
University of Ljubljana

Faculty of Computer and Information Science

Miran Levar

Web-based platform for

dataflow processing

MASTER’S THESIS

SECOND-CYCLE STUDY PROGRAMME

COMPUTER AND INFORMATION SCIENCE

Supervisor: prof. dr. Blaž Zupan

Co-supervisor: Denis Helic, Assoc.Prof. Dipl.-Ing. Dr.techn.

Ljubljana, 2015

Univerza v Ljubljani

Fakulteta za računalnǐstvo in informatiko

Miran Levar

Spletno okolje za

podatkovno vodeno procesiranje

MAGISTRSKO DELO

ŠTUDIJSKI PROGRAM DRUGE STOPNJE

RAČUNALNIŠTVO IN INFORMATIKA

Mentor: prof. dr. Blaž Zupan

Somentor: Denis Helic, Assoc.Prof. Dipl.-Ing. Dr.techn.

Ljubljana, 2015

Copyright. The results of this Master’s Thesis are the intellectual property of the

author and the Faculty of Computer and Information Science, University of Ljubljana.

Publication or usage of the thesis results requires written consent of the author, the Faculty

of Computer and Information Science, and the supervisors.

c⃝2015 Miran Levar

Declaration of Master’s Thesis authorship

I, the undersigned Miran Levar, am the author of this Master’s Thesis enti-

tled:

Web-based platform for

dataflow processing

With my signature, I declare that:

• the submitted Thesis is my own unaided work under the supervi-

sion of prof. dr. Blaž Zupan and co-supervision of Denis Helic, As-

soc.Prof. Dipl.-Ing. Dr.techn.,

• all electronic forms of this Master’s Thesis, the title (Slovenian, En-

glish), abstract (Slovenian, English), and the keywords (Slovenian, En-

glish) are identical to the printed form of the Master’s Thesis,

• I agree with the publication of the electronic form of this Master’s

Thesis in the collection “Dela FRI”.

In Ljubljana, 26th September 2015 Author’s signature:

Acknowledgements

Thanks to Prof. Zupan for his support and guidance through the years as well

as the opportunities he has helped create for me. Thanks to Prof. Helic for

overseeing my year in Graz and collaborating with me on this work. Thanks

to the Genialis team for inviting me to participate in an incredible project.

Finally, thanks to everyone else, friends and family, who supported me during

my studies.

Miran Levar

Kazalo

List of abbreviations

Abstract

Povzetek

Razširjeni povzetek

1 Introduction 1

2 Theoretical background 5

2.1 Architecture . 5

2.2 Dataflow programming . 19

3 Related work 27

3.1 PIPA . 27

3.2 dictyExpress . 28

3.3 Orange . 29

3.4 KNIME . 31

3.5 noflo.js . 32

3.6 Galaxy . 33

3.7 DNANexus . 34

4 Implementation 37

4.1 Development goals . 37

4.2 Platform architecture . 39

4.3 Selected implementation details 52

5 Conclusion 67

5.1 Looking back . 68

5.2 Looking forward . 70

References 73

List of abbreviations

ACID Atomicity, Consistency, Isolation, Durability

API Application Programming Interface

BSON Binary JSON

CSS Cascading Style Sheets

DBMS Database Management System

DOM Document Object Model

FBP Flow-Based Programming

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IT Information Technology

JSON JavaScript Object Notation

MVC Model, View, Controller

NoSQL Not only SQL

ORM Object-Relational Mapping

REST Representational State Transfer

SMTP Simple Mail Transfer Protocol

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SQL Structured Query Language

URL Uniform Resource Locator

VPL Visual Programming Language

WS Web Service

XML Extensible Markup Language

YAML Yet Another Markup Language, YAML Ain’t Markup Language

Abstract

This Thesis presents the design and implementation of a web-based general-

purpose data processing platform. The platform consists of a storage system,

processing system, and an application server with an exposed RESTful in-

terface. Through this interface clients, such as web browser applications, can

access and control data processing as well as view the results of it. The pro-

cessing system is inspired by dataflow processing, defining each process as a

black box with inputs and outputs. Connecting the outputs to inputs of other

processes enables data to flow between processes and allows for creation of

processing pipelines. Triggers – conditions under which a process can begin

work on available input data – enable automation of the processing pipelines.

Such a system allows users who lack programming expertise to easily create

and run complex dataflow operations.

Keywords

web application, multi-layered architecture, dataflow processing, data ana-

lytics

Povzetek

V magistrski nalogi je predstavljena zasnova in implementacija pilotne ver-

zije splošne spletne platforme za podatkovno analitiko. Podrobno sta pred-

stavljena strežnǐski del za hranjenje in obdelavo podatkov ter programski

vmesnik, preko katerega spletni odjemalec komunicira s strežnikom. S pre-

prostimi primeri prikažemo, da je platforma razširljiva – enostavno je mogoče

razširiti obstoječe ter dodati nove zmogljivosti. Sistem procesiranja podat-

kov temelji na podatkovno vodenih (angl. dataflow) principih in s pomočjo

sprožilcev, ki določajo pogoje pri katerih se lahko proces samodejno prične,

omogoča avtomatizacijo procesiranja. Vsak proces lahko razumemo kot črno

škatlo z definiranimi vhodi in izhodi, procese pa lahko med seboj smiselno

povežemo in omogočimo, da podatki iz izhodov tečejo v vhode naslednjih

povezanih procesov. Sistem uporabnikom omogoča, da tudi brez programer-

skega znanja sestavijo in izvajajo kompleksne podatkovno vodene operacije,

saj je abstraktne predstavitve procesov moč med seboj povezati tudi brez

poznavanja njihovih podrobnosti.

Ključne besede

spletna aplikacija, več-slojna arhitektura, podatkovno vodeno procesiranje,

podatkovna analitika

Razširjeni Povzetek

Magistrska naloga predstavi razvoj spletne platforme za hranjenje, obdelavo

in vizualizacijo podatkov. Z zasnovo rešitve smo želeli izdelati sistem, ki je

lahko nadgradljiv in preprost za uporabo, sploh za uporabnike, ki nimajo

programerskih izkušenj. Avtor naloge je pri načrtovanju in razvoju plat-

forme sodeloval s podjetjem Genialis1 ter na podlagi diskusije s sodelavci

razvil ogrodje in prvo iteracijo spletne aplikacije s pripadajočim spletnim

strežnikom, nato pa še leto sodeloval pri izpopolnjevanju in nadgrajevanju

rešitve.

Osnova delovanja platforme je podatkovno vodeno procesiranje (angl.

dataflow processing) [17, 32], pristop, ki aplikacijo predstavi kot usmerjen

graf. Med vozlǐsči grafa, ki predstavljajo operacije, se po usmerjenih pove-

zavah pretakajo podatki. Ko v neko vozlǐsče prispejo (vsi) vhodni podatki,

se nad njimi izvede operacija, nato pa iz izhodov vozlǐsča naprej po grafu

do naslednjih povezanih vozlǐsč stečejo izhodni podatki. Ta pristop k pro-

cesiranju omogoča istočasno izvajanje med seboj neodvisnih operacij in je

zelo drugačen od tradicionalnega, von Neumannovega, pristopa k programi-

ranju, kjer se operacije izvajajo ena za drugo. Slika 1 prikazuje primerjavo

klasičnega programa (zaporedja ukazov) ter ekvivalentnega podatkovno vo-

denega programa, predstavljenega z usmerjenim grafom.

Podatkovno vodeno procesiranje je bilo na začetku preučevano na ni-

voju strojnih ukazov in kot alternativa von Neumannovemu modelu proce-

siranja. V devetdesetih so raziskovalci ugotovili, sta si pristopa med seboj

1www.genialis.com

http://www.genialis.com

Slika 1: Primerjava preprostega sekvenčnega programa (a) ter ekvivalentnega

podatkovno vodenega programa, predstavljenega z usmerjenim grafom (b),

primerjava je prikazana kot so jo predlagali Johnston in sod. [17].

nista izključujoča, temveč le dve skrajnosti razpona možnih arhitektur [24].

Podatkovno vodeno procesiranje lahko v kontekstu klasičnega procesiranja

razumemo kot večjedrno arhitekturo, ki vsak strojni ukaz izvede v svoji niti.

Ta nov pristop je podlaga za preučevanje tako imenovanega hibridnega po-

datkovnega procesiranja (angl. hybrid dataflow), z vidika naloge pa je po-

memben, ker kaže, da je podatkovno vodeno procesiranje moč razumeti tako

na nivoju strojnih ukazov kot tudi na vǐsjih, abstraktneǰsih nivojih.

Programiranje na osnovi tokov (angl. flow-based programming, FBP),

ki ga je v sedemdesetih izumil Morrison [22, 23], je nekoliko vǐsje-nivojski

pristop k podatkovno vodenemu procesiranju. FBP razdeli razvoj aplikacije

na dva dela – izdelavo usmerjenega grafa oz. diagrama ter implementacijo

posameznih komponent (vozlǐsč). Posamezne komponente lahko razumemo

kot črne škatle z določenimi vhodni in izhodi, ki iz vhodnih podatkov ustva-

rijo izhodne na podlagi nekega algoritma. Ta algoritem je lahko poljubno

preprost ali kompleksen, združevanje preprosteǰsih komponent grafa pa po-

meni ustvarjenje vǐsje-nivojskih komponent. Visoko-nivojske komponente so

osnovni gradniki, s katerimi na platformi opisujemo procesiranje podatkov.

Ker podatkovno vodeno procesiranje in programiranje uporablja grafe, je

le-te moč na preprost način vizualizirati. Vizualni programski jeziki (angl.

visual programming languages) [17] uporabljajo podoben pristop in z uporabo

takšnih grafov oz. diagramov dosežejo izbolǰsanje preglednosti in razumeva-

nja napisane izvorne kode. Vizualni pristopi k programiranju premoščajo

razhajanje med podatkovno vodeno fazo načrtovanja aplikacije in deklara-

tivno fazo implementacije [1]. Dodatna prednost vizualnega pristopa je, da

so diagrami potekov lahko razumljivi tudi nepoznavalcem. Idejo in delovanje

sistema je moč razumeti tudi brez poznavanja podrobnosti implementacije

posameznih komponent.

Pred predstavitvijo platforme je potrebno definirati nekaj terminov, ki se

pogosto uporabljajo v kontekstu platforme. Podatek je skupek relevantnih

informacij, ki predstavlja en vnos v podatkovni bazi. K enemu podatku lahko

pripada ena ali več datotek, odvisno od definicije podatkovnega tipa posa-

meznega podatka. Del pripadajočih informacij je nespremenljiv in določen

ob dokončnem zapisu podatka v bazo, drugi del pa lahko uporabniki po želji

spreminjajo. Vsak podatek nastane kot rezultat procesorja, koncepta, ki

smo ga povzeli iz podatkovno vodenega procesiranja. Procesor lahko na eni

strani sprejme vhodne podatke, na drugi pa vedno ustvari vsaj enega ali več

novih izhodnih podatkov. Obenem je procesor oz. sistem za upravljanje pro-

cesiranja tisti, ki določa nespremenljiv del informacij posameznega podatka.

Še en pomemben koncept so sheme in predloge, ki služijo kot opis struk-

ture informacij shranjenih v podatku. Tako sheme kot predloge delujejo po

enakem ključu, razlika v imenih pa je prisotna za lažje razločevanje med deli

strukture, ki jih uporabnik lahko (predloge) in ne more spreminjati (sheme).

Z zamenjavo predloge lahko uporabniki prilagodijo del strukture informacij

podatka svojim potrebam. Razlog za ločeno hranjenje strukture in informacij

samih je, da je s takšnim pristopom mogoče razviti sistem za generiranje vno-

snih in prikaznih obrazcev. Hkrati to zelo pripomore k splošnosti platforme,

saj je neglede na tip podatka mogoče shraniti vse relevantne informacije.

Zadnji koncept so aplikacije. Platforma svoje zmogljivosti izpostavlja

v splet preko aplikacijskega programskega vmesnika (angl. application pro-

gramming interface, API), za krmiljenje in interakcijo pa so potrebni odje-

malci. Aplikacija je uporabnǐski vmesnik platforme, ki preko APIja krmili

procesiranje ter prikazuje rezultate le-tega. Pričakujemo, da bodo aplika-

cije tipično razvite za spletne brskalnike, četudi je do spletnega vmesnika

moč dostopati s katerokoli združljivo tehnologijo. Nekaj primerov aplikacij

je razvil Genialis (na primer osnovno okolje za upravljanje s podatki, procesi

in sprožilci ter specializirano aplikacijo za vizualizacijo genskih ekspresij),

razvijejo pa jih lahko tudi dovolj vešči uporabniki.

Platforma je bila zasnovana z več-slojno arhitekturo (angl. multi-layered

architecture), ki jo sestavljajo sloj trajnosti (angl. persistence layer), sloj

za procesiranje podatkov (angl. processing layer), aplikacijski sloj (angl.

application layer) in predstavitveni sloj (angl. presentation layer). Cilj je

bil ustvariti modularno strukturo s šibko sklopljenimi komponentami, ki med

seboj komunicirajo preko vmesnikov in jih je moč zamenjati za alternativne

komponente z združljivimi vmesniki. Slika 2 prikazuje diagram arhitekture

sistema s pomembneǰsimi uporabljenimi tehnologijami za vsak sloj.

Slika 2: Arhitektura sistema z uporabljenimi tehnologijami.

Sloj trajnosti skrbi za hranjenje podatkov. Platforma uporablja tri načine

shranjevanja podatkov: relacijsko podatkovno bazo PostgreSQL2, ne-relacijsko

podatkovno bazo MongoDB3 in datotečni sistem. Podatki z relacijsko struk-

2www.postgresql.org
3www.mongodb.org

http://www.postgresql.org
http://www.mongodb.org

turo, kot na primer uporabniki, skupine uporabnikov in podatki o aktivnostih

uporabnikov, so shranjeni v relacijsko bazo. Informacije o podatkih, ki so

na platformo naloženi za procesiranje, so shranjene v MongoDB, ne-relacijski

bazi specializirani za hranjenje dokumentov. Podatkom pripadajoče datoteke

so shranjene v porazdeljenem datotečnem sistemu. Dostop do podatkovnih

baz je krmiljen preko sistemov za objektno-relacijsko preslikavo (angl. object-

relational mapping, ORM), kar pripomore k šibki sklopljenosti sloja trajnosti

in aplikacijskega sloja.

Aplikacijski sloj je razvit v Djangu4, okolju za razvoj spletnih aplika-

cij v programskem jeziku Python. Aplikacijski sloj določa funkcionalnosti

platforme ter jih preko APIja izpostavlja spletu. API je definiran glede

na določila specifikacije REST [11] in na zahtevke odjemalcev odgovarja s

pošiljanjem relevantnih podatkov v notaciji JSON. Pomemben del zagotavlja-

nja pravilnega delovanja sloja je avtomatsko testiranje modulov. Za večino

komponent, predvsem pa API, so napisani testi, ki preverijo pravilnost de-

lovanja teh komponent. Testi se samodejno zaženejo, ko so v izvorno kodo

dodane spremembe. Sloj za procesiranje je prav tako napisan v programskem

jeziku Python z uporabo knjižnice Celery5. Posamezni procesorji se izvajajo

znotraj izoliranih Linux okolj (angl. Linux Containers, LXC). Tako je pro-

cesorjem onemogočen dostop do preostalega sistema ter do procesov ostalih

uporabnikov.

Za avtomatizacijo procesiranja uporabljamo tako imenovane sprožilce [18].

Sprožilec določa pogoje, pri katerih se lahko, ko so prisotni vsi vhodni po-

datki, procesiranje samodejno prične. Uporabniki lahko definirajo serijo

sprožilcev ter tako ob naložitvi primernih podatkov sprožijo samodejno pro-

cesiranje vse do končnih rezultatov. Avtomatsko procesiranje je posebej do-

brodošlo v primerih, ko posamezni procesi trajajo precej časa, saj sistem brez

nadzora in potrebe po dodatni interakciji ustvari končne rezultate. Obenem

lahko neveščim uporabnikom podatkovno vodene cevovode nastavijo skrbniki

4www.djangoproject.com
5www.celeryproject.org

http://www.djangoproject.com
http://www.celeryproject.org

Slika 3: Slika prikazuje Shemo 4.2 izrisano v načinu samo za branje ter v

načinu za urejanje.

ter jim tako omogočijo nemoteno delo.

Na strani odjemalca so aplikacije predstavitvenega sloja napisane s pomočjo

ogrodja AngularJS 6, ki smo ga izbrali kot najbolj ustreznega izmed podobnih

rešitev za pisanje uporabnǐskih vmesnikov. Ogrodje omogoča razširitev stan-

dardnega jezika HTML s tako imenovanimi direktivami, ki jih okolje ogrodja

interpretira ter izrǐse glede na njihovo definicijo. S takšnimi direktivami smo

na primer implementirali avtomatsko generiranje obrazcev iz shem ter infor-

macij nekega podatka (Slika 3).

Platforma je relativno preprosto razširljiva, saj ji je moč dodati tako

nove procesorje, ki so zapisani v jeziku YAML (primer definicije procesorja

je Izpis 4.4), kot tudi nove aplikacije (preprost primer aplikacije prikazuje

Slika 4.4). Seveda pa je mogoče izdelati tudi bistveno bolj zahtevne aplikacije

– Slika 4 prikazuje zgoraj omenjeni primer vmesnika aplikacije za vizualizacijo

genskih ekspresij.

V nalogi predstavljena platforma je tudi po približno dveh letih in pol od

pričetka razvoja še vedno v uporabi ter se aktivno vzdržuje in nadgrajuje.

Podjetje Genialis tudi razvija nove aplikacije ter tako rešuje probleme podat-

kovne analitike na področju bioinformatike. Predstavljene ideje so preživele

in zaživele in se še vedno izpopolnjujejo v dinamičnem start-up okolju.

6angularjs.org

http://angularjs.org

Slika 4: Vmesnik aplikacije za vizualizacijo in analizo genskih ekspresij dict-

yExpress8.

8Aplikacija je dostopna na dictyexpress.research.bcm.edu.

http://dictyexpress.research.bcm.edu

Chapter 1

Introduction

In early 2013 a start-up company Genialis9 set out to build a general data

processing platform. The platform should support the whole data flow from

uploading the raw data to viewing the results of processing in a web applica-

tion. The author of this Thesis was one of the developers that planned the

architecture, implemented the first iteration of the platform, and continued

improving it during the first year of deployment.

The fundamental idea of the platform was to enable users that have little

to no programming knowledge access to complex tools, ideally with an intu-

itive visual interface similar to those in data mining suites like Orange [8] and

KNIME [3]. The principles behind the idea are related to (visual) dataflow

programming [17, 22], which is a programming paradigm that represents ev-

ery process as an abstract black box with inputs and outputs (sometimes

with exposed processing parameters as well). Outputs of one black box can

be fed as inputs into the next one and in this way a processing pipeline can

be built that transforms the raw data into results (Figure 1.1). The black

boxes, and the processes they represent, are algorithms transforming some

input data into outputs and have to be developed by programmers or users

with sufficient skills. Once developed, however, these black box processes

can be used by anyone who can meaningfully interconnect them.

9www.genialis.com

1

http://www.genialis.com

2 CHAPTER 1. INTRODUCTION

Figure 1.1: An example workflow created with Orange, a data analysis frame-

work. The workflow was created with a visual programming interface. The

input data File can be analysed (Attribute Statistics), visualised (Scatter

Plot), and used as input data for machine learning techniques (Test Learn-

ers). The results of this learning can be further analysed and visualised (the

nodes to the right of Test Learners).

Building the pipelines and making sure that all the relevant data is pro-

cessed can still be tedious for the user. Because of that, automation of the

process was envisioned with the use of triggers – conditions under which a

process can be started. Users can set up triggers that automatically run pro-

cesses on relevant input data. Chaining such triggers can create pipelines.

This way, a user only has to set up a processing pipeline with its corre-

sponding triggers once. Then, every time new relevant data is added to the

platform it is automatically processed by setting off a sequence of relevant

triggers. Automation is important because some processing tasks can take

a long time to complete. Triggers make sure the processing can continue

3

without supervision. Another key aspect of triggers is the ability to handle

changes to the data. By changing some parameters of a process inside a

pipeline, the data that was previously created by that process is no longer

consistent with its settings. Triggers can be configured to automatically up-

date the rest of the pipeline after such changes are detected or to just to

notify the user of such inconsistencies.

The proposed platform is general in its scope, and is in principle able to

process any kind of data. However, in order to succeed, any business requires

a clearer strategy and focus. Genialis was created as a spin-off of the Bioin-

formatics Laboratory at the Faculty of Computer and Information Science,

University of Ljubljana. Consequently, the platform’s primary focus was

the processing of data related to bioinformatics. The Bioinformatics Labo-

ratory has previously developed two web solutions: PIPA10, a platform for

next-generation sequence analytics, and dictyExpress [28], a gene expression

analytics platform. The platform that Genialis developed was envisioned as

the new generation and expansion of the two previous solutions.

While PIPA and dictyExpress served as inspiration, the actual planning

and later development of the platform we are describing in this Thesis started

from scratch. The basic idea was an application with a multi-layered, loosely

coupled architecture. Each part of the system should be independent and

interchangeable, all communication between parts should be done through

application programming interfaces – APIs. The core layers were the web

application, the application server, the persistence layer, and the processing

layer. The technologies for the implementation were already chosen for some

layers while others, especially the client facing web application, required ad-

ditional research. We first conducted a survey of JavaScript frameworks for

building web applications (the details fir which can be found Section 4.2.1).

After choosing the technological solutions, we started planning the architec-

ture. The database outline was constructed and the APIs for interconnecting

the parts were devised. Finally, implementation began as an iterative pro-

10pipa.biolab.si

http://pipa.biolab.si

4 CHAPTER 1. INTRODUCTION

cess, first creating a very basic solution that was gradually upgraded and

expanded with additional features.

Thesis outline

We continue with the description of the proposed architecture in Chapter 2

which looks at the theoretical concepts and architectural practices we leaned

on during development. The first part of the chapter details the concepts

related to multi-layered software architecture and the second part explains

dataflow programming. Chapter 3 is a survey of existing and related solu-

tions where both relevant desktop and web applications are examined. Chap-

ter 4 describes how the theoretical concepts and ideas were put into practice

when implementing the platform. It begins with the development goals and

architecture, continues with more specific solutions for each part of the ap-

plication, and finally explains the implementation details of the key parts.

Chapter 5 concludes the Thesis by reflecting on the work that was done and

considering further features that can still be implemented in the future.

Chapter 2

Theoretical background

2.1 Architecture

The client-server architecture provides the scaffold of any distributed appli-

cation that communicates through the Internet. It naturally evolved from

the times of centralised computing to how (simple) client-server communi-

cation in web browsers works today. With the advent of cloud computing,

the architecture of applications has become much more complicated, but in

the most general terms it still adheres to the old client-server separation of a

service provider and a service consumer. Best design practices have emerged

and the standard for modern web applications is a multi-layered architecture.

Most commonly there are three layers: the presentation layer, the applica-

tion (also called business, business logic, logic, or just the middle) layer, and

the persistence (or data) layer. There is some confusion regarding the us-

age of the terms layer and tier when describing an architecture, the words

often being interchanged. Fowler [12] explains that the difference between

the terms is in their implication – tier implies a physical separation (different

machine). A multi-layered application is thus not necessarily multi-tiered,

the application and persistence layer can run on the same physical machine.

The presentation layer of a web application is the interface through which

a user interacts with the application; it displays information and results,

5

6 CHAPTER 2. THEORETICAL BACKGROUND

handles users’ actions, and transforms these actions into requests to the ap-

plication layer when required. The presentation layer is the client portion of

the client-server architecture and because of that, it is also often referred to

as the front-end ; the same analogy applies to the rest of the layers resulting

in the term back-end being used to refer to the server part of the application.

The persistence layer concerns itself with data storage and the interfaces

for accessing the stored data. Between them is the application layer which

handles communication between the other two layers as well as all the func-

tionality of the web application. The application layer is usually the most

complex of the layers and often ends up being multi-layered itself. Because

of this, the three-layered architecture is sometimes referred to as multi- or

n-layered to account for the additional separation. Additional layers inside

the application layer can be, for example, the service, business logic/domain,

data access, and the processing layers. This separation can once again either

be logical or physical (different machines) as well, thus resulting in additional

tiers. Even if some components of the application layer end up logically sep-

arate, other parts, like logging or security measures, are vertically integrated

throughout the layers to ensure proper functionality. An example of such an

architecture is shown in Figure 2.1.

The service layer represents the middle-ware interface to which the pre-

sentation layer connects. Such an interface substitutes the typical request-

response communication between the client and the server, applying an ad-

ditional level of abstraction between the user interface and the application

layer. The benefit of such an abstraction is that various kinds of clients

familiar with the API of the service can access it – instead of just the user

interface, the service can also be accessed by other applications. This concept

is further explained in Section 2.1.6. The business logic or domain layer is an

abstraction of the concepts, rules, and functionality of the problem domain,

encoding the possibilities of what can be done with the data. Evans [10]

calls it “the heart of business software”. The data access layer is the bot-

tom middle-ware, responsible for the communication with the data layer. It

2.1. ARCHITECTURE 7

Figure 2.1: A multi-layered architecture with a separation between the front-

and back-end, the three typically used layers, and a more detailed breakdown

of the application layer. The security and logging blocks are examples of

modules that are accessible throughout the inner layers of the application

layer.

typically contains an object-relational mapping system.

Lastly, there is the processing layer, although the processing ‘part’ would

probably be more accurate. Typical architecture descriptions do not involve

a discussion of this part but we believe it is an important one. We under-

stand the processing layer as the one handling the scheduling of jobs and

management of the processing units – workers – that perform the tasks. If

the jobs ordered by a user through the interface are long-running and nu-

merous, they require a dedicated system for their execution. This becomes

important when the scalability of the application is considered and is further

explored in Section 2.1.2.

Most of the benefits of a multi-layered architecture stem from the separa-

tion of concerns principle. Separation of concerns is one of the core software

architecture design paradigms and aims to split the whole into parts that

address different concerns. When describing this technique of ordering one’s

thoughts, Dijkstra [9] explains concerns as a way of focusing on one aspect

of the whole that can be viewed as independent from the rest. The principle

8 CHAPTER 2. THEORETICAL BACKGROUND

can be put into practice by utilising modular design.

2.1.1 Modular design

Modular design is attributed to David Parnas [25], who introduced it as a

design principle that shortens development time along with improving the

flexibility and comprehensibility of the product. The key to a good modular

design of a system is the correct utilisation of information hiding. Modules

should be isolated parts of the system based on their functionality and they

should separate the interface from the implementation – hiding internal data

and functions while exposing the functions that other modules can access

as an interface. This way, if the implementation of the module has to be

modified, it will not break the system. Other modules access only the inter-

face which should remain stable even if how the functionality is implemented

changes completely.

Stevens et al. [33] use two additional terms to describe the modularity of

a system – cohesion and coupling. Cohesion describes the degree to which

the elements of a module are bound together; each module should be highly

cohesive, both in terms of its implementation and the functions it can per-

form. For example, a part of an application with multiple responsibilities

can be split into multiple modules with high cohesion that handle one of

those responsibilities. Coupling describes the relationship between modules,

examining how interconnected and (in)dependent they are. Modular design

strives towards loosely coupled modules – a module should use little or no

knowledge of the implementation of other modules. Ideally, two modules

with the same interface and completely different implementations should be

interchangeable without breaking the system.

Examples of modular design can be found on all levels of software develop-

ment, from object-oriented programming paradigms to how software libraries

and modules are packaged and developed. On the higher levels, it separates

parts of a system into logical units, an example of which is the multi-layered

design mentioned above. By utilising the principles of modular design and

2.1. ARCHITECTURE 9

therefore developing loosely coupled, highly cohesive modules for each part of

our multi-layered design solution, we should end up with modules that com-

municate through application programming interfaces. An API is the stable

interface of a module through which its functionality is accessed; an API

can also be understood as a specification of the functionality. Development

can happen in both directions – implementing the functionality of a specific

interface as well as exposing the capabilities of a piece of software by defining

its interface. Sometimes APIs can be standardised, for example the POSIX

family of standards which describe the interfaces of Unix operating systems

or SOAP and REST service specifications, which are further explained in

Section 2.1.6. As mentioned above, modules with equivalent APIs should be

interchangeable, regardless of their implementations.

An examination of the benefits of modular design can begin by looking at

Parnas’ goals and how they are achieved. Development time is shortened be-

cause different independent modules can be developed simultaneously, after

the common interfaces are agreed upon. Maintenance is shortened because

a change to a module affects just the module and there is no need to mod-

ify additional parts of the application; the dreaded ripple-effect of changes

affecting increasing portions of an application should not happen with good

modular design. Comprehensibility of the whole system is significantly im-

proved compared to tightly coupled systems because each module concerns

itself with one role instead of functionality being implemented in multiple

interconnected parts of the application. Flexibility is also increased. As we

have mentioned above, ideally a module should be easily replaceable with

a different module with an equivalent API. This becomes important when

software eventually becomes outdated or better solutions are found – inte-

grating these into the system is much easier when only the interface has to

be compatible.

Module re-usability is another important benefit – self-contained parts of

the system can easily be reused elsewhere when their functionality is needed.

To make sure the written code performs in the way it is expected, tests are

10 CHAPTER 2. THEORETICAL BACKGROUND

performed. Specifically, unit (also known as component) testing is usually

employed to ensure that each part functions correctly. Modular design on

all levels helps keep components succinct, loosely coupled and thus easily

testable.

There are, of course, some drawbacks to modular design as well. The

biggest is a communication overhead. The amount of overhead is relative to

the size and the heterogeneity of a system. Modular applications inside the

same domain experience minor overhead through the use of interfaces, while

communication in large multi-layered applications, spread across machines

and technologies, can have a significant impact on performance. Commu-

nication between components based on different technologies often happens

through standardised messages. Such messages need to be transported, trans-

lated, and interpreted before they can be used (an example of such messaging

systems are web services, explained further in Section 2.1.6). Another po-

tential drawback is the so-called dependency hell that can occur when using

various modules and packages that come with dependencies of their own –

the more that are used, the greater the potential for circular and/or conflict-

ing dependencies, which has a detrimental impact on the comprehensibility

and maintainability of a project.

The communication overhead is an acceptable drawback when all the ben-

efits of modular design are considered. In cases where different technologies

are communicating between each other, some kind of an API will always have

to be used. Potential problems with dependencies can be avoided by care-

ful planning or by utilising systems for managing dependencies. In general,

modular design incorporates so many of software development best practices

that it should be used at any scale, but with large, multi-layered applications,

it seems quite necessary.

2.1.2 Scalability

When developing a web platform with as grand a scope as we had, it is very

important to keep scalability in mind – the system should be able to handle

2.1. ARCHITECTURE 11

anything it may eventually encounter. To discuss scalability, we first need to

clarify two important concepts: big data and cloud computing. Both seem to

lack a clear definition, changing and evolving over the years to suit emerging

trends. The original definition of big data can be traced back to a research

report by Laney in 200111 that defined big data as data exhibiting an increase

in the three Vs – volume, velocity, and variety. Highly varied data, ever

increasing in size and scope, was (and still is) being created at unprecedented

speeds (velocity does not just refer to the speed of data generation but also

to the speed at which such data needs to be processed). Such (big) data

could not be handled by what was then conventional data processing; it

required new approaches and ideas. This was the basis of the currently most

commonly accepted definition of big data – data that is too large and complex

to be processed with standard approaches [31], with ‘processing’ referring to

anything to do with data, be it capturing, storage, analysis, etc.

Cloud computing is another similarly ambiguous term. The authors of

a paper titled “Demystifying Cloud Computing” [19] write that they uncov-

ered 22 distinct definitions of cloud computing and opted for one taken from

Gartner, Inc. which states that is is “a style of computing where massively

scalable IT-enabled capabilities are delivered “as a service” to external cus-

tomers using Internet technologies”. This is an accurate definition of cloud

computing but it mostly refers to the so-called public cloud, where infras-

tructure, platforms, and software are offered as a service. The other option

it does not include is the possibility of building a private cloud where the

same massively scalable IT-enabled capabilities are harnessed by only the

company that built it.

X-as-a-Service (XaaS) or anything as a service, is the model that de-

scribes how cloud computing providers offer their products. In exchange for

a fee (or sometimes free of charge) the service is offered through cloud clients.

Figure 2.2 shows the hierarchy of these services. The clients are devices or

11blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-

Controlling-Data-Volume-Velocity-and-Variety.pdf

https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf

12 CHAPTER 2. THEORETICAL BACKGROUND

software receiving the service, typically web browsers or mobile applications,

but also various other thin clients. The functionality, or the level of con-

trol, a user is granted through the service corresponds to the level of service

the user is using. The following explanations are based on the NIST defi-

nitions12. Infrastructure-as-a-Service (IaaS) usually offers virtualised funda-

mental computing resources (processing power, storage, networks,. . .). The

user is granted full or a high level of control over the components but not over

the underlying cloud infrastructure – they can create and manage their own

virtual machines. The next level is Platform-as-a-Service (PaaS) where the

user is provided a platform with resources on which they can run their appli-

cations (if the execution of the applications is supported by the service). The

user thus has control over the application and can manage how it is run, yet

has no access to how the infrastructure is setup and run – the user can usually

manage the deployment and configuration of the application. The big benefit

of PaaS is the reduction in complexity when compared to IaaS, as users can

focus on the application and let the service provider solve the infrastructure

portion. Software developers choose between IaaS and PaaS depending on

the level of control they require over their application; interestingly, PaaS

providers usually do not build their own clouds, they use IaaS to offer their

services. Software-as-a-Service (SaaS) grants end users the usage of appli-

cations deployed on cloud infrastructure. It can be understood as a model

of software distribution and licensing, where the software is centrally hosted

and accessed through clients by subscribing users/customers. Developers

use such a model because of the numerous benefits it offers when compared

to regular software distribution through binary files, these include: control

over software updates, access to user data and behaviour, cross-platform and

device compatibility. The end-users also benefit from some of the listed ad-

vantages, but others are potentially big drawbacks of the model, especially

the fact that end-users often relinquish control of their data, thus facing

potential privacy and security issues; and a complete copy of the software

12csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

2.1. ARCHITECTURE 13

is never owned by the user. Mitigating these drawbacks – particularly the

security and privacy aspects – is one of the keys to successfully developing

SaaS products.

Figure 2.2: The hierarchy of cloud computing services.

Lastly, let us touch upon scalability. Bondi [5] defines it as “the ability

of a system to accommodate an increasing number of elements or objects,

to process growing volumes of work gracefully, and/or to be susceptible to

enlargement”. In general, there are two ways a system can add resources:

scaling horizontally or scaling vertically [21]. A system running on a compu-

tational node can be scaled up by increasing the power of the node, for ex-

ample by adding additional memory or CPU power to the node. Scaling out,

or horizontally, means adding additional computational nodes. Of course, a

system needs to be designed with such horizontal scalability in mind to prop-

erly utilise additional nodes. By adhering to the above-mentioned modular

design, such horizontally scalable applications can be written.

Where do the three definitions come together? Cloud computing is the

14 CHAPTER 2. THEORETICAL BACKGROUND

key to the achieving affordable, flexible scalability of a web platform. IaaS

and PaaS can be used to deploy an application in a manner that allows for

easy horizontal scaling simply by adding additional instances of whichever

module or modules the system needs. A good example of such scaling can

be found in the above-mentioned processing part of the hypothetical multi-

layered application. When the job scheduler is given many jobs to handle –

an amount that would take too long to process with the current number of

workers – additional worker nodes can be temporarily spawned on the cloud

infrastructure to handle the surge in jobs and once the work is processed the

additional worker nodes are destroyed. With a major surge of job requests,

even more additional job schedulers can be spawned – the same principle

applies to all parts of the application.

2.1.3 Data storage

A modern web platform for data processing should be able to store and pro-

cess any and all kinds of (big) data. The most commonly used database

management systems (DBMS) have been (and still are, for most use cases)

relational databases. Along with the rise of cloud computing and big data

use-cases have appeared that could not be solved with relational databases

adhering to the ACID standard of transactions. The acronym ACID was

first used by Haerder and Reuter [16] and stands for Atomicity, Consistency,

Isolation, and Durability, although the definition of these properties is at-

tributed to Gray [15]. The properties describe how transactions within a

database need to be processed to ensure reliability, accuracy, and efficiency.

Relational databases were able to offer such transactions and the solution was

satisfactory until the need for massive scaling of databases arrived. Classical

relational databases have come up against the Brewer’s CAP theorem [7]

which states that no distributed system can simultaneously guarantee Con-

sistency, Availability and Partition tolerance. A consistent system ensures all

nodes have the same data at all times, the guarantee of availability requires

that every request to any (non-failing) node must result in a response, and

2.1. ARCHITECTURE 15

partition tolerance guarantees that the system will continue to operate even

if parts of it fail. Classical relational databases sacrifice partition tolerance

to ensure consistency and availability, thus sacrificing horizontal scalability.

In a 2012 update [6], the author of the CAP theorem adds that the three

categories are not binary and should be understood as continuous and also

that the two-out-of-three rule can be potentially misleading if understood

categorically instead of with a nuanced approach. New solutions have been

gathered under the umbrella term NoSQL (Not only SQL) – SQL is the most

commonly used query language in relational databases – though a more ac-

curate term for it would be non-relational databases.

No definitive categorisation of the NoSQL databases exists but they are

generally grouped based on the data model they use to represent informa-

tion: key-value databases, document databases, graph databases, and col-

umn databases. Additionally, there are two general directions that NoSQL

databases are able to choose from in order to gain partition tolerance – either

sacrificing consistency or availability. If the DBMS sacrifices availability, it

can still perform ACID transactions but usually has to limit them to those

that can be consistent, refusing others. The other option is giving up on

consistency, and responding to all requests, but potentially returning out-

dated data. To describe this opposite end of an ACID transaction, another

acronym was created – BASE [27], standing for Basically Available, Soft state,

and Eventual consistency. The most important one of the three is eventual

consistency – in a distributed system, one node receives new data and even-

tually propagates it through the other nodes, thus ensuring they eventually

all have the same information (this is a very simple example, glossing over

potential conflicts and security measures). An additional important differ-

ence between NoSQL and relational databases is that the former usually gives

up on complex data schemata and efficient complex queries that relational

databases are able to do, in order to gain the benefits described above.

16 CHAPTER 2. THEORETICAL BACKGROUND

2.1.4 Model-View-Controller

Model-View-Controller (MVC) is an architectural pattern for implementing

user interfaces. It was described by Krasner and Pope [20] as a way of

separating how data is presented inside the application (model), how the user

sees the data (view), and how the user interacts with the data (controller);

Figure 2.3 shows a simple MVC diagram. This separation increases the

modularity and portability of interface components.

The model portion of the application is an implementation of the problem

domain of the application – what data represents a certain state and how

it can be changed. The view is a presentation of the model (or parts of

it) as information in the user interface. The controller defines the possible

interactions a user can input, transforming these inputs into commands. The

controller sends commands to the model to cause some change in the model

or commands the view to change how the model is represented. Changes in

the model cause the view to update the representation.

Figure 2.3: A simple diagram of the MVC architectural pattern.

2.1. ARCHITECTURE 17

The same model can have multiple views and controllers defined for it.

A simple example is a hypothetical drawing application. The state of the

drawing and possible manipulations of it are defined in the model. The view

of the drawing represents its canvas but could also be a zoomed-in view of a

portion of the canvas – a different view of the same underlying model. The

controller converts the mouse inputs (e.g. drawing a circle) into commands

for the model and the changes of the state of the drawing end up reflected in

the view. Because of the modular nature of the architecture, adding support

for a pen and tablet input device is relatively simple – only the controller

needs to be updated.

Since the specification of the MVC pattern, various implementations of it

have ended up working off the initial idea to, creating derivative patterns such

as Model-View-Adapter, Model-View-ViewModel, Model-View-Presenter, etc.

The whole class of such patterns are commonly referred to as MV* because

they mostly differ in how they define what the original pattern refers to as

the controller, as well as the connections between the three parts.

2.1.5 Object-relational mapping

Query languages are typically used to communicate between an application

and a database and the most commonly used query language is SQL. When

data needs to be fetched, an SQL query is constructed and executed, the

returned data entries are then usually converted to objects (in object oriented

programming languages) to be used in the application. Object-relational

mapping (ORM) exists as an abstraction of this process, automating the

saving, query generation, fetching, and the conversion into objects so that

programmers only work with objects.

ORM frameworks are a very welcome level of abstraction, significantly

cutting down on the amount of code that needs to be written and allowing

the programmers to stay within the object oriented world and not having to

write SQL at all. The ORM system essentially handles everything related

to the database, starting with the creation of tables that match the objects.

18 CHAPTER 2. THEORETICAL BACKGROUND

Additionally, the database solution can be exchanged for another compatible

one without major changes to the code of the application, usually just by

switching the adaptor handling the communication to a specific database

solution.

ORM frameworks are often criticised for being bloated, inefficient and

guilty of obfuscation, the gap between object-oriented and relational ap-

proaches – the so called impedance mismatch – is difficult to bridge as

well [29]. The conversions between the objects and data add overhead, the

generated queries can be inefficient, and the programmer is often not aware of

what exactly happens. However, when programming in object oriented lan-

guages, the data from the database will eventually have to be transformed

into objects, meaning the programmer will end up writing some sort of map-

ping between objects and the relations inside the database – so why not just

use an ORM framework? Most ORM frameworks support manually written

queries for when performance is critical and at the same time offer plenty

of benefits. Object-relational mapping is supported by all commonly used

object oriented languages with various modules/packages/frameworks, and

although SQL was often mentioned, ORM solutions for NoSQL databases

also exist.

2.1.6 Representational state transfer

Service oriented architecture (SOA) is an architectural pattern where com-

munication between components happens through services, typically over

a network – one component of a system provides the service and another

consumes it. Because the underlying platforms of services can be very di-

verse, a standardised way of defining services and the communication between

providers and consumers was needed. Solutions were proposed and the Sim-

ple Object Access Protocol (SOAP) was chosen as the standard protocol for

communication13. SOAP wraps messages to be exchanged in an envelope and

transfers them through common transport protocols like HTTP or SMTP.

13www.w3.org/TR/soap12

http://www.w3.org/TR/soap12

2.2. DATAFLOW PROGRAMMING 19

SOAP was designed for expansion, and many additional standards and pro-

tocols have been developed as solutions to the problems and shortcomings

of the original protocol. Examples of such solutions are WS-Security, devel-

oped to provide end-to-end security, and WS-Atomic Transaction, developed

to ensure the atomicity of transactions. Web services related specifications

are often referred to by using the term WS-*.

SOAP, along with the whole WS-* stack, is perceived to be complicated

and unnecessarily complex when the goal is exposing a relatively simple ser-

vice [26]. An alternative solution is representational state transfer (REST,

also ReST), which was first described by Fielding and Taylor [11]. APIs

developed according to this style are called RESTful APIs. REST is not a

standard but an architectural style, although most implementations do fol-

low a set of rules. Compared to SOAP, which packages data inside XML

envelopes, REST uses the capabilities of HTTP and its standard methods

(such as GET, PUT, POST, DELETE) to expose a service’s resources. With-

out the XML envelope, RESTful resources can return data in a form that can

immediately be used, most often objects in the JSON notation – the output

can match the intended usage.

Choosing an appropriate solution mostly comes down to intended usage.

Developers of simple APIs that are intended to be used through HTTP only

usually opt for RESTful APIs, while more complicated solutions requiring

advanced features across multiple platforms and communication channels use

the WS-* solutions and SOAP [26].

2.2 Dataflow programming

Dataflow programming is a programming paradigm that models programs

as directed graphs, where data flows between nodes that represent opera-

tions [17, 32]. It represents a shift away from the traditional thinking about

programs as a sequence of instructions executed one by one by a von Neu-

mann processor. In the directed dataflow graph, an operation can be exe-

20 CHAPTER 2. THEORETICAL BACKGROUND

cuted as soon as its inputs are available; this allows instructions independent

of each other to be executed in parallel. Because of this separate processing

model, we can speak of the dataflow architecture, which seeks to implement

the paradigm as a computer architecture, and dataflow programming, which

tries to achieve the goals of the paradigm through software.

The discussion about the hardware implementations, the history of dataflow

programming, and the details of its implementation are beyond the scope

of this work. Interested readers are referred to the article by Johnston et

al. [17]. We will take a look at the basic dataflow execution model as it is

the conceptual basis of later research.

2.2.1 Dataflow execution model

As we have already stated, a program in the dataflow paradigm is represented

by a directed graph where the nodes represent primitive instructions, such

as arithmetic or comparison operations; the following paragraphs are a para-

phrase of the explanation of the pure dataflow model in [17]. The directed

arcs of the graph represent data dependencies between nodes, inputs flow

towards the node and outputs flow from it. The data flows between nodes in

the form of data tokens and an arc functions as a first-in, first-out queue for

the tokens. At the beginning of the program, the so-called activation nodes

place data tokens onto initial arcs and with that the network can begin pro-

cessing. When a node has the specified set of input tokens available through

its arcs (a firing set) it is said to be fireable. Such a node is executed at

an undefined time after it becomes fireable, removing its input tokens from

the queues, processing then, and placing new data tokens on some or all of

its output arcs. After this, the node waits until it becomes fireable again.

This is the key difference from the von Neumann execution model, where

an instruction is only executed when the program counter reaches it, even

if it could have been executed earlier. Dataflow processing supports parallel

execution at the instruction level.

Figure 2.4 shows a simple example of a program (a) and its dataflow

2.2. DATAFLOW PROGRAMMING 21

Figure 2.4: An example of a simple program (a) and its dataflow equivalent

(b), shown as proposed by Johnston et al. [17].

equivalent (b). The capital letters represent variables and the number in the

box represents a hard-coded value. The two arcs coming out of variable Y

represent a duplication of the value of the variable, the copies ending up in

their respective nodes. Program (a) requires three time units to complete

but the dataflow version can be completed in two time units because the

first level of operations can be completed in parallel. The dataflow nodes

are functional, meaning they do not modify the input data and have no side

effects on other nodes.

This is the basic description of the dataflow execution model at the

instruction level, the finest possible granularity. In the 1990s, researchers

started realising that the von Neumann and the dataflow architectures are

not mutually exclusive, but are instead two extremes among the possible

architectures [24]. Fine-grained dataflow was seen as a multithreaded archi-

tecture where each machine-level instruction is executed in its own thread.

This shift in perception moved research towards the so-called hybrid dataflow,

or dataflow of varying granularity. With this we move onwards toward a more

macro perspective.

22 CHAPTER 2. THEORETICAL BACKGROUND

2.2.2 Flow-based programming

Flow-based programming (FBP) was invented by Morrison [22, 23] in the

early 1970s. In the past, it used to be referred to as dataflow programming

(as well as by other names) but it was renamed to FBP to differentiate it

from the research being done in the dataflow field and because dataflow is

more general in scope.

FBP views an application as a network of asynchronous processes, com-

municating by exchanging streams of structured data called information

packets (IPs). As with dataflow, the focus is on the data being exchanged

and the transformations applied to it. The network is defined externally as a

list of connections, separate from the processes. These connections are inter-

preted and executed by a piece of software that Morrison calls the scheduler.

Before we continue with a more in-depth look into FBP, it is important to

understand that Morrison is describing both the paradigms of FBP as well as

the manner of their implementation. We are more interested in the concepts

and will be simplifying some parts that are too focused on the implementa-

tion.

Figure 2.5: A simple example of a FBP diagram14.

In essence, FBP splits the development of an application into two parts

14Image created by Morrison and shared on Wikipedia (en.wikipedia.org/wiki/

Flow-based programming).

https://en.wikipedia.org/wiki/Flow-based_programming
https://en.wikipedia.org/wiki/Flow-based_programming

2.2. DATAFLOW PROGRAMMING 23

– designing the network diagram and implementing the components (nodes,

processes). The components are treated as functional black boxes with in-

puts and outputs and the network describes the connections between them.

Figure 2.5 is an example of a very simple network definition. A, B, and C

are the black box processes, O1, O2 and the two IN represent ports through

which connections M and N connect the components. Morrison notes that it

is possible for the B and C boxes to be executing the same code, and because

of that, each component must be independent from the rest, with its own

local storage and control blocks. For the same reason, shared port names are

not a problem because they are relevant only in the context of a component.

The connections are referred to as bounded buffers with a fixed capacity of

IPs; if the buffer is full, the process feeding stops, and when the buffer is

empty, the process is suspended. This very high-level overview should be

enough to show how the components are defined and the similarity to the

classical dataflow approach explained above. Readers that are interested in

further details should refer to Morrison’s book [22].

FBP can be implemented in various programming languages, and Mor-

rison provides some example implementations on his website15. The imple-

mentation allows programmers to write the high-level components and deter-

mine how they are interconnected in conventional imperative programming

languages. Morrison notes that if the scheduler is written in a sufficiently

low-level language, components written in different programming languages

can be used within a single network.

FBP exhibits the properties of modular design on a relatively low level,

connecting together functional chunks of code to create parts of, and ulti-

mately complete, applications. Building an application with the components

naturally leads to loose coupling because the components only exchange data

(and signals) between themselves. It also leads to the possibility of compo-

nent re-use, easier maintenance, and a straightforward way to utilise hori-

zontal scaling as well. Morrison also states that FBP is very useful for rapid

15www.jpaulmorrison.com/fbp

http://www.jpaulmorrison.com/fbp

24 CHAPTER 2. THEORETICAL BACKGROUND

prototyping, first using simulated components that can later be swapped

with components containing real process logic. It also never loses sight of

the big picture, offering a macro overview of the functions of each compo-

nent/module. The network schema as a medium eases the communication

between everyone involved – from designers and developers to users and man-

agement.

2.2.3 Visual programming languages

In the past, dataflow programming used diagrams (also called schemata or

just graphs) as a visual aid to facilitate understanding. The concept of the

data flow diagram as the flow of data inside an information system can be

traced back to the authors [33] of structured design that we discussed at the

beginning of the Section 2.1.1 on modularity. Because the diagrams were so

useful for understanding and reasoning about systems, it is no surprise that

there were also incentives to use them as a means of constructing systems;

this resulted in the invention of visual programming languages (VPLs). VPLs

also exist at varying levels of abstraction, from very simple programming

constructs to whole modules being connected together into a system.

Johnston et al. [17] present a well referenced historical review of visual (as

well as text-based) dataflow programming languages. It includes an assess-

ment of the state of the art and identifies areas that are still in need of devel-

opment, but the overview focuses mostly on dataflow execution paradigms

and implementation. We will examine their conclusions on data visual pro-

gramming environments.

Developers face a paradigm shift when switching between the design phase

and the coding phase [1]. When designing, they are naturally inclined to use

the dataflow approach but the coding is typically imperative. Visual pro-

gramming languages blend the design and coding phases into a seamless pro-

cess. As stated before, the graphical representation is helpful on many levels,

Baroth and Hartsough [1] cite examples of dramatic gains in productivity as

a result of the improved communication between the customer, developer,

2.2. DATAFLOW PROGRAMMING 25

and the computer due to the usage of visual programming tools. The level

of success depends not only on the VPLs but also on the development envi-

ronment in which they are used – the distinction between the environment

and language is difficult to make because of the graphical nature of VPLs.

Well-designed development environments with animated executions of pro-

grams and the ability to seamlessly reason on multiple levels of abstraction

can greatly benefit both the development and the design phase, especially.

Finally, the most important benefit in the context of this work is the

fact that visual programming languages are intuitive to people with little

to no programming experience. There are plenty of successful tools using

visual dataflow interfaces as part of their interfaces, and many educational

tools that teach programming and robotics to children also employ visual

programming interfaces. For example, MathWorks Simulink 16 is a graphical

programming environment for modelling and simulating dynamic systems,

Scratch17 is a free educational VPL, and the LEGO Mindstorms robots18

can be programmed with a VPL. Dataflow interfaces are ideal when the

end user requires complex operations but does not have the programming

knowledge to implement them.

2.2.4 Triggers

The concept of triggers was touched upon in this Thesis when discussing the

dataflow execution model. A node becomes fireable when all its inputs are

available and is then processed at some undetermined time. It is important

to note that the execution does not necessarily happen immediately after

the last input arrives; this is the difference between a task being enabled –

fulfilling all the prerequisites for execution – and being executed [34]. The

external condition that leads to the execution is the trigger. Actual execution

is in the case of the dataflow execution model handled by the underlying

16www.mathworks.com/products/simulink
17scratch.mit.edu
18mindstorms.lego.com

http://www.mathworks.com/products/simulink
http://scratch.mit.edu
http://mindstorms.lego.com

26 CHAPTER 2. THEORETICAL BACKGROUND

hardware or software implementation processing the instructions of the node

(for example Morrison’s scheduler).

Triggers can be understood in two ways [18]: as a verb – an event triggers

an action if the event’s occurrence causes the action to be performed; and as

a noun, where a trigger is an object (or event) that causes a triggering event.

Triggers are mostly discussed in the context of workflow management [18, 34],

which is the management and logistics of business processes and activities.

Van der Aalst distinguishes between four types of triggers: automatic, user,

message, and time triggers. Each represents an external cause that leads to

the execution of a task in a workflow. We will move away from the area

of workflow management and explain them in the context of a hypothetical

web platform on which tasks can be performed. User events are the most

straightforward, as the execution of an enabled task is triggered by a human,

usually by selecting a possible action through an interface. Time and message

events trigger actions periodically and upon the arrival of some sort of a

request, respectively. Lastly, there are automatic triggers that trigger the

execution of a task as soon as the task is enabled. The dataflow execution

model described above can be considered a system with automatic triggering.

When designing the platform, we tried to envision a system wherein au-

tomatic processing could be done; ideally, the user would upload the data

and a potentially hours-long workflow of linked tasks could be automatically

executed. The problem, however, is that the automatic system has to be

aligned with what the user wants. Because of this, we envisioned triggers as

a set of rules/filters that the user can specify for a task. If potential input

data meets the conditions expressed in the pre-set rules, it is automatically

processed. This way, the whole workflow can be set up to run automati-

cally upon the arrival of the appropriate data. The details and challenges of

implementing such a system are explored in Section 4.3.2.

Chapter 3

Related work

In this Chapter we will examine existing software solutions that are similar or

related to the platform we have developed. Some (PIPA 3.1, dictyExpress 3.2,

and Orange 3.3) were chosen because they were highly related and served, in

part, as inspiration for the platform. These three solutions were developed by

the Bioinformatics Laboratory at the Faculty of Computer and Information

Science. Others were chosen because they either provide solutions for data

analytics and data visualisation or are related to the concepts of dataflow

programming. Furthermore, because the domain field for the platform was

primarily bioinformatics, solutions from there were considered as well.

3.1 PIPA

PIPA19 is a web application for managing and analysing next generation

sequencing (NGS) data. The application supports data storage and pro-

cessing with a multi-layered client-server architecture – the users access the

application through a web browser client. The application fetches data from

the server, displaying relevant information in the interface; data processing

requests are also handled by the back-end server. Users can annotate the

data entries based on pre-set templates, adding all the information they find

19pipa.biolab.si

27

http://pipa.biolab.si

28 CHAPTER 3. RELATED WORK

relevant. In addition to storing, managing, and processing data the appli-

cation also supports data visualisation; for example, it uses JBrowse [30] to

interactively visualise genomes.

One of the most significant limitations of the application is that it is

written in Flash (Adobe Flash), a once widely used solution for developing

rich web applications which was slowly phased out in favour of HTML5 and

JavaScript. While the history of Flash is complex, one of the major reasons

for its decline can be traced back to Steve Jobs’ “Thoughts on Flash”20, where

he describes why Adobe’s Flash is not an optimal solution because of its

proprietary player as well as issues with reliability, security, and performance.

Apple has not supported Flash on its mobile devices and thus Flash was,

and is being, slowly phased out throughout the Internet. Maintaining and

updating Flash applications in such an environment is a losing battle.

PIPA is important because it was a direct influence for the platform

– one of the goals of development was to replace PIPA for the storage and

processing of bioinformatics data. Some of PIPA’s architecture and solutions

were used as inspiration to create a more modern, modular, and scalable

product, particularly the multi-layered design with background workers and

the open APIs which can be accessed through the web application or through

a Python library.

3.2 dictyExpress

dictyExpress [28] is the second of the solutions developed by the Bioinformat-

ics Laboratory in cooperation with Gad Shaulsky’s and Adam Kuspa’s labs

at Baylor College of Medicine – a tool for the visualisation of gene expression

experiments of the amoeba belonging to the Dictyostelium genus. dictyEx-

press is also a Flash web application with a database server from which

experiment data is retrieved and an analytics server, where the requests for

various visualisation combinations are processed and the results cached for

20www.apple.com/hotnews/thoughts-on-flash

http://www.apple.com/hotnews/thoughts-on-flash

3.3. ORANGE 29

faster retrieval. Figure 3.1 shows the interface of the client application.

The concept of this application is similar to the one used in PIPA, in fact

through the exposed interfaces dictyExpress can query PIPA for its data;

the technological limitations of Flash apply to dictyExpress as well. Ideally,

both applications should run on the same platform, and this is where our

solution comes into play – dictyExpress was supposed to be one of the first

applications the platform would support.

Figure 3.1: dictyExpress’ interface for exploring and visualising Dic-

tyostelium gene expressions.

3.3 Orange

Orange [8] is a general open source data analysis suite for machine learn-

ing, data mining, and data visualisation. It offers a Python scripting library

as well as a graphical interface for interaction with the library. The visual

programming interface is of particular interest to us because it is a good im-

plementation of the high-level visual dataflow programming. An example of a

dataflow schema created with Orange Canvas was shown in the Introduction

(Figure 1.1). With simple drag and drop operations processing components

30 CHAPTER 3. RELATED WORK

(widgets) can be added to the schema, starting with the input File. Data

flows into the visualisation and processing widgets and updates the compo-

nents automatically when the preceding widgets or their parameters change.

Such an interface enables users to execute relatively complex data analysis

workflows without needing to write a single line of code (programmers can

use Python scripts as well). Figure 3.2 shows another example of Orange

interface, with an open Python interpreter where the results can be analysed

programmatically.

Figure 3.2: A data analysis workflow example in Orange with a Sieve Di-

agram visualisation and a Python interpreter that uses the results of the

prediction.

Orange is not a web application but its visual programming interface

is something that the web platform should support to fully implement the

dataflow paradigms and reach the widest possible user base.

3.4. KNIME 31

3.4 KNIME

The Konstanz Information Miner (KNIME) [3] is an open source environ-

ment for data analysis with a strong visual programming interface. The

application is written in Java and does not have an online component; it

does, however, offer purchasable extensions to the free open source platform.

With these extensions, the platform can become an enterprise level solution

with central execution servers and centralised management. Enterprise users

work with a desktop client and can remotely execute the workflows they

create; results of the executions can also be accessed through web browsers.

KNIME is not a web application in the typical sense, as full functionality is

not accessible through the web client (although the enterprise edition does

have a full SOAP-based API).

Figure 3.3: An example of an annotated schema from the KNIME platform22.

As with Orange, the component of interest is the visual interface. It

is also a good implementation of dataflow paradigms. A special point of

interest is the system of notification semaphores – an intuitive way to inform

the platform users of the status of execution (red represents error, orange is

22Image available on KNIME’s website (www.knime.org/files/marketingworkflow 2.10.png).

https://www.knime.org/files/marketingworkflow_2.10.png

32 CHAPTER 3. RELATED WORK

ready to process, and green indicates that processing has finished).

3.5 noflo.js

Figure 3.4: An example schema of a clock implementation in noflo.js23

Noflo.js24 is a JavaScript implementation of Morrison’s flow-based pro-

gramming, which was discussed in Section 2.2.2. The project is the result of a

Kickstarter crowdfunding campaign25 and has brought considerable attention

to FBP. Morrison notes on his website26 that the implementation is still not

true FBP because it is “bound by the synchronous von Neumann paradigm”

by running on Node.js. According to Morrison, using a component-based

approach and configurable modularity with some visual representation is not

23Example available at noflojs.org/example.
24noflojs.org
25kickstarter.com/projects/noflo/noflo-development-environment
26www.jpaulmorrison.com/fbp/noflo.html

http://noflojs.org/example
http://noflojs.org
http://kickstarter.com/projects/noflo/noflo-development-environment
http://www.jpaulmorrison.com/fbp/noflo.html

3.6. GALAXY 33

enough to create a proper FBP implementation, as execution needs to be

fully parallel as well.

Nevertheless, noflo.js is an interesting solution, especially its FBP in-

spired web development environment. It is important to note that noflo’s

intended users are developers – they either write their own components or

use pre-made ones to construct applications. Figure 3.4 shows an example of

such an application that controls and displays a clock. Each individual com-

ponent is written in JavaScript (or a language that translates into JavaScript)

and they are connected together inside the noflo environment. Every second

a package is sent from the initial node (named secondTick) that triggers the

processing throughout the rest of the network.

3.6 Galaxy

In the bioinformatics field, Galaxy [4, 14, 13] is the premier open source web-

based tool for data processing, supporting a multitude of algorithms. With

its visual workflow builders, it provides access to a variety of computational

tools to scientists without programming experience. Because it is web-based,

it also resolves the sometimes problematic processing environment setup and

ensures that all users use the same one. Additionally, it aims to provide

transparent and reproducible experiments and analyses which are a very

important part of scientific publishing. This is accomplished by storing all

the data and processing information server-side. Because it is open-source,

anyone can run a Galaxy server privately, which is important – especially

when the data being analysed cannot be made public. Galaxy offers free

public servers to users as well, enabling those with public data to easily

process and share their data and workflows (Figure 3.5).

Galaxy is a very strong player in the field, but according to information

gathered by Genialis, its users wish that it were more user-friendly. Another

issue that is sometimes mentioned is that Galaxy creates a large amount of

data because it cannot directly pipeline the outputs of previous steps to the

34 CHAPTER 3. RELATED WORK

Figure 3.5: An example of Galaxy’s workflow editor27.

inputs of the subsequent ones; instead, it creates files at every step.

3.7 DNANexus

DNANexus28 is another domain-specific solution, offering a cloud-based plat-

form for processing of bioinformatics data. It sprung up from a Stanford

based start-up company and grew through major venture capital funding.

Its competitive edge comes from complying with strict security regulations

and standards as well as privacy laws. As a cloud-based solution built upon

Amazon Web Services, DNANexus offers excellent scalability, user manage-

ment, reproducible version controlled pipelines, and ease of access to all parts

of the pipeline, even to specific nodes in processing clusters.

One of the things DNANexus is missing is a visual dataflow programming

interface; currently, their pipelines are implicit by adding steps in a sequence.

27Public server accessible at usegalaxy.org.
28www.dnanexus.com

http://usegalaxy.org
http://www.dnanexus.com

3.7. DNANEXUS 35

Figure 3.6 shows a simple two stage pipeline, where the outputs of the higher

step are used as inputs in the lower one. Additional steps can be added by

adding black coloured apps (DNANexus’ name for processes) and connecting

the outputs with inputs.

Figure 3.6: An example of a processing pipeline in DNANexus29.

29Image available at wiki.dnanexus.com/UI/Workflows.

http://wiki.dnanexus.com/UI/Workflows

36 CHAPTER 3. RELATED WORK

Chapter 4

Implementation

This Chapter describes the implementation of the platform, beginning with

an overview of the development goals, and followed by the overview of the

platform’s architecture. We also review the technology solutions used in our

implementation and the reasoning behind their choices. We also report on

some implementation details for selected sections of the resulting application.

4.1 Development goals

As we have already established, the goal of this project was to build a general-

purpose web platform for data processing and analysis. The focus was on

scalability, extensibility, and ease-of-use. Users should be able to upload all

kinds of data files and process them with the tools available on the plat-

form. These tools, or apps, as we call them, are added by the developers of

the platform as well as by the more proficient users – anyone with sufficient

programming skill should be able to develop apps that can run on the plat-

form. These apps can range from simple processing that may only invoke

command line functions in the background, to complex visualisations built

as web applications. Because the users are given a lot of development free-

dom, a sufficiently secure processing system is needed through which users

can privately run their applications without affecting the processes and data

37

38 CHAPTER 4. IMPLEMENTATION

of other users. Additionally, users who are less proficient and unable to de-

velop their own apps should find it easy to process their data with automated

pipelines and ideally with a graphical interface based on visual programming

languages.

Before proceeding, we would like to define a few terms that will often

appear in the following sections and are the basis for understanding the

platform.

Data (also data entry) is an annotated piece of information. The platform

is capable of accepting all kinds of files but they only become data once they

are annotated and stored. The annotation is very important because it holds

all the information relevant to the data, such as what the data is, how it

was created, and who is its owner. The annotation has fixed and variable

portions; the variable part can hold any information the owner decides to

add. The data can be used as input to processors to create new data. A

data entry can be a single file or contain multiple files, depending on how

the particular data type is defined.

A processor is a concept very closely related to dataflow programming –

it is a single workflow node which can accept data as its input, process the

data, and create output data. A process always produces new data and the

annotations of the produced output data are closely related to the processor

– the data stores the settings with which it was created. Not all processors

take data as input; for example, upload/import processors create data entries

from raw files instead of other data entries.

An app is a client-side application, an interface communicating with the

platform’s API through the Internet. Apps are expected to be built with

JavaScript and HTML but because any technology (capable of sending an

HTTP request) can interact with the API, no limitations are imposed. Some

apps, especially the basic ones (such as an app for managing projects, data,

processes, and triggers), are added by the developers of the platform, but

any tech savvy user will be able to create their own app. Apps can be used

4.2. PLATFORM ARCHITECTURE 39

to provide advanced interactive visualisations, fetching and processing data

via the platform API then rendering it client-side.

A project is the basic way of grouping the data – all data entries belongs

to at least one project. Such a basic organisational unit was needed because

even a single user will most likely work on unrelated tasks which will produce

data – grouping such tasks into projects makes sense. Projects also aid in

managing permissions – granting someone access to a project grants them

access to everything belonging to that project.

Schemata and templates are a way of describing the annotations a data

object contains. In the most basic sense, a schema or template represents

the description of information. The input, output, and static information

is defined/described by the input output, and static schemata. Each object

also contains a variable section of information, that information is defined

by a template. Different names are used to more clearly separate the origin

– the schemata are defined by the processor and cannot be changed, while

templates can be changed by users. The processor usually also has a default

template set, but the pre-set template can be replaced by end-users, thus

changing what kind of information the data entry is annotated with. The

reason for the differentiation between the description of the information and

the actual information is that the schemata and templates adhere to a set of

rules that are used to generate input and display forms in the user interface.

The concept is further explained in Section 4.3.3

4.2 Platform architecture

Chapter 2 has alluded to the chosen architecture – a modular multi-layered

web application. Figure 4.1 shows an overview of the architecture and the

major technological solutions present in each layer. The presentation layer

presents the platform through an AngularJS-based application constructed

with HTML5, JavaScript, CSS, and Bootstrap. This section will examine

40 CHAPTER 4. IMPLEMENTATION

the general structure and goals of each layer, focusing more thoroughly on

the parts in which the author was more involved.

Figure 4.1: An overview of the layers and the relevant technological solutions.

4.2.1 Presentation layer

The presentation layer is the interface of a multi-layered application. In

the case of web applications, it is usually accessed through web browsers.

This layer is often called the front-end of the application, sometimes also the

client-side portion of it. The term application can refer to both the front-end

and the platform as a whole; the term app (explained above) is an example of

that. To avoid confusion, the following sections will use platform to refer to

the whole application and application or app to refer to the front-end portion

when the platform is being discussed.

Web browsers were initially designed to retrieve and render various static

information, but the web did not remain static. Due to the evolution of

browsers, client-side interactivity was added through various solutions such

as JavaScript, Flash, ActiveX, and Silverlight. When the decision was being

made on which front-end technology to use, the combination of HTML5

and JavaScript was chosen over the alternatives. The combination is widely

supported by web browsers (especially across all mobile devices) because it

4.2. PLATFORM ARCHITECTURE 41

does not require the installation of additional run-time libraries. The trend in

early 2013 was also turning towards JavaScript web applications – Silverlight

never caught on and was not supported on mobile phones, Flash was also

beginning its decline, as we explained in Section 3.1.

Selecting the technology was only the first step, because there is a large

number of JavaScript solutions available and choosing the appropriate one

was quite a challenge. The goal was to find a well-supported, easy to use

framework that would ease up the development of the user interface accord-

ing to the MVC architecture pattern (described in Section 2.1.4). JavaScript

offerings generally fall into two categories: libraries and frameworks. Li-

braries are collections of classes and functions that simplify the code and

solve common problems; frameworks are usually more comprehensive archi-

tectural solutions that are adapted to suit the needs of the application.

We considered four prospective solutions, examining a multitude of fac-

tors, asking: in what way does the solution support MVC interfaces? How

mature and well documented is it? Is it easy and intuitive to work with?

How easily does it connect with a RESTful API and how well does it sup-

port internationalisation? An additional important point is the question of

how opinionated is the solution – is it imposing a way of solving the inter-

face problem and do we agree with that solution? After a survey into the

possibilities, we narrowed it down to four solutions and ended up examining

two libraries – Backbone.js and CanJS – and two frameworks – Ember and

AngularJS. A test web application was re-written with each of the solutions

in order to gain insight and answer our questions.

Backbone.js

Backbone.js30 is a lightweight library (the smallest of all the tested ones)

and was at the time of testing the most popular MV* solution. Its only

dependency is underscore.js, which it uses for template rendering and for the

general utility functionality it provides. The library can be used inside any

30backbonejs.org

http://backbonejs.org

42 CHAPTER 4. IMPLEMENTATION

architecture as it is there to provide utility where needed. Unless supple-

mented by additional libraries, Backbone on its own does not solve all the

interface problems, most significantly the issue of data binding between the

model and view. It supports one-way data binding; changes in the model

are updated in the view but the reverse needs to be coded manually via on-

change events. Underscore’s templating system, which is used by Backbone

is very powerful because it consists of HTML and snippets of JavaScript code

that get executed when the template is rendered. This, however, goes against

the principle of separation of concerns and ideally we would prefer a more

separate system.

Backbone is a good solution when a lightweight, expandable option is

needed. It has also been in development for years and is being widely used

with a fairly large community.

CanJS

CanJS 31 is another lightweight library that can be expanded to fit the needs

of a MV* application. Its main selling points are its extensibility and speed,

as it outperforms Backbone and larger frameworks (according to benchmarks

on its website). CanJS works with multiple core JavaScript libraries (such as

jQuery and Dojo) out of the box. Its template manager is embedded.js and

it also mixes JavaScript inside HTML for a highly expressive system, which

– like Backbone – lacks a proper separation of concerns. CanJS is a decent

lightweight alternative to Backbone but it lacks its maturity and community.

In, however, 2013 it was looking promising, having already released a stable

1.0 version in the middle of 2012.

Ember

Ember 32 is a MV* framework and a very opinionated one. The core idea de-

velopers should follow is Convention over Configuration, favouring Ember’s

31canjs.com
32emberjs.com

http://canjs.com
http://emberjs.com

4.2. PLATFORM ARCHITECTURE 43

built-in solutions. If the goals of the application align with the framework this

results in fast development. Ember uses the handlebars templating library

for its templates – HTML with embedded expressions that get evaluated once

the templates are rendered. Leaving JavaScript out of templates achieves the

level of separation of concerns we desire. Compared to libraries, frameworks

provide some solutions that considerably cut down on the code that needs

to be written, especially due to supporting two-way bindings – changes of

the model are reflected in the view and changes to the presented model get

propagated back to the model automatically. Ember seemed promising but

building an app with it required some modifications of Ember’s conventions

– these proved very difficult due to a lack of comprehensive documentation.

Compared to the others it had not yet reached a stable version and its com-

munity was not comparable to the size of the competition’s.

AngularJS

HTML is a markup language intended for static documents. Typically, li-

braries and frameworks manipulate the Document Object Model (DOM) to

add interactivity to dynamic websites. AngularJS 33 is an MV* library that

instead opts for a declarative approach, extending the HTML vocabulary.

These new HTML tags and properties, called directives, get interpreted by

Angular’s HTML compiler and rendered as DOM elements with specific be-

haviour attached. This separates the DOM manipulation from the appli-

cation logic, thus providing a very clear separation of concerns. The con-

sequence of this is a comparatively weaker templating system (it does not

allow JavaScript code in HTML), yet the decoupling allows for easier testing,

which was one of the primary concerns of Angular’s developers. Because of

the approach chosen, Angular is a very opinionated framework, to use it the

development must be done in the Angular way. The paradigm shift results in

a relatively steep learning curve and a new vernacular, but the end result is

– according to Angular – what HTML would have been, had it been designed

33angularjs.org

http://angularjs.org

44 CHAPTER 4. IMPLEMENTATION

for applications.

Angular is not without its drawbacks; its flexibility is touted but getting

it to bend becomes increasingly difficult with the rising complexity of the

application. The speed is impacted as well, as large DOM trees need to be

fully evaluated before the application starts. Additionally, Angular uses the

so-called dirty checking to detect changes in a model – all values are compared

to their previous values, firing change events if the values are different – which

is a potential bottleneck when the number of objects increases significantly.

Angular is developed primarily by Google, had an already large and still

growing community, was a relatively mature and well documented environ-

ment, and provided an excellent MV* solution as long as the limits it imposed

were respected.

Selection of the JavaScript solution

We ended up using Angular.js because it met the criteria we set and seemed to

have a large enough support by both Google and its community. It took some

time to get up to speed with it and we had to circumvent some differences in

approaches between different libraries. Ultimately we were satisfied with the

choice, the Angular way does work and keeps the code highly modular with

custom directives. A basic example of a directive can be seen in Figure 4.2

and Listing 4.1.

For the styling of the solution we turned to Bootstrap34, one of the most

popular CSS frameworks. Design was not a priority during development of

the first few iterations of the application, which is why Bootstrap was the

ideal option, offering quick and easy-to-use constructs to create a decent

looking application.

34getbootstrap.com

http://getbootstrap.com

4.2. PLATFORM ARCHITECTURE 45

<!doctype html>

<html ng-app>

<head>

<script src="libs/angular.min.js"></script >

</head>

<body>

<div>

<label >Name:</label>

<input type="text" ng -model="yourName"

placeholder="Enter a name here">

<hr>

<h1>Hello {{ yourName }}!</h1>

</div> charset test window one two

</body>

</html>

Listing 4.1: Example of a minimal angular application. The application is

defined with the keyword ng-app, ng-model binds the input to the variable

yourName and {{yourName}} is set to the current value of the variable.

Figure 4.2 shows the rendering of the HTML page, yourName set to test.

Figure 4.2: The result of a rendered HTML file from Listing 4.1.

46 CHAPTER 4. IMPLEMENTATION

4.2.2 Application layer

The application layer is built with Django35, a Python web application frame-

work. Django can be used to build web applications following the MVC pat-

tern where the front-end application fills the role of MVC’s views while the

models and controllers remain server-side. We use Django as a service – the

front-end MVC application views the whole server as the model.

Django was chosen mostly because of familiarity, the team had experience

working with it and it was both powerful and extensible enough to suit all

our needs. Additionally, it had the relevant libraries available to make sure

the stack of technologies worked as we intended it to.

The role of Django is to serve as a container for all the possible front-end

apps. It handles the user authentication when users log into the website

and also manages their sessions. Django serves the base HTML pages which

contain full apps and all their corresponding libraries and styles. Interaction

between an app and the server happens through a RESTful web service which

exposes the stored objects in a controlled manner. The server also contains

the model (object) definitions which are used by Django’s ORM system.

RESTful web service

The application layer accesses the presentation layer through an API. Our

implementation follows the REST guidelines (explained in Section 2.1.6) and

leans on the tastypie36 framework. Tastypie was chosen because it was, at

the time, the most fully featured RESTful framework and because it was well

integrated with MongoDB37.

The basic aim of the API is to offer access to the persistence layer,

tastypie’s term for accessing one of the entities of the persistence layer is

a resource. The definitions of these resources contain large amounts of busi-

35www.djangoproject.com
36tastypieapi.org
37The library inter-connecting tastypie and MongoDB is django-tastypie-mongoengine

(github.com/wlanslovenija/django-tastypie-mongoengine).

http://www.djangoproject.com
http://tastypieapi.org
http://github.com/wlanslovenija/django-tastypie-mongoengine

4.2. PLATFORM ARCHITECTURE 47

ness logic, enforcing the limits of what changes can be done to objects and

ensuring that no unwanted changes occur. For example, large portions of

data entries (such as the inputs and outputs or the date and time of cre-

ation) are defined by the process and cannot be changed. Tastypie uses a

process it names hydration when an object (usually in JSON form, others

can be supported as well) is received through the API and then de-serialised

from that form into a Python object. The reverse of this process is dehydra-

tion. Rules can be selectively applied to each field in the object to ensure the

behaviour follows the business logic. This provides a level of encapsulation

since only the fields relevant to the interface are sent by the server.

Besides the usual Create, Read, Update, and Delete operations, tastypie

supports the addition of arbitrary URL patterns and API calls that can ex-

ecute various functions and procedures on the server. An example of such a

function would be accessing all the permissions options a resource supports

with a GET request to platform.domain/api/resource/permissions/.

For authentication security we chose session based authentication, it works

closely with Django’s sessions, ensuring a user is logged in when API calls are

processed. The requests to the API need to provide a valid CSRF38 token,

which is stored by Django into a cookie upon successful login. For authori-

sation of operations we used a custom system based on permissions, which

is explained in more detail in Section 4.3.1.

With a bit of tweaking, tastypie offers a few more interesting features:

batch operations, pagination, and querying. Read operations work can re-

trieve both a single entry or multiple data entries, the other operation can

similarly work in batch mode, updating, creating, or deleting multiple data

entries with a single request. Simple pagination with page size limits and

offsets are easily added as well. Finally, querying inside the objects is sup-

ported – the URL parameters get translated into queries and executed on the

database. Besides simple field matching, nested querying and more advanced

38CSRF stands for Cross-Site Request Forgery.

48 CHAPTER 4. IMPLEMENTATION

filters are available39 (some of the most used filters include full text search

and inequality operations that fetch only entries from before a certain date,

for example). Table 4.1 shows some examples of queries and pagination.

domain.com/api/data/

returns all the data entries

domain.com/api/data/dataId/

returns the data entry whose id is equal to dataId

domain.com/api/data/?data type=DataType

returns all the data entries whose field data type is set tp DataType

domain.com/api/data/?static filename contains=.type

returns all the data whose filename field inside the static group

contains .type – an example of a nested query with full text search

domain.com/api/data/?limit=20&offset=20

pagination example, the query returns 20 data entries,

skipping the first 20, effectively showing the second page of results

Table 4.1: API query examples, first line is the URL and the second the

explanation

Testing

A very important aspect of both ensuring an application works and keeps

on working correctly is testing. In the first stages of development, the server

and the service API were extensively covered with unit tests to ensure the

business logic was implemented correctly. The API was tested by sending

mock requests to it and ensuring that it responded correctly and that all the

actions were correctly logged. Once we believed that the tests sufficiently

cover all aspects of the API, test driven development (TDD) [2] became the

preferred process for adding new features. With TDD the developer first

writes a failing unit test and then provides the functionality that the test

39Tastypie and django-tastypie-mongoengine support most of the filters available in

Django’s ORM system.

4.2. PLATFORM ARCHITECTURE 49

requires to pass. Eventually we planned to apply the same rigorous testing

to the front-end apps as well, since this was one of the reasons that Angular

was chosen.

4.2.3 Storage

As mentioned in the overview, we split storage into three parts – the relational

part, the large document portion, and the file storage. The relational and

document storage databases were kept loosely coupled from the server by

using object-relational mapping (ORM, described in Section 2.1.5).

Relational storage

A portion of the data our platform needed to store is highly relational. Users,

groups, and logs are interconnected with clear relations. Additionally, the

Django server can use a relational database to manage sessions and allows ac-

cess to the data through its administration interface. We chose PostgreSQL40

as the relational database because it is a wide-spread, open source, free-for-

commercial-use solution; it also has excellent integration with Django.

The actual objects that are stored in the database are defined at the server

level and kept solution-independent with middle-ware engines that connect

Python applications with databases and migration assisting packages which

aid in propagating changes to object definitions41. Django provides an ORM

solution which defines objects as models and then keeps them persistent in

the chosen database.

Document storage

Above we explained that the platform defines data as an annotated piece

of information. If the actual data are large files, they are saved in the file

40www.postgresql.org
41In PostgreSQL’s case the middle-ware engine is psycopg2 and migration support is

provided by south.

http://www.postgresql.org

50 CHAPTER 4. IMPLEMENTATION

system and their annotations are stored separately; if the text files are small

enough they can be stored directly in the document storage. Because such a

database has the potential to become very large in size, we considered NoSQL

solutions. A survey of such solutions resulted in the choice of MongoDB42,

the most popular non-relational solution at the time. In the first stages of

development, the size of the project definitely did not warrant the usage of

a non-relational database, but MongoDB – a document storage database –

proved to be a very suitable solution for our needs.

The interface of the platform works with JavaScript objects, defined in the

JavaScript Object Notation (JSON). They are retrieved from the server API

in that form and the transformation between JSON and Python objects is

very simple (as long as some minor discrepancies are respected43). MongoDB

stores the data in BSON, a binary form of JSON, resulting in the annotation

being in more or less the same form throughout the platform, from the storage

to the apps. MongoDB also supports nested queries of the BSON objects

which further adds to the usability.

The document storage database is where the data, project, process, tem-

plate, and trigger information is stored. The document schemata are defined

with an ORM system through Django and related middle-ware. Despite using

object-relational mapping, however, the final solution is highly customised

for a specific database and would take much more work than just switching

the middle-ware and storage solution to change to a different database, espe-

cially because the variety between different NoSQL databases is much higher

than between relational ones.

The relational part of the database is referenced with IDs. For exam-

ple, the documents store the primary keys of the users when they require a

reference to them. Similarly, when a log stored in the relational database

references a certain document it uses its (primary) key.

42www.mongodb.org
43Python tuples and numeric keys in dictionaries do not have equivalents in JavaScript

and end up converted to lists and string keys.

http://www.mongodb.org

4.2. PLATFORM ARCHITECTURE 51

File system storage

Some data entries are represented by either a large file or multiple (large) files.

Such files are saved in a distributed file system inside folders corresponding

to data IDs. What is stored depends on the type of data, when a new type

is determined, the contents of the data folders of the type are defined as

well. It is up to the processors accepting a certain data type as an input

to correctly access the contents of the data folder, especially if the folder

contains multiple files.

Persistence

There are two important issues that are very related to the way the storage

system works – temporary and duplicate data. Every step of processing

currently creates new data objects, which can be redundant if the user is

only interested in the final result of a long chain of processes. At the same

time, some identical processes can be run on the same data by multiple users,

creating the same results – a waste of both computational power and storage

space when the data is large and/or takes a long time to process.

A persistence system was planned to solve these issues but it was not

fully implemented in the first few iterations of the solution. The idea was to

use three levels of persistence: raw data is permanently stored, cached data

is a copy of an existing raw data entry, and temp data represents temporary

data that was used in a processing work-flow/pipeline but does not need to

be stored.

Temporary data can easily be handled by setting the relevant parameters

of processors that produce temporary data and scheduled garbage collection.

The issue of duplicate data is a bit more complicated. First, a checksum

function is needed for processors and their input parameters. With it, du-

plicate data that was created with the same version of the processor and the

same parameters can be detected. Before beginning processing, the process-

ing manager would need to check if the checksum matches any existing data

entry. If it exists, the relevant portions of the original’s annotation would be

52 CHAPTER 4. IMPLEMENTATION

copied in a new data entry, marked as cached, and pointed to the files of the

original. Because the data cannot be changed after it is created, the only

issue that needs handling is the potential deletion of the original raw data

when it has cached copies pointing to it.

4.2.4 Processing

The processing portion of the application is managed by Celery44, an asyn-

chronous task queue based on distributed message passing. Celery uses Mon-

goDB to store the messages and manage the queue. Tasks are put in the

queue, checked that all their inputs are available, and executed on a pool of

worker nodes inside Linux Containers (LXC). LXC execution ensures that a

process is in a separate control group and isolated from the resources of the

other processes, thus preventing it from affecting other parts of the system.

The system saves progress updates that processors issue while they run and

also ensures that all the data is correctly saved if processing finishes success-

fully, as well as ensuring that information is available in case of any errors.

Portions of the data entries are written when the processor begins and ends

the work and cannot be modified after the manager finishes the processing.

4.3 Selected implementation details

The following sections will take a closer look at some select key elements of

the application.

4.3.1 Permissions

The platform uses an authorisation system that was inspired by the ones used

in Google’s products. There are five different rights a user can have over an

object from the database: view, edit, share, download, and add. The view

permission allows users read-only access to objects while edit allows them to

44www.celeryproject.org

http://www.celeryproject.org

4.3. SELECTED IMPLEMENTATION DETAILS 53

modify and save the modifications to objects. The share right enables a user

the ability to grant permissions to other users, the download right allows the

user to access raw data and transfer it to their own computer. Finally, the

add permission allows the user to add new data to a project.

All requests sent to the server API go through an authorisation step

where the permissions of the user requesting a call are checked. Permissions

are stored per-object in a JSON object where the user IDs are the keys for

lists of permissions that were granted to those users. Users are not the only

ones who have permissions, however, as the same logic applies to groups – this

means that for every request we need to check whether a user has permission

or if he is a member of a group which has the corresponding permission.

When a new data object is created, the permissions are propagated to it

from the project the data object belongs to. Changes to permissions can be

requested through the API by users with the share right and if permission

changes are made to a project, the changes are propagated to the data objects

belonging to the project as well – these changes supersede any changes to the

data object. If a user creates a trigger, or tries to run a process manually,

the authorisation system checks whether they have the required permission

to add new data to the project.

There are two exceptions to the system described above. First is the

super-user, a user at such a level bypasses all authorisation checks and is

allowed to perform all operations. The other exception is the public user.

The idea is that the platform should be accessible even to users who have not

created accounts. For such users, an anonymous public user is automatically

logged in because the whole service relies on sessions and a user being present.

Public users have limited permissions; they are never allowed to share objects

or add new data.

4.3.2 Triggers

The conceptual idea of triggers was explained in Section 2.2.4 and the even-

tual implementation was also touched upon. The key is allowing users to

54 CHAPTER 4. IMPLEMENTATION

select which portions of their data get automatically processed. Another

role triggers serve is in running batch operations – automatic execution is

optional. A trigger can be manually run, applying a processor to a selected

subset of data.

A trigger is closely connected with a processor; this is the task it will

be executing. One of the data inputs of this processor is replaced with a

filter, which searches for matches inside the data annotation’s schemata and

template. If the filter is blank then all the data is accepted. The rest of the

inputs are set to fixed values. Whenever the status of a data object changes,

it checks if there are any triggers associated with it and if the conditions of

the trigger are fulfilled. If both are true, the trigger will queue up a new task

with the updated data object and the rest of the saved fixed inputs as the

input data of the process.

Another idea that was explored, but not yet implemented, was how to

solve a question of relevancy. A filter has its inputs fixed and has processed

some relevant data. If we change the filter’s inputs, the processed data

no longer corresponds to the new settings of the filter. Currently, the only

solution is to re-run the trigger, but that creates new data objects because the

information about how the data was created cannot be changed. A proposed

solution to this conundrum was adding a so-called dirty bit, a flag marking

objects that are no longer up to date. Changing the settings of a filter would

flag all the data that was created with it and then further propagate the dirty

bit to any data that was created using the dirty data. The trigger settings

would include an option to automatically re-run any dirtied data, or just

leave it flagged and thus notify the user. The approach of re-running the

dirtied data is incompatible with the initial idea of data being immutable

after it is created.

4.3.3 Schemata and templates

The schemata and templates are an important portion of the application’s

structure because they are used to automatically generate the input and

4.3. SELECTED IMPLEMENTATION DETAILS 55

display forms when data objects are viewed and created. This functionality

is heavily used in the management app, but it can be used in other apps as

well by either re-using the relevant Angular directives or by coming up with

new ways to use the schemata and templates. A data object contains three

schemata – the static, input, and output – and a template named var (for

variable). Two schemata are defined by the processor, representing its inputs

and outputs; the static one is the same for all data entries and represents

the basic information, such as the name of the object, description, and the

tags which apply to it. The definition of a template can also come from

the processor in the form of a default template, or it can be defined on the

project level. Default templates set at the project level ensure that all the

data inside the project is annotated with the same information, although the

template can still be changed on a per entry basis.

The goal of schemata and templates is to enable automatic generation of

forms for the data and to handle the varied types of information that anno-

tations can contain in a general manner. Because of that, the information

contained inside a schema or template is similar to the way an input would

be defined, including, but not limited to, whether the input is required, the

placeholder text, default value, validation regular expression, even a list of

possible values.

Another important piece of information is the type of the input – a ded-

icated type system was developed to differentiate between different inputs.

There are two general groups of types, basic and data. The basic types are

similar to those often found in programming languages, some examples are:

basic:boolean, basic:string, basic:date, basic:decimal, basic:json.

The data types represent outputs of processors and have data: prepended,

these represent data entries in the database, for example data:type:detail.

Additionally, lists of either basic or data types can be used, for example

list:basic:date is the type for a list of dates.

All the supported basic types can be rendered in the interface with cor-

responding inputs, depending on the type and all the additional parameters,

56 CHAPTER 4. IMPLEMENTATION

for example, a list of possible values will result in a combo-box. A data type

is rendered as a data table with an appropriate type filter set, from which

a data entry of a valid type can be selected. Listing 4.2 shows an example

of a simple schema and Figure 4.3 shows how that example schema can be

rendered in the front-end application.

{ "schema": [

{
"default": "Default name",

"label": "Name",

"name": "name",

"type": "basic:string"

},
{

"default": [

"tag1",

"tag2"

],

"label": "Tags",

"name": "tags",

"placeholder": "new tag",

"type": "list:basic:string"

},
{

"default": "Default description",

"label": "Description",

"name": "description",

"type": "basic:text"

}
]}

Listing 4.2: A schema example with three objects: name, tags, and

description. Name and description use basic data types while tags are a

list of basic strings. Figure 4.3 shows how this schema can be rendered in

the interface.

4.3. SELECTED IMPLEMENTATION DETAILS 57

Figure 4.3: Schema 4.2 is rendered in read-only and editable mode with an

angular directive.

Validation

The schemata and templates system is very useful but it needs to adhere

to a common format to work. To ensure everything follows this format,

a validation system based on JSON schemata45 is used. A JSON schema

defines the structure of the object and a validator can check if the object

complies with the schema. In our case, we are using JSON-schemata (named

meta-schemata) to validate the form of our schemata, templates, data types,

and processors before they are saved into databases. Listing 4.3 shows an

example of a JSON schema and valid JSON object corresponding to that

schema.

4.3.4 Processors

A processor is an algorithm that accepts inputs and transforms them into

outputs – it is the basic building block of the dataflow platform. Its definition

is divided into four parts: the inputs, the outputs, the meta-data, and the

algorithm. The inputs and outputs are schemata and follow all the rules

that apply to them – their definitions, specifically on the input side, take

into account how the end user will be selecting their values (for example

45json-schema.org

http://json-schema.org

58 CHAPTER 4. IMPLEMENTATION

{
” t i t l e ” : ”Example Schema” ,

” type” : ” ob j e c t ” ,

” p r op e r t i e s ” : {
” f i rstName ” : {

” type” : ” s t r i n g ”

} ,
” lastName” : {

” type” : ” s t r i n g ”

} ,
” age” : {

” d e s c r i p t i o n ” : ”Age in years ” ,

” type” : ” i n t e g e r ” ,

”minimum” : 0

}
} ,
” r equ i r ed ” : [” f i rstName ” , ” lastName”]

}
{

” f i rstName ” : ”John” ,

” lastName” : ”Doe” ,

”age” : 27

}

Listing 4.3: Example of a JSON schema and a valid JSON object according

to the schema. First and last name are defined as strings and are required

while the age is optional but has to be a natural number.

with combo or check boxes). The option to set default values for inputs is

important as well. The meta-data of a processor is the information related to

it and not the data entries it creates, including the version, name, description,

and the persistence level of the created data. Finally, there is the algorithm

that defines the process applied to the input data. It is written in bash

and able to use any commands that are installed and available in the run-

time environment. Essentially any code can be written, but the execution

is limited by the (limited) permissions given to the worker executing the

4.3. SELECTED IMPLEMENTATION DETAILS 59

algorithm.

Processors are JSON objects but we write them in the YAML (YAML

Ain’t Markup Language, previouslyYet Another Markup Language)46 markup.

Parsing between the two is trivial but the YAML syntax is easier to write

and clearer than JSON. Because processors are JSON objects we also apply

the JSON schema-based validation to them, ensuring they are defined cor-

rectly and comply with the guidelines set by the developers. After writing,

a processor needs to be registered with the platform through the command

line. The register command validates the whole processor definition and adds

it to the database. Listing 4.4 is a simple example of a processor definition

that sleeps for a number of seconds as set by its input parameter.

4.3.5 Apps

At the beginning of this Chapter, we briefly described that apps are the

interface through which the platform is accessed. The platform registers

them and adds their static files to where they can be served. The app is

defined with partial Django templates that the platform includes into the

main framework. These partial templates hold the information needed to run

a web application – the JavaScript libraries (js.html), style sheets (css.html),

and the application itself (content.html). These templates end up embedded

in the base website of the platform with a common header and footer, and

the application renders in the content portion of the web page. A bare bones

hello world example is a simple empty Django module with the content.html

partial template defined, Figure 4.4 shows an example. More advanced apps

will define their own processors and multiple sub-pages, but ultimately they

all function in the same way – using the platform’s API to process data and

then request that data and display it in some meaningful way.

The first app running on the platform was the one that has been alluded

to throughout this Thesis, the data and project management app named

GenCloud. We expect that most users will be using it for project man-

46yaml.org

http://yaml.org

60 CHAPTER 4. IMPLEMENTATION

− name : t e s t : s l e e p

ve r s i on : 1 . 0 . 0

l a b e l : Test

type : data : t e s t : r e s u l t

p e r s i s t e n c e : TEMP

de s c r i p t i o n : Simple t e s t running s l e e p f o r [t] seconds

input :

− name : t

l a b e l : S leep time

type : ba s i c : i n t e g e r

d e f au l t : 5

output :

− name : output

l a b e l : Result

type : ba s i c : s t r i n g

s t a t i c :

− name : name

l a b e l : Name

type : ba s i c : s t r i n g

d e f au l t : ”Test ”

− name : tags

l a b e l : Tags

type : l i s t : ba s i c : s t r i n g

d e f au l t : [” t e s t ”]

var :

− name : notes

l a b e l : Notes

type : ba s i c : t ex t

run :

runtime : po l yg l o t

bash : |
echo ” Sta r t i ng . . . ”

s l e e p {{ t }}
echo ”{\” output \” : \”/ api /data/{{ data id }}/download/

stdout . txt \”}”
e x i t 0

Listing 4.4: A simple YAML definition of a processor that sleeps for t seconds

before exiting. The first portion of the definition is the meta-data of the

processor, followed by the schemata (input, output, static) and the template

(var), ending with run, which contains the algorithm. When the bash code

from run is executed, the result is captured and stored by the processing

manager.

4.3. SELECTED IMPLEMENTATION DETAILS 61

Figure 4.4: A minimal working hello world example app which can be added

to the platform. The css.html and js.html partial templates contain the

included css styles and JavaScript code, respectively, while the content.html

contains the content of the app, in this case the hello world text.

agement as well as processing, but more advanced displays of data will be

handled by more specialised apps. An example of such an app is the updated

dictyExpress, shown in the Conclusion 5.2.

GenCloud

GenCloud is, first and foremost, a management tool through which projects

and data can be administered. It is very general in scope, able to run any

processors and set up triggers for them. The app keeps track of all the

data inside a project, grouping them by type, and it also displays all the

data that is currently being processed. The displays can be altered to also

show already completed processes, Figure 4.5 shows how a simple project is

displayed. The app handles triggers, both their creation, management, and

their manual running. With the project settings the project permissions,

default templates, and available processors can be modified, Figure 4.6 shows

62 CHAPTER 4. IMPLEMENTATION

Figure 4.5: An example project within the application, showing the already

completed analyses and how the data is grouped by type.

an example of this.

Each data entry can also be examined individually and here the system of

schemata and templates comes into play – with an Angular directive named

dynamic, the display of data is dynamically generated from a schema/tem-

plate and the corresponding values. The created forms can either be read-

4.3. SELECTED IMPLEMENTATION DETAILS 63

Figure 4.6: The foreground of the screenshot shows how the project per-

missions can be changed while the background shows the rest of the project

settings that can be adjusted.

only or editable, the latter is used when data is being created or modified.

This system is completely modular and the dynamic directive was devel-

oped for re-use in other apps that display data entries. Figure 4.7 shows an

example of data details.

GenCloud was also imagined with a social aspect in mind – the project

64 CHAPTER 4. IMPLEMENTATION

Figure 4.7: The annotation of a data entry is displayed in four sections –

the general, inputs, and results correspond to the static, input, and output

schemata, respectively, while the details portion represents the changeable

template.

contains a timeline of events that are added whenever a processor is run,

thus creating a history of all the processes that led to the current state of the

project. Each of these events can be commented on or hidden when they are

deemed not important enough, leaving the milestones visible. Int his way,

the users of the platform could keep the comments and results of analyses

and processes in a clearly visible timeline with key events highlighted. A

new person, with whom the project was shared, would only have to check

the timeline to see how the current state of the project came about.

4.3. SELECTED IMPLEMENTATION DETAILS 65

Figure 4.8: Project timeline, where users can comment on individual analyses

and show/hide the ones they consider more/less important. The default view

displays just the events that were not hidden, allowing for a quick overview

of the important parts of the project.

66 CHAPTER 4. IMPLEMENTATION

Chapter 5

Conclusion

This work has presented the development of a data processing platform from

the basic architectural decisions to a working solution that implemented most

of the original ideas, creating a sold basis for further development. The

platform was presented in its entirety, but the parts that the author either

developed, or helped develop, were presented in greater detail. The author

contributed to the development of the architecture of the application and

then developed the first version of the web application and the correspond-

ing web server and storage. From the first iteration onwards, the author

continued to work on these two parts, focusing primarily on the RESTful

API and business logic, as well as triggers and permissions. Ultimately, the

platform described in this Thesis is the result of collaboration and plenty of

discussion on both ideas and how best to materialise them.

How were the development goals fulfilled? The platform is able to scale

horizontally on both the server and the storage level. It is as modular as

the involved solutions allowed; integration with MongoDB, for example, is

relatively high and would take plenty of work to switch to a different solution,

whereas the relational portion can be swapped easily. The platform is highly

extensible, allowing for the addition of both new processors and apps, which

was demonstrated by using simple examples. The final goal – a platform that

is simple to use – will have to be thoroughly tested. All the parts of the user

67

68 CHAPTER 5. CONCLUSION

interface were built with ease-of-use in mind, but the level of success will be

judged by the users, not the developers.

The original aim of creating a dataflow platform has been mostly fulfilled,

especially with the utilisation of triggers to facilitate dataflow pipelines and

automatic processing. Yet there is a crucial part that was never implemented

– the visual dataflow interface. Bound by time and man-hour constraints,

the implementation of such an interface was not a priority. We do believe,

however, that because all the major functions of the application can be easily

controlled through the RESTful API, the platform is ready for such a visual

interface, should someone at some point decide to develop it.

5.1 Looking back

The author concluded his involvement with the development of the platform

in May 2014. Now, as we are concluding this Thesis, we can look back

and reflect on the decisions that were made. The technological choices were

mostly sound, for example, AngularJS did become the most prominent of the

MV* frameworks used for web application development. MongoDB is still the

most popular NoSQL database but the trend of using NoSQL databases for

most web projects has cooled off because of the realisation that most projects

never reach the volumes of data that would warrant such databases. Fresh

trends are emerging – NewSQL47 is a new generation of relational databases

that promises a combination of proper transaction support through SQL as

well as scalability. Nonetheless, MongoDB served us well because of the way

we used it, resulting in data in the same format across the platform.

When the development began, on demand platforms for data analytics

were not readily available. Since then some of the largest players have entered

the game, releasing their own versions of on demand tools, essentially creat-

47Michael Stonebraker’s article on the topic is a good introduction, available

at cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and

-old-sql-for-new-oltp-apps/fulltext

http://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext
http://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext

5.1. LOOKING BACK 69

Figure 5.1: Microsoft Azure Machine Learning with a visual dataflow inter-

face.

ing Machine-Learning-as-a-Service: Microsoft Azure’s Machine Learning48,

Amazon Machine Learning49, Google Prediction API 50, IBM’s Watson An-

alytics51, and more. All such solutions try to provide a robust and accurate

service that is simple enough for anyone with data to use. Various means are

chosen to achieve the goals, from opting for a simple API in Google’s case to

Microsoft’s Machine Learning Studio, an elaborate visual dataflow interface

(Figure 5.1). The market is rapidly developing and we look forward to seeing

what will happen in a few years, especially in the case of solutions that do

not have the backing of large multinational companies.

48azure.microsoft.com/en-us/services/machine-learning
49aws.amazon.com/machine-learning
50cloud.google.com/prediction
51www.ibm.com/analytics/watson-analytics

http://azure.microsoft.com/en-us/services/machine-learning
http://aws.amazon.com/machine-learning
http://cloud.google.com/prediction
http://www.ibm.com/analytics/watson-analytics

70 CHAPTER 5. CONCLUSION

5.2 Looking forward

The platform is being actively developed and many parts of the original

implementations have been upgraded, sometimes even replaced with better

ones. The same development has occurred in the ideas, some endured while

others (for example the timeline) were abandoned. The most exciting portion

is the development of specialised apps that fully utilise what the platform

can do, an example of such an app is dictyExpress.

Figure 5.2: The interface of the updated dictyExpress application.

dictyExpress52 was designed as an updated version of the application

described in Section 3.2. Development was done in cooperation with the

Bioinformatics Laboratory at the University of Ljubljana as well as Gad

Shaulsky’s and Adam Kuspa’s labs at Baylor College of Medicine. It finished

52dictyexpress.research.bcm.edu

http://dictyexpress.research.bcm.edu

5.2. LOOKING FORWARD 71

in early 2015. The function of the app is still the same – it is an interac-

tive, exploratory data analytics tool that provides access to gene expression

experiments in Dictyostelium – but the ideas were refined and updated to

better suit the new technologies and meet the needs of its users. The app

fully utilises the developed platform with custom processors and an exten-

sive array of functionality that first processes data on the platform and then

fetches it for the elaborate visualisations. Figure 5.2 provides an example of

the updated interface.

The new dictyExpress is just one example of the kind of applications

Genialis is now developing, in collaboration with the University of Ljubljana,

to tackle the complex problems of data analysis in bioinformatics. We are

pleased to report that the ideas presented in this Thesis took off and continue

to be improved in a start-up environment.

References

[1] E. Baroth and C. Hartsough, “Visual Object-oriented Programming,”

M. M. Burnett, A. Goldberg, and T. G. Lewis, Eds. Greenwich, CT,

USA: Manning Publications Co., 1995, ch. Visual Programming in the

Real World, pp. 21–42.

[2] K. Beck, Test Driven Development: By Example. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc., 2002.

[3] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl,

P. Ohl, C. Sieb, K. Thiel, and B. Wiswedel, “KNIME: The Konstanz

Information Miner,” in Data Analysis, Machine Learning and Applica-

tions, C. Preisach, H. Burkhardt, L. Schmidt-Thieme, and R. Decker,

Eds. Springer Berlin Heidelberg, 2008, pp. 319–326.

[4] D. Blankenberg, G. V. Kuster, N. Coraor, G. Ananda, R. Lazarus,

M. Mangan, A. Nekrutenko, and J. Taylor, “Galaxy: A Web-Based

Genome Analysis Tool for Experimentalists,” Current protocols in

molecular biology, pp. 19–10, 2010.

[5] A. B. Bondi, “Characteristics of Scalability and Their Impact on Perfor-

mance,” in Proceedings of the 2nd International Workshop on Software

and Performance. New York, NY, USA: ACM, 2000, pp. 195–203.

[6] E. Brewer, “CAP twelve years later: How the“rules” have changed,”

Computer, vol. 45, no. 2, pp. 23–29, Feb 2012.

73

74 REFERENCES

[7] E. A. Brewer, “Towards Robust Distributed Systems (Abstract),” in

Proceedings of the Nineteenth Annual ACM Symposium on Principles

of Distributed Computing. New York, NY, USA: ACM, 2000, pp. 7–.

[8] J. Demšar, T. Curk, A. Erjavec, Črt Gorup, T. Hočevar, M. Milutinovič,

M. Možina, M. Polajnar, M. Toplak, A. Starič, M. Štajdohar, L. Umek,

L. Žagar, J. Žbontar, M. Žitnik, and B. Zupan, “Orange: Data Mining

Toolbox in Python,” Journal of Machine Learning Research, vol. 14, pp.

2349–2353, 2013.

[9] E. W. Dijkstra, “On the role of scientific thought,” in Selected Writings

on Computing: A Personal Perspective. Springer-Verlag, 1982, pp.

60–66.

[10] E. Evans, Domain-Driven Design: Tacking Complexity In the Heart of

Software. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,

Inc., 2003.

[11] R. T. Fielding and R. N. Taylor, “Principled Design of the Modern Web

Architecture,” ACM Trans. Internet Technol., vol. 2, no. 2, pp. 115–150,

May 2002.

[12] M. Fowler, Patterns of Enterprise Application Architecture. Boston,

MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[13] B. Giardine, C. Riemer, R. C. Hardison, R. Burhans, L. Elnitski,

P. Shah, Y. Zhang, D. Blankenberg, I. Albert, J. Taylor, W. C. Miller,

W. J. Kent, and A. Nekrutenko, “Galaxy: a platform for interactive

large-scale genome analysis,” Genome research, vol. 15, no. 10, pp. 1451–

1455, 2005.

[14] J. Goecks, A. Nekrutenko, J. Taylor, and T. G. Team, “Galaxy: a com-

prehensive approach for supporting accessible, reproducible, and trans-

parent computational research in the life sciences,” Genome Biol, vol. 11,

no. 8, p. R86, 2010.

REFERENCES 75

[15] J. Gray, “The Transaction Concept: Virtues and Limitations (Invited

Paper),” in Proceedings of the Seventh International Conference on Very

Large Data Bases - Volume 7. VLDB Endowment, 1981, pp. 144–154.

[16] T. Haerder and A. Reuter, “Principles of Transaction-oriented Database

Recovery,” ACM Comput. Surv., vol. 15, no. 4, pp. 287–317, Dec. 1983.

[17] W. M. Johnston, J. R. P. Hanna, and R. J. Millar, “Advances in

Dataflow Programming Languages,” ACM Comput. Surv., vol. 36, no. 1,

pp. 1–34, Mar. 2004.

[18] S. Joosten, “Trigger Modelling for Workflow Analysis,” in Proceedings of

the Ninth Austrian-informatics Conference on Workflow Management:

Challenges, Paradigms and Products: Challenges, Paradigms and Prod-

ucts. Munich, Germany: R. Oldenbourg Verlag GmbH, 1994, pp. 236–

247.

[19] R. N. Katz, P. J. Goldstein, and R. Yanosky, “Demystifying Cloud Com-

puting for Higher Education: Highlights of Cloud Computing,” Research

Bulletin, Issue 19, 2009.

[20] G. E. Krasner and S. T. Pope, “A Cookbook for Using the Model-view

Controller User Interface Paradigm in Smalltalk-80,” J. Object Oriented

Program., vol. 1, no. 3, pp. 26–49, Aug. 1988.

[21] M. Michael, J. Moreira, D. Shiloach, and R. Wisniewski, “Scale-up x

Scale-out: A Case Study using Nutch/Lucene,” in IPDPS 2007. IEEE

International, March 2007, pp. 1–8.

[22] J. P. Morrison, Flow-Based Programming, 2nd Edition: A New Approach

to Applictaion Development. Paramount, CA: CreateSpace, 2010.

[23] ——, “Flow-Based Programming,” Journal for Developers of Heteroge-

neous Computing Systems, vol. 1, no. 1, 2013.

76 REFERENCES

[24] G. Papadopoulos and K. Traub, “Multithreading: a revisionist view

of dataflow architectures,” in Computer Architecture, 1991. The 18th

Annual International Symposium on, 1991, pp. 342–351.

[25] D. L. Parnas, “On the Criteria to Be Used in Decomposing Systems into

Modules,” Commun. ACM, vol. 15, no. 12, pp. 1053–1058, Dec. 1972.

[26] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful Web Services

vs. ”Big”’ Web Services: Making the Right Architectural Decision,” in

Proceedings of the 17th International Conference on World Wide Web.

New York, NY, USA: ACM, 2008, pp. 805–814.

[27] D. Pritchett, “BASE: An Acid Alternative,” Queue, vol. 6, no. 3, pp.

48–55, May 2008.

[28] G. Rot, A. Parikh, T. Curk, A. Kuspa, G. Shaulsky, and B. Zupan, “dic-

tyExpress: a Dictyostelium discoideum gene expression database with

an explorative data analysis web-based interface.” BMC Bioinformatics,

p. 265, 2010.

[29] C. Russell, “Bridging the object-relational divide,” Queue, vol. 6, no. 3,

pp. 18–28, May 2008.

[30] M. E. Skinner, A. V. Uzilov, L. D. Stein, C. J. Mungall, and I. H.

Holmes, “JBrowse: A next-generation genome browser,” Genome Re-

search, vol. 19, no. 9, p. 1630–1638, Jul 2009.

[31] C. Snijders, U. Matzat, and U.-D. Reips, “Big Data”: Big Gaps of

Knowledge in the Field of Internet Science.” International Journal of

Internet Science, vol. 7, no. 1, 2012.

[32] T. B. Sousa, “Dataflow Programming: Concept, Languages

and Applications,” 2012, available at paginas.fe.up.pt/∼prodei/

dsie12/papers/paper 17.pdf.

http://paginas.fe.up.pt/~prodei/dsie12/papers/paper_17.pdf
http://paginas.fe.up.pt/~prodei/dsie12/papers/paper_17.pdf

REFERENCES 77

[33] W. Stevens, G. Myers, and L. Constantine, “Structured design,” IBM

Systems Journal, vol. 13, no. 2, pp. 115–139, 1974.

[34] W. M. P. van der Aalst, “The Application of Petri Nets to Workflow

Management.” Journal of Circuits, Systems, and Computers, vol. 8,

no. 1, pp. 21–66, 1998.

	List of abbreviations
	Abstract
	Povzetek
	Razširjeni povzetek
	Introduction
	Theoretical background
	Architecture
	Dataflow programming

	Related work
	PIPA
	dictyExpress
	Orange
	KNIME
	noflo.js
	Galaxy
	DNANexus

	Implementation
	Development goals
	Platform architecture
	Selected implementation details

	Conclusion
	Looking back
	Looking forward

	References

