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Abstract

Computer-based simulations allow researchers to visualize, test and eventually improve their
theories. However, developing and effectively making use of those simulations are challenges
that should not be underestimated.
This master’s thesis uses the simulator NEST [13] to showcase the steps necessary to turn mod-
els of autonomous learning processes in biological, spiking neural networks into software that
runs with adequate performance and produces easily analyzable results. Technical and archi-
tectural questions and problems that likely arise during software development are shown, and
possible solutions are presented. Furthermore, by understanding the inner workings of simula-
tors, theoretical models can be optimized for use in simulations. How this might work is also
examined in this thesis.
Since biological neural networks can end up being quite large, the option to run the simulations
in a parallel environment in order to increase performance is also discussed.
Finally, examples are presented to demonstrate how computer simulations can help identify
weaknesses and strengths of learning models.

Keywords: Spiking neural networks, reward-based learning, NEST, neural network simulators,
autonomous learning
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Kurzfassung

Computergestützte Simulationen erlauben ForscherInnen, ihre Theorien zu visualisieren, zu te-
sten und letztendlich zu verbessern. Das Entwickeln und effektive Nutzen dieser Simulationen
sind allerdings Herausforderungen, die nicht zu unterschätzen sind.
Diese Masterarbeit zeigt anhand des Simulators NEST [13], welche Schritte notwendig sind, um
Modelle von autonomen Lernprozessen in biologischen, spikenden neuronalen Netzen als Soft-
ware umzusetzen, die performant läuft und deren Ergebnisse gut analysierbar sind. Besonderer
Wert wird auf die Behandlung von technischen und architekturellen Fragen und Problemen
gelegt, die bei einer solchen Softwareentwicklung wahrscheinlich auftreten werden. Für diese
werden mögliche Lösungen präsentiert. Ebenfalls wird erläutert, wie durch das Verständnis der
Eigenheiten eines Simulators theoretische Modelle für Simulationen optimiert werden können.
Nachdem biologische neuronale Netzwerke eine beträchtliche Größe erreichen können, wur-
de die Möglichkeit betrachtet, Simulationen in einer parallelisierten Umgebung berechnen zu
lassen.
Abschließend demonstriert die Arbeit anhand von Beispielen, wie Computersimulationen
Schwächen und Stärken der Lernmodelle aufzeigen können.

Schlagwörter: Spikende neuronale Netze, Reward-basiertes Lernen, NEST, Simulator für neu-
ronale Netze, Autonomes Lernen
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Chapter 1

Introduction

The question of how humans think and make decisions has fascinated people for centuries.
Unfortunately, despite rapid scientific progress, the human brain and its astonishing capabilities
still remain largely a mystery.

Inspired by the complex tasks the brain can accomplish, artificial neural networks were de-
veloped and researched to try and build on the success of their biological counterparts. Even
with simplified models, impressive results have been achieved in many applications, like face
recognition [37], sampling of seemingly hand-written texts [16] and even games [42], to name
just a few. This all is even more fascinating considering the fact that artificial neural networks
are composed merely of interconnected neurons, which, despite occasionally having quite com-
plex mechanics, are in essence simple signal processors (see for example the McCulloch-Pitts-
Neuron in [34]).

For the research of biological neural networks like the human brain however, spiking neural
networks seem to be more appropriate [15, 39]. Contrary to traditional artificial neural net-
works, which typically propagate continuous numerical values between neurons, neurons in
spiking neural networks only send signals, called spikes, when the neuron’s firing condition is
met (see section 1.2). They are supposed to imitate the biological reality, but this has the con-
sequence that they can include complex biochemical processes and mechanisms that are often
not trivial to implement and might require vast amounts of computing power to simulate.

For this reason, much effort nowadays is put into overcoming these challenges, as further
research into biological neural networks is one of the keys to understanding the human brain.

1.1 Motivation

Over the last decades, tremendous technological advancements coupled with ever increasing
globalization have drastically improved the way research can be conducted. Not only can re-

1



1.2. Introduction to spiking neural networks 2

searchers all over the world communicate and exchange knowledge rapidly, but interdisciplinary
work has become easier than ever.

Thanks to this, complex fields of study like brain research can now hope to make progress
much faster than previously possible. Research into neural networks requires contributions not
only from the fields of biology and mathematics, but also from computer sciences. With increas-
ing processing power and the training of professional software developers, brain researchers
finally have the means to properly test their theories and simulate their models.

It is therefore the goal of this thesis to analyze and discuss how theoretical models of bio-
logical neural network dynamics can be comfortably tested and improved using software tools,
and what kind of challenges one might face during the implementation of these models.

To this end, examples were created based on the models described in [24] and [25].

1.2 Introduction to spiking neural networks

Biological neurons, as mimicked in spiking neural networks, are not simple signal processors
like their counterparts in artificial neural networks.

In reality, they typically consist of a cell body (also called soma), dendrites and an axon, as
is illustrated in figure 1.1. Basically, dendrites are input channels with which electrical pulses
called spikes are received. Those spikes originate from the axon of other neurons and they are
generated when a neuron’s membrane potential reaches its spike threshold due to stimuli from
prior incoming spikes. After a spike is sent, many neurons enter a refractory period, which
prevents them from firing again for a short amount of time, illustrated in figure 1.2. This whole
procedure is explained in detail in [12] and [31].

Figure 1.1: Drawing of a biological neuron [27]. It shows the main components of the
neuron and summarizes their function. Dendrites are generally understood as
the input channels of a neuron. The cell body accumulates this input, and when
applicable sends a signal of its own through the axon.
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Figure 1.2: Membrane potential of a leaky integrate-and-fire neuron [12] in NEST. The
neuron is supplied with a constant current forcing the membrane potential to
increase whenever possible. A (very large) refractory period of 50.0 ms is
added for demonstration purposes. As soon as the membrane potential reaches
the spike threshold at −55 mV, a spike is generated and the potential resets to
the neuron’s resting potential at −70 mV.

Axon and dendrites are usually (though exceptions exist) connected via specialized or-
ganelles, which are called synapses [48]. From the point of view of a synapse, the sending
neuron - i.e. the origin of the axon - is called the presynaptic neuron, and the receiving neuron
- i.e. the origin of the dendrite - is called the postsynaptic neuron.

The transfer itself - as is obvious in biologically relevant settings - does not happen instan-
taneously. The time the spike takes to travel through the connection is called synaptic delay.

It is important to note that spikes are binary occurrences - the neuron either spikes or it
does not. The strength of a spike itself does not matter for the synapse, its impact on the target
neuron is solely manipulated by the synapse itself [12]. The spikes that the synapses relay to
the target neuron do vary in strength though, based on biochemical factors. While these factors
are complex, they can be simply thought of as synaptic weights. Larger synaptic weights cause
stronger effects in the target neurons. Changes in the weights are called synaptic plasticity and
form the basic of autonomous learning processes [2, 20], as discussed further in section 1.3.

When the spike finally reaches a target neuron, it causes a postsynaptic potential, which
changes the neuron’s membrane potential. Whether the membrane potential is increased or de-
creased depends on the aforementioned synaptic weight. If the membrane potential is increased
by the spike, the postsynaptic potential is called excitatory (EPSP). Otherwise, it is called in-
hibitory (IPSP) [12]. In models and simulations the latter can often be simplified by interpreting
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inhibitory synapses as synapses with negative weights.

As explained in [12] and [18], the PSP can be modelled as a mathematical function, for
example with a double exponential shape. Intuitively, it can be said that the influence of a
neuron on spikes of its target neurons is likely large shortly after it has caused an EPSP in them
by sending a spike itself. A small time delay should be considered, because PSPs take a little
while to have an effect on the target’s membrane potential. After that, their effect declines over
time. How fast those changes occur are defined by the PSP’s facilitation and depression rates.
An illustration of the effect of a PSP can be seen in figure 1.3a.
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Figure 1.3: (a) Example of an excitatory postsynaptic potential. Assuming the spike ar-
rived at 0 ms, the EPSP raises neuron’s membrane potential by up to approx-
imately 7 mV after a few milliseconds, before it quickly decays. (b) Multiple
EPSPs accumulate to eventually cause a spike when the membrane potential
reaches −55 mV. Immediately after the spike, the membrane potential decays
to its resting potential at −70 mV.

Through accumulation - PSPs are graded - of many such potentials originating from multiple
spikes fired by one or many presynaptic neurons, the membrane potential of the target neuron
eventually exceeds the spike threshold, causing the neuron to spike, as illustrated in figure 1.3b.
This is in contrast to figure 1.2, where the neuron’s membrane potential is forced to continuously
increase by a constant current. Further discussion on postsynaptic potentials can be found in
the aforementioned works [12] and [18].

It is important to note that not all biological neurons have a fixed threshold potential at which
they spike. Research has shown that some neurons show stochastic spiking behaviour [22, 12].
A neuron exhibiting stochastic spiking behaviour increases the probability of a spike based on
its membrane potential, with a probability of 1 at its stochastic equivalent of a spike threshold.
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A sample model for a neuron with stochastic spiking behaviour is presented in [25] and
summarized by

uk(t) = bk +
∑
j,k

ẑ j(t) wk j, (1.1)

σ(uk) =
1

1 + e−uk
, and (1.2)

p(zk fires at t) = fk(t) = σ(uk) Θ. (1.3)

The membrane potential uk for a neuron zk, as given in equation 1.1, is defined by bk, which
is the bias of the neuron, and ẑ j, which is the PSP approximator of a neuron z j that is connected
to zk with weight wk j. The neuron x j can be either a designated input neuron or another hidden
neuron in a recurrent network.

The PSP approximator is, intuitively speaking, the synaptic guess of the presynaptic neu-
ron’s current influence on the postsynaptic neuron. Therefore, it ideally is a function with a
similar shape as the neuron’s actual PSP, but not necessarily with the same values. The exact
values of ẑ j do not matter as long as they are approximately in a ratio the same as the PSP values.
This is because its purpose is merely to scale the learning process based on the neuron’s current
influence. Note that the postsynaptic neuron’s actual PSP likely looks vastly different than ẑ j,
because the former is probably influenced by multiple synapses (and their action potentials) at
once, while the latter only considers the influence of the presynaptic neuron. Furthermore, in
the case of inhibitory synapses (w < 0) the PSP approximator stays positive and turns to an
approximator for the weight’s absolute value, so the two parameters multiplied result in nega-
tive weight update overall. An example implementation of such an approximator is shown in
listing 5.6.

Equation 1.2 defines σ(·) an exponential function that rises together with increasing uk.

In equation 1.3, σ(·) is then multiplied with Θ, which is 1 if the neuron is not in its refractory
period, and 0 if it is refractory.

This results in a higher overall spike probability if the membrane potential is high, and vice
versa, as long as the neuron is not refractory. If it is, the spike probability is 0.

Lastly, structural plasticity has been observed in the human brain, which means that not
only do the weights of synapses change over time, but synapses can appear or even disappear
completely [6, 19, 50, 52]. This makes sense, since spontaneous and even random formations
of synapses can help to discover new important connections [6], and truncating unnecessary
synapses saves energy (they need to excert force in order to maintain their form and function,
as discussed in [26]). In most cases, this process can easily be modelled, again by changing the
synaptic weights, with a weight of 0 indicating a non-existent synapse.

To summarize, in spiking neural networks neurons can receive either constant signals or
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spike events and will in return distribute spikes events themselves, in contrast to traditional
artificial neural networks in which neurons send constant signals with varying strength. These
spikes are transferred through synapses, which differ from each other by their weights. By
manipulating these weights, the influence of one neuron on every other one can be controlled,
effectively training the network to perform desired tasks.

1.3 STDP and reward-based learning

Synaptic plasticity - the modification of a synapse’s strength and even existence - plays a critical
role in the behaviour of the network. While other factors exist as well, synaptic weights are very
obvious starting points to train networks. Thus, all learning processes discussed in this thesis
utilize synaptic plasticity.

Aside from which part of the network is to be trained (i.e. the synapses), it is also important
to decide on when changes ought to occur. Brain research strongly suggests that Spike-Timing
Dependant Plasticity (STDP) is the answer to that [1, 5, 32, 33]. In learning strategies using
STDP neural networks are trained by looking for causal relations between spikes. This approach
resembles early theories on learning associations formalized by Hebbian learning [36]. The ba-
sic idea is to strengthen synapses in which presynaptic spikes occur shortly before postsynaptic
spikes (thereby implying a causal relation between the two neurons in the sense of post hoc,

ergo propter hoc1) and letting other synapses slowly decay and even vanish, which is consistent
with biological observations [6, 26].

This mechanism is capable of building a kind of memory inside the neural network, enabling
it to recall firing sequences of strongly connected neurons. However, there is no guarantee of
what is learned by the network.

To change that, the learning process is extended with a reward parameter, resulting in
reward-modulated STDP [11, 29, 30]. Like in "normal" STDP, synapses between causally
related neurons gain strength, but in reward-modulated STDP this only happens - or at least
it happens more prominently - if the outcome of the firing sequence results in a reward. This
is also biologically sound, as in the human brain such rewards are generated by the release of
neurotransmitters like dopamine [3].

Rewards often do not arrive instantaneously. In many cases the task is repeated for multiple
episodes, and rewards are only distributed at the end of each episode. The synapse therefore
needs to remember its recent changes, so it can work with them depending on the reward. This
is usually accomplished by an eligibility trace that accumulates all recent changes the synapse
performs [21].

1Latin: "After, therefore because of."
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x2 w2 h2 R Reward Transmitter

x1 w1 h1

x3

Input neurons

w3

Weights

h3

Output neurons

Reward

Figure 1.4: Feed-forward neural network including a reward transmitter. Three input neu-
rons are connected to one output neuron each, which are in turn connected to
the reward transmitter. The reward transmitter will send rewards (i.e. neuro-
transmitters) to the synapses depending on the performance of the output neu-
ron, manipulating their synaptic weight changes.

An example of an eligibility trace is produced in [25], where the eligibility trace is concluded
as

eki(t) = eki(t − ∆t)e−∆t/tep + tep Wki ẑi(t) (zk(t) − fk(t)), (1.4)

with eki(t) being the eligibility trace between the input neuron i and the output neuron k

at time step t. ∆t is the time since the last update and tep denotes the episode length between
two rewards (and thus the primary reason why the eligibility trace is necessary at all). Wki

is the synaptic weight and ẑi denotes the PSP approximator (see section 1.2). zk is 1.0 if the
postsynaptic neuron has spiked at time step t (else 0), and fk(t) represents the spike probability
of the postsynaptic neuron at time step t, as described in equation 1.3.

This means the eligibility trace defines the synapse trajectory based on a mechanism similar
to STDP. The trace will generally increase if a presynaptic EPSP is followed by a postsynaptic
spike, and decrease if the postsynaptic spike occured before the presynaptic EPSP [25].

This eligibility trace can be implemented in the synaptic weight update (again as presented
in [25]) to arrive at the novel reward-modulated STDP learning rule shown in equation 1.5,
based on Bayesian inference [24] and inspired by research on Bayesian Reinforcement Learning
(see [4, 49, 51]).

While there are many variations of these learning rules, the basic idea is always similar to

∆θki = η (Ωi + ψ(rk, eki)) + φ. (1.5)
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Thus, the synaptic parameter change ∆θki for presynaptic neuron i and postsynaptic neuron
k is given by

• η, the learning rate,

• Ωi, an attractor prior for the synapse,

• rk, the reward held by neuron k,

• eki, the eligibility trace described in equation 1.4,

• ψ(rk, eki), a function calculating an appropriate learning trajectory based on eki and rk (a
trivial example would be ψ(rk, eki) := rk eki), and

• φ, a random walk process. This is in accordance to the stochastic processes present in
structural plasticity [6, 17, 26].

In other words, the eligibility trace eki (i.e. the STDP-like trajectory of the synapse) and
the current reward rk translate to a learning trajectory ψ that seems to be advantageous for the
network performance. This trajectory is combined with the prior Ωi to calculate the primary
update gradient, which in turn is scaled with the learning rate η and then complemented with
a random walk process φ to add some noise. The final result will, in theory, force the synaptic
weight into a value appropriate for the learning goal.

It is to mention that the reward rk does not have to be exactly the reward sent by the reward
transmitter. The source paper [25] of the algorithm discusses the possibility of introducing
reward averages and average expected rewards in order to create a kind of "reward memory".
The reward can also be binary (as in section 5.3.2) or an arbitrary value (as in section 5.4), its
exact type and form depends on the task at hand.

The experiments in sections 5.4 and 5.5 show how reward-modulated STDP can be used to
train neurons for various tasks.

Although all learning algorithms discussed in this thesis follow the ideas outlined above,
small changes in the update mechanism can cause strong changes in the network’s performance
that only become apparent using network simulations.

The following chapters will therefore analyze how models can be efficiently simulated using
neural network frameworks and what steps can be taken in order to optimize both memory con-
sumption and runtime performance, all for the sake of providing researchers with a convenient
and feasible way to test their theories.



Chapter 2

NEST, the Neural Simulation Tool

Accompanying ongoing research into neural networks, various network simulators have been
developed over the years [7]. Even though general software tools like Matlab [43, 44] are
sufficient for the simulation and analysis of artificial neural networks [14], this might not hold
true for biological networks. The need to model complex neuron and synapse mechanics while
still retaining acceptable run times justifies the usage of custom-built software dedicated for
these purposes alone.

This thesis focuses on NEST [13], as it is both easy to use and highly modular, making it
possible to showcase a multitude of model implementations using a single framework. While
its kernel is written in C++, NEST includes PyNEST [9, 45], an interpreter that allows users to
write their simulations using Python, which is more convenient for many researchers.

As NEST is written in C++, its internal architecture follows an object-oriented approach,
mirroring real-life entities to data object [45].

This means the simulated network consists of a variable number of Neurons objects which
are connected to each other using Synapse objects, both inspired by their real-life biological
counterparts.

Since researchers must be able to manipulate and analyze the networks, additional tools are
often available in the simulators. In NEST, these include Recorders, Generators and Transmit-

ters.

Recorders track the state of the network and can be used to generate statistics and graphs at
the end of the simulation. Generators feed the network with external input that is supposed to
be separate from the network state, for example visual or auditory stimuli originating from the
environment. Since Synapses are only designed to connect Nodes to each other, Transmitters

are present with the purpose of delivering signals from Nodes to Synapses.

NEST’s architecture classifies those tools as Nodes, of which Neurons are also a subset of.

Customizations can be integrated into NEST by writing an extension module. Tutorials

9
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Figure 2.1: Overview of components in NEST. Illustrated are some examples of built-in
features in NEST. Also shown are nodes and synapses that are discussed in
this thesis and integrated into NEST via an extension module.

and examples on how to write such extension modules are provided by the NEST documen-
tation [45], but basically they are just a group of nodes and synapses that can be statically
or dynamically linked into NEST. The latter approach is more advisable, because the exten-
sion module can be compiled independently without having to recompile NEST as well, which,
given its size, does take some time.

Figure 2.1 gives an overview of NEST features after some models were integrated using an
extension module.

The following sections aim to provide a summary about the software implementations of
neurons and synapses, based on [45]. Even though the sections and the examples within them
are based on NEST, the information provided by them is generally applicable to any simulator
for biological neural networks.
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2.1 Simulation of neurons

Like other simulation frameworks, NEST ships with a multitude of neurons, but it is often
necessary to implement new ones for various reasons.

The most obvious motivation for a custom neuron is of course the simulator’s lack of a
neuron designed for the desired behaviour. But custom neurons can offer far more flexibility
than this, for example they allow the developer to retrieve debugging data exactly where and
when it is needed.

Generally, neurons are defined by three properties that must be decided upon for every
neuron to be written.

Firstly, the type of input the neuron can receive. Possible options are spike events, external
current, or even data logging requests. Since they all are very different types of signals, they
must be handled separately. In the case of NEST, the signals are sent to different event handlers,
though this might vary from simulator to simulator.

Secondly, the neuron’s spike variables define which properties the neuron has and how and
when they can be accessed or modified.

Finally, the neuron’s update dynamics specify how the neuron reacts to input and what
output it produces.

2.1.1 Neuron state variables

The neuron state variables can be categorized into three categories.

The first category contains those state variables that describe the nature and properties of
the neuron, and they do not change over the course of the simulation. They are, for example,
time constants, facilitation/depression rates, or refraction periods.

The second category consists of variables that naturally change over the course of the sim-
ulation, like the membrane potential. Some variables that might be considered part of the first
category might also end up here if the neuron mechanics demand it. For example, the spike
threshold might be a static property of some neuron types, but could change in others.

Lastly, the third category holds variables used for implementation details, like spike histories
or data logging buffers.

Since neurons - at least in object-oriented architectures - are stored as their own class, the
configuration of the state variables as member variables is trivial in most simulation frame-
works.

In NEST, the various categories are stored - cleanly separated from each other - in structs,
while special accessor methods can be configured to either allow or forbid changes to the vari-
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ables by the environment. These functions also serve as validators for the values.

void CustomNeuron::Parameters_::get(DictionaryDatum &d) const {
// Return the resting potential
def<double >(d, names::V_reset, V_reset_);

}

double CustomNeuron::Parameters_::set (const DictionaryDatum& d) {
// Store the state variable
updateValue <double >(d, names::V_reset, V_reset_);

// Validation against the threshold potential
if (V_reset_ >= Theta_)
{
throw BadProperty ("...");

}
}

Listing 2.1: Example of state variable access in NEST. The get() function retrieves
values from the neuron, as demonstrated with the resting potential. The
set() function is responsible for storing data and validating it. In this case,
the resting potential is rejected if it is higher than the threshold potential.

2.1.2 Neuron update mechanics

While changes to the neuron state happen continuously in real life, this is of course not the
case in computer simulations. As described in section 3.1, simulation updates happen due to a
mixture of regular grid updates and irregular events.

In NEST, this process is usually handled in a simplified way, because neurons are per def-
inition always synchronized with the global state updates. They therefore are not required to
respond immediately to events. Input events like spikes are merely buffered into one of the state
variables, and only during the global state updates do state changes happen. Thus, the devel-
opment usually consists exclusively of changes to the calibrate() method used for the state
initialization, and the update() method, which is called regularly by the global state update
mechanism (as described in algorithm 2).

Inside an update() routine, aside from cleaning up time-restricted buffers like ring buffers,
the first thing that happens is usually the accumulation of all action potentials that occurred
since the last update. If they increase the membrane potential enough to warrant spikes, and
if the neuron is not in its refractory period, the appropriate amount of spikes is sent to its
target neurons. Because there is always a synaptic delay, those spikes will only arrive at their
destinations a short time later, which means the target neurons can wait until the next update
cycle to handle them.
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Update neuron state

Perform data logging
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Figure 2.2: Workflow of neuron updates in NEST

Because STDP requires the synapses to know when postsynaptic spikes have occurred, and
because synapses are usually far more numerous than neurons, it is only natural that neurons are
tasked with memorizing the spikes they have produced. In NEST, neurons with this capability
are called Archiving Neurons, and their usage is required in all STDP learning processes.

2.2 Simulation of synapses

As stated in section 1.3, synapses are a critical part of any biological neural network simulation.

Neural networks usually consist of a vast number of synapses, especially if the neurons are
connected recurrently to each other. Additionally the synapse’s update mechanism performs
most of the STDP calculation and can therefore be quite complex.

This means that not only could there be many thousands of synapses to be stored in the
computer memory, their update procedure and event handling could also be potentially slow to
calculate.

Therefore, careful development and optimization of synapse code is integral to writing suc-
cessful simulations.

2.2.1 Synapse state variables

Since synapses are plentiful, it is apparent that parameters applying globally to all synapses of
a model should be stored only once. This ensures synchronization between synapse groups and
can also increase performance by reducing the memory load.
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NEST’s architecture prepares for these global parameters, also called homogeneous param-
eters, by adding Common Properties to the synapse’s architeture. The Common Property object
is provided to all relevant functions as an argument and holds all global parameters as mem-
ber variables. Most importantly, it is allocated only once per virtual process, so the amount of
members every individual synapse has to store is reduced.

class CustomCommonProperties {
friend class CustomSynapse;
private:
// Homogeneous parameters
double_t learning_rate_;

};

class CustomSynapse {
void send(..., const CustomCommonProperties &cp)
{
dw = cp.learning_rate_ * learning_gradient;

}
}

Listing 2.2: Common synapse property in NEST. The common property stores a global
learning rate for all synapses of this model. The object is provided as an
argument to the send() method, where presynaptic spikes are handled.

Aside from homogeneous parameters though, synapse state variables are stored and ac-
cessed in the same way as their counterparts in neurons (discussed in section 2.1.1).

2.2.2 Synapse update mechanics

While neurons usually work with relatively straightforward update mechanisms, usually by
performing state changes only in regular intervals, synapses are a bit more complex.

Synapses need to handle their updates based on the different external events on which STDP
relies upon.

The first and most obvious event is the arrival of a presynaptic spike in the synapse. Since
neurons expect their incoming spikes to have arrived by the global state update immediately
following the synaptic delay, synapses must handle presynaptic spikes instantly. Furthermore,
because the strength of the spike must be decided at the moment the spike is sent to its target
neuron, all changes to the synaptic weight must also happen as soon as a presynaptic spike is
received (because it is then immediately sent on its way to the postsynaptic neuron).

NEST calls the send() method for every time a presynaptic spike occurs, but there is no
event trigger for postsynaptic spikes. This means that many neurons in NEST have to be Archiv-

ing Nodes, because only neurons of this type are capable of storing spikes they have sent, giv-
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ing their input synapses a way of determining the times of their recent postsynaptic spikes. The
timing of postsynaptic spikes is naturally important for STDP learning methods, so memorizing
them is mandatory even though it is costly in terms of memory and runtime.

In algorithm 1, incremental updates are performed for every "time segment" from the last
presynaptic spike until the current presynaptic spike. A "time segment" here refers to a times-
pan limited by two spike events that have no third spike event happening between them. For
every time segment between a presynaptic spike and a postsynaptic spike, or between two post-
synaptic spikes, two updates are performed. One for every time step (see section 3.1 for details
on time steps) but the one that actually included a postsynaptic spike, and then one more update
for the time step in which the postsynaptic spike has occurred. This behaviour might not be
necessary for some learning models, but provides a great deal of control to the developer. After
iterating through all postsynaptic spikes, a final update must be performed for the time segment
between the last postsynaptic spike and the current presynaptic spike.

Algorithm 1 Example of a STDP update without rewards

1: ∆← Resolution unit
2: titerator ← Time of last presynaptic spike
3: tcurrent ← Time of current presynaptic spike
4: Tpostsyn ← Postsynaptic spikes times between titerator and tcurrent

5: for every element tpostsyn in Tpostsyn do
6: if titerator < tpostsyn − ∆ then
7: Call U(titerator, tpostsyn − ∆, f alse)
8: end if
9: Call U(tpostsyn − ∆, tpostsyn, true)

10: titerator ← tpostsyn

11: end for
12: if titerator < tcurrent then
13: Call U(titerator, tcurrent, f alse)
14: end if

Updates are performed by a function U(start, stop, postsyn), which updates the synaptic
weight for the time segment between start and stop. The argument postsyn declares whether
postsynaptic spikes have occurred during that segment.

Algorithm 1 shows a sample procedure outlining the aforementioned update routine. After
the procedure has finished, every single time step between two presynaptic spikes has been
handled in one of the executions of U(start, stop, postsyn).

Additionally, rewards can also happen in irregular intervals and need to be evaluated dur-
ing the synaptic weight updates. This all makes the synapse update routine quite nested and
complex.
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One way to structure all the events is to base all weight updates on presynaptic spikes,
because the weights are irrelevant for postsynaptic spike events and reward events. Only when
a presynaptic spike arrives, must the synaptic weight be updated.

Also, reward events do not require an immediate response from the synapse, so they can be
buffered until needed by the send() method. By then iterating step-by-step through the events
while cleaning up the buffers after every access, the weight update between the last and current
presynaptic spikes can be calculated.

Listings 2.3 and 2.4 outline how such a routine could be realized in NEST. Note that this is
a very granular algorithm, enabling the developer to perform calculations on every single time
step of the NEST resolution by trading off performance. Such a level of control is not necessary
for many learning processes. Figure 2.3 illustrates this routine in graphical timeline and shows
which functions are called at which events.
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void send(...) {

// Start the iterator with the last presynaptic spike
double_t t_last_postsyn = t_last_presyn;

// Fetch postsynaptic spikes
target->get_history();

while (start != finish) {
double_t t_postsyn = start->t_;

// "Negative" updates until t_postsyn spike - resolution_
if (t_last_postsyn < t_postsyn - resolution_) {
updateSynapseState(t_last_postsyn , t_postsyn - resolution_ ,
false);

}

// "Positive" update to t_postsyn
updateSynapseState(t_postsyn - resolution_ , t_postsyn , true);

Update t_last_postsyn for the next loop iteration
t_last_postsyn = t_postsyn;
++start;

}

// Update until current presynaptic spike
if (t_last_postsyn < t_current_presyn) {
updateSynapseState(t_last_postsyn , t_current_presyn , false);

}
}

Listing 2.3: Shortened version of a synapse update routine in NEST, part 1. This is
basically the implementation of algorithm 1. updateSynapseState()
receives the start time, the stop time, and a boolean flag indicating the
presence of postsynaptic spikes as arguments.
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void updateSynapseState(double_t t_from, double_t t_to, bool
postsyn) {

// Start the iterator with the beginning of the segment
double_t t_last_reward = t_from;

// Iterate through rewards
while (!reward_history_.empty()) {
RewardHistoryEntry reward = reward_history_.front();

// reward.first holds the reward time
// reward.second holds the reward value
if (reward.first <= t_to) {
for (double_t time = t_last_reward + resolution_; time <
reward.first; time += resolution_) {
// Update synapse variables for time steps without reward
updateSynapseVariables(time, postsyn, 0.0);

}

// Update synapse variables for the time step of the reward
updateSynapseVariables(reward.first, postsyn, reward.second);

// Update t_last_reward for the next iteration loop
t_last_reward = reward.first;

}
else {
// Remaining rewards are not relevant for this segment
break;

}
}

// Update until end of segment
for (double_t time = t_last_reward + resolution_; time <= t_to;
time += resolution_) {
updateSynapseVariables(time, postsyn, 0.0);

}
}

Listing 2.4: Shortened version of a synapse update routine in NEST, part 2. Following
listing 2.3, every update segment is again sliced into multiple segments
based on reward times. updateSynapseVariables performs the actual
weight update for a single time step based on the presence of a postsynaptic
spike and the reward.
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Figure 2.3: Schematics of synaptic weight updates, as implemented in listings 2.3 and 2.4.
The illustration shows various events between two presynaptic spikes and how
they affect the update function arguments. A postsyn of 1.0 means that a post-
synaptic spike has occurred in this time step. postsyn is 0.0 otherwise. r
denotes the reward at the given time step. The example interprets inactivity of
the reward transmitter as a reward of 0.0.



Chapter 3

Implementation of learning processes in
NEST

3.1 Translating mathematical models into code

Models for autonomous learning processes tend to be described using mathematical formulas,
usually differential equations, that assume continuous updates coupled with instantaneous cal-
culations and need not (and should not) worry about optimization and runtime.

The first step to implementing such a model is therefore always to map the formulas into
functions that can be written as code within the simulator framework. To do this, a thorough
understanding of the framework’s time management strategy is imperative.

Since simulation frameworks operate on computers, and often even clusters of computers,
the computational time varies from the simulated biological time.

The calculation time for a biological second of network changes might be shorter or longer
than an actual second, depending on the circumstances and hardware. Spike transfers that
should be completed within the synaptic delay might take longer, simply because the source
neuron and target neuron are stored on different host servers.

It is therefore necessary to implement some kind of synchronization strategy. The most
trivial of those strategies is also the one most commonly used, and forms the basis for NEST’s
time management as well.

An arbitrarily chosen amount of time is defined as the basic resolution for a given simulation.
Using this resolution, usually called ∆, the simulation is forced into a time grid with regular time
steps. Global state updates will then occur in regular intervals of ∆ and ensure that the neurons
remain synchronized.

This means the whole simulation is based on a loop which updates the simulation state in

20
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regular intervals, as shown in algorithm 2.

Algorithm 2 Simulator main loop used for network state updates

1: define resolution: ∆← 0.1
2: T ← 0
3: while T < Tstop do
4: update network state to time T (i.e. trigger neuron updates)
5: increment network time with resolution: T ← T + ∆

6: end while

Learning rules executed within the network updates can and must take into consideration
that a time span of ∆ has passed since the last update. This can be done by scaling the updates
with the elapsed time, as demonstrated in equation 5.6 and [25]. Also, the resolution must be
chosen carefully, because on the one hand a smaller resolution increases the simulation time,
but on the other hand a larger resolution will cause the network to react slowly to changes.

Using this resolution, continuous processes can be broken down into update steps of interval
∆. As shown in section 2.2.2, the various events influencing the learning process can be nested
so that in the end, an update function is called for every single time step. The broken down
continuous processes are to be calculated here. Inside the function, the developer has access
to the reward transmitter (or the current reward, depending on the implementation), the synap-
tic state variables, and the postsynaptic neuron. The latter can then be queried for whether a
postsynaptic spike has occurred at the current time step or not.

Given that every single synapse runs the update function for every single time step, it is
obvious that optimizing it is crucial.

The best way to optimize the function is to remove unnecessary calculations, for example:

• If a decaying property is already tiny and has no reason to rise, calculating more decay is
wasteful. Instead, the property can be just set to 0.0 or ignored altogether, as demonstrated
in listing 3.1.

• The generation of random numbers is computationally expensive. If a stochastic process
can be calculated analytically for longer time periods - for example in the case of Wiener
processes [41] - then this should be done.

• Constants like scaling factors of double exponential function (which are sometimes used
for the calculation of PSPs, see listing 5.6) can be calculated once beforehand and stored,
if possible in the synapse’s common properties.

Finally, all configuration parameters of the model should be exposed as configurable settings
to the simulation script so that parameter searches do not require recompilation of the extension
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module, and base classes can be defined to reduce boilerplate code, as briefly demonstrated in
section 3.2.

void CustomSynapse::updateSynapseVariables(...) {
// Only decay PSP approximator if it is active, i.e. > 0
if (isPSPActive()) {
updatePresynapticSpikePotential(time, cp);

}

// Only decay eligibility trace if the PSP approximator
// is active and the trace itself is > 0
if (isEligibilityTraceActive()) {
updateEligibilityTrace(time, postsynaptic_spike , cp);

}
}

Listing 3.1: Performance gain by skipping unnecessary calculations. At the time of
updateSynapseVariables(), the PSP approximator can only decay. So
if it is already inactive, the calculation of further decay can be omitted. The
same is true for the eligibility trace.
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3.2 Reward transmitters

In reward-based learning simulations, external, output-dependent signals must be sent to not
only the network nodes, but also the synapses. Since synapses can not be used to connect nodes
to other synapses, NEST provides a way to register Transmitters (see figure 2.1) in synapses.
The synapses can then access the transmitters to access (reward) data, and NEST even provides
a built-in event trigger for when rewards are released.

Using these transmitters, reward-modulated plasticity can be implemented in NEST.

If the output neurons show activity at the appropriate time, a reward is sent using NEST’s
built-in trigger_update_weight()-method. This method is originally designed to handle
dopamine rewards, but can be used for other reward types as well.

A reward transmitter can thus be implemented as a NEST node, which means its update()
method is called in regular intervals. In here, the reward transmitter should calculate the current
reward, and, if necessary, notify its synapses.

void RewardTransmitter::update(...) {
// Rewards are often not sent at every update
if (should_send_reward)
{
// Calculate the current spike rate
double_t sum = 0;
for (const double_t &value : spike_memory_) {
sum += value;

}
double_t current_spike_rate =
1000.0 * sum / (resolution_in_ms * spike_memory_.size());

// Calculate current reward
performRewardUpdate(current_spike_rate);

// Notify synapses about current reward
network()->trigger_update_weight();
}

}

Listing 3.2: Reward transmitter update. In this example, the accumulated spike
rate of all neurons connected to the reward transmitter is calculated
from a spike memory that stores all spikes for a certain duration.
performRewardUpdate() is then called to calculate the reward, before the
synapses are notified. Here, the rewards are not sent to the synapses directly
but need to be queried from the synapses themselves, as demonstrated in
listing 3.3.
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Since trigger_update_weight() is quite rigid, only allowing the passing of an array of
floating values as reward, the reward transmitter may be fitted with accessor methods that can
be called directly by the synapses. This of course causes a decrease in performance because the
neurons have to query their data, but sometimes this drawback is necessary.

Listing 3.2 demonstrates how such a reward update could be implemented. When the weight
update is triggered by trigger_update_weight(), the synapses use accessor methods like in
listing 3.3 to retrieve the rewards.

CustomSynapse::trigger_update_weight(...) {
// Retrieve reward from reward transmitter
double_t reward = reward_transmitter_ ->getReward();

// Perform reward handling , for example just buffer it for the
next update.

reward_history_.push(RewardHistoryEntry(time, reward));
}

Listing 3.3: Retrieval of rewards from reward transmitters.

Additionally, by turning the reward transmitter into a base class, other variants of transmit-
ters can be easily written without having to copy the boilerplate code present in all NEST nodes.
All they need to do is override the update calculation method, as demonstrated in listing 3.4.

// Virtual functions of the RewardTransmitter base class
class RewardTransmitterBase : public Archiving_Node {
virtual double_t getReward() const
{
return B_.current_reward_;

}
virtual double_t getAverageReward() const
{
return B_.current_average_reward_;

}

virtual void performRewardUpdate(double_t spike_rate) = 0;
}

Listing 3.4: Virtual functions of a reward transmitter base class.
performRewardUpdate() transforms the class into an abstract base
class, meaning that RewardTransmitterBase can not be instantiated itself
anymore. Child classes must be developed that implement at least
performRewardUpdate().

To make a synapse model eligible to receive rewards from the reward transmitter, it must
register as a possible reward receiver. This is done by providing the synapse with the global
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ID of the appropriate reward transmitter in the simulation script. The synapse will retrieve the
transmitter from NEST and store it, if possible even in its common properties. This allows it to
call methods of the transmitter, if necessary. An example implementation is shown in listing 3.5.

void CommonSynapseProperties::set_status(...) {
long_t rtgid;
if (updateValue <long_t >(d, "reward_transmitter", rtgid)) {
reward_transmitter_ =
dynamic_cast <RewardTransmitterBase*>(network.get_node(rtgid))
;

}
}

nest::Node* CommonSynapseProperties::get_node()
{
if (reward_transmitter_ == 0)
return CommonSynapseProperties::get_node();

else
return reward_transmitter_;

}

Listing 3.5: Registering a reward transmitter in the synapse. In this demonstration,
the reward transmitter is stored in the common properties of the synapse.
dynamic_cast will set the member to 0 if it fails (i.e. an invalid ID was
provided). This can either be ignored or handled as an error.

3.3 Data logging and debugging

Data logging can be accomplished in two ways. Either the neuron stores its historical data in
buffers that can be accessed using the API (i.e. PyNEST), or a NEST recorder periodically
retrieves the current data from its assigned neuron objects.

NEST by default implements a data recorder called Multimeter that can be used for such
tasks. The neuron exposes variables that should be tracked to the recorder, which then period-
ically polls their values and stores them. Since Multimeters are nodes themselves, they can be
easily connected to only a subset of neurons, greatly decreasing their memory consumption.

Listings 3.6 and 3.7 (both based on [45]) showcase how a neuron model can be configured
to work with Multimeters in order to log data.

While this is a convenient way to store data, it is not as flexible as sometimes necessary.
Due to the Multimeter’s regular updates, it is for example not possible to only record data when
the researcher knows it is relevant.
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// Read out the current membrane threshold
double_t get_Theta_() const { return threshold_potential_; }

// Register V_th as a valid variable to record
void RecordablesMap <CustomModule::CustomNeuron >::create() {
// The first parameter denotes the out-facing name of the
variable

// The second parameter declares the corresponding accessor
method

insert_(names::V_th, &CustomModule::CustomNeuron::get_Theta_);
}

Listing 3.6: Registration of a recordable variable. First, an accessor method is defined
that can return the desired variable. This method is then registered in a
dictionary used by the multimeter.

neuron = nest.Create('CustomNeuron')

// 'record_from' specifies the data that should be logged
rec = nest.Create('multimeter', params={'record_from': ['V_th']})

nest.Connect(recorder , neuron)
nest.Simulate(...)
events = nest.GetStatus(rec,'events')

Listing 3.7: Logging a recordable variable. A multimeter is created and configured for
the threshold potential. After the simulation, the data is available.

By having the neuron store its historical data itself, data logging can be heavily customized.

For example, it is straightforward to log only sparse data by discarding data irrelevant to
the simulation. The addition of a boolean flag could then allow the researcher to toggle which
neurons should log their data at all. Alternatively, an interval can be used to specify when data
should be logged.

Another drawback of Multimeters is their inability to log data from synapses.

Listing 3.8 demonstrates a trivial approach of memorizing data, simply by storing it into
std::vector objects. This way, the data can be retrieved from the simulation code by using
the common NEST command GetStatus(), and it has the same layout as data retrieved from
NEST’s built-in recorders.

Storing debugging data from synapses is sometimes necessary, but depending on the net-
work very costly, given the sheer amount of synapses that might be present. Therefore, it is
advisable to activate debugging only for a subset of synapses. Fortunately, in NEST models
can be duplicated and then independently modified. Listing 3.9 shows how two populations of
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synapses are created that have the same behaviour except for logging.

class CustomSynapse : public nest::Connection
{
private:
// Recorder buffers
std::vector<double_t> recorder_times_;
std::vector<double_t> eligibility_trace_values_;
std::vector<double_t> psp_values_;

}

void CustomSynapse::get_status(DictionaryDatum & d) const
{
(*d)["recorder_times"] = recorder_times_;
(*d)["eligibility_trace_values"] = eligibility_trace_values_;
(*d)["psp_values"] = psp_values_;

}

void CustomSynapse::updateSynapseVariables(...)
{
// Perform updates according to model
...

// Perform logging
if (is_logging_active())
{
recorder_times_.push_back(time);
eligibility_trace_values_.push_back(eligibility_trace_);
psp_values_.push_back(psp_);

}
}

Listing 3.8: Manual data logging of the eligibility trace and the PSP approximator of
a synapse. Since both variables are recorded in the same interval, a single
buffer to hold the recorder times is sufficient. Before the data is logged,
a check is run to ensure that the data should be recorded. Reducing the
amount of logged data reduces the memory load considerably.
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# Synapse configuration with logging deactivated
synapse_configuration = {"weight":0.5, "recorder_interval":0.0}

# Copy the synapse configuration
logging_synapse_configuration = synapse_configuration.copy()

# Activate logging, log data once every 10 ms
logging_synapse_configuration["recorder_interval"] = 10.0

# Create new NEST model with logging activated
nest.CopyModel("custom_synapse", "logging_synapse",
logging_synapse_configuration)

# Connect neurons without logging
nest.Connect(population1 , population2 , syn_spec="custom_synapse")

# Connect neurons with logging
nest.Connect(population1 , population2 , syn_spec="logging_synapse")

Listing 3.9: Activation of data logging for a subset of synapses
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Parallel computation in NEST

4.1 Architecture and performance of parallel simulations

Simulations of neural networks require large amounts of computational power. Performing the
calculations in parallel is one way to tackle this challenge [8, 35].

The following paragraphs summarize how parallel computation works in NEST, based on
the documentation in [38] and [46].

Aside from support for multi-threading, NEST implements parallelization by distributing
the calculation over Virtual Processes. Each virtual process can, from the researcher’s point of
view, be considered equivalent regardless of the host on which the virtual process is run, making
the simulation development easier and far less prone to errors.

Performance gains are achieved by having virtual processes hold only a part of the whole
network and perform only the calculations relevant to their share of the network, as is illustrated
in figure 4.1. Nodes are generally distributed evenly among all VPs, though it is possible to force
nodes onto specific ones. The reasoning behind this is that neurons that are causally related
interact more frequently and should be placed on the same process to reduce communication
overhead. This technique can be helpful for simulations of for example cortical columns, where
information about stronger connections might be known beforehand.

Nodes are substituted on foreign VPs by so-called proxies. They store no data and only act
as placeholder. Synapses are always stored on the VP of the target neuron. Generators cause
no significant overhead (compared to the rest of a decently sized network) and are therefore
cloned onto every VP. Recorders also exist on every VP, but every recorder tracks only the data
generated on its own process, thereby reducing communication overhead.

Although NEST handles most of this procedure automatically, the network update becomes
more complicated (and thus slower), because the network state, network time and events must
be synchronized over all virtual processes.

29
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Figure 4.1: Node distribution in NEST, taken from [46]. The illustration considers a net-
work with 6 nodes on 4 VPs. The VPs are in turn hosted on 2 hosts P0 and
P1. Generators (sg) and recorders (sd) are cloned onto all VPs and are inde-
pendent, neurons (iaf) exist only on a single VP and are substituted by proxies
on the other VPs.

Algorithm 3 Parallelized computation loop in NEST, taken from [38]

1: T ← 0
2: while T < Tstop do
3: parallel on all vp ∈ NVP do
4: deliver all events due
5: call U(S T ) for all nodes
6: end parallel
7: exchange events between VPs
8: increment network time: T ← T + ∆

9: end while

This means that adding more threads and processes does not automatically increase perfor-
mance.

Complex networks in which individual calculations, like weight updates, require the ma-
jority of the calculation time, benefit the most from parallel computations. In contrast, the
overhead caused by the additional synchronization requirements quickly offset potential speed
gains in simple networks where spike transfers and communication require more time than the
calculations themselves.

Aside from the network and the hardware in use, the effectiveness of the parallelization
approach also depends on the properties of the parallel environment.

• Number of hosts: A small number of hosts means that they might individually have too
much pressure on them. But every host added to the simulation increases the communi-
cation overhead significantly due the distribution of processes onto separate servers.
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• Number of processes per host: Multiple processes enable the simulation to make use of
the multiple CPU cores available on current hardware and thereby significantly improve
performance. However, if the number of processes exceed the host’s capabilities (i.e. the
CPU executes them serially and not in parallel) then only communication overhead is
added without gaining any performance in return.

• Number of threads per process: Most modern CPUs are capable of high performance
multithreading. This adds considerably less communication overhead than processes do,
but burdening the CPU with too many threads will also cause a drastic reduction of per-
formance.

• Neuron distribution: As mentioned, clever distribution of neurons based on their connec-
tions may improve performance by allowing causally connected neurons to communicate
faster.

Since all those factors influence each other and many are hardware-specific, there are no
general rules on when and how to use a parallel environment.

Generally speaking though parallel setups, even if only multi-threading is used, will likely
increase performance in most cases. NEST has shown that even in benchmark scenarios with
simple networks, supra-linear speed-up can be achieved until up to 8 virtual processes. Complex
networks have displayed supra-linear scaling with up to 80 virtual processes [38].

4.2 Random numbers

Even if a neural network does not implement stochastic features, random numbers are often
required in order to either initialize the network to an independent state or to generate random
training and test samples.

The NEST documentation explains in [47] how random numbers should be handled. This
information is summarized in this section.

Ideally, the whole simulation would only access a single random number generator. As this
would require far too much locking and synchronization effort, the virtual processes of simula-
tors often each use a generator of their own. However, since the random number generators are
likely initialized with different seeds on different virtual processes, special considerations must
be taken into account for them in parallel environments.

The two requirements for random numbers are that they must be synchronized across multi-
ple virtual processes, and simulations using random numbers must be reproducible (this is also
true for non-parallel simulations). If every simulation run were to be calculated with differ-
ent seeds, debugging and analysis would become almost impossible to do. Fortunately, NEST

allows the researcher to seed its random number generators manually, as shown in listing 4.1.
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random_seed = 20000 # Seed for NEST
random.seed(10000) # Seed python ' s RNG
numpy.random.seed(30000) # Seed numpy ' s RNG
N_vp = nest.GetKernelStatus(["total_num_virtual_procs"])[0]
pyrngs = [numpy.random.RandomState(s) for s in range(random_seed ,
random_seed+N_vp)]

nest.SetKernelStatus({"grng_seed" : random_seed+N_vp})
nest.SetKernelStatus({"rng_seeds" : range(random_seed+N_vp+1,
random_seed+2*N_vp+1)})

Listing 4.1: Seeding the NEST random number generators, based on [47]

By setting explicit seeds, results can be reproduced if necessary. Additionally, all virtual
processes executing this script will use the same seeds. This synchronization is important
because, while virtual processes will naturally end up with the same results in deterministic
computations, the almost guaranteed presence of random numbers will produce contradicting
results across the processes if the various simulator instances do not use the same random seed.

Aside from that, pyrngs in listing 4.1 contains a distinct random number generator for
every virtual process. They are used for cases in which random numbers are generated that
must explicitly be independent from each other on different virtual processes.

For example, in listing 4.2, all synaptic weights are randomized at the beginning of the
simulation. The code showcases both the access to the synapses (in NEST, synapses are only
stored on the virtual process of the target neuron) and the usage of the per-process random
seeds.

node_info = nest.GetStatus(neurons)
local_nodes = [(ni['global_id'], ni['vp']) for ni in node_info if
ni['local']]

for gid, vp in local_nodes:
synapses_for_gid = [synapse for synapse in structural_synapses if

synapse[1] == gid]
for synapse in synapses_for_gid:
nest.SetStatus([synapse], {"weight":pyrngs[vp].uniform(
min_initial_weight , max_initial_weight)})

Listing 4.2: Randomizing synaptic weights in NEST, based on [47]

Thus, as long as all random number generators used in the simulation are managed as afore-
mentioned, parallel simulations can be run correctly and with reproducible results.
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4.3 Development of simulations for parallel environments

While simulators generally take care of most kernel-side requirements for parallel computing,
it is likely that user-written simulation code has to be adapted manually.

Since the parallel environment is likely managed by the Massage Passing Interface stan-
dard [10], the required changes are demonstrated with it.

At the beginning of the simulation, MPI must be included. It might be worth it to consider
that some users of the experiment have no access to MPI-enabled features.

mpi_enabled = True
try:
from mpi4py import MPI

except ImportError:
mpi_enabled = False

Listing 4.3: Enabling MPI if it is available on the system

The simple code block shown in listing 4.3 sets a boolean flag depending on whether MPI is
available on the system. By checking the flag before running code specific to MPI, unnecessary
errors are avoided.

Secondly, random numbers must be handled correctly as described in section 4.2.

Finally, plotting and printing must be handled manually, for example using MPI4PY, in
order to consolidate results. In order to avoid redundant data on multiple hosts, every virtual
process in NEST has its own data recorders and only tracks changes occurring on itself, as
described in section 4.1. Simply displaying data as one would do in single-process applications
would therefore only yield multiple incomplete fragments.

To consolidate the data, the results from the different processes must be gathered and dis-
played only on a single process. MPI4PY conveniently offers a functionality called Gather()
for this particular purpose.

Listing 4.4 demonstrates how the event arrays stored inside the entity buffers can be gathered
by MPI and merged into a single array which can then be displayed normally.

This procedure is slightly different for node recorders and synapses, because synapse data
is stored in tuples, while recorder data is stored in arrays. This is an implementation detail of
NEST though and might be subject to change at any given time.

Note the use of mpi_enabled, ensuring that the code will also run as expected when mul-
tiple processes are not supported.



4.3. Development of simulations for parallel environments 34

# Status retrieval of local nodes
local_hidden_events = nest.GetStatus(spike_detector , "events")[0]

# Only connections targeting neurons on the process return
meaningful data

local_connectionStati = nest.GetStatus(nest.GetConnections(),["
source","target","weight"])

# Consolidate results
if mpi_enabled == True:
# MPI Gathering
comm = MPI.COMM_WORLD
gathered_hidden_events = comm.gather(local_hidden_events , root=0)
gathered_connectionStati = comm.gather(local_connectionStati ,
root=0)

else:
gathered_hidden_events = [local_hidden_events]
gathered_connectionStati = [local_connectionStati]

# Initialize data structures for consolidated results
global_hidden_events = {"times":[], "senders":[]}
global_connectionStati = ()

if nest.Rank() == 0:
# Populate global data structures

for hidden_event in gathered_hidden_events:
global_hidden_events["times"] = np.append(global_hidden_events[
"times"], hidden_event["times"])

global_hidden_events["senders"] = np.append(
global_hidden_events["senders"],hidden_event["senders"])

for connectionStatus in gathered_connectionStati:
global_connectionStati += connectionStatus

# Proceed with plotting and printing based on global_* arrays.
...

Listing 4.4: MPI data consolidation
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Examples

5.1 Step Poisson Generator

Generators are nodes that create input for the network, either in the form of currents or spike
trains.

NEST ships with a number of generators that suffice for most cases, but as is the case with
neurons it is sometimes necessary to develop a custom generator.

For example, NEST includes a Step Current Generator and a Poisson Generator. The Step

Current Generator can be configured to send specific constant currents at different simulation
times, and the Poisson Generator sends spike trains into the network based on a Poisson distri-
bution with an expected value of λ. Inconveniently, λ can only be set once at the beginning of
the simulation, and remains the same during the run of the simulation. There is no way (as of
yet) to generate Poisson spike trains that change their λ at specific time intervals.

Therefore, a Step Poisson Generator is shown that works like the Poisson Generator, except
that it can use different λ at different simulation times. The Generator uses a probability mass
function similar to the standard Poisson distribution, only with an added time parameter, as
described in equation 5.1, where k = 0, 1, 2, ... denotes possible numbers of spikes.

f (k; λ; t) = Pr(X = k | t) =
λt

k · e−λ

k!
(5.1)

The first step of implementing the generator is to specify the necessary state variables.

Just like the Step Current Generator stores current values, Step Poisson Generator stores λ
values, as can be seen in listing 5.1.

Then, as shown in listing 5.2, at every update, the current λ is updated and an appropriate
number of spikes is generated. The example implementation simply borrows the Poisson device
also used in the implementation of the built-in Poisson Generator and reconfigures it with the

35
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class StepPoissonGenerator : public Node {
struct Buffers_ {
size_t idx_; // index of current lambda
double_t lambda_; // current lambda

};
struct Parameters_ {
// A list of times when lambda should change
std::vector<double_t> lambda_times_;
// A list of values to which lambda should change
std::vector<double_t> lambda_values_;

};
};

Listing 5.1: Step Poisson Generator state variables, based on NEST’s Step Current
Generator.

void StepPoissonGenerator::update (...) {
for (long_t lag = from; lag < to; ++lag) {
poisson_dev_.set_lambda(resolution_in_ms_ * rate_ * 1e-3);
if (device_.is_active() && rate_ > 0) {
DSSpikeEvent se;
network ()->send (*this, se, lag);

}
}

}

void StepPoissonGenerator::event_hook (DSSpikeEvent& e) {
librandom::RngPtr rng = net_->get_rng(get_thread());
long_t n_spikes = V_.poisson_dev_.ldev (rng);

if (n_spikes > 0) { // Do not send events with multiplicity 0
e.set_multiplicity(n_spikes);
e.get_receiver().handle (e);

}
}

Listing 5.2: Step Poisson Generator spike generation, based on NEST’s Poisson
Generator.

current λ to calculate the number of spikes.

The final Step Poisson Generator can be easily configured with λ change times and values,
demonstrated in listing 5.3. While this is a simple example, it clearly shows that being able to
write their own extension modules, even trivial ones, can quickly raise the comfort researchers
have testing their theories.
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step_poisson_generator = nest.Create("step_poisson_generator", 10)
times = [0.01, 1000.0, 2000.0, 3000.0, 4000.0]
lambda = [10.0, 50.0, 100.0, 50.0, 10.0]
nest.SetStatus(step_poisson_generator , {"lambda_times":times, "
lambda_values":lambda})

Listing 5.3: Step Poisson Generator usage. The result can be seen in figure 5.1.
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Figure 5.1: Step Poisson Generator spike trains based on the simulation code shown in
listing 5.3. Each spike train is produced by an independent Step Poisson Gen-
erator. The generators are initially configured with an estimated mean spike
rate λ of 10 Hz. During the simulation, the estimated rates are changed once
for every simulated second, first to 50 Hz, then to 100 Hz, then back to 50 Hz
and finally again to 10 Hz.

5.2 Bias Neuron

A problem often encountered when working with spiking neural networks is the lack of a stable
spiking behaviour.

For example, should the environmental stimulus be too weak to cause spiking activity in the
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network (a leaky integrate-and-fire neuron requires a constant current of at least 376 mV for
the membrane potential to reach the common spike threshold of −55 mV if it does not receive
spikes), it simply does nothing.

On the other hand, if the environmental stimulus is too strong, the neurons might start
to spike uncontrollably at their maximum spike rate, suffering the simulated equivalent of a
seizure. This can occur quite easily in recurrently connected networks where feedback loops
can happen.

It would thus be convenient to have a mechanism that automatically dampens or heightens
the network’s sensitivity, ideally at the neuron level. The goal is to reduce the spike likelihood
of neurons that have too much spike activity, and do the opposite for neurons that do not spike
often enough.

Various solutions can be used to accomplish this task. An additional stimulus could be sent
into the neuron that changes its strength based on the neuron’s spike rate. Alternatively, the
additional stimulus stays the same and a synapse is trained to change its weight appropriately.
The stimulus can be either a current, or it could even be a spiking neuron. Given its convenience
and predictability, the former option is probably the better choice if the network model does not
explicitly demand the latter one.

Alternatively, the neuron itself could adapt its state variables to achieve the desired effect,
completely circumventing external stimuli. Manipulating the spike threshold is a trivial example
for that.

In NEST, both strategies can be easily accomplished. Faking an external current is built-in
in the standard neurons, and the manipulation of the spike threshold simply requires a change
to the associated state variable.

In this example, the threshold approach is chosen and implemented in the Bias Neuron. This
neuron works the same as the standard Integrate-and-fire neuron (and in fact uses the neuron
code as its template), but it will change its spike threshold depending on its spike rate. The
desired minimum and maximum spike rates, the update speed and the neuron’s memory length
can all be configured from the simulation script.

Equation 5.2 summarizes the desired behaviour, where T is the threshold potential, µ is the
bias update rate, Vr is the membrane resting potential, z the current spike rate and zmax and zmin

are the highest and lowest acceptable spike rates respectively.

∆T =


µ, if z > zmax

−µ, if z < zmin and T − µ > Vr

0, otherwise

(5.2)

The neuron holds a ring buffer consisting of one entry for every n last update steps, where n

is the memory length. If the average sum of the values in the ring buffer exceed the maximum
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spike rate, the threshold is increased, thereby making it harder for the neuron to spike. If the
average sum is lower than the minimum spike rate, the opposite happens.

Obviously, the bias neuron’s update size must be very small, lest it interferes with learning.
The learning update size must be significantly larger than the bias update size, otherwise the
learning algorithm will interpret performance changes due to the bias as results of the learning
process.

Furthermore, it is very important to choose a sufficiently long memory length. The reason
being, that spike rates are defined as spikes per second. If the memory length is shorter than
that, then the spike rate will be extrapolated linearly from the spikes within the memory length.
This is fine as long as the neuron spikes fairly regularly. However, if the neuron only spiked
a lot for a fraction of a second, and the memory length is not much longer than that, a far too
high spike rate is calculated for that period, potentially destabilizing the learning process. This
must be kept in mind especially for the first second of simulation, where nothing more than
extrapolated data is available.

void BiasNeuron::update(...) {

// Calculate the current spike rate
double_t current_rate =
1000.0 * outgoing_spikes_.sum () / (std::min(time_in_ms ,
bias_memory_length_));

if (current_rate > bias_spike_rate_maximum_) {
// Current spike rate is too high, increase threshold
Theta_ += bias_update_size_;

}
else if (current_rate < bias_spike_rate_minimum_) {
// Current spike rate is too low, decrease threshold
// Make sure that the threshold is still higher than the
resting potential

Theta_ = std::max (V_reset_ + 0.0001, Theta_ -
bias_update_size_);

}
}

Listing 5.4: The threshold potential is increased and decreased in steps of
bias_update_size, depending on the current spike rate. The code makes
sure that the threshold potential can not become smaller than the resting
potential.

Listing 5.5 showcases the usage of the Bias Neuron by connecting it to a step current gen-
erator. The generator changes the bias input every second, prompting a change of the threshold
potential in the Bias Neuron. In this simulation, the neuron is tasked with maintaining a spike
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rate of 10 Hz. The effort of the neuron can be seen in figure 5.2.

bias_neuron = nest.Create("bias_neuron")
bias_neuron_configuration = {"bias_spike_rate_minimum":10.0, "
bias_spike_rate_maximum":10.0, "bias_update_size":0.001, "
bias_memory_length":100.0}

nest.SetStatus(bias_neuron , bias_neuron_configuration)
nest.Connect(generator , bias_neuron)

Listing 5.5: Bias neuron usage
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Figure 5.2: Bias neuron usage. The first plot shows the neuron input, with step-wise
changes every second. The neuron’s spikes are visible in the second plot. No-
tice how the neuron returns to a spike rate of 10 Hz shortly after every change
in the input current. The third plot visualizes the changes in the membrane
threshold. The threshold does not change as long as the desired spike rate is
maintained, but will promptly adjust if this is not the case.

5.3 Digit Classification

This example is based on [23]. The goal is to train a network for the classification of MNIST [28]
images depicting different handwritten digits.

The experiment uses a straightforward approach of mapping the images to network input.
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Every pixel of a image is mapped to a single input neuron. This neuron bases its spiking activity
on the gray-scale intensity of its image. Specifically, in this example spikes are generated based
on Poisson distributions with the pixel intensity as base for their expected values.

The pixel intensities are normalized so that the input neurons spike in a predictable way
regardless of the digits that are used. The values are changed in a way that ensures that estimated
values for any given input neuron are limited between a predefined interval.

Given a set Q of values representing the pixel intensities of a MNIST image, the corre-
sponding set λ of expected values for the input neuron Poisson distributions is generated by
applying the common linear scaling method shown in equation 5.3 to every Qi in Q to calculate
the corresponding λi in λ. Xmin and Xmax denote the desired minimal and maximal spike rates
respectively.

λi = Xmin +

(
(Qi − Qmin) ·

Xmax − Xmin

Qmax − Qmin

)
(5.3)

The input is provided by Step Poisson Generators described section 5.1, while the output
neurons are Bias Neurons from section 5.2.

In the particular case of NEST, STDP synapses typically cannot connect directly to genera-
tors, so the generators first have to send their spike trains to so-called parrot neurons that in turn
can mirror their input to the actual hidden neurons with STDP synapses featuring a learning
process based on in [23].

The network is thus a feed-forward network using generators as mappings for MNIST digits,
which use parrot neurons to indirectly send spikes to the output neurons. Thus, any single output
neuron is connected to every input neuron.

5.3.1 Part 1: Learning without rewards

In the first part of the experiment, the network receives no rewards whatsoever.

The synaptic update of the learning process is described in equations 5.4 and 5.5 (taken
from [23]), where wki is the synaptic weight between the presynaptic neuron i and the postsy-
naptic neuron k, µ is the learning rate and zk is a classifier denoting whether the neuron k has
spiked or not (zk = 0 if neuron has not spiked, zk = 1 if neuron has spiked).

∆wki = µ zk (ẑi − exp(wki)) +
√

2Tµ ν (5.4)

ν ∼ NORMAL(0,1) (5.5)

The term «
√

2Tµ ν» is a simple random walk process that adds some noise based on the
temperature T to the synapse, as described in section 1.3.
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The PSP approximator ẑi is described in section 1.2.

One way to calculate the PSP approximator ẑi is to approximate it using a double exponential
function. Of course, this is only possible if the PSP of neuron behaves similarly to the chosen
function. Listing 5.6 demonstrates a sample implementation. In the send() function of the
synapse, two exponential functions are incremented by 1 for every presynaptic spike, mimicking
an action potential. Assuming that a facilitation rate and a depression rate are predefined the
code then combines the two exponential functions into a single ẑi.

void updatePSPApproximator(double_t dt_last_update) {

// Function shape: u/(u-v) * (e^(-dt/u) - e^(-dt/v))

psp_facilitation_ *=
exp(-1.0 * dt_last_update / psp_fac_rate_);

psp_depression_ *=
exp(-1.0 * dt_last_update / psp_dep_rate_);

psp_approximator_ =
(psp_fac_rate_/(psp_fac_rate_ - psp_dep_rate_)) *
(psp_facilitation_ - psp_depression_);

}

Listing 5.6: PSP approximator update. It generates a shape similar to figure 1.3a.

From the update rule it becomes apparent that the synaptic weight does not change (∆wki =

0) if the postsynaptic neuron has not spiked (zk = 0). The simulation can therefore omit the
calculation of the weight update in those cases. The update rule in equation 5.4 can therefore be
transformed to equation 5.6, which is only run when a postsynaptic spike has occurred (zk = 1)
in the time step.

∆wki = µ tk (ẑi − exp(wki)) +
√

2Tµtk ν (5.6)

Since the calculation is omitted between postsynaptic spikes, every time the weight update
is calculated the time that has passed since the last update must be taken into account. Thus, the
factor tk, denoting the time since the last update, is added into both the actual learning part and
the random walk process of the update rule in equation 5.6.

After the synaptic weights have learned for a while, every neuron will have "decided" for a
digit and spike only if that particular digit is shown to the network.

This learning process produces decent results, as shown in figure 5.3, but the network can
hardly be called a reliable classifier if every neuron is allowed to randomly "specify" a digit it
will identify. This happens because, at the beginning, each neuron just fires at random. Then if,
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for a short time depending on the learning rate, its spike behaviour happens to coincide with the
appropriate behaviour for a certain digit, the STDP mechanism will cause the neuron to slowly
fixate on the digit. In a sense, the digits serve as attractors to the neurons, but which neurons
happen to move into which digit’s attractor basin is completely random.

Figure 5.3: Digit classification without learning, visualizing the synaptic weights after
showing the network 1000 images for 50 ms each. Every sub-figure shows
the incoming synapses for a single output neuron, in a layout consistent with
the MNIST input. As can be easily seen, most neurons specify one of the four
possible digits (2, 3, 4, or 5).

Aside from having no control over the digit each neuron learns, this also means that the
network must consist of a relatively large number of neurons to increase the probability that
every digit is learned by at least one neuron.

Consequently, in the second part of the experiment, the learning process is reinforced with
a reward mechanism.

5.3.2 Part 2: Reward-based learning

This example uses a very basic form of reward-based learning. At regular time intervals, the
synapses receive their rewards based on their target neuron’s performance. If a positive reward
is received, the last few weight changes are kept. If no reward is received, the last few weight
changes are discarded, effectively resetting the synapse to an earlier state. Equation 5.7 shows
the handling of the weight w for every time step ρ in which a reward r is received.
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wρ =

 wρ, if rρ = 1
wρ−1, if rρ = 0

(5.7)

A subclass of Reward Transmitter (as discussed in section 3.2) has to be developed that can
be configured with a target digit. Every neuron is connected to a single reward transmitter, and
it spikes while its transmitter’s target digit is shown to the network, it receives a reward. The
same happens if the spiking activity stops while the digit is not shown.

To tune the reward transmitter a bit stricter, it is configured to only send rewards when the
performance actually improves, not when it stays the same. For example, no reward is sent if
the neuron spikes with a constant rate while its digit is shown. It has to increase its spike rate
to receive a reward. This effectively means that synapses can only permanently change their
weights if the change resulted in a stronger recognition of the target digit. This behaviour is
shown in equation 5.8, where xt is the neuron’s spike rate at time t and yt is a classifier denoting
whether the reward transmitter’s digit was shown to the network at time t (yt = ∞ if digit was
shown, yt = 0 if another digit was shown).

rt =

1, if |yt − xt| < |yt−1 − xt−1|

0, otherwise
(5.8)

It is important to note that this is only feasible because there is no punishment mechanism
included in the learning process - if no reward is sent, the network simply resets. If this was
not the case, a reward transmitter like the one described could potentially hurt the network
performance by having the synapse weights move away from reasonably good values.

Figure 5.4 shows that neurons were indeed forced to recognize predefined digits.

Figure 5.4: Synaptic weights after learning with rewards. Each row represents a group of
neurons with a different target digit. The neurons have not perfectly learned
their desired digits yet, but it is apparent that they will if given enough learning
time.
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5.4 Learning a sine wave spike rate pattern

When a new learning algorithm is tested, it seems obvious to start with a simple experiment.
One apparently trivial task is to train a neuron to imitate another neuron’s spike rate.

Such a network consists of only a few input neurons, an output neuron and a reward trans-
mitter.

The input neurons can be either generators or neurons. Again, the Step Poisson Generator

comes in handy. The input neurons are connected to the output neuron, but not to each other.
One of these neurons is designated as target neuron, and its spike rate is the one that should be
imitated by the output neuron.

The output neuron is connected to the input neurons via autonomously learning synapses. In
this case, the usage of biased neurons would skew the results too much, so a stochastic neuron
model (as described in section 1.2) is used for the output neurons.

Finally, the reward transmitter is configured to offer a high reward if the output neuron spikes
at a frequency similar to the target neuron. One possible solution for this is to exponentially
decay the reward the farther the actual value is away from the target, as shown in equation 5.9.
In this equation, κ can be used to specify the rate of the decay. r, y and x are the reward, the
target value and the actual value, respectively.

r = exp−κ (y−x)2
(5.9)

Figure 5.5 demonstrates the effect of different decay rates.
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Figure 5.5: Comparison of reward decay rates. The target value y is set to 75. Bigger
values for the decay rate κ cause the reward transmitter to become stricter,
while small κ values will result in decent rewards even when the current value
x is very different from y.

Algorithm 4 summarizes the synaptic learning rule used in this simulation, which is a sim-
plified version of the synapse model presented in [25] (see section 1.3).



5.4. Learning a sine wave spike rate pattern 46

Algorithm 4 Synaptic model of reward-based learning [25]

At each time step t, ∀k, i:

1: update eligibility trace: eki(t) = eki(t − ∆t)e−∆t/tep + tep Wki ẑi(t) (zk(t) − fk(t))

2: update synaptic parameters: θki(t) = θki(t − ∆t) + ∆θki(t)

with ∆θki(t) = η

(
1
σ2 (µ − θki(t − ∆t)) +

r(t)
r̄(t)

eki(t)
)

+
√

2Tη ν

and ν ∼ NORMAL(0,1)

3: update synaptic weight: Wki = exp(θki − θ0)

4: update average expected reward: r̄(t) = (1 − τr) r(t − ∆t) + τ r(t)

In the algorithm, k represents the output neuron, while i denotes one of the input neurons.
The other terms are variations of the terms used in equation 1.5 in section 1.3. The prior term
(Ω) demands that the synapse exerts some effort in order to change its weight and significant
deviations from the attractor must be warranted by high rewards. µ and σ are parameters that
configure this prior. The reward in this case is dependent on a reward average r̄(t), which in turn
decays with an integration time constant of τ. The result of this is multiplied with the eligibility
trace eki(t) discussed in section 1.3 in order to calculate a trajectory for the weight update (ψ in
section 1.3). This, combined with the prior and the random walk term (the same one as in 5.4),
results in the overall change of the weight.

For this experiment, two input neurons are used that spike with rates that increase and de-
crease in a sine wave pattern. The wave pattern of one neuron is phase shifted relative to the
other neuron. The goal is to have the output neuron decide for one of the input neurons and im-
itate its spike rate pattern while learning to ignore the other input neuron. Figure 5.6 illustrates
the spike rates of the two input neurons.

Running the simulation with various parameter configurations keeps producing results like
the one in figure 5.7. It does look promising, but apparently the experiment is not as simple as
it appears to be and it quickly turns out that balancing the parameters is quite tricky.

If the temperature is set too high, the neuron’s spike rate is not reliable enough to learn any-
thing meaningful. If it is set too low, there is little incentive for the neuron to differ its spike rate
from its natural attractor. Waiting for that to happen by chance will likely significantly increase
the required simulation time, making it more tedious to experiment with the parameters. Similar
statements can be made for the other parameters. As long as the neuron receives a reward, even



5.4. Learning a sine wave spike rate pattern 47

Figure 5.6: Input neurons with sine wave pattern spike rates. The spike rates follow a sine
wave pattern with a mean of 50 Hz, an amplitude of 50 Hz and a frequency of
0.1. The phase shift of neuron 1 is π radians, the phase shift of neuron 2 is 0
radians.

Figure 5.7: Spike rate of a stochastic neuron trained to spike following a sine wave pattern.
In red, the desired output spike rates. In blue, the actual spike rates.

if it is a small one, the synapse weight continues to increase. This is unfortunately also true if
the synapse weight has reached the global optimum. This is for example the reason why the
spike rate in figure 5.7 keeps overshooting the desired spike rates and cannot seem to reach low
spike rates. In the whole time during which the output neuron correctly decreases its spike rate,
the reward increases the synapse’s weight, causing the spike rate to rise unwittingly.

It can therefore be shown that the learning process, though theoretically sound, does have
some difficulties with tasks like the one that was tested. Fortunately, from these simulation
results alone a number of possible ways to improve the model have already become apparent.

Implementing some kind of stabilization mechanism could prevent the weights to change
too much while rewards are received. The mechanism could in theory cause the synapse to
just offset its prior with its weight changes as soon as a sufficiently high reward is consistently
reached.



5.4. Learning a sine wave spike rate pattern 48

There is no "punishment" when the reward decreases. While higher rewards will actively
increase the synaptic weights, lower rewards will merely reduce the effect of the eligibility
trace, relying solely on the prior to reduce the weight. This could help to mitigate the kind of
overfitting observed in figure 5.7.

Utilizing some kind of simulated annealing to gradually decrease the strength of the noise
could speed up the learning process without breaking it. With the model presented, the noise
must be very small to not interfere with learning. Regrettably, this means that it can take a long
while for the synapse weight to randomly find a value good enough to warrant a reward. As
soon as a reward is received, the learning process takes over, but until then, random walk and
the prior are the only things changing the synaptic weight. Annealing would allow the synapse
to start with a high degree of noise and then quickly reduce it as soon as a basin of reward has
been found. Even better, mechanism could increase the noise at any time during the simulation
if the synaptic weight somehow leaves the reward space again. However, it is not clear how the
addition of such a mechanism could be justified in the theoretical model.

For all of these suggestions, the underlying theoretical model needs to be re-evaluated. But
this is a good thing, since the simulation thereby might have helped to improve the model.

Even without those changes though, correctly configuring the various parameters of the
model can cause a significant increase in performance, as can be seen in figure 5.8. The param-
eter search can be very tedious and time-consuming though, motivating further improvements
to the model.
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Figure 5.8: Successful simulations of sine wave learning. (a) Weight changes in a suc-
cessful simulation run. The synaptic weight between neuron 1 and the output
neuron diminishes while the weight from neuron 2 keeps increasing until it
reaches the appropriate value. (b) Another successful simulation run, this time
showing the spike rate of the output neuron. The output neuron’s spike rate
aligns perfectly with the target sine wave pattern.
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5.5 Learning to navigate a double-T-maze decision task

Inspired by [40], this experiment implements a simple T-maze decision task from [25], as illus-
trated in figure 5.9. There are two junctions, each modelled by an input neuron (s1 and s2). The
goal is for the agent to navigate the maze and retrieve the highest reward possible. The agent’s
decision relies on an action neuron a1 which is connected to s1 and s2 with synaptic weights w1

and w2, respectively. If it is active, the agent goes right. If it is inactive, the agent chooses the
left way.

Figure 5.9: Double-T-maze decision task, taken from [25]. (A) Illustration of the structure
of the maze. (B) The network consists of only 2 input neurons (s1 and s2), the
action neuron (a1), an a reward transmitter (not illustrated). The connections
from s1 and s2 to a1 are denoted by w1 and w2. At the first junction, s1 is active.
At the second junction, s2 is active. The highest reward is behind exit e3. (C)
A successful episode, in which a1 spikes together s1 but not with s2.

If the network were to only utilize STDP without any rewards, the agent would merely
memorize the effects of decisions it makes inside the maze. Simply put, if it happened to fixate
on going the wrong way, it would certainly recall that there is not going to be a reward at the
end. That however would not stop it from making the wrong decision every time.

Reward-modulated STDP causes the agent to only memorize the action that led to a reward,
thereby ensuring that it always picks the right way after a few training runs.

Since rewards in this example can by definition only be distributed at the end of each
episode, the eligibility trace is far more important here than in examples 5.3.2 and 5.4, where
rewards could theoretically be sent instantly.

The eligibility trace is calculated as shown in equation 1.4, and the other synaptic parameters
discussed in section 1.3 are defined similarly to algorithm 4. However, ψ is implemented in a
more complex way, resulting in the following update procedure:

Algorithm 5 shows that the learning rules for the maze task are almost identical to those in
algorithm 4, only with the addition of a reward gradient ψ that acts as a memory for previous
learning trajectories (based on the rewards and eligibility traces of previous episodes).
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Algorithm 5 Synaptic model of reward-based learning with a reward gradient [25]

At each time step t, ∀k, i:

1: update average expected reward: r̄(t) = (1 − τr) r(t − ∆t) + τ r(t)

2: update eligibility trace: eki(t) = eki(t − ∆t)e−∆t/tep + tep Wki ẑi(t) (zk(t) − fk(t))

3: update reward gradient: aki(t) = ψ =

(
1 −

r(t)
r̄(t)

)
aki(t − ∆t) +

r(t)
r̄(t)

eki(t)

4: update synaptic parameters: θki(t) = θki(t − ∆t) + ∆θki(t)

with ∆θki(t) = η

(
1
σ2 (µ − θki(t − ∆t)) + aki(t)

)
+

√
2Tη ν

and ν ∼ NORMAL(0,1)

5: update synaptic weight: Wki = exp(θki − θ0)

Figure 5.10 shows how the reward-modulated STDP learning rule manages to learn the task
at hand, strengthening w1 while weakening w2.

Figure 5.11 illustrates the spike rates of the three neurons at the beginning and at the end
of a simulation run. As can be clearly seen, the agent is successfully trained using the learning
rule, suggesting that the model works as intended.



5.5. Learning to navigate a double-T-maze decision task 51

Figure 5.10: Successful learning of a double-T-maze decision task. Top: The synaptic
weight w1 between s1 and the action neuron a1 gradually increases, while
w2 between s2 and a1 declines, which is the optimal solution for this task.
Bottom: Reward sent by the reward transmitter. At first the network mostly
receives rewards of 0.5, because the neuron spikes randomly and there are
more decisions that lead to this reward. As soon as the weights are learned
appropriately, the performance drastically increases.

Figure 5.11: Spike trains during successful double-T-maze learning. The plot shows how
every episode starts with a pause, after which s1 becomes active, followed
by s2. After that, a new episode starts. The simulation is run for 2000 sec-
onds. At the beginning of the simulation, a1 has very low activity and spikes
randomly, if at all. In the last 3 seconds of the simulation, a1 has been suc-
cessfully trained to activate together with s1 and cease spiking as soon as s2
becomes active.



Chapter 6

Conclusion

Even though researchers nowadays are provided with potent tools in the form of both powerful
hardware and well-designed software, their proper usage still poses a decent challenge.

The complex nature of biological spiking neural networks force simulation software to pro-
vide a multitude of features, starting from customizable neurons to support for parallel compu-
tation, which inevitably increase the difficulty to work with them.

The time management alone can cause a variety of bugs and confusion, due to the need
to mimic continuous real time while only having discrete update steps to work with. The fact
that models are often explained using time-dependent differential equations that need to be
mapped to the simulator’s grid-based time does not help either. When combined with parallel
environments, this challenge becomes even more difficult, because multiple processes or even
hosts need to be synchronized. It is apparent that a thorough understanding of the simulator’s
time management is required to reliably develop simulations for it. Fortunately, if the simulator
is cleverly designed, it can manage most of the synchronization effort itself, even in parallel
settings. The researcher is still left with occasional pitfalls and some boilerplate code, but as
long as the underlying principles are understood, they can be avoided.

Additionally, having decent understanding of the simulation framework from a software de-
veloper’s point of view does not only help prevent mistakes, but can greatly increase the quality
of the simulation. For example, when the researcher does not need to rely on the simulator’s
built-in data loggers which will hardly ever produce the exact data in the exact granularity
needed, vast flexibility and precision is possible. By recording only necessary data from the
right sources both the runtime and the memory performance can be increased, let alone the
researcher’s comfort when analyzing the results.

Knowing the details on how the simulator handles updates and events can also proof in-
valuable. Mathematical models often need to define their formulas using continuous changes
coupled with control statements like Kronecker Deltas (i.e. ∆x = ... · δ(y, z)) and the Heav-
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iside step function (i.e. Θ(x) = 1 for x ≥ 0 and 0 otherwise [25]), but simulators can raise
events exactly when they are needed. This can be used to eliminate unnecessary calculations
in many steps or even fast-forward expensive operations like random number generations. By
defining a solid update strategy based on the mathematical model, but adapted to the simulator’s
capabilities, valuable calculation time can be saved.

As the case studies have shown, even theoretically sound models may exhibit weaknesses
that are only obvious through simulations. But visualizations don’t only show failings, but can
also inspire ideas. For example, the necessity to adjust learning rates, volatility of noise or even
the learning rule itself might become apparent. Even the addition of mechanisms like simulated
annealing or a way to stabilize weights after they have been trained could spring to mind.

The ability to experiment with parameters and try out different combinations of models
comfortably and in decent time is crucial to gain a better understanding of the models and im-
prove them, or maybe even verify their feasibility as in the case of Bayesian reward-modulated
learning [25].

Therefore, while working with simulators can at times be tedious, spending resources to
thoroughly understand their inner workings and developing the simulations with as much care
as the underlying models might be well worth the effort.
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