




Zusammenfassung
Die Automatisierung von Gangschaltungen in komplexen Antriebsstrangtopologien
stellt die zentrale Aufgabenstellung dar, die dieser Arbeit zugrunde liegt. Durch das
Schließen beziehungsweise Öffnen von Kupplungen muss ein Antriebsstrang als schal-
tendes Mehrkörpersystem betrachtet werden. Die Umschaltungen sind aus mechanis-
cher Sicht durch das Einbringen oder Entfernen von holonomen Zwangsbedingungen
beschreibbar.
Die vorliegende Arbeit gliedert sich in einen theoretischen und einen praktischen Teil.
Der theoretische Teil widmet sich der Modellierung von Mehrkörpersystemen, unter der
Einbringung von holonomen Zwangsbedingungen. Es werden die Auswirkungen dieser
eingebrachten Zwangsbedingungen auf Zustandstransformationen, beziehungsweise
auf die Erhaltung der Stabilität und Optimalität einer entworfenen Zustandsregelung
oder Zustandsbeobachtung untersucht. Das Ziel dieser Untersuchungen ist der Entwurf
einer optimalen Zustandsregelung oder eines optimalen Zustandsbeobachters für das
Mehrkörpersystem, unabhängig von zusätzlichen mechanischen Zwangsbedingungen.
Im praktischen Teil wird zuerst die theoretische Vorarbeit des ersten Teiles ver-
wendet, um eine systematische Modellierung für allgemeine Antriebsstrangtopolo-
gien zu formulieren. Im Speziellen beschäftigt sich dieser zweite Teil mit
der Modellierung und modellbasierten Regelung eines hybriden Antriebsstranges.
Es wird eine Regelungsstrategie bestehend aus einer flachheitsbasierten Antrieb-
smomentensteuerung und einer LQ-Regelung entworfen. Zusätzlich wird eine
modellfreie Kupplungsmomentensteuerung verwendet. Diese Kombination er-
möglicht die Regelung von Gangschaltungen unter Einhaltung einer geforderten
Fahrzeuggeschwindigkeit. Die entworfene Steuerung und Regelung nützt sowohl die
Vorteile der vorgestellten Modellierungsart, als auch die mechanischen Eigenheiten des
betrachteten Antriebsstranges.

Schlagwörter: beschränkte Mehrkörpersysteme, Antriebsstrangmodellierung, flach-
heitsbasierte Vorsteuerung
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Abstract
The central task of this work is to automate gear shifts in complex transmission drive-
train topologies. Due to the opening and closing of clutches drivetrains have to be
regarded as switching multibody systems. From the mechanical point of view the
switching corresponds to adding or releasing holonomic constraints.
The presented work is divided into a theoretical and a practical part. The theoret-
ical part is dedicated to the linear modeling of multibody systems with respect to
additional holonomic constraints. The impact of these additional constraints on state
transformations and the conservation of stability and optimality of designed state con-
trollers and state observers is investigated. These investigations target on designing an
optimal state control or an optimal state observer for the multibody system regardless
of any additional mechanical constraint.
In the practical part in a first step the work of the first part is used to formulate
a systematic modeling approach for general drivetrain topologies. In particular the
second part covers modeling and model-based control of gear shifts in a hybrid drive-
train topology. The proposed control strategy consists of a flatness-based feedforward
propulsion torque control and a LQR feedback control. Additionally a model-free
clutch torque actuation is used. This combination enables control of gear shifts while
tracking a required vehicle speed trajectory. Feedforward and feedback control take
advantage of both the presented modeling approach and the mechanical peculiarities
of the considered drivetrain topology.

Keywords: constrained multibody systems, drivetrain modeling, flatness-based feed-
forward control

iii





Acknowledgment
This work was accomplished at the VIRTUAL VEHICLE Research Center in Graz,
Austria. I would like to acknowledge the financial support of the COMET K2 -
Competence Centers for Excellent Technologies Programme of the Austrian Federal
Ministry for Transport, Innovation and Technology (bmvit), the Austrian Federal
Ministry of Science, Research and Economy (bmwfw), the Austrian Research Pro-
motion Agency (FFG), the Province of Styria and the Styrian Business Promotion
Agency (SFG).

Furthermore i would like to express my thanks to Prof. Martin Horn for the university
support of this master thesis.

I would also like to particularly show my gratitude to Michael Stolz and Markus
Bachinger for accompanying the entire development process of this work.

Graz,

Johannes Rumetshofer

v





Contents
Zusammenfassung i

Abstract iii

Acknowledgment v

1 Introduction and overview 1

2 Constrained linear multibody systems - system reduction 3
2.1 Newton’s laws of motion . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 D‘Alembert’s principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Lagrange equations of the first kind . . . . . . . . . . . . . . . . . . . . 6
2.4 Generalized coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 Transformation to generalized coordinates . . . . . . . . . . . . 8
2.5 Elimination of Lagrangian multipliers . . . . . . . . . . . . . . . . . . . 8
2.6 Linear constrained linear multibody systems . . . . . . . . . . . . . . . 8

2.6.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6.2 State space model . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6.3 System reduction and state transformation . . . . . . . . . . . . 11

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 System reduction and stability 17
3.1 Stability of linear constrained linear multibody systems . . . . . . . . . 17
3.2 Stability in state space formulation . . . . . . . . . . . . . . . . . . . . 20
3.3 Stability of controlled subsystems . . . . . . . . . . . . . . . . . . . . . 20
3.4 Stability under arbitrary switching . . . . . . . . . . . . . . . . . . . . 22
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 System reduction and optimality 25
4.1 Algebraic Matrix Riccati equation . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Considerations on stabilizability and detectability . . . . . . . . 26
4.2 System reduction and optimality of state estimation . . . . . . . . . . . 28

4.2.1 Optimal state estimation problem . . . . . . . . . . . . . . . . . 28
4.2.2 Reduced Kalman filter . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.3 Kalman filter on reduced system . . . . . . . . . . . . . . . . . . 30
4.2.4 Evaluation of the conservation of optimality . . . . . . . . . . . 31

vii



Contents

4.2.5 Conclusion on system reduction and Kalman filtering . . . . . . 33
4.3 System reduction and optimality of LQ optimal control . . . . . . . . . 33

4.3.1 LQR problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.2 Reduced LQ optimal control . . . . . . . . . . . . . . . . . . . . 34
4.3.3 LQ optimal control of reduced system . . . . . . . . . . . . . . . 35
4.3.4 Evaluation of the conservation of optimality . . . . . . . . . . . 35
4.3.5 Conclusion on system reduction and optimality of LQ optimal

control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Drivetrain modeling employing system reduction 39
5.1 Typical drivetrain configuration . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Unconstrained equations of motion . . . . . . . . . . . . . . . . . . . . 41
5.3 Unconstrained state space model . . . . . . . . . . . . . . . . . . . . . 41
5.4 System reduction due to locked clutches . . . . . . . . . . . . . . . . . 43

5.4.1 Dual Space of linear mapping . . . . . . . . . . . . . . . . . . . 43
5.4.2 Interpretation of locked clutches’ torques . . . . . . . . . . . . . 44
5.4.3 Application of system reduction . . . . . . . . . . . . . . . . . . 45

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Exemplary application of system reduction in control 47
6.1 Topology and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2.1 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2.2 Additional gear ratios . . . . . . . . . . . . . . . . . . . . . . . 49
6.2.3 State space model . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.4 vehicle speed - state transformation . . . . . . . . . . . . . . . . 52

6.3 Drivetrain control task and assumptions . . . . . . . . . . . . . . . . . 53
6.3.1 Considered gear shifts . . . . . . . . . . . . . . . . . . . . . . . 54
6.3.2 State observation . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4 Control strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.4.1 Clutch torque control . . . . . . . . . . . . . . . . . . . . . . . . 55
6.4.2 Switching system . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.4.3 Flatness-based design of linear feedforward control . . . . . . . . 57
6.4.4 Consistent reference trajectories . . . . . . . . . . . . . . . . . . 65
6.4.5 LQR feedback control . . . . . . . . . . . . . . . . . . . . . . . 68
6.4.6 Combined structure . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.5 Simulation and results . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.5.1 Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.5.2 Stability check . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.5.3 Qualitative evaluation of optimality . . . . . . . . . . . . . . . . 71
6.5.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Conclusion and perspectives 83
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

viii



Contents

List of Figures 87

List of Tables 89

Bibliography 91

ix





1
Introduction and overview

One of the most challenging fact in automating gear shifts for complex transmission
drivetrain topologies is the consideration of clutches. On the one hand they can be
used to dissipate energy in slipping state, on the other hand they reduce to simple
rigid shafts when they are locked. Consequently to achieve the required objective first
of all the impact of a locked clutch on the mathematical model of a drivetrain has
to be investigated. According to the necessary condition, that the differential angular
velocity between the plates of a locked clutch is zero, its impact is equal to the impact
of adding a linear holonomic constraint to the underlying mechanical problem.
Therefore chapter 2 deals with the issue from the mechanical point of view, in par-
ticular with constrained linear multibody systems. A specific type of system reduction
is introduced and in a next step this idea is applied to state space notation, which is
conventionally used in control theory. Common state transformation with respect to
additional mechanical constraints is considered in chapter 2.6.3. Chapter 3 contains
investigations on the stability of linear multibody systems with respect to linear con-
straints. Furthermore this issue is extended to the problem of stability of linear state
control or observation designed for the considered systems. The end of the general
mechanical resp. mathematical investigations is marked by chapter 4. It deals with
the conservation of some kind of optimality of linear state feedback and state obser-
vation designed on the considered systems. The motivation behind these investigations
concerning stability and optimality is to design a linear state feedback for optimal or
at least stable control of a multibody system regardless of any additional linear con-
straints. In order to meet the demanded task of investigating the impact of a locked
clutch on the mathematical model of a drivetrain, the general approach of modeling
linear multibody systems under additional constraints is applied to general drivetrain
topologies in chapter 5.
To facilitate the overview on the theoretical part of this work figure 1.1 illustratively
summarizes the treated subjects and their connections.
The practical part of this work is the actual application of this approach to a hybrid
automatic transmission drivetrain. The advantages of the presented modeling ap-
proach and the mechanical peculiarities of the considered drivetrain are used to
design a control system automating gear shifts while tracking a required vehicle speed
trajectory. The control strategy consists of a flatness-based feedforward propulsion
torque control with LQR feedback control and a model-free clutch torque actuation.
Functionality of the control system is shown based on several simulation experiments
in chapter 6.5. Finally several approaches to improve the control performance and to
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1 Introduction and overview

generalize the presented approaches give an outlook for future work (see chapter 7).

application mechanics modeling control
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Figure 1.1: Graphical overview on the subjects of the theoretical part
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2
Constrained linear multibody systems

- system reduction
The initial situation is constituted by a mechanical multibody systems
consisting of N lumped inertias and k holonomic constraints. This chapter
shows a standard approach to achieve a minimal set of linear differential
equations describing the motion of inertias. It is similarly documented
in [1], [2], [3] and [4]. Based on Newton’s laws of motion, the additional
compliance of the holonomic constraints is ensured by constraining forces
with unknown magnitudes in the Lagrange equation of the first kind. The
directions of the constraining forces are stated in d’Alembert’s principle.
Elimination of the Lagrangian multipliers and transformation to general-
ized coordinates reduces the system of differential equations to a minimal
system. Therefore in the content of this work this approach will be called
system reduction. This system reduction focuses on a compact notation
for the mathematical description of the considered physical problems to fa-
cilitate the later application of common control approaches. Subsequently
follows the restriction to linear constraints, with respect to positions, and
the formulation of the system reduction in state space notation. Finally
this chapter investigates application of common state transformation in
consistency to additional linear constraints. Thereby the correct transfor-
mation of the mass matrix plays a significant role.

2.1 Newton’s laws of motion

The motion of inertias under influence of acting forces is basically defined in Newton’s
laws of motion that provide foundation for classical mechanics. In particular Newton’s
first and second law of motion state the existence of at least one frame of reference,
called inertial frame of reference, in which net force Fi acting on inertia mi at position
ri equals the rate of change of its momentum pi:

Fi � 9pi �
d
dt pmi 9riq � mI:ri | i � 1, . . . , N ; mi P R (2.1)

In the considered problems every frame of reference fixed in earth shall be considered
to be an inertial frame of reference. Usage of Cartesian coordinates in R3 defines the

3



2 Constrained linear multibody systems - system reduction

vectors Fi, ri and pi as follows:

Fi �

�
�Fxi
Fyi
Fzi

�
� , ri �

�
�xiyi
zi

�
� , pi �

�
�pxi
pyi
pzi

�
� (2.2)

Compact matrix notation eventuates in a system of 3N differential equations repre-
sented in equation 2.3.

Mi �
�
mi mi mi

�T
| i � 1, . . . , N (2.3)

diag
��

MT
1 MT

2 . . . MT
N

��loooooooooooooooooomoooooooooooooooooon
M

�
:rT1 :rT2 . . . :rTN

�Tlooooooooooomooooooooooon
:r

�
�
FT

1 FT
2 . . . FT

N

�Tloooooooooooomoooooooooooon
F

M:r � F (2.4)

Considering linear multibody systems, net force can be split up into linear velocity
dependent, linear position dependent and coordinate independent forces:

M:r � �D 9r�Kr� F (2.5)

In contrast to equation 2.4, here and within this work vector F represents all external
forces that do not depend on coordinates r. Diagonal matrix M is called mass matrix
or inertia matrix, D damping matrix and K stiffness matrix. Due to Newton’s third
law of motion, stating that an inertias reactive force is equal in magnitude and opposite
in direction to the force exerted by another inertia, D and K have to be symmetric
matrices. Further due to defined positivity of energy term M is a positive definite
matrix and D and K are positive semidefinite matrices. Restriction to real problems
also ensures D being a positive definite matrix, since there exists no undamped system.

M � MT ¡ 0 (2.6)
D � DT ¡ 0
K � KT ¥ 0

Expanding the unconstrained system by k   3N holonomic constraints fpr, tq � 0
results in a so called differential-algebraic equation (DAE) system consisting of 3N
differential and k algebraic equations:

M:r � F� Z (2.7)

fpr, tq �

�
��f1pr, tq

...
fkpr, tq

�
�� � 0

Z denotes the unknown constraining forces acting on inertias to ensure constraints are
satisfied:

Z �
�
ZT

1 . . . ZT
N

�T
�
�
Z1x Z1y Z1z . . . ZNx ZNy ZNz

�T (2.8)

Adding constraints has two significant effects on the multibody system:
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2.2 D‘Alembert’s principle

1. loss of k degrees of freedom,
2. the resulting system is under-determined: 3N � 2 variables (r and Z), 3N � k

equations
Consequently formulation 2.7 does not use all available information respecting con-
straining forces.

2.2 D‘Alembert’s principle

Additional information concerning the direction of constraining forces can be received
by introducing term of virtual displacement.

Definition 1.
Virtual displacement δr of a system is an arbitrary, infinitesimal, instant (δt � 0)
displacement of the inertias satisfying the constraints.

D‘Alembert principle postulates that constraining forces do not perform virtual
work:

ZT δr � 0 (2.9)

This axiom is an autonomous axiom in mechanics and does not succeed Newton’s laws
of motion.
Notation of constraints in differential form and considering virtual displacement (dr �
δr, dt � δt � 0 ) achieves:

dfpr, tq �
Bf
Br

dr�
Bf
Bt

dt � 0 (2.10)

�
Bf
Br
δr�

Bf
Bt
δt �

Bf
Br
δr � Jfδr � 0

Jf is the constraint’s Jacobian matrix (also called constraining matrix):

Jf �
Bf
Br

�

�
��
Bf1
Br...
Bfk

Br

�
�� �

�
��
Bf1
Br1

. . . Bf1
BrN... ...

Bfk

Br1
. . . Bfk

BrN

�
�� (2.11)

Equations 2.9 and 2.10 demand a necessary and sufficient condition on direction of
constraining forces summarized in Lemma 1.

Lemma 1.

Z � JTf λ (2.12)
λ �

�
λ1 λ2 . . . λk

�T
λ are so called Lagrangian multipliers, which define the unknown magnitudes of the
constraining forces.
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2 Constrained linear multibody systems - system reduction

Proof.
• Equation 2.10: virtual displacement is element of the null space 1 of Jf :

δr P V � N pJfq (2.13)

• Equation 2.9: constraining force is element of the orthogonal complement of
virtual displacement δr:

Z P Z � VK (2.14)

• A transformation’s null space is equal to the orthogonal complement of the trans-
posed transformation (see [5]):

N pJfq �
�
JTf
�K (2.15)

Consequently the following holds:

Z � VK � pN pJfqq
K �

��
JTf
�K	K

� JTf (2.16)

In consequence constraining forces are represented by:

Z � JTf λ (2.17)

2.3 Lagrange equations of the first kind

Usage of equation 2.12, containing information about direction of constraining forces,
in equation 2.7 leads to Lagrange equations of the first kind:

M:r � F� JTf λ (2.18)
fpr, tq � 0

The system is still differential-algebraic but now determined: 3N differential and k
algebraic equations resp. 3N � k variables (r and λ).
Twice done differentiation of holonomic constraints achieves a system of differential
equation consisting of 3N � k ordinary differential equations second order.

fpr, tq � 0
M d

dt
Bf
Br

9r�
Bf
Bt

� Jf 9r�
Bf
Bt

� 0
M d

dt

Jf:r� 9Jf 9r�
d
dt

�
Bf
Bt



� 0 (2.19)

1The null space of a matrix is the kernel of the linear map defined by the matrix.
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2.4 Generalized coordinates

Restriction to scleronomic constraints reduces equation 2.19, due to the fact that there
is no explicit time dependency in constraints:

Jf:r� 9Jf 9r � 0 (2.20)

Combination of equations 2.18 and 2.20 completes the system of differential equations:�
M JTf
Jf 0

� �
:r
λ

�
�

�
F

� 9Jf 9r

�
(2.21)

Main disadvantage of this formulation considering positions r is the need of 3N � k
equations to describe a system of 3N � k mechanical degrees of freedom. To get rid
of this drawback the term of generalized coordinates is introduced.

2.4 Generalized coordinates

Provided a (k � 3N)-matrix Jf does not contain linear dependent rows, i. e. there are
no redundant constraints, dimension of null space of Jf satisfies:

dim pN pJfqq � def pJfq � 3N � k �: f (2.22)
In words: Dimension of Jf ’s null space, i. e. the defect of Jf , equals the number of
mechanical degrees of freedom f .
If the columns of an introduced (3N � f)-matrix Jr are a basis of Jf ’s null space,

Jf Jrδqloomoon
δr̄

� 0 (2.23)

holds for arbitrary δq, because of
JfJr � 0 . (2.24)

Coordinates q appearing in virtual displacement δq are called generalized coordinates:
q �

�
q1 q2 . . . qf

�T (2.25)
The number of generalized coordinates equals number of mechanical degrees of freedom
f . It is unique and a system parameter. Hence generalized coordinates are a minimal
set of coordinates describing motion of inertias. However the choice of generalized
coordinates is not unique due to the fact that equation 2.23 only offers a necessary
condition.
But equation 2.23 insures that, if q is a set of generalized coordinates,

Jr �
Br
Bq

(2.26)

is a basis of Jf ’s null space, because

Jf
Br
Bq
δqloomoon
δr

� 0 . (2.27)

The approach, determination of a set of q and calculation of respecting Jr is impor-
tant for practical use, because it allows a mechanical meaningful interpretation of
generalized coordinates and further the reduced set of differential equations.
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2 Constrained linear multibody systems - system reduction

2.4.1 Transformation to generalized coordinates

In order to achieve a minimal set of differential equations transformation into gen-
eralized coordinates is required. Relationship between coordinates r and generalized
coordinates q is given by:

r � rpq, tq

9r �
Br
Bq

9q �
Br
Btloomoon
�0

� Jr 9q

:r � Jr:q � 9Jr 9q (2.28)

Second line in equation 2.28 provides that mechanical system is scleronomous, meaning
there is actually no explicit time dependency in r. Inserting equation 2.28 to Lagrange
equation of the first kind (2.18) transforms the system into generalized coordinates:

MJr:q � F� JTf λ�M 9Jr 9q (2.29)

2.5 Elimination of Lagrangian multipliers

Multiplying equation 2.29 by JTr delivers

JTr MJr:q � JTr F� JTr JTfloomoon
�0

λ� JTr M 9Jr 9q (2.30)

JTr MJrloomoon
M̃

:q � JTr Floomoon
Q

�JTr M 9Jr 9qlooomooon
b

Vector Q represents generalized forces acting on the system. Due to precondition to
Jr multiplication eliminates Lagrangian multipliers. The remaining system consists of
3N � k differential equations second order resp. 3N � k variables.

2.6 Linear constrained linear multibody systems

In the later important case of holonomic, scleronomic and linear resp. r constraints,
corresponding Jacobian matrix Jf is constant and therefore every basis of its null space
is constant (ñ 9Jr � 0). Equation 2.30 reduces to:

JTr MJr:q � JTr F (2.31)
M̃:q � Q

Assuming linearity of the considered multibody system (see equation 2.5) achieves:

JTr MJrloomoon
M̃

:q � �JTr DJrloomoon
D̃

9q � JTr KJrloomoon
K̃

q � JTr Floomoon
Q

(2.32)
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2.6 Linear constrained linear multibody systems

Definition 2. System Reduction
The process of reducing a system of differential equations describing motion of a linear
multibody system to a minimal differential equation system in the case of added linear
constraints shall be defined as system reduction for the scope of this work. The term
is a shortcut for the transformation to generalized coordinates and the elimination of
Lagrangian multipliers. The resulting system is further called reduced system.

It’s an important fact that Jf � const. implies that choosing f specific components of
r obtains a set of generalized coordinates q. This choice is not unique but it exists.
It’s advantage is the conservation of the physical interpretability of the coordinates.
To apply this approach, it is sufficient to find a basis of Jf ’s null space containing all
rows of f -dimensional identity matrix, insuring q contains f components of r. Fol-
lowing section presents a method to generate a matrix Jr based on this consideration.
Central point is the usage Jf ’s reduced row echelon form J̄f to generate a requested
basis of Jf ’s null space.
Definition 3. Reduced row echelon form (see [5])
A matrix has reduced row echelon form, if it satisfies following two conditions:

• The leading coefficient (a row’s first nonzero element), called pivot, is 1 in all
rows and is the only nonzero coefficient in its column.

• The pivot’s column index, called pivot index pi, has to increase strictly for in-
creasing row index ( Ñ echelon form).

Remark 1.
• Reduced row echelon form of a matrix does exist, is unique and can be achieved

by a finite sequence of elementary operations (Gauss elimination, see [5]).
• rankpJfq � n   k leads to k � n zero rows at the bottom of J̄f .
• Provided rankpJfq � k, all columns of k-dimensional identity matrix appear in

J̄f . Pivot indices pi declare position of respecting columns. Therefore J̄f is a
fusion of k-dimensional identity matrix Ik and f remaining columns J̃f .

Using reduced row echelon form of a matrix offers a simple possibility to find a basis
of its null space: Starting with f -dimensional identity matrix If the rows of J̃f have
to be inserted with switched signs. Position to insert is stated in the associated pivot
index pi.

Jr � If,piv � J̃f,f,piv (2.33)

If,piv contains additional zero rows on positions stated by J̄f ’s pivot indices pi. J̃f,f,piv
has only zero entries except of J̃f ’s columns as rows on positions of resp. pivot indices.
Due to this construction method of Jr, transformation to generalized coordinates has
two properties worth mentioning:
Remark 2.

• Pivot indices pi of matrix J̄f declares the components of r that do not appear in
the set of generalized coordinates q.

• q is the minimal set of components of r with the highest possible row indices.
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2 Constrained linear multibody systems - system reduction

2.6.1 Example

fprq �
�

1 1 0 0 0
0 1 2 0 0

�
r ñ Jf �

Bf
Br

�

�
1 1 0 0 0
0 1 2 0 0

�
n � 5, k � 2 ñ f � n� k � 3

J̄f �

�
1 0 �2 0 0
0 1 2 0 0

�
�
�

Ik J̃f
�

ñ pi �

�
1
2

�

Jr � I3,piv � J̃f,3,piv �

�
�����

0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

�
������

�
�����
�2 0 0
2 0 0
0 0 0
0 0 0
0 0 0

�
����� �

�
�����

2 0 0
�2 0 0
1 0 0
0 1 0
0 0 1

�
�����

r �

�
�����

r1
r2
r3
r4
r5

�
����� ñ q �

�
�r3
r4
r5

�
�

2.6.2 State space model

In general a system of 3N linear differential equations second order can be transformed
in a system of 2�3N linear differential equations first order. This transition to so called
state space is useful in order to apply common methods of control theory.
Application on equation 2.5 and definitions x �

�
rT 9rT

�
and u � F leads to:

M:r � �D 9r�Kr� F (2.34)
õ�
I 0
0 M

� �
9r
:r

�
�

�
0 I
�K �D

� �
r
9r

�
�

�
0
I

�
F ñ M̄ 9x � Āx � B̄u (2.35)�

9r
:r

�
�

�
0 I

�M�1K �M�1D

� �
r
9r

�
�

�
0

M�1

�
F ñ 9x � Ax �Bu (2.36)

Addition of linear constraints fpxq is considered by applying system reduction analo-
gously to equation 2.31. Therefore basis Jx to Jf ’s null-space has to be found.

JTx M̄Jx 9q � JTx ĀJxq � JTx B̄u (2.37)
M̃ 9q � JTx ĀJxq � JTx B̄u

9q � M̃�1JTx ĀJxlooooomooooon
Ã

q � M̃�1JTx B̄loooomoooon
B̃

u

9q � Ãq � B̃u (2.38)

10



2.6 Linear constrained linear multibody systems

Remark 3.

• Assumption M̄ is positive definite guarantees the existence of M̃�1 (see chapter
3).

• Although arbitrary linear constraints fprq are holonomic, arbitrary linear con-
straints fpxq are not, since arbitrary linear fpxq enables coupling positions and
velocities. Such a constraint can not be formulated either in terms of positions
or velocities therefore it is non holonomic. Consideration of non holonomic con-
straints is not covered in the approach presented in this chapter. This restriction
to fpxq entails block structure of constraints Jacobian matrix Jf and consequently
of Jx.

2.6.3 System reduction and state transformation

Applying state transformations on state space models in order to achieve special struc-
tures of system parameters, e. g. canonical forms or diagonal form, while conserving
system’s dynamic, is a common task in control theory. This chapter provides a con-
sistent approach of applying system reduction on state transformed systems and finally
back transforming.

To simplify following considerations the analyzed system is assumed to be autonomous
(B � 0). The indices x and z denote affiliation of system parameters to the corres-
ponding coordinates.

The regular transformation x � Tz transforms the considered state space model from
x- into z-coordinates. Dynamic matrix Az is consequently defined by a similarity
transformation (see equation 2.39) applied on the original system’s dynamic matrix
Ax. Therefore the matrices Ax and Az are called similar, i. e. their eigenvalues are
identical.

9x � Axx x�TzÐÑ 9z � T�1AxTlooomooon
Az

z � Azz (2.39)

Further there exist relations between the coordinates x and z and the corresponding
reduced coordinates qx and qz:

x � Jxqx (2.40)
z � Jzqz (2.41)

Still unknown at this point is the relation between the reduced coordinates qx and qz
(see figure 2.1).

11



2 Constrained linear multibody systems - system reduction

x transformationÐÝÝÝÝÝÝÝÑ
x�Tz

z

re
du

ct
io

n
Ð
ÝÝ
Ý
ÝÝ

x�
J x

q x

z�
J z

q z
Ð
ÝÝ
Ý
ÝÝ

re
du

ct
io

n

qx
qx�?qzÐÝÝÝÝÝÝÝÑ

transformation
qz

Figure 2.1: Incomplete transformation between coordinates x, z, qx and qz

The combination of the introduced transformations determines this relation:

x � Tz
x � Jxqx

*
Tz � Jxqx

z � Jzqz

,.
-TJzqz � Jxqx ñ qx �

�
JTx Jx

��1 JTx TJzqz

(2.42)

Transformation of constraints further offers a relation between the Jacobian matrix in
x- and z- coordinates:

Jf,xx � 0 ô Jf,xTloomoon
Jf,z

z � 0 (2.43)

Since Jx is a basis of Jf,x’s (Jacobian matrix of the constraints in x-coordinates) null
space and Jz of Jf,z’s (Jacobian matrix of the constraints in z-coordinates) null space,
the two matrices are not independent:

Jf,xJx � 0
Jf,zJz � 0
Jf,z � Jf,xT

,.
-Jz � T�1JxR (2.44)

R is an arbitrary q x q full column rank matrix that generalizes the choice of the basis
of Jf,z’s null-space. It performs compressions, extensions and rotations on the basis of
Jf,x’s null-space. In combination with equation 2.42 follows:

qx �
�
JTx Jx

��1 JTx TT�1JxRqz �
�
JTx Jx

��1 JTx JxRqz � Rqz (2.45)

Remark 4.
The mapping R of constraining matrix Jf ’s null-space defines the transformation be-
tween the corresponding sets of reduced coordinates.

In the special choice of the in general arbitrary full rank matrix R � I reduced x-
coordinates qx are identically the reduced z-coordinates qz.
Using equation 2.45 respectively 2.44 delivers entire relations between the coordinates
x, z, qx and qz (see figure 2.2).
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2.6 Linear constrained linear multibody systems

x transformationÐÝÝÝÝÝÝÝÑ
x�Tz

z

re
du

ct
io

n
Ð
ÝÝ
Ý
ÝÝ

x�
J x

q x

TJz � JxR

z�
J z

q z
Ð
ÝÝ
Ý
ÝÝ

re
du

ct
io

n

qx
qx�RqzÐÝÝÝÝÝÝÝÑ

transformation
qz

Figure 2.2: Complete transformation between coordinates x, z, qx and qz

In extension to this interim result the application of the system reduction in z coordi-
nates has to be determined.
Linear constraining of the mechanical system, stated in equation 2.39, needs adaption
of notation in z-coordinates:

M̄x 9x � Āxx x�TzÐÑ M̄z 9z � M̄zT�1M̄�1
x ĀxTlooooooooomooooooooon

Āz

z � Āzz (2.46)

The question now is how to choose matrix M̄z to close the following equation problem:

x ô x � Tz ô z

ó ó
M̄z �?

M̄x 9x � Āxx M̄z 9z � Āzz
Jf,xx � 0 ô Āz � M̄zT�1M̄�1

x ĀxT ô Jf,zz � 0
Az � T�1AxT

ó Jf,z � Jf,xT ó

M̄x 9x � Āx � JTf,xλx ó M̄z 9z � Āz � JTf,zλz

ó ó

x � Jxqx ô Jz � T�1JxR ô z � Jzqz

Jf,xJx
!� 0 Jf,zJz

!� 0

ó ó ó

9qx �
�
JTx M̄xJx

��1 JTx ĀxJxqx ô qx � Rqz ô 9qz �
�
JTz M̄zJz

��1 JTz ĀzJzqz

9qx � Ãxqx Ãz � R�1ÃxR 9qz � Ãzqz
(2.47)
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2 Constrained linear multibody systems - system reduction

Starting at bottom in equation 2.47 and using of relations on the right side (z-
coordinates) above achieves:

Ãx � RÃzR�1 � R
�
JTz M̄zJz

��1 JTz ĀzJzR�1

� R
�
RTJTx T�TM̄zT�1JxR

��1 RTJTx T�TM̄zAzT�1JxRR�1

� RR�1 �JTx T�TM̄zT�1Jx
��1 R�TRTJTx T�TM̄zT�1AxTT�1JxRR�1

�
�
JTx T�TM̄zT�1Jx

��1 JTx T�TM̄zT�1AxJx (2.48)

As stated in the equation at the bottom left also holds:

Ãx �
�
JTx M̄xJx

��1 JTx M̄xAxJx (2.49)

Comparing equations 2.48 and 2.49 enables relation between matrices M̄x and M̄z:

M̄x � T�TM̄zT�1 ñ M̄z � TTM̄xT (2.50)

Remark 5.
The definition of matrix M̄z,

M̄z � TTM̄xT, (2.51)

enables consistency of state transformation x � Tz with respect to constraints on the
original system. Note that contrary to the similarity transformation applied on the
dynamic matrix Āx, a congruence transformation has to be applied on M̄x.

Physical interpretation

Consideration of system energy V pxq offers a physical interpretation of the above
result:

V pxq � xT
�
K 0
0 Mx

�
x x�Tz

ùñ V pzq � zTTT

�
K 0
0 Mx

�
Tz (2.52)

Compare to equation 2.50:

M̄z � TTM̄xT � TT

�
I 0
0 Mx

�
T (2.53)

Due to definition of M̄x, xTM̄xx is related to term of system energy.
By modification of equation 2.35 this relationship can be fixed:�

K 0
0 I

� �
I 0
0 M

� �
9r
:r

�
�

�
K 0
0 I

� �
0 I
�K �D

� �
r
9r

�
�

�
K 0
0 I

� �
0
I

�
F�

K 0
0 M

�
loooomoooon

M̃x

�
9r
:r

�
�

�
0 K
�K �D

� �
r
9r

�
�

�
0
I

�
F (2.54)
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2.7 Conclusion

V pxq � xTM̃xx x�Tz
ùñ V pzq � zT TTM̃xTlooomooon

M̃z

z (2.55)

This consideration offers a physical plausibility of remark 5:

Remark 6.

• Considering equation 2.34 mass matrix M defines some kind of weighting be-
tween the differential equations. Although this weighting is not essential for de-
scribing systems dynamic, it plays a significant roll, when applying mechanical
constraints, since it influences the fusion of inertias coupled through a constraint.

• In order to ensure correct involvement of mechanical constraints, system energy
has to be conserved during state transformation. This condition requires trans-
formation of the mass matrix as stated in remark 5.

• In state space formulation the system decomposes into two parts. The first part
describing the relation between positions and velocities, is simply the realization
of a chain of integrators. State transformation of states referring to this chain
of integrators, i. e. positions, has no effect either on the systems dynamic nor
on the later addition of mechanical constraints, since it does not influence the
original system of differential equations second order. Consequently such state
transformations can be considered as common state transformations and applied
as usual. The second part is the realization of the multibody dynamic. State
transformations including states referring to this part, i. e. velocities, have to
be considered as defined above to ensure consistency with respect to the later
addition of mechanical constraints.

2.7 Conclusion

This chapter shows the consideration of additional holonomic constraints to a mech-
anical multibody problems. Thereby the constraints Jacobian matrix plays an essential
role for reducing the system of differential equations to a minimal number. This sys-
tem reduction can be applied with an arbitrary basis to the null space of this Jacobian
matrix. Transition to state space formulation enables application of common con-
trol methods. Another important conclusion to this chapter is, that performing state
transformations and afterwards applying additional constraints to the system needs
a congruence transformation of the mass matrix to conserve the original mechanical
impact of the constraints.
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2 Constrained linear multibody systems - system reduction
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3
System reduction and stability

The objective of this chapter is to investigate the impact of linear con-
straints on the stability of linear multibody systems. The proof of stability
is done by using the theorem of Lyapunov. Furthermore the issue, if stabil-
ity of a linearly state controlled system is endangered by linear constraints,
needs to be clarified. The motivation behind this task is to investigate the
possibility to use only one state feedback matrix to control a linear multi-
body system regardless of any additional linear constraint applied to the
system. In this case fictitious mechanical systems are used to evaluate sta-
bility. The same considerations are valid for stability of a state observer’s
observation error dynamic.

3.1 Stability of linear constrained linear multibody systems

Theorem 1. Stability of linear constrained linear multibody systems
Application of linear constraints to a linear multibody system can not destabilize the
system.

This theorem is a physical necessity due to d’Alembert’s principle (see chapter 2.2)
and can also be proofed mathematically.

Proof.
In a first step conditions for stability of a linear multibody system have to be developed.
Theorem 2. Theorem of Lyapunov [6]
Let x � 0 be an equilibrium point for 9x � fpxq and D � Rn be a domain containing
x � 0. Let V : D Ñ R be a continuously differentiable (scalar) function such that,

V p0q � 0 and V pxq ¡ 0 in D � t0u (3.1)
9V pxq ¤ 0 in D (3.2)

Then, x � 0 is stable (in the sense of Lyapunov). Moreover, if

9V pxq   0 in D � t0u (3.3)

then x � 0 is asymptotically stable.
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3 System reduction and stability

Further V pxq is called Lyapunov function.

Adaption of notation of equation 2.36 with respect to Lyapunov theorem leads to:�
rT 9rT

�
�
�
xT 9xT

�
(3.4)

ó�
9x
:x

�
�

�
0 I

�M�1K �M�1D

� �
x
9x

�
�

�
0

M�1F

�
(3.5)

Evaluation of stability considers autonomous system (F � 0q.
Due to its positivity system energy is a candidate to be a Lyapunov function:

V px, 9xq �
1
2 9xTM 9x �

1
2xTKx ¡ 0, @x, 9x � 0 (3.6)

Using symmetry properties of M, D and K and equation 3.4 enables (see also [7]):

9V px, 9xq �
1
2
�
:xTM 9x � 9xTM:x � 9xTKx � xTK 9x

�
�

1
2

�
rM:xsT 9x � 9xTM:x � 9xTKx � xTK 9x

	
�

1
2
��
� 9xTD� xTK

�
9x � 9xT r�D 9x �Kxs � 9xTKx � xTK 9x

�
� � 9xTD 9x   0, @ 9x � 0 (3.7)

According theorem of Lyapunov matrix D positive definite (see equation 2.6) ensures
asymptotic stability of the system.

The addition of linear constraints to the system results in a reduced system (see
equation 2.32):

JTr MJrloomoon
M̃

:q � �JTr DJrloomoon
D̃

9q � JTr KJrloomoon
K̃

q � JTr Floomoon
Q

(3.8)

If

xTMx ¡ 0 @x � 0 (3.9)

the symmetric matrix M is called positive definite. All eigenvalues of a symmetric real
matrix are real. The eigenvalues of a positive definite matrix are true positive. Due
to equation 3.9 and the choice x � Jrq,

qTJTr MJrq ¡ 0 @q � 0 (3.10)

holds, if Jr has full column rank (linear independent columns), because x � 0 if and
only if q � 0. In consequence symmetric matrix JTr MJr is positive definite too and its
eigenvalues are true positive. Analogously this fact holds for negative definite matrices
M

xTMx   0 @x � 0 (3.11)

and its true negative eigenvalues.
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3.1 Stability of linear constrained linear multibody systems

Remark 7.
If all eigenvalues of a symmetric matrix M have the same sign, the transformation
JTr MJr does not influent this sign for arbitrary full column rank matrices Jr. Although
the number of eigenvalues and its values in general are different.

According to remark 7 matrices M̃ and D̃ again are positive definite:

M̃ � M̃T ¡ 0 (3.12)
D̃ � D̃T ¡ 0

Due to the fact that symmetric matrix K can contain zero columns and corresponding
zero rows it is not a positive definite but a positive semidefinite matrix. Removing
those columns and rows achieves a positive definite sub matrix. This sub matrix stays
positive definite during the above transformation. The zero columns and rows result in
zero columns and rows of the transformed matrix K̃. Consequently K̃ is again positive
semidefinite:

K̃ � K̃T ¥ 0 (3.13)

In analogy to the unconstrained case system energy can be used to find a Lyapunov
function ensuring stability of the constrained system:

M̃:q � �D̃ 9q � K̃q �Q (3.14)
õ (3.15)�
9q
:q

�
�

�
0 I

�M̃�1K̃ �M̃�1D̃

� �
q
9q

�
�

�
0

M̃�1Q

�
(3.16)

V pq, 9qq �
1
2 9qTM̃ 9q �

1
2qT K̃q ¡ 0, @q, 9q � 0 (3.17)

9V pq, 9qq �
1
2
�
:qTM̃ 9q � 9qTM̃:q � 9qT K̃q � qT K̃ 9q

�
�

1
2

��
M̃:q

�T
9q � 9qTM̃:q � 9qT K̃q � qT K̃ 9q

	
�

1
2
��
� 9qT D̃� qT K̃

�
9q � 9qT

�
�D̃ 9q � K̃q

�
� 9qT K̃q � qT K̃ 9q

�
� � 9qT D̃ 9q   0, @ 9q � 0 (3.18)

According theorem of Lyapunov a positive definite matrix D̃ (remark 7) ensures asymp-
totic stability of the reduced system.
Remark 8.

• A linear multibody system is asymptotically stable, if the damping matrix D is
positive definite, provided mass matrix M is positive definite and stiffness matrix
K is positive semidefinite.

• Linear constraining does not influence stability, due to the fact that transformed
damping matrix D̃ is positive definite if D is.
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3 System reduction and stability

3.2 Stability in state space formulation

In state space formulation asymptotic stability is defined by the negative signs of
the real parts of the eigenvalues of its dynamic matrix A. Considering state space
formulation of the constrained system (see equation 2.37) remark 8 enables important
rationale.

M̄ 9x � Āx � B̄u
9x � M̄�1Āloomoon

A

x � M̄�1B̄loomoon
B

u (3.19)

ó

JTx M̄Jx 9q � JTx ĀJxq � JTx B̄u
M̃ 9q � JTx ĀJxq � JTx B̄u

9q � M̃�1JTx ĀJxqloooooomoooooon
Ã

� M̃�1JTx B̄loooomoooon
B̃

u

9q � Ãq � B̃u (3.20)

Remark 9.
According to theorem 1 stability of the unconstrained system (equation 3.19) guarantees
stability of the reduced system (equation 3.20). This fact is manifested in the linked
properties of the matrices M̄, Ā and Jx. Evaluating stability of the reduced system in
state space formulation by considering eigenvalues of Ã is nontrivial.

3.3 Stability of controlled subsystems

This section answers the question if the stability of the dynamic of an controlled
system 3.21 in general is conserved while applying linear constraints (equation 3.22),
by mechanical interpretation.
Considering a system controlled by linear state feedback u � Kx,

9x � rA�BKsx, (3.21)

application of linear constraints results in:

9q �

�
���JTx M̄xJx

��1 JTx AJxlooooooooooomooooooooooon
Ã

�
�
JTx M̄xJx

��1 JTx Bloooooooooomoooooooooon
B̃

KJxloomoon
K̃

�
��q (3.22)

This system can be interpreted as linear state controlled system with feedback matrix
K̃ � KJx. In order to evaluate stability of this system with respect to additional linear
constraints a state transformation has to be applied. This transformation targets
on achieving a diagonal form of the system’s dynamic matrix for later mechanical
interpretation.
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3.3 Stability of controlled subsystems

Definition 4. Diagonalizable matrix
A quadratic matrix A P Rnxn is called diagonalizable if it is similar to a diagonal
matrix D P Cnxn. Therefore exists a regular matrix T P Cnxn such that D � T�1AT.
Remark 10.
All eigenvalues of a diagonalizable matrix have equal algebraic and geometric multiplic-
ity. Consequently dimension of eigenspace is n, i. e. there exist n linear independent
eigenvectors.
Corollary 1. Stability of constrained controlled systems (case 1)
If the stable controlled system’s dynamic A � BK P Rnxn is diagonalizable and all
eigenvalues λi to A � BK fulfill λi P R, i � 1, . . . , n, linear constraints can not
destabilize it.

According to the conditions in corollary 1 the controlled system can be regular trans-
formed to a similar diagonal system with dynamic D P Rnxn. This similar system
can easily be interpreted to describe the dynamical behavior of a mechanical system
consisting of damped inertias (Ñ K � 0). Therefore arbitrary linear constraints are
physically consistent to this fictive system. According to theorem 1 linear constraints
can not destabilize the fictitious system and consequently also the controlled system
A�BK.
Corollary 2. Stability of constrained controlled systems (case 2)
If the stable controlled system’s dynamic A�BK P Rnxn is diagonalizable and linear
constraints in general can destabilize it.

According to the conditions in corollary 2 the eigenvalues of the controlled system can
be either real or complex conjugate pairs. The controlled systems now can be regularly
transformed to a similar but tridiagonal system with dynamic D P Rnxn. D consists of
diagonal parts corresponding to the real eigenvalues and 2x2 blocks corresponding to
complex conjugate eigenvalue pairs. Mechanical interpretation of this system dynamic
requires damped inertias and elementary mass-spring-damper configurations. There-
fore state vector contains in general velocities and positions. Consequently arbitrary
linear constraints are non holonomic and system can be destabilized in general.
Stability can be evaluated by transforming possible linear constraints of the original
mechanical system from x- to z-coordinates (see chapter 2.6.3) and assessing their
physical consistency to the fictive system.
Remark 11.

• If the stable controlled system’s dynamic A � BK P Rnxn is not diagonalizable,
stability evaluation due to linear constraints is not possible by mechanical inter-
pretation of A�BK.

• All above statements hold analogously for an observer error dynamic and appli-
cation of linear constraints.

• The feedback matrix K and consequently the choice of eigenvalues in the con-
trolled system are design parameters. Therefore it is possible to design K with
respect to achieving stable subsystems for given linear constraints.
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3 System reduction and stability

• In the case of specific constraints consideration of the eigenvalues of the controlled
subsystems enables immediate stability evaluation.

3.4 Stability under arbitrary switching

Due to the fact that arbitrary switching between asymptotically stable systems can
result in an unstable behavior, stability of arbitrary switching systems is an actual
research topic in control theory (see for example [8]).
Source of this fact are complex conjugate eigenvalue pairs. Negative sign of their real
parts ensures that any norm of the state vector x tends to zero (equation 3.23), i. e.
the system is asymptotically stable, but it does not certainly decrease at any time
instant (equation 3.24).

lim
tÑ8

||xptq|| � 0 (3.23)

Dt0,∆t ¡ 0 : ||xpt0q||   ||xpt0 �∆tq|| (3.24)

Considering two systems with complex conjugate eigenvalue pairs and different eigen-
vectors, switching between those systems at those instants of time t0 � ∆t defined
in equation 3.24 enables possibly increasing norm. In consequence the total system’s
dynamic is possibly unstable for arbitrary switching between the two asymptotically
stable systems.
Nevertheless there exist stability criteria for stable arbitrary switched systems for
example the development of a common Lyapunov function (see for example [9] and
[10]).
Considering linearly constrained linear multibody systems it is obvious that arbitrary
switching between constraints is not feasible since the transition from one constraint
to another can not occur instantly. Feasible transitions need unconstrained interims,
where the first constraint is not valid any more and the second not valid so far. In
this interim time states x have to be adapted to suffice the new constraint (denoted
in xq). This condition can be mathematically formulated by use of generalized inverse
J�x :

x � Jxq
JTx x � JTx Jxq�

JTx Jx
��1 JTxloooooomoooooon

J�x

x � q

JxJ�x x � xq (3.25)

Equation 3.25 can be interpreted as a projection of an arbitrary vector x into a sub-
space that fulfills the constraints. As already stated in theorem 1 transition can not
destabilize the system. Considering equations 3.6 and 3.17 describing systems energy
at switching time and equation 3.25 it is obvious that the Lyapunov functions are
equal at switching time.
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3.5 Conclusion

Remark 12.
@t : xptq � xqptq switching between the unconstrained system and the constrained
system is physical feasible and arbitrary switching can not destabilize the system.

Remark 12 holds for stability of arbitrary switching between controlled system and
controlled subsystem if they are physically interpretable (see chapter 3.3).

3.5 Conclusion

The target of this chapter was to clarify possible stability problems of a multibody
system due to linear constraints. From the mechanical point of view stability is ensured
by d’Alembert’s principle. This can be mathematically proofed by usage of Lyapunov
theorem.
The chapter further offers conditions for conservation of stability of state controlled and
later linearly constrained multibody systems. The motivation of this is the possibility
to design only one state feedback matrix to achieve a stable control of the multibody
system regardless of any additional linear constraint. Thereby physical interpretation
of the constraints acting on a fictitious mechanical system represented by the controlled
system’s dynamic plays an decisive role. The same considerations are valid for the
conservation of the stability of a state observer’s observation error dynamic.
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4
System reduction and optimality

Optimality in a specific definition is a common way to design feedback
control laws or state estimators in control theory. The LQR problem and
the Kalman filter problem (see [11]) are famous examples to this approach.
The task of this chapter is to apply this control design approach, respec-
tively state estimator design approach, to linear constrained multibody
systems. Therefore the impact of system reduction, introduced in chapter
2, on the optimality of a linear state feedback has to be analyzed. This
task is an extension to the stability evaluation in chapter 3. Similarly the
motivation is to design one optimal state feedback or one optimal Kalman
filter system for optimal control or optimal observation of a linear multi-
body system regardless of any additional linear constraints applied to the
system.
Therefore at the beginning of this chapter the algebraic matrix Riccati
equation (see [11]), which provides the solutions of such problems, and
its solvability is summarized. Then a short overview on the optimal state
estimation problem follows. The system reduction enables the calculation
of a reduced state estimator. The question is, if this reduced state estimator
still is optimal considering the reduced system. In a similar way optimality
of a reduced optimal state feedback is investigated, after introducing the
LQ optimal control problem in general.

4.1 Algebraic Matrix Riccati equation

The algebraic matrix Riccati equation plays a decisive role in optimal control and state
estimation problems, because its solution provides the solution of these problems. Due
to its importance the algebraic matrix Riccati equation is summarized shortly.

Definition 5. The algebraic matrix Riccati equation (see [12])
The equation

ATX�XA�XRX�Q � 0 (4.1)

is called algebraic matrix Riccati equation in respect of the symmetric (n � n) matrix
variable X � XT and with A,R,Q P Rnxn.
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4 System reduction and optimality

Definition 6. Stabilizing solution of the algebraic matrix Riccati equation
(see [12])
There exists at maximum one solution X̄, which stabilizes the system rA�RX̄s. The
existence of this stabilizing solution is guaranteed by following conditions:

1. The pair pA,Rq is stabilizable (see definition 7).
2. The pair pQ,Aq does not have not observable modes on the imaginary axis.
3. R ¤ 0

Remark 13.

• Satisfying conditions in definition 6 algebraic matrix Riccati equation has a
unique positive semi-definite solution X̄ � X̄T ¥ 0.

• First condition in definition 6 ensures the existence of a solution of the alge-
braic matrix Riccati equation. Conditions two and three ensure X̄ ¥ 0 and in
consequence stability of rA�RX̄s.

• Condition "Pair pQ,Aq detectable" implicates second condition in definition 6.
• Condition "Pair pQ,Aq observable" implicates second condition in definition 6

and X̄ ¡ 0 ([13]).

4.1.1 Considerations on stabilizability and detectability

This section is a short excursus on stabilizability and detectability of a system:

9x � Ax �Bu (4.2)
y � Cx

Definition 7. Stabilizability and Detectability (see [11])
A system is stabilizable if all unstable modes are state controllable1. A system is
detectable if all unstable modes are observable2.

Lemma 2. For full rank matrix A P Rmxn (m   n) and symmetric positive definite
matrix T ¡ 0 P Rnxn holds

N pAq � N pATTAq (4.3)

Proof.

dim
�
N pAT q

�
� m� rank

�
AT

�
� 0 (4.4)

ATy � 0 ðñ y P N pAT q ðñ y � 0 (4.5)
AT Axloomoon

y

� 0 ðñ Axloomoon
y

� 0 ðñ x P N pAq (4.6)

1For controllability criteria see [11].
2For observability criteria see [11].
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4.1 Algebraic Matrix Riccati equation

Consequently holds:

N pAq � N pATAq (4.7)

ATTA � AT
�
T

1
2

�T
loooomoooon

ÃT

�
T

1
2

�
Alooomooon

Ã

(4.8)

T 1
2 is called principal square root. It is unique and positive definite due to the fact

that T is positive definite. In consequence Ã is again a full rank matrix, due to:

rank
�
ÃT

�
� rank

�
Ã
�
� rank

�
T

1
2 A
	
� rank pAq (4.9)

According to equations 4.4 to 4.6 follows:

ÃT Ãx � 0 ðñ Ãx � 0 ðñ x P N pÃq � N pT
1
2 Aq (4.10)

T
1
2 ¡ 0 ùñ dim

�
N
�

T
1
2

		
� 0 (4.11)

T
1
2 Ax � 0 ðñ Ax � 0 ðñ x P N pAq (4.12)

Consequently holds:

N pAq � N pATTAq (4.13)

Definition 8. Popov-Belevitch-Hautus criterion for stabilizability (see for
example [14])
λ is an arbitrary eigenvalue of matrix A where Retλu ¥ 0. The pair pA,Bq is stabi-
lizable if and only if for every vector p generated from p�A � p�λ holds p�B � 0.

The condition p�B � 0 is equivalent to

rp�sT R N
�
BT
�
. (4.14)

Definition 9. Popov-Belevitch-Hautus criterion for detectability (see for ex-
ample [14])
λ is an arbitrary eigenvalue of matrix A where Retλu ¥ 0. The pair pC,Aq is de-
tectable if and only if for every vector q generated from Aq � λq holds Cq � 0.

The condition Cq � 0 is equivalent to

q R N pCq. (4.15)

Consideration of Popov-Belevitch-Hautus criterion (definition 8 and 9), Lemma 2 and
duality between state control and state observation enables following remark:
Remark 14.

• Pair pA,BTBT q is stabilizable if and only if pair pA,Bq is stabilizable.
• Pair pCTTC,Aq is detectable if and only if pair pC,Aq is detectable.
• Pair pAT ,CT q is stabilizable if and only if pair pC,Aq is detectable.
• Pair pBT ,AT q is detectable if and only if pair pA,Bq is stabilizable.
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4 System reduction and optimality

4.2 System reduction and optimality of state estimation

In many control applications system states are not directly measurable, although their
knowledge is essential for the control system design. This problem can be solved by
designing a state observer, that observes the system states employing the inputs and
outputs. In order to consider model and measurement uncertainties from the stochastic
point of view, the system can be interpreted as noised system. Consequently, the
system states are stochastic quantities. To achieve an optimal design of a state observer
(in this context also called state estimator), the variance of the estimation error can
be minimized. In the following sections this task is formulated mathematically and its
solution the so called Kalman filter (see [11]) is presented.
Afterwards system reduction is applied on a general Kalman filter system. It turns out
that the reduced system again has the form of a common state observer, employing a
reduced feedback matrix K̃f,1. Since it is possible to design a Kalman filter system on
the reduced problem (feedback matrix K̃f,2) the question is, if there is any equivalence
between these two feedback matrices K̃f,1 and K̃f,2. If they are equal optimality of a
Kalman filter system would be conserved during application of system reduction on
the original system. In consequence it would be possible to design only one optimal
Kalman filter system for optimal observation of the linear multibody system regardless
of any additional linear constraints applied on the system. The last section of this
chapter tries to answer this question.

4.2.1 Optimal state estimation problem

As suggested in [11] state space model is extended by stochastic measurement inputs
wn and disturbance signals wd (process noise):

9x � Ax �Bu�wd (4.16)
y � Cx �wn

xp0q � x0

Stochastic signals are assumed to be uncorrelated zero-mean ergodic Gaussian stochas-
tic processes:

Etwdptqu � Etwnptqu � 0 (4.17)
EtwdptqwT

n pτqu � EtwnptqwT
d pτqu � 0

EtwdptqwT
d pτqu � Wδpt� τq

EtwnptqwT
n pτqu � Vδpt� τq

W � WT ¥ 0
V � VT ¡ 0

W and V are the covariance matrices of respectively wd and wn.
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4.2 System reduction and optimality of state estimation

The task is to find a dynamic system that estimates the states x of the system
in 4.16 employing inputs u and measurements y, in a way that the estimation er-
ror’s dynamic is asymptotically stable and the expected value of the estimation error
Etpx � x̂qT px � x̂qu is minimal.
The solution of optimal state estimation problem is called Kalman filter:

Definition 10. Kalman filter (see [11])
The Kalman filter has the structure of an ordinary state estimator or observer with

9x̂ � Ax̂ �Bu�Kfpy�Cx̂q (4.18)

The optimal choice of Kf , which minimizes Etpx � x̂qT px � x̂qu, is given by

Kf � YCTV�1 (4.19)

where Y � YT ¥ 0 is the unique positive semi-definite solution of the algebraic Riccati
equation

YAT �AY �YCTV�1CY �W � 0 (4.20)

Kalman filter - preconditions

According to chapter 4.1 preconditions for existence of unique positive semi-definite
solution Y of the algebraic Riccati equation (4.20) have to be adapted. Comparison
to equation 4.1 shows the parameter equivalences:

A Ñ AT (4.21)
R Ñ �CTV�1C
Q Ñ W

Due to V ¡ 0 the inverse V�1 exists and is positive definite too (V�1 ¡ 0). In
consequence of remark 7 and provided that C has full column rank, CTV�1C is
positive definite and �CTV�1C is negative definite. Therefore the condition R ¤ 0
holds due to definition of V.
According to remark 14 following two conditions ensure a positive semi-definite solu-
tion of the algebraic Riccati equation in 4.20:

1. Pair pA,Wq has to be stabilizable.
2. Pair pC,Aq has to be detectable.

4.2.2 Reduced Kalman filter

In this section system reduction is applied on a Kalman filter system:

9x̂ � rA�KfCs x̂ �Bu�Kfy (4.22)
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4 System reduction and optimality

Although it does not appear in equation 4.22 mass matrix M̄ plays a significant roll
in system reduction.

9q̂ �
�
JTx M̄Jx

��1 JTx M̄looooooooomooooooooon
J̃T

x

rA�KfCsJxq̂ . . .

� � � �
�
JTx M̄Jx

��1 JTx M̄looooooooomooooooooon
J̃T

x

Bu�
�
JTx M̄Jx

��1 JTx M̄looooooooomooooooooon
J̃T

x

Kfy

9q̂ � J̃Tx AJxloomoon
Ã

q̂ � J̃Tx Kfloomoon
K̃f,1

CJxloomoon
C̃

q̂ � J̃Tx Bloomoon
B̃

u� J̃Tx Kfloomoon
K̃f,1

y

9q̂ �
�
Ã� K̃f,1C̃

�
q̂ � B̃u� K̃f,1y (4.23)

As shown in equations 4.23 system reduction applied on the Kalman filter leads to
a reduced Kalman filter. Nevertheless this does not allow any conclusions about its
optimality in terms of chapter 4.2.1. Therefore the reduced Kalman filter has to be
compared to a Kalman filter applied on the reduced system.

4.2.3 Kalman filter on reduced system

Reducing the noised system
9x � Ax �Bu�wd (4.24)
y � Cx �wn

according to equation 2.37, leads to:
9q � Ãq � B̃u� J̃Tx wd (4.25)
y � C̃q �wn

Hence covariance of process noise has to be recalculated, whereas system reduction
has no influence on the measurement noise covariance matrix:
EtJ̃Tx wdptqwT

d ptqJ̃xu � J̃TxEtwdptqwT
d ptquJ̃x � J̃Tx WJ̃xlooomooon

W̃

δpt� τq (4.26)

V � Ṽ
According to chapter 4.2.1 the Kalman filter on the reduced system is given by

9q̂ �
�
Ã� K̃f,2C̃

�
q̂ � B̃u� K̃f,2y (4.27)

K̃f,2 � ỸC̃T Ṽ�1 (4.28)

where Ỹ � ỸT ¥ 0 is the unique positive semi-definite solution of the algebraic Riccati
equation

ỸÃT � ÃỸ � ỸC̃T Ṽ�1C̃Ỹ � W̃ � 0 (4.29)

According to chapter 4.2.1 two preconditions have to be mentioned:
1. Pair pÃ,W̃q has to be stabilizable.
2. Pair pC̃, Ãq has to be detectable.
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4.2 System reduction and optimality of state estimation

4.2.4 Evaluation of the conservation of optimality

The point of interest is, if the reduced Kalman filter equals the Kalman filter designed
for the reduced system. The answer can be achieved by comparing the two feedback
matrices K̃f,1 and K̃f,2 and the corresponding algebraic Riccati equations:

I: YAT �AY �YCTV�1CY �W � 0 (4.30)
K̃f,1 � J̃Tx YCTV�1

II: ỸÃT � ÃỸ � ỸC̃T Ṽ�1C̃Ỹ � W̃ � 0 (4.31)
K̃f,2 � ỸC̃T Ṽ�1

Further exist the already known relations between the parameters of the original and
the reduced systems:

Ã � J̃Tx AJx �
�
JTx M̄Jx

��1 JTx M̄AJx (4.32)
C̃ � CJx

W̃ � J̃Tx WJ̃x �
�
JTx M̄Jx

��1 JTx M̄WM̄TJx

��
JTx M̄Jx

��1
	T

Ṽ � V

The assumption that feedback matrices are equal leads to a relation between Y and
Ỹ:

K̃f,1
!� K̃f,2 (4.33)

J̃Tx YCTV�1 !� ỸC̃T Ṽ�1

J̃Tx YCT !� ỸJTx CT�
JTx M̄Jx

��1 JTx M̄YCT !� ỸJTx CT

JTx M̄YCT !� JTx M̄JxỸJTx CT�
JTx M̄

�
�Y �CT !�

�
JTx M̄

�
�
�
JxỸJTx

�
�CT�

JTx M̄
� �

Y � JxỸJTx
�

CT !� 0 (4.34)

Equation 4.34 can be transfered into eight sufficient conditions, assuming M̄ is a
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4 System reduction and optimality

diagonal, positive definite matrix:

1) C !� 0 (4.35)
2) Jx

!� 0 (4.36)
3) M̄ !� 0 (4.37)
4) Y !� 0, Ỹ !� 0 (4.38)
5) Y � JxỸJTx

!� 0 (4.39)
6) Y � JxỸJTx P N pCq (4.40)
7) C

��
Y � JxỸJTx

��
P C

�
JTf
�
� N

�
JTx
�

(4.41)
8) C

��
Y � JxỸJTx

�
CT
�
P C

�
JTf
�
� N

�
JTx
�

(4.42)

Where C pZq denotes the column space of a matrix Z.
At least one of these sufficient conditions has to hold in order to ensure that equation
4.34 holds. Due to the fact that equations 4.35 to 4.38 are obviously trivial, it is useful
to further investigate conditions 4.39 to 4.42.
The effect of condition 4.39 can be investigated by considering the respective Riccati
equations. Applying relations between system parameters in the second Riccati equa-
tion (4.31) achieves:

ỸJTx AT J̃x � J̃Tx AJxỸ � J̃Tx WJ̃x � ỸJTx CTV�1CJxỸ � 0 (4.43)

Since Jx is a full column rank (n � q) matrix, with n>q, the following equation is
necessary and sufficient to equation 4.43.

JxỸJTx AT J̃xJTx � JxJ̃Tx AJxỸJTx � JxJ̃Tx WJ̃xJTx � JxỸJTx CTV�1CJxỸJTx � 0
(4.44)

Using the sufficient relation between the two algebraic Riccati equations (equation
4.39) leads to:

YAT
�
JxJ̃Tx

�T
�
�
JxJ̃Tx

�
AY �

�
JxJ̃Tx

�
W
�
JxJ̃Tx

�T
�YCTV�1CY � 0 (4.45)

Consequently comparison to the first Riccati (4.30) equation gives a sufficient condition
for the equality of K̃f,1 and K̃f,2:

YAT
�
JxJ̃Tx

�
T �

�
JxJ̃Tx

�
AY �

�
JxJ̃Tx

�
W
�
JxJ̃Tx

�
T �YCTV�1CY � 0

JxJ̃Tx � Jx
�
JTx M̄Jx

��1 JTx M̄ !� I (4.46)

Remark 15.
The Matrix JxJ̃Tx is idempotent for arbitrary matrices M̄ and Jx. In consequence it
has eigenvalues at λi � 1 { 0, i � 1, ..., n.
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4.3 System reduction and optimality of LQ optimal control

Condition 4.46 holds for arbitrary invertible matrices Jx, but generally not for non
quadratic matrices Jx used in system reduction (see chapter 2.4).
In general also conditions 4.40, 4.41 and 4.42 do not hold.

Remark 16.
System reduction in general does not conserve optimality of an ordinary state estima-
tor.

4.2.5 Conclusion on system reduction and Kalman filtering

According to remark 16 it is in general not possible to design an optimal Kalman filter
in order to optimally estimate the states of a linear multibody system regardless of any
additional linear constraint. Although stability of the estimation error dynamic can be
possibly ensured (see chapter 3), performance of the state estimation in dependency
of additional constraining of the mechanical system can not be evaluated in general.

4.3 System reduction and optimality of LQ optimal control

The linear quadratic regulator (LQR) is a linear state feedback, that minimizes a
quadratic cost function. A similar approach to the problem of optimal state estimation
can be used to consider the influence of system reduction on a LQ optimal control.
As already stated in the introduction of this chapter, the motivation of this task is
to design only one optimal state feedback for optimal control of a linear multibody
system regardless of any additional linear constraint applied to the system.
At the beginning of this section the LQR problem is introduced in general and its
solvability and solution is presented. Application of system reduction on a system
controlled by an LQ optimal feedback matrix delivers a reduced LQ optimal feedback
matrix. Condition for conservation of optimality is the equivalence of this reduced LQ
optimal feedback matrix K̃r,1 and the LQ optimal feedback matrix K̃r,2 achieved by
solving the LQR problem on the reduced system.

4.3.1 LQR problem

Definition 11. Optimal state feedback (see [11])
The LQR problem, is a deterministic initial value problem: given the system 9x �
Ax � Bu with a non-zero initial state xp0q, find the input signal u(t) which takes
the system to the zero state (x � 0) in an optimal manner, i.e. by minimizing the
deterministic cost

J �

» 8

0

�
xptqTQxptq � uptqTRuptq

�
dt, (4.47)

with Q � QT ¥ 0 and R � RT ¡ 0.

33



4 System reduction and optimality

The optimal solution (for any initial state) is uptq � �Krxptq, where

Kr � R�1BTX (4.48)

and X � XT ¥ 0 is the unique positive semi-definite solution of the algebraic Riccati
equation

ATX�XA�XBR�1BTX�Q � 0 (4.49)

Optimal state feedback - preconditions

According to chapter 4.1 preconditions for existence of unique positive semi-definite
solution X of the algebraic Riccati equation (4.49) have to be adapted. Comparison
to equation 4.1 shows the parameter equivalences:

R � R1 Ñ �BR�1BT (4.50)

Due to R ¡ 0 the inverse R�1 exists and is positive definite. In consequence of
remark 7 and provide matrix B has full column rank, BR�1BT is positive definite
and therefore �BR�1BT is negative definite. In consequence condition three (R1 ¤ 0)
holds due to definition of R.
According to remark 14 following two conditions ensure a positive semi-definite solu-
tion of the algebraic Riccati equation in 4.20:

1. Pair pA,Bq has to be stabilizable.
2. Pair pQ,Aq has to be detectable.

Remark 17.
According to remark 13 the stricter condition, pair pQ,Aq observable implicates condi-
tion 2. and further guarantees a unique positive definite solution X ¡ 0 of the algebraic
Riccati equation in 4.49.

4.3.2 Reduced LQ optimal control

System reduction can be applied on the LQ optimal controlled system:

9x � rA�BKrsx (4.51)

9q � J̃Tx AJxloomoon
Ã

q � J̃Tx Bloomoon
B̃

KrJxloomoon
K̃r,1

q (4.52)

9q �
�
Ã� B̃K̃r,1

�
q

Equation 4.52 shows that the resulting system can again be interpreted as controlled
system with state feedback matrix K̃r.
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4.3 System reduction and optimality of LQ optimal control

4.3.3 LQ optimal control of reduced system

In order to analyze optimality of this state feedback, the LQ optimal control has to
be applied on the reduced system in equation 4.53.

9q � Ãq � B̃u (4.53)

According to the coordinate transformation x � Jxq the deterministic cost has to be
adapted:

J �

» 8

0
pqptqT JTx QJxloomoon

Q̃

qptq � uptqTRuptqqdt (4.54)

Q̃ � JTx QJx

R̃ � R

The solution of the LQR problem on the reduced system therefore is determined by:

uptq � K̃r,2qptq (4.55)
K̃r,2 � R̃�1B̃T X̃

where X̃ � X̃T ¥ 0 is the unique positive semi-definite solution of the algebraic Riccati
equation

ÃT X̃� X̃Ã� X̃B̃R̃�1B̃T X̃� Q̃ � 0 (4.56)

According to chapter 4.3.1 two preconditions have to be mentioned:
1. Pair pÃ, B̃q has to be stabilizable.
2. Pair pQ̃, Ãq has to be detectable.

4.3.4 Evaluation of the conservation of optimality

Comparing the reduced LQ optimal control and the LQ optimal control of the reduced
system represented by its feedback matrices and their corresponding algebraic Riccati
equations provides information about the conservation of optimality with respect to
system reduction.

I: ATX�XA�XBR�1BTX�Q � 0 (4.57)
K̃r,1 � R�1BTX

II: ÃT X̃� X̃Ã� X̃B̃R̃�1B̃T X̃� Q̃ � 0 (4.58)
K̃r,2 � R̃�1B̃T X̃

Stating the equality of feedback matrices achieves a relation between the inverse so-
lution of the algebraic Riccati equations. These inverses X�1 and X̃�1 only exist
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4 System reduction and optimality

assuming X and X̃ are positive definite. Therefore the pairs pQ,Aq and pQ̃, Ãq have
to be observable (see remark 13).

K̃r,1
!� K̃r,2 (4.59)

R�1BTXJx
!� R̃�1B̃T X̃

BTXJx
!� BT J̃xX̃ (4.60)

XJx
!� J̃xX̃ �

JxX̃�1 !� X�1J̃x

JxX̃�1 !� X�1M̄TJx
�
JTx M̄Jx

��T
JxX̃�1 �JTx M̄Jx

�T !� X�1M̄TJx

JxX̃�1JTx M̄TJx
!� X�1M̄TJx

JxX̃�1JTx
!� X�1 � (4.61)

The *-marked equations are only sufficient each with respect to the above equation,
but not necessary.
To apply relation 4.61 the algebraic Riccati equations in 4.57 have to be formulated
in terms of the inverse solutions:

ATX�XA�XBR�1BTX�Q � 0
X�1ATX�X�1XA�X�1XBR�1BTX�X�1Q � 0

X�1ATXX�1 �X�1XAX�1 �X�1XBR�1BTXX�1 �X�1QX�1 � 0
X�1AT �AX�1 �BR�1BT �X�1QX�1 � 0

X�1AT �AX�1 �BR�1BT �X�1QX�1 � 0 (4.62)
X̃�1ÃT � ÃX̃�1 � B̃R̃�1B̃T � X̃�1Q̃X̃�1 � 0 (4.63)

According to chapter 4.3.1 the solutions of the algebraic Riccati equations in terms of
the inverse solutions (4.62 and 4.63) for sure have unique positive definite solutions if

1. Pair p�AT ,�Qq is stabilizable
2. Pair p�ÃT ,�Q̃q is stabilizable
3. Pair pBR�1BT ,�AT q is observable
4. Pair pB̃R̃�1B̃T ,�ÃT q is observable

These conditions can be reformulated be use of remark 14:

1. Pair p�Q,�Aq is detectable
2. Pair p�Q̃,�Ãq is detectable
3. Pair p�AT ,Bq is controllable
4. Pair p�ÃT , B̃q is controllable
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4.3 System reduction and optimality of LQ optimal control

The relation between the two solutions in 4.61, the algebraic Riccati equations in terms
of the inverse solutions (4.62 and 4.63) and the relations between the parameters of the
original and the reduced system in 4.64 can be used to formulate a sufficient condition
(4.67) for equality of feedback matrices (4.59).

Ã � J̃Tx AJx �
�
JTx M̄Jx

��1 JTx M̄AJx (4.64)
B̃ � J̃Tx B
Q̃ � JTx QJx

R̃ � R

In the first step relations between system parameters were applied in the inverse for-
mulation of the second Riccati equation (4.63):

X̃�1JTx AT J̃x � J̃Tx AJxX̃�1 � J̃Tx BR̃�1BT J̃x � X̃�1JTx QJxX̃�1 � 0
JxX̃�1JTx AT J̃xJTx � JxJ̃Tx AJxX̃�1JTx � JxJ̃Tx BR̃�1BT J̃xJTx . . .

� � � � JxX̃�1JTx QJxX̃�1JTx � 0 (4.65)

Then the sufficient relations between the solutions of the inverse formulated algebraic
Riccati equations can be used:

X�1AT
�
JxJ̃Tx

�T
�
�
JxJ̃Tx

�
AX�1 �

�
JxJ̃Tx

�
BR̃�1BT

�
JxJ̃Tx

�T
�X�1QX�1 � 0

(4.66)

Finally the sufficient condition for equality of the feedback matrices K̃r,1 and K̃r,2 can
be stated by comparing 4.66 to the inverse formulation of the first Riccati equation
(4.62).

X�1AT
�
JxJ̃Tx

�
T �

�
JxJ̃Tx

�
AX�1 �

�
JxJ̃Tx

�
BR̃�1BT

�
JxJ̃Tx

�
T �X�1QX�1 � 0

(4.67)
JxJ̃Tx � Jx

�
JTx M̄Jx

��1 JTx M̄ !� I

Analogous to the optimal state estimator condition 4.67 holds for arbitrary invertible
matrices Jx, but generally not for non quadratic matrices Jx used in system reduction
(see chapter 2.4).

Remark 18.
System reduction in general does not conserve optimality of a state feedback.

4.3.5 Conclusion on system reduction and optimality of LQ optimal control

The motivation of this chapter was to design an optimal LQ optimal control to a
linear multibody system regardless of any additional linear constraint. As already
stated in remark 18 and expected due to section 4.2.5 this is not possible in general.
Consequently although stability of all reduced controlled subsystems can be ensured
(see chapter 3), loss of optimality can in general cause bad control performance.
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4 System reduction and optimality

Nevertheless exemplary application in chapter 6 shows that for certain problems loss
of optimality has hardly no influence on the control performance (see section 6.5.3).
Therefore, for these problems it is indeed possible to solve the LQR problem on the
unconstrained multibody system and use reduced controllers in constrained case. Cal-
culation of these suboptimal (in the sense of: not optimal anymore) reduced controllers
is determined by an arbitrary basis to the null space of the Jacobian matrix of the
constraints.
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reduction
From the mechanical point of view general drivetrain topologies have to be
considered as multibody systems. Further locked clutches correspond to
the application of additional linear holonomic constraints. Therefore the
task of this chapter is a practical application of the methods discussed in
chapter 2 on general drivetrain modeling.
First, linear modeling of general drivetrain topologies is discussed. In a
next step the constraints due to locked clutches are investigated employ-
ing unconstrained system parameters. Applying system reduction finally
achieves the transformation between the drivetrain model considering all
clutches to be slipping, i. e. not locked, and the drivetrain model consider-
ing certain clutches to be locked.

5.1 Typical drivetrain configuration

Dynamic of a drivetrain topology is uniquely determined by the motions of its inertias.
Since the motion of inertias are restricted to rotations, they can be described employing
moments of inertias Ji ¡ 0 (i � 1, . . . , N) and corresponding rotational coordinates ϕi
(i � 1, . . . , N).

M � diag
�
J1 . . . JN

�
� MT ¡ 0 (5.1)

ϕ �
�
ϕ1 . . . ϕN

�

Net forces acting on inertias consequently are net torques. These torques τ (see
equation 5.2) represent the summation of internal torques τ in and external torques τ ex.
Internal torques τ in (see equation 5.3) describe on the one hand interaction between
inertias over flexible shafts modeled by spring torques τ k and damper torques τ d, and
on the other hand torques due to kinetic friction τ kin within the drivetrain. External
torques τ ex (see equation 5.4) acting on inertias in the drivetrain appear as controllable
torques including propulsion torques applied by combustion engines τE and electric
motors τM and torques impressed in slipping clutches (τ̄C). Additionally external
torques τ ex consider non controllable torques τV applied due to gravity (influence of
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5 Drivetrain modeling employing system reduction

road slope), rolling resistances and air drag.

τ � τ in � τ ex (5.2)
τ in � τ kin � τ k � τ d (5.3)
τ ex � τE � τM � τ̄C � τV (5.4)

Clutches can be considered as elements switching between a torque impressing state
in slipping case and rigid shaft state in locked case. In a first step all clutches are
considered to be slipping. Transmitted torque of a slipping clutch (τC) is a function
of pressure applied on clutch plates. In practice actuation of the clutch plates is
done by controlling the current in a coil acting on a valve. This valve converts a
given constant volume flow to pressure on clutch plates by cross section modification.
A simplification in modeling clutch actuation is to enable direct torque impression
between clutch plates. This torque impression has to be strictly dissipative, i. e. there
is no way to impress energy on a clutch. Therefore its sign is defined by the sign of
differential angular velocity between the clutch plates.
To simplify the later consideration of locking clutches it is useful to split the external
torques into clutch torques τ̄C and remaining torques τ̄R acting on inertias:

τ ex � τE � τM � τVlooooooomooooooon
τ̄R

�τ̄C (5.5)

In order to achieve a linear behavior of the multibody system (see chapter 2) internal
torques τ in have to be linear functions of either angular positions or angular velocities
(see equation 5.6).

τ kin � �Dkin 9ϕ (5.6)
τ d � �Dd 9ϕ

τ k � �Kϕ

τ in � �Dkin 9ϕ�Dd 9ϕ�Kϕ � �D 9ϕ�Kϕ (5.7)

As already stated in equation 2.6 matrices K, Dd and Dkin have the following prop-
erties:

K � KT ¥ 0 (5.8)
Dkin � DT

kin ¡ 0
Dd � DT

d ¥ 0
D � Dd �Dkin ¡ 0

Also action of external torques τ ex on inertias is considered to be linear:

τ ex � τ̄R � τ̄C �
�
BR BC

� �τR
τC

�
�
�
BE BM BV BC

�
�
���
τE
τM
τV
τC

�
��� (5.9)
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5.2 Unconstrained equations of motion

Other common drivetrain elements are gear ratios and planetary gear sets. They can
be incorporated into stiffness and damping matrices (K, D) and input matrices BR
and BC.

5.2 Unconstrained equations of motion

Applying Newton’s laws of motion delivers a set of N linear differential equations
second order (see also equation 2.5 ):

M:ϕ � τ (5.10)
M:ϕ � �D 9ϕ�Kϕ�BRτR �BCτC

5.3 Unconstrained state space model

Substitution

x̃ �
�
ϕT 9ϕT

�T (5.11)

allows to create a state space model consisting of 2N differential equations of first
order (see chapter 2.6.2).�

I 0
0 M

� �
9ϕ
:ϕ

�
�

�
0 I
�K �D

� �
ϕ
9ϕ

�
�

�
0

BR

�
τR �

�
0

BC

�
τC (5.12)

Actually in most transmission use-cases rotational speeds represent the task of interest,
therefore it is sufficient to use only speeds 9ϕ and necessary components of ϕ in state
vector x. The necessary components of ϕ are those which describe spring and damper
forces due to flexible shafts. The simplest choice are the angular differences describing
the tension of the flexible shafts in the drivetrain topology. Definition of a new state
vector x (equation 5.13) reduces the system to N � g linear differential equations first
order assuming a number of g flexible shafts.

x �
�
∆ϕ1 . . . ∆ϕg 9ϕ1 . . . 9ϕN

�T
� T

�
ϕ
9ϕ

�
(5.13)

Introduced transformation T is not a regular state transformation, since matrix T is
not quadratic. In consequence there exists no inverse. Nevertheless the transformation
can be partitioned into a regular transformation T1 changing g angular coordinates
into angular difference coordinates (see equations 5.14 and 5.15) and a non-regular
transformation T2 eliminating the remaining angular coordinates from state vector x
(see equations 5.16 and 5.18). For second transformation columns resp. rows in every
matrix resp. vectors referring to angular coordinates have to be eliminated. Therefore
generalized right inverse T�

2 (see equation 5.17) can be used.

�
∆ϕ1 . . . ∆ϕg ϕg�1 . . . ϕN 9ϕ1 . . . 9ϕN

�T
� T1

�
ϕ
9ϕ

�
(5.14)
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T1

�
I 0
0 M

�
T�1

1 T1

�
9ϕ
:ϕ

�
� T1

�
0 I
�K �D

�
T�1

1 T1

�
ϕ
9ϕ

�
�T1

�
0

BR

�
τR �T1

�
0

BC

�
τC

(5.15)

x �
�
∆ϕ1 . . . ∆ϕg 9ϕ1 . . . 9ϕN

�T
� T2T1

�
ϕ
9ϕ

�
(5.16)

T�
2 � TT

2
�
T2TT

2
��1 (5.17)

T2T1

�
I 0
0 M

�
T�1

1 T�
2looooooooooooomooooooooooooon

M̄

T2T1

�
9ϕ
:ϕ

�
loooomoooon

9x

� T2T1

�
0 I
�K �D

�
T�1

1 T�
2looooooooooooooomooooooooooooooon

Ā

T2T1

�
ϕ
9ϕ

�
loooomoooon

x

. . .

� � � �T2T1

�
0

BR

�
looooomooooon

B̄R

τR �T2T1

�
0

BC

�
looooomooooon

B̄C

τC (5.18)

M̄ 9x � Āx � B̄RτR � B̄CτC � Āx �
�
B̄R B̄C

�loooomoooon
B̄

�
τR
τC

�
loomoon

u

(5.19)

9x � M̄�1Āloomoon
A

x � M̄�1B̄loomoon
B

u (5.20)

Remark 19.
• The state vector x consists of g angular differences and N rotational speeds.

Where g is the number of flexible shafts and N is the number of inertias in the
drivetrain topology.

• Matrix M̄ is diagonal. It includes moments of inertias and unity masses, due
to g additional entries in x. Therefore it is positive definite and in consequence
invertible:

M̄ � M̄T ¡ 0 (5.21)

• Input matrix B̄ contains zero rows ensuring that external torques and clutch
torques can only act on inertias.

• In the special case K � 0 the angular difference states can be removed. Therefore
Ā and consequently A become symmetric matrices:

Ā � ĀT ñ A � AT (5.22)

• Since state transformations T1 and T2 do not change angular velocities (see re-
mark 6) it is valid to use common state transformation without regarding conser-
vation of system energy and further mechanical constraints (see chapter 2.6.3).
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5.4 System reduction due to locked clutches

5.4 System reduction due to locked clutches

Locking one or several clutches corresponds to introducing holonomic, scleronomic
and linear resp. ϕ constraints into the mechanical system. τC can be separated into
slipping and locking clutches:

M:ϕ � �D 9ϕ�Kϕ�BRτR �BC,slτC,sllooooooooooooooooooooomooooooooooooooooooooon
F

�BC,lkτC,lk (5.23)

M:ϕ � F�BC,lkτC,lk (5.24)

5.4.1 Dual Space of linear mapping

For proofing relation between BC,lk and constraints due to locked clutches the concept
of dual space of linear mapping is used.

Definition 12. Dual space of linear mapping (see [5])
To every linear mapping:

A : V Ñ V 1 (5.25)

there exists a dual mapping:

AT : V� Ñ V 1� (5.26)

satisfying:

xx,yy � xx1,y1y | x P V , x1 P V 1, y P V� and y1 P V 1� . (5.27)

V� and V 1� are called dual spaces of V and V 1

Figure 5.1 summarizes the relations used in definition 12.

x P V AÝÑ x1 P V 1

Ó Ó
xx,yy � xx1,y1y
Ò Ò

y P V� AT

ÐÝ y1 P V 1�

Figure 5.1: Illustration to the dual space of linear mapping

Due to conservation of energy in mechanics transformation of force and velocity, resp.
torque and angular velocity, form a dual mapping (see definition 12). According to
equation 5.23, BC maps clutch torques τC to resulting torques τ̄C acting directly on
inertias:

τ̄C � BCτC (5.28)
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5 Drivetrain modeling employing system reduction

Due to the equilibrium of power the following equation holds:

xτ̄C, 9ϕy � xτC,∆ 9ϕCy, (5.29)

Consequently mapping of inertia’s velocities 9ϕ to differential speeds on clutches ∆ 9ϕC
must fulfill:

∆ 9ϕC � BT
C 9ϕ (5.30)

5.4.2 Interpretation of locked clutches’ torques

One condition to enable clutch locking is:

∆ 9ϕC,lk � 0 (5.31)

According to equation 5.30 constraints due to locking clutches can also be formulated
in terms of inertias’ angular velocities:

BT
C,lk 9ϕ � f̃p 9ϕq � 0 (5.32)

Since this constraints are holonomic, their integrability is ensured. Consequently they
have to hold also in terms of angular coordinates ϕ:

BT
C,lkϕ � fpϕq � 0 ñ Jf �

B

Bϕ

�
BT

C,lkϕ
�
� BT

C,lk (5.33)

In state space formulation the same considerations are valid:

B̄T
C,lkx � fpxq � 0 ñ Jf �

B

Bx
�
B̄T

C,lkx
�
� B̄T

C,lk (5.34)

M̄ 9x � Āx �
�
B̄R B̄C,sl

� � τR
τC,sl

�
looooooooooooooomooooooooooooooon

F

�B̄C,lkτC,lk

M̄ 9x � F� B̄C,lkτC,lk (5.35)

Remark 20.
• The transposed Jacobian matrix of constraints JTf equals input matrix of locking

clutch torques BC,lk resp. B̄C,lk, due to conservation of energy.
• Torques transmitted on locked clutches τC,lk assume role of Lagrangian multi-

pliers (compare equation 2.18 and 5.24 resp. 5.35).
• Constraints can be formulated either in terms angular velocities 9ϕ or angular

positions ϕ, because they are holonomic and therefore integrable. A constraint
coupling angular positions ϕ and angular velocities 9ϕ is non holonomic although
such a constraint would still be linear in x (see also remark 3). Block structure of
the matrix B̄C (see equation 5.18) ensures that constraints due to locking clutches
are holonomic.
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5.5 Conclusion

5.4.3 Application of system reduction

As shown in chapter 2 it is possible to eliminate Lagrangian multipliers (torques trans-
mitted on locked clutches) and transform the system to a minimal set of differential
equations, by finding a fitting basis Jx to Jf ’s null space.

JTx M̄Jx 9q � JTx ĀJxq � JTx
�
B̄R B̄C

� �τR
τC

�
(5.36)

M̃ 9q � JTx ĀJxq � JTx
�
B̄R B̄C

� �τR
τC

�

9q � M̃�1JTx ĀJxlooooomooooon
Ã

q � M̃�1JTx
�
B̄R B̄C

�loooooooooomoooooooooon
�
B̃R B̃C

�

�
τR
τC

�

9q � Ãq � B̃u (5.37)

Remark 21.

• The unreduced system (equation 5.19) considering all clutches to be in slipping
state and the clutch state (containing the information which clutches are slipping
resp. locking) form a set of reduced subsystems (equation 5.37) due to additional
constraints caused by locked clutches.

• Due to chapter 3 stability of the original (unconstrained) system (equation 5.19)
guarantees stability of all reduced subsystems (equation 5.37).

• Due to construction of Jx, B̃C contains zero columns, confirming that it is not
possible to impress torques on locked clutches, i. e. for a locked clutch the corres-
ponding input is deactivated.

5.5 Conclusion

In consequence of considering the clutch state, defining which clutches are slipping
resp. locked, to be a time varying quantity, general drivetrain models are switching
systems. Standard drivetrain modeling requires calculation of the different systems
according to all possible clutch states (two to the power of the number of clutches) in
advance.
This chapter however shows that the dynamic of a general drivetrain is fully described
by the mathematical model considering all clutches to be slipping, i. e. not locked,
and the additional binary information of the clutch state. The essential point thereby
is the fact that columns of the clutch torque input matrix, that correspond to locked
clutches, define the transformation that is necessary for applying system reduction in
order to achieve a minimal set of differential equations.
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6
Exemplary application of system

reduction in control

So far this work offers a general modeling approach to linear constrained
linear multibody systems presented in chapter 2 and more specific to
general drivetrain topologies presented in chapter 5. This approach is now
applied to an exemplary hybrid drivetrain topology. Further the advan-
tages of this approach and the mechanical peculiarities of the topology are
used to design a model-based control system, controlling gear shifts, while
tracking a required vehicle speed trajectory.

6.1 Topology and notation

The considered drivetrain topology (see figure 6.1) is hybrid, in terms of it contains
both a combustion engine and a electric motor, automatic transmission drivetrain.

JM

JE

S3

S1

R3

JR3

R1

S2

R2

JF

τM τE

τR1
ÐÝÐÝ

C1

ÝÑÝÑ

τC1

P

C3

ÝÑÝÑ

τC3

C0

ÝÑÝÑ

τC0

ωR3

C2

ÝÑÝÑ

τC2

P3

JV

k

d
τV

iF

ωM

ωE

ωF

ϕF

ωV

ϕV

τR2
ÝÑÝÑ

reduction
gear
set

Ravigneaux
gear set

Figure 6.1: Simplified scheme of a hybrid-electric automatic transmission drivetrain [15]. For nota-
tion see table 6.1.
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Notation
Variables Indices
C clutch C clutch
d damping constant E combustion engine
i gear ratio d damping
J inertia F gearbox output
k spring constant J inertia
τ torque kin kinetic friction
ω angular velocity M electric motor
ϕ angular position P planet carrier (planetary gear set)

R ring (planetary gear set)
S sun (planetary gear set)
V vehicle

Table 6.1: Notation of the considered drivetrain topology (see figure 6.1)

6.2 Modeling

In this chapter the general method of drivetrain modeling presented in chapter 5 is
shown in detail by an exemplary application. To keep track of the single steps here is
an short overview:

1. Equations of motion (section 6.2.1)
2. Incorporation of gear ratios (section 6.2.2)
3. State space model (section 6.2.3)
4. State transformation: angular wheel speed ÞÑ vehicle speed (section 6.2.4)

6.2.1 Equations of motion

As shown in general in chapter 2 and more specific for drivetrain topologies in chapter
5, the dynamic of the presented drivetrain can be linearly modeled by a set of ordinary
differential equations second order:

M:ϕ � � rDkin �Ddslooooomooooon
D

9ϕ�Kϕ�BRτR �BCτC (6.1)

ϕT �
�
ϕE ϕR3 ϕM ϕF ϕV

�
(6.2)

τR �
�
τE τM τV

�T
BR �

�
BE BM BV

�
Matrix Dkin includes additional kinetic friction acting on each inertia. Disregarding
gear ratio iF and planetary gear sets in a first step, enables direct definition of matrices
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M, K̃, Dkin, D̃d and BR:

M �

�
�����
JE 0 0 0 0
0 JR3 0 0 0
0 0 JM 0 0
0 0 0 JF 0
0 0 0 0 JV

�
����� , K̃ �

�
�����

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 k �k
0 0 0 �k k

�
�����

Dkin �

�
�����
dJ 0 0 0 0
0 dJ 0 0 0
0 0 dJ 0 0
0 0 0 dJ 0
0 0 0 0 dJ

�
����� , D̃d �

�
�����

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 d �d
0 0 0 �d d

�
����� (6.3)

BR �

�
�����

1 0 0
0 0 0
0 1 0
0 0 0
0 0 �1

�
����� (6.4)

Due to Newton’s third law of motion (see chapter 2.1 ) matrices D̃d and K̃ have off
diagonal elements with converse signs.

6.2.2 Additional gear ratios

Final gear ratio

For correct incorporation of final gear ratio iF in stiffness matrix K, potential energy
in the spring has to be considered:

V �
k

2 rϕF � ϕVs
2 �

1
2ϕ

T K̃ϕ (6.5)

After regarding gear ratio iF, potential energy still has to be a quadratic function of
angular positions ϕ. Therefore matrix K has to be transformed:

Ṽ �
k

2

�
ϕF

iF
� ϕV

�2
!�

1
2ϕ

T TT K̃Tloomoon
K

ϕ (6.6)

ñ T �

�
�����

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1

iF
0

0 0 0 0 1

�
����� (6.7)

The same consideration can be made on damping matrix D̃d and dissipation in the
damper. Using the introduced transformation T, stiffness matrix K̃ and damping
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matrix D̃d, can be transformed (Ñ K,Dd), with respect to the gear ratio iF:

K � TT K̃T �

�
�����

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 k

i2F
� k
iF

0 0 0 � k
iF

k

�
����� (6.8)

Dd � TT D̃dT �

�
�����

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 d

i2F
� d
iF

0 0 0 � d
iF

d

�
����� (6.9)

Damping matrix D assemblies the damping due to kinetic friction Dkin and the damp-
ing due to additional damping elements Dd:

D � Dkin �Dd �

�
�����
dJ 0 0 0 0
0 dJ 0 0 0
0 0 dJ 0 0
0 0 0 dJ �

d
i2F

� d
iF

0 0 0 � d
iF

dJ � d

�
����� (6.10)

This is a simple approach to regard one additional gear ratio in drivetrain topology.
It can be generalized to several gear ratios. Construction of transformation matrix T
in that case becomes more complicate due to the fact that possibly one coordinate is
affected by more than one gear ratio.

Planetary gear set

Gear ratios in planetary gear sets are described by theWillis-equation (see for example
[16]). It introduces linear dependencies between angular velocities (resp. angular
positions) of the connected shafts and constant stationary gear ratios.
In this example (reduction gear set and massless Ravigneaux gear set) the stationary
planetary gear set ratios iR1

S1 , iR2
S2 , iR3

S3 and iR2
S1 fully describe the gear ratios between the

connected shafts (see [16]). Therefore they are considered as given constants. In this
example the outputs of the planetary gear set are rigidly connected on the one hand
to inertias and on the other hand to clutches. Therefore, these constants can be used
to define the mapping of clutch torques to torques acting directly on inertias, i. e. the
input matrix BC:

BC � fpiR1
S1 , i

R2
S2 , i

R3
S3 , i

R2
S1 q �

�
�����
�1 0 0 0
1 �1 iR3

P3 0
0 iR1

P iR1
S1 iR1

S2
0 iR2

P iR2
S1 iR2

S2
0 0 0 0

�
����� (6.11)
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As shown in chapter 5 matrix BC on the one hand maps impressed clutch torques τC
on torques τ̄C acting directly on inertias in slipping case and on the other hand defines
the additional holonomic constraints in locking case.

6.2.3 State space model

In order to applicate common control methods it is useful to transform the math-
ematical model into state space form (see also chapters 2.6.2 and 5.3):

�
I 0
0 M

� �
9ϕ
:ϕ

�
�

�
0 I
�K �D

� �
ϕ
9ϕ

�
�

�
0

BR

�
τR �

�
0

BC

�
τC (6.12)

As already mentioned in chapter 5 the number of differential equations can be reduced
due to the fact that angular velocities are of interest, but most angular positions are
not.

x �
�
9ϕE 9ϕR3 9ϕM 9ϕF 9ϕV ∆ϕ1

�
(6.13)

x �

�
�������

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 1

iF
�1 0 0 0 0 0

�
�������

loooooooooooooooooooooomoooooooooooooooooooooon
T�T2T1

�
ϕ
9ϕ

�

The transformation achieves a set of 6 differential equations first order:

T2T1

�
I 0
0 M

�
T�1

1 T�
2looooooooooooomooooooooooooon

M̄x

T2T1

�
9ϕ
:ϕ

�
loooomoooon

9x

� T2T1

�
0 I
�K �D

�
T�1

1 T�
2looooooooooooooomooooooooooooooon

Āx

T2T1

�
ϕ
9ϕ

�
loooomoooon

x

. . .

� � � �T2T1

�
0

BR

�
looooomooooon

B̄x,R

τR �T2T1

�
0

BC

�
looooomooooon

B̄x,C

τC (6.14)

M̄x 9x � Āxx � B̄x,RτR � B̄x,CτC (6.15)
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M̄x �

�
�������

JE 0 0 0 0 0
0 JR3 0 0 0 0
0 0 JM 0 0 0
0 0 0 JF 0 0
0 0 0 0 JV 0
0 0 0 0 0 1

�
�������

Āx �

�
��������

�dJ 0 0 0 0 0
0 �dJ 0 0 0 0
0 0 �dJ 0 0 0
0 0 0 �dJ �

d
i2F

d
iF

� k
iF

0 0 0 d
iF

�dJ � d k

0 0 0 1
iF

�1 0

�
��������

B̄x,R �

�
�������

1 0 0
0 0 0
0 1 0
0 0 0
0 0 �1
0 0 0

�
�������

B̄x,C �

�
�������

�1 0 0 0
1 �1 iR3

P3 0
0 iR1

P iR1
S1 iR1

S2
0 iR2

P iR2
S1 iR2

S2
0 0 0 0
0 0 0 0

�
�������

(6.16)

6.2.4 vehicle speed - state transformation

Definition of wheel radius r enables transformation of state 9ϕV representing angular
wheel speed to vehicle speed v � r � 9ϕV.

�
�������

9ϕE
9ϕR3

9ϕM
9ϕF
9ϕV

∆ϕ1

�
�������

looomooon
x

�

�
�������

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1

r
0

0 0 0 0 0 1

�
�������

loooooooooooomoooooooooooon
T

�
�������

9ϕE
9ϕR3

9ϕM
9ϕF
v

∆ϕ1

�
�������

looomooon
z

(6.17)

In contrast to the above transformation of angular position to angular differences, this
state transformation concerns angular velocities. In order to ensure consistency with
respect to constraints, denoted in columns of B̄x,C, it is necessary to apply the energy
preserving state transformation as defined in chapter 2.6.3:
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6.3 Drivetrain control task and assumptions

M̄z � TTM̄xT �

�
�������

JE 0 0 0 0 0
0 JR3 0 0 0 0
0 0 JM 0 0 0
0 0 0 JF 0 0
0 0 0 0 JV

r2 0
0 0 0 0 0 1

�
�������

(6.18)

Note that weighting of the fifth differential equation, describing vehicle dynamics, is
now the vehicle mass (mV � JV

r2 ). Chapter 2.6.3 also offers necessary relations between
the remaining system parameters in x- and z-coordinates (equation 6.17):

Āz � M̄zT�1M̄�1
x ĀxT �

�
��������

�dJ 0 0 0 0 0
0 �dJ 0 0 0 0
0 0 �dJ 0 0 0
0 0 0 �dJ �

d
i2F

d
r�iF

� k
iF

0 0 0 d
r�iF

�dJ�d
r2

k
r

0 0 0 1
iF

�1
r

0

�
��������

(6.19)

B̄z,R � M̄zT�1M̄�1
x B̄x,R �

�
�������

1 0 0
0 0 0
0 1 0
0 0 0
0 0 �1

r

0 0 0

�
�������

B̄z,C � M̄zT�1M̄�1
x B̄x,C � B̄x,R

M̄z 9z � Āzz� B̄z,RτR � B̄z,CτC (6.20)

To improve readability from now on the following notation is used to describe the
system in equation 6.20:

M̄ 9x � Āx � B̄RτR � B̄CτC (6.21)

6.3 Drivetrain control task and assumptions

Main ambition in drivetrain control is to provide an output torque at vehicle wheels
to achieve a desired vehicle acceleration specified by the driver via accelerator pedal.
Based on this torque request and other parameters, e. g. internal angular velocities or
state of charge of the battery, the controller has to choose a fitting gear and potential
torque split between combustion engine and electric motor in case of a hybrid drive-
train. Choice of gear and performing necessary gear shifts without influencing output
torque on the wheels is the main challenge in drivetrain control.
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6 Exemplary application of system reduction in control

Within this work the focus is on gear shift control. In the following exemplary applica-
tion (for drivetrain topology see figure 6.1) the actual gear (G1) and future gear (G2),
as well as potential torque split ratios and also the time when the shifting process is
started are considered to be known in advance. Therefore the main task is to perform
a defined gear shift while tracking required vehicle velocity.

6.3.1 Considered gear shifts

As a further restriction the following approach considers only conventional gears G1
and G2. Conventional gears are gears that are stationary drivable with respect to
the combustion engine. In consequence transmission from the combustion engine to
the wheels has to be possible without impressing any torques in slipping clutches.
Therefore gearbox output angular velocity (ωF � x4) has to define angular velocities
of the combustion engine (ωE � x1), and consequently of the electric motor (ωM � x3)
and also ωR3 � x2. Further there exists a stationary relation between a desired vehicle
speed (v � x5) and angular velocity of the combustion engine (see also chapter 6.4.4).
To achieve this condition in valid gears G1 and G2 clutch C0 and two more arbitrary
clutches have to be locked. The set of all valid gears in this sense is summarized in
table 6.2. It is an important fact that it is mechanically not possible to lock all four
clutches at the same time, because of opposing constraints. This would end up in
destruction of the gear box. Consequently in any valid gear shift first one clutch has
to return to slipping state before another one can transition to locking state. Hence
the necessary interim gear (Gi) for any valid gear shift is defined in advance. The
necessary interim gears are presented in table 6.3.

gear clutch state
C0 C1 C2 C3

Ga 1 0 1 1
Gb 1 1 0 1
Gc 1 1 1 0

Table 6.2: Conventional gears

gear clutch state
C0 C1 C2 C3

Gi,aØb 1 0 0 1
Gi,aØc 1 0 1 0
Gi,bØc 1 1 0 0

Table 6.3: Interim gears

6.3.2 State observation

The actual state vector x is considered to be known at any instant of time, i. e. there
exists an ideal state observation. The same assumption is done on the actual clutch
state containing the binary informations if clutches are locked or in slipping state,
i. e. not locked. It should be noted that knowledge of actual clutch states implies
knowledge of gear shift time Tgs and consequently gear shift duration ∆Tgs afterwards.
To approximately realize this assumption a state observer has to be designed. [17]
covers the design of a state observer on this exemplary drivetrain layout.
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6.4 Control strategy

The basic control strategy to achieve the control task defined in chapter 6.3 is flatness-
based propulsion torque feedforward control with underlaid LQR feedback control loop
and model free clutch torque feedforward control.
Below is a short introduction into the single tasks covered by the single elements of
the used control strategy before going into detail with respect to their mathematical
design.

• Model free clutch torque feedforward control: Controlling the clutch
torques τC, enables on the one hand keeping of the current gear and on the
other hand the initiation of a required gear shift.

• Flatness-based propulsion torque feedforward control: Flatness-based
propulsion torque feedforward control calculates the necessary actuation on the
system on the one hand the to achieve required vehicle speed and on the other
hand to support gear shifts, initiated by clutch torque feedforward control, em-
ploying drive torques of combustion engine τE and electric motor τM.

• LQR feedback control: With respect to possible model uncertainties and ex-
ternal disturbances τV an additional feedback control is indispensable to achieve
a robust control system. Employed actuators are again drive torques of combus-
tion engine τE and electric motor τM.

In the following the control strategy is summarized beginning with the clutch torque
control and the mathematical models of the involved systems, going on to fitting ref-
erence signals and finally to the design of the used feedforward and underlaid feedback
control system.

6.4.1 Clutch torque control

Due to remark 21, clutch torque τC is not impressed on a locked clutch, ensured by
a zero column in the reduced input matrix. The transmitted torque is defined by the
corresponding Lagrangian multiplier (τ̄C, see remark 20). Nevertheless the value of
τC, defining a certain pressure on clutch plates, is essential even in locking state. If τC
exceeds the value of the corresponding Lagrangian multiplier, the clutch stays locked,
otherwise it will start slipping. Note that the value of the Lagrangian multiplier is a
function of the states x and acting torques τ .
Therefore in stationary case keeping a clutch torque on a certain constant level τC,max
higher than the value of the corresponding τ̄C, ensures that a locked clutch stays
locked. In order to initiate a specified gear shift at time Tgs,init clutch torque τC of the
clutch, which is desired to start slipping can be decreased from τC � τC,max to zero in
a specified time (clutch ramp time ∆Tcl). Note that from the moment when locking
state is left the slipping clutch torque is actually impressed in the clutch. The opposite
approach, increasing impressed clutch torque in a clutch from zero to maximum clutch
torque τC,max, can be used to force a slipping clutch to lock. To avoid unnecessary
dissipation it is useful to delay closing clutch until the first clutch definitely returned to
slipping state. Figure 6.2 shows the initiation of a gear shift (G1 Ñ G2) in a stationary
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6 Exemplary application of system reduction in control

driving situation (τ̄C,a � const., τ̄C,b � const.). Thereby clutch Ca returns to slipping
state and clutch Cb transitions into locking state.

|τ |

t

τC,max
τ̄Ca
τ̄Cb

G1 Gi G2

∆Tcl

�

Figure 6.2: Initiation of a gear shift in a stationary driving situation

6.4.2 Switching system

Performing gear shifts as defined in chapter 6.3.1 requires consideration of a system
switching between three sub systems (ΣG1, ΣG2 and ΣGi), which are all subsystems of
the unconstrained system Σ (see figure 6.3). The difference between the systems is that
ΣG1 and ΣG2 have to satisfy a different additional constraint (locked clutch) compared
to ΣGi. Therefore systems ΣG1 and ΣG2 can be calculated applying system reduction
(see chapters 2 and 5.4.3) on the interim system ΣGi. The interim system ΣGi itself
can be calculated applying system reduction (two locked clutches) on unconstrained
drivetrain state space model (equation 6.21):

Σ : M̄ 9q � Āq �
�
B̄R B̄C

� �τR
τC

�
ó

ΣGi : JTx,GiM̄Jx,Gilooooomooooon
M̄Gi

9qGi � JTx,GiĀJx,Gilooooomooooon
ĀGi

qGi � JTx,Gi
�
B̄R B̄C

�loooooooomoooooooon
B̄Gi

�
τR
τC

�
(6.22)

9qGi � M̄�1
Gi ĀGiqGilooooomooooon

AGi

� M̄�1
Gi B̄Gilooomooon
BGi

u

Definition of transformation matrices Jx,GiG1 and Jx,GiG2 (basis to the null space of
the Jacobian matrix of the additionally activated constraints) defines relation between
ΣGi and ΣG1, ΣG2:

ΣG1 : JTx,GiG1M̄GiJx,GiG1loooooooooomoooooooooon
M̄G1

9qG1 � JTx,GiG1ĀGiJx,G1loooooooomoooooooon
ĀG1

qG1 � JTx,GiG1B̄Giloooomoooon
B̄G1

u (6.23)

9qG1 � M̄�1
G1ĀG1qG1loooooomoooooon

AG1

� M̄�1
G1B̄G1looomooon
BG1

u
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ΣG2 : JTx,GiG2M̄GiJx,GiG2loooooooooomoooooooooon
M̄G2

9qG2 � JTx,GiG2ĀGiJx,G2loooooooomoooooooon
ĀG2

qG2 � JTx,GiG2B̄Giloooomoooon
B̄G2

u (6.24)

9qG2 � M̄�1
G2ĀG2qG2loooooomoooooon

AG2

� M̄�1
G2B̄G2looomooon
BG2

u

Σ ΣGi

ΣG1

ΣG2

Jx,Gi

Jx,GiG1

Jx,GiG2

Figure 6.3: Relations between the subsystems involved in a gear shift

The restriction on considered stationary gears G1, G2 and consequently Gi (see chapter
6.3.1) and the design of the transformation matrices Jx,Gi, Jx,GiG1 and Jx,GiG2 (see
chapter 2.6) enable important relations between the states respectively coordinates
and between the system parameters:

Remark 22.
• The set of generalized coordinates in system ΣG1 equals the set of generalized

coordinates in system ΣG2. Both are a subset of the set of generalized coordinates
in system ΣGi and further of the unconstrained coordinates in system Σ:

tqG1u � tqG2u � tqGiu � txu (6.25)

• Consequently holds:

tĀG1u � tĀG2u � tĀGiu � tĀu (6.26)

In the sense of: Matrices ĀG1 and ĀG2 are equal and appear as block in matrix
ĀGi and further ĀGi in Ā.

• The different gear ratios in ΣG1 and ΣG2 are stated in the first rows of the input
matrices B̄G1 and B̄G2 (mapping: τE, τM ÞÑ τx4).

• The different system dynamic in the systems ΣG1 and ΣG2 is a consequence
of the different first diagonal elements in matrices M̄G1 and M̄G2 (mapping:
JE, JR3 , JM ÞÑ JF).

6.4.3 Flatness-based design of linear feedforward control

This chapter discusses the general method of flatness-based linear feedforward control
design based on [18] and [19] in SISO and MIMO case. Afterwards the method is
applied on the exemplary drivetrain.
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6 Exemplary application of system reduction in control

The basic idea of linear feedforward control is to calculate a necessary actuation u to
achieve a specific behavior of the linear system specified in x and 9x.

9x � Ax �Bu ñ u � fpx, 9xq (6.27)

Thereby two problems occur:
• Input matrix B in general is a non quadratic (but full column rank) matrix.

Therefore there is no unique solution of equation 6.27 with respect to u.
• Due to differential dependencies between the coordinates x, determined in the

dynamic matrix A, in general arbitrary specifications of x and 9x do not define
feasible system dynamic.

Both problems can be solved by usage of flatness property of controllable linear sys-
tems.
Providing the considered system (SISO for the moment) is controllable1, there exists
a regular state transformation z � Tx that transforms the system into its controllable
canonical form:

9z �

�
����

0 1 . . . 0
... . . . . . . ...
0 . . . 0 1
�a0 . . . �an�2 �an�1

�
����

looooooooooooooooomooooooooooooooooon
Ac�TAT�1

z�

�
����

0
...
0
1

�
����

loomoon
Bc�TB

u (6.28)

z �

�
����
z1
z2
...
zn

�
���� �

�
����
z1
9z1
...
z
pn�1q
1

�
���� , 9z �

�
����

9z1
:z1
...
z
pnq
1

�
���� (6.29)

According to equations 6.28 and 6.29 entire system dynamic is constituted by one n-
times differentiable trajectory z1ptq and its n derivatives (z1ptq Ñ z, 9z). Consequently
there is no problem in defining feasible system dynamics. Coordinate z1 is called flat
output of the system and the system’s controllability ensures its existence. At the
same time transformation into controllable canonical form enables direct calculation
of the necessary actuation u as function of the desired system dynamic (z1ptq Ñ z, 9z)
by evaluating the last row in equation 6.28:

u � z
pnq
1 � an�1z

pn�1q
1 � � � � � a1 9z1 � a0z1 � z

pnq
1 � aTc,nz (6.30)

The n-times differentiability of the trajectory z1ptq and the calculation of its derivatives
can be realized by e. g. filtering. An appropriate filter structure is suggested in figure
6.4 can be used.

1For controllability criteria see [11].
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�
1
kn

³ ³ ³
z̃

z̃pn�2q

z̃pn�1q

z̃pnq

kn�1 kn�2 k0

z

Figure 6.4: Low-pass filter n-th order

Filter coefficients

In order to achieve a common low-pass filter transfer function n-th order, defined by
only one parameter τ ,

F psq �
1

psτ � 1qn , (6.31)

the filter coefficients k1, . . . , kn (see figure 6.4) are:

ki �

�
n

i



τ i, i � 0, . . . , n (6.32)

Proof.
Transfer function F̃ psq of the suggested filter structure (figure 6.4) is given by:

snz̃psq �
1
kn

�
zpsq � kn�1s

n�1z̃psq � � � � � k0z̃psq
�

z̃psq

zpsq
�F̃ psq �

1
knsn � kn�1sn�1 � � � � � k0

Equation 6.32 can be easily proofed equating coefficients of suggested filter F̃ psq and
desired filter F psq:

F psq �
1

psτ � 1qn �
1�

n
n

�
snτn �

�
n
n�1
�
sn�1τn�1 � � � � �

�
n
1
�
sτ �

�
n
0
�

1
knsn � kn�1sn�1 � � � � � k0

!�
1�

n
n

�
snτn �

�
n
n�1
�
sn�1τn�1 � � � � �

�
n
1
�
sτ �

�
n
0
�

ñ ki �

�
n

i



τ i, i � 0, . . . , n
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6 Exemplary application of system reduction in control

In MIMO case flatness-based linear feedforward control can be applied similar. Again
controllability property guarantees existence of a state transformation z � Tx to
controllable canonical form:

9z � Acz�Bcu (6.33)

Equation 6.34 shows the structure of system’s dynamic matrix Ac and its input matrix
Bc in MIMO controllable canonical form.

Ac �

�
���������������

0 1 . . . 0 0 . . . 0
... . . . . . . ... ... ...
0 . . . 0 1 0 . . . 0
� . . . � � � . . . . . . . . . �
... . . . . . . . . . ...
0 . . . 0 0 1 . . . 0
... ... ... . . . . . . ...
0 . . . 0 0 . . . 0 1
� . . . � � . . . � �

�
���������������

Ò

µ1
Ó
...
Ò

µm
Ó

, Bc �

�
���������������

0 . . . 0
... ...
0 . . . 0
1 . . . �
... . . . ...
0 . . . 0
... ...
0 . . . 0
� . . . 1

�
���������������

Ò

µ1
Ó
...
Ò

µm
Ó

(6.34)

Both decompose into m parts, where m is the number of inputs. This decomposition
also appears in state vector z:

z �
�
z1 9z1 . . . z

pµ1�1q
1 . . . zm 9zm . . . zpµm�1q

m

�T
(6.35)

µ1, . . . , µm denote the controllability indices of the corresponding inputs u1, . . . , um.
Due to controllability of the system following condition on the sum of these controlla-
bility indices holds:

m̧

i�1
µi � n (6.36)

In consequence feasible entire system dynamic is specified by m µi-times differentiable
trajectories zi (i � 1, . . . ,m).
Evaluation of the σk-th (see equation 6.38 and dark highlighting in equation 6.34) rows
of equation 6.33 enables unique calculation of necessary actuation u for a required
feasible system behavior (z1ptq, . . . , zmptq Ñ z, 9z):

u � B�1
c,σk

r 9zσk
�Ac,σk

zs , with (6.37)

σk �
ķ

i�1
µi, k � 1, . . . ,m (6.38)

σ � rσ1 . . . σms
T (6.39)
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Application on drivetrain model

Back to the exemplary drivetrain and considered gear shifts, systems ΣG1 and ΣG2 are
controllable with respect to either the combustion engine or the electric motor. Con-
sequently there exist each two transformation matrices (TG1,E, TG1,M, TG2,E, TG2,M)
transforming systems ΣG1,E, ΣG1,M, ΣG2,E resp. ΣG2,M into SISO controllable canonical
forms with respect to engine or motor.
As extension to remark 22 in this example modification of the first diagonal element
of matrices M̄G1 or M̄G2 has only a scaling effect on the corresponding transformation
matrices. Consequently it is possible to use only one transformation T̄ for all four
systems, taking the loss of normalization of the input matrices Bc in controllable
canonical form.
The possibility to use only one transformation matrix T̄ to achieve a kind of con-
trollable canonical form of the systems (ΣG1,E, ΣG1,M, ΣG2,E, ΣG2,M) implicates that
feasible system dynamics of all four systems can be defined by one common flat output
trajectory z1ptq and its derivatives.
Equations 6.40 and 6.41 show calculation of necessary actuation to achieve a desired
system behavior (z1ptq Ñ z̄, 9z̄) in gear G1 and G2.

�
ūG1,E
ūG1,M

�
�

�
1

bG1,E
1

bG1,M

�
�
�
z
pnq
1 � aTc,G1,nz̄

�
(6.40)

�
ūG2,E
ūG2,M

�
�

�
1

bG2,E
1

bM,G2

�
�
�
z
pnq
1 � aTc,G2,nz̄

�
(6.41)

z̄ �
�
z1 9z1 . . . z

pn�1q
1

�T
(6.42)

Note that parameters bG1,E, bG1,M, bG2,E and bG2,M denoting the last elements of the
transformed input vectors of the systems ΣG1,E, ΣG1,M, ΣG2,E and ΣG2,M (see equations
6.43) are in general not equal to one (compare to equation 6.28), due to scaling of the
transformation matrices.

Bc,G1,E � T̄BG1,E �

�
0

bG1,E

�
(6.43)

Bc,G1,M � T̄BG1,M �

�
0

bG1,M

�

Bc,G2,E � T̄BG2,E �

�
0

bG2,E

�

Bc,G2,M � T̄BG2,M �

�
0

bG2,M

�

Due to their calculation ūG1,E or ūG1,M resp. ūG2,E or ūG2,M separately are the necessary
actuations in gear G1 resp. G2 for the required system behavior with respect to
combustion engine or electric motor.
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6 Exemplary application of system reduction in control

The power P impressed by an rotational actuator is the product between the torque
τ , which the actuator applies, and the corresponding angular velocity ω:

P � τ � ω (6.44)

With respect to the fixed angular velocities in stationary gears (see also chapter 6.4.4),
power impressed by the actuators is only defined through the torques ūG1,E and ūG1,M
resp. ūG2,E and ūG2,M. Consequently simultaneous usage of both actuations is not
going to achieve the required system behavior, since twice the power which is necessary
would be impressed into the system. In order to get rid of this excess of power,
actuation has to be split up into two parts:

uE � kEūE (6.45)
uM � kMūM, with kM :� p1� kEq, and 0 ¤ kE ¤ 1

This additional degree of freedom kE is called torque split between combustion engine
and electric motor. Due to equation 6.44 and fixed angular velocities it is also the
power split between the two actuators. According to this consideration equations 6.40
and 6.41 are adapted:�

uG1,E
uG1,M

�
�

�
kG1,E
bG1,E

p1�kG1,Eq
bG1,M

�
�
�
z
pnq
1 � aTc,G1,nz̄

�
(6.46)

�
uG2,E
uG2,M

�
�

�
kG2,E
bG2,E

p1�kG2,Eq
bM,G2

�
�
�
z
pnq
1 � aTc,G2,nz̄

�
(6.47)

Note that the combination of the torques uG1,E and uG1,M resp. uG2,E and uG2,M
calculated in equation 6.46 resp. 6.47 achieves the required system behavior in gear
G1 resp. G2.

Analysis reveals that the interim system ΣGi is controllable with respect to both com-
bustion engine and electric motor. Therefore there exists a transformation T to trans-
form ΣGi into MIMO controllable canonical form.
The restriction on considered stationary gears G1, G2 and Gi (see chapter 6.3.1) and
consequently remark 22 enable following unproved remark:
Remark 23.

• It is possible to use one transformation T̄ to transform the controllable systems
ΣG1,E, ΣG1,M, ΣG2,E and ΣG2,M into a kind of SISO controllable canonical form
(see remark 22):

TG1,E � TG1,M � TG2,E � TG2,m � T̄ (6.48)

• Transformation T̄ is part of the transformation T, which transforms system ΣGi
into MIMO controllable canonical form:

TGi �

�
0 T̄
� �

�
� T (6.49)
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Considering the exemplary drivetrain, systems ΣG1 and ΣG2 have system order nG1 �
nG2 � 3. Feasible system dynamics (z̄, 9z̄) therefore can be described by one trajectory
z1ptq and its first, second and third derivative (see equations 6.28 and 6.29). Interim
system ΣGi is a system of order nGi � 4. According to remark 23 corresponding MIMO
controllable canonical form decomposes into two parts with controllable indices µ1 � 3
and µ2 � 1. Consequently feasible system dynamic (z, 9z) for system ΣGi is entirely
described by two trajectories z1ptq and z4ptq:

z �
�
z1 9z1 :zz z4

�T
�
�
z̄T z4

�T (6.50)

9z �
�
9z1 :zz ;z1 z4 9z4

�T
�
�
9z̄T 9z4

�T (6.51)
(6.52)

Entire flatness-based propulsion torque feedforward control is defined by summarizing
equations 6.40, 6.41 and 6.37:

�
uG1,E
uG1,M

�
�

�
kG1,E
bG1,E

p1�kG1,Eq
bG1,M

�
�
�
z
pnq
1 � aTc,G1,nz̄

�
(6.53)

�
uG2,E
uG2,M

�
�

�
kG2,E
bG2,E

p1�kG2,Eq
bM,G2

�
�
�
z
pnq
1 � aTc,G2,nz̄

�
�
uGi,E
uGi,M

�
� B�1

c,Gi,σk
r 9zσk

�Ac,Gi,σk
zs

n � 3, µ1 � 3, µ2 � 1, σ �
�
3 4

�T (6.54)
0 ¤ kG1,E ¤ 1, 0 ¤ kG2,E ¤ 1

Equation 6.55 rewrites equation 6.53 in compact matrix notation.

�
�������

uG1,E
uG1,M
uG2,E
uG2,M
uGi,E
uGi,M

�
�������
�

�
���������

kG1,E
bG1,E

0 0
p1�kG1,Eq
bG1,M

0 0
0 kG2,E

bG2,E
0

0 p1�kG2,Eq
bG2,M

0

0 0
�
bTc,Gi,3
bTc,Gi,4

��1

�
���������

�
���
�aTcG1,n 0 1 0
�aTc,G2,3 0 1 0
�aTc,Gi,3 1 0
�aTc,Gi,4 0 1

�
���

�
�������

z1
9z1
:z1
z4
;z1
9z4

�
�������

(6.55)

Definition of a 3-times differentiable trajectory z1ptq and once differentiable trajectory
z4ptq enables continuous calculation rule for necessary actuations uEptq and uMptq to
achieve desired system behavior (z1ptq, z4ptq Ñ z, 9z):
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6 Exemplary application of system reduction in control

uff �

�
uEptq
uMptq

�
�

$''''''''''''''&
''''''''''''''%

�
uG1,Eptq

uG1,Mptq

�
, t   Tgs

�
uG2,Eptq

uG2,Mptq

�
, Tgs   t   Tgs �∆Tgs

�
uGi,Eptq

uGi,Mptq

�
, t ¡ Tgs �∆Tgs

(6.56)

It is a so far undiscussed issue how to plan trajectory z1ptq in stationary gears G1 and
G2 to track the required vehicle speed and how to plan trajectories z1ptq and z4ptq
in interim gear Gi in order to support a required gear shift. Remark 24 states an
important fact, to clarify this issue.

Remark 24.
The flat output z1 of the systems ΣG1, ΣG2 and ΣGi is approximately the vehicle speed
v:

z1 � x5 � v (6.57)

Actually it is a linear combination of the differential angular velocity of the flexible
shaft x6 and the vehicle speed x5. The approximation would be exact for damping
constant d � 0.

According to remark 24 planning trajectory z1ptq is approximately equivalent to plan-
ning vehicle speed trajectory vptq. Consequently every three-times differentiable tra-
jectory is approximately a feasible vehicle velocity profile.
As already mentioned in chapter 6.3.1 in gears G1 and G2 definition of a constant
reference vehicle speed vr � xr,5 requires stationary angular velocities in the whole
drivetrain xr,G1,8 resp. xr,G2,8:

xr,G1,8 � fpxr,5q (6.58)
xr,G2,8 � fpxr,5q

The stationary reference states xr,G1,8 resp. xr,G2,8 (for calculation see chapter 6.4.4)
are consistent with respect to the corresponding constraints. Consequently a smooth
change of operating point from xr,G1,8 to xr,G2,8 is equivalent to a smooth change
of constraints. Planning of trajectory z4ptq with respect to this consideration will
tend the combustion engine and the electric motor to support the gear shift, i. e.
decreasing the differential angular velocity of the clutch that is supposed to transition
into locking state to zero. Therefore the next chapter deals with the determination of
the stationary consistent reference states xr,8, the smooth change of operating point
and the resulting trajectories xr resp. qr. Due to the fact that this approach is based
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6.4 Control strategy

on an approximation (see remark 24) subsequent filtering of the required trajectories,
planned in x resp. q-coordinates and transformed to z-coordinates is necessary (Ñ z̃r).
For this purpose a filter structure as suggested in figure 6.4 can be used for each
trajectory. If combining feedforward control and feedback control (see figure 6.8) the
transformed and filtered trajectories have to be back transformed (Ñ q̃r), to provide
correct reference values for the feedback controller. Since the controller deals with
reduced coordinates (qG1, qG2 resp. qGi) this back transformation T�1 has to be
adapted with respect to the current gear, i. e. T̄�1 in gears G1 and G2 and T�1 in
interim gear Gi.
Figure 6.5 shows the general structure of the flatness-based feedforward control design.

T Σf T�1

ΣE,M

qr zr z̃r q̃r

cs,ts

z̃pnqr

cs

uff

Figure 6.5: Structure of flatness-based feedforward control: T transformation into controllable
canonical form, Σf filter (see figure 6.4), ΣE,M calculation of propulsion torques (see
equations 6.55 and 6.56), T�1 back transformation, cs clutch state, ts torque split

6.4.4 Consistent reference trajectories

As already mentioned, in the considered stationary gears (G1 and G2) there exist sta-
tionary relations between vehicle velocity and angular velocities of remaining inertias.
In order to specify stationary consistent sets of reference values xr,G1,8 and xr,G2,8 it is
necessary to calculate these stationary gains of the systems. The following calculations
are exemplary done on system ΣG1.
In a first step defining vehicle speed x5 to be the system’s output (Ñ CG1) and
using final value theorem of Laplace transformation (see equation 6.61) enables
calculation of stationary necessary input for one actuator (i.e. engine or motor).

GG1psq �
xr,5psq

upsq
� CG1 rsE�AG1s

�1 BG1 (6.59)

lim
tÑ8

xr,5ptq � xr,5,8 � lim
sÑ0

s � xr,5psq � lim
sÑ0

s �GG1psqupsq

� lim
sÑ0

s �GG1psq �
u8
s
� GG1p0qu8 � �CG1A�1

G1BG1u8 (6.60)

ñ u8 � �
�
CG1A�1

G1BG1
��1

xr,5,8 (6.61)
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6 Exemplary application of system reduction in control

Equation 6.61 and again final value theorem define stationary states qG1,8 depend-
ing on u8:

9qG1ptq � AG1qG1ptq �BG1u ñ qG1psqs � AG1qG1psq �BG1upsq

qG1psq � rsI�AG1s
�1 BG1upsq (6.62)

lim
tÑ8

qG1ptq � qG1,8 � lim
sÑ0

s � qG1psq � lim
sÑ0

s rsI�AG1s
�1 BG1upsq

� lim
sÑ0

s rsI�AG1s
�1 BG1

u8
s
� lim

sÑ0
rsI�AG1s

�1 BG1u8

� �A�1
G1BG1u8 (6.63)

Equation 6.63 enables final stationary relation between xr,5,8 and qG1,8:

qG1,8 � A�1
G1BG1

�
CG1A�1

G1BG1
��1looooooooooooooomooooooooooooooon

SG1,8

xr,5,8 � SG1,8xr,5,8 (6.64)

Using transformation matrix Jx,G1 and equation 6.64 achieves a consistent set of sta-
tionary reference values xr,8 with respect to gear G1 and in dependency on the required
stationary vehicle speed xr,5,8:

qG1,8 � SG1,8xr,5,8 ñ xr,G1,8 � Jx,G1SG1,8xr,5,8 (6.65)

Analogously in system ΣG2 holds:

qG2,8 � SG2,8xr,5,8 ñ xr,G2,8 � Jx,G2SG2,8xr,5,8 (6.66)

As already mentioned, in order to perform a gear shift from G1 to G2 it is necessary
to provide a smooth transition from xr,G1,8 to xr,G2,8. This approach includes the
requirement of achieving a zero differential angular velocity on the clutch that transi-
tions into locking state, while differential angular velocity on the clutch that returns
into slipping state increases from zero.
Following section offers a general method to generate n-times differentiable smooth
trajectories for change of operating point using a polynomial approach similar to [18].

Polynomial approach for change of operating point

At the beginning a simplified definition of the problem is useful: The task is to generate
an at least n-times differentiable trajectory xptq, fulfilling the following conditions,
which define a smooth change of operating point:

1. xpt � 0q � 0
2. xpt � 1q � 1
3. 9xptq|t�0 � :xptq|t�0 � � � � � xpnqptq|t�0 � 0
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6.4 Control strategy

4. 9xptq|t�1 � :xptq|t�1 � � � � � xpnqptq|t�1 � 0

The minimal degree of a polynomial function that satisfies all 2n � 2 conditions is
2n� 1:

xptq �
2n�1̧

i�0
ait

i (6.67)

According to conditions 1 and 3 the first n� 1 coefficients a0, . . . , an have to be zero.
Determination of the remaining n� 1 coefficients an�1, . . . , a2n�1, using the remaining
conditions 2 and 4, ends up into following linear equation system:

�
������

1 1 . . . 1
pn� 1q pn� 2q . . . p2n� 1q

pn� 1qpnq pn� 2qpn� 1q . . . p2n� 1qp2nq
... ... ...

pn� 1qpnq . . . p2q pn� 2qpn� 1q . . . p3q . . . p2n� 1qp2nq . . . pn� 2q

�
������

�
����
an�1
an�2
...

a2n�1

�
���� �

�
����

1
0
...
0

�
����

(6.68)

This approach can now be extended to the following more general conditions:
1. xpt � T0q � x0

2. xpt � T1q � x1

3. 9xptq|t�T0 � :xptq|t�T0 � � � � � xpnqptq|t�T0 � 0
4. 9xptq|t�T1 � :xptq|t�T1 � � � � � xpnqptq|t�T1 � 0

Scaling of polynomial function 6.67 in magnitude and time enables to fulfill generalized
conditions without changing the coefficients ai (i � 0, . . . , 2n� 1):

xptq � x0 � px1 � x0q
2n�1̧

i�0
ai

�
t� T0

T1 � T0


i
(6.69)

According to the fact that polynomial coefficients ai do not depend on the constants x0,
x1, T0 and T1, table 6.4 shows constant polynomial coefficients for orders n � 1, . . . , 5
obtained by solving the linear equation system 6.68.

order polynomial coefficients
n a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11
1 0 0 3 -2 0 0 0 0 0 0 0 0
2 0 0 0 10 -15 6 0 0 0 0 0 0
3 0 0 0 0 35 -84 70 -20 0 0 0 0
4 0 0 0 0 0 126 -420 540 -315 70 0 0
5 0 0 0 0 0 0 462 -1980 3465 -3080 1386 -252

Table 6.4: Polynomial coefficients for a n-times differentiable change of operating point
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6 Exemplary application of system reduction in control

According to equations 6.69, 6.65 and 6.66 consistent gear shift trajectories xr can be
formulated in dependency of desired vehicle speed xr,5ptq, gear shift time Tgs and gear
shift duration ∆Tgs:

xrptq �

$''&
''%

xr,G1, t   Tgs

xr,G1 � pxr,G1 � xr,G2q
°2n�1
i�0 ai

�
t�Tgs
∆Tgs

	i
, Tgs   t   Tgs �∆Tgs

xr,G2, t ¡ Tgs �∆Tgs

(6.70)

�

$'''''&
'''''%

Jx,G1SG1,8 � xr,5ptq, t   Tgs

rJx,G1SG1,8 � pJx,G1SG1,8� . . .

. . .Jx,G2SG2,8q
°2n�1
i�0 ai

�
t�Tgs
∆Tgs

	i�
� xr,5ptq, Tgs   t   Tgs �∆Tgs

Jx,G2SG2,8 � xr,5ptq, t ¡ Tgs �∆Tgs

The set of consistent reduced coordinates can be determined by choosing the last four
components of xr:

qrptq � Dxrptq (6.71)

Effective gear shift time Tgs and gear shift duration ∆Tgs are not yet known while
performing the gear shift. Therefore in calculation 6.70 they are considered to be
design parameters (Ñ Tgs,init and ∆T̄gs).
Figure 6.6 shows the generation of consistent reference trajectories in block notation.

Σr
xr,5

cs
qr

Figure 6.6: Consistent reference trajectory generation: Σr (see equation 6.70), cs clutch state

6.4.5 LQR feedback control

Due to the fact that flatness-based feedforward control is quite susceptible to model
uncertainties and other disturbances, it is indispensable to extend the control strategy
by a feedback loop.
In this exemplary application a linear state feedback is used to cover model uncer-
tainties and other disturbances. The linear state feedback is designed in an optimal
manner using LQR approach (see chapter 4.3.1). As investigated in chapter 4.3.2 it
is possible to design an optimal linear state feedback on the interim system ΣGi and
to use reduced controllers for the subsystems ΣG1 and ΣG2. Since stability of reduced
controllers is not guaranteed in advance (see chapter 3.3), it has to be evaluated by
considering eigenvalues of the unreduced controller (see section 6.5.2). According to
chapter 4.3 also the performance of the reduced and therefore suboptimal controllers
has to be evaluated (see section 6.5.3).
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6.5 Simulation and results

The degree of freedom in design of an LQ optimal linear state feedback is the choice
of state weight matrix Q and input weight matrix R:

• Since the control task of tracking a required vehicle velocity has the highest
priority, it is advantageous to increase weight on the difference between required
and actual vehicle speed by increasing third diagonal element in state weight
matrix Q. Since in stationary gears G1 and G2 there exist stationary relations
between the angular velocities in the drivetrain and the desired vehicle speed,
this weighting will mainly take effect in interim gear Gi.

• Manipulation of the diagonal elements of the input weight matrix R enables
power partition between combustion engine and electric motor with respect to
disturbance coverage.

Figure 6.7 shows the general structure of the feedback control.

�
Σc Σ

qr

cs
∆q uc q

Figure 6.7: Structure of feedback control loop: Σc controller, Σ plant

6.4.6 Combined structure

Figure 6.8 shows the suggested combined control structure.

Σr T Σf T�1
�

Σc

ΣE,M
uM

uE

Σ
cs

cs,tscs

cs ucl
xr,5 qr zr z̃r q̃r ∆q ufb u q

cs

z̃pnqr
uff

feedforward control

consistent reference values

feedback control

Figure 6.8: Structure of flatness-based feedforward control (see figure 6.5) including a feedback loop
(see figure 6.7) and the consistent generation of reference trajectories (see figure 6.6)

6.5 Simulation and results

In order to validate functionality of the used control strategy (see chapter 6.4) it
has been implemented in Matlab®/Simulink®. The modeling approach, discussed in
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6 Exemplary application of system reduction in control

chapter 6.4.2 has been used for the design of the control system. Simulation employs
plant model applied in [17]. This model provides current clutch states as assumed in
section 6.3.2 and further models influence of air drag, and rolling resistance, which are
considered to be external disturbances.

6.5.1 Parametrization

Tables 6.5 and 6.6 list the physical parameters used for modeling (see chapter 6.2) and
table 6.7 lists the parameters used for the control system design (see chapter 6.4).

Drivetrain

symbol value unit
JE 64.0 � 10�3 kg �m2

JR3 10.0 � 10�3 kg �m2

JM 32.5 � 10�3 kg �m2

JF 333.3 � 10�3 kg �m2

JV 135.7 kg �m2

d 20 Nm � s
dJ 10�4 Nm � s
k 4 � 103 N �m
r 0.317 m

Table 6.5: System parameters

symbol value
iF 4.616
iR1
P 0.260
iR2
P 0.480
iR3
P3 �0.676
iR1
S1 �0.317
iR2
S1 1.633
iR1
S2 0.745
iR2
S2 �0.491

Table 6.6: Gear ratios

Control system

symbol value unit explanation
∆T̄gs 0.5 s planned gears shift duration
∆Tcl 0.5 s clutch torque ramp duration

∆τc,max 200 Nm maximum clutch torque
τF 0.05 s low-pass filter time constant
RE 10 LQR input weighting combustion engine
RM 10 LQR input weighting electric motor
Q3 1 LQR state weighting x3

Q4 1 LQR state weighting x4

Q5 105 LQR state weighting x5

Q6 1 LQR state weighting x6

Table 6.7: Control parameters
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Q �

�
���
Q3 0 0 0
0 Q4 0 0
0 0 Q5 0
0 0 0 Q6

�
��� , R �

�
RE 0
0 RM

�
(6.72)

6.5.2 Stability check

According to chapter 3.3 stability of the controlled subsystems has to be evaluated.
The evaluation is done for the gear shift: Ga Ñ Gi,aØc Ñ Gc. Since the real parts
of the eigenvalues are true negative (see table 6.8) all three controlled subsystems are
asymptotically stable.

gear eigenvalues
Gi �3.5� j � 18.87 �8.17 �5.37
G1 �2.78� j � 18.30 �5.77
G2 �3.76� j � 18.26 �7.11

Table 6.8: Eigenvalues: ΣGi, ΣG1, ΣG2

6.5.3 Qualitative evaluation of optimality

Chapter 4.3.2 shows how to reduce a linear state feedback in order to control subsys-
tems with respect to additional linear constraints. The advantage of this approach
is that there is no need for redesigning the controller. Although certain conditions
can guarantee stability of the reduced controller (see chapter 3.3), its optimality in
general gets lost (see chapter 4.3). A possible approach to quantify the effects of the
loss of optimality in a specific application is to compare them to the effects of param-
eter uncertainties. This comparison is done in the frequency domain considering the
controlled system’s overall transfer function. Therefore vehicle mass is varied up to
plus 10%, modeling for example additional vehicle load, and damping constant �20%,
since its exact determination is quite hard in practice. Figure 6.9 shows on the one
hand uncertain but optimal controlled system’s overall transfer function Topt,d and on
the other hand suboptimal controlled (reduced controller) Tsubopt in gears G1 � Ga

and G2 � Gc.
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Figure 6.9: Evaluation of the performance of the suboptimal controllers

Although this approach is only a graphical analysis, it shows that the loss of optimality
of the reduced controllers in this application is negligible.
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6.5.4 Simulation

This section finally provides results of four specific gear shift simulations (Simulation
1-4). Table 6.9 is an additional legend for simulation results (see figures 6.10 to 6.13)
with respect to the line styles. For explanation of the used variables see figure 6.8 and
chapter 6.4.

linestyle states actuation control error clutch state vehicle dynamic
x z

�
u ucl

�
∆x C0,C1,C2,C3 v, a, j

��� xr � uff � � vr

. . . . . . x̃r z̃r � � � �

Table 6.9: Additional line style legend
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6 Exemplary application of system reduction in control

Simulation 1

The first experiment performs a gear shift while tracking a constant vehicle speed. The
necessary propulsion torque is stationary provided by the combustion engine, while the
electric motor just supports the required gear shift. Further in this first simulation
the LQR feedback control is disabled in order to see performance of the flatness-based
linear feedforward propulsion torque control. Table 6.10 summarizes the simulation
setup and figure 6.10 shows the results of simulation 1.

symbol value unit explanation
vr,start 10 m/s starting vehicle velocity (reference)
vr,final 10 m/s final vehicle velocity (reference)
∆Tacc � s acceleration time
Tgs,init 2 s gear shift initiation time

G1 Ga current gear (see table 6.2)
G2 Gc required gear (see table 6.2)
ff 1 enable feedforward control
fb 0 enable feedback control
kE 1 torque split combustion engine

Table 6.10: Parameters simulation 1

Discussion Due to the fact that the drivetrain is affected by air drag and rolling
resistance, which are not part of the mathematical model, the control errors increase
with increasing simulation time, i. e. angular velocities in the drivetrain as well as the
vehicle speed diverge from their required values. According to the clutch state required
gear shift took place from simulation time 2.5 to 3s (at the beginning and the end of
the simulation each one additional simulation second is inserted). This time approxi-
mately equals the planned transition time (see ∆T̄gs in table 6.7). Considering the
vehicle jerk one can notice that vehicle dynamic is hardly influenced by the performed
gear shift. Due to subsequent calculation of the vehicle jerk by differentiation of the
vehicle acceleration there is a peak in vehicle jerk at the beginning of the simulation.
Internal damping in the drivetrain is small (see damping constant dJ in table 6.5)
and therefore there is only a need of slight stationary propulsion torques for keeping
speeds. Actually step like changes in the actuation torques are not feasible in reality,
since they involve unbounded energy. Therefore chapter 7.2 presents an approach to
include rate saturations for actuators into the flatness-based feedforward concept.

74



6.5 Simulation and results

x

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

st
at
es

x
1

x
2

x
3

x
4

1
0
0

0
 ·

 x
6

1
0
·
 x

5

u[Nm]

-1
0
0

-5
00

5
0

1
0

0

1
5

0

2
0

0
ac
tu
at
io
n

τ
E

τ
M

τ
C

0

τ
C

1

τ
C

2

τ
C

3

z

-505

1
0

1
5

z
1

z
2

z
3

z
4

t
0

1
2

3
4

5
6

v[m/s]

8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

ve
h
ic
le

d
y
n
am

ic

a[m/s
2
],j[m/s

3
]

-1
4

-1
0

-6-2261
0

1
4

v
el

o
ci

ty

ac
ce

le
ra

ti
o

n

je
rk

0

0
.51

cl
u
tc
h
st
at
e

C
0

C
1

C
2

C
3

t
0

1
2

3
4

5
6

∆x

-1
00

1
0

2
0

3
0

co
n
tr
ol

er
ro
r

∆
 x

1

∆
 x

2

∆
 x

3

∆
 x

4

∆
 x

6

∆
 x

5

Figure 6.10: Simulation results 1 75



6 Exemplary application of system reduction in control

Simulation 2

The second simulation experiment repeats simulation 1 with enabled feedback loop, in
order to show the performance of combined feedforward and feedback control. There-
fore the remaining simulation setup (see table 6.11) equals the setup used in simulation
1 (see table 6.10). Figure 6.11 shows the results of simulation 2.

symbol value unit explanation
vr,start 10 m/s starting vehicle velocity (reference)
vr,final 10 m/s final vehicle velocity (reference)
∆Tacc � s acceleration time
Tgs,init 2 s gear shift initiation time

G1 Ga current gear (see table 6.2)
G2 Gc required gear (see table 6.2)
ff 1 enable feedforward control
fb 1 enable feedback control
kE 1 torque split combustion engine

Table 6.11: Parameters simulation 2

Discussion In contrast to simulation 1 in this simulation control errors do not in-
crease with increasing simulation time, but are constant. Increasing of the control
errors is prevented by the feedback controller. Consequently there is hardly no vari-
ance between actual and required vehicle speed. Due to the use of a linear state
feedback and the presence of constant disturbances there exist steady control errors.
Their further decreasing could be realized by introducing an additional integral part
to the feedback control law. The influence of the performed gear shift on the vehicle
dynamic is again negligible.
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Simulation 3

While simulations 1 and 2 deal with tracking a constant vehicle speed, simulation 3
deals with tracking a vehicle acceleration from vehicle speed 10m/s to 20m/s within
four seconds (ramp from simulation time 1s to 5s), while performing the required gear
shift. The other simulation settings, with respect to gear shift and torque split (see
table 6.12) are unmodified. Figure 6.12 shows the results of simulation 3.

symbol value unit explanation
vr,start 10 m/s starting vehicle velocity (reference)
vr,final 20 m/s final vehicle velocity (reference)
∆Tacc 4 s acceleration time
Tgs,init 2 s gear shift initiation time

G1 Ga current gear (see table 6.2)
G2 Gc required gear (see table 6.2)
ff 1 enable feedforward control
fb 1 enable feedback control
kE 1 torque split combustion engine

Table 6.12: Parameters simulation 3

Discussion The required gear shift is indeed performed, but the actual gear shift
duration ∆Tgs (approximately 0.3 s) is shorter than the planned gear shift duration
∆T̄gs. This fact implies that the transition to gear G2 can not be that smooth as it
was the case in simulations 1 and 2. Ripple in vehicle jerk confirms this assumption,
although its magnitude is still acceptable. Salient points of the required vehicle velocity
profile, at the beginning and the end of the ramp, result in peaks in vehicle jerk.
These peaks can be reduced by applying a smooth velocity profile. Considering the
used actuations, the requirement of stationary propulsion by combustion engine is
satisfied. Actually feedback controller employs both the combustion engine and the
electric motor to compensate the acting disturbances (air drag, rolling resistance),
therefore propulsion torque of the electric motor stationary is not equal to zero. Due
to the higher transmission ratio in gear G2 combustion engine stationary has to apply a
higher propulsion torque than in gear G1. For explanation of the acting clutch torques
τC,1 and τC,3 in this simulation see figure 6.2. Note that signs of the torques consider
signs of the according differential angular velocities.
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6 Exemplary application of system reduction in control

Simulation 4

The forth simulation experiment repeats simulation 3 with a varied stationary torque
split. According to simulation setup (see table 6.13) 70% of the required propulsion
torque and consequently power (see chapter 6.4.3) are stationary provided by the
combustion engine. The remaining 30% are provided by the electric motor.

symbol value unit explanation
vr,start 10 m/s starting vehicle velocity (reference)
vr,final 20 m/s final vehicle velocity (reference)
∆Tacc 4 s acceleration time
Tgs,init 2 s gear shift initiation time

G1 Ga current gear (see table 6.2)
G2 Gc required gear (see table 6.2)
ff 1 enable feedforward control
fb 1 enable feedback control
kE 0.7 torque split combustion engine

Table 6.13: Parameters simulation 4

Discussion The requirement on propulsion torque split results in specific torques
τE and τM, due to transmission ratios. Apart from this the simulation results are
similar to simulation 3. Comparing vehicle dynamic and coordinates z illustrates the
approximation z1ptq � vptq (see remark 24).
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7
Conclusion and perspectives

Since chapters 2 to 5 provide the mechanical and mathematical knowledge
used for the design of the control system in chapter 6, the focus of this
chapter is on conclusions of and perspectives to the applied control strategy.

7.1 Conclusion

Chapter 6 provides a control strategy for the specific drivetrain topology that uses
both the advantages of the modeling approach presented in general in chapter 2 and
more specific in chapter 5 and the mechanical peculiarities of the considered drivetrain.
The results of specific gear shift experiments presented in the last section show quite
good performance with respect to the control task stated in section 6.3.
Nevertheless the control system so far includes several points for improvement:

• Actuators are considered to be unconstrained in magnitude and rate. Although
such constraints can be included into the feedforward strategy (see chapter 7.2),
a deterioration of the gear shift performance with respect to vehicle jerk has to
be expected.

• As already mentioned in the discussions of the single simulation results in section
6.5.4 planned gear shift duration ∆T̄gs has to estimate actual gear shift duration
∆Tgs. Discrepancies between these two values can have considerable impact on
the gear shift performance. Actual gear shift duration is further heavily influ-
enced by the open loop design parameters clutch ramp time ∆Tcl and maximal
clutch torque τc,max. Choice of the parameters ∆T̄gs, ∆Tcl and τc,max depending
on the current angular velocities, torques and required gear shift could further
improve shift quality in the general case (see section 7.2).

7.2 Perspectives

At the end of this chapter and this work this section provides an outlook for further
improvement of the control system as suggested in section 7.1 as well as possible
additions and generalizations of the used concept.

83



7 Conclusion and perspectives

Determination of Lagrangian multipliers

As already mentioned in section 7.1, choice of the parameters ∆T̄gs, ∆Tcl and τc,max
is challenging in order to achieve a good gear shift performance. Transmitted torque
on a locked clutch is defined by the corresponding Lagrangian multiplier (see remark
20) and can be calculated in dependency of the current driving situation in advance.
This calculation offers an estimation of the minimal necessary clutch torque τC, and
consequently minimal necessary pressure on clutch plates, to keep it locked. Starting
ramp down from a torque τC,max more closely to the locking torque, clutch ramp
time ∆Tcl would be more directly related to the actual gear shift duration ∆Tgs.
Consequently its estimation (∆T̄gs) could be done in a more consistent way.

Constrained actuators

In practice every actuator is constrained. Constraints can be characterized by max-
imum and minimum limits as well as maximum increasing and decreasing rates.
Flatness-based linear feedforward control enables a smart possibility to include ac-
tuator constraints into the design as suggested in [19]. The idea is to enforce the
components z̃pµiq

i for i � 1, . . . ,m to satisfy the constraints and afterwards calcu-
late corresponding coordinates z̃ by applying integration. The approach is similar
to anti-windup measures like back calculation proposed by Hanus in [20]. To ensure
intelligibility this idea is considered in detail in SISO case.
In the first step the suggested filter structure has to be adapted (see figure 7.1).

�
1
kn

³ ³ ³
z̃

z̃pn�2q

z̃pn�1q

z̃1pnq

kn�1 kn�2 k0z̃pnq

z

Figure 7.1: Adapted low-pass filter n-th order

Figure 7.2 shows the structure of the feedforward control considering actuator satura-
tion in SISO case. Usage of z̃ and unsaturated component z1pnq enables calculation of
the necessary actuation u1. Applying the system model, saturated actuation usat and
state vector z̃ define the component z̃pnq . This component is channeled into the filter
in an feedback loop.
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Σf Σ�1
m Σm

usat

z̃

z̃1pnq
z̃pnq

zr u1

Figure 7.2: Feedforward control structure including actuator saturation: Σf filter (see figure 7.1),
Σm plant model, Σ�1

m inverse plant model

This approach can be used to avoid non feasible step like changes in the actuation
signals, in order to generate more realistic gear shifts.

Generalization of the control strategy

The used modeling with respect to the additional mechanical constraints, and the
special structure of the drivetrain topology with respect to mechanics, enabled a smart
approach in control. Consequently it is an interesting question, if this control strategy
can be generalized to general (non-conventional) gear shifts or more general on other
drivetrain topologies respectively also on similar switching linear multibody systems.

Clutch actuation

Although clutch torque actuation is part of the discussed control strategy, clutch
torques are not yet considered in a model-based way with respect to control. Intelligent
actuation of the slipping clutches’ torques could probably significantly improve the gear
shift performance. Since clutch torques are dissipative actuators, i. e. they can not
impress energy into the system, and further disappear in case of locked clutches, such
an extension of the control strategy will be quite challenging, but definitely desirable.

State observation

Since there exists a strong duality between controlling and observing a system, the
design of a state observer, based on modeling and considerations with respect to con-
trol discussed in this work, immediately suggests itself. Chapter 4.2 already offers
preparatory work to that from the mathematical point of view.
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