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Abstract

Automatic speech recognition (ASR) is a broad field of research. Applications of
ASR include voice user interfaces, like those nowadays found in smart phones, auto-
matic speech to text transcription or dialogue systems for people with impairments.
An important sub-task of ASR is phone recognition. A phone recognition system
detects the phones in a given speech signal. Speech data is segmental in nature,
i.e each phone is represented by a variable number of input data frames. Usually,
there are more input data frames than output labels. This thesis deals with seg-
mental conditional random fields (SCRFs) to tackle the task of phone recognition.
SCRFs are the segmental generalization of conditional random fields. The latter
are the discriminative counterparts to hidden Markov models (HMMs). This thesis
gives an overview of the formulas and algorithms required to apply the segmental
conditional random field in practice. In particular we present an efficient dynamic
programming algorithm that allows for training a SCRF on unsegmented data. In
order to make the SCRF more powerful we equip it with a neural network style
hidden layer. In the experiments, we apply segmental conditional random fields
to the task of phone recognition and present results on the TIMIT database. We
show that the algorithm to train a SCRF on unsegmented data achieves in prac-
tice the same results as when the model is trained on the manual segmented data
from TIMIT. The presented model configuration of the hidden layer SCRF that was
trained with backpropagation outperforms other published SCRF approaches and
achieves a phone recognition accuracy of 75.07% on the TIMIT core test set.

Keywords: Machine Learning, Speech recognition, Phone recognition, Markov
random fields, Segmental conditional random fields, TIMIT





Zusammenfassung

Die automatische Spracherkennung ist ein großes Forschungsgebiet, denn die Anwen-
dungsmöglichkeiten automatischer Spracherkennung sind vielfältig. Dazu gehören
zum Beispiel die Sprachsteuerung von Geräten, die heute in Smartphones zu finden
ist, die automatische Konvertierung von Sprache in Text oder Dialogsysteme für
Menschen mit Behinderungen. Ein wichtiges Teilgebiet der automatischen Spracher-
kennung ist die Lauterkennung (engl. phone recognition). Die die Sprache beschrei-
benden Daten sind segmentell. Konkret bedeutet dies, dass jeder Laut durch eine
variable Anzahl von Merkmalvektoren definiert ist. Darum behandelt diese Arbeit

”
segmental conditional random fields“ als Ansatz zur Lösung des Lauterkennungs-

problems. Dabei handelt es sich, mathematisch betrachtet, um die segmentelle Ge-
neralisierung von bedingten Markov-Netzwerken (engl. conditional random fields).
Diese wiederum stellen das diskriminative Gegenstück zu den hidden-Markov Mo-
dellen dar. Diese Arbeit gibt einen ausführlichen Überblick über die Formeln und
Algorithmen, die benötigt werden, um

”
segmental conditional random fields“ in der

Praxis zu implementieren. Im Besonderen wird ein auf dynamischem Programmie-
ren basierender effizienter Algorithmus vorgestellt, der es erlaubt, dieses Modell auf
unsegmentierten Daten zu trainieren. Darüber hinaus wird das Modell durch eine
Schicht von künstlichen Neuronen, wie sie in neuronalen Netzen üblich ist, erwei-
tert. Es werden Lauterkennungsexperimente mit dem verbreiteten TIMIT Daten-
satz durchgeführt. Dabei wird unter anderem gezeigt, dass

”
segmental conditional

random fields“, die mit der vorgestellte Methode ohne gegebene Segmentierungen
trainiert werden, dieselbe Genauigkeit erreichen wie jene, die mit den gegebenen Seg-
mentierungen trainiert werden. Das um eine Schicht von künstlichen Neuronen er-
weiterte Modell übertrifft andere Ansätze mit

”
segmental conditional random fields“

in der Klassifikationsgenauigkeit. Auf dem TIMIT Kerntestdatensatz wird 75.07%
Genauigkeit erreicht.

Schlüsselwörter: Maschinelles Lernen, Spracherkennung, Lauterkennung, Markov-
Netzwerke, segmental conditional random fields, TIMIT





Contents

1 Introduction 1

1.1 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Conditional random fields (CRFs) 4

2.1 Sequential data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 The hidden Markov model (HMM) . . . . . . . . . . . . . . . . . . . 4

2.3 Conditional random fields . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Segmental conditional random fields (SCRFs) 9

3.1 Segmental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 SCRF model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Enumeration of all segmentations . . . . . . . . . . . . . . . . . . . . 12

3.4 Computation of partition function - forward recursion . . . . . . . . 13

3.5 The backward recursion . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 Most probable segment sequence . . . . . . . . . . . . . . . . . . . . 15

3.7 Parameter learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.8 Efficient SCRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.9 L2-SCRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.10 Hidden layer SCRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.11 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.12 Marginalization of alignments . . . . . . . . . . . . . . . . . . . . . . 24

3.13 Training without alignments . . . . . . . . . . . . . . . . . . . . . . . 27

3.14 Relation to CTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Experiments: Phone Recognition 31

4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 State features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Segment length bias . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 Transition features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.7 Maximum segment length . . . . . . . . . . . . . . . . . . . . . . . . 42

4.8 L2-SCRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.9 Hidden layer SCRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.10 Training without alignments . . . . . . . . . . . . . . . . . . . . . . . 45

4.11 Comparison of results . . . . . . . . . . . . . . . . . . . . . . . . . . 46



Contents

5 Conclusion 48
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A SCRF parameter gradients 50
A.1 One label and input dependent parameter . . . . . . . . . . . . . . . 50
A.2 One label dependent bias parameter . . . . . . . . . . . . . . . . . . 51
A.3 Two label and input dependent parameter . . . . . . . . . . . . . . . 52
A.4 Two label dependent bias parameter . . . . . . . . . . . . . . . . . . 53
A.5 Hidden layer partial derivative . . . . . . . . . . . . . . . . . . . . . 53



Chapter 1

Introduction

Automatic speech recognition (ASR) is concerned with the automatic recognition
of information embedded in a speech signal and its transcription in terms of a set
of characters [4]. ASR has gone through a long and still ongoing history of re-
search. Some example applications of ASR systems are voice user interfaces like
those nowadays found in smart phones, dictation, and dialog systems for people
with impairments.

The basic structure of an ASR system is depicted in Figure 1.1. The input to
an ASR system is a speech signal in time domain representation. Many systems
perform a preprocessing step in which the given input is transformed into a different
representation. This step is also known as feature extraction. Common preprocess-
ing steps compute spectrograms [7] or cepstral coefficents. Two widely used cepstral
representations are Mel-Frequency Cepstral Coefficients (MFCCs) [20], [9], [17] or
Perceptual Linear Prediction (PLP) [13] coefficients. Both types of preprocessing
are resulting in creating a certain number of preprocessed vectors per second of
speech. The preprocessed data is then fed into the actual speech recogniser.

input feature extraction speech recognizer word sequence

Figure 1.1: Basic structure of an automatic speech recognition (ASR) system. The
input of the system is a speech signal in time domain representation. The first step
of many systems is a preprocessing of the input signal. Subsequently the actual
recognition is performed on the preprocessed data. The resulting output of an ASR
system is a sequence of words.

A branch of automatic speech recognition research deals with phones. Those
systems attempt to detect phones instead of words in the given input. Hence, in
contrast to complete ASR systems, phone based systems do not rely on a dictionary.
Furthermore if a language model is used, it is base on phones instead of words.
There are three tasks involving phones: phone segmentation, phone classification and
phone recognition. The first task, phone segmentation, is about detecting the phone
boundaries for a given utterance and the phonetic transcription. This corresponds
to detecting the black vertical lines in Figure 1.2. Phone classification is the task
of determining the phonetic transcription of a segmented speech signal. Phone
recognition is the hardest of the three tasks. It is the process of determining the
phonetic transcription from a given unsegmented utterance. This corresponds to
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1.1. Contributions and Outline

determining both the transcription of the utterance and the segment boundaries.

Figure 1.2: MFCC representation of a random utterance from the TIMIT speech
corpus [5]. The phone boundaries are indicated by the vertical lines in black. The
bottom line below the cepstrum is the aligned phonetic transcription of the utter-
ance.

Phone classification is a task at frame-level. For each frame of acoustic features
one phone is determined. In contrast, phone recognition is a segmental task as there
is a variable number of feature frames per phone.

The TIMIT Acoustic-Phonetic Continuous Speech Corpus [5] is a popular dataset
for training and comparing phone recognition systems. The dataset comprises 6300
American English sentences spoken by 630 different speakers. The dataset does not
only contain the phonetic transcriptions, but also the positions of the boundaries.
With regard to the TIMIT speech corpus, there are two types of phone recognition
approaches. Some systems (have to) rely on the positions of the phone boundaries
at training time. For example the phone recognition system in [10] was trained using
the phone boundaries. Other systems do not require segmented training data at all.
For instance the approach presented in [7]. However, all approaches known as phone
recognition systems are capable of making predictions on the unsegmented data.

With the segmental conditional random fields this thesis pursues a segmental,
discriminative, graphical model approach to tackle the problem of phone recognition.
This model considers for a given utterance all possible segmentations in an efficient
way. For each segment a potential is computed. The probability of a segmentation
is proportional to the product of the segment potentials. The classification result of
the model is the most probable segmentation. The phone recognition experiments
presented in this thesis were conducted with the TIMIT dataset.

1.1 Contributions and Outline

In Chapter 2 we give an overview of conditional random fields (CRFs) which are
discriminative, graphical, sequence models. We discuss the differences to hidden
Markov models (HMMs) which are generative models. We further discuss why
CRFs as frame level models are not well suited for phone recognition.

Therefore in Chapter 3 segmental conditional random fields (SCRFs) are intro-
duced. Although the segmental conditional random field or Semi-Markov CRF has
already been defined in [18] we present a comprehensive derivation and an intuitive
explanation of the recursions and the involved algorithms. All necessary equations
for training the model are derived. This is usually neglected in research papers. The
presented sub-set of equations does not provide sufficient insight to immediately
understand and implement the model. To the best of the author’s knowledge there
is not yet such a comprehensive summary of the needed formulas. Furthermore
we present a method to train a SCRF without the need of given phone boundary

2



1.1. Contributions and Outline

positions. Although [20], [1] have already trained SCRFs without given alignment,
they did not present how to do this in a tractable way. We conclude Chapter 3 by
comparing the segmental conditional random field approach to connectionist tem-
poral classification (CTC). CTC is a method for using recurrent neural networks for
segmental data.

In Chapter 4 we apply the segmental conditional random field to the task of
phone recognition. We also present recognition results of a SCRF with a neural
network style hidden layer, trained with backpropagation. With a TIMIT core
test set accuracy of 75.07% this extension of the SCRF model outperforms two
other SCRF approaches presented in [20] and in [10]. Furthermore we show that
training the SCRF without given phone boundaries it is possible to achieve the same
performance as with given boundaries. Finally we conclude the thesis in Chapter 5
by comparing the obtained results with other phone recognition approaches trained
and evaluated on TIMIT and give directions of future work.

3



Chapter 2

Conditional random fields
(CRFs)

In this section, we first introduce the notation of sequential data. Then we sum-
marize and compare two popular models for sequential data, i.e. we discuss the
similarities and differences between hidden Markov models (HMMs) and conditional
random fields (CRFs). Finally, we conclude the section by motivating a segmental
approach for phone recognition and point out related work of this thesis.

2.1 Sequential data

Simple classifiers, such as the logistic regression, assume that data samples are inde-
pendent of each other and identically distributed (i.i.d). In contrast, sequential data
exhibits correlation between individual data samples. This is an observation that
is in particular true for speech data. Hence, for sequential data the i.i.d assump-
tion will be a poor approximation. Examples for tasks involving sequential data
are speech recognition, natural language modelling, or handwriting recognition. [3,
page 605]

Let X = (x1, . . . ,xT ) be a sequence of T observed input vectors. For example
consider the task of phone classification. Each xt corresponds to some features
representing a phone. In phone recognition each xt corresponds to one time slice of
preprocessed data (e.g. one MFCC frame).

In the task of phonetic classification one wants to determine for xt the corre-
sponding phone or label yt. Each yt is drawn from a finite set, called the state space
or the label alphabet Y. In phone classification or recognition Y is the set of all
distinct phones. Hence, Y = (y1, . . . , yT ) denotes the state or labelling sequence.

2.2 The hidden Markov model (HMM)

A popular model for dealing with sequential data is the hidden Markov model
(HMM). It models an observations sequence X under the assumption that there
is some underlying, hidden state sequence Y. The HMM models the joint distribu-
tion of inputs and states p(X,Y) [3, pages 610 ff.].

In order to make the calculations involved tractable, the HMM makes two in-
dependence assumptions. First, the current state does not depend on older states

4



2.3. Conditional random fields

except the previous one. This is known as the Markov assumption or Markov prop-
erty. Second, each observation xt does only depend on the current state yt.

The probabilistic model of the HMM is specified by three distinct probability dis-
tributions: the initial state probabilities p(y1), the transitions probabilities p(yt|yt−1)
and the emission probabilities of states p(xt|yt).

The joint probability of an observation and a state sequence in a HMM is given
by:

p(X,Y) = p(y1)p(x1|y1)
T∏
t=2

p(yt|yt−1)p(xt|yt). (2.1)

Models, such as the HMM, that capture the distribution of inputs and outputs
are known as generative models. This enables to sample synthetic data from the
model. In a generative model the class-conditional densities p(x|y) and the prior
probabilities p(y) of each class form the joint probability p(x, y). The posterior
class probability p(y|x) is then given by applying Bayes’ theorem. In contrast, a
discriminative approach directly models p(y|x) [3, page 43].

If a generative and a discriminative model have a common underlying parametric
family of probabilistic models, they are called a generative-discriminative pair [14].
An example of such a pair is naive Bayes and logistic regression. In [14] it is shown
that given a sufficient amount of training data the discriminative logistic regression
usually performs better in classification than the generate counterpart naive Bayes.
However the generative model was found to converge faster and to perform better
if the number of training examples is small. In any case a generative model tries to
capture the joint distribution of x and y. However, this is not required in the task of
classification, where we are only interested in obtaining the most probable estimate
of y.

2.3 Conditional random fields

This section gives a brief overview of conditional random fields (CRFs), the dis-
criminative counterparts of HMMs. A CRF models the conditional probability of a
labelling (state) sequence Y given an observation sequence X [11];

p(Y|X) =
1

Z(X)

T∏
t=1

Φ(yt, yt−1,X, t), (2.2)

where Φ(yt, yt−1,X, t) is the potential function and Z(X) the partition function.

The potential function is given in exponential form:

Φ(yt, yt−1,X, t) = expψ(yt, yt−1,X, t) · expφ(yt,X, t), (2.3)

where ψ(yt, yt−1,X, t) is the logarithm of the transition factor or potential and
φ(yt,X, t) the logarithm of the state factor.

The partition function of the conditional random field is defined as the sum over
all possible labelling sequences and thus ensures that the distribution is correctly
normalized, i.e.

Z(X) =
∑
Y

T∏
t=1

exp Φ(yt, yt−1,X, t). (2.4)

5



2.3. Conditional random fields

The logarithmic factors ψ(yt, yt−1,X, t) and φ(yt,X, t) are defined as

φ(yt,X, t) =
∑
y

(
wT

y f(X, t) + λy
)
δyyt (2.5)

ψ(yt, yt−1,X, t) =
∑
y,y′

(vT
y,y′g(X, t) + µy′y)δyytδy′yt−1 , (2.6)

where wy and vy,y′ are the observation dependent parameters and λy and µ are
observation independent “bias” weights. δij denotes the Kronecker delta. f and g
are the features or feature functions of the CRF. The feature functions are notated
in bold to indicate that they return vectors. The definition of the feature functions
is arbitrary and specific to the task at hand. For instance in a natural language
processing task one dimension of a feature function might be defined as a boolean
feature that returns one if the word xt is capitalized. In phone classification a feature
function might be the identity function returning the observation vector xt, which
contains some acoustic data of the corresponding phone.

As already pointed out above, the HMM is generative model and thus needs to
model the distribution of the inputs. In order to keep the computations of the model
tractable, it is for many applications necessary to make independence assumptions
among the inputs. The assumption made by HMMs is that each observation xt has
exactly one underlying hidden state it depends on. Because of the fact that the CRF
is a discriminative model there is no need to make restricting assumptions on the
inputs. Therefore the input context of the feature functions in a CRF is arbitrary,
and even may range up to the whole sequence. This a huge advantage compared to
HMMs.

However, the Markov assumption, which states that the current state or label
does only depend on a limited number of previous states, is still held for CRFs. In
practice higher order dependences among the states are made tractable by consid-
ering not all combinatorial possibilities [15], [19].

Although maximum entropy Markov models and discriminative Markov models
are also discriminative models and thus also share the aforementioned benefits over
HMMs, they have a weakness known as the label bias problem. Those models
perform a per state normalization, which causes the transitions leaving a given state
to compete only against each other, instead of competing against all other model
transitions. This leads to the problem that the probability mass that arrives at a
state has to be passed onto the next state completely. The observations do have
an influence on where to pass the probability mass on, but not how much of it.
This introduces a bias towards states with fewer outgoing transitions. CRFs are not
affected by the label bias problem because they compute the normalization over the
whole sequence. [11]

Since a CRF is a Markov random field, it can be expressed and depicted as a
factor graph as shown in Figure 2.1. In the visualization the state potential function
φ(yt,X, t) only depends on the current input and the transition potential function
ψ(yt, yt−1,X, t) does not depend on any input.

The partition function of the CRF is efficiently computed by the forward recur-
sion:

Z(X) =
∑
y

αT (y) (2.7)

αt(y) =
∑
y′

Φ(y, y′,X, t)αt−1(y
′) (2.8)

6



2.4. Related Work

y1 y2 y3 y4 y5

x1 x2 x3 x4 x5

expφ expφ expφ expφ expφ

expψ expψ expψ expψ

Figure 2.1: Factor graph representation of a conditional random field (CRF) as
defined by Lafferty, McCallum and Pereira in [11] for an observation sequence of
length 5. The state factor does only depend on the current observation and the
transition factor is independent of the observation sequence.

The parameters are usually estimated by maximizing the conditional log likeli-
hood.

2.4 Related Work

CRFs predict for each observation vector xt one label yt. That means that they
are frame-level models. In phone recognition the number of labels is by far smaller
than the number of observations. Thus CRFs are not off the shelve capable of
handling segmental data. However, it is possible to use CRFs for segmental data
with some restrictions. In [13], Morris and Fosler-Lussier applied CRFs to the task
of phone recognition. During training they had to rely on the phone boundaries
from the TIMIT dataset. When performing classification on a given observations
sequence the CRF creates frame level output. This output was post-processed by
merging all adjacent outputs of the same class. In this thesis we explore segmental
conditional random fields (SCRFs), in which a state comprises a variable number of
observations. Thus SCRFs relax the Markov assumption from frame-level to state-
level. The transitions within segments are arbitrary. [21] Segmental conditional
random fields are inherently capable of handling segmental data.

Since in phone recognition the number of states or labels is much smaller than the
number of observations many phone recognition systems rely on HMMs to provide
a forced alignment of the labelling sequence. In fact, those approaches are hybrid
ones consisting of two distinct models. For example in [2] a convolutional neural
network was combined with a HMM. Another example is the combination of deep
belief networks with HMMs in [12]. Since those systems involve HMMs, they also
exhibit the above discussed disadvantages of HMMs. The segmental conditional
random field approach is a non-hybrid model for handling segmental data directly.

Segmental conditional random fields have already been applied to phone recogni-
tion. In [20], Zweig has used a SCRF in connection with vector quantization features.
In [10], He and Fosler-Lussier used phone posteriors as features for a SCRF. The
phone posteriors were obtained from a separately trained neural network. Thus this
approach is again a hybrid one and not suited of being trained without boundary
information. In this work we explore the direct utilization of MFCCs in a SCRF.
Moreover we extend the SCRF, which is a linear model, by a non-linear hidden layer
and train the parameters jointly with backpropagation.

Another recent approach to handle segmental data is called connectionist tempo-
ral classification (CTC), which is an extension for recurrent neural networks. After

7
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introducing the segmental conditional random field we discuss the differences to this
particular approach.
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Chapter 3

Segmental conditional random
fields (SCRFs)

In this chapter we introduce the segmental conditional random field and derive all
formulas required to apply it in practice. That involves making predictions and
learning the parameters using gradient ascent.

3.1 Segmental data

In this section we briefly introduce the mathematical notation required to deal with
segmental data. As in the previous chapter let X = (x1, . . . ,xT ) be the observation
sequence consisting of T observation vectors.

Let S = (s1, . . . , sn) denote a sequence of n segments. Each segment of S is
defined as a triple: si = (yi, ti, ui). yi denotes the label or state of si. ti and ui
are the indices of the first observation and respectively the last observation of the
segment si. The length or duration of si is given by li = ui− ti + 1. Figure 3.1 blow
gives a graphical illustration of an example segmentation.

x1 x2 x3 x4 x5 x6 x7 x8 x9

Figure 3.1: Illustrating example: an observation sequence X consisting of 9 observa-
tions is split into 4 segments. The segments are: s1 = (y1, 1, 3), s2 = (y2, 4, 5), s3 =
(y3, 6, 8), s4 = (y4, 9, 9).

Each segment comprises at least one observation. Here we will additionally
constraint each segment to have a maximum length of Lmax ∈ N∗. As shown later
in Section 3.4, this maximum length constraint keeps the runtime of the model
reasonable.

In a segment sequence S adjacent segments always touch. That means that the
start index of segment si is given by the end position of the previous segment si−1
plus one. In any segment sequence the first segment always starts at position t1 = 1.
For ti we have:

ti =

{
ui−1 + 1 for 2 ≤ i ≤ n
1 if i = 1

. (3.1)

A segment sequence S is considered to be consistent with an observation sequence

9



3.2. SCRF model

X if the last segment sn ends exactly at un = T . For each X there are many different
consistent segment sequences S (c.f Figure 3.2).

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 x2 x3 x4 x5 x6 x7 x8 x9

Figure 3.2: Some example segmentations of the observation sequence X =
(x1, . . . ,x9). Note that the segmentation in the top splits X into 3 segments, while
the two examples below split X into 4 segments.

A segment s carries two distinct informations: the labelling and the position
information. Therefore we split s = (y, t, u) into the label y and the position part
a = (t, u). In the latter the a stands for alignment. The segmentation of X, that is
the start and end position of the segments, is uniquely defined by the sequence of
alignments A = (a1, . . . , an). The label sequence Y = (y1, . . . , yn) is always of the
same length as the corresponding alignment sequence A.

3.2 SCRF model

A segmental conditional random field (SCRF) [21, 10], also known as semi-Markov
CRF [18], is a Markov random field [3, page 386] or undirected graphical model
in which each state comprises a variable number of observations. Thus the SCRF
is a segmental model. This is a generalization of an ordinary CRF where each
state corresponds to exactly one observation. The SCRF models the conditional
probability of a segment sequence S for a given observation sequence X (c.f Equation
(3.2)). A first order Markov assumptions is made for the states, i.e. there is a
dependency between two adjacent labels.

p(S|X) = p(Y,A|X) =
1

Z(X)

|S|∏
i=1

Φ(yi, yi−1,X, ti, ui) (3.2)

The normalization term Z(X) or also known as the partition function [3, page
386] ensures that the conditional distribution is correctly normalized. Therefore
Z(X) is the sum over all segment sequences S consistent with the given observation
sequence X, i.e.

Z(X) =
∑
S

|S|∏
i=1

Φ(yi, yi−1,X, ti, ui) =
∑
A

∑
Y

|A|∏
i=1

Φ(yi, yi−1,X, ti, ui). (3.3)

Each Markov random field can be expressed as a product of factors over its
variables [3, page 399]. A factor graph makes this decomposition explicit and there-
fore it allows a more intuitive representation. Figure 3.3 depicts a factor graph
representation of a SCRF.

10



3.2. SCRF model

y1 y2 y3 y4

x1 x2 x3 x4 x5 x6 x7 x8 x9

expφ expφ expφ expφ

expψ expψ expψ

Figure 3.3: Factor graph representation of an example SCRF for T = 9 given ob-
servations partitioned into n = 4 segments. The state factor expφ depends on the
current segment, while the transition factor expψ shown here is independent of any
input.

The factor graph depicted in Figure 3.3 shows that there are two types of fac-
tors. There is one factor that depends on one state and the observations of the
corresponding segment. In this work we call it the state factor. The other factor
depends on two states and is thus called the transition factor. In this example the
transition factor is independent of any input and thus only acts as a bias. How-
ever, it is possible that the latter also depends on observations. Nevertheless, the
transition factor does not depend on the length of the corresponding segment. This
important detail will later allow a more efficient way of dealing with the model (c.f
Section 3.8).

The potential function is defined as product of the state and the transition
factors, i.e.

Φ(yi, yi−1,X, ti, ui) = expψ(yi, yi−1,X, ti) · expφ(yi,X, ti, ui), (3.4)

where ψ(yi, yi−1,X, ti) represents the logarithm of the transition and φ(yi,X, ti, ui)
the logarithm of the state factor.

Note that a transition factor does not exist for the first segment in any segmen-
tation. For convenience we define the transition factor for the first segment to be
one. Therefore we define the potential of the first segment as

Φ(y1, y0,X, t1, u1) = expφ(y1,X, t1, u1).

Note that y0 does not exist, it is introduced to simplify the notation.
The logarithm of the two factors is defined in the following ways:

ψ(yi, yi−1,X, ti) =
∑
y,y′

(
vT
y′yg(X, ti) + µy′y

)
δyyiδy′yi−1

, (3.5)

φ(yi,X, ti, ui) =
∑
y

(
wT

y f(X, ti, ui) + λy
)
δyyi . (3.6)

In the equations above δij represents the Kronecker delta. λ and µ are the input
independent bias parameters. The features functions f and g return vectors of
data created from the given observations. The definition of the functions is again
arbitrary. The state feature function f needs to create a fixed size vector independent
of the current segment length. Clearly it is important that the vectors returned
by the feature functions match with the dimensions of the parameter w and v
respectively. In case a feature function returns the zero vector the corresponding
factor will only depend on the bias parameter. There are |Y| different λ and w and
|Y|2 different µ and v parameters in the model.

11



3.3. Enumeration of all segmentations

3.3 Enumeration of all segmentations

In this section we develop a recursive algorithm for enumerating all segmentations of
a sequence of T observations. This algorithm will help to derive an efficient method
for computing Z(X) in the next section.

Let Lt = (l1, . . . , ln) be a sequence of segment lengths, such that the lengths sum
up to t and each length l satisfies the constraint 1 ≤ l ≤ Lmax. Note that Lt can be
converted into an alignment sequence A in a very simple way. The alignment ai =
(ti, ui) of the i-th segment is given by ti = 1+

∑i−1
j=1 lj and ui = ti + li−1 =

∑i
j=1 lj .

Furthermore let Lt denote the set of all segmentations of t observations. In other
words Lt contains all possible realizations of Lt. The pseudo code of Algorithm 1
depicts how to compute Lt.

Algorithm 1 Algorithm to enumerate all segmentations that comprise exactly t
observations and each segment length is constrained to a maximum length of Lmax.

function all segmentations(t, Lmax)
Lt ← {}
if t ≤ Lmax then
Lt ← Lt ∪ {t}

end if
L← min(t− 1, Lmax)
for l in {1, . . . , L} do
Lt−l ← all segmentations(t− l, Lmax)
for all Lt−l in Lt−l do
Lt ← Lt ∪ {(Lt−l, l)}

end for
end for
return Lt

end function

If t > Lmax, Lt is recursively computed by extending all existing enumerations
by one new segment. Before extending an existing enumeration it needs to be
assured that the constraints will also hold after the extension. The maximum length
constraint for a segment is satisfied by just inserting segments of length l, with
1 ≤ l ≤ Lmax. Therefore all previous Lmax sets Lt−l are extended by one new
segment of length l to form Lt.

That means that all segmentations in Lt−1 are extended by a segment of length 1.
The segmentations in Lt−2 are extended by a segment of length 2 and so forth... If the
sets Lt−1, . . . ,Lt−Lmax contain all segmentations of t− 1, . . . , t−Lmax observations,
then by extending each of them by a segment of a specific length l, such that the
segment lengths will sum to t, one obtains all segmentations of t observations Lt.

It remains to show that the first Lmax sets contain all possible segmentations. For
an observations sequence of length 1 there is always exactly one possible segmenta-
tion: L1 = {(1)}. For an observation sequence of length 2 one possible segmentation
is the extension of the previous segmentation by one segment of length 1, yielding
L2 = (1, 1). If Lmax ≥ 2 then L2 = (2) is also a possible segmentation of length 2.
There are no other possible segmentations of length 2. Therefore: L2 = {(1, 1), (2)},
iff Lmax ≥ 2.

For t = 3 it can be continued in the same way: Recall that L2 contains all possible
segmentations of length 2 and that each segment comprises at least 1 observation.

12



3.4. Computation of partition function - forward recursion

x1 x2 x3

x1 x2 x3

x1 x2 x3

x1 x2 x3

Figure 3.4: Illustration of the algorithm for enumerating all segmentations. All
segmentations comprising 3 observations, for Lmax ≥ 3. The segmentations are
created from all segmentations of 2 observations by inserting a segment of length 1,
all segmentations of 1 observation by inserting a segment of length 2 and a single
segment of length 3.

To obtain segmentations of length 3 we can extend all segmentations in L2 by a
segment of length 1. If Lmax ≥ 2 all segmentations in L1 can be extended by a
segment of length 2 to yield segmentations of length 3. If Lmax ≥ 3 we additionally
need to add L3 = (3). For Lmax ≥ 3, L3 = {(1, 1, 1), (2, 1), (1, 2), (3)}. Figure 3.4
depicts a graphical example of this case.

It appears that for t ≤ Lmax the same procedure to generate all segmentations
from existing ones can be applied. Additionally there is always a new segmentation
consisting of only one single segment of length t. This one also needs to be added
to the set in order to obtain all segmentations.

3.4 Computation of partition function - forward recur-
sion

In this section we develop an efficient algorithm for computing the partition function
Z(X). The partition function of the SCRF is given in Equation (3.3).

The summation over all segment sequences S, consistent with the given observa-
tion sequence, is also given by the sum over all alignment sequences A, and for each
A the sum over all labelling sequences Y that are consistent with A (cf. Equation
(3.3)). Recall that each A can be expressed as a sequence of segment lengths L and
vice versa. The set of all segment length sequences of T observations is given by the
above introduced set LT .

A naive approach for computing Z(X) would be to first compute LT and then
for each L ∈ LT sum over all possible labelling sequences Y. However this approach
is problematic for two reasons. First, the number of elements in the set LT grows
exponentially in the number of observations.1 Second, the summation over all pos-
sible label assignments does not consider the conditional independence property of
the model. Thus the summation over all Y, that have the same length as the current
A or L, also runs exponential in the length of Y.

However there is no need to explicitly enumerate all segmentations of T obser-
vations. It is sufficient to get the sum over the scores of all segment sequences S.

1A lower bound for the number of segmentations is obtained if Lmax = 2. Then the num-
ber of segmentations for T observations corresponds to the T -th Fibonacci number. The closed-
form expression due to Moivre/Binet makes it clear that Fibonacci numbers increase exponentially.
Therefore also the number of segmentations increases exponentially with T .

13



3.4. Computation of partition function - forward recursion

The score of a segment sequence S is given by the product over all potential func-
tions. The algorithm to enumerate all segmentations, which we introduced in the
previous section, shows that one can generate all segmentations of t observations by
extending the previous enumerations by a new segment. But instead of keeping a
set of enumerations we keep the sum over the scores of the different segmentations.
Following the recursive principle of the algorithm we introduce a new quantity:

αt(y) is the sum over all segment sequences of the first t observations of X where
the last segment is labelled y. The constraint that a segment has the maximum
length Lmax has to be considered. Following that definition, αT (y) represents the
sum over all segment sequence scores that end with a segment labelled y. Hence the
value of the partition function is given by summing out all possibilities of y for the
last segment, i.e.

Z(X) =
∑
y

αT (y). (3.7)

Next we show how αt(y) can be computed recursively. Following the argumen-
tation of the algorithm for enumerating all segmentations, we obtain the sum over
the scores of segment sequences comprising the first t observations by multiplying
the l previous sums by the potential of a new segment of length l starting at t− l+1
and ending at t. In order to meet the maximum segment length constraint, we only
extend up the Lmax previous summations. Moreover the dependency between two
adjacent labels needs to be considered. That means that the potential of the new
inserted segment depends on the label of the previous segment. Therefore we kept
the label of the last segment explicit (that means that αt(y) has the parameter y).
In order to obtain the value of the sum of all segment sequences, we need to sum
over all possibilities for the previous label whenever a new potential is added.

These considerations are giving the equation for determining αt(y) recursively:

αt(y) =

Lmax∑
l=1

∑
y′

αt−l(y
′)Φ(y, y′,X, t− l + 1, t). (3.8)

For convenience we define α0(y) = 1 and ∀t < 0 : αt(y) = 0. The forward recursion
formula derived here is in agreement with the recursion presented in [18].

Let M be the number of feature function evaluations required to compute the
potential function. The recursion is computed for each observation. In each recursion
step, the potential functions of up to Lmax new segments need to be computed.
Each potential function depends on two labels. Thus in one recursion step O(Lmax ·
|Y|2) potential function evaluations are required. Therefore the time complexity
of computing the partition function is O(T · Lmax · |Y|2 · M). When saving all
intermediate values of the forward recursion the memory complexity is Θ(T · |Y|).

At this point it becomes clear why we have introduced a maximum segment
length constraint. If a segment could have arbitrary length, the recursion would be
required to run back to the first observation each step. That would mean that the
runtime of the recursion is quadratic in the number of observations. This would lead
to an extensive runtime requirement.

A property that becomes apparent when comparing the forward recursion of the
SCRF in Equation (3.8) with the forward recursion of the CRF in Equation (2.8) is
that if Lmax = 1 the SCRF is the same as a CRF. Thus the segmental conditional
random field is a generalization of the conditional random field.
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3.5 The backward recursion

Using the same principle as above, but going from the last to the first observation,
the backward recursion can be derived. βt(y) is the sum of the scores of all segment
sequences of the observations t (inclusive) to the end of the observation sequence X
where the preceding segment is labelled as y. Note that the potential of the segment
that has label y is not yet added to the sum!

Per definition the first segment does not have a preceding one and therefore βt(y)
is only defined for 2 ≤ t ≤ T . The backward recursion is required to compute the
partial derivative of the log likelihood function with respect to the model parameters
(cf. Section 3.7).
The backward recursion of the SCRF is given in Equation (3.9).

βt(y) =

Lmax∑
l=1

∑
y′

βt+l(y
′)Φ(y′, y,X, t, t+ l − 1), 2 ≤ t ≤ T (3.9)

For convenience we define βT+1(y) = 1 and ∀t > T + 1 : βt(y) = 0. This is again in
agreement with the equation given in other work [10], however the index t there is
off by one.

Obviously the partition function can also be computed using the backward re-
cursion:

Z(X) =
∑
y

Lmax∑
l=1

Φ(y,X, 1, l)β1+l(y) =
∑
y

αT (y). (3.10)

The potentials of all initial segments starting at position 1 need to be taken into
account here, since those have not been considered in the recursion yet.
The same time and memory complexities as for the forward recursion apply.

3.6 Most probable segment sequence

This section describes how to compute the most probable segment sequence S∗ for
the given observation sequence under the current parameter configuration, i.e.

S∗ = arg max
S

p(S|X). (3.11)

A formula for efficiently computing S∗ can be derived in a similar way as the for-
ward recursion for efficiently computing the partition function Z(X) was derived.
The argumentation works the same way, but instead of summation maximization
is applied. This can be seen as a extension of the Viterbi algorithm to segmental
data [3, pages 415, 629]. The forward step of the Viterbi algorithm for segmental
condition random fields is given by:

α̂t(y) =


maxl′ maxy′ α̂t−l′(y

′)Φ(y, y′,X, t− l′ + 1, t) if t ≥ 1

0 if t = 0

−∞ if t < 0

(3.12)

In order to obtain the most likely label sequence Y∗ and the corresponding
alignment A∗ one needs to perform a backtracking step. In practice one wants to
compute the quantities for the backtracking step at the same time as the forward
recursion is computed.
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3.7. Parameter learning

Let S∗t be the most likely sequence of segments comprising the first t observations
and the last segment is labelled y. Then the quantity l̂t(y) stores the length of the
last segment of S∗t :

l̂t(y) = arg max
l′

max
y′

α̂t−l′(y
′)Φ(y, y′,X, t− l′ + 1, t), 1 ≤ t ≤ T. (3.13)

Let S∗t be the most likely sequence of segments comprising the first t observations
and the last segment is labelled y and has length l. Then the quantity ŷt(y, l) stores
the value of the next to last segment of S∗t :

ŷt(y, l) = arg max
y′

α̂t−l(y
′)Φ(y, y′,X, t− l + 1, t), 1 ≤ t ≤ T. (3.14)

Using those three quantities the most probable sequence of segments S∗ of X
can be determined in the backtracking step. α̂T (y) denotes the score of the most
likely sequence of segments, where the last segment is labelled y. Therefore the
last label y∗n of S∗ is given by the argument maximum of α̂T (y). Next, the length
of the last segment l∗n needs to be determined. That can be done by inserting the
obtained value of y∗n into the quantity l̂T (y∗n). Subsequently, the previous label y∗n−1
needs to be determined. y∗n−1 can be obtained from the quantity ŷT (y∗n, l

∗
n) inserting

the previously obtained most probable label and length of the last segment. The
length of the second to last segment can then be determined by l̂T−l∗n(y∗n−1). This
procedure is repeated until the beginning of the observation sequence is reached.

Below in Algorithm 2 is a pseudo code of the backtracking procedure to obtain
Y∗ and L∗. Recall that L∗ can be converted into A∗ and vice versa.

Algorithm 2 Backtracking procedure to determine the most probable labelling Y∗

and the corresponding sequence of segment lengths L∗ given in terms of the segment
lengths.

Y ∗ ← list() . this is an empty list
L∗ ← list() . this is an empty list
Y ∗ ← add front(Y ∗, arg maxy α̂T (y)) . add item to front of Y ∗

L∗ ← add front(L∗, l̂T (y∗n))
lrem ← T − l∗n . remaining number of observations
t = T . current position in X
while lrem > 0 do

Y ∗ ← add front(Y ∗, ŷt(L
∗[0], Y ∗[0])) . L∗[0] is the first (front) item of L∗

t← t− L∗[0]
l← l̂t(Y

∗[0])
lrem ← lrem − l
L∗ ← add front(L∗, l)

end while

3.7 Parameter learning

Parameters are determined by maximizing the conditional log-likelihood over a given
training set. [18] For the moment we assume that each training example consists of
an observation sequence X, the labels Y, and the corresponding alignment sequence
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3.7. Parameter learning

A of the labels. Recall that the alignment sequence assigns each label to a sub-
sequence of observations. In a section below we introduce an efficient model training
method that does not need a given alignment sequence.

The log-likelihood of the model is given by

log p(S|X) =

|S|∑
i=1

log Φ(yi, yi−1,X, ti, ui)− logZ(X). (3.15)

We wish to maximize log p(S|X) on a given training dataset. For that purpose we
apply stochastic gradient ascent to adapt each parameter of the model. The partial
derivative of log p(S|X) with respect to the model parameter wyd is:

∂ log p(S|X)

∂wyd
= (3.16)

|S|∑
i=1

fd(X, ti, ui)δyyi −
1

Z(X)

∑
S′

|S′|∑
i=1

fd(X, ti, ui)δyyi

|S′|∏
j=1

Φ(yj , yj−1,X, tj , uj), (3.17)

where wyd is the d-th element of the |Y| dimensional parameter vector wy. A step
by step derivation of this result is given in Appendix A.1. The left term of Equation
(3.17) is easy to compute if the alignment of Y is part of the training data. However,
the right term of the gradient is problematic because in this form it is required to
explicitly enumerate all segment sequences comprising the T observations of the
current training example.

First we analyse the term: The sum runs over all segment sequences and adds
up the product of the d-th component of the input vector for each segment that is
labelled y, multiplied with the score of the complete segment sequence.

To circumvent the need of explicitly enumerating all segment sequences we con-
sider every possible segment labelled y. Recall that a segment is defined by it’s
position and label. Thus the segment can start at each position and have length
1 ≤ l ≤ Lmax, such that it does not overrun the observation sequence X. The d-th
component of the input vector of this segment, has to be multiplied with the score
of all segment sequences it is part of. In other words we need to consider all segment
sequences that have a segment of length l, starting at position t, ending at position
t+ l − 1, and that has label y.

A sequence of segments S, containing a specific segment s′ = (y, t′, u′), can be
decomposed into a prefix and a suffix sequence: S = Spre ∪ (s′) ∪ Ssuf. The prefix
sequence Spre is a segmentation of the first t − 1 observations. Parameters other
than that are arbitrary. That is, the number of segments, their positions, and the
labels do not matter at all. The first segment of the suffix sequence Ssuf starts at
position u′ and is a segmentation of the observations from u′ (exclusive) to the end
of the observation sequence X. Parameters other than that are again arbitrary.

The scores of all possible prefix and the suffix segment sequences are given by
the forward and backward recursions. Thus αt′−1(y) is the score of all possible prefix
segment sequences that have a last segment that is labelled y. Analogue, βu′+1(y)
is the score of all possible suffix segment sequences that have a first segment that is
labelled y.

Thus by making use of the forward and backward recursions we can compute
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3.7. Parameter learning

the gradient in an efficient way, i.e.

∂ log p(S|X)

∂wyd
=

|S|∑
i=1

fd(X, ti, ui)δyyi (3.18)

− 1

Z(X)

T∑
t=1

L∑
l=1

fd(X, t, u)βt+l(y)
∑
y′

αt−1(y
′)Φ(y, y′,X, t, u), (3.19)

where L = min{Lmax, T − t+1} in order to avoid going beyond T in the observation
sequence and u = t+ l − 1 (i.e. the index of the last observation of the segment).

As already elaborated above, the score of the prefix sequence is captured by αt−1
and the score of the suffix sequence by βt+l. However, the potential function of the
current segment is not yet considered by the recursions. Therefore this value needs
to be multiplied with the recursion quantities. Since the potential function depends
on the label of the previous segment and we want the score of all segment sequences
that have a segment of label y, we need to sum over all possibilities for the previous
label. The previous label of the considered segment is the same as the label of the
last segment in the prefix sequence Spre. The transition from the current segment at
position t to the subsequent segment, which is the first in the suffix sequence Ssuf,
does not have to be handled in a special way, because βt+l(y) was defined to already
contain the transition factor from the segment labelled y to the next one.

Assuming that the α and β recursions are already fully computed, computing
the partial derivative of the log-likelihood with respect to the wyd parameter takes
at maximum O(T · Lmax · |Y|) time.

In a graphical model, summing out all variables but one, and dividing by the
partition function yields the marginal probability of the remaining variable [3, page
396]. Hence, pulling the division by the partition function in Equation (3.19) into
the double sum one obtains the marginal probability of a segment s = (y, t, u):

p(s|X) = p((y, t, u)|X) =
βt+l(y)

∑
y′ αt−1(y

′)Φ(y, y′,X, t, u)

Z(X)
. (3.20)

Thus we can rewrite Equation (3.19) using the marginal probability to

∂ log p(S|X)

∂wyd
=

|S|∑
i=1

fd(X, ti, ui)δyyi −
T∑
t=1

L∑
l=1

fd(X, t, u)p((y, t, u)|X), (3.21)

where again u = t+ l − 1.

The formula for efficiently computing the partial derivative with respect to the
bias parameter λy is the same, but without multiplying the output of the feature
function. For details on the differences in the derivation process we refer to Appendix
A.2.

For the two label dependent parameter vyy′d the same principle applies. However,
there is one additional constraint: We need to consider all segment sequences that
contain a segment of length l, starting at position t, labelled y, and the preceding
segment is labelled y′. However, we do not make any further assumptions about
the previous segment. This additional constraint simplifies Equation (3.19) in the
sense that it eliminates the need to sum over all possible preceding segment labels
y′. The details of the derivation are given in Appendix A.3. Here we present the

18



3.8. Efficient SCRF

partial derivative that can be computed in an efficient way:

∂ log p(S|X)

∂vyy′d
=

|S|∑
i=1

gd(X, ti, )δyyiδy′yi−1
(3.22)

−
T∑
t=2

L∑
l=1

gd(X, t)
αt−1(y

′)Φ(y, y′,X, t, t+ l − 1)βt+l(y)

Z(X)
. (3.23)

Important to note is that the summation now starts at t = 2 because the segments
starting at position 1 do not have a predecessor. This result can not be interpreted
in terms of a marginal probability of a single segment any more. Moreover it is also
not the marginal probability of two segments, because the position information of
the previous segment is missing. Therefore the previous segment is not uniquely
defined.

The partial derivative with respect to the two label dependent bias parameter
µyy′ is again the same as in Equation (3.23), but without multiplying the output
value of the feature function.

3.8 Efficient SCRF

The potential function defined in Equation ((3.4)) is the exponential of the sum
over two terms. We insert the definition of the potential function into the forward
recursion of the SCRF:

αt(y) =

Lmax∑
l=1

∑
y′

αt−l(y
′)Φ(y, y′,X, t− l + 1, t)

=

Lmax∑
l=1

∑
y′

αt−l(y
′) exp

[
ψ(y, y′,X, t− l + 1) + φ(y,X, t− l + 1, t)

]
.

The state factor φ depends on the current label, the starting position, and the length
of the segment. The transition factor ψ requires the current and previous labels and
the starting position of the current segment. It does not depend on the length of
the current segment. If we could get rid of the dependency on the segment length
l in the transition factor, the recursion could be split into two parts. The part
summing over all possible segment lengths would then become independent of the
part summing over all possible labels of the previous segment. In other words the
transition potential becomes independent of the state potential, resulting in a more
efficient way of handling the SCRF.

As it turns out this dependency can be dropped if the forward recursion is divided
into two recursions as in [10]:

αstate
t (y) =

Lmax∑
l=1

αbound
t−l (y) exp [φ(y,X, t− l + 1, t)] , 1 ≤ t ≤ T, (3.24)

αbound
t (y) =

∑
y′

αstate
t (y′) exp

[
ψ(y, y′,X, t)

]
, 1 ≤ t < T, (3.25)

where αstate
t (y) represents the same as αt(y). αbound

t (y) represents the accumulated
potentials of the first t observations of X including the transition factor to the
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subsequent segment where the subsequent segment will be labelled y. In order to
compute the partition function using the modified forward recursion one obviously
needs to take the αstate

T (y) quantity, i.e.

Z(X) =
∑
y

αstate
T (y). (3.26)

This redefinition changes the asymptotic time complexity of the recursion to
O(T · (Lmax|Y|+ |Y|2) ·M). If Lmax ≤ |Y| then asymptotically the dependency on
Lmax can be neglected and the forward recursion has the same complexity as for
ordinary, non-segmental CRFs. In practice however there is always overhead and
the efficient SCRF will have a longer runtime than the ordinary CRF.

The same trick can also be applied to the backward recursion:

βstatet (y) =

Lmax∑
l=1

βboundt+l (y) exp [φ(y,X, t, t+ l − 1)] , 1 ≤ t ≤ T, (3.27)

βboundt (y) =
∑
y′

βstatet (y′) exp
[
ψ(y, y′,X, t)

]
, 1 < t ≤ T, (3.28)

where βboundt (y) corresponds to βt(y). βstatet (y) represents the sum over the scores
of all segment sequences comprising the observations starting at t to the end of X,
and the first segment is labelled y.

The partition function using the new backward recursion can be computed in
the following way:

Z(X) =
∑
y

Lmax∑
l=1

Φ(y,X, 1, l)βboundl+1 (y) =
∑
y

βstate1 (y). (3.29)

The redefined recursions simplify the computation of the marginal probability of
a segment to:

p(s|X) = p((y, t, u)|X) =
αbound
t−1 (y) exp [φ(y,X, t, u)]βboundu (y)

Z(X)
, (3.30)

where the summation over all possibilities for the previous segment label is already
covered by αbound

t−1 and thus not necessary when computing the marginal.
Using the redefined recursions the partial derivative with respect to two label

dependent parameter changes as follows:

∂ log p(S|X)

∂vyy′d
=

|S|∑
i=1

gd(X, ti, )δyyiδy′yi−1
(3.31)

−
T∑
t=2

L∑
l=1

gd(X, t)
αstate
t−1 (y′)Φ(y, y′,X, t, t+ l − 1)βboundt+l (y)

Z(X)
. (3.32)

3.9 L2-SCRF

The efficient segmental conditional random field can be derived because of the fact
that we have defined that the transition factor does not depend on the length of the
current segment.

20



3.9. L2-SCRF

In this section we introduce the L2-SCRF, which is a model in which the tran-
sition factor depends on the observations of two segments. That means that the
starting and ending positions, as well as the labels of two adjacent segments are
available to the transition factor. The introduction of this model can be motivated
from two perspectives:

First, in [10] it was shown that efficient SCRFs with state features comprising
the observations of the current segment and transition features utilizing a fixed
window of context at the segment boundary, outperform the default SCRF utilizing
the inputs of the current segment as transition features. It is unknown whether the
context of two adjacent segments leads to a further improvement of phone recognition
performance.

Second, in [17] conditional random fields were used for phone classification. In
that work the first order transition factor depends on the data of the current and
the previous phone. This model achieved a significantly higher phone classification
accuracy then the model using only transition bias. Following this principle and
adopting it to phone recognition we now introduce the L2-SCRF.

y1 y2 y3 y4

x1 x2 x3 x4 x5 x6 x7 x8 x9

expφ expφ expφ expφ

expψ expψ expψ

Figure 3.5: Factor graph representation of an example L2-SCRF for T = 9 given
observations partitioned into n = 4 segments. The transition factor depends on the
observations of two segments.

This requires a redefinition of the logarithmic transition factor and the cor-
responding feature function. In the L2-SCRF they both depend on the starting
position of the previous segment, the starting and ending positions of the current
segment:

ψ(yi, yi−1,X, ti−1, ti, ui) =
∑
y,y′

(
vT
y′yg(X, ti−1, ti, ui) + µy′y

)
δyyiδy′yi−1

. (3.33)

Thus also the potential function is extended by one additional parameter, i.e.

Φ(yi, yi−1,X, ti−1, ti, ui) ≡ exp [ψ(yi, yi−1,X, ti−1, ti, ui) + φ(yi,X, ti, ui)] .

The dependency on two segment lengths makes it necessary to redefine the re-
cursions. In all of them the length of the previous segment needs to be explicit.
Hence the forward recursion changes to

αt(y, l) =

Lmax∑
l′=1

∑
y′

αt−l(y
′, l′)Φ(y, y′,X, t− l − l′ + 1, t− l + 1, t), (3.34)

where t is the ending position of the current segment. Hence the segment starting
position is given by t− l + 1. The starting position of the previous segment is then
l′ observations to the left. In order to assert that the recursion is also correct at
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3.9. L2-SCRF

the beginning of the observation sequence: α0(y, l) = 1 and for t < 0 : αt(y, l) = 0.
αt(y, l) is the sum over all segment sequences comprising the first t observations,
where the last segment is labelled y and has length l.

The asymptotic runtime of the forward recursion of this model is now quadratic
in the maximum segment length: O(T ·L2

max · |Y|2 ·M), where M again denotes the
number of feature function evaluations required to compute the potential function.
The runtime of this model is excessive for larger values of T , Lmax or Y.

The backward recursion is defined similarly:

βt(y, l) =

Lmax∑
l′=1

∑
y′

βt+l(y
′, l′)Φ(y, y′,X, t, t+ l, t+ l + l′ − 1). (3.35)

In order to assert that the recursion is also correct at the ending of the observation
sequence: βT+1(y, l) = 1 and for t > T + 1 : βt(y, l) = 0. βt(y, l) is the sum over all
segment sequences comprising the observations t to the end, where the first segment
is labelled y and has length l.

As for the SCRF, the partition function can be computed from the last value of
the forward recursion or the first value of the backward recursion. However, here is
the need to additionally sum out all possible lengths of the last or respectively first
segment.

Z(X) =
∑
y

Lmax∑
l=1

αT (y, l) =
∑
y

Lmax∑
l=1

β1(y, l) (3.36)

The most probable segment sequence can be determined efficiently by replacing
summations by maximizations in Equation (3.34).

Finally we consider the marginal probabilities of this model. Those are required
to compute the partial derivative of the log-likelihood function with respect to the
model parameters. Recall that for the “default” SCRF model it was not possible
to compute the marginal probability of two adjacent segments. This is due to the
fact that the SCRF is agnostic about the length of the previous segment. The L2-
SCRF model however has the information required to uniquely define two adjacent
segments. Thus it is possible to compute the marginal of them.

Here s′ = (y′, t′, u′) denotes the preceding segment of s = (y, t, u). Hence t =
u′+ 1. Let l′ denote the length of s′ and let l denote the length of s. They are given
by: l′ = u′ − t′ + 1 and l = u− u′.

The marginal probability of two segments is given by

p(s′, s|X) =
αt(y

′, l′) exp [ψ(yi, yi−1,X, ti−1, ti, ui)]βt(y, l)

Z(X)
. (3.37)

As depicted in the Equation 3.37 above, the marginal of two adjacent segments can
be computed from the quantities of the forward and backward recursions. However,
there is one speciality here: αt(y

′, l′) covers the sum over all segment sequences of
the first t observations and βt(y, l) covers the segment sequences of the last T − t
observations, starting at t. What is not yet considered is the transition factor from
the segment s′ to the segment s. Thus the value of transition factor is multiplied to
the values of alpha and beta. Again the division by the partition function ensures
that one obtains a probability [3, page 396].

The marginal of a single segment is given in terms of the marginal of two adjacent
segments and marginalizing out all possible preceding segments. Again let l denote
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3.10. Hidden layer SCRF

the length of s, then the marginal of a segment is given by

p(s|X) = p((y, t, u)|X) =
∑
l′

∑
y′

p((y′, t− l′, t− 1), s). (3.38)

Furthermore the L2-SCRF model is the foundation if one wants to introduce a
SCRF with a second order transition factor. A second order transition factor cap-
tures the labelling of three adjacent segments. Therefore a second order transition
factor would not be present for the first two segments in any segment sequence S.
Hence, the recursions (forward, backward, Viterbi) require the information weather
the sum or maximum over all segment sequences constructed from t observations
consist of more than two segments. This information is given by keeping the length
of the previous segment explicit. In other words, if a segment ends at t and the
previous two segment lengths added up are smaller than t, then there are at least
three segments involved and a second order transition factor is in place.

3.10 Hidden layer SCRF

The potential functions of the SCRF are computed as dot products between the
inputs and the learned weights. Thus the SCRF is a linear model. We extend the
model by introducing a hidden layer of non-linear activations. This hidden layer
corresponds to the hidden layer used in feed forward neural networks.

We refer to a SCRF that has been equipped with a hidden layer as hidden
layer segmental conditional random field. In this model, the observations that are
transformed into a fixed size input vector by the feature function serve as inputs to
the hidden layer. The output of the hidden layer is then used as input to compute
the logarithm of the SCRF factor. Both the state and the transition factors can be
extended by a hidden layer.

The logarithm of the state factor in a SCRF with a hidden layer inserted under-
neath the state factor is given by:

φ(yi,X, ti, ui) =
∑
y

(
wT

y z(X, ti, ui) + λy
)
δyyi , (3.39)

where the components of the n dimensional vector z(X, ti, ui) are given by:

zj(X, ti, li) = h(wT
j f(X, ti, ui) + bj). (3.40)

By n we denote the number of neurons or units in the hidden layer. zj is the output
value of the j-th neuron. Just like in a feed forward neural network the output of
each neuron is given by the non-linear transformation of it’s activation. h(x) is some
differentiable non-linear activation function. The activation is computed from the
dot product between the output of the feature function f(X, ti, ui) and the weights
of the neuron [3, pages 227ff].

Adding a hidden layer underneath the transition factor can be done in the same
way.

Apart from using the output of the hidden layer, instead of the output of the feature
function directly, all the recursions and algorithms of the SCRF remain the same.
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3.11. Backpropagation

3.11 Backpropagation

In order to learn the parameters of the hidden layer we apply the backpropagation
algorithm [3, pages 241ff].

The partial derivatives of the potential function parameters remain in principle
the same. An obvious but crucial difference is that instead of multiplying the output
of the feature function f the output of the hidden layer is used. For illustration we
provide the partial derivative of the log-likelihood with respect to wyd for a SCRF
that has a hidden layer underneath the state factor. The formula is closely related
to Equation 3.21, i.e.

∂ log p(S|X)

∂wyj
=

|S|∑
i=1

zj(X, ti, ui)δyyi −
T∑
t=1

L∑
l=1

zj(X, t, t+ l − 1)p((y, t, t+ l − 1)|X).

Now we consider the derivative of the log-likelihood with respect to the hidden
layer parameter wjd of neuron j. A detailed derivation of the partial derivative is
given in Appendix A.5. The result of the derivation is:

∂ log p(S|X)

∂wjd
=

|S|∑
i=1

wyijh
′(aj)fd(X, ti, ui) (3.41)

− 1

Z(X)

∑
S′

|S′|∑
i=1

wyijh
′(aj)fd(X, ti, ui)

|S′|∏
j=1

Φ(yj , yj−1,X, tj , uj). (3.42)

The right side of derivative contains a sum over all segment sequences of T ob-
servations. As already elaborated in the Sections 3.4 and 3.7 this is practically
intractable as there are exponentially many segmentations. By using the same argu-
mentation as in Section 3.7 this explicit summation can be avoided and the partial
derivative computed efficiently using the quantities of the forward-backward algo-
rithm. Let u = t+ l − 1

∂ log p(S|X)

∂wjd
=

|S|∑
i=1

wyijfd(X, ti, ui)h
′(aj) (3.43)

− 1

Z(X)

T∑
t=1

L∑
l=1

fd(X, t, u)h′(aj)
∑
y

wyjp((y, t, u)|X). (3.44)

There is however an important difference, i.e. the output of the hidden layer is
independent of the current segment label. Therefore we need to sum over all possible
labels for the current segment.

3.12 Marginalization of alignments

The partial derivatives of the SCRF parameters derived in Section 3.7 require a given
alignment A of the labelling sequence Y. There are multiple ways of obtaining such
an alignment. One possibility is to manually align each labelling sequence in the
training set to the corresponding observation sequence. Another approach is to rely
on a first pass system that creates an alignment of Y

In this section we choose a different path. We develop and present an efficient
method for marginalizing out the alignment A from the conditional probability of
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3.12. Marginalization of alignments

the model. In the next section we present the gradients required to train the model
without a given alignment sequence.

Recall the definition of the conditional probability of the SCRF in terms of the
labelling and the alignment sequences:

p(S|X) = p(Y,A|X) =
1

Z(X)

|S|∏
i=1

Φ(yi, yi−1,X, ti, ui).

If the alignment A is not available (in the training data) it can be marginalized
out:

p(Y|X) =
∑

A s.t. |A|=|Y|

p(Y,A|X)

=
∑

A s.t. |A|=|Y|

1

Z(X)

|Y|∏
i=1

Φ(yi, yi−1,X, ti, ui)

=

∑
A s.t. |A|=|Y|

∏|Y|
i=1 Φ(yi, yi−1,X, ti, ui)

Z(X)
.

It is important than when marginalizing out the alignments one must only consider
those that are consistent with the given labelling Y and the observation sequence X.
In Section 3.1 we defined that a valid alignment A of Y and X has as many elements
as there are labels, and the ending position of the last alignment item an = (tn, un)
is equal to the number of observations in X. Additionally the length of each segment
is constrained to comprise at maximum Lmax observations.

At this point we encounter the same problem as above when an efficient formula
for computing the partition function was developed. There are exponentially many
valid alignments. The last segment in all valid alignments ends at T and can have the
length 1 up to Lmax. Thus for the last segment there are up to Lmax possible starting
positions. The starting position of a segment is given in terms of the end position
of the preceding segment plus one. So for each of the up to Lmax starting positions
of the last segment there are as many possible starting positions of the penultimate
segment. For each of them there are again up to Lmax possible predecessors and so
forth. Therefore an upper bound for the number of alignments is given by (Lmax)n.
It is intractable to explicitly enumerate them and perform summation over their
potential scores. Once again we have to make use of dynamic programming in order
to compute the required sum in an efficient way.

We split the problem of finding an efficient method for computing this sum into
sub problems. First we consider the task of deciding whether the i-th segment
ai = (ti, ui), starting at ti and ending at ui in the observation sequence, is part of
at least one valid sequence A.

In order to obtain an efficient algorithm, we need to find a method of locally
determining whether the constrains are met. That is, using only the start and end
positions of a segment we have to decide whether the complete alignments it is part
of will comprise exactly T observations and n segments.

The maximum length constraint is very simple to verify. From the known starting
and ending positions (ti, ui) the length of the segment can be computed and hence
this constraint can be checked, i.e.

ui − ti + 1 ≤ Lmax.
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3.12. Marginalization of alignments

Next we develop the criteria to check whether the starting position of the segment
is valid. That means that ti needs to be far enough away from the beginning of
the observation sequence as to leave enough space for i − 1 preceding segments of
minimum length. However, it also needs to be asserted that the starting position ti
is close enough to the beginning of the observation sequence. It has to be possible
that ti can be reached with i − 1 segments. Since each segment has a maximum
length, the right most possible position of ti is given by (i − 1)Lmax + 1. The first
segment of all alignments always starts at t1 = 1. We can formulate those properties
as:

i ≤ ti ≤ (i− 1)Lmax + 1. (3.45)

Next, we examine the ending position ui with respect to the number of given
segments and observations. The ending position, similar to the starting position,
needs to be close enough to the end of the observation sequence such that the last
observation can be reached with (n − i) remaining segment of maximum length.
Moreover it needs to leave enough space to insert (n− i) remaining segments. The
last segment of all alignments always ends at T , i.e.

T − (n− i)Lmax ≤ ui ≤ T − (n− i). (3.46)

Note that the possible starting positions do not yet take the number of observa-
tions into account. However, the constraint that the alignment will comprise exactly
T observations is met by the possible ending positions. Since ti ≤ ui always holds
for any segment, this constraint is also met.

Algorithm 3 gives a pseudo code for checking whether a given pair of start
and ending positions define the position of the i-th segment that is part of any
valid alignment sequence with respect to given observation sequence X and labelling
sequence Y.

Algorithm 3 Pseudo code for checking whether a given pair of start and ending
positions define the position of the i-th segment that is part of at least one valid
alignment sequence. The code expects that the presented segment is valid in the
sense that t ≤ u and the maximum length constraint is met.

function isValidSegment(i, t, u, |X|, |Y|)
if u < 1 ∨ u > T then

return False
end if
if t < i ∨ t > (i− 1)Lmax + 1 then

return False
end if
if T − (n− i)Lmax < u ∨ u > T − (n− i) then

return False
end if
return TRUE

end function

Now that we have a simple method of verifying whether a segment is part of
any valid alignment sequence, we turn into the problem of computing the sum of
all alignment scores. The score of a single alignment is given by the product of
it’s potentials. A recursive approach for computing the sum over all alignments is
motivated by the observation that alignments are consisting of touching segments.
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3.13. Training without alignments

The starting position of segment i is given by the ending position of segment i − 1
plus one. We introduce γi(u; X,Y) as the sum over the scores of all alignments
consisting of exactly i segments, where the last segment ends at positions u. For the
last segment i ending at u there are up to Lmax possible starting positions. For each
of those possibilities it has to be checked that they are valid. This can be done with
Algorithm 3. The potential of each valid segment is then multiplied by the scores of
all alignments consisting of i− 1 segments ending one position ahead of the starting
position of that segment. Hence, γi(u; X,Y) can be determined recursively:

γi(u; X,Y) =
Lmax∑
l=1

Φ(yi, yi−1,X, u− l + 1, u)γi−1(u− l; X,Y)1{cond}, (3.47)

for 1 ≤ i ≤ n and where cond stands for the condition that ai = (u − l + 1, u)
defines a valid segment (i.e. isValidSegment(i, t − l + 1, t)). For convenience
γ0(0; X,Y) = 1 and ∀u ∈ Z, u 6= 0 γ0(u; X,Y) = 0.

Following the definition of γ the probability p(Y|X) is given by:

p(Y|X) =
∑

A s.t. |A|=|Y|

p(Y,A|X) =
γn(T ; X,Y)

Z(X)
. (3.48)

We now consider the asymptotic runtime requirement of computing p(Y|X).
The recursion runs over each of the n segments. For each segment there are up
to T possible ending positions. For each ending position up to Lmax segments can
be part of the alignment sequence. Again let M be the number of feature function
evaluations required to compute the potential function. Hence the asymptotic upper
bound for computing γn(T ; X,Y) is O(n · T · Lmax ·M).

3.13 Training without alignments

When marginalizing out all alignments the numerator of the likelihood function and
therefore also the derivative with respect to the model parameters is changing. The
derivative of the partition function remains the same. The gradient of the part that
changes, namely the numerator, is derived here with respect to the input dependent
state factor parameter wyd:

∂ log
∑

A s.t. |A|=|Y|
∏|Y|

i=1 Φ(yi, yi−1,X, ti, ui)

∂wyd

=

∑
A s.t. |A|=|Y|

∑|Y|
i=1 fd(X, ti, ui)δyyi

∏|Y|
j=1 Φ(yi, yi−1,X, ti, ui)∑

A s.t. |A|=|Y|
∏|Y|

i=1 Φ(yi, yi−1,X, ti, ui)

=

∑
A s.t. |A|=|Y|

∑|Y|
i=1 fd(X, ti, ui)δyyi

∏|Y|
j=1 Φ(yi, yi−1,X, ti, ui)

γ|Y|(|X|; X,Y)
.

In this derivation the chain rule was applied because of the logarithm. Then the
general product rule were applied to yield the above state result. This result contains
some terms that are intractable to compute. The denominator of the derivative is
the sum over all alignment scores. This sum can be computed efficiently, as derived
in the previous section.
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3.13. Training without alignments

In order to compute the numerator efficiently the same argumentation as for the
partial derivative of the partition function applies: The sum runs over all alignments
and for each segment that is labelled y adds up the product of the d-th component
of the input vector (fd(X, ti, ui)) multiplied with the score of the alignment sequence

(i.e. the product of the potentials:
∏|S|

j=1 Φ(yj , yj−1,X, tj , uj)).

Instead of explicitly enumerating all alignments we consider for every label yi in
Y all possible segments. This can be done by considering all pairs of starting and
ending positions. For each hypothetical segment it has to be checked that it is part
of at least one valid alignment sequence. The method for doing this was outlined in
the previous section. Additionally we only consider those segments that are labelled
y. This dependency on y stems from the fact that we are considering the partial
derivative with respect to wyd. Each segment that satisfies those properties is going
to be multiplied by the score of all alignments it is part of. Thus the alignments the
segment is part of can be split into the prefix alignments and suffix alignments. The
score of the prefix alignments consisting of the first i − 1 labels is given by the γ
recursion. In order to obtain the scores of the suffix alignments, which are consisting
of the n− i last labels, we need to introduce a recursion that runs backwards.

Hence, let ζi(t; X,Y) be the over the scores of all alignments consisting of exactly
n− i segments, where the first segment starts at position t. The recursion is given
by

ζi(t; X,Y) =

Lmax∑
l=1

Φ(yi, yi−1,X, t, t+ l − 1)ζi+1(t+ l)1cond, (3.49)

for 1 ≤ i ≤ |Y| and where cond stands for the condition that ai = (t, t + l − 1)
defines a valid segment (i.e. isValidSegment(i, t, t + l − 1)). For convenience we
define ∀t : ζ|Y|+1(t; X,Y) = 1. The same time complexity as for the γ recursion
applies.

Using those two recursions the score of all alignments with a specific segment
si = (yi, ti, ui) can be computed. Hence the efficient way of computing the partial
derivative with respect to wyd is

∂ log
∑

A s.t. |A|=|Y|
∏|Y|

i=1 Φ(yi, yi−1,X, ti, ui)

∂wyd
(3.50)

=

|Y|∑
i=1

T∑
t=1

t+L−1∑
u=t

fd(X, t, u)δyyi · (3.51)

γi−1(t− 1; X,Y)Φ(yi, yi−1,X, t, u)ζi+1(u+ 1; X,Y)

γ|Y|(|X|)
, (3.52)

where L = min{Lmax, T−t+1} to avoid going beyond T in the observation sequence
X. This result looks very similar to the gradient of the logarithm of the partition
function. However, a key difference here is that the labelling is given.

The partial derivative with respect to the bias parameter depending on one label
λy is similar except that the dependency on the d-th component of the feature
function is missing.

Finally we conclude this section by examining the derivative of the numerator
of the marginalized log likelihood function with respect to the two label dependent
parameter vyy′d. Since the observations and the labels are given there is no need
to sum over hypothetical label sequences. That results in the fact that the partial
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derivative with respect to the two label dependent factor parameters is very similar
to Equation 3.52, apart from the dependency on two labels.

∂ log
∑

A s.t. |A|=|Y|
∏|Y|

i=1 Φ(yi, yi−1,X, ti, ui)

∂vyy′d
(3.53)

=

|Y|∑
i=1

T∑
t=1

L∑
l=1

gd(X, t)δyyiδy′yi−1
· (3.54)

γi−1(t− 1; X,Y)Φ(yi, yi−1,X, t, t+ l − 1)ζi+1(t+ l; X,Y)

γ|Y|(|X|)
, (3.55)

where L = min{Lmax, T − t+ 1} to respect the length of the observations sequence
X.

Thus the asymptotic computational complexity of computing the partial deriva-
tives with respect to the numerator of p(Y|X) is O(n · T · Lmax ·M). In contrast if
A is given the complexity of the partial derivative of the numerator of p(Y,A|X) is
only O(n ·M).

3.14 Relation to CTC

Recurrent neural networks (RNNs) are powerful models for sequence classification.
However, they make frame level predictions. That means a RNN produces one
output for each observation. So the output sequence is of the same length as the
observation sequence. Therefore RNNs require that the training data is segmented
and the outputs must be post-processed. A hybrid approach to solve those problems
involves HMMs. However this approach does not exploit the full potential of RNNs
[6]. To overcome the limitations Graves et al introduced connectionist temporal clas-
sification (CTC). In this section we briefly introduce CTC and show the differences
to segmental conditional random fields.

RNNs equipped with CTC have a softmax output layer and a blank symbol is
added as an additional label. Hence the outputs of the network can be interpreted as
probabilities. The probabilities of the network outputs are conditionally independent
given the internal state of the network. The labelling, not to be confused with the
output sequence, of the network is computed by a mapping of the output sequence.
This mapping is defined by merging all adjacent equal output classes in the output
sequence and then removing all blank symbols. The objective of a CTC network is
the conditional probability of the labelling sequence given the observation sequence.
This conditional probability is defined in terms of the sum over all output sequences
that can be converted into the given labelling. This sum is computed in an efficient
way with a recursion of a dynamic programming approach.

When making predictions a CTC network computes for each observation frame
the output probabilities of each label. The predicted labelling is then given by either
best path or prefix search decoding. The first method simply takes the most probable
output sequence and maps it to the labelling sequence. The latter computes the
most probable labelling by expanding the most probable output sequence prefixes
to obtain the most probable labelling.

In contrast, the SCRF models the distribution of segment sequences for given
observation sequences. Hence it produces segmental predictions in one step without
the need of an intermediate step. For that purpose the model groups the observations
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into segments and computes for each hypothetical segment a potential. Because of
that, in a SCRF one always needs to address the problem of transforming a variable
number of observations into a fixed sized feature vector in order to compute that
potential. This problem is not present in CTC networks, because RNNs make one
prediction per observation frame. This output of the RNN is then made “segmental”.

Furthermore the SCRF models a dependency between two neighbour labels. This
dependency on the outputs is not captured by CTC networks. However it is in the
nature of RNNs to be able to model long term input context. Efficient SCRFs
do have the context of the current hypothetical segment and the corresponding
boundary.

The training of a CTC network is in principle very similar to the training of
a segmental conditional random field when the alignment is not given. CTC dis-
tributes the n given labels onto the T observations. In contrast, the SCRF splits
the T observations into n segments. The dynamic programming recursion of CTC
has an upper bound of O(n · T ). Recall that the SCRF algorithm for summing over
all alignments has an upper bound of O(n · T ·Lmax). The dependency on the max-
imum length parameter comes from the fact that the SCRF requires the segment
information explicitly. A segment is defined by it’s starting and ending position.
A recurrent neural network does only need to have a label at each output t. It is
agnostic about the actual starting and ending position of the current label. The fact
that is does not require this information results in a less complex recursion.
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Chapter 4

Experiments: Phone
Recognition

In this chapter, we present the results of phone recognition experiments with the
introduced segmental conditional random field model. We trained and evaluated the
model on the TIMIT corpus [5], which contains 6300 sentences of American English
spoken by 630 speakers from different dialect regions within the U.S.

This chapter is structured as follows: First we introduce the extraction of the
features and the experimental setup. Then we deal with the problem of finding a
feature function that produces a fixed sized input vector from segments of variable
length. In those experiments the transition factor did not depend on any inputs
and therefore only acted as a bias. Next, we explore the use of input dependent
transition factors. Subsequently, we present recognition results of the L2-SCRF
which models a dependency on the current and the previous segment. Then exper-
imental results of the SCRF extended by a hidden layer trained with backprop are
shown. All those experiments were performed using the alignment information from
the TIMIT corpus for training. Finally, we show experimentally that the algorithm
for marginalizing out the alignment sequences during training also works in prac-
tice. In those experiments we did not use the alignments. We directly compare the
two training methods and the achieved results. The chapter is concluded with a
summary of the obtained experimental results and a comparison with the results of
related work.

4.1 Implementation

All introduced models were implemented in python 2.71 using the packages numpy

and scipy. When implementing the recursions presented in the previous chapter,
one certainly faces the problem of numerical instabilities. In numpy the exponential
overflows for arguments of ≈ 700 and greater. So the arguments of the exponen-
tial need not exceed this limit. A common trick of avoiding those overflows when

1https://www.python.org/download/releases/2.7/
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computing the logarithm of a sum over exponential terms is the following:

x = c+ log
∑
i

exp vi − c

= c+ log
∑
i

exp vi
exp c

= c+ log

∑
i exp vi
exp c

= c+ log
∑
i

exp vi − log exp c

= log
∑
i

exp vi,

where v denotes an arbitrary vector of real numbers and c is an arbitrary real valued
scalar. Hence, in the implementation the logarithmic quantities of the recursion are
computed. Before summing over all terms the correction constant c is determined.
This avoids the overflow of the exponential.

All implemented models were tested using a comprehensive set of test cases. The
value of the partition function computed from the forward and backward recursions
is checked by setting up a problem in which the explicit summation over all seg-
mentations and segment sequences was still tractable. The result of the explicit
summation is compared with the result from the forward and backward recursions.
The implementation of the most probable segment sequence decoding is checked in
the same way, i.e. the prediction is compared to the most probable sequence de-
termined from enumerating all possible sequences. The correctness of the partial
derivatives are checked by approximating them using finite differences.

4.2 Feature extraction

(a) 12-th order MFCCs plus energy

(b) 12-th order MFCC deltas

(c) 12-th order MFCC double deltas

Figure 4.1: Mel frequency cepstral coefficient representation of a random utterance
from TIMIT training set. The vertical black lines indicate the phone boundaries.
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The waveform audio data in the TIMIT dataset was transformed into 12-th order
Mel Frequency Cepstral Coefficients (MFCCs) and the energy-coefficient using a 25
ms window. Additionally we included deltas and double-deltas. Figure 4.1 depicts
a plot of the MFCC representation of a random utterance from the TIMIT training
dataset. The frame rate is 100 frames/s, therefore there was one 39 dimensional
input vector per 10 ms of speech. The silent parts in the beginning and in the end of
each utterance (h#) were cut to a maximum length of 5 frames. Those sections are
absolutely silent and do not contain any information. Moreover we ignored glottal
stops. This is common practice when using TIMIT [9].

4.3 Experimental setup

All models were trained on the 462 speaker training set with the SA utterances
removed. So there were 3696 training sequences. To counteract over-fitting all
experiments were conducted with early stopping. For this a 50 speaker development
set consisting of 400 utterances following [8] was used. Final comparison of results
is performed on the 24 speaker core-test set consisting of 192 utterances. The phone
recognition performance is measured by of the phone accuracy. The phone accuracy
of a training example is given by the Levenshtein distance between the predicted
and the target phone sequence [4]. The Levenshtein distance is the number of
insertion, deletion, and modification operations required to transform one sequence
into another. The accuracy numbers are given as percentages, i.e. between 0 and
100.

According to [9] we collapsed the 61 phone classes into 39. Details are presented
in Table 4.1. Hence the size of the label alphabet Y of the SCRF is |Y| = 39.

0 iy V 1 ih,ix VS 2 eh V

3 ae V 4 ah, ax-h, ax VS 5 uw, ux V

6 uh V 7 aa, ao VS 8 ey V

9 ay V 10 oy VS 11 aw V

12 ow V 13 er, axr V 14 l, el SVG

15 r SVG 16 w SVG 17 y SVG

18 m, em NF 19 n, en, nx NF 20 ng, eng NF

21 dx S 22 jh AF 23 ch AF

24 z F 25 s F 26 sh, zh F

27 hh, hv SVG 28 v F 29 f F

30 dh F 31 th F 32 b S

33 p S 34 d S 35 t S

36 g S 37 k S

Table 4.1: The 61 phones of TIMIT are distributed to 39 distinct classes as in [9].
The last class 38 contains the closure phones of the stops and the pauses: bcl, pcl,
dcl, tcl, gcl, kcl, epi, pau, h#. Abbreviations of the phone types: V vowel, SVG
semivowels and glides, NF nasals, AF affricate, F fricative, S stop. For details on
the phones and types we refer to [5].

Training was performed by optimizing the conditional log likelihood of the model
using stochastic gradient ascent. The model parameters were updated using the
gradient computed from 4 utterances (mini-batch gradient ascent). The parameter
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gradients of each mini-batch were computed in parallel on separate CPUs.

Instead of using the same learning rate for each epoch an empirically determined
optimized learning rate schedule was used. Initially the model is untrained, so
the first learning rates were selected high. Then the learning rate was gradually
decreased over the epochs. After 16 iterations the minimum learning rate of η =
0.0001 was applied for the remaining epochs. In any tested case further lowering the
learning rate did not result in a significant increase of the conditional log likelihood.
Figure 4.2 depicts the learning rate schedule used in all experiments in this work.

Experiments were stopped if either the conditional log likelihood did not increase
by more than ε = 0.02 or if the accuracy on the development set had decreased for
15 iterations.

Figure 4.2: Learning rate schedule for model training. After 16 iterations of training
the learning rate was not further decreased.

Training the model with given phone boundaries, the objective function of the
SCRF model is convex [10]. Thus all experiments in this configuration were per-
formed once and all parameters were initially set to zero. Those experiments con-
verged within 15 to 35 epochs of training.

Training the SCRF without given alignment or adding a hidden layer results
in a non-convex objective function. Those experiments were performed with initial
weights sampled from a uniform distribution. For the experiments performed multi-
ple times only the results from the best run with respect to the development set are
reported. Training the SCRF without phone boundaries took significantly longer.
The details are discussed in the corresponding section below.

For the experiments carried out with given alignment information, the inputs
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were normalized to have zero mean and unit variance as they were presented to the
model. That means that the outputs of the feature functions were normalized. This
is a contrast to normalizing the extracted features directly. For the latter method
of input normalization the resulting phone recognition accuracies were significantly
worse compared to using the feature level normalization. When training the model
without given alignments this form of normalization is not possible as it requires
the alignments to be present. For those experiments the best results were achieved
when the inputs were not normalized at all.

Another important parameter of the introduced segmental conditional random
field is the maximum segment length Lmax. Figure 4.3 is a histogram plot of the
distribution of segment lengths (i.e. the duration of phones) in the training dataset.
In order to make predictions of long segments possible the parameter shall be set
to the highest occurring value. On the other hand the runtime of the training
and decoding algorithms depend linearly on the maximum length of a segment.
Therefore, for faster runtime one wants to make Lmax as small as possible. For all
performed experiments the maximum length parameter was chosen to be Lmax = 31.
With this parameter 99.95% of all segments in the training data are captured. A
detailed discussion on the influence of the parameter on the recognition result is
given in Section 4.7.

Figure 4.3: Distribution of segment lengths in the TIMIT training dataset.

4.4 State features

The SCRF model requires a fixed sized input, independent of the current segment
length. This task is accomplished by the state feature function f(X, ti, ui). This sec-
tion documents the experiments carried out to empirically determine feature function
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suited for the task of phone recognition. We evaluated various ways of processing
the input vectors of a segment to form the input values of the model. Table 4.2
gives an overview of all tested state feature functions f(X, ti, ui) and their phone
recognition accuracies on the development set. In all experiments presented in this
section the transition factor did not depend on any input and thus only acted as a
bias!

f(X, ti, ui) #dimensions #parameters phone accuracy
1
li

∑li−1
i=0 Xt+i 39 3081 30.00

Xti ||Xti+li−1 78 4602 54.54

f1(X, ti, ui) 91 5109 57.24

f2(X, ti, ui) 104 5616 57.09

f3(X, ti, ui) 117 6123 58.17

fm-sel
4 (X, ti, ui) 130 6630 56.89

f sel6 (X, ti, ui) 312 13728 59.04

f joint1−6 325 14235 59.85

f joint3−6 351 15249 59.81

Table 4.2: Comparison of phone recognition performance of SCRF with different
state feature functions. The accuracies are given for the development set. The
transition factor does not depend on any input and thus only acts a bias. The
“dimensions” column denotes the dimensionality of the vector returned by the cor-
responding feature function. Details about the listed feature functions are given in
the text.

Simply concatenating all input vectors of a segment to form the feature vector
is not a good idea for two reasons: First this approach is prone to over-fitting. As
depicted in the histogram in Figure 4.3 most of the segments are of shorter length
than the maximum segment length. For a segment shorter than Lmax the remaining
positions have to be padded with zeros. Then the feature vector of a segment would
depend on its length. The dataset contains many different realisations of the same
phone. They differ in their MFCC coefficients as well as in their length. This makes
it hard to obtain model parameters that are generalizing well. The second reason is
that the resulting feature vector would be very large (31 · 39 = 1209 elements).

For those two reasons we did not evaluate this feature function. A first very
naive way to build a fixed size feature vector is to simply average the input vectors
of each segment. This results in a very poor phone recognition accuracy of 30.00%.
The delta and double delta values in the data were averaged as well, which does not
make any sense from a signal processing point of view. The deltas convey information
about changes in the cepstrum. By averaging the delta vectors of a segment this
information gets lost.

Therefore it is reasonable to consider the deltas at the boundaries of a phone.
Thus our second approach only averages the MFCCs of a segment and includes the
deltas of the first and the last frame of the segment. This feature function is denoted
as f1 in Table 4.2. Applying this feature function the phone recognition accuracy
increased to 57.24%. This shows that the deltas at the segment boundaries are very
important for phone recognition.

This raises the question of how important the averaged MFCCs are. The feature
function just utilizing the first and the last input vector of a segment achieves a
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phone recognition accuracy of 54.54%. This shows that the frames from within a
segment are important as well.

Halberstadt and Glass [9] used three MFCC averages computed approximately
over segment thirds. Using three averaged MFCCs and the first and last frame com-
pletely further increased the recognition accuracy to 58.17%. This feature function
is denoted as f3.

In general we use the notation fi(X, ti, ui) to denote a feature function that takes
the first and last input vectors of a segment and depending on the subscript i the
MFCCs of the segment are averaged in i groups. When averaging the MFCCs of a
segment in 2 groups the obtained result was 57.09%. This is a little worse than for
the f1(X, ti, ui) feature function.

A side effect of using more input groups is that the training time increases.
This is due to the introduced overhead in constructing the feature vector. Moreover
the feature vector is increased in size and as a consequence the number of model
parameters is also increased.

n #dimensions phone accuracy

0 78 54.54

2 104 56.15

3 117 56.74

4 130 56.89

5 143 56.85

Table 4.3: Comparison of development set phone recognition accuracies for the
fm-sel
n state feature functions. Those feature functions take the first and the last

input frames of the segment and are additionally including n MFCC frames from
within the segment. The positions of selected frames are determined from a linear
range over the segment length.

We evaluated another approach of constructing a feature vector: Instead of av-
eraging the MFCCs of a segment, we included some selected ones into the feature
vector. The MFCCs were selected from a linear range over the segment duration.
The first and last frames again were kept as a whole (i.e. MFCCs and deltas). The
recognition results for this feature function for a varying number of selected MFCCs
are given in Table 4.3. This type of features is not as effective as the features using
the averaged MFCCs.

This leads to yet another approach of constructing a fixed size feature vector
from a variable length segment. Instead of only using selected MFCCs we evaluated
the use of selected complete input frames. That means not only the MFCCs, but
also the deltas are part of the feature vector. This feature function is denoted
as f seln (X, ti, ui) in the overview Table 4.2. The subscript variable n denotes the
number of selected complete frames from within the segment. Recall that this feature
function additionally includes the first and the last frames of a segment. Table 4.4
gives an overview of the recognition results of this type of feature function.

Finally, we evaluated the recognition performance of a feature function that uni-
fies the averaged MFCC fi feature function and the selected frames feature function
f seln . Thus those feature functions concatenate the first and the last observation vec-
tors of a segment with n selected observation vectors from within the segment and
the MFCCs averaged in i parts. In Table 4.2 this type of feature function is denoted
as f jointi−n , where i denotes the number of averaged MFCC groups and n denotes the

37



4.5. Segment length bias

number of selected complete frames.

n #dimensions phone accuracy

0 78 54.54

3 195 57.80

4 234 58.34

5 273 58.64

6 312 59.04

7 351 58.93

Table 4.4: Comparison of development set phone recognition accuracies for the f seln

state feature functions. Those feature functions take the first and the last input
frames of the segment and are additionally including n frames from within the
segment. The positions of selected frames are determined from a linear range over
the segment length.

4.5 Segment length bias

In the previous section we identified a state feature function suitable for phone recog-
nition. When making a prediction the model hypothesizes over all possible segment
lengths and has to make a decision about it. We pursue the idea of supporting that
process by including a segment length bias.

Inspecting the example utterance in Figure 4.1, one can see that the lengths of
the individual segments are very different. We already inspected the distribution
of segment lengths of the entire training dataset. Now we take a closer look and
inspect the distribution of segment lengths for each individual phone class.

Figure 4.4 shows that the distributions of segment lengths are specific to each
phone class. Therefore a segment length bias for each individual phone class appears
to be beneficial as this information should support the process of determining the
proper segment length.

This is also underlined by empirically collected data. The averaged predicted
segment length in the validation dataset with the f1(X, ti, ui) state features was
8.776. In contrast the average segment length in the training data is 6.819 with a
standard deviation of 4.251. Therefore we conclude that the model predicts too long
segments and thus does not recognise some phones.

We explored three ways of including a segment length bias to the model. The
first evaluated method comes from Halberstadt and Glass [9]. They included the

logarithm of the segment length to their feature vector. By f logleni (X, ti, ui) we
denote a feature function that does the same as the fi(X, ti, ui) feature function
and additionally includes the logarithm of the segment duration. Thus the SCRF
is extended by |Y| parameters. We evaluated the performance of this function for
i = 1. Using this type of segment length bias increases the recognition accuracy
by more than 2%. Inspecting the learned parameters, one finds that the weight for
the logarithmic length is negative for each phone class. Multiplied with a negative
weight the logarithm of the segment length is decreasing for larger arguments and
thus making longer segment less favourable. Figure 4.5 plots the learned weights
over the segment length histograms of four selected phone classes.

A different approach involves extending the state factor by another indicator
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Figure 4.4: Distribution of segment lengths for selected phone classes in the TIMIT
training dataset.

f(X, ti, ui) length bias #parameters average-length accuracy

f1(X, ti, ui) no length bias 5109 8.776 57.24

f1(X, ti, ui) distribution 5148 8.763 57.27

f1(X, ti, ui) indicator 6318 8.388 59.52

f1(X, ti, ui) log length 5148 8.195 59.63

Table 4.5: Overview of phone recognition performance of SCRF for different types
of segment length biases. The accuracies are given for the development set. Again
there is only transition bias. The table shows a explicit correlation between the
average predicted segment length and the recognition accuracy.

feature:

φ(yi,X, ti, ui) =
∑
y

(
wT

y f(X, ti, ui) + λy + νyli
)
δyyi , (4.1)

where νyli is the weight of the length indicator feature. Note that there are |Y|×Lmax

such parameters. In order to be able to make comparisons to the previous methods
we evaluated the segment length indicator feature together with the f1(X, ti, ui)
state features. The duration indicator feature improves the recognition result by
about 2% and lowers the average predicted segment length (cf. Table 4.5).

Another very different approach is to estimate the distribution of segment lengths
for each phone from the training dataset. This is done by determining the histogram
of the segment lengths for each phone class. See Figure 4.4 for a plot of histograms
for some selected phone classes. For each hypothetical segment of length l and label
y the corresponding histogram value is multiplied by the per phone class trainable
weight and added to the local potential φ(yi,X, ti, ui). This introduces |Y| new
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4.5. Segment length bias

Figure 4.5: Histograms of segment lengths for selected phone classes in the TIMIT
training dataset. The curves are the logarithms of the segment durations multiplied
by the learned parameters.

parameters. As it turned out this form of segment length bias did not increase the
recognition performance at all.

Table 4.5 gives an overview of all tested length bias methods. The results confirm
our first conjecture that the recognition accuracy of the model is linked to the
averaged predicted segment length. The recognition performance decreases with
increasing deviation of the average predicted segment length from the true average
segment length. The duration indicator works almost as well as the including the
logarithm of the segment duration. Since the latter is much simpler to implement
and performs even slightly better we selected that approach.

Finally we also evaluated the performance of the logarithm of the segment du-
ration for best performing feature functions from the previous section. Table 4.6
summarizes those results.

f(X, ti, ui) length bias #parameters phone accuracy

f3(X, ti, ui) log length 6162 60.30

f joint1−6 (X, ti, ui) log length 14274 61.29

f joint3−6 (X, ti, ui) log length 15288 61.43

Table 4.6: Overview of phone recognition performance of SCRF for best performing
state features including the logarithm of the segment length as segment length bias.
The accuracies are given for the development set. Again there is only transition
bias.
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4.6 Transition features

So far we have only considered input dependent state features and input independent
transition bias. In [20] Zweig has found out that contextual information around
segment boundaries is particularly important for speech recognition. Therefore we
explored the use of input dependent transition features.

In order to make efficient use of boundary features in the SCRF we have defined
the transition factor to be independent of the current segment length. Therefore
the process of determining a feature function is strongly simplified. The transition
feature function gn(X, ti) utilizes n observation vectors from the segment boundary.
Half of the frames are from the segment left of the boundary and the other half of
the frames are from segment to the right.

We have determined the optimal number of boundary frames by keeping the
state feature function f loglen3 fixed in those experiments. Table 4.7 gives an overview
of the recognition results. A side effect of adding input dependent transition features
is that the number of model parameters gets drastically increased. The best result is
obtained for 10 frames of boundary context. This input dependent transition factor
leads to an improvement of almost 10% over just using transition bias. More than
10 frames did not lead to a further improvement of the recognition performance.

f(X, ti, ui) #frames #parameters phone accuracy

f loglen3 (X, ti, ui) 4 243438 68.91

f loglen3 (X, ti, ui) 6 362076 70.08

f loglen3 (X, ti, ui) 8 480714 70.40

f loglen3 (X, ti, ui) 10 599352 70.63

f loglen3 (X, ti, ui) 12 717990 70.60

Table 4.7: Overview of phone recognition performance for different number of frames
at the boundary and always the same state features. The accuracies are given for
the validation set. Half of the frames are from the segment left of the boundary and
the other half of the frames are from segment to the right.

This poses the question of how much influence the state features have on the
recognition performance. Therefore we examined the recognition performance with
the transition feature function using 10 frames at segment boundary and without
any state feature function. The recognition performance in this configuration was
66.93% and thus about 4% worse than with the f loglen3 (X, ti, ui) state features. This
shows that even in the presence of input dependent transition features the state
features are still important!

Next we examine the optimal state and transition feature function combination.
In the previous section we have identified that the f joint3−6 (X, ti, ui) state feature func-
tion delivered the best performance. Therefore we also determined the recognition
performance of those state features in conjunction with the input dependent transi-
tion features. As it turned out those features provided no significant improvement
of recognition performance over the f loglen3 state feature function. As it seems those
features do not provide any additional information that could support the recog-
nition process of the model. Table 4.8 compares the recognition performance for
different state feature functions and different number of boundary context frames
as input dependent transition features.
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f(X, ti, ui) #frames #parameters phone accuracy

f loglen1 (X, ti, ui) 4 242424 68.80

f loglen3 (X, ti, ui) 4 243438 68.91

f loglen1 (X, ti, ui) 6 361062 69.63

f loglen3 (X, ti, ui) 6 362076 70.08

0 10 594750 66.93

f loglen3 (X, ti, ui) 10 599352 70.63

f loglen3−6 (X, ti, ui) 10 608478 70.83

Table 4.8: Comparison of the influence of different state features with constant
number of boundary context frames on the phone recognition performance. The
accuracies are given for the validation set.

4.7 Maximum segment length

This section examines the influence of the Lmax parameter on the phone recognition
result. A smaller maximum segment length parameter has the benefit of making
training and decoding faster. On the other hand this reduces the ability of the
model to predict longer segments. Thus we have to trade off and seek an acceptable
solution.

Lmax coverage time/epoch phone accuracy

18 98.05% 26.8 min 68.80

21 99.15% 28.6 min 69.47

24 99.62% 29.9 min 69.83

31 99.95% 34.1 min 70.08

44 100% 41.2 min 70.03

Table 4.9: Overview of phone recognition performance for different selections of the
Lmax parameter. The accuracies are given for the validation set. In all experiments
f loglen3 was used as state feature function and 6 frames from the segment boundary
as input dependent transition features. The percentages in the coverage column give
how many percent of segments in the training set are covered by the corresponding
choice of Lmax.

Table 4.9 summarizes the phone recognition results for different choices of Lmax.
All these experiments were conducted with the f loglen3 state feature functions. The
transition feature function utilized 6 observation vectors form the segment bound-
ary as described in the previous section. The table also states for each choice the
percentage of covered segments in the training set. Larger choices of Lmax increase
the coverage and also the recognition performance up to certain point. At approxi-
mately Lmax = 31 the optimal choice is found. With this maximum segment length
parameter more than 99.9% of segments in the training set are covered.

4.8 L2-SCRF

In this section we present the phone recognition result of the L2-SCRF model in-
troduced in Section 3.9. Recall that this model has a runtime that is quadratic in
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the maximum segment length Lmax. Depending on the used feature functions the
default SCRF trained with the recursions initially presented in the Sections 3.4, 3.5,
3.7 has a training time of one to several hours hours per epoch. The asymptotic
runtime of the L2-SCRF is larger by a factor of Lmax. Recall that for phone recog-
nition on TIMIT we have determined that the optimal parameter of Lmax = 31.
Thus one can expect that the runtime of a single training epoch for the L2-SCRF is
one to several days! In order to still be able to evaluate whether the context of two
segments has a positive influence on the phone recognition performance and has an
advantage over boundary context we set Lmax = 10. That keeps the runtime of the
model reasonable. This however requires a special way of processing the input data
and the model output. Thus we have split all phone segments in the training data
longer than Lmax = 10 into multiple segments. When predicting, adjacent segments
of the same label were merged together.

We compared the phone recognition performance of the L2-SCRF model with
the efficient SCRF were both used the same state feature function. As transition
feature function the former uses the context of two segment processed by the state
feature function and the latter uses 10 frames from the segment boundary. In order
to make an accurate comparison between the two models we have trained the efficient
SCRF using the Lmax = 10 parameter and the same input preprocessing and output
post-processing.

model f(X, ti, ui) phone accuracy

efficient SCRF f loglen3 (X, ti, ui) 69.91

L2-SCRF f loglen3 (X, ti, ui) 68.27

Table 4.10: Comparison of phone recognition accuracy of the L2-SCRF vs. the
efficient SCRF. Both models use the same state feature functions. The L2-SCRF
utilizes the context of two segments, while the efficient SCRF uses 10 frames from
the segment boundary as input dependent transition features. The accuracies are
given for the development set.

From Table 4.10 one can see that the explicit context of two phones does not pro-
vide an improvement over segment boundary context. Hence the expensive L2-SCRF
model does not pay-off and the efficient SCRF is to be preferred. It is interesting
to note that using the small Lmax parameter and merging model outputs results
in a decrease of phone recognition accuracy for the efficient SCRF by about 0.7%
compared to using Lmax = 31 and applying no special handling of the outputs.

4.9 Hidden layer SCRF

In this section we present results from phone recognition experiments with the hidden
layer SCRF. With the number of neurons a hidden layer introduces a new hyper
parameter to the model. Therefore, we need to find an optimal choice for that
parameter.

In the experiments conduced with the hidden layer SCRF we selected the hyper-
bolic tangent tanh as non-linear activation function. According to common practice
in neural networks we initialized the hidden layer weights by sampling from a uni-
form distribution from a range that depends on the number of connections in the
layer.
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First, we examine the effect of hidden layer state factor and determine the cor-
responding approximate optimal number of hidden neurons. For those experiments
the input dependent transition features comprised 10 frames of boundary context
and are used in plain. Both feature functions were kept fixed in order to deter-
mine the influence of the number of hidden neurons on the result. Above, we have
found out that in conjunction with the boundary input dependent transition fac-
tor two particular state feature functions achieved the best results. The first and
simpler feature function denoted as f loglen3 (X, ti, ui) averages the MFCCs within a
segment in three parts and adds the first and the last frames of the segment. Fur-
thermore the logarithm of the segment length is added. The second feature function
f loglen3−6 (X, ti, ui) additionally includes 6 complete frames from within the segment.
We now discuss the influence on the phone recognition accuracy when using those
state feature functions in connection with a hidden layer. For both functions we
determined the approximate optimal number of hidden neurons.

f(X, ti, ui) #neurons #parameters phone accuracy

f loglen3 (X, ti, ui) 150 618300 72.92

f loglen3 (X, ti, ui) 300 641850 73.89

f loglen3 (X, ti, ui) 400 657550 73.95

f loglen3 (X, ti, ui) 500 673250 73.95

f loglen3−6 (X, ti, ui) 200 672950 73.63

f loglen3−6 (X, ti, ui) 400 751150 74.44

f loglen3−6 (X, ti, ui) 600 829350 75.12

f loglen3−6 (X, ti, ui) 800 907550 75.50

f loglen3−6 (X, ti, ui) 1000 985750 75.18

Table 4.11: Comparison of the development set phone recognition accuracies of
SCRFs with hidden layer state features, with different numbers of neurons. The
transition feature function used in all models in this table were the 10 complete
frames from the segment boundary. The transition features are used in plain which
means that they were not passed through a hidden layer.

Table 4.11 gives an overview of phone recognition performances for those two
state feature functions and different numbers of neurons. For the f loglen3 (X, ti, ui)
feature function the approximate optimal number of hidden neurons is about 400
to 500. Using those features as inputs to the hidden layer the phone recognition
accuracy improves by more than 3% over the linear model without a hidden layer.
As it turns out the f loglen3−6 (X, ti, ui) feature function serving as input to the hidden
layer leads to an even larger improvement in phone recognition accuracy. With 800
neurons a performance increase of ≈ 5% over the linear model is achieved.

Next, we discuss the optimal number of neurons for a hidden layer underneath
the input dependent transition factor. As feature function we used the one identified
as optimal in Section 4.6. The 10 observation frames from the segment boundary
were used as inputs to the hidden layer. The state feature function was used without
a hidden layer and was kept fixed in thos experiments. This way we determined the
best number of neurons for the hidden layer transition factor. As presented in
Table 4.12 the best result was obtained for 1000 hidden neurons. The non-linear
transition features improved the recognition result by a bit more than 3% compared
to the linear version of the SCRF.
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f(X, ti, ui) #frames #neurons #parameters phone accuracy

f loglen3 (X, ti, ui) 10 500 673250 73.85

f loglen3 (X, ti, ui) 10 1000 751750 74.14

f loglen3 (X, ti, ui) 10 1500 830250 73.91

Table 4.12: Comparison of the development set phone recognition accuracies of
SCRFs with hidden layer transition features, for different number of neurons. The
transition feature function used in all models in this table were the 10 complete
frames from the segment boundary. The state feature function f loglen3 was used
without a hidden layer.

Now that we have a good parameter setting for the state and the transition
feature functions, we are able to combine those two and check the final recognition
performance. Table 4.13 gives the result of the two models with the different state
feature functions on the development set. As we can see the use of both non-
linear state and transition factors led to an overall improvement compared to the
use of only one non-linear factor. The final model configuration of non-linear state
and transition factor, using the f loglen3−6 (X, ti, ui) state feature function led to an
improvement of more than 5% compared to the linear SCRF.

f(X, ti, ui) #neurons φ #neurons ψ #parameters phone accuracy

f loglen3 (X, ti, ui) 400 1000 1975360 74.99

f loglen3−6 (X, ti, ui) 800 1000 2225360 76.38

Table 4.13: Comparison of the development set phone recognition accuracies of
hidden layer SCRFs. The first column gives the used state feature function. The
transition feature function uses 10 frames from the segment boundary. The sec-
ond and third columns give the number of hidden neurons used for the state and
transition features respectively.

4.10 Training without alignments

Finally we discuss the training of the SCRF without given alignments. We used se-
lected model configurations determined above and trained them again by optimizing
p(Y|X) instead of directly optimizing p(Y,A|X). As already pointed out in Sec-
tion 3.13, computing the gradient of the numerator of the objective function takes
asymptotically T · Lmax more time when marginalizing out all possible alignments
than if the alignment is given. Hence also the time per training epoch is significantly
increased. In the experiments conducted in this work the training time per epoch
increased by a factor of about two to five. As pointed out in [10] another theoretical
side effect of this method is that the objective is no more convex. Hence we used
a different learning rate schedule to train those models. The learning rate was not
annealed to a minimum. The learning rate for the first three epochs was set to
η = 0.005. This allowed the model parameters to change to something meaningful
compared to the random initial state. Then all subsequent epochs were trained with
a constant learning rate of η = 0.001.

For the experiments conducted in this section we do not rely on the alignments in
the training data at all. This means that the strategy of input value normalization
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used in the previous experiments is not available any more. This strategy relied on
the label alignments in the training data. We tried to normalize all input vectors
in the dataset to have zero mean and unit standard deviation. But this did not
work better than not normalizing the inputs at all. So all experiments carried out
to optimize p(Y|X) have not used any normalization of inputs.

f(X, ti, ui) g(X, ti) p(Y,A|X) #epochs p(Y|X) #epochs

f loglen3 (X, ti, ui) n.a. 60.30 26 60.44 91

f loglen3−6 (X, ti, ui) n.a. 61.43 15 61.31 65

f loglen3 (X, ti, ui) 10 70.63 17 70.53 110

Table 4.14: Comparison of phone recognition performances of various SCRF model
configurations. The p(Y,A|X) column gives the accuracies when the model was
trained with the given phone boundaries. The column to the left shows after how
many epochs of training have been performed to obtain the result. The p(Y|X) col-
umn gives the results of the same model trained without the boundary information.
The column to the left indicates how many epochs of training it took to achieve the
stated result. All accuracies are given for the development set.

Table 4.14 summarizes and compares the results of the models trained without
alignments to the models trained with them. There are two important observations
here. First, training the SCRF without alignments in the way introduced in Section
3.13 it is possible to achieve comparable results. This is a proof of concept, that
the algorithm developed to marginalize out all alignments is actually working in
practice. Second, it takes much more epochs of training to achieve this result.
Thus if a (speech) dataset has the alignment of the transcriptions available it is of
advantage to use them. However the model does not have to rely on them in order
to achieve the same results.

4.11 Comparison of results

We conclude this chapter by summarizing the achieved results and comparing them
to related and other work on the TIMIT database. Table 4.15 gives for each model
type an overview of the best phone recognition accuracies on the development and
the core-test set achieved in this work.

model dev acc core test acc

linear SCRF - transition bias (Section 4.5) 61.43 60.39

linear SCRF - boundary context (Section: 4.6) 70.83 69.77

hidden layer SCRF (Section: 4.9) 76.38 75.07

Table 4.15: Best performing SCRF model configurations. The first row shows the
result of the SCRF with the f loglen3−6 state features and only transition bias. The second
row gives the result from the SCRF with the same state features and additional the
context of 10 frames from the segment boundary as input dependent transition
factor. The last row gives the best performing hidden layer SCRF with the same
state features and 800 neurons and 1000 neurons for the same input dependent
transition feature function.

We start our comparison of results by examining the recognition accuracy achieved
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by related work. In [20], Zweig has used vector quantization features in conjunc-
tion with a segmental conditional random field and achieved 66.9% accuracy on the
core-test set. The linear SCRF of this work which directly utilized MFCCs and
empirical determined feature functions achieved a result almost 3% better. He and
Fosler-Lussier [10] achieved with a SCRF that used phone posterior features 73.5%
accuracy on the core test set. Since the phone posteriors are the outputs of a trained
neural network it does not make sense to compare with our linear model. Hence
we need to compare with our best hidden layer SCRF model. The hidden layer
SCRF trained with backprop achieved a result more than 1% better than the phone
posterior SCRF of He and Fosler-Lussier.

model features acc dev acc core test

SCRF[20] vector quantization 67.6% 66.9%

frame CRFs[10] phone posteriors 72.6% 70.8%

efficient SCRF[10] phone posteriors 76.0% 73.5%

Deep belief networks[16] MFCC 78.00% 77.00%

Deep segmental NN[1] spectrogram n.a. 77.1%

hybrid HMM - CNN[2] spectrogram n.a. 79.93%

CTC deep-RNN[7] spectrogram n.a. 81.6%

Deep-RNN[7] spectrogram n.a. 82.3%

Table 4.16: Comparison of phone recognition performances of various different ap-
proaches sorted by their TIMIT core test set accuracies. Models: Convolutional
neural network (CNN); Connectionist temporal classification (CTC); Hidden Markov
model (HMM); Neural network (NN); Recurrent neural network (RNN)

Recent and more successful approaches of phone recognition involve deep neu-
ral network architectures. Table 4.16 gives an overview of different selected phone
recognition approaches and their accuracies on TIMIT. To the best of the author’s
knowledge deep recurrent neural networks (RNNs) mark with 82.3% accuracy on
the core test set the current state of the art. In this approach two RNN concepts
were unified: Long Short-Term Memory (LSTM) and a deep architecture. The best
CTC based deep LSTM RNN in [7] achieved 81.6% accuracy. For details about the
different methods, the interested reader is referred to the references.

However, we belief that the combination of segmental conditional random fields
with more expressive factors will lead to increased performance and hence close the
gap to the results summarized in Table 4.16.
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Chapter 5

Conclusion

5.1 Summary

We have presented segmental conditional random fields as discriminative segmental
generalization of conditional random fields. We presented the formulas and algo-
rithms required to understand and implement the model. Moreover we extended
the linear SCRF by introducing a hidden layer. With the L2-SCRF we introduced
a runtime demanding model that has the context of two adjacent segments avail-
able. Additionally we developed a method for training SCRFs without requiring
that the labelling sequences in the training set are aligned to the observations. We
applied SCRFs to the task of phone recognition and trained the model on TIMIT
using the given phone boundaries and without. We have empirically determined
feature functions that are well suited for phone recognition. We have seen that the
choice of feature functions is critical for segmental conditional random fields. The
best linear model configuration achieved a phone accuracy of 69.77% on the TIMIT
core test set. The state feature function of this model concatenates the first and
last observation vectors of a segment, the MFCCs of the segment averaged in three
parts and 6 observation vectors from within the segment. Additionally as a segment
length bias the logarithm of the segment length was added. As transition feature
function we used 10 observation vectors from the segment boundary. Moreover we
have conduced experiments with the hidden layer segmental conditional random
field and achieved a core test set accuracy of 75.07%. For that model the used state
and transition feature functions have been the same. The backpropagation trained
hidden layer SCRF outperformed other published approaches involving segmental
conditional random fields in connection with vector quantization or phone posterior
features. Those experiments have been performed using the alignments of the tar-
get labelling sequences. Furthermore we have shown that it is possible to achieve
the same recognition results when training the model without utilizing those align-
ments. This shows that the algorithm we have introduced for marginalizing out all
alignments consistent with an observation and a labelling sequence also works in
practice.

5.2 Future work

As we have seen, the introduction of a hidden layer has shown benefits in recognition
performance. We believe that the gap to state of the art results can be closed by
including more expressive models than the simple fully-connected hidden layer. For

48



5.2. Future work

example in [2] with a hybrid convolutional neural network - HMM approach a phone
recognition accuracy on the TIMIT core test set of ≈ 80% was achieved. We are
confident that the combination of convolutional layers and the segmental conditional
random field will be beneficial for the performance. However this makes it necessary
to switch the preprocessing to spectrogram features for example. MFCCs are not
suited for convolutional neural networks as they are computed from a discrete cosine
transform which decorrelates the frequency bands.

Segmental conditional random fields with higher order factors are problematic
because their runtime not only scales exponentially in the size of the label space,
but also in the maximum segment length parameter. So the strategy of sparse
transitions proposed and used for conditional random fields does not help in the
segmental context.

Until now for the SCRF model it is necessary to manually find a heuristic to
transform a variable number of inputs into a fixed sized feature vector. Therefore
another interesting direction of future work would be to develop a training algorithm
that allows to learn the feature functions from data. For example recurrent neural
networks learn time dependent correlations between data automatically. A method
for learning a feature function could probably work in a similar way.
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Appendix A

SCRF parameter gradients

A.1 One label and input dependent parameter

Recall that wy is a D−dimensional vector. Therefore we need to determine the
gradient with respect to each component of wy.

∂ log p(S|X)

∂wyd
=

∑|S|
i=1 log Φ(yi, yi−1,X, ti, ui)

∂wyd
− logZ(X)

∂wyd

First we compute the derivative of the left part of the above expression. Inserting
the definition of the potential:

log Φ(yi, yi−1,X, ti, ui) = ψ(yi, yi−1,X, ti) + φ(yi,X, ti, ui)

Only φ(yi,X, ti, ui) the right term of the potential function depends on wyd and
therefore the derivative of ψ(yi, yi−1,X, ti) is zero. Inspecting the definition of
φ(yi,X, ti, ui) one can see that only if the training label yi = y the term is non-
zero with respect to wyd:

∂φ(yi,X, ti, ui)

∂wyd
=
∂
(
wT

y f(X, ti, ui) + λy
)
δyyi

∂wyd
= fd(X, ti, ui)δyyi

Therefore the derivative of the left part of the above expression is simply:

∂
∑|S|

i=1 log Φ(yi, yi−1,X, ti, ui)

∂wyd
=

|S|∑
i=1

fd(X, ti, ui)δyyi

The gradient of the partition function is a little bit more complicated:

∂ logZ(X)

∂wyd
=
∂ log

∑
S′
∏|S′|

i=1 Φ(yi, yi−1,X, ti, ui)

∂wyd

To compute this derivative we need to apply the chain rule, i.e. F (x) = f(g(x)),
F ′(x) = f ′(g(x))g′(x). In this particular case the outer function is the logarithm
f(g) = log g. The derivative of the outer function is f ′(g) = 1

g = 1
Z(X) .

The inner function g(x) =
∑

S′
∏|S′|

i=1 Φ(yi, yi−1,X, ti, ui) is derived as:

∂
∑

S′
∏|S′|

i=1 Φ(yi, yi−1,X, ti, ui)

∂wyd
=
∑
S′

∂
∏|S′|

i=1 Φ(yi, yi−1,X, ti, ui)

∂wyd
= . . . (A.1)
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A.2. One label dependent bias parameter

Next, we need to apply the general product rule. For a function of products f =∏n
i=1 fi the derivative is f ′ =

∑n
i=1 f

′
i

∏n
j=1
j 6=i

fj . In order to compute the derivative

of the potential we need again the chain rule because Φ(yi, yi−1,X, ti, ui) is given
in exponential form. For readability we have substituted x := ψ(yi, yi−1,X, ti) +
φ(yi,X, ti, ui).

∂Φ(yi, yi−1,X, ti, ui)

∂wyd
=
∂Φ(yi, yi−1,X, ti, ui)

∂x

∂x

∂wyd

= Φ(yi, yi−1,X, ti, ui)fd(X, ti, ui)δyyi

Having obtained this derivative we can now use the product rule and continue with
Equation A.1:

· · · =
∑
S′

∂
∏|S′|

i=1 Φ(yi, yi−1,X, ti, ui)

∂wyd

=
∑
S′

|S′|∑
i=1

Φ(yi, yi−1,X, ti, li)fd(X, ti, ui)δyyi

|S′|∏
j=1
j 6=i

Φ(yj , yj−1,X, tj , uj)

=
∑
S′

|S′|∑
i=1

fd(X, ti, ui)δyyi

|S′|∏
j=1

Φ(yj , yj−1,X, tj , uj).

Therefore the gradient of the logarithm of the partition function with respect to
(w.r.t.) wyd is:

∂ logZ(X)

∂wyd
=

1

Z(X)

∑
S′

|S′|∑
i=1

fd(X, ti, ui)δyyi

|S′|∏
j=1

Φ(yj , yj−1,X, tj , uj).

Having obtained all partial results we can write down the gradient of the log-
likelihood with respect to wyd:

∂ log p(S|X)

∂wyd
=

|S|∑
i=1

fd(X, ti, ui)δyyi −
1

Z(X)

∑
S′

|S′|∑
i=1

fd(X, ti, ui)δyyi

|S′|∏
j=1

Φ(yj , yj−1,X, tj , uj).

A.2 One label dependent bias parameter

For the bias parameter λy the gradient is even simpler because the derivative of the
potential is simply:

∂Φ(yi, yi−1,X, ti, li)

∂λy
= Φ(yi, yi−1,X, ti, ui)δyyi

Therefore, the partial derivative of log p(S|X) with respect to λy is

∂ logZ(X)

∂λy
=

|S|∑
i=1

δyyi −
1

Z(X)

∑
S

|S|∑
i=1

δyyi

|S|∏
j=1

Φ(yj , yj−1,X, tj , uj).
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A.3. Two label and input dependent parameter

A.3 Two label and input dependent parameter

Here we derive the partial derivative of log p(S|X) with respect to every component
of the weight vector vyy′d, i.e.

∂ log p(S|X)

∂vyy′d
=

∑|S|
i=1 log Φ(yi, yi−1,X, ti, ui)

∂vyy′d
− logZ(X)

∂vyy′d
. (A.2)

The method and the rules of derivation are the same as for the partial derivation
w.r.t. wyd so here are only those steps that are different. For the left hand side of
Equation A.2 the derivative of the logarithm of the potential function is different:

∂ψ(yi, yi−1,X, ti)

∂vyy′d
= gd(X, ti)δyyiδy′yi−1

.

The initial steps to derive the right hand side of Equation A.2 w.r.t to vyy′d are
the same as w.r.t wyd (cf. Section A.1). First the chain rule is applied and then the
general product rule. The derivative of the potential function is different, because
we are now considering the derivative w.r.t vyy′d. For readability we define again
x := ψ(yi, yi−1,X, ti) + φ(yi,X, ti, ui).

∂Φ(yi, yi−1,X, ti, ui)

∂vyy′d
=

Φ(yi, yi−1,X, ti, ui)

∂x

∂x

∂vyy′d

= Φ(yi, yi−1,X, ti, ui)gd(X, ti)δyyiδy′yi−1

Having obtained this derivative we can now use the product rule and continue the
derivation:∑

S′

∂
∏|S′|

i=1 Φ(yi, yi−1,X, ti, ui)

∂vyy′d

=
∑
S′

|S′|∑
i=1

Φ(yi, yi−1,X, ti, ui)gd(X, ti)δyyiδy′yi−1

|S′|∏
j=1
j 6=i

Φ(yj , yj−1,X, tj , uj)

=
∑
S′

|S′|∑
i=1

gd(X, ti)δyyiδy′yi−1

|S′|∏
j=1

Φ(yj , yj−1,X, tj , uj)

Putting all the pieces together the gradient of the logarithm of the partition function
is given by

∂ logZ(X)

∂vyy′d
=

1

Z(X)

∑
S′

|S′|∑
i=1

gd(X, ti)δyyiδy′yi−1

|S′|∏
j=1

Φ(yj , yj−1,X, tj , uj).

Having obtained all partial results we have the gradient of the log-likelihood with
respect to vyy′d:

∂ log p(S|X)

∂vyy′d
=

|S|∑
i=1

gd(X, ti)δyyiδy′yi−1

− 1

Z(X)

∑
S′

|S′|∑
i=1

gd(X, ti)δyyiδy′yi−1

|S′|∏
j=1

Φ(yj , yj−1,X, tj , uj).
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A.4 Two label dependent bias parameter

For the bias parameter µyy′ the partial derivative is very similar to the partial
derivative of vyy′d. The difference is that the dependency on the input vector g(X, ti)
is omitted.

∂Φ(yi, yi−1,X, ti, ui)

∂µyy′
= Φ(yi, yi−1,X, ti, ui)δyyiδy′yi−1

Therefore the partial derivative of log p(S|X) with respect to µyy′ is:

∂ logZ(X)

∂µyy′
=

|S|∑
i=1

δyyiδy′yi−1

− 1

Z(X)

∑
S

|S|∑
i=1

δyyiδy′yi−1

|S|∏
j=1

Φ(yj , yj−1,X, tj , uj)

A.5 Hidden layer partial derivative

Considering a hidden layer SCRF, the partial derivative of the hidden layer param-
eters can be determined by applying the backpropagation method [3].

Here we assume a SCRF with a state factor that is equipped with a hidden layer.
Let wjd be the hidden layer weight connecting the d-th input with the j-th hidden
neuron. Do not confuse this with the input dependent weight wyj from the state
factor receiving its input from neuron j.

∂ log p(S|X)

∂wjd
=

∑|S|
i=1 log Φ(yi, yi−1,X, ti, ui)

∂wjd
− logZ(X)

∂wjd

The derivation follows a similar path as the partial derivative with respect to wyd

in Section A.1. Here we present only the important differences in the intermediate
steps and the final result.

First we consider the derivative of the state factor with respect to the neuron
weight wjd, i.e.

∂φ(yi,X, ti, ui)

∂wjd
=
∂
(
wT

y z(X, ti, ui) + λy
)
δyyi

∂wjd
= wyijfd(X, ti, ui)h

′(oj),

where wyij is the weight from the state factor, depending on the current label yi and
oj is the output activation of neuron j. The output activation of neuron j is given
as

oj = wT
j f(X, ti, ui) + bj ,

where bj is the bias weight of the neuron. Thus the partial derivative of the left
hand side of log p(S|X) is:∑|S|

i=1 log Φ(yi, yi−1,X, ti, ui)

∂wjd
=

|S|∑
i=1

wyijfd(X, ti, ui)h
′(oj).

Next, we consider the derivative of the potential function w.r.t to the hidden
layer parameter:

∂Φ(yi, yi−1,X, ti, ui)

∂wjd
= wyijfd(X, ti, ui)h

′(oj)Φ(yi, yi−1,X, ti, ui).
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A.5. Hidden layer partial derivative

Having all intermediate results we can now derive the partial derivative of the
logarithm of the partition function with respect to the hidden layer weight wjd of
neuron j:

∂ logZ(X)

∂wjd
=
∂ log

∑
S′
∏|S′|

i=1 Φ(yi, yi−1,X, ti, ui)

∂wjd

=
1

Z(X)

∑
S′

|S′|∑
i=1

wyijfd(X, ti, ui)h
′(oj)

|S′|∏
j=1

Φ(yj , yj−1,X, tj , uj).

The final result of the derivative of the log-likelihood with respect to the weight
of a neuron in a hidden layer underneath the state factor is given by

∂ log p(S|X)

∂wjd
=

|S|∑
i=1

wyijh
′(oj)fd(X, ti, ui)

− 1

Z(X)

∑
S′

|S′|∑
i=1

wyijh
′(oj)fd(X, ti, ui)

|S′|∏
j=1

Φ(yj , yj−1,X, tj , uj).
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