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Abstract

Acoustic wave phenomena play a major role in many applications of engineering sciences.
One of the most prevalent topics in acoustics is the encounter between an acoustic wave
and a surface. It is well known that soft surfaces tend to absorb larger parts of the incoming
waves than acoustically hard ones. Consequently, one has to employ a mechanical model
which is capable of reproducing these effects. Within this thesis, a very well-established
and straightforward approach to modelling acoustic absorption on surfaces is discussed.
Basically, this concept relies on a special impedance boundary condition to account for
acoustically soft surfaces. Furthermore, a boundary integral formulation of such prob-
lems, which is obtained by means of the integral equation method, seems advantageous.
Such a formulation requires a triangulation of the surface only, and it can be applied to un-
bounded domains easily. In this work, three Galerkin boundary element methods (BEM)
for simulating acoustic waves in domains bounded by acoustically hard as well as absorb-
ing surfaces are presented. Moreover, the characteristics of these procedures and the basic
properties of the generated approximations are discussed. The considered methods are
implemented in an existing BEM code and validated by means of numerical experiments.
Finally, the applicability of the realized procedures is illustrated by treating an actual prob-
lem of architectural acoustics.

Zusammenfassung

In vielen Bereichen der Ingenieurwissenschaften spielt die Akustik eine wichtige Rolle,
wobei besonders das Auftreffen einer Schallwelle auf eine Oberfläche einen mechanisch
neuralgischen Punkt darstellt. Es ist gemeinhin bekannt, dass weiche Oberflächen größe-
re Teile einfallender Schallwellen absorbieren als harte. Demnach stellt die Verwendung
eines mechanischen Modells, welches diese Effekte abbilden kann, die oberste Prämisse
dar. In dieser Masterarbeit wird ein erprobter und unkomplizierter Zugang zur Modellie-
rung schallabsorbierender Oberflächen betrachtet. Die Grundidee dieses Konzepts stellt
die Verwendung einer speziellen Impedanz-Randbedingung dar, welche akustisch weiche
Berandungen darstellen kann. Weiters ist es sinnvoll, das zugrundeliegende Problem mit-
tels der Integralgleichungsmethode auf Randintegralgleichungen zu transformieren, womit
nur die Oberfläche zu diskretisieren ist und unbeschränkte Gebiete leicht behandelt werden
können. In dieser Arbeit werden drei Galerkin-Randelementmethoden (BEM) vorgestellt,
welche zur Simulation von Schallwellen in Gebieten, die von schallharten und schallabsor-
bierenden Oberflächen berandet werden, gut geeignet sind. Die besprochenen Verfahren
werden in einen bestehenden BEM Code implementiert und anhand von numerischen Ex-
perimenten validiert. Um die Einsetzbarkeit der umgesetzten Verfahren zu verdeutlichen,
wird abschließend ein reales Problem der Innenraumakustik behandelt.
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1 INTRODUCTION

1.1 Motivation

Acoustic wave phenomena play an important role in many engineering applications. Civil
engineers continuously seek to optimize the design of structures to meet the rising demands
in terms of architectural acoustics. This pursuit poses a central issue not only when it
comes to designing magnificent concert halls, but is essential for the serviceability of any
structure. Beyond the scope of civil engineering, the acoustic simulation of vehicles is
one of the most prevalent topics in terms of acoustic design. Further topics are marine
navigation and acoustic location by means of sonar.

A core part of acoustics is the interaction between acoustic waves and surfaces. Hard sur-
faces, like concrete walls, reflect the acoustic waves virtually perfectly, while softer sur-
faces, like foams, tend to absorb significant parts of them. Thus, it is of utmost importance
to find models that reliably describe the mechanical behaviour of different surfaces.

Like many other problems in technical science and engineering, a multitude of acoustic
wave phenomena can be described by partial differential equations. In most cases, i.e. for
general domains and loading scenarios, exact solutions to these problems cannot be found.
Hence, one resorts to find approximate solutions by means of numerical mathematics.
There is quite a large body of methods for generating solutions to problems governed by
differential equations, each of them possessing their respective advantages and drawbacks.
Therefore the engineer has to have a certain understanding of these procedures to be able
to choose the most viable of these methods for a certain problem at hand.

1.2 State of the art

Perhaps the most straightforward method for solving partial differential equations is the
finite difference method (FDM, see e.g. [31]), which is based on a discretization of the
differential operator itself. More sophisticated methods revolve around variational formu-
lations of the differential equation and their discretization via suitable finite-dimensional
trial spaces on the computational domain. The most famous representative of these meth-
ods is most certainly the finite element method (FEM, see e.g. [4, 16]), however, there
are other relevant methods as well, like the class of spectral methods, see e.g. [5]. Two
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2 1 Introduction

powerful procedures belonging to this group are the Fourier and Chebyshev spectral meth-
ods, which make use of the distinguished properties of the underlying exceptional function
spaces. One of the more outstanding approaches underlies the boundary element method
(BEM), which is the subject of this work. It is based on transforming the differential
equation to an equivalent boundary integral equation on the surface of the computational
domain. The most prominent boundary element methods in engineering sciences are based
on collocation approaches to these operator equations. Additionally, there are boundary el-
ement methods that rely on variational formulations of these boundary integral equations
and introduce, similarly to the previously mentioned procedures, finite-dimensional trial
spaces on the surface of the domain.

Boundary element methods are based on the integral equation method, which translates the
partial differential equation in the domain to boundary integral equations on the surface.
By transferring the problem to the surface of the domain, procedures based on boundary
integral equations inherit distinctive properties that set them apart from classical domain-
based methods:

• The unknown fields are located only on the boundary, thus only the surface of the do-
main has to be discretized. For complicated domains the construction of admissible
volume meshes might prove to be quite an involved task, while generating suitable
triangulations of the surface is rather straightforward in most scenarios.

• Problems posed on unbounded domains can be treated easily, since only its surface is
observed. Domain-based methods would require a modification of their formulation
to be applicable in this scenario, and even then boundary integral equation methods
remain superior in most cases.

• The dimension is reduced by one and the systems of equations are smaller in the
process. Domain-based methods lead to algebraic systems with NΩ = O(h−3

Ω
) un-

knowns, while a similar boundary integral equation procedure would bring about
NΓ = O(h−2

Γ
) unknowns, where hΩ and hΓ denote the respective discretization pa-

rameters. However, the underlying boundary integral operators are non-local which
normally leads to fully populated system matrices, implying quadratic complexity
O(N2

Γ
) = O(h−4

Γ
). Sparsely populated matrices associated with classical domain-

based methods enjoy linear complexity O(NΩ) = O(h−3
Ω
), thus growing slower by

one order of magnitude. This circumstance is the most severe disadvantage of
boundary integral procedures and completely cancels out the edge gained in reduc-
ing the dimension. Thus, the design of so-called fast boundary element methods,
which seek sparse representations of the system matrices, have attracted a lot of
attention throughout the last decades, see e.g. [27] or [14].

• Most occurring boundary integral operators have a singular nature. As a result their
quadrature is significantly more expensive in terms of computational time than those
encountered in more conventional methods.
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Although the boundary element method is not nearly as versatile as the finite element
method, it has already been successfully applied to a certain array of problems in mod-
ern engineering, see e.g. [29] or [18]. Perhaps the most notable field of application is
electrodynamics, where it is classically used to solve Maxwell’s equations efficiently [12].
Furthermore, the boundary element method is increasingly used for solving acoustic prob-
lems as well [33].

1.3 Outline

In this work conceivably the most straightforward way of dealing with acoustic absorption
is covered. In this approach the absorption is accounted for by a certain boundary condition
describing the mechanical properties of the surface by one parameter. In the process, a
couple of inherently different boundary element methods for the arising initial-boundary
value problem are constructed and examined.

Chapter 2 discusses the physical problem at hand and provides the final initial-boundary
value problem under consideration. Moreover, the time dependency is resolved by trans-
ferring the problem to Laplace domain via Laplace transformation.

Chapter 3 addresses the boundary integral operators of interest throughout this work.

Chapter 4 is dedicated to the construction of the boundary integral equations describing
solutions of the underlying boundary value problem in Laplace domain. Additionally, their
variational formulations are presented.

Chapter 5 provides the discretization of the time dependency by shifting the problem to
Laplace domain utilizing the convolution quadrature method.

Chapter 6 establishes the discretization of the surface of the spatial domain by means of
boundary elements. In addition to a short introduction to Galerkin BEM, the employed trial
spaces are introduced as well as their application to the variational formulations. Finally,
the compuation of the coefficients in the respective system matrices and load vectors will
be covered.

Chapter 7 presents the numerical results of algorithms based on the boundary element
methods discussed previously. First, the convergence of the procedures is confirmed and
afterwards the approach is used in an application of acoustic engineering.

Chapter 8 concludes this thesis and gives an outlook to topics not covered within this
work.
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2 PROBLEM STATEMENT

The first step in precisely defining the problem under consideration is to specify the ob-
served domain in both space and time.

Let Ω− ⊂ R3 be a bounded and open interior domain, while its complement Ω+ = R3 \Ω

is the exterior one. Throughout this work we explicitly focus on problems posed on Ω−,
however, in many applications of boundary integral equation methods problems related to
Ω+ are actually of higher interest. The boundary of the domain Γ := ∂Ω = Ω∩(R3 \Ω)1is
equipped with an outward unit normal vector field n(x), x ∈ Γ defined almost everywhere
on Γ. The expression almost everywhere or short a.e. on Γ refers to all x ∈ Γ that have
nonzero Lebesgue measure. In the language of engineering this means that all geometric
entities having one dimension or less are excluded, e.g. edges and corners.

In order to be capable of defining appropriate boundary conditions, one needs to introduce
proper extensions of scalar-valued functions v(x̃), x̃∈Ω− onto Γ. We consider the interior
Dirichlet trace

γ
−
0 v(x) = lim

Ω−3x̃→x∈Γ

v(x̃) ∀ x ∈ Γ

as well as the interior Neumann trace

γ
−
1 v(x) =

(
n(x),γ−0 gradv(x)

)
∀ x ∈ Γ

describing the extension of an interior function v(x̃), x̃ ∈Ω− to its respective Dirichlet and
Neumann datum. Within this thesis, we limit our considerations to a three-dimensional
Cartesian coordinate system, which is orthonormal. Thus, the scalar product (·, ·) has the
representation

(u,v) =
3

∑
j=1

u jv j (2.1)

where u j, j = 1,2,3 denotes the j-th entry of u.

Furthermore, let ϒ = (0,T ) ⊂ R be the open timeline under consideration. For a scalar
function w(t), t ∈ ϒ, whenever we write w(0) we do not refer to the explicit value of w at
t = 0 but its continuous extension from within ϒ, i.e.

w(0) := lim
ϒ3t→0

w(t) = lim
t→0
t>0

w(t) .

1Whenever we write Ω, we refer to Ω− and Ω+.
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6 2 Problem statement

Note that this approach is applied to derivatives of w as well. In the case of homogeneous
initial conditions w can be continuously extended to the negative time line by

w(t) := 0 ∀ t ≤ 0 .

2.1 The acoustic wave equation

The following considerations are mainly adapted from [1] presenting a rather straight-
forward approach. For a more comprehensive derivation one might refer to [26] and for
further reading on acoustics see e.g. [22, 23].

First, we introduce several conventions concerning the notation which do not interfere with
the generality of the results:

• The fluid pressure acting on a surface is denoted by ut(x̃, t), the density by ρ t(x̃, t),
and the velocity by vt(x̃, t). All these fields are dependent on (x̃, t) ∈Ω−× (0,∞).

• Above quantities are decomposed into a constant mean value and a perturbation
around it, such that

ut(x̃, t) = u0 +u(x̃, t),
ρ

t(x̃, t) = ρ0 +ρ(x̃, t),
vt(x̃, t) = v0 +v(x̃, t)

(2.2)

holds for all (x̃, t) ∈Ω−× (0,∞).

• Note that the above fields always depend on space and time and if they are given
without the argument list then this is done merely to provide better readability of the
formulas.

• First derivatives with respect to time are denoted by ∂t := ∂

∂ t and higher order ones
by ∂

p
t := ∂ p

∂ t p , p ∈ N respectively.

2.1.1 Balance equations

Balance of mass

In the absence of an interior mass source or loss, the continuity equation in differential
form

∂tρ
t +div

(
ρ

tvt)= 0
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holds, cf. [15]. Inserting the assumed decomposition (2.2) yields the expression

∂tρ +ρ0divv+div(ρv) = 0 (2.3)

which holds naturally for any (x̃, t) ∈Ω−× (0,∞).

Balance of momentum

The balance of momentum is given by the relation

∂t
(
ρ

tvt)+vt div
(
ρ

tvt)+ρvt divvt +gradut−b = 0

where b(x̃, t) denotes the volumetric forces acting inside the body, see e.g. [15]. Again,
we insert the decomposition (2.2) and obtain

ρ0∂tv+v0∂tρ +v∂tρ +ρ∂tv
+ρ0v0divv+ρ0vdivv+vdiv(ρv)+v0div(ρv)

+(ρ0v0 +ρ0v+ρv0 +ρv)divv+gradu−b = 0 (2.4)

which again is satisfied for any (x̃, t) ∈Ω−× (0,∞).

2.1.2 Linearization

When considering a problem posed in the fields of civil or mechanical engineering it is
mostly sufficient to resort to the theory of linear acoustics. The major assumption is that all
perturbations have a marginal magnitude compared to their respective mean value, i.e.

u � u0

ρ � ρ0

‖v‖ � ‖v0‖

where ‖ · ‖ denotes the standard l2 norm induced by the scalar product (2.1). With this
linearization available we revisit the balance equations. For the last term in (2.3)

div(ρv) = (gradρ,v)+ρdivv

we use the continuity of the scalar product and the estimate introduced above

(gradρ,v)≤ ‖gradρ‖‖v‖ � ‖gradρ‖‖v0‖

and hence div(ρv) = 0 within a linearized framework. We obtain the linearized continuity
equation

∂tρ +ρ0divv = 0 . (2.5)
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and by applying similar arguments to (2.4) one ends up with the linearized balance of
momentum equation

ρ0∂tv+gradu = b . (2.6)

The time derivative of (2.5) and the divergence of (2.6) form the system

∂ 2
t ρ +ρ0div∂tv = 0

ρ0div∂tv+divgradu = divb
,

and insertion of the first into to second equation yields

−∂
2
t ρ +∆u = divb (2.7)

where ∆ = divgrad denotes the Laplace operator.

2.1.3 Constitutive equation

For linear acoustics it is mostly sufficient to consider isentropic flows only. The thermo-
dynamic processes are adiabatic, i.e. there occurs no transfer of heat nor matter and there
is no loss of energy. Within a linearized setting one finds

ρ

ρ0
=

1
ρ0c2

0
u

where c0 is the speed of sound determined by the relation

c0 =

√
K
ρ0

with the bulk modulus for adiabatic conditions K, see e.g. [26].

With the constitutive relation u(x̃, t) = c2ρ(x̃, t) serving as closure condition in (2.7) one
ends up with a pressure formulation of the linear scalar wave equation

1
c2

0
∂

2
t u(x̃, t)−∆u(x̃, t) = divb(x̃, t) ∀ (x̃, t) ∈Ω

−× (0,∞) .

In most applications the only volumetric force acting on the fluid is gravity. Since this
force is constant, its divergence vanishes, yielding

c−2
0 ∂

2
t u(x̃, t)−∆u(x̃, t) = 0 ∀ (x̃, t) ∈Ω

−× (0,∞)

which is a linear homogeneous partial differential equation of hyperbolic type with con-
stant coefficients.
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2.2 Impedance boundary condition

Throughout this work the acoustic absorption on the surface Γ will be accounted for by an
impedance boundary condition. As stated in [23] the acoustic absorption of a wall or some
other surface is described by the wall impedance z(x), x ∈ Γ. In a one dimensional setting
it is the ratio of the acoustic pressure u(x) and the scalar velocity v(x)

z =
u(0)
v(0)

where the surface is assumed to be located at x = 0. This concept can be extended to higher
spatial dimensions by only considering the very portion of the velocity vector v parallel to
the normal vector, i.e.

z(x) =
γ
−
0 u(x, t)(

n(x),γ−0 v(x, t)
) ∀ x ∈ Γ (2.8)

which is assumed to be constant with respect to time. Performing the scalar product of
the linearized momentum equation (2.6) with the normal vector as well as applying the
Dirichlet trace we obtain

ρ0∂t
(
n(x),γ−0 v(x, t)

)
+ γ
−
1 u(x, t) = f (x, t) ∀ (x, t) ∈ Γ× (0,∞) (2.9)

where f (x, t) :=
(
n(x),γ−0 b(x, t)

)
is the exterior pressure applied to the surface. Insertion

of (2.8) into (2.9) yields

γ
−
1 u(x, t)+

ρ0

z(x)
∂tγ
−
0 u(x, t) = f (x, t) ∀ (x, t) ∈ Γ× (0,∞)

which is basically already the aspired boundary condition, however, in applied acoustics it
is often more convenient to use a slightly different representation. The following relation
holds

z(x)
ρ0c0

=
1+ r(x)
1− r(x)

= α(x) ∀ x ∈ Γ

where the coefficient of reflection r(x) ∈ C is connected to the absorption coefficient αs ∈
R such that

αs(x) = 1−|r(x)|2 ∀ x ∈ Γ

holds, see [23]. Finally, this leads to

α(x) = cosθ
1−
√

1−αs(x)
1+
√

1−αs(x)
∀ x ∈ Γ

where θ is the incident wave angle. The actual values for αs depend on the material the
surface is made of and the frequency of the signal. Furthermore, note that α ∈ [0,1], where
α = 0 represents total reflection and α = 1 total absorption of incoming waves. When it



10 2 Problem statement

comes to designing structures the actual values of αs for a variety of materials as well as
frequencies can be found in specific guidelines or national design codes, e.g. [24].

Thus, the acoustic impedance boundary condition reads as

γ
−
1 u(x, t)+ α(x)

c0
γ
−
0 ∂tu(x, t) = f (x, t) ∀ (x, t) ∈ Γ× (0,∞)

where we introduce κ(x) = α(x)
c0

for the sake of simplicity.

2.3 Initial-boundary value problem

Collecting the results derived in the prequel the complete initial-boundary value problem

c−2
0 ∂ 2

t u(x̃, t)−∆u(x̃, t) = 0 ∀ (x̃, t) ∈Ω−× (0,∞)

∂tu(x̃,0) = u(x̃,0) = 0 ∀ x̃ ∈Ω−

γ
−
1 u(x, t)+κ(x)γ−0 ∂tu(x, t) = f (x, t) ∀ (x, t) ∈ Γ× (0,∞)

(2.10)

is obtained. The initial conditions are homogeneous, i.e. the fluid starts at a quiescent
state, and the impedance boundary condition is of Robin-type. For a theoretical review of
this problem, including a discussion about its solvability, see e.g. [13].

2.3.1 Laplace transformed boundary value problem

Problem (2.10), which is posed in time-domain may be transformed to Laplace domain.
The translation from time to Laplace domain is called Laplace transform, which is an
integral transformation defined by

f̂ (s) := L{ f}(s) := lim
a→∞

a∫
0

exp(−st) f (t)dt

for some suitable s ∈ C. To shorten the notation, we introduce the following notation
associating a function in time domain to its respective Laplace transform

f (t) d t f̂ (s) .

The Laplace transform comes in handy since several important operations in time domain
correspond to much simpler ones in Laplace domain. Perhaps the most notable one is that
differentiation in time domain corresponds to multiplication with the parameter in Laplace
domain with a mere subtraction of the initial condition

∂t f (t) d ts f̂ (s)− f (0) .
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Moreover, we have the inverse Laplace transform

f (t) := L−1{ f̂}(t) := lim
b→∞

1
2πi

a+ib∫
a−ib

exp(ts) f̂ (s)ds (t > 0) (2.11)

where i is the imaginary unit and a ∈ R has to be chosen, such that the integral converges.
Note that f (t) may be extended to the negative timeline by f (t) = 0 for t ≤ 0. Similarly to
above we abbreviate

f̂ (s) t d f (t) .

Applying the Laplace transform to the partial differential equation L{c−2∂ 2
t u− ∆u} =

L{0}= 0 yields

c−2
0

s2û(x̃)− s u(x̃,0)︸ ︷︷ ︸
=0 ∀x̃∈Ω

−∂tu(x̃,0)︸ ︷︷ ︸
=0 ∀x̃∈Ω

−∆û(x̃) = 0

for vanishing initial conditions. By employing the same procedure for the boundary con-
dition we obtain an elliptic boundary value problem in Laplace domain

−∆û(x̃)+ c−2
0 s2û(x̃) = 0 ∀ x̃ ∈Ω−

γ
−
1 û(x)+ sκ(x)γ−0 û(x) = f̂ (x) ∀ x ∈ Γ

(2.12)

that corresponds to the intial-boundary value problem in time domain (2.10). Note that
the partial differential operator−∆+c−2

0 s2 in (2.12) is sometimes called Yukawa operator,
cf. [18]. Actually, it is equivalent to the Helmholtz operator −∆− c−2

0 ω2 for complex-
valued wave numbers, i.e. s = −iω . Throughout this entire work, these operators are
not distinguished in a strict fashion. Whenever we refer to the Helmholtz operator we
implicitly invoke the more general Yukawa operator.
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3 REPRESENTATION FORMULA AND BOUNDARY INTEGRAL
OPERATORS

In this chapter, the solution of the partial differential equation is transferred to an equivalent
boundary integral equation. Furthermore, the occuring boundary integral operators are
introduced.

3.1 Representation formula in time domain

To derive the representation formula in time domain, the wave equation is multiplied with a
suitable test function v(x̃, t). Additionally, a convolution with respect to time is performed
and the resulting equation is integrated over the domain Ω−∫

Ω−

((
c−2

0 ∂
2
t u−∆u

)
∗ v
)
(x̃,τ)dx̃ = c−2

0

∫
Ω−

(∂ 2
t u∗ v)(x̃,τ)dx̃−

∫
Ω−

(∆u∗ v)(x̃,τ)dx̃

= c−2
0

∫
Ω−

τ∫
0

∂
2
t u(x̃, t)v(x̃,τ− t)dt dx̃−

∫
Ω−

τ∫
0

∆u(x̃, t)v(x̃,τ− t)dt dx̃ . (3.1)

Considering the first term in (3.1) we recall two rules for convolution

(u∗ v) = (v∗u) ,

∂t(u∗ v) = ∂tu∗ v+u(x̃,0)v(x, t) ,
(3.2)

see e.g. [10]. Using the second relation in (3.2) we obtain

∂
2
t (u∗ v) = ∂t(∂tu∗ v+u(x̃,0)v(x̃, t))

= ∂
2
t u∗ v+ ∂tu(x̃,0)︸ ︷︷ ︸

=0 ∀ x̃∈Ω−

v(x̃, t)+ u(x̃,0)︸ ︷︷ ︸
=0 ∀ x̃∈Ω−

∂tv(x̃, t)

= ∂
2
t u∗ v

where we inserted the vanishing initial conditions. Application of the first rule of (3.2)
yields

∂
2
t u∗ v = ∂

2
t (u∗ v) = ∂

2
t (v∗u) = ∂

2
t v∗u = u∗∂

2
t v , (3.3)

13
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thus we end up with

c−2
0

∫
Ω−

τ∫
0

∂
2
t u(x̃, t)v(x̃,τ− t)dt dx̃ = c−2

0

∫
Ω−

τ∫
0

u(x̃, t)∂ 2
t v(x̃,τ− t)dt dx̃ . (3.4)

As we are switching our attention to the last term in (3.1) we consider

∫
Ω−

−∆u(x̃)v(x̃)dx̃ =
3

∑
j=1

∫
Ω−

−∂
2
x j

u(x̃)v(x̃)dx̃

and by applying integration by parts [30]∫
Ω−

∂x ju(x̃)v(x̃)dx̃ =
∫
Γ

γ
−
0 u(x)γ−0 v(x)ni(x)dsx−

∫
Ω−

u(x̃)∂x jv(x̃)dx̃

we obtain∫
Ω−

−∆u(x̃, t)v(x̃, t)dx̃ =
3

∑
j=1

∫
Ω−

∂x ju(x̃)∂x jv(x̃)dx̃−
∫
Γ

γ
−
1 u(x)γ−0 v(x) . (3.5)

By introducing the symmetric bilinear form

a(u,v) =
3

∑
j=1

∫
Ω−

∂x ju(x̃)∂x jv(x̃)dx̃ =
∫

Ω−

(gradu(x̃),gradv(x̃))dx̃

equation (3.5) reveals itself as Green’s first formula

a(u,v) =
∫

Ω−

−∆u(x̃)v(x̃)dx̃+
∫
Γ

γ
−
1 u(x)γ−0 v(x)dsx .

By using the symmetry of the bilinear form a(u,v) = a(v,u) we obtain Green’s second
formula for the Laplace operator∫

Ω−

−∆u(x̃)v(x̃)dx̃+
∫
Γ

γ
−
1 u(x)γ−0 v(x)dsx =

∫
Ω−

−u(x̃)∆v(x̃)dx̃+
∫
Γ

γ
−
0 u(x)γ−1 v(x)dsx

(3.6)
and hence∫
Ω−

−∆u(x̃)v(x̃)dx̃ =
∫
Γ

γ
−
0 u(x)γ−1 v(x)dsx−

∫
Γ

γ
−
1 u(x)γ−0 v(x)dsx +

∫
Ω−

−u(x̃)∆v(x̃)dx̃ .

(3.7)
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Insertion of (3.4) and (3.7) into (3.1) yields

c−2
0

∫
Ω−

τ∫
0

∂
2
t u(x̃, t)v(x̃,τ− t)dt dx̃−

∫
Ω−

τ∫
0

∆u(x̃, t)v(x̃,τ− t)dt dx̃

= c−2
0

∫
Ω−

τ∫
0

u(x̃, t)∂ 2
t v(x̃,τ− t)dt dx̃+

∫
Γ

τ∫
0

γ
−
0 u(x, t)γ−1 v(x,τ− t)dt dsx

−
∫
Γ

τ∫
0

γ
−
1 u(x, t)γ−0 v(x,τ− t)dt dsx−

∫
Ω−

t∫
0

u(x̃, t)∆v(x̃,τ− t)dt dx̃

and thus

∫
Ω−

τ∫
0

(
c−2

0 ∂
2
t u(x̃, t)−∆u(x̃, t)

)︸ ︷︷ ︸
=0 ∀(x̃,t)∈Ω−×(0,∞)

v(x̃,τ− t)dt dx̃

=
∫

Ω−

τ∫
0

u(x̃, t)
(
c−2

0 ∂
2
t v(x̃,τ− t)−∆v(x̃,τ− t)

)
dt dx̃

+
∫
Γ

τ∫
0

γ
−
0 u(x, t)γ−1 v(x,τ− t)dt dsx−

∫
Γ

τ∫
0

γ
−
1 u(x, t)γ−0 v(x,τ− t)dt dsx

which equals zero, since u(x̃, t) is a solution of the homogeneous differential equation in
Ω−× (0,∞).

In order to provide a notation that is consistent with other literature, we swap the names of
the variables. For (ỹ,τ) ∈Ω−× (0,∞) we have

t∫
0

∫
Ω−

u(ỹ,τ)
(
c−2

0 ∂
2
τ v(ỹ, t− τ)−∆v(ỹ, t− τ)

)
dỹdτ

+

t∫
0

∫
Γ

γ
−
0 u(y, t)γ−1 v(y, t− τ)dsydτ−

t∫
0

∫
Γ

γ
−
1 u(y, t)γ−0 v(y, t− τ)dsydτ = 0 . (3.8)

Note that (3.8) describes a solution u(ỹ,τ) of the differential equation, however, the dif-
ferential operator c−2

0 ∂ 2
t −∆ has been shifted from u(ỹ,τ) to the test function v(ỹ, t) by

means of integration by parts. Furthermore, only the first term is related to the domain
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Ω−, while the remaining two are associated to the boundary Γ. If there exists a test func-
tion v(ỹ, t− τ) :=U (x̃− ỹ, t− τ) such that

t∫
0

∫
Ω−

(
c−2

0 ∂
2
τ −∆ỹ

)
U(x̃− ỹ, t− τ)u(ỹ,τ)dỹdτ = u(x̃, t) (3.9)

for any (x̃, t) ∈Ω−× (0,∞), then the solution of the partial differential equation described
by (3.8) is given by the representation formula

u(x̃, t) =
t∫

0

∫
Γ

U (x̃−y, t− τ)γ
−
1 u(y, t)dsydτ−

t∫
0

∫
Γ

γ
−
1,yU (x̃−y, t− τ)γ

−
0 u(y,τ)dsydτ

(3.10)
which characterizes the solution of the differential equation only using the Cauchy data
and a test function satisfying (3.9). The representation formula is governed by two bound-
ary integrals describing convolutions in both space and time and allows us to compute
solutions in the domain Ω− only by knowing data on the surface Γ. This distinguished
property is pivotal for any boundary integral equation method.

The knowledge of a test function satisfying (3.9) is fundamental for transforming the dif-
ferential equation to equivalent boundary integrals. With the sifting property of the Dirac
distribution δ0

T∫
0

δ0(t− τ) f (τ)dτ = f (t) ∀ t ∈ (0,T )

we find that we seek a distributional solution of the partial differential equation[(
c−2

0 ∂
2
τ −∆ỹ

)
U
]
(x̃− ỹ, t− τ) = δ0(x̃− ỹ)δ0(t− τ) ∀ x̃, ỹ ∈ R3; t,τ ∈ (0,∞)

where U is commonly called fundamental solution, see [30]. For a brief introduction to
distributions, especially the Dirac distribution, refer to [30] and [9] for its connection to
the Laplace transformation.

The fundamental solution of the wave equation in three spatial dimensions reads as

U (z̃, t) =
1

4π‖z̃‖
δ0

(
t− ‖z̃‖

c0

)
∀ (z̃, t) ∈ R3× (0,∞) (3.11)

see e.g. [10] or [8].

In this thesis we will solely focus on boundary element formulations in the Laplace do-
main, thus we will now shift our attention to deriving the representation formula of the
Helmholtz equation and showing the equivalence of both formulations.
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3.2 Representation formula in Laplace domain

Similarly to the previous approach, the Helmholtz equation is multiplied with a suitable
test function v̂(x̃) and integrated over the entire domain Ω−. For the sake of simplicity we
set λ := c−2

0 s2, yielding

0 =
∫

Ω−

(
−∆û(x̃)+λ

2û(x̃)
)

v̂(x̃)dx̃ =
∫

Ω−

−∆û(x̃)v̂(x̃)dx̃+λ
2
∫

Ω−

û(x̃)v̂(x̃)dx̃ . (3.12)

By applying Green’s second formula (3.6) to the first term in (3.12) we obtain

0 =
∫
Γ

γ
−
0 û(x)γ−1 v̂(x)dsx−

∫
Γ

γ
−
1 û(x)γ−0 v̂(x)dsx +

∫
Ω−

−û(x̃)∆v̂(x̃)dx̃+λ
2
∫

Ω−

û(x̃)v̂(x̃)dx̃

leading to

0 =
∫

Ω−

(
−∆û(ỹ)+λ

2û(ỹ)
)

v̂(ỹ)dỹ+
∫
Γ

γ
−
0 û(y)γ−1 v̂(y)dsy−

∫
Γ

γ
−
1 û(y)γ−0 v̂(y)dsy (3.13)

where we relabeled variables again. Note that above equation equals zero, due to the fact
that û(ỹ) is a solution of the homogeneous differential equation for ỹ ∈Ω−. If there exists
a function û(ỹ) := Ûs (x̃− ỹ) such that∫

Ω

(
(−∆ỹ +λ

2)Ûs
)
(x̃− ỹ)v̂(ỹ)dỹ = u(x̃) (3.14)

for any x̃ ∈Ω we may obtain the representation formula

u(x̃) =
∫
Γ

Ûs (x̃−y)γ
−
1 û(y)(y)dsy−

∫
Γ

γ
−
1,yÛs (x̃−y)γ

−
0 û(y)dsy (3.15)

in Laplace domain. The fundamental solution is the distributional solution of the partial
differential equation((

−∆ỹ +
s2

c2
0

)
Ûs

)
(x̃− ỹ) = δ0(x̃− ỹ) ∀ x̃, ỹ ∈ R3

and reads in three spatial dimensions as

Ûs (z̃) =
exp
(
− s

c0
‖z̃‖
)

4π‖z̃‖
∀ z̃ ∈ R3 (3.16)
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see e.g. [28]. Note that the fundamental solution is analytic for z̃ 6= 0 and singular at z̃ = 0.
By using the Laplace transforms

δ0(t) d t 1

f (t−a)Θ(t−a) d t exp(−as) f̂ (s) for a≥ 0

see e.g. [9], where Θ(t) denotes the Heaviside step function, cf. appendix A. It can be
shown that the Laplace transform of the fundamental solution in time domain, yields the
fundamental solution for the Helmholtz equation

U (z̃, t) =
1

4π‖z̃‖
δ0

(
t− 1

c0
‖z̃‖
) d t exp(− s

c0
‖z̃‖)

4π‖z̃‖
= Ûs (z̃) .

As a direct consequence of this circumstance the representation formula of the Helmholtz
equation with complex wave numbers equals the Laplace transform of the representation
formula in time domain.

The following sections are dedicated to the introduction of the four standard boundary inte-
gral operators obtained by applying both trace operators to both of the operators occurring
in the representation formula. A detailed discussion of these operators would exceed the
scope of this thesis, for a thorough mathematical analysis refer to [30] or [28]. However,
the basic idea of this approach is to augment the boundary around x ∈ Γ with a sphere Bε

of radius ε, such that Ωε = Ω∪Bε. The limit Ω 3 x̃→ x ∈Ωε can then be carried out since
x does not lie on the augmented boundary. In the process the limit ε→ 0 is performed, to
retrieve the original state with domain Ω and boundary Γ. This procedure is sketched in
figure 3.1 for the two dimensional case.

x̃

x

ε

x1

x2

Γ

Ω

Bε

Figure 3.1: Augmented boundary in two dimensions. First the interior point is advanced
to the original boundary Ω 3 x̃→ x ∈Ωε. To regain the original configuration
the limit ε→ 0 is performed in the process.
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3.3 Single layer potential

For a given density w ∈ H−1/2(Γ) the single layer potential Ṽs : H−1/2(Γ)→ H1(Ω−) de-
fines a solution of the homogeneous partial differential equation which has the fundamental
solution Ûs. It reads as

u(x̃) =
(
Ṽsw

)
(x̃) :=

∫
Γ

Ûs (x̃−y)w(y)dsy ∀ x̃ ∈Ω
− .

Application of the Dirichlet trace yields the operator γ
−
0 Ṽs =: Vs : H−1/2(Γ)→ H1/2(Γ)

having the representation

(Vsw)(x) := γ
−
0
(
Ṽsw

)
(x) =

∫
Γ

Ûs (x−y)w(y)dsy ∀ x ∈ Γ

which exists as weakly singular surface integral due to the singularity of the fundamental
solution at x = y.

The single layer potential Vs is coercive, satisfying a Gårdings inequality

〈(Vs +T )w,w〉H1/2(Γ)×H−1/2(Γ) ≥ c‖w‖2
H−1/2(Γ)

∀ w ∈ H−1/2(Γ)

with a compact operator T : H−1/2(Γ)→ H1/2(Γ), see [7] or [30, theorem 6.40].

3.4 Adjoint double layer potential

For a given density w ∈ H−1/2(Γ) we apply the interior Neumann trace to the single layer
potential γ

−
1 Ṽs : H−1/2(Γ)→ H−1/2(Γ) yielding

γ
−
1
(
Ṽsw

)
(x) = σ(x)w(x)+

(
K′sw

)
(x) ∀ x ∈ Γ

in the sense of H−1/2(Γ), with the adjoint double layer potential(
K′sw

)
(x) :=

∫
Γ

γ
−
1,xÛs (x−y)w(y)dsy ∀ x ∈ Γ

which exists as weakly singular surface integral for our scalar-valued problem at hand, cf.
[28]. Note that for vector-valued problems, e.g. linear elasticity or the Stokes system, the
integral of the adjoint double layer potential exists only in the sense of a Cauchy principal
value.

Furthermore, we have the jump term

σ(x) =
1
2

for x a.e. in Γ

or more precisely σ(x) = 1
2 when Γ is smooth in a neighbourhood of x, see [30].
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3.5 Double layer potential

For a given density function v ∈ H1/2(Γ) the double layer potential Ws : H1/2(Γ) →
H1(Ω−) describes a solution of the homogeneous partial differential equation which has
the fundamental solution Ûs. It reads

u(x̃) = (Wsv)(x̃) :=
∫
Γ

γ
−
1,yÛs (x̃−y)v(y)dsy ∀ x̃ ∈Ω

− .

We apply the interior Dirichlet trace to the double layer potential and obtain

γ
−
0 (Wsv)(x) = [−1+σ(x)]v(x)+(Ksv)(x) ∀ x ∈ Γ

with the operator Ks : H1/2(Γ)→ H1/2(Γ)

(Ksv)(x) :=
∫
Γ

γ
−
1,yÛs (x−y)v(y)dsy ∀ x ∈ Γ

which exists as weakly singular surface integral for scalar-valued problems and exists, in
general, only as a Cauchy principal value for vector-valued ones, see [28].

3.6 Hypersingular boundary integral operator

For a given density v∈H1/2(Γ) we apply the negative interior Neumann trace to the double
layer potential γ

−
1 Ws : H1/2(Γ)→H−1/2(Γ) defining the hypersingular boundary integral

operator
(Dsv)(x) :=−γ

−
1 (Wsv)(x) ∀ x ∈ Γ .

However, the integral

(Dsv)(x) =−γ
−
1,x

∫
Γ

γ
−
1,yÛs (x̃−y)v(y)dsy ∀ x ∈ Γ

does not exist as Cauchy principal value. Thus certain regularization techniques have to
be employed. If the density v is globally continuous the hypersingular boundary integral
operator has the representation

(Dsv)(x) =−
∫
Γ

γ
−
1,x γ

−
1,yÛs (x−y) [v(y)− v(x)]dsy ∀ x ∈ Γ

which exists as Cauchy principal value, cf. [30]. Note that the sesquilinear form induced by
the hypersingular boundary integral operator bD(·, ·), which is discussed in chapter 4, may
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be regularized for globally continuous ansatz and test functions by means of integration by
parts. In [30] one finds

bDs(u,v) := 〈Dsu,v〉H−1/2(Γ)×H1/2(Γ)

=
∫

Γ×Γ

Ûs (x−y)(curlΓu(y),curlΓv(x))dsydsx

+
s2

c2
0

∫
Γ×Γ

Ûs (x−y)u(y)v(x)(n(x),n(y))dsydsx (3.17)

with the surface curl

curlΓu(x) = n(x)×gradũ(x) ∀ x ∈ Γ

where ũ is a suitable extension of the given u on Γ into a three-dimensional neighbourhood
of Γ.

The hypersingular boundary integral operator Ds is coercive, satisfying a Gårdings in-
equality

〈(Ds +T )v,v〉H−1/2(Γ)×H1/2(Γ) ≥ c‖v‖2
H1/2(Γ)

∀ v ∈ H1/2(Γ)

with a compact operator T : H1/2(Γ)→ H−1/2(Γ), see [7].
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4 BOUNDARY INTEGRAL EQUATIONS

In this chapter a set of boundary integral equations employed to solve the underlying prob-
lem in Laplace domain (2.12) is derived. Furthermore, their variational formulations are
presented, which are going to be the starting point of the actual boundary element formu-
lation.

Note that at this stage it is not entirely obvious why we consider boundary integral equa-
tions in Laplace domain only. This approach is motivated due to the employed discretiza-
tion of the time dependency which is detailed in chapter 5.

4.1 Variational formulation of operator equations

This short digression is merely intended to provide a glimpse into the basic idea underlying
variational methods for operator equations, taken from [30, chapter 3].

Let H be a Hilbert space equipped with the scalar product (·, ·)H inducing the norm ‖·‖H =√
(·, ·)H . In the subsequent part we consider a bounded linear operatorA : H→H ′, where

H ′ denotes the dual space of H with respect to the duality pairing 〈·, ·〉H ′×H . For a given
f ∈ H ′ we wish to find the solution of the operator equation

Au = f . (4.1)

However, instead of (4.1) we may consider the equivalent variational problem to find u∈H
such that

〈Au,v〉H ′×H = 〈 f ,v〉H ′×H ∀ v ∈ H (4.2)

holds. Concerning the equivalence of the operator equation (4.1) and its variational formu-
lation (4.2) we note that any solution u ∈ H of (4.1) is obviously a solution of (4.2). In the
reverse direction we consider u ∈ H to be a solution of the variational problem (4.2) and
by using the definition of the norm in H ′, cf. appendix A, we obtain

‖Au− f‖H ′ = sup
06=v∈H

|〈Au− f ,v〉H ′×H |
‖v‖H

= 0

which equals zero due to (4.2). Recalling the norm axiom ‖Au− f‖H ′ = 0 ⇐⇒ Au = f
in H ′, we find that the solution of the variational formulation (4.2) is a solution of the
operator equation (4.1) if u ∈ H holds.

23
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The operatorA : H→H ′ induces a bilinear form for real-valued functions or a sesquilinear
form for complex-valued functions

b(u,v) := 〈Au,v〉H ′×H ∀u,v ∈ H

where the bilinear form has the mapping property b(·, ·) : H×H→R whereas the sesquilin-
ear form has the mapping property b(·, ·) : H×H→ C.

Furthermore, by virtue of the Riesz representation theorem the right hand side in (4.2)
induces a functional F(v) ∈ H ′ for an arbitrary but fixed f ∈ H ′, cf. [30, theorem 3.3].

If the sesquilinear form b(·, ·) is H-elliptic and bounded and F(·) is bounded, i.e. there
exist positive constants c such that

b(v,v) ≥ c‖v‖2
H ∀ v ∈ H

b(u,v) ≤ c‖u‖H‖v‖H ∀ u,v ∈ H

F(v) ≤ c‖v‖H ∀ v ∈ H

then there exists a unique solution u ∈ H by the Lax-Milgram lemma, see [30, theorem
3.4]. In many cases the H-ellipticity of A is too restrictive. The existence of a unique
solution of (4.2) can also be ensured if A is injective and coercive, satisfying a Gårdings
inequality

|b(v,v)+ 〈T v,v〉H ′×H | ≥ c‖v‖2
H ∀ v ∈ H

with a compact operator T : H→ H ′, as stated in [30, theorem 3.6].

4.2 Indirect method

Indirect methods are based on the observation that both the single layer potential
(
Ṽsw

)
(x̃)

and the double layer potential (Wsv)(x̃) solve the homogeneous differential equation for
x̃ ∈ Ω− and for any w ∈ H−1/2(Γ) and v ∈ H1/2(Γ) respectively, see [28, theorem 3.1.1].
Thus, the task is to find either w or v such that the boundary condition

γ
−
1 u(x)+ sκ(x)γ−0 u(x) = f (x) ∀ x ∈ Γ (4.3)

is satisfied as well.

4.2.1 Single layer potential ansatz

For a density function w ∈ H−1/2(Γ) we consider solutions of the differential equation of
the form

u(x) :=
(
Ṽsw

)
(x̃) ∀ x̃ ∈Ω

− (4.4)
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whose insertion in (4.3) yields

σ(x)w(x)+
(
K′sw

)
(x)+ sκ(x)(Vsw)(x) = f (x) ∀ x ∈ Γ (4.5)

with the boundary integral operators Vs and K′s as well as the function σ(x) as defined in
chapter 3.

We do not wish to consider (4.5) in operator form, but an equivalent variational formu-
lation. It would seem to suggest itself to set up a variational formulation of (4.5) in the
energy space H−1/2(Γ), however since the operator K′s is of order zero the L2(Γ) scalar
product cannot be extended to the required duality pairing. This would require the use of
the H−1/2(Γ) scalar product, which is in many cases not feasible in terms of a technical
computation. However, if the operators meet certain requirements, a formulation in L2(Γ)
is possible. For further information on this topic see [28, chapter 3.8].

The modified variational formulation reads:
Assuming f ∈ L2(Γ), find w ∈ L2(Γ) such that

1
2
(w,µ)L2(Γ)+bK′s(w,µ)+ sbκ

Vs
(w,µ) = ( f ,µ)L2(Γ) ∀ µ ∈ L2(Γ) (4.6)

holds with the two sesquilinear forms

bVs(w,µ) = (Vsw,µ)L2(Γ)

bκ

K′s(w,µ) = (K′sw,µ)L2(Γ),κ

where (·, ·)L2(Γ) denotes the regular scalar product in L2(Γ) and (·, ·)L2(Γ),κ the weighted
one, see appendix A. Note that once the density function w has been determined, the
solution at any x̃ ∈Ω− may be computed by virtue of (4.4).

4.2.2 Double layer potential ansatz

For any density function v ∈ H1/2(Γ) functions defined by

u(x) := (Wsv)(x̃) ∀ x̃ ∈Ω
− (4.7)

are solutions of the homogeneous differential equation. By plugging this ansatz into (4.3)
one obtains

−(Dsv)(x)+ sκ(x)([−1+σ(x)]v(x)+(Ksv)(x)) = f (x) ∀ x ∈ Γ (4.8)

with the boundary integral operators Ks and Ds as well as the function σ(x) as defined
chapter 3.
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Similarly to the previous case, we wish to consider not the operator equation but a varia-
tional formulation. AlthoughKs is an operator of order zero, the occurrence of the function
κ ensures that the left hand side is in the same space as the right hand side, i.e. H−1/2(Γ).
A formulation in the natural energy space H1/2(Γ) is viable, since the L2(Γ) scalar product
can be extended to the required duality pairing, cf. [28, chapter 3.4].

The variational formulation reads:
Find v ∈ H1/2(Γ) such that

−bDs(v,µ)−
s
2
(v,µ)L2(Γ),κ + sbκ

Ks
(v,µ) = ( f ,µ)L2(Γ) ∀ µ ∈ H1/2(Γ) (4.9)

holds with the two sesquilinear forms

bκ
Ks
(v,µ) = (Ksv,κµ)L2(Γ)

bDs(v,µ) = (Dsv,µ)L2(Γ)

and the weighted scalar product (·, ·)L2(Γ),κ . Note that (·, ·)L2(Γ) denotes the extension of
the L2(Γ) scalar product to the duality pairing 〈·, ·〉H1/2(Γ)×H−1/2(Γ) and 〈·, ·〉H−1/2(Γ)×H1/2(Γ)
respectively.

Once the density function v is known, we may compute the solution in Ω− using (4.7).

4.3 Direct method

Direct methods are based on the representation formula

u(x̃) =
(
Ṽsγ
−
1 u
)
(x̃)−

(
Wsγ

−
0 u
)
(x̃) ∀ x̃ ∈Ω

− (4.10)

which may be used to compute the solution in Ω− once the complete Dirichlet datum γ
−
0 u

and Neumann datum γ
−
1 u are known. To provide a clearer notation we equip both the

Dirichlet and the Neumann field with separate variables

uD := γ
−
0 u

uN := γ
−
1 u .

To derive equations that enable us to compute these yet unknown fields we apply the inte-
rior Dirichlet trace γ

−
0 to (4.10), obtaining

uD(x) =
(
VsuN)(x)−(−1

2
I+Ks

)
uD(x) for x a.e. in Γ

as well as the interior Neumann trace γ
−
1 yielding

uN(x) =
(

1
2
I+K′s

)
uN(x)−

(
−
(
DsuD)(x)) for x a.e. in Γ .
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Combination of both equations leads to the system(
uD

uN

)
=

(
1
2I −Ks Vs

Ds
1
2I+K

′
s

)(
uD

uN

)
a.e. in Γ (4.11)

where

Cs =

(
1
2I −Ks Vs

Ds
1
2I+K

′
s

)
is the Calderón projection holding a.e. on Γ, cf. [30].

From the first boundary integral equation in (4.11) we obtain a Dirichlet to Neumann
map

uN = V−1
s
(1

2I+Ks
)

uD for x a.e. in Γ

with the Steklov-Poincaré operator Ss : H1/2(Γ)→ H−1/2(Γ)

Ss := V−1
s
(1

2I+Ks
)

a.e. in Γ . (4.12)

Insertion of (4.12) into the second boundary integral equation in (4.11) yields

uN =DsuD +
(1

2I+K
′
s
)
V−1

s
(1

2I+Ks
)

uD a.e. in Γ

which is a symmetric representation of the Steklov-Poincaré operator Ss : H1/2(Γ) →
H−1/2(Γ)

Ss :=Ds +
(1

2I+K
′
s
)
V−1

s
(1

2I+Ks
)

a.e. in Γ . (4.13)

Note that both definitions of Ss given in (4.12) and (4.13) are equivalent and map some
Dirichlet data uD ∈H1/2(Γ) to the respective Neumann data uN ∈H−1/2(Γ). Utilizing this
operator we may describe the Neumann data in terms of the Dirichlet data

uN(x) =
(
SsuD)(x) for x a.e. in Γ . (4.14)

By employing (4.14) in the boundary condition (4.3) we end up with(
(Ss + sκI)uD)(x) = f (x) for x a.e. in Γ . (4.15)

Similarly to the indirect approach, we are interested not in the operator equation itself but
a variational formulation. Since Ss is an operator of positive order one, a formulation in
the natual energy space H1/2(Γ) is obvious, as the L2(Γ) scalar product can be extended
the required duality pairing.

The variational formulation reads:
Find uD ∈ H1/2(Γ), such that

bSs(u
D,µ)+ s(uD,µ)L2(Γ),κ = ( f ,µ)L2(Γ) ∀ µ ∈ H1/2(Γ) (4.16)
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holds with the sesquilinear form

bSs(v,µ) = (Ssv,µ)L2(Γ)

and the weighted scalar product (·, ·)L2(Γ),κ . Note that (·, ·)L2(Γ) denotes the extension of
the L2(Γ) scalar product to the duality pairing 〈·, ·〉H−1/2(Γ)×H1/2(Γ).

Since the Steklov-Poincaré operator (4.13) implies explicit knowledge of the inverse single
layer potential operator V−1

s , we cannot set up the continuous incarnation of Ss explicitly.
However, this trouble can be abolished by considering a variational formulation of both
boundary integral equations characterizing (4.11). Hence we obtain the equivalent prob-
lem:
Find (uD,uN) ∈ H1/2(Γ)×H−1/2(Γ), such that

1
2(u

D,τ)L2(Γ)+bKs(u
D,τ) = bVs(u

N ,τ)

bDs(u
D,µ)+bK′s(u

N ,µ)+ 1
2(u

N ,µ)L2(Γ)+ s(uD,µ)L2(Γ),κ = ( f ,µ)L2(Γ)

(4.17)

holds for all (µ,τ) ∈ H1/2(Γ)×H−1/2(Γ) with the four sesquilinear forms

bVs(w,τ) = (Vsw,τ)L2(Γ) bKs(v,τ) = (Ksv,τ)L2(Γ)

bK′s(w,µ) = (K′sw,µ)L2(Γ) bDs(v,µ) = (Dsv,µ)L2(Γ)

and the weighted scalar product (·, ·)L2(Γ),κ . Similarly to before (·, ·)L2(Γ) denotes the ex-
tension of the L2(Γ) scalar product to the duality pairing 〈·, ·〉H1/2(Γ)×H−1/2(Γ) and
〈·, ·〉H−1/2(Γ)×H1/2(Γ) respectively.

Once the Cauchy data (uD,uN) are known, we may compute the solution in Ω− by virtue
of the representation formula (4.10).
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It is more convenient to treat the discretization in time first, as it influences the spatial
discretization significantly. The different techniques for resolving the time dependency
will be shown on the model Dirichlet problem

γ
−
0 u(x, t) = gD(x, t) ∀ (x, t) ∈ Γ×ϒ.

As an example we consider the single layer potential ansatz, which reads as

u(x̃, t) :=
(
Ṽ ∗ϕ

)
(x̃, t) :=

t∫
0

∫
Γ

U (x̃−y, t− τ)ϕ(y, t)dsydτ ∀ (x̃, t) ∈Ω
−× (0,∞)

and defines solutions to the partial differential equation for any suitable ϕ . There are three
main classes of methods to solve this problem.

• Time-stepping methods: The underlying idea is to discretize the original initial-
boundary value problem by some sort of time-stepping scheme and then apply the
boundary integral equation method to solve a boundary value problem at each time
step. There is a multitude of techniques to approximate the occurring source terms,
which lead to domain integrals, e.g. the dual reciprocity method, cf. [11]. In this
method one would approximate the source term −∂ttu by some radial basis func-
tions and solve Laplace’s equation for each time step.

Another approach belonging to this group is to introduce simple locally supported
ansatz functions ϕ(x, t) := ϕx(x)ϕt(t) and perform the convolution in time analyti-
cally, see e.g. [20].

• Laplace transform methods: This group of procedures relies on a Laplace, or Fourier,
transform of the data, in our case gD to Laplace, or Fourier, domain. Since convolu-
tion corresponds to multiplication in these domains, a series of decoupled boundary
value problems has to be solved for each observed frequency ω

(Vω ϕ̂)(x̃) = ĝD
ω ∀ x̃ ∈Ω

− .

The solution in time domain may be recovered by applying the inverse Laplace, or
Fourier, transform.

Another procedure that is also based on the solution of boundary integral equations
in Laplace domain is the convolution quadrature method (CQM, [19]). There are
different formulations of it and most of them operate both in time and Laplace do-
main simultaneously.

29
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• Space-time integral equations: The main idea is to consider a variational formulation
of the underlying problem on the entire space-time cylinder, i.e.

〈γ−0 u,v〉Γ×ϒ = 〈gD,v〉Γ×ϒ for all suitable v

and for our model problem we would obtain

(V ∗ϕ,∂tv)L2(Γ×ϒ) = (gD,∂tv)L2(Γ×ϒ) for all suitable v, (5.1)

cf. [8]. Although this approach seems rather straightforward it is actually quite in-
volved. Since the solution of the entire time interval is computed in one step, the
dimension is increased by one, thus the system matrix is much larger. Furthermore,
the L2(Γ×ϒ) scalar product, which is an integral along the lateral boundary of the
space-time cylinder, can be very complex when dealing with integral equations. For
a parabolic equation one would have to solve six-dimensional integrals, while in our
hyperbolic case the integrals are five-dimensional, due to the occurrence of the Dirac
distribution in the fundamental solution.

An exhaustive introduction to the time discretization of boundary integral equations can be
found in [8]. Throughout this work we only consider the CQM based on a shift to Laplace
domain [2].

5.1 Convolution quadrature method

The following derivations of the convolution quadrature method are directly adapted from
[17].

Consider the model problem

( f ∗g)(t) :=
t∫

0

f (t− τ)g(τ)dτ (5.2)

which is the convolution of two scalar functions f (t) and g(t) for t ∈ ϒ. It is assumed that
both functions vanish for negative arguments, i.e. they are causal. Recalling the Laplace
transform pairing

f (t− τ)Θ(t− τ) d t exp(−τs) f̂ (s)

as well as the inverse Laplace transform (2.11), we obtain the alternative representation of
(5.2)

( f ∗g)(t) =
t∫

0

lim
b→∞

1
2πi

a+ib∫
a−ib

exp(s(t− τ)) f̂ (s)ds g(τ)dτ
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while exchanging the order of integration yields

( f ∗g)(t) =
1

2πi
lim
b→∞

a+ib∫
a−ib

f̂ (s)
t∫

0

exp(s(t− τ))g(τ)dτ ds .

Note that a ∈ R has to be chosen such that the real parts of all singularities of f̂ (s) are
smaller than a. For the sake of shortness we abbreviate the inner integral

x(t,s) =
t∫

0

exp(s(t− τ))g(τ)dτ . (5.3)

The function x(t,s) defined above solves the initial value problem

∂tx(t,s) = sx(t,s)+g(t) , x(0,s) = 0 . (5.4)

To prove this claim we multiply the ordinary differential equation in (5.4) with a function
u(t,s) := exp(−ts) yielding

u(t,s)∂tx(t,s)−u(t,s)x(t,s)s = u(t,s)g(t) , (5.5)

and introduce another function z(t,s) := u(t,s)x(t,s) with

∂tz(t,s) = ∂tu(t,s)x(t,s)+u(t,s)∂tx(t,s)

= −u(t,s)x(t,s)s+u(t,s)∂tx(t,s)
(5.6)

where we used ∂tu(t,s) =−exp(−ts)s =−u(t,s)s. By inserting (5.6) in (5.5) we get

∂tz(t,s) = u(t,s)g(t) = exp(−ts)g(t)

and thus
z(t,s) = u(t,s)x(t,s) =

∫
exp(−τs)g(τ)dτ +C .

Dividing by u(t,s) = exp(−ts) 6= 0 yields

x(t,s) =
∫

exp(s(t− τ))g(τ)dτ +C

and by applying the fundamental theorem of calculus as well as the initial condition
x(0,s) = 0 we finally obtain the integral representation

x(t,s) =
t∫

0

exp(s(t− τ))g(τ)dτ
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showing that above integral solves the initial-value problem (5.4).

The time interval ϒ = [0,T ] is divided into Nt equidistant subintervals ∆t = T
Nt

and the n-th
time step is given by tn = n∆t, n = 0, . . . ,Nt . The convolution at each individual time step
reads

( f ∗g)(tn) =
1

2πi
lim
b→∞

a+ib∫
a−ib

f̂ (s)x(tn,s)ds (5.7)

by virtue of (5.3) and the discretization of the time interval introduced above. We abbre-
viate xn := x(tn,s), which may be interpreted as solution of the initial-value problem (5.4)
governed by an ordinary differential equation. Hence, its solution may be approximated
by a finite difference method, where the application of a linear multistep method seems
reasonable. The general definition of a k-th order multistep procedure for the generic dif-
ferential equation of first order

y′(t) = f (t,y)

can be written as
k

∑
j=0

α jyn+ j = ∆t
k

∑
j=0

β j f (tn+ j,yn+ j) . (5.8)

Application of (5.8) to (5.4) yields

k

∑
j=0

α jxn+ j = ∆t
k

∑
j=0

β j
(
sxn+ j +gn+ j

)
(5.9)

which is multiplied by the n-th power of some ξ ∈C and summed up over all nonnegative
integers n, i.e. all possible discrete times, yielding

∞

∑
n=0

k

∑
j=0

α jxn+ jξ
n = ∆t

∞

∑
n=0

k

∑
j=0

β j
(
sxn+ j +gn+ j

)
ξ

n . (5.10)

Moreover, expression (5.10) is rearranged

k

∑
j=0

α j

∞

∑
n=0

xn+ jξ
n = ∆t

k

∑
j=0

β j

∞

∑
n=0

(
sxn+ j +gn+ j

)
ξ

n .

Assuming vanishing initial conditions, i.e. x0 = x1 = · · ·= xk−1 = 0 as well as g0 = g1 =
· · ·= gk−1 = 0, we obtain the identities

∞

∑
n=0

xn+kξ
n = ξ

−k
∞

∑
n=0

xnξ
n

∞

∑
n=0

gn+kξ
n = ξ

−k
∞

∑
n=0

gnξ
n
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whose insertion in (5.1) results in

k

∑
j=0

α jξ
− j

∞

∑
n=0

xnξ
n = ∆t

k

∑
j=0

β jξ
− j

(
s

∞

∑
n=0

xnξ
n +

∞

∑
n=0

gnξ
n

)
and consequently(

k

∑
j=0

α jξ
− j− s∆t

k

∑
j=0

β jξ
− j

)
∞

∑
n=0

xnξ
n = ∆t

k

∑
j=0

β jξ
− j

∞

∑
n=0

gnξ
n . (5.11)

Dividing (5.11) by ∆t
k
∑
j=0

β jξ
− j and defining the characteristic rational function

γ(ζ ) =
k

∑
j=0

α jξ
− j

(
k

∑
j=0

β jξ
− j

)−1

yields the power series representation

∞

∑
n=0

xnξ
n =

(
γ(ξ )

∆t
− s
)−1 ∞

∑
n=0

gnξ
n . (5.12)

Insertion of (5.12) into (5.7) leads to

∞

∑
n=0

( f ∗g)(tn)ξ n =
1

2πi
lim
b→∞

a+ib∫
a−ib

f̂ (s)
(

γ(ξ )

∆t
− s
)−1

ds
∞

∑
n=0

gnξ
n .

The line integral in above formula may be converted to a closed contour integral, along
the path C if f̂ (s) satisfies the assumption | f̂ (s)| → 0 for ℜ(s) ≥ a and |s| → ∞. If this
assumption holds true, which is a prerequisite for the existence of the Laplace transform,
we may add the integration along a semicircle since it only adds a zero. It shall be kept
in mind that all singularities are situated in the plane left of the integration line defined
by a, with the sole exception of the additional singularity at s = γ(ξ )

∆t . By making use of
Cauchy’s integral formula we obtain

∞

∑
n=0

( f ∗g)(tn)ξ n =
1

2πi

∮
C

f̂ (s)
(

γ(ξ )

∆t
− s
)−1

ds
∞

∑
n=0

gnξ
n = f̂

(
γ(ξ )

∆t

)
∞

∑
n=0

gnξ
n .

(5.13)
Since we wish to get rid of the infinite sum, we perform a power series representation of
f̂
(

γ(ξ )
∆t

)
yielding

f̂
(

γ(ξ )

∆t

)
=

∞

∑
n=0

ωnξ
n
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whose insertion in (5.13) leads to

∞

∑
n=0

( f ∗g)(tn)ξ n =
∞

∑
m=0

ωmξ
m

∞

∑
n=0

gnξ
n =

∞

∑
n=0

ξ
n

n

∑
m=0

ωn−mgm

where the Cauchy product of two power series was used. Consequently, one ends up with
an approximation of the convolution integral of the form

( f ∗g)(tn) =
n

∑
m=0

ωn−mgm . (5.14)

Above representation may serve as a starting point for directly computing solutions in
time domain, see [17]. However, the approach used within this thesis seeks a different
representation of the convolution.

The convolution weights in (5.14) may be computed numerically by employing Cauchy’s
differentiation formula

∂ n

∂ξ n

(
f̂
(

γ(ξ )

∆t

))
=

n!
2πi

∮
C

f̂ (γ(s)/∆t)
(s−ξ )n+1 ds

which allows the calculation of the n-th partial derivatives. The evaluation at ξ = 0
yields

∂ n

∂ξ n

(
f̂
(

γ(ξ )

∆t

))∣∣∣∣
ξ=0

=
n!

2πi

∮
C

f̂ (γ(s)/∆t)
sn+1 ds .

By choosing C to be a circle centered at the origin with a radius of R < 1 we obtain
s = Rexp(iϕ), ϕ ∈ [0,2π) and thus

ωn( f̂ ) :=
1

2π

2π∫
0

f̂
(

γ(Rexp(iϕ))
∆t

)
(Rexp(iϕ))−ndϕ . (5.15)

By approximating (5.15) with the trapezoidal rule of Nt + 1 quadrature points we obtain
the following representation of the convolution weights

ωn( f̂ ) :=
R−n

Nt +1

Nt

∑
l=0

f̂ (sl)ζ
nl (5.16)

where we introduced the principal root of order Nt of unity

ζ = exp
(

2πi
Nt +1

)
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as well as the Laplace parameter

sl =
γ
(
Rζ−l)
∆t

.

Recalling the definition of the inverse discrete Fourier transform (IDFT)

uk =
1

N +1

N

∑
j=0

û jζ
jk (5.17)

we realize that (5.16) is actually a weighted IDFT with a scaling factor R−n.

5.1.1 Decoupled system in Laplace domain

In this section we apply the CQM approach introduced previously to an abstract operator
convolution equation. Hence, we will gain a decoupled system in Laplace domain, which
will serve as a starting point for the spatial discretization of the boundary integral equations
in Laplace domain. This approach is introduced in [2].

Consider the abstract operator equation

(A∗u)(x, t) = f (x, t) ∀ (x, t) ∈ Γ× (0,∞) (5.18)

and by discretization of the time interval as discussed at the beginning of this section as
well as application of (5.14) one obtains

(A∗u)(x, tn) = f (x, tn)≈
n

∑
m=0

ωn−m(Â)u(x, tm)

where we emphasize that the weights ωn depend on the operator Â. Assuming ωn = 0 for
all n < 0 we may extend above sum to Nt , leading to

Nt

∑
m=0

ωn−m(Â)u(x, tm) := f (x, tn) .

Insertion of the definition of the weights (5.16) yields

Nt

∑
m=0

R−(n−m)

Nt +1

Nt

∑
l=0
Â(sl)ζ

(n−m)lu(x, tm) = f (x, tn)

and by changing the order of summation one finds

R−n

Nt +1

Nt

∑
l=0
Â(sl)ζ

nl
Nt

∑
m=0

Rm
ζ
−mlu(x, tm) = f (x, tn) . (5.19)
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By employing the definition of the discrete Fourier transform one may interpret the term

Nt

∑
m=0

Rm
ζ
−mlu(x, tm) = û(x,sl)

occurring in (5.19) as weighted DFT. Thus

R−n

Nt +1

Nt

∑
l=0
Â(sl)ζ

nl û(x,sl) = f (x, tn)

and by interpreting the right hand side in above equation as weighted IDFT

f (x, tn) =
R−n

Nt +1

Nt

∑
l=0

f̂ (x,sl)ζ
nl

we end up with

R−n

Nt +1

Nt

∑
l=0
Â(sl)û(x,sl)ζ

nl =
R−n

Nt +1

Nt

∑
l=0

f̂ (x,sl)ζ
nl . (5.20)

By equating the coefficients in (5.20) we obtain a decoupled system of operator equations
in Laplace domain

Â(sl)û(x,sl) = f̂ (x,sl) ∀ x ∈ Γ . (5.21)

Thus we may transform the operator equation in time domain (5.18) to Laplace domain
by means of the transformation rules given by the CQM, and solve a set of decoupled
equations. Once the solution of (5.21) is computed for all prescribed sl one may retrieve
the approximate solution in time domain by applying the inverse transformation. Due to
the fact that in this approach boundary integral equations have to be solved only in Laplace
domain, chapter 4 only presented boundary integral equations of the Laplace transformed
wave equation, i.e. the Helmholtz equation.

A crucial question is still the choice of the multistep procedure in (5.9). In many applica-
tions one opts for backward finite difference methods which belong to the class of implicit
multistep methods, i.e. β0 = 0. Throughout this work we employ the second-order BDF-2
scheme which is the highest order A-stable multistep procedure, see e.g. [31]. The charac-
teristic polynomial of the BDF-2 scheme reads

γ(ξ ) =
1
2

ξ
2−2ξ +

3
2

. (5.22)
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5.1.2 Algorithmic description of a CQM calculation

Within this section we collect the most important results of this chapter and present a short
algorithmic overview over the CQM.

The first step is to decompose the time interval into Nt equidistant steps such that tn =
n∆t, n = 0, . . . ,Nt . Moreover, there are four core quantities required for applying the
weighted DFT as suggested by the CQM:

• The principal root of order Nt of unity

ζ = exp
(

2πi
Nt +1

)
.

• The characteristic polynomial of the underlying multistep method, which is the
BDF-2 in our case

γ(ξ ) =
1
2

ξ
2−2ξ +

3
2

.

• The radius of integration

R = max(∆t3/Nt ,ε−1/(2Nt)) .

with ε= 10−12, cf. [2] and [3].

• The definition of the Laplace parameter

sl =
γ(Rζ−l)

∆t
.

With these quantities at hand we may provide algorithm 1 for solving a convolution based
boundary integral equation by means of the CQM.

Algorithm 1 Solving a convolution BIE in time via CQM
1: discretize time interval tn = n∆t
2: compute right hand side at discrete time steps f (x, tn)
3: transform data to Laplace domain f̂ (x,sl) = ∑

Nt
n=0 Rnζ−nl f (x, tn)

4: for l = 0 to Nt/2 do
5: compute sl = ∆t−1γ(Rζ−l)
6: solve boundary integral equation Â(sl)û(x,sl) = f̂ (x,sl) ∀ x ∈ Γ

7: end for
8: construct remaining solution û(x,sNt+1−l) := û(x,sl) , l = 1, . . . ,Nt/2−1
9: transform solution to time domain u(x, tn) = R−n

Nt+1 ∑
Nt
l=0 û(x,sl)ζ

−nl
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Note that in above algorithm the complex symmetry was used. It states that spectra in
Laplace domain are symmetric with respect to complex conjugation if the results in time
domain are purely real. Thus one has to solve for one half of the actual frequencies only,
see e.g. [6].

Moreover, the weighted DFT and weighted IDFT employed in above algorithm may be re-
alized using the so-called fast Fourier transform, which is a fast incarnation of the matrix-
vector product required for the DFT and IDFT respectively. To achieve the weighting one
just has to modify the data accordingly, i.e. define f̃ (x, tn) := Rn f (x, tn) and use f̃ in a
regular FFT algorithm.

Furthermore all boundary integral equations need to be known in Laplace domain only.
In many applications this proves to be a significant advantage, since in most cases the
fundamental solution and thus the boundary integral equations are much simpler in Laplace
domain than in time domain. Moreover, there are many problems where the fundamental
solution is only known in Laplace domain. Another compelling advantage of the employed
method is its inherent parallelizability, as the solution of the decoupled boundary value
problems may be delegated to different computers for each frequency. For further details
on this approach to the CQM as well as a thorough error analysis refer to [2].

The following chapter is dedicated to row 6 in above algorithm, i.e. it presents the solution
of boundary integral equations of elliptic boundary value problems. The discretization of
these integral equations is realized using boundary element methods (BEM).



6 SPATIAL DISCRETIZATION

In chapter 4 we derived variational formulations of boundary integral equations, each
stated on a respective Hilbert space H. All these problems basically read as

find u ∈ H : b(u,v) = F(v) ∀ v ∈ H

or equivalently
find u ∈ H : 〈Au,v〉H ′×H = 〈 f ,v〉H ′×H ∀ v ∈ H (6.1)

with the abstract sesquilinear form b(·, ·) : H×H ′→ C

b(u,v) = 〈Au,v〉H ′×H

and the functional F ∈ H ′. Table 6.1 identifies the operator as well as the function space
for the boundary integral equations under consideration.

Integral equation A H

Indirect SLP K′s + 1
2I+ sκVs L2(Γ)

Indirect DLP −Ds + sκ
(
Ks− 1

2I
)

H1/2(Γ)

Direct method Ds +
(
K′s + 1

2I
)
V−1

s
(
Ks +

1
2I
)
+ sκI H1/2(Γ)

Table 6.1: Identification of abstract operatorA and Hilbert space H with boundary integral
equations derived in chapter 4.

The abstract statement (6.1) serves as the starting point for establishing a discretization by
means of boundary elements.

6.1 Galerkin-Bubnov methods

In order to find an approximate solution of (6.1), we consider for K ∈ N a sequence

HK := span{ϕk}K
k=1 ⊂ H

of finite-dimensional conforming trial spaces. The approximate solution uK ∈ HK

uK(x) :=
K

∑
k=1

ukϕk(x) ∀ x ∈ Γ (6.2)

39
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is then defined as the solution of the Galerkin-Bubnov variational problem

find uK ∈ HK : 〈AuK,vK〉H ′×H = 〈 f ,vK〉H ′×H ∀ vK ∈ HK . (6.3)

Galerkin-Bubnov methods employ the same space HK for both the trial functions uK as
well as the test functions vK . Boundary element procedures based on Galerkin-Bubnov
methods are commonly referred to as Galerkin BEM simply.

Due to the conformity HK ⊂ H equation (6.1) holds for any vK ∈ HK in particular, i.e.

〈Au,vK〉H ′×H = 〈 f ,vK〉H ′×H ∀ vK ∈ HK (6.4)

and subtraction of (6.4) from (6.1) yields the Galerkin orthogonality

〈A(u−uK),vK〉H ′×H = 0 ∀ vK ∈ HK . (6.5)

If the operator A is H-elliptic, i.e.

〈Au,u〉H ′×H ≥ c‖u‖2
H ∀ u ∈ H,

which again holds especially for any vK ∈ HK ⊂ H, we find

c‖u−uK‖2
H ≤ 〈A(u−uK),u−uK〉H ′×H

and by using the Galerkin orthogonality (6.5) and the boundedness of A we obtain

〈A(u−uK),u−uK〉H ′×H = 〈A(u−uK),u− vK〉H ′×H + 〈A(u−uK),vK−uK〉H ′×H

= 〈A(u−uK),u− vK〉H ′×H

≤ c‖u−uK‖H‖u− vK‖H

which holds for all vK ∈ HK . This leads to the error estimate

‖u−uK‖H ≤ c inf
vK∈HK

‖u− vK‖H . (6.6)

Above statement is known as Cea’s Lemma and implies that the error of the discretization
is connected to the smallest error in the entire space HK only by a constant. This quasi-
optimality of the error is an eminently powerful property that serves as a starting point
for estimating the orders of convergence of the discretizations of variational formulations.
Equation (6.6) also holds if A is not elliptic, but only coercive and satisfies a certain sta-
bility criterion, see [30, theorem 8.10].

The convergence of the approximate solution uK→ u ∈H as K→∞ then follows from the
approximation property of the trial space HK

lim
K→∞

inf
vK∈HK

‖v− vK‖H = 0 ∀ v ∈ H . (6.7)
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Hence, the sequence of conforming trial spaces {XK}K∈N has to be constructed such that
(6.7) is ensured.

The following sections are dedicated to presenting the fundamental tools for setting up
standard boundary element spaces as well as commenting on their approximation proper-
ties. It shall be noted that the following explanations are explicitly adapted to three spatial
dimensions, for the general case refer to [30] or [28].

6.2 Boundary elements

For Γ = ∂Ω with Ω⊂ R3, we consider a sequence {ΓN}N∈N of triangulations

ΓN =
N⋃

l=1

τ l (6.8)

which are assumed to be admissible, i.e. two neighbouring elements with τ l ∩ τk, l 6= k,
either share a common point or a common edge. Within this work, we only consider plane
triangular boundary elements, although rectangular or curved elements are frequently used
as well. Examples for the employed meshes are depicted in figure 6.1.

Figure 6.1: Rather simple decompositions of a cube and a cylinder intro plane triangular
elements. Note that ΓN 6= Γ for the cylinder.

By {xk}M
k=1 we denote the set of all vertices of the triangulation ΓN . Moreover, we consider

the two index sets

J(l) := {k : xk ∈ τ l} l = 1, . . . ,N
I(k) := {l : xk ∈ τ l} k = 1, . . . ,M

where J(l) denotes the indices of all vertices belonging to an element τ l and I(k) is the
index set of all elements sharing the node xk, as shown in figure 6.2.

We define the surface area of an element

∆l :=
∫
τl

dsx
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xk

(a) Index set I(k).

τ l

(b) Index set J(l).

Figure 6.2: Index sets I(k) and J(l) for triangular elements.

and the local mesh size
hl := ∆

1/2
l

for l = 1, . . . ,N, as well as the global mesh size of the triangulation

h := max
l=1,...,N

hl .

Using the minimal mesh size
hmin := min

l=1,...,N
hl

we call the sequence of triangulations (6.8) globally quasi-uniform if there exists a constant
c, independent of N, such that

h
hmin
≤ c

holds. Throughout this work, only admissible and globally quasi-uniform triangulations
are considered.

In essence, boundary elements are finite elements on the surface of the domain. Similarly
to most finite element methods, one employs a reference element τ to describe all elements
τl, l = 1, . . . ,N of the triangulation. We consider the reference element τ , which is a
triangle in the two dimensional parameter domain

τ :=
{
(x̂1, x̂2) ∈ R2 : 0 < x̂2 < x̂1 < 1

}
which is mapped onto an actual boundary element using the parametrization χl : τ → τl

χl(x̂) = xl0 + x̂1(xl1−xl0)+ x̂2(xl2−xl1)

where xlk , k = 0,1,2 denote the vertices of the element τl numbered counterclockwise with
respect to the normal vector. This mapping process is depicted in figure 6.3.

This allows a representationx1
x2
x3

=

xl1,1− xl0,1 xl2,1− xl1,1
xl1,2− xl0,2 xl2,2− xl1,2
xl1,3− xl0,3 xl2,3− xl1,3

(x̂1
x̂2

)
+

xl0,1
xl0,2
xl0,3
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xl2

xl0

xl1

τ l
τ

χl

x1

x2

x3
x̂1

x̂2

Figure 6.3: Triangular element τl described in terms of τ using the parametrization χl .

or in short
τl 3 x = χl(x̂) = xl0 +Jl x̂ for x̂ ∈ τ

where Jl ∈ R3×2 is the Jacobi matrix

Jl[ j,k] =
∂ χl, j

∂ξk
, j = 1,2,3; k = 1,2 .

6.2.1 Boundary integrals

Consider a boundary element τl defined via the parametrization χl : τ → τl and a function
f : τl → C. The surface integral of f over τl is∫

τl

f (x)dsx =
∫
τ

f̃l(x̂)gl dx̂ (6.9)

where gl is the square root of the determinant of the Gramian matrix and

f̃l(x̂) = f (xl0 +Jl x̂)

where we write f̃l := f ◦χl . The Gramian matrix is defined by

Gl = JT
l Jl ∈ R2×2

and as a result the factor used in (6.9) is

gl :=
√

detGl .

Note that the Jacobi matrix, and thus the Gramian matrix, are constant for each mapping
since we only employ parametrizations χl linear in x̂.
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Considering the surface area, we learn

∆l :=
∫
τl

dsx = gl

∫
τ

dx̂ = gl

1∫
0

x̂1∫
0

dx̂2dx̂1 =
gl

2
.

With this notation available, we may provide an explicit formula for the surface curl occur-
ring in the regularized sesquilinear form of the hypersingular boundary integral operator
(3.17)

curlΓu◦χl = JlG−1
l gradx̂ũl× ñ

with ũl = u ◦ χl and ñ = n ◦ χl . Furthermore we define grad⊥ :=
(

∂̂2,−∂̂1

)
and there

holds
glcurlΓu◦χl = Jlgrad⊥ũ

for sufficiently smooth function u, see [28]. Note that most of the previous considerations
become more involved when allowing elements that employ parametrizations of higher
than linear order.

6.3 Boundary element spaces

Throughout this thesis we employ three different approximation spaces, which are intro-
duced in the following sections. In general those spaces will be denoted by Scp

h or Sdp
h ,

where h refers to the spatial mesh size and p to the polynomial degree of the basis func-
tions. Furthermore, the letter c denotes globally continuous spaces, while d represents a
globally discontinuous space.

Recalling the abstract approximation space HK from the first part of this chapter, any func-
tion within this space may be represented by

HK 3 uK(x) =
K

∑
k=1

ukϕk(x) ∀ x ∈ Γ .

Thus any function within HK is uniquely identified by its vector of expansion coeffi-
cients

CK 3 u =
[
u1 u2 . . . uK−1 uK

]
u ↔ uK ∈ HK

. (6.10)

The isomorphism (6.10) enables us to represent any function uK(x), x ∈ Γ belonging to a
K-dimensional approximation space by its vector of K expansion coefficients.



6.3 Boundary element spaces 45

6.3.1 Discontinuous boundary elements

By Sd0
h = span{ϕd0

k }
N
k=1 we denote the space of piecewise constant boundary elements

spanned by the basis functions

ϕ
d0
k (x) =

{
1 x ∈ τk
0 elsewhere k = 1, . . . ,N,

which has, despite being the simplest trial space, already very powerful approximation
properties. A visualization of a basis function belonging to this space is depicted in figure
6.4.

τk

ϕ
d0
k

Figure 6.4: Piecewise constant basis function ϕ
d0
k associated to the globally discontinuous

space Sd0
h .

It is worthwhile to note that the support1 of each basis function is precisely one element,
i.e.

supp(ϕd0
k ) = τk k = 1, . . . ,N

thus the intersection of the supports of two different basis functions within this space al-
ways has zero measure, i.e.

supp(ϕd0
k )∩ supp(ϕd0

l ) is either a vertex, an edge or zero for k 6= l

due to the admissibility criterion stated before. As a result Sd0
h is an orthogonal space with

respect to the L2(Γ) scalar product, implying

(ϕd0
k ,ϕd0

l )L2(Γ) =
∫
Γ

ϕ
d0
k (x)ϕd0

l (x)dx =
∫

supp(ϕ
d0
k )∩supp(ϕ

d0
l )

ϕ
d0
k (x)ϕd0

l (x)dx = 0 for k 6= l

whereas
(ϕd0

k ,ϕd0
k )L2(Γ) =

∫
τk

∣∣∣ϕd0
k (x)

∣∣∣2︸ ︷︷ ︸
=1 ∀ x∈τk

dx =
∫
τk

dx = ∆k

1The support of a function is defined in appendix A.
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τl

x∗l0

ϕ
c1
0

τlx∗l1

ϕ
c1
1

τl
x∗l2

ϕ
c1
2

Figure 6.5: The three piecewise linear basis functions ϕ
d1
k of an element τl associated to

the globally discontinuous space Sd1
h .

holds. This circumstance leads to a diagonal mass matrix

Mh[k, l] = ∆kδkl, Mh =


∆1

. . .

∆N

 .

Moreover, we employ the space of linear discontinuous functions Sd1
h = span{ϕd1

k }
3N
k=1

for the approximation of the right hand side. Such a space is constructed by placing three
interior vertices x∗lk , k = 1,2,3 within an element τl and setting up three linear polynomials

ϕ
d1
lk
, k = 1,2,3 such that the Kronecker delta property

ϕ
d1
lk
(x∗l j

) = δk j k, j = 1,2,3 (6.11)

holds. The actual positioning of these vertices does not matter from an analytical point of
view as long as they do not coincide, which would cause the functions to become linearly
dependent. However, if these points are too close to each other, the basis leads to ill-
conditioned matrices and is thus useless from a numerical point of view. Therefore, the
vertices should be spaced in a reasonable fashion, cf. [10]. These three functions are
depicted in figure 6.5.

Again, the support of one basis function is precisely one element, but there are two other
basis functions sharing this support as well. Consequently, this function space is not or-
thogonal, however, the mass matrix is composed of non-overlapping element matrices and
thus may be inverted in an element-wise manner.

For the family of globally discontinuous boundary element spaces Sdp
h with polynomial
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degree p and for 0≤ t ≤ s≤ p+1 there holds the approximation property

inf
wh∈S

dp
h

‖w−wh‖H−t(Γ) ≤ chs+t‖w‖Hs(Γ) ∀ w ∈ Hs
pw(Γ) (6.12)

see [28, theorem 4.3.19]. We especially emphazise the two properties

inf
wh∈S

dp
h

‖w−wh‖L2(Γ) ≤ chmin(p+1,s)‖w‖Hs(Γ) s≥ 0

inf
wh∈S

dp
h

‖w−wh‖H−1/2(Γ) ≤ ch1/2+min(p+1,s)‖w‖Hs(Γ) s≥ 1/2
∀ w ∈ Hs

pw(Γ)

which state the convergence in two crucial spaces for the problem at hand. Furthermore, it
can be observed that this space does not enjoy an approximation property in H1/2(Γ), since
it is not contained in it. As a consequence, the next chapter introduces another function
space designed for this demand.

6.3.2 Continuous boundary elements

Due to the fact that the discontinuous boundary elements are not contained within the space
H1/2(Γ) we have to consider continuous boundary elements for problems involving this
space, i.e. the double layer potential ansatz as well as the direct method.

By Sc1
h = span{ϕc1

k }
M
k=1 we denote the space of piecewise linear globally continuous bound-

ary elements, spanned by the basis

ϕ
c1
k (x) =


1 x = xk
0 x = xl 6= xk
linear elsewhere

, k = 1, . . . ,M,

which are depicted in figure 6.6. The support of each function is given by

supp(ϕc1
k ) =

⋃
l∈I(k)

τ l

and highly depends on the connectivity of the elements, i.e. the shape regularity of the
triangulation.

The three basis functions defined on the reference element read as

ψ
c1
0 (x̂) = 1− x̂1

ψ
c1
1 (x̂) = x̂1− x̂2

ψ
c1
2 (x̂) = x̂2
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xk

ϕ
c1
k

Figure 6.6: Piecewise linear basis function ϕ
c1
k associated to the globally continuous space

Sc1
h .

thus vanishing at each vertex they are not associated with, implying a Kronecker delta
property similar to (6.11) but with respect to the vertices xk, k = 1, . . . ,M.

For t ∈ [0,1] and s ∈ [t,2] the space of globally continuous piecewise linear boundary
elements Sc1

h enjoys the approximation property

inf
vh∈Sc1

h

‖v− vh‖Ht(Γ) ≤ chs−t‖v‖Hs(Γ) ∀ v ∈ Hs(Γ) (6.13)

see [30, theorem 10.9]. In particular there holds

inf
vh∈Sc1

h

‖v− vh‖H1/2(Γ) ≤ chs−1/2‖v‖Hs(Γ) ∀ v ∈ Hs(Γ)

for s ∈ [1
2 ,2] which states the convergence in the energy space of the indirect double layer

potential ansatz and the direct method.

6.4 Boundary element methods

Inserting the ansatz (6.2) into the abstract variational formulation (6.1) yields

〈AuK,vK〉H ′×H = 〈 f ,vK〉H ′×H ∀ vK ∈ HK

and by inserting (6.2) we obtain its fully discretized version

〈A
K
∑

k=1
ukϕk,

K
∑

k=1
vkϕk〉H ′×H = 〈 f ,

K
∑

k=1
vkϕk〉H ′×H

K
∑

k=1
vk〈A

K
∑

l=1
ulϕl,ϕk〉H ′×H =

K
∑

k=1
vk〈 f ,ϕk〉H ′×H

K
∑

k=1
vk

K
∑

l=1
ul〈Aϕl,ϕk〉H ′×H =

K
∑

k=1
vk〈 f ,ϕk〉H ′×H
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for all vk ∈ C, k = 1, . . . ,K by virtue of the isomorphism (6.10). Employing the linear
independence of the basis functions

K

∑
l=1

vkϕk(x) = 0 ∀ x ∈ Γ ⇐⇒ vk = 0 , k = 1, . . . ,K

we obtain
K

∑
l=1

ul〈Aϕl,ϕk〉H ′×H = 〈 f ,ϕk〉H ′×H , k = 1, . . . ,K (6.14)

which tells us that both the sesquilinear form as well as the functional only have to be eval-
uated in terms of the basis functions which leads to a system of K equations. Considering
the coefficient matrix

A[k, l] = 〈Aϕl,ϕk〉H ′×H

and the coefficient vector

f[k] = 〈 f ,ϕk〉H ′×H

we end up with the algebraic system

Au= f . (6.15)

By solving system (6.15) for u and utilizing (6.10) we obtain the solution uK of the ap-
proximated abstract variational formulation (6.3). This general routine is employed to the
boundary integral equations of chapter 4 to derive boundary element methods for them.

6.4.1 Approximation of the functional

In many scenarios it is more convenient not to deal with the actual functional F(v) in
(6.1) but a discretized version Fh(v). This occurs due to the fact that the function f ∈
H−1/2(Γ) on the right hand side might be rather involved, thus a representation of f within
a computational algorithm is more cumbersome than translating f to some fh ∈ Sdp

h and
merely representing it by means of the isomorphism (6.10). Throughout the following
considerations we assume f ∈ L2(Γ) for the sake of simplicity, which is a reasonable claim
in many engineering applications. The two main strategies for approximating functions
employed throughout this work are interpolation and L2-projection.

Interpolation of the right hand side

The interpolation operator Idp
h is defined by

f (x∗k)−I
dp
h f (x∗k) = 0 k = 1, . . . ,dim(Sdp

h )
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where x∗k is a set of dim(Sdp
h ) = N

2 (p+1)(p+2) non-coincing points at which the error is
forced to vanish. For the space of piecewise constant functions these points are the centers
of each element, while for the space of piecewise linear basis functions these points are the
ones where the Kronecker delta property (6.11) is satisfied. With the representation

Sdp
h 3 I

dp
h f (x) =

dim(S
dp
h )

∑
k=1

fkϕ
dp
k (x) ∀ x ∈ Γ ,

this leads to a set of dim(Sdp
h ) equations

dim(S
dp
h )

∑
k=1

fkϕ
dp
k (x∗l ) = f (x∗l ) l = 1, . . . ,dim(Sdp

h )

and since we constructed the spaces such that ϕ
dp
k (x∗l ) = δkl, k, l = 1, . . . ,dim(Sdp

h ) the set
of equations becomes decoupled, thus

fk = f (x∗k) k = 1, . . . ,dim(Sdp
h ) .

By setting up a coefficient vector f = [ f1 . . . fN(p+1)(p+2)/2] and invoking the isomorphism

(6.10) we obtain the interpolating function Idp
h f (x), x ∈ Γ.

Orthogonal projection of the right hand side

On the other hand the L2-projection operator Qdp
h : L2(Γ)→ Sdp

h is defined by

Qdp
h f = arg min

fh∈S
dp
h

‖ f − fh‖L2(Γ)

which is the unique solution of the variational problem

(Qdp
h f ,qh)L2(Γ) = ( f ,qh)L2(Γ) ∀ qh ∈ Sdp

h .

By inserting the representation

Sdp
h 3Q

dp
h f (x) =

dim(S
dp
h )

∑
k=1

fkϕ
dp
l (x) ∀ x ∈ Γ ,

and employing the routines resulting in (6.14) we obtain the algebraic system

Mhf = bh
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with the mass matrix
Mh[k, l] = (ϕ

dp
k ,ϕ

dp
l )L2(Γ)

and the coefficient vector

bh[k] = ( f ,ϕdp
k )L2(Γ) .

By solving above system for f we find the projection Qdp
h f (x), x ∈ Γ via (6.10).

It shall be kept in mind that the error estimate (6.12) holds and if f is sufficiently smooth
we obtain

‖ f −Qdp
h f‖L2(Γ) ≤ chp+1‖ f‖H p+1(Γ) . (6.16)

It is important to realize that replacing F(v) by Fh(v) introduces another error to the dis-
cretization. If the approximation of the functional converges at a slower rate than the
unperturbed variational formulation using F(v) then the originally expected order of con-
vergence cannot be maintained. For a discussion of this topic see e.g. [30, theorem 8.2].
Due to the sparsity of the mass matrix the computational cost of replacing f by Qd1

h f is
actually negligibly small compared to the actual boundary element stiffness matrices in
(6.15). The orthogonal projection of f onto the space of piecewise linear discontinuous
boundary elements implies the optimal error estimate

‖ f −Qd1
h f‖L2(Γ) ≤ ch2‖ f‖H2(Γ) . (6.17)

for a sufficiently smooth f .

By collecting various results in [30, chapter 12] one may show that by using the L2-
projection on the space of piecewise linear discontinuous functions one does not influence
the rates of convergence of the methods presented throughout the rest of this thesis.

6.4.2 Indirect single layer potential Galerkin BEM (SLP BEM)

Choosing Sd0
h ⊂ L2(Γ)⊂H−1/2(Γ) we obtain a fully discrete form of the boundary integral

equation associated with the single layer potential ansatz (4.6):
Find wh ∈ Sd0

h such that

1
2
(wh,µh)L2(Γ)+bK′s(wh,µh)+ sbκ

Vs
(wh,µh) = ( fh,µh)L2(Γ) ∀ µh ∈ Sd0

h , (6.18)

which leads to the algebraic system

1
2
Mhw+K′hw+ sVκ

hw = fh
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or equivalently Ahw = fh with

Ah :=
1
2
Mh + sK′h +Vκ

h .

The entries of the stiffness matrices Vκ
h ,K

′
h ∈CM×M, the mass matrix Mh ∈CM×M as well

as the load vector fh ∈ CM read as

Vκ
h [k, l] =

∫
supp(ϕ

d0
k )×supp(ϕ

d0
k )

Ûs (x−y)κ(x)ϕd0
k (x)ϕd0

l (y) dsy dsx

K′h[k, l] =
∫

supp(ϕ
d0
k )×supp(ϕ

d0
k )

γ
−
1,xÛs (x−y)ϕ

d0
k (x)ϕd0

l (y) dsy dsx

Mh[k, l] =
∫

supp(ϕ
d0
k )∩supp(ϕ

d0
l )

ϕ
d0
k (x)ϕd0

l (x) dsx = ∆kδkl

fh[k] =
∫

supp(ϕ
d0
k )

fh(x)ϕ
d0
k (x) dsx =

∫
supp(ϕ

d0
k )

fh(x) dsx .

6.4.3 Indirect double layer potential Galerkin BEM (DLP BEM)

By employing Sc1
h ⊂H1/2(Γ) we get a discretized version of the boundary integral equation

of the double layer potential ansatz (4.9):
Find vh ∈ Sc1

h such that

−bDs(vh,µh)−
s
2
(vh,µh)L2(Γ),κ + sbκ

Ks
(vh,µh) = ( fh,µh)L2(Γ) ∀ µh ∈ Sc1

h , (6.19)

which is equivalent to the algebraic system

−Dhw−
s
2
Mκ

hw+ sKκ
hw = fh

or Ahw = fh with

Ah :=−Dh−
s
2
Mκ

h + sKκ
h .

The entries of the stiffness matrices Kκ
h ,Dh ∈CN×N , the weighted mass matrix Mκ

h ∈CN×N

as well as the load vector fh ∈ CN read as
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Kκ
h [k, l] =

∫
supp(ϕc1

k )×supp(ϕc1
k )

γ
−
1,yÛs (x−y)κ(x)ϕc1

k (x)ϕc1
l (y) dsy dsx

Dh[k, l] =
∫

supp(ϕc1
k )×supp(ϕc1

k )

Ûs (x−y)
(
curlΓϕ

c1
l (y),curlΓϕ

c1
k (x)

)
dsy dsx

+
s2

c2
0

∫
supp(ϕc1

k )×supp(ϕc1
k )

Ûs (x−y)ϕ
c1
k (y)ϕc1

l (x)(n(x),n(y)) dsy dsx

Mκ
h [k, l] =

∫
supp(ϕc1

k )∩supp(ϕc1
l )

κ(x)ϕc1
k (x)ϕc1

l (x) dsx

fh[k] =
∫

supp(ϕc1
k )

fh(x)ϕc1
k (x) dsx .

6.4.4 Direct Galerkin BEM

Since a direct formulation relies on two function spaces, we have to consider both spaces
employed for the indirect method simultaneously. By choosing Sd0

h ⊂H−1/2(Γ) and Sc1
h ⊂

H1/2(Γ) we obtain the discretized version of (4.17):
Find (uD

h ,u
N
h ) ∈ Sc1

h ×Sd0
h , such that

1
2(u

D
h ,τh)L2(Γ)+bKs(u

D
h ,τh) = bVs(u

N
h ,τh)

bDs(u
D
h ,µh)+bK′s(u

N
h ,µh)+

1
2(u

N
h ,µh)L2(Γ)+ s(uD

h ,µh)L2(Γ),κ = ( fh,µh)L2(Γ)

(6.20)
holds for all (µh,τh) ∈ Sc1

h ×Sd0
h , corresponding to the system

1
2
Mhu+Khu = Vht

Dhu+KT
h t+

1
2
MT

h t+ sMκ
hu = f

or alternatively [
Vh −1

2Mh−Kh
1
2M

T
h +KT

h Dh + sMκ
h

][
t

u

]
=

[
0

f

]
(6.21)

where we identify uD
h ↔ u and uN

h ↔ t.
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The entries of the stiffness matrices Vh ∈CN×N ,Kh ∈CN×M,Dh ∈CM×M, the mass matrix
Mh ∈ CN×M, the weighted mass matrix Mκ

h ∈ CM×M as well as the load vector fh ∈ CM

read as

Vh[k, l] =
∫

supp(ϕ
d0
k )×supp(ϕ

d0
l )

Ûs (x−y)ϕ
d0
k (x)ϕd0

l (y) dsy dsx

Kh[k, l] =
∫

supp(ϕ
d0
k )×supp(ϕc1

l )

γ
−
1,yÛs (x−y)ϕ

d0
k (x)ϕc1

l (y) dsy dsx

Dh[k, l] =
∫

supp(ϕc1
k )×supp(ϕc1

l )

Ûs (x−y)
(
curlΓϕ

c1
k (y),curlΓϕ

c1
l (x)

)
dsy dsx

+
s2

c2
0

∫
supp(ϕc1

k )×supp(ϕc1
l )

Ûs (x−y)ϕ
c1
k (y)ϕc1

l (x)(n(x),n(y)) dsy dsx

Mh[k, l] =
∫

supp(ϕ
d0
k )∩supp(ϕc1

l )

ϕ
d0
k (x)ϕc1

l (x) dsx

Mκ
h [k, l] =

∫
supp(ϕc1

k )∩supp(ϕc1
l )

κ(x)ϕc1
k (x)ϕc1

l (x) dsx

fh[k] =
∫

supp(ϕc1
k )

fh(x)ϕc1
k (x) dsx .

For further details on the symmetries of these matrices see appendix D.

Due to the coercivity of the single layer potential the matrix Vh is invertible and allows
the computation of a Schur complement of the block matrix in (6.21). Thus, the first row
yields the discrete incarnation of the first representation of the Steklov-Poincaré operator

t= V−1
h

(
1
2
Mh +Kh

)
u .

By inserting above equation into the second row of (6.21) we obtain[
Dh + sMκ

h +

(
1
2
MT

h +KT
h

)
V−1

h

(
1
2
Mh +Kh

)]
u= f .

Note that all entries of the coefficient matrix of the hypersingular boundary integral oper-
ator Dh are given with the regularized version of the kernel. Actually, it is only necessary
to consider this kernel when the integral is in fact singular, i.e.

inf
(x,y)∈supp(ϕc1

k )×∈supp(ϕc1
l )
‖x−y‖ = 0 .
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In cases with positive distance it is sufficient to consider a non-regularized version of the
kernel, which is not based on the computationally expensive regularization by means of
integration by parts.

6.4.5 Matrix assembly

Although the definition of the matrix coefficients above suggests an assembly loop over
the support of each basis function, this approach is highly deprecated. It is advantageous
to assemble the matrices in an element-wise manner, similary to most finite element meth-
ods.

To this extent we consider a generic stiffness matrix for globally continuous piecewise
linear ansatz and test functions

Ah[k, l] =
∫

supp(ϕc1
k )×supp(ϕc1

l )

k(x,y,y−x)ϕc1
k (x)ϕc1

l (y) dsy dsx

= ∑
m∈I(k)

∑
n∈I(l)

∫
τm×τn

k(x,y,y−x)ϕc1
k (x)ϕc1

l (y) dsy dsx

which can be obtained by assembling the stiffness matrix of each element pairing τm×τl

Aτm×τn
h [k, l] =

∫
τ×τ

k (χm(x̂),χn(ŷ),χm(x̂)−χn(ŷ))ψ
c1
k (x̂)ψc1

l (ŷ) gndŷgmdx̂ , k, l = 1,2,3

to the global matrix using connectivity relations. Note that due to the non-local support of
the kernel k the stiffness matrices are fully populated. Unlike finite element methods there
is not only one element matrix for each element τm, n = 1, . . . ,N, but one element matrix
for each element pairing τm× τn, m,n = 1, . . . ,N.

6.4.6 Comparison of indirect and direct Galerkin BEM

Based on the explanations in [28] the indirect and direct methods show the following dis-
tinctions:

• Indirect methods for the Robin boundary value problem require the assembly of two
matrices, while the direct method is built around three matrices. However, the matrix
Vh is symmetric in the direct approach, while Vκ

h does not share this property due to
the underlying weighted scalar product in the indirect single layer potential ansatz.
Furthermore, the indirect approaches require the solution of smaller matrices, since
each trial space of the two indirect methods occurs in the direct formulation simul-
taneously.
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• The unknowns of the direct method are the Dirichlet and Neumann data, while the
indirect approaches compute an abstract density function, without any inherent phys-
ical meaning. To retrieve the Cauchy data one would have to apply the respective
traces to the ansatz and compute them in a secondary step.

• To compute solutions in the domain Ω, the direct method has to evaluate the repre-
sentation formula, which is based on two boundary integral operators. The presented
indirect methods evolve around one potential only, thus having a significant edge
when the solution has to be computed at a multitude of interior points.

• The rate of convergence of indirect methods may be significantly slower than equiv-
alent direct formulations on non-smooth surfaces. This occurs due to the fact that
indirect methods yield quasi-optimal approximations of abstract density functions.
As an example we consider the indirect single layer potential ansatz yielding the
estimate for the unknown density w in the energy norm

inf
vh∈S

dp
h

‖w−wh‖H−1/2(Γ) ≤ ch1/2+min(p+1,s)‖w‖Hs(Γ)

for s ≥ 1
2 . If the density w is not smooth enough the maximal rate of convergence

1
2 + p+ 1 cannot be reached. As stated in [28] the density w inherits singularities
of both the exterior as well as the interior boundary value problem on non-smooth
surfaces, which might reduce the regularity of the density vastly. Direct methods,
on the other hand, approximate the actual Cauchy data quasi-optimally, thus the
singularities inherited in the direct method are precisely the singularities of actual
solutions of the boundary value problem. Consequently the regularity of the Cauchy
data might be higher than the associated density, hence leading to better orders of
convergence. This behaviour is thoroughly investigated in [32] for Laplace’s equa-
tion in two dimensions.

To draw a conclusion of above aspects, we state certain problems where each of these
methods may prove advantageous.

• If the problem is to find the unknown Cauchy data only, the direct method seems
more appealing than the indirect one.

• In problems where the solution has to be evaluated at a great number of interior
points an indirect formulation is more suitable than the direct one.

Another important application of indirect methods is to test the correctness of the imple-
mentation of the individual boundary integral operators within a code as stated in [17].



6.5 Computation of matrix coefficients 57

6.5 Computation of matrix coefficients

The following explanations are adapted from [28]. We introduce the generic boundary
integral operator

(Au)(x) =
∫
Γ

k(x,y,y−x)u(y)dsy ∀ x ∈ Γ

where the kernel k is some sort of directional derivative of the fundamental solution Ûs.
All integrals that occurred in the prequel may be assigned to type

(ϕ j,ϕi)L2(Γ),α =
∫
Γ

α(x)ϕi(x)ϕ j(x)dsx (6.22)

or
(Aϕ j,ϕi)L2(Γ),α =

∫
Γ

α(x)ϕi(x)
∫
Γ

k(x,y,y−x)ϕ j(y)dsydsx (6.23)

respectively, where (6.22) corresponds to a weighted mass matrix and (6.23) to a weighted
stiffness matrix, where α is the weighting function. Moreover, ϕi represents the basis
function or some function depending on the basis, e.g. the surface curl. Note that since
all basis functions are real-valued the complex conjugation of the L2(Γ) scalar product is
obsolete. Above integrals may be decomposed into the sum over all elements, i.e.

(ϕ j,ϕi)L2(Γ),α =
N

∑
l=1

(ϕ j,ϕi)L2(τl),α

(Aϕ j,ϕi)L2(Γ),α =
N

∑
l=1

(kϕ j,ϕi)L2(τl),α .

Within a computer-based calculation it is convenient do reduce any integration to an element-
wise level. This leads to the following representation of the abstract operator

(Au)(x) =
N

∑
m=1

∫
τm

k(x,y,y−x)u(y)dsy ∀ x ∈ Γ

and thus the integrals

(ϕ j,ϕi)L2(Γ),α =
N

∑
l=1

∫
τl

α(x)ϕi(x)ϕ j(x)dsx (6.24)

and

(Aϕ j,ϕi)L2(Γ),α =
N

∑
l=1

N

∑
m=1

∫
τl

α(x)ϕi(x)
∫
τm

k(x,y,y−x)ϕ j(y)dsydsx . (6.25)
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Hence, we seek integration formulas that are capable of efficiently computing the terms
of above sums for each element τl or element pairing τl × τm respectively. Due to the
singularity of the kernel k at x = y the computation of (6.25) is more involved that (6.24)
and thus treated first.

To this extent we introduce the distance between two elements τl, τm ∈ ΓN

dist(τl,τm) := inf
(x,y)∈τl×τm

‖x−y‖

and realize that (6.25) has a singular nature only if dist(τl,τm) = 0. A common approach
to computing these singular integrals is to employ transformations that lift the singularity
at x = y and allow regular integration of the transformed integral. To do so we distinguish
four relations of the boundary element pair τl× τm as depicted in figure 6.7:

• coinciding boundary elements, i.e. τl = τm ⇐⇒ l = m, coincident case

• boundary elements sharing a common edge, edge adjacent case

• boundary elements sharing a common point, vertex adjacent case

• boundary elements with a positive distance, regular case

τl=τm

(a) coincident

τl τm

(b) edge adjacent

τl
τm

(c) vertex adjacent

τl

τm

dist(τl , τm)

(d) regular

Figure 6.7: Cases of relations of boundary element pair τl× τm.

The derivations of suitable transformations would exceed the scope of this work by far and
can be found in [28]. We merely sketch the crucial steps of the transformations to motivate
the choice of quadrature rules in the sequel.

First and foremost, the relative coordinate z = y−x is introduced in order to fix the singu-
larity at z = 0. In reference coordinates we find

z = χm(ŷ)−χl(x̂) , ŷ, x̂ ∈ τ . (6.26)

Without loss of generality we assume for the vertex adjacent case

χl
([

0
0

])
= χm

([
0
0

])
while for the edge adjacent we assume

χl ([
s
0 ]) = χm ([ s

0 ]) ∀ s ∈ [0,1] .
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For the coincident case we find with (6.26)

z = χl(ŷ)−χl(x̂)

and due to the bijectivity of χl we learn that the singularity is located at the plane

ŷ− x̂ = 0

in reference coordinates. Considering the general integrand

k1(x̂, ŷ) = ψi(x̂)ψ j(ŷ) k (χl(x̂),χm(ŷ),χm(ŷ)−χl(x̂)) gl(x̂)gm(ŷ)

we have for the case of coincident elements the integral

Iτ×τ(k1) :=
∫
τ

∫
τ

k1(x̂, ŷ)dŷdx̂ =

1∫
0

x̂1∫
0

1∫
0

ŷ1∫
0

k1(x̂, ŷ)dŷdx̂ (6.27)

which reads in relative coordinates

Iτ×τ(k1) =

1∫
0

x̂1∫
0

1−ẑ1∫
−x̂1

ẑ1+x̂1−x̂2∫
−x̂2

k1(x̂, ẑ+ x̂)dẑdx̂ . (6.28)

As stated in [28] the domain of integration in (6.28) is decomposed into six subdomains
and each of them transformed onto the four-dimensional unit simplex

D :=
{
(w1,w2,w3,w4) ∈ R4 : 0≤ w1 ≤ 1,0≤ w2 ≤ w1,0≤ w3 ≤ w2,0≤ w4 ≤ w3

}
.

Afterwards the simplex coordinates (ξ ,η1,η2,η3) are used to transform the four dimen-
sional unit hypercube (0,1)4 onto D

w1
w2
w3
w4

=


ξ

ξ η1
ξ η1η2

ξ η1η2η3

= ξ


1

η1
η1η2

η1η2η3

 .

This transformation lifts the singularity and enables the use of standard integration tech-
niques. The actual transformations as well as their derivations for each of the three cases
of singularity can be found in [28].

As a result all singular integrals are actually posed on the four-dimensional hypercube
(0,1)4. As we are switching our attention on the numerical quadrature of the occurring
integrals, we require formulas that can efficiently compute such integrals approximately.
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6.5.1 Numerical quadrature

Virtually any larger boundary element code does not compute the integral in (6.22) and
(6.23) exactly but approximates them by numerical quadrature. This approach is motivated
by the fact that only few of these integrals can actually be integrated exactly. Moreover, it
allows the implementation of a general framework applicable to a broad class of boundary
integral operators and right hand sides.

Tensor Gaußian quadrature

Throughout this work we only consider Gauß-Legendre quadrature rules. The abscissas
and integration weights for this quadrature can be computed by the program GAULEG for
virtually arbitrary orders, see [25].

For the integration of a function f : [0,1]→ C

I( f ) =
1∫

0

f (x)dx

we consider the Gaußian quadrature rules

In( f ) =
n

∑
i=0

ωi,n f (xi,n)

where ωi,n are the integration weights and xi,n are the sampling points. Note that each
2-tuple (xi,n,ωi,n), i = 0, . . . ,n belongs to the quadrature rule of order n.

For the integral of the function f : [0,1]4→ C

I( f ) =
∫

(0,1)4

f (x)dx =

1∫
0

1∫
0

1∫
0

1∫
0

f (x1,x2,x3,x4)dx1dx2dx3dx4

we introduce the vector of orders n= (ni)
4
i=1 ∈N4. This enables the definition of the tensor

Gaußian quadrature

In( f ) =
n1

∑
i=0

n2

∑
j=0

n3

∑
k=0

n4

∑
l=0

ωi,n1ω j,n2ωk,n3ωl,n4 f
(
xi,n1 ,x j,n2,xk,n3,xl,n4

)
which may have different orders for each direction. Note that although this concept is only
introduced for four dimensions it can be applied in a straightforward manner to arbitrary
dimensions.
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Actually, we integrate over the unit hypercube in four dimensions only when computing
entries of the stiffness matrix associated with singular integrals. Matrix coefficients corre-
sponding to regular integration and coefficients of the vector of the right hand side are still
formulated on the reference triangle. There are two main approaches to this issue:

• On the one hand one could employ special integration rules for triangles. In this
approach the set of 3-tuples {(ωi,xi,yi)}n

i=0 is considered, which can be computed
using the condition that all monomials of maximal order p can be integrated exactly
on the reference triangle

1∫
0

x∫
0

xayb dydx =
n

∑
i=0

ωi xa
i yb

i ∀ a,b ∈ N0 : a+b≤ p .

where N0 is the set of nonnegative integers. The number of sampling points n+ 1
is chosen such that polynomials of degree p can be integrated exactly, thus n+1 =
1
2(p+1)(p+2).

• On the other hand we might employ suitable parametrizations that map the domain
used in the tensor Gaußian quadrature onto the triangle. The parametrization χξξξ :
(0,1)2→ τ maps the unit square onto the reference triangle and reads

τ 3 x̂ = Tξξξ ξξξ =

[
1 0
0 ξ

][
ξ

η

]
=

[
ξ

ξ η

]
for (ξ ,η) ∈ (0,1)2 .

Note that the transformation determinant of above mapping detT = ξ vanishes at
ξ = 0. For instance, this circumstance is used to lift singularities in collocation
boundary element methods, known as Lachat-Watson transformation, cf. [11]. With
this mapping at hand we may transfer the integral (6.22) to the reference triangle and
then to (0,1)2, yielding

∫
τ

α̃(x̂)ψi(x̂)ψ j(x̂)gldx̂ =

1∫
0

1∫
0

α̃

(
ξ

ξ η

)
ψi

(
ξ

ξ η

)
ψ j

(
ξ

ξ η

)
glξ dξ dη

and employ regular tensor Gaußian quadrature as introduced above. Note that this
approach may be applied to those coefficients of the stiffness matrices (6.23) that
imply regular integration as well.

Thus all integrals occurring in the boundary element methods presented in the prequel can
be transformed to suitable reference elements and approximated with appropriate quadra-
ture rules.

It shall be kept in mind that the numerical quadrature introduces another error to the bound-
ary element discretization since both the boundary integral operators as well as the L2(Γ)
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scalar product are not realized exactly. Thus the choice of the order of the employed
Gaußian quadratures has to be chosen such that the originally expected order of conver-
gence of the methods is not altered. In [28, chapter 5.3.4] one finds a detailed mathematical
analysis of this topic, while a more engineering-like approach is provided in [18]. In the
latter work, the distance of two elements is approximated and the required order is esti-
mated based on three different levels for the distance normalized by the local mesh size
of the elements. This strategy is only employed for regular integration, as a fixed order is
used for the singular one. This approach seems quite viable in a sense that it allows a very
straightforward and rapid implementation within a boundary element code.



7 NUMERICAL EXAMPLES

The methods presented in the prequel are implemented in the existing BEM library HyENA
[21] and their correctness is confirmed throughout this chapter.

First, the convergence of the numerical procedures has to be confirmed in Laplace domain.
Once this is established we consider an actual time-dependent problem to confirm the
correctness of the CQM implementation. Finally, a real problem of architectural acoustics
is examined.

7.1 Convergence in Laplace domain

To set up a simple reference problem in Laplace domain we consider the unit cube

Ω
− =

{
x̃ ∈ R3 : x̃ ∈ (−0.5,0.5)3 [m]

}
as computational domain, equipped the piecewise constant κ-function

κ(x) =
{

0.25 [s m−1] for x ∈ Γ : x1 = 0.5 [m]∨ x2 = 0.5 [m]∨ x3 = 0.5 [m]
1.50 [s m−1] for x ∈ Γ : x1 =−0.5 [m]∨ x2 =−0.5 [m]∨ x3 =−0.5 [m]

as well as the wave velocity c0 = 1 [m s−1].

Since the fundamental solution is a solution of the underlying differential equation, we
may exploit this circumstance to generate exact solutions in order to confirm convergence.
We recall the fundamental solution of the Helmholtz equation (3.16)

Ûs (z̃) =
exp
(
− s

c0
‖z̃‖
)

4π‖z̃‖
∀ z̃ ∈ R3 .

In order not to interfere with the singularity of the fundamental solution at z̃ = 0, we
consider a source point sufficiently far from the domain. We set

ỹ0 = (2,2,2)T [m] ∈Ω
+

and thus obtain a solution of the Helmholtz equation

u(x̃) :=
exp
(
− s

c0
‖x̃− ỹ0‖

)
4π‖x̃− ỹ0‖

∀ x̃ ∈Ω
− .

63
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x1x2

x3

ỹ0

Figure 7.1: Schematic sketch of the unit cube and source under consideration.

The resulting configuration is depicted in figure 7.1.

To acquire the boundary condition imposed by this solution, we simply insert it into the
Robin boundary condition in Laplace domain

f (x) = γ
−
1 u(x)+ sκ(x)γ−0 u(x) ∀ x ∈ Γ

yielding

f (x) =
(n(x), ỹ0−x)exp(− s

c0
‖x− ỹ0‖)

4π‖x− ỹ0‖2

(
1

‖x− ỹ0‖
+

s
c0

)
+ sκ(x)

exp
(
− s

c0
‖x− ỹ0‖

)
4π‖x− ỹ0‖
∀ x ∈ Γ (7.1)

which serves as the right hand side that the numerical procedures have to satisfy.

To obtain some sort of average error over several frequencies, we consider those frequen-
cies imposed by the CQM transform for ϒ = (0,8) [s] and ∆t = 1 [s]. Although this decom-
position of the time interval would actually make little sense, it merely serves as tool to
obtain somewhat arbitrary frequencies to test at. All errors shown in the sequel are actually
the average values of those five frequencies.

For the direct method we consider the error in the Cauchy data measured in the L2(Γ)
norm

eD := ‖γ−0 u−uD
h ‖L2(Γ) , eN := ‖γ−1 u−uN

h ‖L2(Γ) .

Furthermore, we consider a set of 24 interior points x̃l , l = 1, . . . ,24 located on a cube of
side 0.2 with its center at the origin. By defining the vector of interior solutions

uint :=
[
u(x̃1) . . . u(x̃24)

]T
we may compute relative average error at the interior points by

eΩ :=
‖uint−uint

h ‖2

‖uint‖2
.
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All three boundary element methods introduced previously are used to solve the Robin
boundary value problem with the right hand side (7.1). Two of the employed triangulations
are depicted in figure 7.2 and all results can be found in tables 7.1 - 7.5.

Figure 7.2: Triangulations of the unit cube with N = 24 and N = 96.

Indirect SLP BEM

interpolation L2-projection

N eΩ eoc eΩ eoc

24 5.45E-01 7.84E-02
96 1.20E-01 2.18 2.37E-02 1.73

384 3.16E-02 1.93 8.66E-03 1.45
1536 8.59E-03 1.88 2.98E-03 1.54
6144 2.37E-03 1.86 9.93E-04 1.58

24576 6.66E-04 1.83 3.27E-04 1.60

eocopt 2 2

Table 7.1: Error and convergence for the inner evaluation for the unit cube, SLP BEM.

Table 7.1 shows the error and rate of convergence for the indirect SLP BEM. The optimal
order of convergence eocopt, which would actually be O(h3) for variational formulations
in H−1/2(Γ) discretized by the space of piecewise constant basis functions, cannot be
reached. The reasons for this are twofold. On the one hand the underlying variational for-
mulation is defined not on the natural energy space H−1/2(Γ) but on L2(Γ) =: H. Due to
the approximation property (6.12) we may only expect linear convergence of sufficiently
smooth density functions in the L2(Γ) norm. As stated in appendix C, the optimal rate of
convergence of the interior evaluation is the rate of convergence of the density function in
H times two. Due to the definition of the variational formulation on L2(Γ) the optimal rate
of convergence drops to O(h2) for sufficiently smooth densities. However, the boundary
of the cube has edges and corners, thus we might expect that the density function is not
smooth enough to reach the optimal quadratic convergence. The experimental order of
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convergence is roughly O(h5/3) and although there is an evident difference between the
interpolated and the L2-projected right hand side, this deviation becomes smaller as the
mesh is refined. Ultimately this difference will vanish as both approximations are equiv-
alent in terms of their rate of convergence, however, the L2-projection yields a smaller
absolute error.

x1x2
x3

ỹ0

Figure 7.3: Schematic sketch of the unit sphere and source under consideration.

To support these claims, we consider a unit sphere rather than a unit cube, depicted in
figure 7.3. Although the triangulation by plane triangles is neither exact nor smooth the
interior angles get less pronounced at each step of refinement. Therefore we expect this
circumstance to play only a minor role for the following considerations. All computational
parameters are identical to the unit cube, however, the κ-function is simply κ := 1 [s m−1]
on the entire boundary. Two of the considered meshes are depicted in figure 7.4 and table
7.2 shows the errors and rates of convergence for the inner evaluation. It can be observed
that the Robin boundary value problem, whose variational formulation is posed on L2(Γ),
is capable of reaching its optimal quadratic rate convergence on the approximated sphere.
To underline that the formulation on L2(Γ) is indeed a drawback, we also consider a Dirich-
let problem posed on the same sphere, which is also solved by the indirect SLP BEM. As
stated in [28, chapter 3.4.1], the SLP ansatz for the Dirichlet problem allows a variational
formulation on H−1/2(Γ), thus implying cubic convergence for the error of the interior
evaluation, for smoothly bounded domains, cf. [28, example 4.2.15]. This exact behaviour
can be observed in table 7.2 as well.

Figure 7.4: Triangulations of the unit sphere with N = 122 and N = 488.
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Robin BVP Dirichlet BVP

N eΩ eoc eΩ eoc

122 2.33E-02 1.42E-03
488 5.66E-03 2.04 1.76E-04 3.01

1952 1.38E-03 2.04 2.16E-05 3.03
7808 3.40E-04 2.02 2.71E-06 3.00

theory 2 3

Table 7.2: Error and rate of convergence for SLP BEM for the unit sphere. In both cases
we opted for a projected right hand side fh =Qd1

h f .

Indirect DLP BEM

interpolation L2-projection

N eΩ eoc eΩ eoc

24 4.70E-01 1.69E-02
96 1.02E-01 2.21 4.84E-03 1.80

384 2.39E-02 2.09 5.42E-04 3.16
1536 5.86E-03 2.03 6.72E-05 3.01
6144 1.45E-03 2.01 8.35E-06 3.01

24576 3.62E-04 2.01 1.02E-06 3.03

eocopt 3 3

Table 7.3: Error and convergence for the interior evaluation for the unit cube, DLP BEM.

In table 7.3 both the error and rate of convergence of the indirect DLP BEM are given.
The optimal order of convergence is again O(h3), which can only be reached when using
the L2-projected right hand side. In the case of an interpolated right hand side, the con-
vergence drops to a mere quadratic rate. This behaviour can be predicted by collecting the
results in [30, chapter 12], assuming that the density function is sufficiently smooth. The
experimental evidence suggests that the smoothness of the underlying density function in
the DLP BEM is a lesser problem compared to the SLP BEM for the observed unit cube.

Note that the computational cost of the L2-projection of the right hand side is negilibly
small compared to the occurring boundary integral operators. Thus, it is highly recom-
mendend to resort to a projected right hand side rather than an interpolated one.

Direct BEM

Tables 7.4 and 7.5 show the errors and rates of convergence of the direct BEM for the
Cauchy data as well as the interior evaluation. We observe quadratic convergence in the
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Dirichlet data and a linear one in the Neumann data for both approximations of the right
hand side. However, the interpolated right hand side restricts the rate of convergence of
the interior evaluation to O(h2), while the projected right hand side enables the method
to reach cubic convergence. These experimental results match the theoretical ones given
in [30, chapter 12].

interpolation L2-projection

N eD eoc eN eoc eD eoc eN eoc

24 3.79E-04 1.07E-03 1.14E-04 9.80E-04
96 8.41E-05 2.17 4.93E-04 1.12 3.27E-05 1.80 4.82E-04 1.12

384 2.04E-05 2.04 2.36E-04 1.07 8.23E-06 1.99 2.34E-04 1.07
1536 5.06E-06 2.01 1.15E-04 1.03 2.05E-06 2.01 1.15E-04 1.03
6144 1.26E-06 2.00 5.72E-05 1.01 5.10E-07 2.01 5.72E-05 1.01

24576 3.15E-07 2.00 2.85E-05 1.00 1.27E-07 2.00 2.85E-05 1.00

theory 2 1 2 1

Table 7.4: Error and convergence for the Cauchy data for the unit cube, direct BEM.

interpolation L2-projection

N eΩ eoc eΩ eoc

24 4.81E-01 2.47E-02
96 1.01E-01 2.26 3.73E-03 2.73

384 2.38E-02 2.08 4.35E-04 3.10
1536 5.85E-03 2.03 5.22E-05 3.06
6144 1.45E-03 2.01 5.90E-06 3.14

24576 3.62E-04 2.00 4.87E-07 3.60

theory 2 3

Table 7.5: Error and convergence for the interior evaluation for the unit cube, direct BEM.

7.2 Convergence in time domain

The construction of the simple reference problem in time domain used throughout this
section can be found in appendix E. Moreover, the considered configuration is depcited in
figure 7.5.

For all following numerical experiments we consider the set of parameters

L = 3.0 [m], κ0 = 0.5 [s m−1], κ1 = 2.0 [s m−1],
c0 = 1.0 [m s−1], T = 4.0 [s], p = 3 .
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The boundary conditions for the three dimensional problem that has to be solved by the
presented methods read

γ
−
1 u(x, t)+κ0γ

−
0 ∂tu(x, t) = f0(t) ∀ (x, t) ∈ {x ∈ Γ : x1 = 0 [m]}×ϒ

γ
−
1 u(x, t)+κ1γ

−
0 ∂tu(x, t) = f1(t) ∀ (x, t) ∈ {x ∈ Γ : x1 = L [m]}×ϒ

γ
−
1 u(x, t) = 0 ∀ (x, t) ∈ {x ∈ Γ : x1 ∈ (0,L) [m]}×ϒ .

x1
x2

x3

f0 , κ0

fL , κL

f =0 , κ =0

L
1

1

Figure 7.5: Schematic sketch of rod under consideration.

Figure 7.6: Triangulations of the rod with N = 56 and N = 224.

For the direct method we consider the error in the Cauchy data measured in the L2(Γ×ϒ)
norm, which is the L2 norm on the lateral boundaries of the space-time cylinder. The inte-
gration in time is approximated by the trapezoidal rule, leading to the estimated errors

eD
Γ×ϒ

:=
(

∆t
Nt
∑

n=0
‖γ−0 u(·, tn)−uD

h (·, tn)‖2
L2(Γ)

)1/2

≈ ‖γ−0 u−uD
h ‖L2(Γ×ϒ)

eN
Γ×ϒ

:=
(

∆t
Nt
∑

n=0
‖γ−1 u(·, tn)−uN

h (·, tn)‖
2
L2(Γ)

)1/2

≈ ‖γ−1 u−uN
h ‖L2(Γ×ϒ) .

When it comes to the computation of interior results we consider a set of 88 interior points
located on the prism (0.5,2.5)× (−0.2,0.2)× (−0.2,0.2) [m], which is fully contained in
the rod. We define the vector of interior solutions uint(tn) for each time step n similary to
before. Hence, we may approximate the error at these points using

eΩ×ϒ :=

(
∆t

Nt

∑
n=0
‖uint(tn)−uint

h (tn)‖2
l2

)1/2

≈ ‖‖uint(·)−uint
h (·)‖l2‖L2(ϒ) .
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Note that the error introduced by using the trapezoidal rule instead of the actual time
integrals is O(∆t2). Thus the maximal order of covergence that is observable with above
error measurements is also O(∆t2). Since the employed methods are expected to permit
quadratic convergence at most, this circumstance poses no actual problem. A detailed error
analysis of a boundary element method based on the CQM utilizing the BDF-2 scheme
can be found in [2]. It is stated that the error in the density function, measured in the
energy norm, optimally decays like O(∆t2) when considering an indirect SLP ansatz for a
Dirichlet problem. The experimental evidence presented in the remainder of this section
suggests that this estimate is applicable to the considered methods as well.

Moreover, it shall be kept in mind that the right hand side fi, i = 0,1 is piecewise constant
and can therefore be represented exactly in the boundary element code, i.e. fh,i =Qd1

h fi =

Id1
h fi = fi, i = 0,1.

In the sequel we consider a sequence of five meshes, where both space and time are refined
uniformly. The properties of these triangulations are shown in table 7.6, where we note
that hl = ∆tl , l = 0, . . . ,4. The index l denotes the level of refinement. Figure 7.6 depicts
two of the considered spatial meshes.

l N h Nt ∆t

0 56 0.5 8 0.5
1 224 0.25 16 0.25
2 896 0.125 32 0.125
3 3584 0.0625 64 0.0625
4 14336 0.03125 128 0.03125

Table 7.6: Levels of refinement under consideration.

Table 7.7 shows the space-time error for the interior evaluation of both indirect methods.
The SLP BEM basically reaches the same order of convergence as already observed in the
experiment in Laplace domain. Similarly to before, the rod has edges and corners, hence
the regularity of the underlying density function is strictly limited. The observed behaviour
suggests that the lacking smoothness of density on Γ predominates the error for the SLP
BEM.

In contrast, the DLP BEM reaches the optimal quadratic rate of convergence. Although the
errors in the Laplace domain decay like O(h3), the discretization via the BDF-2 scheme
used in the CQM seems to permit a O(∆t2) behaviour in time. Due to the uniformity of
the space-time refinement, the considered error measure vanishes in a quadratic fashion.

Moreover, table 7.8 shows the errors in the Cauchy data as well as the interior evaluation
for the direct BEM. As expected, the Dirichlet data converges at a quadratic rate. Although
the Neumann data are expected to show a linear rate, the numerical experiment shows a
better rate. This might be induced by the fact that the Neumann data are actually zero on
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SLP BEM DLP BEM

l eΩ×ϒ eoc eΩ×ϒ eoc

0 2.96E+00 2.05E+00
1 8.69E-01 1.77 5.62E-01 1.87
2 2.41E-01 1.85 1.47E-01 1.93
3 6.59E-02 1.87 3.77E-02 1.97
4 1.80E-02 1.87 9.59E-03 1.97

eocopt 2 2

Table 7.7: Error and rate of convergence for the interior evaluation for the rod, indirect
BEM.

most of Γ. The error in the interior evaluation vanishes quadratically. Similarly to the DLP
BEM the time discretization seems to dominate the error and the cubic convergence of the
experiment in Laplace domain cannot be achieved.

As a concluding remark it shall be noted that the direct method could not solve level l = 4
in a reasonable time with the resources available.

direct BEM

l eD
Γ×ϒ

eoc eN
Γ×ϒ

eoc eΩ×ϒ eoc

0 1.18E+00 1.11E+00 2.07E+00
1 3.09E-01 1.94 4.86E-01 1.20 5.68E-01 1.87
2 7.96E-02 1.96 1.76E-01 1.46 1.48E-01 1.94
3 2.02E-02 1.98 6.33E-02 1.48 3.78E-02 1.97

theory 2 1 2

Table 7.8: Error and rate of convergence for the Cauchy data and interior evaluation for the
rod, direct BEM.

7.3 Applications

To underline the potential of the discussed methods, we shift our attention to an actual
problem of architectural acoustics. The main goal is to show that the employed procedures
are indeed capable of reproducing the absorption of incoming waves at the boundary. It
seems adequate to consider a domain which has a lot of edges and nooks, such that a rather
complex state in terms of superposition of the waves is reached. To this extent we consider
an atrium1whose model is depicted in figure 7.7.

1The considered atrium is an abstract model of areas of an actual structure. This building belongs to the
Irchel campus of the Univeristy of Zurich and its address is Winterthurerstrasse 190, 8057 Zurich.
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Figure 7.7: The considered atrium, discretized by a mesh comprised of N = 7100 elements.

The experiment conducted in the sequel is rather straightforward. The coefficient of ab-
sorption is set to α = 0 for the walls and floors, as they are assumed to be acoustically hard.
The ceilings, on the other hand, are furnished with some sort of absorbing material. Hence,
we consider the decomposition of the boundary Γ = Γ0∪Γα and Γ0∩Γα = 0, where α = 0
on Γ0 and α > 0 on Γα holds. The considered degrees of absorption are divided into the
following three levels:

• low level of insulation: α = 0.05 on Γα

• intermediate level of insulation: α = 0.40 on Γα

• high level of insulation: α = 0.80 on Γα

The ceilings that are equipped with an absorbing material are depicted in figure 7.8. More-
over, we set up a mesh of sampling points to evaluate the pressure in the interior of the
atrium. The pressure distribution on this mesh is interpolated in a linear continuous man-
ner. This mesh is shown in figure 7.8.

To apply a suitable loading scenario to this problem we consider an impulse imposed by
an incoming wave uinc. The scattered response of the system to this load uscat is obtained
by solving the initial-boundary value problem (2.10) with the right hand side

f (x, t) =−
[

γ
−
1 uinc(x, t)+

α(x)
c0

γ
−
0 ∂tuinc(x, t)

]
∀ (x, t) ∈ Γ× (0,∞) . (7.2)

The final pressure function is obtained by superposition u := uinc +uscat.
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Figure 7.8: Cross sections of the meshed courtyard. On the left hand side the ceilings
equipped with an absorbing material, i.e. Γα , are coloured, whereas Γ0 is left
grey. On the right hand side the interior sampling mesh is drawn in blue.

The incoming wave function considered throughout the following experiments reads

uinc(x̃, t) =
1

4πr(x̃)
sin
(

2π

a

(
t− r(x̃)

c0

))[
Θ

(
t− r(x̃)

c0

)
−Θ

(
t− r(x̃)

c0
−an

)]
∀ (x̃, t) ∈Ω

−× (0,∞) (7.3)

where r(x̃) = ‖x̃− ỹ0‖ and ỹ0 ∈ Ω− is the source point of the impulse. Furthermore, we
have the frequency scaling a := 2

c0
[s] and the number of periods the incoming sine goes

through before fading out n := 1. For the positioning of the source point ỹ0 we consider
two locations. The first one is established in the upper region of the atrium, rather far from
the boundary, while the second one is stationed in the lower region at the very bottom of
the central stairs.

For all following considerations we assume the adiabatic bulk modulus K = 1.42×105 [Pa]
and the mean density ρ0 = 1.2041 [kg m−3], which correspond to the recommended value
for a room temperature of 20 [◦C]. This leads to a speed of sound of c0 ≈ 343.41 [m s−1]
and thus the frequency of the imposed impulse (7.3) is roughly 172 [Hz].

In terms of discretization we opt for a rather coarse mesh, since the dense Galerkin BEM
employed throughout this thesis is rather expensive in terms of computational cost and
the available resources are somewhat limited. The considered mesh features N = 7100
elements and has a mean mesh size of roughly hmean ≈ 0.52 [m]. The time step size
∆t = 1.5×10−3 [s] is chosen such that β := c0∆t

hmean
is approximately one.

Most of the computations are performed using the direct Galerkin BEM to obtain the
Dirichlet data, i.e. the pressure distribution on the surface, immediately. However, we
used the indirect DLP BEM to compute the interior results depicted in figure 7.9.
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Figure 7.9 shows the interior pressure distribution due to an impulse situated in the upper
area of the atrium for all three considered configurations of insulation at an intermediate
time level. We clearly observe that the overall pressure is reduced and the pressure peaks
are less pronounced for acoustically softer materials.

(a) α = 0.05, t = 0.096 s (b) α = 0.40, t = 0.096 s (c) α = 0.80, t = 0.096 s

Figure 7.9: Sound pressure at the interior sampling mesh due to an excitation located in
the upper area of the atrium.

The pressure distribution on the surface corresponding to the same impulse is depicted in
figure 7.10. In contrast to the previous consideration, we observe three time levels and
realize that the difference gets more evident as time advances. While all three configura-
tions show roughly the same pressure distribution at the early time level it is evident that
the softer materials already absorbed large parts of the wave in the later time levels. Fur-
thermore, figure 7.11 shows the interior of the atrium for the lowest and highest level of
insulation at the intermediate time step, whereas figure 7.12 depicts a cross-section of the
same scenario. These plots confirm the previous observations and suggest that the acoustic
waves are indeed absorbed by the different surfaces in a distinct manner.

A similar behaviour is shown in figure 7.13, where an excitation at the bottom of the central
stair is considered. Especially for the lowest level of insulation we observe quite large
pressure peaks in the depicted areas, which might be induced by the fact that the waves
are reflected back and forth in the confined space around the source point. Similarly to the
previous case, the configurations equipped with higher levels of acoustic insulation were
already capable of dissipating a siginificant share of the incoming wave at the advanced
time levels. Moreover, figure 7.14 depicts the inner of the atrium for the lowest and highest
level of insulation at the intermediate time step, while figure 7.15 shows a cross-section of
the same situation. Interestingly, the acoustic pressure is quite large in the top floors for
the configuration featuring only negligible absorption. This behaviour would suggest that
noise created at the ground floor is clearly audible in the entire atrium. This circumstance
is also observed by the users of the actual structure this model is based on. However, if the
atrium is furnished with insulating material these effects can be diminished decisively.
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To conclude these numerical experiments we state that the results suggest that the em-
ployed methods are capable of representing the absorption of acoustic waves on the surface
in varying magnitudes. Moreover, the calculations suggest that the overall level of noise in
the atrium might be quite uncomfortable if no acoustic insulation is employed. Addition-
ally, it is indicated that applying an absorbing material to the ceilings of the structure may
lead to a significant reduction of these intrusive effects.

The very intention of this example is to apply the boundary element method, which was
discussed in a slightly abstract fashion throughout this thesis, to an actual problem of
enginnering science. The presented computations should be considered a mere proof of
concept rather than a precise simulation in terms of acoustic design. To provide a reason-
able simulation for the purpose of creating acoustic design concepts, one would have to
consider further levels of refinement in order to verify that the results are not distorted by
any errors of the numerical approximation. Moreover, one would have to test more fre-
quencies and observe a longer time interval in order to compute actual reverberation times
for different configurations of insulation. Furthermore, the geometric model of the atrium
features quite a high level of abstraction compared to the real structure, as many details are
left out for the sake of simplicity.
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(a) α = 0.05, t = 0.036 s (b) α = 0.40, t = 0.036 s (c) α = 0.80, t = 0.036 s

(d) α = 0.05, t = 0.096 s (e) α = 0.40, t = 0.096 s (f) α = 0.80, t = 0.096 s

(g) α = 0.05, t = 0.138 s (h) α = 0.40, t = 0.138 s (i) α = 0.80, t = 0.138 s

Figure 7.10: Sound pressure on the surface due to an impulse located in the upper area of
the staircase.
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(a) α = 0.05, t = 0.096 s (b) α = 0.80, t = 0.096 s

Figure 7.11: Sound pressure on the surface due to an impulse located in the upper area of
the atrium.

(a) α = 0.05, t = 0.096 s (b) α = 0.80, t = 0.096 s

Figure 7.12: Sound pressure on the surface and at the interior sampling points due to an
impulse located in the upper area of the atrium.



78 7 Numerical examples

(a) α = 0.05, t = 0.036 s (b) α = 0.40, t = 0.036 s (c) α = 0.80, t = 0.036 s

(d) α = 0.05, t = 0.096 s (e) α = 0.40, t = 0.096 s (f) α = 0.80, t = 0.096 s

(g) α = 0.05, t = 0.138 s (h) α = 0.40, t = 0.138 s (i) α = 0.80, t = 0.138 s

Figure 7.13: Sound pressure on the surface due to an impulse located in the lower area of
the staircase.
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(a) α = 0.05, t = 0.096 s (b) α = 0.80, t = 0.096 s

Figure 7.14: Sound pressure on the surface due to an impulse located in the lower area of
the staircase.

(a) α = 0.05, t = 0.096 s (b) α = 0.80, t = 0.096 s

Figure 7.15: Sound pressure on the surface and at the interior sampling points due to an
impulse located in the lower area of the staircase.
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8 CONCLUSION

The goal of this thesis is to simulate the absorption of acoustic waves as they interact
with different types of surfaces. To do so the linear acoustic wave equation is used in
conjuction with a special impedance boundary condition. The resulting initial-boundary
value problem is transformed to Laplace domain and converted to an equivalent integral
equation. The solution in time domain is then retrieved from the one in Laplace domain
via the CQM. The boundary integral equations in Laplace domain are discretized utilizing
the well-established Galerkin BEM, where three different methods are considered. The
principles of spatial discretization by means of boundary elements are stated rather exten-
sively to give the reader an introduction to these methods. Furthermore, some fundamental
properties of the approximations generated by the Galerkin BEM are discussed. The given
methods are implemented in an existing BEM code and their correctness is validated by
numerical experiments in both Laplace and time domain. Finally, these methods are ap-
plied to a problem of architectural acoustics, where the results are deemed satisfactory.

The fact that a naive discretization of boundary integral operators leads to fully populated
matrices in conjunction with the Galerkin method causes the presented numerical methods
to be awfully expensive in terms of computational cost. Thus, it has to be emphasized
that the dense Galerkin BEM treated throughout this work is not competitive with other
numerical procedures for many problems posed on interior domains. However, the given
boundary element formulations can be applied to exterior problems by mere change of
sign, cf. [28,30]. In such applications the discussed methods might prove viable due to the
inherent advantages gained by transforming the problem to the surface of the unbounded
domain.

To alleviate the drawback of dense matrices one could employ fast boundary element meth-
ods, which seek sparse representations of the occurring stiffness matrices. For such matri-
ces the use of an iterative solver is particularly appealing as it enables an efficient solution
of the algebraic system. Since the condition number grows as h→ 0 one might have to
employ a suitable preconditioner to prevent the number of required iterations from grow-
ing as well. As already pointed out in the introduction fast boundary element methods are
competitive to domain-based methods and might eventually prove superior to them if the
scale of the problem is sufficiently large.

Moreover, one could resort to a more refined mechanical model. The impedance bound-
ary condition employed throughout this work is a widely used concept when it comes to
acoustic absorption, however, there are certainly more sophisticated models for this pur-
pose. Instead of a mere boundary condition one could consider an actual layer of porous

81



82 8 Conclusion

material located on the surface. In essence there would be two domains, the air and the
porous layer, that have to be coupled appropriately. One could even utilize a nonlinear
model for the porous material, which might be discretized by a finite element method, and
couple this approach with a boundary element method discretizing the surface of the sur-
rounding body of air. Such combinations of finite and boundary element methods seem
particularly attractive as they merge the advantages of both underlying procedures.



A MATHEMATICAL PRELIMINARIES

Note that most of the following definitions are taken from [30].

Considering the open domain Ω ⊂ Rd we define the support of a function u(x̃), x̃ ∈ Ω

by
supp(u) := {x̃ ∈Ω : u(x̃) 6= 0}

and we say a function u has compact support if

supp(u)⊂Ω

holds.

By Lp(Ω) we denote the space of all functions on Ω whose powers of order p are inte-
grable. The associated norm reads as

‖u‖Lp(Ω) :=


∫
Ω

|u(x̃)|pdx̃


1/p

for p ∈ [1,∞) .

Two functions u,v ∈ Lp(Ω) are identified with each other if they are different only on a set
of zero measure. Consider the Heaviside step function

Θ(x) =
{

1 for x > 0
0 for x < 0

for x ∈ (−1,1). Regardless of the definition at x = 0 its norm is given by

‖u‖p
Lp((0,1))

=

1∫
−1

|Θ(x)|pdx =
1∫

0

1pdx = 1

since the integral occuring in the norm cannot reflect the deviation at single points.

Probably the most important Lebesgue space is obtained by setting p = 2, which is the
space of square integrable functions. Its norm is induced by the scalar product

(u,v)L2(Ω) =
∫
Ω

u(x̃)v(x̃)dx̃
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such that (u,u)L2(Ω) = ‖u‖2
L2(Ω) holds. Note that v denotes the complex conjugate of v

satisfying ℜv = ℜv and ℑv =−ℑv.

The concept of square integrability may be extended to the derivatives of a function as
well leading to the Sobolev spaces in the process. For a more comprehensive discussion
of these spaces refer to the introductions in [30] or [28]. The Sobolev space Hs(Rd) is
equipped with the norm

‖v‖2
Hs(Rd)

:=
∫
Rd

(1+ |ξ |2)s|Fv(ξ )|2dξ

for real s ≥ 0 and Fv being the Fourier transform of v. The space Hs(Ω) is obtained by
restriction

Hs(Ω) :=
{

v = ṽ|Ω : ṽ ∈ Hs(Rd)
}

with the norm
‖v‖Hs(Ω) := inf

ṽ∈Hs(Rd),ṽ|Ω=v
‖ṽ‖Hs(Rd) .

Furthermore the application of the trace operator to functions induces function spaces on
the boundary. The space of square integrable functions on the surface is defined by the
norm

‖v‖L2(Γ)
:=


∫
Γ

|v(x)|2dsx


1/2

induced by the scalar product

(u,v)L2(Γ) =
∫
Γ

u(x)v(x)dsx .

Additionally, we define the weighted scalar product

(u,v)L2(Γ),w =
∫
Γ

w(x)u(x)v(x)dsx .

where w : Γ → R≥0 denotes the weight. For s ∈ (0,1) the Sobolev-Slobodeckii norm
reads

‖v‖Hs(Γ) :=

‖v‖2
L2(Γ)

+
∫

Γ×Γ

|v(x)− v(y)|2

‖x−y‖d−1+2s dsxdsy

 .

For s < 0 the Sobolev spaces are defined by duality

Hs(Γ) :=
[
H−s(Γ)

]′
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when Γ is a closed surface, cf. [28, chapter 2.4]. They are equipped with the norm

‖w‖Hs(Γ) := sup
06=v∈H−s(Γ)

〈w,v〉
‖v‖H−s(Γ)

with respect to the duality pairing 〈·, ·〉 : Hs(Γ)×H−s(Γ)→ C

〈w,v〉 :=
∫
Γ

w(x)v(x)dsx .

Moreover, for s > 0 we define the space of piecewise smooth functions

Hs
pw(Γ) :=

{
w ∈ L2(Γ) : w|Γk

∈ Hs(Γk), k = 1, . . . ,N
}

with the norm

‖w‖Hs
pw(Γ)

:=

{
N

∑
k=1
‖w|Γk

‖2
Hs(Γk)

}1/2

.



86 A Mathematical preliminaries



B EXPLICIT REPRESENTATION OF THE BOUNDARY
INTEGRAL OPERATORS

B.1 Boundary integral operators in time domain

With the fundamental solution of the wave equation

U (z̃, t) =
1

4π‖z̃‖
δ0

(
t− ‖z̃‖

c0

)
∀ (z̃, t) ∈ R3× (0,∞)

and the sifting property of the Dirac distribution δ0 we obtain the single layer potential

(
Ṽ ∗ϕ

)
(x̃, t) :=

∫
Γ

t∫
0

U (x̃−y, t− τ)ϕ(y, t)dτdsy

=
∫
Γ

ϕ

(
y, t− 1

c0
‖x̃−y‖

)
4π‖x̃−y‖

dsy ∀ (x̃, t) ∈Ω
−× (0,∞)

for any suitable ϕ . To compute the double layer potential we employ several results. First,
we note

gradỹ‖x̃− ỹ‖ =− x̃− ỹ
‖x̃− ỹ‖

furthermore we utilize two results obtained by application of the chain rule to

δ0

(
t− τ− 1

c0
‖x̃− ỹ‖

)
︸ ︷︷ ︸

=: f (x̃,ỹ,t,τ)

namely

gradỹδ0 ( f (x̃, ỹ, t,τ)) = ∂ f δ0 gradỹ f
∂tδ0 ( f (x̃, ỹ, t,τ)) = ∂ f δ0 ∂t f︸︷︷︸

=1

where we omitted the argument list on the right hand side. This finally yields the relation

gradỹδ0 ( f (x̃, ỹ, t,τ)) = gradỹ f (x̃, ỹ, t,τ)∂tδ0 ( f (x̃, ỹ, t,τ))
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where gradỹ f (x̃, ỹ, t,τ) = x̃−ỹ
c0‖x̃−ỹ‖ . By using

T∫
0

∂tδ0(t− τ) f (τ)dτ =−∂t f (t) ∀ t ∈ (0,T )

we obtain the explicit representation of the double layer potential for the wave equation

(W∗ψ)(x̃, t) :=
∫
Γ

t∫
0

γ
−
1,yU (x̃−y, t− τ)ψ(y,τ)dτdsy

=
∫
Γ

(n(y), x̃−y)
4π‖x̃−y‖2

ψ

(
y, t− 1

c0
‖x̃−y‖

)
‖x̃−y‖

+
1
c0

∂tψ

(
y, t− 1

c0
‖x̃−y‖

)dsy

∀ (x̃, t) ∈Ω
−× (0,∞)

for any suitable ψ .

B.2 Boundary integral operators in Laplace domain

By either applying the Laplace transform to the single and double layer potentials in time
domain or inserting the fundamental solution of the Helmholtz equation1

Ûs (z̃) =
exp
(
− s

c0
‖z̃‖
)

4π‖z̃‖
∀ z̃ ∈ R3

we get the explicit representations of the layer potentials associated with the Laplace trans-
formed wave equation. We obtain the single layer potential(

Ṽsϕ̂
)
(x̃) :=

∫
Γ

Ûs (x̃−y) ϕ̂(y)(y)dsy =
∫
Γ

exp(− s
c0
‖x̃−y‖)

4π‖x̃−y‖
ϕ̂(y)dsy

as well as the double layer potential

(Wsψ̂)(x̃) :=
∫
Γ

γ
−
1,yÛs (x̃−y) ψ̂(y)dsy

=
∫
Γ

(n(y), x̃−y)exp(− s
c0
‖x̃−y‖)

4π‖x̃−y‖2

(
1

‖x̃−y‖
+

s
c0

)
ψ̂(y)dsy

both for any suitable ϕ̂ and ψ̂ respectively.
1The Helmholtz operator and the Yukawa operator are interpreted in a unified fashion.



C ERRORS IN FUNCTIONALS OF THE BOUNDARY ELEMENT
SOLUTION

The following explanations are based on [28, theorem 4.2.14].

With the notation of chapter 6 the abstract variational formulation of a boundary integral
equation reads as

find u ∈ H : b(u,v) = F(v) ∀ v ∈ H . (C.1)

By considering a family of conforming trial spaces {HK}K ⊂ H we obtain the Galerkin
discretized incarnation of (C.1)

find uK ∈ HK : b(uK,vK) = F(vK) ∀ vK ∈ HK (C.2)

where the Galerkin orthogonality

b(u−uK,vK) = 0 ∀ vK ∈ HK (C.3)

holds. Furthermore, we consider the dual problem

find ϕ ∈ H : b(η ,ϕ) = σ(η) ∀ η ∈ H (C.4)

with the continuous linear functional σ ∈ H ′. Due to the inclusion uK ∈ HK ⊂ H we may
insert uK in σ and get the difference

|σ(u)−σ(uK)|= |σ(u−uK)|= |b(u−uK,ϕ)|

by the linearity of σ . Using the Galerkin orthogonality (C.3) we obtain

|σ(u−uK)|= |b(u−uK,ϕ− vK)| ∀ vK ∈ HK

and due to the boundedness of b(·, ·) we end up with

|σ(u−uK)|= |b(u−uK,ϕ− vK)| ≤ c‖u−uK‖H‖ϕ− vK‖H ∀ vK ∈ HK .

Due to the quasi-optimality of the error implied by (C.3) we get

|σ(u−uK)| ≤ c inf
vK∈HK

‖u− vK‖H inf
ηK∈HK

‖ϕ−ηK‖H . (C.5)

Statement (C.5) tells us that if u and ϕ are sufficiently smooth the rate of convergence in
functionals of the solution is two times the rate of convergence of the solution in the energy
norm.
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90 C Errors in functionals of the boundary element solution

As a model problem we consider the single layer potential ansatz for a fixed x̃ ∈Ω

u(x̃) :=
(
Ṽsw

)
(x̃) =

∫
Γ

Ûs (x̃−y)w(y)dsy

with the spaces H := H−1/2(Γ) and H ′ := H1/2(Γ). By interpreting the integral as duality
pairing 〈·, ·〉H1/2(Γ)×H−1/2(Γ) we learn∣∣∣∣∣∣

∫
Γ

Ûs (x̃−y)w(y)dsy

∣∣∣∣∣∣≤ ‖Ûs (x̃−·)‖H1/2(Γ)︸ ︷︷ ︸
c(x̃)

‖w‖H−1/2(Γ)

and thus the solution u(x̃), x̃∈Ω is governed by the linear continuous functional σ(w), im-
plying the error estimate (C.5). By employing the approximation property of the piecewise
discontinuous boundary element space Sdp

h (6.12) we obtain

|u(x̃)−uh(x̃)| ≤ ch1/2+min(p+1,s)‖w‖Hs(Γ) h1/2+min(p+1,t)‖ϕ‖Ht(Γ)

for s, t ≥ 1/2. If the solutions are sufficiently regular we obtain for the space of piecewise
constant basis functions, i.e. p = 0, the error estimate

|u(x̃)−uh(x̃)| ≤ ch3‖w‖H1(Γ) ‖ϕ‖H1(Γ) .

Note that since the fundamental solution Ûs (x̃−y) is analytic for x̃ 6= y any derivative of
it is also in H1/2(Γ). Thus the obtained order of convergence is valid for the function u
itself as well as any quantity defined by derivatives of u inside Ω. As a result the observed
rates of convergence only depend on the regularity of w and ϕ , which highly depend on
the smoothness of the domain. For the dual problem (C.4) in conjuction with the single
layer potential ansatz there holds

‖ϕ‖H−1/2+s(Γ) ≤ c‖Ûs (x̃−·)‖H1/2+s(Γ)

on a globally smooth boundary for any s≥ 0, see [28, theorem 3.2.2]. Due to the analyticity
of Ûs (x̃−·) already mentioned in the prequel its norm exists for any s. Hence we get

‖ϕ‖H1(Γ) ≤ c‖Ûs (x̃−·)‖H2(Γ) =: cint(x̃)

which leads to the final error estimate of the single layer potential ansatz

|u(x̃)−uh(x̃)| ≤ c(x̃)h3‖w‖H1(Γ)

for smooth boundaries Γ. Note that the constant c(x̃) becomes very large when x̃ is close
to the surface, thus one should only compute interior solutions sufficiently far from the
boundary.

Furthermore, these concepts can be expanded to the double layer potential in a rather
straightforward way. Since the interior evaluation of the direct method is merely an addi-
tion of single and double layer potential the obtained results remain valid for it as well.



D SYMMETRY OF GALERKIN BEM MATRICES

Throughout this appendix we consider the generic ansatz functions ϕ ∈ H1 and ψ ∈ H2
whose actual representation does not matter as long as they are contained in the function
spaces associated with the respective sesquilinear forms.

D.1 Single layer potential and hypersingular operator

Consider the single layer potential matrix

Vh[k, l] =
∫

Γ×Γ

Ûs (x−y)ψk(x)ψl(y) dsy dsx

whose transposed reads as

Vh[l,k] =
∫

Γ×Γ

Ûs (x−y)ψl(x)ψk(y) dsy dsx ,

and since x,y ∈ Γ we may change their roles, leading to

Vh[l,k] =
∫

Γ×Γ

Ûs (y−x)ψl(y)ψk(x) dsx dsy .

Due to the radial-symmetry of the fundamental solution, i.e. it only depends on the norm
of the argument, we have Ûs (y−x) = Ûs (x−y), which gives

Vh[l,k] =
∫

Γ×Γ

Ûs (x−y)ψl(y)ψk(x) dsx dsy = Vh[k, l].

Thus the single layer potential matrix is symmetric Vh = VT
h . This argument can be ap-

plied in a very straightforward manner to the matrix of the hypersingular boundary integral
operator as well. By using the symmetry of the Euclidean scalar product one obtains the
symmetry Dh = DT

h .
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92 D Symmetry of Galerkin BEM matrices

Note that the SLP matrix associated to the weighted L2(Γ) scalar product is not symmet-
ric

Vκ
h [k, l] =

∫
Γ×Γ

Ûs (x−y)κ(x)ψk(x)ψl(y) dsy dsx

Vκ
h [l,k] =

∫
Γ×Γ

Ûs (x−y)κ(x)ψl(x)ψk(y) dsy dsx

=
∫

Γ×Γ

Ûs (y−x)κ(y)ψl(y)ψk(x) dsx dsy

=
∫

Γ×Γ

Ûs (x−y)κ(y)ψl(y)ψk(x) dsy dsx 6= Vκ
h [k, l] .

D.2 Double layer potential and adjoint double layer potential

Consider the double layer potential matrix

Kh[k, l] =
∫

Γ×Γ

γ
−
1,yÛs (x−y)ψk(x)ϕl(y) dsy dsx

whose transpose is

Kh[l,k] =
∫

Γ×Γ

γ
−
1,yÛs (x−y)ψl(x)ϕk(y) dsy dsx

and by changing the roles of x and y we get

Kh[l,k] =
∫

Γ×Γ

γ
−
1,yÛs (y−x)ψl(y)ϕk(x) dsx dsy . (D.1)

Using the chain rule for differentiation one finds γ
−
1,yÛs (y−x) = −γ

−
1,xÛs (y−x) and by

employing the the point symmetry γ
−
1,xÛs (y−x) =−γ

−
1,xÛs (x−y) we obtain

γ
−
1,yÛs (y−x) = γ

−
1,xÛs (x−y) . (D.2)

Insertion of (D.2) into (D.1) yields

Kh[l,k] =
∫

Γ×Γ

γ
−
1,yÛs (y−x)ψl(y)ϕk(x) dsx dsy =

∫
Γ×Γ

γ
−
1,xÛs (x−y)ψl(y)ϕk(x) dsx dsy
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and recalling the definition of the adjoint double layer potential matrix

K′h[l,k] =
∫

Γ×Γ

γ
−
1,xÛs (x−y)ϕk(x)ψl(y) dsy dsx

we obtain KT
h = K′h. Therefore, only one of these two operators has to be considered when

using the direct method, as the other one can be retrieved by transposition.

D.3 Mass matrices

For the sake of completeness we consider the mass matrix of the jump term of the double
layer potential

Mh[k, l] =
∫
Γ

ψk(x)ϕl(x) dsx

whose transpose

Mh[l,k] =
∫
Γ

ψl(x)ϕk(x) dsx

coincides with the jump term of the adjoint double layer potential

M′h[l,k] =
∫
Γ

ϕk(x)ψl(x) dsx .

Once again, only the mass matrix of the double layer potential has to be computed and the
mass matrix of the adjoint double layer potential may be obtained by transposition.

Note that the weighted mass matrix Mκ
h remains symmetric.
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E A SAMPLE SOLUTION FOR THE WAVE EQUATION

We observe the open one-dimensional spatial domain Ω = (0,L) ⊂ R. The considered
initial-boundary value problem reads(

c−2
0 ∂tt−∂xx

)
u(x, t) = 0 ∀ (x, t) ∈Ω× (0,∞) ,

u(x,0) = ∂tu(x,0) = 0 ∀ x ∈Ω ,
−∂xu(0, t)+κ0∂tu(0, t) = f0(t) ∀ t ∈ (0,∞) ,

∂xu(L, t)+κL∂tu(L, t) = fL(t) ∀ t ∈ (0,∞) ,

(E.1)

where both the differential equation and the initial conditions are homogeneous, while the
Robin boundary conditions are inhomogeneous.

E.1 General solution in Laplace domain

In order to derive a sample solution for the previously described problem we switch from
time domain to Laplace domain. The Laplace transform of a function u(x, t) is once again
denoted by û(x,s).

Application of the Laplace transform to the partial differential equation yields

s2û(x,s)− s u(x,0)︸ ︷︷ ︸
=0 ∀x∈Ω

−∂tu(x,0)︸ ︷︷ ︸
=0 ∀x∈Ω

−c2
0∂xxû(x,s) = 0

where we used the vanishing intial conditions. Hence, we obtain the ordinary differential
equation

s2û(x,s)− c2
0∂xxû(x,s) = 0 ∀ x ∈Ω

for some suitable s ∈ C. Note that this equation is the Helmholtz equation for complex-
valued wave numbers in one dimension. By inserting the ansatz

û(x,λ ) = C exp(λx) ,

∂xû(x,λ ) = Cλ exp(λx) ,

∂xxû(x,λ ) = Cλ
2 exp(λx)

into the differential equation (E.1), we obtain

s2C exp(λx)− c2
0Cλ

2 exp(λx) = 0
C exp(λx)(s2− c2

0λ
2) = 0
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96 E A sample solution for the wave equation

and since above equation has to hold for any x ∈ Ω we get λ = ± s
c0

. Hence, the general
solution of the differential equation reads

û(x,s) = A(s)exp( s
c0

x)+B(s)exp(− s
c0

x) , (E.2)

which still has to be tailored to satisfy the boundary conditions. This step will be performed
in the sequel.

Application of the Laplace transform to the boundary conditions in (E.1) yields

lim
x→0
x>0

−∂xû(x,s)+κ0
(
sû(x,s)−∂tu(x,s)︸ ︷︷ ︸

=0

) = f̂0(s) ,

lim
x→L
x<L

∂xû(x,s)+κL
(
sû(x,s)−∂tu(x,s)︸ ︷︷ ︸

=0

) = f̂L(s) ,

where the homogeneous initial conditions were employed once again. The general solution
previously (E.2) has to be adapted such that it satisfies the boundary conditions

−∂xû(0,s)+κ0sû(0,s) = f̂0(s) ,

∂xû(L,s)+κLsû(L,s) = f̂L(s) .

By inserting the ansatz (E.2) into both boundary conditions we find

−A(s) s
c0
+B(s) s

c0
+κ0s(A(s)+B(s)) = f̂0(s)

A(s) s
c0

exp( L
c0

s)−B(s) s
c0

exp(− L
c0

s)+κLs(A(s)exp( L
c0

s)+B(s)exp(− L
c0

s)) = f̂L(s)

which corresponds to the system

s

 − 1
c0
+κ0

1
c0
+κ0

exp( L
c0

s)( 1
c0
+κL) exp(− L

c0
s)(− 1

c0
+κL)

A(s)

B(s)

=

 f̂0(s)

f̂L(s)

 . (E.3)

The goal is to choose F0(s) and FL(s), which implies the choice of f0(t) and fL(t), such
that the final solution can be transformed back to time domain easily. To do so we set
A := 0, which reduces the first equation in (E.3) to

s( 1
c0
+κ0)B(s) = f̂0(s)

leading to

B(s) =
1
s

f̂0(s)
1
c0
+κ0

. (E.4)
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For a vanishing A the second equation in (E.3) becomes

sexp(− L
c0

s)(− 1
c0
+κL)B(s) = f̂L(s)

and insertion of (E.4) yields the following equation

f̂L(s) = f̂0(s)exp(− L
c0

s)
− 1

c0
+κL

1
c0
+κ0

(E.5)

which determines f̂L(s) such that A = 0.

The choice of f0(t), which implies f̂0(s), is crucial in order to get a practical solution.
Recall the relation

tn
Θ(t) d t n!

sn+1

for some n∈N0, where N0 is the set of nonnegative integers and Θ(t) is the Heaviside step
function.

Let f0(t) = ( 1
c0
+κ0)

1
(p−1)!t

p−1Θ(t) for some p ∈ N ⊂ N0, where N is the set of positive
integers. We obtain the Laplace transformed signal

f0(t) = ( 1
c0
+κ0)

1
(p−1)!

t p−1
Θ(t) d t( 1

c0
+κ0)

1
sp = f̂0(s) (E.6)

and the signal at the other end is obtained by inserting f̂0(s) into (E.5)

f̂L(s) = (− 1
c0
+κL)

1
sp exp(− L

c0
s) t d(− 1

c0
+κL)

1
(p−1)!

(t− L
c0
)p−1

Θ(t− L
c0
) = fL(t)

(E.7)
where we used the rule of translation in time domain.

E.2 Final solution in Laplace and time domain

With (E.4) and (E.6) we find

B(s) =
1

sp+1

and inserting this result into (E.2) we obtain a solution of the boundary value problem in
Laplace domain

û(x,s) =
1

sp+1 exp(− s
c0

x) .

By applying the inverse Laplace transform, we retrieve the solution of the initial-boundary
value problem in time domain

1
sp+1 exp(− s

c0
x) t d 1

p!
(t− x

c0
)p

Θ(t− x
c0
) = u(x, t) ∀ (x, t) ∈Ω× (0,∞)



98 E A sample solution for the wave equation

for some p ∈ N. Note that the choice of p determines the smoothness of u(x, t) in Ω×
(0,∞), where higher values correspond to smoother functions.

E.3 Summary and solution in three spatial dimensions

Right hand side in time domain:

f0(t) = ( 1
c0
+κ0)

1
(p−1)!

t p−1
Θ(t)

fL(t) = (− 1
c0
+κL)

1
(p−1)!

(t− L
c0
)p−1

Θ(t− L
c0
)

Right hand side in Laplace domain:

F0(s) = ( 1
c0
+κ0)

1
sp

FL(s) = (− 1
c0
+κL)

1
sp exp(− L

c0
s)

Solution in Laplace domain:

U(x,s) =
1

sp+1 exp(− s
c0

x)

∂xU(x,s) = − 1
c0 sp exp(− s

c0
x)

Solution in time domain:

u(x, t) =
1
p!
(t− x

c0
)p

Θ(t− x
c0
)

∂xu(x, t) = − 1
c0(p−1)!

(t− x
c0
)p−1

Θ(t− x
c0
) .

It shall be noted that above solution is not defined at t = x
c0

, since we left Θ(0) intentionally
undefined. As we seek a continuous extension of u(x, t) to the entire domain Ω× (0,∞)
we introduce the retarded time ξ = t− x

c0
and obtain the function

ū(ξ ) = ξ
p
Θ(ξ ) .

This function is in C∞(R\{0}), since it is defined by a polynomial for ξ > 0 and zero for
ξ < 0. Performing the limit ξ → 0 from both sides yields

lim
ε→0
ε>0

ū(ε) = lim
ε→0
ε>0

εp = 0

lim
ε→0
ε>0

ū(−ε) = lim
ε→0
ε>0

0 = 0
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where p≥ 1 and thus there exists a continuous extension of ū to the entire real line, satis-
fying ū(0) = 0. We denote this extension of ū by ˜̄u, which reads

˜̄u(ξ ) =
{

0 for ξ = 0
ū(ξ ) elsewhere =

{
0 for ξ = 0

ξ pΘ(ξ ) elsewhere .

If p≥ 2 then ˜̄u(ξ ) is differentiable at ξ = 0

lim
ε→0
ε>0

1
ε
[ ˜̄u(ε)− ˜̄u(0)] = lim

ε→0
ε>0

1
ε
[εp−0] = lim

ε→0
ε>0

εp−1 = 0 .

By repeated differentiation we induce that ˜̄u ∈Cp−1(R). As a result, we define the contin-
uous extension of u(x, t)

ũ(x, t) =

{
0 for t = x

c0
1
p!(t−

x
c0
)pΘ(t− x

c0
) elsewhere

where ũ(x, t) ∈Cp−1(Ω× (0,∞)) holds.

The solution derived in one spatial dimension solves a corresponding problem in Ω ⊂ R3

as well. The open time interval remains unchanged while the considered open domain is a
prism with a square base

Ω := (0,L)× (−a
2 ,

a
2)× (−a

2 ,
a
2)⊂ R3 .

Applying the operator of the wave equation in three spatial dimensions

c−2
0 ∂tt− (∂x1x1 +∂x2x2 +∂x3x3)

to the adapted one-dimensional solution

u(x, t) :=

{
0 for t = x1

c0
1
p!(t−

x1
c0
)pΘ(t− x1

c0
) elsewhere

yields zero in Ω× (0,∞), thus the differential equation is satisfied. The boundary con-
ditions at x1 = 0 and x1 = L remain unaltered, however, at the lateral boundaries (either
x2 =±a

2 or x3 =±a
2 ) we have to enforce a different condition. Since the derivatives of the

one dimensional solution with respect to the x2- or x3- direction vanish, we have to demand
homogeneous Neumann conditions along the lateral boundaries, i.e. γ

−
1 u = 0. Then the

adapted one-dimensional solution is a solution of the three-dimensional problem and can
be used for a convergence study.
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