
Martin Tappler, BSc.1

Symbolic Input Output Conformance Checking of
Action System Models

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor
Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Bernhard Aichernig

Institute for Software Technology (IST)

Graz, December 18, 2015

1 E-mail: martin.tappler@student.tugraz.at

© Copyright 2015 by the author

Martin Tappler, BSc.1

Symbolische Überprüfung von
“Input-Output Conformance” von

“Action System”-Modellen

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

Masterstudium: Informatik

eingereicht an der

Technischen Universität Graz

Betreuer
Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Bernhard Aichernig

Institut für Softwaretechnologie (IST)

Diese Arbeit ist in englischer Sprache verfasst.

1 E-Mail: martin.tappler@student.tugraz.at

© Copyright 2015, Martin Tappler

Abstract

This thesis uses actions systems as test models. It presents a symbolic execution-
based approach to Input Output Conformance checking of action systems and dis-
cusses its application. The main focus lies on model-based mutation testing, which
is a test-case generation technique. In principle, it generates distinguishing test cases
from a specification model and mutated versions thereof. These mutated models are
created by inserting faults into the original specification, thus test cases should cover
such faults. Test cases are generated by applying a conformance check between mod-
els and transforming counter examples to conformance. This conformance check,
however, is a performance bottleneck. Consequently, the main goal of this thesis is
the development of a conformance check, which is efficient in terms of runtime.

Efficiency is achieved by symbolic handling of data to overcome the state-space ex-
plosion problem and adopting several optimisations. The main part of this thesis
is formed by the formal presentation of the basic conformance checking algorithm,
optimisations of this algorithm and relevant theoretical concepts. It further builds
the basis for the implementation of a mutation-based test case generator, which is
discussed as well.

In order to determine whether the symbolic execution-based approach pays off, sev-
eral case studies involving the test case generator have been carried out and are anal-
ysed. They show that the conformance checker is indeed efficient, especially consid-
ering a comparison with a non-symbolic Input Output Conformance checker.

Since the conducted case studies show that the approach followed in this thesis is
worthwhile, its applicability for further areas such as conformance checking of real-
time system models is investigated.

Keywords: Input Output Conformance, ioco, Action Systems, Symbolic Execution,
Model-Based Testing, Model-Based Mutation Testing, Conformance Checking, Test
Case Generation.

i

Kurzfassung

Diese Arbeit verwendet “Action System”-Modelle als Testmodelle. Sie behandelt
einen auf symbolischer Ausführung basierenden Ansatz zur Überprüfung von “Input
Output Conformance” von “Action System”-Modellen. Des Weiteren wird seine An-
wendung diskutiert, wobei der Fokus auf dem Hauptanwendungsgebiet, dem modell-
basierten Mutationstesten, liegt, einer Technik zur Testfallgenerierung. Grundsätzlich
werden dabei Testfälle generiert, die Unterschiede zwischen einem Spezifikations-
Modell und mutierten Versionen davon erkennen. Diese mutierten Modelle werden
duch das gezielte Einfügen von Fehlern in die ursprüngliche Spezifikation erzeugt,
wodurch die erstellten Testfälle solche Fehler abdecken sollen. Durch Anwendung
einer “Conformance”-Überprüfung und weitere Transformation der Gegenbeispiele
für “Conformance” werden Testfälle erzeugt. Diese Überprüfung der “Conforman-
ce” zwischen Modellen ist allerdings rechenintensiv und kann die Anwendbarkeit der
Technik beeinflussen. Aufgrund dessen ist das Hauptziel dieser Arbeit die Entwick-
lung einer effizienten Überprüfung von “Conformance”, wobei das Hauptaugenmerk
auf Laufzeit gelegt wird.

Effizienz wird durch die symbolische Verarbeitung von Daten und durch den Ein-
satz verschiedener Optimierungen erreicht. Ersteres soll sicherstellen, dass das “State
Space Explosion”-Problem nicht auftritt. Die formalen Beschreibungen der Grund-
version des Algorithmus zur “Conformance”-Überprüfung, der Optimierungen die-
ses Algorithmus und relevanter Konzepte stellen den Hauptteil dieser Arbeit dar. Die-
se Beschreibungen bilden weiters die Basis für die Implementierung eines mutations-
basierten Testfallgenerators, welcher ebenfalls diskutiert wird.

Um festzustellen, ob sich der vorgestellte Ansatz als sinnvoll erweist, wurden meh-
rere Fallstudien durchgeführt und analysiert. Diese Fallstudien haben gezeigt, dass
die implementierte “Conformance”-Überprüfung effizient arbeitet. Das wird vor al-
lem bei der Betrachtung eines Vergleichs mit einer nicht-symbolischen “Input Output
Conformance”-Überprüfung offensichtlich.

Da die durchgeführten Fallstudien gezeigt haben, dass der in dieser Arbeit verfolgte
Ansatz lohnenswert ist, wird seine Anwendbarkeit für weitere Gebiete untersucht.
Ein Beispiel für ein mögliches Gebiet, ist die “Conformance”-Überprüfung von Mo-
dellen von Echtzeit-Systemen.

Schlagworte: Modellbasiertes Testen, Modellbasiertes Mutationstesten, symboli-
sche Ausführung, “Conformance”-Verifikation, Testfallgenerierung, Action Systems,
“Input Output Conformance”, ioco.

ii

Affidavit

I declare that I have authored this thesis independently, that I have not used other than the declared
sources/resources, and that I have explicitly indicated all material which has been quoted either literally
or by content from the sources used. The text document uploaded to TUGRAZonline is identical to the
present master’s thesis dissertation.

. .
place, date (signature)

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angege-
benen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnom-
menen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument
ist mit der vorliegenden Masterarbeit identisch.

. .
Ort, Datum (Unterschrift)

iii

Acknowledgements

I would like to thank all the people who supported me during my studies and espe-
cially during the writing of this thesis. I would like to address special thanks to my
advisor Bernhard K. Aichernig who sparked my interest in the area of software ver-
ification and introduced me to formal approaches to software developement, which
led to the creation of this thesis. During this process, he was always open to discuss
ideas and problems and thereby shaped the work presented in the following.

Furthermore, I want to thank my colleagues and fellow students who helped during
this project: Florian Lorber for his help regarding modelling of real-time systems,
Benedikt Maderbacher for his support during the early phase of the implementation
and Severin Kann for providing me with Event-B models.

I also would like to thank my partner Nina for her support and for keeping my mo-
tivation up. Last but not least, I am grateful to my family, especially to my parents
Helga and Gerhard, who supported and encouraged me throughout my studies.

This work has been financially supported by the Austrian Research Promotion Agen-
cy (FFG), project number 845582, Trust via cost function driven model based test
case generation for non-functional properties of systems of systems (TRUCONF).

Martin Tappler
Graz, Austria, December 18, 2015

Danksagung

Ich möchte mich herzlich bei allen bedanken, die mich im Laufe meines Studiums
und im Speziellen während des Verfassens dieser Arbeit unterstützt haben. Besonde-
rer Dank gilt meinem Betreuer Bernhard K. Aichernig, der mein Interesse an Soft-
wareverifikation geweckt und mich auf formale Ansätze zur Softwareentwicklung
aufmerksam gemacht hat. Das hat zur Erstellung dieser Arbeit geführt, während der
er immer offen für Diskussionen von Problemen und Ideen war. Dadurch hat er be-
deutenden Einfluss auf die Arbeit genommen.

Des Weiteren möchte ich meinen Kollegen und Studienkollegen danken, die mir
während dieses Projekts geholfen haben: Ich danke Benedikt Maderbacher für sei-
ne Unterstützung während der Frühphase der Implementierung, Florian Lorber für
seine Hilfe bezüglich der Modellierung von Echtzeit-Systemen und Severin Kann für
die Bereitstellung von Event-B-Modellen.

Ich möchte auch meiner Partnerin Nina für ihre Unterstützung danken und dafür,
dass sie mich fortwährend motiviert. Zu guter Letzt möchte ich meiner Familie Dank
aussprechen, allen voran meinen Eltern Helga und Gerhard, die mich während meines
Studiums unterstützt und ermutigt haben.

Diese Arbeit wurde finanziell unterstützt von der Österreichischen Forschungsför-
derungsgesellschaft (FFG) im Rahmen des Projekts TRUCONF mit der Projektnum-
mer 845582, Trust via cost function driven model based test case generation for non-
functional properties of systems of systems.

Martin Tappler
Graz, Österreich, 18. Dezember 2015

iv

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Model-Based Testing . 1

1.3 Conformance Testing . 2

1.4 Model-Based Mutation Testing . 3

1.5 Stepwise Development of Test Models . 5

1.6 Problem Statement and Goals . 5

1.7 Published Material . 7

1.7.1 Related Publications . 7

1.8 Structure of this Thesis . 8

2 A Symbolic Framework for Conformance Checking 9
2.1 First-order logic . 9

2.2 Labelled Transition Systems and Input Output Conformance 11

2.3 Action Systems . 15

2.3.1 Syntax . 15

2.3.2 Semantics . 17

2.4 Symbolic Execution . 19

2.4.1 Symbolic Execution on Implementation-Level 19

2.4.2 Symbolic Execution on Model-Level and Symbolic Input Output Conformance . 21

3 Symbolic Input Output Conformance Checking 29
3.1 Symbolic Execution and Conformance Testing Concepts 30

3.1.1 Symbolic Execution Tree . 30

3.1.2 Introduction to Product Graphs . 32

3.1.3 Deterministic Product Graph . 33

3.1.4 Unsafe States . 45

3.2 sioco Checking Algorithm . 45

4 Optimisations 48
4.1 Symbolic Execution Graph . 48

4.2 Product Graph Pruning . 51

4.3 Syntactic Mutation Analysis . 53

4.4 Restriction of Angelic Completion for Mutants . 54

4.5 Avoiding the Execution of Implementation Actions . 56

4.6 Simplifying Equivalence Checks for Product States . 58

4.7 Reducing the Number of Non-conformance Checks . 60

4.8 Calculation of Reachable Actions . 61

4.9 Filtering of Implementation States . 64

4.10 Checking if Input Guard Weakened . 67

v

5 Application of the Conformance Check 71
5.1 The Model-Based Testing Process . 71

5.1.1 Test Case Generation Phase . 71

5.1.2 Test Execution Phase . 74

5.2 Model-Checking . 79

6 Implementation 81
6.1 Type System . 81

6.2 Parsing and Mutation . 82

6.3 Translation . 82

6.3.1 Implicit Extension of Guards . 83

6.3.2 Choice of API . 83

6.4 Conformance Check . 83

6.4.1 Equivalence Checks . 84

6.4.2 τ - Divergence . 86

6.4.3 Disabling Syntactic Mutation Analysis . 87

7 Case Studies 88
7.1 Supplier . 88

7.1.1 Specification . 89

7.1.2 Results . 91

7.2 Particle Counter . 91

7.2.1 Specification and Modelling . 92

7.2.2 Results and Comparison . 92

7.2.3 Refactored Model . 95

7.3 Car Alarm System . 97

7.3.1 Specification and Modelling . 98

7.3.2 Translation of Action System Model . 99

7.3.3 Translation of Timed Automata Models . 104

7.3.4 Verification during Stepwise Development . 110

7.4 Models using Complex Data Types . 113

7.4.1 Models . 113

7.4.2 Experiments . 113

8 Extensions and Adaptations 116
8.1 Changes of the sioco Conformance Checker . 116

8.1.1 Multiple Actions with Same Label . 116

8.1.2 Parameters for Internal Actions . 117

8.2 Conformance Checking of Real-Time System Models 118

8.3 Integration into MoMut::UML-Toolchain . 120

vi

9 Conclusion 122
9.1 Summary . 122

9.2 Related Work . 122

9.3 Discussion . 124

9.3.1 Development . 124

9.3.2 Evaluation . 124

9.3.3 Concluding Remarks . 124

9.4 Future Work . 125

9.4.1 Heuristic Methods to Tackle the Path Explosion Problem 125

9.4.2 Livelock Quiescence . 126

9.4.3 Further Extensions . 127

9.4.4 Additional Case Studies . 128

Bibliography 129

vii

List of Figures

1.1 The model-based testing process . 2
1.2 The model-based mutation testing process . 4
1.3 Stepwise development of test models . 6

2.1 Input Output Labelled Transition System (IOLTS)-models of coffee machines (1) 13
2.2 IOLTS-models of coffee machines (2) . 14
2.3 The action system syntax . 16
2.4 Commutativity of symbolic execution . 20
2.5 Symbolic execution of the Sum-function . 20
2.6 Symbolic execution tree for the Abs-function . 21

3.1 A part of a symbolic execution tree . 31
3.2 A part of a product graph . 39

4.1 Non-conformance of IOLTSs through angelic completion 56

5.1 The model-based testing process . 72
5.2 Specification of the test bridge signature . 76

6.1 The extended data type definition syntax . 81

7.1 A model of a supplier system given as STS . 89
7.2 Car alarm system Unified Modeling Language (UML)-model 98
7.3 A timed automaton model of the car alarm system . 105
7.4 Partial models of the car alarm system . 110

List of Tables

5.1 The action system mutation operators . 74

7.1 Runtimes for supplier model . 91
7.2 Runtimes for particle counter model . 93
7.3 Runtimes for car alarm system models based on the original action system model 103
7.4 Runtimes for car alarm system model based on a timed automata model 108
7.5 Runtimes for car alarm system model based on a non-deterministic timed automata model 109
7.6 Runtimes for conformance checks between refinements of a car alarm system model . . 112
7.7 Runtimes for set-buffer model . 114
7.8 Runtimes for tuple-map model . 114
7.9 Runtime for symbolic execution graph creation of set-buffer 115

viii

Listings

7.1 Simple Supplier action system . 90

7.2 Two output actions in the original particle counter model 95

7.3 An action combining two output actions of the original particle counter model 95

7.4 Two input actions in the original particle counter model 96

7.5 An action combining two input actions of the original particle counter model 96

7.6 Structure of actions with nested guards . 101

7.7 An action with nested guarded commands . 101

7.8 Translation of an action via appending of indexes to labels 102

7.9 Translation of an action via creation of internal actions 102

7.10 State definition of an action system modelling a real-time system 105

7.11 An action modelling a transition of a timed automaton 106

7.12 An action modelling the passage of time . 106

List of Algorithms
1 The Abs-function . 21
2 Basic version of the sioco checking algorithm . 47
3 The symbolic execution graph creation algorithm. 50
4 Syntactic mutation analysis algorithm. 54
5 Calculation of reachable actions. 63
6 Check if guard of mutated input action is weakened . 70
7 The symbolic test execution algorithm. 78
8 Procedure for translating action systems . 100

ix

Acronyms

ioco Input Output Conformance.

sioco Symbolic Input Output Conformance.

stioco Symbolic Timed Input Output Conformance.

tioco Timed Input Output Conformance.

API Application Programming Interface.

AST Abstract Syntax Tree.

BNF Backus-Naur Form.

DQTS Divergent Quiescent Transition System.

IOLTS Input Output Labelled Transition System.

IOSTS Input Output Symbolic Transition System.

IOTS Input Output Transition System.

JVM Java Virtual Machine.

LTS Labelled Transition System.

SMT Satisfiability Modulo Theories.

STS Symbolic Transition System.

SUT System Under Test.

UML Unified Modeling Language.

VDM Vienna Development Method.

x

1 Introduction

1.1 Motivation

The verification of software is an important task in the software development life cycle. This becomes
apparent when looking at the growing influence of electronic devices on our lives and the possible impact
of software failures. The consequences of defects in software systems range from the loss of a company’s
reputation to threats to lives of human beings [66]. Through the rising complexity of software systems,
the verification task becomes more complex as well, which further adds to the importance of research
and education in this area.

There exist two main approaches to ensure that a system meets its requirements. In the first one,
software testing, several tests are carried out to check if the System Under Test (SUT) works correctly.
In the second one, mathematical proofs are used to show that a system is correct with respect to the
specification [19, 84]. Since it is difficult to perform proofs for industrial systems, software testing is
predominantly used for quality assurance in practice today.

Although simpler in general, software testing is a labour intensive task as it requires an engineer
to select relevant scenarios and conditions, which are used to test the SUT. Consequently traditional
software testing is also error-prone. Hence, there is a pressing need to provide assistance in the testing
process through the automation of steps involved in this process. A common solution to this problem
advocates the adoption of an abstract model of the SUT, from which test cases can be generated auto-
matically based on some criterion. This approach is called model-based testing and will be discussed in
the next section.

This thesis focuses on a specific form of model-based testing which uses mutation. It builds upon
existing research performed in the area of model-based mutation testing [3, 58] and evaluates an approach
to test case selection based on symbolic execution and the Input Output Conformance (ioco) relation [78].

1.2 Model-Based Testing

As pointed out above, in model-based testing an abstract model of the SUT is used to specify the intended
behaviour of the SUT. Possible sources of abstraction are for instance the omission of functionality or
the simplification of data [80]. Generally, software tests need to specify a number of execution scenarios
and the properties which need to be satisfied for a test to be successful. Model-based testing provides
solutions to both of these problems [80]. As the model represents a formalisation of a set of requirements
imposed on the SUT, it acts as a test oracle. Hence, it can provide answers as to whether the outputs of
the SUT conform to the specification given by the requirements. Furthermore, the model together with a
test selection criterion can be used to select and generate a set of test cases.

Figure 1.1 shows the model-based testing process. It can be divided into five steps [80]:

1. Creation of a model from the requirements given in natural language

2. Definition of a test case selection criterion

3. Translation of selection criteria into test case specifications

4. Generation of test cases from the model and a test case specification

5. Execution of test cases on the SUT, whereby an adaptor is used to help bridge the abstraction gap
between model and SUT

The result of the last step is a set of verdicts, one for each test case. A verdict may either be pass,
if the SUT has shown conforming behaviour, fail, if the SUT has shown non-conforming behaviour or

1

Chapter 1. Introduction 2

Requirements

Model
Test Selection

Criterion

Test Case
SpecificationTest Cases

Execution

Verdicts

Adapter SUT

(1) (2)

(4)

(4)

(3)

(5)

(5)

(5) (5)

Figure 1.1: The model-based testing process adapted from Utting et al. [80]. The arrow labels
correspond to the steps in the process.

inconclusive. The last verdict is assigned if it is not possible to decide whether the output of the SUT
was correct or if the goal of the test was not achieved.

1.3 Conformance Testing

In the last section, verdicts and a decision criterion for assigning verdicts have been introduced. The
decision criterion, however, distinguishes between conforming and non-conforming behaviour while the
conditions necessary for conformance are yet to be discussed. Unfortunately, a general answer to the
question ”When does an SUT conform to its specification?” cannot be given. Nevertheless, it is possible
to discuss important aspects and assumptions in the context of conformance testing.

The specification model must be given in a formalism with precise formal semantics. Tretmans for
instance considers formalisms with semantics which can be expressed in terms of Labelled Transition
Systems(LTSs) [77]. As is typical in model-based testing, implementations are considered to be black
boxes, that is, their internal structure is not known. In order to be able to formally reason about confor-
mance an assumption has to be made, which is referred to as the test hypothesis [18, 77]: a formal model
capturing the behaviour of the implementation is assumed to exist. It must be possible to express this
model in a way such that it is possible to reason about it formally.

Based on this assumption, it is possible to give a condition for conformance. Consider a formalism,
which is able to express models belonging to some set F : following [77], a conformance relation imp ⊆
F × F should be used to decide whether an implementation i ∈ F conforms to a specification s ∈ F .
Conformance of i to s is denoted by i imp s, which can be interpreted as i implements the specification
s. Generally, implementations and specifications may also belong to different sets FI and FS , thus
imp ⊆ FI ×FS .

Hence, the question of conformance between a specification and an implementation can only be
answered relative to a conformance relation. While this provides the freedom of defining arbitrary con-
ditions for conformance, there exists a variety of well-known and studied conformance relations. Essen-
tially, this adds another dimension to the taxonomy defined by Utting et al. [80] with interdependencies
with other dimensions.

Chapter 1. Introduction 3

Prominent examples of conformance relations are for instance observational equivalence and strong
and weak bisimulation equivalence [77]. However, equivalence relations may be too restrictive [2]. Since
models are incomplete in most cases, conformance relations should account for implementation freedom
for unspecified details. More suitable choices are order relations like refinement which is used in [9]. An-
other popular conformance relation is ioco [78], which essentially requires that an implementation must
only produce outputs which are allowed by the specification. It allows for the usage of non-deterministic
models and provides implementation freedom for unspecified inputs. For these reasons, a symbolic vari-
ant of it will be used as conformance relation in this thesis. Section 2.2 will introduce ioco and associated
concepts formally.

1.4 Model-Based Mutation Testing

Up to now, the model-based testing process and conformance, on which criteria for test success can be
based, have been discussed. In the following, an approach to test case generation shall be discussed.

Mutation testing was initially introduced to assess the adequacy of a test data set for some program
[40]. The basic working principle is as follows:

1. The program is executed using the given test data. If this reveals an error, the program is incorrect,
otherwise the actual mutation testing can be performed.

2. During program mutation, simple errors, which are also called mutations, are seeded into the
program creating a number of faulty implementations of the program. These faulty mutations are
also referred to as mutants.

3. In the last step, the mutants are tested using the given data. If all mutants are detected to be
incorrect, the test data is deemed adequate, otherwise it should be extended.

The types of errors introduced into the program are governed through transformation rules also called
mutation operators [57].

It should be noted that mutants may also be equivalent to the original program. This may happen if
mutations for instance affect unreachable code. Hence, the test data should identify all non-equivalent
mutants as incorrect. The mutation score, which is the ratio between the number of detected mutants and
the number of non-equivalent mutants, is generally used to measure the effectiveness of test sets [57].

In the following, important aspects of mutation testing shall be discussed. Mutation testing relies on
two assumptions:

• Programmers develop programs that differ from the correct version only by small deviations. This
is also referred to as the competent programmer hypothesis [57].

• If test data can detect all kinds of simple errors, then it is so sensitive that it can also detect more
complex errors. This is also referred to as the coupling effect [40].

Finally, the notion of simple errors shall be concretised. A simple error is some error which commonly
occurs in programming [40]. This may for instance be the usage of wrong constant values or relational
operators. Furthermore, a simple error affects the implementation only at one point. Program mutation
therefore changes only one statement of a program for instance to create one mutant.

More generally, mutant types can be distinguished based on the number of errors they contain [57].
Mutants containing only one simple error are referred to as first-order mutants, while mutants containing
more than one error are called higher-order mutants.

The concept of model-based mutation testing shall now be introduced. While it shares similarities,
for instance in terms of terminology, with traditional mutation testing, its purpose is a different one.
Roughly speaking, model-based mutation testing is a specific form of model-based testing which uses a

Chapter 1. Introduction 4

Requirements

Model Error Classes

Mutants
Conformance

Check

Test Cases

Execution

Verdicts

Adapter SUT

(1) (2)

(4)

(4)

(3)
(3) (mutation)

(4)

(5)

(5)

(5) (5)

Figure 1.2: The model-based mutation testing process adapted from Aichernig et al. [9]. The arrow
labels correspond to the steps in the model-based testing process.

fault-based test case selection criterion in the second step of the process discussed in Section 1.2. Hence,
model-based mutation testing affects steps two to four in the aforementioned process. Their specific form
in this context is discussed in the following. The discussion is based on the process description given
by Aichernig et al. [9]. A visual representation of the model-based mutation testing process is given in
Figure 1.2.

In model-based mutation testing, an informal test case selection criterion can for instance be given
as ”The test cases should cover all possible errors from X”, where X is a set of error classes. The
translation of this criterion into formal test case specifications is done via mutation of the model of
the SUT, whereby X defines the set of mutation operators to be applied. Informally speaking, the
generated test cases should cover the injected faults. Hence, each non-equivalent mutant m corresponds
to a test case specification. The specified test cases should reveal non-conforming behaviour of programs
implementing the faulty model m. In order to generate test cases a search for conformance violations
with respect to the original model is performed for every created mutant. This process generates test
cases for all conformance violations that are found.

It can be seen that conformance testing is not only relevant for assigning test verdicts but also for
distinguishing the original specification model from a mutant model. For this purpose, a mutant is
interpreted as an implementation and conformance between mutant and specification is checked. This is
possible because both specification and mutant are defined using the same formalism, about which it is
possible to reason.

However, differently from the situation described in Section 1.3, the testing can actually be performed
as white-box testing, that is, the structure of the mutant can be utilised. Since the equivalence of a mutant
to a specification is defined with respect to a conformance relation, equivalent model mutants will also be
referred to as conforming mutants in the remainder of this thesis. Conformance testing on model-level is
actually performed exhaustively up to a given bound in many cases, which means that the entire system
behaviour below the bound is covered. Consequently, it is also referred to as conformance checking.

Chapter 1. Introduction 5

This applies to this thesis as well, thus the terms conformance testing on model-level and conformance
checking will be used synonymously. However, the latter term will be preferred. It is actually used,
because conformance checking is a specific form of model-checking [33]. But unlike traditional model-
checking which checks whether a system description satisfies a property expressed in temporal logic,
conformance checking checks a different kind of property. Given an implementation, it checks whether
it conforms to a specification.

The intuition behind the model-based mutation testing approach is that a test case generated for some
mutant m would fail if it was executed on an SUT which implements m and thus contains the same error
as m. Hence, using model-based mutation testing it is possible to cover a range of error classes via
the choice of suitable mutation operators. Aichernig et al. have shown that this technique is indeed
effective [4], as it is possible to achieve a high mutation score. Furthermore, evidence has been given
that supports the assumption that it also benefits from the coupling effect.

1.5 Stepwise Development of Test Models

Generally, a model used for model-based testing should be abstract in order to be able to reason about
its validity [80], yet models should incorporate all important aspects of the system. Formal methods
such as the Vienna Development Method (VDM) [59], the RAISE method [49] and Event-B [1] provide
a means of coping with this problem. Using these methods it is possible to start development with an
abstract model which fulfils some desired properties and to create a series of models with increasing
complexity. In order to show that concrete models fulfil properties defined by more abstract models,
conformance checks are necessary between any two consecutive models. In other words, it must be
shown that a concrete model conforms to the abstract model from which it was derived. It should be
noted that conformance is also referred to as refinement in formal methods and an implementation of a
model M is said to be a refinement of M .

In general, conformance/refinement is checked through manual proofs. However, alternatively also
other tools like model-checkers [50, 69] or Satisfiability Modulo Theories (SMT)-solvers [39] may be
used to validate properties expressed in formal methods. Hence, conformance testing on model-level may
also be useful during the development of test models. It opens up the possibility to start with a simple
model, validate this model and to add details in a stepwise manner. Automatic conformance checks
performed after each step would ensure that concrete models do not violate requirements expressed in
more abstract models.

This approach to development is actually facilitated by the conformance relation ioco, which is con-
sidered in this thesis. It allows implementation freedom for non-specified inputs [78]. So it is possible to
model behaviour corresponding to a small set of inputs in the most abstract model and to add behaviour
corresponding to further inputs in more concrete models. Finally, when the full set of requirements has
been formalised through modelling, test cases can be generated from the most concrete model. This
process is outlined in Figure 1.3.

1.6 Problem Statement and Goals

As pointed out before, model-based mutation testing is an effective approach to software testing. How-
ever, test case generation in this context involves conformance checks for all generated mutants, which
may be very expensive in terms of computation time. The excessive amount of time needed to check
conformance may even render the approach inapplicable in some cases. This problem is for instance
discussed by Aichernig et al. [9]1. A number of factors influence the computation time including the size

1The tool Ulysses checks conformance in a concrete way and cannot process the models CAS 100 and CAS 1000 in
reasonable time.

Chapter 1. Introduction 6

Requirements Abstract Model

Refinement 1

Refinement 2

Refinement n− 1

Refinement n = Test model

generate test cases

initial model

refines

refines

refines

refines

add details

add details

add details

add details

Figure 1.3: Stepwise development of test models by adding details in n steps. Based on the last
refinement, test cases can be generated.

of the model, the type and number of mutation operators, the conformance relation and of course the
implementation of the conformance check.

The implementation of the ioco conformance check used in Chapter 10 of Elisabeth Jöbstl’s disserta-
tion [58] and the corresponding experiments can be seen as the predecessor project of this thesis. These
tasks were carried out in joint work performed by Elisabeth Jöbstl and the author of this thesis. The
experiments revealed that the ioco conformance check faces efficiency problems.

Consequently, the approach presented in the following aims at improving efficiency while focus-
ing on the same kind of models, thus models of reactive systems will be targeted. Reactive systems
are systems which continuously respond to their environment upon receiving inputs [52]. They do not
strictly wait to receive inputs in order to perform calculations and output the results as opposed to trans-
formational systems. Such systems rather provide outputs depending on inputs and time in an ongoing
relationship with users.

The focus lies on the same kind of systems to be able to compare both approaches. Additionally,
a similar modelling formalism suited for reactive systems shall be used. More concretely, a simplified
form of the action system language used in [58] will serve as the modelling formalism. Furthermore, the
conformance check shall be based on ioco as well.

Since the previous implementation of the ioco conformance check follows an enumerative approach,
it shows performance issues especially when models with large state space or large number of executable
paths are checked. In other words, it suffered from the state explosion problem [34]. Hence, the confor-
mance check approach followed in this thesis shall avoid explicit enumeration. This can be achieved by
symbolic handling of data.

This leads to the main goal of this thesis: in order to overcome the state space explosion problem, a
symbolic ioco conformance check shall be developed. The development will be based on the Symbolic
Input Output Conformance (sioco) relation developed by Frantzen et. al [45] and follows a white-box
testing approach. As the efficiency of the conformance check was identified to be of utmost importance,
the sioco conformance check shall be implemented as efficiently as possible.

Another goal of this thesis is to evaluate this approach and to compare its efficiency to the implemen-
tation of the concrete ioco conformance checker. For this purpose, it is necessary to implement a model
mutation system and to perform runtime measurements using both implementations.

Chapter 1. Introduction 7

Furthermore, to demonstrate the applicability of the approach, symbolic test cases shall be generated
and a test driver to execute those tests shall be developed.

To summarise, it shall be possible to efficiently check ioco conformance between two action system
models, which supports two use cases:

• stepwise development of test models

• model-based mutation testing

For the latter, all components necessary to actually perform tests on an SUT shall be implemented as
well. Unless otherwise noted, the focus lies on efficiency in terms of computation time.

1.7 Published Material

Prior to the completion of this thesis, a paper has been written in joint work with Bernhard Aichernig.
It covers the most important developments of this thesis and is fifteen pages long. It has been submitted
for presentation at the 1st Usages of Symbolic Execution Workshop (USE) co-located with the 20th

International Symposium on Formal Methods held at the Department of Informatics of the University
of Oslo. After it had been peer-reviewed, it was accepted for presentation at the workshop, which was
subsequently given by the author of this thesis [12]. The workshop proceedings will be published within
the Electronic Notes in Theoretical Computer Science2.

As a result, some concepts presented in the following have already been discussed in a very similar
form before. These concepts include for instance the modelling formalism, the approach to conformance
checking and a comparison with the previously implemented enumerative ioco checker mentioned above.
However, this thesis covers theoretical foundations and optimisations in more depth. Additionally, it
discusses further case studies and topics such as test case execution and implementation-specific details.
Nevertheless, whenever a section covers published material, it will be indicated at the beginning of the
section.

1.7.1 Related Publications

The author of this thesis has been involved in the creation of two additional publications related to the
area of ioco checking, which shall be discussed shortly.

Does this Fault Lead to Failure? - Combining Refinement and Input-Output Conformance Check-
ing in Fault-Oriented Test-Case Generation. This paper discusses the application of a combination
of refinement and ioco [8] as conformance relation in model-based mutation testing. More concretely,
a mutant is considered to be conforming if it refines the specification, otherwise ioco is checked to de-
termine whether the mutant actually conforms to the specification. A test case is generated if an ioco
conformance violation is found. Hence, test cases are only generated if an internal error detected by
the stricter refinement check propagates to a visible failure detected by the ioco check. The rationale
behind this approach is that performance, as compared to pure ioco checking, may be increased because
refinement can be checked more efficiently than ioco and ioco need not be checked if the mutant refines
the specification. Two case studies indicate that this assumption is valid.

Conformance Checking of Real-Time Models - Symbolic Execution vs. Bounded Model Checking.
This paper focuses on conformance checking of real-time system models with the purpose of mutation-
based test case generation [11]. It compares an existing approach based on bounded model-checking [10]
to a newly developed approach based on symbolic execution with respect to runtime. The new approach

2http://www.entcs.org/ (last visit: 29.10.2015)

Chapter 1. Introduction 8

is actually an extension of the conformance checking approach followed in this thesis, but explicitly
accounts for time. It will be discussed in more detail in Section 8.2.

1.8 Structure of this Thesis

This thesis is structured as follows:

Chapter 2 introduces concepts necessary for the development and discussion of the sioco confor-
mance check. These concepts comprise notational conventions, the ioco conformance relation and LTSs,
which are usually used to define ioco, the modelling formalism used in this thesis, symbolic execution
and the sioco conformance relation. The technique of symbolic execution is a white-box testing tech-
nique based on symbolic computations. Building upon symbolic execution of action systems, sioco is
defined.

Chapter 3 and Chapter 4 form the main part of this thesis, as they presents an abstract view of the
sioco conformance checker. The view is abstract in the sense that it does not focus on a specific im-
plementation technology. The chapters rather aim at providing general guidance for the implementation
of such a conformance checker. Chapter 3 is split into two sections: the first section introduces further
concepts involved in the development. These concepts are used in the second section of Chapter 3 and
in Chapter 4, which present the conformance checking algorithm and optimisations thereof respectively.

Chapter 5 discusses the application of the sioco conformance check. More concretely, the application
for model-based mutation testing and model-checking will be examined. Since the focus lies on testing,
testing aspects will be covered more in-depth.

Chapter 6 highlights important implementation aspects of the mutation-based test case generator
implemented in the course of this thesis.

Chapter 7 provides evidence for the efficiency of the presented approach by listing experimental
results. In addition to listing measurement results, the results are discussed and compared to measure-
ments performed with the explicit ioco checker used in [58]. Hence, the secondary goal of this thesis is
addressed in this chapter, a comparison between the symbolic and the concrete approach to ioco confor-
mance checking.

Chapter 8 presents further work building upon the implemented test case generator. It for instance
covers extensions of the conformance checker, implemented to permit more convenient modelling. An-
other extension discussed in this chapter supports conformance checking of real-time system models.

Chapter 9 gives a summary and an overview of related research in the area of testing and conformance
verification. A discussion of findings and future work concludes this thesis.

2 A Symbolic Framework for
Conformance Checking

This chapter introduces concepts which form the basis for subsequent chapters. At the beginning, first-
order logic concepts and notational conventions used for discussing theoretical aspects of this thesis will
be presented. This is followed by definitions of LTSs and the ioco relation, which will not be used
directly for the development of the conformance checker, but will serve as a context for definitions and
examples. The syntax and semantics of action systems, the used modelling formalism, will also be
introduced formally. A discussion of symbolic execution on both implementation-level and model-level
concludes this chapter. In the context of symbolic execution on model-level, the sioco conformance
relation will be defined.

The chapter title is derived from the title of the paper “A Symbolic Framework for Model-Based
Testing” written by Frantzen et al. [45], on which this chapter is based.

2.1 First-order logic

A shortened version of this section introduces notational conventions in the USE-workshop paper [12].

The work by Frantzen et al. [45] forms the basis for the development of the conformance checker, as
it defines the sioco conformance relation. This thesis will follow the same style in terms of formal deriva-
tions and definitions. As a result, the same concepts from first-order logic and notational conventions
will be used. This section shall give a short overview of these, while closely following [45].

For two sets A and B the set of all total function from A to B will be denoted BA. To compose two
functions f : A → B and g : B → C, the operator ◦ will be used, thus the composition of f and g
will be denoted by g ◦ f , which is a function mapping from A to C. If allowed by the context, a tuple
〈x1, . . . , xn〉 may be interpreted as the set {x1, . . . , xn}.

All formulas make use of first-order logic. Therefore, a first-order structure (S,M) will be assumed
to exist, where S = (F, P) is a single-sorted logical signature. It should be noted that the simplifying
restriction to single-sorted structures does not limit applicability of the presented work, as many-sorted
structures can be reduced to single-sorted structures [72]. The signature describes the syntactical ele-
ments of the structure, that is, it defines a set of function symbols F and a set of predicate symbols P .
The model M describes the semantical aspects of the structure, it is a tuple (U, (fM)f∈F , (pM)p∈P).
The non-empty set U is called universe and contains the values, variables and constants may take. All
functions fM map from tuples of values in U to single values in U defining the semantics of function
symbols f . Models for predicates p ∈ P are given through pM ⊆ Un, where n is the arity associated
with predicate symbol p.

For a set of variables X , the set of terms over X , which are built from f ∈ F and x ∈ X , will be
denoted by T(X). The set of variables in a term t will be denoted by var(t).

First-order formulas are inductively defined as follows [54]:

• if t1 and t2 are terms, then t1 = t2 is a formula,

• if p ∈ P is a predicate symbol with arity 0, then p is a formula (p is a “propositional atom”)

• if t1, . . . , tn are terms and p ∈ P is a predicate symbol with arity n ≥ 1, then p(t1, . . . , tn) is a
formula,

• if φ and γ are formulas, then φ⊗ γ, with ⊗ ∈ {∨,∧,→,↔}, is a formula,

• if φ is a formula, then ¬φ is a formula,

9

Chapter 2. A Symbolic Framework for Conformance Checking 10

• if φ is a formula and x is a variable, then γ = ∃x : φ and γ = ∀x : φ are formulas. The variable x
is a bound variable in γ.

Note that this definition explicitly requires the existence of a special equality-predicate = with arity
two. Similarly to terms, the set of formulas with free variables in X is denoted by F(X) and a function
free is introduced, which maps a formula φ to the set of free variables in φ.

Let X, X and Y be sets of variables, with X,Y ⊆ X. A term-mapping σ is a function mapping
from variables to terms, that is, σ : X → T(X), which is extended to tuples by σ(〈x1, . . . , xn〉) =
〈σ(x1), . . . , σ(xn)〉. σX will be used to denote the term-mapping restricted to the variables in X , with

σX(x) =

{
σ(x) . . . x ∈ X
x . . . otherwise.

In the following T(Y)X ⊆ T(X)X will be used to denote the set of term-mappings mapping from
variables in X to terms over Y . It holds that σ(x) ∈ T(Y) for x ∈ X and σ(x) = x otherwise. Given
a term-mapping σ, a substitution t[σ] replaces the variables in a term t, which are given through var(t),
by the mappings defined by σ. Analogously, φ[σ] replaces the free variables in a formula φ, which are
given through free(φ). Substitutions applied for formulas do not add bound variables through implicit
proper renaming. It follows that [σ] : F(X) ∪ T(X)→ F(X) ∪ T(X).

For a formula φ the existential closure for X , denoted by ∃Xφ, is equivalent to φ but with variables
in X existentially quantified, that is, ∃Xφ = ∃x1,∃x2, . . .∃xn : φ for {x1, x2, . . . , xn} = X ∩ free(φ).
The universal closure, denoted by ∀Xφ, is defined likewise.

A valuation υ defines values for variables. Hence, υ is a function mapping variables in a set X
to values in the universe U, thus it is an element of the set UX . It is extended to tuples through
υ(〈x1, . . . , xn〉) = 〈υ(x1), . . . , υ(xn)〉. Two valuations υ ∈ UX and ς ∈ UY be combined through
union to υ ∪ ς ∈ UX∪Y if X ∩ Y = ∅. The union is defined by

(υ ∪ ς)(x) =

{
υ(x) . . . x ∈ X
ς(x) . . . x ∈ Y.

Based on a valuation, a term can be evaluated: the values for variables are given through the valuation
and the value of the term is calculated through the fM defined in the model. Given a valuation υ ∈ UX , a
term-evaluation is denoted by υeval ∈ UT(X). In order to evaluate constant terms, that are terms which do
not contain variables, the function eval ∈ UT(∅) is introduced. Finally, υ |= φ shall denote the satisfaction
of a formula φ with respect to a valuation υ. Hence, υ |= φ expresses that φ is equivalent to >, when
the free variables in φ are replaced by the values given through υ and the resulting formula is interpreted
based on the model M. The symbol > represents a tautology and the negation of it is given by ¬> = ⊥.

Example 2.1 (First-order Logic).
The application of the concepts presented above shall be demonstrated by means of various concrete
examples. Let (S,M) be a first-order structure based on an integer universe, where:

• S = (F, P) with F = {0, plus}, P = {gt}, arity(0) = 0, arity(plus) = 2 and arity(gt) = 2

• M = (Z, {0M, plusM}, {gtM}) with 0M = 0, plusM((x, y)) = x + y for x, y ∈ Z and gtM =
{(x, y) ∈ Z2|x > y}

Hence, this structure defines a function for adding integers and a predicate for comparing integers.
Furthermore, it defines a function without parameters to represent the constant 0. Given a set of variables
A = {x, y}, t = plus(plus(x, y), 0) is an example of a term with var(t) = A and φ = gt(t, 0) ∨ 0 = x
is a formula with free(φ) = A. However, the existential closure with respect to A does not contain free
variables, that is, free(∃Aφ) = {}.

Chapter 2. A Symbolic Framework for Conformance Checking 11

Let X = {x} and Z = {z} be two singleton sets of variables and let σ ∈ T(Z)X with σ(x) =
plus(z, z) be a term-mapping: the substitutions for the term t and the formula φ are given by t[σ] =
plus(plus(plus(z, z), y), 0) and φ[σ] = gt(plus(plus(plus(z, z), y), 0), 0) ∨ 0 = plus(z, z).

Valuations shall now be investigated: let A be defined as above and let υ ∈ UA be a valuation with
υ(y) = 2 and υ(x) = 3. A term-evaluation with respect to υ is given by υeval(t) = (3 + 2) + 0 = 5. The
valuation satisfies φ, that is υ |= φ, because 5 > 0 ∨ 0 = 3⇔ >.

Note that in the following, well-known predicates and functions will be written in infix notation on
the syntax-level rather than in prefix notation to enhance readability.

2.2 Labelled Transition Systems and Input Output Conformance

In the following, a definition of LTSs will be given. It will be based on the definitions given in [78]
and in [45]. The LTS formalism allows for modelling of systems by defining a set of states, an initial
state and the transitions between those states. The transitions are labelled by actions, which can be
performed by the system. These actions can either be observable actions, identified through unique
labels, or unobservable actions, denoted by a special label τ . An extension of LTSs called IOLTSs
introduces a distinction between input and output actions. It will be used to define semantics for action
systems and to define the ioco conformance relation.

Definition 2.1 (Labelled Transition Systems).
A Labelled Transition System is a 4-tuple 〈Q, q0,Σ,→〉 where

• Q is a countable, non-empty set,

• q0 is the initial state,

• Σ is a countable set of labels and

• →⊆ Q× (Σ ∪ {τ})×Q is the transition relation.

A computation of a system consists of the application of the transition relation, repeated finitely
often. That is, starting from the initial state q0, a system repeatedly executes actions and by that changes
its state. The transition relation encodes, which actions are possible in a given state and the post state
reached by executing an action. Based on the transition relation, the generalised transition relation =⇒
can be defined, which generalises the transition relation to sequences of observable actions, also called
traces. In the following, the short-hand notation q l−→ q′ will be used for (q, l, q′) ∈→. For two sequences
of observable actions σ1 ∈ Σ∗ and σ2 ∈ Σ∗, σ1 ·σ2 will denote the concatenation of these sequences and
ε will denote an empty sequence.

Definition 2.2 (Generalised Transition Relation - LTS).
Let p = 〈Q, q0,Σ,→〉 be an LTS, and let q, q′, q′′ ∈ Q, λ ∈ Σ and σ ∈ Σ∗. The generalised transition
relation is the smallest set =⇒⊆ Q × Σ∗ × Q satisfying the rules given below. As for the transition
relation, a short-hand notation will be used, (q, σ, q′) ∈=⇒ will be abbreviated as q σ

=⇒ q′.

(Tε) q
ε

=⇒ q

(Tτ) if q σ
=⇒ q′ and q′ τ−→ q′′ then q σ

=⇒ q′′

(Tλ) if q σ
=⇒ q′ and q′ λ−→ q′′ then q σ·λ

==⇒ q′′

In the following, further notations for LTSs shall be defined.

Chapter 2. A Symbolic Framework for Conformance Checking 12

Definition 2.3 (Additional Notations - LTS).
Let p = 〈Q, q0,Σ,→〉 be an LTS and let q ∈ Q, µ ∈ Σ ∪ {τ} and σ ∈ Σ∗:

q
µ−→ =def ∃q′ ∈ Q : q

µ−→ q′

q
σ
=⇒ =def ∃q′ ∈ Q : q

σ
=⇒ q′

q 6µ−→ =def ¬∃q′ ∈ Q : q
µ−→ q′

As noted above, the definition of LTSs can be further refined to differentiate between input and output
actions yielding the definition of IOLTSs and definitions based on IOLTSs as given in [45].

Definition 2.4 (Input Output Labelled Transition Systems).
An IOLTS is a 5-tuple 〈Q, q0,ΣI ,ΣU ,→〉 such that 〈Q, q0,ΣI ∪ ΣU ,→〉 is an LTS with ΣI ∩ ΣU = ∅.

The labels in ΣI represent the observable input actions and the labels in ΣU represent the observable
output actions, which are also referred to as observations. Analogously to LTSs, the special label τ with
τ /∈ ΣI ∪ ΣU denotes an unobservable action, the set Q represents the states of a system and q0 is the
initial state of a system. Similarly, q

µ→ q′ is used as an abbreviation for (q, µ, q) ∈→.

Since ioco considers the absence of outputs to be an observation, it is necessary to introduce the
notion of quiescence. A special quiescence label δ shall denote that it is impossible to produce outputs
or to perform internal actions in a given state. A state q ∈ Q is defined to be quiescent, denoted by δ(q),
if ∀o ∈ ΣU ∪ {τ} : q 6 o→. The set including all observable actions and the quiescence observation shall
be denoted by Σδ, which is given by Σδ = ΣI ∪ ΣU ∪ {δ}. Furthermore, the set of traces Σ∗δ shall be
referred to as the set of extended traces. Based on this, the suspension transition relation, which accounts
for the observation of quiescence and extends the generalised transition relation, shall be defined:

Definition 2.5 (Suspension Transition Relation).
Let p = 〈Q, q0,ΣI ,ΣU ,→〉 be an IOLTS and let q, q′ ∈ Q and σ ∈ Σ∗δ . The suspension transition
relation is the smallest relation =⇒δ⊆ Q × Σ∗δ × Q satisfying the rules (Tε), (Tτ), (Tλ), and (Tδ),
where =⇒ is replaced by =⇒δ in the first three rules. The new rule (Tδ) is given by:

(Tδ) if q σ
=⇒δ q

′ and δ(q′) then q σ·δ
=⇒δ q

′

Before it is possible to define the ioco conformance relation, further auxiliary functions need to be
defined.

Definition 2.6 (Auxiliary functions for IOLTSs).
Let p = 〈Q, q0,ΣI ,ΣU ,→〉 an IOLTS and let q ∈ Q, C ⊆ Q and σ ∈ Σ∗δ:

1. Straces(q) =def

{
σ ∈ Σ∗δ

∣∣∣q σ
=⇒δ

}
. . . the set of suspension traces

2. C afterσ =def
⋃
q∈C q afterσ, where q afterσ =def {q′|q

σ
=⇒δ q

′} . . . the set of states reachable
from C by executing σ

3. out(C) =def
⋃
q∈C out(q), where out(q) =def

{
µ
∣∣∣µ ∈ ΣU : q

µ−→
}
∪ {δ|δ(q)} . . . the set of ob-

servations possible in states of C

4. der(q) =def

{
q′
∣∣∣∃η ∈ Σ∗ : q

η
=⇒ q′

}
, the set of states reachable by executing arbitrary traces of

actions

The ioco conformance relation is defined for implementations modelled as weakly input-enabled
IOLTSs [45, 78]1. An IOLTS 〈Q,ΣI ,ΣU ,→, q0〉 is weakly input-enabled if and only if:

∀q ∈ der(q0)∀µ ∈ ΣI : q
µ
=⇒

1Tretmans actually uses Input Output Transition Systems(IOTSs) to model implementations, which are weakly input-
enabled by definition.

Chapter 2. A Symbolic Framework for Conformance Checking 13

s0start

s1

s2 s3

?1AC

!c !t

Spec :

i0start

i2i1

i3 i4

?1AC ?1AC

!c !w
?1AC ?1AC

?1AC ?1AC

Imp :

Figure 2.1: IOLTS-models of a coffee machine specification and an implementation.

Hence, from all reachable states it must either be possible to execute input actions or to reach states
by executing unobservable actions in which it is possible to execute inputs. Stated differently, an imple-
mentation must not block any input, but rather accept all inputs.

Definition 2.7 (Input Output Conformance).
Let S = 〈QS , s0,ΣI ,ΣU ,→S〉 be an IOLTS representing a specification, P = 〈QP , p0,ΣI ,ΣU ,→P 〉
be a weakly input-enabled IOLTS representing an implementation and let F ⊆ Straces(s0). P is
iocoF -conform to S , denoted by P iocoF S, iff

∀σ ∈ F : out(p0 after σ) ⊆ out(s0 after σ)

Furthermore, P iocoS , iff

∀σ ∈ Straces(s0) : out(p0 after σ) ⊆ out(s0 after σ)

Hence, two versions of ioco are defined above [45, 78]. One is defined for all possible suspension
traces of the specification and the other is defined with respect to a subset of those traces. Note that
Tretmans and Frantzen et al. give slightly different definitions of iocoF [45, 78]. Although Tretmans’
original definition does not require thatF ⊆ Straces(s0), this restriction is placed onF in Definition 2.7
because there is a corresponding restriction in the definition of sioco [45]. Informally speaking, an
implementation must accept all inputs and it must not show observations, which are not allowed by the
specification, after any of the considered traces.

Example 2.2 (Input Output Labelled Transition Systems and Input Output Conformance).
Figure 2.1 shows two IOLTS-models of coffee machines. They are similar to examples used by Weiglhofer
et al. [82]. They define the input action ?1AC which denotes the insertion of one euro and they define output
actions !c, !t and !w which denote the output of coffee, tea and water. Note that inputs are prefixed by
question marks and outputs by exclamation marks.

Both models contain non-determinism: the model on the left may output coffee or tea upon receiving
one euro, while the model on the right may choose to enter one of two states after receiving money.
However, in those states the system chooses deterministically to either output coffee or water. The formal
representation of the model on the left is an IOLTS Spec = 〈QSpec, s0,ΣI ,ΣU ,→Spec〉 where QSpec =
{s0, s1, s2, s3},ΣI = {?1AC}, ΣU = {!c, !t, !w} and →Spec= {(s0, ?1AC, s1), (s1, !c, s2), (s1, !t, s3)}.
The model on the right corresponds to an IOLTS Imp = 〈QImp, i0,ΣI ,ΣU ,→Imp〉, where QImp =
{i0, i1, i2, i3, i4}, ΣI = {?1AC}, ΣU = {!c, !t, !w} and→Imp= {(i0, ?1AC, i1), . . .}.

Note that both IOLTSs define the same sets of actions and that Imp is input-enabled, that is, it
accepts all inputs in all states. As a result, it is possible to interpret Imp as an implementation and to
check whether it conforms to Spec with respect ioco. Intuitively, Imp should not conform to Spec since
it may output water which is not allowed by Spec. This can be formalised as follows:

Imp���ioco Spec

because out(i0 after ?1AC) = {!c, !w} * out(s0 after ?1AC) = {!c, !t}
and ?1AC ∈ Straces(s0)

The trace ?1AC leads to a situation where non-conforming behaviour can be observed.

Chapter 2. A Symbolic Framework for Conformance Checking 14

j0start

j2j1

j3 j4

j5

?1AC ?1AC

!c ?1AC

!t

∗

∗∗

∗

?2AC

?2AC
J :

k0start

k2k1

k3 k4

?1AC ?2AC

!c !w
∗

∗∗

∗K :

Figure 2.2: IOLTS-models of coffee machine implementations to demonstrate quiescence and im-
plementation freedom for unspecified inputs.

Additionally to the example given above, two further models shall demonstrate situations which are
particularly interesting in the context of ioco. The first shows that quiescence may cause conformance
violations, while the second highlights that ioco allows for implementation freedom for unspecified in-
puts [78]. In other words, a conforming implementation may produce arbitrary outputs in response to
inputs not foreseen by the specification because only traces of the specification are checked. This allows
for the creation of partial specifications. These are specifications which only define requirements for
explicitly modelled behaviour.

Example 2.3 (Non-conformance through Quiescence and Implementation Freedom).
Figure 2.2 shows two implementation models of coffee machines J and K. The set of inputs offered by
these models contains ?2AC in addition to ?1AC. In order to check conformance to the specification Spec
shown in Figure 2.1, ?2AC is also implicitly added to the inputs of Spec. To simplify representation, an
edge labelled with ∗ denotes a set of edges, each labelled with one of the inputs.

It shall now be checked whether the implementation J shown on the left conforms to the specification.
Consider the observations after the trace ?1AC ∈ Straces(s0) for this purpose:

J���ioco Spec

because δ(j2)

and therefore out(j0 after ?1AC) = {!c, δ} * out(s0 after ?1AC) = {!c, !t}

Hence, J does not conform to Spec because after receiving one euro it may wait for another euro and
show quiescent behaviour.

Informally speaking, the implementation K shown on the right conforms to Spec because it pro-
duces allowed outputs for all specified inputs. While it is sufficient to give one trace for showing non-
conformance, all suspension traces need to be considered for showing conformance. These are given by
Straces(s0) = {ε, δ, δδ, . . . , ?1AC, ?1AC!c, ?1AC!cδ, ?1AC!cδδ, . . . , ?1AC!t, ?1AC!tδ, ?1AC!tδδ, . . .} ∪ Q. The
set Q contains traces of the form δδ . . .?1AC . . ., that is, traces which start with quiescence followed by
inserting one euro. These traces, however, will be ignored, because observing quiescence in the ini-
tial state does not change the behaviour of K. Repeated observation of quiescence will not be checked
as well since the system state is not changed through quiescence. Showing conformance would not be
possible otherwise because the set of suspension traces is of infinite size.

Chapter 2. A Symbolic Framework for Conformance Checking 15

K ioco Spec

because out(k0 after ε) = out(k0 after δ) = {δ} = out(s0 after ε) = out(s0 after δ)

and out(k0 after ?1AC) = {!c} ⊆ out(s0 after ?1AC) = {!c, !t}
and out(k0 after ?1AC!c) = {δ} = out(s0 after ?1AC!c)

and out(k0 after ?1AC!cδ) = {δ} = out(s0 after ?1AC!cδ)

and out(k0 after ?1AC!t) = {} ⊆ out(s0 after ?1AC!t) = {δ}
and out(k0 after ?1AC!tδ) = {} ⊆ out(s0 after ?1AC!tδ) = {δ}
thus ∀σ ∈ Straces(s0) : out(k0 after σ) ⊆ out(s0 after σ)

Hence, producing the output !w in response to the unspecified input ?2AC does not cause a confor-
mance violation.

2.3 Action Systems

Action systems are introduced in the same way as for the USE-workshop [12].

Action systems were first defined by Back and Kurkio-Suonio as a modelling formalism for dis-
tributed systems [14]. The formalism was chosen as it can effectively be applied for modelling reactive
systems [13] and because recently, it has also been adopted for model-based mutation testing [3, 4, 6, 7,
9].

Several variations of action systems exist, like object oriented action systems [23]. They also served
as an inspiration for Event-B [1]. However, the action system formalism used in this thesis is more
restricted than other variations. In some aspects it is similar to the Event-B language, but for instance
does not support set-theoretic constructs to the extent as Event-B does.

Before a formal definition of action systems is given, their structure and execution shall be described
informally [14]. Action systems basically define a system state, an initialisation of this state, and several
guarded actions. The execution of an action system starts in the initial state which is manipulated by
repeatedly executing actions. During this process one action is chosen at each step in a non-deterministic
fashion from the set of enabled actions. An action is enabled if and only if its guard is satisfiable in the
current state. The execution terminates when the set of enabled actions is empty.

2.3.1 Syntax

A definition of the concrete syntax of action systems is given in an adapted version of the Backus-Naur
Form (BNF) in Figure 2.3. Overlines denote possibly empty repetitions of elements and bold-faced
strings denote terminal symbols as in the syntax definition given by Aichernig and Jöbstl [6]. It abstracts
away technical details like the separation of parameters by commas and it should be noted that the
implementation also allows for the definition of further data types, but this is discussed in Section 6.1.

An action system definition starts with the definition of a name given as a capitalised identifier and
contains the definition of types T , the declaration of state variables S, the initial state I and actionsACT .

The types block T consists of a list of type definitions, which associate type names with user-defined
types. User-defined types can either be enumeration data types or range data types, with enumeration
data types defining enumerations of constant symbols and range data types defining a closed interval of
integers. These type definitions plus one additional predefined type Bool are used in the state block S.
The state variable and their types are defined in this block.

The init-block I contains one assignment with an expression over constant terms as right-hand side
for each state variable. This block is followed by the actions block ACT which defines an arbitrary

Chapter 2. A Symbolic Framework for Conformance Checking 16

AS ::= def capid {T S I ACT} B ::= {id:= E}
T ::= types {capid=TY PE} E ::= id | C | E+E | !E | (E)

TY PE ::= [int..int]|[capid|capid] | E==E | E<E | . . .
S ::= state {id:ty} C ::= True | False | capid | int
I ::= init B id ::= identifier

ACT ::= actions {A} capid ::= capitalised identifier

A ::= (? | ! | ε) id(id:ty) if E then B int ::= integer number literal

Figure 2.3: The action system syntax

number of actions A. Every action definition consists of a label definition, a parameter list, a formula
called guard and at most one assignment per state variable. The label definition optionally starts with
a question or an exclamation mark and contains an identifier, which defines the name of the action. A
question mark denotes the action as input, an exclamation mark as output and the absence of both denotes
it as internal action.

Example 2.4 (A Definition of a Simple Action System - Adder).
The following listing shows an action system, which defines two input actions and one output action, but
no internal action. It is a simple adder whose state consists of a single integer variable, which may be
increased, overwritten, or displayed and reset. Despite being an artificial example it is well-suited to
discuss concepts introduced in the following sections.

The type SmallInt = [-128..127] is defined as the syntax definition given in Figure 2.3 mandates the
definition of a range data type for integer variables. Furthermore, the actions define guards to illustrate
their effects. The action add may for instance only be executed for non-negative p and if the sum of the
state variable x and the parameter p is less than or equal to 50.

1 def Add
2 {
3 types
4 {
5 SmallInt = [-128..127];
6 }
7 state
8 {
9 x : SmallInt;

10 }
11 init
12 {
13 x := 0;
14 }
15 actions
16 {
17 ?add(p : SmallInt) if p >= 0 && x + p <= 50 then
18 {
19 x := x + p;
20 };
21 ?assignValue(p : SmallInt) if x + p >= 50 then
22 {
23 x := p;
24 };
25 !showAndReset(value: SmallInt) if !(x == 0) && value == x then
26 {
27 x := 0;
28 }
29 }
30 }

Chapter 2. A Symbolic Framework for Conformance Checking 17

2.3.2 Semantics

As stated by Butler [29], the semantics of action systems is usually defined via weakest precondition
formulas, but in the following, a semantics, which relates action systems to IOLTSs, will be given.
The semantics and definitions will closely follow the style used for Input Output Symbolic Transition
Systems(IOSTSs) [45]. This approach was taken because action systems can easily be translated to
initialised IOSTSs and this way it is possible to use the work of Frantzen et al. [45] with some adaptations.
In the following, an abstract syntax of action systems, which will be used subsequently, will be defined.
Based on that, auxiliary functions and restrictions are introduced.

Definition 2.8 (Abstract Syntax of Action Systems).
An action system is a tuple AS = 〈V, I,ΛI ,ΛU , ι,→〉, where V is the set of state variables and I is the
set of parameter variables2, with V ∩ I = ∅ and V ar = V ∪ I. Λ = ΛI ∪ΛU is the set of action labels,
with ΛI being the set of input actions and ΛU being the set of output actions. The constant τ /∈ Λ denotes
an internal action and Λτ = Λ ∪ {τ} contains all observable and internal actions. The initialisation of
the action system is given by ι ∈ T(∅)V . The set→⊆ Λτ ×F(V ar)×T(V ar)V is the transition relation.
For (λ, ϕ, ρ) ∈ →, λ is called label, ϕ is called guard, ρ is the update mapping, which is defined by the
assignments in the body of an action.

The elements of the transition relation will either be referred to as actions or as transitions. Note that
action labels may also be referred to as actions, if its possible distinguish labels and transitions in the
given context. Observable action labels actually uniquely identify a single transition as noted below.

Similarly to [45], the following functions and vocabulary will also be used:

1. arity : Λτ → N0 is the arity function, that is, it associates each action with its number of parame-
ters.

2. The function para associates each action λ with a tuple of size arity(λ) containing the parameter
variables for λ.

3. For all actions λ, para maps λ to a tuple of distinct parameter variables and for (λ, ϕ, ρ) ∈ →
it holds that free(ϕ) ⊆ V ∪ para(λ) and ρ ∈ T(V ∪ para(λ))V . This means that the guard can
only contain the parameters of the corresponding action and the state variables as free variables.
The update mapping ρ is a mapping from state variables to terms over state variables and action
parameters.

An action system must satisfy the following properties in order to be well-defined:

1. For internal actions τ , it must hold that arity(τ) = 0. This means internal actions must not have
parameters. The same restriction is also placed on STSs in [45].

2. The transition relation→ must contain exactly one element for each observable action label, that
is, ∀λ ∈ Λ: |{(λ, ϕ, ρ)|(λ, ϕ, ρ) ∈→}| = 1 must hold.

Although it is required that action systems must not define multiple transitions with the same observ-
able action label, non-determinism can be expressed through the use of internal actions labelled with τ .

Example 2.5 (Abstract Syntactical Representation of a Simple Action System - Adder).
Given the action system definition from Example 2.4, its abstract syntactical representation is ADD,
where ADD = 〈V, I,ΛI ,ΛU , ι,→〉 and

• V = {x}, I = {par add p, par assignV alue p, value},
• ΛI = {?add, ?assignV alue}, ΛU = {!showAndReset},

2Note that I is used rather than P to avoid confusion with power sets and because parameter variables correspond to
interaction variables of Symbolic Transition Systems(STSs).

Chapter 2. A Symbolic Framework for Conformance Checking 18

• ι = {x 7→ 0},

•

→={(?add, par add p ≥ 0 ∧ x+ par add p ≤ 50, {x 7→ x+ par add p})}∪
{(?assignV alue, x+ par assignV alue p ≥ 50, {x 7→ par assignV alue p})}∪
{(!showAndReset,¬(x = 0) ∧ value = x, {x 7→ 0})},

•

para(?add) = (par add p),

para(?assignV alue) = (par assignV alue p),

para(!showAndReset) = (value), and

• arity(?add) = arity(?assignV alue) = arity(!showAndReset) = 1.

Note that by convention, the parameter variables are prefixed by par,the action name and underlines for
separation, if the parameter names are not unique across actions. This is done because there needs to
exists a tuple of distinct parameter variables for all actions. Since integers are used in this example, it
is assumed that the underlying first-order structure is based on integers and supports the used functions
and predicates. The restriction to the interval [−200, 200], which is defined using the concrete syntax,
is added to the guards by the actual implementation. However, it is ignored for the example to keep it
simple.

A semantics of action systems based on an interpretation as IOLTSs is given below.

Definition 2.9 (Interpretation of Action Systems as IOLTSs).
Let AS be an action system given by AS = 〈V, I,ΛI ,ΛU , ι,→〉. Its interpretation JASK as IOLTS is
defined as JASK = 〈Q, qinit,ΣI ,ΣU ,→LTS〉, where

• Q = UV is the set of all states,

• qinit = eval ◦ι is the initial state,

• ΣI =
⋃
λ∈ΛI

({λ} × Uarity(λ)) is the set of input actions,

• ΣU =
⋃
λ∈ΛU

({λ} × Uarity(λ)) is the set of output actions,

• Στ = ΣI ∪ ΣU ∪ {τ} is the set of all actions, and

• →LTS⊆ UV × Στ × UV is defined by the rule:

(λ, ϕ, ρ) ∈→ ς ∈ Upara(λ) ϑ ∪ ς |= ϕ ϑ′ = (ϑ ∪ ς)eval ◦ ρ
(ϑ, (λ, ς(para(λ))), ϑ′) ∈→LTS

The fact that it is possible to define semantics for action systems based on LTSs can be used for the
development of model-based testing tools and more specifically for ioco testing tools. Such an approach
was for instance followed for the development of the explicit conformance checker Ulysses [3, 4] and
also for the development of the ioco checking tool performed by the author of this thesis [58].

However, this definition will not be utilised directly for conformance checking in this thesis because
it would not be possible to exploit the symbolic structure defined in action systems. It should illustrate the
semantics of action systems by means of a well-known formalism rather than symbolically. Additionally,
it allows to reason about action systems in terms of IOLTSs. Similar interpretations will also be given
for other symbolically defined objects.

Example 2.6 (Interpretation of a Simple Action System - Adder).
This example addresses the interpretation of the action system given in Example 2.4 and 2.5 respectively.
Let the action system ADD be defined as in Example 2.5, its interpretation is given by

JADDK = 〈Q, qinit,ΣI ,ΣU ,→LTS〉, where

qinit = eval ◦{x 7→ 0} = {x 7→ 0}.

Chapter 2. A Symbolic Framework for Conformance Checking 19

It should be noted that the constant 0 to the left of the equality sign is an element of T(∅) (syntax) and
the constant 0 at the right-hand side is an element of the universe U (semantics). The sets Q, ΣI and
ΣU are defined in a straight-forward way, but a transition in→LTS shall be considered. The transition
relation→LTS contains for instance

({x 7→ 0}, (?add, {par add p 7→ 10}), {x 7→ 10}).

It contains the given transition because

{par add p 7→ 10} ∈ Upara(?add),

{x 7→ 0} ∪ {par add p 7→ 10} = {x 7→ 0, par add p 7→ 10},
{x 7→ 0, par add p 7→ 10} |= par add p ≥ 0 ∧ x+ par add p ≤ 50 and

{x 7→ 0, par add p 7→ 10}eval ◦ {x 7→ x+ par add p} = {x 7→ 10}.

Hence, the interpretation of ADD contains a transition from the initial state to the state {x 7→ 10}
labelled with the input action (?add, {par add p 7→ 10}).

2.4 Symbolic Execution

In this section, the technique of symbolic execution will be introduced. First, the basic idea behind it and
its origins will be discussed. This is followed by concepts and terminology commonly used in the area of
symbolic execution. The main part of this section will cover the fundamental principles of the symbolic
execution of action systems.

2.4.1 Symbolic Execution on Implementation-Level

The technique of symbolically executing programs was first proposed in the nineteen-seventies. Early
research in this area has, among others, been performed by Howden [53], Boyer et al. [26] and King [60].
It was developed to facilitate testing and debugging of software and can be seen as a compromise be-
tween formal proving and testing of programs. However, it took about three decades to be practically
usable [32], because first generation tools suffered from efficiency problems. As a result, the interest
in symbolic execution grew in the last few years. Two main reasons contributed to this development:
(1) advances in the area of constraint solving and (2) the combination of concrete and symbolic exe-
cution. Successful tools, which pioneered the approach of combining concrete and symbolic execution
are EXE [31] and DART [51]. Another prominent tool which applies such a combination is Pex [74].
However, this thesis will focus on purely symbolic execution.

The basic working principle of symbolic execution is to execute programs with symbolic values for
inputs rather than with concrete values [60]. Inputs may for instance be values submitted by the user,
or parameters of functions. It does not necessitate changes of programs or programming languages, but
only changes to the execution semantics of programs. Importantly, the symbolic execution semantics of
programs can be defined in a way such that it is a natural extension of the normal execution semantics.
This means that, given a set of concrete input valuesK, the result of the symbolic execution of a program,
in which all symbolic inputs are substituted by the values in K, is the same as the result of the execution
using the values in K as inputs. For a program P , this property can formally be expressed via

∀K ∈ UX : Keval(Es(P (X))) = Ec(P (K(X))), where

the symbolic inputs are given by the tuple X , the concrete inputs are given by the valuation K, and the
symbolic and concrete execution results are returned by the functions Es and Ec. This is also illustrated
by the commutative diagram in Figure 2.4.

In the following, important concepts will be described. The descriptions follow King’s work [60] by
for instance using a similar terminology. As mentioned above, symbolic execution uses symbolic values

Chapter 2. A Symbolic Framework for Conformance Checking 20

(P (X),K) (Es(P (X)),K)

P (K(X)) Ec(P (K(X)))

set concrete

values as inputs

symbolic execution

conventional execution

substitute concrete values

into symbolic result

Figure 2.4: Commutativity of symbolic execution of a program P (adapted from King [60]).

for inputs. Since a symbolic value may represent any concrete value of the same type, expressions can
not be evaluated as usual. Hence, expressions and more generally the execution state need to be treated
in a symbolic way. The execution state consists of the statement counter, the values of program variables
and a so-called path condition.

As in the normal execution semantics the statement counter points to the statement, which is currently
executed. Differently from the execution with concrete values, symbolic values may be assigned to
program variables. More generally, expressions involving program variables and symbolic inputs may
be assigned to program variables. Since only inputs are treated symbolically, the current value of a
program variable needs to be substituted when an expression is evaluated. Hence, the state of a program
variable is an expression containing symbolic values denoting inputs. Analogously, the return value of a
function is also an expression over symbolic values rather than a concrete value.

An example for the symbolic execution of a function is given in Figure 2.5. It is also used by King
to illustrate symbolic execution [60]. The function calculates the sum of three numerical parameters
A,B and C, which take symbolic values αA, αB and αC respectively. In the figure, question marks
denote that the initial values of program variables are unknown. The comments on the right show the
symbolic state after executing the corresponding line if the line is an assignment. For the line containing
the return-statement, the comment shows the symbolic return-value, that is, an expression over the
symbolic inputs αA, αB and αC .

1: function SUM(A,B,C) . program variable state: X =?, Y =?, Z =?
2: X ← A+B . X = αA + αB, Y =?, Z =?
3: Y ← B + C . X = αA + αB, Y = αB + αC , Z =?
4: Z ← X + Y −B . X = αA + αB, Y = αB + αC , Z = αA + αB + αC
5: return Z . Return αA + αB + αC
6: end function

Figure 2.5: Symbolic execution of the Sum-function

Conditions of branching statements may reference symbolic values as well. In the general case, a
condition may evaluate to true or false depending on the values taken by the symbolic inputs. Hence, both
paths of the branching statement should be executed symbolically. A path condition records for each of
the paths which constraints need to be satisfied in order for the path to be executed. As a result, the path
condition is a conjunction of formulas over symbolic values. Considering the concrete example of an
IF-statement with a condition c, the condition c is added to the path condition of the execution following
the THEN-branch, while ¬c is added for the ELSE-branch. Such branching statements where both paths
are followed are called forking. Branching statements may also be non-forking if the path condition
implies the condition or the negation of the condition. In these situations it is possible to uniquely
determine which path needs to be followed. The normal execution for concrete values satisfying a given
path condition follows the same path as the corresponding symbolic execution.

A (symbolic) execution tree may be created for a program, which represents the symbolic execution
of a number of paths of the program. It contains nodes for each executed statement, which are branching
if the corresponding statement is forking. Such a tree contains information about the current execution
state for each node. In general, nodes are only created if the corresponding path conditions are satisfiable.

Chapter 2. A Symbolic Framework for Conformance Checking 21

1

2

3 5

7 7

pc = >
AbsA =?

pc = >
AbsA =?

pc = αA < 0
AbsA = −αA

pc = ¬(αA < 0) = αA ≥ 0
AbsA = αA

pc = αA ≥ 0
AbsA = αAreturns αA

pc = αA < 0
AbsA = −αAreturns −αA

T F

Figure 2.6: The symbolic execution tree for the Abs-function given by Algorithm 1. The statement
numbers are displayed inside the nodes, the path condition and the variable values
are displayed to the right of the nodes. A bold T (for true) denotes the arc for the
THEN-branch of the IF-statement, while a bold F (for false) denotes the arc for the
ELSE-branch.

However, a complete execution tree may still be of infinite size if the program contains loop statements.
Consequently, the maximum number of executions of a loop or, more generally, the search depth, needs
to be bounded. A symbolic execution tree for the Abs-function given by Algorithm 1 is depicted in
Figure 2.6.

It remains to be discussed how symbolic execution could be utilised for testing. As suggested by
Howden [53], a class of paths could be selected and symbolically executed for a given program. After-
wards concrete input values could be selected satisfying each of the path conditions corresponding to the
executed paths. By that it is possible to generate test data which causes the previously selected paths to
be executed. However, as implemented in the SELECT tool [26], the symbolic information may be used
as well. A user could define assertions which need to hold in terms of symbolic values. The symbolic
execution tool can check if there exist concrete values which violate those assertions via constraint solv-
ing. Hence, using this technique, testing would be performed at a symbolic level. This thesis is targeted
towards this approach, thus execution and conformance checks of action systems are performed purely
symbolically.

2.4.2 Symbolic Execution on Model-Level and Symbolic Input Output Conformance

Several concepts presented in the following have also been described for the USE-workshsop [12]. They
include (indexed) parameter variables, symbolic states, the quiescence condition ∆ and related concepts
such as the equivalence condition for symbolic states.

Algorithm 1 The Abs-Function, which calculates and returns the absolute value of its parameter.
1: function ABS(A)
2: if A < 0 then
3: AbsA← −A
4: else
5: AbsA← A
6: end if
7: return AbsA
8: end function

Chapter 2. A Symbolic Framework for Conformance Checking 22

Initially, symbolic execution was introduced to analyse and test programs. However, the symbolic ex-
ecution of specifications was supported to a certain extent by first generation tools. As mentioned before,
the SELECT tools was able to check symbolic assertions, which can be seen as specifications. This was
supported by the EFFIGY tool [60] as well. Boyer et al. also identified the need for symbolic handling
of specifications of sub routines to allow hierarchical testing by means of symbolic execution [26].

Since then, the symbolic execution technique has been adapted to support the execution of specifi-
cations given in a modelling language in a symbolic way. Since action systems are similar to IOSTSs,
ideas and definitions developed for the symbolic execution of IOSTSs will be used and adapted for the
symbolic execution of action systems. At first, the symbolic framework for model-based testing devel-
oped by Frantzen et al. [45] will be adapted for the symbolic execution of action systems. This will be
followed by the definition of sioco conformance of action systems, which is also based on the definition
given for IOSTSs in the symbolic framework for model-based testing. The section will be concluded by
an adaption of the definition of state inclusion given by Gaston et al. [47].

Symbolic Execution of Action Systems

Essentially, the symbolic execution of action systems can be performed similarly to the symbolic exe-
cution of programs, thus concepts like the path condition may also be used on model-level. As in [45],
symbolic traces will initially be used to describe the behaviour of action systems rather than symbolic
execution trees. The general idea is to execute actions with symbolic values as parameters and to add
the guards of executed actions to the path condition. Hence, the path condition is a formula over the
initial state and symbolic parameters. A symbolic state vector will be included in the symbolic execution
context for action systems as well. It forms the counterpart of the symbolic program variable values and
is a mapping from state variables to terms over the initial state and symbolic parameters.

Unlike IOSTSs and programs, action systems do not define locations. Hence, it is not necessary
to keep track of locations and the execution context consist solely of a path condition and a symbolic
state vector. Note that similar to transitions, symbolic traces may be executed in an arbitrary state. As
a result, the state variables V appear symbolically in both the path condition and symbolic state vector
corresponding to a trace.

Since one action may occur multiple times on a trace, there is a need to distinguish the parameters
used for different executions of a single action. Consequently, indexed sets of mutually disjoint parameter
variables are introduced, where the index corresponds to the position of the action execution in the trace.
The sets I1, I2, . . . are used to denote those parameter variables, Î is defined by Î =

⋃
j Ij and V̂ ar is

defined by V̂ ar = Î ∪V . Additionally, a bijective variable-renaming rn ∈ IIn is assumed to exist. Based
on this variable-renaming, an index-shifting function s�i ∈ Î Î shall be defined for all i ∈ N by:

s�i(x) =

{
(rj+i ◦ r−1

j)(x) . . . ∃j : x ∈ Ij
x . . . else

Furthermore, let Îi be the set of parameter variable with an index ≤ i, that is, Îi =
⋃
k≤i Ik. The

variable-renaming rn assigns an index to parameters which denotes the position of the corresponding
action in a trace, while the index-shifting function s�i adjust a previously set index. This may for
instance be necessary if two traces are concatenated.

In the following, further concepts will be introduced. For this purpose, it will be assumed that an
action system AS = 〈V, I,ΛI ,ΛU , ι,→〉 is given.

The first concept to be discussed is the generalised transition relation which characterises symbolic
traces of actions. More concretely, it captures the effects of executing a sequence of observable actions
σ ∈ Λ∗. The executions of observable actions may be interleaved with executions of unobservable
actions. As a result, the execution of a sequence may have multiple effects depending on the executed
internal actions. This is expressed through the rule Sτ .

Chapter 2. A Symbolic Framework for Conformance Checking 23

Definition 2.10 (Generalised Transition Relation - Action Systems).
The generalised transition relation⇒⊆ Λ∗ × F(V̂ ar)× T(V̂ ar)V is the smallest relation satisfying the
following three rules:

(Sε) (ε,>, id) ∈⇒

(Sτ) (σ, ϕ ∧ ψ[ρ], [ρ] ◦ π) ∈⇒ if (σ, ϕ, ρ) ∈⇒ and (τ, ψ, π) ∈→

(Sλ) (σ · λ, ϕ ∧ (ψ[rn])[ρ], ([ρ] ◦ ([rn] ◦ π))V) ∈ ⇒ if (σ, ϕ, ρ) ∈ ⇒ and (λ, ψ, π) ∈ → and n =
length(σ) + 1

The condition ϕ associated with an element (σ, ϕ, ρ) of the generalised transition relation will, fol-
lowing the terminology of the symbolic execution of programs, also be referred to as path condition.

Since implementations are considered to be weakly input-enabled in the context of ioco [78] and also
in the context of sioco [45], another rule shall be introduced to circumvent this restriction. The reason
is that this thesis deals with conformance checks between action systems for which input-enabledness
cannot be assumed. As a result, the generalised transition relation for implementations is defined to
adhere to the rule Sa given in Definition 2.11. This rule corresponds to the angelic completion described
in [79], which is usually applied to make IOLTSs input-enabled. The angelic completion adds self-loops
to states for all non-specified inputs. Stated differently, it ignores all non-specified inputs.

For action systems, this is achieved by allowing input actions to be executed in the way defined by
Rule Sλ or by Rule Sa given below. This rule states that an input action may be executed by ignoring
the update mapping and by simultaneously negating its guard. Since weak input-enabledness allows
internal actions to be performed before accepting inputs, a disjunction over all guards of τ -actions is
formed, negated and added to the path condition via conjunction. As a result, an input action may not be
executed with negated guard if internal actions are executable.

Definition 2.11 (Angelic Completion of Action Systems).
The generalised transition of implementations must also satisfy the rule:

(Sa) (σ · λ, ϕ ∧ ¬(ψ[rn+1])[ρ] ∧ ¬µ[ρ], ρ) ∈⇒ if (σ, ϕ, ρ) ∈⇒ and ∃π : (λ, ψ, π) ∈→ and λ ∈ ΛI
and µ =

∨
(τ,η,γ)∈→ η and n = length(σ)

Example 2.7 (Generalised Transition Relation - Adder).
This example will again built upon Example 2.5 and illustrate the generalised transition relation by
exemplarily listing elements of it. By definition, the generalised transition relation⇒ contains

(ε,>, id) = (ε,>, {x 7→ x})

and through an application of the rule Sλ, it contains

(ε·?add,> ∧ ((par add p ≥ 0 ∧ x+ par add p ≤ 50)[r1])[id],

([id] ◦ ([r1] ◦ {x 7→ x+ par add p}))V)

which can be simplified to

(?add, par add p1 ≥ 0 ∧ x+ par add p1 ≤ 50, {x 7→ x+ par add p1}).

Through another application of the rule Sλ with the ?add-transition, it can be concluded that the gener-
alised transition relation also contains

(?add·?add,
par add p1 ≥ 0 ∧ x+ par add p1 ≤ 50∧
((par add p ≥ 0 ∧ x+ par add p ≤ 50)[r2])[{x 7→ x+ par add p1}],
([{x 7→ x+ par add p1}] ◦ ([r2] ◦ {x 7→ x+ par add p}))V)

Chapter 2. A Symbolic Framework for Conformance Checking 24

which is equal to

(?add?add,

par add p1 ≥ 0 ∧ x+ par add p1 ≤ 50∧
par add p2 ≥ 0 ∧ x+ par add p1 + par add p2 ≤ 50,

{x 7→ x+ par add p1 + par add p2}).

If ADD would be considered to be an implementation, its generalised transition relation would
satisfy the rule Sa and thereby for instance contain

(ε·?add,> ∧ ¬((par add p ≥ 0 ∧ x+ par add p ≤ 50)[r1])[id], id)

= (?add,¬(par add p1 ≥ 0 ∧ x+ par add p1 ≤ 50), {x 7→ x})

as well.

The concept of symbolic states shall now be introduced. These symbolic states correspond to sets
of concrete states of an action system. As mentioned above, like the execution state in the symbolic
execution of programs, they will consist of a path condition and a state vector in which the state of each
state variable is described by a term over symbolic values.

Definition 2.12 (Symbolic States).
A symbolic state is a pair (ϕ, ρ) ∈ F(Î)×T(Î)V . The pair element ϕ will be referred to as path condition
and ρ will be referred to as symbolic state vector. An indexed symbolic state is a triple (ϕ, ρ, i) ∈
F(Î) × T(Î)V × N0, also written as (ϕ, ρ)i, in which all indexed parameter variables occurring in the
path condition ϕ and the symbolic state vector ρ have an index lower than or equal to i.

The term path condition may refer to the condition associated with an element of the generalised
transition relation and to the condition associated with a symbolic state. However, it will usually be
possible to infer from the context, which of the two concepts is considered. A symbolic state is said to
be satisfiable, if its path condition is satisfiable. As indicated above, a symbolic state corresponds to a
set of concrete states called interpretations of a symbolic state, which are defined below.

Definition 2.13 (Interpretation of Symbolic States).
Let η = (ϕ, ρ) be a symbolic state. Its interpretation with respect to υ ∈ UÎ is defined as JηKυ =
{υeval ◦ ρ | υ |= ϕ}. All possible interpretations are defined as JηK =

⋃
υ′∈UÎ JηKυ′ .

Symbolic Input Output Conformance

Building upon the previous definitions, concepts necessary for the definition of sioco will now be intro-
duced.

Since ioco considers quiescence as an observation of a system, quiescence should also be taken into
account on the symbolic level. A state q of an IOLTS is quiescent if it is not possible to execute an output
or an internal action in q [79]. Hence, the condition∆ for the observation of quiescence, with∆ ∈ F(V),
can be given as by Frantzen et al. [45]:

∆ =def

∧
{¬∃para(λ)ψ | ∃ρ : (λ, ψ, ρ) ∈→ with λ ∈ ΛU ∪ {τ}}

The observation of quiescence will be treated similarly to ordinary actions and denoted by the label δ,
thus (δ,∆, id) will be used as quiescence transition, for which arity(δ) = 0 is assumed. Since the absence
of observations does not update the state, the identity function is used as update mapping. A symbolic
state (ϕ, ρ) is thus quiescent for the valuations ς ∈ UÎ , for which ς |= ϕ ∧∆[ρ].

Chapter 2. A Symbolic Framework for Conformance Checking 25

Example 2.8 (Quiescence Observation - Adder).
For the action system ADD given in Example 2.5, the condition for observing quiescence is given by

∆ = ¬∃para(!showAndReset)(¬(x = 0) ∧ value = x)

⇔ ¬∃value : x 6= 0 ∧ value = x⇔ x = 0.

The quiescence condition is only satisfiable for x = 0, thus quiescence may for instance be observed in
the initial state.

Next, outs the symbolic counterpart of the out-function used for ioco as defined in Section 2.2 will
be given. The outs-function calculates a set of symbolic observations for a given symbolic state. A
symbolic observation may either be an output action or the quiescence observation. Similar to symbolic
states, symbolic observations also correspond to sets of concrete observations, interpretations of the
observations. A symbolic observation consists of three parts, an action label, the path condition of the
state in which the observation is made and the guard of the observation. The path condition needs to be
considered as well as the guard, because the execution history may also constrain the variables mentioned
in the guard. More formally, a symbolic observation is a triple (λδ, ϕ, ψ) ∈ O, where O, the set of all
symbolic observations, is defined as (ΛU ∪ {δ})× F(Î)× F(Î ∪ I), with free(ψ) ⊆ para(λδ) ∪ Î.

Definition 2.14 (Symbolic Observations for a Symbolic State).
Let (ϕ, ρ) be a symbolic state. The function outs is defined as:

outs((ϕ, ρ)) =def {(λ, ϕ, ψ[ρ]) | ∃π : (λ, ψ, π) ∈→ ∧ λ ∈ ΛU} ∪ {(δ, ϕ,∆[ρ])}

For sets C of symbolic states, outs shall be defined as:

outs(C) =def

⋃
(ϕ,ρ)∈C

outs((ϕ, ρ))

Now it is also possible to define the symbolic suspension transition relation, which is the smallest
relation⇒δ⊆ Λ∗δ×F(V̂ ar)×T(V̂ ar)V satisfying the rules Sε, Sτ ,Sλ and Sδ, where Λδ = ΛI∪ΛU∪{δ}
and Sδ is defined below. As for the generalised transition relation, the symbolic suspension transition
relation of implementations must also satisfy Sa.

Definition 2.15 (Rule Sδ).
The rule Sδ is given by:

Sδ (σ · δ, ϕ ∧∆[ρ], ρ) ∈⇒δ if (σ, ϕ, ρ) ∈⇒δ

If quiescence is observed during the symbolic execution of action systems, the δ-label is added to the
trace of actions and ∆ is added to the path condition. The rule Sδ defines a condition for determining if
a trace of actions leads to a state, which may show quiescent behaviour. The guard ∆ restricts the set of
valuations satisfying the path condition.

Based on the symbolic suspension transition relation, the notion of symbolical extended traces will
now be introduced. First, var : Λ∗δ → P(Î) is defined for sequences. Given a sequence of actions
σ ∈ Λ∗δ , it computes the sets of parameter variables, which may be referenced by σ. It is defined as:

var(σ) =

∅ if σ = ε

var(σ′) if σ = σ′ · δ
var(σ′) ∪ {rlength(σ)(ν) | ν ∈ para(λ)} if σ = σ′ · λ

The set of symbolic extended traces is given by E = {(σ, ϕ) ∈ Λ∗δ×F(V̂ ar) | free(ϕ) ⊆ V∪var(σ)}.
Since this thesis focuses on testing for sioco between action systems, which are initialised, and does not

Chapter 2. A Symbolic Framework for Conformance Checking 26

aim to provide a general framework like Frantzen et al. [45], another set Ei shall be introduced. The set of
initialised symbolic extended traces Ei is defined as {(σ, ϕ) ∈ Λ∗δ × F(Î) | free(ϕ) ⊆ var(σ)} and shall
contain all symbolic extended traces from the initial state. That is, the state variables freely occurring
in ϕ for (σ, ϕ) ∈ E are initialised based on the initialisation ι. Hence, it is possible to derive Ei from E
through Ei = {(σ, ϕ[ι]) | (σ, ϕ) ∈ E}. Like symbolic states, which correspond to sets of concrete states,
initialised symbolic extended traces also correspond to sets of concrete traces. Their interpretation as
such is given below.

Definition 2.16 (Interpretation of Symbolic Extended Traces).
Let (σ, ϕ) ∈ Ei be an initialised symbolic extended trace and let υ ∈ UÎ be a valuation of parameter
variables. The interpretation of (σ, ϕ) with respect to υ is given by:

J(σ, ϕ)Kυ =def {etraceυ(σ) | υ |= ϕ}

where etraceυ is defined as:

etraceυ(σ) =

ε if σ = ε

etraceυ(σ′) · δ if σ = σ′ · δ
etraceυ(σ′) · (λ, υ(rlength(σ)(para(λ)))) if σ = σ′ · λ

The set of all interpretations J(σ, ϕ)K is defined by J(σ, ϕ)K =def
⋃
υ∈UÎ J(σ, ϕ)Kυ. For sets E with

E ⊆ Ei, the set of all interpretations shall be defined as JEK =
⋃

(σ,ϕ)∈EJ(σ, ϕ)K.

Based on the definition of initialised symbolic extended traces, the set of initialised symbolic suspen-
sion traces of an action system shall be defined as Stracess = {(σ, ϕ[ι]) ∈ Ei | ∃ρ : (σ, ϕ, ρ) ∈ ⇒δ}.
For the set of all interpretations of Stracess it holds that JStracessK = Straces(eval ◦ι). This means
that interpretations of initialised symbolic suspension traces directly correspond to suspension traces
executable from the initial state of the IOLTS-interpretation of an action system.

Before the sioco conformance relation can be defined for action systems, a symbolic after-function
needs to be defined. As before, a less general definition than given by Frantzen et al. [45] will be used.
It is, however, well-suited to sioco conformance checking. The function aftersinit associates initialised
symbolic extended traces with indexed symbolic states. In other words, it returns all symbolic states
reachable by a given traces. It corresponds to the afters-function [45] evaluated for the symbolic state
(linit,>, ι)0, where linit is the initial location of an IOSTS.

Definition 2.17 (aftersinit-function).
Let (σ, χ) ∈ Ei be an initialised symbolic extended trace, the function aftersinit : Ei → F(Î)×T(Î)V ×
N0 is defined as follows:

aftersinit(σ, χ) =def

{
(χ ∧ ψ[ι], [ι] ◦ π)length(σ)

∣∣ (σ, ψ, π) ∈⇒δ

}
Note that by convention, the path conditions of symbolic states and elements of the generalised

transition relation are usually referred to via the greek letter ϕ, while χ usually denotes the condition
corresponding to an initialised symbolic extended trace. This distinction in naming reflects the different
nature of both conditions: χ may be chosen arbitrary, while ϕ depends on the considered action system.
Nevertheless, letters other than ϕ may also be used for path conditons if necessary.

Example 2.9 (After-function - Adder).
This example shall demonstrate the application of the aftersinit-function by determining the symbolic
states reachable by executing the initialised symbolic extended traces (?add,>) and (?add?add,>)
using the action system ADD defined in Example 2.5. The action system shall therefore be interpreted
as a specification, that is, rule Sa is ignored.

Chapter 2. A Symbolic Framework for Conformance Checking 27

aftersinit(?add,>) = {(> ∧ ψ[ι], [ι] ◦ π)length(σ) | (σ, ψ, π) ∈⇒δ}
= {((par add p1 ≥ 0 ∧ x+ par add p1 ≤ 50)[ι],

[ι] ◦ {x 7→ x+ par add p1})1} . . . see also Example 2.7

= {((par add p1 ≥ 0 ∧ x+ par add p1 ≤ 50)[{x 7→ 0}],
[{x 7→ 0}] ◦ {x 7→ x+ par add p1})1}

= {(par add p1 ≥ 0 ∧ 0 + par add p1 ≤ 50,

{x 7→ 0 + par add p1})1}
= {(par add p1 ≥ 0 ∧ par add p1 ≤ 50, {x 7→ par add p1})1}

aftersinit(?add?add,>) = {((par add p1 ≥ 0 ∧ x+ par add p1 ≤ 50 ∧ par add p2 ≥ 0∧
x+ par add p1 + par add p2 ≤ 50)[ι],

[ι] ◦ {x 7→ x+ par add p1 + par add p2})2}
= {(par add p1 ≥ 0 ∧ par add p1 ≤ 50 ∧ par add p2 ≥ 0∧

par add p1 + par add p2 ≤ 50,

{x 7→ par add p1 + par add p2})2}

Since ADD is deterministic and considered to be a specification, the cardinality of aftersinit(σ, χ)
is exactly one. As a result, exactly one state (ϕ, ρ)1 is reached by executing ?add and exactly one state
(ϕ, ρ)2 is reached by executing ?add?add.

Now, the sioco conformance relation can be defined as follows:

Definition 2.18 (Symbolic Input Output Conformance).
Let Fs be a set of initialised symbolic extended traces for an action system ASS representing a specifi-
cation, with ASS = 〈VS , I,ΛI ,ΛU , ιS ,→S〉 and JFsK ⊆ Straces(eval ◦ιS). An implementation given
as an action system ASP = 〈VP , I,ΛI ,ΛU , ιP ,→P 〉, for which rule Sa given in Definition 2.11 is
fulfilled, with VS ∩ VP = ∅, is siocoFs-conform to ASS (written ASP siocoFs ASS), iff

∀(σ, χ) ∈ Fs ∀λ ∈ ΛU ∪ {δ} : ∀Î∪I (ΦP (λ, σ) ∧ χ→ ΦS(λ, σ))

where ΦAS(λ, σ) =
∨
{ϕ ∧ ψ | (λ, ϕ, ψ) ∈ outs(aftersinit (σ,>))}

and ΦAS denotes that the calculation of ΦAS is based on →AS

Hence, an implementation is siocoFs-conform to a specification if and only if all conditions for
observations of the implementation imply the conditions derived for the specification. This corresponds
to the requirement that the set of observations of the implementation must be a subset of the observations
of the specification in the non-symbolic definition of ioco. Like the original definition of ioco, sioco is
defined with respect to a set of traces of the specification. The restriction JFsK ⊆ Straces(eval ◦ιS)
requires that the traces, for which sioco conformance is checked, are executable by the specification.

Equivalence of Symbolic States

Gaston et al. gave a definition of state inclusion [47], which will be adapted to define equivalence
between two symbolic states. Their definition is based on all possible interpretations of symbolic states,
thus the definition of symbolic state equivalence shall be based on the set of all interpretations as well.
Hence, two symbolic states η = (ϕ, ρ) and η′ = (ϕ′, ρ′) are defined to be equivalent, denoted by η ≡ η′,
if JηK = Jη′K. A model-theoretic definition of equivalence is given in the next definition.

Chapter 2. A Symbolic Framework for Conformance Checking 28

Definition 2.19 (Equivalence of Symbolic States).
Let η = (ϕ, ρ)i and η′ = (ϕ′, ρ′)j be two symbolic indexed states. η ≡ η′ iff:

• if for all ζ ∈ UV and a υ ∈ UÎi such that ζ ∪ υ |= (
∧
x∈V x = ρ(x) ∧ ϕ) there exists a υ′ ∈ UÎj

such that ζ ∪ υ′ |= (
∧
x∈V x = ρ′(x) ∧ ϕ′)

• and if for all ζ ′ ∈ UV and a υ′′ ∈ UÎj such that ζ ′ ∪ υ′′ |= (
∧
x∈V x = ρ′(x) ∧ ϕ′) there exists a

υ′′′ ∈ UÎi such that ζ ′ ∪ υ′′′ |= (
∧
x∈V x = ρ(x) ∧ ϕ)

Thus in order to determine if two symbolic states η and η′ are equivalent, it is necessary to check if
both JηK ⊆ Jη′K and Jη′K ⊆ JηK hold. The first condition checks if JηK ⊆ Jη′K while the second checks
if Jη′K ⊆ JηK.

The reason for adapting state inclusion rather applying it directly shall now be discussed. It is nec-
essary to consider the intended application areas of state inclusion/equivalence checks for this purpose.
Gaston et al. define a criterion for reducing the search space during test cases generation based on
state inclusion [47]. The rationale behind this approach is that for two symbolic states η and η′, with
JηK ⊆ Jη′K, every behaviour possible in η is also possible in η′. As a result, the symbolic execution tree
may be pruned at η. This thesis proposes a similar approach but with a slightly different purpose and
based on symbolic state equivalence.

Section 4.1 discusses an optimisation which suggests the precomputation of a symbolic execution
tree for the specification. The tree should encode information about all executable action sequences of
bounded length. In this context, symbolic state equivalence checks are basically used to detect loops in
the symbolic execution tree. As a result, it is possible to explore the precomputed symbolic execution
tree and whenever a “pruned” state is detected, a set of reachable post-states in the tree can be determined
because an exactly equivalent state has been explored. Hence, the symbolic execution tree is transformed
into a general directed graph. If state inclusion would be checked instead, it would merely be possible to
determine a set of states which may be reachable. However, this raises the question as to why it is nec-
essary to determine post-states of “pruned” states. The reason is: while a specification will show known
behaviour during further execution, an implementation may show unknown, possibly non-conforming
behaviour.

In conclusion, it is necessary to apply state equivalence checks rather than inclusion checks because
the intended application areas are different. While Gaston et al. aim at reducing search space [47], this
thesis proposes to precompute a symbolic execution graph with loops in order to explore it afterwards.

Example 2.10 (Equivalence of Symbolic States - Adder).
Given the action system ADD as defined in Example 2.5, it shall be determined if the symbolic state
(ϕ, ρ)1, reached by executing ?add, is equivalent to (ϕ′, ρ′)2, which is reached by executing ?add?add.
Their structure is shown in Example 2.9.

By investigating the symbolic states, it can be observed that in state (ϕ′, ρ′)2, the variable x is set to
par add p1+par add p2 which must fulfil 0 ≤ par add p1+par add p2 ≤ 50. In state (ϕ′, ρ′)1,
the variable x is set to par add p1, which must fulfil 0 ≤ par add p1 ≤ 50. Since par add p2 can
be set to zero, the variable x can take the same set of concrete values in both states. The symbolic states
correspond to the set of concrete states {{x 7→ 0}, {x 7→ 1}, . . . , {x 7→ 50}}. Since their interpretations
are equal, the symbolic states (ϕ, ρ)1 and (ϕ′, ρ′)2 are equivalent.

This subsection introduced symbolic execution semantics for action systems. The fact that it is possi-
ble to define concrete interpretations of symbolic objects highlights that symbolic execution is indeed an
generalisation of normal execution. Finally, definitions of the sioco conformance relation and symbolic
state equivalence have been given.

3 Symbolic Input Output Conformance Checking

This chapter will focus on checking of sioco conformance. After a definition of bounded sioco, theo-
retical concepts will be introduced, including a formal definition of the product graph, which forms the
basis of the sioco checking algorithm. In the second section of this chapter, algorithmic aspects of the
sioco checking approach followed in this thesis will be presented. More concretely, a basic version of the
sioco checking algorithm will be defined and discussed. Optimisations built upon this algorithm will be
presented in Chapter 4. In order to be generally applicable, all algorithms will be defined using pseudo
code in a technology-independent way.

In Section 2.4.2, sioco modulo a set Fs was defined. However, one goal of this thesis is to implement
an sioco checker, which given a depth d, a specification action system and an implementation action
system,

• either finds a trace of length ≤ d leading to a state in which non-conformance may be observed

• or performs a complete verification of conformance up to depth d.

In other words, bounded model-checking for sioco conformance should be performed [20]. Conse-
quently, the definition of sioco will be adapted yielding siocod, in the following also referred to as
bounded sioco. This version of sioco considers all bounded sequences of observable actions executable
by the specification. Although siocod is mainly used as conformance relation in this thesis, the term sioco
will rather be used instead in subsequent sections, if the bound on the maximum depth is not relevant. In
order to able to formulate a condition for siocod, an auxiliary definition of Straces(s)d is needed. The
set Straces(s)d denotes the set of suspension traces of length l from state s in an IOLTS, where l ≤ d.
It is defined as follows:

Straces(s)d =def {σ|σ ∈ Straces(s) ∧ length(σ) ≤ d}

Since suspension traces hide internal actions, only observable actions are taken into account for the
bound on the trace length. In other words, an arbitrary number of internal actions may be executed by a
specification and an implementation considered for an siocod-conformance check.

Definition 3.1 (Bounded Symbolic Input Output Conformance).
LetASS = 〈VS , I,ΛI ,ΛU , ιS ,→S〉 be an action system and let d ∈ N0 be a bound. An implementation
given as an action system ASP = 〈VP , I,ΛI ,ΛU , ιP ,→P 〉, for which rule Sa given in Definition 2.11
is fulfilled, with VS ∩ VP = ∅, is siocod-conform to ASS (written ASP siocod ASS), iff:

ASP siocoFs ASS
where Fs is a set of initialised symbolic suspension traces

such that JFsK = Straces(eval ◦ιS)d

While sioco is originally defined with respect to a set of initialised symbolic extended traces, siocod
considers explicitly only initialised symbolic suspension traces because of the restriction placed on JFsK.
Since the goal is to derive distinguishing test cases, a test for non-conformance rather than for confor-
mance must be implemented. Consequently, the condition defined above needs to be negated for the
implementation of the sioco checker, yielding a non-conformance condition.

Definition 3.2 (Non-conformance Condition for Bounded sioco).
Let ASS , d and ASP be defined as in Definition 3.1 and let ΦAS be defined as in Definition 2.18, ASP
is not siocod-conform to ASS , iff

∃(σ, χ) ∈ Fs ∃λ ∈ ΛU ∪ {δ} : ∃Î∪I (ΦP (λ, σ) ∧ χ ∧ ¬ΦS(λ, σ))

where Fs is a set of initialised symbolic suspension traces

such that JFsK = Straces(eval ◦ιS)d

29

Chapter 3. Symbolic Input Output Conformance Checking 30

Let c = ∃λ ∈ ΛU ∪ {δ} : ∃Î∪I (ΦP (λ, σ) ∧ χ ∧ ¬ΦS(λ, σ)) be the non-conformance condition
without existential quantification over traces. Essentially, to achieve the goal of either finding a trace to
non-conformance or performing a verification of conformance, the condition c needs to be checked for
all initialised symbolic suspension traces of bounded length. If non-conformance is detected for some
trace, the trace can be analysed to determine why non-conformance exists or it can be used for test case
generation. However, by showing that c is not satisfiable for any of the traces and thereby showing that
the non-conformance condition is unsatisfiable, it can be concluded that the conformance condition is a
tautology. Hence, this approach is able to verify conformance up to a given bound although it is a testing
approach.

3.1 Symbolic Execution and Conformance Testing Concepts

Concepts presented in this section form the main part of the paper submitted to the USE-workshop [12].
An unbounded version of the symbolic execution tree defines the symbolic execution semantics of action
systems and most importantly, the deterministic product graph and related theory is discussed as well.

In this section, further concepts based on the symbolic execution of action systems shall be intro-
duced formally. These concepts shall help to bridge the gap between the formal definition of the sioco
conformance relation and the sioco checking algorithm. The first two concepts are symbolic execution
trees of bounded depth and symbolic state equivalence classes. Following these, two types of symbolic
product graphs will be introduced. A simple product graph, based on the suspension transition relation
defined in Section 2.4.2 and on the non-conformance condition given in Definition 3.2, shall present the
general idea behind the usage of product graphs for conformance checking. The second type of product
graph is introduced along with concepts relevant to it. This version of product graph shall provide a more
practical non-conformance condition and serve as the basis for the implementation of an sioco checking
algorithm. A definition of unsafe states concludes this section.

3.1.1 Symbolic Execution Tree

The concept of symbolic execution trees of action systems is inspired by execution trees created for
programs [60]. A symbolic execution tree shall, starting from an initial state, encode the effects of sym-
bolically executing arbitrary actions. Hence a symbolic execution tree may, alternatively to the symbolic
suspension transition relation, be used to define symbolic execution semantics of action systems. It is
actually closer to the original implementation as it highlights how symbolic states are changed through
the execution of actions. However, for practical reasons, a depth bound shall be introduced. This lim-
its the applicability of information contained in the symbolic execution tree to the execution of action
sequences of finite length.

Definition 3.3 (Bounded Symbolic Execution Tree of an Action System).
Let k > 0 be an upper bound on the depth of the symbolic execution tree, AS = 〈V, I,ΛI ,ΛU , ι,→AS〉
be an action system,Q ⊆ F(Î)×T(Î)V×N0 be a set of indexed symbolic states with an index≤ k and let
T ⊆ Q×(Λτ ∪{δ})×Q be the set of edges of the symbolic execution tree. For ((ϕ, ρ, i), λ, (ϕ′, ρ′, j)) ∈
T , the abbreviation (ϕ, ρ)i

λ→ (ϕ′, ρ′)j will be used. The sets Q and T are defined to be the smallest sets
satisfying the following rules:

Initial state:

(>, ι)0 ∈ Q

Chapter 3. Symbolic Input Output Conformance Checking 31

Execution of actions:
(ϕ, ρ)n ∈ Q n < k (λ, ψ, π) ∈→AS

λ 6= τ ϕ′ = ϕ ∧ (ψ[rn+1])[ρ] ρ′ = ([ρ] ◦ ([rn+1] ◦ π))V ∃ς ∈ UÎn+1 : ς |= ϕ′

(ϕ′, ρ′)n+1 ∈ Q (ϕ, ρ)n
λ→ (ϕ′, ρ′)n+1

Observation of quiescence:

(ϕ, ρ)n ∈ Q n < k ϕ′ = ϕ ∧∆[ρ] ∃ς ∈ UÎn : ς |= ϕ′

(ϕ′, ρ′)n+1 ∈ Q (ϕ, ρ)n
δ→ (ϕ′, ρ)n+1

Execution of internal actions:
(ϕ, ρ)n ∈ Q

n ≤ k (τ, ψ, π) ∈→AS ϕ′ = ϕ ∧ ψ[ρ] ρ′ = [ρ] ◦ π ∃ς ∈ UÎn : ς |= ϕ′

(ϕ′, ρ′)n ∈ Q (ϕ, ρ)n
τ→ (ϕ′, ρ′)n

Note that the indexes of states directly correspond to the execution depth, at which they have been
detected. By convention, states reached by executing internal actions are considered to be at the same
depth level as their pre-states, so the index value is not increased for such states. This is allowed by
the definition of indexed symbolic states, as internal actions do not have parameters and thereby do not
introduce new indexed parameter variables. Although this is also true for the quiescence observation, the
symbolic state index is increased as it is observable.

Symbolic execution trees may not have finite size, if a symbolic state may be reached in which it is
possible to execute an infinite sequence of internal actions. Following the definition of strong conver-
gence of LTS given by Tretmans [79], action systems for which it is impossible to reach such a state shall
be called convergent and otherwise divergent.

Example 3.1 (Symbolic Execution Tree).
LetADD be an action system defined as in Example 2.5. The symbolic execution tree bounded by k = 2
created for ADD contains q0 = (>, {x 7→ 0}) as initial state. The edge (q0, ?add, q1) connects the
initial state to one of its successors

q1 = (par add p1 ≥ 0 ∧ par add p1 ≤ 50, {x 7→ par add p1}).

Furthermore, it contains another edge (q1, ?add, q2), with

q2 = (par add p1 ≥ 0 ∧ par add p1 ≤ 50 ∧ par add p2 ≥ 0∧
par add p1 + par add p2 ≤ 50,

{x 7→ par add p1 + par add p2}).
This part of the symbolic execution tree is depicted in Figure 3.1. The complete tree contains transitions
for other actions and quiescence as well.

Based on symbolic execution trees, the notion of symbolic state equivalence classes shall be intro-
duced, which will be used for the optimisation of the sioco checker implementation.

Definition 3.4 (Symbolic State Equivalence Classes).
Let Q ⊆ F(Î) × T(Î)V × N0 be a set of indexed symbolic states, define a set EQ as the quotient set
EQ = Q/ ≡, containing symbolic state equivalence classes, with the equivalence relation ≡ given by
Definition 2.19.

q0 q1 q2
?add ?add

Figure 3.1: The part of the symbolic execution tree of theADD action system described in Exam-
ple 3.1.

Chapter 3. Symbolic Input Output Conformance Checking 32

3.1.2 Introduction to Product Graphs

While the non-conformance condition for sioco is derived from the conformance condition given by
Frantzen et al. [45], the implementation for checking sioco conformance follows a similar approach as
Weiglhofer and Wotawa [83], who define a product graph for checking ioco conformance. They explore
the defined product graph ”on the fly” and return a diagnostic sequence of actions leading to a state, where
non-conformance may be observed, if the checked IOLTSs are not ioco-conform. Analogously, the check
for sioco non-conformance shall be done by implicitly exploring a symbolic product graph. However,
differently from the definition of the product graph for checking ioco, the symbolic product graph shall
not contain explicit transitions to a pass-state. These would either be added for inputs accepted by the
implementation but not by the specification, or for observations allowed by the specification, but not by
the implementation. Beside transitions to system states, the symbolic product graph shall only contain
transitions to fail -states. Like in Weiglhofer and Wotawa’s definition [83], such fail -states shall denote
that non-conforming behaviour may be observed in the pre-state. Each of the fail -states consists of the
fail -label and the condition, which must be satisfied in order to observe non-conformance.

In the following definition, the notion of product graphs will be introduced. Although this version of
product graph is not actually used in the implementation of the sioco conformance check, it shall present
the idea behind product graphs in a concise way. Furthermore, it represents a connection between the
symbolic trace semantics discussed in Section 2.4.2 and the second version of product graph, which
forms the basis of the implementation.

Roughly speaking, the product graph is the product of the symbolic execution trees of a specification
and an implementation, where internal actions are hidden and conformance is checked at each node. If
non-conformance is detected, a transition to a fail -state is added.

Definition 3.5 (Product graph).
Let ASS = 〈VS , I,ΛI ,ΛU , ιS ,→S〉 be an action system representing a specification, let ASP =
〈VP , I,ΛI ,ΛU , ιP ,→P 〉 be an action system representing an implementation, thus its symbolic sus-
pension transition relations adheres to rule Sa given in Definition 2.11, with VS ∩ VP = ∅. Let ⇒δS

and ⇒δP be their respective symbolic suspension transition relations and let QS ⊆ F(Î) × T(Î)VS

and QP ⊆ F(Î) × T(Î)VP be sets of symbolic states reachable from the the initial state by execut-
ing ASS and ASP respectively. The symbolic synchronous product graph ASP ×sioco ASS is a tuple
SP = 〈Q, qinit →SP ,ΛI ,ΛU 〉 where Q ⊆ QP ×QS×Λ∗δ , Λδ = ΛI ∪ΛU ∪{δ},→SP⊆ (QP ×QS)×
Λδ × ((QP ×QS) ∪ ({fail} × F(Î ∪ I))) and qinit = ((>, ιP), (>, ιS), ε). For (q, λ, q′) ∈ →SP ,

the abbreviation q λ−→SP q′ will be used. The transition relation→SP and the set Q are defined as the
smallest sets, satisfying the following rules:

Initial state:

qinit ∈ Q

Execution of actions:

q ∈ Q q = ((ϕP , ρP), (ϕS , ρS), σ)
(λ, φP , πP) ∈→δP (λ, φS , πS) ∈→δS length(λ) = 1 n = length(σ)

ϕ′P = ϕP ∧ (φP [s�n])[ρP] ϕ′S = ϕS ∧ (φS [s�n])[ρS] ∃ς ∈ UÎ : ς |= ϕ′P ∧ ϕ′S
ρ′P = ([ρP] ◦ ([s�n] ◦ πP))V ρ′S = ([ρS] ◦ ([s�n] ◦ πS))V

((ϕ′P , ρ
′
P), (ϕ′S , ρ

′
S), σ · λ) ∈ Q q

λ−→SP ((ϕ′P , ρ
′
P), (ϕ′S , ρ

′
S), σ · λ)

Detection of non-conformance:

q ∈ Q
q = ((ϕP , ρP), (ϕS , ρS), σ) λ ∈ ΛU ∪ {δ} ∃Î∪I (ΦP (λ, σ) ∧ ϕS ∧ ¬ΦS(λ, σ))

q
λ−→SP (fail , ΦP (λ, σ) ∧ ϕS ∧ ¬ΦS(λ, σ))

Chapter 3. Symbolic Input Output Conformance Checking 33

The action systemASP is not sioco-conform toASS , iff there exists a path from the initial state qinit
to a fail -state. This path together with the condition associated with the fail -state serves as a witness of
non-conformance. This term is actually borrowed from the area of model checking [20]. It should be
noted that the condition ∃ς ∈ UÎ : ς |= ϕ′P ∧ϕ′S in the second rule may be rewritten to ∃ς ∈ UÎ : ς |= ϕ′S
because siocod is defined for all bounded symbolic suspension traces of the specification. Thus, only
the path condition ϕ′S of the specification must be satisfiable. However, checking if the path condition
of the implementation is satisfiable as well, may be seen as a first optimisation. This optimisation still
results in a complete sioco check because if some trace is not executable for the implementation, the non-
conformance condition will not be satisfiable for this trace. Symbolic implementation states (ϕ′P , ρ

′
P)

for which there exists no symbolic specification state (ϕ′S , ρ
′
S) such that ϕ′P ∧ ϕ′S is satisfiable will also

be discussed in Section 4.9 by introducing the notion of irrelevant states.

Note that non-conformance is checked for the path condition ϕS of a specification state instead for
a condition associated with an initialised symbolic suspension trace. This is a valid condition because it
corresponds to a trace executable by the specification.

Although this version of product graph is well-suited for giving another condition for sioco non-
conformance and for defining witnesses of non-conformance, it hides a great amount of complexity.
This complexity is contained in the definition of ΦAS and in the symbolic suspension transition relation.
Hence, another version of the product graph will be given below.

3.1.3 Deterministic Product Graph

The version of product graph presented in the following will be referred to as deterministic product graph
and makes steps involved in the implementation of the sioco conformance check more explicit. These
include the exploration of the product graph only up to a given depth and the explicit calculation of
τ -closures. However, prior to giving the definition of the deterministic product graph, some auxiliary
functions will be defined.

τ -closure

First, a symbolic τ -closure function shall be defined. It works by calculating a set of symbolic states
reachable by executing internal actions.

Definition 3.6 (τ -closure).
LetAS = 〈V, I,ΛI ,ΛU , ι,→〉 be an action system and (ϕ, ρ) ∈ F(Î)×T(Î)V be a symbolic state. The
τ -closure of (ϕ, ρ) is defined as τcl({(ϕ, ρ)}), where:

τcl : P(F(Î)× T(Î)V)→ P(F(Î)× T(Î)V)

τcl : S 7→ S ∪ τcl(τreach(S))

where τreach : P(F(Î)× T(Î)V)→ P(F(Î)× T(Î)V)

τreach : S 7→
⋃

(ϕ,ρ)∈S

{
(ϕ ∧ ψ[ρ], [ρ] ◦ π)

∣∣∣ (τ, ψ, π) ∈→, ∃ς ∈ UÎ : ς |= ϕ ∧ ψ[ρ]
}

This definition of the τ -closure will obviously only terminate if τreach returns the empty set after a
finite number of recursive applications of τcl. It is not applicable for models, which contain τ -loops. In
the context of action systems, τ -loops may be defined as follows: an action system contains a τ -loop, if
there exists a symbolic state from which it is possible to reach an equivalent state by executing a sequence
of internal actions. In general, specifications may be assumed to not contain loops consisting of internal
actions as is assumed by Tretmans [78]. Nevertheless, it is possible to define τcl in a way such that it can
be applied regardless of the existence of τ -loops.

τcl : S 7→ S ∪ τcl({s | s ∈ τreach(S) ∧ ¬∃s′ ∈ pred(s) ∩ S : s ≡ s′ ∧ s′})
where pred(s) = set of predecessors of s

Chapter 3. Symbolic Input Output Conformance Checking 34

Using this definition, a state s will not be explored further if an equivalent state s′ is already in the
closure and a predecessor of s. It must be a predecessor, because only predecessors place the same
or looser restrictions on parameters of observable actions executed before. If this constraint would not
be used, concrete states S equivalent to concrete states S′ might implicitly be ignored, although being
reached by different traces than S′1.

It should be noted though that considering the interpretation of action systems, a restriction requir-
ing that action systems must not contain τ -loops is not equivalent to the restriction placed on LTSs by
Tretmans [78], which requires that all compositions of internal transitions must be finite. The following
example highlights the difference between both restrictions.

Example 3.2 (τ -loops in Action System Interpretation).
Given is an action system AS = 〈V, I,ΛI ,ΛU , ι,→〉 using integers as data, where:

• V = {x},
• I = {i},
• ΛI = {?input}, ΛU = {},
• ι = {x 7→ 2} and

• →= {(?input, i = 0 ∨ i = 1, {x 7→ i}), (τ, x 6= 2, {x 7→ x+ x})}.

Consider the interpretations of the symbolic states reached by the execution of action ?input in the initial
state (>, {x 7→ 2}) followed by the execution of the internal action. The execution of ?input leads to
the state

η = (i1 = 0 ∨ i1 = 1, {x 7→ i1})

and the execution of the internal action leads to

η′ = ((i1 = 0 ∨ i1 = 1) ∧ i1 6= 2, {x 7→ i1 + i1}).

The interpretations are given by

JηK = {{x 7→ 0}, {x 7→ 1}} and Jη′K = {{x 7→ 0}, {x 7→ 2}},

thus JASK contains the transition ({x 7→ 0}, τ, {x 7→ 0}), which represents a τ -loop. Since η 6≡ η′, the
execution of the given sequence of actions does not show a τ -loop in AS as defined for action systems.
Hence, the interpretation of an action system AS may contain τ -loops although AS does not contain
any.

In the definition of the concrete syntax given in Figure 2.3, data types are restricted to be finite. As
a result, it is guaranteed that there is only a finite number of symbolic state equivalence classes, where
equivalence is defined as in Definition 2.19. It follows that the τ -closure algorithm terminates after at
most n steps, where n is the number of symbolic state equivalence classes.

Compound Symbolic States

Since determinisation will be performed explicitly in the following, operations are performed on sets
of symbolic states, rather than on single states. Such sets of symbolic states will also be referred to
as compound symbolic states, for which interpretations in terms of concrete states and an equivalence
condition will be given.

1The definition of τcl given for the USE-workshop [12] does not contain the predecessor constraint and may lead to mutants
being wrongfully detected as conforming.

Chapter 3. Symbolic Input Output Conformance Checking 35

Definition 3.7 (Compound Symbolic States).
A compound symbolic state is a non-empty set of symbolic states, thus it is an element of the setP(F(Î)×
T(Î)V) \ {∅}. In the following, compound symbolic states will implicitly be assumed to be non-empty,
thus the empty set will not be excluded explicitly. An indexed compound symbolic state is a set of indexed
symbolic states, where all states in the set share the same index. A state s ∈ P(F(Î) × T(Î)V × N0),
such that ∀(ϕ, ρ, j) ∈ s : j = i for some i ∈ N0 may be written as si.

Since compound symbolic states are sets of symbolic states, the τ -closure function may be seen as
a function mapping compound symbolic states to compound symbolic states. It should be noted that the
τ -closure function may be applied on indexed and on non-indexed compound symbolic states in the same
way because the execution of internal actions does not introduce new parameter variables. As a result,
for an indexed compound symbolic state κi, the compound state calculated by τcl(κi) can be defined to
have index i as well.

Analogously to symbolic states, the equivalence condition is based on all possible interpretations of
compound symbolic states, which are defined below.

Definition 3.8 (Interpretations of Compound Symbolic States).
Let κ be a compound symbolic state, its interpretation with respect to υ ∈ UÎ is defined as JκKυ =⋃

(ϕ,ρ)∈κ{υeval◦ρ | υ |= ϕ}. All possible interpretations are given by JκK =
⋃
υ∈UÎ JκKυ, or equivalently

by JκK =
⋃
η∈κJηK.

Let κ and κ′ be two compound symbolic states, κ is equivalent to κ′, denoted as κ ≡com κ′, if
JκK = Jκ′K. Equivalence between compound symbolic states may also be denoted as κ ≡ κ′ rather than
as κ ≡com κ′, if it is possible to tell from the context that κ and κ′ are compound symbolic states. A
similar approach as for symbolic states shall be followed to define an equivalence condition for com-
pound symbolic states, with only one difference: the union of interpretations of all symbolic states in a
compound state will be encoded as a disjunction. This disjunction ranges over formulas formed from the
symbolic states.

Definition 3.9 (Equivalence of Compound Symbolic States).
Let κi and κj be two indexed compound symbolic states. κi ≡ κj iff:

• if for all ζ ∈ UV and a υ ∈ UÎi such that ζ ∪ υ |=
∨

(ϕ,ρ)i∈κi(
∧
x∈V x = ρ(x) ∧ ϕ) there exists a

υ′ ∈ UÎj such that ζ ∪ υ′ |=
∨

(ϕ,ρ)j∈κj (
∧
x∈V x = ρ(x) ∧ ϕ)

• and if for all ζ ′ ∈ UV and a υ′′ ∈ UÎj such that ζ ′ ∪ υ′′ |=
∨

(ϕ,ρ)j∈κj (
∧
x∈V x = ρ(x) ∧ ϕ) there

exists a υ′′′ ∈ UÎi such that ζ ′ ∪ υ′′′ |=
∨

(ϕ,ρ)i∈κi(
∧
x∈V x = ρ(x) ∧ ϕ)

The disjunction
∨

(ϕ,ρ)∈κ ϕ over the path conditions of all states in a compound symbolic state κ is
also called path condition of κ.

Product States

A deterministic product graph contains product states which are pairs of compound symbolic states. As
for the other two types of states, interpretations of product states as well as an equivalence condition will
be defined. The equivalence condition will be used in the actual implementation.

Definition 3.10 (Product States).
A product state is a pair of two compound symbolic states with disjoint sets of state variables, thus it is
an element of the set P(F(Î)×T(Î)VP)×P(F(Î)×T(Î)VS), where VP ∩VS = ∅. An indexed product
state is a pair of two indexed compound symbolic states with the same index. An indexed product state
(κi, µi) may also be written as (κ, µ)i.

Chapter 3. Symbolic Input Output Conformance Checking 36

Since a product state is intended to be a pair consisting of an implementation and a specification
compound symbolic state, the definition requires that the state variables of the two sub-states must be
disjoint. In the following, the convention will be used, that the left pair element is a state of an action
system modelling the implementation, while the right pair element is a state of the specification action
system. For a product state (κ, µ), the path condition is the conjunction of the path conditions of the
contained compound symbolic states κ and µ, thus it is given by

pc((κ, µ)) =

 ∨
(γP ,πP)∈κ

γP

 ∧
 ∨

(γS ,πS)∈µ

γS

 .

A product state is said to be satisfiable, if its path condition is satisfiable. The definition of product state
interpretations shall now be given as follows:

Definition 3.11 (Interpretations of Product States).
Let (κ, µ) be a product state, its interpretation with respect to a valuation υ is defined as J(κ, µ)Kυ =⋃

(ϕ,ρ)∈κ{υeval ◦ ρ | υ |= ϕ} ×
⋃

(ψ,π)∈µ{υeval ◦ π | υ |= ψ}. The set of all interpretations is given by
J(κ, µ)K =

⋃
υ∈UÎ J(κ, µ)Kυ.

In the following the equivalence condition for two product state (κ, µ) and (κ′, µ′) will be given. It
will be denoted as (κ, µ) ≡prod (κ′, µ′) or as (κ, µ) ≡ (κ′, µ′) if it is possible to tell from the context
that both operands are product states. Analogously to the other types of states: (κ, µ) ≡prod (κ′, µ′) if
J(κ, µ)K = J(κ′, µ′)K. Therefore, the equivalent alternative definition of the equivalence condition for
product states will also be based on interpretations. It needs to be considered though that a product state
contains two sets of symbolic state vectors. As a result, pairs of valuations of state variables are needed.

Definition 3.12 (Equivalence of Product States).
Let (κi, µi) and (κj , µj) be two indexed product states. (κi, µi) ≡ (κj , µj) iff:

• if for all (ζ, ξ) ∈ UVP × UVS and a υ ∈ UÎi such that
ζ ∪ υ |=

∨
(ϕ,ρ)i∈κi(

∧
x∈VP x = ρ(x) ∧ ϕ) and ξ ∪ υ |=

∨
(ϕ,ρ)i∈µi(

∧
x∈VS x = ρ(x) ∧ ϕ)

there exists a υ′ ∈ UÎj such that
ζ ∪ υ′ |=

∨
(ϕ,ρ)j∈κj (

∧
x∈VP x = ρ(x) ∧ ϕ) and ξ ∪ υ′ |=

∨
(ϕ,ρ)j∈µj (

∧
x∈VS x = ρ(x) ∧ ϕ)

• and if for all (ζ ′, ξ′) ∈ UVP × UVS and a υ′′ ∈ UÎj such that
ζ ′ ∪ υ′′ |=

∨
(ϕ,ρ)j∈κj (

∧
x∈VP x = ρ(x) ∧ ϕ) and ξ′ ∪ υ′′ |=

∨
(ϕ,ρ)j∈µj (

∧
x∈VS x = ρ(x) ∧ ϕ)

there exists a υ′′′ ∈ UÎi such that
ζ ′ ∪ υ′′′ |=

∨
(ϕ,ρ)i∈κi(

∧
x∈VP x = ρ(x) ∧ ϕ) and ξ′ ∪ υ′′′ |=

∨
(ϕ,ρ)i∈µi(

∧
x∈VS x = ρ(x) ∧ ϕ)

The path condition of a product state has been defined as the conjunction of the path conditions of
the compound symbolic states which compose the product state. Hence, it is required to hold for all
product states in the product graph. The reason for this requirement shall be formalised in the following
proposition which will be shown to hold at the end of this subsection.

Proposition 3.1 (Relevance of Product States).
Let (κ, µ) be a product state. If its path condition is unsatisfiable, that is, it holds that ∨

(γ,π)∈κ

γ

 ∧
 ∨

(γ,π)∈µ

γ

↔ ⊥,
then (κ, µ) is not relevant for the non-conformance check and thus may be ignored.

Chapter 3. Symbolic Input Output Conformance Checking 37

Definition of Deterministic Product Graph

Before another definition of the product graph will be given, two further auxiliary functions need to be
defined, which describe how indexed compound symbolic states are changed through the execution of
visible actions. The first function concerns the actual execution of an action, while the second concerns
the “negated” execution. The latter actually ignores inputs for performing an angelic completion of the
implementation, as described for LTSs by Tretmans [79]. This is done in order to make implementations
input-enabled.

Since the angelic completion adds self-loops for undefined inputs to states of LTSs, the negated
execution execneg must not perform a state update. As implementations in the context of sioco are
considered to be weakly input-enabled, execneg should take into account that it is not necessary to add
self-loops for inputs i if a state may be reached by executing internal actions, in which i is enabled. For
this reason, the function expects the disjunction over the guards of all internal actions as third parameter
which denotes a condition for executing an internal action. Furthermore, both functions take a compound
symbolic state as first parameter and the guard of an action as second parameter. The exec-function takes
the state update mapping of an action as third parameter.

exec : P(F(Î)× T(Î)V × N0)× F(V ar)× T(V ar)V → P(F(Î)× T(Î)V × N0)

exec : (κi, ψ, π) 7→ {(ϕ′, ρ′)i+1 | (ϕ, ρ)i ∈ κi ∧ ∃ς ∈ UÎn+1 : ς |= ϕ′}
where ϕ′ = ϕ ∧ (ψ[ri+1])[ρ] and ρ′ = ([ρ] ◦ ([ri+1] ◦ π))V

execneg : P(F(Î)× T(Î)V × N0)× F(V ar)× F(V ar)→ P(F(Î)× T(Î)V × N0)

execneg : (κi, ψ, ζ) 7→ {(ϕ′, ρ)i+1 | (ϕ, ρ)i ∈ κi ∧ ∃ς ∈ UÎn+1 : ς |= ϕ′}
where ϕ′ = ϕ ∧ ¬(ψ[ri+1])[ρ] ∧ ¬ζ[ρ]

The deterministic symbolic synchronous product graph for two action systems ASP and ASS shall
now be defined.

Definition 3.13 (Deterministic Product Graph).
Let ASS = 〈VS , I,ΛI ,ΛU , ιS ,→S〉 be an action system representing a specification, let ASP =
〈VP , I,ΛI ,ΛU , ιP ,→P 〉 be an action system representing an implementation and let d ∈ N0 be the max-
imum exploration depth. The deterministic symbolic synchronous product graph ASP ×siocodet ASS(d)

bounded by d is a tuple SP = 〈Q, qinit,→SP ,ΛI ,ΛU 〉 where Q ⊆ P(F(Î) × T(Î)VP × N0) ×
P(F(Î) × T(Î)VS × N0), Λδ = ΛI ∪ ΛU ∪ {δ}, →SP⊆ Q × Λδ × (Q ∪ ({fail} × F(Î ∪ I)))
and qinit = (τcl({(>, ιP)0}), τcl({(>, ιS)0})). Transitions (q, λ, q′) ∈ →SP will be abbreviated by

q
λ→SP q′. The transition relation →SP and the set Q are defined as the smallest sets, satisfying the

following rules:

Initial state:

qinit ∈ Q

Execution of outputs:

(κi, µi) ∈ Q i < d λ ∈ ΛU (λ, ϕP , ρP) ∈→P (λ, ϕS , ρS) ∈→S

κi+1 = τcl(exec(κi, ϕP , ρP)) µi+1 = τcl(exec(µi, ϕS , ρS))

∃ς ∈ UÎi+1 : ς |= pc((κi+1, µi+1))

(κi+1, µi+1) ∈ Q (κi, µi)
λ→SP (κi+1, µi+1)

Chapter 3. Symbolic Input Output Conformance Checking 38

Observation of quiescence:

(κi, µi) ∈ Q i < d κi+1 = τcl(exec(κi, ∆P , id)) µi+1 = τcl(exec(µi, ∆S , id))

∃ς ∈ UÎi+1 : ς |= pc((κi+1, µi+1))

(κi+1, µi+1) ∈ Q (κi, µi)
δ→SP (κi+1, µi+1)

Execution of inputs:

(κi, µi) ∈ Q i < d λ ∈ ΛI (λ, ϕP , ρP) ∈→P (λ, ϕS , ρS) ∈→S

ζ =
∨

(τ,γ,π)∈ →P
γ κi+1 = τcl(exec(κi, ϕP , ρP) ∪ execneg(κi, ϕP , ζ))

µi+1 = τcl(exec(µi, ϕS , ρS)) ∃ς ∈ UÎi+1 : ς |= pc((κi+1, µi+1))

(κi+1, µi+1) ∈ Q (κi, µi)
λ→SP (κi+1, µi+1)

Detection of non-conformance:

(κi, µi) ∈ Q i ≤ d λ ∈ ΛU ∪ {δ} (λ, ϕP , ρP) ∈→P ∪{(δ,∆P , id)}
(λ, ϕS , ρS) ∈→S ∪{(δ,∆S , id)} (χ, η)i ∈ µi ∃ς ∈ UÎi∪I : ς |= ξ

(κi, µi)
λ→ (fail , ξ)

where ξ =
(∨

(γP ,πP)∈κi γP ∧ ϕP [πP]
)
∧ χ ∧ ¬

(∨
(γS ,πS)∈µi γS ∧ ϕS [πS]

)
The implementation ASP is not siocod-conform to ASS iff there exists a path from qinit to a fail -

state. Such a path combined with the condition associated with the corresponding fail -state forms a wit-
ness of non-conformance. Since sioco coincides with ioco [45] and the condition for non-conformance
is based on the original definition of sioco, the product graph contains a fail -state iff there exists a sus-
pension trace of JASSK of length ≤ d, which shows that JASP K���ioco JASSK.

There are a few things to note about the product graph. The condition which must be satisfied in
order to be able to observe quiescence is denoted as ∆P or ∆S rather than ∆ because the condition
depends on whether the implementation or the specification is observed. Hence, ∆P denotes that the
condition is formed from transitions in→P , while ∆S is derived via→S .

As noted before, action systems may behave non-deterministically. The sioco conformance relation,
takes non-determinism into account as well. Therefore, the conformance check based on the determin-
istic product graph is able to handle action systems containing internal actions and does not produce
spurious counterexamples. In other words, conforming action systems are not erroneously identified to
be non-conforming.

Since mutated specification models are intended to be used as implementations, it is not possible to
guarantee the input-enabledness of implementations, which is a requirement of the sioco-conformance
relation. Hence, differently from the definition of sioco [45], implementations cannot be considered to
be weakly input-enabled. An angelic completion is rather performed to make implementations input-
enabled.

Furthermore, the product graph allows actions to be executed only if the path condition of the target
product state, which contains both implementation and specification states, is satisfiable, while ioco
is defined for suspension traces of the specification. This restriction is used as the non-conformance
condition, given in Definition 3.14, would not be satisfiable anyway for product states with unsatisfiable
path conditions. The non-conformance condition corresponds to the negation of the condition for sioco-
conformance given by Frantzen et al. [45].

Chapter 3. Symbolic Input Output Conformance Checking 39

Example 3.3 (Product Graph for First-Order Mutant).
LetADD be an action system defined as in Example 2.5. Consider a first-order mutantADDmut exactly
equivalent to ADD except for the ?add-transition. The guard of ?add shall be mutated by replacing ≤
for <. Hence, the ?add-transition shall be defined by

(?add, par add p ≥ 0 ∧ x+ par add p < 50, {x 7→ x+ par add p}).

In order to distinguish the state variables of both action systems, xS shall be used to refer to x of ADD
and xI shall be used to refer to x of ADDmut. To ease representation of formulas, p will denote the
parameter of ?add instead of par add p.

The product graph ADDmut ×siocodet ADD(1) contains the initial state qinit, which is given by

qinit = ({(>, {xI 7→ 0})}, {(>, {xS 7→ 0})}).

Furthermore, it contains the edge (qinit, ?add, q1) connecting the initial state to one of its successors

q1 =({(¬(p1 ≥ 0 ∧ p1 < 50), {xI 7→ 0})︸ ︷︷ ︸
angelic completion

, (p1 ≥ 0 ∧ p1 < 50, {xI 7→ p1})},

{(p1 ≥ 0 ∧ p1 ≤ 50, {xS 7→ p1})}).

Note that ?add leads to two different symbolic states in the implementation ADDmut because angelic
completion is applied since ?add is an input. As the product graph is bounded by 1, it may contain
another edge from q1 to a fail -state if the action systems are non-conforming.

It shall be checked if the fail -state reached by observing quiescence is part of the product graph, that
is, it shall be checked if the corresponding non-conformance condition is actually satisfiable. The guard
∆ of the quiescence observation is given by

∆ = ¬∃v : (¬(x = 0) ∧ v = x)⇔ x = 0.

The edge (q1, δ, q2) connects q1 to the fail -state q2 which is defined by

q2 =(fail , ((¬(p1 ≥ 0 ∧ p1 < 50) ∧ (xI = 0)[{xI 7→ 0}])
∨ (p1 ≥ 0 ∧ p1 < 50 ∧ (xI = 0)[{xI 7→ p1}]))
∧ p1 ≥ 0 ∧ p1 ≤ 50 ∧ ¬(p1 ≥ 0 ∧ p1 ≤ 50 ∧ (xS = 0)[{xS 7→ p1}])).

This state can be simplified to

q2 = (fail , (p1 < 0 ∨ p1 ≥ 50 ∨ p1 = 0) ∧ p1 ≥ 0 ∧ p1 ≤ 50 ∧ p1 6= 0).

As the condition associated with q2 is satisfied by the valuation {p1 7→ 50}, the product graph contains
the state q2, which shows thatADDmut does not conform toADD. The valuation {p1 7→ 50} is actually
the only valuation satisfying the non-conformance condition. Furthermore, it detects the mutation as it
corresponds to the only input accepted by the specification, but ignored by the implementation.

The discussed part of the product graph is depicted in Figure 3.2.

qinit q1 q2
?add δ

Figure 3.2: A part product graph ADDmut ×siocodet ADD(1) described in Example 3.3.

Chapter 3. Symbolic Input Output Conformance Checking 40

Non-conformance Condition for Product States

In the rule Detection of non-conformance of Definition 3.13, a condition for non-conformance is given
directly without referring to a complex function like Φ, as in Definition 2.18. This is possible because
this version of product graph is deterministic. The product graph is deterministic in the sense that given
a start state and a sequence of observable actions, it is possible to uniquely determine the end state
which is reached after executing the sequence. As a result, the states in the product graph are product
states composed of compound symbolic states. These compound symbolic states consist of all satisfiable
symbolic states reached after some trace is executed. This observation will be used for showing that
Theorem 3.1 holds, that is, that the non-conformance condition for product states is equivalent to the
condition given in Definition 3.2.

Definition 3.14 (Non-conformance Condition for Product States).
Let ASS = 〈VS , I,ΛI ,ΛU , ιS ,→S〉 be an action system representing a specification and let ASP =
〈VP , I,ΛI ,ΛU , ιP ,→P 〉, be an action system representing an implementation. Let d ∈ N0 be the max-
imum exploration depth, and let SP = 〈QSP , qinit,→SP ,ΛI ,ΛU 〉 be the deterministic symbolic syn-
chronous product graph ASP ×siocodet ASS(d). The non-conformance condition for a product state
(κ, µ) ∈ QSP is given by:

∃λ ∈ ΛU ∪ {δ} : ∃Î∪I

 ∨
(γP ,πP)∈κ

γP ∧ ϕP [πP]

 ∧ χ ∧ ¬
 ∨

(γS ,πS)∈µ

γS ∧ ϕS [πS]

where ∃ρ : (χ, ρ) ∈ µ

and ∃π : (λ, ϕP , π) ∈→P ∪{(δ,∆P , id)}
and ∃π : (λ, ϕS , π) ∈→S ∪{(δ,∆S , id)}

The non-conformance condition will also be used without explicit quantification of observations and
parameter variables in the following. However, as the satisfiability of the unquantified formula will
generally be examined, the parameter variables will implicitly be treated as existentially quantified. The
unquantified formula will be referred to as non-conformance condition as well.

Theorem 3.1 (Equivalence of Non-conformance Conditions).
The non-conformance condition given in Definition 3.14 is equivalent to the non-conformance given in
Definition 3.2. Hence, if (κ, µ) is a product state in a product graph SP , where SP , ASS , ASP , d are
defined as in Definition 3.14 and ΦAS is defined as in Definition 2.18, then there exists a (σ, χ) such that

∃λ ∈ ΛU ∪ {δ} : ∃Î∪I

 ∨
(γP ,πP)∈κ

γP ∧ ϕP [πP]

 ∧ χ ∧ ¬
 ∨

(γS ,πS)∈µ

γS ∧ ϕS [πS]

⇔ ∃(σ, χ) ∈ FS ∃λ ∈ ΛU ∪ {δ} : ∃Î∪I (ΦP (λ, σ) ∧ χ ∧ ¬ΦS(λ, σ))

where ∃ρ : (χ, ρ) ∈ µ
and FS is a set of initialised symbolic suspension traces of ASS
and ∃π : (λ, ϕP , π) ∈→P ∪{(δ,∆P , id)}
and ∃π : (λ, ϕS , π) ∈→S ∪{(δ,∆S , id)}

Furthermore, for all initialised symbolic suspension traces (σ, χ), there exists a product state (κ, µ) such
that the non-conformance conditions formed for both are equivalent.

In the following, Theorem 3.1 will be shown to hold. It will be shown that for all traces, there exists a
product state such that the non-conformance conditions derived for both are equivalent. This corresponds
to showing to completeness of the non-conformance check based on the product graph. Furthermore, it
will be shown that for all product states (κ, µ), there exists a trace which reaches (κ, µ). This corresponds
to showing soundness.

Chapter 3. Symbolic Input Output Conformance Checking 41

For the purpose of proving equivalence, the notion of traces shall be introduced for product graphs
in a similar way as for LTSs by Tretmans [79]. Furthermore, ASS , ASP , d and SP will be assumed to
be defined as in Definition 3.14.

Definition 3.15 (Traces in Product Graphs).
Let Λδ = Λ ∪ δ be a set containing action labels as well as δ and let QSP and→SP be the states and
the transition relation of product graph SP respectively.

q
σ
=⇒ q iff σ = ε

q
σ1·...σn====⇒ q′ iff ∃q0, q1, . . . , qn : q = q0

σ1−→SP q1
σ2−→SP . . .

σn−→SP qn = q′

q
σ1·...σn====⇒ iff ∃q′ : q σ1·...σn====⇒ q′

Lemma 3.1 (Relation between Product States and aftersinit).
Let σ ∈ Λ∗δ be a sequence of actions and quiescence observations and let (κi, µi) ∈ QSP be an indexed
product state contained in the deterministic product graph SP , such that qinit

σ
=⇒ (κi, µi). It holds that:

κi = {(ϕ, ρ)i | (ϕ, ρ)i ∈ aftersinitP (σ,>) ∧ ∃ς ∈ UÎ : ς |= ϕ}

µi = {(ϕ, ρ)i | (ϕ, ρ)i ∈ aftersinitS(σ,>) ∧ ∃ς ∈ UÎ : ς |= ϕ}
where aftersinitP is the aftersinit-function calculated for the implementation and

aftersinitS is the aftersinit-function calculated for the specification

and length(σ) = i

Lemma 3.1 states that a product state reached by a trace σ contains all satisfiable symbolic states
reachable by executing σ from the initial states of the implementation and the specification. It follows
from the following observations:

• The repeated application of τcl, exec and execneg for a sequence σ ∈ Λ∗δ starting in the initial state
of an action system, will create the same set of satisfiable symbolic states as the application of
aftersinit for (σ,>). While the definitions of τcl, exec and execneg contain satisfiability checks,
the result of an application of aftersinit may also contain additional unsatisfiable states.

• The application of exec(κ, φ, ρ) corresponds to the rule Sλ defined for the symbolic suspension
transition relation, where κ is a compound symbolic state and φ and ρ are the guard and the state
update mapping of an observable action.

• The application of exec(κ,∆, id) corresponds to the rule Sδ defined for the symbolic suspension
transition relation, where κ is a compound symbolic state, ∆ is the guard of the quiescence obser-
vation and id is the identity function, the state update mapping corresponding to quiescence.

• The definition of τcl corresponds to the rule Sτ defined for the symbolic suspension transition
relation.

• Since the result of τcl({(ϕ, ρ)}), the τ -closure of (ϕ, ρ), also contains (ϕ, ρ), the rule Sε defined
for the symbolic suspension transition relation is also fulfilled by traces in the product graph.

• The application of execneg(κ, ϕ, ζ) corresponds to the rule Sa defined for the symbolic suspension
transition relation, where κ is a compound symbolic state, ϕ is the guard of an input action and ζ
is a disjunction over the guards of all internal actions.

Let σ and (κi, µi) be defined as in Lemma 3.1. Based on this lemma, it is possible to show that
the detection of non-conformance is performed correctly. In other words, it is possible to show that
checking the non-conformance condition for all product states is equivalent to checking the negation of
the sioco-conformance condition. Let (λ, ϕ, ρ) ∈ → ∪{(δ,∆, id)} with λ ∈ ΛU ∪ {δ} be an output

Chapter 3. Symbolic Input Output Conformance Checking 42

action or the quiescence observation and let (γ, π) be a symbolic state. The terms γ and ϕ[π] corre-
spond to the second and third tuple element of the symbolic observation of λ in state (γ, π). Since
|{(λ, ϕ′, ρ′) | (λ, ϕ′, ρ′) ∈→}| = 1, it holds also that |{γ ∧ ϕ′[π] | (λ, γ, ϕ′[π]) ∈ outs((γ, π))}| = 1.
As a result, the formula

∨
{γ ∧ϕ′[π] | (λ, γ, ϕ′[π]) ∈ outs((γ, π))} can be rewritten to γ ∧ϕ[π], where

(λ, γ, ϕ[π]) ∈ outs((γ, π)) and ϕ is defined as above. Given the definition of outs for sets of states, the
function ΦP defined for the sioco-conformance condition in Definition 2.18 can be written as:

ΦP (λ, σ) =
∨φ ∧ ψ

∣∣∣∣∣∣ (λ, φ, ψ) ∈
⋃

(γ,π)∈aftersinit (σ,>)

outs((γ, π))

⇔
∨φ ∧ ψ

∣∣∣∣∣∣ (λ, φ, ψ) ∈
⋃

(γ,π)∈aftersinit (σ,>)

({(λ, γ, ϕ[π])} ∪O)

where ∃ρ : (λ, ϕ, ρ) ∈→P ∪{(δ,∆P , id)} with λ ∈ ΛU ∪ {δ}

and O is a set of symbolic observations with ∀(λ′, ψ′, ρ′) ∈ O : λ 6= λ′

⇔
∨φ ∧ ψ

∣∣∣∣∣∣ (λ, φ, ψ) ∈
⋃

(γ,π)∈aftersinit (σ,>)

{(λ, γ, ϕ[π])}

⇔

∨
(γ,π)∈aftersinit (σ,>)

γ ∧ ϕ[π]

⇔

 ∨
(γ,π)∈κi

γ ∧ ϕ[π]

 ∨
 ∨

(γ,π)∈aftersinit (σ,>)\κi

γ ∧ ϕ[π]

since κi contains only satisfiable states:

γ ↔ ⊥ for ∃π : (γ, π) ∈ aftersinit(σ,>) \ κi

⇔

 ∨
(γ,π)∈κi

γ ∧ ϕ[π]

 ∨
 ∨

(γ,π)∈aftersinit (σ,>)\κi

⊥

⇔

∨
(γ,π)∈κi

γ ∧ ϕ[π]

A similar form for the function ΦS may be derived analogously:

ΦS(λ, σ) = . . .⇔
∨

(γ,π)∈µi

γ ∧ ϕ[π]

where ∃ρ : (λ, ϕ, ρ) ∈→S ∪{(δ,∆S , id)} with λ ∈ ΛU ∪ {δ}

The non-conformance condition for product states uses a formula χ as condition corresponding to
trace σ, such that ∃ρ : (χ, ρ) ∈ µ where µ is a compound symbolic state of the specification. It needs to
be shown that J(σ, χ)K ⊆ Straces(eval ◦ιS). Since (χ, ρ) is a state of the specification, its interpretation
J(χ, ρ)K corresponds to a set of states Q ⊆ UVS in the IOLTS JASSK. The set of suspension traces from
the initial state eval ◦ιS to a state in J(χ, ρ)K is given by {σ ∈ (ΣI ∪ ΣU ∪ {δ})∗ | ∃q′ ∈ J(χ, ρ)K :
eval ◦ιS

σ
=⇒ q′}, which is a subset of Straces(eval ◦ιS) = {σ ∈ (ΣI ∪ ΣU ∪ {δ})∗ | eval ◦ιS

σ
=⇒}.

Hence, χ is a valid condition for an initialised symbolic suspension trace used for an sioco-conformance
check. In other words, the non-conformance check based on the product graph is sound because it does
not check for traces disallowed by the definition of sioco.

Chapter 3. Symbolic Input Output Conformance Checking 43

Let (κi, µi) ∈ QSP be a product state. The non-conformance condition given in Definition 3.2 can now
be rewritten showing that both non-conformance conditions are equivalent.

∃(σ, χ) ∈ FS ∃λ ∈ ΛU ∪ {δ} : ∃Î∪I (ΦP (λ, σ) ∧ χ ∧ ¬ΦS(λ, σ))

where FS is a set of initialised symbolic suspension traces

such that JFSK = Straces(eval ◦ ιS)d

choose χ such that ∃ρ : (χ, ρ) ∈ µi
and σ such that qinit

σ
=⇒ (κi, µi)

∃λ ∈ ΛU ∪ {δ} : ∃Î∪IΦP (λ, σ) ∧ χ ∧ ¬ΦS(λ, σ)

⇔ ∃λ ∈ ΛU ∪ {δ} : ∃Î∪I

 ∨
(γ,π)∈κi

γ ∧ ϕP [π]

 ∧ χ ∧ ¬
 ∨

(γ,π)∈µi

γ ∧ ϕS [π]

where ∃ρ : (χ, ρ) ∈ µi

and ∃ρS : (λ, ϕS , ρP) ∈→S ∪{(δ,∆S , id)}
and ∃ρP : (λ, ϕP , ρP) ∈→P ∪{(δ,∆P , id)}

Hence, if some initialised symbolic suspension trace (σ, χ) is chosen, a corresponding symbolic state
of the specification reached by σ with path condition χ can be chosen. The non-conformance condition
formed for (σ, χ) is semantically equivalent to the non-conformance condition formed for the product
state reached by σ and the condition χ. Thus, the non-conformance check based on the product graph is
also complete up to some bound, in addition to being sound. It follows that checking all conditions asso-
ciated with fail -states in a product graph is equivalent to checking the negated conformance condition.

Difference to Simple Product Graph

Nevertheless, there is one difference compared to the simple product graph. The formula ∃ς ∈ UÎi+1 :

ς |=
(∨

(γP ,πP)∈κi+1
γP

)
∧
(∨

(γS ,πS)∈µi+1
γS

)
is used in the rules to decide if some transition corre-

sponding to an action should be contained in the product graph, which represents a satisfiability check
of the path condition of the product state (κi+1, µi+1). Thus, there may exist states (ϕ′, ρ′) in κi+1 with
path condition ϕ′ such that ϕ′∧

(∨
(γS ,πS)∈µi+1

γ′S

)
is not satisfiable. These states would not be included

in the simple product graph because the condition ∃ς ∈ UÎ : ς |= ϕ′P ∧ ϕ′S is used for this graph, which
is defined for single symbolic states. Consequently, the states (ϕ′, ρ′) could be filtered out in the second
version of the product graph as well, but the conformance relation does not require to do so.

It shall now be proven that Proposition 3.1 holds. Hence, it shall be shown that the exclusion of prod-
uct states with unsatisfiable path conditions is sound, as they are not relevant for the non-conformance
check. This will be done by showing that a non-conformance formula formed for an unsatisfiable product
state (κ, µ) is unsatisfiable as well.

Chapter 3. Symbolic Input Output Conformance Checking 44

Non-conformance Condition for Irrelevant Product States (κ, µ). ∨
(γP ,πP)∈κ

γP ∧ ϕP [πP]

 ∧ χ ∧ ¬
 ∨

(γS ,πS)∈µ

γS ∧ ϕS [πS]

︸ ︷︷ ︸

ξ

where ∃ρP : (λ, ϕP , ρP) ∈→P ∪{(δ,∆P , id)}
and ∃ρS : (λ, ϕS , ρS) ∈→S ∪{(δ,∆S , id)} with λ ∈ ΛU ∪ {δ}
and (χ, π) ∈ µ

and

 ∨
(γP ,πP)∈κ

γP

 ∧
 ∨

(γS ,πS)∈µ

γS

↔ ⊥
The path condition of (κ, µ) shall be rewritten: ∨

(γP ,πP)∈κ

γP

 ∧
 ∨

(γS ,πS)∈µ

γS

↔ ⊥
⇔

∨
(γP ,πP)∈κ

γP ∧
 ∨

(γS ,πS)∈µ

γS

↔ ⊥
⇒ ∀µsub ⊆ µ :

∨
(γP ,πP)∈κ

γP ∧
 ∨

(γS ,πS)∈µsub

γS

↔ ⊥
⇒ ∀µsub ⊆ µ,∀(γP , πP) ∈ κ :

γP ∧
 ∨

(γS ,πS)∈µsub

γS

↔ ⊥
Now the non-conformance condition shall be rewritten: ∨

(γP ,πP)∈κ

γP ∧ ϕP [πP]

 ∧ χ ∧ ξ
⇔

 ∨
(γP ,πP)∈κ

γP ∧ χ ∧ ϕP [πP]

 ∧ ξ
⇔

 ∨
(γP ,πP)∈κ

γP ∧
 ∨

(γS ,πS)∈µsub

γS

 ∧ ϕP [πP]

 ∧ ξ
where µsub = {(χ, π)} ⊆ µ

⇔

 ∨
(γP ,πP)∈κ

⊥ ∧ ϕP [πP]

 ∧ ξ ⇔
 ∨

(γP ,πP)∈κ

⊥

 ∧ ξ ⇔ ⊥∧ ξ ⇔ ⊥

By rewriting the path condition, it has been shown that the conjunction of the path condition of a
single implementation state and the path condition of a subset of specification states is unsatisfiable if
the corresponding product state is unsatisfiable. Such a conjunction can be formed by rewriting the non-
conformance condition, where the subset of specification states has cardinality one. It follows that the
non-conformance condition is unsatisfiable if the corresponding product state is unsatisfiable. Hence,
Proposition 3.1 holds.

Chapter 3. Symbolic Input Output Conformance Checking 45

3.1.4 Unsafe States

Before the sioco checking algorithm can be presented, the notion of unsafe states needs to be introduced.
A definition of unsafe states is given by Aichernig and Jöbstl [6] for a refinement-based approach to
model-based mutation testing, which defines a state to be unsafe if an implementation may show non-
conforming behaviour in the next step. Hence, in the context sioco, an unsafe state is a product state
q such that the next observation may show sioco non-conformance. Stated differently, the pre-states of
fail -states are unsafe. Formally, unsafe states can be defined as:

Definition 3.16 (Unsafe States).
Product states are unsafe if there exists a valuation of variables which satisfies the non-conformance
condition given for the deterministic product graph and if they are reachable. Let ASS and ASP be
action systems as defined in Definition 3.13, let d ∈ N0 and let qinit be the initial state of the deterministic
symbolic synchronous product graph ASP ×siocodet ASS(d). The set Unsafed, containing all unsafe
states below depth d, is given by:

Unsafed =

{
(κi, µi)

∣∣∣∣ (κi, µi) ∈ P(F(Î)× T(Î)VP × N0)× P(F(Î)× T(Î)VS × N0) ∧

∃λ ∈ ΛU ∪ {δ},∃(χ, η)i ∈ µi, ∃ς ∈ UÎi∪I :

ς |=

 ∨
(γP ,πP)∈κi

γP ∧ ϕP [πP]

 ∧ χ ∧ ¬
 ∨

(γS ,πS)∈µi

γS ∧ ϕS [πS]

∧
∃σ ∈ Λ∗δ : qinit

σ
=⇒ (κi, µi)

where (λ, ϕP , ρP) ∈→P ∪{(δ,∆P , id)}

and (λ, ϕS , ρS) ∈→S ∪{(δ,∆S , id)}
}

In the following, the depth bound d may be ignored if it is not relevant, thus the set Unsafe may be
considered which contains all unsafe states reachable through the execution of unbounded traces.

3.2 sioco Checking Algorithm

The sioco Checking algorithm implicitly explores the deterministic symbolic synchronous product graph
defined in Section 3.1.3 and serves as the basis for the optimisations, which are introduced subsequently.
More concretely, the basic version of the sioco checking algorithm shown in Algorithm 2 performs a
bounded depth-first search for unsafe states in the deterministic product graph. If an unsafe state is
found, a pair consisting of the satisfiable non-conformance condition and the trace leading to the unsafe
state is returned, otherwise conforming is returned. The latter signals that the implementation conforms
to the specification up to a given depth. The following conventions will be used in the algorithm and in
extensions presented afterwards in Chapter 4:

• The maximum search depth d is assumed to be globally accessible.

• An implementation ASP = 〈VP , I,ΛI ,ΛU , ιP ,→P 〉 will be checked for conformance to a spec-
ification ASS = 〈VS , I,ΛI ,ΛU , ιS ,→S〉. The tuple elements of the implementation and the
specification are assumed to be globally accessible.

• The union set of the transition relation and the set containing the quiescence observation shall be
denoted by→δP and→δS respectively, where→δAS=→AS ∪{(δ,∆AS , id)}.

• The empty trace shall be denoted by [] and the append-function, which appends an action λ to a
trace tr, shall be denoted by tr · λ.

Chapter 3. Symbolic Input Output Conformance Checking 46

Additionally to the functions taucl, exec and execneg defined in the last section, the auxiliary functions
defined below will be applied, with Λτδ = Λ ∪ {τ} ∪ {δ}:

guard : Λτδ × (Λτδ × F(V ar)× T(V ar)V)→ F(V ar)

guard(λ,→δAS) 7→
∨

(λ,ϕ,ρ)∈ →δAS

ϕ

update : Λδ × (Λτδ × F(V ar)× T(V ar)V)→ T(V ar)V

update(λ,→δAS) 7→ γ

where {γ} = {ρ | ∃ϕ : (λ, ϕ, ρ) ∈→δAS}

Both functions, guard and update, take the transition relation including the quiescence observation
as second parameter. The function guard additionally takes an action label and returns its guard if it
corresponds to an observable action. However, if the action label is τ , the function returns the guards
of all internal actions combined via disjunction. Conversely, the function update is only defined for
observable action labels and returns their state update mappings. Since there exists at most one transition
for an observable action label, the state update mapping can be uniquely determined.

As noted above, Algorithm 2 performs a search for unsafe states in the bounded product graph via
a depth-first strategy. The algorithm processes globally accessible data structures such as the transition
relations of the considered action systems. At first (Lines 1 to 4), the search is initialised, thus the trace
to the current state is set to be empty and the initial state (initImpl, InitSpec) is set corresponding to
qinit in Definition 3.13.

At each search step, non-conformance conditions for product states are checked (Lines 7 to 14).
More specifically, they are checked for all path conditions χ associated with specification states (χ, ρ)
(Line 7) and for all observations (Line 8). If the condition nonConfCond is satisfiable, it is returned
together with the trace of observable actions leading to the current state (Lines 10 to 12).

Otherwise, the search is continued if the maximum search depth has not been hit (Lines 15 to 31).
Lines 16 to 22 basically execute each observable action simultaneously on the specification and on the
implementation, while both action systems execute internal actions independently from each other by
applying τcl. The current product state given by (implState, specState) is thereby transformed into
(nextImpl, nextSpec). However, if some action is not executable by the specification (checked in
Line 18), it is not executed by the implementation as well. Additionally, if an input action is executed,
an angelic completion is performed for the implementation (Lines 20 to 22).

The search is continued if the reached product state (nextImpl, nextSpec) is satisfiable, whereby
the last executed action is appended to the trace leading to the current state (Lines 23 to 28).

After the execution of all observable actions, the constant value conforming is returned to signal
that non-conformance has not been detected. Since this algorithm returns witnesses of non-conformance
(nonConfCond , trace), it could be applied for test case generation, as these witnesses will be used for
the actual testing of systems. However, it suffers from performance issues, which will be tackled in the
following.

Chapter 3. Symbolic Input Output Conformance Checking 47

Algorithm 2 Basic version of the sioco checking algorithm.

1: function SIOCOCHECKINIT

2: initSpec← taucl({(>, ιS)})
3: initImpl← taucl({(>, ιP)})
4: return SIOCOCHECKREC([],initSpec,initImpl)
5: end function
6: function SIOCOCHECKREC(trace,specState,implState)
7: for all (χ, ρ) ∈ specState do
8: for all λ ∈ ΛU ∪ {δ} do

9: nonConfCond ←

(∨
(γP ,πP)∈implState γP ∧ guard(λ,→δP)[πP]

)
∧ χ∧

¬
(∨

(γS ,πS)∈specState γS ∧ guard(λ,→δS)[πS]
)

10: if nonConfCond is satisfiable then
11: return (nonConfCond , trace)
12: end if
13: end for
14: end for
15: if length(trace) < d then
16: for all λ ∈ Λ ∪ {δ} do
17: nextSpec← taucl(exec(specState, guard(λ,→δS), update(λ,→δS)))
18: if |nextSpec| > 0 then
19: nextImpl← taucl(exec(implState, guard(λ,→δP), update(λ,→δP)))
20: if λ ∈ ΛI then

21: nextImpl← nextImpl∪
τcl(execneg(implState, guard(λ,→δP), guard(τ,→δP)))

22: end if
23: if pc((nextImpl, nextSpec)) is satisfiable then
24: result← SIOCOCHECKREC(trace · λ,nextSpec,nextImpl)
25: if result 6= conforming then
26: return result
27: end if
28: end if
29: end if
30: end for
31: end if
32: return conforming
33: end function

4 Optimisations

A high-level description of the optimisations was presented at the USE-workshop [12].

The optimisations and extensions of the basic conformance checking algorithm developed in the
course of this thesis shall now be presented. For this purpose, the working principle and the necessary
adaptions of the algorithm will be discussed for each optimisation technique. The techniques utilise the
previously discussed theoretical concepts and syntactic mutation analysis, which is inspired by the work
of Aichernig and Jöbstl [6].

If necessary, additional functions and data structures will be introduced. As the goal is to implement
a conformance check which is complete up to a given bound, proofs will be given showing that the
optimisations do not alter the conformance checking results. In other words, it will be shown that a
program applying the optimisations will produce the same results as the basic version of the algorithm.
One optimisation, however, breaks this rule. Its application may lead to non-conformance conditions
being undetected. This is done in order to improve the quality of generated test cases.

Since the complete version of the algorithm incorporating all optimisations is of complex structure, it
will not be presented explicitly. A representation given in pseudo code would not facilitate understanding
of the algorithm. Nevertheless, the conformance checker can be implemented based on the basic version
of the algorithm and the presented optimisations.

4.1 Symbolic Execution Graph

The first technique is based on symbolic execution trees, which are discussed formally in Section 3.1.1.
Since in model-based mutation testing, the conformance check between models is performed repeatedly
using the same specification but with a large number of mutant implementations, precomputation can
significantly increase the performance of the test case generation process. Hence, it makes sense to
create a symbolic execution tree for the specification, which contains information about all executable
paths of the system. This information can be used to improve the performance of the exec- and the
τreach-functions for specifications. When these function are called during the conformance check, it is
not necessary to perform satisfiability checks for the path conditions of the newly created symbolic states.
It suffices to check if the nodes corresponding to the states are contained in the symbolic execution tree.

In general, the symbolic execution will suffer from a problem called path explosion for almost all
non-trivial specifications [32], which is usually approached by discarding paths. There exist two groups
of techniques to decide which paths can be discarded: heuristic techniques and sound program analysis.
Since a complete conformance check shall be performed, a sound program analysis technique is used to
prune paths of the symbolic execution tree. The idea behind the employed technique is similar to the idea
behind the technique presented by Boonstoppel et al. [24]. A symbolic execution path can be pruned in
a state, if an equivalent state was already explored, because the effects of further exploration are already
known. More concretely, the set of enabled actions is already known, which is the information used in
the conformance check.

The information is utilised as follows: the precomputed symbolic execution tree is explored during
the conformance check until a state q is found, at which the tree was pruned. At this point, the exploration
is carried on from the equivalent state, which was explored before q. Hence, the tree structure is actually a
directed graph structure. Therefore, the term symbolic execution graph will be used to refer to a structure
containing the pruned symbolic execution tree and state equivalence information.

The symbolic execution graph is created via Algorithm 3. This algorithm essentially creates a sym-
bolic execution tree as defined in Section 3.1.1, but prunes it as described above. Furthermore, it creates
a quotient set consisting of equivalence classes of symbolic states contained in the pruned tree. The quo-
tient set corresponds to the set EQ in Definition 3.4. It may, however, contain less symbolic states than

48

Chapter 4. Optimisations 49

EQ because of the pruning. Another result of pruning is that the symbolic execution graph is guaranteed
to be of finite size, if the number of reachable concrete states and thereby also the number of equivalence
classes is finite. Like the formally defined symbolic execution tree, the tree created by the algorithm also
contains edges for the quiescence observation, as it is treated identically to ordinary actions. Algorithm 3
makes use of the following auxiliary functions and assumptions:

• The function newId returns some unique identifier from a set ID, which is intended to be associ-
ated with a symbolic graph node.

• The function emptyMap returns an empty mutable associative array. The function put(M,k, v)
adds a new value associated with the key k to the map M and get(M,k) returns the value associ-
ated with key k. The function keys(M) returns the set of keys for which there exists a key-value
mapping in M .

• The function emptyQueue returns an empty immutable queue. The functions enqueue, dequeue,
isEmpty and peek are defined as usual.

• Sets are assumed to be mutable in Algorithm 3 and the function add(S, v) adds a new element v
to a set S.

• The function actName maps a transition to its unique action name. This function is introduced
because internal actions, like input and output action, also have unique names on the level of syn-
tax. Hence, it is possible to distinguish τ -edges through this function, which enables optimisations
based on a fine-grained syntactical analysis. The signature of actName is

actName : ((Λ ∪ {τ} ∪ {δ})× F(V ar)× T(V ar)V)→ ActionName,

where ActionName is a set of action names including the symbol δ, such that

∀n ∈ ActionName : |{t | t ∈→δS , n = actName(t)}| = 1 and

actName((δ, ϕ, ρ)) = δ

are fulfilled. While the edges of the symbolic execution tree defined in Section 3.1.1 are labelled
with elements of Λ∪{τ}∪{δ}, the edges of the symbolic execution graph created by Algorithm 3
are labelled with elements of ActionName.

The function CreateTree defined in Algorithm 3 basically performs a breadth-first exploration of
the symbolic execution tree. Lines 2 to 6 represent the initialisation of the algorithm: the root node
startNode is set, the quotient set eqClasses is initialised to contain a set whose representative is the
root node, the set of edges is initialised to be empty, and the queue Qs is initialised with the root node.

As long as there are graph nodes to be explored, one of the nodes is removed from Qs and processed
(Lines 7 to 9). If the node was found at a depth i strictly lower than the maximum depth d, all actions are
scheduled to be executed, while only internal actions need to be executed if the node was found at depth
d (Lines 10 to 13). However, if the node was found beyond d, there is no need to explore it any further
(Lines 14 and 15).

After determining which actions need to be executed, they are eventually executed (Line 18 to 22).
Based on whether the currently executed action t is observable, indexes are added to parameters by ap-
plying ri+1 and the state index is increased. Furthermore, a new unique identifier is created via newId().
If the state newQ reached by executing action t is satisfiable, an edge labelled with the name of t is added
to the graph (Lines 23 and 24).

Pruning is performed in Lines 25 and 26 which check if a state equivalent to newQ has already been
explored. If there exists such a state, it is not necessary to explore newQ any further and newQ is added
to an equivalence class. In other words, the symbolic execution graph is pruned at newQ. Otherwise, a
new equivalence class containing only newQ is created and added to eqClasses. Furthermore, newQ
is scheduled to be explored.

Chapter 4. Optimisations 50

Algorithm 3 The symbolic execution graph creation algorithm.

1: function CREATETREE

2: startNode← ((>, ιS)0, newId())
3: eqClasses← emptyMap
4: put(eqClasses, startNode, {startNode})
5: graphEdges = {}
6: Qs← enqueue(emptyQueue, startNode)
7: while ¬isEmpty(Qs) do
8: ((ϕ, ρ)i, id)← peek(Qs)
9: Qs← dequeue(Qs)

10: if i < d then
11: actions←→δS

12: else if i = d then
13: actions← {(τ, ϕ, ρ) | (τ, ϕ, ρ) ∈→δS}
14: else
15: actions← {}
16: end if
17: for all t = (λ, ψ, π) ∈ actions do
18: if λ = τ then
19: newQ← ((ϕ ∧ ψ[ρ], [ρ] ◦ π)i, newId())
20: else
21: newQ← ((ϕ ∧ (ψ[ri+1])[ρ], ([ρ] ◦ ([ri+1] ◦ π))V)i+1, newId())
22: end if
23: if newQ is satisfiable then
24: add(graphEdges, (((ϕ, ρ)i, id), actName(t), newQ))
25: if ∃q ∈ keys(eqClasses) : q ≡ newQ then
26: add(get(eqClasses, q), newQ) where q ≡ newQ
27: else
28: put(eqClasses, newQ, {newQ})
29: Qs← enqueue(Qs, newQ)
30: end if
31: end if
32: end for
33: end while
34: end function

The data structures graphEdges, eqClasses and the value startNode are assumed to be globally
accessible in the following. In order to use the data structures efficiently, the compound symbolic states
of the specification need to be adapted. More concretely, each specification state processed in the sioco
checking algorithm needs to be associated with a symbolic graph node. This is achieved by using pairs of
symbolic states and graph node identifiers rather than symbolic states, which means that a specification
state must be an element of the set P((F(Î) × T(Î)VS × N0) × ID). Symbolic states in the symbolic
execution graph are nodes, thus the terms nodes and states are used interchangeably in the following
discussion. Hence, symbolic equivalence classes may also be formed for graph nodes.

Before it is possible to adapt exec and τreach, another function rep shall be introduced. The func-
tion rep maps the identifier of a graph node n to the identifier of the canonical representative of the
equivalence class to which n belongs. For an equivalence class C, the graph node n ∈ C is chosen as
canonical representative, which was explored first during the creation of the symbolic execution tree.
This is done because the node explored first is also the only graph node in C having outgoing edges.
Given the map eqClasses, the function rep can be defined as rep(id) = r where r is chosen such that

Chapter 4. Optimisations 51

∃(id′, s) ∈ get(eqClasses, r) : id′ = id is fulfilled. If the number of graph nodes is large, the function
rep should be precomputed and for instance stored in a hash table. By means of this function and given
the data structures created via Algorithm 3, it is now possible to change the definition of exec and τreach.
For simplicity of representation, symbolic state indices will be ignored for the definition of τreachgraph ,
but it can trivially be extended to account for indices.

τreachgraph : P((F(Î)× T(Î)VS)× ID)→ P((F(Î)× T(Î)VS)× ID)

τreachgraph : S 7→
⋃

((ϕ,ρ),id)∈S

{
((ϕ ∧ ψ[ρ], [ρ] ◦ π), rep(id′))

∣∣∣ (τ, ψ, π) ∈→δS ∧

∃q, q′ : ((q, id), actName((τ, ψ, π)), (q′, id′)) ∈ graphEdges
}

execgraph : P((F(Î)× T(Î)VS × N0)× ID)× Λδ → P((F(Î)× T(Î)VS × N0)× ID)

execgraph : (κ, λ) 7→
{

((ϕ ∧ (ψ[ri+1])[ρ], ([ρ] ◦ ([ri+1] ◦ π))VS)i+1, rep(id
′))
∣∣∣

(λ, ψ, π) ∈→δS ∧ ((ϕ, ρ)i, id) ∈ κ ∧

∃q, q′ : ((q, id), actName((λ, ψ, π)), (q′, id′)) ∈ graphEdges
}

The identifier id is used to guide the search through the symbolic execution graph. It allows to find
edges in the symbolic execution graph. Compared to the definition of exec, execgraph takes the label
of an action as parameter rather than guard and state update because it is needed to query the symbolic
execution graph. The guard and state update are retrieved from the globally accessible transition relation.

It should be noted that given a symbolic state (ϕ, ρ)i and an associated graph node ((ψ, π)j , id),
the symbolic states (ϕ, ρ)i and (ψ, π)j are not interchangeable in the context of the conformance check,
although (ϕ, ρ)i ≡ (ψ, π)j . In other words,((ψ, π)j , id) must not be used for purposes other than ap-
plying execgraph and τreachgraph because free(ϕ) is not necessarily equal to free(ψ). Considering the
simultaneous execution and the non-conformance condition, the implementation action system ASP
places additional constraints on the variables in free(ϕ). Hence, the non-conformance condition would
be formed incorrectly if (ψ, π)j was used instead of (ϕ, ρ)i.

By applying this optimisation, it is possible to significantly decrease the number of satisfiability
checks needed for the execution of actions. There are two reason for this reduction. The first one
is that it is not necessary to perform satisfiability checks for the specification during the conformance
check because they have already been performed when the symbolic execution graph was created. The
second reason is that the pruning further reduces number of satisfiability checks needed. This pruning
is effective because reactive systems generally show looping behaviour [47], that is, they come back to
already visited states.

Nevertheless, equivalence checks may also lead to poor performance, if the involved path conditions
and state vectors contain complex terms. In cases where only low exploration depths are needed, it may
be more efficient to explore redundant paths than to perform equivalence checks. Poor performance of
equivalence checks will be addressed in Section 7.4. However, in most cases, it is beneficial or even
necessary to prune search paths because of the aforementioned path explosion problem.

4.2 Product Graph Pruning

The optimisation-technique product graph pruning shares some similarities with the symbolic execution
graph optimisation-technique. Similarly, this technique also tackles the path explosion problem. The
problem affects the product graph as well because the product graph is explored for all bounded traces
of the specification. Hence, it is actually necessary to fully explore a bounded symbolic execution tree if
the implementation conforms to the specification. Strictly speaking, a full exploration may not be needed

Chapter 4. Optimisations 52

if not all traces are executable by the implementation but the conformance check would still suffer from
path explosion.

Moreover, a full exploration would render the pruning of the symbolic execution graph useless, as it
would be necessary to unfold the loops in the graph anyway. However, it is possible to prune the product
graph following an approach based on equivalence checks as well.

A product state is a pair of compound symbolic states, thus a product state examined in Algorithm 2
would be the pair (implState, specState). To prune the product graph, it is necessary to keep track of
all indexed product states visited during the conformance check. Given this information, a set of visited
states V , it is possible to improve the performance of the conformance check in two ways:

• If V contains a product state q, such that q ≡prod (implState, specState), it is not necessary
to check if the non-conformance condition is satisfiable in state (implState, specState). This
does not actually prune the product graph because the product graph does not contain edges for
unsatisfiable non-conformance conditions. Nevertheless, it decreases the number of necessary
satisfiability checks. An algorithm applying this optimisation will also perform a complete sioco
check because if the current state would be an unsafe state, its equivalent state q would have already
been identified as unsafe. Consequently, the search would have terminated before reaching the
current product state. Hence, it is not necessary to check the non-conformance condition.

• If V contains a product state q with index i such that q ≡prod (implState, specState) and i ≤ j,
where j is the current search depth, then the search can be stopped. Stopping the exploration of
the product graph corresponds to pruning of the product graph. The idea behind this optimisation
is that the current product state fully determines, which states are explored at subsequent steps and
that the exploration of equivalent states leads to equivalent post-states. Hence, if an unsafe state
would be reached after visiting (implState, specState), an unsafe state would also be reached
after visiting q. Conversely, if q does not lead to unsafe states, then (implState, specState) does
not lead to unsafe states as well.

These optimisations rely on the assumption that for equivalent product states q and q′, q /∈ Unsafe
implies q′ /∈ Unsafe. This fact is easier to show on a concrete rather than on a symbolic level. Hence,
the relationship between sioco and ioco and a characterisation of unsafe IOLTS-product states shall be
utilised.

Definition 4.1 (Unsafe States - IOLTS).
Let S1 = 〈Q1, s01 ,ΣI ,ΣU ,→1〉 and S2 = 〈Q2, s02 ,ΣI ,ΣU ,→2〉 be two IOLTS and let SP = S1 ×ioco
S2 be the synchronous product defined by the rules given by Weiglhofer and Wotawa [83], such that SP
is an IOLTS SP = 〈QSP , s0SP ,ΣI ,ΣU ,→SP 〉. The set of unsafe product states Unsafeioco, where
Unsafeioco ⊆ Q1 ×Q2, can be defined as follows:

Unsafeioco =
{

(s1, s2)
∣∣∣ s1 ∈ Q1 ∧ s2 ∈ Q2 ∧ ∃λ ∈ ΛU ∪ {δ} : s1

λ−→1 ∧s2 6
λ−→2

}
or equivalently

Unsafeioco = {(s1, s2) | s1 ∈ Q1 ∧ s2 ∈ Q2 ∧ out(s1) 6⊆ out(s2)}

Hence, an unsafe state in the synchronous product S1 ×ioco S2 is a state s such that there exists an
edge from s to a fail -state, that is, the next step may show ioco non-conformance.

Since Frantzen et al. have shown that sioco coincides with ioco [45] and the definitions of the sets
Unsafe and Unsafeioco are based on sioco non-conformance and on ioco non-conformance respectively,
it can be concluded that the interpretation of an unsafe symbolic product state contains at least one unsafe
IOLTS-product state. Conversely, if a product state does not show sioco non-conformance and is thus
not unsafe, its interpretation must not show non-conformance as well.

Chapter 4. Optimisations 53

It follows that if a symbolic product state q is not unsafe then it holds that

JqK ∩Unsafeioco = ∅.

For a product state q′ equivalent to q it holds that

JqK = Jq′K, thus Jq′K ∩Unsafeioco = ∅

is also fulfilled. As Jq′K does not contain unsafe IOLTS-product states and sioco coincides with ioco, it
follows that q′ is not unsafe. Hence, the implication

q /∈ Unsafe⇒ q′ /∈ Unsafe

holds if q ≡ q′.
Since the optimisations presented above rely on equivalence checks, they may also lead to poor

performance if the formulas, which need to be checked, contain complex terms. As a result, the same
holds as for the first optimisation and it may be more efficient to perform the conformance check without
applying this technique. It should be noted though that pruning is beneficial in general and should be
considered.

4.3 Syntactic Mutation Analysis

Before discussing the optimisations made possible by a mutation analysis on syntax-level, the mutation
analysis itself and its results shall be described. This precomputation step is performed before the start of
the conformance check and assumes that the implementation is a first-order mutant of the specification.
Hence, the optimisations based on syntactic mutation analysis are only applicable for a limited set of
implementations.

Additionally, first-order mutants must adhere to the following limitations:

• type-definitions must not be mutated

• the types of state variables must not be mutated

• the types and number of action parameters must not be mutated

• actions must not be added or deleted

• the types of actions must not be mutated

The first two restrictions could be loosened. The other three restrictions, however, must be fulfilled
for the sioco check to be applicable because the sioco conformance relation requires that implementation
and specification must share the same set of actions and parameter variables. This requirement also
demands that an output action of the specification must not be an input action of the implementation and
thus action types may not be mutated as well.

The syntactic mutation analysis compares an implementation with the specification by performing
Algorithm 4. It uses the set ActionName and the function actName introduced before. ActionName
contains all action names and actName maps transitions to action names. The function getInitBlock
retrieves the syntactical representation of the init block. Furthermore, the functions getAction(AS, a)
and getGuard(AS, a) retrieve the syntactical representation of an action a and the guard of an action a
of the action system AS.

Chapter 4. Optimisations 54

Algorithm 4 Syntactic mutation analysis algorithm.

1: procedure SYNTMUTANALYSIS(specification ,implementation)
2: if getInitBlock(specification) 6= getInitBlock(implementation) then
3: mutAction← Init
4: intMut← False
5: intOrOutMut← False
6: intOrOutGuardMut← False
7: else
8: for all a ∈ ActionName where a 6= δ do
9: if getAction(specification, a) 6= getAction(implementation, a) then

10: (λ, ϕS , ρS)← tS such that tS ∈→δS and actName(tS) = a
11: (λ, ϕP , ρP)← tP such that tP ∈→δP and actName(tP) = a
12: mutAction← a
13: intMut← λ = τ
14: intOrOutMut← intMut ∨ λ ∈ ΛU

15: intOrOutGuardMut← intOrOutMut ∧ getGuard(specification, a) 6=
getGuard(implementation, a)

16: break
17: end if
18: end for
19: end if
20: end procedure

The algorithm sets the globally accessible variables described below:

intMut: signals whether an internal action was mutated

intOrOutMut: signals whether an internal or an output action was mutated

intOrOutGuardMut: signals whether the guard of an internal or an output action was mutated

mutAction: holds the name of the mutated action or the value Init, which is chosen such that it is
unequal to all action names

As the procedure is intended to be applied for first-order mutants, it will only look for exactly one
difference between specification and implementation. Consequently, if a difference is found in the init-
block, there is no need to compare actions. If a difference is found for one action, the search can be
stopped as well. The procedure in Algorithm 4 does not retrieve all information about mutations, but
rather focuses relevant information. As a result, it does not check state updates.

The information about mutations can be used as the basis for further optimisations. Intuitively, the ef-
fects of executing first-order mutants will largely be the same as the effects of executing the specification
because first-order mutants differ from their unmutated specification in only one aspect. This observation
is the key insight forming the basis of various optimisations and the discussion in the following sections
will elaborate on it.

4.4 Restriction of Angelic Completion for Mutants

As indicated above, a mutated specification serving as implementation can be assumed to behave sim-
ilarly to the specification. Moreover, a first-order mutant may be assumed to behave identically to the
specification as long as the mutated action has not been performed. Since implementations are considered
to be input-enabled, this is not entirely true. The angelic completion of an action system may behave dif-
ferently than the original action system. Hence, an input-enabled mutant may behave differently than the

Chapter 4. Optimisations 55

specification even if the unmutated action has not been performed yet. Consider the following example
showing that angelic completion may lead to sioco non-conformance.

Example 4.1 (Non-conformance through Angelic Completion).
Given is an action system AS = 〈V, I,ΛI ,ΛU , ι,→〉 using integers as data, where:

• V = {s},
• I = {},
• ΛI = {?x},
• ΛU = {!a},
• ι = {s 7→ 0} and

•
→= {(τ, s = 0, {s 7→ 1}), (τ, s = 0, {s 7→ 2}),

(?x, s = 1, {s 7→ 3}), (!a, s = 2, {s 7→ 4})}.

This action system shall serve both as specification and as implementation and a non-conformance check
after executing the trace ?x shall performed. The initial product state is given by (κ0, κ0), where

κ0 = {(>, {s 7→ 0}), (>, {s 7→ 1}), (>, {s 7→ 2})}

and the product state after executing ?x is given by (κ1, µ1), where

µ1 = τcl(exec(κ0, s = 1, {s 7→ 3})) = {(>, s 7→ 3)}

and
κ1 = τcl(exec(κ0, s = 1, {s 7→ 3}) ∪ execneg(κ0, s = 1, s = 0))

= {(>, s 7→ 3), (>, s 7→ 2)}.

The non-conformance condition for action !a is satisfiable as is shown below. >︸︷︷︸
pathcondition

∧ 2 = 2︸ ︷︷ ︸
guard

 ∨
 >︸︷︷︸
pathcondition

∧ 2 = 3︸ ︷︷ ︸
guard

︸ ︷︷ ︸

implementation

∧> ∧ ¬

 >︸︷︷︸
pathcondition

∧ 2 = 3︸ ︷︷ ︸
guard

︸ ︷︷ ︸

specification

⇔ >

This behaviour is not the result of a wrong definition of angelic completion of action systems, but can
also be observed during ioco conformance checking. More specifically, the angelic completion of the
interpretation JASK is not ioco conform to JASK. Both the IOLTS-interpretation JASK and its angelic
completion are shown in Figure 4.11. A comparison of the sets of observations possible after executing ?x
shows that ioco non-conformance can also be detected in the IOLTS-models. The observations produced
by the angelic completion are given by

out(i0 after ?x) = {δ, !a}

and the observations produced by the specification after executing ?x are given by

out(s0 after ?x) = {δ}.

Since {δ, !a} 6⊆ {δ}, the implementation does not conform to the specification from which it was derived
via angelic completion.

Hence, angelic completion can actually be seen as a mutation, thus an sioco conformance-check for
a first order mutant would actually be a check for a higher-order mutant, an action system mutated more
than once. This is contradictory to the intention of employing first-order mutants as the basis for test

1A similar example is used by Aichernig et al. to discuss controllability issues [3].

Chapter 4. Optimisations 56

s0start

s1 s2

s3 s4

τ τ

?x !a

(a) specification

i0start

i1 i2

i3 i4

τ τ

?x !a

?x

?x ?x

(b) input-enabled implementation

Figure 4.1: The IOLTS-interpretation of the action system given in Example 4.1 shown on the left
and its angelic completion shown on the right.

case generation. Moreover, if a conformance violation due to angelic completion is detected after a low
number of steps during the conformance check, then it may be detected for a large number of mutants
before their mutated actions can be executed. This would in turn result in a large number of equivalent test
cases, which is not desirable. The goal is actually to find a great variety of test cases covering different
faults. To achieve this and counter the aforementioned problem, the angelic completion shall not be
performed before the mutated action is executed. Obviously, this will result in an incomplete check, but
will lead to the generation of more effective tests. Furthermore, it will only affect model-based mutation
testing.

An intuitive argument justifying this decision is that implementation and specification will execute
the same internal actions as long as the mutated action has not been executed because they will behave
the same until the mutation takes effect, making angelic completion unnecessary. As a result, the state
of the mutant implementation and the specification will also be the same until the mutated action is
executed.

4.5 Avoiding the Execution of Implementation Actions

This optimisation avoids performing satisfiability checks for the execution of actions of the implemen-
tation as long as possible. These checks need not be performed as long as the mutated action has not
been executed and quiescence has not been observed because the implementation state will be the same
as the specification state until the mutation takes effect. However, there are certain pitfalls to avoid, so
the following observations shall outline how to implement this optimisation. The first seven observations
concern deterministic action systems, which are action systems not containing internal actions.

1. If the init-block is mutated, this optimisation can not be applied and thus satisfiability checks for
the execution of all implementation actions need to be performed.

2. If the mutated action has not been executed yet and the action performed next is not mutated, then
the next implementation state will be the same as the next specification state. Consequently, it
is not necessary to execute the action for the implementation. Hence, the next implementation
state can be set to be equal to the next specification state. As noted before, it is not necessary to
perform execneg as well because the implementation is assumed to be behave identically to the
specification and therefore will accept the same set of inputs.

3. If the mutated action has not been executed yet and it is the action performed next, then the next
implementation state may be different from the next specification state, thus making it necessary
to execute the action for the implementation.

4. If the mutated action has not been executed yet, and the mutation affects the guard of an output
action, and quiescence is observed next, then the next implementation state may be different from
the next specification state. This is caused by the dependence of the quiescence condition on

Chapter 4. Optimisations 57

the guards of outputs. Hence, it is necessary to perform satisfiability checks of the quiescence
condition for the implementation and the specification separately.

5. If the mutated action has not been executed yet, and the mutation does not affect the quiescence
condition, and quiescence is observed next, then the next implementation state will be the same as
the next specification state.

6. If the mutated action has been executed, all subsequent actions and quiescence observations need
to be performed for the implementation.

7. If quiescence has been observed and the mutation affects the guard of an output, all subsequent
actions and quiescence observations need to be performed for the implementation.

The next observations are concerned with action systems containing internal actions.

8. If the mutated action is not an internal action, the same observations as for deterministic systems
need to be considered.

9. If action systems contain internal actions, there may be several different sequences of actions
leading to some compound symbolic state. Consider the case where an internal action is mutated:
there may be sequences of actions executed on the implementation, which do not contain the
mutated action while other observably equivalent sequences contain the mutated action.

Hence, the compound implementation state may contain symbolic states which are affected by the
mutation and some which are not affected. As a result, it may contain symbolic states equivalent
to symbolic states contained in the compound specification state, although both compound states
are not syntactically equivalent.

If actions are executed for symbolic states reached by sequences not containing the mutated in-
ternal action, the information provided by the symbolic execution graph may be utilised. This
is possible as the concerned states are equivalent to symbolic states of the specification. Conse-
quently, symbolic states of the implementation shall also be associated with symbolic graph nodes.

10. If the mutated action is an internal action and its guard is mutated then all τ -closures need to be
calculated explicitly without utilising the symbolic graph, because the mutated internal action may
not be enabled for the same set of symbolic states as the unmutated internal action. Hence, if
the mutated action is executed during the calculation of the τ -closure q, the states in q must not
be associated with symbolic graph nodes, as they are in general not equivalent to states of the
specification.

If the τ -closure is calculated for an implementation state associated with a symbolic graph node
and the mutated action is not executed during the calculation of the τ -closure, the τ -closure can
be calculated again via the function τreachgraph . Since the τ -closure can be calculated very effi-
ciently using the symbolic execution graph, the additional computational effort pays off because
subsequent operations can make use of the symbolic execution graph.

11. If the mutated action is an internal action and its body is mutated then it is possible to calculate the
τ -closure by utilising the symbolic execution graph unless the mutated action is reachable from
the current state. If the mutated action is reachable, the τ -closure needs to be calculated explicitly.

12. If the mutated action has not been executed before, and the mutation affects the guard of an internal
action, and quiescence is observed next, then the next implementation state may be different from
the next specification state. The reason for this is that the quiescence condition also depends on
the guards of internal actions. As a result, it is necessary to perform checks of the quiescence
condition for the implementation and the specification separately.

13. If quiescence has been observed and the mutation affects the guard of an internal action, then all
subsequent actions and quiescence observations need to be performed for the implementation.

Chapter 4. Optimisations 58

In summary, the symbolic states of the implementation shall be associated with symbolic graph
nodes. This enables the utilisation of the symbolic execution graph as long as the mutated action is not
executed and as long as quiescence is not observed. If the mutated action is an observable action, it is not
necessary to perform any operation for the implementation as long as the mutation does not take effect
because the states of the specification and the implementation are equivalent until then. Special care
has to be taken if the mutation affects the guards of internal actions or output actions as the quiescence
observation depends on those.

4.6 Simplifying Equivalence Checks for Product States

The following optimisation can be seen as an extension of the last extension. Since the state of the
implementation is syntactically equivalent to the state of the specification until the mutation takes effect,
the product state equivalence check can be simplified and thereby optimised as well. A product state
consisting of two syntactically equivalent compound symbolic states has the form (κ, κ). It is equivalent
to a product state (µ, µ) of the same form if κ ≡com µ. Consequently, the product state equivalence check
can be substituted for a compound symbolic state equivalence check. However, this check can be further
simplified by considering the symbolic graph nodes associated with the symbolic states in the compound
symbolic states. Using the symbolic state equivalence classes calculated by Algorithm 3, it is possible
to formulate a sufficient condition for equivalence of compound symbolic states. This condition can be
checked more efficiently than the condition given by Definition 3.9. For the derivation of the condition
the function state shall be used, which maps a graph node identifier to the corresponding symbolic state.
It is defined as

state(id) =(ϕ, ρ)i where (ϕ, ρ)i is chosen such that

((ϕ, ρ)i, id) ∈ get(eqClasses, rep(id)) is fulfilled.

In the following, it will be shown that equivalence of representatives in two compound symbolic states
s1 and s2 implies s1 ≡com s2:

Let s1 and s2 be two compound symbolic states associated with symbolic graph nodes,

that is si ∈ P((F(Î)× T(Î)V × N0)× ID)

define R(si) = {rep(id) | ∃q : (q, id) ∈ si} as the set of representatives.

R(s1) = R(s2)⇔
{rep(id) | ∃q : (q, id) ∈ s1} = {rep(id) | ∃q : (q, id) ∈ s2} ⇔
{state(rep(id)) | ∃q : (q, id) ∈ s1} = {state(rep(id)) | ∃q : (q, id) ∈ s2} ⇔
{Jstate(rep(id))K | ∃q : (q, id) ∈ s1} = {Jstate(rep(id))K | ∃q : (q, id) ∈ s2} ⇔

q = state(id) for (q, id) ∈ si and state(id) ≡ state(rep(id))

implies q ≡ state(rep(id))⇔ JqK = Jstate(rep(id))K
{JqK | ∃id : (q, id) ∈ s1} = {JqK | ∃id : (q, id) ∈ s2} ⇒⋃
{JqK | ∃id : (q, id) ∈ s1} =

⋃
{JqK | ∃id : (q, id) ∈ s2} ⇒

J{q | ∃id : (q, id) ∈ s1}K = J{q | ∃id : (q, id) ∈ s2}K⇔
definition of compound state equivalence

{q | ∃id : (q, id) ∈ s1} ≡com {q | ∃id : (q, id) ∈ s2} ⇔
s1 ≡com s2

Hence, two compound symbolic states are equivalent if their sets of representatives are equal. Al-
though this is not a necessary condition, it shall be used as an approximation, as the exact equivalence
check is computationally expensive.

Chapter 4. Optimisations 59

Another approximation shall be introduced for the general case, in which a state is reached after
executing the mutated action. Let (κ, µ) and (η, ω) be two product states. In most cases where the spec-
ification states µ and ω are not equivalent, (κ, µ) will not be equivalent to (η, ω) as well. Consequently,
(κ, µ) ≡prod (η, ω) shall be approximated by µ ≡com ω∧(κ, µ) ≡prod (η, ω), such that the right operand
of the conjunction is only evaluated if the left operand evaluates to true. Since the compound symbolic
states µ and ω are states of the specification, they are associated with symbolic graph nodes, thus the
condition may be approximated further by R(µ) = R(ω) ∧ (κ, µ) ≡prod (η, ω).

In order to be able to use both approximations, the information about visited states shall be extended.
For each visited product state p a pair (p, equal) shall be saved, where equal ∈ {True, False} is set
to True if p was reached without executing the mutated action and set to False otherwise. Stated
differently, equal denotes whether p contains two syntactically equivalent compound symbolic states.
The init-block is assumed to be the first executed action, which means that equal will be set to False
for all visited product states if init is mutated. It is now possible to define an equivalence condition
approximation for product states extended with Boolean equivalence flags.

Definition 4.2 (Product State Equivalence - Approximation).
Let ((κ, µ), e) and ((κ′, µ′), e′) be two product states associated with Boolean values e and e′ denoting
whether they consist of syntactically equivalent compound symbolic states

((κ, µ), e) ≡approx ((κ′, µ′), e′) =

R(µ) = R(µ′) if e = True ∧ e′ = True

⊥ if e = True ∧ e′ = False

(κ, µ) ≡prod (κ′, µ′) if e = False ∧R(µ) = R(µ′)

⊥ if e = False ∧R(µ) 6= R(µ′)

Obviously,≡approx is not an equivalence relation because it is not symmetric. Nevertheless, this does
not introduce incorrect behaviour as ≡approx is only checked to decide if product graph traces should be
pruned. It is not used to calculate equivalence classes. The condition is intended to be checked such that
the current product state is the left operand and some visited state is the right operand.

Since the second case has not been discussed above, it shall be shortly investigated. It identifies
the current product state to be inequivalent to a product state q if the current state was reached without
executing the mutation and q was reached by executing the mutation. Alternatively, product state equiv-
alence may also be checked instead. However, this choice has been made by comparing the performance
gain resulting from pruning to the performance loss resulting from equivalence checks. While checking
equivalence is computationally expensive, actions can be executed efficiently for a product state that is
not affected by the mutation. Consequently, pruning is not necessary in a state if the mutation did not
take effect. This is reflected by the decision to identify states to be inequivalent in the discussed situation.

It shall now be shown that ≡approx is a stronger condition than ≡prod and thus is a valid approxima-
tion of≡prod. A stronger condition is a valid approximation because less traces will be pruned if it is used
as pruning criterion. This leads to the exploration of redundant traces, which does not introduce incorrect
behaviour. The conformance-checking algorithm will still produce the same result if this optimisation
is applied. Although the exploration of redundant paths contradicts the strategy presented before, this
approximation shall be used because the performance increase resulting from its usage will in general be
significantly higher than the performance loss caused by the exploration of redundant paths. Given two
conditions c and c′, c is stronger than c′ if c→ c′ is a tautology.

It shall be shown that: ((κ, µ), e) ≡approx ((κ′, µ′), e′)→ (κ, µ) ≡prod (κ′, µ′)

((κ, µ), e) ≡approx ((κ′, µ′), e′) =(R(µ) = R(µ′) ∧ e = True ∧ e′ = True)∨
(⊥ ∧ e = True ∧ e′ = False)∨
((κ, µ) ≡prod (κ′, µ′) ∧ e = False ∧R(µ) = R(µ′))∨
(⊥ ∧ e = False ∧R(µ) 6= R(µ′))

Chapter 4. Optimisations 60

=(R(µ) = R(µ′) ∧ e = True ∧ e′ = True)∨
((κ, µ) ≡prod (κ′, µ′) ∧ e = False ∧R(µ) = R(µ′))

→ (κ, µ) ≡prod (κ′, µ′)

The implication holds if (a) R(µ) = R(µ′) ∧ e = True ∧ e′ = True

→ (κ, µ) ≡prod (κ′, µ′)

and (b) (κ, µ) ≡prod (κ′, µ′) ∧ e = False ∧R(µ) = R(µ′)

→ (κ, µ) ≡prod (κ′, µ′) hold

(a) holds because: R(µ) = R(µ′) ∧ e = True ∧ e′ = True

→ R(µ) = R(µ′)→ (κ, µ) ≡prod (κ′, µ′) . . . shown above

(b) holds because: (κ, µ) ≡prod (κ′, µ′) ∧ e = False ∧R(µ) = R(µ′)

→ (κ, µ) ≡prod (κ′, µ′) . . . consequent is part of antecedent

2

4.7 Reducing the Number of Non-conformance Checks

The observation that implementation and specification state are equivalent until the mutation takes effect
can also help to reduce the number of checks of the non-conformance condition. Intuitively, the imple-
mentation is likely to show conforming behaviour in the next step as long as both implementation and
specification are in the same state. This observation shall now be investigated more thoroughly, which
leads to the distinction of four different cases.

1. If the mutated action has not been executed yet and the state update of an action or the guard of an
input action has been mutated then it is not necessary to execute non-conformance checks.

2. If the mutated action has not been executed yet and the guard of an internal action has been mutated
then it suffices to perform the non-conformance check for the quiescence observation.

3. If the mutated action has not been executed yet and the guard of an output action has been mutated
then it suffices to perform the non-conformance check for the quiescence observation and the
mutated output action.

4. If the init block has been mutated or the mutated action has already been executed then it is neces-
sary to perform the non-conformance check for all observations.

In the following, each of the four cases shall be discussed and it shall be shown that optimisations
based on the first three cases are valid. Hence, it is necessary to show that the application of the opti-
misations does not lead to situations, in which non-conformance conditions are not detected. In other
words, it will be shown that the reduction of non-conformance checks does not lead to incorrect confor-
mance checking verdicts. This is done by showing that all ignored non-conformance conditions would
be unsatisfiable anyway.

For this purpose, it shall now be assumed that the conditions mentioned in the first case hold. More
concretely, it is assumed that the implementation state κ is the same as the specification state µ and
that the mutation does not affect the guard of an internal or an output action. It is important to note
that the states of the implementation and the specification are syntactically equivalent which is a stricter
requirement than semantical equivalence defined by ≡com.

Chapter 4. Optimisations 61

Given a product state (κ, µ) with κ = µ, it shall be shown that the non-conformance condition is unsat-
isfiable: ∨

(γP ,πP)∈κ

γP ∧ ϕP [πP]

 ∧ χ ∧ ¬
 ∨

(γS ,πS)∈µ

γS ∧ ϕS [πS]

 !↔ ⊥

for all λ ∈ ΛU ∪ {δ} and (χ, π) ∈ µ
where ∃ρP : (λ, ϕP , ρP) ∈→P ∪{(δ,∆P , id)}

and ∃ρS : (λ, ϕS , ρS) ∈→S ∪{(δ,∆S , id)}

κ=µ↔

 ∨
(γ,π)∈κ

γ ∧ ϕP [π]

 ∧ ¬
 ∨

(γ,π)∈κ

γ ∧ ϕS [π]

 ∧ χ
ϕP=ϕS=ϕ↔

 ∨
(γ,π)∈κ

γ ∧ ϕ[π]

 ∧ ¬
 ∨

(γ,π)∈κ

γ ∧ ϕ[π]

 ∧ χ
A∧¬A=⊥↔ ⊥∧ χ↔ ⊥

2

The second rewriting operation requires that ϕP = ϕS for all λ ∈ ΛU ∪ {δ}. This is obviously
fulfilled for all λ ∈ ΛU given the assumption that the mutation does not affect the guard of an output
action. Recall that the guard ∆ of the quiescence observation is defined as

∆ =
∧{
¬∃para(λ)ψ

∣∣ ∃ρ : (λ, ψ, ρ) ∈→ with λ ∈ ΛU ∪ {τ}
}
,

thus it depends on the guards of internal and outputs actions. Since the assumption placed above also
states that the mutation must not affect the guards of internal actions, the quiescence conditions of spec-
ification and implementation are identical. Hence, it is not possible to miss conformance violations by
skipping checks for these if the assumptions listed above are fulfilled.

However, if the conditions of the second case are fulfilled then ϕP = ϕS does not hold for all
λ ∈ ΛU ∪ {δ} because the condition for the quiescence observation depends on the guards of internal
actions. Consequently, it is necessary to perform non-conformance checks for the quiescence observation
if the guard of an internal action is mutated. If the guard of an output action is mutated then ϕP 6= ϕS
for one λ ∈ ΛU and for δ because the quiescence condition also depends on the guards of output actions.
Hence, it necessary to perform non-conformance checks for the mutated action and for the quiescence
observation. The other output actions need not be checked though as the guards of the unmutated outputs
are equivalent in implementation and specification.

4.8 Calculation of Reachable Actions

The following optimisation is essentially an extension of the optimisation presented in Section 4.7. More
concretely, it checks whether the assumptions of the first discussed case are fulfilled until the maximum
search depth is hit. In other words, it checks whether the mutated action may be executed before hitting
the depth bound. If it is not executable and additionally the mutation does not affect the guard of an
internal or an output action, then the search can be stopped. This is possible because non-conformance
would not be detected anyway.

For this purpose, the notion of reachable actions shall be introduced. An action a is reachable from
some state q if it can be executed in q, or if a state q′ can be reached by executing an action different
from a, from which a is reachable. Reachability of an action a can be further refined to include an upper
bound on the maximum number of intermediate action executions. An action a is reachable within s

Chapter 4. Optimisations 62

steps from a state q if s > 0 and a is executable or if a state q′ can be reached by executing an action
different from a and a is reachable within s− 1 steps from q′.

If the sets of reachable actions are known for the specification, the optimisation presented in Sec-
tion 4.7 can be further extended. As noted above, this information can be utilised if the assumptions of
the first discussed case are fulfilled. If additionally to those assumptions, it holds that the mutated action
can not be performed in subsequent steps then it is not necessary to continue the search for conformance
violations.

Since the conformance check is performed for all traces of the specification, the set of actions reach-
able from any given state can be determined in a precomputation step based on the symbolic execution
graph. Considering internal actions, this information is sufficient as well, because of the assumption
that the mutation does not affect the guard of an internal action. In this case, it is not possible for the
implementation to reach an internal action which is not reachable for the specification.

Hence, another data structure reachableAct shall be introduced, which maps pairs consisting of
graph node identifiers and integral depth values to sets of action names. It shall be possible to retrieve
the set of reachable actions for a graph node at a given depth dcurr smaller than the maximum search
depth d. Stated differently, it shall be possible to retrieve the actions reachable from a graph node within
a given number of steps s, where the relation between s and d is given by s = d− dcurr.

Pairs consisting of a graph node identifier id and depth information dr shall be used as keys for key-
value pairs stored in reachableAct. The corresponding values are sets of reachable action names r. This
enables querying of reachable actions r from a node with identifier id within dr steps.

The data structure reachableAct is assumed to be globally accessible in the following and is created
by executing Algorithm 5. The quiescence observation will, like in Algorithm 3, be treated identically
to actions. In order to calculate the correct depth information, the symbolic execution tree needs to be
fully explored up to depth d, thus making it necessary to unfold the loops in the symbolic execution
graph. Nevertheless, the symbolic state equivalence classes can still be used to speed up the computation
by utilising the fact that the sets of reachable actions are the same for equivalent states. Therefore, it
is sufficient to calculate the successors only once per equivalence class. As a result, queries for reach-
able actions have to be performed for the representative corresponding to a symbolic graph node. The
algorithm makes use of the auxiliary function defined below.

1: function REACHABLEINTERNALS(nodeID)
2: return REACHABLEINTERNALSREC({},{nodeID}, {})
3: end function
4: function REACHABLEINTERNALSREC(nodes,newNodes,internals)

5: nextNodes←
{id′ | ∃q, q′ : id ∈ newNodes∧
((q, rep(id)), label, (q′, id′)) ∈ graphEdges∧
id′ /∈ nodes ∧ label is an internal action name}

6: internals← internals ∪
{label | ∃q, q′, id′ : id ∈ newNodes∧
((q, rep(id)), label, (q′, id′)) ∈ graphEdges∧
label is an internal action name}

7: if nextNodes = {} then
8: return internals
9: else

10: return REACHABLEINTERNALSREC(nodes ∪ newNodes,nextNodes,internals)
11: end if
12: end function

The function reachableInternals basically explores all nodes reachable from a given start node,
denoted by nodeID, by executing internal actions. For this purpose, it calls a recursive function which
explores all immediately reachable nodes from the currently considered set of nodes newNodes, which
is initialised with the singleton set {nodeID}. In Line 5, the successor nodes of newNodes are com-
puted and filtered such that no node is explored twice and all nodes are reached solely by internal actions.

Chapter 4. Optimisations 63

Algorithm 5 Calculation of reachable actions.
1: procedure CALCREACHABLEACTINIT

2: reachableAct← emptyMap
3: (q, startID)← startNode
4: CALCREACHABLEACTREC(startID, d)
5: end procedure
6: procedure CALCREACHABLEACTREC(nodeID, remDepth)
7: if remDepth = −1 then
8: put(reachableAct, (rep(nodeID), remDepth),REACHABLEINTERNALS(nodeID))
9: else if get(reachableAct, (rep(nodeID), remDepth)) is not defined then

10: nextTrans← {t | t ∈ graphEdges ∧ ∃q, q′, l, id′ : t = ((q, rep(nodeID)), l, (q′, id′))}
11: currReachable← {}
12: for all ((q, rID), label, (q′, id′)) ∈ nextTrans do

13: nextDepth←

{
remDepth if label is an internal action name
remDepth− 1 otherwise

14: if get(reachableAct, (rep(id′), nextDepth)) is defined then

15: currReachable← currReachable ∪
get(reachableAct, (rep(id′), nextDepth)) ∪ {label}

16: else
17: CALCREACHABLEACTREC(id′,nextDepth)

18: currReachable← currReachable ∪
get(reachableAct, (rep(id′), nextDepth)) ∪ {label}

19: end if
20: end for
21: put(reachableAct, (rep(nodeID), remDepth), currReachable)
22: end if
23: end procedure

Line 6 is formed similarly, but determines the corresponding internal action labels. The function termi-
nates if the set of nodes scheduled for further exploration is empty (Lines 7 und 8). Otherwise, the search
is continued recursively.

Like the auxiliary function reachableInternals, Algorithm 5 consist of an initialisation and a recur-
sive part. In the initialisation, the data structure reachableAct is set to be empty, the exploration depth is
set to the maximum depth d, and the node to be explored next is set to be the start node of the symbolic
execution graph (Lines 1 to 5).

In the recursive part of the algorithm, a variant of depth-first exploration is performed. If the re-
maining depth remDepth is −1, then only internal actions reachable from the current node, denoted by
nodeID, need to be determined (Lines 7 and 8). Otherwise, it is checked whether a node in the same
equivalence class as nodeID has already been explored (Line 9). If this is the case, it is not necessary to
continue the search along the current path. Hence, the exploration strategy is not purely depth-first.

In order to explore a node n, all actions executable in n are determined (Line 10) and the set of
reachable actions currReachable is initially set to be empty for n (Line 11). Afterwards, each action is
processed (Lines 12 to 20) whereby:

• it is either determined that a state equivalent to the post-state of the action has already been ex-
plored (Line 14 and 15),

• or the post-state of the action is recursively explored (Lines 16 to 18).

Furthermore, currReachable is incrementally extended by adding immediately reachable actions and
actions reachable from post-states (Line 14 and 15 and Lines 16 to 18).

Chapter 4. Optimisations 64

After processing all executable actions nextTrans, the set of all actions reachable from nodeID
within remDepth steps is added to reachableAct.

Given the data structure reachableAct, it is possible to define a predicate mutActionReachable.
This predicate takes a compound symbolic state associated with symbolic graph nodes as parameter and
can be used to test if the mutated action may be executed before the maximum search depth is reached.

mutActionReachable : P((F(Î)× T(Î)V × N0)× ID)→ {>,⊥}
mutActionReachable : κ 7→ ∃((ϕ, ρ)i, id) ∈ κ : mutAction ∈ get(reachableAct, (rep(id), d− i))

The predicate mutActionReachable derives depth information from the index of a symbolic state and
can be used in conjunction with other checks in the if-condition in Line 18 of Algorithm 2. If the
predicate evaluates to ⊥, then the then-branch of the if-statement should not be executed, which
prevents further exploration following the current state. Hence, this optimisation also prunes the product
graph implicitly.

4.9 Filtering of Implementation States

Compound symbolic states of the implementation may contain symbolic states which are irrelevant for
the non-conformance check and thus may be discarded. A symbolic state s is irrelevant, if there exists no
valuation which satisfies both the path condition of s and the path condition of a state of the specification.
These states may exist for conforming implementations because ioco and thereby also sioco allows for
implementation freedom for non-specified inputs [78]. This is achieved by testing only suspension traces
of the specification. Hence, irrelevant states could also be referred to as underspecified states since the
behaviour in those states is not specified.

Although such irrelevant states can only be reached by the implementation, they are visited during
the conformance check because of the symbolic handling of data. Especially the “negated” execution
of inputs, the application of execneg, may lead to irrelevant states. The cause for this is that first-order
mutants show behaviour similar to that of the specification and execneg negates the guard of an action.

This becomes apparent when considering an angelic completion for an unmutated action of a deter-
ministic action systems which has not yet executed the mutation. In this case, the positive guard is added
to the symbolic state of the specification and the negated guard is added to the symbolic state of the
implementation. Note that there is only one symbolic state in the compound states prior to the angelic
completion because the considered action systems are deterministic. Since the original and the negated
guard cannot be satisfied at the same time, the state reached by angelic completion is actually irrelevant.
However, through the restriction of angelic completion discussed in Section 4.4, this situation cannot
occur actually. Nevertheless, it serves to demonstrate that execneg may create irrelevant states.

Hence, the compound symbolic states computed through the application of execneg shall be filtered
such that all irrelevant states are discarded. Before giving the definition of a function for filtering com-
pound symbolic states, the term irrelevant state shall be defined formally and it shall be shown that
irrelevant states are indeed irrelevant.

Definition 4.3 (Irrelevant States).
Let (κ, µ) be a product state, such that κ is a compound symbolic state of the implementation and µ is a
compound symbolic state of the specification. A state (ϕ, ρ) ∈ κ is irrelevant if:

@ς ∈ UÎ : ς |= ϕ ∧

 ∨
(ψ,π)∈µ

ψ

The following proposition can be derived from the definition of irrelevant states.

Chapter 4. Optimisations 65

Proposition 4.1.
Let (κ, µ) be a product state, such that κ is a compound symbolic state of the implementation and µ is a
compound symbolic state of the specification, and let (ϕ, ρ) ∈ κ be an irrelevant state. It holds that:

∀(ψ, π) ∈ µ : ϕ ∧ ψ ↔ ⊥

It shall now be shown that irrelevant states may be ignored for the non-conformance check. This
will be done by rewriting a non-conformance condition formed for a product state containing irrelevant
states. The resulting formula shall not depend on irrelevant states.

Irrelevant States in Non-conformance Condition.

Let (κ, µ) be a product state containing irrelevant states.

The non-conformance condition for this state is given by: ∨
(γP ,πP)∈κ

γP ∧ ϕP [πP]

 ∧ χ ∧ ¬
 ∨

(γS ,πS)∈µ

γS ∧ ϕS [πS]

︸ ︷︷ ︸

ξ

where (λ, ϕP , ρP) ∈→P ∪{(δ,∆P , id)}
and (λ, ϕS , ρS) ∈→S ∪{(δ,∆S , id)}
and ∃π : (χ, π) ∈ µ

⇔

 ∨
(γP ,πP)∈κ\κirr

γP ∧ ϕP [πP]

 ∨
 ∨

(γP ,πP)∈κirr

γP ∧ ϕP [πP]

 ∧ χ ∧ ξ
where κirr ⊆ κ ∧ ∀(ϕ, ρ) ∈ κirr : @ς ∈ UÎ : ς |= ϕ ∧

∨
(ψ,π)∈µ

ψ

and ∀(ϕ, ρ) ∈ κ \ κirr : ∃ς ∈ UÎ : ς |= ϕ ∧
∨

(ψ,π)∈µ

ψ

⇔

 ∨
(γP ,πP)∈κ\κirr

γP ∧ ϕP [πP]

 ∧ χ
 ∨

 ∨
(γP ,πP)∈κirr

γP ∧ ϕP [πP]

 ∧ χ
 ∧ ξ

⇔

 ∨
(γP ,πP)∈κ\κirr

γP ∧ ϕP [πP]

 ∧ χ
 ∨

 ∨
(γP ,πP)∈κirr

γP ∧ χ ∧ ϕP [πP]

 ∧ ξ
since ∀(ϕ, ρ) ∈ κirr, ∀(ψ, π) ∈ µ : ϕ ∧ ψ ↔ ⊥ (Proposition 4.1) and ∃π : (χ, π) ∈ µ

⇔

 ∨
(γP ,πP)∈κ\κirr

γP ∧ ϕP [πP]

 ∧ χ
 ∨

 ∨
(γP ,πP)∈κirr

⊥

 ∧ ξ
⇔

 ∨
(γP ,πP)∈κ\κirr

γP ∧ ϕP [πP]

 ∧ χ
 ∧ ξ

⇔

 ∨
(γP ,πP)∈κ\κirr

γP ∧ ϕP [πP]

 ∧ χ ∧ ¬
 ∨

(γS ,πS)∈µ

γS ∧ ϕS [πS]

Since it has been proven that the non-conformance condition does not depend on irrelevant states, it
remains to be shown that an irrelevant state will not lead to states relevant for the conformance check.

Chapter 4. Optimisations 66

Let (κ, µ) be a product state which contains an irrelevant state (γ, η). It shall be shown that the
execution of actions in (γ, η) will lead to irrelevant states. Let (ϕ′, ρ′) ∈ κ′ and (ψ′, π′) ∈ µ′ be states
reached after executing a trace σ in (κ, µ), that is, (κ, µ)

σ−→ (κ′, µ′). They contain path conditions of the
form

ϕ′ = ϕ ∧
∧
λ∈σ

gλP and ψ′ = ψ ∧
∧
λ∈σ

gλS

for some (ϕ, ρ) ∈ κ and (ψ, π) ∈ µ, where gλS and gλP denote the guards of executed actions. The
guards may be negated for the implementation.

Hence, κ′ may contain states (γ′, η′) with path condition γ′ = γ ∧
∧
λ∈σ gλP which shall be shown

to be unsatisfiable. As assumed above, (γ, η) is irrelevant and thus

γ ∧

 ∨
(ψ,π)∈µ

ψ

is unsatisfiable. This implies that

γ ∧
∧
λ∈σ

gλP ∧

 ∨
(ψ,π)∈µ

ψ

 = γ′ ∧

 ∨
(ψ,π)∈µ

ψ

is unsatisfiable as well. It follows that

γ′ ∧

 ∨
(ψ,π)∈µ

ψ ∧

(∧
λ∈σ

gλS

) = γ′ ∧

 ∨
(ψ′,π′)∈µ′

ψ′

is also unsatisfiable and that (γ′, η′) is irrelevant.

It can be concluded that irrelevant states lead to irrelevant successor states and thus can be filtered
out. An intuitive argument for this fact is that adding further constraints to an unsatisfiable formula will
yield another unsatisfiable formula. Adding constraints corresponds to the execution of actions.

Since it has been shown that irrelevant states can be ignored, it is possible to discard them as soon as
they appear. However, as the detection of irrelevant states requires further satisfiability checks, this shall
only be performed after the application of execneg. The reason for this decision is that it is likely that
execneg creates such states although exec may create irrelevant state as well. Another auxiliary function
filter shall be introduced for this purpose:

filter : P(F(Î)× T(Î)P × N0)× F(Î)→ P(F(Î)× T(Î)P × N0)

filter : (κ, ψ) 7→
{

(ϕ, ρ)i

∣∣∣ (ϕ, ρ)i ∈ κ ∧ ∃ς ∈ UÎ : ς |= ϕ ∧ ψ
}

Let (κ, µ) be a product state: filter is intended to be used in Line 21 of Algorithm 2 as follows:

filter(execneg(κ, γ, γτ), ψ) where ψ =
∨

(ϕ,ρ)∈µ

ϕ is the path condition of the specification

Like other optimisations presented, this optimisation helps to reduce the number of satisfiability
checks necessary to execute actions. Assuming that this optimisation would not be applied, actions
might be executed in irrelevant states, thus requiring satisfiability checks for path conditions of post-
states which are also irrelevant. Moreover, its application leads to less complex path condition formulas
of product states. This simplifies non-conformance and equivalence checks and may thereby further
enhance performance.

Chapter 4. Optimisations 67

Note that removing symbolic implementation states from a product state (κ, µ) results in a product
state (κ′, µ′), such that (κ, µ) ≡prod (κ′, µ′). This can be shown by considering the interpretations of

product states. Irrelevant states have been characterised as states (ϕ, ρ) ∈ κ such thatϕ∧
(∨

(ψ,π)∈µ ψ
)

is
unsatisfiable. Hence, a valuation may either satisfy an irrelevant state or some states of the specification.
Recall the definition of product state interpretations with respect to a valuation υ and let υ be a valuation
such that υ |= ϕ, where ϕ is the path condition of an irrelevant state (ϕ, ρ):

J(κ, µ)Kυ =
⋃

(ϕ,ρ)∈κ

{υeval ◦ ρ | υ |= ϕ} ×
⋃

(ψ,π)∈µ

{υeval ◦ π | υ |= ψ}

=
⋃

(ϕ,ρ)∈κ

{υeval ◦ ρ | υ |= ϕ} × ∅ because ∀(ψ, π) ∈ µ : υ 6|= ψ

= ∅

It can be concluded that all interpretations with respect to valuations, which satisfy path conditions of
irrelevant states, will be empty. Consequently irrelevant states do not have any influence on the set of all
interpretations J(κ, µ)K =

⋃
υ∈UÎ J(κ, µ)Kυ and thereby they do not affect ≡prod as well.

4.10 Checking if Input Guard Weakened

The last optimisation, which shall be presented in this section is only applicable for deterministic action
systems. Nevertheless, it can significantly decrease the sioco checking run-time. Intuitively, a mutant
conforms to the specification, from which it was derived, if it does not change the behaviour of the
specification, but rather extends it. This is the case in the context of ioco because of the aforementioned
freedom of implementation for non-specified inputs [78]. Considering first-order mutants, a mutant will
conform to the specification, if the guard of an input action is mutated in a way such that it accepts all
inputs also accepted by the specification without performing an angelic completion.

A simple sioco-conformance condition based on the observations given above shall now be de-
rived. Hence, implementations are assumed to be first-order mutants of the specification such that
the mutation affects the guard of an input action. For this purpose, the interpretation of action sys-
tems as IOLTSs shall be considered. Let AS = 〈V, I,ΛI ,ΛU , ι,→〉 be an action system and let
JASK = 〈UV , eval ◦ι,ΣI ,ΣU ,→LTS〉 be its interpretation. For a state q ∈ UV , the set of all inputs
accepted in state q can be defined by:

Iacc(q) =def {(λ, p) | ∃q′ : (q, (λ, p), q′) ∈→LTS ∧(λ, p) ∈ ΣI}

Let ASS = 〈VS , I,ΛI ,ΛU , ιS ,→S〉 be a specification and let ASP = 〈VP , I,ΛI ,ΛU , ιP ,→P 〉 be
an implementation that adheres to the assumptions given above, thus it is a first-order mutant of the
specification ASS . Their interpretations are given by JASSK = 〈UVS , eval ◦ιS ,ΣI ,ΣU ,→LTSS 〉 and
JASP K = 〈UVP , eval ◦ιP ,ΣI ,ΣU ,→LTSP 〉 respectively. The synchronous product graph of JASSK and
JASP K defined by the rules given by Weiglhofer and Wotawa [83] is an IOLTS SP = JASP K ×ioco
JASSK, where SP = 〈QSP , s0SP ,ΣI ,ΣU ,→SP 〉, QSP = UVP × UVS ∪ {fail , pass} and s0SP =
(eval ◦ιP , eval ◦ιS). It is now possible to give a non-symbolic conformance-condition:

JASP K ioco JASSK and thus also ASP sioco ASS
if: ∀(qP , qS) ∈ QSP : Iacc(qS) ⊆ Iacc(qP) and the assumptions listed above are fulfilled

Intuitively, this is fulfilled if the mutated guard is weaker and thus accepts more inputs than the guard
of the specification. Stated conversely, it is fulfilled if the guard of the specification is stronger than the
mutated guard. As noted before, a stronger condition implies a weaker condition, so it could be checked
if an implication between the guards is a tautology. Hence, the subset-relation between accepted inputs
could be modelled via implication.

Chapter 4. Optimisations 68

However, the non-symbolic conformance-condition contains another constraint. The quantification
∀(qP , qS) ∈ QSP requires that the states may not be freely chosen, but must be contained in QSP . As
the mutation only affects a guard, the states qP and qS of a product state (qP , qS) are equal.

To be able to formulate this constraint in the sioco context a bijection mutv : VS → VP shall be
introduced. It maps specification variables to their corresponding implementation variables. Such a
function exists since the implementation is a first-order mutant.

Proposition 4.2 (Weakened Guard Conformance Condition).
Let ASS = 〈VS , I,ΛI ,ΛU , ιS ,→S〉 be a specification and let ASP = 〈VP , I,ΛI ,ΛU , ιP ,→P 〉 be an
implementation such that ASP is a first-order mutant of ASS and the mutation affects the guard of an
input action λmut ∈ ΛI . Assuming additionally that

∧
v∈VS v = mutv(v) is fulfilled, it holds that:

∀d ∈ N0 : ASP siocod ASS if (ϕS → ϕP)⇔ >
where ∃πS : (λmut, ϕS , πS) ∈→S and ∃πP : (λmut, ϕP , πP) ∈→P

It shall now be shown that this proposition holds. In other words, it shall be shown that weakening
the guard of an input action produces a conforming mutant. The proof will be performed in two steps. In
the first step, it will be shown that the execution of actions leads to product states containing exactly one
relevant state and that

∧
v∈VS v = mutv(v) holds for these relevant states. The second step is based on

the first step and will prove that the non-conformance condition is unsatisfiable for all product states in
the deterministic symbolic synchronous product graph ASP ×siocodet ASS(d).

Step 1. It is possible to distinguish two cases for this proof, the execution of input actions and the
execution of output actions. The execution of input action actions shall be investigated first.

Therefor, a proof by induction shall be performed for the statement that the execution of input actions
in a product state (κ, µ), with µ = {(ϕ, ρ)} and κ containing exactly one relevant state (ψ, ρ) will yield
a product state (κ′, µ′), with µ′ = {(ϕ′, ρ′)} and κ′ containing exactly one relevant state (ψ′, ρ′). Note
that the symbolic state vectors ρ and ρ′ are the same for both specification and implementation.

For the induction base, a product state (κ, µ) reached by executing a sequence of output actions shall
be considered. Let (κ, µ) be a product state, such that qinit

σ
=⇒ (κ, µ) for some σ ∈ (ΛU ∪ {δ})∗ and let

(κ′, µ′) be a product state, such that (κ, µ)
λi=⇒ (κ′, µ′) for an input λi ∈ ΛI . Since σ contains only non-

mutated output actions execneg is not applied for any action in σ. Hence, it holds that κ = µ = {(ϕ, ρ)}.
The execution of an input action λi leads to the states

κ′ = {(ϕ ∧ ψP [ρ], ρ′), (ϕ ∧ ¬ψP [ρ], ρ)} and

µ = {(ϕ ∧ ψS [ρ], ρ′)}, where (λi, ψP , π) ∈→P and (λi, ψS , π) ∈→S .

The state (ϕ ∧ ψP [ρ], ρ′) and (ϕ ∧ ψS [ρ], ρ′) have the same symbolic state vector because the mutation
does not affect the state update π. It shall now be shown that (ϕ ∧ ¬ψP [ρ], ρ) is an irrelevant state.

ϕ ∧ ¬ψP [ρ] ∧ ϕ ∧ ψS [ρ]
!⇔ ⊥

⇔ ϕ ∧ (ψS [ρ] ∧ ¬ψP [ρ])

Case 1: λi 6= λmut ⇒ ψP = ψS

⇔ ϕ ∧ (ψS [ρ] ∧ ¬ψS [ρ])⇔ ϕ ∧ ⊥ ⇔ ⊥
Case 2: λi = λmut ⇒ (ψS [ρ]→ ψP [ρ])↔ >⇒ ¬(ψS [ρ]→ ψP [ρ])↔ ⊥⇔ (ψS [ρ] ∧ ¬ψP [ρ])↔ ⊥
ϕ ∧ (ψS [ρ] ∧ ¬ψP [ρ])⇒ ϕ ∧ ⊥ ⇔ ⊥

Chapter 4. Optimisations 69

The base step fulfils the statement which shall be proven because (ϕ ∧ ¬ψP [ρ], ρ) has been shown
to be an irrelevant state. Furthermore, the only relevant state (ϕ ∧ ψP [ρ], ρ′) in κ′ contains the same
symbolic state vector ρ′ as the specification state (ϕ ∧ ψS [ρ], ρ′).

For the induction step, a product state (κ, µ) reached after an arbitrary sequence of actions shall be
considered. According to the induction hypothesis µ = {(ϕS , ρ)} and κ = {(ϕP , ρ)} ∪ κirr, such that
(ϕP , ρ) is a relevant state and κirr contains only irrelevant states. The execution of an input action λi
leads to the product state (κ′, µ′), such that

κ′ = {(ϕP ∧ ψP [ρ], ρ′), (ϕP ∧ ¬ψP [ρ], ρ)} ∪ κ′irr and

µ = {(ϕS ∧ ψS [ρ], ρ′)}, where (λi, ψP , π) ∈→P and (λi, ψS , π) ∈→S .

Since it has been shown in Section 4.9 that the execution of actions in irrelevant states will lead to
irrelevant post-states, κ′irr does not contain relevant states. It has to be shown that (ϕP ∧ ¬ψP [ρ], ρ) is
an irrelevant state.

ϕP ∧ ¬ψP [ρ] ∧ ϕS ∧ ψS [ρ]
!⇔ ⊥

⇔ (ϕP ∧ ϕS) ∧ (ψS [ρ] ∧ ¬ψP [ρ])

Case 1: λi 6= λmut ⇒ ψP = ψS

⇔ (ϕP ∧ ϕS) ∧ (ψS [ρ] ∧ ¬ψS [ρ])⇔ (ϕP ∧ ϕS) ∧ ⊥ ⇔ ⊥
Case 2: λi = λmut ⇒ (ψS [ρ]→ ψP [ρ])↔ >⇒ ¬(ψS [ρ]→ ψP [ρ])↔ ⊥⇔ (ψS [ρ] ∧ ¬ψP [ρ])↔ ⊥
(ϕP ∧ ϕS) ∧ (ψS [ρ] ∧ ¬ψP [ρ])⇒ (ϕP ∧ ϕS) ∧ ⊥ ⇔ ⊥

Hence, the statement holds for the induction step as well and it follows that the statement is true.
Since execneg is not applied for output actions, the execution of outputs in a product state containing one
relevant state will lead to post-states containing at most one relevant state. As the path condition of this
state is required to be satisfiable, it must contain at least one relevant state. It follows that the execution
of arbitrary actions in arbitrary states leads to post-states with exactly one relevant state.

The assumption
∧
v∈VS v = mutv(v) holds for all relevant states, because the mutation does not

affect the state update mappings. It may be violated after the application of execneg but it has been
shown that applying execneg leads to irrelevant states.

Step 2. It shall now be proven that the non-conformance condition is unsatisfiable under the given
assumptions. Let (κ, µ) be product state, where µ = {(ϕS , ρ)} and κ = {(ϕP , ρ)} ∪ κirr, such that
κirr contains only irrelevant states and (ϕP , ρ) is a relevant state. Hence, the product state adheres to the
conditions which have been shown to hold.

Unsatisfiability of Non-conformance Condition for Weakened Guards.

The non-conformance condition has the form: ∨
(γP ,πP)∈κ

γP ∧ ψ[πP]

 ∧ ϕS ∧ ¬ (ϕS ∧ ψ[ρ])

where λ ∈ ΛU ∪ {δ}
and ∃ηP : (λ, ψP , ηP) ∈→P ∪{(δ,∆P , id)}
and ∃ηS : (λ, ψS , ηS) ∈→S ∪{(δ,∆S , id)}
and ψP = ψS = ψ because an input is mutated

Chapter 4. Optimisations 70

⇔

 ∨
(γP ,πP)∈κirr

γP ∧ ψ[πP]

 ∨ (ϕP ∧ ψ[ρ])

 ∧ ϕS ∧ ¬ (ϕS ∧ ψ[ρ])

⇔

 ∨
(γP ,πP)∈κirr

γP ∧ ϕS ∧ ψ[πP]

 ∨ (ϕP ∧ ψ[ρ] ∧ ϕS)

 ∧ ¬ (ϕS ∧ ψ[ρ])

irrelevant⇔ (⊥ ∨ (ϕP ∧ ψ[ρ] ∧ ϕS)) ∧ ¬ (ϕS ∧ ψ[ρ])

⇔ (ϕP ∧ ψ[ρ]) ∧ (ϕS ∧ ¬ (ϕS ∧ ψ[ρ]))

⇔ (ϕP ∧ ψ[ρ]) ∧ (ϕS ∧ (¬ϕS ∨ ¬ψ[ρ]))

⇔ (ϕP ∧ ψ[ρ]) ∧ ((ϕS ∧ ¬ϕS) ∨ (ϕS ∧ ¬ψ[ρ]))

⇔ (ϕP ∧ ψ[ρ]) ∧ (ϕS ∧ ¬ψ[ρ])⇔ ϕP ∧ ϕS ∧ (ψ[ρ] ∧ ¬ψ[ρ])⇔ ϕP ∧ ϕS ∧ ⊥ ⇔ ⊥

It follows that a simplified conformance check can be based on the observation that a mutation which
solely weakens the guard of an input action of a deterministic specification produces a conforming mu-
tant. Such a conformance check is given as a snippet of pseudo code in Algorithm 6. In contrast to
Algorithm 2, which checks for non-conformance, Algorithm 6 rather checks for conformance. Further-
more, this algorithm can only be applied in conjunction with another conformance check because: (1) it
requires strict preconditions and (2) if it is not successful, it cannot draw any meaningful conclusion.
Stated differently, if all preconditions of Algorithm 6 are met and it detects that the guard of the mutated
input action is not weakened, it cannot decide whether the considered mutant conforms to the specifica-
tion. Such a decision requires further checks, for instance through the application of Algorithm 2.

Although the applicability of Algorithm 6 is limited, it introduces a significant speed-up in those
cases where it can be applied. The performance gain results from the fact that generally, the product
graph needs to be explored up to the maximum depth for conforming mutants. Furthermore, if the check
detects that the guard is not weakened, it does not result in a large computational overhead as only one
additional satisfiability check is needed. The check given in Algorithm 6 shall therefore be added to the
siocoCheckInit-function defined in Algorithm 2.

Algorithm 6 first determines whether the considered action systems are indeed deterministic by
checking whether they contain internal actions τ (Line 1). Afterwards, the other assumptions are verified
to hold. If ¬intOrOutMut is true (Line 1), then the mutation affects an input and if ρS = ρP (Line 4),
then the mutation affects the guard. The formula

(∧
v∈VS v = mutv(v)

)
→ (ϕS → ϕP) is checked

rather than ϕS → ϕP to account for the assumption that the states of implementation and specification
are equal. If it is a tautology, the action systems are conforming (Lines 4 to 6).

Algorithm 6 Check if guard of mutated input action is weakened

1: if |{(τ, ϕ, ψ) | (τ, ϕ, ψ) ∈→S}| = 0 ∧ ¬intOrOutMut then
2: (λ, ϕS , ρS)← tS such that tS ∈→δS and actName(tS) = mutAction
3: (λ, ϕP , ρP)← tP such that tP ∈→δP and actName(tP) = mutAction

4: if ρS = ρP ∧
(∧

v∈VS v = mutv(v)
)
→ (ϕS → ϕP) is a tautology then

5: return conforming
6: end if
7: else
8: . . . perform non-conformance check . . .
9: end if

5 Application of the Conformance Check

The sioco conformance check discussed in the last two chapters may be used for both model-based
mutation testing and model-checking. Hence, an overview of both intended application areas shall be
given in this chapter. At first, the general structure of the model-based testing process proposed by this
thesis will be described. However, two steps involved in the process will be discussed in more detail.
The chapter will be concluded by a discussion of the applicability of the conformance check to model-
checking.

5.1 The Model-Based Testing Process

The model-based testing process actually consists of two subprocesses, the test case generation process
and the actual testing of applications using the derived test cases. In the first phase, several first-order
mutants of a specification are generated. These mutants are then checked for conformance against the
specification using the algorithm presented in Section 3.2. Test cases are derived from the results of the
conformance check. These test cases and the original specification form the basis of the second stage,
the test execution stage.

Since the type and effectiveness of test cases is governed by the mutation step performed in the
first phase, this step will be investigated more closely. While other steps such as the mutation analysis,
precomputation and the sioco check have already been discussed in great detail, test case execution has
not been discussed so far. Hence, the actual execution of test cases shall also be examined narrowly, as it
requires symbolic execution as well and thus is a complex task.

5.1.1 Test Case Generation Phase

The goal of the test case generation phase is to generate a set of abstract symbolic test cases based
on a given specification and mutated versions of this specification. A test case shall produce a fail-
verdict if it is executed on an SUT which implements the mutated specification corresponding to the test
case. Hence, witnesses of non-conformance between mutants and specification shall serve as the basis
for testing, as they encode conditions in which non-conformance of implementations may be observed.
More specifically, in this thesis witnesses of non-conformance are actually considered symbolic test
cases, which are processed in the test case execution phase. The process used to generate such test
cases can be further subdivided into consecutively performed steps, which apply transformations on the
specification and the results of preceding steps. A description of each of the steps and artefacts involved
in the test case generation process will be given in the following, whereby their relation to each other
will be highlighted. The process is also depicted in Figure 5.1a.

Specification. The specification is an action system written in the language defined in Section 2.3.1. It
models the intended behaviour of a software system.

Parsing. The parsing step transforms the specification given as text into an Abstract Syntax Tree (AST).
If the specification contains syntax errors, those are printed to the console and the test case gener-
ation is aborted.

Mutation. In the mutation step, the specification given as AST is systematically altered using a config-
urable set of mutation operators. A mutation operator inserts errors belonging to a certain class
of errors into the specification. As a result, a set of mutated copies of the specification is pro-
duced. These mutated copies are also called mutants and since each mutant contains exactly one
error, they are referred to as first-order mutants. The mutants serve as implementations for the
conformance check. Optionally, they may be written to disk for debugging and documentation
purposes.

71

Chapter 5. Application of the Conformance Check 72

(a) The steps performed during sioco checking. Steps
and artefacts specific to model-based mutation test-
ing have dashed borders.

(b) The steps and artefacts involved in the test case exe-
cution.

Figure 5.1: The model-based testing process

Syntactic Mutation Analysis. The syntactic mutation analysis performs the steps given by Algorithm
4, which include for instance the determination of the mutated action of a mutant.

Type-Checking. In the type checking step, type information is propagated to all nodes in the AST and
error checks are performed. The test case generation is aborted, if the specification contains errors.
This step utilises the results of the syntactic mutation analysis by considering only the mutated
actions of mutants, as data concerning unmutated actions can be retrieved from type checking
results of the specification.

Translation. In this step, the specification and the mutants are transformed into their respective symbolic
representations. More specifically, the translation component maps ASTs containing type informa-
tion into objects defined by the Java-Application Programming Interface (API) of the SMT-solver
Z31 to express terms and formulas. As in the type-checking phase, results from the syntactic muta-
tion analysis may be used for first-order mutants, because it is not necessary to translate unmutated
actions.

Precomputation. During precomputation, a symbolic execution graph of the specification is created
and sets of reachable actions are computed following the approaches described in Chapter 4.

sioco-Check. In this step, each mutant is checked for sioco-conformance against the specification. This
either produces the verdict that the mutant conforms to the specification or it produces a wit-
ness of non-conformance. A witness of non-conformance as discussed in Section 3.1.3 is a pair
consisting of a trace leading to an unsafe product state and a satisfiable formula capturing the
non-conformance condition for a single action.

Test Case Generation. Since the original action system specification is processed during test execution
to derive test verdicts, the implementation of the test case generation is rather simple. The symbolic
test cases created in this step are mere serialisations of the witnesses of non-conformance, which
are not further modified.

1A discussion concerning the choice of SMT-solver and API is given in Chapter 6.

Chapter 5. Application of the Conformance Check 73

Type of Test Cases and Mutation

The following discussion will focus on the type of generated test cases and the mutation step which influ-
ences these test cases. It aims at answering the question, as to what aspects are tested. Aichernig closely
investigated the model-based mutation testing approach in his habilitation thesis [2]. Consequently, the
discussion of tested aspects will be based on this thesis.

Mutation. However, prior to this, a technical overview of the implemented mutation component shall
be given. As noted above the mutation step syntactically alters the specification creating a set of mutants.
Stated differently, the mutation step introduces small faults into the specification. All mutated implemen-
tation are first-order mutants of the specification. The type of errors is governed by a configurable set of
mutation operators [57], which perform the actual mutation. Some typical mutation operators, supported
by the Mothra system [61], are listed by Jia and Harman [57]. The operators available for mutating action
systems are given in Table 5.1. Most of them correspond to a restricted portion of the operators offered
by Mothra [61]. The mutation component is designed to be extensible through the implementation of
further mutation operators. However, mutation is restricted to the init-block, to the guard of an action
and to the state update of an action. This restriction is placed on mutation mainly for two reasons:

• Focus on first order mutants: Other types of mutations may require further mutations.

• Applicability of the conformance check: For the conformance check to be applicable, both spec-
ification and implementation must define the same set of actions using equivalent parameter lists.
Hence, mutations must neither affect parameter lists, nor add or delete actions.

Type of Tests. Model-based mutation testing is a fault-based approach to test case generation. Usually
tests are generated from counterexamples for conformance between the specification model and some
mutant model. As a result, a test generated for some faulty mutant model M would detect a fault in an
implementation of M . Hence, the tests generated by this approach test for the absence of faults. Since
only specific faults specified through mutation operators are checked, the famous statement of Edsger
Dijkstra ”Program testing can be a very effective way to show the presence of bugs, but it is hopelessly
inadequate for showing their absence.” [41] remains true in general.

Nevertheless, it is an encouraging observation that testing can guarantee the absence of faults. But
there are limitations that apply. If it is not possible to model a fault then its absence cannot be guaranteed
either. A fault may be impossible to model if there exists no corresponding mutation operator, or if the
fault cannot be expressed at the level of abstraction of the specification model. Furthermore, the absence
of faults can actually only be guaranteed for deterministic systems. In order to guarantee the absence of
faults in non-deterministic systems it is necessary to assume fairness over the non-deterministic choice
of actions. It needs to be assumed that all non-deterministic branches are eventually executed, if the
generated tests are performed sufficiently often. However, this is actually a common assumption in
black-box testing.

Concluding the statements above, model-based mutation testing aims to show absence of faults, thus
it is rather a falsification approach than a verification approach. The type of errors, which are checked by
the test cases shall be revisited in the following. Essentially they are given through the mutation operators
that are applied.

However, the coupling effect, which is generally assumed to hold, states that simple errors are cou-
pled to complex errors such that test data that finds simple errors also finds complex errors [57, 71].
Hence, generated test cases may also detect errors which have not been modelled explicitly. The as-
sumption that tests generated for fine-grained faults will also cover coarse-grained faults has also been
made for one case study performed by Aichernig et al. [4] in the context of model-based mutation testing.
Its validity has been supported by experimental results.

Chapter 5. Application of the Conformance Check 74

Operator Name Description

replace Boolean by True replaces a Boolean expression by the
Boolean constant True

replace Boolean by False replaces a Boolean expression by the
Boolean constant False

replace relational operator replaces a relational operator defined for
numerical values by <, ≤, > or ≥

invert addition replaces an addition expression for a
subtraction and vice versa

increment adds one to a constant or a variable

decrement subtracts one from a constant or a vari-
able

change enumeration constant replaces an enumeration constant for an-
other enumeration constant of the same
type

negate Boolean negates a Boolean expression

remove function/operator application replaces the application of a function/-
operator with one of its parameters (cur-
rently implemented for a restricted set of
functions/operators)

Table 5.1: The action system mutation operators

A specific type of fault, which is not explicitly modelled but checked by tests generated through sioco
conformance checking is ignoring of inputs. It has been stated in Section 4.4 that angelic completion
can be seen as a mutation. Hence, through the application of angelic completion the effect of ignoring
certain inputs is checked. It should be noted that the set of ignored inputs is affected by mutation. A
mutation may for instance strengthen a guard such that a lower number of parameters is accepted. More
inputs would be ignored through angelic completion as a consequence of such a mutation,.

5.1.2 Test Execution Phase

The testing strategy applied in this thesis is model-based, which means that the model can be used to
generate tests and also to infer test verdicts [80]. However, symbolic test cases, as produced by the
described process, do not state how to choose verdicts. Such verdicts are rather assigned through an
online-testing phase driven by both test case and model. During this phase the test case defines stimuli
that shall be sent to the SUT, while the model serves as the test oracle. This testing process shall be
discussed in more detail below.

Chapter 5. Application of the Conformance Check 75

Overview

In the test execution phase, abstract symbolic test cases consisting of a trace and a formula are interpreted
by a test driver and executed on an SUT. The traces specify which actions need to be executed and the
formula specifies the conditions, which need to be satisfied by action parameters. After the execution of
the last action of a trace, one last observation of the SUT’s operation is evaluated.

Since this way of executing tests does not make any assumptions about the kind of formula used in a
test case, it is not only applicable for model-based mutation testing, it may be used for other types of tests
as well. In order to execute boundary value tests for instance, the formula could specify that boundary
values should be chosen for parameters of input actions.

Concerning model-based mutation testing, the formula in addition to the trace directs the test execu-
tion to states in which non-conformance would be observed, if a mutated specification was implemented
by the SUT. Hence, the goal of the test case execution is to reach such a state and to check if the SUT
conforms to the model in this state. However, such a state may not be reached, if the SUT performs an
action not expected by the test case. This may happen if the SUT does not conform to the specification,
which leads to a fail-verdict. But it may also happen if the SUT conforms to the specification, because
action systems allow for underspecification, thus a system may non-deterministically produce any output
of a set of enabled outputs. Such a case would lead to an inconclusive-verdict. An inconclusive-verdict
is used to signal that although non-conformance was not detected, the goal of the test was not fulfilled.
The unsafe state was not reached during test case execution. As noted above, the verdicts are inferred
via an interpretation of the model. The steps and artefacts involved in the testing process shall be shortly
described:

Parsing, Type-Checking and Translation of Specification. The specification must be executed sym-
bolically because it is needed for assigning verdicts. As a result, it must be parsed, type-checked
and translated. These steps are performed identically in the test case generation phase.

Parsing of Test Cases. In this step, the trace of actions and the condition associated with a test case are
parsed.

Symbolic Execution of Traces. This precomputation step is performed before each test case. It deter-
mines all compound symbolic states reachable by executing the trace of actions without consider-
ing the condition associated with the test case.

Test Bridge. This component implements a communication channel used to exchange messages be-
tween test driver and SUT.

Test Case Execution. During test case execution, concrete parameter values are chosen for input ac-
tions, which are executed on the SUT. Additionally observations of the SUT are evaluated and
thereby checked for conformance.

Verdict. One of three different verdicts may be assigned:

Fail. A fail-verdict is assigned, if the test case execution detected non-conformance of the SUT.

Inconclusive. An inconclusive-verdict is assigned, if the test case execution did not detect non-
conformance, but did not reach a concrete unsafe state after the execution of the trace either.

Pass. A pass-verdict is assigned, if the test case execution did not detect non-conformance and
reached a concrete unsafe state after the execution of the trace.

A concrete unsafe state is a product state interpretation, which satisfies the non-conformance con-
dition formed with respect to the specification and a non-conforming mutant. Hence, a concrete
unsafe state may be reached after simultaneously executing a sequence of actions with concrete
parameters on specification and mutant. Consequently, an SUT implementing the mutant may
show non-conforming behaviour if such a state is reached.

Chapter 5. Application of the Conformance Check 76

structure TestBridge{
sendInput(event : ΛI × P(I × U)) : Unit

receiveOutput() : (ΛU ∪ {δ})× P(I × U)

}

Figure 5.2: Specification of the test bridge signature

Test Driver Structure and Execution Algorithm

Since the test cases are symbolic, the test driver, which executes those test cases, needs to deal with
symbolic computations as well. In the following, a high-level view of a test driver based on symbolic
execution will be presented. This test driver has prototypically been implemented in the course of this
thesis, but test case execution will not be evaluated in depth. The effectiveness of test cases generated
through model-based mutation testing with an underlying ioco checker has for instance been examined
by Aichernig et al. [4].

Roughly speaking, it is necessary to deal with two situations during test case execution:

• an input needs to be chosen and sent to the SUT,

• or an observation of the SUT is made and needs to be evaluated. An observation may either be an
output action or quiescence, the absence of outputs.

This simplified view ignores a subtle problem related to so-called mixed states, which needs to be
addressed for testing performed in a production setting. Mixed states are states in which both input
and output actions are enabled [4]. Nevertheless, based on this view, it is possible to reason about the
structure of the test driver.

It is obviously necessary to somehow communicate with the SUT. In order for the test driver to be
generally applicable, this communication is kept abstract and should be implemented with respect to the
actual SUT. Hence, a test bridge responsible for communication is introduced and its signature is defined
as in the pseudo-code given in Figure 5.2. It is a structure offering two methods, one for receiving outputs
and one for sending inputs. Since the test bridge handles concrete events, an event is a pair consisting of
an action label and a set of key-value pairs, where the value defines the concrete value of the parameter
given by the key. The type Unit corresponds to a void-return type in C-like languages.

For the remaining discussion, a symbolic test case tc = (σ, ξ) is assumed to be given, where σ =
σ1 · σ2 · · ·σn ∈ (Λ ∪ {δ})∗ is a trace of actions and quiescence observations and ξ ∈ F(În ∪ I) is an
associated condition. More concretely, ξ must satisfy free(ξ) ⊆

⋃
i≤n ri(para(σi)) ∪ I. This means that

the constraints, which are represented by ξ, mention only indexed parameters, which occur on the trace
σ and non-indexed parameters. In the case of test cases derived via the sioco conformance checker, the
non-indexed parameters are the parameters of the observation leading to non-conformance.

Now it is necessary to discuss when and how inputs need to be chosen and sent. Analogously, it
shall be discussed when it is necessary to wait for outputs and how to evaluate them. The question as to
when an input should be sent and when an observation should be evaluated is actually straight-forward
to answer. During test case execution, each step σi shall be executed one after another. Hence, if σi is an
input action, an input needs to be sent, otherwise an output is expected to be received via the test bridge.
Note that outputs implicitly include quiescence as well, although strictly speaking, it is the absence of
outputs.

Recall the goal of test case execution for the choice of inputs. The goal is to reach a concrete unsafe
state and to observe conforming behaviour along the way and in this state. Consequently, σi should
be sent to the SUT if it is an input and the parameter values should be chosen such that they satisfy ξ,

Chapter 5. Application of the Conformance Check 77

as ξ encodes a condition satisfied by a (symbolic) unsafe state. If the current step σi in the trace is an
observation, the test driver should use the test bridge to receive an output, which may also be quiescence.
The evaluation of the received output, may lead to three different outcomes:

1. If the received output label is equal to σi and if the parameter values satisfy condition ξ, the test
execution continues with σi+1.

2. If the first condition does not hold, but the received output including the parameters is allowed by
the specification, the test execution stops with an inconclusive-verdict. This means that the test
goal of covering the injected fault has not been achieved.

3. If the received output including the parameters is not allowed by the specification, then the test
execution stops and a fail-verdict is issued.

After all steps from σ1 to σn have successfully been performed, the test driver should wait for another
output and check if it is allowed by the specification. If it is allowed, a pass-verdict is issued, otherwise
a fail-verdict is issued. This last step is performed, as an SUT implementing the mutated specification
would show non-conforming behaviour in the state reached after the nth step.

Before these considerations are formalised through the definition of a test driver algorithm, it should
be noted that there may be interdependencies between steps. This means that parameters of an action σi
may place constraints on the parameter values of an action σj later in the trace, that is, j > i. As a result,
the condition ξ should actually be updated after each step σi. The parameters para(σi) should be set to
be equal to the actual concrete parameter values. An implementation of a symbolic test driver is given
in Algorithm 7. It combines the precomputation step Symbolic Execution of Traces and the actual test
execution in one function to ease comprehension.

The algorithm takes a trace σ and an associated condition ξ as well as a specification action system
and a test bridge as input. An initialisation is performed in Lines 5 to 7. This includes the symbolic
execution of a τ -closure setting the initial state of the specification. Afterwards, a loop over all action
labels in σ is performed (Lines 8 to 32).

Inputs are executed in Lines 9 to 16, whereby concrete parameters for the currently processed input
σi are chosen according to condition ξ and sent to the SUT together with σi (Lines 11 to 13). Addi-
tionally, σi is symbolically executed with the specification action system (Line 10). Furthermore, the
concrete parameter values sent to the SUT are fixed in both the condition ξ and the symbolic state of the
specification (Lines 14 to 16).

Outputs are observed in Lines 18 to 30. They are only expected when the currently processed action
label σi is an output. In Line 19, the test driver waits for an output from the SUT with concrete parameter
values. Similarly to inputs, outputs are also executed symbolically (Line 20) and the concrete parameters
received from the SUT are set in both ξ and the symbolic state of the specification (Lines 20 to 22). If
the received output is not expected by the trace σ and the condition ξ, it is checked whether the output is
allowed by the specification (Lines 23 to 30). Disallowed outputs lead to fail-verdicts while unexpected,
but allowed outputs lead to inconclusive-verdicts (Lines 25 to 29).

Eventually, when all actions in σ have been processed, an unsafe would be reached. In order to
check whether the SUT implements the mutated specification, one last output from the SUT is received
and analysed (Lines 33 to 42). Allowed outputs lead to pass-verdicts, whereas outputs disallowed by the
specification lead to fail-verdicts. Since quiescence is considered to be an output, it is always possible to
receive an output without providing additional stimuli.

Lines 25 and 38 contain checks of path conditions of specification states. These lines highlight why
it is necessary to symbolically execute the specification in parallel to the test execution: symbolic test
cases neither state how to interpret the last output (Lines 33 to 42) nor how to interpret unexpected
outputs (Lines 23 to 30).

Chapter 5. Application of the Conformance Check 78

Algorithm 7 The symbolic test execution algorithm.

1: function ADDCONSTRAINT(state,constraint)
2: return {(ϕ ∧ constraint, ρ)|(ϕ, ρ) ∈ state}
3: end function
4: function TESTEXEC(specification,σ,ξ, testBridge)
5: 〈V, I,ΛI ,ΛU , ι, trans rel〉 ← specification
6: trans rel← trans rel ∪ {(δ,∆, id)}
7: state← taucl({(>, ι)})
8: for i = 1 to length(σ) do
9: if σi ∈ ΛI then

10: state← taucl(exec(state, guard(σi, trans rel), update(σi, trans rel)))
11: model← getModel(ξ)
12: concPara← {(p, getV alue(model, p))|p ∈ para(σi)}
13: testBridge.sendInput((σi, concPara))
14: equalConstraint←

∧
(p,v)∈concPara ri(p) = v

15: state←addConstraint(state,equalConstraint)
16: ξ ← ξ ∧ equalConstraint
17: else
18: (σrec, parameter) = testBridge.receiveOutput()
19: state← taucl(exec(state, guard(σrec, trans rel), update(σrec, trans rel)))
20: equalConstraint←

∧
(p,v)∈parameter ri(p) = v

21: ξ ← ξ ∧ equalConstraint
22: state←addConstraint(state,equalConstraint)
23: if σrec 6= σi ∨ ξ is not satisfiable then
24: pc←

∨
(ϕ,ρ)∈state ϕ

25: if pc is not satisfiable then
26: return FAIL
27: else
28: return INCONC
29: end if
30: end if
31: end if
32: end for
33: (σlast, parameter) = testBridge.receiveOutput()
34: state← taucl(exec(state, guard(σlast, trans rel), update(σlast, trans rel)))
35: equalConstraint←

∧
(p,v)∈parameter rn+1(p) = v

36: state←addConstraint(state,equalConstraint)
37: pc←

∨
(ϕ,ρ)∈state ϕ

38: if pc is not satisfiable then
39: return FAIL
40: else
41: return PASS
42: end if
43: end function

Chapter 5. Application of the Conformance Check 79

As noted before, mixed states might pose a problem in practice. In our current applications, which
are discussed in Chapter 7, we can safely assume synchronous communication, thus the test driver can
block outputs from the SUT, if inputs should be sent [12]. Hence, the problem of mixed states is solved
and the implementation of the test bridge is actually simple. However, this assumption may be too strong
in some cases [35]. In such cases, communication may be performed asynchronously and outputs may
arrive at any point in time. As a result, questions regarding the evaluation of outputs arise and the test
bridge implementation should for instance use message queues. However, a thorough discussion of these
issues is beyond the scope of this thesis.

This section discussed the main application area of the conformance check, which is model-based
mutation testing. In the first part, the test case generation was discussed while the second half focused on
test case execution. Although there is an explicit test-case generation phase, the testing approach cannot
be classified as offline-testing. It is rather a hybrid approach which combines offline- and online-testing.
In an offline-phase, symbolic test cases are generated, which are run subsequently. Since those test cases
do not contain conditions for assigning verdicts, a symbolic execution of the action system specification
must be performed in parallel. Hence, the actual testing process can be seen as online-testing.

In the following, the second application area of the conformance check will be discussed.

5.2 Model-Checking

Some of the steps performed during test case generation are specific to model-based mutation testing
based on first-order mutants of a specification, but some are also more generally applicable. The mutation
step, the test case generation step and the syntactic mutation analysis are specific to the model-based
testing approach and for this reason are shown with dashed borders in Figure 5.1a. The other steps
need to be performed for siocod conformance checks between action systems in general. Since the
sioco-conformance check performed during test case generation can be configured such that it does not
make assumptions about the structure of implementations, it may be used for arbitrary action systems
representing implementations.

Hence, the conformance check is more generally applicable and is not limited to test case gen-
eration. It may for instance be used to perform bounded model checking for the property of sioco-
conformance [20]. If the conformance check is performed for a sufficiently large exploration depth of
the product graph it is actually possible to perform a complete unbounded verification of sioco confor-
mance and thus also ioco conformance. Sufficiency of exploration depth with respect to a maximum
exploration depth d can be characterised as follows:

Proposition 5.1 (Sufficiency of Product Graph Exploration Depth).
Let ASS be an action system representing a specification, let ASP be an action system representing an
implementation, let SP = ASP ×siocodet ASS(d+ 1) be a deterministic symbolic synchronous product
graph, and let qinit be its initial state. If SP does not contain fail -states and if for all sequences of
actions and quiescence observations σ ∈ Λ∗δ , such that qinit

σ
=⇒ q, it holds

• that length(σ) ≤ d

• or that there exists a qeq and a σeq ∈ Λ∗δ such that qinit
σeq
==⇒ qeq, q ≡prod qeq and length(σeq) <

length(σ),

then d is sufficiently large. It follows that ASP siocod ASS for all d.

The two conditions specify situations, in which it is not necessary to explore traces any further,
because it would not uncover non-conformance. Consequently, if either of the conditions are met by all
traces in a product graph, the exploration depth does not need to be increased.

Chapter 5. Application of the Conformance Check 80

Another condition for sufficiency can be given by considering the optimised sioco checking algo-
rithm. If the search performed during sioco checking stops before reaching the maximum search depth
d then d − 1 is sufficiently large. The depth-first search backtracks before reaching depth d if a state is
reached,

• in which Product Graph Pruning as described in Section 4.2 would take effect, which corresponds
to the second condition,

• or if a state is reached of which all post-states are unsatisfiable. Such states satisfy the first condi-
tion.

One intended application area of model-checking for sioco conformance has been discussed in the
introduction in Section 1.5. The sioco conformance check could be applied during the stepwise devel-
opment of test models. It would thereby be possible to ensure ioco conformance between each pair of
consecutive models. As a result, refinements would be guaranteed to not introduce unwanted output
behaviour.

6 Implementation

The implementation of the sioco conformance checker and the corresponding environment will be dis-
cussed in this chapter. A more in-depth description of selected components involved in the model-based
testing process and in the model-checking process will be given for this purpose.

While the description of the sioco checking algorithm given in Section 3.2 aimed to be generally
applicable, the descriptions given in this chapter mainly focus on technology-specific issues and de-
tails relevant to the implementation. As a result, some parts of the following discussion will only be
relevant for implementations using SMT-solvers for checking satisfiability of first-order formulas and
more specifically for implementations using the SMT-solver Z3 implemented and maintained by Mi-
crosoft [37]. This restriction is actually not severe, as Z3 is a popular SMT-solver, often used for testing
and verification [22]. Furthermore, it would be possible to extend the implementation in order to support
several solvers, as there exists an input language called SMT-LIB v2 [15] which is supported by many
solvers.

Other technology-specific decisions are the choice to use the Scala language for the implementation
and the decision to use the Java-API to communicate with Z3. These decisions, however, are not a major
limiting factor for a reimplementation, as the only requirement for the implementation language is that
it must be possible to interact with Z3. Since Microsoft offers a C-API, this requirement is fulfilled by a
wide variety of commonly used programming languages.

While focusing on the most important technology-specific issues, this chapter will ignore details like
the class structure of the Scala-project, which implements the mutation-based test case generator.

6.1 Type System

The syntax definition given in Section 2.3.1 allows the utilisation of three different kinds of data types,
namely integer range types, enumeration types and the Boolean type. In order to enable more convenient
modelling of complex systems, an extension to this restricted type system was developed in joint work
with Benedikt Maderbacher. Additionally to the already mentioned kinds, the extended type system
allows for the definition of complex data types parameterised by other types. The data types available
through the type system extension comprise:

Set Data Types: sets of values of the same type

Map Data Types: sets of key-value pairs of the same type

Record Data Types: sets of key-value pairs of fixed size and possibly non-uniform value type

All types can be defined using the adapted nonterminal symbol TY PE given in Figure 6.1 and are
equipped with several standard functions like for instance a set membership check for set data types. In
addition to these complex data types, two additional predefined types have been introduced as well: Int
and Real modelling unbounded integers and unbounded real numbers respectively.

TY PE ::=[integer..integer]|[capid|capid]|
Set[ty]|Map[ty,ty]|{id : ty}

Figure 6.1: The extended TY PE nonterminal symbol, which was first defined in Figure 2.3. The
last option defines a record data type.

81

Chapter 6. Implementation 82

A type checker has been implemented which supports this extended type system. It places a restric-
tion on the types of action parameters, which forbids the combination of integer range data types with
complex data types. The reason for the introduction of this restriction is that the combination would
require complex guards. For instance, a guard of an action taking sets of integers in some range R would
need to state that all set elements must be inR. Hence, (nested) universal quantification would be needed
in translated guards, which would likely degrade performance significantly.

Both sets and maps have been implemented via the array-sort provided by Z3 [36]. Arrays as pro-
vided by Z3 essentially allow to store key-value mappings of arbitrary type. Furthermore, records and
maps also make use of algebraic data types.

A set in this context, is an array mapping from the type of elements to the Boolean type. In order to
denote the presence of an element e, a mapping from e to true is inserted. The element can be removed
by inserting a mapping from e to false , thus overwriting the mapping to true. Through setting the default
array value to false , it is possible to state that a set is initially empty.

Maps with key-value types (k, v) are implemented as arrays mapping from k to an algebraic data type
w. The data type w has two constructors, one constructor some which essentially wraps an element of
type v and one constructor none without parameters (this is inspired by the Option-data type provided
by Scala). The default value of a map is set to none, thus a mapping from a key ke to none denotes
the absence of elements with key ke. Conversely the presence of a key-value pair (ke, ve) is denoted
through the insertion of a mapping from ke to some(ve) into the array.

Records are implemented as special algebraic data types, which declare one constructor with one
parameter per record element. Furthermore, one accessor is declared for each record element.

Experiments performed during implementation revealed a defect in Z3’s handling of arrays1. The
bug has been reported and subsequently fixed.

6.2 Parsing and Mutation

The implementation of the parsing component has actually merely been adapted in the course of this
thesis. It has originally been developed by Benedikt Maderbacher during his Bachelor’s thesis under the
supervision of Bernhard Aichernig and thus will not be discussed in detail. The implementation uses the
parser combinator library provided by Scala [70] and creates AST-representations of action systems.

Based on these ASTs, mutations are performed through the application of the mutation operators
listed in Table 5.1. As can be seen from the table, the focus lies on models using simple data types,
as only the last mutation operator directly affects values of complex data types. Nevertheless, the other
mutation operators also affect models using complex data types.

Since the implementation of the mutation component did not require a major technology-specific
decision, it will not be discussed in great detail either. However, it should be noted that representing the
AST through Scala’s case classes allowed a concise recursive implementation.

6.3 Translation

The translation component maps ASTs of action systems to their SMT-representations, that is, it maps
to Java-objects which in turn reference objects provided by Z3. Since Z3 offers a rich functionality, there
exist direct translations for all expressions in the action system language. Nevertheless, two aspects of
the translation shall be discussed.

1Issue #173: https://z3.codeplex.com/workitem/173 (last visit: 23.11.2015)

https://z3.codeplex.com/workitem/173

Chapter 6. Implementation 83

6.3.1 Implicit Extension of Guards

In order to ensure that only valid values are assigned to variables of integer range types, action guards are
implicitly extended. These extensions constrain the possible values for both state and parameter variables
and are added to the original guards via conjunction. More precisely, for a variable v of type [a..b] the
guard of an action act is extended by

• v ≥ a ∧ v ≤ b if v is a parameter variable

• and by e ≥ a ∧ e ≤ b if v is a state variable and there exists an assignments v := e in act.

Similar constraints are created for values stored in complex data types, such as sets containing integers
in a given range. As a result, mutations of assignments may affect guards and thereby may disable the
execution of actions. The syntactic mutation analysis presented in Section 4.3 takes this into account by
comparing the syntactic structure of translated and extended guards.

6.3.2 Choice of API

Several factors were considered for the choice of the way of interacting with Z3. Actually three differ-
ent approaches have been used throughout the development until the Java-API was finally chosen. In
the first stage of development, expressions were translated to SMT-LIB strings [15] and parsed using
ScalaZ3 [62]. Since SMT-LIB is a standard format, it allows the use of different SMT-solvers. This
approach was inspired by the Scala implementation discussed by Aichernig et al. [7].

However, as all other formulas such as path conditions were stored in the SMT-LIB format as well,
it turned out that a significant amount of computation time was used for parsing and string manipulation.
As efficiency was considered to be more important than exchangeability of SMT-solvers, the ScalaZ3-
API was used more extensively in the second stage of development. In this stage, objects representing
SMT-terms and formulas were used rather than SMT-LIB strings.

This library, however, suffers from a serious drawback. The memory management is not suitable
for symbolic execution. For symbolic execution it is necessary to create a large number of objects
representing AST-nodes of SMT-formulas, which is done using objects of a class called Z3Context.
In the current implementation, a Z3Context-object o holds references to all created objects until the
deletion of o is performed. Stated differently, the library prevents the garbage collector from collecting
unused objects. As a result, the symbolic execution cannot be performed because an excessive amount
of RAM would be needed. Hence, the library is only applicable if the problem to be solved can be
partitioned into several smaller subproblems, which all use different Z3Context-objects.

For this reason, the final implementation uses the Java-API provided through the git-repository2

which also hosts the source code of the Z3 SMT-solver. This API implementation makes use of the
garbage collector and also releases the memory allocated by native code if unused objects are garbage-
collected. Beside this difference both API implementations are similar in terms of functionality.

6.4 Conformance Check

The conformance checking algorithm has been implemented as discussed in Section 3.2 and Chapter 4,
so only implementation relevant issues shall be discussed. Most of these issues arise from the fact that
checking equivalence of symbolic states is in general a difficult task, which may prevent the application of
some optimisations. As a result, configuration parameters have been introduced to be able to selectively
turn off optimisations and to select strategies for checking equivalence. Another reason to disable some
of the optimisations, is to be able to perform conformance checks between arbitrary action systems.

2https://github.com/Z3Prover/z3 (last visit: 12.11.2015)

https://github.com/Z3Prover/z3

Chapter 6. Implementation 84

6.4.1 Equivalence Checks

As noted above, equivalence checks are in general difficult to perform. This is caused by the fact that
checking equivalence involves deciding validity of quantified first-order formulas. While Z3 is able
to check satisfiability of many formulas containing quantifiers [36] (Ge and de Moura for instance list
decidable fragments of first-order logic modulo theories [48]) and efficient quantifier elimination proce-
dures are being developed [21], performing equivalence checks may still be impractical. This has been
concluded from experiments, which have shown that inefficient equivalence checks may result in a per-
formance loss, which can not be mitigated by pruning made possible through those checks. Equivalence
checking may also be inefficient in the sense that it is infeasible for a large number of symbolic states
of a model. In these cases, infeasible checks introduce a significant computational overhead and do not
allow to prune traces. Hence, disabling optimisations which build upon symbolic state equivalence may
make sense.

Equivalence Checks using SMT-solvers. The basic implementation of equivalence checks by means
of SMT-solving shall now be described. Let η = (ϕ, ρ)i and η′ = (ϕ′, ρ′)j be two symbolic indexed
states. Recall the first condition of symbolic state equivalence given in Definition 2.19, which corre-
sponds to the state inclusion condition for STSs [47]:

• JηK ⊆ Jη′K if for all ζ ∈ UV and a υ ∈ UÎi such that ζ ∪ υ |= (
∧
x∈V x = ρ(x) ∧ ϕ) there exists a

υ′ ∈ UÎj such that ζ ∪ υ′ |= (
∧
x∈V x = ρ′(x) ∧ ϕ′)

This condition needs to be encoded as first-order formula, which shall be based on the following four
observations:

• The existential quantification of valuations of parameter variables corresponds to the existential
quantification of all parameter variables.

• A conditional sentence can be modelled via implication.

• The condition must hold for all ζ ∈ UV , which may either be modelled using universal quantifica-
tion, or by checking if the unquantified formula is a tautology. The latter strategy shall be used in
order to avoid using additional quantifiers.

• It is only possible to check satisfiability of a formula γ → ψ with SMT-solvers, but not validity.
Stated differently, it is not possible to check if some formula is a tautology. Nevertheless, validity
of γ → ψ may be inferred if ¬(γ → ψ) = γ ∧ ¬ψ unsatisfiable, which can be checked with
SMT-solvers.

Hence, in order to show that JηK ⊆ Jη′K, it shall be checked if(
∃Îi

(∧
x∈V

x = ρ(x) ∧ ϕ

))
∧ ¬

(
∃Îj

(∧
x∈V

x = ρ′(x) ∧ ϕ′
))

is unsatisfiable. Since for equivalence, it must also hold that Jη′K ⊆ JηK, the formula(
∃Îj

(∧
x∈V

x = ρ′(x) ∧ ϕ′
))
∧ ¬

(
∃Îi

(∧
x∈V

x = ρ(x) ∧ ϕ

))

needs to be shown to be unsatisfiable as well. Alternatively, equivalence may be checked directly, thus it
may be shown that

¬

((
∃Îi

(∧
x∈V

x = ρ(x) ∧ ϕ

))
⇔

(
∃Îj

(∧
x∈V

x = ρ′(x) ∧ ϕ′
)))

Chapter 6. Implementation 85

is unsatisfiable. However, the implementation uses two separate checks, because they have shown better
performance in experiments.

An equivalence condition for compound symbolic states can analogously be derived as follows. Let
κi and κj be two indexed compound symbolic states and let ξi and ξj be defined by:

ξi =
∨

(ϕ,ρ)i∈κi

(∧
x∈V

x = ρ(x) ∧ ϕ

)

and ξj =
∨

(ϕ,ρ)j∈κj

(∧
x∈V

x = ρ(x) ∧ ϕ

)
κi ≡com κj if(
∃Îiξi

)
∧ ¬

(
∃Îjξj

)
and

(
∃Îjξj

)
∧ ¬

(
∃Îiξi

)
are unsatisfiable

Finally, a similar equivalence condition for product states shall be derived. Let (κi, µi) and (κj , µj)
be two indexed product states, where κi and κj are compound symbolic states of an implementation
ASP with state variables VP and µi and µj are compound symbolic states of a specification ASS with
state variables VS . Let ξi and ξj be defined by:

ξi =

 ∨
(ϕ,ρ)i∈κi

 ∧
x∈VP

x = ρ(x) ∧ ϕ

 ∧
 ∨

(ϕ,ρ)i∈µi

 ∧
x∈VS

x = ρ(x) ∧ ϕ

and ξj =

 ∨
(ϕ,ρ)j∈κj

 ∧
x∈VP

x = ρ(x) ∧ ϕ

 ∧
 ∨

(ϕ,ρ)j∈µj

 ∧
x∈VS

x = ρ(x) ∧ ϕ

(κi, µi) ≡prod (κj , µj) if(
∃Îiξi

)
∧ ¬

(
∃Îjξj

)
and

(
∃Îjξj

)
∧ ¬

(
∃Îiξi

)
are unsatisfiable

As discussed above, executing those checks may decrease performance in some cases, so a configu-
ration parameter disableEquiv has been introduced to disable equivalence checks. More concretely,
if disableEquiv is set to true then q ≡ q′ will always yield ⊥ without performing any checks.
Consequently all optimisations which utilise equivalence checks do not work if disableEquiv is set.
Another configuration parameter tryQuantifierElimation is available, to enable quantifier elim-
ination. If this parameter is set to true and an equivalence checks fails, quantifier elimination is applied
on the equivalence conditions and the equivalence check is performed again. The reason for performing
quantifier elimination only after explicit configuration is that quantifier elimination causes a performance
penalty if not needed.

Strategies. Z3 offers the possibility to define customised strategies for SMT-solving. These strategies
allow the combination of reasoning engines based on application-specific needs [38]. Since equivalence
checks constitute a different type of problem than other satisfiability checks, such as checks of path
conditions for instance, experiments with strategies have been carried out. These experiments led to
another further configuration parameter for choosing an equivalence check strategy. One of the following
strategies can be chosen:

Default. The default SMT-solver.

Default with Timeout. The default SMT-solver with a configurable soft timeout. This is actually not a
strategy, but could be implemented via a strategy.

Chapter 6. Implementation 86

Quantifier Elimination after Fail. This strategy applies the default SMT-solver and returns the result
if it is successful. If the default solver is not successful, quantifier elimination followed by the
default solver strategy is applied. The strategy can be expressed in SMT-LIB via:
(or-else smt (then qe smt)).

Quantifier Elimination after Timeout. This strategy applies the default SMT-solver for a configurable
amount of time and returns the result if it is successful. If it is not successful, quantifier elimination
followed by the default solver strategy is applied. The strategy can be expressed in SMT-LIB via:
(or-else (try-for smt x) (then qe smt)) where x defines the timeout.

As the last two strategies incorporate quantifier elimination, the tryQuantifierElimation-
parameter is only effective while using the first two strategies. It can be seen that there are redundan-
cies considering the combination of strategies and the tryQuantifierElimation-parameter. They
exist for evaluation purposes. Experiments involving these strategies showed that applying quantifier
elimination after a timeout can help to significantly reduce computation time. This is caused by the fact
that it may take very long for the default solver to fail. Motivated by the results, a similar configura-
tion parameter has been introduced for the conformance check, as checking for quiescence also involves
quantification.

During experiments involving the mentioned tactics, defects of Z3 have been detected and reported
to the development team3. The defects affected the strategy Quantifier Elimination after Timeout and
the qe-sat-tactic, which is not used anymore in the implementation. They caused wrong satisfiability
check results as well as segmentation faults. Since then, the issue has been resolved and newer versions
of Z3 do not show the detected erroneous behaviour.

6.4.2 τ - Divergence

In Section 3.1.1, it was mentioned that the symbolic execution tree of divergent action systems may be of
infinite size. In general, divergence may either result from loops of internal actions which reach some set
of equivalent symbolic states repeatedly or from executable sequences of internal actions, which reach
unbounded sets of concrete states when executed. The first condition is dealt with in Algorithm 3 by
pruning, while the latter can only be fulfilled if unbounded types are used for state variables, but cannot
be handled effectively by the algorithm. As a result, Algorithm 3 may not terminate, if equivalence
checks need to be disabled or if the second condition for divergence is fulfilled. To counter this problem,
a restriction on the applicability of the conformance shall be placed:
Remark (Restriction on Convergence of Specifications). The non-conformance check may only be per-
formed for

• convergent specifications

• or for divergent specifications for which

– there exists an upper bound on the number of concrete states reachable by executing internal
action sequences

– and for which it is possible to efficiently perform symbolic state equivalence checks.

Example 6.1 (Divergent Action System).
Let AS = 〈V, I,ΛI ,ΛU , ι,→〉 be an action system using unbounded integers as data, where V = {x},
I = {}, ΛI = {?input}, ΛU = {!output}, ι = {x 7→ 0} and→= {(?input, x = 0, {x 7→ 1}), (τ, x 6=
0, {x 7→ x + 1}), (!output, x = 3, {x 7→ 1})}. The action system is divergent because there exists
no upper bounded on the number of states reachable by executing internal actions. After executing the
input action, the internal action may be executed twice and followed by an output. But it may be executed
infinitely often as well and reach a new state after each execution by incrementing the state variable x.
Hence, this action system should not serve as specification for test case generation.

3Issue #196: https://github.com/Z3Prover/z3/issues/196 (last visit: 23.11.2015)

https://github.com/Z3Prover/z3/issues/196

Chapter 6. Implementation 87

Divergence of Implementations. Although by the restriction given above, the τ -closure calculation
will always terminate for specifications, it may not terminate for automatically generated mutants, espe-
cially if equivalence checks are disabled. Hence, it is necessary to place a limit on the number of recursive
applications of τcl. An action system representing an implementation is considered to be divergent, if this
limit is reached during the calculation of a τ -closure. In the implementation of the conformance check,
this limit can be set using the configuration parameter tauDivergenceLimit. It needs to be set to
a value high enough, such that the specification is not detected to be divergent. In most cases, mutants
detected to be divergent will contain τ -loops and thus will actually be divergent, but a too low value for
tauDivergenceLimit will lead to a wrong detection of divergence for action systems, which are
actually convergent.

Furthermore, another configuration parameter stopOnDivergence can be set to true, to stop the
conformance check if divergence is detected. In this case, the conformance check returns a trace to the
current product state and the path condition of this state. Considering model-based mutation testing, this
trace will detect an error in an SUT implementing the same error, thus also entering an infinite loop,
assuming that divergence was detected because of a τ -loop.

However, there is also a more pragmatic reason for the introduction of the configuration parame-
ter stopOnDivergence. Consider the detection of divergence during the calculation of a τ -closure
because of a τ -loop. The τ -closure will contain at least n symbolic states, where n is given by the
value of tauDivergenceLimit. In the next step, it is necessary to execute an action for all n states
and possibly also calculate a τ -closure. If the τ -loop is the result of a weakened guard of an internal
action then the number of states will most likely grow with increasing search depth, thus significantly
slowing down the exploration. If on the contrary divergence is detected because of a too low value for
tauDivergenceLimit, then the conformance check would be performed using a wrong implemen-
tation state, thus the check should be stopped as well.

6.4.3 Disabling Syntactic Mutation Analysis

By default, all optimisations of the conformance checking algorithm are enabled, but as some of them
assume that the implementation is a first-order mutant, it is possible to disable all optimisations based
on this assumption. This enables the utilisation of the conformance check for model-checking of the
property of sioco conformance between arbitrary action systems.

7 Case Studies

This chapter introduces case studies carried out in the course of this thesis. The case studies mainly deal
with models of three different systems and focus on mutation-based test case generation, with special re-
gard to the efficiency of the symbolic approach to conformance checking. For each of the three systems,
different models capturing the same requirements have been created. Consequently, action system mod-
elling and the effects of modelling styles on test case generation will also be discussed in this chapter.
However, a closer inspection of the effects of modelling styles in model-based mutation testing can be
found in Tiran’s Master’s thesis [76].

The first two system models specify the behaviour of a simple supplier, which is also used as an
example by Frantzen et al. [45]. Subsequently, the specification of a system measuring particle counts
in exhaust gas will be discussed. In the next part of this chapter, different models of a car alarm system
and corresponding experimental results will be presented.

Both the particle counter as well as the car alarm system served as a benchmark before. They have for
instance been used to evaluate a mutation-based test case generator [58], which may be configured to use
one of three conformance relations including ioco. As noted before, the concrete conformance checker
for ioco has been implemented by the author of this thesis and will therefore be used for an evaluation
of the efficiency of the symbolic approach. In order to evaluate the efficiency, a comparison between the
measurement results of the concrete ioco checker experiments and the sioco checker experiments will be
given. As mentioned in the introduction chapter, the symbolic ioco checker aims at improving upon the
runtime of the concrete ioco checker. Consequently, the measurements focus on runtime.

This chapter will be concluded by a discussion of experiments performed with models using complex
data types such as sets. Although the presented models are relatively simple, they are well-suited to
demonstrate limitations of the current implementation and highlight issues, which need to be overcome.

Measurement Setup. All experiments were conducted on a computer equipped with 8 GB RAM and
an Intel© Core™ i7 CPU running at 3.4 GHz. The runtime environment comprises the SMT-solver Z3
v4.4.1 and Scala v2.11 running in the Java Virtual Machine, with Java version 1.7.0 85, installed on
Ubuntu Linux 14.04. The Java-API provided by Z3 was used for the communication with Z3. Further-
more, all available optimisations were applied unless otherwise noted.

Since the conformance check is the most time-consuming step in model-based mutation testing, the
discussion will focus on this step. Corresponding experiments create a number of mutants and perform
conformance checks between the specification and every mutant. In order to discuss runtimes, the mean,
median, maximum and minimum duration of the conformance checks will be given. Additionally, the
precomputation time, the number of created mutants and the total runtime of all conformance checks for
one specification will be given as well.

The precomputation includes the creation of the symbolic execution graph and the calculation of
reachable actions for the specification. Hence, it is performed only once during test case generation.
Strictly speaking, precomputation includes parsing, type checking and translation, as well. Although
these tasks are performed once per action system, the computation time spent for them is negligibly
small and thus will be ignored.

7.1 Supplier

The first system is a simple supplier, which has been used as an example by Frantzen et al. to discuss
STSs and IOSTSs respectively and their symbolic semantics [45]. Initially, the supplier was only used
for testing, but it also demonstrates that there exists a simple translation from IOSTSs to action systems,
as long as each observable action label is used at most once to label a transition. Furthermore, it can be

88

Chapter 7. Case Studies 89

l0start l1 l2 l3

l4

l5

?rq<prod,quant>

rp:=prod,q:=quant

!gq<ref,prod,quant>

[prod = p & quant < q]

r:=ref

!refuse<prod>

[prod = p]

?ord<ref>

[ref = r]

τ

τ

!cancel<ref>

[ref = r]

!confirm<ref>

[ref = r]

Figure 7.1: Adapted version of the supplier STS [45], containing an additional observable action
refuse.

observed that the presence of internal actions has a negative impact on performance and that the symbolic
conformance checker is well-suited for this kind of models.

7.1.1 Specification

An adaptation of the STS-model is given in Figure 7.1. Each transition is defined by at most three lines,
where the first line defines the action label (gate) and its parameters (interaction variables), the second
defines its guard enclosed in square brackets and the last line defines its state update. Empty state updates
and guards equivalent to > are omitted. The model allows to request quotes for a given quantity of a
product through the action ?rq. Afterwards the quote may be granted through the action !gq, but only
for a lower quantity, or it may be refused through the action !refuse. If granted, the quote can be
ordered using ?ord. For an order, the system chooses non-deterministically between a cancellation
through !cancel and a confirmation of the order through !confirm.

Transformation into an Action System

The transformation of this model into an action system is straight-forward and involves the following
steps:

• Creation of integer range data types for the different variables.

This is actually optional, because the implementation offers a built-in unbounded integer type,
which could be used. But it eases testing of the symbolic conformance check, as it is possible
to also check ioco concretely if the state space is bounded. This allows to compare conformance
check results of both approaches.

• Definition of one state variable per state variable of the STS1.

• Creation of an enumeration data type Location, defining one constant per location.

• Definition of another state variable currentLocation of type Location, which is initialised
to the initial location label.

• Definition of an appropriate initialisation of all state variables.

• Each transition t is transformed into an action, such that
1State variables of STSs are actually called location variables. However, the term state variable is rather used to avoid

confusion with the variable currentLocation.

Chapter 7. Case Studies 90

– the constraint currentLocation == source location of t is added to the ac-
tion guard via conjunction,

– the assignment currentLocation := sink location of t is added to the state
update

– and the transition gate and interaction variables are transformed into an action label and
parameters respectively. The transition gate of observable transitions can be used directly,
but for each unobservable transition, a unique action label must be defined. This is because
all action system labels must be different on the level of concrete syntax in the version of
action systems considered in this thesis.

The action system model of the supplier is given below:

1 def SimpleSupplier
2 {
3 types {
4 Quantity = [1..100000];
5 ProductID = [1..10000];
6 RefID = [1..20000];
7 Location = [L0 | L1 | L2 | L3 | L4 | L5];
8 }
9 state {

10 rp : ProductID;
11 rq : Quantity;
12 currentLocation : Location;
13 refNr : RefID
14 }
15 init {
16 rp := 1;
17 rq := 1;
18 currentLocation := L0;
19 r := 1
20 }
21 actions {
22 ?rq(prod:ProductID, quant : Quantity) if currentLocation == L0 then {
23 rp := prod;
24 rq := quant;
25 currentLocation := L1
26 };
27 !gq(prod:ProductID, quant : Quantity, ref : RefID)
28 if currentLocation == L1 && rp == prod && quant < rq then {
29 rp := prod;
30 rq := quant;
31 currentLocation := L2;
32 r := ref
33 };
34 !refuse(prod:ProductID) if currentLocation == L1 && rp == prod then {
35 currentLocation := L0
36 };
37 ?ord(ref : RefID) if currentLocation == L2 && r == ref then {
38 currentLocation := L3
39 };
40 chooseCancel() if currentLocation == L3 then {
41 currentLocation := L4
42 };
43 chooseConfirm() if currentLocation == L3 then {
44 currentLocation := L5
45 };
46 !cancel(ref : RefID) if currentLocation == L4 && r == ref then {
47 currentLocation := L0
48 };
49 !confirm(refOut : RefID) if currentLocation == L5 && r == ref then {
50 currentLocation := L0
51 }
52 }
53 }

Listing 7.1: Simple Supplier action system

Chapter 7. Case Studies 91

deterministic model model with internals
precomputation 0.166 0.183

conformance
check

mean 0.011 0.019
median 0.007 0.012

max 0.096 0.14
min ∼ 0 ∼ 0
total 0.885 2.466

mutants 82 134

Table 7.1: Runtimes of operations involved in the test case generation for the supplier model. All
durations are given in seconds.

7.1.2 Results

Experiments have been performed for measuring the runtime necessary to generate test cases from two
versions of the supplier model. One deterministic model version does not involve internal actions,
but rather combines the internal action chooseCancel with the output cancel and the internal action
chooseConfirm with output confirm. The other model version with internal actions is shown in List-
ing 7.1.

The results of the runtime measurements as well as the number of mutants generated from each of
the models are given in Table 7.1. The maximum search depth has been set to 20 for these measurements
and the default strategy for equivalence checking has been used. Although the model is simple, the
measurement results show that the introduction of internal action has a negative impact on runtime.
They further show that the symbolic approach is able to efficiently handle large parameter spaces. The
action gq for instance has a potential parameter space of size 2 ∗ 1013 (without considering constraints
in the guard). A concrete conformance checker, which enumerates all possible traces, would most likely
fail to check conformance in reasonable time, thus the symbolic handling of parameters pays off because
the computations (including precomputation) needed for test case generation only take about 3 seconds
for the non-deterministic model.

7.2 Particle Counter

The comparison between the sioco-based and the ioco-based conformance was also presented at the
USE-workshop [12]. However, the runtime measurement results differ from those presented before
because the measurement setup changed. In order to reduce the runtime needed for processing other
models, the conformance check implementation was changed and a newer version of Z3 is used in the
current implementation. Unfortunately, these changes slightly increased the average runtime needed for
the particle counter.

The particle counter is a system used by AVL, an industrial partner of the TRUCONF project2. As
noted above, this use case has already been discussed and used in experiments in other publications such
as Jöbstl’s dissertation [58]. It is a device for measuring particle counts in exhaust gas and is used in
automotive testbeds of AVL. The model of the device specifies the intended behaviour of the control
logic, but does not deal with measurements in great detail.

The model needs to offer actions for:

• choosing different measurement modes, which determine whether accumulative or current particle
concentration is measured,

2http://truconf.ist.tugraz.at/ (last visit: 23.11.2015)

http://truconf.ist.tugraz.at/

Chapter 7. Case Studies 92

• setting a ratio, which determines the amount of particle free air, that is mixed with exhaust gas,

• performing a calibration

• and for performing maintenance tasks such as a leakage test or a response check.

For the action system model, the actions had to be divided into input and output actions. Input actions
correspond to commands, which can be issued via the user interface. Output actions may for instance
signal changes of the operating or system state as a result of command execution. Furthermore, outputs
may also signal that commands were rejected.

The particle counter is in one of eight different operating states, may communicate either in manual
or in remote mode and may be ready or busy. A command may be rejected if

• the particle counter is busy,

• the operating mode does not allow the execution of the command,

• or if the particle counter is in the wrong communication mode.

7.2.1 Specification and Modelling

As a result from previous work [58], there already existed two models of the particle counter, one is
expressed via UML and one is expressed using action systems. However, it was not possible to use the
existing model without any modification. Since the action system language used before is more complex
than the language used in this thesis, it was necessary to translate the original action system into the new
simpler language.

More concretely, the actions of the original action system model consist of several guarded com-
mands, rather than of one guarded command. Furthermore, an action in the old model defines an ad-
ditional guard, which affects all corresponding guarded commands. Due to the syntactic structure, the
guarded commands belonging to an action will also be referred to as nested guarded commands, because
they are enclosed in an action.

This modelling style is disallowed by the second well-definedness condition given for action systems
in Section 2.3.2. A possible solution to this problem would be to discard this condition and allow for
multiple guarded commands defining an action’s behaviour. Since this extension of the conformance
check would require several changes, it was not implemented for the following experiments. It will,
however, be discussed in Section 8.1.1. For the remainder of this chapter, the focus will remain on action
systems and the corresponding conformance check as presented in previous chapters.

Hence, a simpler approach involving translation is followed to generate test cases for the particle
counter. For each action act with label a, guard g and n guarded commands with corresponding guards
g1, g2, . . . , gn and state updates up1, up2, . . . , upn, n actions are created, with labels a1, a2, . . . , an,
guards g ∧ g1, g ∧ g2, . . . , g ∧ gn and state updates up1, up2, . . . , upn. Additionally, the newly created
actions are defined to have the same parameters and action type as act.

Altogether, 69 input and 20 output actions have been created through this translation. The state of
the new action system model is comprised of 10 variables and symbolic values are introduced through
26 parameter variables. Hence, the majority of actions does not define parameters. Nevertheless, sym-
bolic execution may be more efficient than concrete execution since the enumeration of all parameter
instantiations is time-consuming.

7.2.2 Results and Comparison

The measurement results for the conformance check are given in Table 7.2. Its first two columns shall
be utilised for a comparison between the concrete ioco checker and the symbolic ioco checker. For
this purpose, the maximum search depth was set to 20 for both applications and the and the default

Chapter 7. Case Studies 93

sioco ioco sioco (refactored model)
precomputation 179.45 0 183.63

conformance
check

mean 0.51 34.97 1.32
median 0.02 3.44 0.01

max 20.94 2.96h 17.4
min ∼ 0 0.03 ∼ 0
total 936.64 6.94h 3051.74

mutants 1846 714 2318

Table 7.2: The execution times for the conformance check of the original model of the sioco-based
and the ioco-based implementation are given in the first two columns. The execution
times of the sioco-based conformance check of the refactored model are given in the
third column. All durations are given in seconds, unless otherwise noted.

strategy for equivalence checking was used. The overall computation time needed by the symbolic
conformance check was about 937s for 1846 mutants, while the concrete conformance check needed
6.94h for 714 mutants. It should be noted though that the concrete conformance checker is applied for
test case generation from the original model defined using the more complex action system language with
nested guarded commands. Although similar mutation operators have been used, the different syntactic
structure induces a large difference in the number of mutants. Furthermore, it should be noted that the
symbolic conformance check needs a precomputation time of about 180s, whereas the concrete check
does not perform any precomputation.

It can be seen that on average, the symbolic approach is about 68.6 times as fast as the concrete
approach. This can be explained by looking at the mutant which caused the maximum runtime of the
concrete conformance checker. The mutated action of this mutant has a potentially large parameter space,
which is significantly decreased through the action’s guard in the unmutated version of the action. The
mutant, however, loosens this restriction by setting the guard to True and as a result, the conformance
check needs to enumerate all parameter combinations at each search step. Since the mutated action is
an input, the mutation does not cause non-conformance which necessitates a complete exploration of
the product graph. Hence, the concrete approach suffers from state space explosion or rather parameter
space explosion, which is not an issue for the symbolic approach. Conforming mutants are also called
equivalent and generally cause a large portion of runtime [4].

Furthermore, the ratio of the concrete median to the symbolic median is even larger than the ratio of
the concrete mean to the symbolic mean. On the one hand this means that the gap between the concrete
and the symbolic approach is even larger when long-running statistical outliers are excluded from the
comparison. Thus for usage in practice, an implementation of a timeout should be considered for the
symbolic approach, as this would result in exceptionally fast test case generation. If for instance, the
timeout would be set to be 0.05s, which is slightly larger than the median, the computation would take
less than 92.3s. In the worst-case, the conformance check of 924 of all 1427 non-conforming mutants
would result in a timeout such that test cases would be generated from 549 mutants. As a result, the test
suite generated about ten times as fast would still cover at least 37 per cent of the faults covered by the
complete test suite.

On the other hand, the larger relative difference between median and mean of the symbolic confor-
mance check suggests that the computation time of the symbolic check is heavier influenced by statistical
outliers than the concrete check. The reason is that the median is not as influenced by outliers as the mean
value, thus a large difference may indicate that there exists such an influence. A possible explanation is
that the concrete conformance check, as indicated above, is usually slow for conforming mutants. This
is an issue, which has been observed before in the context of concrete ioco checking [4]. While there are
exceptions like the mutant corresponding to the maximum runtime of the concrete checker, the actual
type of mutation has little influence on the runtime in many cases. This is not the case for the symbolic

Chapter 7. Case Studies 94

conformance check because it uses precomputed data until the mutation has been executed. As a result,
the depth at which a mutation is first executed influences the runtime. Hence, a conforming mutant may
be checked for conformance very fast if its mutations is executed at a large depth with only a few search
steps remaining. This leads to the conclusion that the runtime of the symbolic check can be harder to
predict. However, this statement is not a general fact about symbolic conformance checks since the
variation of runtimes is due to optimisations of the sioco check.

Now that the runtime of the sioco check has been discussed and compared to the runtime of the ioco
check, it remains to be shown that the comparison is fair and does indeed make sense. While the same
system is modelled, two different modelling styles have been used. The fact that the modelling style
differs for the symbolic and the concrete conformance check suggests that the performance increase may
at least partially be caused by the specific style used for the symbolic check. An argument reinforcing
this suspicion is that assigning unique identifiers to guarded commands in addition to the action names
adds information and thereby facilitates computation.

Furthermore, consider a situation during the symbolic conformance check, where the observation of
an output o1 is expected. This output o1 corresponds to the output o in the original action system with
nested guarded commands. Another output o2 would correspond to the same output o in the original
action system. However, a mutant producing the output o2 would be detected to be non-conforming and
the sioco check would be stopped, while in the original action system both outputs o1 and o2 correspond
to the same label o. As a result, non-conformance would not be detected by the concrete approach and
the search for conformance violations would be continued. Hence, adding unique identifiers may lead to
a larger percentage of non-conforming mutants and thereby to a decrease in runtime.

However, while the modelling style may influence computation time in general, it is not an issue for
the comparison considering the particle counter model. Firstly, because the nested guarded commands
corresponding to an action can be chosen deterministically in the unmutated model. In other words, the
guards are mutually exclusive, as there are no situations in which multiple guards of a single action are
enabled. Consequently, it is unlikely that a mutation could cause a mutant to issue an output with a wrong
identifier during the sioco check. The fact that the nested guards of an action are mutually exclusive also
implies that adding unique identifiers does not introduce new information.

Secondly, an investigation of the number of conforming mutants and necessary search depths for de-
tecting non-conformance permits the conclusion that the measurements performed with the symbolic and
the concrete approach may be compared. As mentioned above, Aichernig et al. noted that conformance
checking of conforming mutants causes a large portion of the overall computation time in model-based
mutation testing [4]. Hence, the number of conforming mutants needs to be considered for both ap-
proaches. Due to the fact that similar mutation operators have been used, it is about the same in both
cases, with about 22% for the symbolic approach and about 15% for the concrete approach. Given these
numbers, it could actually be assumed that the symbolic approach is slower.

In addition to the proportion of equivalent mutants, the computation time generally rises with the
search depth needed for detecting non-conformance. For this purpose, the search depth was continu-
ously increased for each mutant until non-conformance was detected or the maximum search depth was
reached. The necessary search depth values were stored. From these values, the median depth and the
mean depth have been calculated for both approaches. Even if only non-conforming mutants are con-
sidered, the mean and median depth are higher for the symbolic approach. More specifically, the mean
depth necessary to detect non-conformance is 10.2 for the symbolic approach and 8.3 for the concrete
approach, while the median depth values are 10 and 8 respectively. Thus, the sioco check could be
assumed to be slower based on necessary search depth as well.

Nevertheless, the different modelling style still implicitly modifies the interface of the system model,
while the original action system faithfully models the system’s interface. Hence, there may be event
sequences, which correspond to indistinguishable action sequences in the interpretation of the original
model, but which correspond to distinguishable action sequences in the interpretation of the new model
because of action renaming. While this fact does not significantly affect the conformance check of

Chapter 7. Case Studies 95

the particle counter according to the depth measurements, it needs to be considered by the test driver.
A test driver must remove the identifiers and use the original event names known to the system for
communication.

7.2.3 Refactored Model

An inspection of the particle counter model revealed that it contains actions, which are structured simi-
larly to other actions. Consequently, a refactored model was created by combining actions with similar
structure. The refactoring process did not follow a strict procedure like the action system translation, but
rather focused on reducing the number of actions at the expense of adding parameters to the combined
actions. Hence, it shall be illustrated through Example 7.1, which describes two steps in the process.

The refactoring reduced the number of output actions from 20 to 3 and the number of input actions
from 69 to 23 at the expense of introducing new parameter variables. More specifically, the number
of parameter variables was increased from 26 to 40. Although this is not a large increase in absolute
numbers, it is large in relation to the number of actions.

Example 7.1 (Refactoring the Particle Counter).
In order to understand the following snippets the purpose of the variables obs1,obs2 and obs3 needs to be
explained. These variables are of the integer range type OutputEvent and model a FIFO-Queue of size
3. Whenever an input command causes one or multiple state changes, the corresponding output events
are encoded as integers and enqueued. After that, an output action corresponding to the first event in the
Queue signals the state changes and dequeues the event. Two such actions are given below.

1 !spau_state1(ptime : Time)
2 if obs1 == 5 && ptime == 0 then
3 {
4 obs1 := obs2;
5 obs2 := obs3;
6 obs3 := 0;
7 };
8 !stby_state1(ptime : Time)
9 if obs1 == 7 && ptime == 0 then

10 {
11 obs1 := obs2;
12 obs2 := obs3;
13 obs3 := 0;
14 };

Listing 7.2: Two output actions in the original particle counter model

Since the structure of the actions is similar, they can be combined as shown in the following listing.

1 !dequeObs(event : OutputEvent,ptime : Time)
2 if ptime == 0 && obs1 == event && (obs1 == 5 || obs1 == 7) then
3 {
4 obs1 := obs2;
5 obs2 := obs3;
6 obs3 := 0
7 };

Listing 7.3: An action combining two output actions of the original particle counter model

While it is not necessary in principle to add a new parameter event, it is added to distinguish the
instantiations of the action dequeObs for the observation 5 and 7 respectively, as they correspond to
different events of the system’s interface.

In order to discuss a situation, where it is necessary to add an additional parameter for conditional
state updates another two snippets are given. Again, the first snippet defines a part of the original model
and the second defines a part of the refactored model.

Chapter 7. Case Studies 96

1 ?startMeasurement3()
2 if obs1 == 0 && !(aState == 1) && !(aState == 9) && busy == False && manual == False then
3 {
4 obs1 := 1;
5 obs2 := 0;
6 obs3 := 0;
7 };
8 ?startMeasurement4()
9 if obs1 == 0 && busy == True && manual == False then

10 {
11 obs1 := 1;
12 obs2 := 0;
13 obs3 := 0;
14 readyIn := 30;
15 };

Listing 7.4: Two input actions in the original particle counter model

Both actions share some enabling conditions and have the same effect beside updating readyIn differ-
ently, thereby it is possible to combine both as follows by introducing a new parameter for the post-state
of readyIn:

1 ?startMeasurementCombined(nextReadyIn : Time)
2 if obs1 == 0 && manual == False && (
3 (!(aState == 1) && !(aState == 9) && busy == False && nextReadyIn == readyIn)
4 || (busy == True && nextReadyIn == 30)
5) then
6 {
7 obs1 := 1;
8 obs2 := 0;
9 obs3 := 0;

10 readyIn := nextReadyIn
11 };

Listing 7.5: An action combining two input actions of the original particle counter model

The new action does the same as the two actions startMeasurement3 and startMeasurement4, but it
has a different interface. Although it seems as if the refactoring step removed the unique identifiers 3 and
4, it may still be possible to infer which of the original actions would have been executed based on the
parameter value of an execution of startMeasurementCombined. If the parameter is set to anything but 30,
startMeasurement3 would have been executed.

More problematic is that the parameter nextReadyIn makes a part of the state visible which is actually
ignored in the context of ioco. As a result, the modelling style used for the refactored model leads to a
stricter conformance check, since the check takes parts of the post-state of an action into account.

The reasoning behind this approach was that the symbolic conformance check is able to handle
parameters very well, because they are treated symbolically and not enumerated explicitly, thus adding
new parameters should not induce a large overhead in runtime. On the other hand, the path explosion
problem is a prominent problem in the area of symbolic execution [32], therefore a reduction in the
number of action should help reducing runtime, as it reduces the number of paths which need to be
explored.

Furthermore, the previously mentioned problem concerning the implicit modification of the interface
of the system is mitigated to some extend. A manual inspection suggests that the new reduced interface
better reflects the system’s interface as derived from the requirements. However, a closer analysis reveals
that the increased number of parameters actually causes the system to offer a more fine-grained interface,
which makes parts of the system state visible. In conclusion, the refactored version may have advantages
regarding manual comprehension of the model, its LTS-interpretation still has about the same number of
distinct paths as the model before refactoring. As mentioned in Example 7.1, this influences the sioco

Chapter 7. Case Studies 97

check as well. Since the parameters of an action are considered to be a part of its label, the sioco check
is sensitive to state changes if they are made visible through parameters.

Results

The measurement results are given in the third column of Table 7.2, whereby the default strategy was
used again for equivalence checking. The overall computation time needed by the symbolic conformance
check was 3051.74s for 2318 mutants. Although it was assumed that the time necessary to generate test
cases would drop, the precomputation time of 183.63s is about the same as for the original model with
unique identifiers. Even more surprising is the fact that the mean duration of the conformance check of
the refactored model is larger than the corresponding value of the original model. A simple interpretation
would be that the conformance check is not able to handle parameters very well. However, a closer
investigation gives further insights.

Firstly, it shows that the computation time is spent in different parts of the application. For this pur-
pose, the tool VisualVM3 and more precisely the profiling and sampling capabilities of it were employed.
This revealed that compared to the runtime for the original model, a larger portion of the runtime is spent
for satisfiability checking. During the conformance check of the original model, the satisfiability check-
ing time contributes 45.1 % to the overall computation time, while this portion rises to about 65.5 % for
the refactored model. It should be noted though that simplification of formulas, which is also performed
by Z3 and in turn decreases the time of satisfiability checks, makes up for 24.1 % of the conformance
checking time of the first-mentioned model and 13.4 % for the refactored model. Nevertheless, this can
be contributed to the larger number of different paths and thereby to the modelling style.

Secondly, a comparison between the original and the refactored model with regard to the number of
actions shows that the number of actions significantly dropped, especially the number of output actions,
as this number was decreased from 20 to 3. Since a larger number of actions allows for a more fine-
grained syntactic mutation analysis, this implies that the reduced performance can be attributed to less
effective optimisations.

However, like from the supplier model, it can be concluded that the symbolic conformance checker
is able to efficiently handle large parameter spaces. This is possible, because an explicit enumeration of
all parameters is not necessary. The action system contains for instance one action with five parameters
of finite types spanning a parameter space of size 1, 518, 750, while only a small portion of the parame-
ters actually satisfies the guard of the corresponding action. An enumerative conformance checker such
as Ulysses [3, 4] would most probably not be able to check such models unless it employs optimisa-
tions targeted towards situations in which only a small percentage of the parameter space needs to be
considered.

7.3 Car Alarm System

This section will discuss the specification and conformance checking of different models of a car alarm
system. Originally, it was provided by Ford as a use case within the EU FP7 project MOGENTES4.
Since then, it has served as a benchmark for various mutation-based approaches to test case generation:
for instance for model-based mutation testing based on refinement [9], based on ioco conformance [4]
and based on timed automata [10].

3https://visualvm.java.net/ (last visit: 04.10.2015): VisualVM is a trouble-shooting tool for the Java Virtual Machine (JVM)
and can for instance be used for profiling and sampling of Java-based applications with respect to memory consumption and
runtime.

4http://www.mogentes.eu (last visit: 6.10.2015)

Chapter 7. Case Studies 98

Figure 7.2: The car alarm system modelled via UML. This model has for instance also been used
in [4, 9].

7.3.1 Specification and Modelling

It is nicely suited for evaluating these different approaches, as it involves important features of reactive
systems, yet its specification is concise. More concretely, the following three requirements have to be
satisfied by the systems:

R1 Armed. The car alarm system has to be armed 20 seconds after locking and closing all doors includ-
ing the bonnet and the luggage compartment.

R2 Alarm. An alarm has to be activated, if one of the doors is opened by an unauthorised person while
the system is armed. The alarm consists of an alarm sound and of hazard flasher lights. The sound
has to be switched on for the first 30 seconds, while the lights have to be switched on for the first
5 minutes after activating the alarm. After the given periods of time, the respective alarm signals
have to be turned off.

R3 Deactivation. The alarm can be deactivated at any point in time by unlocking the car. Deactivation
is also possible, while the alarm is active.

A UML-model of the car alarm system is shown in Figure 7.2. The events, except those labelled with
numbers, are transformed into input actions of an action system, while the effects are transformed into
output actions. This means that the action system model contains for instance input actions for the event
Open and an output action named soundOff for signalling that the sound is deactivated. An event
labelled with a number n is a timed event, that is, the corresponding transition is fired after n time units
have passed.

Two different approaches to translating these events will be used in the following. In the first ap-
proach, all actions will be associated with a time parameter, which specifies the number of time units
that must pass, before the action can fire. Hence, the guard of the armedOn-action signalling that the
Armed-state has been entered contains the constraint that the time since the last event must be equal to
20 seconds. The second approach follows the intuition that the passing of time is observable, thus an out-
put action is added to the model, which signals that time has passed and increases the state of so-called
clock variables. The time constraints are formulated using these variables. This approach is inspired by
timed automata [64].

Chapter 7. Case Studies 99

A closer investigation of the UML-model reveals that the car alarm system contains several loops,
timing constraints and underspecification. The effect Active Alarms does not specify an order for
the activation of flasher lights and sound for instance. However, its state space is relatively small unless
continuous time is considered and stored via clock variables. As a result, one subsection will focus
on determining whether the symbolic approach can efficiently handle time. Another challenge is the
presence of loops, as these need to be detected through checking of symbolic state equivalence, which
may be time-consuming.

Consequently, a concrete approach may be better suited, as the detection of loops is easier in the
concrete case and because of the small state space. Nevertheless, the following experiments show that
the answer to the question, whether the symbolic or the concrete approach should be used, needs to take
the modelling style into account.

As before, it was not necessary to start modelling from scratch, but it was possible to build upon
existing models. The system has already been modelled as an action system [9] and as timed automa-
ton [10]. Additionally, Event-B models were provided by Severin Kann, who did his Bachelor’s thesis
under the supervision of Bernhard Aichernig. Each of these models will be translated in order to discuss
different aspects of the application of the sioco conformance check.

7.3.2 Translation of Action System Model

Since the translation of action systems with nested guarded commands has drawbacks, other ways of
translation should be considered as well. In the following, a procedure for translating such action systems
will be given, which makes use of internal actions and creates action systems with the same interface and
the same observable traces as the original system.

In order to understand the intuition behind the alternative approach to translation, consider the reason
why a direct translation is not possible: nested guarded commands have different effects, that is, state
updates are chosen depending on which of the guards are satisfiable. This is not possible in the action
system language used in this thesis, because each action may only have exactly one body. However, it is
possible to simulate the desired behaviour by executing an observable action under the same conditions
as in the original action system, but delegating the state update to an internal action. The internal action
should be executed under the same conditions as the corresponding nested guarded command in the
original model.

Hence, the translated action system shall execute alternating sequences of observable actions and
internal actions, which perform the state updates. In order to enforce that only those internal actions
are executed, which correspond to guarded commands of the last executed observable action, the state
needs to be extended by an additional variable storing the last observable action. Since nested guarded
commands may define conditions involving parameters, the state needs to be further extended. More
concretely, it is necessary to create one additional state variable for each parameter that occurs freely in
nested guards. This allows to store them in observable actions and to read them in internal actions. Note
that for simplicity, it is assumed that the original action system contains only observable actions. Nev-
ertheless, the translation can easily be adapted to allow for internal actions, either by treating them like
observable actions or by employing the first-mentioned translation, as they are not part of the interface
anyway.

Chapter 7. Case Studies 100

Algorithm 8 Procedure for translating action systems with nested guarded commands. The created
simple action systems are observably equivalent to their respective original action system.
Input: Original Action System oas
Output: Translated Action System as

1: procedure TRANSLATEWITHINTERNALS

2: Create new action system as initialised with same type definitions, state and initialisation as oas
3: Create an enumeration sort Event defining a constant None
4: Add a state variable lastEvent of type Event and initialised to None to as
5: for all a ∈ actions(oas) do
6: Add constant name(a) to Event
7: nestedDisjunction← ⊥
8: parasInGuards← {}
9: for all g ∈ guardedCommands(a) do

10: nestedDisjunction← nestedDisjunction ∨ guard(g)
11: parasInGuards← parasInGuards ∪ (free(guard(g)) ∩ para(a))
12: end for
13: observableBody ← {lastEvent 7→ name(a)}
14: for all p ∈ parasInGuards do
15: Add new state variable x of same type as p to as
16: observableBody ← observableBody ∪ {x 7→ p}
17: for all g ∈ guardedCommands(a) do
18: Substitute x for p in guard(g) and body(g)
19: end for
20: end for
21: Create an action a′ of same type as a with label name(a)
22: guard(a′)← guard(a) ∧ nestedDisjunction ∧ lastEvent = None
23: body(a′)← observableBody
24: Add a′ to as
25: for all g ∈ guardedCommands(a) do
26: newGuard = guard(g) ∧ lastEvent = name(a)
27: newBody = body(g) ∪ {lastEvent 7→ None}
28: Create an internal action i with unique label
29: guard(i)← newGuard
30: body(i)← newBody
31: Add i to as
32: end for
33: end for
34: end procedure

Chapter 7. Case Studies 101

The translation procedure is outlined in Algorithm 8. For this purpose, actions with nested guards are
assumed to be of the form given in Listing 7.6. The algorithm basically creates an “empty” action system
as with the same types and state as the original action system oas including an additional variable of
type Event storing the last executed action (Lines 2 to 4).

Afterwards, each observable action a is processed independently whereby the following steps are
executed (Lines 5 to 33):

• a new enumeration constant corresponding to the name of a is added to Event (Line 6)

• a disjunction over all nested guards of a is formed and the parameters in those guards are collected
(Lines 7 to 12)

• the body of a is extended such that parameters referenced in nested guards are assigned to state
variables and the nested guards are adapted to reference these state variables (Lines 13 to 20)

• a new observable action a′, which is executable whenever a would be executable, is created and
added to as (Lines 21 to 24)

• for each nested guard, an internal action, which can only be executed after a′, is created and added
to as (Lines 25 to 32)

1 (?|!)act(p_1 : t_1,...,p_m : t_m) if G then {
2 if G_1 then {
3 x_1 := a_1;
4 ...
5 x_n := a_n;
6 }
7 ...
8 if G_k then {
9 x_1 := a_1;

10 ...
11 x_n := a_n;
12 }
13 }

Listing 7.6: Structure of actions with nested guards

Example 7.2 (Translation of an Action of the Original Car Alarm System).
This example shows two different translations of an action with nested guarded commands. The action
to be translated is the output action flashOn which signals that the hazard flasher lights are turned on. It
is given via pseudo code below:

1 !flashOn(wait_time : Time) if wait_time == 0 && isFlashOn == False then {
2 if aState == 1 && fromArmed == 2 then {
3 fromArmed := 3;
4 isFlashOn := True;
5 }
6 if aState == 1 && fromArmed == 3 then {
7 fromArmed := 4;
8 isFlashOn := True;
9 }

10 }

Listing 7.7: An action with nested guarded commands

The outer guard specifies that the system must immediately execute the action and that the action may
only be executed if the flasher lights are switch off. Additionally, the nested guards check integers mod-
elling the state of the car alarm system. Basically, both nested guarded commands turn on the flasher
lights and change the system state.

Since the action contains two nested guarded commands, the translation technique described in Sec-
tion 7.2.1 creates two actions flashOn1 and flashOn2 which are shown below. Hence, it simply appends
indexes to the labels.

Chapter 7. Case Studies 102

1 !flashOn1(wait_time : Time)
2 if isFlashOn == False && wait_time == 0 && aState == 1 && fromArmed == 2 then
3 {
4 fromArmed := 3;
5 isFlashOn := True
6 };
7 !flashOn2(wait_time : Time)
8 if isFlashOn == False && wait_time == 0 && aState == 1 && fromArmed == 3 then
9 {

10 fromArmed := 4;
11 isFlashOn := True
12 };

Listing 7.8: Translation of an action via appending of indexes to labels

It can be seen that the translation creates two observably different actions. To overcome this problem,
Algorithm 8 creates internal actions to model the nested guards. A translation of the flashOn-action via
creating internal actions is shown below.

1 !flashOn(wait_time : Time)
2 if wait_time == 0 && lastEvent == None && isFlashOn == False &&
3 ((aState == 1 && fromArmed == 2) ||
4 (aState == 1 && fromArmed == 3)
5) then
6 {
7 lastEvent := FlashOn;
8 };
9 flashOnUpdate1() if lastEvent == FlashOn && aState == 1 && fromArmed == 2 then

10 {
11 lastEvent := None;
12 fromArmed := 3;
13 isFlashOn := True
14 };
15 flashOnUpdate2() if lastEvent == FlashOn && aState == 1 && fromArmed == 3 then
16 {
17 lastEvent := None;
18 fromArmed := 4;
19 isFlashOn := True
20 };

Listing 7.9: Translation of an action via creation of internal actions

An action system resulting from a translation via Algorithm 8 is obviously more complex than an
action system resulting from the other translation method. However, it is observably equivalent to the
original action system. This is achieved by delegating state updates to internal actions which may have
arbitrary names. Constraints involving the state variable lastEvent ensure that appropriate state updates
are performed after observable actions.

Results and Comparison

As for the particle counter, the results of measurements performed with the sioco checker will be com-
pared to the results of measurements performed with the concrete ioco checker. For this purpose, two
different translations of an action system with nested guarded commands have been created. The sioco
checker has been used to generate test cases for the translations, while the ioco checker has been used to
generate test cases for the original action system. Furthermore, the search was set to 20 for both test case
generator and the default strategy for equivalence checking was used by the sioco-based approach.

The results are given in Table 7.3, where the first column lists the results for a model, which was
translated as discussed in Section 7.2.1, and the second column lists the results for a model, which was
translated as defined by Algorithm 8. In the following, the first-mentioned model will be referred to
as model with indexed labels, while the latter will be referred to as model with internals. Example 7.2
demonstrates how one of the actions with nested guarded commands is translated via both methods. The

Chapter 7. Case Studies 103

sioco
(with indexed labels)

sioco
(with internals)

ioco

precomputation 0.49 1.5 0

conformance
check

mean 0.02 0.75 0.13
median 0.012 0.17 0.06

max 0.27 61.25 1.72
min ∼ 0 ∼ 0 0.02
total 10.75 1201.8 32.41

mutants 515 1605 255

Table 7.3: Runtimes for the car alarm system models based on the original action system model:
execution times for the sioco-based conformance check of two different translations of
the original action system model are given in the first two columns. The execution times
of the ioco-based conformance check of the original model are given in the third column.
All durations are given in seconds, unless otherwise noted.

third column of Table 7.3 lists the results for the concrete ioco check performed between the original car
alarm action system and its mutants.

The overall computation time was 10.75s for 515 mutants for the model with indexed labels and
1201.8s for 1605 mutants for the model with internals. As for the particle counter, a lower number of
mutants was checked by the concrete conformance check. More specifically, 255 mutants have been
checked in 32.41s.

As can be seen in Table 7.3, the symbolic approach is again faster for the model with indexed labels
than the concrete approach. The difference is not as drastic as for the particle counter though, on average
it is only 6.5 times as fast as the concrete check. This can be explained by considering the state space.
Since the state space of the car alarm action system is comparatively small, the symbolic approach cannot
fully take effect.

Furthermore, the comparison is actually not entirely fair considering the number of conforming mu-
tants. While the percentage of conforming mutants is only about 14.6% for the model with indexed
labels, it is about 22% for the original model. The mean search depth needed to detect non-conformance,
however, is about 5.16 for the original model and 5.6 for the model with indexed labels. If conforming
mutants are considered as well, the mean search depth is increased to 9.55 for the original model and
to 7.84 for the model with indexed labels. Hence, the search space which needs to be covered by the
sioco-based conformance check is smaller than for the concrete ioco check. It can be concluded that the
lower average runtime is partially caused by the different modelling style.

The measurement results for the model with internals indicate that this way of translation is not useful
in practice, as the runtime increased significantly. The symbolic conformance check takes on average
37.5 times as long as for the model with indexed labels. Nevertheless, an investigation of the model gave
further insights into the test case generation using the sioco check.

First of all, it served as a test for the conformance check itself. It has been used to check whether the
conformance check produces spurious counterexamples if internal actions are involved. Spurious coun-
terexamples are traces returned by the conformance check, which do not actually lead to conformance
violations. The tests showed that the sioco check does not produce such counterexamples.

Furthermore, the investigation of the model with internals has shown that the combination of angelic
completion and internal actions can lead to situations, in which the number of symbolic states of the
mutant grows enormously with increasing search depth. Additionally, it has been observed that mutations
of internal action guards may also slow down the conformance check. This is a result of the need for
computing a τ -closure at each search step without utilising precomputed data.

Nevertheless, the high runtimes do not indicate that models containing internal actions take long to

Chapter 7. Case Studies 104

process in general. The main reason for the poor performance is the large amount of internal actions.
While the execution of a step during the conformance check takes at most three satisfiability checks
in deterministic models, a τ -closure has to be computed additionally, when the model with internals
is executed. Even if nested guarded commands are allowed, the number of satisfiability checks for
executing a step is relatively small. Additionally, the nested guards of the concerned action need to be
checked as well. For the computation of a τ -closure in the model with internals, however, all nested
guards of all actions of the original model have to be checked for satisfiability. Hence, the translation of
action systems through Algorithm 8 causes a loss of information, which significantly increases runtime.

7.3.3 Translation of Timed Automata Models

In the previously described experiments performed with the car alarm system, time was modelled in the
same way as for the wheel loader case study discussed by Aichernig et al. [4]. This way of modelling
adds one parameter to each action, which is equal to the time that has passed before the action has been
executed.

However, another way of modelling time shall be investigated in the following. This way of mod-
elling time is inspired by timed automata, which consider the passage of time as an observation [64].
The action system models presented in the following were created after discussions with Florian Lorber,
who provided timed automata models as a basis. Timed automata shall be shortly discussed in order to
understand the translation. A more thorough discussion of the topic has for instance been presented by
Bengtsson and Yi [16].

Timed automata are finite automata extended with a finite set of clocks. They are used to model real-
time systems. The clocks are modelled by real-valued variables, which are increased by the passage of
time. Time is considered to pass in states, while transitions are considered to take zero time. A transition
is either labelled with τ , denoting it to be a silent, non-observable transition, or with an action label. The
set of action labels can further be partitioned into disjoint sets of inputs and outputs.

Furthermore, constraints over clocks restrict the set of executable traces of a timed automaton. These
constraints are either associated with states of the automaton or with transitions functioning as guards.
A transition’s guard defines the clock states in which the transition may be taken. Clock constraints
associated with states are also called invariants and limit the number of time units the system may stay
in some state. Figure 7.3 shows a timed automaton model of the car alarm system. The model has also
been used for test case generation by Aichernig et al. [10].

There exist various ways to check conformance of timed automata including language inclusion,
bisimulation [16] and also a timed variant of ioco called Timed Input Output Conformance (tioco) [64].
In this context, runs of timed automata are usually defined to be alternating sequences of delays and
transitions, which are taken along some trace [16]. Hence, an action system simulating a timed automaton
needs to create actions corresponding to transitions and another output action delay, which simulates
the passage of time. Additionally, it needs to ensure that in between two actions, the delay-action is
executed. In order to conform with timed traces as defined by Aichernig et al. [10], the translation of
timed automata into action systems ensures that the execution starts with a delay.

If several transitions are labelled with the same action, the corresponding labels in the action system
need to be extended by adding unique identifiers as for the translation of nested guarded commands. The
rest of the translation is actually similar to the translation of IOSTSs into action systems, thus a location
data type corresponding to timed automata locations and a state variable location storing the current
location are introduced as well.

In addition to that, the state is further extended by real-valued clocks defined by the timed automaton
that is being translated. The data type Real has been used for this purpose. A clock reset is modelled via
an assignment, which sets the corresponding clock to zero.

Finally, clock constraints need to be considered during the translation as well. Time guards on
transitions are simply added to the guards of the corresponding actions. Since invariants constrain the

Chapter 7. Case Studies 105

start

q1

q2

q3

flashOff!

c ≤ 20

e ≤ 0

e ≤ 0

e ≤ 0

e ≤ 30

e ≤ 300g ≤ 0

g ≤ 0 d ≤ 0 f ≤ 0 e ≤ 300

close?

open?

lock?

unlock?

unlock?

lock?
c := 0

open?

close?
c := 0

c == 20
armedOn!

open?
e := 0

e == 0
armedOff!

flashOn!

soundOn!

e < 30
unlock?
g := 0

e == 30
soundOff!

unlock?
g := 0

e == 300
soundOff!

flashOff!

unlock?

close?
f := 0

armedOn!

soundOff!

unlock?
d := 0

armedOff!

Figure 7.3: A timed automaton model of the car alarm system. The model has also been used by
by Aichernig et al. [10].

waiting time in a state, the parameter of the delay-action, which corresponds to the waiting duration,
needs to be constrained accordingly. It is necessary to define conditions depending on the current value
of location for this purpose. Hence, the guard of the delay-action is a conjunction of implications
location = l → inv(l)[q′c], where l is a constant corresponding to a location in the timed automaton,
inv(l) is the corresponding invariant and q′c =

⋃
c∈Clocks{c 7→ c + duration} is the post-state of the

clocks after increasing their value. Additionally, it needs to be ensured that the invariant holds in the
post-state of all other actions as well and the delay-duration should be restricted to non-negative values.

Example 7.3 (Translation of a timed automaton modelling a car alarm system).
In the following, the translation of the timed automaton shown in Figure 7.3 will be discussed. The
automaton is translated into an action system TAS as described above. Since the timed automaton
defines five clock variables c, d, e, f, g, the state of TAS is defined by the following listing:

1 state {
2 location : Location;
3 c : Real; d : Real; e : Real; f : Real; g : Real;
4 doDelay : Bool;
5 }

Listing 7.10: State definition of an action system modelling a real-time system

Line 2 defines a variable storing the current location of the corresponding timed automaton. The clock
variables are defined as state variables of type Real in Line 3. A Boolean variable doDelay defined in
Line 4 indicates whether the system should execute a delay-action or a discrete action in the next step.

A discrete action modelling one of the armedOn-transitions is shown below:

Chapter 7. Case Studies 106

1 !armedOn() if !doDelay && location == ClosedAndLocked && c == 20 then
2 {
3 doDelay := True;
4 location := Armed;
5 };

Listing 7.11: An action modelling a transition of a timed automaton

The action may only be executed if doDelay is set to False, the system is in the location ClosedAndLocked

and exactly 20 time units have passed since clock c had been reset. An execution of the action causes the
system to change into the Armed-state and to execute the delay-action next.

A part of the delay-action is given in the listing below.

1 !delay(duration : Real)
2 if doDelay && tics >= 0 &&
3 (!(location == ClosedAndLocked) || (c + duration <= 20)) &&
4 ...
5 (!(location == SilentAndUnlocked) || (g + duration <= 0)) then
6 {
7 c := c + duration; ... g := g + duration;
8 doInc := False;
9 };

Listing 7.12: An action modelling the passage of time

The delay-action is an output signalling that time has passed. It may only be executed if doDelay

is set to True and with non-negative parameter values. Furthermore, it defines conditions such as (!(

location ==ClosedAndLocked)||(c +duration <=20)) which can be read as “if the system is in location
ClosedAndLocked, time may only pass as long as the value of clock c is smaller than or equal to 20”. An
execution of delay increases the value of all clocks and causes the system to execute a discrete action in
the next step.

Problems and Inconsistencies. Essentially, all runs of a timed automaton can be executed by an action
system, which is translated as described above. It should be noted though that appending indexes to
labels, which is needed if there are multiple transitions with the same label, causes different observable
traces.

Beside this difference, there is another one, which becomes apparent during the conformance check.
Using timed automata, it is possible to define timeout durations after which an output is expected explic-
itly. In the sioco conformance relation, however, the notion of quiescence is introduced, which essentially
signals a timeout of undefined duration. In other words, a system is considered to be quiescent if an un-
defined amount of time units passes without observing any output.

Hence, these two types of timeouts are checked in parallel during the conformance check, if the sioco
checker is used without adaptations. In the following, a problematic situation shall be discussed, which
arises from this mix of timeout definitions: consider a quiescent state, which is the same for mutant and
specification and the specification executes an input action, which is mutated and thereby not enabled
in the mutant. In the next specification state, a Boolean flag triggers that the delay-action is the only
enabled action. The mutant, however, stays in the same state as before, because an angelic completion
is performed for it. As a result, the mutant state is still quiescent, thus it waits for an undefined amount
of time without producing any outputs. Since the specification may execute the delay-output, it is not
quiescent.

Consequently, the mutant would be detected to be non-conforming. This is problematic, because a
non-zero delay-duration chosen for the execution of the delay-action, would essentially correspond to a
timeout of the specification, thus both action systems would wait and do nothing in the state reached after
the execution of the input. A simple approach to counter this problem is to disable checks for quiescence.

Chapter 7. Case Studies 107

However, this leads to the problem that a large number of mutants would be detected to be conform-
ing, which would be considered non-conforming by a tioco conformance check. Consider the product
state reached after executing the input action by the specification and after performing an angelic com-
pletion for the mutant: the mutant is quiescent, thus it does not produce any observation, while the
specification can only produce the delay-observation. Since the product state reached after executing
the delay would not be satisfiable, the conformance check would be stopped and the mutant would be
considered to be conforming.

The angelic completion of a conformance checker based on tioco would need to take this problem
into account and manipulate the flag, which signals that a delay has to be executed next. Furthermore,
the mutation of the delay-action should only be performed in a way, such that the action is not disabled
in all states. An action system with an unsatisfiable delay-guard would model a system, which does not
do anything, as the translation requires the first action to be a delay.

In addition to the angelic completion, the handling of internal actions would need to be adapted as
well. The reason for this is that consecutive delays, only separated by the execution of internal actions,
would need to be combined into one delay [64].

Consequently, the conformance check was not adapted for the experiments with translated timed
automata, because the main focus lies on the sioco conformance relation. The problem concerning
quiescence shall rather be tackled on model-level and a solution on conformance check-level shall be
discussed in Section 8.2.

A possible solution to the quiescence-problem would be to loosen the restriction that only alternating
sequences of delays and actions may be executed. The delay-action should be allowed to be executed in
all states. Furthermore, mutations should not disable the delay-action as discussed above. The second
requirement can be fulfilled by restricting the mutations of the delay-guard, such that only the increment-
operator is applied and only constants are incremented. This actually mimics Change invariant-mutation
operator applied on timed automata [10].

Although this approach would avoid a mix of different notions of timeouts, as the models never
become quiescent, it faces another problem. A similar problem, has been observed by Aichernig et al. [4],
which led to the introduction of parameters for modelling time as has been done in Section 7.3.2. Since
the delay-action, which is an output action, is enabled in all states, the system contains a large number
of mixed states. A mixed state is a state in which both inputs and outputs are enabled. Such states are
problematic for testing in general, as the tester may choose to send an input, while the SUT may produce
an output as allowed by the model. Consequently, the tester would need to block the output from the
SUT, which is unrealistic, as the communication between tester and SUT is often asynchronous [35].

Discussion of Measurements. In conclusion of the discussion above, test case generation based on
either of the modelling strategies faces problems. Nevertheless, time measurements have been performed
for the conformance check and the results are given in Table 7.4. For this purpose, the timed automaton
given in Figure 7.3 was translated using both strategies, that is, with and without alternation of delays and
actions. To illustrate the structure of action systems modelling real-time systems, Example 7.3 shows
code snippets of the car alarm system model with alternating delays and actions.

The generated test cases are not meant to be executed though. The measurement results shall rather
give an insight on whether symbolic execution is suited for conformance checking of models for real-time
systems. For this purpose, the conformance checking time will be compared to the runtime required by a
tioco conformance checker based on bounded model-checking, which has been developed by Aichernig
et al. [10].

The measurement results for the bounded model-checking approach differ from the results given
by Aichernig et al. [10], as the measurement setup changed. More concretely, the measurements have
been performed on a different computer, the same computer that has been used for all other experiments
discussed in this chapter. In addition to that, version 4.3.2 of Z3 has been used instead of version 4.0.

Chapter 7. Case Studies 108

sioco
(alternating)

sioco
(non-alternating)

tioco

precomputation 32.97 102.82 0

conformance
check

mean 3.16 3.77 0.85
median 0.013 0.015 0.96

max 29.1 93.59 4.65
min ∼ 0 ∼ 0 0.09
total 4811.52 5329.06 1092.3

mutants 1522 1412 1285

Table 7.4: Runtimes for car alarm system model based on a timed automata model: the execution
times for the sioco-based conformance check of two different translations of the original
timed automaton are given in the first two columns. The execution times of the tioco-
conformance check of the original timed automata model are given in the third column.
All time values are given in seconds, unless otherwise noted.

The maximum search depth has been set to 12 for all conformance checks and the strategy Quantifier
Elimination After Timeout has been used for checking state equivalence. It should be noted though that
the observable depth in the context of tioco is defined differently than for action systems. One step of a
timed trace consists of the execution of a transition together with a delay, thus the search depth for the
model with alternating actions and delays has actually been set to 24 for the sioco conformance check.
However, the search depth has been set to 12 for the other model, because it does not require that actions
need to be interleaved with delays. Additionally, it was not possible to finish the conformance check
with search depth 24 in reasonable time.

Considering the action system with alternating actions and delays, it can be seen that on average the
bounded model-checking approach is more than three times as fast as the sioco-based approach. The
median duration of the symbolic execution approach, however, is much lower than the median duration
of the tioco check. In contrast to this, the difference between the median and the mean of the tioco check
is low. Hence, the runtime seems to be more constant when bounded model-checking is performed.
Since the median duration of the sioco check is very low, a timeout could be used to stop excessively
long-running conformance checks as discussed before in Section 7.2.2.

Although conformance checks between the second action system and its mutants have been per-
formed with only half the maximum search depth, they required longer computation times than the
conformance checks of action systems with alternating delays and outputs. Since the precomputation
runtime is also higher, the lower performance is most probably caused by the structure of the specifica-
tion model and not by the structure of specific mutants. A possible explanation is that checking symbolic
state equivalence is more difficult. As the delays need to be interleaved with actions for the execution
of the first model, the clocks are frequently reset. Thus, the symbolic clock states contain fewer de-
lay-parameters than the symbolic clock states of the second model. Hence, a lower number of variables
is existentially quantified for state equivalence checks, which results in faster checks and overall better
performance.

Measurements for Non-deterministic Models. In addition to the previously discussed models another
action system model defining one internal action shall be examined as well. The internal action adds a
margin of tolerance of two seconds to the twenty seconds, which the system waits before switching
into the Armed-state. A corresponding timed automaton, also containing a silent transition, serves as a
reference for the conformance checking runtime.

The presence of internal actions complicates the tioco conformance check, as the efficient confor-
mance check presented by Aichernig et al. [10] is restricted to deterministic models and thus requires
determinisation. An efficient procedure for determinising time automata containing silent transitions

Chapter 7. Case Studies 109

sioco
(complete-depth 12)

tioco
(partial 1-depth 8)

tioco
(partial 2-depth 12)

precomputation 565.33 0 0

conformance
check

mean 0.4 49.94 2.16
median 0.03 44.3 2.93

max 28.6 558.32 989.7
min ∼ 0 0.674 0.1
total 717 9987.4 2638.58

mutants 1768 200 1221

Table 7.5: Runtimes for non-deterministic real-time car alarm system model: the execution times
for the sioco-based conformance check of the translation of the non-deterministic timed
automata model are given in the first column. The execution times of the tioco-based
conformance check of both partial non-deterministic models are given in the second and
third column. All time values are given in seconds, unless otherwise noted.

has been developed by Lorber et al. [68]. This procedure has been performed prior to the conformance
checks of the timed automaton and its mutants.

Table 7.5 lists the measurement results for the non-deterministic model containing one internal ac-
tion. Note that the action system was translated from a timed automaton in a way such that all executions
of discrete actions are followed by delays. The complete timed automata model could not be processed
by the tioco conformance check, as the determinisation performed during preprocessing led to a state
space explosion, which rendered the approach infeasible. Instead, the model was partitioned into two
partial models. The first partial model describes the locking, unlocking, closing and opening of doors
and the arming of the car alarm system, whereas the second partial model contains only one path to the
Armed-state but covers the rest of the systems. These partial models have been created by Florian Lorber
and are shown in Figure 7.4.

The symbolic execution-based conformance check on the other hand was able to process the complete
model. Surprisingly, it has on average even been faster than both the sioco and the tioco conformance
check of the deterministic model. This can be attributed to the fact that the introduction of a silent
transition led to a high proportion of non-conforming mutants. Out of the 1768 tested mutants, 1766 were
deemed to be non-conforming. It should be noted though that the precomputation took 565.33 seconds.
By considering precomputation to be a part of the conformance check, the total runtime increases to
1282.33 seconds. Strictly speaking, the bounded-model checking approach involves precomputation as
well as it is necessary to determinise timed automata prior to the conformance check. Since the combined
runtime of the determinisation of all models is very low, it is not explicitly given.

In this context, it should also be mentioned that it was possible to efficiently process both partial
models using symbolic execution as well. The runtimes are not given, however, as the combined runtime
for both models was lower than that of the conformance check of the complete model.

Comparing the conformance checking runtimes of both approaches shows that symbolic execution
is significantly faster. It is able to process the complete model in less time than the bounded-model
checking approach can process either of the partial models. This is a result of the state-space explosion
caused by determinisation.

In conclusion, these experiments suggest that symbolic execution may be an efficient approach to
conformance checking of real-time system models. Since the median duration of the conformance check
is generally low, many mutants can be processed very fast. Furthermore, it shows advantages when
models containing internal actions are checked for conformance.

An actual symbolic check of tioco conformance may perform even better, as it would be possible to
optimise the check with respect to time. On the other hand, it may also perform worse, because delays

Chapter 7. Case Studies 110

start

lock?

unlock?

close?

open?

open?
close?
{c}

unlock?lock?
{c}

open? unlock?

c = 20
armedOn!

0 < c < 2
τ

(a) Partial model 1

start

flashOff!

c ≤ 20

e ≤ 0

e ≤ 0

e ≤ 0 e ≤ 0

e ≤ 30

e ≤ 300g ≤ 0

g ≤ 0 d ≤ 0 f ≤ 0 e ≤ 300

lock?

close?
c := 0

c == 20
armedOn!

0 < c < 2
τ

open?
e := 0

e == 0
armedOff!

flashOn!

soundOn!

soundOn!

flashOn!

e < 30
unlock?
g := 0

e == 30
soundOff!

unlock?
g := 0

e == 300
soundOff!

flashOff!

unlock?

close?
f := 0

armedOn!

soundOff!

unlock?
d := 0

armedOff!

(b) Partial model 2

Figure 7.4: Partial timed automata models of the car alarm system with a silent transition mod-
elling a non-deterministic delay of entering the Armed-state.

interleaved with internal action executions need to be combined. A more thorough discussion of this
topic will be given in Section 8.2. However, a non-symbolic conformance check is impossible because
the models use reals, which cannot be enumerated.

7.3.4 Verification during Stepwise Development

This subsection will discuss the verification of sioco conformance between two arbitrary action system
models, that is, the restriction to first-order mutations will be lifted for the following experiments. More
concretely, the applicability of the sioco conformance checker for model-checking in stepwise develop-
ment of test models will be investigated. Furthermore, factors influencing performance will be examined
as well. The general approach and its usefulness have been discussed in Section 1.5 and in Section 5.2.

Hence, as noted in said sections, the sioco conformance of two models will be checked, where one
model is more abstract and the other model is a refined version of the first. In this context, the concrete
model will be considered to be an implementation of the abstract model, which serves as the specification.

Chapter 7. Case Studies 111

Translation. As in the previous subsections, the experiments will be based on existing models of the
car alarm system. These models have been defined in Event-B by Severin Kann as part of his Bache-
lor’s thesis. Event-B is inspired by action systems [1] and thus the Event-B notation is very similar to
action system language presented in this thesis. As a result, the translation of the Event-B models was
comparatively simple because they do not use complex set-theoretic constructs, but only integers and
sets defining constants. Hence, the unbounded integer data type provided by Z3 was used for all integral
numbers and enumeration sorts have been defined for sets of constants. Furthermore, events have been
transformed into almost identical actions. Since Event-B does not distinguish between input and output
events, it was necessary to assign action types.

Modelling. The Event-B models are similar to the deterministic timed automata model in some aspects.
Events in the models represent transitions between states, that is, there exist events for operations such
as opening of doors and turning on the alarm. In addition to that, the passage of time is modelled via
observations.

However, specific details concerning time are treated differently from the timed automata formalism:
for instance, discrete time is assumed, that is, time is modelled with integers. A timer (clock) is set to
some constant value and decreased rather than increased. Furthermore, two different events represent
the passage of time. One event is fired if the delay triggers some other action and the other is fired if the
delay has no effect.

Altogether, four different models have been created by Severin Kann. Additionally, he performed
proofs to show that each model refines its predecessor if it has one. Each refinement step adds some
information, outlined in the following:

Abstract Model: introduces the basic structure and functionality, but without considering time. Hence,
the system may switch into the Armed-State at any point in time if the doors are closed and locked.

First Refinement: introduces events representing the passage of time and adds time-related constraints
to existing events.

Second Refinement: constrains the passage of time such that each delay may only take exactly one time
unit.

Third Refinement: while in the more abstract models, the system’s state is represented by one variable,
which takes constant values such as open_unlocked, this stage of refinement does not use these
constants anymore. It rather models the system’s state via a set of Boolean flags. One of these flags
for instance encodes the information, whether the doors are open.

From these descriptions, it becomes apparent that a sioco conformance verification between the most
abstract and the other models is not possible because the first refinement adds new output events rep-
resenting the passage of time. Strictly speaking, a conformance check would be possible, but reveal
conformance violations although the refinements model intended behaviour. Hence, conformance will
only be checked between first and second, second and third, and first and third refinement.

Experiments. Intuitively, both the second refinement and the third refinement should be valid imple-
mentations of the first refinement with respect to ioco. The second refinement strengthens the guards of
the actions representing delays, thus it produces less outputs than the first refinement, which is allowed
by ioco. The third refinement merely changes the system state, while it is observably equivalent to the
second refinement. Hence, it is a valid implementation as well, as ioco ignores the state of a system.

The conformance checks performed during the experiments confirmed this intuition. They were per-
formed with a search depth large enough to conclude that each refinement is a valid implementation
of its respective specification for all possible sets of traces. Stated differently, the experiments have
shown that there does not exist any trace of any length, which would reveal non-conformance. Recall the

Chapter 7. Case Studies 112

2ndref sioco 1stref 3rdref sioco 2stref 3rdref sioco 1ndref

runtime on-the-fly optimised on-the-fly optimised on-the-fly optimised
precomputation 0 1.375 0 5.242 0 1.33

conformance check 115.59 2.629 8.154 1.079 116.696 2.475

total 115.59 4.004 8.154 6.321 116.696 3.805

Table 7.6: The runtimes of the conformance checks between refinements of the car alarm system.
All durations are given in seconds.

definition of sufficiency of exploration depth for the product graph given in Section 5.2: if the confor-
mance checker stops searching before hitting the maximum exploration depth for all traces, unbounded
ioco-conformance between implementation and specification can be concluded.

In order to be able to avoid excessively large search depths, the durations needed for triggering
events in the car alarm system have been reduced. As a result, a search depth of 22 was found to be the
lowest depth, which satisfies the mentioned sufficiency condition for the conformance checks between
all possible combinations of refinements. Hence, the runtime measurements have been performed with
this search depth. Their results are presented in Table 7.6. They were carried out for two different
configurations: in the first configuration, on-the-fly, all optimisations have been disabled, while in the
second configuration, optimised, only those based on first-order mutants have been disabled. Thus, the
conformance check may still profit from a precomputed symbolic execution graph and from precomputed
symbolic state equivalence classes in the second configuration. Additionally, the strategy for checking
state equivalence has been set to Quantifier Elimination after Timeout.

The measurements demonstrate that precomputation pays off even if only one conformance check
is performed, because the total runtime of the optimised strategy is lower for each of the three checks.
The main causes for this behaviour are: (1) it is possible to apply the approximated equivalence check of
product states, which needs the precomputed symbolic state equivalence classes. Furthermore, (2) as the
symbolic execution graph contains loops, it encodes information about executable traces, which may be
longer than the actual traces in the graph. This reduces the total number of satisfiability checks necessary
for the execution of the specification.

The experiments show that the sioco conformance check may effectively be used for model-checking
during stepwise development. Note that concrete approaches are likely to fail for the conformance checks
involving the first refinement because unbounded data types are used. The conformance check between
second and third refinement, however, is amenable to a concrete approach, because all time steps are
restricted to one time unit.

Beside the considerations whether a concrete or symbolic approach should be used, another issue
needs to be considered for checking ioco conformance during stepwise development. It has been pointed
out in Section 4.4 that performing angelic completion can be seen as a mutation and the angelic com-
pletion of a model may not conform to the original model. Nevertheless, it is essential for checking
conformance between refinements, as input-enabledness cannot be assumed in general. Additionally,
Tretmans noted that ioco is reflexive for input-enabled models, but comparing non-input-enabled models
does not make sense because ioco is not defined for those [79].

Hence, the angelic completion of a refinement of a model M may not conform to M , despite solely
changing the representation of the system’s state or internal actions. This is especially likely if the
angelic completion ofM does not conform toM . A possible solution to this problem would be a manual
inspection to determine whether witnesses of non-conformance actually lead to undesired behaviour.
If they do not, they could be excluded from the product graph and the conformance check could be
performed again. Another solution would be to be disable angelic completion for this type of verification
task. However, such an approach would not verify ioco conformance because ioco requires input-enabled
implementations.

Chapter 7. Case Studies 113

7.4 Models using Complex Data Types

This section will deal with complex data types and associated problems. In this thesis, complex data
types are considered to be data types parameterised with other data types. As noted in Section 6.1, the
conformance checker provides maps, sets and records. The following discussion is based on experiments
with two small examples involving all of these data types. Although the conformance check is able to
process these models in principle, it faces severe efficiency problems for large search depths. Hence, this
section will focus on these issues and discuss how they may be overcome.

7.4.1 Models

Although both of the models below are small, they define only three and four actions respectively, they
demonstrate the mentioned efficiency problems. As a result, larger models will not be investigated.

Set-Buffer. The first model specifies the behaviour of a simple buffer and defines one state variable of
set data type. Experiments have been performed by either setting the corresponding element data type
to an enumeration type or to an integer range type. The buffer defines one input action and three output
actions. Elements can be inserted via the input action. These elements may be selected and shown to an
observer by one output action. After presenting the element to the observer, the elements are removed
from the buffer. The other two outputs signal whether the buffer is empty and whether the buffer contains
a specific constantly specified element.

Tuple-Map. The second model defines a state variable of map data type, which maps from unique
integer identifiers to pairs of integers. The pairs are modelled via records and can be inserted via an input
action. Another input enables the user to specify the identifier of a pair, which should be presented to the
user through an output of the system.

7.4.2 Experiments

Experiments soon revealed that checking equivalence of symbolic states is difficult and cannot be per-
formed by Z3 if states at depths larger than two are involved. More concretely, Z3 is not able to eliminate
quantifiers in the equivalence conditions derived for these models. This can be attributed to the fact that
the underlying sort of the set- and map-data types is the array-sort provided by Z3, which has not been
used in previous experiments.

As a result, most of the equivalence checks failed and the performance overhead induced by the
failed attempts to check satisfiability was significantly larger than the performance increase stemming
from the succeeded attempts. Consequently, equivalence checks for all types of symbolic states have
been disabled for the following experiments. Since the equivalence checks are actually used to tackle
the path explosion problem seen in symbolic execution, the performance of the sioco conformance check
suffers from this problem when complex data types are used.

The path explosion problem results from the growth of execution paths, which is exponential in the
number of branches [32]. Consequently, the number of observable traces of action systems grows expo-
nentially with increasing search depth. To illustrate this issue, conformance checks have been performed
with varying maximal search depth. The corresponding measurement results include runtime data and
the size of the symbolic execution tree. They are given in Table 7.7 for the set-buffer and in Table 7.8 for
the tuple-map.

For these measurements, an integer range data type was chosen as element data type of the set-buffer.
Furthermore, standard mutation operators as well as a set-specific mutation operator, which removes the
addition of a new element, were used, resulting in 28 and 30 mutants for set-buffer and the tuple-map
respectively.

Chapter 7. Case Studies 114

conformance check
depth size of tree precomputation mean median max min total

2 14 0.03 0.008 0.004 0.05 ∼ 0 0.22

4 175 0.18 0.03 0.003 0.35 ∼ 0 0.77

6 2353 2.16 0.18 0.002 2.639 ∼ 0 4.94

8 33098 107.99 1.36 0.002 20.288 ∼ 0 38.18

10 478192 7.5h 32.48 0.002 664.37 ∼ 0 909.462

Table 7.7: Runtimes for different steps of the test case generation for the set-buffer. Additionally,
the size of the symbolic execution tree is given in terms of states. All durations are given
in seconds, unless otherwise noted.

conformance check
depth size of tree precomputation mean median max min total

3 16 0.04 0.017 0.012 0.06 ∼ 0 0.5

6 164 0.31 0.06 0.02 0.58 ∼ 0 1.87

9 1631 2.91 0.53 0.03 7.53 ∼ 0 15.36

12 16168 45.17 8.08 0.04 116.48 ∼ 0 234.4

15 160219 4183.43 237.09 0.1 3943.48 ∼ 0 6875.49

Table 7.8: Runtimes for different steps of the test case generation for the tuple-map. Additionally,
the size of the symbolic execution tree is given in terms of states. All durations are given
in seconds, unless otherwise noted.

It can be seen that the total runtime increases dramatically, as the search depth is increased. This is
caused by (1) an exponential growth of the symbolic execution tree, and (2) by the increasing complexity
of satisfiability checks of path conditions at larger depths. Hence, it can be concluded that the path
explosion problem needs to be overcome by means other than equivalence checks in order to efficiently
generate tests from models with complex data types. The importance of this measure is aggravated by
the fact that the tested models are very small with only four and three actions respectively, as compared
to the 89 actions defined by the particle counter, an industrial use case.

The fact that the median conformance checking runtime stays approximately the same for all set-
buffer measurements and does not grow as fast as the average runtime for the tuple-map can be explained
based on the mutants. Since the models are very simple, a large number of mutants is detected to be non-
conforming in the initial state. As a result, the growth of the number of traces does not influence the
conformance checking runtimes for these mutants. It follows that the median duration does not change
significantly as well.

In the description of the set-buffer, it has been noted that the element data type was set to be an integer
type or an enumeration type. If the set is parameterised with an enumeration type, Z3 is actually able to
eliminate quantifiers, but at the expense of creating large formulas. This increase in size as compared to
the original quantified formulas leads to an increase of the computation time necessary to check symbolic
state equivalence.

Additionally, it has been observed that the size of the formulas and in turn also the computation
time grows depending on the number of constants defined by the enumeration type. The computation
runtime actually grows approximately exponentially in the number of constants. Hence, the conformance
check with enabled equivalence checks may be used if it is possible to abstract away details and use
sets of enumeration constants with only a low number of available constants. This could for instance
be achieved by grouping sets of values into equivalence classes and representing each class through one
constant. A similar approach has been followed by Aichernig et al. to cope with the state space explosion

Chapter 7. Case Studies 115

constants creation of execution tree
2 8.61s

3 21.44s

4 285.67s

5 3228.80s

6 75660.97s

Table 7.9: Runtime for the creation of the pruned symbolic execution tree of the set-buffer up to
depth five with varying number of enumeration constants.

problem [4]. Since it is a measure against state space explosion, it actually mitigates the benefits of
symbolic execution. Nevertheless, the computation runtimes for the creation of symbolic execution trees
up to depth five with varying number of enumeration constants are given in Table 7.9.

The problems related to runtime have now been discussed. Despite facing efficiency problems, the
conformance check works conceptionally. In other words, it is possible to generate test cases from
models involving complex data types. It should be noted that the detection of quiescence does not
cause problems, although, like checking state equivalence, it involves negated existential quantification
of action parameters.

Summary. This chapter discussed several case studies. Two of them are based on use cases provided by
industrial partners AVL and Ford within previous projects. The sioco conformance checker performed
well on those examples and thus is able to handle real-world models. Furthermore, the case studies
showed that the symbolic approach is able to efficiently generate test cases as compared to a concrete
approach, especially when actions with large parameter spaces are involved.

Additionally, the experiments with models translated from timed automata showed that the symbolic
execution approach may be well-suited for checking conformance between models of real-time systems.
However, while the SMT-solver Z3 is able to efficiently check satisfiability of formulas using linear
arithmetic and quantifiers, as required for real-time models, it may not be able to decide whether a
formula involving arrays and quantification is satisfiable. Hence, it faces efficiency problems when
checking conformance of models using complex data types. Nevertheless, the conformance checker is
still able to handle such models, but only up to a low search depth.

8 Extensions and Adaptations

Since the experiments presented in Chapter 7 showed that the symbolic execution approach to confor-
mance checking is efficient, investigating its applicability for further areas was found to be worthwhile.
Adaptations and extensions needed to be developed for this purpose. Additionally, the existing test case
generator was adapted and extended in order to improve its support of the action system modelling for-
malism. Concrete measures for instance allow for more convenient modelling.

This section will start with a discussion of changes of the sioco checker. Afterwards, two application
areas other than conformance checking of action systems will be investigated. More concretely, the
conformance checking of models of real-time systems and of object-oriented action systems will be
discussed. The goal of the extension to other types of models is to provide efficient conformance checks
for model-based mutation testing.

The support of real-time system models is motivated by the promising measurement results pre-
sented in Section 7.3.3, which compares the symbolic execution approach to a bounded model-checking
approach [10]. The motivation for checking conformance between object-oriented action systems stems
from previous projects, in which, among others, Bernhard Aichernig was involved. Within the projects
MOGENTES1, MBAT2, TRUFAL3, CRYSTAL4 and TRUCONF5, research leading to the development
of and the actual implementation of the MoMut::UML-toolchain6 have been performed [63]. This
toolchain belongs to a family of test-case generation tools, MoMut, implementing model-based mu-
tation testing for various types of models such as object-oriented action systems. The predecessor of
the sioco checker, a concrete ioco checker, is actually a part of the Momut::UML-toolchain. Supporting
conformance checking of object-oriented action systems would allow the utilisation of the toolchain and
thereby allow for test case generation from UML-models, because they can be translated into object-
oriented action systems.

The presented changes and extensions have either partially or fully been implemented at the time of
writing, but were not the main focus of this thesis. Consequently, their current implementation status
will be described.

8.1 Changes of the sioco Conformance Checker

8.1.1 Multiple Actions with Same Label

In the context of the car alarm system and particle counter experiments, it has been pointed out that the
lack of nested guarded commands requires the introduction of unique identifiers, which are appended to
the action labels. This changes the interface of the system on model-level, as it creates several distin-
guishable actions corresponding to the same event.

The second well-definedness condition given for action systems in Section 2.3.2 shall be lifted to
mitigate this problem. Hence, it should be possible to define several actions with the same label. As a
result, the following changes need to be implemented:

1. The exec-function needs to be changed in order to execute all actions with some common label.
Let s1, s2, . . . , sn be the results of the original exec-function applied for all actions corresponding
to some label. The redefinition of the exec-function needs to form a union over all si, thus each
action needs to be applied for all symbolic states currently considered.

1http://www.mogentes.eu (last visit: 19.11.2015)
2http://www.mbat-artemis.eu (last visit: 19.11.2015)
3https://trufal.wordpress.com (last visit: 19.11.2015)
4http://www.crystal-artemis.eu (last visit: 19.11.2015)
5http://truconf.ist.tugraz.at/ (last visit: 19.11.2015)
6http://www.momut.org (last visit: 19.11.2015)

116

http://www.mogentes.eu
http://www.mbat-artemis.eu
https://trufal.wordpress.com
http://www.crystal-artemis.eu
http://truconf.ist.tugraz.at/
http://www.momut.org

Chapter 8. Extensions and Adaptations 117

2. The execneg-function needs to be changed: it has to create a disjunction over the guards of all
actions with some common input action label, negate it and use this condition in conjunction with
the condition formed from internal action guards.

3. The non-conformance condition given by Definition 3.14 needs to be adapted as well: in addition
to the disjunction over all symbolic states, a disjunction over all guards corresponding to some
output action label needs to be formed.

Additionally, some of the proofs given in Chapter 4 need to be redone. The change also influences
the optimisation, which checks if a mutation weakens the guard of an input action (see Section 4.10),
as this optimisation is only applicable for deterministic action systems. After lifting the second well-
definedness condition, non-determinism may be expressed without internal actions, thus the check deter-
mining whether a model is deterministic needs to take this into account. Furthermore, the complexity of
syntactic mutation analysis rises.

By the time of writing this thesis, this change has already been implemented and first experiments
have been performed. The experiments were performed with adapted versions of the particle counter and
the car alarm system model with indexed labels. More concretely, the adaptations removed the indexes
appended to the labels. Measurement results obtained within the experiments show that the performance
of the conformance checker stays approximately the same. Hence, the ability to define several actions
with the same label allows for more convenient modelling without incurring a significant performance
loss.

8.1.2 Parameters for Internal Actions

The second change of the sioco conformance checker lifts the first well-definedness condition of action
systems and thereby allows for the definition of parameters for internal actions. It is actually motivated by
the planned integration into the MoMut::UML-toolchain. This toolchain creates internal actions with pa-
rameters during the translation of UML-models into object-oriented action systems. Since conformance
checking of object-oriented action systems is planned to be implemented by translating object-oriented
into simple action systems, the latter are required to support internal action parameters as well.

From a modelling point of view, internal action parameters allow for more concise modelling of
non-observable state changes. If several internal actions share a similar form, they can be combined by
introducing parameters, which are non-deterministically chosen and determine the actual state change.

Conversely, an internal action with instantiated parameters represents an internal action without pa-
rameters. Hence, from a conformance checking point of view, it would be possible to retrieve all possi-
ble parameter instantiations and thereby implicitly create sets of internal actions for one internal action.
However, in the symbolic approach, it is the goal to avoid enumeration of parameters. In order to under-
stand how to avoid enumeration, the effects of it shall be further investigated.

The set of symbolic states reachable by executing a trace of observable actions grows with the num-
ber of internal action parameter instantiations. As the ΦAS-function used in the (non-)conformance
condition forms a disjunction over all symbolic states, this disjunction grows as well. Since disjunction
and existential quantification are related, the size of the disjunction can be reduced by avoiding the enu-
meration of internal action parameters. Instead, the symbolic internal action parameters should rather be
existentially quantified in the ΦAS-function. This existential quantification actually reflects the intuition
that an internal action should be executed for some non-deterministically chosen set of parameters.

From an implementation point of view, a second type of variable index needs to be introduced. The
reason is that one internal action may be executed several times in a row and their parameters need to
be distinguished. Consequently, parameters of internal actions need to be indexed twice, whereby the
first index corresponds to the length of the observable trace, which has been executed before. Secondly,
another index needs to be added to the parameters, which corresponds to the number of internal actions,
that have been executed since the last observable. Furthermore, the ΦAS-function needs to be extended

Chapter 8. Extensions and Adaptations 118

by an existential quantification as noted above. Considering the non-conformance condition for product
states given by Definition 3.14, the internal action parameters need to be existentially quantified for each
symbolic state in a compound state separately.

Although the possibility of utilising internal action parameters allows for more convenient and con-
cise modelling of non-deterministic state changes, it should be used with care. Internal action param-
eters introduce negated existential quantifiers into the non-conformance condition and thereby increase
the complexity of checking satisfiability of this condition. As a result, the performance of the confor-
mance check may be reduced. If used excessively, the symbolic approach may even be infeasible, if the
SMT-solver is not able to decide satisfiability.

This extension of the conformance check has already been implemented and first experiments showed
that it works correctly in principle. The sioco checker is thus able check conformance of models involv-
ing internal action parameters and does not produce spurious counterexamples to conformance.

8.2 Conformance Checking of Real-Time System Models

The following discussion is based on joint work undertaken together with Bernhard Aichernig and Flo-
rian Lorber. Results of the work have been submitted for publication in the Festschrift in honor of Frank
S. de Boer. At the time of writing this thesis, the paper has been accepted but not yet published [11]. The
discussion is based on this paper, but has a slightly different focus.

Motivated by the measurement results given in Section 7.3.3 for real-time models, the action system
formalism was adapted to account for time. This led to the definition of timed action systems. Addition-
ally, the sioco checker has been adapted as well in order to be able to process the new type of models.
The Symbolic Timed Input Output Conformance (stioco) conformance relation defined by von Styp et
al. [81] served as a starting point to check conformance of timed action systems. It is a symbolic version
of the tioco conformance relation and inspired by sioco. An implementation model conforms to a speci-
fication with respect to tioco if it only produces observations allowed by the specification after all traces
of the specification. The observation of quiescence is replaced by the observation of the passage of time
in this context. This observation is usually referred to as elapse [64].

Hence, it is similar to sioco and the sioco conformance checker can be adapted with little effort to
check stioco conformance. Furthermore, tioco is used as conformance relation by the bounded model-
checking approach [10] which served as a benchmark for comparison in Section 7.3.3. This allows a
more appropriate comparison of runtimes.

In correspondence to timed automata, the timed version of action systems was extended by:

1. a set of real- or integer-valued clock variables,

2. a time invariant, which defines constraints for the passage of time depending on the system’s
discrete state,

3. time guards, which are conditions associated with actions formed over clocks and state variables,
and

4. clock reset sets. These are sets of clocks that should be reset after executing some action.

Apart from that, timed action systems consist of the same parts as simple action systems. As a result,
it is possible to define data variables. As noted above, state variables may be referenced in the time
invariant and also in time guards, thus timed action systems are more flexible than traditional timed au-
tomata, which do not allow for data variables. Von Styp et al. lift this restriction by introducing symbolic
timed automata [81]. There also exist other approaches to circumvent this restriction, UPPAAL [65] for
instance supports timed automata extended with data variables. Since timed action systems allow the
definition of several actions with the same label, it is possible to translate timed automata into action
systems, which behave exactly the same and provide the exact same interface.

Chapter 8. Extensions and Adaptations 119

Furthermore, symbolic execution semantics have been defined for timed action systems by the author
of this thesis. These semantics require that delays and discrete actions interleave. This resembles the no-
tion of timed traces used by the bounded model-checking approach [10] and the symbolic trace semantics
defined by von Styp et al. [81]. Based on these semantics, an adapted variant of the stioco conformance
relation and all required concepts and predicates have been defined for timed action systems.

Beside applying to timed action systems rather than to symbolic timed automata, the developed
semantics and conformance relation allow for the utilisation of internal actions, which are not supported
by symbolic timed automata. Therefore, the required adaptations shall be discussed shortly. In order
to transform timed traces into observable traces, consecutive delays only separated by internal actions
are summed up and the internal actions are removed from the trace [64]. Consequently, constraints
specifying that observable delays must be equal to the sum of such consecutive unobservable delays
need to be added to the path condition for symbolic execution. Furthermore, the elapse of time needs to
be handled appropriately by the actual check for non-conformance. Time may elapse for a few time units,
then an internal action may be executed and afterwards time may elapse again. Hence, a symbolic variant
of the elapse-function (see Krichen and Tripakis [64]) needs to compute a τ -closure with interleaved
delays essentially.

Given these considerations, the conformance checker was adapted. The stioco checker for instance
enforces the alternating execution of actions and delays. As a result, angelic completion can be performed
in a way, such that the problems described in Section 7.3.3 do not occur. Furthermore, the mutation
component was changed as well and mutation operators similar to those used for timed automata [10]
have been implemented.

After implementing the changes, the timed automata models discussed before have been translated
again, but into timed action systems and the measurements have been performed anew with these models.
Additionally, a deterministic timed automata model of a car alarm system with a PIN code has been
translated as well. The PIN code needs to be sent when the car is locked or unlocked. This model serves
to evaluate the handling of data variables. In contrast to the models considered in Section 7.3.3, which
define five real-valued clock variables each, the car alarm system with PIN uses only one clock.

Comparisons between the bounded model-checking and the symbolic execution approach revealed
that symbolic execution does indeed pay off. However, symbolic execution was still slower on average
for the deterministic model with a mean conformance checking runtime of 1.65 seconds. Similar to the
measurement results given in Section 7.3.3, the median of the conformance check runtimes has been very
low when symbolic execution was performed.

Furthermore, the stioco checker was again able to process the complete non-deterministic model,
but two mutants had to be excluded, as the maximum amount of available RAM was exceeded during
the measurements. However, manual inspection showed that these mutants conform to the specification.
For the rest of the mutants, the conformance check took on average 0.63 seconds. It should be noted
that processing a single mutant took up to 230.47 seconds, thus outliers can significantly influence the
average runtime needed to check non-deterministic models.

The measurements based on the car alarm system model with PIN code showed data variables do
not influence the performance of either approach. However, it revealed that the runtime of the symbolic
execution approach heavily depends on the number of clocks, as conformance checks took only 0.17
seconds on average, while the deterministic model without PIN needed 1.65 seconds averagely. This can
be attributed to the fact that the model with PIN code defines only one clock in contrast to the five clocks
defined by the other deterministic model. The runtime of bounded model-checking on the other hand
was only slightly reduced by the reduction of clocks.

All conformance checks have been carried out with search depth 12, that is, search was stopped after
executing 12 discrete actions.

It can be concluded that symbolic execution is an efficient approach to conformance checking of
real-time system models. This becomes apparent especially when non-determinism is involved and only
a low number of clocks is required.

Chapter 8. Extensions and Adaptations 120

8.3 Integration into MoMut::UML-Toolchain

As noted above, the predecessor of the sioco checker, a concrete ioco checker, is actually a part of the
MoMut::UML-Toolchain7, more precisely of the symbolic back-end provided by the toolchain. The
toolchain transforms models and their mutants between various types of formalisms and then produces
test cases via a mutation-based generation strategy.

More specifically, a UML-model and their corresponding mutants may be transformed into object-
oriented action systems and then into non-object-oriented action systems [63]. From the model and
mutants given as action systems, test cases can be generated via the symbolic back-end8.

An integration of the sioco checker into this toolchain as an alternative back-end would allow to use
existing experiments and to compare the different back-ends more accurately. Furthermore, it would
enable users to create UML-models and to generate symbolic test cases from these models.

Since there are various transformation steps, there exist several possibilities for integrating the sioco
check. The most promising approach is to transform object-oriented action systems into simple action
systems. As there also exist more complex non-object-oriented action systems, models which can be
processed by the sioco checker will be referred to as simple action systems for the remainder of this
subsection. The other formalism will be referred to as complex action systems.

The mentioned approach allows to make use of an existing compiler Argos, which is able to translate
object-oriented into complex action systems. Argos has been implemented by Willibald Krenn within the
MOGENTES project. Consequently, the most natural approach would be to implement a new back-end
for the compiler, which generates simple action systems. However, it is not necessary to support object-
oriented action systems in the form defined by Bonsangue et al. [23]. The MoMut::UML-toolchain
supports only a limited form described by Tiran in the Argos manual [75]. Limitations include the
restriction to non-recursive methods and the requirement that objects may only be created at system
start.

Implementation

In order to implement the translation to simple action systems correctly, the concepts provided by object-
oriented action systems need to be supported. These can be grouped into two categories:

1. Object-orientation

2. Syntactical elements for composing statements

Before discussing object-orientation, types of statements shall be discussed. Like simple action
systems, object-oriented action systems support assignments. They further allow for three types of com-
position: sequential, non-deterministic and prioritised. Additionally, a guard may be associated with
a statement. This applies to bodies of methods and actions. The latter may be combined via compo-
sition operators as well in the so-called do-od-block. This has the effect that actions are not chosen
non-deterministically during execution but the choice also respects the constraints defined by the com-
position. Hence, it is for instance possible to state that some action must always be executed after some
other action.

These types of statements are also provided by complex action systems. In order to be able to perform
refinement checks between specifications and mutants, they are normalised prior to the conformance
check [9]. This normalisation step creates action systems similar in structure to simple action systems,
but with sequential composition of assignments. Sequential composition, however, is also eliminated
through symbolic execution.

7http://www.momut.org (last visit: 19.11.2015)
8The concrete ioco checker uses an SMT-solver, but only to retrieve parameter instantiations satisfying guards.

http://www.momut.org

Chapter 8. Extensions and Adaptations 121

Hence, a similar approach could be used to translate object-oriented into simple action systems. It
has already partly been implemented by means of symbolic execution. More concretely, all paths through
the do-od-block should be symbolically executed and thereby constraints and associated symbolic states
collected. Based on these, it is possible to create simple action systems, which behave exactly the same
as the original action systems. It should be noted that functions, procedures and methods have not been
discussed, but they could be inlined, as described by Jöbstl in her dissertation [58].

She further added limited support for object-orientation in complex action systems, such as support
for method calls. But as simple action systems should be integrated via translation without changing the
syntax or semantics of simple action systems, a different approach needs to be followed. Classes and
objects need to be translated using provided data types.

This can be achieved based on the following steps:

1. A record definition should be created for each class. Such a record should define one field per
attribute of the class.

2. An enumeration type should be created for each class. It should define one object-identifier per
created object and a special null-constant. Note that this is possible, because objects are created
statically at system start. A similar concept has been implemented for complex action systems [58].

3. Define one map state variable per class, which maps object-identifiers to records holding the actual
values of the objects.

4. Each reference to an object should be replaced by its corresponding object-identifier and references
to null should be replaced by the null-constant of the corresponding enumeration type.

5. Each reading from an attribute should be translated into a map lookup for the record corresponding
to the object and a read from the respective record-field.

6. Each writing to an attribute should be translated into a map-update of the record corresponding
to the object. The update should insert a new record into the map, which is equivalent to the old
record, but the referenced attribute should be set accordingly.

These steps have also partly been implemented, but the implementation has been discontinued. As
can be inferred from the experiments involving complex data types discussed in Section 7.4, the current
implementation of the sioco checker would not be able to efficiently check action systems created this
way.

Another fact which aggravates the difficulty of checking simple action systems translated from
object-oriented action systems is that first-order mutants may be turned into higher-order mutants by
the translation.

In conclusion, conformance checks of automatically translated object-oriented action systems are not
feasible at the moment due to the problems associated with complex data types.

9 Conclusion

9.1 Summary

This thesis presented a symbolic execution-based approach to Input Output Conformance checking of
action system models. The sioco conformance relation and related concepts defined by Frantzen et al. for
STSs [45] have been adapted to action systems for this purpose. Additionally, further concepts relevant
to sioco conformance checking have been defined. The relation between the concepts developed by
Frantzen et al. [45] and those developed in the course of this thesis has been discussed formally. Hence,
a theoretical foundation for checking of sioco conformance has been given.

A technology-independent implementation of an sioco checker has been described afterwards. This
sioco checker essentially explores a product graph formed through simultaneous symbolic execution of
action systems. Several optimisations building upon on the basic implementation have been defined. If
possible, proofs have been given to show that these optimisations do not alter the conformance checking
result.

Based on the given technology-independent description, a Scala-implementation of the conformance
checker has been developed in the course of this thesis. This implementation uses the SMT-solver Z3
developed by Microsoft for satisfiability checking [37]. It is integrated in a mutation-based test case
generator which has also been implemented during this thesis. The complete implementation comprises
the conformance checking component, a mutation component and a test driver, which has been discussed
in a technology-independent way as well.

Furthermore, two application areas of the conformance checker, mutation-based test case generation
and conformance verification, have been discussed in general. However, the main focus was laid on test
case generation and therefore, the testing process has been discussed more thoroughly.

Since one of the goals was to develop an efficient conformance checker, evidence has been given
by means of case studies that indicate that the developed conformance checker is indeed efficient in
terms of runtime. Two of the presented case studies are industrial use cases provided by AVL and Ford
respectively, which have served as benchmarks for test case generation before. As a result, it was possible
to compare the sioco checker to a concrete ioco checker, which has also been implemented by the author
of this thesis. In addition to the comparative case studies, case studies focusing on other aspects, such
as stepwise development of test models and difficulties associated with complex data types, have been
discussed as well.

Since the approach was found to be efficient in many cases, several extensions and adaptations have
been investigated and implemented. These extensions include the support for more convenient modelling
and for conformance checking of real-time system. Action systems involving object-orientation have also
been examined.

9.2 Related Work

While some related work was already discussed throughout the previous chapters, this section discusses
work in the fields touched by this thesis more thoroughly. The three main influences for this thesis were
the symbolic framework for model-based testing developed by Frantzen et al. [45], ioco conformance
checking based on product graphs, which was introduced by Weiglhofer and Wotawa [83], and work in
the area of model-based mutation testing.

The symbolic framework introduced concepts, which were adapted for the thesis. Furthermore, the
framework laid the foundation for theoretical concepts developed within the thesis and thereby also heav-
ily influenced the style of presentation of these concepts. Most important of all, the sioco conformance
relation forms the basis of the conformance check.

122

Chapter 9. Conclusion 123

To the knowledge of the author of this thesis, the conformance checker presented within this thesis is
the first implementation of a fully symbolic ioco checker. The sioco conformance relation, however, has
already been used for model-based testing by Frantzen et al. [43]. But they follow a different approach,
as they perform testing randomly and on-the-fly. The theoretical foundation for the applied on-the-fly
testing algorithm was also given by Frantzen et al. [44]. While the approach presented in previous
chapters also foresees an on-the-fly testing phase, the testing is driven depending on a symbolic test case.
Furthermore, the thesis focused on the generation of such test cases.

The symbolic framework inspired the work of Bentakouk et al. [17] as well. They also perform on-
the-fly testing based on STSs, but use a different conformance relation and target service orchestration
testing. Like Frantzen et al., they perform tests on-the-fly in order to be able to react to outputs from
the SUT as they are observed. This way it is possible to appropriately carry on with test case execution.
An alternative approach would need to enumerate all possible outputs beforehand and thus suffer from
state space explosion. Similar considerations led to the choice of an on-the-fly execution strategy for the
implementation of the test driver presented in Section 5.1.2.

The state inclusion criterion defined by Gaston et al. had a significant impact on the conformance
checker as well [47]. It has been used to derive conditions for symbolic state equivalence and thereby
built the basis for pruning of the search tree, which is explored during test case generation. Actually,
Gaston et al. also employed an adapted variant of the ioco conformance relation together with symbolic
specifications. They select finite behaviours to be tested based on test purposes. Their notion of test
purposes corresponds to the test case selection strategy used in this thesis. In contrast to their approach
however, this thesis suggests to base the selection of concrete inputs for testing on both selected be-
haviours and additional conditions. In subsequent work, the methodology has been extended to handle
component-based system specifications appropriately [42]. More recently, the IOSTS-framework has
been extended by Boudhiba et al. to allow for user-defined program calls in expressions [25].

The notion of test purposes has originally been introduced by Jard and Jéron [55] in the context of
ioco-based non-symbolic test case generation through the TGV tool. Unlike the test purposes defined by
Gaston et al. [47], which are given in an abstract manner independent of the actual system, test purposes
accepted by the TGV tool are defined in dependence of the system. More concretely, they are given
through deterministic and complete IOLTSs together with two sets containing Accept and Refuse states.

Since test purposes can be defined with respect to the modelled system, mutants can be seen as test
purposes. This has been shown by Aichernig and Corrales Delgado [5]. The strategy applied in this thesis
can be compared to the second killing strategy given by Aichernig et al. [4], with the difference that only
at most one test case per mutant is generated. It should be noted that they describe a weakness of the
strategy. It is not well-suited for systems showing highly non-deterministic behaviour. The problem is
that many test case executions would issue inconclusive-verdicts for such systems.

The approaches to conformance checking and test case generation described in [3, 4, 27] can be
seen the most important influences on this thesis, except that this thesis does not deal with continuous
behaviour. Similarly to the sioco checker, they create product graphs from traces of action systems and
search for unsafe states, which denote non-conforming behaviour.

The translation of action systems was inspired by SMT-solver-based model-based mutation testing.
Aichernig et al. gave a predicative semantics for action systems in order to generate tests from mutated
models via refinement checking [9]. Beside a translation into constraint satisfaction problems, another
translation from action systems into SMT-formulas has been developed for these semantics [7]. An
SMT-based translation has also been implemented for Jöbstl’s dissertation [58], which served as a basis
for the concrete ioco checker preceding the sioco checker presented in this thesis.

The experiments discussed in Section 7.3.4 showed that conformance verification by means of sym-
bolic execution is feasible. A symbolic execution-based approach to conformance testing has also been
examined by Le Gall et al. [46]. However, they combine symbolic with concrete execution and check for
refinement.

Chapter 9. Conclusion 124

9.3 Discussion

9.3.1 Development

As indicated above, to the knowledge of the author of this thesis, the first fully symbolic ioco checker
has been developed formally and implemented in the course of this thesis. This can be seen as the main
contributions of this thesis. The aspects involved in the development shall be discussed briefly in the
following.

Formal development. The formal representation of symbolic execution and conformance checking
concepts via first-order logic turned out to be advantageous. It allowed to formally reason about the
utilised techniques. Thereby, it was possible to show that the followed approach indeed checks for sioco
conformance. This has been done by relating the basis of the conformance checking algorithm to the
definition of the sioco conformance relation given by Frantzen et al. [45].

Optimisations. During the development, it became apparent that optimisation is crucial for symbolic
exeution to be efficient. This is reflected in the large number of optimisations presented in this thesis.
These optimisations focus either on symbolic execution or mutation-based test case generation. They do
not include generally applicable techniques like caching, although the actual implementation makes use
of such techniques. The formal description of optimisations permitted to prove that their utilisation does
not introduce unwanted behaviour.

Implementation. The formally described sioco conformance checker has been implemented in Scala
during this thesis. It uses the SMT-solver Z3 [37] for satisfiability checking and serves to demonstrate
that mutation-based test case generation via symbolic execution and ioco checking is feasible.

9.3.2 Evaluation

Another contribution of this thesis is the evaluation of the proposed conformance checking approach.
The evaluation has been carried out by performing of several case studies highlighting different aspects
of conformance checking. Most importantly, a comparison between the implemented symbolic ioco
checker and a concrete ioco checker showed that the symbolic approach is significantly faster than the
concrete approach. Symbolic test case generation is for instance on average nearly 70 times faster
than concrete test case generation for the particle counter use case provided by AVL.

Furthermore, the case studies involved models of real-time systems and also experiments concerning
stepwise development of test models. Both areas were found to be amenable to a symbolic execution-
based conformance checking approach.

However, a problem of the symbolic approach has been identified as well. Currently, it is not possible
to perform conformance checks with large search depths for models with complex data types. This is
due to the fact that the technique employed to overcome the path explosion problem involves checking
satisfiability of quantified first-order formulas. This actually emphasises the importance of optimisation
since disabling two of the optimisations almost rendered the approach infeasible.

9.3.3 Concluding Remarks

In conclusion, the two main goals set for this thesis have been achieved:

1. a test case generator which overcomes the state space explosion problem by symbolic handling of
data has successfully been implemented.

Chapter 9. Conclusion 125

2. the symbolic conformance checker has been compared to a concrete conformance checker with
respect to runtime, which revealed that the symbolic approach pays off.

As a result of the successful achievement of these goals, the most important developments and findings
of this thesis have been presented at the USE-workshop [12].

Additionally, the discussed approach has been extended, most notably to the area of conformance
checking of real-time system models. A paper covering, but not limited to, this extension has been
written in joint work with Bernhard Aichernig and Florian Lorber [11]. The paper has been accepted for
publication but has not been published at the time of writing this thesis.

9.4 Future Work

In the following, some further extensions and adaptations of the presented approach will be discussed.
They could for instance broaden the applicability of the sioco checker to more complex models or enable
the detection of additional types of errors.

9.4.1 Heuristic Methods to Tackle the Path Explosion Problem

Cadar and Sen group methods to overcome the path explosion problem into two categories [32], heuris-
tic methods and those based on sound program analysis. They further note that the latter group of
techniques passes complexity from the exploration to the constraint solver and can therefore constitute
a performance bottleneck. This observation has actually been confirmed during an analysis performed
with VisualVM1, which showed that symbolic state equivalence checks contribute a large portion of the
overall runtime. Even worse, as discussed in Section 7.4, the technique of pruning redundant paths has
proved to be infeasible for complex data types.

Consequently, other methods to cope with this problem should be investigated. Cadar and Sen for
instance state that paths may be chosen/discarded at random, or may be chosen such that certain coverage
criteria are maximised [32].

Experiments presented in Chapter 7 showed that precomputation is a vital part of the conformance
check and the experiments discussed in Section 7.4 further showed that the path explosion problem
already affects this part. Hence, a heuristic method could be used to prune the symbolic execution tree
and thereby reduce the number of traces explored during the conformance check. Stated differently,
heuristic methods may be used to select good traces such that it is not necessary to execute all of them.

Techniques from the area of symbolic program execution could be adapted for this purpose. Burnim
and Sen [28]2 and Cadar et al. [30] for instance propose the adoption of random searches. The random
selection of branches could be implemented as a random selection of actions. More concretely, at each
step during the creation of the symbolic execution tree, one of the enabled actions could be chosen at
random. In order to create trees rather than mere traces, the execution could be restarted at random.

Other heuristics are adaptable as well: Cadar et al. for instance also suggest that searches along
paths, which recently covered new code, should be favoured and thus be continued [30]. As the structure
of action systems is different from programs, it may be necessary to use another coverage criterion in
combination. It may be necessary to cover one action several times in different states, thus a state-based
criterion may be suitable.

Conversely, Gaston et al. [47] give a criterion based on symbolic state inclusion, which defines when
symbolic execution may be stopped. However, this criterion is not well-suited as it requires checking of
state inclusion, which is essentially as complex as checking of state equivalence and this operation has
been identified to be infeasible for models with complex data types.

1https://visualvm.java.net/ (last visit: 4.10.2015)
2It should be noted that Burnim and Sen actually use Concolic execution, a combination of concrete and symbolic execution.

However, the search strategies are applicable nonetheless.

Chapter 9. Conclusion 126

Subpath-guided path exploration, as defined by Li et al. [67], may also be well-suited. A complete
path represents a complete symbolic execution from the initial state to some end state, that is, it is
a sequence of branch conditions visited along the execution. In this context, a length-n subpath is a
subsequence of a complete path of length n. Paths could be represented by a sequence of action labels
for the symbolic execution of action systems.

The basic idea of subpath-guided path exploration is to favour subpaths of some fixed length, which
have been explored the lowest number of times. At each step, a set of possible subpaths could be com-
puted from the set of enabled actions. The action corresponding to the subpath, which has been travelled
the least, could be executed next.

However, none of these heuristics have been implemented so far. But the support of such techniques
seems to be essential for the successful test case generation from models involving complex data types.

Finally, it should be noted that care has to be taken when non-determinism is involved. Since the sym-
bolic execution tree is used during the conformance check to compute all states reachable by some trace
of observable actions, internal actions need to be taken into account. This means that if an observable
action a is performed for some state, it must be performed for all states reachable by the same observable
trace σ. Otherwise it would not be possible to determine the set of states reachable by executing σ · a. It
follows that internal actions need to be executed and must not be discarded at all.

9.4.2 Livelock Quiescence

The sioco checking algorithm may be extended such that another class of non-conformance conditions
can be detected. Tretmans defines ioco for IOLTSs not containing livelocks [78], which are loops of
internal transitions. A similar restriction is placed on the STSs considered by Frantzen et al. [44], which
states that STSs must not contain loops of internal actions as well. This restriction is stricter than the
restriction given for LTSs because the LTS-interpretation of STSs containing such loops does not neces-
sarily contain livelocks.

A possible requirement for action systems would be to demand that the IOLTS-interpretation of
action systems must not contain livelocks. However, it is problematic to place such a restriction on
action systems considered in this thesis. While it is a reasonable restriction for specifications, mutants
cannot be guaranteed to adhere to this restriction, because mutants are generated automatically. Hence,
the effects of livelocks on the conformance check should be considered.

There already exist approaches to handle livelocks, which involve quiescence. States connected by a
loop of internal actions are treated as quiescent states by Jard and Jéron [55], thus self-loops labelled δ
are added to those states. The intuition behind this approach is that systems with livelocks may perform
internal actions for an infinite amount of time without producing any outputs. Hence, such systems would
appear as quiescent.

The notion of Divergent Quiescent Transition Systems(DQTSs) has been introduced by Stokkink
et al. as an alternative to Suspension Automata [73], which are for instance used by TGV [55]. With
DQTSs it is possible to model quiescence more appropriately in the presence of divergence, that is, if
there exist paths of infinite length containing only internal actions. The treatment of livelocks proposed
in the following is, however, based on the approach followed by TGV, as it is suited to be used in
conjunction with action systems.

Example 3.2 shows that the interpretation of a symbolic state may contain concrete states involved
in a livelock on IOLTS-level and it may also contain concrete states which are not involved in a live-
lock. Hence, quiescence resulting from livelocks depends not only on the state but also on an additional
condition. An algorithm shall be sketched in the following which detects such quiescence conditions.

As a prerequisite, the τ -closure needs to compute all traces of internal actions and keep track of
the positions of symbolic states within these traces. After computing the τ -closure, all pairs of symbolic
states η1 = (ϕ1, ρ1) and η2 = (ϕ2, ρ2), which lie on the same trace such that η1 is reached before η2, shall
be examined. Given such a pair (η1, η2), the following condition shall be formed: χ = ϕ1 ∧

∧
x∈V x =

Chapter 9. Conclusion 127

ρ1(x)∧ϕ2 ∧
∧
x∈V x = ρ2(x). The condition expresses that both symbolic states must be reachable and

their symbolic state vectors must be equal, that is, it must be possible to reach the same state again by
executing internal actions.

There exists a livelock if χ is satisfiable. More concretely, the livelocks exist for all valuations υ ∈ UV

for which there exists a valuation ζ ∈ UÎ with υ ∪ ζ |= χ. Hence, χ is a condition for quiescence. The
disjunction over all conditions ∃Vχ formed for all pairs of states gives a characterisation of all possible
situations, in which quiescence may arise from livelocks in a τ -closure. Consequently, this condition
should be added to the quiescence condition ∆ via disjunction. The resulting condition would check
quiescence arising from the absence of outputs and from livelocks simultaneously.

Since this extension has neither been tested nor implemented, such an approach to detecting livelocks
may prove to be infeasible, as it requires a large number of satisfiability checks.

9.4.3 Further Extensions

Several other extensions come to mind, when considering different steps in the test case generation
process. Some of them will be examined briefly in the following.

Improved Test Case Extraction and Killing Strategies

Currently, counterexamples to conformance are used as test cases and inconclusive-verdicts are added
during an online-testing phase. Furthermore, only one test case is retrieved per non-conforming mutant.
Aichernig et al. propose several killing strategies generating varying numbers of tests, different types of
tests and different sets of tests per mutant [4]. The killing strategies essentially define search strategies.
One strategy for instance generates test cases for all traces leading to all different unsafe states. Another
killing strategy generates adaptive test cases. These are test cases which list several paths to an unsafe
state if possible. As a result, such test cases only give an inconclusive-verdict after observing an output
a, if it is not possible to reach the unsafe state s by executing a. The state s is the state to be covered by
the respective test case.

Since these test case generation strategies require techniques such as a backward search from an
unsafe state to the initial state, it may be difficult to implement them symbolically. Nevertheless, adapta-
tions of them may improve the fault detection capabilities of symbolic test cases.

Higher-order Mutants and Additional Mutation Operators

Higher-order mutants are mutants containing several faults. Stated differently, higher-order mutants
combine several first-order mutants. Jia and Harman motivate the study of higher-order mutants by
the fact that there are higher-order mutants denoting faults more subtle than those denoted by first-
order mutants [57]. They show that there indeed exist so-called subsuming higher-order mutants [56].
These are mutants that are harder to kill than their corresponding first-order mutants. Hence, it may
be worthwhile to study higher-order mutations on a model-level as well, as tests generated from such
mutants may find subtle faults and also corresponding simple faults.

In order to support test-case generation based on higher-order mutants, it is necessary to adapt the
mutation analysis performed within the conformance check. It is for instance necessary to check whether
any of the mutated actions has been executed, before applying certain optimisations.

A comparison between the set of mutation operators applied in this thesis and the mutation operators
supported by other tools suggests that additional mutation operators should be implemented. The first
set of mutation operators, those supported by the Mothra system [57, 61], lists some mutation operators,
which may be implemented for action systems, but are not supported at the moment. These operators
may lead to the generation of a more comprehensive test suite. However, limited support of mutation

Chapter 9. Conclusion 128

operators is not a severe restriction. Jia and Harman note that the assumption that all mutation operators
of Mothra need to be considered is actually outdated [57].

Further Optimisations

While several optimisations have been implemented in the course of this thesis, there is still room for
improvement. One area, which may be improved, shall serve as an example: tactics used to configure Z3
have been discussed in Section 6.4, but only very simple tactics are provided at the moment. Based on
linear integer arithmetic benchmarks, Moura and Passmore have shown that more complex tactics may
be more effective and may also be faster than the default SMT-solver tactic [38]. They further note that
for different types of problems, different heuristics may be more efficient. Hence, it may make sense to
choose tactics based on an analysis of the action system model. But prior to implementing such context-
dependent tactics, a large number of experiments needs to be performed to find optimal combinations of
reasoning engines.

Other Symbolic Test Case Selection Criteria

Frantzen et al. not only define a symbolic version of ioco, but they rather give a general symbolic frame-
work for model-based testing [45]. Although the main focus of this thesis was the implementation of
an efficient sioco checker, the implemented concepts may also be applied in other settings. Other test
case selection criteria, such as those given by Gaston et al. [47], could be implemented. Alternatively,
model-based mutation testing with refinement as conformance relation could also be implemented [9].
In both cases, the same test driver as presented in Section 5.1.2 could be used.

9.4.4 Additional Case Studies

Chapter 7 discusses a wide range of aspects of conformance checking. For this reason, application
areas such as stepwise development of test models are investigated rather briefly. Hence, additional case
studies highlighting different aspects should be performed. Possible case studies include, but are not
limited to:

• more comprehensive case studies involving complex data types. It would be interesting to deter-
mine whether it is possible to generate test cases for non-trivial models despite facing the path
explosion problem.

• case studies with large numbers of parameters. Although the refactored model of the particle
counter presented in Section 7.2.3 contains actions with a large parameter space, additional case
studies would be beneficial. They might demonstrate limitations of the approach or reinforce the
observation that it performs well for this kind of models.

• case studies concerning stepwise development of test models. In Section 4.4, it has been pointed
out that angelic completion may lead to conformance violations. While this has not been an is-
sue for the verification of conformance between refinements of the car alarm system (see Sec-
tion 7.3.4), it may be an issue considering other models. Therefore, a further investigation of this
topic should be performed.

There are of course many more possibilities for further analysis of the sioco checker. Nevertheless,
it can be concluded that the presented approach is promising.

Bibliography

[1] Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineering. Cambridge Uni-
versity Press, 2010. (Cited on pages 5, 15 and 111.)

[2] Bernhard K. Aichernig. Model-Based Mutation Testing: Theory and Application. Habilitation,
Graz University of Technology, Institute for Software Technology, 2012. (Cited on pages 3 and 73.)

[3] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, and Willibald Krenn. Model-based muta-
tion testing of hybrid systems. In Frank S. de Boer, Marcello M. Bonsangue, Stefan Hallerstede,
and Michael Leuschel, editors, Formal Methods for Components and Objects - 8th International
Symposium, FMCO 2009, Eindhoven, The Netherlands, November 4-6, 2009. Revised Selected Pa-
pers, volume 6286 of Lecture Notes in Computer Science, pages 228–249. Springer, 2009. (Cited
on pages 1, 15, 18, 55, 97 and 123.)

[4] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, Willibald Krenn, Rupert Schlick, and
Stefan Tiran. Killing strategies for model-based mutation testing. Software Testing, Verification
and Reliability, 25(8):716–748, 2015. (Cited on pages 5, 15, 18, 73, 76, 93, 94, 97, 98, 104, 107,
115, 123 and 127.)

[5] Bernhard K. Aichernig and Carlo Corrales Delgado. From faults via test purposes to test cases: On
the fault-based testing of concurrent systems. In Luciano Baresi and Reiko Heckel, editors, Fun-
damental Approaches to Software Engineering, 9th International Conference, FASE 2006, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2006, Vienna,
Austria, March 27-28, 2006, Proceedings, volume 3922 of Lecture Notes in Computer Science,
pages 324–338. Springer, 2006. (Cited on page 123.)

[6] Bernhard K. Aichernig and Elisabeth Jöbstl. Efficient refinement checking for model-based muta-
tion testing. In Antony Tang and Henry Muccini, editors, QSIC 2012, 12th International Confer-
ence on Quality Software, Xi’an, Shaanxi, China, August 27-29, 2012, pages 21–30. IEEE, 2012.
(Cited on pages 15, 45 and 48.)

[7] Bernhard K. Aichernig, Elisabeth Jöbstl, and Matthias Kegele. Incremental refinement checking
for test case generation. In Margus Veanes and Luca Viganò, editors, Tests and Proofs - 7th Interna-
tional Conference, TAP 2013, Budapest, Hungary, June 16-20, 2013. Proceedings, volume 7942 of
Lecture Notes in Computer Science, pages 1–19. Springer, 2013. (Cited on pages 15, 83 and 123.)

[8] Bernhard K. Aichernig, Elisabeth Jöbstl, and Martin Tappler. Does this fault lead to failure? - com-
bining refinement and input-output conformance checking in fault-oriented test-case generation.
Journal of Logical and Algebraic Methods in Programming, In press. Festschrift in honor of José
Nuno Oliveira. (Cited on page 7.)

[9] Bernhard K. Aichernig, Elisabeth Jöbstl, and Stefan Tiran. Model-based mutation testing via sym-
bolic refinement checking. Science of Computer Programming, 97:383–404, 2015. (Cited on
pages 3, 4, 5, 15, 97, 98, 99, 120, 123 and 128.)

[10] Bernhard K. Aichernig, Florian Lorber, and Dejan Nickovic. Time for mutants - model-based
mutation testing with timed automata. In Margus Veanes and Luca Viganò, editors, Tests and Proofs
- 7th International Conference, TAP 2013, Budapest, Hungary, June 16-20, 2013. Proceedings,
volume 7942 of Lecture Notes in Computer Science, pages 20–38. Springer, 2013. (Cited on
pages 7, 97, 99, 104, 105, 107, 108, 116, 118 and 119.)

[11] Bernhard K. Aichernig, Florian Lorber, and Martin Tappler. Conformance checking of real-time
models - symbolic execution vs. bounded model checking. In Theory and Practice of Formal

129

Bibliography 130

Methods: Essays Dedicated to Frank de Boer on the Occasion of His 60th Birthday, Lecture Notes
in Computer Science Festschrifts. Springer, 2016. Accepted but not yet published. (Cited on
pages 7, 118 and 125.)

[12] Bernhard K. Aichernig and Martin Tappler. Symbolic input-output conformance checking for
model-based mutation testing. In Usages of Symbolic Execution - 1st International Workshop in
conjunction with FM 2015, USE’15, Oslo, Norway, June 23, 2015, Electronic Notes in Theoretical
Computer Science. Elsevier B. V., 2015. In press. (Cited on pages 7, 9, 15, 21, 30, 34, 48, 79, 91
and 125.)

[13] Ralph-Johan Back and Reino Kurki-Suonio. Distributed cooperation with action systems. ACM
Transactions on Programming Languages and Systems (TOPLAS), 10(4):513–554, 1988. (Cited
on page 15.)

[14] Ralph-Johan Back and Reino Kurki-Suonio. Decentralization of process nets with centralized con-
trol. Distributed Computing, 3(2):73–87, 1989. (Cited on page 15.)

[15] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo Theories Library (SMT-
LIB). www.SMT-LIB.org, 2010. (Cited on pages 81 and 83.)

[16] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In Jörg Desel,
Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures on Concurrency and Petri Nets, Ad-
vances in Petri Nets [This tutorial volume originates from the 4th Advanced Course on Petri Nets,
ACPN 2003, held in Eichstätt, Germany in September 2003. In addition to lectures given at ACPN
2003, additional chapters have been commissioned], volume 3098 of Lecture Notes in Computer
Science, pages 87–124. Springer, 2003. (Cited on page 104.)

[17] Lina Bentakouk, Pascal Poizat, and Fatiha Zaı̈di. A formal framework for service orchestration test-
ing based on symbolic transition systems. In Manuel Núñez, Paul Baker, and Mercedes G. Merayo,
editors, Testing of Software and Communication Systems, 21st IFIP WG 6.1 International Confer-
ence, TESTCOM 2009 and 9th International Workshop, FATES 2009, Eindhoven, The Netherlands,
November 2-4, 2009. Proceedings, volume 5826 of Lecture Notes in Computer Science, pages 16–
32. Springer, 2009. (Cited on page 123.)

[18] Gilles Bernot. Testing against formal specifications: A theoretical view. In Samson Abramsky
and T. S. E. Maibaum, editors, TAPSOFT’91: Proceedings of the International Joint Conference
on Theory and Practice of Software Development, Brighton, UK, April 8-12, 1991, Volume 2:
Advances in Distributed Computing (ADC) and Colloquium on Combining Paradigms for Soft-
ware Developmemnt (CCPSD), volume 494 of Lecture Notes in Computer Science, pages 99–119.
Springer, 1991. (Cited on page 2.)

[19] Juan C. Bicarregui, editor. Proof in VDM: Case Studies. Formal Approaches to Computing and
Information Technology (FACIT). Springer-Verlag London, 1998. (Cited on page 1.)

[20] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu. Bounded
model checking. Advances in Computers, 58:117–148, 2003. (Cited on pages 29, 33 and 79.)

[21] Nikolaj Bjørner. Linear quantifier elimination as an abstract decision procedure. In Jürgen Giesl
and Reiner Hähnle, editors, Automated Reasoning, 5th International Joint Conference, IJCAR 2010,
Edinburgh, UK, July 16-19, 2010. Proceedings, volume 6173 of Lecture Notes in Computer Sci-
ence, pages 316–330. Springer, 2010. (Cited on page 84.)

[22] Nikolaj Bjørner. Taking satisfiability to the next level with Z3 - (abstract). In Bernhard Gramlich,
Dale Miller, and Uli Sattler, editors, Automated Reasoning - 6th International Joint Conference,
IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings, volume 7364 of Lecture Notes in
Computer Science, pages 1–8. Springer, 2012. (Cited on page 81.)

Bibliography 131

[23] Marcello M. Bonsangue, Joost N. Kok, and Kaisa Sere. An approach to object-orientation in action
systems. In Johan Jeuring, editor, Mathematics of Program Construction, MPC’98, Marstrand,
Sweden, June 15-17, 1998, Proceedings, volume 1422 of Lecture Notes in Computer Science, pages
68–95. Springer, 1998. (Cited on pages 15 and 120.)

[24] Peter Boonstoppel, Cristian Cadar, and Dawson R. Engler. RWset: Attacking path explosion in
constraint-based test generation. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algo-
rithms for the Construction and Analysis of Systems, 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Com-
puter Science, pages 351–366. Springer, 2008. (Cited on page 48.)

[25] Imen Boudhiba, Christophe Gaston, Pascale Le Gall, and Virgile Prevosto. Model-based testing
from input output symbolic transition systems enriched by program calls and contracts. In Khaled
El-Fakih, Gerassimos D. Barlas, and Nina Yevtushenko, editors, Testing Software and Systems -
27th IFIP WG 6.1 International Conference, ICTSS 2015, Sharjah and Dubai, United Arab Emi-
rates, November 23-25, 2015, Proceedings, volume 9447 of Lecture Notes in Computer Science,
pages 35–51. Springer, 2015. (Cited on page 123.)

[26] Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. SELECT–a formal system for testing and
debugging programs by symbolic execution. SIGPLAN Not., 10(6):234–245, April 1975. (Cited
on pages 19, 21 and 22.)

[27] Harald Brandl, Martin Weiglhofer, and Bernhard K. Aichernig. Automated conformance verifi-
cation of hybrid systems. In Ji Wang, W. K. Chan, and Fei-Ching Kuo, editors, Proceedings of
the 10th International Conference on Quality Software, QSIC 2010, Zhangjiajie, China, 14-15 July
2010, pages 3–12. IEEE, 2010. (Cited on page 123.)

[28] Jacob Burnim and Koushik Sen. Heuristics for scalable dynamic test generation. In 23rd IEEE/ACM
International Conference on Automated Software Engineering (ASE 2008), 15-19 September 2008,
L’Aquila, Italy, pages 443–446. IEEE, 2008. (Cited on page 125.)

[29] Michael J. Butler. Stepwise refinement of communicating systems. Science of Computer Program-
ming, 27(2):139–173, 1996. (Cited on page 17.)

[30] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In Richard Draves and Robbert van Re-
nesse, editors, 8th USENIX Symposium on Operating Systems Design and Implementation, OSDI
2008, December 8-10, 2008, San Diego, California, USA, Proceedings, pages 209–224. USENIX
Association, 2008. (Cited on page 125.)

[31] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler. EXE:
Automatically generating inputs of death. ACM Transactions on Information and System Security
(TISSEC), 12(2):10:1–10:38, December 2008. (Cited on page 19.)

[32] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: Three decades later.
Communications of the ACM, 56(2):82–90, 2013. (Cited on pages 19, 48, 96, 113 and 125.)

[33] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Orna Grumberg and Helmut Veith, editors, 25 Years of
Model Checking - History, Achievements, Perspectives, volume 5000 of Lecture Notes in Computer
Science, pages 196–215. Springer, 2008. (Cited on page 5.)

[34] Edmund M. Clarke, William Klieber, Milos Novácek, and Paolo Zuliani. Model checking and the
state explosion problem. In Bertrand Meyer and Martin Nordio, editors, Tools for Practical Soft-
ware Verification, LASER, International Summer School 2011, Elba Island, Italy, Revised Tutorial

Bibliography 132

Lectures, volume 7682 of Lecture Notes in Computer Science, pages 1–30. Springer, 2011. (Cited
on page 6.)

[35] Adenilso da Silva Simão and Alexandre Petrenko. Generating asynchronous test cases from test
purposes. Information and Software Technology, 53(11):1252–1262, 2011. (Cited on pages 79
and 107.)

[36] Leonardo de Moura and Nikolaj Bjørner. Z3–a tutorial, 2006. (Cited on pages 82 and 84.)

[37] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In C. R. Ra-
makrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6,
2008. Proceedings, volume 4963 of Lecture Notes in Computer Science, pages 337–340. Springer,
2008. (Cited on pages 81, 122 and 124.)

[38] Leonardo Mendonça de Moura and Grant Olney Passmore. The strategy challenge in SMT solving.
In Maria Paola Bonacina and Mark E. Stickel, editors, Automated Reasoning and Mathematics -
Essays in Memory of William W. McCune, volume 7788 of Lecture Notes in Computer Science,
pages 15–44. Springer, 2013. (Cited on pages 85 and 128.)

[39] David Déharbe, Pascal Fontaine, Yoann Guyot, and Laurent Voisin. Integrating SMT solvers in
Rodin. Science of Computer Programming, 94, Part 2(0):130 – 143, 2014. Abstract State Machines,
Alloy, B, VDM, and Z Selected and extended papers from ABZ 2012. (Cited on page 5.)

[40] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for the practicing
programmer. Computer, 11(4):34–41, April 1978. (Cited on page 3.)

[41] Edsger W. Dijkstra. The humble programmer. Communications of the ACM, 15(10):859–866,
October 1972. (Cited on page 73.)

[42] Alain Faivre, Christophe Gaston, and Pascale Le Gall. Symbolic model based testing for com-
ponent oriented systems. In Alexandre Petrenko, Margus Veanes, Jan Tretmans, and Wolfgang
Grieskamp, editors, Testing of Software and Communicating Systems, 19th IFIP TC6/WG6.1 In-
ternational Conference, TestCom 2007, 7th International Workshop, FATES 2007, Tallinn, Estonia,
June 26-29, 2007, Proceedings, volume 4581 of Lecture Notes in Computer Science, pages 90–106.
Springer, 2007. (Cited on page 123.)

[43] Lars Frantzen, Maria de las Nieves Huerta, Zsolt Gere Kiss, and Thomas Wallet. On-the-fly model-
based testing of web services with Jambition. In Roberto Bruni and Karsten Wolf, editors, Web
Services and Formal Methods, 5th International Workshop, WS-FM 2008, Milan, Italy, September
4-5, 2008, Revised Selected Papers, volume 5387 of Lecture Notes in Computer Science, pages
143–157. Springer, 2008. (Cited on page 123.)

[44] Lars Frantzen, Jan Tretmans, and Tim A. C. Willemse. Test generation based on symbolic speci-
fications. In Jens Grabowski and Brian Nielsen, editors, Formal Approaches to Software Testing,
4th International Workshop, FATES 2004, Linz, Austria, September 21, 2004, Revised Selected Pa-
pers, volume 3395 of Lecture Notes in Computer Science, pages 1–15. Springer, 2004. (Cited on
pages 123 and 126.)

[45] Lars Frantzen, Jan Tretmans, and Tim A. C. Willemse. A symbolic framework for model-based
testing. In Klaus Havelund, Manuel Núñez, Grigore Rosu, and Burkhart Wolff, editors, Formal
Approaches to Software Testing and Runtime Verification, First Combined International Workshops,
FATES 2006 and RV 2006, Seattle, WA, USA, August 15-16, 2006, Revised Selected Papers, volume
4262 of Lecture Notes in Computer Science, pages 40–54. Springer, 2006. (Cited on pages 6, 9,
11, 12, 13, 17, 22, 23, 24, 26, 32, 38, 52, 88, 89, 122, 124 and 128.)

Bibliography 133

[46] Pascale Le Gall, Nicolas Rapin, and Assia Touil. Symbolic execution techniques for refinement
testing. In Yuri Gurevich and Bertrand Meyer, editors, Tests and Proofs, First International Con-
ference, TAP 2007, Zurich, Switzerland, February 12-13, 2007. Revised Papers, volume 4454 of
Lecture Notes in Computer Science, pages 131–148. Springer, 2007. (Cited on page 123.)

[47] Christophe Gaston, Pascale Le Gall, Nicolas Rapin, and Assia Touil. Symbolic execution tech-
niques for test purpose definition. In M. Ümit Uyar, Ali Y. Duale, and Mariusz A. Fecko, ed-
itors, Testing of Communicating Systems, 18th IFIP TC6/WG6.1 International Conference, Test-
Com 2006, New York, NY, USA, May 16-18, 2006, Proceedings, volume 3964 of Lecture Notes
in Computer Science, pages 1–18. Springer, 2006. (Cited on pages 22, 27, 28, 51, 84, 123, 125
and 128.)

[48] Yeting Ge and Leonardo Mendonça de Moura. Complete instantiation for quantified formulas in
satisfiabiliby modulo theories. In Ahmed Bouajjani and Oded Maler, editors, Computer Aided
Verification, 21st International Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009.
Proceedings, volume 5643 of Lecture Notes in Computer Science, pages 306–320. Springer, 2009.
(Cited on page 84.)

[49] C. George, A. E. Haxthausen, S. Hughes, R. Milne, S. Prehn, and J. S. Pedersen. The RAISE
Development Method. The BCS Practitioners Series. Prentice Hall, 1995. (Cited on page 5.)

[50] Thomas Gibson-Robinson, Philip J. Armstrong, Alexandre Boulgakov, and A. W. Roscoe. FDR3 —
A modern refinement checker for CSP. In Erika Ábrahám and Klaus Havelund, editors, Tools and
Algorithms for the Construction and Analysis of Systems - 20th International Conference, TACAS
2014, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014. Proceedings, volume 8413 of Lecture Notes in Computer
Science, pages 187–201. Springer, 2014. (Cited on page 5.)

[51] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed automated random testing.
ACM SIGPLAN Notices, 40(6):213–223, June 2005. (Cited on page 19.)

[52] D. Harel and A. Pnueli. On the development of reactive systems. In Krzysztof R. Apt, editor, Logics
and Models of Concurrent Systems, volume 13 of NATO ASI Series, pages 477–498. Springer, 1985.
(Cited on page 6.)

[53] William E. Howden. Methodology for the generation of program test data. IEEE Transactions on
Computers, C-24(5):554–560, May 1975. (Cited on pages 19 and 21.)

[54] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Reasoning About Sys-
tems. Cambridge University Press, New York, NY, USA, 2004. (Cited on page 9.)

[55] Claude Jard and Thierry Jéron. TGV: Theory, principles and algorithms: A tool for the automatic
synthesis of conformance test cases for non-deterministic reactive systems. International Journal
on Software Tools for Technology Transfer, 7(4):297–315, August 2005. (Cited on pages 123
and 126.)

[56] Yue Jia and Mark Harman. Constructing subtle faults using higher order mutation testing. In 8th
IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM 2008),
28-29 September 2008, Beijing, China, pages 249–258. IEEE, 2008. (Cited on page 127.)

[57] Yue Jia and Mark Harman. An analysis and survey of the development of mutation testing. IEEE
Transactions on Software Engineering, 37(5):649–678, 2011. (Cited on pages 3, 73, 127 and 128.)

[58] Elisabeth Jöbstl. Model-Based Mutation Testing with Constraint and SMT Solvers. PhD thesis,
Graz University of Technology, Institute for Software Technology, 2014. (Cited on pages 1, 6, 8,
18, 88, 91, 92, 121 and 123.)

Bibliography 134

[59] Clifford B. Jones. Systematic software development using VDM (2nd ed.). Prentice Hall Interna-
tional Series in Computer Science. Prentice Hall, 1991. (Cited on page 5.)

[60] James C. King. Symbolic execution and program testing. Communications of the ACM, 19(7):385–
394, July 1976. (Cited on pages 19, 20, 22 and 30.)

[61] K. N. King and A. Jefferson Offutt. A Fortran language system for mutation-based software testing.
Software – Practice & Experience, 21(7):685–718, June 1991. (Cited on pages 73 and 127.)

[62] Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter. Scala to the power of Z3: integrating SMT
and programming. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors, Automated De-
duction - CADE-23 - 23rd International Conference on Automated Deduction, Wroclaw, Poland,
July 31 - August 5, 2011. Proceedings, volume 6803 of Lecture Notes in Computer Science, pages
400–406. Springer, 2011. (Cited on page 83.)

[63] Willibald Krenn, Rupert Schlick, Stefan Tiran, Bernhard K. Aichernig, Elisabeth Jöbstl, and Harald
Brandl. MoMut::UML model-based mutation testing for UML. In 8th IEEE International Confer-
ence on Software Testing, Verification and Validation, ICST 2015, Graz, Austria, April 13-17, 2015,
pages 1–8. IEEE, 2015. (Cited on pages 116 and 120.)

[64] M. Krichen and S. Tripakis. Conformance testing for real-time systems. Formal Methods in System
Design, 34(3):238–304, 2009. (Cited on pages 98, 104, 107, 118 and 119.)

[65] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. International Journal on
Software Tools for Technology Transfer, 1(1-2):134–152, 1997. (Cited on page 118.)

[66] Nancy G. Leveson and Clark Savage Turner. An investigation of the Therac-25 accidents. Com-
puter, 26(7):18–41, 1993. (Cited on page 1.)

[67] You Li, Zhendong Su, Linzhang Wang, and Xuandong Li. Steering symbolic execution to less trav-
eled paths. In Antony L. Hosking, Patrick Th. Eugster, and Cristina V. Lopes, editors, Proceedings
of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October
26-31, 2013, pages 19–32. ACM, 2013. (Cited on page 126.)

[68] Florian Lorber, Amnon Rosenmann, Dejan Nickovic, and Bernhard K. Aichernig. Bounded de-
terminization of timed automata with silent transitions. In Sriram Sankaranarayanan and Enrico
Vicario, editors, Formal Modeling and Analysis of Timed Systems - 13th International Conference,
FORMATS 2015, Madrid, Spain, September 2-4, 2015, Proceedings, volume 9268 of Lecture Notes
in Computer Science, pages 288–304. Springer, 2015. (Cited on page 109.)

[69] Paulo J. Matos and João Marques-Silva. Model checking Event-B by encoding into Alloy. In Egon
Börger, Michael J. Butler, Jonathan P. Bowen, and Paul Boca, editors, Abstract State Machines, B
and Z, First International Conference, ABZ 2008, London, UK, September 16-18, 2008. Proceed-
ings, volume 5238 of Lecture Notes in Computer Science, page 346. Springer, 2008. (Cited on
page 5.)

[70] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: A Comprehensive Step-by-
step Guide. Artima Incorporation, USA, 1st edition, 2008. (Cited on page 82.)

[71] A. Jefferson Offutt. Investigations of the software testing coupling effect. ACM Transactions on
Software Engineering and Methodology (TOSEM), 1(1):5–20, January 1992. (Cited on page 73.)

[72] Hans Jürgen Ohlbach. Extensions of first-order logic, Maria Manzano. Journal of Logic, Language
and Information, 7(3):389–391, 1998. (Cited on page 9.)

Bibliography 135

[73] Willem Gerrit Johan Stokkink, Mark Timmer, and Mariëlle Stoelinga. Divergent quiescent tran-
sition systems. In Margus Veanes and Luca Viganò, editors, Tests and Proofs - 7th International
Conference, TAP 2013, Budapest, Hungary, June 16-20, 2013. Proceedings, volume 7942 of Lec-
ture Notes in Computer Science, pages 214–231. Springer, 2013. (Cited on page 126.)

[74] Nikolai Tillmann and Jonathan de Halleux. Pex-white box test generation for .NET. In Bernhard
Beckert and Reiner Hähnle, editors, Tests and Proofs, Second International Conference, TAP 2008,
Prato, Italy, April 9-11, 2008. Proceedings, volume 4966 of Lecture Notes in Computer Science,
pages 134–153. Springer, 2008. (Cited on page 19.)

[75] Stefan Tiran. The Argos Manual. Institute for Software Technology (IST), Graz University of
Technology, 2012. (Cited on page 120.)

[76] Stefan Tiran. On the Effects of UML Modeling Styles in Model-based Mutation Testing. Master
thesis, Graz, University of Technology, 2013. (Cited on page 88.)

[77] Jan Tretmans. Conformance testing with labelled transition systems: Implementation relations and
test generation. Computer Networks and ISDN Systems, 29(1):49–79, 1996. (Cited on pages 2
and 3.)

[78] Jan Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software - Concepts
and Tools, 17(3):103–120, 1996. (Cited on pages 1, 3, 5, 11, 12, 13, 14, 23, 33, 34, 64, 67 and 126.)

[79] Jan Tretmans. Model based testing with labelled transition systems. In Robert M. Hierons,
Jonathan P. Bowen, and Mark Harman, editors, Formal Methods and Testing, An Outcome of the
FORTEST Network, Revised Selected Papers, volume 4949 of Lecture Notes in Computer Science,
pages 1–38. Springer, 2008. (Cited on pages 23, 24, 31, 37, 41 and 112.)

[80] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-based testing ap-
proaches. Software Testing, Verification and Reliability, 22(5):297–312, August 2012. (Cited on
pages 1, 2, 5 and 74.)

[81] Sabrina von Styp, Henrik C. Bohnenkamp, and Julien Schmaltz. A conformance testing relation
for symbolic timed automata. In Krishnendu Chatterjee and Thomas A. Henzinger, editors, For-
mal Modeling and Analysis of Timed Systems - 8th International Conference, FORMATS 2010,
Klosterneuburg, Austria, September 8-10, 2010. Proceedings, volume 6246 of Lecture Notes in
Computer Science, pages 243–255. Springer, 2010. (Cited on pages 118 and 119.)

[82] Martin Weiglhofer, Bernhard K. Aichernig, and Franz Wotawa. Fault-based conformance testing
in practice. International Journal of Software and Informatics, 3(2-3):375–411, 2009. (Cited on
page 13.)

[83] Martin Weiglhofer and Franz Wotawa. ”On the fly” input output conformance verification. In
Proceedings of the IASTED International Conference on Software Engineering, SE ’08, pages 286–
291, Anaheim, CA, USA, 2008. ACTA Press. (Cited on pages 32, 52, 67 and 122.)

[84] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. Formal methods: Prac-
tice and experience. ACM Computing Surveys (CSUR), 41(4):19:1–19:36, October 2009. (Cited
on page 1.)

	1 Introduction
	1.1 Motivation
	1.2 Model-Based Testing
	1.3 Conformance Testing
	1.4 Model-Based Mutation Testing
	1.5 Stepwise Development of Test Models
	1.6 Problem Statement and Goals
	1.7 Published Material
	1.7.1 Related Publications

	1.8 Structure of this Thesis

	2 A Symbolic Framework for Conformance Checking
	2.1 First-order logic
	2.2 Labelled Transition Systems and Input Output Conformance
	2.3 Action Systems
	2.3.1 Syntax
	2.3.2 Semantics

	2.4 Symbolic Execution
	2.4.1 Symbolic Execution on Implementation-Level
	2.4.2 Symbolic Execution on Model-Level and Symbolic Input Output Conformance

	3 Symbolic Input Output Conformance Checking
	3.1 Symbolic Execution and Conformance Testing Concepts
	3.1.1 Symbolic Execution Tree
	3.1.2 Introduction to Product Graphs
	3.1.3 Deterministic Product Graph
	3.1.4 Unsafe States

	3.2 sioco Checking Algorithm

	4 Optimisations
	4.1 Symbolic Execution Graph
	4.2 Product Graph Pruning
	4.3 Syntactic Mutation Analysis
	4.4 Restriction of Angelic Completion for Mutants
	4.5 Avoiding the Execution of Implementation Actions
	4.6 Simplifying Equivalence Checks for Product States
	4.7 Reducing the Number of Non-conformance Checks
	4.8 Calculation of Reachable Actions
	4.9 Filtering of Implementation States
	4.10 Checking if Input Guard Weakened

	5 Application of the Conformance Check
	5.1 The Model-Based Testing Process
	5.1.1 Test Case Generation Phase
	5.1.2 Test Execution Phase

	5.2 Model-Checking

	6 Implementation
	6.1 Type System
	6.2 Parsing and Mutation
	6.3 Translation
	6.3.1 Implicit Extension of Guards
	6.3.2 Choice of API

	6.4 Conformance Check
	6.4.1 Equivalence Checks
	6.4.2 – Divergence
	6.4.3 Disabling Syntactic Mutation Analysis

	7 Case Studies
	7.1 Supplier
	7.1.1 Specification
	7.1.2 Results

	7.2 Particle Counter
	7.2.1 Specification and Modelling
	7.2.2 Results and Comparison
	7.2.3 Refactored Model

	7.3 Car Alarm System
	7.3.1 Specification and Modelling
	7.3.2 Translation of Action System Model
	7.3.3 Translation of Timed Automata Models
	7.3.4 Verification during Stepwise Development

	7.4 Models using Complex Data Types
	7.4.1 Models
	7.4.2 Experiments

	8 Extensions and Adaptations
	8.1 Changes of the sioco Conformance Checker
	8.1.1 Multiple Actions with Same Label
	8.1.2 Parameters for Internal Actions

	8.2 Conformance Checking of Real-Time System Models
	8.3 Integration into MoMut::UML-Toolchain

	9 Conclusion
	9.1 Summary
	9.2 Related Work
	9.3 Discussion
	9.3.1 Development
	9.3.2 Evaluation
	9.3.3 Concluding Remarks

	9.4 Future Work
	9.4.1 Heuristic Methods to Tackle the Path Explosion Problem
	9.4.2 Livelock Quiescence
	9.4.3 Further Extensions
	9.4.4 Additional Case Studies

	Bibliography

