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Abstract

This research concerns the development of a sensor fusion framework, which provides real time

6 degree-of-freedom tracking. The framework is based on the Unscented Kalman Filter and uses

data from a low cost inertial measurement unit and an optical measurement system. For the

optical measurement system a monocular position tracking algorithm based on sphere tracking

was developed. A simplified version of the navigation equation was derived. Furthermore deter-

ministic and stochastic error models of inertial sensors were in the fusion framework integrated.

Also methods for calibration and identification of stochastic parameters for inertial sensors are

provided and demonstrated. Finally a low cost 3D interaction device was implemented. For a

complex task (combined fast/slow rotations and translation over a range of ≈ 0.5 m ) a rmse

of about 1.5 mm for the X and Y direction and a rmse of about 3 mm for the Z direction, with

respect to the camera, were achieved. For the orientation a rmse of about 1.3 deg was obtained.

Zusammenfassung

Diese Arbeit befasst sich mit der Entwicklung eines Sensorfusion Frameworks. Das Framework

benutzt einen Unscented Kalman Filter, der auf Basis von low cost Inertial- und optischen

Positionsdaten, Orientierungs - und Positionsinformation in Echtzeit zur Verfügung stellt.

Des Weiteren wurde ein Monokular-Position-Tracking Algorithmus implementiert, welcher

die Position von kugelförmigen Objekten schätzt. Eine vereinfachte Version der Navigations-

gleichung wurde in Kombination mit stochastischer und deterministischer Modellierung der

Inertialsensoren in das Framework integriert. Geeignete Verfahren für die Kalibrierung und für

die Bestimmung der stochastischen Parameter sind dargestellt und demonstriert. Schlussendlich

wurde ein 3D Interaktionstool entwickelt, das in einem komplexen Anwendungsfall (zusam-

mengesetzte schnelle/langsame Rotationen und Translationen in einem Bereich von ≈ 0.5 m)

einen rmse von 1.5 mm für die X und Y-Richtung, und einen rmse von 3 mm für die Z-Richtung

erzielte. Die Orientierung erreichte einen rmse von 1.3 deg.

v



vi



Acknowledgment

Let me begin by thanking the people, who helped me in one way or another to write this thesis.

This thesis has been conducted in cooperation with PS-Tech in Amsterdam. During my stay in

Amsterdam I got to know Dutch culture, of which I am really thankful for.

Thank you Arjen and Mark for giving me the opportunity of writing my thesis at their company

and for sharing your wisdom with me (e.g. how to make perfect cappuccinos, singing the right

carnival songs, what to do in case I win the lottery, . . . , ,).

To Wim and Martijn. I am thankful for your support in coding and sharing your knowledge

with me. Your efforts in introducing me to good Dutch food such as ’Oude kaas salade’, ’Kip-

kerriesalade’, . . . , has been appreciated.

Thanks to Erwin for helping me out with hardware problems, as well as for all the fun we had

casting silicon balls.

Also, I am grateful to Mays and Pedro for discovering Burgerbar and great beers with me.

Special thanks to my supervisor Markus for all his great help and supporting me with long

lasting Skype conversation until late at night.

Thank you Joachim and Thomas for reading and correcting my thesis.

To all my wonderful friends and study colleagues for all the memories, friendship and support.

To Emma for all your support, love and unforgettable time in Amsterdam.
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1. Introduction

1.1. Motivation

What is Tracking / Why Tracking?

The aim of tracking is to continuously determine the states of a moving object over time [1].

Tracking orientation and position in 3D space is called 6 degree of freedom (dof) tracking. The

first 3 dof refer to the translation in three perpendicular axes and the other 3 dof refer to the

rotation about three perpendicular axes.

Nowadays, the field of Virtual Reality (vr) and Augmented Reality (ar) is continuously

growing [2]. Considering the recent developments of vr / ar glasses and the availability of

affordable 3D screens even further increases can be expected.

With the growing access to the 3D virtual world, also the demand of 3D interaction devices is

growing. Where the computer ’mouse’ was developed to ’optimally’ interact with a 2D screen,

a similar device should be developed to interact with this virtual 3D world in an optimal way.

Intuitively, the best way to do so would be by moving a real object in the 3D space. By tracking

the position and orientation of that object, these movements can serve as input to the virtual

world. Tracking is the technique to provide precise real-time information of the object’s path and

offers an intuitive way for 3D interaction.

A field where tracking is well developed is navigation. A well-known application is the (Global

Navigation Satellite System) gnss navigation system for cars. However, if gnss signals are not

available, other approaches have to be used. A smartphone is usually equipped with many

different sensors such as accelerometers, magnetometers, gyroscopes, gnss, cameras and many

more. Combining those information sources in a smart way could provide accurate tracking

information. Possible applications would be pedestrian navigation [3], emergency evacuations [4]

and fireman guiding systems [5], [6].

To summarize, a strong demand for 6 dof tracking exists.

1



1. Introduction

How to get Position and Orientation Information?

Many methods to gather information of an object’s position and orientation are available. A

quick but not complete overview of available technologies will be presented [7]–[12]:

• Radio frequency based technologies such as Bluetooth, Wireless LAN, Ultra Wide Band or

RFID techniques provide position information based on fingerprinting and triangulation.

From all of these techniques Ultra Wide Band shows the most accurate and robust behavior.

• Ultrasound methods provide distance and angle measurements in order to determine the

position of an object.

• By measuring the strength and orientation of an artificial excited magnetic field or the

earth magnetic field, the orientation and also the position (active excited field) can be

obtained. However, those methods are very sensitive to local distortions of the magnetic

field.

• Infrared laser scanners provide very accurate position information, but the measurement

of many points is slow and the equipment is fairly expensive.

• Tracking using depth cameras show great potential, however their accuracy is still limited

with current low cost cameras.

• The accuracy of image based methods strongly depends on the algorithm and the properties

of the tracked object. Marker based stereo optical tracking systems provide very accurate

position and orientation information for nearly any kind of object. Unfortunately those

systems are quite expensive.

• Recent developments in micro-electro-mechanical systems led to inexpensive ( 5− 15 €)

and miniaturized inertial sensors with increasing accuracy and performance. Although

inertial sensors provide position and orientation information with a high update rate and

high short term accuracy, their accuracy drastically decreases over time. For that reason

standalone applications for position and orientation tracking are difficult to realize with

current technologies.

• Global Navigation Satellite System (gnss) such as Global Positioning Systems gps are

widely used for outdoor navigation. However, due to the need of direct sight and possible

multipath propagations the performance for indoor application is poor.

• Automotive sensors such as steering encoders, odometers and velocity encoders provide

information about the vehicles state. These sensors are mostly combined with gnss systems.

2



1.1. Motivation

Why Fusion?

Each of the above mentioned approaches has advantages and disadvantages. While one sensor

provides very accurate position information at a low update rate, another sensor provides posi-

tion information at a very high update rate, but only has a good short term accuracy and drifts

over time. By combining those two sensors using sensor fusion techniques, position information

with a high accuracy over long term and a high update rate can be provided. Sensor fusion is a

model based strategy to combine available information in order to obtain an optimal estimation

of the position and orientation.

A more detailed introduction to sensor fusion is given in chapter 5.

Opto-Inertial-Sensor Fusion for 6 DOF Tracking!

An inexpensive way to create a 6 dof user interaction device could be based on low cost cam-

eras in combination with inertial sensors. Nowadays, nearly every smartphone or computer

is equipped with a decent camera and could provide position information based on a simple

sphere tracking algorithm. Inertial sensors would provide orientation information and improve

the short term accuracy. This combination presents a promising approach for an accurate and

low cost tracking system for user interaction.

3



1. Introduction

1.2. Aim of this Thesis

The aim of this thesis is to develop, demonstrate and test a low cost 3D interaction device

with the use of a low cost inertial measurement unit (imu) in combination with an inexpensive

monocular position tracking system. In figure 1.1 the concept of the 3D interaction device is

demonstrated.

• Interaction Device 
• IMU 

•WebCam  

•PC  
• Sensor Fusion 

 

 

  

•Position 
•Orientation 

Figure 1.1: Concept for a low cost 3D interaction device.

In order to provide optimal 6-dof estimations, a sensor fusion framework should be developed.

This sensor fusion framework should assume measurements of an imu and a position measure-

ment system as basic inputs. However, it should also be adaptable to any other measurement

device, so that the sensor fusion framework can be applied to other applications in the field of

tracking. The application and hence the sensor fusion framework should operate on a consumer

graed PC and provide 6 degree of freedom information in real time. In order to incorporate the

imu in the sensor fusion framework, the navigation equations should be derived. Furthermore to

increase the performance, the characteristics of the imu with respect to errors should be modeled

and incorporated in the sensor fusion framework.

In order to provide 3D position information, a monocular position tracking algorithm should be

developed and implemented. This algorithm should provide position information of a spherical

ball using only one low cost camera.

Note: The original goal of this thesis was to only develop the sensor fusion framework. However,

the existing low cost optical system did not provide the desired performance. As a result the

development of the monocular position system was added as a side path.

4



1.3. Outline of this Thesis

1.3. Outline of this Thesis

The thesis is organized as follows:

Chapter 2 gives an introduction to the basics of inertial navigation such as reference frames, the

notation of rotations and vectors. Furthermore, different attitude presentations and their proper-

ties are introduced. Finally the navigation equation for orientation and position are derived.

Chapter 3 provides characterization of the sensors, which are used for inertial navigation such

as accelerometer, magnetometer and gyroscope. Furthermore, calibration procedures of deter-

ministic errors are provided and demonstrated. A proper error model for the characterization

of random errors will be introduced. By using Allan variance analysis, a method to provide

parameters to model random errors is provided. In addition numerical values for the imu, which

has been used for the experiments in this thesis, are given.

In Chapter 4 the monocular position tracking system will be presented. General problems within

this task including the approaches of solving these problems will be discussed in detail.

Chapter 5 starts with the introduction to sensor fusion and gives a brief overview of possible

methods. After explaining the selected fusion strategy in detail, the complete system model

for the optical-inertial sensor fusion based on Chapter 2/3/4 will be explained. Finally several

adaptations, in order to obtain a reasonable functioning fusion framework are described.

In Chapter 6 the application of the sensor fusion framework for a low cost 3D interaction device

is presented.

Chapter 7 depicts the results of the low cost 3D interaction device for different tracking tasks.

In Chapter 8 the performance of the low cost 3D interaction device will be discussed, including

possible improvements and potential for future work.
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2. Short Introduction to Inertial Navigation

This chapter starts with a brief overview of Inertial Navigation Systems (ins) and is followed

by an introduction to reference coordinate systems, which are used for the derivation of the

strapdown navigation equations. Subsequently the notation for vectors and rotations will be

presented, including a brief overview of different attitude representations, which will be used in

this thesis. Finally the strapdown navigation equation for ins will be derived.

The aim of 6 dof Inertial Navigation is to continuously provide the position and orientation of

a moving object with respect to an inertial frame of reference. The information is provided by

an inertial measurement unit (imu). A typical imu consists of three orthogonal gyroscopes and

three orthogonal acceleration sensors [13].

ins systems can be categorized as Gimbaled navigation systems or Strapdown navigation

systems [13]. In Gimbaled navigation systems, illustrated in figure 2.1, the inertial sensors are

mounted on a stabilized platform to isolate the accelerometer from the rotational motions of the

object to be tracked. This simplifies the position calculation.

Figure 2.1: Gimbaled platform for Inertial Navigation [13].

In strapdown navigation systems the inertial sensors are rigidly fixed to the moving object

and thus the sensors measure the same angular rate and accelerations as the moving object.

7



2. Short Introduction to Inertial Navigation

Compared to Gimbaled platforms the position and orientation extraction is more complicated.

However, due to the simpler mechanical construction and the minimization of the inertial sensors,

strapdown designs are commonly used in modern ins [13].

2.1. Reference Frames

For the derivation of the navigation equations the following reference coordinate systems will be

intensively used. In the field of navigation these coordinate systems are also called frames. The

reference frames will be explained according to [14], [15] and are illustrated in figure 2.2.

Ω

x I

y I

xE

yE

z I = zE

xN

yN

zN

xB

yBzB

xS

yS
zS

Figure 2.2: Coordinate frames for navigation adapted from [14].

• Earth-Centered-Inertial-Frame (I-frame):

As the name indicates, the earth-centered-inertial-frame (eci) is a frame, whose origin is

located at the center of the earth. The zI axis is aligned with the rotational axis of the earth.

The coordinate system is fixed with respect to fixed stars and therefore the earth rotates

with respect to this frame. The inertial sensors measure acceleration and angular rotation

with respect to the inertial-frame.

• Earth-Centered-Earth-Fixed-Frame (E-frame):

The earth-centered-earth-fixed-frame (ecef) also has its origin at the center of the earth

8



2.1. Reference Frames

and its zE axis is aligned with the rotational axis of the earth. The coordinate axes are fixed

with respect to the earth. The earth and E-frame rotate with an earth angular rotation of

Ω = 7.291x10−5 rad/s ≈ 1 1
day , with respect to the I-frame.

• Navigation-Frame (N-frame)

The navigation-frame is defined by the tangent plane of the earth’s surface located at a

chosen reference point or at the initial position of the object. For the alignment of the

axes two different definitions exist. The axes of the east-north-up-frame (enu) point to

the east, north and up for the xN , yN , zN axes, respectively. On the other hand the axes

of the north-east-down-frame (ned) point north, east and down for the xN , yN , zN axes,

respectively. The latter representation is commonly used in navigation.

• Body-Frame (B-Frame)

The axes of the body-frame are fixed with respect to the moving object to be tracked and

usually point along the longitudinal axis, lateral axis and down for the xB, yB, zB axes,

respectively. Furthermore the origin is usually located at the object’s center of gravity.

• Sensor-Frame (S-Frame)

The sensor-frame is fixed with respect to the body-frame. Preferably its axes are aligned

with the body-frame and orthogonal to each other. The origin is located at the center of the

sensor, which is also desired to be at the origin of the body-frame.

Due to constructive restrictions this is not always possible. This displacement, also known

as lever arm, has to be considered in the strap-down navigation-equations or in the

measurement function (see section 5.4.2.2).

Furthermore the location of an object can be described with latitude, longitude and height (llh)

with respect to the earth ellipsoid. However, this will not be covered in this thesis. The interested

reader is referred to [14], [15].

9



2. Short Introduction to Inertial Navigation

2.2. Notation

To clarify the representation of position, orientation and their time derivatives the following

notation will be introduced according to the definitions in [14].

• Vectors

In the field of navigation two different categories of vectors are used.

– Position Vectors

A position vector represents the position from a point in space with respect to the

origin of the reference frame. The position vector pointing from reference frame A to

frame B is notated as follows:

rA
B , (2.1)

where the vector rA
B can also be seen as the location of frame B in frame A.

– Relative Vectors

Relative vectors (e.g. velocity v, acceleration a or angular rotation vectors ω) are

vectors, which do not have a specific starting or ending point. They only have a

direction and magnitude. For their representation three indexes are needed and will

be demonstrated with the following velocity vector:

vN
EB. (2.2)

The upper index stands for the reference frame (e.g. N for navigation-frame) in which

the velocity is measured. The two lower indexes represent the velocity of the B-frame

with respect to the E-frame.

This example represents the velocity measured in the N-frame of the B-frame with

respect to the E-frame.

• Rotation

To represent rotations, the rotation-matrix, also called Direction-Cosine Matrix (dcm)1 is

used. The rotation of a vector is given as the following matrix-vector multiplication:

vB
EB = RB

NvN
EB. (2.3)

The rotation-matrix RB
N rotates the vector vN

EB from the N-frame to the B-frame. As result

the velocity of the B-frame with respect to the E-frame is now represented in the B-frame.

1In the authors view the dcm represents the nicest and most compact notation.
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2.3. Attitude Representation

Note that for transformations of position vectors, the origin of the reference frame has to

be considered. Therefore, the transformation of the body’s position pE
B from the E-frame to

the N-frame is given as:

pN
B = RN

E (p
E
B − pE

N). (2.4)

2.3. Attitude Representation

Several attitude representations are available, of which the following are used in this thesis:

• Euler Angles

• Rotation Matrix / Direction-Cosine-Matrix (dcm)

• Rotation Vectors / Axis-Angle

• Quaternion

Their mathematical background will be explained according to [14], [16].

2.3.1. Euler Angles

Euler angles describe the rotation of a rigid body or a reference-frame by three separate

sequential rotations around a specific axis. In the field of navigation the ZYX-Euler angles are

commonly used. An example of Euler angles, representing the rotation from N-frame to B-frame,

is illustrated in figure 2.3 and can be defined as follows:

The first angle ψ, called yaw, describes the rotation around the local Z-axis. Then the rotation of

the frame around the newly obtained Y-axes is given by the pitch θ. Finally, the roll φ gives the

rotation around the newly obtained X-axis.

One advantage of Euler angles is the intuitive representation. However, the disadvantage is the

Gimbal-lock, which is a singularity at a pitch of φ = ±90 ° [14].

2.3.2. Rotation Matrix

The rotation matrix, also called Direction-Cosine-Matrix (dcm), has already been introduced in

the previous sections. It is a 3x3-orthogonal matrix. An intuitive interpretation of the rotation

matrix is given as follows: The first, second and third rows represent the x, y, z-axes of the

transformed coordinate system, seen from the old coordinate system. As an example the rotation

11
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Figure 2.3: Attitude representation in Euler angles, adapted from [14].

from N-frame to B-frame is given as:

RB
N =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 =


(
xN

B
)T(

yN
B
)T(

zN
B
)T

 . (2.5)

The rotation of a vector is carried out by a matrix-vector multiplication:

vB
EB = RB

NvN
EB. (2.6)

Due to the orthogonality of the matrix, its inverse rotation can be given as its transposed.

RB
N = (RN

B )
−1 = RN

B
T

. (2.7)

Compositions of rotations can be calculated by a matrix-matrix multiplication:

R3
1 = R3

2R2
1. (2.8)

Compared to Euler angles rotation matrices do not have singularities, but are known to cause

difficulties maintaining the orthogonality. For storing nine parameters are used. Therefore more

storage compared to other attitude representations is needed.
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2.3. Attitude Representation

2.3.3. Rotation Vectors / Axis-Angle

Any rotation can also be described as a rotation θ around a fixed axis n, as illustrated in figure 2.4.

 

 

 

  

 

Figure 2.4: Rotation around rotation vector σ, θ = ‖σ‖.

For this rotation two equivalent notations exist. If axis and angle of the rotation are given

separately, it is referred to axis-angle notation. On the other hand, when using rotation vectors

the length of the vector represents the angle of rotation. Rotation vectors are denoted as:

σ =


σx

σy

σz

 . (2.9)

For the axis-angle notation, the rotation-axis n is defined by direction of the vector:

n =
σ

‖σ‖ . (2.10)

The angle of rotation θ is given by the magnitude of the rotation vector:

θ = ‖σ‖ . (2.11)

Rotation vectors offer a clear physical interpretation, e.g. the data obtained from imu for

gyroscopes is provided as rotation vectors. Furthermore no Gimbal locks can occur. However, a

disadvantage of rotation vectors is the fairly complicated calculation of sequential rotations.
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2. Short Introduction to Inertial Navigation

2.3.4. Quaternion

A quaternion qB
A, representing the rotation from frame A to frame B, is a four dimensional hyper

complex vector. It is similar to complex numbers. However, instead of one real and one imaginary

part j, quaternions have one scalar part s and an imaginary vector part v. The imaginary vector

part has three elements i, j and k. A quaternion is denoted as follows:

qB
A = q1 + q2 · i + q3 · j + q4 · k =


q1

q2

q3

q4

 =

s

v

 . (2.12)

Since a rotation can be described with three parameters, the representation using quaternions

(4 parameters) seems to be over-determined. Introducing the unity norm constrain solves the

over-determinedness:

‖q‖ =
√

q2
1 + q2

2 + q2
3 + q2

4 = 1. (2.13)

Quaternions show a strong analogy to rotation vectors σ. The scalar part s can be interpreted as

the amount of rotation around the axis defined by the vector part v. The exact relation is given

as follows:

q =



cos(
‖σ‖

2
)

sin( ‖σ‖2 )

‖σ‖ · σx

sin( ‖σ‖2 )

‖σ‖ · σy

sin( ‖σ‖2 )

‖σ‖ · σz


=


cos

 ‖σ‖2


σ

‖σ‖ · sin
(
‖σ‖

2

)

 . (2.14)

The composition of rotations can be calculated as :

qC
A = qC

B • qB
A, (2.15)

where • represents the quaternion multiplication, which can be written as a matrix-vector

multiplication as follows:

qA • qB =


+q1,A −q2,A −q3,A −q4,A

+q2,A +q1,A −q4,A +q3,A

+q3,A +q4,A +q1,A −q2,A

+q4,A −q3,A +q2,A +q1,A

 ·


q1,B

q2,B

q3,B

q4,B

 . (2.16)
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2.3. Attitude Representation

The inverse of a quaternion is obtained by inverting the imaginary part:

(qB
A)
−1 = qA

B =


qB

1,A

−qB
2,A

−qB
3,A

−qB
4,A

 . (2.17)

The rotation of a vector can be calculated as a left and right quaternion multiplication: 0

vB
EB

 = qB
N •

 0

vN
EB

 • (qB
N)
−1. (2.18)

Although quaternions do not offer an intuitive representation, they offer some superior char-

acteristics and are therefore widely used for navigation. The following list summarizes the

advantages compared to other attitude representations:

• Quaternions do not have singularities e.g. Gimbal lock.

• Quaternions are easy to construct from imu such as gyroscope data.

• Maintaining the unity constrain of quaternions is much easier than re-orthogonalization of

rotation matrices.

• Rotating vectors and combining sequential rotations is fairly simple.

• Compared to rotation matrices (9-parameters) less storage (4-parameter) is needed.

In this thesis quaternions will be used for represent rotations in the strapdown navigation

equations. For a more detailed explanation, as well as the calculation instructions for the

transformation between the mentioned attitude representations, the interested reader is referred

to [14], [16].

15



2. Short Introduction to Inertial Navigation

2.4. Strapdown Navigation Equations

In this section the strapdown navigation equations will be derived for the ned-frame (north-east-

down). The navigation equations describe the motion of a rigid body in the three dimensional

space. It starts with presenting the continuous time differential equations for orientation and

position. Based on assumptions of the sensors, these equations are simplified. In order to perform

the numerical integration, their time-discrete approximations are given. In the derivation it is

assumed that the obtained sensor data from imu is error free and without noise.

The derivation scheme in the following sections is based on [14].

2.4.1. Orientation

The differential equation for the rotation vector σB
N , representing the rotation from the N-frame

to the B-frame, is given by the Bortz equation [17]:

σ̇B
N =ωB

NB +
1
2

σB
N ×ωB

NB

+
1∥∥σB
N

∥∥2

(
1−

∥∥σB
N

∥∥ sin(
∥∥σB

N

∥∥)
2(1− cos(

∥∥σB
N

∥∥)
)

σB
N × (σB

N ×ωB
NB).

(2.19)

ωB
NB represents the rotation rate of the B-frame with respect to the N-frame. However, the imu

measures the rotation rate ωB
IB with respect to the I-frame. The relation between measured

rotation ωB
IB and ωB

NB is given as [14]:

ωB
NB = ωB

IB − RB
N(ω

N
IE + ωN

EN). (2.20)

The terms ωN
IE and ωN

EN are the earth rotation rate and transport rate, respectively. The earth

rotation ωN
IE represents the rotation of the earth with respect to the inertial-frame. Its representa-

tion in the navigation-frame depends on the location of the object and can be calculated with

latitude ϕ and earth rotation Ω = 7.291x10−5 rad/s according to [14]:

ωN
IE =


Ω · cos(ϕ)

0

Ω · sin(ϕ)

 . (2.21)

The transport rate ωN
EN considers the rotation of the navigation-frame due to movement on the

earth’s curvature and depends on the actual velocity in the northern vN
EB,north and eastern vN

EB,east
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2.4. Strapdown Navigation Equations

direction [14]:

ωN
EN =



vN
EB,east

Re − h

−
vN

EB,north

Rn − h
vN

EB,easttan(ϕ)

Re − h


. (2.22)

Re represents the radius of the curvature in the prime vertical, Rn gives the meridian radius of

the curvature and h is the height.

Assuming the maximum velocity vmax of the object vmax ≈ 5 m/s and the term (Re − h) is

approximated with the mean earth radius rm = 6.371× 106 m, the maximum transport rate

would be:

ωN
EN,max =

vmax

Re − h
=

5
6.371× 106 ≈ 1× 10−6 rad/s. (2.23)

The influence of the transport rate and the earth rotation Ω = 7.291× 10−5 rad/s is smaller

than the resolution (ωLSB = 1.33× 10−4 rad/s [18]) of the imu, which has been used for the

experiments in this thesis. For that reason their influence will be neglected. The second cross-

product term in equation (2.19) is also dropped due to its marginal influence [14]. This yields to

the following simplified differential equation:

σ̇B
N ≈ ωB

IB +
1
2

σB
N ×ωB

IB. (2.24)

The rotation vector, which rotates the B-frame from time tk−1 to tk, can be approximated according

to [19], as:

∆σB,k
B,k−1 =

tk∫
tk−1

(
ωB

IB +
1
2

σB
N ×ωB

IB

)
dt ≈ ∆θk +

1
12

(∆θk−1 × ∆θk) (2.25)

with

∆θk =

tk∫
tk−1

(
ωB

IB

)
dt ≈ ωB

IB,k · ∆T (2.26)

and

∆T = tk − tk−1. (2.27)

∆T is the sampling time and ωB
IB,k is the sensed rotation rate at time tk.

The cross-term in equation (2.25) is called 1st order coning term and is due to the non-

commutativity of finite rotations. It should be noted that other approximations with higher and

lower order coning terms exist. Only lower order terms approximations are also frequently used
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2. Short Introduction to Inertial Navigation

in order to minimize the computational burden.

The rotation vector ∆σB,k
B,k−1 can be expressed as a quaternion:

qB,k
B,k−1 =


cos


∥∥∥∆σBk

Bk−1

∥∥∥
2


∆σBk

Bk−1∥∥∥∆σBk
Bk−1

∥∥∥ · sin


∥∥∥∆σBk

Bk−1

∥∥∥
2




. (2.28)

Finally the quaternion qB,k
N , which represents the rotation from the N-frame to the B-frame at

time step k, can be calculated using the quaternion chain rule as follows:

qB,k
N = qB,k

B,k−1 • qB,k−1
N . (2.29)

2.4.2. Velocity

The differential equation for the velocity of the body-frame with respect to the navigation-frame,

expressed in the navigation-frame, is given as [20]:

v̇N
NB = RN

B aB
IB −

(
2ωN

IE + ωN
BN

)
× vN

EB + gN , (2.30)

where RN
B represents the rotation from the B-frame to the N-frame. aB

IB stands for the acceleration

sensed from the imu and is also called specific force. The second and third term reflect the

influence of the Coriolis and the gravity force, respectively.

To appraise the maximum acceleration v̇Cor,max due to the Coriolis force, the following as-

sumptions are made. The maximum velocity of the object is vmax ≈ 5 m/s, the maximum

transport rate is ωN
EN,max ≈ 1× 10−6 rad/s (see equation (2.23)) and the earth rotation is

ωN
IE,max = Ω ≈ 7× 10−5 rad/s. Therefore the maximum acceleration is given as:

v̇Cor,max = (2 ·ωN
IE,max + ωN

EN,max) · vmax

= (2 · 7× 10−5 + 10−6) · 5

≈ 7× 10−4 m/s2. (2.31)

The maximum acceleration due to the Coriolis force v̇Cor,max lies in the range of one or two

lsb (aLSB = 9.81
16384 m/s2 = 5.9875× 10−4 m/s2 [18]) of the imu, which has been used for the
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2.4. Strapdown Navigation Equations

experiments in this thesis. For that reason the Coriolis term is neglected, which results in the

following simplified differential equation:

v̇N
NB = RN

B aB
IB + gN . (2.32)

The digital velocity integration algorithm is then formulated as:

vN
NB,k = vN

NB,k−1 +

tk∫
tk−1

(
RN

B aB
IB + gN

)
dt (2.33)

= vN
NB,k−1 + ∆vN

NB,k (2.34)

= vN
NB,k−1 + ∆vN

NB,a,k + ∆vN
NB,g,k. (2.35)

The velocity increment due to the specific force is approximated according to [21]:

∆vN
NB,a,k =

tk∫
tk−1

(
RN

B,kaB
IB

)
dt (2.36)

≈ RN
B

(
∆vB

IB,k +
1
2

∆θk × ∆vB
IB,k +

1
12

(
∆θk × ∆vB

IB,k−1 + ∆vB
IB,k × ∆θk−1

))
, (2.37)

with

∆vB
IB,k =

tk∫
tk−1

aB
IBdt ≈ aB

IB,k · ∆T. (2.38)

The cross-terms in equation (2.36) are called 1st and 2nd order sculling terms and are due to

simultaneous linear and angular motions.

It should be noted, that analog to the coning terms also other approximations with higher and

lower order sculling terms exist. However, only lower order terms are frequently used, in order

to minimize the computational burden. The velocity increment due to gravity is given by:

∆vN
NB,g,k =

tk∫
tk−1

gNdt = gN · ∆T. (2.39)

aB
IB,k represents the sensed acceleration by the imu at time tk and gN gives the gravity-vector in

the ned-frame.
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2. Short Introduction to Inertial Navigation

2.4.3. Position

The differential equation for the position pN
B of the B-frame with respect to the N-frame can be

written as:

ṗN
B = vN

NB. (2.40)

The digital position integration is obtained using a zero-order hold (zoh) approximation accord-

ing to [22]:

pN
B,k = pN

B,k−1 +

tk∫
tk−1

vN
NBdt (2.41)

≈ pN
B,k−1 + vN

NB,k−1∆T + aN
NB,k

∆T2

2
(2.42)

= pN
B,k−1 + vN

NB,k−1∆T + ∆vN
NB,k

∆T
2

(2.43)

with

∆vN
NB,k = ∆vN

NB,a,k + ∆vN
NB,g,k. (2.44)
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3. Characterization and Calibration of Sensors

in Inertial Navigation

A traditional inertial sensor only provides information about acceleration and angular rate of

a moving body with respect to the inertial-frame. However, since the development of micro-

electro-mechanical systems (mems) also other sensors are usually added to the imu. The number

of sensors in an imu, which can be used to determine position or orientation, is called degree of

freedom dof. This definition should not be confused with the dof of a moving rigid body. A

10-dof-imu (MPU-9150) has been used for this thesis and is composed of a 3-axes gyroscope,

3-axes accelerometer, 3-axes magnetometer and a barometer. Except for the barometer, all other

9-dof are used for navigation.

In the following a list of typical errors of an imu is given [18], [23]–[25]:

• Constant Bias: Constant offset of a measurement.

• Bias drift: Change of the bias over time.

• Turn-on to Turn-on Bias: Different initial bias for each power up cycle.

• Sensor Noise: Zero mean random process, which corrupts the measurement.

• Scale-Errors: Error of the slope defined by the scale-factor between assumed and real

slope.

• Miss-Alignment / Cross-Coupling: Error due to non-orthogonal sensitive axes and sensi-

tivity to orthogonal axes.

• Scale-Nonlinearity: Deviation from the straight line, which is defined by the scale-factor

• Temperature Effects: The above mentioned effects such as bias, scale-factor and noise are

further. influenced by temperature changes, which are caused by environmental changes

or self-heating.

• Hard-Iron-Distortion: Distortion in the magnetic field, due to objects which create mag-

netic fields.

• Soft-Iron-Distortion: Distortion in the magnetic field, due to objects which deflect or

alternate the existing magnetic field.

• G-Sensitivity: Observed bias in gyroscopes as a function of acceleration.
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3. Characterization and Calibration of Sensors in Inertial Navigation

• Supply Voltage: Change of scale-factor due to changes in supply-voltages.

• Aging: Change of bias, scale-factor or noise characteristics due to aging effects.

• Size-Effect: Acceleration during rotations, due to non-co-located accelerometers.

These errors can be categorized in deterministic/systematic and in random/stochastic errors. In

the following section the models of deterministic and stochastic errors, which have the largest

effect on the integrity, are described for each sensor. Calibration procedures for deterministic

errors will be presented and demonstrated. Furthermore methods to determine the parameters

for stochastic error models are presented.

3.1. Deterministic-Errors

Measurement errors cause the measured value to deviate from the true value. Deterministic

errors are characterized in such a way, that they can be reproduced and therefore be compensated.

The deterministic errors with the largest effect on the integrity of the imu are bias, scale-factor-

errors, misalignment and cross coupling effects. They are due to imperfection of the device itself

[26]. Their influence can be modeled with the following model [26]:

x̃c = MDev ·
(

x̃B
d − bDev,d

)
(3.1)

with

MDev =


Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

 , (3.2)

bDev,d =


bDev,dx

bDev,dy

bDev,dz

 . (3.3)

x̃c presents the calibrated measurement and x̃d is the measurement, which is corrupted by

deterministic-errors. The scale factor matrix Mx represents scale, misalignment and cross cou-

pling errors, whereas bDev,d defines the deterministic bias of the device ’Dev’. ’Dev’ is a place-

holder for the specific device, such as ’a’ for accelerometer. The diagonal elements are called

the scale-factors and the off-diagonals are called cross-axes factors. For an ideal sensor the

deterministic bias and the cross-axes factors would be zero and the scale-factors would be equal

to 1.
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3.1. Deterministic-Errors

3.1.1. Accelerometer

3.1.1.1. Accelerometer Calibration Method

To obtain the compensated accelerometer measurement ãB
IB,c from the deterministic error affected

measurement ãB
IB,d, the scale factor matrix Ma and deterministic bias ba,d of the accelerometer

have to be estimated. For the calibration, an adapted version of the iterative calibration method

described in [26] is used and will be explained:

For this calibration method, the user has to place the imu in at least nine different static

orientations. In these static conditions it is assumed, that the magnitudes of the acceleration is

equal to the gravity g: √(
ãB

IB,c

)2

x
+
(

ãB
IB,c

)2

y
+
(

ãB
IB,c

)2

z
= g. (3.4)

It can be shown [27] that the in general asymmetric scale factor matrix Ma = Masym can be

decomposed in a pure rotational part R and a symmetrical part Msym:

Ma = Masym = R ·Msym. (3.5)

The equation (3.4) can be interpreted, such that the acceleration vector describes a sphere located

at the origin with the radius g. Any rotation of a sphere does not affect the function of a sphere,

hence the rotational part R cannot be estimated. For that reason only the symmetrical part of Ma

can be calculated and the symmetry constrain on the scale factor matrix, according to [26], is

introduced:

Sxy = Syx, Sxz = Szx, Syz = Szy. (3.6)

The rotational part of the scale factor matrix will be calculated in the gyroscope calibration (see

section 3.1.3.1). It aligns the sensor axes of the gyroscope and the accelerometer.

To form an optimization criterion the following error term r is introduced:

r = [r1, . . . , rm]
T (3.7)

with:

rn =
(

ãB
IB,c

)2

x
+
(

ãB
IB,c

)2

y
+
(

ãB
IB,c

)2

z
− g2 (3.8)

= ∑
i=x,y,z

{
∑

j=x,y,z

[
Sij ·

((
ãB

IB,d

)
j,n
− bj,d

)]2
}
− g2 (3.9)
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where
(

ãB
IB,d

)
j,n

is the j-th (x/y/z) output of the error affected measurement for the n-th

orientation. The accumulative error Et at iteration t can be calculated by the summation of r2
n

over all orientations:

Et = E(bx,d, bx,d, bz,d, Sxx, Syy, Szz, Sxy, Sxz, Syz)
t =

m

∑
k=1

r2
n. (3.10)

The parameter vector at iteration t is composed of bias and scale matrix elements:

pt = [p1, . . . , p9]
T =

[
bx,d, by,d, bz,d, Sxx, Syy, Szz, Sxy, Sxz, Syz

]T . (3.11)

Starting with an initial guess, the parameter vector pt can be iteratively updated using a Gauss-

Newton type method in order to minimize the accumulative error E. Note: In the original

algorithm Newton’s method was proposed [26]. The update-step is then given as:

pt+1 = pt − αt · δt. (3.12)

The correction term δt can be found by solving the following equation:

Jt(Jt)Tδt = −Jtrt. (3.13)

The Jacobian matrix Jt is given as:

Jt =
[
∇r1(pt),∇r2(pt), . . . ,∇rm(pt)

]
. (3.14)

The damping parameter αt ≤ 1 is updated as follows:

αt+1 =


αt − τ · αt, Et+1 ≤ Et

τ · αt, else
. (3.15)

with τ the fading factor chosen τ = 0.01 . . . 0.05. The optimization method is stopped, if the

following criterion is achieved:

max
{∣∣∣∣ pt − pt−1

(pt − pt−1)/2

∣∣∣∣} < ε, (3.16)

with ε as an empirical chosen threshold. e.g. ε = 1× 10−10.
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3.1.1.2. Identification of Static Conditions

In general, a recorded time sequence of accelerometer measurements ãk contains sequences in

static (device is lying still) and non-static conditions (device is moved from one to another orien-

tation). However, for the accelerometer calibration only measurements of different orientations

in static conditions are needed. Therefore an algorithm which automatically detects these static

conditions will be presented. The concept to identify those static conditions is based on the

following assumption:

The local variance of the accelerometer measurements in static conditions is much smaller than in

non-static conditions. The variance in static-conditions is assumed to be caused by sensor-noise

and is considered to be the same for all orientations. Therefore static-conditions can be identified,

if the local variance falls under a defined threshold. The local variance σ2
L,k at step k can be

calculated using a moving window as follows:

σ2
L,k =

1
N − 1

·
k+N/2−1

∑
i=k−N/2

(
ãi − µL,k

)2
, (3.17)

µL,k =
1
N
·

k+N/2−1

∑
i=k−N/2

(ãi) , (3.18)

where N is the window length, which should be an even number. µL,k is the local mean and ãi is

the measured acceleration-vector at time step i.

A static condition candidate is found, if the following criterion is satisfied:

||σ2
L,k|| ≤ β · σ2

L,min, (3.19)

where σ2
L,min represents minimal local variance defined as:

σ2
L,min = min

(
||σ2

L,k||
)

. (3.20)

β is a tunning factor. ||σ2
L,k|| represents the euclidean norm defined by:

||σ2
L,k|| =

√
(σ2

L,k,x)
2 + (σ2

L,k,y)
2 + (σ2

L,k,z)
2. (3.21)

The next step is to identify starting points kSP and ending points kEP for all static conditions. A

starting point kSP,n for the n-th orientation is found, if the point at time step k is a candidate and

the point at time step k− 1 does not satisfy the criterion in equation (3.19). Similar an ending

point kEP,n is found, if point k + 1 does not satisfy the criterion in equation (3.19). In order to
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reject isolated points, starting and ending points which do not satisfy the following criterion are

removed:

kEP,n − kSP,n ≥ Lmin, (3.22)

where Lmin is the minimal static condition length.

Finally the mean value for the n-th orientation ãn can be calculated as:

ãn =
1

kEP,n − kSP,n
·

kEP,n

∑
i=kSP,n

ãi. (3.23)

3.1.1.3. Accelerometer Calibration

Due to the lack of a turntable or equivalent measurement equipment and in order to allow

in-field calibrations, a simple, inexpensive and innovative calibration procedure was invented.

Since the imu was rigidly mounted in a ball only and a cup was needed for the calibration

procedure. It will be explained hereinafter:

The ball containing the rigidly mounted imu is placed in the cup to ensures that no movements

or rotations would perturb the signals during measurements. In order to collect measurements

of different orientations, the ball is placed pointing in various orientations. The calibration setup

is illustrated in figure 3.1.

 

(a)Theoretical calibration setup. (b)Real calibration setup.

Figure 3.1: Illustration of the accelerometer calibration setup.

For the identification of static conditions (see section 3.1.1.2) a window length of N = 200, a

threshold for accepting candidates β = 2 and a minimal static condition length Lmin = 50 was

chosen. In figure 3.2 an exemplary calibration sequence for the identification of static conditions

is illustrated. Figure 3.3 depicts a zoomed section. The blue, dark-green and red data represents

the measured acceleration in x, y, z direction of the imu. The bright-green data marks identified

static conditions. Both figures show the successful identification of static conditions.
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Figure 3.2: Signals of an exemplary calibration sequence and demonstration of the identification of static conditions.

The blue, dark-green and red data represents the measured acceleration in x, y, z direction of the imu. The

bright-green data marks the identified static conditions.
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Figure 3.3: Zoomed section: Signals of an exemplary calibration sequence and demonstration of the identification

of static conditions. The blue, dark-green and red data represents the measured acceleration in x, y, z

direction of the imu. The bright-green data marks the identified static conditions.
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The obtained measurements for the n-th orientation ãn are used for the calibration method

described in subsection 3.1.1.1. For the imu, which has been used for the experiments of this

thesis, the following calibration parameters for the accelerometer were found:

Ma =


+0.9914 −0.0001 −0.0014

−0.0001 +1.0036 −0.0046

−0.0014 −0.0046 +0.9947

 , (3.24)

ba,d =


−0.0982

−0.0075

+0.3313

m/s2. (3.25)

To demonstrate effect of the calibration procedure the difference between the measured and the

true gravity will be introduced as new error-term:

∆lk = g− ||ak|| = g−

√(
ãB

IB,c

)2

x,k
+
(

ãB
IB,c

)2

y,k
+
(

ãB
IB,c

)2

z,k
. (3.26)

The error for each orientation is presented in figure 3.4 and shows the improvement due to the

calibration method. Furthermore the mse before and after calibration is given in table 3.1 and

confirms the successful calibration. The mse is defined as:

MSE(∆l) =
1
m

m

∑
k=1

(∆lk)
2 . (3.27)
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Figure 3.4: Comparison of error ∆lk before and after accelerometer calibration.
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Table 3.1: Comparison of mse between uncalibrated and calibrated accelerometer.

Method MSE (∆l)

uncalibrated 51.4× 10−3 (m
s2

)2

calibrated 7.76× 10−6 (m
s2

)2

3.1.2. Magnetometer

Measurement errors of magnetometers are not only due to imperfections of the device, but also

due to the magnetic properties of its environment, which perturbs the magnetic field. These

effects are called hard-iron and soft-iron distortions. In figure 3.5 the magnetic fields for a

distortion-free, hard-iron and soft-iron distorted environment are illustrated.

Magnetometer 

(a)

Magnetometer 

Hard-Iron 

(b)

Magnetometer 

Soft-Iron 

(c)

Figure 3.5: Illustration of the hard and soft-iron distortions.(a) Distortion free magnetic field.

(b) Hard-iron distorted magnetic field. (c) Soft-iron distorted magnetic field.

Hard-iron distortions are due to objects on the Printed Circuit Board (pcb) or in the vicinity of

the sensor, which produce magnetic fields such as permanent magnets in speakers. Soft-iron

distortions are due to unmagnetized ferromagnetic components on the pcb, which deflect or

distort the magnetic field such as battery-packs. In sum these error sources act in the same way

as bias and scaling errors [28]. For that reason the same model as defined in section 3.1 can be

used to describe their influence.

3.1.2.1. Magnetometer Calibration Method

In order to compensate the erroneous measurement m̃B
d , the scale factor matrix Mm and deter-

ministic bias bm,d can to be estimated by using a similar assumption as in section 3.1.1.1. The

magnitude of the magnetic field will be assumed to be constant. Furthermore, since the real
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magnitude is not exactly known and because it does not contain information for the navigation,

it will be normalized to 1: √(
m̃B

d

)2
x +

(
m̃B

d

)2
y +

(
m̃B

d

)2
z = const = 1. (3.28)

The error term r is introduced:

r = [r1, . . . , rm]
T , (3.29)

with:

rk =
(

m̃B
d,k

)2

x
+
(

m̃B
d,k

)2

y
+
(

m̃B
d,k

)2

z
− 1. (3.30)

Since the magnetometer is not perturbed by linear acceleration as it was the case for the

accelerometer calibration, no preselection of static conditions is needed. The rest of the calibration

method is analog to the accelerometer calibration in section 3.1.1.1.

3.1.2.2. Magnetometer Calibration

For calibration purposes, the imu was slowly rotated by hand, such that the vector of the

magnetometer measurement would cover the whole sphere. For the used imu, the following

parameters were found:

Mm =


0.9393 0.0095 0.0115

0.0095 0.9467 0.0048

0.0115 0.0048 0.9920

 , (3.31)

bm,d =


−0.1857

+0.0712

−0.0564

 . (3.32)

The difference between the magnitude of the corrected magnetometer measurement and the

unity vector is introduced as new error term:

∆lk = 1− ||mk|| = 1−
√
(m̃B

c )
2
x + (m̃B

c )
2
y + (m̃B

c )
2
z , (3.33)

MSE (∆l) =
1
m

m

∑
k=1

(∆lk)
2 . (3.34)

The errors of the whole calibration sequence is presented in figure 3.6 and shows the improvement

due to the calibration method. Furthermore the mse before and after calibration iss illustrated in

table 3.2 and confirms the successful calibration.
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Figure 3.6: Comparison of error ∆lk before and after magnetometer calibration.

Table 3.2: Comparison of mse between uncalibrated and calibrated magnetometer.

Method MSE (∆l)

uncalibrated 14.3× 10−3 (a.u.)

calibrated 0.777× 10−3 (a.u.)
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3.1.3. Gyroscope

3.1.3.1. Gyroscope Calibration Methods

In order to obtain the compensated gyroscope measurement ω̃B
IB,c from the deterministic error

affected measurement ω̃B
IB,d, the scale factor matrix Mω and the deterministic bias bω,d for the

gyroscope have to be estimated.

Bias:

The bias bω,d can be estimated by calculating the mean of the gyroscope measurements ω̃B
IB,d,

while the imu is placed in a static condition:

bω,d =
1
N
·

N

∑
k=1

ω̃B
IB,d,k. (3.35)

Scale Factor Matrix:

For the sake of readability the indexes will be omitted such that ωB
IB = ω.

The estimation of the scale factor matrix Mω is based on the following assumption:

The imu is only exposed to pure rotations and no acceleration. Therefore the accelerometer

only measures gravity. While rotating the imu from time t1 to t2, the accelerometer observes a

rotating gravity vector, with respect to the body-frame. The same rotation is measured by the

gyroscope. If the coordinate axes of the gyroscope and the accelerometer are aligned and the imu

delivers perfect measurements, the rotation vector of the gyroscope σt2
t1 gyro

and the accelerometer

σt2
t1 gravity

are equal:

σt2
t1 gyro

= σt2
t1 gravity

. (3.36)

In order to obtain the rotation vector of the gyroscope σt2
t1 gyro

, the angular rates of the gyroscope

have to be accumulated. As already described in section 2.4, the accumulation of angular rates is

quite complicated. However, if the axis of the rotation does not change between t1 and t2, the

calculation of the rotation vector simplifies to

σt2
t1 gyro

=

t2∫
t1

ω̃cdt =
N

∑
k=1

ω̃c,k · ∆T. (3.37)
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Rewriting this equation using the error-model in equation (3.1) yields to

σt2
t1 gyro

=
N

∑
k=1

Mω · (ω̃d,k − bω,d) · ∆T (3.38)

= Mω∆T ·
N

∑
k=1

(ω̃d,k − bω,d) (3.39)

= Mω · ∆Φ, (3.40)

with

∆Φ =
N

∑
k=1

(ω̃d,k − bω,d)∆T. (3.41)

The error term ej for the j- experiment can be formulated as:

ej = Mω · ∆Φj − σgravity,j, (3.42)

where ∆Φj is the accumulated rotation vector of the gyroscope for the j-th experiment and

σgravity,j is the rotation vector calculated from the accelerometer measurements for the j-th

experiment. The parameters Sxx, Syy, Szz, Sxy, Sxz, Syx, Syz, Szx, Szy of Mω can be found by solving

the linear least square problem minimizing the following cost function:

J(Sxx, Syy, Szz, Sxy, Sxz, Syx, Syz, Szx, Szy) =
m

∑
j=1

eT
j · ej. (3.43)

Calculation of the Rotation Vector σgravity:

For the calculation of the rotation vector the measured accelerations during rotations are assumed

to be caused solely by gravity and therefore accelerations due to movements will be neglected.

The calculation can be described in two major steps:

• Axis-Calculation

While rotating, the observed acceleration vector describes an arc in the 3-dimensional space

(see figure 3.7). Furthermore, all points lie on the same plane, if the axis of rotation does

not change. The axis of rotation is equal to the normal of the plane fitted through the arc.
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Figure 3.7: Accelerometer measurements describing an arc due to the rotation of the gravity vector.

A point P on a plane can be described by [29]:

P = p0 + c1v1 + c2v2. (3.44)

The plane can be calculated with the algorithm described in [29]. This algorithm minimizes

the orthogonal distance, which is given as:

min

(
N

∑
i=1

(
(pi − p0)

Tn
)2
)

. (3.45)

pi, p0, n, are a set of N points, a point on the plane and the plane’s normal, respectively.

v1 and v2 are the orthogonal basis of the fitted plane.

• Angle-Calculation:

The angle of rotation is given as the angle of the arc, which is projected onto the fitted

plane. In figure 3.8 the result of the circle fit, including the angle calculation, based on the

projected points, is demonstrated.

The projected points pproj are calculated by using orthonormal projection according to [29]:

pproj = (pi − p0) · v1 + (pi − p0) · v2. (3.46)
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Figure 3.8: Circle fitting to calculate the angle of rotation Θ.

The radius R and center c =
[

x0 y0

]T
of this circle can be obtained by solving the

following overdetermined linear system, which minimizes the orthogonal distance [30]:
−2x1 −2y1 1

−2x2 −2y2 1
...

...
...

−2xm −2ym 1




x0

y0

x2
0 + y2

0 − R2

 =


−x2

1 − y2
1

−x2
2 − y2

2
...

−x2
m − y2

m

 . (3.47)

In equation (3.47) xi and yi are the components of the i-th projected point.

The rotation angle Θ can then be calculated as:

Θ = cos

(
(rstart − c) ·

(
rstop − c

)
| (rstart − c) ||

(
rstop − c

)
|

)−1

, (3.48)

with rstart and rstop as the starting and stopping point of the rotation.

Finally the rotation vector for the j-rotation is obtained as:

σgravity,j = njΘj. (3.49)
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3.1.3.2. Gyroscope Calibration

For the derivation of the gyroscope calibration, the following assumptions have been made and

have to be ensured:

• The axis of rotation does not change.

• The imu is only exposed to rotations and not to accelerations, such that only pure gravity

is measured.

Usually expensive measurement equipment such as a turntable is needed to guarantee these

conditions. However such equipment was not available and therefore a simple and inexpensive

calibration procedure was invented, which also allows in field-calibrations. Similar to the

calibration procedure for the accelerometer, which was described in section 3.1.1.1, a cup and a

V-block is needed. For this experiment a simple V-shaped pepper and salt box has been used.

The calibration procedure will be explained hereinafter:

The ball containing the rigidly mounted imu at the center is placed in a cup to ensures that

no movements or rotations would perturb the signals during measurements Analog to the

accelerometer calibration, the ball containing the imu was placed in the cup pointing in a

different direction for each rotational experiment. This cup was then rotated in a V-block to

ensure a constant axis of rotation. The calibration setup is illustrated in figure 3.9.

 

(a)Theoretical calibration setup. (b)Used calibration setup.

Figure 3.9: Calibration setup for gyroscope calibration.

The following results for the bias bω,d and the scale factor matrix Mω were obtained.

bω,d =


−0.206

+0.183

−0.070

 deg
s , (3.50)
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Mω =


+1.0088 −0.0007 +0.0050

−0.0021 +1.0106 +0.0137

+0.0088 +0.0170 +0.9972

 . (3.51)

The error ||ek|| (according to equation (3.42)) for the j-th rotation test is presented in figure 3.10

and shows the improvement due to the calibration. It should be noted, that the bias was already

subtracted from the uncalibrated data and that the angle of rotation was about 130 deg.

The mse is given in table 3.3 and was defined as:

MSE(ek) =
1
m

m

∑
k=1

eT
k · ek. (3.52)

Table 3.3: Comparison of mse between uncalibrated and calibrated gyroscope.

Method MSE (ek)

uncalibrated 5.01 deg2

calibrated 0.0688 deg2
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Figure 3.10: Comparison of error ||ek|| before and after gyroscope calibration.
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3.2. Random-Errors

In addition to deterministic errors, random disturbances also affect the measurements. The

nature of random errors cannot be described in a deterministic sense. However, using probability

and statistic, their behavior can be described [20].

The following model has frequently been used to describe the measurement x̃, which is affected

by random errors [14], [31]:

x̃ = x̃c + b + ν, (3.53)

where b and ν are the drifting bias and measurement noise, respectively. The term x̃c represents

the measurement, which has already been compensated for deterministic errors.

It should be noted, that in the compensation step for deterministic errors, the raw values have

been multiplied with the scale factor matrix. This introduces correlations between the axes.

However, due to the dominant diagonal behavior of the scale factor matrix, the introduced

correlation is neglected.

3.2.1. Measurement Noise

The measurement noise is modeled as zero mean white Gaussian noise ν ∼ N (0, σ2
ν ) and

reflects the uncertainty due to sensor noise itself and unmodeled behavior of the sensors. It

should be noted, that unmodeled behavior of sensors such as the nonlinearity, are deterministic

errors. However, with the proposed calibration procedure this effect cannot be estimated. A

general approach to still consider these effects, is to increase the uncertainty of the measurement

by assuming additional noise. Analysis of the data sheet of the imu [18] revealed, that the

nonlinearity strongly affects the sensory output. For that reason the nonlinearity is modeled as

additional measurement noise νNL. The complete measurement noise is given as:

ν = νNL + νnoise. (3.54)

Modeling the error sources as independent and normally distributed:

σ2
ν = σ2

NL + σ2
noise. (3.55)

The sensor noise can be estimated using Allan variance analysis (see section 3.2.3). The nonlin-

earity (nl) will be modeled as normally distributed noise with the following assumption:

If the sensor output is zero, also the nonlinearity will be zero.
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Therefore the variance of the nl will be linearly scaled with the magnitude of the measurement

|x| and can be expressed as:

σ2
NL =

(
NL(%)

100
· FSR

)2 |x|
0.5 · FSR

(3.56)

= σ2
NL,0 ·

|x|
0.5 · FSR

, (3.57)

with NL(%) as the nonlinearity, which is usually expressed in % of the Full Scale Range (fsr).

3.2.2. Bias Drift

For modeling the drifting bias the following three approaches have been frequently used [32]:

• Random walk

• 1st order Gauss Markov process

• Autoregressive model

These stochastic processes are well described in [16] and [32]. The autoregressive (ar) model

represents the most general approach [33], whereas the random walk and 1st order Gauss

Markov process are special cases of the ar model.

For this thesis a random walk (rw) will be used to model the drifting bias. The integration of

uncorrelated white noise results in a rw and can be modeled with the following discrete time

function [34]:

bk = bk−1 + wRW, (3.58)

with bk as the drifting bias at time step k. wRW represents the noise driving the random walk

and is modeled as white Gaussian noise with the variance σ2
RW. This variance can be estimated

using Allan variance analysis (see section 3.2.3).
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3. Characterization and Calibration of Sensors in Inertial Navigation

3.2.3. Allan Variance Analysis

In this section the estimation of the random error sources, such as rw and white sensor noise,

will be presented. Allan variance analysis is a common method to identify the variances of

random errors [33].

The computation of the Allan variance (avar) is given as [33]:

The measurement for the avar is collected over a long period of time, while the imu is placed in

a stable position. For a chosen cluster time τ = n · ∆T, the discrete time series with length N is

divided into m consecutive clusters of size n. ∆T represents the sampling time. For each cluster

a mean is calculated, in order to obtain a series of mean: [Θ1(τ), Θ2(τ), · · · , Θm(τ)].

The avar for a given τ is then calculated as:

σ2
Allan(τ) =

1
2(m− 1)

m−1

∑
k=1

(Θn+1 −Θn)
2 . (3.59)

The avar is computed for several τ. The square root of avar, which is called Allan deviation,

is plotted against the cluster time τ in a log-log-plot. This function is called Allan deviation

function.

Allan variance analysis uses the idea, that different noise terms appear in different regions of τ

and therefore are easy to determine. A typical Allan deviation function for a gyroscope, showing

all noise terms specified in [35], is presented in figure 3.11.
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Figure 3.11: Typical Allan deviation plot for different noise sources, adapted from [33].
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3.2. Random-Errors

In figure 3.12 the Allan deviation function for the gyroscope in the MPU9150 for the z-axis is

illustrated. Furthermore the approach to estimate the values KAllan and NAllan is demonstrated.
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Figure 3.12: Allan deviation plot for the gyroscope in the MPU 9150 for z-axis. The values for NAllan and NAllan can

be obtained by reading the value at τ = 1 and τ = 3 for the negative and positive slope, respectively. A

value of N = 6.67× 10−5 rad
s
√

Hz
and K = 8.66× 10−6 rad

√
Hz

s was found.

By fitting a line to the slope of − 1
2 and reading the value at τ = 1, the value NAllan is obtained.

NAllan relates to the variance of the sensor noise as follows:

σ2
noise =

N2
Allan
∆T

. (3.60)

In the same way, by fitting a line to the slope of + 1
2 and reading the value at τ = 3, the value

KAllan is obtained. Here KAllan relates to the variance of the rw as follows:

σ2
RW = ∆T · K2

Allan. (3.61)
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3. Characterization and Calibration of Sensors in Inertial Navigation

3.2.4. Numerical Values

Numerical values for modeling random errors of the sensor MPU-9150, which has been used in

the experiments for this thesis, are given in table 3.4, table 3.5 and table 3.6. It should be noted

that the values of the magnetometer have been normalized to a magnitude of 1, as a result of the

magnetometer calibration. Values for the nl are taken from the data-sheet [18].

Table 3.4: Noise characteristics for the MPU-9150-Gyroscope.

fs NL FSR σ2
NL,0 NAllan σ2

noise KAllan σ2
RW

Hz % rad
s

rad2

s2
rad

s
√

Hz
rad2

s2
rad
√

Hz
s

rad2

s2

G
yr

os
co

pe x 500 0.2 34.91 4.90× 10−3 6.25× 10−5 1.95× 10−6 6.44× 10−5 8.29× 10−12

y 500 0.2 34.91 4.90× 10−3 7.69× 10−5 2.96× 10−6 1.58× 10−5 5.00× 10−13

z 500 0.2 34.91 4.90× 10−3 6.67× 10−5 2.22× 10−6 8.66× 10−6 1.50× 10−13

Table 3.5: Noise characteristics for the MPU-9150-Accelerometer.

fs NL FSR σ2
NL,0 NAllan σ2

noise KAllan σ2
RW

Hz % m
s2

m2

s4
m

s2
√

Hz
m2

s4
m
√

Hz
s2

m2

s4

A
cc

el
er

om
et

er x 500 0.5 39.24 3.85× 10−2 1.53× 10−3 1.17× 10−3 4.92× 10−4 4.85× 10−10

y 500 0.5 39.24 3.85× 10−2 1.31× 10−3 8.64× 10−3 1.41× 10−4 3.99× 10−11

z 500 0.5 39.24 3.85× 10−2 1.96× 10−3 1.92× 10−3 3.06× 10−4 1.87× 10−10

Table 3.6: Noise characteristics for the MPU-9150-Magnetometer.

fs NAllan σ2
noise KAllan σ2

RW

Hz a.u. a.u. a.u. a.u.

M
ag

ne
to

m
et

er x 125 2.12× 10−3 5.62× 10−4 1.28× 10−3 1.31× 10−7

y 125 2.12× 10−3 5.62× 10−4 5.66× 10−4 2.56× 10−9

z 125125 2.12× 10−3 5.62× 10−4 7.40× 10−4 4.38× 10−9
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4. Monocular Position Tracking

In this chapter the scheme to estimate the 3-dimensional position of a spherical object, using

a monocular camera will be described. In the first part the general idea and concept will be

presented. Furthermore the challenges and factors, which corrupt and degrade the results, are

pointed out. The second part will provide a detailed procedure to solve these problems.

The reader is reminded that the main focus of this thesis was on the development of the sensor

fusion framework. The monocular position tracking system represents only a side path and

therefore this content is presented in a more relaxed way.

4.1. Introduction

The concept for the monocular position tracking using spheres is presented in figure 4.1 and can

be summarized as follows:

Camera: 
•Image capture 

Sphere 

•Background 
•Occlusion 
•Lighting 

•Lens distortion 
•Projective distortion 
•Motion blur 

PC: 
•Blob detection / association 
•Contour extraction  
•Image correction 
•Circle fit 
•Fault rejection 
•Position calculation 

•Real time application 

f 

D 

d 
x 

Figure 4.1: Main steps for monocular position tracking of a sphere.
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4. Monocular Position Tracking

A camera captures the actively illuminated sphere and the sphere’s outline is projected on the

image plane as an ellipse. If the parameters of projected ellipse, the properties of camera and the

diameter of the sphere are known, the 3D position can be calculated using trigonometry.

However, the identification of the ellipse and its properties are aggravated due to occlusions of

the sphere, or by objects with similar color or shape. Also reflections of the sphere itself could

create substantial perturbations. Furthermore, the color of the sphere and its representation in

the image is influenced by illumination of the surrounding scene and the illumination of the

sphere itself.

Moreover, a realistic camera contains lens flaws, which distort the image. In addition the

sensitivity of the sensor and the shutter speed are limited. These factors lead to motion blur in

scenes of fast moving objects.

The challenge of the procedure is to identify the correct blob of the projected sphere, in order to

extract its contour. After correcting lens distortion and projective distortions, a circle fit to the

contour is performed. If the calculated parameters satisfy fault rejection criteria, the 3D position

will be calculated. In addition, special care has to be taken to minimize the computational

burden, so real time application is possible.

4.2. Procedure

4.2.1. Image Capture

The sphere is actively illuminated using leds, which are mounted inside the sphere. The color of

the leds in the sphere can be chosen, in order to ease the correct identification of the sphere

and to allow tracking of multiple spheres. Because of the active illumination, the exposure time

can be reduced. This yields to a significant reduction of motion blur and to a higher contrast

between foreground and background. Also, the influence of the surrounding light is reduced. In

figure 4.2 motion blur and the effect of reducing exposure time is demonstrated.
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4.2. Procedure

(a) (b)

Figure 4.2: (a) Motion blur for high exposure time, (b) Adjusted exposure time.

4.2.1.1. Automatic Lighting Adjustment

As already mentioned, the lighting conditions strongly influence the image. Therefore correct

camera settings are crucial. To ease the adjustment of the camera, a simple automatic lighting

adjustment algorithm has been developed.

The main parameters affecting the lighting condition for a low cost video camera are exposure

and brightness. The exposure setting directly changes camera properties and shows the strongest

effect. The brightness setting only changes video filter properties and will be used for fine tuning.

In order to adjust the lighting, the following assumption is made: There is only one illuminated

sphere with a diameter of 80 mm with a distance of 1 m to the camera. Manual testing showed,

that a good lighting condition has been found, if about 3% of all pixels are located in the last 10

bins of the histogram of any color. The algorithm consists of the following steps:

1. Calculate the histogram for each color.

2. Calculate the percent of pixels in the last N = 10 bins for each color and set plast to the

maximum of all three colors.

3. Update the brightness B as follows:

B =


B + 5 if plast ≤ 2

B− 5 if plast > 4

B else.

(4.1)

4. If the brightness exceeds a lower Bmin = 30 or upper Bmax = 250 threshold, the brightness
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4. Monocular Position Tracking

B and exposure E are again updated as follows:

if B > Bmax :

B = Bmin

E = E + 1, (4.2)

if B < Bmin :

B = Bmax

E = E− 1. (4.3)

5. The iteration is stopped if the brightness does not change anymore.

It should be noted that the values were manually tuned and are specific for the camera model.

The lighting adjustment was usually performed once before the tracking. A typical image after

lighting adjustment is given in figure 4.2.

4.2.2. Kalman Filter to Decrease Computational Burden

The tracked object only appears in a small part of the whole image. In order to reduce the

amount of processing pixels, a search region based on the predicted estimations of a Kalman

filter will be used. A detailed discussion on Kalman filters can be found in chapter 5. A constant

velocity model represents the dynamic of the object and is given as the following discrete time

state space model according to [22]:p

v


k+1

=

1 ∆T

0 1

 ·
p

v


k

+

∆T2

∆T

 · na, (4.4)

yk+1 =
[
1 0

]
·

p

v


k+1

+ vp, (4.5)

with p and v as the 3D position and velocity vector, respectively. The unobserved acceleration is

modeled as zero mean white Gaussian process noise na with covariance Qa. The measurement

yk+1 is disturbed by zero mean white Gaussian measurement noise vp with covariance Rp.

Since the purpose of this kf is rather to provide an appropriate search region, than an optimal

estimation of the position, the covariance matrices Qa, Rp are manually tuned.

The search region presented in pixels u, v is given as:umin, umax

vmin, vmax

 =

upred + 3 · ∆u− (r + 3 · ∆r), upred − 3 · ∆u + (r + 3 · ∆r)

vpred + 3 · ∆v− (r + 3 · ∆r), vpred − 3 · ∆u + (r + 3 · ∆r)

 . (4.6)
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4.2. Procedure

The projection of the objects center [upred, vpred]
T and the radius r is given as:


upred

vpred

1

 =
Mcam · p

z
, (4.7)

r =
f · R

z
, (4.8)

with Mcam, f , z and R as the intrinsic camera matrix, focal length, z position and the radius of

the object, respectively. The deviations ∆u, ∆v, ∆r are given as:


∆u

∆v

∆r

 =
√

diag(J · p · JT), (4.9)

with J as the Jacobian of equation (4.7) and equation (4.8). In figure 4.3 a typical search region,

which is marked as red box, is presented.

Figure 4.3: Predicted search region based on the Kalman filter for monocular position tracking. The search region is

presented as red box, whereas the object to be tracked is green.
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4. Monocular Position Tracking

4.2.3. Blob Detection / Association

The next step is to detect the correct blob of the sphere’s projection within the search region. In

the field of image processing a blob is referred as a region of an image with similar properties

(E.g. the projection of the ball). The following points explain the blob detection and association

to find the correct blob:

• Subsample

When starting tracking and after periods of lost objects only little or no information of the

balls location is known and therefore the search region can become very large. In the worst

case it can be as large as the complete image. This results in a very large number of pixels

to be processed resulting in drastic increase of the computational burden. In order to limit

the pixel number, the search region will be subsampled to a predefined image size. When

the lost object is found, the search region is small enough and no subsampling is needed.

Hence, this step enables faster detections of lost objects without affecting the accuracy of

tracking.

• Color Segmentation

Since the color of the object is known, the associated blob can be detected using color

segmentation. For that reason the image is transformed from the Red/Green/Blue-space

(rgb) to the Hue/Saturation/Value-space (hsv). The color representation in hsv-space is

known to be robust to lighting effects and presents a very intuitive interpretation of the

color given in the hue-channel. A good introduction to color-spaces is given in [36] and the

hsv-transformation is given by [37].

Blob-candidates can be found by thresholding each channel and then logically combining

them. A candidate pixel is found if following three criteria are met:

IHue,min > IHue(u, v) > IHue,max, (4.10)

ISat,min > ISat(u, v) > ISat,max, (4.11)

IVal,min > IVal(u, v) > IVal,max, (4.12)

with IHue,min ,ISat,min, IVal,min, IHue,max, ISat,max, IVal,max as the lower and upper thresholds

for Hue, Saturation and Value, respectively. IHue(u, v), ISat(u, v), IVal(u, v) are the values

for Hue, Saturation and Value for the pixel u, v respectively. The thresholds for hue are

chosen according to the sphere’s color. The thresholds for value and saturation are less
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4.2. Procedure

important; they are used to filter out background.

Typical values for a green sphere are:
IHue,min, IHue,max

ISat,min, ISat,max

IVal,min, IVal,max

 =


40, 85

35, 255

90, 255

 . (4.13)

• Image Cleanup

Experiments revealed that reflections on the near environment, such as white paper and

table tops, create numerous blobs that degrade the result. Furthermore, occlusions could

separate areas of the true blob. In order to remove these small blobs and combine separated

blobs, morphological operations are performed according to following equation:

IClean = ((I	k1 SE)⊕k2 SE)	k3 SE. (4.14)

	k and ⊕k represent the k times iteratively performed erosion and dilation, respectively. A

disk of size three was used as structure element (SE). Good performance was found with

k1 = 3, k2 = 14, k3 = 10.

Since the dilated image is also used as a binary mask to perform contour extraction, the

cleaned up blob has an increased size with k2 − (k1 + k3) = 1.

In figure 4.4 the result of color segmentation and the morphological clean up is illustrated.

It demonstrates the successful segmentation and clean up of the blob, for a strongly

perturbated image due to reflections.

(a) (b) (c)

Figure 4.4: Blob detection using color segmentation and morphological clean up:

(a) Original sub image, (b) Segmented image, (c) Morphological cleaned up image.

49



4. Monocular Position Tracking

• Blob Association

The blob with the biggest area will be assumed to be the correct one.

4.2.4. Contour Extraction

The contour extraction of the blob involves the following steps:

• Cut out Blob Area

To reduce the computational burden and to trim away edges from the background, the

area of the blob is cut out.

• Convert to Gray Scale Image

The area of the blob represented as RGB image is converted to a gray scale image, by using

the following transformation:

Gray = 0.299 · R + 0.587 · G + 0.114 · B. (4.15)

• Edge Detection

Candidate points for the boundary are provided by the Canny edge detection. Canny edge

detection will not be covered here; the interested reader is referred to [38].

For the Gaussian filtering and Sobel gradient calculation a kernel size of three was taken.

The thresholds for the hysteresis have to be chosen individually for each color, because in

the color to gray transformation, the colors are weighted differently. A good ratio between

the upper and lower threshold is given in between Tupper
Tlower

= 1
2 . . . 1

3 [38]. For a green object

the following thresholds showed good results: Tupper = 200, Tlower = 100.

• Combine Edges and Blob-mask

In order to remove wrong colored edges, which are caused by background or foreground

objects, the color segmentation mask is applied on the detected edges. As already men-

tioned in section 4.2.3 under Image Cleanup, the dilation operations have been performed

once more, than the erosions operations. Resulting in an increased size of the mask, in

order to contain the detected edges.

It should be noted that the less wrong edges are found, the faster and less error prone the

following processing steps will be.
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4.2. Procedure

An exemplary result of contour extraction is presented in figure 4.5 for an image perturbated

by reflections and in figure 4.6 for an image perturbated by a second sphere. Both show the

successful contour extraction even under difficult conditions.

(a) (b) (c) (d)

Figure 4.5: Results of contour extraction for an image affected by reflections:

(a) Sub cut area of the original image, (b) Color segmented image, (c) Detected edges. (d) Final contour:

Combination of color segmented and detected edges.

(a) (b) (c) (d)

Figure 4.6: Results of contour extraction for an image including a second sphere:

(a) Sub cut area of the original image, (b) Color segmented image, (c) Detected edges. (d) Final contour:

Combination of color segmentation and detected edges.
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4.2.5. Image Correction

The image correction consists of the following two steps. The first corrects lens flaws and the

second transforms the projected ellipse to a circle to compensate projective distortions.

4.2.5.1. Compensation of Lens Flaws

The projection of a point [X, Y, Z]T from the 3D space onto a 2D plane can be described by using

the pinhole camera model according to [27]:
u

v

1

 =


fx 0 cx

0 fy cy

0 0 1

 ·


X
Z
Y
Z

1

 (4.16)

=


fx 0 cx

0 fy cy

0 0 1

 ·


X′

Y′

1

 . (4.17)

fx, fy, cx and cy are focal lengths and principal points in the x and y-direction, respectively

and are expressed in pixels. In figure 4.7 a graphical demonstration of the image formation is

illustrated.

p
f

C

Y

Z

f Y / Z

y

Y

x

X

x

p

image plane
camera
centre

Z

principal axis

C

X

Figure 4.7: Pinhole camera model with C as the camera center and p as the principal point. The image plane is placed

in front of the camera [27].

The equation above solely describes the projection of a perfect pinhole camera. However, realistic

cameras contain tangential and radial distortions, which are caused by non-collinear mounting

of multiple lenses and by spherical aberration, respectively.
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4.2. Procedure

For the compensation, the following nonlinear mapping according to [39] will be used:

X′corr = X′
1 + k1r2 + k2r4 + k3r6

1 + k4r2 + k5r4 + k6r6 + 2p1X′Y′ + p2(r2 + 2X′2), (4.18)

Y′corr = Y′
1 + k1r2 + k2r4 + k3r6

1 + k4r2 + k5r4 + k6r6 + p1(r2 + 2Y′2) + 2p2X′Y′, (4.19)

r2 = X′2 + Y′2, (4.20)

with X′corr and Y′corr as the corrected points. The coefficients for the radial distortion are given

by k1, k2, k3, k4, k5 and k6, whereas the coefficients for the tangential distortion are given as p1

and p2. Usually the correction is performed for the whole image using a precomputed Look up

Table lut. However, using a lut results in discretization of the corrected coordinates. Hence

the number of contour points is very small, each point is corrected by solving equation (4.18),

equation (4.20) and equation (4.20).

The open source library OpenCV [39] has been used to estimate the camera matrix, to estimate

the distortion coefficient, as well as to compensate lens flaws.

4.2.5.2. Compensation of Projective Distortion

The projection of a sphere onto the image plane can be seen as a cone-plane intersection.

In general this intersection creates an ellipse for a right cone. However the intersection will

describe a circle, if the cutting plane is perpendicular to the symmetry axis of the cone. This is

demonstrated in figure 4.8.

Image plane 

Projection / Intersection 

Sphere 

Nodal point 

Figure 4.8: Image projection modeled as cone plane intersection.
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The idea is to reproject the contour points on a new plane, which is perpendicular to the

symmetry axis of the cone. This reprojected outline of the sphere describes a circle, whose

parameters can be obtained using a circle fit method.

The desired plane is found as the intersection of the symmetry axis of the cone itself with the

tangential plane of the sphere, which is described by the focal length. This is demonstrated in

figure 4.9.

Image Plane 

Projected Outline 

Nodal Point 

f 

u 

v 

u‘ 
v‘ Undistorted  Outline 

Tangent Plane 

Figure 4.9: Projective undistortion as reprojection on a sphere’s tangent plane.

The computation of the compensation of the projective distortion contains the following steps:

• Normalize image coordinates

In order to get the contour points expressed in units of the 3D coordinate system, the

contour points are normalized as:

pnorm =


unorm

vnorm

1

 = M−1
Cam


u

v

1

 . (4.21)

• Find Symmetry Axis

The four points describing the bounding box of the contour are projected on the unit

sphere as:

pUnit =
pnorm

‖pnorm‖
. (4.22)

An estimation of the symmetry axis raxis is given by taking the unit vector of the vectorial

summation of these four projected points.

raxis =
1
4

4

∑
i=1

pUnit,i. (4.23)
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• Calculate Coordinate System

With the given symmetry axis a new coordinate system on the tangential plane of the

unit sphere can be introduced using spherical coordinates. The relation between the two

coordinated systems is shown in figure 4.10.

x 

y 

z  

 

 

 
 

 

 

Figure 4.10: Spherical coordinate system for projective undistortion.

The unit vectors of the spherical coordinate system are given as [40]:

θ̂ =


−sin(θ)

cos(θ)

0

 , (4.24)

φ̂ =


cos(θ) · cos(φ)

sin(θ) · cos(φ)

−sin(φ)

 , (4.25)

r̂ = raxis (4.26)

with

θ = tan−1
(

raxis,x

raxis,y

)
, (4.27)

φ = cos−1

 raxis,z√
r2

axis,x + r2
axis,y + r2

axis,z

 . (4.28)
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• Reprojection

A projected point [u′, v′] is given as the intersection between the line through the original

point pnorm and the tangent plane and can be written as follows:

pnorm ·
1
λ
= r̂ + θ̂ · u′ + φ̂ · v′, (4.29)

pnorm =
[
θ̂ φ̂ r̂

] 
λu′

λv′

λ

 . (4.30)

The projected points are obtained by solving section 4.2.5.2, which represents an efficient

calculation, since the matrix inverse has to be calculated only once for all points.

In figure 4.11 the image of a sphere, which is located close to the border, is presented and shows

strong projective distortion. To highlight the effect of distortion, the contour is overlaid with its

inner and outer circle. Furthermore, the undistorted contour including a successful circle fit is

shown.

(a)

(b) (c) (d)

Figure 4.11: Demonstration of projective distortion and its correction:

(a) Original image, sphere located at the edge; (b) Sub-cut image; (c) Extracted contour (black) including

inner and outer circle (red); (d) Undistorted contour (blue) and successful circle fit (green).
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4.2.6. Circle Fit

For the obtained contour a simple circle fit cannot be applied. The contour not only contains

elements of the real circle. It also contains outliers, which would strongly degrade the result if

neglected. Such outliers are caused by:

• Reflections

• Occlusion due to fingers

• Wrong detected edges from the foreground or background

In order to deal with outliers, a robust circle fit method has to be used. Two popular methods are

given with the Hough Transform (ht) and the Random Sample Consensus (ransac) algorithm.

The ht allows detection of multiple object, however the computational complexity and storage is

higher compared to ransac. Furthermore, ransac provides higher precession [41].

Since only one circle has to be fitted and due to the above mentioned advantages of the ransac

compared to ht, the ransac method will be used.

The circle fit consists of two parts. The first identifies the correct contour points and the second

refines the circle fit using best fit method.

4.2.6.1. RANSAC for Circular Objects

The random sample consensus approach was introduced by Fischler [42] and contains the

following steps [27]:

1. Random Sampling

Randomly sample a minimal set of data points from the contour points. For fitting a circle,

a minimum set of three points is required.

2. Model fit

The model fit is based on the fact, that perpendiculars of the bisection between two points

on the circle pass through the center of the circle (see figure 4.12). The parameters of the

circle can be calculated given the samples set of three points p1, p2, p3 according to [43]:

cu′ = (D · E− B · F)/G, (4.31)

cv′ = (A · F− C · E)/G, (4.32)

r =
√
(p1,u′ − cu′)2 + (p1,v′ − cv′)2 (4.33)
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Figure 4.12: Circle fit using 3 points.

with:

A = p2,u′ − p1,u′ , (4.34)

B = p2,v′ − p1,v′ , (4.35)

C = p3,u′ − p1,u′ , (4.36)

D = p3,v′ − p1,v′ , (4.37)

E = A · (p1,u′ + p2,u′) + B · (p1,v′ + p2,v′), (4.38)

F = C · (p1,u′ + p3,u′) + D · (p1,v′ + p3,v′), (4.39)

G = 2 · (A · (p3,v′ − p2,v′)− B · (p3,u′ − p2,u′)). (4.40)

The indices u′ and v′ stand for the projected image coordinates.

3. Determine Inlier / Outlier

All points are tested if they are within a distance threshold ε of the model, given the

calculated parameters (cu′ , cv′ , r). A point p is counted as an inlier, if the following criterion

is met:

ε2 ≥ |r2 −
(
(cu′ − pu′)

2 + (cv′ − pv′)
2)|. (4.41)

If the number of inliers is bigger than the previous set Si, the new points are taken as new

set of inliers Si. For this thesis a threshold of ε = 3 pixels was chosen.

4. Adjust Number of Iterations

Assuming only one outlier free sample is necessary to separate inliers from outliers, a

number of Np samples can be given to guarantee with a chosen probability p that a correct

fit is obtained.

The probability, that Np samples are contaminated with outliers, is given as: (1− ws)Np .
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With w as the probability of drawing an inlier and s as the sample size. Therefore the

probability p of drawing at least once a sample, which is outlier free, is given as:

p = 1− (1− ws)Np . (4.42)

The number of samples Np can then be calculated as:

Np =
log(1− p)

log(1− ws)
. (4.43)

If a new set of inliers is found, the number of iterations Np is updated as defined in the

equation above with w as the actual ratio of inliers. The ratio of inliers is initialized with

w = 0.5 and a probability of p = 99.9999 % was chosen.

5. Repeat

The steps 1 - 4 are repeated until the following criteria are met:

• The actual number of iteration N exceeds the minimum number of required iterations

Np to obtain an outlier free sample: N > Np.

• The iteration limit is reached N > Nmax.

6. Check Health of Fit

In order to reject bad sets of inliers, the health of the fit is evaluated. The following criteria

have to be fulfilled, in order to consider a correct fit:

• The iteration limit is not reached N < Nmax.

• A minimum number of inliers are found.

Note: Here a minimum size of eight points was used.

• A minimum ratio of inliers is reached w > wmin.

Note: Here a minimum ratio of wmin = 25 % was used.

7. Circle Refinement

The circle fit method explained in section 3.1.3.1 and defined by equation (3.47), was used

to refine the fit.

It should be noted that the contour points have been subsampled, in order to reduce the number

of calculations in step 3.

In figure 4.13 the result of the ransac circle fit is shown. The figure clearly demonstrates a

successful fit even under strong occlusions such as fingers.
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(a)

(b) (c)

Figure 4.13: Demonstration of RANSAC circle fit:

(a) Original image of a strongly occluded image showing circle fit (red); (b) Sub-cut image showing circle

fit (red); (c) RANSAC result: Inlier (blue), Outlier (red), fitted circle (green).

4.2.7. Fault Rejection

Before the position of the sphere is calculated, the fitted circle is again checked for its correctness.

This check mostly removes pseudo circles, which could be created due to partly occlusion, as

shown in figure 4.14.

In order to reject those wrong pseudo circles, only circles satisfying the following criteria are
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Figure 4.14: Wrong circle detection of RANSAC due to pseudo circles.

Inlier (blue), Outlier (red), fitted circle (green).

accepted:

FGCircle

ACircle
> 0.3, (4.44)

FGCircle

FGTotal
> 0.3, (4.45)

with FGCircle as the amount foreground pixels within the fitted circle, FGTotal as the total amount

of foreground pixels and ACircle as the area of the fitted circle, expressed in pixels.

4.2.8. Position Calculation

Using the parameters of the circle fit cu′ , cv′ , r, the sphere’s position can be calculated using

trigonometry according to figure 4.15.

f r 

R 
R` 

d 

A 

B 

C 
D 

E 
F 

 

Figure 4.15: Position calculation using similar triangles.
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The position calculation contains the following three steps:

• Calculate Distance

The distance calculation is based on the triangles in figure 4.15. Using the similarity

between the triangle ABC and ADE we get:

f
r
=

R′

d
, (4.46)

and with the triangle ABC and DFE:

r
f
=

√
R′2 − R2

R
. (4.47)

Solving for the distance d will result in:

d = R

√
1 +

f 2

r2 , (4.48)

with R as the known radius of the sphere and the normalized focal length f = 1 m.

• Calculate Direction

The direction of the sphere nsphere is given as the unit vector of the estimated circle center

and is expressed in the camera coordinate system. The direction can be calculated as

follows:

rsphere = raxis + cu′ · φ̂ + cv′ · θ̂, (4.49)

nsphere =
rsphere

‖rsphere‖
. (4.50)

• Calculate Position

If the direction and the distance of the sphere is known, the position can be calculated as

follows:

Psphere = nsphere · d. (4.51)
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This chapter starts with the introduction to sensor fusion by providing an illustrative example

of sensor fusion. Further the advantages of sensor fusion are pointed out. Subsequently a brief

overview of possible fusion methods is given. After explaining the selected fusion strategy

in detail, the complete system model for the optical-inertial sensor fusion based on chapter

2/3/4 will be explained. Finally several adaptations to obtain a reasonable functioning fusion

framework are presented.

5.1. Introduction

The aim of tracking is to provide position and orientation information of a moving object over

time. Also in several applications time derivatives, such as velocity and angular rotation, are of

interest.

Using state estimation techniques, the position and the orientation can be determined given

indirect, inaccurate or uncertain observations. The following example should give insight in the

functional principle of the state estimation process with respect to tracking:

In order to provide a descriptive example it will be assumed the person’s brain in this example

acts in a similar way as a state estimator. Imagine, a person remotely controls a toy plane

using throttle and steering angle. In order to properly maneuver the plane, the person has to

continuously determine the plane’s position, velocity and orientation. These quantities of interest

will be called states.

By using the knowledge of the inputs of the remote control and the actual position, the person

predicts the future states of the plane. Known inputs are steering angle and throttle. The model

describes the movement of the plane and how it behaves according to given input.

In general, the plane does not completely behave the way the person predicted it. Reasons

for the discrepancy can either be an inappropriate model of the plane’s behavior, or unknown

perturbations (e.g. wind dragging the plane away).

Furthermore the person’s eyes can be seen as a measurement system, which provides position

measurements. Unfortunately bad weather conditions and fog impairs his sight and the person

can only roughly guess the plane’s position.

63



5. Sensor Fusion for Tracking

By combining the information of the predicted position and the observed position, an improved

estimation of the airplane’s states can be given. Moreover consider the plane flies behind a

thick/dense cloud and the person sight of the plane is further degraded. In that case the person

increases the trust for predicted position, since hardly information by the person’s eyes is

available. The information from the prediction and the measurements is weighted based on the

trust for each.

In a similar way, as the person describes the behavior of the plane’s movement, the evolution of

states in time can be modeled as a dynamic system according to stochastic equations [1]. The

following discrete-time nonlinear dynamic state-space model (dssm) will be used to model the

system and measurement behavior:

xk = f(xk−1, uk, nk) (5.1)

yk = h(xk, vk) (5.2)

The nonlinear state transition function f(·) represents the dynamic of the discrete time state

vector of the plane (or of any other tracked object). In some cases direct input to the model is

known (e.g. throttle and steering angle). This known input is called exogenous input uk.

Furthermore, hardly all inputs for such a model can be known or the model does not totally

reflect the real world behavior. To consider these effects, another input called process noise nk, is

assumed. In general only statistical assumptions of the process noise can be made.

The states xk of the system represent position, orientation or any other quantities of interest.

In order to incorporate measurements, for example as provided by the person’s eyes, the

nonlinear measurement function h(·) is introduced. It describes the relation between states

and measurements yk. To consider unknown errors or inaccurate measurement models, the

measurement noise vk is introduced. Again only statistical assumptions of the measurement

noise can be made.

A state estimator performs similar steps as the person in this example. By using the actual states

x̂k−1, known exogenous input uk and assumptions of the unknown inputs nk, future states x̂k|k−1

will be predicted based on the model of the system f(xk−1, uk, nk).

In the next step measurements ŷk|k−1 are predicted using the predicted states x̂k|k−1, assumptions

of the measurement noise vk and a model for the measurement device itself h(xk, vk). By

combining the information from the predicted measurements ŷk|k−1 and the real measurements
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yk, an optimal estimate x̂k of the real state can be given.

A typical structure of state estimation is demonstrated in figure 5.1.

Real World 
Real Measurement 

System Optimization 

Known input:  

State Model 
 

Measurement Model 
 

Unknown system 
input / error 

Unknown measurement 
input / error 

Assumption of 
measurement input / error  

Assumption of 
model  input / error  

 

 

 

  

State Estimation: 

Figure 5.1: Typical approach of state estimation.

Furthermore, the estimation can be improved when information of multiple sensors is fused.

This is demonstrated with the following example:

If a gust of wind drags the plane away and this wind is not noticed by the person, the estimation

degrades and could be wrong. However, if the person would have felt the strength and direction

of the wind on his skin, it could have considered its influence and therefore given a better

estimate.

Sensor fusion can be defined as combining data, such that the resulting information is better

than it would be possible, if these sources were used individually [44].

The improvements of sensor fusion can be categorized as follows [45]:

• Robustness / Reliability

A system, which relies only on one sensor, is fragile. If the information is provided by an

erroneous sensor, the measurement is just as erroneous. The system reacts based on the

error affected information, fails and therefore it is not robust. On the other hand a system,

which fuses redundant information of multiple sensors, will yield higher fault tolerance

and reliability.
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• Accuracy / Certainty

The combination of different sensors can provide a more accurate estimation and resolve

ambiguities. Consider the following example. We want to measure the frequency of a signal

using two different sensors: The first has a very low accuracy, but is unambiguous over the

whole measuring range. A second sensor achieves a very high accuracy, but due to aliasing

it contains ambiguities in the sense of periodic output. By combining the information

of both, the ambiguity of the second sensor can be solved and an accurate result can be

achieved. Additionally a third sensor could improve the certainty, by confirming the actual

measurement result.

• Extended Coverage

By combining sensors with different physical quantities or sampling rates, the spatial

and temporal coverage can be extended. Furthermore, the combination of complemen-

tary sensors allows the calculation of information, which could not be calculated if the

sensors would be used individually. An example would be combining angle and distance

information to determine the position [46].
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5.2. Methods for Sensor Fusion

Methods for sensor fusion can be categorized as follows [47]:

• Gaussian approximation methods (kf, ekf, ukf)

• Sampling based methods (Particle filter)

• Artificial Intelligent methods (anfis)

The first two methods are Bayesian inference methods and are based on the calculation of the

posterior probability distribution, which is defined as follows [48]:

p(x|y1, . . . , yn) =
p(y1, . . . , yn|x)p(x)

p(y1, . . . , yn)
. (5.3)

The posterior probability distribution is the distribution over the states x , which is conditioned

on the observed measurements. It represents the distribution when the information of all

measurements, as well as the information of the prior distribution p(x) over the states x is

used. The prior distribution over the states p(x) represents the information of the states before

using information of any measurement. The term p(y1, . . . , yn|x) is called the likelihood function

and is the joint probability of the measurements y1, . . . , yn given the states x. The last term

p(y1, . . . , yn) describes only a normalization term and is often neglected if the measurements

are conditional independent [48].

Bayesian inference methods provide optimal solution to any model including nonlinear and non-

Gaussian stochastic systems [48]. Practically only finite approximations of a Bayesian estimator

can be implemented and a tradeoff between computational cost and accuracy has to be made.

The following section gives a brief overview of common methods for sensor fusion with respect

to tracking.

5.2.1. Kalman Filter

The Kalman Filter (kf) [49] is a stochastic sequential state-estimator, which falls under the cate-

gory of Gaussian approximation methods. As the name already implies, Gaussian approximation

methods approximate Random Variables (rv) as Gaussian (first and second order moments).

Furthermore, a linear transition function f(·), as well as a linear measurement function h(·) are

assumed. The process noise nk and the measurement noise vk are modeled as zero mean white

noise with a multivariate normal distribution.

When using these assumptions, a closed form solution for propagating a rv can be given [31].
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The iterative estimation consists of two steps. The prediction-step propagates the available

estimation of the states and the according covariance through the model, in order to obtain a

priori estimates.

In the correction-step the information from new measurements is used to correct the a priori esti-

mates, which yields the a posteriori estimation of the states. The kf produces an optimal solution

with respect to (mmse), the maximum likelihood (ml) sense and the maximum a posteriori (map)

sense [50]. However, in practical applications linear dssm are rare and the real distribution of the

rv is only approximated as Gaussian.

5.2.2. Extended Kalman Filter

For nonlinear estimation problems, the Extended Kalman filter (ekf) has become the most

used nonlinear state-estimator in the last 30 years [31]. It is an adaption of the standard kf, in

order to process nonlinear dssm. The nonlinear transition function f(·), as well as the nonlinear

measurement function h(·), are approximated by a first-order truncated Taylor series around the

current estimated state [31]. The rvs are then propagated through that linearization dssm . The

ekf is computational efficient and can be applied to nonlinear dssm. The ekf works fine for most

applications [48].

Unfortunately, first-order Taylor series have to be calculated. Results using numerical derivatives

are usually noisy and can become inaccurate. On the other hand the derivation of analytic

derivatives can be difficult for certain dssm. In addition the linearization introduces errors, which

could lead to inconsistent estimations or even to divergence of the filter [31].

5.2.3. Unscented Kalman Filter

The Unscented Kalman Filter (ukf) was introduced by Julier and Uhlmann [51] to overcome

the linearization problems of the ekf. It is based on the scaled unscented transformation (sut)

[52], in order to propagate the RV through the dssm. It is based on the concept that it is easier

to approximate a probability distribution function rather than to approximate the nonlinear

transition or measurement function. Carefully chosen samples, so called sigma points, are

selected around the current estimate. These sigma points are then propagated through the

nonlinear state transition function f(·) and the nonlinear measurement function h(·). With the
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propagated sigma points the first two statistical moments of the a priori states and measurements

can be calculated. This step substitutes the kf prediction-step [31], [53].

An advantage of the ukf compared to the ekf is that no derivatives of nonlinear functions have

to be calculated. Therefore it can be applied for non-smooth systems. Additionally, the ukf

outperforms the ekf in terms of accuracy and consistency [31]. The computational cost of the

ukf is slightly higher than the ekf using analytic derivatives. However, the computational cost

are comparable to the ekf using numerical derivatives [31].

5.2.4. Particle Filter

The use of Particle filters is often assumed to be a brute force approach [54]. They often work

well in situations where kf/ ekf / ukf show difficulties. This is the case for highly nonlinear

systems and for rv with multi modal probability functions.

The Particle filter is a numerical implementation of a Bayesian estimator and its approach can be

summarized as follows [54]:

• Generate N particles by sampling from their pdf p(x).

• Perform the prediction step, in order to receive the a priori particles, using the nonlinear

transition function f(·) and the pdf of the process-noise p(n).

• Perform the correction step by calculating the conditional relative likelihood for the

particles given the measurements.

• Perform the resampling step by generating the a posteriori particles on basis of the condi-

tional relative likelihood.

• Continue with the prediction step.

Advantages of the Particle filter are that it can be applied for strong nonlinear dssm and for

non-Gaussian and multi-modal distributions [31]. Unfortunately there are also downsides to this

filter. In order to receive good accuracy, a huge amount of particles has to be used. This results

in a much higher computational cost, than with kf, ekf or ukf.
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5.2.5. Adaptive Neuro Fuzzy Inference System

An Adaptive Neuro Fuzzy Inference System (anfis) is the combination of an Artificial Neural

Network (ann) with a Fuzzy Interference System (fis). The system provides the ability to include

expert-knowledge (If-Then-statements) by fis, as well as the ability of learning and adaption of

parameters by ann [55].

This approach is very different from the above mentioned methods. No physical model of the

dynamic system or the measurement system is needed. The input/output relation is obtained by

training the network on datasets.

Advantages of anfis are that there is no need for any physical model of the system and no need

to provide statistical information of the sensory input. However, also no information of statistics

of the estimation is provided. anfis showed a superior behavior in long measurement outages

compared to Bayesian estimators [56].

Disadvantages of anifs are that it is based on training using large amount of data. The trained

network can be critically sensitive to the training data and could behave unexpected in untrained

situations [47].

For further information the reader is referred to [55]–[57].

70



5.2. Methods for Sensor Fusion

5.2.6. Selection of the Sensor Fusion Method

As already mentioned, the sensor fusion framework should be applied in the 3D interaction

device. With respect to this application the following criteria have been identified and should be

considered when choosing an appropriate method for the sensor fusion framework.

• The sensor fusion framework should be able to track position and orientation of a moving

object.

• The imu, which will be used for the 3D interaction device, provides sensory data from a

gyroscope and an accelerometer with a sampling rates up to 1 kHz. The fusion framework

should be able to process this amount of data in real-time.

• The sensor fusion framework should operate on a consumer grade PC.

• Adding data from additional sensors should be easy.

Since the navigation equation, which calculates position and orientation, represents a nonlinear

transition function, the sensor fusion framework should be able to process nonlinear measure-

ment functions. Hence a standard kf cannot be used for the framework.

Even though a Particle filter can provides superior results within the explained Bayesian estima-

tors, running a Particle filter with an update rate up to 1 kHz in real-time cannot be guaranteed

on a consumer grade PC. For that reason the Particle filter is neither an option.

Although anfis demonstrated good performances for inertial navigation in long outages, adding

a new sensor to the framework would require retraining and therefore anfis will not be used

for the framework.

Because the ukf outperforms the ekf [31], [54] and no derivatives have to be calculated, the ukf

has been chosen for the sensor fusion framework.
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5.3. Unscented Kalman Filter

The Unscented Kalman Filter (ukf) is a modified version of the classical kf and the ekf to

overcome the problems with the propagation of the uncertainty through nonlinear dssm. Instead

of approximating the nonlinear functions of the dssm as in ekf, the distribution of the states

is approximated by deterministically chosen samples. The mean and covariance of the states

are represented by these samples, which are also called sigma points. By propagating the sigma

points through a nonlinear system, the a posteriori mean and covariance are obtained, which are

accurate up to 2nd order nonlinearity. Errors only occur in 3rd and higher orders [31].

5.3.1. Scaled Unscented Transformation

The Scaled Unscented Transformation (sut) represents the core of the UKF and describes the

calculation of the expected mean and covariance of a random variable that undergoes a nonlinear

transformation. We consider the following rv x with dimension L and propagate it through a

nonlinear function:

y = g(x). (5.4)

In a Gaussian sense the rv x is fully described by its mean x̄ and covariance Px.

The steps of the SUT are explained according to [58]:

• Calculation of the Sigma Points

2L + 1 sigma points are deterministically drawn according to the following sampling

scheme:

X0 = x̄ w(m)
0 =

λ

L + λ
,

Xi = x̄ +

(√
(L + λ)Px

)
i

i = 1, . . . , L w(c)
0 =

λ

L + λ
+ (1− α2 + β),

Xi = x̄−
(√

(L + λ)Px

)
i

i = L + 1, . . . , 2L w(m)
i = w(c)

i =
1

2(L + λ)
i = 1, . . . , 2L.

(5.5)

The sampling scheme satisfies, that the set of samples Si = {wi,Xi} captures the true

mean and covariance of the rv. Each sigma point Xi is associated with its according weight

wi. The term
(√

(L + λ)Px

)
i

represents the i-th column of the matrix square root of the

weighted and scaled covariance matrix ((L + λ)Px):(√
(L + λ)Px

)(√
(L + λ)Px

)T

= ((L + λ)Px) . (5.6)
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An efficient method calculating the matrix square root is given by the Cholesky factorization

method. The expression λ is calculated as follows:

λ = α2(L + κ)− L. (5.7)

α, β, κ are called scaling parameters. α influences the spread of the sigma points around its

mean x̄ and should be set to a small positive value (α = 10−3), in order to avoid non-local

effects in strong nonlinear functions. The secondary scaling parameter κ should be chosen

κ ≥ 0 to ensure a positive semidefinite covariance matrix. It is mostly set to κ = 0.

In order to incorporate prior knowledge of the distribution function of the rv, the scaling

parameter β can be used to capture higher order moments of the distribution function. For

a Gaussian distribution, β = 2 represents the optimal choice [31], [58]. In figure 5.2 and

figure 5.3 a set of selected sigma points for a 2-dimensional Gaussian distribution is shown.

Figure 5.2: 2-Dimensional Gaussian rv and its according scaled sigma points. The height of sigma points represent

their weight. Chosen parameter: α = 1, β = 1.5, κ = 1. Adapted from [31].

Figure 5.3: Top view: 2-Dimensional Gaussian rv and its according scaled sigma points.
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• Propagation of Sigma Points

Each column Xi of the sigma points is propagated through the true nonlinear function.

Yi = g(Xi) i = 0, . . . , 2L. (5.8)

• Calculation of the posterior statistical moments

For the calculation of the first two statistical moments of the propagated rv, the weighted

mean and covariance of the sigma points is calculated:

ȳ ≈
1L

∑
i=0

w(m)
i Yi, (5.9)

Py ≈
1L

∑
i=0

w(c)
i (Yi − ȳ)(Yi − ȳ)T, (5.10)

Pxy ≈
1L

∑
i=0

w(c)
i (Xi − x̄)(Yi − ȳ)T. (5.11)
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5.3.2. Example of the Scaled Unscented Transformation

The following example shows the superiority of sut in propagating a rv compared to propagating

a rv using 1st order linearization (used in ekf).

In figure 5.4 a tilted car in a 2-dimensional space is shown. The acceleration aB
m in the body-frame

XBYB and also the orientation θ of the car can be measured. We would like to calculate the linear

acceleration aG
lin in the global-frame XGYG, which is given as:

aG
lin =

aG
lin,x

aG
lin,y

 = g(x)

=

cos(θ) −sin(θ)

sin(θ) cos(θ)

 aB
m + gG.

(5.12)

The measurement x =


aB

m, x

aB
m, y

θ

 is modeled as a Gaussian rv with mean x̄ =


5.1

8.5

30

 and

covariance Px =


10−4 0 0

0 10−4 0

0 0 25

.

 

 

 
 

  

 

 

Figure 5.4: Example of the Scaled Unscented Transformation: Calculation of the linear acceleration aG
lin in the global-

frame XGYG; given the measured acceleration aB
m in the body-frame XBYB and the angle θ.

Figure 5.5 shows the results for the true propagation of the rv aG
lin (blue), the propagation using

sut (red) and the propagation using 1st order-linearization (green). The ellipses and bold crosses

represent the covariance and mean, respectively.
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The ground truth (small blue crosses) is carried out by propagating 10 000 samples through the

nonlinear function. The samples are drawn from their distribution.

The propagated mean and covariance using 1st order-linearization are calculated as:

āG,1stO.
lin = g(āB

m, θ̄), (5.13)

P1stO.
aG

lin
= (∇g(x))Px(∇g(x))T. (5.14)

The result for the 1st order-linearization shows a biased and inconsistent result, whereas the

result for sut presents an accurate calculation of the true mean and covariance.
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Figure 5.5: Comparison: Propagation of random variables and its first two statistical moments for aG
lin; Ground Truth

(blue); sut (red); 1st order-linearization (green). The ellipses and bold crosses represent the covariance and

mean, respectively.
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5.3.3. Implementation of the UKF

Van Der Merwe proposed two different algorithms for the ukf in [31]. One assumes simply

additive noise, whereas the other also can handle non-additive noise. In order to ensure the full

potential of the sensor fusion framework, the non-additive noise version will be implemented.

The following explanation of the ukf is according to [31].

For the implementation the following nonlinear discrete-time dynamic state-space model (dssm)

will be used:

xk = f(xk−1, uk, nk), (5.15)

yk = h(xk, vk), (5.16)

where:
f(xk−1, uk, nk) is the discrete-time transfer function.

h(xk, vk) is the discrete-time measurement function.

xk is the state vector at time step k.

yk is the measurement vector at time step k.

uk is the known exogenous input at time step k.

nk is the process noise at time step k.

vk is the measurement noise at time step k.

The process noise nk and the measurement noise vk are independent zero-mean Gaussian noises

with covariance matrix Rn and Rv, respectively. In order to incorporate non-additive noise, sigma

points for these noises have to be deterministically sampled. For that reason the original state

vector xk−1 is expanded with the process noise vk and measurement noise nk. The augmented

state vector xa
k−1 is given as:

xa
k−1 =


xk−1

vk

nk

 . (5.17)

In a similar way, the augmented covariance matrix Px
a is merged using their according covariance

matrices:

Px
a =


Px 0 0

0 Rv 0

0 0 Rn

 . (5.18)
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Px, Rv, Rn represent the covariance matrix of the original state, process noise and measurement

noise, respectively. The procedure of the ukf is illustrated by the flowchart in figure 5.6 and can

be described by the following steps:

• Initialization:

The ukf is initialized with the expected initial states and the covariance matrix for this

estimation:

x̂0 = E[x0], Px0 = E[(x0 − x̂0)(x0 − x̂0)
T],

x̂a
0 = E[xa

0] = E[x0 0 0]T, Px
a
0
= E[(xa

0 − x̂a
0)(x

a
0 − x̂a

0)
T] =


Px0 0 0

0 Rv 0

0 0 Rn

 .
(5.19)

• For k = 1, . . . , ∞:

1. Calculation of the sigma points:

The augmented sigma points X a
k−1are calculated according to the sut in section 5.3.1

with the augmented state vector xa:

X a
k−1 =

[
x̂a

k−1 x̂a
k−1 +

(√
(L + λ)Pa

xk−1

)
x̂a

k−1 −
(√

(L + λ)Pa
xk−1

)]
. (5.20)

Where L = Lx + Lv + Ln is the dimension of the augmented state variable and

Lx, Lv, Ln represents the dimension of the original state, process noise and measure-

ment noise variable, respectively. The resulting sigma points can be seen as the con-

catenation of the individual sigma points: X a
k−1 =

[
(X x

k−1)
T (X v

k )
T (X n

k )
T
]T

.

The scaling parameter λ can be calculated by equation (5.7).

2. Prediction:

The sigma points X x
k−1 are predicted to the next time step using the discrete-time

transition function f(·), the known exogenous input uk and the process noise vk.

These predicted sigma points are also called a priori sigma points. The prediction is

given as:

X x
k|k−1 = f(X x

k−1,X v
k , uk). (5.21)

The a priori state estimation x̂k|k−1 and its covariance matrix Pxk|k−1 are obtained by
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5.3. Unscented Kalman Filter

calculating the weighted mean and covariance of the a priori sigma points X x
k|k−1 as:

x̂k|k−1 =
2L

∑
i=0

w(m)
i X

x
i,k|k−1, (5.22)

Pxk|k−1 =
2L

∑
i=0

w(c)
i (X x

i,k|k−1 − x̂k|k−1)(X x
i,k|k−1 − x̂k|k−1)

T. (5.23)

The factors w(m)
i and w(c)

i represent the weights for the mean and covariance calcula-

tion, respectively and can be obtained by equation (5.5).

The a priori sigma points X x
k|k−1 are propagated through the measurement function

h(·) in order to obtain a priori measurements ŷk|k−1 including their covariance matrix

Pỹk as:

Yk|k−1 = h(X x
k|k−1X

n
k ), (5.24)

ŷk|k−1 =
2L

∑
i=0

w(m)
i Yi,k|k−1, (5.25)

Pỹk|k−1 =
2L

∑
i=0

w(c)
i (Yi,k|k−1 − ŷk|k−1)(Yi,k|k−1 − ŷk|k−1)

T. (5.26)

The cross-covariance matrix between a priori measurements and a priori states is

calculated as:

Pxk ,yk =
2L

∑
i=0

w(c)
i (X x

i,k|k−1 − x̂k|k−1)(Yi,k|k−1 − ŷk|k−1)
T. (5.27)

3. Correction:

The Kalman gain Kk, which minimizes the covariance of the estimation, is calculated

as follows:

Kk = Pxkyk P−1
ỹk|k−1

. (5.28)

The difference between the a priori measurement ŷk|k−1 and the actual measurement yk,

also called innovation, is weighted with the Kalman gain Kk to obtain the correction

term ∆xk:

∆xk = Kk(yk − ŷk|k−1). (5.29)

The a posteriori estimation x̂k is calculated by correcting the a priori estimation x̂k by

the correction term ∆xk:

x̂k = x̂k|k−1 + ∆xk. (5.30)
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5. Sensor Fusion for Tracking

Finally the a posteriori covariance matrix Pxk is updated as:

Pxk = Pxk|k−1 −KkPỹk|k−1 KT
k . (5.31)

4. The estimation process starts again with step 1 ’Sigma points calculation’.

Initialization 
 

Correction 
 

 

Sigma Points 
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•      

Prediction 
,  
,  

 

  
, ,  

Next Time Step 

 

 

 

System-Model: 
 

 
Measurement-Model: 

 
 

 

Measurement: 
 
 

              ,     
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,  

, 

Figure 5.6: Flowchart of the main steps of Unscented Kalman Filter for state estimation.
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5.4. Complete Model Description for 6 DOF Tracking

In this section the complete model for 6 dof tracking will be presented. As already explained

in section 2.4, the orientation will be expressed in terms of quaternions. The position and

orientation will be expressed with respect to an arbitrary coordinate system chosen by the user

(user-frame). The estimation is based on the gyroscope and accelerometer measurements, which

are aided with the data from an optical measurement system and the magnetometer.

5.4.1. Process Model

In this section the strapdown navigation equations, presented in section 2.4 and the error models

of the inertial sensors, presented in chapter 3, are combined to obtain the complete process

model.

The process model is given with the following discrete-time transfer function:

xk = f(xk−1, uk, nk), (5.32)

with xk, uk and nk as the state vector, the known exogenous input and process noise at time step

k, respectively.

5.4.1.1. System States

The system states are defined as follows:

xk =

[(
qB,k

U

)T (
pU

B,k

)T (
vU

UB,k

)T
(bωRW,k)

T (baRW,k)
T (bmRW,k)

T
(

gU
k

)T (
mU

k

)T (
rB

lever,k

)T
]

.

(5.33)

The vectors qB,k
U , pU

B,k and vU
UB,k are the states of interest. They describe the rotation from the

user-frame to the body-frame, the position of the body-frame with respect to the user-frame and

the velocity of the body-frame with respect to the user-frame measured in the user-frame at time

step k, respectively.

The remaining states are auxiliary variables, in order to model the error characteristics of the

sensors. bωRW,k, baRW,k and bmRW,k represent the rw biases for the gyroscope, accelerometer and

magnetometer, respectively.

Furthermore, the true values of the reference vectors of the gravity-field gU
k and the magnetic

field mU
k with respect to the user-frame, are not exactly known at the beginning of the estimation

and are therefore added as states. However, when the accuracy of these parameters reaches a
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predefined threshold, they could be removed as states and could be treated as constants. Their

treatment as states makes it possible to refine their values online to improve the estimation

results.

In addition, the magnetic field is affected by soft and hard iron distortions in its near environment

such as tables, computers and other metallic objects (see section 3.1.2). In order to account for

these effects, the magnetic field is modeled as rw.

The last entry of the state vector rB
lever,k represents the lever arm and is used to account for

displacement of the sensor-frame with respect to the body-frame. This displacement is caused

by constructive restrictions.

5.4.1.2. Exogenous Input

Two choices exist to incorporate the information of the gyroscope and the accelerometer mea-

surements [22]. Either their information is used as output of the system and the relation to the

states is given by the measurement function, or their information is used as exogenous input to

the system and relation to the states is incorporated in the transfer-function. The first choice is

preferred if the dynamic of the movement and rotation is precisely known and does not change

over time. However, if this is not the case, the dynamic of the movement has to be estimated

online. This can be difficult if the dynamic changes quickly, such as in user interaction.

In the latter method the estimation of the dynamic of the movement can be omitted and only the

error dynamic of the sensors has to be modeled. Furthermore, no states for the angular rate and

acceleration are needed. This results in a lower number of states needed in the filter and thus

makes the algorithm stabler to numerical errors.

Due to the above mentioned reasons, the accelerometer and gyroscope measurements are used

as exogenous input in the process model. The exogenous input vector is given as:

uk =
[
ωT

k , aT
k , ∆Tk

]
, (5.34)

with ωk as the angular rate and ak as the acceleration at time step k measured by the imu. ∆Tk

represents the sampling time for time step k.

It should be noted that both measurements are still affected by deterministic and random errors.
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5.4. Complete Model Description for 6 DOF Tracking

5.4.1.3. Process Noise Input

The process noise models the random errors of the states and the exogenous input. It is given as:

nk =
[
(nb,ωRW)

T, (nb,aRW)
T, (nb,mRW)

T, (nmRW)
T, (na,v,k)

T, (nω,v,k)
T
]

, (5.35)

with nb,ωRW , nb,aRW and nb,mRW being the zero mean white Gaussian noises driving the bias

random walk of the gyroscope, accelerometer and magnetometer given their variance σ2
b,ωRW

,

σ2
b,RW

, σ2
b,mRW

, respectively. nmRW is the zero mean white Gaussian noise driving the rw of the

reference vector of the magnetic field with its variance σ2
mRW

. The variable σ2
a,v and σ2

ω,v are

the variances of the measurement noises for the accelerometer na,v,k and the gyroscope nω,v,k,

respectively. They are composed of a constant part and a magnitude depending part, as defined

in section 3.2.1. For the sake of completeness their relation is presented again:

σ2
Dev,ν,k = σ2

Dev,noise + σ2
Dev,NL,0 ·

|Devk|
0.5 · FSR

. (5.36)

The variable ’Dev’ is in this case a placeholder for the measurement device, like ’a’ for the

accelerometer and ’ω’ for the gyroscope.

It will be assumed that random errors are not correlated to each other. Therefore only the

variance for each channel is given. This results in a diagonal covariance matrix with the given

variances as follows:

Σ2 =


σ2

x 0 0

0 σ2
y 0

0 0 σ2
z

 . (5.37)

The covariance for the whole process noise vector is summarized as:

Q =



Σ2
b,ωRW

0 0 0 0 0

0 Σ2
b,aRW

0 0 0 0

0 0 Σ2
b,mRW

0 0 0

0 0 0 Σ2
mRW

0 0

0 0 0 0 Σ2
a,v,k 0

0 0 0 0 0 Σ2
ω,v,k


. (5.38)
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5.4.1.4. State Transition Function

The transfer function for the process model is given as:

xk+1 =



qB,k+1
U

pU
B,k+1

vU
UB,k+1

bωRW,k+1

baRW,k+1

bmRW,k+1

gU
k+1

mU
k+1

rB
lever,k+1



=



fq(qB,k
U , bωRW,k, ωk, ∆Tk, nω,v,k)

fp(qB,k+1
U , pU

B,k, vU
UB,k, baRW,k+1, gU

k , ak, ∆Tk, na,v,k)

fv(qB,k+1
U , vU

UB,k, baRW,k+1, gU
k , ak, ∆Tk, na,v,k)

bωRW,k + nb,ωRW

baRW,k + nb,aRW

bmRW,k + nb,mRW

gU
k

mU
k + nmRW

rB
lever,k



. (5.39)

The transfer function is composed of two parts. The first part includes fq, fp and fv and represents

the dynamic of a rigid body. The second part consists of auxiliary variables to improve the

estimation results.

The dynamic of a rigid body has been derived in section 2.4, but only perfect measurements

were assumed. In this section the navigation equations are combined with the error models from

chapter 3, like deterministic and random errors.

Quaternion-Update

To ease the readability, the calculation of the quaternion update function fq(·) is split up in

several smaller parts.

The orientation is estimated in the user-frame, whereas the navigation equations from section 2.4

are derived in the navigation-frame. Therefore the equation has to be rotated from the navigation-

frame to the user-frame. Taking the quaternion update from equation (2.29) and performing the

rotation qN
U on both sides, yields:

qB,k+1
N • qN

U = qB,k+1
B,k • qB,k

N • qN
U , (5.40)

qB,k+1
U = qB,k+1

B,k • qB,k
U . (5.41)
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The quaternion qB,k+1
B,k can be expressed in terms of a rotation vector ∆σ

Bk+1
Bk

as:

qB,k+1
U = fq(·) =


cos


∥∥∥∆σ

Bk+1
Bk

∥∥∥
2


σ

Bk+1
Bk∥∥∥∆σ
Bk+1
Bk

∥∥∥ · sin


∥∥∥∆σ

Bk+1
Bk

∥∥∥
2




• qB,k

U . (5.42)

The rotation vector ∆σB,k+1
B,k , which rotates the body-frame from time step k to time step k+1, is

calculated from the corrected gyroscope measurement ωcorr,k and the sampling time ∆Tk as:

∆σB,k+1
B,k = (ωcorr,k · ∆Tk) +

1
12

[(ωcorr,k−1 · ∆Tk−1)× (ωcorr,k · ∆Tk)] . (5.43)

The gyroscope measurement ωcorr,k, which is corrected for deterministic and random errors, is

obtained as follows:

ωcorr,k = [Mω · (ωk − bω,d)]− bωRW,k − nω,v,k. (5.44)

The scale factor matrix Mω and the deterministic bias bω,d are obtained from the calibration

procedure.

Velocity-Update

Analog to the quaternion update, the calculation of the velocity update function fv(·) is split up

in smaller parts to ease the readability. It is given as follows:

vU
UB,k+1 = fv(·) = vU

UB,k + ∆vU
UB,a,k + ∆vU

UB,g,k. (5.45)

In section 2.4 the velocity update due to the specific force was derived in the navigation-frame

and therefore has to be adapted for the user-frame. Taking equation (2.36) and performing the

rotation from the navigation-frame to the user-frame yields to:

∆vU
UB,a,k = RU

NRN
B,k+1

(
∆vB

IB,k +
1
2

∆θk × ∆vB
IB,k +

1
12

(
∆θk × ∆vB

IB,k−1 + ∆vB
IB,k × ∆θk−1

))
,

(5.46)

= RU
B,k+1

(
∆vB

IB,k +
1
2

∆θk × ∆vB
IB,k +

1
12

(
∆θk × ∆vB

IB,k−1 + ∆vB
IB,k × ∆θk−1

))
. (5.47)

The rotation matrix RU
B,k+1 can either be constructed by using the quaternion qB,k+1

U or the

rotation is performed using quaternions directly (equation (2.18)).

The velocity increment ∆vB
IB,k and the angle increment ∆θk can be calculated from the corrected

measurements as:

∆vB
IB,k = acorr,k · ∆Tk, (5.48)
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∆θk = ωcorr,k · ∆Tk. (5.49)

The accelerometer measurement acorr,k , which is corrected for deterministic and random errors,

is obtained as follows:

acorr,k = [Ma · (ak − ba,d)]− baRW,k − na,v,k. (5.50)

The scale factor matrix Ma and the deterministic bias ba,d are obtained from the calibration

procedure. By using the estimate of the gravity field gU
k , the velocity increment due to gravity is

obtained as:

∆vU
UB,g,k = gU

k · ∆Tk. (5.51)

Position-Update

The position update function fp(·) is given as:

pU
B,k+1 = fp(·) = pU

B,k + vU
UB,k · ∆Tk +

[
∆vU

UB,a,k + ∆vU
UB,g,k

]
· ∆Tk

2
. (5.52)

5.4.2. Measurement Models

In this section the measurement models of the magnetometer and the monocular position

tracking system will be presented. It should be noted that measurements from any other device

can be used, if their measurement functions and covariance matrices are known. Furthermore,

the representation of the measurement result has to be mathematically closed for addition and

subtraction. It should be noted here, that quaternions are not closed for addition and subtraction.

This issue will be further discussed in section 5.5.2.

5.4.2.1. Magnetometer

The discrete time measurement function hm(xk, vk), which can be used to obtain an estimate m̂B
k

for the real magnetometer measurement mB
k , is given as:

m̂B
k = hm(xk, vm,k) = RB,k

U ·m
U
k + bmRW,k + vm,k. (5.53)

The rotation matrix RB,k
U can be either constructed by using the quaternion qB,k

U or the rotation

can be performed using quaternions directly (equation (2.18)). The variable mU
k represents

the estimation of the magnetic field for time step k, whereas bmRW,k is the bias random walk.

The measurement noise vm,k is modeled as a zero mean white Gaussian noise with variance

σ2
m,noise. It should be noted that the measured magneto measurement mB

k will be compensated for
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deterministic errors, before feeding it to the ukf. The compensation was derived in section 3.1.2

and will be presented here again for completeness:

mB
corr,k = Mm ·

(
mB

k − bm,d

)
. (5.54)

The scale factor matrix Mm and the deterministic bias bm,d are obtained in the calibration

procedure.

5.4.2.2. Position Information (Monocular Position Tracking)

The position measurements, which are obtained by the monocular position tracking system, are

given with respect to the center of the object. However, due to constructive restrictions, the imu

cannot be located at the center of the object.

The influence of this displacement rlever, also called lever arm effect, can be modeled in two

ways:

Either the body-frame is originated at the center of the object and the lever arm effect is included

by modifying the navigation equations. Or the body-frame is located at the origin of the imu. In

this case the lever arm will be included in the measurement equation of the monocular position

tracking system. For the first approach the additional acceleration alever due to the lever arm

effect, is given as [59]:

alever = ω̇× rlever + ω× (ω× rlever) . (5.55)

For the compensation time derivatives of the angular rotations ω are required. However, the

measurements are affected by noise and numerical derivatives could yield to inaccurate results.

For the second approach the calculated position has to be shifted by the lever arm ∆plever,k. To do

so, the lever arm has to be rotated from the body-frame to the user-frame, by using the current

estimation of the orientation RU
B,k. The lever arm expressed in the user-frame is given as:

∆plever,k = RU
B,k · rlever. (5.56)

Since only one rotation is required, the second approach was chosen.

The measurement function to calculate the objects position p̂U
pm,k is given as:

p̂U
pm,k = hp(xk, vp,k) (5.57)

= pU
B,k + ∆plever,k + vp,k. (5.58)
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The measurement noise vp,k is modeled as a zero mean white Gaussian noise with covariance

matrix Rp,U .

It should be noted that measurements from the monocular position tracking system are provided

in camera coordinates pCam
pm,k. Therefore these measurements have to be transformed to the

user-frame, before feeding them to the ukf. This transformation is given as:

pU
pm,k = RU

Cam · (pCam
pm,k − pCam

U ). (5.59)

Usually, the covariance matrix for the measurement noise vp,k is estimated in the camera-frame

Rp,Cam and thus also has to be transformed into the user-frame:

Rp,U = RU
Cam · Rp,Cam ·

(
RU

Cam

)T
. (5.60)

The offset pCam
U and the rotation matrix RU

Cam are estimated in the initialization phase of the

filter. This will be further explained in section 6.2.1.
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5.5. Adaptations

5.5.1. Method to Deal with Asynchronous Data at different Sampling Rates

In general the obtained data, such as measurements are not synchronized and do not have the

same sampling rate. The data from imu, such as accelerometer and gyroscope measurements,

are available with a much higher sampling rate, than measurements for position or other aided

sensors. In some cases the gyroscope can even run at a higher rate than the accelerometer. The

MPU-9150 could provide gyroscope measurements with a rate up to 8 kHz and a rate up to

1 kHz for the accelerometer.

To challenge this problem, the ukf was set to run with the frequency of the sensor with the

highest sampling rate. By assuming piece-wise constant measurements, the exogenous inputs

are hold constant until a newer measurement is available.

Depending on the actual number of available measurements the measurement vector yk and the

measurement noise Rk are stacked at each iteration as follows:

yk =


y1,k

y2,k
...

ym,k

 , (5.61)

Rk =



R1,k 0 . . . 0

0 R2,k
. . .

...

...
. . . . . . 0

0 . . . 0 Rm,k


, (5.62)

with ym,k as the available measurement at time step k with its covariance matrix Rk,m. In a similar

way the measurement function hk is stacked as follows:

hk =


h1,k

h2,k
...

hm,k

 , (5.63)

with hm,k as the measurement function for the measurement ym,k, respectively.
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5. Sensor Fusion for Tracking

5.5.2. Modification of the UKF for the Use of Quaternions

The ukf-framework presented in section 5.3.3 cannot be used straight forward, since quaternions

are not closed for addition and subtractions [19]. In order to use quaternions, the following

adaptations are introduced. It is based on the Quaternion Unscented Kalman Filter in [60]. The

basic idea consists of switching between quaternions and rotation vectors in different parts of

the filter framework. Quaternions are used to present actual states of the orientation, whereas

rotation vectors are used to operate the covariance of the orientation. The augmented state vector

xa
k can be split up in a quaternion part xquat

k and a remaining part xrest
k as:

xa
k =

xquat
k

xrest
k

 . (5.64)

5.5.2.1. Calculation of Sigma Points

The sigma points can be interpreted as perturbed state vectors. The perturbation ∆xquat
k of a

quaternion can be expressed as the following rotation:

x̃quat
k = ∆xquat

k • xquat
k , (5.65)

with x̃quat
k as the perturbed quaternion and xquat

k as the original quaternion. By using equa-

tion (5.20) for the remaining part and equation (5.65) for the quaternion part, the calculation of

the complete sigma points is given as follows:

X a
k−1 =

X quat
k−1

X rest
k−1

 =

x̂quat
k−1 ∆X a

k−1 • x̂quat
k−1 (∆X a

k−1)
−1 • x̂quat

k−1

x̂rest
k−1 x̂rest

k−1 + ∆X rest
k−1 x̂rest

k−1 − ∆X rest
k−1

 . (5.66)

The perturbation vector for the orientation ∆X σ
k−1, in terms of rotation vectors and remaining

states ∆X rest
k−1, is given by the augmented covariance matrix as:∆X σ

k−1

∆X rest
k−1

 =
(√

(L + λ)Pa
xk−1

)
. (5.67)

By taking the relation between rotation vectors and quaternions, the perturbation vector for

quaternions ∆X quat
k−1 is obtained as:

∆X quat
k−1 =


cos


∥∥∆X σ

k−1

∥∥
2


∆X σ

k−1∥∥∆X σ
k−1

∥∥ · sin
(
‖∆X σ

k−1‖
2

)

 . (5.68)
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5.5. Adaptations

5.5.2.2. Prediction

The a priori sigma points are simply obtained by using the process model transfer function:

X x
k|k−1 = f(X x

k−1,X v
k , uk), (5.69)

where for the calculation of the a priori mean and its covariance matrix some additional steps

have to be considered.

Calculation of the a priori Mean

The a priori mean is concatenated as:

x̂k|k−1 =

(x̂quat
k|k−1)

(x̂rest
k|k−1)

 , (5.70)

where the weighted mean of the remaining states, is calculated as follows:

(x̂rest
k|k−1) =

2L

∑
i=0

w(m)
i X

rest
i,k|k−1. (5.71)

For the calculation of the a priori mean quaternion (x̂quat
k|k−1), the intrinsic gradient descent

algorithm according to [61] will be used.

The algorithm starts by choosing a start value for the a priori mean quaternion. A good guess is

usually given with the predicted a posteriori state of the last time step k− 1. This value is stored

in the first element of the a priori sigma points (∆X quat
k|k−1).

In the next step, the rotation, between the a priori mean (x̂quat
k|k−1)t and the sigma points (X quat

k|k−1)t,i,

is calculated. In terms of delta quaternions (∆X quat
k|k−1)t,i, this rotation is given as:

(∆X quat
k|k−1)t,i = (X quat

k|k−1)t,i • inv
(
(x̂quat

k|k−1)t

)
. (5.72)

The variable t stands for the t-th iteration step and i stands for the i-th column of the set of sigma

points.

Subsequently, the a priori mean quaternion is iteratively updated by using the barycentric mean

ēt of the delta quaternions as follows:

(x̂quat
k|k−1)t+1 = ēt • (x̂quat

k|k−1)t, (5.73)

with the barycentric mean ēt given by:

ēt =
1

2L + 1

2L

∑
i=0

[
(∆X quat

k|k−1)t,i

]
. (5.74)

91



5. Sensor Fusion for Tracking

The optimization is stopped, when the average angle of rotation θ reaches a defined criterion. θ

can be calculated from first element of the mean delta quaternion as:

θ = 2 · arcos(ē1). (5.75)

It should be noted that the algorithm usually converges within 5 iterations to a value

θ ≤ 1× 10−20 rad.

Calculation of the a priori Covariance Matrix

The a priori perturbation vectors for the quaternions (∆X quat
k|k−1) are already calculated in the last

iteration step in the calculation of the mean quaternion. Their corresponding rotation vectors

can be obtained as:

(∆X σ
k|k−1) =

[
arcos

(
(∆X quat

k|k−1)s

)
·
(
(∆X quat

k|k−1)v

)]
, (5.76)

with (∆X quat
k|k−1)s and (∆X quat

k|k−1)v as the scalar and vector part of the quaternion, respectively. The

weighted covariance matrix is obtained from the concatenated perturbation vector as:

Pxk|k−1 =
2L

∑
i=0

w(c)
i

(∆X σ
k|k−1)

(∆X rest
k|k−1)


i

·

(∆X σ
k|k−1)

(∆X rest
k|k−1)

T

i

, (5.77)

with

(∆X rest
k|k−1) = X

rest
k|k−1 − (x̂rest

k|k−1). (5.78)

5.5.2.3. Correction

The a priori sigma points Yk|k−1 of the expected measurements, its according mean ŷk|k−1 and

covariance matrix Pỹk are calculated using the equation from the standard ukf:

Yk|k−1 = h(X x
k|k−1,X n

k−1), (5.79)

ŷk|k−1 =
2L

∑
i=0

w(m)
i Yi,k|k−1, (5.80)

Pỹk|k−1 =
2L

∑
i=0

w(c)
i (Yi,k|k−1 − ŷk|k−1)(Yi,k|k−1 − ŷk|k−1)

T. (5.81)

However, the cross-covariance matrix between measurements and states is calculated as:

Pxk ,yk =
2L

∑
i=0

w(c)
i

(∆X σ
k|k−1)

(∆X rest
k|k−1)


i

·
[
∆Yk|k−1

]T

i
, (5.82)
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with

∆Yk|k−1 = (Yk|k−1 − ŷk|k−1)
T. (5.83)

The Kalman gain Kk, the correction term ∆xk, as well as the a posteriori covariance matrix Pxk ,

are again calculated using the standard ukf filter equations:

Kk = Pxkyk P−1
ỹk|k−1

, (5.84)

∆xk = Kk(yk − ŷk|k−1), (5.85)

Pxk = Pxk|k−1 −KkPỹk|k−1 KT
k . (5.86)

For the calculation of the a posterior estimation, the quaternion part and the remaining part has

to be treated differently. The correction term ∆xk was calculated with the cross-covariance matrix

Pxk ,yk based on the rotation vectors. For that reason the orientational part of ∆xk is presented as

a rotation vector:

∆xk =

 ∆xσ
k

∆xrest
k

 . (5.87)

The delta quaternion, which performs the correction, can be calculated as:

∆xquat
k =


cos


∥∥∆xσ

k

∥∥
2


∆xσ

k∥∥∆xσ
k

∥∥ · sin
(
‖∆xσ

k‖
2

)

 . (5.88)

Finally the a posterior estimation can be given as:

x̂k =

x̂quat
k

x̂rest
k

 =

∆xquat
k • (x̂quat

k|k−1)

(x̂rest
k|k−1) + ∆xrest

k

 . (5.89)
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5.5.3. Timing Delays

Additionally to asynchronous data and different sampling rates, the sensors have different

delays. On the first glance someone might assume that these effects can be neglected. However,

some pretests showed significant performance losses for uncompensated estimations.

Basically the information is obtained from two different sources. The first part is retrieved from

the imu, such as gyroscope, accelerometer and magnetometer measurements. For those measure-

ments, it can be assumed that they have the same delay, which is due to data transmission.

The second source is the position information from the monocular position tracking system,

which is mainly delayed by two processes. In the first, the camera has to capture the image and

transfer a big amount of data to the computer. In the second, position information is extracted

from the images.

It is assumed that the position information system has a significant larger delay than the data

received from the imu.

5.5.3.1. Compensation

In order to compensate the timing delays a simple approach has been chosen. The measurements

from the imu are delayed in order to be timely aligned with the position information. In addition,

a constant time delay tdelay between the inertial sensors and the position information is assumed.

The compensation can be achieved by using a data queue with the following size:

nqueue = round
(
tdelay · fFilter

)
, (5.90)

with nqueue as the size of the queue and fFilter as the frequency of the ukf.

5.5.3.2. Estimation of Delays

Data Transmission Delay

The approach to estimate the data transmission delay is demonstrated in figure 5.7. A µC sets

the led-intensity according to a known sequence. Every time a new value for the leds is set, the

information is also sent to the computer using the same connection as the imu. At the same time

the optical system captures the time varying intensity of the light. By taking the average of all

pixel intensities, a reference sequence of the intensity for the optical system is obtained. Using

correlation analysis, the data transmission delay can be calculated.
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PC 

Camera IMU/LED 

C 

Figure 5.7: Experimental setup to measure time delay.

In the following, the steps for the correlation analysis will be presented:

1. Normalization

The first step is to remove the scale-errors and offset for both sequences. The normalized

sequence xnorm is given as:

xnorm =
x−min(x)

max(x)−min(x)
. (5.91)

In figure 5.8 the sequence before and after normalization is presented.
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Figure 5.8: (a) Raw intensities, (b) Normalized intensities;

The set/known led-intensity in blue and the measured optical intensity in red.
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5. Sensor Fusion for Tracking

2. Interpolation

The two sequences are presented in different time-bases and therefore have to be interpo-

lated to a common time-base ∆Tbase. It should be noted, that the smaller the time-base, the

higher the resolution of the estimated delay. A time base of ∆Tbase = 50 µs has been chosen

for the interpolation.

3. Coarse alignment

For the alignment, the cross-correlation function between both sequences is calculated

according to:

Rxy(l) =
1
M

M

∑
m=1

x(m) · y(m + l). (5.92)

The time shift ndelay, which is expressed in multiples of the time-base ∆Tbase, is given at the

maximum of the cross-correlation function. Then the delay in seconds tdelay is calculated

according to:

tdelay,transmission = ndelay · ∆Tbase. (5.93)

A zoomed part of cross-correlation function and the coarse aligned intensities are shown

in figure 5.9.
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Figure 5.9: (a) Cross correlation function Rx,y with a time base of ∆Tbase = 50 µs, (b) Coarse aligned intensities;

known intensity (blue) and optical intensity (red).
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4. Compensation for Nonlinearities

Figure 5.9b shows that the intensity of the optical system follows a nonlinear function. This

is even more evident when the intensity of the optical system is plotted against the known

intensity (see figure 5.10).
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Figure 5.10: Nonlinearity of the optical intensity.

In order to compensate the distortion, a rational function is fitted using a numerator degree

of 5 and denominator degree of 2. The compensation is performed using a Look up Table

(lut) based on the fit.

5. Fine Alignment

The steps for fine alignment are identical to the coarse alignment, with the exception that

the compensated intensities of the optical system are used for the correlation function. The

result of the compensated and fine aligned intensity sequences are shown in figure 5.11.

The following delay of the data transmission of the optical system with respect to the imu

was found:

tdelay,transmission = 43.65 ms. (5.94)
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Figure 5.11: Compensated and aligned intensity sequences; known intensity (blue), optical intensity aligned (red),

optical intensity not aligned (green).

Data Processing Delay

The estimation of the data processing delay is fairly simply compared to data transmission delay.

Only the receiving time of the images, as well as the finishing time of the image processing task

has to be logged and their difference has to be calculated. The following average processing time

was found:

tdelay,processing = 3.16 ms. (5.95)

Total Delay

The total delay is then obtained by the summation of the individual delays:

tdelay = tdelay,processing + tdelay,transmission (5.96)

= 3.16 ms + 43.65 ms = 46.81 ms. (5.97)
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5.5.4. Outlier Rejection

In real technical implementations sensory data can be corrupted by anomalies, such as trans-

mission errors or sensor failures. These sensor errors have to be detected before they are fed to

the ukf, in order to inhibit corruption of the estimation. The ukf is designed according to the

statistics of the sensor without sensor failures and could therefore strongly degrade the accuracy

of the estimated or even lead to diverge the filter [16].

To avoid degradation due to failures, detected outliers are removed from the measurement vector.

The outlier detection uses the Mahalanobis distance (md) and is based on the method presented

in [16]. The md for a measurement vector yk at time step k, is given as:

MD = (yk − ŷk|k−1)
TP−1

ỹk|k−1
(yk − ŷk|k−1). (5.98)

If the ukf is perfectly modeled, the md follows a χ2
d distribution with a degree of freedom (dof)

= d. The dof is given by the number of independent standard normal random variables, which

is the length of the measurement vector.

A measurement is rejected, if the md exceeds a chosen threshold χ2
d,max:

MD > χ2
d,max. (5.99)

The threshold χ2
d,max can be calculated according to a chosen probability region. For a dof d = 3

and a p-value of 99.9 the threshold is given as:

χ2
3,max(99.9) = 16.27. (5.100)

In technical implementations the ukf cannot be modeled perfectly. Therefore a practical value

for the threshold should be chosen according to operational values of χ2 [16].
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5.5.5. Adaptive Measurement Noise Scaling

The following example shows how the noise characteristics of the sensors could change over time.

Consider the following case: The dynamic of a moving object suddenly changes and the effect

of motion blur increases. This results in a decrease of the accuracy of the monocular position

tracking system. If the corresponding noise terms are not adjusted correctly, the estimations of

ukf will degrade or even diverge.

For that reason an adaptive measurement noise scaling algorithm has been implemented. It

is based on the Mahalanobis distance (md), which was introduced in section 5.5.4. As already

mentioned the md follows a χ2 distribution, if the ukf is correctly modeled [16].

When the covariance matrix of the measurements is chosen to low, the mean of the md would be

higher than the expected mean of the χ2. On the other hand, if the measurement noise is chosen

to high, the mean md would be too low.

Therefore the covariance matrix of the measurements should be scaled, in order to match the

actual md with the expected mean of the χ2 distribution. The mean of a χ2 with dof d is given

as:

χ̄2
d = d. (5.101)

An adaption algorithm is formed as:

ck+1 = ck · (1 + G · (MDk − d)), (5.102)

Rk = ck · R0, (5.103)

with ck as the covariance scaling factor, MDk the Mahalanobis distance and Rk as the adapted co-

variance matrix at time step k. The initial covariance is represented by R0 and can be determined

in static conditions. The gain G controls the speed of convergence.
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6. Application: Low Cost 6 DOF Interaction

Device

The following chapter describes the application of the framework in a low cost 6 dof interaction

device. After a brief description of the hardware components, the data and program flow is

presented. Furthermore the steps and parameters for the system setup are provided.

6.1. System Description

The goal was to develop a low cost 6 DOF interaction device, which provides 3D position and

orientation information in real time. The system consists of three main parts:

• Optical System (Webcam ≈ 60 €).

• Hand device containing a pcb equipped with sensors (Prototype ≈ 100 €).

• A Computer performing the sensor fusion and distributes position and orientation infor-

mation.

• Arduino 

• IMU  
• Accelerometer 
• Magnetometer 
• Gyroscope 

• Pressure-Sensor 
• LED 

• WebCam  

USB 2.0 

UDP 
I2C 

• PC  
 
 
 
 
 
 
 
 

Correct IMU 

Delay IMU 

Fusion 

Broadcast VRPN 

Monocular  
Position Tracking 

Click Detect 

Figure 6.1: System description for a low cost 3D interaction device.
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Optical System:

The optical system is mounted on top of a screen and is pointing towards the user. The webcam

’LifeCam Studio’ from Microsoft is used and provides full HD images with a resolution of

1920x1080 pixels at a frame rate of 30 fps. The webcam is connected to the computer via USB 2.0.

Hand device:

The hand-device is a transparent silicon ball with a diameter of d = 80 mm (see figure 6.2). A

pcb is mounted inside the ball and contains the following parts:

• Inertial measurement unit MPU9150:

– Gyroscope; set to a sampling rate of f = 500 Hz.

– Accelerometer; set to a sampling rate of f = 500 Hz.

– Magnetometer; set to a sampling rate of f = 125 Hz.

• Pressure sensor MPL3115A2.

Note: An algorithm to extract clicks, based on the pressure was implemented but will not

be covered in this thesis.

• Battery to power the device.

• LED to actively illuminate ball.

• Bluetooth Chip including a µC.

Note: The original setup intended to use Bluetooth to transmit the data from the hand device

to the computer. However, due to difficulties with the Bluetooth device and to accelerate the

development process, an Arduino UNO µC is used instead of the Bluetooth chip. The Arduino

UNO collects the data from the sensors on the pcb by using i2c and sends the measurements via

an User Datagram Protocol (udp) to the computer.

Figure 6.2: Hand device for 3D interaction.

102



6.2. System Setup

Computer:

The computer subsequently performs the correction of deterministic errors and the delay

compensation of the imu-data, while simultaneously performing the monocular position tracking

task. The sensor fusion algorithm runs with the rate of the imu f = 500 Hz and is aided with

position information from the monocular position tracking task. Position, orientation as well as

click information are provided to the user via a Virtual Reality Peripheral Network (vrpn).

6.2. System Setup

6.2.1. Definition of the User Coordinate System

Since the user can define its own coordinate system the transformation from the arbitrary chosen

user coordinates to the camera coordinates has to be found. Furthermore, the vectors of the

gravity and magnetic field have to be determined in that coordinate system. The transformation

to the user coordinate system can be found with the following procedure. Collect the positions

in four different locations as illustrated in figure 6.3. The first 3 points define the X-Y-plane of the

user coordinated system, where the direction of the X-coordinate is given by the vector pointing

from point PCam
1 to PCam

2 . The last point PCam
4 defines the origin of the user coordinate system.

The reader is reminded that the index ’Cam’ means that the points are measured with respect to

the camera coordinate system.

 

 

 

 

 
 

  

 

  

 

 

•Camera Coordinate System 
• Sensor Coordinate System 
•User Coordinate System 
• Locations 

Figure 6.3: Definition of the user coordinate system. The coordinates of the camera-frame, user-frame and sensor-

frame are presented in red, black and green, respectively. The points defining the user-frame are blue.

Note: The axes from the user-frame are aligned with the axes from the sensor-frame.
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Using the properties of the rotation matrix (see equation (2.5)), the rotation RU
Cam and translation

pCam
U from the camera-frame to the user-frame are given as:

RCam
U =


(xCam

U )T

(yCam
U )T

(zCam
U )T

 , (6.1)

pU
Cam = PCam

4 , (6.2)

with:

xCam
U =

PCam
2 − PCam

1

‖PCam
2 − PCam

1 ‖
, (6.3)

yCam
U =

zCam
U × xU

‖zCam
U × xCam

U ‖
, (6.4)

zCam
U =

xCam
U ×

PCam
3 − PCam

1

‖PCam
3 − P1‖

‖xU ×
PCam

3 − PCam
1

‖PCam
3 − PCam

1 ‖
‖

. (6.5)

6.2.2. Definition of the Reference Vectors

For the estimation of the reference vectors of earth magnetic field mU and gravity gU , the ball is

placed in a stable position, such that the sensor axes are aligned with the axes from the chosen

user coordinate system. This is illustrated in figure 6.3 with the sensor axes in green and the

user axes in black.

The reference vectors can be calculated by averaging the magnetometer and accelerometer

measurements for some seconds and are given as example for the magnetometer as follows:

mU =
1
N

N

∑
i=1

mk. (6.6)

mU represents the obtained reference vector in the user coordinate system and mk represents the

measurement at time step k. Since the coordinate system of the sensors and the user-coordinate

system cannot be aligned perfectly, the vectors represent only a rough estimation.

Note: The proposed steps are usually done once for a chosen setup. They do not have to

be repeated until the position or orientation of the camera is changed, or a new user coordinate

system is defined.
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6.2.3. Initial States and Initial Covariance

For the definition of the initial covariance matrix of the initial states, it will be assumed that the

states are not correlated to each other and have the same variance in each direction such that

σ2 = σ2
x = σ2

y = σ2
z .

• Orientation:

The initial orientation can be roughly estimated by using the first magnetometer and

accelerometer measurements.

With the properties of the rotation matrix (represented in equation (2.5)) and the definition

of the ned-frame (gU points down and mU lies in the north-down plane; see figure 6.4),

the rotation from the user-frame to the body-frame can be given as:

RNED
U =


north

east

down

 =





 gU ×mU

‖gU ×mU‖

× gU

∥∥∥∥∥∥∥
 gU ×mU

‖gU ×mU‖

× gU

∥∥∥∥∥∥∥



T

 gU ×mU

‖gU ×mU‖


T

 gU

‖gU‖


T



, (6.7)

where gU and mU are the reference vectors determined in section 6.2.2.

east 

,north 

,down 

 

 

. 

Figure 6.4: Initial estimation of the orientation.
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6. Application: Low Cost 6 DOF Interaction Device

In the same way the orientation of the body-frame with respect to the ned-frame can be

calculated with the actual magnetometer m and accelerometer a measurements as follows:

RNED
B =





 a×m

‖a×m‖

× a

∥∥∥∥∥∥∥
 a×m

‖a×m‖

× a

∥∥∥∥∥∥∥



T

 a×m

‖a×m‖


T

 a

‖a‖


T



. (6.8)

The initial orientation can be given by combining both rotations:

RB
U =

(
RNED

B

)T
· RNED

U . (6.9)

Since the orientation is just a rough estimation, a large initial variance of σ2 = (
15π

180
rad)2

was chosen.

Note: This procedure represents a runtime initialization and has to be performed every

time the tracking is started.

• Position:

The initial position is set to the first received position. In order to represent the large

uncertainty, a variance of σ2 = (15× 10−3 m)2 was chosen.

• Velocity:

Since no information of the velocity is known beforehand, the initial value was set to zero

and the following initial variance σ2 = (60× 10−3 m
s )

2 was chosen.

• Biases:

All biases are initially set to zero and the following variances are chosen; magnetometer:

σ2
m = (0.03 a.u.)2, accelerometer: σ2

a = (1× 10−3 m
s2 )

2, gyroscope: σ2
ω = (1× 10−4 rad

s )2.

• Reference Vectors:

Reference vectors of the magnetic field and gravity are initialized with the values from

section 6.2.1.

106



6.2. System Setup

• Lever Arm:

The lever arm is initially set according to the design drawings and with an initial variance

of σ2 = (0.5× 10−3 m)2.

6.2.4. Process Noise / Measurement Noise

The process noise will be set according to the values obtained in section 3.2.4. The variance of

the noise, which drives the rw of the magnetic field, was set to σ2
mRW

= (1× 10−3 a.u.)2.

The measurement noise for the magnetometer is set according to the values in section 3.2.4. The

following covariance matrix for the optical measurement system was found:

Rp,Cam =


(0.2× 10−3)2 0 0

0 (0.2× 10−3)2 0

0 0 (1.8× 10−3)2

m2. (6.10)

It should be noted that this covariance matrix Rp,Cam is expressed in camera-coordinates.

The given covariance matrices for the measurements represent the initial covariance matrices and

will be scaled by the adaptive measurement noise scaling algorithm pretested in section 5.5.5.
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7. Demonstration and Results

In this chapter the system described in chapter 6 will be demonstrated and its performance will

be evaluated. After presenting the testing setup and the testing procedure, the results for the 6

dof interaction device are finally presented.

7.1. Testing Setup

For the validation the ground truth was obtained using the optical tracking system PST Base

from PS-Tech. The PST-Base provides position information with an accuracy of RMSE < 0.5 mm

and orientation with RMSE < 1 deg with an update rate of 120 Hz [62]. In order to track the

hand device, several retro-reflective markers were attached to the hand-device (see figure 7.1a).

The position and orientation of the webcam and the PST-Base were roughly aligned in order to

achieve a similar tracking volume. The testing setup is shown in figure 7.1b.

(a)

(b)

Figure 7.1: (a) PST-Base and hand-device; (b) System setup.
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7. Demonstration and Results

7.2. Testing Procedure

The following steps were performed during the testing procedure:

• Calibration of accelerometer, gyroscope and magnetometer.

• Collection of 4 points to define user-coordinate system.

Note: These collected points are also used to align the PST-Base coordinate system with

the user-coordinate system.

• Running the test sequence.

7.3. Results

For testing, one complex sequence was recorded containing the following tasks:

A: Initialization phase,

B: Translation,

C: Rotation,

D: Combined fast rotations and translations.

The complete sequence with the marked tasks (A-D) is shown in figure 7.2. It should be

noted, that all positions are expressed in camera-coordinates. In order to enable the plotting

of the position in the same axes, the z-position was shifted 600 mm in the negative direction.

Furthermore, the orientations are given as ZYX-Euler angles, which represent the rotation from

the NED-frame to the body-frame. The position error is given by the euclidean distance. The

orientation error between the ground truth and the estimated orientation is given as magnitude

of the rotation vector expressed in degrees. The rmse for position and orientation is given in

table 7.1.

Table 7.1: Root-Mean-Squared-Error for complete sequence A-D.

RMSE

Camera Coordinates Rotation-Angle

mm deg

Part A-D 1.49 1.33 2.94 2.06

Part B-D 1.55 1.37 3.05 1.31
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Figure 7.2: Complete sequence with marked tasks: (a) XYZ Position in mm; (b) ZYX-Euler angles in deg;

(c) Position error in mm; (d) Orientation error in deg.
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7. Demonstration and Results

7.3.1. Initialization Phase - A

The results of the initialization phase are shown in figure 7.3. At the beginning the orientation of

the object is not known exactly, therefore the acceleration due to gravity cannot be compensated

correctly and causes the estimated position to diverge (see figure 7.3a Zoom-1). Every time a

new position measurement is received, the filter corrects the estimation of the orientation and

the gravity vector. After about 0.3 seconds the orientation seems to be correctly estimated and

the position estimation shows good results (Zoom-1 / Zoom-2).

However, due to the singularity of the gravity vector around the z-axis, the rotation around the

z-axis could not be corrected and is still wrong (see figure 7.3b). With the use of the gravity

vector the rotation around the x and y-axis is correctly estimated. When the object starts to

move ( t ≈ 4 . . . 5 s), the unknown orientation around the z-axis can be corrected by aligning the

object’s displacement with the sensed acceleration. After initialization the estimated position

and orientation show a correct and smooth result (see figure 7.3a and figure 7.3b Zoom-2).

In table 7.2 the rmse for the orientation and position are given. As expected, the estimated

orientation is strongly error affected. However, the estimated position shows a very good result

for the x and y coordinates. Because the monocular position tracking system shows a strong error

sensitivity for depth information, the rmse of the z-coordinate is larger. Simulations showed that

an error of only one pixel for the estimated circle radius results in a depth error of ≈ 9 mm. For

the simulation the object was placed ≈ 0.8 m from the camera and at the center of the camera

axis.

Table 7.2: Root-Mean-Squared-Error for part A.

RMSE

Camera Coordinates Rotation-Angle

mm deg

Part A 0.46 0.76 1.76 5.49
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Figure 7.3: Results for initialization phase: (a) XYZ Position in mm; (b) ZYX-Euler angles in deg;

(c) Position error in mm; (d) Orientation error in deg.
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7. Demonstration and Results

7.3.2. Translation - B

The results for the translation task are given in figure 7.4, figure 7.5 and in table 7.3. In general,

the position estimation shows a very accurate result. However, the estimation contains two

sections with significant errors. A zoomed graph of the first error section for t = 14 . . . 16 s is

presented in figure 7.4a Zoom-1 and in figure 7.5. Both show a significant deviation from the

ground truth. However, the graph shows a smooth estimation and the position calculation based

on the inertial information seems to agree with the obtained optical measurements. A similar

behavior can be observed in figure 7.4a Zoom-2.

The following sources could be candidates for this error: Uncompensated lens distortion, incorrect

camera matrix, wrong circle fit, out of focus errors or ground truth error. However, further

research has to be done to determine the source of these errors. The offset of the position

estimation deviates slowly and in a smooth manner, hence the effects on user interaction can

be assumed to be neglectable. Furthermore, a successful outlier rejection of faulty position

measurements is demonstrated in figure 7.5.

The errors of the estimated orientations are mostly under 1 deg, however at some points the error

suddenly significantly increased (see figure 7.4b Zoom-1, Zoom-2 and Zoom-3). It seems that the

ground truth jumps between two possible orientations. After a discussion with the developers of

the PST-Base, the following conclusion was found: Due to the small size of the tracked object,

only few markers (≈ 3− 4) are visible to the tracking unit. If in addition one or more of these

markers are (partly) occluded, the tracker could provide faulty orientation information with the

described behavior.

In addition, the estimated orientation shows a smoother and less noisy behavior than the ground

truth. For that reason, it is assumed that the estimated orientation outperforms the PST-Base for

this task.

The rmse for the orientation and position represents a very good result, but could be further

improved, if the above mentioned effects are compensated.

114



7.3. Results

10 12 14 16 18 20 22 24 26
−400

−300

−200

−100

0

100

200
Position in Camera−Coordinates

Time in s

P
os

iti
on

 in
 m

m

 

 

X−Position UKF
Y−Position UKF
Z−Position UKF
XYZ−Position Ground Truth
Optical Measurement

13.8 14 14.2 14.4
−190

−185

−180
Zoom−1

16.6 16.8 17 17.2 17.4

8

9

10
Zoom−2

(a)

10 12 14 16 18 20 22 24 26
−60

−50

−40

−30

−20

−10

0

10

20
ZYX−Euler Angles for UKF and Ground Truth 

Time in s

A
ng

le
 in

 d
eg

X−Angle UKF
Y−Angle UKF
Z−Angle UKF
ZYX−Angle Ground Truth

14 14.2 14.4 14.6 14.8

−20

−15

−10
Zoom−2

21 22 23
0
1
2
3
4
5

Zoom−3

10 11 12

−36

−34

Zoom−1

 

(b)

10 12 14 16 18 20 22 24 26
−8

−6

−4

−2

0

2

4

6

8

10
Delta Position in Camera−Coordinates

Time in s

D
is

ta
nc

e 
in

 m
m

 

 
Error X−Direction
Error Y−Direction
Error Z−Direction
Error Total

(c)

10 12 14 16 18 20 22 24 26
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Delta Angle between UKF and Ground Truth

Time in s

A
ng

le
 in

 d
eg

(d)

Figure 7.4: Results for translation task: (a) XYZ Position in mm; (b) ZYX-Euler angles in deg;

(c) Position error in mm; (d) Orientation error in deg.
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7. Demonstration and Results

Table 7.3: Root-Mean-Squared-Error for part B.

RMSE

Camera Coordinates Rotation-Angle

mm deg

Part A 0.76 1.52 2.48 1.20
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Figure 7.5: Zoomed detail for Z-position: Showing successful outlier rejection.

7.3.3. Rotation - C

The results of the rotation task are given in figure 7.6. With the exception of two sections,

the estimated position is very accurate. The section showing the largest position error in the

z-direction is shown in figure 7.7. The position error is caused by faulty monocular position

information in combination with a failed outlier rejection.

A strong correction of the estimated position is performed on every faulty position information.

This results in a noisy estimation, which is an indicator that the monocular position information

and the calculation of the position using inertial data, do not match. The error affected position

slowly diverges from the correct position and as a result pushes the estimation in the direction

of the faulty measurements. Every new obtained position is statistically possible and therefore

the outlier rejection failed. An incorrect RANSAC circle fit is assumed to be the cause of the

faulty position measurements.

However, even with these uncompensated outliers, a decent rmse for the position was obtained.
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Figure 7.6: Results for rotation task: (a) XYZ Position in mm; (b) ZYX-Euler angles in deg;

(c) Position error in mm; (d) Orientation error in deg.
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Despite the assumption that the orientation error will increase with faster rotations, the lowest

rmse of all tasks was achieved. The rmse values are given in table 7.4.

Table 7.4: Root-Mean-Squared-Error for part C.

RMSE

Camera Coordinates Rotation-Angle

mm deg

Part C 0.60 0.74 2.20 1.19
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Figure 7.7: Perturbated position due to outliers.

7.3.4. Combined fast Rotation and Translation - D

The results of task D are presented in figure 7.10. It clearly shows a significant higher error

for the position. It can be seen in figure 7.8, that the monocular position measurements are

strongly affected by errors and therefore decreased the performance of the estimation. Yet,

even with many position measurements, which are affected by errors, a smooth and accurate

estimation is achieved. So far motion blur is assumed to be the reason for the error affected

position measurements. The rmse for task D is presented in table 7.5.

The rmse for the orientation estimation shows a slightly poorer performance than the other tasks.

Two possible reasons are considered. Either the results for the orientation of the ground truth

is affected by the fast movement or/and the lack of correct position information degrades the

estimation. It is still assumed that the obtained accuracy is good enough for user interactions.
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In addition, the scale factor of the adaptive noise scaling algorithm of the optical position

measurement noise is shown in figure 7.9. It clearly demonstrates the successful adjustment for

the increased measurement noise in task-D.
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Figure 7.8: Position detail: Strong perturbed data of the monocular position tracking system.
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Figure 7.9: Optical position noise scaling.

Table 7.5: Root-Mean-Squared-Error for part D.

RMSE

Camera Coordinates Rotation-Angle

mm deg

Part D 3.05 2.29 4.83 1.30
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Figure 7.10: Results for combined rotation and translation task: (a) XYZ Position in mm;

(b) ZYX-Euler angles in deg; (c) Position error in mm; (d) Orientation error in deg.
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7.3.5. Influence on Magnetic Field

During the evaluation of the filter, the following effect was observed. If no perturbation of the

environment is present, the vector of the magnetic field, which is expressed in the NED-frame or

user-frame, should be constant. However, the estimated magneto vector shows strong variations.

In order to capture the whole dynamic of the changing magnetic field, the rw noise was increased

by a factor of 10.

The results of the estimated magneto-vector expressed in the NED-frame are shown in figure 7.11.
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Figure 7.11: Perturbation of the magnetic field: (a) Estimation of the magnetic field in NED-frame; (b) Comparison of

the x-component of the magnetic field with the x-component of the position in camera-coordinates.

The magnitude of the estimated magneto vector fits well the measured magneto vector and

therefore it is assumed that the estimation is correct.

Figure 7.11b presents the x-component of the magnetic field and the x-component of the esti-

mated position in camera-coordinates. The graphs show strong correlation. This indicates that an

external magnetic source perturbs the natural magnetic field. It should be noted, that for testing

all objects, which could perturb the magnetic field, were removed from the close environment.

However, it seems that even in a carefully chosen environment the perturbation is significant.

For that reason, the measurement of the magnetometer is considered of limited use to improve

the orientation estimation.

121



7. Demonstration and Results

Since the position and the magnetic field show strong correlation, an interesting approach would

be the following. Estimate the location of the source which is perturbing the magnetic field. By

using the signal strength and the location of the source, distance information with respect to the

extern magnetic source could be provided.

7.3.6. Influence of Delayed Measurements

As already mentioned in section 5.5.3, the delay of the optical position measurement system

could significantly degrade the estimation result. Figure 7.12 provides two examples for the

comparison between compensated and uncompensated estimations.
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Figure 7.12: Influence of time delays: (a) Example 1: Position in mm; (b) Example 2: Position in mm.

Figure 7.12b demonstrates the effect of delayed measurements on the estimation. This effect can

be explained as follows:

The object changes the direction of its movement at time t = 13.15 s. The inertial measurement

unit measures a negative x-acceleration and therefore calculates the position in the negative

direction ( see t = 13.1 . . . 13.15 s). However, the according position measurement is received

delayed and still represents the position before the turn. Therefore the filter corrects the position

again in the positive direction. This cycle continues and the discrepancy between the inertial

and optical measurements leads to a very noisy and inaccurate estimation. In some cases, this

could lead to divergence of the filter. This bad performance of the uncompensated filter is also
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7.3. Results

reflected in the rmse of the position and is given in table 7.6. The accuracy of the orientation is

also affected, but still represents a decent result.

Table 7.6: Root-Mean-Squared-Error for part B-D for uncompensated timing delays.

RMSE

Camera Coordinates Rotation-Angle

mm deg

Part B-D 9.03 5.83 6.67 2.66
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8. Conclusion and Future Work

The application of the proposed sensor fusion framework to provide a low cost 3D interaction

device shows very good results. For the presented complex sequence, a rmse ≈ 1.5 mm for

the x and y coordinates and a rmse ≈ 3 mm for the z-coordinate was achieved. The worse

performance of the z-direction is caused by a larger error sensitivity for depth information of

the monocular position tracking system.

For the estimation of the orientation, a rmse ≈ 1.3 deg was achieved. However, some results

pointed out that the presented application outperformed the accuracy of the ground truth. It is

assumed that the accuracy and smoothness of the orientation estimation satisfies the require-

ments for user interaction applications. Even though a pretty good result for the orientation was

achieved, the performance should be further improved. The calculated acceleration is strongly

depending on the orientation and therefore a better estimation of the orientation also improves

the position estimation.

A large part of the rmse for the position is caused by an offset in the provided positions. Since

the estimated positions are smooth and still capture the complete dynamic of the movement, it

is assumed that this slowly changing offset is hardly noticeable by the user.

The outlier rejection worked properly, for obvious outliers. Nevertheless, if measurements

degrade slowly in one directions, the outlier rejection could fail. Further research has to be con-

ducted in order to identify and to proper handle these faulty position measurements. However,

this kind of outliers rarely occurred and only showed a short presence.

One obvious approach to handle those undetected outliers is to improve the accuracy of the imu.

This would yield a smaller estimated covariance for the position and therefore minimizes the

range of accepted faulty measurements.

The nonlinearity of the inertial sensor presents the largest error source. For that reason a more

precise calibration of the sensors and its nonlinearity would strongly improve the estimation

results. Unfortunately, calibrations are time consuming and expensive. An online estimation of

the nonlinearity parameters could be considered.
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8. Conclusion and Future Work

In the presence of changing measurement noise, such as in task D, the adaptive noise scaling

method worked successfully. The proposed adaptive measurement scaling algorithm is only

based on simple md matching. Therefore a more profound method, such as simultaneously

measurement noise R and process noise Q adaption algorithms, could further improve the

result.

Motion blur is assumed to be the cause for the degraded performance in fast moving scenes.

Since the position and velocity of the object are estimated, a simple motion deblurring algorithm

could be applied and could strongly improve the performance for fast moving objects.

The results for uncompensated delays of the measurements showed that even a delay of ≈ 50 ms

strongly degrades the performance. In this thesis a simple approach for compensation was chosen.

It results in an overall delay of ≈ 50 ms. An algorithm to incooperate delayed measurements,

without delaying the estimation, is proposed in [31]. For further improvements this approach

should be considered in order to provide 6-dof tracking in delay sensitive applications.

The estimated magnetic field showed very strong variations and therefore pointed out that the

magnetometer measurements hardly can be used for precise position and orientation estimation

indoors. For the developed interaction device, it could be considered to even remove the

magnetometer.

Calibration procedures are time consuming and further research and testing should be done to

include the calibration of the inertial sensors in the estimation framework, similar to the online

estimation of the bias and reference vectors. However, it should be noted that the estimation

can get unstable and error sensitive when more parameters are added. Especially outliers could

degrade the result drastically.

In order to develop a product ready for the market, further research and testing should be

conducted to clarify the causes of outliers and to develop methods to properly handle them.

There are still many ways to improve the existing framework and application. Due to limited

time and because it exceeds the scope of this thesis, it will no be covered here. The interested

reader is invited to contact me for further questions.
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A. Abbreviations

ANFIS Adaptive Neuro Fuzzy Inference System

ANN Artificial Neural Network

AR Autoregressive

AR Augmented Reality

PCB Printed Circuit Board

DCM Direction Cosine Matrix

DOF Degree of Freedom

DSSM Dynamic State Space Model

ECEF Earth-Centered-Earth-Fixed-Frame

ECI Earth-Centered-Inertial-Frame

ENU East-North-Up-Frame

FIS Fuzzy Interference System

FSR Full Scale Range

GNSS Global Navigation Satellite System

GPS Global Positioning System

HT Hough Transform

IMU Inertial Measurement Unit

INS Inertial Navigation System

KF Kalman Filter

LED Light Emitting Diode

LUT Look up Table

LLH Representation of an object’s location in Latitude, Longitude and Height

LSB Least Significant Bit

MAP Maximum a Posteriori

MD Mahalanobis Distance

MEMS Micro-Electro-Mechanical Systems

ML Maximum Likelihood

MMSE Minimum Mean Squared Error
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A. Abbreviations

MSE Mean Squared Error

µC Micro Controller

NED North-East-Down-Frame

NL Nonlinearity

pdf Probability Density Function

RANSAC Random Sample Consensus

RMSE Root Mean Squared Error

RV Random Variable

RW Random Walk

SUT Scaled Unscented Transformation

UDP User Datagram Protocol

UKF Unscented Kalman Filter

UT Unscented Transformation

VR Virtual Reality

VRPN Virtual Reality Peripheral Network

ZOH Zero-order Hold

3D 3 Dimensional
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B. Notation

a, σ Represents a vector; all vectors are lower case, bold letters or symbols

A, Σ Represents a matrix; all matrices are capital, bold letters or symbols

(·)T Represents the transpose

¯(·) Represents the mean

ˆ(·) Represents an estimation

diag(·) Represents the diagonal elements of the matrix

∇ Represents the vector differential operator
δA
δx Represents partial derivative of A with respect to x

(ẋ) Represents the time derivative of x

|| · || Represents the euclidean norm

• Represents the quaternion multiplication

(·)−1 Represents the matrix inverse

	k Represents the k-times iterated morphologic erosion

⊕k Represents the k-times iterated morphologic dilation

E[·] Represents the expectation operator
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C. List of Symbols

The List of Symbols is in chronological order according to its first definition:

Inertial Navigation System

rA
B Absolute vector pointing from A to B

vN
EB Velocity measured in the N-frame of the B-frame with respect to the

E-frame

RB
N Rotation-matrix, which rotates a vector from N-frame to B-frame

φ, θ, ψ Euler angles as roll, pitch and yaw, respectively

σ Rotation vector

n Axis of rotation

θ Angle of rotation

qB
A Quaternion representing the rotation from A-frame to B-frame

q1, q2, q3, q4 Elements of the quaternion

s, v Scalar and vector part of the quaternion, respectively

σB
N Rotation vector representing the rotation from the navigation-frame to

the body-frame

vN
EB,east Velocity of the body-frame in the east-direction with respect to the ecef-

frame measured in the navigation-frame.

vN
EB,north Velocity of the body-frame in the north-direction with respect to the

ecef-frame measured in the navigation-frame.

ωB
NB Rotation rate of the body-frame with respect to the navigation-frame

ωB
IB Measured rotation rate of the imu with respect to the I-frame

ωN
IE Earth rotation in navigation-frame

ωN
EN Transport rate

ϕ Latitude

Ω Earth rotation

Re Radius of the curvature in the prime vertical

Rn Meridian radius of the curvature

h Height of the object
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C. List of Symbols

rm Mean earth radius

ωN
EN,max Maximal transport rate

vmax Maximal velocity

∆σB,k
B,k−1 Rotation vector which rotates the B-frame from time tk−1 to tk

∆θk Output of the gyroscope integrated from time tk−1 to tk

ωB
IB,k Output of the gyroscope at time tk

∆T Sampling time

qB,k
B,k−1 Quaternion which rotates the B-frame from time tk−1 to tk

qB,k
N Quaternion which rotates the N-Frame to the B-frame at time tk

vN
NB Velocity of the B-frame with respect to the N-frame represented in the

N-frame

aB
IB Sensed acceleration by the imu, also called specific force

v̇Cor,max Maximum acceleration due the Coriolis force

∆vN
NB,a,k Velocity increment due to the specific force

vN
NB,k Velocity of the B-frame with respect to the N-frame represented in the

N-frame at time tk

gN Gravity-vector in the navigation-frame (ned)

∆vN
NB,k Velocity increment of the B-frame with respect to the N-frame represented

in the N-frame at time tk

∆vN
NB,a,k Velocity increment due to the specific force of the B-frame with respect

to the N-frame represented in the N-frame at time tk

∆vN
NB,g,k Velocity increment due to gravity

∆vB
IB,k Output of the accelerometer integrated from time tk−1 to tk

pN
B Position of the B-frame with respect to the N-frame

pN
B,k Position of the B-frame with respect to the N-frame at time tk
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Inertial Sensors / Deterministic-Errors

x̃c Calibrated measurement

x̃d Measurement corrupted by deterministic-errors

MDev The scale factor matrix of device Dev, such as a for accelerometer

bDev,d Deterministic bias of the device Dev, such as a for accelerometer

ãB
IB,c Compensated accelerometer measurement

ãB
IB,d Accelerometer measurement affected by deterministic errors

Ma Scale factor matrix for accelerometer

ba,d Deterministic bias for accelerometer

Masym Asymmetric part of scale factor matrix

Msym Symmetric part of scale factor matrix

R Rotational part of scale factor matrix

Sxy, Syx, Sxz, Cross correlation factors of the scale factor matrix

Szx, Syz, Szy

r Error vector for optimization

Et The accumulative error at iteration t

pt Parameter vector for optimization at iteration t

δt Correction term at iteration t

αt Damping factor at iteration t

Jt Jacobian matrix at iteration t

τ Fading factor

ε Convergence threshold

σ2
L,k The local variance at time step k

N Window length of the local variance estimation

µL,k Local mean at time step k

ãi Measured acceleration-vector at time step i.

σ2
L,min Minimal local variance

β Local variance threshold for static-conditions

kSP , kEP Vector for starting and ending point of static conditions, respectively

kSP,n , kEP,n Starting and ending point of static conditions for the n-th orientation,

respectively

Lmin Minimal static condition length
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C. List of Symbols

ãn Mean acceleration for the n-th orientation

m̃B
c Compensated magnetometer measurement

m̃B
d Magnetometer measurement affected by deterministic errors

Mm Scale factor matrix for magnetometer

bm,d Deterministic bias for magnetometer

ω̃B
IB,c Compensated gyroscope measurement

ω̃B
IB,d Gyroscope measurement affected by deterministic errors

Mω Scale factor matrix for Gyroscope

bω,d Deterministic bias for gyroscope

σt2
t1 gyro

Rotation vector from time t1 to t2 using gyroscope data

σt2
t1 gravity

Rotation vector from time t1 to t2 using gravity data

∆Φj Vector of accumulated rotation for the j-th experiment

pi The i-th point of is a set of N points

p0 Origin of the plane

P Point on a plane

n Normal of the plane

v1, v2 Orthogonal basis of a plane

pproj Projected point

R Radius of a circle

c Center of a circle

Θ Rotation angle

rstart, rstop Projected start and stop points, respectively

Inertial Sensors / Random-Errors

x̃ Measurement affected by random errors

b Drifting bias

ν, σ2
ν Error variable due to measurement noise and its according variance,

respectively

x̃c Measurement, which has already been compensated for deterministic

errors

νNL , σ2
NL Error variable due to nonlinearity and its according variance, respectively

νnoise, σ2
noise Error variable due to sensor noise and its according variance, respectively
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NL(%) Nonlinearity of the sensor expressed in % of the Full Scale Range (fsr)

bk Drifting bias at time step k

wRW , σ2
RW Random walk error and its according variance, respectively

σ2
Allan(τ) Allan variance at cluster time τ

τ Cluster time

m Number of clusters

n Length of a cluster

Θi(τ) Average of cluster i for cluster time tau

NAllan, KAllan Noise terms in the Allan variance analysis

Monocular Position Tracking

plast Percent of pixels in the last N histogram bins

B Camera setting for brightness

Bmin, Bmax Minimum and maximum brightness values to increase or decrease expo-

sure

E Camera setting for exposure

p Position of the tracked object

v Velocity of the tracked object

na Unobserved acceleration modeled as zero mean white Gaussian process

noise

Qa Covariance matrix of na

yk Measurement at time step k

vp Measurement noise

Rp Covariance matrix of vp

∆T Sampling time

u, v Image coordinates expressed in pixels

umin, umax,

vmin, vmax

Minimum and maximum image coordinates for search region

upred, vpred Predicted image coordinates

∆u, ·∆v Standard deviation of the predicted image coordinates

r Predicted radius of the projected object

∆r Standard deviation of the predicted radius
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C. List of Symbols

Mcam Intrinsic camera matrix

f Focal length

R Radius of the object

z z-Position of the object expressed in camera coordinates

J Jacobian of image projection

IHue(u, v) Hue at pixel points (u,v)

ISat(u, v) Saturation at pixel points (u,v)

IVal(u, v) Value at pixel points (u,v)

IHue,min, IHue,max

ISat,min, ISat,max

IVal,min, IVal,max

Minimum and maximum thresholds for Hue, Saturation and Value,

respectively

IClean Morphologic cleaned image

I Image

SE Structure element for morphologic clean up

Tupper, Tlower Upper and lower threshold for canny edge detection

fx, fy Focal lengths in x and y direction, respectively, expressed in pixels

cx, cy Principal points in x and y direction, respectively, expressed in pixels

X′corr, Y′corr Points corrected for radial and tangential distortion

k1, k2, k3, k4, k5, k6 Coefficients for radial distortion

p1, p2 Coefficients for tangential distortion

pnorm Contour points in normalized coordinates

pUnit Contour points projected on unit sphere

raxis Symmetry axis a the cone

θ̂, φ̂, r̂ Unit vectors of the spherical coordinate system

θ, φ Angles of the spherical coordinate system

u′, v′, λ Reprojected image coordinates (projective compensation)

r, cu′ , cv′ Radius, x and y coordinates for the fitted circle, respectively

pu′ , pv′ Coordinates of the reprojected point

ε Distance threshold for ransac

Si Set of inliers

w Probability of drawing an inlier

s Sample size
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p Probability of drawing at least once a sample, which is outlier free

Np Number of samples to draw at least once a sample, which is outlier free

with probability p

N Actual number of ransac iterations

Nmax Maximum number of ransac iterations

wmin Minimum inlier ratio

FGCircle Amount of foreground pixels within the fitted circle

FGTotal The total amount of foreground pixels

ACircle Area of the fitted circle, expressed in pixels

d Distance of the object

rsphere Estimated circle center

nsphere Unit vector pointing in the direction of the object

Psphere Location of the sphere

Sensor Fusion for Tracking / Overview

f(xk−1, uk, nk) Discrete-time transfer function

h(xk, vk) Discrete-time measurement function

xk Discrete-time state vector at time step k

yk Discrete-time measurement vector at time step k

uk Discrete-time known exogenous input at time step k

nk Discrete-time process noise at time step k

vk Discrete-time measurement noise at time step k

k Discrete time step

x̂k|k−1 Predicted a priori mean of state vector x at time step k given measurements

up to and including time step k-1

ŷk|k−1 Predicted a priori mean of the expected measurement at time step k given

measurements up to and including time step k-1

x̂k Corrected a posteriori state vector at time step k given measurements up

to and including time step k

p(x|y1, . . . , yn) The posterior probability distribution is the distribution over the states x

, which is conditioned on the observed measurements.
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C. List of Symbols

p(y1, . . . , yn|x) Likelihood function representing the joint probability of the measure-

ments y1, . . . , yn given the states x.

p(x) The prior distribution over the states representing the information of the

states before using information of any measurement.

Sensor Fusion for Tracking / Selected Fusion Strategy

x Random variable

y Random variable as output of an arbitrary non-linear function

L Dimension of random variable x

g(x) Arbitrary non-linear function

x̄ Mean of random variable x

Px Covariance matrix of random variable x

S Set of deterministic chosen samples based on a random variable

Si i-th element of a set of deterministic chosen samples

X Sigma points of random variable x

Xi i-th element of a set of sigma points

wi Weighting factor associated with i-th element of a set of sigma points

w(m)
i Weighting factor for mean calculation, associated with i-th element of a

set of sigma points

w(c)
i Weighting factor for covariance calculation, associated with i-th element

of a set of sigma points

λ Scaling parameter in the Scaled Unscented Transformation

α Scaling parameter in the Scaled Unscented Transformation

β Scaling parameter in the Scaled Unscented Transformation

κ Scaling parameter in the Scaled Unscented Transformation

Y Transformed sigma points of random variable x

Yi i-th element of a set of transformed sigma points

ȳ Mean of the transformed random variable y

Py Covariance matrix of the transformed random variable y

Pxy Cross-covariance matrix of the random variables x and y

aG
lin,x Linear acceleration projected on x-axis in global-frame

aG
lin,y Linear acceleration projected on y-axis in global-frame
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aG
lin Linear acceleration-vector in global-frame

θ Angle or the car’s orientation

aB
m Measured acceleration-vector in body-frame

gG Gravity-vector in global-frame

āG,1stO.
lin Mean of the linear acceleration in global-frame using 1st order lineariza-

tion

P1stO.
aG

lin
Covariance matrix of the linear acceleration in global-frame using 1st

order linearization

xk State vector at time step k

xa
k Augmented state vector at time step k

Px Covariance matrix of the state vector x

Px
a Covariance matrix of the augmented state vector xa

Rv Covariance matrix of the process noise vk

Rn Covariance matrix of the measurement noise nk

x0 Initial state vector

Px0 Covariance matrix of initial state vector x0

X x Sigma points of the original state vector x

X a Sigma points of the augmented state vector xa

X v Sigma points of the process noise vk

X n Sigma points of the measurement noise nk

Xk|k−1 Predicted a priori sigma points at time step k given measurements up to

and including time step k-1

x̂k|k−1 Predicted a priori state estimation at time step k given measurements up

to and including time step k-1

Pxk|k−1 Predicted a priori covariance matrix of state vector x at time step k given

measurements up to and including time step k-1

Yk|k−1 Predicted a priori sigma points of the expected measurement at time step

k given measurements up to and including time step k-1

ŷk|k−1 Predicted a priori mean of the expected measurement at time step k given

measurements up to and including time step k-1

Pỹk|k−1 Predicted a priori covariance of the expected measurement at time step k

given measurements up to and including time step k-1
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C. List of Symbols

Pxk ,yk State-measurement cross-covariance at time step k

Kk Optimal Kalman gain at time step k

Pxk Corrected a posteriori covariance matrix of state vector x at time step k

given measurements up to and including time step k

∆xk Kalman updated correction term for time step k

yk Actual measurement at time step k

x̂k Corrected a posteriori estimation at time step k given measurements up to

and including time step k

k Discrete time step
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Sensor Fusion for Tracking / Complete Model Description

qB,k
U Rotation from the user-frame to the body-frame at time step k

pU
B,k Position of the body-frame with respect to the user-frame at time step k

vU
UB,k The velocity of the body-frame with respect to the user-frame, measured

in the user-frame at time step k

bωRW,k, baRW,k,

bmRW,k

rw biases for the gyroscope, accelerometer and magnetometer, at time

step k,respectively

gU
k Reference vector the gravity-field with respect to the user-frame at time

step k

mU
k Reference vector the magnetic field with respect to the user-frame at time

step k

rB
lever,k Lever arm at time step k, displacement of the sensor-frame to the body-

frame

ωk At time step k measured angular rate

ak At time step k measured acceleration

∆Tk Sampling time at time step k

nb,ωRW , nb,aRW ,

nb,mRW

Zero mean Gaussian noises driving the bias random walk of the gyro-

scope, accelerometer and magnetometer, respectively.

σ2
b,ωRW

, σ2
b,RW

,

σ2
b,mRW

Variance for the noises driving the bias random walk of the gyroscope,

accelerometer and magnetometer, respectively

nmRW , σ2
mRW

Zero mean white Gaussian noise driving the rw of the reference vector

of the magnetic field and its variance, respectively

na,v,k, σ2
a,v Zero mean white Gaussian noise of the accelerometer measurements

noises and its variance, respectively

nω,v,k, σ2
ω,v Zero mean white Gaussian noise of the gyroscope measurements noises

and its variance, respectively

Σ2 Covariance matrix for uncorrelated variables

fq Transfer function for the quaternion

fp Transfer function for the position

fv Transfer function for the velocity
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C. List of Symbols

qN
U ,RN

U Quaternion and rotation matrix representing the rotation from the

navigation-frame to the user-frame, respectively

ωcorr,k Gyroscope measurement corrected for deterministic and random errors

at time step k

acorr,k Accelerometer measurement corrected for deterministic and random

errors at time step k

∆vU
UB,a,k Velocity update due to the specific force for the user-frame at time step k

∆vU
UB,g,k Velocity update due to gravity for the user-frame at time step k

hm Measurement function for the magnetometer

m̂B
k Estimate for the real magnetometer measurement at time step k

mB
k Real magnetometer measurement at time step k

vm,k, σ2
m,noise The measurement noise for the magnetometer and its according variance,

respectively

mB
corr,k Magnetometer measurement, corrected for deterministic errors, at time

step k

alever Acceleration due to lever arm effect

∆plever,k Offset of the position due to the lever arm effect

hp Measurement function for the monocular position tracking system

vp,k, Rp,U The measurement noise for the monocular position tracking system and

its according covariance matrix in the user-frame, respectively

Rp,Cam Covariance matrix in the camera-frame for measurement noise of the

monocular position tracking system

p̂U
pm,k Estimation of the position-measurement-frame with respect to the user-

frame

pCam
pm,k Location of position-measurement-frame with respect to the camera-

frame at time step k

pU
pm,k Location of position-measurement-frame with respect to the user-frame

at time step k

pCam
U Location of user-frame with respect to the camera-frame at time step k

RU
Cam Rotation matrix, representing the rotation from the camera-frame to the

user-frame
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Sensor Fusion for Tracking / Adaptations

xquat
k Quaternion part of the state vector

xrest
k Rest part of the state vector

∆xquat
k Quaternion perturbation

x̃quat
k Perturbed quaternion

X quat
k Sigma points of the quaternion states

X rest
k Sigma points of the rest states

∆X σ
k Perturbation vector for the orientation in terms of rotation vectors

∆X rest
k Perturbation vector for the rest states

∆X quat
k Perturbation vector for the orientation in terms of quaternions

(∆X quat
k|k−1)t,i i-th column of the predicted perturbation vector at iteration t represented

as quaternion

(x̂quat
k|k−1)t Quaternion part of the predicted mean at iteration t

(x̂rest
k|k−1) Rest part of the predicted mean

(X quat
k|k−1)t,i i-th column of quaternion part of the predicted sigma points at iteration t

ēt Barycentric mean of the delta quaternions

θ Average angle of rotation for the mean delta quaternion

(∆X σ
k|k−1) Predicted perturbation vector for the orientation, represented as rotation

vector

(∆X rest
k|k−1) Predicted perturbation vector for the rest states

∆xσ
k Correction term for the orientation, represented as rotation vector

∆xquat
k Correction term for the orientation, represented as quaternion

∆xrest
k Correction term for rest states

x̂quat
k Corrected a posterior estimation of the quaternion states

x̂rest
k Corrected a posterior estimation of the rest states

tdelay Time delay between imu and the monocular positional tracking system

nqueue Size of the delay queue

fFilter Operation frequency of the ukf

x Sequence of intensities

xnorm Normalized sequence of intensities

Rxy(l) Cross-correlation for the lag l
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C. List of Symbols

∆Tbase Time base for the interpolation

ndelay Time delay expressed in samples

tdelay,transmission Time delay of the data transmission

tdelay,processing Time delay of the data processing

MD Mahalanobis distance

d Degree of freedom for the χ2 distribution

χ2
d,max Threshold to reject outliers

χ̄2
d Mean of χ2 distribution with dof d

ck Covariance scaling factor at time step k

MDk Mahalanobis distance at time step k

Rk Adapted covariance matrix at time step k

R0 Initial covariance

G Noise scaling adaption gain

Application: Low Cost 3D Interaction Device

PCam
1 , PCam

2 , PCam
3 , PCam

4User chosen points defining the user coordinate system

xCam
U , yCam

U , zCam
U X, Y, Z axes of the user coordinate system expressed in camera coordinates

RCam
U Rotation from user-frame to camera-frame

RB
U Rotation from user-frame to body-frame

RNED
B Rotation from body-frame to NED-frame

RNED
U Rotation from user-frame to NED-frame
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