-state machine. Additionally, a number is placed beside in or-
der to describe the vulnerabilities and their impact in an organized manner which can be
found in the following enumeration.

• 1.) Missing InAckxSO <=′ 1′ entry in state innotreq
In the original four-phase protocol the acknowledge line is only set back to its orig-
inal state after recognizing the same behaviour on the request line. The taped-out
chip nevertheless exhibits the behaviour that the reset of the acknowledge line is
independent from the request line and is therefore each time exactly one cycle at
high level. This can cause an erroneous behaviour in case the transmitter is operated
with a slower clock. If so, it is possible that the acknowledge line gets reset to its
original value before the transmitter recognizes this. As a result the data exchange
will end up in a deadlock as the receiver waits for an action of the transmitter and
vice versa!

• 2.) Jump to wrong state
After recognizing that the receiver has acknowledged the reception of the data the
request is set back to its original state. Afterwards, an idle time occurs which is
as long as the time until the receiver resets the acknowledge line. However, the
implemented interface skips this idle time and signals directly afterwards, that the
next data item is ready to be transferred.

• 3.) Missing state
Due to the wrong jump mentioned above a state is omitted. The impact is the same
as already described before.

98 APPENDIX B. CHAMELEON - ASIC

in
a
ck

In
A
ck

x
S
O

<
=

’1
’

N
e
w
In

D
a
ta
x
S

<
=

’1
’

in
n
o
ta
ck

H
a
n
d
sh

a
k
in
g
C
n
tx

D
N

<
=

H
a
n
d
sh

a
k
in
g
C
n
tx

D
P

+
1

In
A
ck

x
S
O

<
=

’0
’

in
rn

d
s
:=

3
1

if
(S

e
lU

n
it
x
S
I
=

A
E
S

M
O
D
U
L
E

o
r
S
e
lU

n
it
x
S
I
=

S
H

A
E
S

M
O
D
U
L
E

e
ls
e in
rn

d
s
:=

6
3

if
(H

a
n
d
sh

a
k
in
g
C
n
tx

D
P

=
in
rn

d
s)

H
a
n
d
sh

a
k
in
g
C
n
tx

D
N

<
=

(o
th

e
rs

=
>

’0
’)

In
H
a
n
d
sh

a
k
in
g
S
ta
rt
e
d
x
S
N

<
=

’0
’

in
n
o
tr
e
q

N
e
w
In

D
a
ta
x
S

<
=

’0
’

in
re
q

In
A
ck

x
S
O

<
=

’0
’

w
a
it
fo
ri
n
p
u
th

a
n
d
sh

a
k
in
g

H
a
n
d
sh

a
k
in
g
C
n
tx

D
N

<
=

(o
th

e
rs

=
>

’0
’)

In
A
ck

x
S
O

<
=

’0
’

if
(P

ro
c
e
ss
in
g
x
S

=
’0
’
a
n
d
D
o
n
e
x
S

=
’0
’
a
n
d
In

R
e
q
x
S
I
=

’1
’)

In
H
a
n
d
sh

a
k
in
g
S
ta
rt
e
d
x
S
N

<
=

’1
’

P
ro

c
e
ss
in
g
x
S

=
0
a
n
d

D
o
n
e
x
S

=
’0
’
a
n
d

In
R
e
q
x
S
I
=

’1
’

In
R
e
q
x
S
I
=

’1
’

In
R
e
q
x
S
I
=

’0
’

H
a
n
d
sh

a
k
in
g
C
n
tx

D
P

!=
in
rn

d
s

H
a
n
d
sh

a
k
in
g
C
n
tx

D
P

=
in
rn

d
s
a
n
d

S
e
lM

o
d
e
x
S
I(
1
)
=

’0
’

(S
e
lU

n
it
x
S
I
=

G
R
O
E
S
T
L

M
O
D
U
L
E

o
r

S
e
lU

n
it
x
S
I
=

S
H

G
R
O
E
S
T
L

M
O
D
U
L
E
)
a
n
d

e
n
d

if

e
n
d

if

e
n
d

if

w
a
it
fo
ro

u
tp

u
th

a
n
d
sh

a
k
in
g

H
a
n
d
sh

a
k
in
g
C
n
tx

D
N

<
=

(o
th

e
rs

=
>

’0
’)

O
u
tR

e
q
x
S
O

<
=

’0
’

if
(D

o
n
e
x
S

=
’1
’
a
n
d

((
S
e
lU

n
it
x
S
I
=

G
R
O
E
S
T
L

M
O
D
U
L
E

a
n
d

S
e
lM

o
d
e
x
S
I(
1
)
=

’1
’)

o
r

(S
e
lU

n
it
x
S
I
=

S
H

G
R
O
E
S
T
L

M
O
D
U
L
E

a
n
d

S
e
lM

o
d
e
x
S
I(
1
)
=

’1
’)

o
r

S
e
lU

n
it
x
S
I
=

A
E
S

M
O
D
U
L
E

o
r

S
e
lU

n
it
x
S
I
=

S
H

A
E
S

M
O
D
U
L
E
))

O
u
tH

a
n
d
sh

a
k
in
g
S
ta
rt
e
d
x
S
N

<
=

’1
’

e
n
d

if

D
o
n
e
x
S

=
’1
’
a
n
d

((
S
e
lU

n
it
x
S
I
=

G
R
O
E
S
T
L

M
O
D
U
L
E

a
n
d

S
e
lM

o
d
e
x
S
I(
1
)
=

’1
’)

o
r

(S
e
lU

n
it
x
S
I
=

S
H

G
R
O
E
S
T
L

M
O
D
U
L
E

a
n
d

S
e
lM

o
d
e
x
S
I(
1
)
=

’1
’)

o
r

S
e
lU

n
it
x
S
I
=

A
E
S

M
O
D
U
L
E

o
r

S
e
lU

n
it
x
S
I
=

S
H

A
E
S

M
O
D
U
L
E
)

o
u
tr
e
q

O
u
tR

e
q
x
S
O

<
=

’1
’

O
u
tA

ck
x
S
I
=

’1
’

H
a
n
d
sh

a
k
in
g
C
n
tx

D
P

=
in
rn

d
s
a
n
d

S
e
lM

o
d
e
x
S
I(
1
)
=

’1
’

(S
e
lU

n
it
x
S
I
!=

G
R
O
E
S
T
L

M
O
D
U
L
E

a
n
d

S
e
lU

n
it
x
S
I
!=

S
H

G
R
O
E
S
T
L

M
O
D
U
L
E
)
o
r

o
u
tn

o
tr
e
q

N
e
w
O
u
tD

a
ta
x
S

<
=

’0
’

o
u
ta
ck

O
u
tR

e
q
x
S
O

<
=

’0
’

N
e
w
O
u
tD

a
ta
x
S

<
=

’1
’

H
a
n
d
sh

a
k
in
g
C
n
tx

D
P

=
o
u
tr
n
d
s

o
u
tn

o
ta
ck

N
e
w
O
u
tD

a
ta
x
S

<
=

’0
’

H
a
n
d
sh

a
k
in
g
C
n
tx

D
N

<
=

H
a
n
d
sh

a
k
in
g
C
n
tx

D
P

+
1

o
u
tr
n
d
s
:=

1
5

if
(S

e
lU

n
it
x
S
I
=

A
E
S

M
O
D
U
L
E

o
r
S
e
lU

n
it
x
S
I
=

S
H

A
E
S

M
O
D
U
L
E

e
ls
e o
u
tr
n
d
s
:=

2
7

if
(H

a
n
d
sh

a
k
in
g
C
n
tx

D
P

=
o
u
tr
n
d
s)

H
a
n
d
sh

a
k
in
g
C
n
tx

D
N

<
=

(o
th

e
rs

=
>

’0
’)

O
u
tH

a
n
d
sh

a
k
in
g
S
ta
rt
e
d
x
S
N

<
=

’0
’

e
n
d

if

e
n
d

if

H
a
n
d
sh

a
k
in
g
C
n
tx

D
P

!=
o
u
tr
n
d
s

O
u
tA

ck
x
S
I
=

’0
’

In
A
ck

x
S
O

<
=

’1
’

1

2
3

F
ig

u
re

B
.2

:
F

in
it

e
st

at
e

m
ac

h
in

e
h

an
d

li
n

g
th

e
I/

O
co

m
m

u
n

ic
at

io
n

fo
r

th
e

A
S

IC
an

d
th

e
F

P
G

A
im

p
le

m
en

ta
ti

o
n

,
re

sp
ec

ti
ve

ly
.

Appendix C

Chameleon - FPGA

C.1 Xilinx Spartan-3 and Spartan-6 Results

Table C.1: Post place-and-route results for Xilinx Spartan-3 and Spartan-6 FPGAs con-
sidering the interface (original design - no adaptation due to SRL-16 mode).

Spartan-3 Spartan-6
AES Grøstl GrÆStl AES Grøstl GrÆStl

Number of slice LUTs 871 1,045 1,876 560 709 1,426
Number used as logic 863 892 1,757 478 551 1,119
Number used as shift reg. 8 128 64 4 64 32
Number used as a route-thru 0 25 55 78 94 275

Number of slice registers 292 558 856 286 546 833
Frequency(MHz) 35 40 25 50 55 35

Number of occupied slices 525 682 1,203 187 232 400

C.2 Xilinx Virtex-5 and Virtex-6 Results

Table C.2: Post place-and-route results for Xilinx Virtex-5 and Virtex-6 FPGAs consid-
ering the interface (original design - no adaptation due to SRL-16 mode).

Virtex-5 Virtex-6
AES Grøstl GrÆStl AES Grøstl GrÆStl

Number of slice LUTs 467 657 1,005 508 704 1,285
Number used as logic 458 548 968 431 535 1,062
Number used as shift reg. 9 108 36 5 76 64
Number used as a route-thru 0 1 1 72 93 159

Number of slice registers 292 563 858 287 555 744
Frequency(MHz) 125 135 90 110 115 85

Number of occupied slices 160 259 369 149 225 363

99

100 APPENDIX C. CHAMELEON - FPGA

Appendix D

FPGA System - AddOn

This chapter presents first in Section D.1 the basic linker script used for building a working
ROM content by the system toolchain. Afterwards, in Section D.2, an installation script for
installing the MSPGCC toolchain is given as installers for the major operating systems are
only given for the old toolchain, the MSPGCC4. Finally, in Section D.3 the test program
for verifying the correct functionality of the cryptographic modules is presented.

D.1 Basic Linker Script for openMSP430 MCUs

This section presents the basic linker script [16] which forms one of the inputs to the
system toolchain which is responsible for building a functional ROM content. According
to the data memory size and the program memory size the system toolchain modifies the
text origin and length, data origin and length and also the stack offset.

/* Default linker script, for normal executables */

OUTPUT_FORMAT("elf32-msp430","elf32-msp430","elf32-msp430")

OUTPUT_ARCH("msp430")

MEMORY

{

text (rx) : ORIGIN = 0xF800, LENGTH = 0x800

data (rwx) : ORIGIN = 0x0200, LENGTH = 0x080

vectors (rw) : ORIGIN = 0xffe0, LENGTH = 0x20

}

/* INCLUDE periph.x */

SECTIONS

{

/* Read-only sections, merged into text segment. */

.hash : { *(.hash) }

.dynsym : { *(.dynsym) }

.dynstr : { *(.dynstr) }

.gnu.version : { *(.gnu.version) }

.gnu.version_d : { *(.gnu.version_d) }

.gnu.version_r : { *(.gnu.version_r) }

.rel.init : { *(.rel.init) }

.rela.init : { *(.rela.init) }

.rel.text :

101

102 APPENDIX D. FPGA SYSTEM - ADDON

{

*(.rel.text)

(.rel.text.)

(.rel.gnu.linkonce.t)

}

.rela.text :

{

*(.rela.text)

(.rela.text.)

(.rela.gnu.linkonce.t)

}

.rel.fini : { *(.rel.fini) }

.rela.fini : { *(.rela.fini) }

.rel.rodata :

{

*(.rel.rodata)

(.rel.rodata.)

(.rel.gnu.linkonce.r)

}

.rela.rodata :

{

*(.rela.rodata)

(.rela.rodata.)

(.rela.gnu.linkonce.r)

}

.rel.data :

{

*(.rel.data)

(.rel.data.)

(.rel.gnu.linkonce.d)

}

.rela.data :

{

*(.rela.data)

(.rela.data.)

(.rela.gnu.linkonce.d)

}

.rel.ctors : { *(.rel.ctors) }

.rela.ctors : { *(.rela.ctors) }

.rel.dtors : { *(.rel.dtors) }

.rela.dtors : { *(.rela.dtors) }

.rel.got : { *(.rel.got) }

.rela.got : { *(.rela.got) }

.rel.bss : { *(.rel.bss) }

.rela.bss : { *(.rela.bss) }

.rel.plt : { *(.rel.plt) }

.rela.plt : { *(.rela.plt) }

/* Internal text space. */

D.1. BASIC LINKER SCRIPT FOR OPENMSP430 MCUS 103

.text :

{

. = ALIGN(2);

*(.init)

(.init0) / Start here after reset. */

*(.init1)

(.init2) / Copy data loop */

*(.init3)

(.init4) / Clear bss */

*(.init5)

(.init6) / C++ constructors. */

*(.init7)

*(.init8)

(.init9) / Call main(). */

__ctors_start = . ;

*(.ctors)

__ctors_end = . ;

__dtors_start = . ;

*(.dtors)

__dtors_end = . ;

. = ALIGN(2);

*(.text)

. = ALIGN(2);

(.text.)

. = ALIGN(2);

(.fini9) / */

*(.fini8)

*(.fini7)

(.fini6) / C++ destructors. */

*(.fini5)

*(.fini4)

*(.fini3)

*(.fini2)

*(.fini1)

(.fini0) / Infinite loop after program termination. */

*(.fini)

_etext = . ;

} > text

.data : AT (ADDR (.text) + SIZEOF (.text))

{

PROVIDE (__data_start = .) ;

. = ALIGN(2);

*(.data)

. = ALIGN(2);

(.gnu.linkonce.d)

. = ALIGN(2);

_edata = . ;

} > data

104 APPENDIX D. FPGA SYSTEM - ADDON

PROVIDE (__data_load_start = LOADADDR(.data));

PROVIDE (__data_size = SIZEOF(.data));

.bss SIZEOF(.data) + ADDR(.data) :

{

PROVIDE (__bss_start = .) ;

*(.bss)

*(COMMON)

PROVIDE (__bss_end = .) ;

_end = . ;

} > data

PROVIDE (__bss_size = SIZEOF(.bss));

.noinit SIZEOF(.bss) + ADDR(.bss) :

{

PROVIDE (__noinit_start = .) ;

*(.noinit)

*(COMMON)

PROVIDE (__noinit_end = .) ;

_end = . ;

} > data

.vectors :

{

PROVIDE (__vectors_start = .) ;

(.vectors)

_vectors_end = . ;

} > vectors

/* Stabs debugging sections. */

.stab 0 : { *(.stab) }

.stabstr 0 : { *(.stabstr) }

.stab.excl 0 : { *(.stab.excl) }

.stab.exclstr 0 : { *(.stab.exclstr) }

.stab.index 0 : { *(.stab.index) }

.stab.indexstr 0 : { *(.stab.indexstr) }

.comment 0 : { *(.comment) }

/* DWARF debug sections.

Symbols in the DWARF debugging sections are relative to the beginning

of the section so we begin them at 0. */

/* DWARF 1 */

.debug 0 : { *(.debug) }

.line 0 : { *(.line) }

/* GNU DWARF 1 extensions */

.debug_srcinfo 0 : { *(.debug_srcinfo) }

.debug_sfnames 0 : { *(.debug_sfnames) }

/* DWARF 1.1 and DWARF 2 */

.debug_aranges 0 : { *(.debug_aranges) }

.debug_pubnames 0 : { *(.debug_pubnames) }

/* DWARF 2 */

.debug_info 0 : { *(.debug_info) *(.gnu.linkonce.wi.*) }

.debug_abbrev 0 : { *(.debug_abbrev) }

D.2. INSTALLATION SCRIPT FOR MSPGCC TOOLCHAIN 105

.debug_line 0 : { *(.debug_line) }

.debug_frame 0 : { *(.debug_frame) }

.debug_str 0 : { *(.debug_str) }

.debug_loc 0 : { *(.debug_loc) }

.debug_macinfo 0 : { *(.debug_macinfo) }

PROVIDE (__stack = 0x280) ;

PROVIDE (__data_start_rom = _etext) ;

PROVIDE (__data_end_rom = _etext + SIZEOF (.data)) ;

PROVIDE (__noinit_start_rom = _etext + SIZEOF (.data)) ;

PROVIDE (__noinit_end_rom = _etext + SIZEOF (.data) + SIZEOF (.noinit)) ;

}

D.2 Installation Script for MSPGCC Toolchain

The MSPGCC4 can be installed very easily over provided installers for the major operating
systems. As such installers are missing for the MSPGCC a script has been developed which
handles the download and installation of the binaries.

#!/bin/csh

###

Set the installation log file

###

set INSTALL_LOG = "/scratch/msc11h1/mspgcc-files/install_log"

###

Clear the file structure

###

echo "1.) CLEARING FILE STRUCTURE"

rm -r -f /scratch/msc11h1/msp*

###

Create file structure

###

mkdir -p /scratch/msc11h1/mspgcc

mkdir -p /scratch/msc11h1/mspgcc-files

###

Install the GNU Multiple Precision Arithmetic Library (GMP)

###

echo "2.) DOWNLOADING AND INSTALLING GNU MUTLIPLE PRECISION

ARITHMETIC LIBRARY (GMP)"

cd /scratch/msc11h1/mspgcc-files

wget ftp://ftp.gmplib.org/pub/gmp-5.0.2/gmp-5.0.2.tar.bz2 >&

$INSTALL_LOG

if ($status != 0) then

echo "DOWNLOADING THE GNU MULTIPLE PRECISION ARITHMETIC

LIBRARY (GMP) FAILED!"

exit -1

endif

tar xvfj gmp-5.0.2.tar.bz2 >& $INSTALL_LOG

106 APPENDIX D. FPGA SYSTEM - ADDON

if ($status != 0) then

echo "EXTRACTING THE GNU MULTIPLE PRECISION ARITHMETIC

LIBRARY (GMP) FAILED!"

exit -1

endif

mkdir -p gmp

cd gmp

../gmp-5.0.2/configure --enable-cxx

--prefix=/scratch/msc11h1/mspgcc >& $INSTALL_LOG

if ($status != 0) then

echo "CONFIGURING THE GNU MULTIPLE PRECISION ARITHMETIC

LIBRARY (GMP) FAILED!"

exit -1

endif

make >& $INSTALL_LOG

if ($status != 0) then

echo "MAKING THE GNU MULTIPLE PRECISION ARITHMETIC

LIBRARY (GMP) FAILED!"

exit -1

endif

make check >& $INSTALL_LOG

if ($status != 0) then

echo "CHECK MAKE PROCESS OF THE GNU MULTIPLE PRECISION

ARITHMETIC LIBRARY (GMP) FAILED!"

exit -1

#endif

make install >& $INSTALL_LOG

if ($status != 0) then

echo "INSTALLATION OF THE GNU MULTIPLE PRECISION

ARITHMETIC LIBRARY (GMP) FAILED!"

exit -1

endif

###

Install the GNU MPFR Library (MPFR)

###

echo "3.) DOWNLOADING AND INSTALLING GNU MPFR LIBRARY (MPFR)"

cd /scratch/msc11h1/mspgcc-files

wget http://www.mpfr.org/mpfr-current/mpfr-3.1.0.tar.bz2 >&

$INSTALL_LOG

if ($status != 0) then

echo "DOWNLOADING THE GNU MPFR LIBRARY (MPFR) FAILED!"

exit -1

endif

tar xvfj mpfr-3.1.0.tar.bz2 >& $INSTALL_LOG

if ($status != 0) then

echo "EXTRACTING THE GNU MPFR LIBRARY (MPFR) FAILED!"

exit -1

endif

D.2. INSTALLATION SCRIPT FOR MSPGCC TOOLCHAIN 107

mkdir -p mpfr

cd mpfr

../mpfr-3.1.0/configure --with-gmp=/scratch/msc11h1/mspgcc

--prefix=/scratch/msc11h1/mspgcc >& $INSTALL_LOG

if ($status != 0) then

echo "CONFIGURING THE GNU MPFR Library (MPFR) FAILED!"

exit -1

endif

make >& $INSTALL_LOG

if ($status != 0) then

echo "MAKING THE GNU MPFR Library (MPFR) FAILED!"

exit -1

endif

make check >& $INSTALL_LOG

if ($status != 0) then

echo "CHECK MAKE PROCESS OF THE GNU MPFR Library (MPFR)

FAILED!"

exit -1

endif

make install >& $INSTALL_LOG

if ($status != 0) then

echo "INSTALLATION OF THE GNU MPFR LIBRARY (MPFR) FAILED!"

exit -1

endif

###

Install the Multiprecision library (MPC)

###

echo "4.) DOWNLOADING AND INSTALLING MULTIPRECISION LIBRARY (MPC)"

cd /scratch/msc11h1/mspgcc-files

wget http://www.multiprecision.org/mpc/download/mpc-0.9.tar.gz >&

$INSTALL_LOG

if ($status != 0) then

echo "DOWNLOADING THE MULTIPRECISION LIBRARY (MPC) FAILED!"

exit -1

endif

tar xvf mpc-0.9.tar.gz >& $INSTALL_LOG

if ($status != 0) then

echo "EXTRACTING THE MULTIPRECISION LIBRARY (MPC) FAILED!"

exit -1

endif

mkdir -p mpc

cd mpc

../mpc-0.9/configure --with-gmp=/scratch/msc11h1/mspgcc

--with-mpfr=/scratch/msc11h1/mspgcc

--prefix=/scratch/msc11h1/mspgcc >& $INSTALL_LOG

if ($status != 0) then

echo "CONFIGURING THE MULTIPRECISION LIBRARY (MPC) FAILED!"

exit -1

108 APPENDIX D. FPGA SYSTEM - ADDON

endif

make >& $INSTALL_LOG

if ($status != 0) then

echo "MAKING THE MULTIPRECISION LIBRARY (MPC) FAILED!"

exit -1

endif

make check >& $INSTALL_LOG

if ($status != 0) then

echo "CHECK MAKE PROCESS OF THE MULTIPRECISION LIBRARY (MPC)

FAILED!"

exit -1

endif

make install >& $INSTALL_LOG

if ($status != 0) then

echo "INSTALLATION OF THE MULTIPRECISION LIBRARY (MPC) FAILED!"

exit -1

endif

###

Install PPL version 0.11

###

echo "5.) DOWNLOADING AND INSTALLING PPL VERSION 0.11"

cd /scratch/msc11h1/mspgcc-files

wget ftp://ftp.cs.unipr.it/pub/ppl/releases/0.11.2/

ppl-0.11.2.tar.gz >& $INSTALL_LOG

if ($status != 0) then

echo "DOWNLOADING THE PPL LIBRARY VERSION 0.11 FAILED!"

exit -1

endif

tar xvf ppl-0.11.2.tar.gz >& $INSTALL_LOG

if ($status != 0) then

echo "EXTRACTING THE PPL LIBRARY VERSION 0.11 FAILED!"

exit -1

endif

mkdir -p ppl

cd ppl

../ppl-0.11.2/configure --with-gmp=/scratch/msc11h1/mspgcc

--with-mpfr=/scratch/msc11h1/mspgcc

--with-mpc=/scratch/msc11h1/mspgcc

--prefix=/scratch/msc11h1/mspgcc >& $INSTALL_LOG

if ($status != 0) then

echo "CONFIGURING THE PPL LIBRARY VERSION 0.11 FAILED!"

exit -1

endif

make >& $INSTALL_LOG

if ($status != 0) then

echo "MAKING the PPL LIBRARY VERSION 0.11 FAILED!"

exit -1

endif

D.2. INSTALLATION SCRIPT FOR MSPGCC TOOLCHAIN 109

make check >& $INSTALL_LOG

if ($status != 0) then

echo "CHECK MAKE PROCESS OF THE PPL LIBRARY

VERSION 0.11 FAILED!"

exit -1

endif

make install >& $INSTALL_LOG

if ($status != 0) then

echo "INSTALLATION OF THE PPL LIBRARY VERSION

0.11 FAILED!"

exit -1

endif

###

Install CLoog version 0.15

###

echo "6.) DOWNLOADING AND INSTALLING CLOOG VERSION 0.15"

cd /scratch/msc11h1/mspgcc-files

wget ftp://gcc.gnu.org/pub/gcc/infrastructure/

cloog-ppl-0.15.11.tar.gz >& $INSTALL_LOG

if ($status != 0) then

echo "DOWNLOADING THE CLOOG LIBRARY VERSION 0.15 FAILED!"

exit -1

endif

tar xvf cloog-ppl-0.15.11.tar.gz >& $INSTALL_LOG

if ($status != 0) then

echo "EXTRACTING THE CLOOG LIBRARY VERSION 0.15 FAILED!"

exit -1

endif

mkdir -p cloog-ppl

cd cloog-ppl

../cloog-ppl-0.15.11/configure

--with-gmp=/scratch/msc11h1/mspgcc

--with-mpfr=/scratch/msc11h1/mspgcc

--with-mpc=/scratch/msc11h1/mspgcc

--with-ppl=/scratch/msc11h1/mspgcc

--prefix=/scratch/msc11h1/mspgcc >& $INSTALL_LOG

if ($status != 0) then

echo "CONFIGURING THE CLOOG LIBRARY VERSION 0.15 FAILED!"

exit -1

endif

make >& $INSTALL_LOG

if ($status != 0) then

echo "MAKING THE CLOOG LIBRARY VERSION 0.15 FAILED!"

exit -1

endif

make check >& $INSTALL_LOG

if ($status != 0) then

echo "CHECK MAKE PROCESS OF THE CLOOG LIBRARY VERSION

110 APPENDIX D. FPGA SYSTEM - ADDON

0.15 FAILED!"

exit -1

endif

make install >& $INSTALL_LOG

if ($status != 0) then

echo "INSTALLATION OF THE CLOOG LIBRARY VERSION

0.15 FAILED!"

exit -1

endif

###

DOWNLOAD AND EXTRACT THE GCC TOOLCHAIN FOR MSP430

###

echo "7.) DOWNLOADING THE GCC TOOLCHAIN FOR MSP430"

cd /scratch/msc11h1/mspgcc-files

wget http://sourceforge.net/projects/mspgcc/files/mspgcc/

mspgcc-20120119.tar.bz2/download >& $INSTALL_LOG

if ($status != 0) then

echo "DOWNLOADING THE GCC TOOLCHAIN FOR MSP430 FAILED!"

exit -1

endif

tar xvf mspgcc-20120119.tar.bz2 >& $INSTALL_LOG

if ($status != 0) then

echo "EXTRACTING THE GCC TOOLCHAIN FOR MSP430 FAILED!"

exit -1

endif

###

DOWNLOAD AND INSTALL THE BINUTILS LIBRARY

###

echo "8.) DOWNLOADING AND INSTALLING THE BINUTILS LIBRARY"

cd /scratch/msc11h1/mspgcc-files/mspgcc-20120119

wget ftp://ftp.gnu.org/pub/gnu/binutils/binutils-2.21.1a.tar.bz2

>& $INSTALL_LOG

if ($status != 0) then

echo "DOWNLOADING THE BINUTILS LIBRARY FAILED!"

exit -1

endif

tar xvf binutils-2.21.1a.tar.bz2 >& $INSTALL_LOG

if ($status != 0) then

echo "EXTRACTING THE BINUTILS LIBRARY FAILED!"

exit -1

endif

cd binutils-2.21.1

patch -p1 <../msp430-binutils-2.21.1a-20120119.patch

>& $INSTALL_LOG

if ($status != 0) then

echo "PATCHING THE BINUTILS LIBRARY FAILED!"

exit -1

endif

D.2. INSTALLATION SCRIPT FOR MSPGCC TOOLCHAIN 111

cd ..

mkdir -p BUILD/binutils

cd BUILD/binutils

../../binutils-2.21.1/configure

--target=msp430

--prefix=/scratch/msc11h1/mspgcc >& $INSTALL_LOG

if ($status != 0) then

echo "CONFIGURING THE BINUTILS LIBRARY FAILED!"

exit -1

endif

make >& $INSTALL_LOG

if ($status != 0) then

echo "MAKING THE BINUTILS LIBRARY FAILED!"

exit -1

endif

make install >& $INSTALL_LOG

if ($status != 0) then

echo "INSTALLATION OF THE BINUTILS LIBRARY FAILED!"

exit -1

endif

###

DOWNLOAD AND INSTALL THE GCC LIBRARY

###

echo "9.) DOWNLOADING AND INSTALLING THE GCC LIBRARY"

cd /scratch/msc11h1/mspgcc-files/mspgcc-20120119

wget ftp://ftp.gnu.org/pub/gnu/gcc/gcc-4.6.1/gcc-4.6.1.tar.bz2

>& $INSTALL_LOG

if ($status != 0) then

echo "DOWNLOADING THE GCC LIBRARY FAILED!"

exit -1

endif

tar xvf gcc-4.6.1.tar.bz2 >& $INSTALL_LOG

if ($status != 0) then

echo "EXTRACTING THE GCC LIBRARY FAILED!"

exit -1

endif

cd gcc-4.6.1

patch -p1 <../msp430-gcc-4.6.1-20120119.patch >&

$INSTALL_LOG

if ($status != 0) then

echo "PATCHING THE GCC LIBRARY FAILED!"

exit -1

endif

cd ..

mkdir -p BUILD/gcc

cd BUILD/gcc

../../gcc-4.6.1/configure

--target=msp430

112 APPENDIX D. FPGA SYSTEM - ADDON

--enable-languages=c,c++

--with-gmp=/scratch/msc11h1/mspgcc

--prefix=/scratch/msc11h1/mspgcc >& $INSTALL_LOG

if ($status != 0) then

echo "CONFIGURING THE GCC LIBRARY FAILED!"

exit -1

endif

make >& $INSTALL_LOG

if ($status != 0) then

echo "MAKING THE GCC LIBRARY FAILED!"

exit -1

endif

make install >& $INSTALL_LOG

if ($status != 0) then

echo "INSTALLATION OF THE GCC LIBRARY FAILED!"

exit -1

endif

###

DOWNLOAD AND INSTALL THE GDB LIBRARY

###

echo "10.) DOWNLOADING AND INSTALLING THE GDB LIBRARY"

cd /scratch/msc11h1/mspgcc-files/mspgcc-20120119

wget ftp://ftp.gnu.org/pub/gnu/gdb/gdb-7.2a.tar.bz2 >&

$INSTALL_LOG

if ($status != 0) then

echo "DOWNLOADING THE GDB LIBRARY FAILED!"

exit -1

endif

tar xjf gdb-7.2a.tar.bz2 >& $INSTALL_LOG

if ($status != 0) then

echo "EXTRACTING THE GDB LIBRARY FAILED!"

exit -1

endif

cd gdb-7.2

patch -p1 <../msp430-gdb-7.2a-20111205.patch >&

$INSTALL_LOG

if ($status != 0) then

echo "PATCHING THE GDB LIBRARY FAILED!"

exit -1

endif

cd ..

mkdir -p BUILD/gdb

cd BUILD/gdb

../../gdb-7.2/configure

--target=msp430

--prefix=/scratch/msc11h1/mspgcc >& $INSTALL_LOG

if ($status != 0) then

echo "CONFIGURING THE GDB LIBRARY FAILED!"

D.2. INSTALLATION SCRIPT FOR MSPGCC TOOLCHAIN 113

exit -1

endif

make >& $INSTALL_LOG

if ($status != 0) then

echo "MAKING THE GDB LIBRARY FAILED!"

exit -1

endif

make install >& $INSTALL_LOG

if ($status != 0) then

echo "INSTALLATION OF THE GDB LIBRARY FAILED!"

exit -1

endif

###

DOWNLOAD AND INSTALL THE MSP430MCU FILES

###

echo "11.) DOWNLOADING AND INSTALLING THE MSP430MCU FILES"

cd /scratch/msc11h1/mspgcc-files/mspgcc-20120119

wget http://sourceforge.net/projects/mspgcc/files/msp430mcu/

msp430mcu-20111224.tar.bz2 >& $INSTALL_LOG

if ($status != 0) then

echo "DOWNLOADING THE MSP430MCU FILES FAILED!"

exit -1

endif

tar xjf msp430mcu-20111224.tar.bz2 >& $INSTALL_LOG

if ($status != 0) then

echo "EXTRACTING THE MSP430MCU FILES FAILED!"

exit -1

endif

cd msp430mcu-20111224

scripts/install.sh /scratch/msc11h1/mspgcc

echo "WARNING: MSP430MCU_ROOT must be set to the location where the

msp430mcu release lives!"

###

DOWNLOAD AND INSTALL THE MSP430-LIBC FILES

###

echo "12.) DOWNLOADING AND INSTALLING THE MSP430-LIBC FILES"

cd /scratch/msc11h1/mspgcc-files/mspgcc-20120119

wget https://sourceforge.net/projects/mspgcc/files/msp430-libc/

msp430-libc-20120119.tar.bz2 >& $INSTALL_LOG

if ($status != 0) then

echo "DOWNLOADING THE MSP430-LIBC FILES FAILED!"

exit -1

endif

tar xjf msp430-libc-20120119.tar.bz2 >& $INSTALL_LOG

if ($status != 0) then

echo "EXTRACTING THE MSP430-LIBC FILES FAILED!"

exit -1

endif

114 APPENDIX D. FPGA SYSTEM - ADDON

cd msp430-libc-20120119

./configure >& $INSTALL_LOG

if ($status != 0) then

echo "CONFIGURING OF THE MSP430-LIBC FILES FAILED!"

exit -1

endif

cd src

make >& $INSTALL_LOG

if ($status != 0) then

echo "MAKING OF THE MSP430-LIBC FILES FAILED!"

exit -1

endif

make PREFIX=/scratch/msc11h1/mspgcc install >& $INSTALL_LOG

if ($status != 0) then

echo "INSTALLATION OF THE MSP430-LIBC FILES FAILED!"

exit -1

endif

###

EXTEND THE EXECUTABLE SEARCH PATH

###

PATH=/scratch/msc11h1/mspgcc/bin:$PATH

export PATH

D.3 Test Program for Verifying Cryptographic Modules

The results from the developed FPGA system are only reliable after a passed functional
system test which verifies all cryptographic modules (hardware as also software). For
that test vectors (stimulus vectors and expected response vectors) are stored in ROM.
The functionality of the cryptographic modules is verified by comparing the response to
a stimulus vector which the corresponding expected response vector. The program code
below represents the functional system test through which the developed FPGA system
was verified.

#include <msp430x11x1.h>

#include <signal.h> // Needed for using interrupts with msp430-gcc

//#include "TI_aes.h"

#include "aes.h"

#include "groestl.h"

#include "cryptolib.h"

#include <signal.h>

#include <iomacros.h>

typedef unsigned char INT8U;

// Comment the following line for real device

// Modifications for real device:

D.3. TEST PROGRAM FOR VERIFYING CRYPTOGRAPHIC MODULES 115

// - Delay function is longer

// - Full testrun instead of small testvector selection

//#define SIMULATION

#ifdef SIMULATION

// AES TESTVECTORS

#define AES_ENCRYPTION_TESTVECTORS 0x2

#define AES_DECRYPTION_TESTVECTORS 0x2

// GROESTL TESTVECTORS

#define GROESTL_TESTVECTORS 0x3C

#define GROESTL_SINGLE_BLOCK_TESTVECTORS 0x1E

#define GROESTL_DOUBLE_BLOCK_TESTVECTORS 0x14

#define GROESTL_TRIPLE_BLOCK_TESTVECTORS 0x0A

#else

// AES TESTVECTORS

#define AES_ENCRYPTION_TESTVECTORS 0x50

#define AES_DECRYPTION_TESTVECTORS 0x50

// GROESTL TESTVECTORS

#define GROESTL_TESTVECTORS 0x3C

#define GROESTL_SINGLE_BLOCK_TESTVECTORS 0x1E

#define GROESTL_DOUBLE_BLOCK_TESTVECTORS 0x14

#define GROESTL_TRIPLE_BLOCK_TESTVECTORS 0x0A

#endif

// TEST VARIANTS

//--

#define NUM_TEST_VARIANTS 0x03

//--

#define SOFTWARE 0x00

#define HARDWARE_SLOW_CLOCK 0x01

#define HARDWARE_FAST_CLOCK 0x02

// UNIT

//--

#define NUM_UNITS 0x04

//--

#define SINGLE_AES 0x00

#define SHARED_AES 0x01

#define SINGLE_GROESTL 0x02

#define SHARED_GROESTL 0x03

// MODE OF OPERATION

//--

#define AES_NUM_OPERATION_MODES 0x02

#define GROESTL_NUM_OPERATION_MODES 0x01

//--

#define ENCRYPTION 0x00

#define DECRYPTION 0x01

void wait(void);

116 APPENDIX D. FPGA SYSTEM - ADDON

void signal_finished(void);

void signal_failure(void);

void check_aes_result(unsigned char *data_1, unsigned char *data_2);

void check_groestl_result(unsigned char *data_1, unsigned char *data_2);

int main(void) {

unsigned short i;

unsigned int act_testvector;

unsigned int num_testvectors;

unsigned short testvector_offset;

unsigned int groestl_msg_length;

// Software or Hardware

unsigned int test_variant;

// Single or Shared Unit

unsigned int unit;

// 2 for AES (Encryption/Decryption) and 1 for Groestl

unsigned int num_operation_modes;

// Encryption or Decryption (AES)

unsigned int mode_of_operation;

// AES stimuli and expected response buffers

unsigned char aes_stimuli[32];

unsigned char aes_expected_response[16];

// GROESTL stimuli and expected response buffers

unsigned char groestl_stimuli[192];

unsigned char groestl_expected_response[28];

WDTCTL = WDTPW | WDTHOLD; // Disable watchdog timer

P1DIR = 0xff;

P1OUT = 0xff;

P2DIR = 0xff;

P2OUT = 0xff;

// Switch on the led to signal start of test

P1OUT = 0x00;

wait();

// Switch off the led during the test. In case of an error led starts

// blinking. If test finished without an error then the led is

// constantly on!!!!

P1OUT = 0x01;

// SW | HW with slow clock | HW with fast clock

for(test_variant = 0; test_variant < NUM_TEST_VARIANTS;

test_variant++) {

P2OUT = test_variant; // Debug information

// SINGLE AES | SHARED AES | SINGLE GROESTL | SHARED GROESTL

for(unit = 0; unit < NUM_UNITS; unit++) {

D.3. TEST PROGRAM FOR VERIFYING CRYPTOGRAPHIC MODULES 117

P2OUT = test_variant | (unit << 2); // Debug information

// For the software variant only single versions are available

// Skip the shared version tests!

if(test_variant == SOFTWARE &&

(unit == SHARED_AES || unit == SHARED_GROESTL))

continue;

// define number of operation modes

if(unit == SINGLE_AES || unit == SHARED_AES)

num_operation_modes = AES_NUM_OPERATION_MODES;

else

num_operation_modes = GROESTL_NUM_OPERATION_MODES;

for(mode_of_operation = 0; mode_of_operation < num_operation_modes;

mode_of_operation++) {

// Debug information

P2OUT = test_variant | (unit << 2) | (mode_of_operation << 4);

// define number of testvectors and offset

if(unit == SINGLE_AES || unit == SHARED_AES) {

if(mode_of_operation == ENCRYPTION)

{

num_testvectors = AES_ENCRYPTION_TESTVECTORS;

testvector_offset = 0x0000;

}

else {

num_testvectors = AES_DECRYPTION_TESTVECTORS;

testvector_offset = 0x0F00; //3840

}

} else {

num_testvectors = GROESTL_TESTVECTORS;

testvector_offset = 0x0000;

}

// Reset the address of the test roms -

// both aes and groestl testrom

WRITE_PERIPHERAL_REGISTER(ADDRESS_OFFSET_L,

(unsigned char) testvector_offset); // Low byte offset

WRITE_PERIPHERAL_REGISTER(ADDRESS_OFFSET_H,

(unsigned char) (testvector_offset >> 8)); // High byte offset

// Iterate through the testvectors

for(act_testvector = 0; act_testvector < num_testvectors;

act_testvector++) {

P2OUT = test_variant | (unit << 2) | (mode_of_operation << 4) |

(act_testvector << 5); // Debug information

118 APPENDIX D. FPGA SYSTEM - ADDON

// Read in stimuli and expected response vectors either from the

// AES testrom or the GROESTL testrom

if(unit == SINGLE_AES || unit == SHARED_AES) {

for(i = 0; i < 32; i++)

aes_stimuli[i] = READ_PERIPHERAL_REGISTER(AES_CNTRL);

for(i = 0; i < 16; i++)

aes_expected_response[i] = READ_PERIPHERAL_REGISTER(AES_CNTRL);

} else {

// define number of bytes to read in

if(act_testvector < GROESTL_SINGLE_BLOCK_TESTVECTORS)

groestl_msg_length = 64;

else if(act_testvector < GROESTL_SINGLE_BLOCK_TESTVECTORS +

GROESTL_DOUBLE_BLOCK_TESTVECTORS)

groestl_msg_length = 128;

else

groestl_msg_length = 192;

for(i = 0; i < groestl_msg_length; i++)

groestl_stimuli[i] = READ_PERIPHERAL_REGISTER(GROESTL_CNTRL);

for(i = 0; i < 28; i++)

groestl_expected_response[i] =

READ_PERIPHERAL_REGISTER(GROESTL_CNTRL);

}

// Compute either AES or Groestl result

if(unit == SINGLE_AES || unit == SHARED_AES) {

// Software

if(test_variant == SOFTWARE

&& mode_of_operation == ENCRYPTION)

aes_encrypt(aes_stimuli+16, aes_stimuli);

else if(test_variant == SOFTWARE

&& mode_of_operation == DECRYPTION)

aes_decrypt(aes_stimuli+16, aes_stimuli);

// Hardware with slow clock

else if(test_variant == HARDWARE_SLOW_CLOCK &&

mode_of_operation == ENCRYPTION && unit == SINGLE_AES)

hw_single_aes_encrypt_w_slow_clock(aes_stimuli+16,

aes_stimuli);

else if(test_variant == HARDWARE_SLOW_CLOCK &&

mode_of_operation == ENCRYPTION && unit == SHARED_AES)

hw_shared_aes_encrypt_w_slow_clock(aes_stimuli+16,

aes_stimuli);

else if(test_variant == HARDWARE_SLOW_CLOCK &&

mode_of_operation == DECRYPTION && unit == SINGLE_AES)

hw_single_aes_decrypt_w_slow_clock(aes_stimuli+16,

aes_stimuli);

else if(test_variant == HARDWARE_SLOW_CLOCK &&

mode_of_operation == DECRYPTION && unit == SHARED_AES)

D.3. TEST PROGRAM FOR VERIFYING CRYPTOGRAPHIC MODULES 119

hw_shared_aes_decrypt_w_slow_clock(aes_stimuli+16,

aes_stimuli);

// Hardware with fast clock

else if(test_variant == HARDWARE_FAST_CLOCK &&

mode_of_operation == ENCRYPTION && unit == SINGLE_AES)

hw_single_aes_encrypt_w_fast_clock(aes_stimuli+16,

aes_stimuli);

else if(test_variant == HARDWARE_FAST_CLOCK &&

mode_of_operation == ENCRYPTION && unit == SHARED_AES)

hw_shared_aes_encrypt_w_fast_clock(aes_stimuli+16,

aes_stimuli);

else if(test_variant == HARDWARE_FAST_CLOCK &&

mode_of_operation == DECRYPTION && unit == SINGLE_AES)

hw_single_aes_decrypt_w_fast_clock(aes_stimuli+16,

aes_stimuli);

else

hw_shared_aes_decrypt_w_fast_clock(aes_stimuli+16,

aes_stimuli);

} else {

// Software

if(test_variant == SOFTWARE)

groestl_hash(groestl_stimuli, groestl_msg_length);

// Hardware with slow clock

else if(test_variant == HARDWARE_SLOW_CLOCK &&

unit == SINGLE_GROESTL)

hw_single_groestl_w_slow_clock(groestl_stimuli,

groestl_msg_length);

else if(test_variant == HARDWARE_SLOW_CLOCK &&

unit == SHARED_GROESTL)

hw_shared_groestl_w_slow_clock(groestl_stimuli,

groestl_msg_length);

// Hardware with fast clock

else if(test_variant == HARDWARE_FAST_CLOCK &&

unit == SINGLE_GROESTL)

hw_single_groestl_w_fast_clock(groestl_stimuli,

groestl_msg_length);

else if(test_variant == HARDWARE_FAST_CLOCK &&

unit == SHARED_GROESTL)

hw_shared_groestl_w_fast_clock(groestl_stimuli,

groestl_msg_length);

}

// Check either AES or Groestl result

if(unit == SINGLE_AES || unit == SHARED_AES)

check_aes_result(aes_stimuli+16, aes_expected_response);

else

check_groestl_result(groestl_stimuli, groestl_expected_response);

}

120 APPENDIX D. FPGA SYSTEM - ADDON

}

}

}

signal_finished();

return 0;

}

void wait(void) //delay function

{

// declare i as volatile int (do not remove "volatile" otherwise

// delay function will not work anymore!)

volatile unsigned int i;

#ifdef SIMULATION

for(i=0;i<10;i++) {

};

#else

for(i=0;i<32000;i++) {

};

#endif

}

void signal_finished(void)

{

P1OUT = 0x00; // switch on led

while(1) {}

}

void signal_failure(void)

{

while(1)

{

wait();

//toggle least significant bit - connected to on-board led

P1OUT ^= 0x01;

}

}

void check_aes_result(unsigned char *data_1, unsigned char *data_2)

{

unsigned char i;

for(i=0;i<16;i++)

{

if(data_1[i] != data_2[i])

signal_failure();

D.3. TEST PROGRAM FOR VERIFYING CRYPTOGRAPHIC MODULES 121

}

}

void check_groestl_result(unsigned char *data_1, unsigned char *data_2)

{

unsigned char i;

for(i=0;i<28;i++)

{

if(data_1[i] != data_2[i])

signal_failure();

}

}

122 APPENDIX D. FPGA SYSTEM - ADDON

Appendix E

Original Assignment

The original assignment is appended in the next six pages. It encompasses a short in-
troduction into the topic followed by the general project description which can be mainly
split into two tasks. The first targets a low-area ASIC/FPGA implementation of a com-
bined hardware architecture for AES and Grøstl. Second, an FPGA system has to be
created containing the openMSP430 and in addition the cryptographic modules designed
previously in order to establish a fair hardware/software comparison. After the project de-
scription the goals of the work are defined, which can be summarized to a low area and low
power ASIC/FPGA implementation of a combined hardware architecture and a functional
FPGA system containing the openMSP430 and the previously developed cryptographic
modules for AES, Grøstl and GrÆStl. Next, milestones are set which have to be reached
in a sequential manner. First, the separate implementations of AES and Grøstl should
be implemented before designing the combined hardware architecture, named GrÆStl.
Afterwards, a functional chip containing these three cryptographic modules and an in-
terface to access them should be created. A full back-end design is required in order to
tape-out the chip in an appropriate manner. After the tape-out the focus is put on FPGA
platforms where a functional system is targeted containing a microcontroller and the pre-
viously developed ASIC modules which have to be ported on the FPGA platform before.
Last step is to achieve results for a hardware/software comparison. Therefore, besides the
hardware units also software routines for the cryptographic algorithms should be written.
After defining the milestones to reach the project goals, the project realization is discussed
encompassing a project plan, weekly meetings, the report to deliver, the design review for
the ASIC to be taped-out and the presentation required to conclude the work. Finally, a
listing is given presenting the deliverables in order to finish the work successfully.

123

Institut für Integrierte Systeme

Integrated Systems Laboratory

Master Thesis at the Departement of
Information Technology and Electrical Engineering

Winter Term 2011

Markus Pelnar

In the Footsteps of a Combined and Miniaturized
AES/Grøstl Design

October 25, 2011

Advisors: Michael Muehlberghuber (IIS), ETZ J71.2, Tel. +41 44 632 57 45,
mbgh@iis.ee.ethz.ch
Beat Muheim (DZ), ETZ J60.1, Tel. +41 44 632 66 75, muheim@ee.ethz.ch
Michael Hutter (IAIK), TU-Graz, Tel. +43 316 873 5541
Michael.Hutter@iaik.tugraz.at

Handout: September 19, 2011
Due: March 19, 2012

The final report will be turned in electronic format. All copies remain property of the Integrated
Systems Laboratory.

1 Introduction

Radio Frequency IDentification (RFID) systems have become an important part of everyday life.
An RFID system consists of two parts: a reader and a tag. The reader can uniquely identify
different tags by exchanging information through an RF communication protocol. Cryptographic
primitives are used throughout this exchange to provide different services, such as authentication.
For most applications, the reader is not really resource constrained. It usually has its own

power supply, can have significant computation power and a (comparatively) strong RF interface.
RFID tags on the other hand, need to be cheap (small chip area) and in most cases do not have
their own power source (these are called passive RFID tags). In such passive tags, the energy
needed to process the reader communication request and provide an answer back, is harvested
from the RF signal sent by the reader. Needless to say for such systems energy efficiency is
paramount. Depending on the field of application, the number of required passive RFID tags
being manufactured is increasing constantly (e.g. tagging of clothes, etc.). Therefore the price
and thus the needed chip area is often the most constraining resource.

2 Project Description

This project can be subdivided into two different tasks. These tasks should, in general, be
processed one after another, but can of course overlap somewhat.

AES/Grøstl Two of the most important cryptographic primitives which are required on an
RFID tag are a block cipher and a hash function. Hence, the first task is represented by the
design of an ASIC (Application-Specific Integrated Circuit), which enables to peform the calcu-
lation of a block cipher (AES - Advanced Encryption Standard) and a hash function (Grøstl).
The design of this ASIC should be highly optimized towards low area in order to reduce manu-
facturing costs.

MSP430 The second task is made up of the implementation of the MSP430 microcontroller
and the previously designed AES/Grøstl block on a Spartan-3 FPGA (Field Programmable Gate
Array) board. The MSP430 must be able to communicate with the AES/Grøstl block in order
to provide cryptographic services which make use of the block cipher and the hash function.

2.1 AES/Grøstl ASIC

AES is the de facto standard among block ciphers for more than a decade right now and because
it has already been properly analyzed towards it security, some cryptographic primitives appear
which make use of the AES core functionalities. One of them is the Grøstl hash algorithm,
which has been submitted to the SHA-3 competition [5] and has now become one of the five
finalists.
At first two distinct designs of AES and Grøstl have to be implemented. Because the two

cryptographic primitives partly make use of the same core functionalities, a combined design,
highly optimized towards low area, is targeted afterwards. In order to demonstrate the area
reduction, a comparison has to be made between the two distinct designs and the combined
version. Due to the fact that both cryptographic primitives should share the same hardware
circuits, it is not required to execute them simultaneously.

2

2.2 MSP430 Implementation

In order to be able to implement cryphtographic protocols which make use of a block cipher and
a hash function, a TI-MSP430 compatible microprocessor will be implemented on a Spartan-3
FPGA board. The MSP430 HDL description is freely available on the internet and will be
taken from the opencores.org webpage [6]. Furthermore the previously designed AES/Grøstl
block has to be ported onto the Spartan-3 FPGA and an appropriate communication with the
microprocessor has to be established. The MSP430 will require some program and data memory.
The exact size of these memories will be determined during the project.

3 Goals

The main goal of the project is to implement a resource sharing AES/Grøstl design where area
represents the major constraining resource. Furthermore this design, as well as the MSP430
microprocessor from opencores.org have to be ported to a Spartan-3 FPGA board.
What sets this work apart from others is the low-area implementation of the combined

AES/Grøstl design. Currently no ASIC implementation of AES and Grøstl is known which
makes use of the same core functionalities in order to reduce the required chip area.

3.1 Low Area

The selling point for RFID tags is that they are inexpensive. This directly translates to small
circuit area. The smaller the circuit the better. Hence, the major goal is to decrease the required
chip area for the AES/Grøstl design using any means possible.

3.2 Low Power

A passive RFID tag is extremely short on power as it has no independent power supply of its own,
but relies on the energy collected from the RF transmission. Both the peak power and the total
energy have strict limits. Hence, despite the fact that area is the most constraining resource, the
system must be designed such that the power consumption stays within a reasonable amount.

3.3 FPGA System Design

In order to provide a system which allows the implementation of different cryptographic proto-
cols, the MSP430 compatible microprocessor from opencores.org will be ported to a Spartan-3
FPGA board. The ASIC design of the AES/Grøstl block will be ported to the FPGA as well,
which allows the implementation of hardware accelerated protocols based on a block cipher
and/or a hash function.

4 Milestones

The following is a list of expected milestones in the project.

• AES/Grøstl - Separated Implementations
Before a combined version of the AES/Grøstl block is designed, both cryptographic prim-

3

itives have to be implemented separately. The combined block can then be compared with
these designs in order to present the area reduction which is due to the shared resources.

• AES/Grøstl - Combined Implementation
The combined block of the AES/Grøstl design represents the second milestone and should
be implemented such that as many resources can be shared among the block cipher and
the hash algorithm. The major target hereby is a low-area implementation of the two
cryptographic primitives.

• AES/Grøstl - ASIC
The final result of the AES/Grøstl specific work will be one ASIC sent to manufacturing
using a suitable technology (UMC180/UMC130 or others).

• FPGA System Design
The MSP430 needs to be implemented on the Spartan-3 FPGA board with all the options
(timers/interrupts/IO ports) that are deemed necessary for the project. This also includes
the necessary RAM and ROM blocks for the processor. Furthermore the AES/Grøstl
design has to be ported onto the FPGA board in order to realize hardware accelerated
cryptographic protocols which make use of a block cipher and a hash algorithm.

• Hardware/Software Comparison
In order to demonstrate the correctly working implementations of the MSP430 micropro-
cessor and the AES/Grøstl block on the FPGA board using a real world example, AES and
Grøstl have to be implemented on the Microprocessor at first. Afterwards the hardware
accelerated version of the two cryptographic primitives should be used to demonstrate the
improved performance.

5 Project Realization

5.1 Project Plan

Within the first month of the project you will be asked to prepare a project plan. This plan
should identify the tasks to be performed during the project and set deadlines for those tasks.
The prepared plan will be a topic of discussion of the first week’s meeting between the students
and the advisors. Note that the project plan should be updated constantly depending on the
project’s status.

5.2 Meetings

Weekly meetings will be held between the student and the assistants every Tuesday at 09:00.
These meetings will be used to evaluate the status and progress of the project. Beside these
regular meetings, additional meetings can be organized to address urgent issues as well.

5.3 Reports

Documentation is an important and often overlooked aspect of engineering. One short inter-
mediate report and one final report (the Master Thesis) are to be completed within this study.
Note that the intermediate report should be designed to be part of the final report.

4

The common language of engineering is de facto English. Therefore, the intermediate and
final report of the work are preferred to be written in English. Any form of word processing
software is allowed for writing the reports, nevertheless the use of LATEX with Tgif (for block
diagrams) is strongly encouraged by the IIS staff.

First Intermediate Report This report should be written in such a way to become the first
part of your final report. It should contain general information about the topic, a description
of the problem, explanations of related terminology, and descriptions of similar approaches in
literature (with corresponding references to books, papers etc.). So it should mainly contain the
theoretical part of your Master Thesis.

Final Report The final report has to be presented at the end of the Master Thesis and a
digital copy needs to be handed out and remains property of the IIS. This report is only accepted
if the keys for the ETZ building as well as those for the student working room have been properly
returned. Note that this task description is part of your thesis and has to be attached to your
final report.

5.4 Design Review

Because the AES/Grøstl design is supposed to be manufactured using an appropriate semi-
conductor technology, a review of the chip design will be held during late November. The exact
date of the review will be determined a few weeks in advance.

5.5 Presentation

There will be a presentation (20 min presentation and 5 min Q&A) at the end of this project
to present your results to a wider audience. The exact date will be determined towards the end
of the work.

6 Deliverables

Throughout the project, the following deliverables have to be submitted in order to finish the
work successfully:

• Project plan

• Separated AES/Grøstl designs

• Combined AES/Grøstl design

• AES/Grøstl ASIC layout

• MSP430 FPGA implementation

• AES/Grøstl FPGA implementation

• Intermediate report

• Final report

References

[1] H. Kaeslin, “Digital Integrated Circuit Design“, Cambridge University Press, 2008

5

[2] Design Zentrum website: http://www.dz.ee.ethz.ch and VHDL naming conventions:
http://www.dz.ee.ethz.ch/en/information/hdl-help/vhdl-naming-conventions.html

[3] FIPS PUB 197: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[4] Grøstl website: http://www.groestl.info

[5] SHA-3 Competition: http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

[6] openMSP430 website: http://opencores.org/project,openmsp430

Zurich, December 19, 2011 Prof. Dr. Hubert Kaeslin

The thesis will not be accepted without returning the keys!

6

130 APPENDIX E. ORIGINAL ASSIGNMENT

Bibliography

[1] Anderson, R. and Biham, E. and Knudsen, L. Serpent: A Proposal for the Ad-
vanced Encryption Standard. In Proceedings of the First AES Candidate Conference,
Ventura, CA, USA, jun 1998. National Institute of Standard and Technology.

[2] Aumasson, J. P. and Henzen, L. and Meier, W. and Phan, R. C. W. SHA-3 proposal
BLAKE. Submission to NIST (Round 3), 2010.

[3] Bulens, P. and Standaert, F. X. and Quisquater, J. J. and Pellegrin, P. and Rouvroy,
G. Implementation of the AES-128 on Virtex-5 FPGAs. In Serge Vaudenay, editor,
Progress in Cryptology - AFRICACRYPT 2008, First International Conference on
Cryptology in Africa, Casablanca, Morocco, June 11-14, 2008. Proceedings, volume
5023 of Lecture Notes in Computer Science, pages 16–26. Springer, 2008.

[4] Burwick, C. and Coppersmith, D. and D’Avignon, E. and Gennaro, R. and Halevi, S.
and Jutla, C. and Matyas Jr, S. M. and O’Connor, L. and Peyravian, M. and Luke,
Jr. and Peyravian, O. M. and Stafford, D. and Zunic, N. MARS - a candidate cipher
for AES. NIST AES Proposal, 1999.

[5] Canright, D. A Very Compact S-Box for AES. In Rao, Josyula R. and Sunar, Berk,
editor, Cryptographic Hardware and Embedded Systems CHES 2005, volume 3659
of Lecture Notes in Computer Science, chapter 32, pages 441–455. Springer Berlin /
Heidelberg, Berlin, Heidelberg, 2005.

[6] Cao, D. and Han, J. and Zeng, X. Y. A Reconfigurable and Ultra Low-Cost VLSI
Implementation of SHA-1 and MD5 Functions. In International Conference on ASIC
Proceeding – ICASIC 2007, 7th International Conference, Guilin, China, October
25-29, 2007, pages 862–865. IEEE, October 2007.

[7] Chapman, K. Saving Costs with the SRL16E.
http://www.xilinx.com/support/documentation/white papers/wp271.pdf, 05 2008.

[8] Chodowiec, P. and Gaj, K. Very Compact FPGA Implementation of the AES Algo-
rithm. In Colin D. Walter and Çetin Kaya Koç and Christof Paar, editor, Crypto-
graphic Hardware and Embedded Systems – CHES 2003, 5th International Workshop,
Cologne, Germany, September 8-10, 2003, Proceedings, volume 2779 of Lecture Notes
in Computer Science, pages 319–333. Springer, 2003.

[9] Daemen, J and, Rijmen, V. AES Proposal: Rijndael.
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf, 2nd edition,
September 1999.

131

132 BIBLIOGRAPHY

[10] Daemen, J. and Rijmen, V. The Design of Rijndael. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2002.

[11] Feldhofer, M. and Wolkerstorfer, J. and Rijmen, V. AES implementation on a grain
of sand. IEE Proceedings - Information Security, 152(1):13–20, October 2005. .

[12] Ferguson, N. and Lucks, S. and Schneier, B. and Whiting, D. and Bellare, M. and
Kohno, T. and Callas, J. and Walker, J. The Skein Hash Function Family. Submission
to NIST (Round 3), 2010.

[13] FPGA. http://www.mikrocontroller.net/articles/FPGA, 05 2012. [Online; accessed
28-May-2012].

[14] Ganesh, T. S. and Sudarshan, T. S. B. ASIC Implementation of a Unified Hardware
Architecture for Non-Key Based Cryptographic Hash Primitives. In International
Conference on Information Technology: Coding and Computing (ITCC 2005), April
4-6, 2005, Las Vegas, Nevada, USA, Proceedings, volume 1, pages 580–585. IEEE
Computer Society, April 2005. ISBN 0-7695-2315-3.

[15] Gauravaram, P. and Knudsen, L. R. and Matusiewicz, K. and Mendel, F. and Rech-
berger, C. and Schläffer, M. and Thomsen, S. S. Grøstl – a SHA-3 candidate. Sub-
mission to NIST (Round 3), 2011.

[16] Girard, O. openmsp430. http://opencores.org/project,openmsp430, March 2012.

[17] Good, T. and Benaissa, M. AES on FPGA from the Fastest to the Smallest. In Rao,
Josyula and Sunar, Berk, editor, Cryptographic Hardware and Embedded Systems
CHES 2005, volume 3659 of Lecture Notes in Computer Science, pages 427–440.
Springer Berlin / Heidelberg, 2005. 10.1007/11545262 31.

[18] Guo, X. and Huang, S. and Nazhandali, L. and Schaumont, P. Fair and Comprehen-
sive Performance Evaluation of 14 Second Round SHA-3 ASIC Implementations. In
Second SHA-3 Candidate Conference, 2010, 2010.

[19] Hämäläinen, P. and Alho, T. and Hännikäinen, M. and Hämäläinen, T.D. Design
and Implementation of Low-Area and Low-Power AES Encryption Hardware Core.
In Digital System Design: Architectures, Methods and Tools, 2006. DSD 2006. 9th
EUROMICRO Conference on, pages 577 –583, 0-0 2006.

[20] Hankerson, D. and Menezes, A. J. and Vanstone, S. Guide to Elliptic Curve Cryp-
tography. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

[21] Henzen, L. and Gendotti, P. and Guillet, P. and Pargaetzi, E. and Martin Zoller
and Frank K. Gürkaynak. Developing a Hardware Evaluation Method for SHA-3
Candidates. In Cryptographic Hardware and Embedded Systems – CHES 2010 12th
International Workshop, Santa Barbara, USA, August 17-20, 2010. Proceedings, vol-
ume 6225 of Lecture Note in Computer Science, pages 248–263, Santa Barbara, CA,
2010. Springer-Verlag.

[22] Huang, C. W. and Chang, C. J. and Lin, M. Y. and Tai, H. Y. Compact FPGA
implementation of 32-bits AES algorithm using Block RAM. In TENCON 2007 -
2007 IEEE Region 10 Conference, pages 1 –4, 30 2007-nov. 2 2007.

BIBLIOGRAPHY 133

[23] Järvinen, K. Sharing Resources Between AES and the SHA-3 Second Round Candi-
dates Fugue and Groestl. In Second SHA-3 Candidate Conference, August 2010.

[24] Järvinen, K. U. and Tommiska, M. and Skyttä, J. A Compact MD5 and SHA-1
Co-Implementation Utilizing Algorithm Similarities. In Engineering of Reconfigurable
Systems and Algorithms – ERSA 2005, International Conference, Las Vegas, Nevada,
USA, June 27-30, 2005, pages 48–54. CSREA Press, 2005.

[25] Jungk, B. Evaluation Of Compact FPGA Implementations For All SHA-3 Finalists.

[26] Jungk, B. and Apfelbeck, J. Area-Efficient FPGA Implementations of the SHA-3
Finalists. In ReConFig, pages 235–241, 2011.

[27] Jungk, B. and Reith, S. On FPGA-Based Implementations of the SHA-3 Candidate
Grøstl. In Reconfigurable Computing and FPGAs (ReConFig), 2010 International
Conference on, pages 316 –321, December 2010.

[28] Kaeslin, H. Digital Integrated Circuit Design: From VLSI Architectures to CMOS
Fabrication. Cambridge University Press, 1 edition, apr 2008.

[29] Kaps, J. P. and Sunar, B. Energy comparison of AES and SHA-1 for ubiquitous
computing. In Xiaobo Zhou and Oleg Sokolsky and LuYan and Eun-Sun Jung and Zili
Shao and Yi Mu and Dong-Chun Lee and Daeyoung Kim Young-Sik Jeong and Cheng-
Zhong Xu, editor, 2nd IFIP International Symposium on Network Centric Ubiquitous
Systems (NCUS 2006), Seoul, Korea, August 1-4, 2006, Proceedings, volume 4097 of
Lecture Notes in Computer Science, pages 372–381. Springer, 2006.

[30] Kaps, J. P. and Yalla, P. and Surapathi, K. K. and Habib, B. and Vadlamudi, S. and
Gurung, S. Lightweight Implementations of SHA-3 Finalists on FPGAs.

[31] Katashita, T. Groestl Compact. http://www.rcis.aist.go.jp/special/SASEBO/,
Februar 2010.

[32] Kavun, E. B. and Yalcin, T. On the Suitability of SHA-3 Finalists for Lightweight
Applications.

[33] Kerckhof, S. and Durvaux, F. and Veyrat-Charvillon, N. and Regazzoni, F. and de
Dormale, G. M. and Standaert, F. X. Compact FPGA Implementations of the Five
SHA-3 Finalists. In Prouff, Emmanuel, editor, CARDIS, volume 7079 of Lecture
Notes in Computer Science, pages 217–233. Springer, 2011.

[34] Kim, M. and Ryou, J. and Choi, Y. and Jun, S. Low Power AES Hardware Archi-
tecture for Radio Frequency Identification . In Hiroshi Yoshiura and Kouichi Sakurai
and Kai Rannenberg and Yuko Murayama and Shinichi Kawamura, editor, First
International Workshop on Security (IWSEC 2006), Kyoto, Japan, October 23-24,
2006, Proceedings, volume 4266 of Lecture Notes in Computer Science, pages 353–363.
Springer, October 2006.

[35] Knudsen, L. R. and Robshaw, M. The Block Cipher Companion. Information security
and cryptography. Springer, 2011.

[36] Küsters, R. and Wilke, T. Moderne Kryptographie - Eine Einführung. Vieweg +
Teubner, 2011.

134 BIBLIOGRAPHY

[37] Latif, K. and Rao, M. M. and Aziz, A. and Mahboob, A. Efficient Hardware Imple-
mentations and Hardware Performance Evaluation of SHA-3 Finalists.

[38] Menezes, A. J. and Vanstone, S. A. and Oorschot, P. C. V. Handbook of Applied
Cryptography, chapter 3, pages 113–114. CRC Press, Inc., Boca Raton, FL, USA, 1st
edition, 1996.

[39] Menezes, A. J. and Vanstone, S. A. and Oorschot, P. C. V. Handbook of Applied
Cryptography, chapter 7. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1996.

[40] Menezes, A. J. and Vanstone, S. A. and Oorschot, P. C. V. Handbook of Applied
Cryptography, chapter 6. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1996.

[41] Menezes, A. J. and Vanstone, S. A. and Oorschot, P. C. V. Handbook of Applied
Cryptography, chapter 9, page 353. CRC Press, Inc., Boca Raton, FL, USA, 1st
edition, 1996.

[42] Menezes, A. J. and Vanstone, S. A. and Oorschot, P. C. V. Handbook of Applied
Cryptography, chapter 9. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1996.

[43] Menezes, A. J. and Vanstone, S. A. and Oorschot, P. C. V. Handbook of Applied
Cryptography, chapter 9, page 355. CRC Press, Inc., Boca Raton, FL, USA, 1st
edition, 1996.

[44] Menezes, A. J. and Vanstone, S. A. and Oorschot, P. C. V. Handbook of Applied
Cryptography, chapter 9, page 348. CRC Press, Inc., Boca Raton, FL, USA, 1st
edition, 1996.

[45] Moradi, A. and Poschmann, A. and Ling, S. and Paar, C. and Wang, H. Pushing
the Limits: A Very Compact and a Threshold Implementation of AES. In Pater-
son, Kenneth, editor, Advances in Cryptology EUROCRYPT 2011, volume 6632 of
Lecture Notes in Computer Science, pages 69–88. Springer Berlin / Heidelberg, 2011.
10.1007/978-3-642-20465-4 6.

[46] MSPGCC4. http://sourceforge.net/projects/mspgcc4/files/mspgcc4/mspgcc4-
20110312.zip/download, 03 2011.

[47] National Institute of Standards and Technology. FIPS PUB 46-3: Data Encryption
Standard (DES). pub-NIST, pub-NIST:adr, oct 1999. supersedes FIPS 46-2.

[48] National Institute of Standards and Technology. FIPS 180-3, Secure Hash Standard,
Federal Information Processing Standard (FIPS), Publication 180-3. Technical report,
Department of Commerce, aug 2008.

[49] Nikova, S. I. and Rijmen, V. and Schläffer, M. Using normal bases for compact
hardware implementations of the AES S-box. In R. Ostrovsky and R. De Prisco and
I. Visconti, editor, 6th International Conference Security in Communication Networks
(SCN), Lecture Notes in Computer Science, pages 236–245. Springer Verlag, 2008.
Work done before joining UTwente.

[50] NIST. SHA-3 Cryptographic Hash Algorithm Competition. Webpage (Last accessed
on 2012-03-01), . http://csrc.nist.gov/groups/ST/hash/sha-3/.

BIBLIOGRAPHY 135

[51] NIST. Advanced Encryption Standard (AES) (FIPS PUB 197). National Institute of
Standards and Technology, November 2001.

[52] NIST. Overview of the AES Development Effort.
http://csrc.nist.gov/archive/aes/index.html, February 2001.

[53] NIST. CRYPTOGRAPHIC HASH ALGORITHM COMPETITION.
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html, December 2010.

[54] Rivest, R. L. The MD5 Message-Digest Algorithm (RFC 1321). http://www.ietf.

org/rfc/rfc1321.txt?number=1321.

[55] Rivest, R. L. . The RC5 Encryption Algorithm. In , pages 86–96. Springer-Verlag,
1995.

[56] Rivest, R. L. The MD4 Message Digest Algorithm. In Alfred Menezes and Scott A.
Vanstone, editor, CRYPTO, volume 537 of LNCS, pages 303–311. Springer, 1990.

[57] Rivest, R. L. and Robshaw, M. J. B. and Sidney, R. and Yin, Y. L. The RC6 Block
Cipher.

[58] Schneier, B. The Blowfish Encryption Algorithm — One Year Later. Dr Dobbs,
20:137, 1995.

[59] Schneier, B. and Kelsey, J. and Whiting, D. and Wagner, D. and Hall, C. and Fergu-
son, N. Twofish: A 128-Bit Block Cipher. In In First Advanced Encryption Standard
(AES) Conference, 1998.

[60] Sharif, M. U. and Shahid, R. and Rogawski, M. and Gaj, K. Use of Embedded FPGA
Resources in Implementations of Five Round Three SHA-3 Candidates. In CRYPT
II Hash Workshop 2011, 2011.

[61] Texas Instruments. MSP430x1xx Family. http://www.ti.com/lit/ug/slau049f/slau049f.pdf,
2006.

[62] Tillich, S. and Feldhofer, M. and Issovits, W. and Kern, T. and Kureck, H. and
Mühlberghuber, M. and Neubauer, G. and Reiter, A. and Köfler, A. and Mayrhofer,
M. Compact Hardware Implemenations of the SHA-3 Candidates ARIRANG,
BLAKE, Grøstl and Skein. In Mario Auer and Wolfgang Pribyl and Peter Söser,
editor, Proceedings of Austrochip 2009, October 7, 2009, Graz, Austria, pages 69 –
74, 2009.

[63] Wang, M. Y. and Su, C. P. and Huang, C. T. and Wu, C. W. An HMAC processor
with integrated SHA-1 and MD5 algorithms. In Masaharu Imai, editor, Conference
on Asia South Pacific Design Automation: Electronic Design and Solution Fair 2004
(ASP-DAC), Yokohama, Japan, January 27-30, 2004, Proceedings, pages 456–458.
IEEE, January 2004.

[64] Wolkerstorfer, J. and Oswald, E. and Lamberger, M. An ASIC Implementation of
the AES SBoxes. In Preneel, Bart, editor, Topics in Cryptology CT-RSA 2002,
volume 2271 of Lecture Notes in Computer Science, pages 29–52. Springer Berlin /
Heidelberg, 2002.

http://www.ietf.org/rfc/rfc1321.txt?number=1321
http://www.ietf.org/rfc/rfc1321.txt?number=1321

136 BIBLIOGRAPHY

[65] Xilinx. Using Block RAM in Spartan-3 Generation FPGAs.
http://www.xilinx.com/support/documentation/application notes/xapp463.pdf,
03 2005.

[66] Xilinx. Using Look-Up Tables as Distributed RAM in Spartan-3 Generation FPGAs.
http://www.xilinx.com/support/documentation/application notes/xapp464.pdf, 03
2005.

[67] Xilinx. Using Look-Up Tables as Shift Reg-
isters (SRL16) in Spartan-3 Generation FPGAs.
http://www.xilinx.com/support/documentation/application notes/xapp465.pdf,
05 2005.

[68] Xilinx. Spartan-3 Generation FPGA User Guide.
Webpage (Last accessed on 2012-04-04), June 2011.
http://www.xilinx.com/support/documentation/user guides/ug331.pdf.

	Introduction
	Selected Chapters of Cryptography
	Symmetric-Key vs. Public-Key Cryptography
	Unsecured Communication and Its Risks
	Requirements for Secure Communication
	Symmetric-Key Cryptography
	Public-Key Cryptography

	Block Ciphers
	Electronic Code Book (ECB) Mode
	Cipher Block Chaining (CBC) Mode

	Stream Ciphers
	Cipher Feedback (CFB) Mode
	Output Feedback (OFB) Mode
	Counter (CRT) Mode

	Message Authentication Codes (MAC)
	Hash Functions
	Hash-Based Message Authentication Code (HMAC)

	Rijndael - Winner of the NIST AES Competition
	Round Transformation
	SubBytes/InvSubBytes
	ShiftRows/InvShiftRows
	MixColumns/InvMixColumns
	AddRoundKey

	Round-Key Generation

	Grøstl - A NIST SHA-3 Competition Finalist
	Compression Function
	Output Transformation
	Permutations P and Q in Detail
	AddRoundConstant
	SubBytes
	ShiftBytes
	MixBytes

	Related Work
	Asynchronous Interfaces
	Synchronous Digital Circuits
	Asynchronous Interfaces for Synchronous Digital Circuits
	Inconsistent Data
	Measures Against Inconsistent Data

	Basics on Xilinx FPGAs
	General Structure
	Configurable Logic Block (CLB)
	Slice

	Memory Variants for Spartan-3 FPGAs
	Block RAM (BRAM)
	Distributed RAM (LUT RAM)
	Shift-Register Logic (SRL16)

	GrÆStl - A Combined AES/Grøstl HW Architecture
	On the Search for Optimal Resource Management
	Hardware Architecture
	Top Layer
	Common Datapath

	Results
	Application-Specific Integrated Circuit (ASIC)
	Field Programmable Gate Array (FPGA)

	Comparison with Related Work
	Comparison of ASIC Results
	Comparison of FPGA Results

	FPGA System for HW/SW Evaluation
	General System Requirements
	System Architecture
	Xilinx Spartan 3
	openMSP430
	Cryptographic Modules
	Cryptographic Library

	Results
	Influence of External Data Transfer on Overall Timing
	Software/Hardware Evaluation

	Conclusions
	Definitions
	Abbreviations

	Chameleon - ASIC
	General Features
	Pinout
	Pad Description
	Interface Description

	Chameleon - FPGA
	Xilinx Spartan-3 and Spartan-6 Results
	Xilinx Virtex-5 and Virtex-6 Results

	FPGA System - AddOn
	Basic Linker Script for openMSP430 MCUs
	Installation Script for MSPGCC Toolchain
	Test Program for Verifying Cryptographic Modules

	Original Assignment
	Bibliography

