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Abstract

One determinant of success for websites on the Internet is activity of their
users. This especially holds for online collaboration networks, where users
join lively and highly dynamic communities and engage in various collab-
orative activities and interactions. An example for such a network is the
StackExchange.com web portal, providing its users the possibility of asking
questions, answering them, as well as commenting on them and voting for
them to express their relevance. Usually, the evolution of such networks
is influenced by various external and internal factors. For example, new
users join; existing ones leave; new collaborations between existing users
arise or are discontinued for whatever reason. Hence, website owners are in
need for aligned tools and models to understand user behavior, eventually
enabling them to better predict, prevent and cope with the consequences of
such occurrences.

In this thesis the existing Activity Dynamics framework—based upon the
principles of dynamical systems on networks and used for simulating
activity—is adopted and extended to facilitate three different experiments.
First, we conduct six plausible real-world scenarios to analyze their im-
pacts on simulated activity for ten different sized empirical data sets—five
StackExchange.com and five Semantic MediaWiki networks. Second, we use
these data sets to analyze the correlations between user centrality within
the network and simulated activity. Third, we further extend the Activity
Dynamics framework by removing restrictions of the underlying static net-
work structure and introduce a dynamic version of the model in order to
increase the accuracy of the simulations.
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Kurzfassung

Benutzeraktivität ist ein Erfolgsfaktor für Internetseiten im World Wide
Web. Dies gilt vor allem für Online-Kollaborationsnetzwerke, in denen Be-
nutzergemeinschaften zusammenarbeiten und interagieren. Ein Beispiel
für ein Netzwerk dieser Art ist StackExchange.com, in dem Benutzer Fra-
gen stellen und beantworten können, die Möglichkeit haben Fragen und
Antworten zu kommentieren und ihre jeweilige Relevanz über Bewertun-
gen angeben können. Die Aktivität in solchen Netzwerken kann von un-
terschiedlichen internen und externen Faktoren beeinflusst werden. Zum
Beispiel können neue Benutzer dem Netzwerk beitreten, bestehende Be-
nutzer es verlassen, neue Kollaborationen zwischen Benutzern entstehen
oder sich vorhandene auflösen. Neue Ansätze und Tools sind nötig, um
die Besitzer und Administratoren von Online-Kollaborationsnetzwerken im
Umgang mit diesen Situation unterstützen zu können.

In dieser Masterarbeit wird das bestehende Activity Dynamics Framework,
das auf den Prinzipien von dynamischen Systemen beruht und für die Sim-
ulation von Aktivität in Online-Kollaborationsnetzwerken verwendet wird,
adaptiert und erweitert um drei unterschiedliche Experimente durchführen
zu können. Zuerst werden sechs plausible Szenarien vorgestellt, um deren
Einfluss auf zehn empirische Datensätze – fünf StackExchange.com- und
fünf Semantic MediaWiki-Netzwerke – zu analysieren. Des Weiteren werden
diese Datensätze für die Analyse von Korrelationen zwischen Benutzerzen-
tralität im Netwerk und der simulierten Aktivität verwendet. Schließlich
wird das Activity Dynamics Framework weiter ausgebaut, um Einschränkun-
gen der zugrundeliegenden statischen Netzwerkstruktur aufzuheben und
die Genauigkeit der Aktivitätssimulation zu erhöhen.
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1 Introduction

In this thesis we deal with the simulation and analysis of activity dynamics
in social online communities. The results provided and analyzed in this
work build upon previous work done by Walk et al. (2015) where they
developed the Activity Dynamics framework, which is briefly explained in
Section 3.1, and is used for the experiments conducted in this work.

1.1 Motivation

The success of any website strongly depends on its content and the rele-
vance to its visitors. In online collaborations networks the content is usually
generated by their participants and therefore the activities of those col-
laborators play an important part. An example of such a network is the
StackExchange.com website, a question and answering portal where users
can post questions, answer existing questions of other users, comment on
answers and questions and distinguish relevant topics by up or down vot-
ing them. Another example of an online collaboration network are online
encyclopedias, such as Wikipedia, where authors create and edit articles in
order to provide various information to their readers. It seems obvious that
without rich user participation, the collaboration network may die out if no
action is taken, thus no new content is provided and the website may not
acquire target visitor numbers. This is the worst case for any advertising-
financed website as the cash flow stops flowing. To better understand their
users and the overall activity they create, new technologies and tools are
needed. Additionally, such tools could support website owners in analyzing
the kinds of influences that potentially cause activity within a network to
increase or decrease.

1



1 Introduction

Since the activity in collaboration networks can be affected not only by
intrinsic factors but also by many external factors, it is hard to predict the
results of intended or unforeseen events that occur during a network’s
life cycle. For example, the introduction of new terms-of-service with a
change in the privacy policies or successful attacks of hackers exposing
security issues within the platform, could lead to a massive drop in user
numbers and harm overall activity. On the other hand, the introduction
of a new feature to an existing system or a sales promotion could lead to
an extraordinary gain in users, resulting in a sudden increase of overall
activity that could overload the servers of networks. Hence, website owners
and administrators are in need of tools that provide information about the
possible outcomes whenever such events are talking place, either if they are
intended or unexpected. This would allow them to prepare early and take
preventive actions that are best for the network’s overall activity.

One possible way to implement such supporting tools is using the Activity
Dynamics framework. It is based on the principles of dynamical systems
on networks and can be configured with one single parameter. In addition,
it is fairly easy to manipulate and to extend its underlying source code.
This grants us the abilities to model and simulate activity dynamics and
activity trends for online collaboration networks. We illustrate the accurate
simulation performance by comparing the activity simulated with the help of
this framework and empirical data gained from real life online collaboration
networks. With this in mind, we uncover new possibilities of providing
answers about the impact of various events.

1.2 Objectives

This master’s thesis covers the following objectives:

(i) To briefly introduce the reader to the Activity Dynamics framework by
explaining its mechanisms, variables and setup parameters.

(ii) To identify and simulate six plausible real world scenarios for ten
different real word collaboration networks to uncover the resulting
implications.

2



1 Introduction

(iii) To discover and analyze correlations between the centrality measures
of users within the network and the simulated activity.

(iv) To improve the Activity Dynamics framework by considering the
changes in the underlying network structure over time in order to
increase the simulation accuracy.

1.3 Contributions

This work tries to gain insights in the dynamics of activity in online col-
laboration networks. Based on the obtained results, we can make general
assumptions about the impacts of plausible real world events and the im-
portance of structural influences within such networks. For that reason, we
conduct three different experiments:

Activity Dynamics Scenarios. In this experiment we define six scenarios
that—combined with simulations of the Activity Dynamics framework—
allow for hypothetical explanations of potential events talking place in
real-world online collaboration networks. Beside the aforementioned events,
where user numbers either decline or rise, four other possible events are
taken into account: The sudden stop of interactions between existing users
which results in the removal of collaboration ties, as well as the possibility of
existing users starting to socialize and therefore create new collaboration ties.
In another scenario we introduce external incentives to collaboration net-
works. Such incentives could, for example, be paid moderators supervising
collaborations, aiming to increase activity. Furthermore, we investigate the
occurrence of trolls—users trying to harm the network—and their impact
on the overall activity. We conduct all scenarios in two different approaches:
By either randomly selecting affected users or by specifically selecting them
based on their importance, which represents our informed approach. Finally,
we apply this experiment to five StackExchange.com networks and to five
Semantic MediaWikis—each represented by graphs where users are nodes
and collaboration ties are edges—to show the impacts of our scenarios. Ta-
ble 1.1 provides a quick overview of all scenarios and explains the simulated
events occurring in our empirical networks.

3



1 Introduction

Table 1.1: Summary of the Investigated Scenarios Conducted as Part of This Thesis. The
Scenario column states the name for each scenario. Objectives describe the different
events we simulate for each empirical network.

Scenario Objective

Mass Emigration Users seize contribution in the collaboration networks and leave.
Mass Immigration Incidents attract new users that join the networks abruptly.
Breaking Collaborative Ties Users lose interest in each other and decide to not longer collaborate.
Establishing New Collaborations A recommendation system causes new collaboration edges between existing users.
Providing Incentives Providing incentives to users in order to raise the overall activity.
Emergence of Trolls Newly emerging trolls influence the activity in collaboration networks.

Centrality Analysis. Further, the Activity Dynamics framework allows us to
investigate the role of collaboration network topologies. The topology of a
network is on the one hand its spectrum—the eigenvalues and eigenvectors
of the adjacency matrix of the representing graph—and on the other hand
the structure of the network. According to our model, we show that the
underlying structure of the graph correlates with simulated activity and thus
allows us to identify most active and important users in the collaboration
network by simply considering a user’s centrality. We measure this centrality
in three different ways: By the degree (number of connected neighbors of
a user), the eigenvector centrality and Google’s PageRank. Further, we
compare the resulting correlations between simulated activity and user
centrality by calculating correlation coefficients.

Dynamic Network Structure. The original Activity Dynamics framework
might not be as accurate as it could be due to the fact that it uses a static
network structure throughout the whole simulation process and its parame-
ters are only calculated once for the whole network and time span. Hence,
we further extend it, enabling it to take changes in the network structure
over time into account. This allows us to calculate parameters for all points
in time (for example per month) and therefore to increase the simulation
performance, making it even more reliable and useful for website owners
and administrators.

The conducted experiments and their results aim to provide new tools
for website owners, which help them to better understand user behavior
within their online collaboration networks. We accomplish this with the
help of previous work done by Walk et al. (2015), where the authors have

4
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introduced the Activity Dynamics framework, which is used to simulate
activity and serves us as a skeletal structure for our experiments. With this
framework we can preprocess the empirical data sets, initialize the model,
calculate its parameters and simulate activity for the desired time span.
However, various extensions had to be implemented in order to simulate
the presented scenarios, to calculate correlations, to achieve the dynamic
version of the Activity Dynamics framework and to obtain useful results from
these experiments. The changes to the original version are described from
Chapter 4 to Chapter 6.

1.4 Thesis Outline

This work is structured into 9 chapters. Chapter 2 follows the introduction
and provides an overview of the related work in the fields of dynamical
systems, epidemic models and opinion dynamics. In Chapter 3 we explain
the used empirical data sets in detail and describe the Activity Dynamics
framework, as well as the calculation of parameters needed for simulations.
In Chapter 4 we depict the six scenarios and their different approaches
conducted as part of this work. In Chapter 5 we present the correlation
analysis between simulated activity and three different centrality measures.
Chapter 6 lists the changes made to the original Activity Dynamics model in
order to use a dynamic network structure during simulations and depicts
how the calculation of parameters has changed compared to the original
Activity Dynamics framework. The results of our three different experiments
are described in Chapter 7. This contains the impact of the six scenarios on
our empirical data sets, the calculated correlations between user centrality
and simulated activity, as well as the outcome of using a dynamical network
structure. We interpret these results in Chapter 8. In Chapter 9 we conclude
this master’s thesis and present future work.

5



2 Related Work

All results depicted in this thesis draw upon the theories and principles of
dynamical systems and epidemic models on networks explained in Section 2.2
and in Section 2.3.

2.1 Background

The evolution of social group dynamics or social movements have been
observed several times in previous research. For example, Milgram (1967)
showed in his experiments that information—given the right conditions—
can spread quickly through real-world social networks. Other works inves-
tigated peer pressure and explained the intentions of individuals joining
groups as, for example, in Waddington and Whitston (1997) and Putnam,
Leonardi, and Nanetti (1994). Stark and Bainbridge (1980) explained the
importance of interpersonal bonds between existing members and future
group members when it comes to group growth. However, these results are
all built solely upon empirical studies. Since the emergence of online social
networks, new ways to study the fields of group dynamics have emerged
and have since been used to increase our understanding of the complex
processes that occur in such systems.

Critical Mass Theory. The first concepts of research in the field of online
social communities rely on the formal theory of collective action and critical
mass. In Physics, the critical mass is the amount of radioactive material
needed in order to reach nuclear fission. From a sociological point of view,
this term is used in a metaphorical way, indicating that a certain threshold of
user numbers or activity needs to be reached before a social movement starts
evolving. In 1985, a first explanation of critical mass, in the context of social

6



2 Related Work

networks, was made by Oliver, Marwell, and Teixeira (1985). Corresponding
to them, the starting point of individuals forming a group and its evolution
of activity is based on two independent variables: The production function and
the group heterogeneity. The first variable indicates the expected outcome of
an individual’s efforts taken in a collaborative environment. In other words,
it outlines the return of the contribution done on different levels of effort.
Most likely shapes of production functions are: accelerating, decelerating or
linear. Given an accelerating production function, it means that early efforts
made by an individual have minimal effect in the beginning, but pay off
more effectively later on. In contrast to that is the decelerating production
function, where efforts made in the beginning have a bigger effect on the
collective good, but benefits begin to shrink in later phases. With the linear
production function, each contribution has a similar impact on the value of
collective goods.

The second variable mentioned in this work is the group heterogeneity. It
describes different interests of individuals in certain situations. For example,
the construction of a new gas station might be more important for car
owners than for individuals not having any fuel powered machines. This
could lead to individuals that do not contribute to the collective good, but
still benefit from it. This circumstance was already discussed by Olson Jr
(1965), where he described the exploitation of the ones contributing more to
the collective good by the ones that do not participate at all. In addition to
that, they found that groups with higher heterogeneity are more likely to
produce an accelerating production function.

When putting this theory in the context of online social communities, the
collective good can, for example, be seen as a topic all community members
are interested in. However, in these situations it is not quite clear if the
principles of critical mass theory still apply. One problem with critical mass
theory might be that it is sequential, meaning each individual is influenced
by those that acted before them as described by Markus (1987). More
realistically, users are usually influenced in both ways. If, for example, user
A posts a question on one of the StackExchange.com question and answering
portals and gets an answer from another user B who is participating in that
network as well, it can influence user A in his or her further reactions, such
as posting a comment on that answer or posting a follow-up question.

7
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Solomon and Wash (2014) have used this approach to explore the community
growth in WikiProjects. WikiProjects are groups of Wikipedia authors who
work together in order to improve the online encyclopedia Wikipedia. Hence,
users in such a network are typically organized around one topic (or one
collective good) or at least around topics with similar context. In their work,
they tried to answer what critical mass in an online social community could
look like. Basically, they tried to find out what such a network needs to
become self-sustainable, meaning the network will theoretically stay active
forever without the need of external influences. Their findings show that
when a few users are submitting large amounts of content in early stages,
it will equally result in lower growth rates. Better long-term growth can
be reached when many different individuals participate in small amounts.
This led the authors to the assumption that online communities are more
sustainable when they grow by content created by newly joined users and
not by a few long term participants. This fact is even more crucial when
new users have a high diversity in interests.

Based on this very basic concept, different approaches and models can be
developed to model activity in dynamical social systems more precisely.
Nevertheless, one question that already can be answered with this idea and
the knowledge gained in this simple variant of activity simulation, is how
many individuals need to participate in an online collaboration network
in order to raise activity and probably gain self-sustainability. However, to
gain even more knowledge of the various dynamics in such networks, a
more detailed approach is needed.

The Activity Dynamics framework, presented and used in this work, is based
on the idea of critical mass theory but extends this concept by using the
principles of dynamical systems in order to gain higher levels of accuracy.

2.2 Dynamical Systems

In general, a dynamical system is a mathematical model describing a phys-
ical problem. Mathematicians and physicists have various definitions for
it. Katok and Hasselblatt (1997) stated a most general notion, in which
dynamical systems consist of a phase (or state) space in which an arbitrary
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amount of elements represent possible states of the system. As time evolves,
the systems encounters state transitions. Each state x of the system depends
on time t, that may either be discrete or continuous, with the possibility of
representing not only future evolution of a system, but also states of the sys-
tem in the past. For example, time may be an integer variable for a discrete
dynamical system or a real variable for a continuous dynamical system. In
addition to these two principles, the time-evolution law specifies how a state
in the next period of time depends on the initial input of the system and
on the state in the previous period of time. Furthermore, Strogatz (2001)
explained the different attractors a dynamical system moves toward during
evolution of time. First of all, the point attractor where a non-linear dynami-
cal system at a certain point x(t) may come to a rest. Then the velocity at
that point must be zero so this point is called a fixed point denoted by x∗.
Whenever a system reaches this fixed point, all state transitions stop and the
system stays in its currently prevailing state forever. This state is also called
the equilibrium. Another possibility is that the state of a system circulates
around a closed loop of states forever. Whenever the system reaches this set
of attractors, called limit cycle, it represents an oscillation of the dynamical
system. A third possibility would be that the system is attracted by a strange
attractor where it wanders forever and never stops. This occurrence results in
an unstable or chaotic behavior of the dynamical system. A more in-depth
introduction to dynamical systems can be found in Strogatz (2014), Barrat,
Barthelemy, and Vespignani (2008) and in Newman (2010).

2.2.1 Dynamical Systems on Networks

Newman (2010) explained how the principles of dynamical system can
be applied to networks. Here, each vertex i of a network has a set of
independent dynamical variables xi, yi, . . . and is connected to other vertices
over edges. According to Newman and given a dynamical system with a
single variable x, the time evolution of xi is denoted by:

dxi

dt
= fi(xi) + ∑

j
Aijgij(xi, xj), (2.1)

9
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where fi states the intrinsic dynamics of vertex i and gij states the concur-
rence of vertices connected to i. A is the adjacency matrix of the network,
where Aij = 1 if i and j are connected and Aij = 0 otherwise. Note that
there are different functions fi and gij for each unique vertex. However, as
each vertex can represent the same property, the dynamics of all vertices
can also be the same. Hence, Equation 2.1 is further simplified to:

dxi

dt
= f (xi) + ∑

j
Aijg(xi, xj), (2.2)

making both terms, f and g, the same for each vertex within the network.
The Activity Dynamics framework uses Equation 2.2 to model activity of
users in online collaboration networks denoted by variable a. We will further
describe this in Section 3.1.

2.2.2 Diffusion Processes on Networks

Dynamical systems have been used to model different economical and
social processes taking place in social networks. The main focus was set
on information diffusion processes, which try to model how information is
spread in online and offline social communities.

The following presented models all take different approaches to simulate
diffusion of information or to find the most influential users in such com-
munities. Various approaches build upon Epidemic Models, a subcategory
of dynamical systems and further described in section 2.3. For example,
Leskovec, L. A. Adamic, and Huberman (2007) used an epidemic approach
to identify the dynamics of viral marketing. By analyzing a recommendation
network, they found that individuals with a high degree play a very impor-
tant part in such networks. However, their models assume that high degree
users have as much probability of influencing each of their neighbors as the
individuals with low degree do. They found that there are limits to how
much influence the important users have in a social network, suggesting
that each user only influences a few of his neighbors and not all users within
the network. Finally, they stated that the spreading of information in the
sense of viral marketing is not as epidemic as marketers have hoped.

10
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Another application of dynamical systems on networks was made by Cen-
tola and M. Macy (2007). In their work they explained the strength of weak
ties. Weak ties—in a structural meaning—are connections in graphs that
connect different distant components with each other and can therefore be
also called long ties as suggested by Granovetter (1973). They found, that for
random graphs only a few of such weak ties are needed in order to spread
information in social networks. However, for structured networks resulting
from social interactions between real users, this might not always be the
case. Using Watts and Strogatz’s original model described in D. J. Watts
and Strogatz (1998), they stated that long ties can also be a disadvantage
for the spreading of information in such networks. In fact, only long and
narrow ties can be useful for information diffusion, but as soon as too much
randomness is added, spreading of information might become inefficient.

A very simple and basic model is explained by D. J. Watts (2002), where
the author tried to explain how social networks are effected by cascades.
Cascades describe social phenomena in which a single action taken by one
individual results in a wave of actions taken by other participants of the same
network. The author used a random network where each vertex represents
an agent and each agent’s decisions are determined by the decisions of their
neighbors. He discovered a simple binary-decision model which allows
for setting up testable predictions about cascades in real social systems.
When the social network is sparse, the propagation of a global cascade
is limited by the global connectivity of the network. However, when it is
dense, the propagation of a cascade is limited by the local stability—the
more neighbors they have, the more stable they are—of nodes. Furthermore,
the work showed that increased heterogeneity of individuals appears to
increase the likelihood of global cascades. However, high heterogeneity of
the degree of individuals appears to reduce this probability.

Manuel Gomez Rodriguez, Leskovec, and Krause (2010) introduced NetInf,
an algorithm to infer networks of information diffusion. It enabled them to
study properties of real-world networks. The model was evaluated on large
real-world data sets of memes spreading on various news websites. They
discovered that clusters of websites with similar topics are able to diffuse
information from one cluster to another due to a rather small number of
social hubs connecting these different clusters.
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The authors build upon their previous work and developed the NetRate
model in M Gomez Rodriguez et al. (2011). It infers transmission rates be-
tween individuals of a social network. By introducing continuous temporal
dynamics, they avoided further needed assumptions and simplified prob-
lems existing in their older model explained in Manuel Gomez Rodriguez,
Leskovec, and Krause (2010). This improved model uses parameters with
natural interpretations, leading to a maximum likelihood problem that can
be solved efficiently. The parameters do not require any manual fine tuning
and are calculated automatically based on empirical data.

Adar, L. Adamic, et al. (2005) studied the propagation of information and
memes on weblogs, also referred to as blogs. In their work they presented
a system that allows for visualization of information flow between such
weblogs. The main interest lies on the path that information takes while it
is propagating through the world wide web. Their work is related to link
inference (the problem of inferring types of links), for example explained and
used in Berger and Bommel (1996) and Aggarwal, Xie, and Philip (2012),
and link classification (classification based on link structure of networks),
for example explained and used in Lu and Getoor (2003). In addition to
that, they used non-traditional features that are unique for blogs, facili-
tating better results than previous models. However, they also stated that
incompleteness of crawling through the web may lead to errors. Another
possible drawback in their approach is the problem of memes and informa-
tion represented by different URLs, for example one unique image hosted
on different providers. With this in mind, paths of information flows may
not be discovered completely by their model.

Kempe, Kleinberg, and Tardos (2003) introduced the Cascade Model for Infor-
mation and Knowledge Diffusions and showed how diffusion of information in
social networks can be maximized. Their results are important for marketing
engineers and show how peer influence and word-of-mouth effects are an
important factor in the dynamics of information diffusion.

Another model was introduced by Goyal, Bonchi, and Lakshmanan (2010),
where they found a way to investigate probabilities of interactions that are
represented by weights of edges in an influence propagation network. By
using logs from past propagations with static and time-dependent models
for calculating these probabilities of influence, their algorithms are able to
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predict whether a user will engage in an action or not. These algorithms are
performing extremely well and accurate on users with high influence. In
addition to that, the algorithms are able to more or less predict the point
in time at when a user might engage in an action. Furthermore, the static
approach described in this paper performs very close to the more complex
and more run-time intensive time-dependent variant.

Tang et al. (2009) introduced a solution to topic-based social influence
analysis. In their work, they suggested a Topical Affinity Propagation approach
to describe these analyses by using a graphical probabilistic model. Their
learning algorithm is based on a map-reduce programming model which
solves the efficiency problem that occurs with run-time of simulation. In
addition to that, the algorithm scales in an advantageous way. This algorithm
turned out to improve the performance of expert finding in social networks,
which is still an open problem.

Cha et al. (2010) analyzed the influence of twitter users on each other. For
that, they considered three different factors: the number of followers, the
number of retweets and the number of mentions. They found, that the
number of followers is just representing the popularity of a user but not
necessarily the influence this user has on the rest of the network’s users.
Additionally, they showed that decisive user influence—that is positive or
negative influence on other users—is not gained spontaneously, but with
great personal involvement and effort. They stated that influential users in
a network are indeed able to be located, which is in contrast to previous
claims made by D. Watts (2007), where he stated that influential users of a
network are hard to identify.

In Lappas et al. (2010), the authors tried to find effectors, a set of users that
lead from an initial state of activity to an observed finite state of activity of a
network which is represented as a graph. In their work, they described that
the problem of finding the belonging effectors that initially started activity
propagation are NP-hard to solve or even to approximate. However, they
found that the problem can be solved in polynomial time for directed trees.
Hence, they offer a framework, working with a directed influence graph
and an activation vector. They can first find a tree that spans all active users
in a network, and then, by using dynamic programming, they could find
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the optimal set of effectors in this tree. The results for this approach turned
out to perform well and accurate compared to real-world empirical data.

Furthermore, Cosley et al. (2010) compared two models dealing with the
measurement of user influence—one based on observed snapshots of empir-
ical data and the other one based on continuous temporal dynamics—in
order to discover a possible relationship between them. Using data from
the English, German and French version of Wikipedia, they showed that
approximations of user influence done with the snapshots is not as close to
the dynamic version as one would expect, but still useful for comparison.
This may help to better understand user influence by allowing for easier
comparison of data gathered with different kinds of sampling.

The Activity Dynamics framework is based on dynamical systems but sets
the focus on activity dynamics of online collaboration networks in its en-
tirety. Users—represented by nodes in a graph—are initialized with activity
weights that further depend on intrinsic user behavior and external influ-
ences of neighbors. With continuous time, these node weights evolve and
simulate empirically observed levels of activity.

2.3 Epidemic Models

A subcategory of dynamical systems are the so-called epidemic models.
Initially, epidemic models were developed to learn about and explore the
spreading of diseases. Gaining knowledge about the characteristics of highly
contagious diseases has been an issue for scientists for a long time. The
first assumptions about implications of outbreaks have been made by W. O.
Kermack and A. G. McKendrick (1927). Ever since, different ways to explain
the outbreak and spreading of certain diseases, such as HIV or smallpox,
have been developed. These models aim to help in designing prevention
plans and modeling effects of vaccinations. There are various versions of
epidemic models but usually they consist of a set of possible states each
individual can adopt and the probabilities of transitions between those
states. The fact if an outbreak becomes an epidemic is depending on the
epidemic threshold, for example explained closer by W. Kermack and A.
McKendrick (1932). This threshold is the minimum density of infected
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individuals needed at the beginning of simulations in order to potentially
infect all other individuals within the network over time.

The simplest model among them is the SI model, where individuals can
only obtain two different states, either susceptible in which they do not have a
disease or—the other way around—infected in which they do have a disease
and are able to pass the disease to susceptible individuals. At every unit time
and for each individual there is an average number of contacts that are made
with randomly chosen other persons. The rate of change from susceptible
to infected is modeled with a simple differential equation depending on
infection probability β. In addition to that, Individuals that became infected
will stay in this state forever. Besides the SI model, there are further models
that introduce new states, such as the SIR model (susceptible - infected -
recovered), in which individuals are able to recover from a disease and are
immune after that, so basically they can not become infected anymore. This
happens with the probability γ, stating how long infected individuals are
staying in the infected sate before the recover and reach the recovered state.
Another model is the SIS Model (susceptible - infected - susceptible), where
susceptible individuals can become infected and can afterwards recover but
are not immune to the disease they got in the first place. Furthermore, this
model is extended by the SIRS model (susceptible - infected - recovered
- susceptible) model, where individuals are immune once they recovered,
but still have a chance to become susceptible for a new infection again. For
more information on epidemic models, the interested reader is pointed to
the work of Pastor-Satorras et al. (2014) and of Newman (2010).

While the first epidemic models were used to simulate the outbreak of
diseases (for example May and Anderson (1984), Yorke, Hethcote, and Nold
(1978), and Lloyd and May (1996)), its principles have been used for other
diffusion processes, for example information diffusion, activity dynamics or
opinion dynamics. In the past there have been numerous experiments that
try to model non-linear social systems and the traditional epidemic models
(SI, SIR, SIS and SIRS) have since been further developed to be able to
consider the underlying network structure. The following paragraphs cover
an overview of these experiments and their various underlying models.

Rvachev and Longini (1985) presented a model that is formulated with
difference equations in a continuous state space and discrete time domain

15



2 Related Work

in order to predict the spreading of the influenza virus. They found that
their model could successfully predict the geographic spread of Hong
Kong’s influenza pandemic in 1968. Furthermore, it is considered to be
a milestone in the history of epidemic models since it was the first time
someone simulated an epidemic outbreak for a period of 425 days.

Another approach is explained by Ferguson, Keeling, et al. (2003), where
they tried to extend the original SIR epidemic model by considering various
other factors to predict the outbreak of smallpox. They did that by captur-
ing the social and spatial structure and introduced them into simulations.
One possibility to do so is taking the underlying network structure into ac-
count. They described different types of network structures, such as families,
friends and working colleagues, where possibility of infection is depend-
ing on the structure of the underlying contact network. They uncovered a
considerably large amount of uncertainties that led to the final assumption
that no model can truly predict the spreading of smallpox. Hence, they sug-
gested that modeling should aim the identification of effective interference
for a variety of outbreak scenarios.

Hufnagel, Brockmann, and Geisel (2004) used an extended SIR model to
simulate outbreaks of diseases on a global scale. They used a real-world
global aviation network, where airports are nodes and flight paths are
represented by edges. Edge weights are given by the number of passengers
traveling a flight path per day. In their results, they explained that isolating
the largest cities is more effective than removing the edges with highest
weights from the network. This suggests that removing most important
nodes will harm a network more than removing the most weighted edges.

Similar to this, Ferguson, Cummings, et al. (2005) also took network struc-
ture into account and used data from the international air transport associa-
tion to construct a network based on real-world data. Again, nodes represent
airports and edges represent flight paths weighted with the amount of pas-
sengers taking this route. They came to the result that it is highly important
to bring in more details in the dynamics of disease outbreaks in order to
gain more accurate results appropriate to the real world.

Longini et al. (2005) extended the original SIR model to stem the pandemic
influenza and prevent an outbreak. In their work, they constructed a net-
work consisting of different sized clusters where each cluster has other
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probabilities of infection. They found that an influenza could be prevented
from spreading within the first 21 days after the outbreak. However, this is
strongly depending on the reproduction number, stating how fast individu-
als are infected.

Another application of epidemic models is the simulation of computer
viruses spreading through networks. Kephart and White (1991) used the SIS
model on random graphs to simulate such outbreaks. Using deterministic
approximation, stochastic approximation and simulation, they obtained
results that were essentially identical to the classical homogeneous theory:
They found that epidemics can not spread until the rate of an individual
infecting a susceptible individual exceeds the rate at which an individual
leaves the infected state and becomes susceptible again. If, however, the
former rate is higher, the epidemic is more likely to happen. The number
of infected individuals in equilibrium can only be zero or all individuals
that are part of the network, depending on this rate. With their simulations
they showed that these theoretical results are true as long as the network is
highly connected. However, if the network is loosely connected, the epidemic
threshold is highly increased. In another simulation they added weak ties to
a random graph, resulting in an increased epidemic threshold. The effects of
locality were simulated in spatial model simulations, revealing a polynomial
growth rate of infections in contrast to the exponential growth rate of the
random graphs model.

An interesting model based on the principles of epidemic models and to
simulate the spread of computer viruses, was developed by Kephart, Sorkin,
et al. (1997). In their work, they mentioned that the basic epidemic model
is inadequate and needs adjustment in order to better reflect reality. The
error lies in the assumption of uniform chances of infection between every
individual in the whole population, suggesting that further parameters are
needed to bring simulation results closer to reality.

Kephart and White (1993) introduced two more extended epidemic models
in order to explain phenomena occurring in the fields of computer viruses.
One of them is the extension of the SIS model by introducing kill signals.
Basically this allows healing of infected systems to be dependent on other
individuals in the network. For example, if one individual knows about an
infected system, he can warn others to take prevention actions. Thus, curing
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of infected individuals can be influenced externally. This was one of the first
models capable of considering this circumstance.

Furthermore, Y. Wang et al. (2003) developed a more precise model to study
the spreading of computer viruses, demonstrated by the application in syn-
thetic and real-world networks. Using only a single parameter—the highest
eigenvalue of the adjacency matrix of the graph—their epidemic threshold
is more precise than in previously developed models and studies. Further-
more, they depicted that whenever the infection rate is below the epidemic
threshold, the amount of infected individuals increases exponentially over
time.

The importance of network topology and network spectra (eigenvalues of
the adjacency matrix of a graph) has been further discussed by Ganesh,
Massoulié, and Towsley (2005). They developed conditions in which the
outbreak of an epidemic either dies out quickly or slowly. These conditions
hold for random graphs, hypercubes and complete graphs, but do not hold
for stars or power law graphs. Additionally, Van Mieghem, Omic, and Kooij
(2009) developed the N-interwined Markov Chain Model that relates the
degree and the largest eigenvalue of the network and thus showed that
interactions between individuals are clearly depending on the underlying
structure of the network. Similar to Wang’s model in Y. Wang et al. (2003),
Chakrabarti et al. (2008) calculated the epidemic threshold depending on
the largest eigenvalue of the adjacency matrix and came up with various
policies to determine the best node to be removed from the network in order
to decrease the epidemic threshold the most.

2.4 Opinion Dynamics

Another widespread application of dynamical systems on networks are opin-
ion dynamics. The main idea behind this is that users in social networks
start to adopt opinions of contacted individuals and to behave similarly
to them sooner or later in time. In the real world, the processes involved
in such dynamics are highly complex and depending on different factors.
Since the first emergence of this idea in Weidlich (1971), many different at-
tempts have been made to model and design these processes. The following
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paragraphs describe several models based on opinion dynamics. A more
comprehensive summary and in-depth few can be found in the work of
Castellano, Fortunato, and Loreto (2009).

Ising Model. Named after the physicist Ernst Ising, this is a very simple
and basic approach. Besides its relevance in physics, this model can also be
used for opinion dynamics as stated by Binney et al. (1992). Here, agents are
influenced by its interacting partners leading to order-disorder-transitions.
Based on ferromagnetic interactions, the final resulting state of a system will
always be ordered by one of two possible states (either positive or negative
in the case of magnetism). With this in mind, the model can be applied on
simple binary opinion dynamics.

Sznajd-Weron and Sznajd (2000) proposed a simple Ising Spin Model that
can describe decision making in a closed community. Using standard Monte
Carlo simulations, closely described by Mooney (1997), they found that
complicated dynamics in decision making arise, finally leading to a power
law in the decision time distribution. With their model they showed that
in a closed community only two final states are possible: dictatorship or
deadlock, meaning no common decision can be made. Furthermore, every
change of an opinion leads to a further change. Whenever opinions change
frequently, a period of time follows where no more decisions are made. Ad-
ditionally, they described that only a small amount of the whole population
can lead to a deadlock situation. However, if a group wants to win by a
50% chance, at least 70% of the whole population need to be already in
consensus at the beginning of simulations.

Voter Model. This model is first explained by Clifford and Sudbury (1973)
and is about the evolution and competition of different species. In Holley
and Liggett (1975), it was first named and defined as the Voter Model. Its
definition is fairly simple: In the initial state, each agent (or vertex in context
of graph theory) is described by a binary variable and in each time step
during simulations, one randomly picked agent takes the opinion of one
of its randomly selected neighbors. Because of this simple definition and
the urge for more realistic simulations, many modifications of the model
have since been made. In the following paragraphs, some of the interesting
approaches are explained.
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Mobilia (2003) used an inhomogeneous voter model and introduced a zealot,
an individual within the system that only favors one single opinion. In his
work he simulated the outcome of this manipulations for 1, 2, 3 and more
dimensions. He showed that in lower dimensions the introduction of the
zealot results in unanimity after some time. If the dimension is equal to or
greater than 3, the zealot does not effect the outcome of opinion dynamics in
a noticeable way. This model was further extended in Mobilia and Georgiev
(2005) and further investigated in Mobilia, Petersen, and Redner (2007),
where they showed that only a few zealots introduced into the system
can prevent consensus even when they face an enormous majority at the
beginning of simulation.

Similar to this, Galam and Jacobs (2007) introduced inflexibles, again repre-
senting individuals with a fixed opinion. In their model they used normal
floater agents, changing opinion based on the local majority of their neigh-
bors, whereas inflexible agents keep their opinion throughout the whole
simulation process. They observed that when using no inflexibles, the ini-
tial majority always wins by reaching consensus at the end of simulation.
However, by introducing inflexibles to the simulations, an incompressible
minority around the opinion where the inflexible was added starts to grow.
Moreover, adding infelxibles at above a threshold of 17%, the initial minority
will win.

Axelrod Model. Axelrod (1997) developed a model to simulate cultural
dynamics. State transitions in this model depend on two main factors:
social influence and homophily. The first one explains the phenomena of
individuals becoming alike whenever they interact. The second one states
that individuals that are alike tend to interact more frequently. Furthermore,
nodes in a network are described by an arbitrary number of variables called
features denoted by F, where each variable assumes an arbitrary amount
of values called traits denoted by q. In each step during simulation, the
probability of a transition, based on the overlap of a randomly selected
individual and one of his neighbors, is calculated and, if high enough,
one feature is adjusted to be equal. The results of simulation are strongly
depending on the amount of traits as described by Castellano, Marsili,
and Vespignani (2000). A small amount of traits quickly lead to consensus,
whereas a large amount of traits lead to coexistence of different cultures.
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There are various modifications of the original Axelrod Model. For example,
Flache and M. W. Macy (2007) added a threshold that whenever the overlap
of two individuals is smaller than that threshold, no adjustment of features
takes place. In their work, they also pointed out that the original Axelrod
model only uses nominal features, meaning that individuals are either
identical or different, which can be a possible drawback.

Another approach was implemented by Centola, Gonzalez-Avella, et al.
(2007), where they modified the original Axelrod Model and extended it
by adding a third mechanism to the existing homophily and social influence
called network homophily. This third mechanism allowed them to co-evolve
the network structure with the cultural evolution. They found that the
introduction of network dynamics does not only affect the critical value
of q but also the resulting network structure. Depending on the number
of possible traits, the network can evolve from a regular lattice to complex
random networks or even break apart in differently sized components.

González-Avella, M. G. Cosenza, and Tucci (2005) extended the Axelrod
Model to study the effects and influences of mass media on cultural evo-
lution. Mass media influence is assumed as a fixed vector that influences
the system uniformly. Given the probability B, an individual either interacts
with this mass media vector as if it were a neighbor. With probability 1− B,
the individual interacts with one of his actual neighbors. Their simulations
uncovered that mass media can induce cultural diversity.

Various other modifications of the original Axelrod model showed up since
its initial introduction. Klemm et al. (2003) introduced random noise to sim-
ulate cultural drift, the phenomena of individuals changing their opinions
without external influences. Flache and M. W. Macy (2006) added metric
features, allowing different numbers of traits q to be taken into account.
A combination of a fixed vector and noise was developed and studied
by Mazzitello, Candia, and Dossetti (2007). Another modification can be
found in Parravano, Rivera-Ramirez, and M. Cosenza (2007), where an ad-
ditional parameter limits the maximum number of shared features between
individuals.

The Naming Game. Similar to the voter model and the Axelrod model,
the naming game presents another way to simulate opinion dynamics. It
developed from the idea drafted by Steels (1995) to explore the dynamics
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and evolution of languages. Here, agents are able to develop their own
vocabulary to describe, for example, physical objects but are forced to align
their words whenever they are in a conversation. The simplest model based
on this idea was described by Baronchelli et al. (2006). In their work, the
basic rules of the naming game are defined: Every agent has an inventory of
names for different objects and all inventories are empty at the beginning of
simulation. At each period in time, two individuals are picked, where one
is the speaker and the other one is the listener. The speaker randomly selects
an object and chooses the name associated with the object of its inventory.
If the inventory is empty, a new word is added to the inventory. Now the
speaker transmits the selected name to the listener. If the listener has the
same name in his inventory and associated to the previously selected object,
the communication was successful, leaving both agents with an inventory
of only that name. This means that all the other words are deleted from the
inventory. However, if the listener does not have the name in his inventory,
it gets appended to it and the listener associates it with the object.

There are some modified versions of this model. For example, Abrams and
Strogatz (2003) tried to explain how two languages compete with each other.
These two languages do not evolve over time and the more speakers on
of the two languages has, the more attractive it is to individuals. In their
work they found that one of the two languages always dominates, leaving
the other one to be extinct sooner or later. When comparing the results of
simulations to empirical data, it has shown that this model is able to predict
the numbers of decreasing speakers of various endangered languages.

The model developed by Abrams and Strogatz (2003) was further extended
by Minett and W. S. Wang (2008). It allows bilingualism and social structure
to influence simulation results. In most cases and the absence of intervention,
the dynamics of the system are equal to the original model. In addition to
that, they showed that increasing the “status” of a language—meaning pres-
tige, wealth and power of its speakers as described by Crystal (2000)—can
save an endangered language from becoming extinct. However, a compari-
son with empirical data is missing and different aspects of the model could
be refined for even better results.

More on the computational research in the field of language evolution can
be found in the work of W. S. Wang and Minett (2005).
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This Chapter gives a brief introduction to the Activity Dynamics framework,
its variables, setup parameters and their calculation in Section 3.1, as well
as a description of the used empirical data sets and the construction of
collaboration networks in Section 3.2.

3.1 Activity Dynamics Framework

We use the Activity Dynamics framework in two ways: First, we extract user
data from our empirical data sets and construct the collaboration networks
used for activity simulation. Second, we simulate activity dynamics with
the Activity Dynamics model. Here, we only cover the basic principles of
the model itself. An in-depth description and a complete overview of all
variables and equations can be found in Walk et al. (2015).

Based on the principles of dynamical systems on networks, the model
is capable of modeling activity in online collaboration networks such as
the StackExchange.com web portal. The Activity Dynamics model describes
the activity of user i at time t as ai. This is described in equation 3.1 and
illustrated in Figure 3.1.

dai

dt
= fi(ai)︸ ︷︷ ︸

Intrinsic

Activity

Evolution of i

+

Peer influence︷ ︸︸ ︷
∑

j
Aij gi(ai, aj)︸ ︷︷ ︸

Influence of j on i

, (3.1)
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Figure 3.1: Mechanisms of the Activity Dynamics Model. This plot illustrates an example
of how the mechanisms of the Activity Dynamics model affect one user repre-
sented by node A. The different node sizes reflect the amount of activity at one
point in time. The solid lines are collaboration edges between users. This user
intrinsically loses activity in each iteration (depicted by the solid red arrow and
the colored, innermost circle of A), but also regains activity from neighbors
through peer influence (depicted by the dashed blue arrows and the colored,
outermost circle of A). If the peer influence outweighs the intrinsic activity
decay, user activity increases and vice versa.

fi(ai) specifies the intrinsic activity evolution of user i and gi(ai, aj) specifies
the peer influence of user j on user i. Both functions are always the same
for each user i and each pair of neighbors i and j. Furthermore, these two
functions rely on the following two principles:

Intrinsic Activity Decay. Users tend to lose interest in certain topics while
participating in online collaboration networks (for example see Danescu-
Niculescu-Mizil et al. (2013)). In the Activity Dynamics model this is modeled
as a linear function f (ai) denoted in Equation 3.2:

f (ai) = −λai, λ > 0, (3.2)

where λ is the Activity Decay Rate specifying the decrease in activity of user
i over time, provided that no external influence is exercised on this user.

Positive Peer Influence. Users copy their friends (for examples see Chris-
takis and Fowler (2008) and Aral and Walker (2012)), that means if user j
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becomes active, user i may respond to this action as well. This is covered by
the sigmoid function g(ai, aj) in Equation 3.3.

g(ai, aj) =
qaj√

a2
c + a2

j

, q, ac > 0. (3.3)

The actual amount of activity influence transferred from user j to user i
depends on two parameters:

(i) The Critical Activity Threshold ac describing the point at which user j
has enough activity potential to notably exercise influence on user i
and other neighbors of j. In systems with higher activity, ac will be
higher as well, meaning users have to be more active in order to be
noticed as “more active” than the average user. In systems with low
activity levels, ac will be rather small, meaning activity of one user
is recognized rather quickly. Note that peer influence on neighbors
happens on all levels of activity potential.

(ii) The Maximum Peer Activity Flow q restricts the maximum flow of
activity from user j to user i per unit time t.

The parameters, such as ac and t, have different dimensions. Hence, Equa-
tion 3.1 is further improved by transforming it into a dimensionless form:

dxi

dτ
= −λ

µ
xi︸ ︷︷ ︸

Intrinsic

Activity

Evolution of i

+

Peer influence︷ ︸︸ ︷
∑

j
Aij

xj√
1 + x2

j

. (3.4)

By now, the model works with only one parameter, called λ/µ. It describes
the ratio between two rates:

(i) The Activity Decay Rate λ representing the rate of the intrinsic activity
decay of user i,

(ii) and the Peer Influence Growth Rate µ representing the rate of activity
influence user i is receiving from user j.
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Table 3.1: Model Variables and Parameters. This table provides a quick overview of the
variables and parameters used to configure the Activity Dynamics model.

Variable Name Description

λ Activity Decay Rate Intrinsic loss of activity a user encounters per unit time.
µ = q

ac
Peer Influence Growth Rate Influence of actions taken by connected users per unit time.

ac Critical Activity Threshold Soft threshold of notably influencing connected users.
q Maximum Peer Activity Flow Maximum activity flow from one user to another per unit time.
τ Relative Time Scale Represents one step in time.

Parameter Description

λ
µ

The ratio between the Activity Decay Rate and the Peer Influence Growth Rate.
Describes how fast one user intrinsically loses activity compared to regaining activity from neighbors.

For example, a ratio of 10 would mean that a user intrinsically loses activity
ten times faster than regaining activity from one connected user.

A short overview of all model variables and parameters can be found in
Table 3.1.

Furthermore, Walk et al. (2015) conducted a linear stability analysis and
showed that:

κ1 <
λ

µ
(3.5)

is the master stability equation of the Activity Dynamics model, where κ1 is
the largest eigenvalue of the graph’s adjacency matrix. Whenever the ratio
λ/µ is greater than κ1, the system will move toward the fixed point with zero
activity. However, if λ/µ is smaller than κ1, the system will become unstable
and the overall activity within the network will be increased. To avoid an
inactive or “dead” system, we can manipulate the system in order to violate
the master stability equation denoted in Equation 3.5. We can do this in
either two ways:

(i) Manipulate the network structure in order to change κ1 or
(ii) Manipulate the system’s parameter λ/µ.

Both ways of manipulation are used in our Activity Dynamics Scenario
experiment.
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3.1.1 Calculation of Model Parameters

As already described by Walk et al. (2015), the parameters for the Activity
Dynamics model can be calculated as follows:

First of all µ = q
ac

is estimated, where µ is the Peer Influence Growth Rate, ac
the Critical Activity Threshold and q the Maximum Peer Activity Flow.

ac is represented as the average activity per user and per period in time (in
case of this work one month):

ac =
∑T

t=1(p(t) + r(t))
nT

, (3.6)

where T represents the totally observed time (for example 12 months), p(t)
represents the number of posts at time t and r(t) represents the number of
replies at time t.

q describes the maximum of peer induced activity that can be transferred
from one user to another in one period in time. It is calculated with:

q = rmax

√
a2

c +
(

pmax
umax

)2

2m pmax
umax

, (3.7)

where rmax is the maximum number of replies of all observed months,
pmax the maximum number of posts of all observed months and umax the
maximum number of users of all observed months.

Finally, by linearizing around the current activity level, the ratio λ/µ can be
approximated with:

λ

µ
(t) = κ1 −

1
µ

log
x(t + 1)

x(t)
, (3.8)

where, again, κ1 is the largest eigenvalue of the adjacency matrix of the
graph and x(t) represents the amount of activity within the collaboration
network present at time t.
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The estimated parameters for each empirical collaboration network can be
found in Table 4.1 in Chapter 4.

3.1.2 Model Initialization

In order to simulate activity, we need to set the initial activity weights of
users within the collaboration networks. Hence, we calculate the average
activity per users of the first month of our observed data sets. The average
is further normalized with the sum of the eigenvector centrality:

x =
p(0) + r(0)
nac ∑n

i=0 ci
, (3.9)

where ci depicts the eigenvector centrality of node i, p(0) the number of
posts in the first month and r(0) the number of replies in the first month.
We then initialize each user in the network with activity weights:

xi(0) = xci (3.10)

Hence, the initial activity of a user i depends on the eigenvector centrality
ci and the overall activity (p(0) + r(0)) of the first month. This initialization
avoids a so-called burn-in phase, where the model would require some
iterations to adapt to the input values.

3.2 Empirical Data Sets

For this thesis, we have extracted a set of five different instances of the
StackExchange.com networks, as well as five different Semantic MediaWiki
networks. All resulting networks differ in the numbers of users and in
the number of collaboration edges between them. Table 3.2 lists a detailed
overview of the exact numbers for each of the extracted networks.

We use these empirical data sets for the simulation of activity, to study the
impacts of our six different plausible real-world scenarios on overall network
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Table 3.2: Characteristics of Empirical Data Sets. The five StackExchange.com networks
and five Semantic MediaWikis all differ in the number of users, the number
of collaboration edges and the number of interactions (posts and replies). We
simulate activity over the last twelve months of each data set (as stated by Start
and End columns) for all three experiments conducted as part of this work. In
the case of the Activity Dynamics Scenarios experiment, we simulate activity with
affected users at the beginning of month eight.

Dataset BeerStack- BitcoinStack- ElectronicsStack- PhysicsStack- GamingStack-
Exchange Exchange Exchange Exchange Exchange

Users 469 6, 314 22, 064 23, 834 34, 701
Edges 1, 198 17, 842 121, 205 129, 615 132, 414
Posts 199 2, 755 16, 484 21, 217 13, 122
Replies 1, 190 12, 740 121, 573 136, 190 65, 642
κ1 19.651 56.667 154.153 145.883 141.345
Avg. Degree 5 6 11 11 8

Start Feb 2014 Feb 2014 Feb 2014 Feb 2014 Feb 2014
End Feb 2015 Feb 2015 Feb 2015 Feb 2015 Feb 2015

Dataset ComplexOperations BioInformatics NeuroLex DotaWiki PracticalPlants

Users 285 308 1, 183 2, 023 2, 220
Edges 452 314 1, 875 4, 048 148
Posts 181 207 11, 567 244 2, 330
Replies 3, 896 135 25, 061 2, 329 15, 481
κ1 10.680 10.549 27.415 35.298 10.626
Avg. Degree 3 2 3 4 1

Start April 2013 March 2013 Nov 2012 April 2012 Sep 2012
End April 2014 March 2014 Nov 2013 April 2013 Sep 2013

activity and to conduct the correlation analysis between centrality measures
of users and simulated activity. Furthermore, we evaluate the simulation
performance of the introduced dynamic network structure by comparing it
with the original static network structure of the Activity Dynamics model.
A detailed description of the three conducted experiments can be found in
Chapter 4 to Chapter 6.

For all simulations of our three experiments, we consider the last 12 months
of the corresponding data set. For our Activity Dynamics Scenarios exper-
iment, simulations of each scenario approach starts at the beginning of
month 8. Hence, the first results of simulation for all scenarios start at
month 9.

Posts for the five StackExchange.com networks are defined as asking ques-
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Figure 3.2: Construction of Collaboration Networks. This figure depicts how posts and
replies are defined for all StackExchange.com networks (left side), all Semantic
MediaWikis (right side) and how collaboration networks are constructed based
on the empirical data sets listed in Table 3.2.

tions, while replies consist of answers and comments. In the case of the five
Semantic MediaWiki instances, this definition is different. Here, the creation
of an article counts as a post, while the edit to an existing article counts as a
reply.

Collaboration for the StackExchange.com data sets is defined as users either
posting an answer to a question, or commenting on an answer or a question.
For the Semantic MediaWiki data sets, collaboration between two users is
given when they subsequently worked on the same article. For example, if
user i creates an article that is then edited by user j or user i edits an article
after user j has edited that same article, a collaborative edge between these
users is created. These mechanics are described in Figure 3.2.

In general, these networks can be represented as an undirected graph
G = {V, E} with a set of nodes (users) V and edges (collaboration ties) E
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(a) BeerStackExchange (b) ComplexOperations

Figure 3.3: Exemplary Resulting Collaboration Networks. Representation of the resulting
collaboration networks in the form of graphs for the BeerStackExchange network
and the ComplexOperations network. Users are represented as nodes and collabo-
rations between them as edges. Node sizes represent the initial empirical activity
at the beginning of simulation. ComplexOperations (b) illustrates unconnected
nodes, meaning they have not collaborated during the observed time span.

between these nodes. One way to represent such graphs algebraically is as
an n× n adjacency matrix A, with n being the total number of nodes in the
network. If two users i and j have collaborated in the past, then Aij = 1,
connecting them via an (collaboration) edge, and Aij = 0 otherwise so i and
j are not connected in the resulting graph. Note that collaboration networks
are undirected, making A symmetric with the total number of links m for
the collaboration networks being defined as m = 1

2 ∑ij Aij.

Figure 3.3 depicts exemplary resulting collaboration networks for one of
our StackExchange.com networks and one of our Semantic MediaWiki data
sets in the form of graphs. These graphs consist of nodes that represent
users and edges that represent collaborations between them. Based on the
empirical data, the graphs differ in the amount of nodes and edges.

Furthermore, Figure 3.4 depicts the degree distributions (numbers of col-
laborations with other users per user) among users for all our StackEx-
change.com data sets and for all our Semantic MediaWiki data sets. The
amount of collaborations among users differs for all networks. The major
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Figure 3.4: Degree Distributions of Collaboration Networks. This Figure illustrates the
distribution of the users’ degrees for all our extracted StackExchange.com data
sets (top) and our Semantic MediaWiki data sets (bottom). Numbers above bars
represent the amount of users in each bin. All networks contain a large amount
of users with only a few connections to other users, whereas only a rather small
amount of users collaborated with many other participants.

part of users of all our data sets have only collaborated once or twice with
other users during the observed period of time. For example, in the Beer-
StackExchange network (Figure 3.4(a)), almost half of all existing users only
interacted with one other unique user. In the ComplexOperations network
(Figure 3.4(f)), almost all users showed similar behavior and only collabo-
rated with one other user. Each extracted network contains only a few users
that collaborated with many other unique users and are therefore more
important within the graph.

StackExchange.com data sets. StackExchange.com provides its users a ques-
tion and answer portal for a variety of topics. Participating users seek
answers to their posted questions and can further discuss their issues by
commenting on answers and questions. Additionally, the relevance of posts
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can be marked by up or down votes. Each available topic is treated in a
discrete subnetwork. We decided to use five different instances of these
subnetworks to cover diverse forms of collaboration networks. The Beer-
StackExchange network is a portal for beer lovers and people interested in
the process of brewing beer. This data set represents the smallest one of all
used StackExchange.com networks with only 469 active users and 199 posts
and 1, 190 replies at the end of our record. The BitcoinStackExchange network
is about topics related to the online payment system and virtual currency
Bitcoin. With 6, 314 active users and 2, 755 posts and 12, 740 replies, this data
set is one of our smaller empirical networks we used in this thesis. Slightly
larger and a bit more active is the ElectronicsStackExchange network with
its 22, 064 users, creating a total amount of 138, 057 overall activity (posts +
replies) about the fields of Electrical Engineering. Almost identical in the
number of users is the PhysicsStackExchange network, where a total of 23, 834
users, mainly researchers of Physics, engaged in 21, 217 posts and 136, 190
replies. The largest network among our five StackExchange.com networks
is the GamingStackExchange network, also known as Arqade, where 34, 701
users interested in topics related to video games contributed 13, 122 posts
and 65, 642 replies.

Semantic MediaWiki data sets. Semantic MediaWikis—often referred to
as “Wikis”—are online encyclopedias about arbitrary topics. Their visitors
can browse through articles and gain information about the topics they
are interested in. Everyone is allowed to participate and create or edit
articles in almost any of those networks. Again, we cover different sizes of
Semtantic MediaWiki networks. On ComplexOperations, 285 users created
181 articles that have been edited 3, 896 times. It is mainly about political
conflicts all around the world and is the smallest empirical data set we
have used. Another rather small network is the BioInformatics Wiki with
a total amount of 308 users, that have created 207 articles related to the
field of Bioinformatics. These articles have since been edited 135 times.
The NeuroLex network is a medium-sized data set and provides a lexicon
about Neuroscience. 1, 183 active users engaged in an overall activity of
36, 628, with 11, 567 created articles that have been edited 25, 061 times.
On DotaWiki, German gamers of the multiplayer online battle arena game
Dota find various tips in how to improve their gameplay and master tough
challenges. With 2, 023 active users that have contributed to the network, it
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is among our larger Semantic MediaWiki data sets. 244 articles have been
created and edited 2, 329 times. The largest network examined in this thesis
is the PractlicalPlants Wiki. It offers information about useful plants in 2, 330
articles that have been edited 15, 481 times, contributed by a total of 2, 220
users.
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4 Activity Dynamics Scenarios

In this chapter we present our six different plausible real-world scenarios. We
particularly study and focus on these six scenarios due to their consequential
implications for activity dynamics in online collaboration networks. The
idea behind these scenarios is to sketch plausible real-world events that
could take place on collaborative websites, such as the StackExchange.com
network, and to ultimately provide guidance for website owners based on
the results of our simulations.

Two of the scenarios deal with rapid decrease and increase in user num-
bers. Further two scenarios cover cases in which users suddenly start or
stop collaborating with each other. Additionally, we conduct one scenario
which covers situations in networks, in which users do not lose interest in
participating. Such users can, for example, be moderators paid by website
owners trying to abet other users to engage in activity. Furthermore, we
simulate the occurrence of trolls—individuals trying to irritate the network’s
users—in our empirical networks. The following sections describe all six
scenarios in detail and give examples of real-world incidents.

The simulation of each scenario starts at month 8 for all empirical data
sets. Hence, the first results of manipulated activity dynamics can be seen
at the beginning of month 9. Additionally, we simulate activity with non-
manipulated networks from month 1 to month 8 in order to demonstrate
the accurate simulations of the Activity Dynamics framework.

Table 4.1 lists all parameters needed for simulation, calculated as described
in Section 3.1.1, respectively for all StackExchange.com data sets and all
Semantic MediaWiki data sets.

We select affected users and collaboration edges between these users for
all six scenarios in two different ways. This leaves us with two different
approaches for each scenario:
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Table 4.1: Model Parameters for Each Empirical Data Set. This table lists all parameters
resulting from the calculations, described in Section 3.1.1, for each of our StackEx-
change.com networks and our Semantic MediaWiki networks, listed in Table 3.2.
For all data sets, the time spans have been set to t = 1 month and ∆τ = 0.001.
Additionally, the ratio λ/µ is only listed for the first month of simulation.

Dataset BeerStack- BitcoinStack- ElectronicsStack- PhysicsStack- GamingStack-
Exchange Exchange Exchange Exchange Exchange

ac 0.228 0.189 0.481 0.508 0.175
q 1.341 1.013 1.317 1.404 0.692
pmax 0.016 0.028 0.03 0.032 0.023
∆τ 0.001 0.001 0.001 0.001 0.001
µ 5.887 5.367 2.736 2.764 3.965
λ
µ init

19.802 56.675 154.073 145.843 141.306

Dataset ComplexOperations BioInformatics NeuroLex DotaWiki PracticalPlants

ac 1.1 0.085 2.382 0.098 0.617
q 11.259 5.199 39.263 0.838 142.063
pmax 0.454 0.343 3.397 0.054 0.133
∆τ 0.001 0.001 0.001 0.001 0.001
µ 10.232 60.865 16.486 8.561 230.191
λ
µ init

11.062 10.518 27.476 35.5 10.631

(i) Randomly picking users or collaboration edges and presenting the
average results over a total of 10 random iterations or

(ii) Performing informed selections of users and collaboration edges based
on a preference towards the highest degree of the corresponding users.

Furthermore, if the structure of the collaboration network is changed by the
implementation of a scenario, we update κ1 and subsequently the ratio λ/µ

for the simulation of months 8 to 12, assuming that the numbers of posts
and replies remain unaffected.

4.1 Mass Emigration

Nowadays there are countless providers of social networking platforms
(for example Facebook, Twitter, Instagram, Youtube or Tiwtch) and due
to this huge amount of accessible services, such websites often struggle
to keep their users and not to lose them to competitors. However, due to
different reasons, such as the natural growing desire for “something new”
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or a change in the terms-of-service or privacy agreements upsetting users,
a sudden decrease of user numbers might occur. This might be because
users have lost interest in participating in such networks or just because
they changed to another social network.

theguardian.com (2013) wrote that the online social networking site Face-
book lost millions of users per month due to upcoming competitors and
alternative social networks such as Twitter. Even though its one billion
active users, drops in activity are noticeable in some places around the
world. Another real-world example is described by wired.com (2013), where
Instagram—an online service for sharing photos with friends—recorded
massive drops in user numbers after they updated their terms-of-service
and parts of their privacy policy. New regulations allowed the company to
sell users’ photos and information to advertising companies. It ultimately
led to the loss of daily active users and some users even quit Instagram
altogether.

Implementation. For this specific scenario, we assumed that one such event
triggers the desire of multiple users to seize contributing to a specific
collaboration network. For the random approach a total of 1%, 5% and 10%
of all existing users are selected and entirely removed from the graph.
Analogously, for the informed approach, we select users with the highest
number of collaboration edges—specified by a user’s degree—for removal.
Furthermore, all collaboration edges to and from these removed users are
removed as well. Hence, the resulting manipulated network has less users
that could engage in collaborations and less collaboration edges between
them so peer influence is limited additionally.

4.2 Mass Immigration

Newly added features or pre-planned events, such as competitions, sales
promotions or maybe even the release of a new version of a collaborative
website, force administrators and website owners to cope with a sudden
increase of user activity on their websites caused not only by existing users
but also by newly joined community members. This sudden increase in
user activity could lead to overloaded servers and lags for visitors that
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dampen the user’s experience. On supervised networks, administrators
could drag behind new posts and overlook forbidden content that could
imply legitimate problems or forfeit in overall quality of content.

theverge.com (2013a) described a similar incident that happend to the
Canadian telecommunication company BlackBerry Limited in the year 2013.
When the company was waiting in the wings for the release of their instant
messaging app BBM (BlackBerry Messenger) to iOS Appstore and Google
Play, a leaked version could illegally be downloaded over the Internet before
the official release. This version was downloaded over one million times
and BlackBerry was not able to cope with the sudden rush of newly joined
users. Hence, all servers were overloaded, eventually causing the whole
service to crash.

Implementation. We introduce a total of 1%, 5% and 10% from the total
amount of nodes present in the corresponding collaboration network as new
users an connect them with existing ones for this particular scenario. In the
informed approach, we connect these new users specifically to existing users
with the highest number of collaboration edges (highest degree), while in
the random approach we do not select specific target users and new users
are just connected randomly with existing ones.

The number of collaborative edges for each newly added user is equal to
the floored average degree of the corresponding collaboration network (See
Table 3.2 in Section 3.2).

4.3 Breaking Collaborative Ties

This scenario is similar to the Mass Emigration scenario. Users might exhibit
a change of interests during their membership in a collaborative network.
However, instead of completely leaving the network, they just stop collab-
orating with a selection of their currently connected users and only stay
in contact with users that participate in the same field of interest. Another
possible trigger for such user behavior could be dispute and disunity among
connected users, as well as harassment.
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The huffingtonpost.com (2011) tried to find out the answer to why users
unfriend on Facebook and hence break their collaborative ties. According to
this article, offensive comments and lack of knowledge about a person are
the top reasons why users unfriend. Other reasons are depressive comments
or comments with political contents. So it appears that users easily connect
with other users they already know through real-life, but start to break these
connections if interests between them turn out to be too diverse over time.

Implementation. We reproduce this occurrence by removing a total of 10%,
30% and 50% of all existing collaboration edges between existing users.
Again, we randomly select edges for removal in the random approach,
whereas edges of users with the highest amount of connections to other
users are selected for removal in the informed approach. The selected edges
are removed entirely from the graph, which causes a decrease of κ1.

4.4 Establishing New Collaborations

Whenever users decide to participate in an online collaboration network,
they interact with existing users and create collaborative links to them.
While these links naturally emerge and evolve over time, for example, if
users share the same field of interest or know each other already outside
of the network, these connections could also be actively promoted. Events
like workshops that concentrate on a specific topic could bring together
more people in a shorter time frame. Moreover, new connections could be
created if certain users are featured and introduced to other users through
the implementation of recommendation systems. Such systems find users
with similar interests, based on a variety of parameters, and implement
ways to promote interactions between a network’s users.

An example of a user recommendation system implemented by Facebook
is given by washingtonpost.com (2015), where they explain how Facebook
suggests people one might know in real-life but are not yet connected
in the network. Whenever a user connects to another user, Facbook uses
the emerging network structure and calculates statistical possibilities for
other users you are most likely to know and connect to in the future. The
individually predicted users are then shown to each existing user under
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“People You May Know”. Hence, Facebook accelerates the creation of new
collaboration edges between existing users, eventually increasing activity.

Implementation. In this scenario, we assume that an administrator intro-
duces such a user recommendation system to our empirical networks. This
system suggests users to get in contact with other users based on shared
fields of interests. In particular, we create and add a total of 10%, 30% and
50% of all existing collaboration edges to the collaboration network. First,
we randomly select a source and a target user and add a new collaboration
edge between them if they are not yet connected. Second, we select the users
with the highest amount of collaboration edges and connect them with each
other until the required amount of newly created edges is reached.

4.5 Providing Incentives

Websites that struggle with low levels of overall activity might introduce
(monetary) incentives for existing users or external experts that provide
a constant output of activity to the network. For example, these experts
might be employed to answer questions on one of the StackExchange.com
networks or to write high quality articles on one of the Semantic MediaWiki
networks. Additionally, they could perform administrative tasks, such as
moderation of parts of the website. However, this scenario does not aim to
simply create new content for users, but also to create an active environment
where users are motivated to participate and engage in collaborations with
other participants. In an ideal case, the overall activity of the network
becomes self-sustainable and the initially added incentives are not needed
anymore.

techcrunch.com (2007) and theverge.com (2012) give a real-world example
of what incentives in online social networks could look like. They described
the introduction of YouTube’s Revenue Sharing Partners Program that allows
creators of popular videos to partner up with YouTube and to monetize their
content. These users gain special privileges such as in-video advertising or
special options in designing their channels. This program aims to motivate
already popular creators to upload even more content, as both YouTube and
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the creators will benefit from the higher amount of advertising they can sell
to their viewers.

Implementation. For simulating monetary incentives, we select a total of 1,
5 and 10 targets among all existing users and increase their activity every
month by 10

nac
. This means that an additional 10 posts or replies per month

per incentivized user are introduced to the network to increase overall
activity. Again, we first select affected users randomly among all existing
users and then specifically select the users with the highest amount of
collaboration edges for the informed approach.

Furthermore, to avoid a sudden increase of activity at the beginning of each
month, we equally distribute the additionally introduced activity of each
incentivized user over the whole time interval t.

4.6 Emergence of Trolls

Websites with any kind of user generated content are often exposed to users
that want to harm the network by engaging in activities that upset other
participants. Such users—referred to as trolls— typically try to interrupt and
disturb discussions and steer them off-topic by creating spam or question-
able and highly controversial topics with only one aim: To lure other users
into meaningless discussions. For example, in one of our StackExchange.com
networks, trolls might intentionally give wrong answers to set users on the
wrong track. In Semantic MediaWikis, trolls might falsify articles on pur-
pose so that other users need to react to keep the desired quality of content.
Whenever such trolls emerge in a collaboration network, we assume overall
activity to raise due to the reactions of other users. However, we argue that
the activity resulting from these reactions is not the kind of activity that
website owners and administrators want to see in their networks. In fact,
we assume that users answering trolls waste their time and energy where
they normally could have created meaningful contributions.

theverge.com (2013b) stated that trolls are affecting they way how other
users feel about a subject of an article. Additionally, they described that
the “less civil” those troll comments are, the bigger will be the impact on
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thoughts of other users. These impacts can reinforce opinions that users
already have. Furthermore, theverge.com (2015) depicted how Twitter is still
having problems in dealing with trolls. Twitter CEO Dick Costolo said that
posts of trolls cost core users that provide actual content, as they leave the
network frustrated. As long as they do not find beneficial ways to ban trolls,
meaningful activity will decrease over time.

Implementation. To represent this unwanted activity and the process of
“wasting” time on trolls, we add a total of 1, 5 and 10 users to the collab-
oration networks and set their activity to − 10

nac
. This is equivalent to ten

unwanted posts (expressed by the negative activity weight).

Similar to the previously mentioned scenarios, we at first randomly connect
newly introduced trolls to existing users and then specifically connect them
to users with the highest amount of collaboration edges for our informed
approach. We set the amount of connections between introduced trolls and
existing users to the floored average degree of all existing users in the
network (See Table 3.2 in Section 3.2). As administrators usually quickly
deal with trolls in supervised networks, we only initialize the trolls once
with negative activity. Additionally, we suspend the Activity Decay Rate for
these nodes, as the negative influence will turn positive otherwise (minus
times minus would result in a plus). Thus, the introduced trolls exercise a
negative influence on their neighbors who then waste their time and energy
on the troll. As long as the negative activity of a troll has not reached 0, peers
of the troll positively influence his activity. When the activity reaches a level
of 0, the activity of a troll is no longer changed for the rest of simulation.
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5 Centrality Analysis

According to the way we create collaboration networks, an important factor
of user activity in such networks is the underlying network structure. More
active users potentially interacted with a larger amount of other users in the
network and are therefore more central than users with less activity. This
fact has a major impact on the peer influence received from neighbors. We
investigate the underlying network structure in combination with the Activ-
ity Dynamics framework with the intention to find valid statements about
the evolution of activity that can be made by only considering a network’s
underlying structure. Hence, the need of activity dynamics simulations
might become unnecessary.

The construction of collaboration networks in the Activity Dynamics frame-
work is influencing the resulting amount of collaboration edges and thus
the centrality of users. Hence, we manipulate this construction to evaluate if
different types of collaboration networks correlate unequally with simulated
activity. The following sections describe the two processes included in this
experiment. First, we create three different types of collaboration networks
based on the number of interactions between users for each of our data sets.
Second, we calculate correlation coefficients based on three different central-
ity measures and simulate activity for each of the collaboration networks
resulting of the first step.

5.1 Construction of Collaboration Networks

As mentioned in Section 3.2, we create the collaboration networks based on
the empirical data we used in this thesis. Whenever two users interacted at
least once during the observed period of time, we connect these two users

43



5 Centrality Analysis

Table 5.1: Changes in the Amount of Collaboration Edges. This table depicts the changes
in the number of edges of the resulting graphs depending on k. The percentages
in braces list how much edges are left compared to k = 1, where 100% of possible
edges exist. The changes are listed for all empirical data sets we used in this
thesis. The number of edges is decreasing with higher values of k, proving that
only a few users collaborated more than once with each other.

Data Set k = 1 k = 2 k = 3

BeerStackExchange 1, 198 216 (18.03%) 85 (7.1%)
BitcoinStackExchange 17, 842 5, 434 (30.46%) 2, 377 (13.32%)
ElectronicsStackExchange 121, 205 45, 827 (37.81%) 22, 366 (18.45%)
PhysicsStackExchange 129, 615 45, 579 (35.16%) 21, 822 (16.84%)
GamingStackExchange 132, 414 37, 976 (28.68%) 16, 046 (12.12%)
ComplexOperations 452 252 (55.75%) 159 (35.18%)
BioInformatics 314 100 (31.85%) 48 (15.29%)
NeuroLex 1, 875 727 (38.77%) 456 (24.32%)
DotaWiki 4, 048 1, 039 (25.67%) 527 (13.02%)
PracticalPlants 148 60 (40.54%) 33 (22.3%)

with an undirected collaboration edge. For this experiment, we manipulate
the number of required interactions between two users in order to link them
together in the first step of this experiment. The presupposed number of
needed interactions is denoted by k. With this in mind, we set Aij = 1 only
if the number of collaborations between two users is equal to or greater
than k. Hence, the resulting minimum degree of users within the graph will
always be equal to k. This ultimately results in a collaboration network with
a few centralized users and many unconnected users.

In this first step, we reconstruct each collaboration network for each empiri-
cal data set where k = 1, k = 2 and k = 3. We did not consider higher values
for k, as the resulting graphs would have an insufficient amount of collab-
oration edges. Note that the number of nodes stays unaffected and only
the resulting amount of collaboration edges changes with k (see Table 5.1).
Furthermore, k = 1 is equivalent to the original process of constructing
the collaboration networks in the Activity Dynamics framework, hence the
numbers of edges are the same as in Table 3.2 in Section 3.2.
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5.2 Correlation with Centrality Measures

In order to make general statements of how the centrality of users is affecting
the simulation of activity performed by the Activity Dynamics framework, we
conduct a correlation analysis based on three different centrality measures.
First, we investigate the correlation between simulated activity and the
degree of nodes. Second, we calculate and illustrate the correlation of
simulated activity and eigenvector centrality of nodes. Third, we show
relations between the simulated activity and Google’s PageRank. We explain
the differences between these three centrality measures in the following
paragraphs.

To calculate the correlation coefficients, we calculate the sum of activity
weights per user over the whole process of simulation (month 1− 12) and
then compare this sum with each of the three centrality measures.

Degree Centrality. As explained by Gross and Yellen (2005), the degree of a
node x of a graph is denoted by deg(x) and represents the number of edges
connecting a node to its neighbors plus twice the number of self-loops if
present. This is the simplest centrality measure for nodes in a graph.

Eigenvector Centrality. More significant centrality values can be calculated
through the eigenvector centrality. Unlike the degree centrality, where every
connection is equally weighted, the eigenvector centrality weights connec-
tions based on their centralities. Hence, the whole structure of the network is
taken into account, which is elaborately explained by Bonacich (2007). Equa-
tion 5.1 specified in the work of Newman (2010) describes the eigenvector
centrality of node x as:

xi = κ−1
1 ∑

j
Aijxj, (5.1)

where κ1 is the largest eigenvalue and A the adjacency matrix of a graph.

PageRank. Invented by Google’s founders Larry Page and Sergey Brin,
the PageRank algorithm is another way of calculating the importance of
nodes within a graph. It was initially designed to measure the importance
of websites on the Internet by taking various factors into account in order

45



5 Centrality Analysis

to better fit people’s subjective idea of importance, it can be also used on
the resulting graphs we construct as part of this work.

The PageRank of website A is defined in Brin and Page (2012) and depicted
in Equation 5.2.

PR(A) = (1− d) + d(PR(T1)/C(T1) + ... + (PR(Tn)/C(Tn)), (5.2)

where parameter d is a damping factor ranging from 0 to 1 and usually set to
0.85, as larger values of d would require more iterations during calculations.
T1...Tn are all websites pointing to A and C(A) is the number of pages
website A points to. This algorithm can be calculated by using an iterative
approach and forms a probability distribution over all websites, hence the
sum of the PageRank of all websites will always be 1.

In context of graph theory, websites are represented by nodes and links
between websites are represented as directed edges. In case of this work,
where we only use undirected graphs, the PageRank is equal to the degree
distribution of the graph as described by Newman (2010).

Pearson Correlation Coefficient. In order to measure correlations between
the aforementioned centrality measures and simulated activities, we calcu-
late the Pearson Correlation Coefficient. This coefficient was developed by
Karl Pearson and describes the linear relationship between two quantitative
variables X and Y. Equation 5.3 shows its definition as described by Kirk
(2007):

ρ =
∑(Xi−X)(Yi−Y)

n√
[∑(Xi−X)2

n ][∑(Yi−Y)2

n ]
. (5.3)

The resulting value of ρ ranges between −1 and +1, and states two facts
about the relationship between X and Y:

(i) Its strength, that represents how strong the relationship between the
two variables is and

(ii) its direction, stating if the relationship is positive ore negative, repre-
sented by the sign of ρ.
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This means that if ρ = 1 a total positive correlation is given, when ρ = −1 a
total negative correlation is given and when ρ = 0 no correlation at all is
given.
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6 Dynamic Network Structure

In the original Activity Dynamics framework, a static collaboration network
based on an empirical data set is constructed and used for the calculation
of parameters and for simulation of activity dynamics. The parameters
integrated in the calculation of the ratio λ/µ are only calculated once at
the beginning of the simulations and do not adopt changes in the under-
lying network structure over time. In addition to that, all users within the
collaboration network are already part of the graph at the beginning of
simulations (t = 0) even though they might have joined the network at a
later point in time (for example t = 4). However, as collaboration networks
are highly dynamic and evolve over time, more users join the network, ex-
isting ones connect with other users and therefore the underlying structure
of the graph is ever changing over time. We assume that this approach is
subject for improvements in order to gain an even more accurate simulation
performance.

For this third and last experiment, we introduce a dynamic network struc-
ture that adopts changes in user numbers and in the amount of collabo-
ration edges over time. We use this dynamic structure to calculate model
parameters and to simulate activity. Hence, the underlying structure of the
collaboration network changes per period in time t, initially starting with
a graph that only contains users that actually interacted in the first month
(t = 0). As time evolves, more and more nodes and collaboration edges
are added to the graph. Furthermore, we calculate all parameters that are
included in the calculation of the ratio λ/µ per period in time t.

The following sections describe the changes in data preprocessing, differ-
ences in calculation of the model parameters and variations in the initializa-
tion of the Activity Dynamics model.
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(a) t = 0 (gray nodes) (b) t = 1 (red nodes) (c) t = 2 (green nodes)

(d) t = 3 (blue nodes) (e) t = 4 (yellow nodes) (f) t = 5 (pink nodes)

Figure 6.1: Evolution of the BeerStackExchange Network Structure. Visualization of the
dynamic network structure of the BeerStackExchange data set for the first 6
months (t = 0...t = 5) of simulation. Users and edges are added to the graph as
time evolves, with colors of the nodes representing the month they were added.

6.1 Changes in Data Preprocessing

The Activity Dynamics framework is already capable of preprocessing empir-
ical data sets and generating graphs that are then used for the simulation of
activity dynamics. However, we made small changes to that preprocessing in
order to take a dynamic network structure into account. Our used data sets
contain time stamps of each interaction between users. These time stamps
come in handy to examine the changes in user numbers and the amount
of links between them that take place over time. Therefore, we manipulate
the construction of graphs to add these time stamps as node properties that
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can further be extracted during simulations. The model uses the extracted
time stamps to filter nodes and collaboration edges automatically for each
of the observed 12 months during the simulation process. Hence, the under-
lying structure of each network is different for each month. We applied the
manipulated preprocessing to all five StackExchange.com networks and all
five Semantic MediaWikis. Figure 6.1 illustrates an example of the monthly
evolution of the BeerStackExchange network over the first 6 months.

6.2 Changes in Parameter Calculation

With the changes made to the underlying network structure, we also have to
recalculate all variables and parameters (described in Section 3.1.1) for each
of the 12 months. Originally, we calculated these parameters by either using
averages or summed up values of the observed time span in the original
“static” approach. This is different with the dynamic network structure,
as we now have values, such as the number of users or the number of
posts and replies, that differ for each month. Hence, the calculation of these
parameters changes compared to the original implementation of the Activity
Dynamics framework and resulting parameters are different for each month,
always depending on time t. We cover all changes in calculations in the
following paragraphs.

The single parameter—the ratio λ/µ needed for model setup—is calculated
for each month as in the original approach. However, we now estimate
µ = ac

q for every unit time t transforming it to µ(t) = ac(t)
q(t) , leaving us with

a different µ for each month.

The Critical Activity Threshold ac does no longer sum up the number of posts
and replies over the whole time span. It now covers the actual numbers of
posts and replies of each month, thus we changed it to:

ac(t) =
(p(t) + r(t))

u(t)
, (6.1)

where p(t) and r(t) are the number of posts and replies at time t. u(t) is the
number of users present in the network at time t.
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The Maximum Peer Activity Flow q has taken the maximum number of posts,
replies and users per month and the whole time span into account. However,
we can now change this to consider the actual number of users, edges and
users per month. Hence, the calculation of q changes to:

q(t) = r(t)

√
ac(t)2 +

(
p(t)
u(t)

)2

2m p(t)
u(t)

, (6.2)

where, again, r(t) is the number of replies at time t, p(t) is the number of
posts at time t and u(t) is the number of users present in the network at
time t.

With these updated variables, the ratio gets approximated in the same way
as described in Section 3.1.1, but with a changing µ and κ1 for each month
(t = 0 to t = 11):

λ

µ
(t) = κ1(t)−

1
µ(t)

log
x(t + 1)

x(t)
. (6.3)

Note that κ1(t)—the largest eigenvalue of the graph’s adjacency matrix—
needs to be updated at every period in time t due to the dynamic changes in
the underlying network structure performed by adding nodes and edges to
the graph, always depending on empirical data. x(t) represents the amount
of activity within the collaboration network at time t.

6.3 Changes in Model Initialization

We also change the way of how activity weights of nodes are initialized
compared to the original approach described in Section 3.1.2. Originally,
all users contained in the empirical data set are represented as nodes
in the graph right from the beginning of simulation, even though they
might occur at a later point in time. Thus, all activity weights of users
are only initialized once, where the activity weight of each user depends
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on the empirical activity they actually exercised in the first month (t =
0) of the complete observed time span. With the possibility of using a
dynamic network structure, we adapt this approach and initialize nodes at
the beginning of each month.

As in the original “static” approach, we calculate the average activity of
all nodes that are present in the graph, but this time for each month. This
average activity results from the empirical activity of newly joined users
(i.e. users that have not been present in the graph before) and the simulated
activity of previously existing nodes if it is not the first month of simulation
(t > 0). So Equation 3.9 depicted in Section 3.1.2 changes to:

x(t) =


pn(t)+rn(t)

nac(t)∑n
i=0 ci(t)

, if t = 0

pn(t)+rn(t)+xsim(t−1)
nac(t)∑n

i=0 ci(t)
, if t > 0

(6.4)

where ci(t) is the eigenvector centrality of node i at time t and pn(t) and
rn(t) are the numbers of posts and replies of newly added users at time t and
xsim(t− 1) is the sum of simulated activity of all users already present in
the previous month (for t > 0). Then we can (re-) initialize each node i in
the network with activity weights x at each point in time t with:

xi(t) = x(t)ci(t). (6.5)

Note that due to the fact that simulated activity xsim is depending on the
number of users present in the graph at time t and the Critical Activity
Threshold ac(t) at time t, we have to update xsim between the simulations
of each month. Hence, we update xsim every time the simulation of one
month is finished and the simulation of the next month begins. We do this
by multiplying the simulated activity of t with the current ac(t) and by
dividing it with the new ac(t + 1) of the next month (t + 1) and by further
multiplying it with the current number of users of t and by then dividing it
with the number of users present in the next month (t + 1) as denoted by
Equation 6.6:
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xsim(t) = xsim(t) ∗ ac(t)/ac(t + 1) ∗ u(t)/u(t + 1). (6.6)

With these changes we expect to see an increase in the activity simulation
performance compared to the original version of the Activity Dynamics frame-
work. To compare simulation performances between the “static” network
structure and the introduced “dynamic” network structure, we calculate the
root-mean-square error (RMSE) of simulated activity and actual empirical
activity over the observed 12 months for each of the two approaches. We
calculate the RMSE as described in Equation 6.7.

RMSE =

√
∑n

t=0 (X̂(t)− X(t))2

n
, (6.7)

where X̂(t) is the simulated activity of month t, X(t) is the actual empirical
activity gained form our data sets of month t and n is the total number of
observed months (12 in this work).
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7 Results

This chapter contains a description of the results of the activity dynamics
simulations for our three conducted experiments, the Activity Dynamics
Scenario described in Chapter 4, the Centrality Analysis explained in Chapter 5

and the Dynamic Network Structure depicted in Chapter 6. The interpretation
and discussion of these results can be found in Chapter 8.

7.1 Activity Dynamics Scenarios

We studied the impact of six plausible real-world events on online collabo-
ration networks through the implementation of six scenarios explained in
Chapter 4. These scenarios were applied to all of our five StackExchange.com
networks and all five Semantic MediaWiki networks. Table 7.1 lists the
impacts of each scenario on these data sets for the random and informed
approach. All numbers mentioned in Table 7.1 and the following sections
represent the relative difference between simulated activity with no ma-
nipulations done to the network and simulated activity resulting from the
manipulations applied to the network in each of the scenarios respectively
at the end of simulations.
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Table 7.1: Absolute Differences to Non-Manipulated Simulated Activity at the End of
Simulation (Month 12). This table lists the differences in activity after 12 months
have been simulated for every scenario explained in Section 4, applied to our
10 empirical data sets listed in Section 3.2. The top half shows results for the
StackExchange.com networks and the bottom half lists observations for our
Semantic MediaWiki data sets. N represents the amount of structural changes
performed in a particular scenario: 1%, 5% and 10% of existing users and 10%,
30% and 50% of existing collaboration edges are either added or removed form
the network, whereas 1, 5 and 10 trolls or incentivized users are added to the
network. Results of the random and informed approach are listed as the relative
difference to simulated activity with no manipulations done to the networks.

Scenario N
Beer- Bitcoin- Electronics- Physics- Gaming-

StackExchange StackExchange StackExchange StackExchange StackExchange
informed random informed random informed random informed random informed random

1% −19.1% −2.1% −74.1% −2% −84.3% −2.1% −58.1% −1.7% −55% −1.8%
Mass Emigration 5% −61.7% −10.6% −98.9% −9.6% −99.8% −9% −92.6% −10.9% −99.8% −10.2%

10% −95.7% −19.1% −100% −19.4% −100% −19.2% −99.7% −20.4% −99.7% −19.2%

1% +2.1% +2.1% +1.2% +1.1% +1.8% +1.1% +1.1% +1.1% +3.4% +1.1%
Mass Immigration 5% +4.3% +6.4% −1.7% +5.6% +3.2% +5.4% −1.3% +5.4% +6.4% +5.3%

10% +4.3% +12.8% −8.6% +11.1% −2.2% +10.8% −7.2% +10.8% −6.2% +10.6%

10% −8.5% −2.1% −14.3% −1.1% −12.5% −0.5% −15.1% −0.6% −11.4% −0.3%
Breaking Collaborative Ties 30% −25.5% −6.4% −32.8% −4.1% −32.5% −2.1% −34.5% −2.4% −26.3% −1.6%

50% −48.9% −10.6% −54.8% −9.9% −52.1% −4.8% −53.1% −5.6% −37.7% −3.6%

10% +4.3% +2.1% +6.7% +0.7% +25.4% +0.6% +27.9% +0.6% +36.1% +0.5%
Establishing New Collaborations 30% +17% +6.4% +18.6% +2.5% +29.1% +1.7% +27.8% +1.8% +50% +1.5%

50% +17% +10.6% +15.8% +4.1% +22.3% +2.9% +23.2% +3.1% +25.8% +2.5%

1 +151.1% +12.8% +25.4% +0.5% +3.5% 0% +3.5% 0% +3.8% +0.3%
Providing Incentives 5 +485.1% +78.7% +133.1% +4.7% +15.4% +0.2% 15.9% +0.2% +21.7% +0.2%

10 +672.3% +123.4% +233.3% +6.4% +27.2% +0.6% +26% +0.3% +39.6% +0.7%

1 −100% −100% −43.8% −30.9% −14.3% −0.2% −17.7% −0.2% −10.7% −0.7%
Emergence of Trolls 5 −100% −100% −95.2% −100% −54% −0.8% −62.2% −100% −43.4% −3.4%

10 −100% −100% −100% −100% −78.9% −1.6% −85.8% −1.2% −68.1% −6.9%

Scenario N ComplexOperations BioInformatics NeuroLex DotaWiki PracticalPlants
informed random informed random informed random informed random informed random

1% −32.2% −2.8% −100% 0% −79.7% −1.8% −50% 0% −100% 0%
Mass Emigration 5% −96.1% −9.6% −100% 0% −99.1% −8.1% −100% 0% −100% 0%

10% −95.1% −20.8% −100% 0% −100% −18% −100% 0% −100% 0%

1% +0.9% +1.4% 0% 0% +1.5% +1.1% 0% 0% 0% 0%
Mass Immigration 5% +2.1% +6.6% 0% 0% +5.8% +5.6% 0% 0% 0% 0%

10% +1.8% +13.5% 0% 0% +8.5% +11.2% 0% 0% 0% 0%

10% −21.2% −3% 0% 0% −9.6% −0.9% 0% 0% 0% 0%
Breaking Collaborative Ties 30% −25.8% −16.5% −50% 0% −27% −5.3% −50% 0% 0% 0%

50% −96.5% −31.1% −100% −50% −42.7% −12.9% −50% 0% −100% 0%

10% +21.4% +2.7% 0% 0% +1.4% +0.8% 0% 0% 0% 0%
Establishing New Collaborations 30% +24.7% +7.8% 0% 0% +0.6% +2.4% 0% 0% 0% 0%

50% +22.4% +13.8% 0% 0% +3.9% +4.1% 0% 0% 0% 0%

1 +16.2% +7.1% +1400% +200% +9% +0.4% +3950% +50% +11200% 0%
Providing Incentives 5 +18.2% +14.4% +2650% +700% +42.8% +1.9% +10700% +400% +20600% +200%

10 +20.1% +15.6% +3000% +1050% +66.7% +3.7% +15400% +1350% +27500% +1100%

1 −100% −100% −100% −100% −84.3% −0.5% −100% −100% −100% −100%
Emergence of Trolls 5 −100% −100% −100% −100% −100% −2.5% −100% −100% −100% −100%

10 −100% −100% −100% −100% −100% −100% −100% −100% −100% −100%
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7.1.1 Mass Emigration

We present the resulting levels of activity for this scenario, for each of
the StackExchange.com networks and each of the Semantic MediaWiki
networks, in Figure 7.1. The removal of existing users from the collaboration
network negatively influences activity on all empirical data sets, regardless
of the applied approach (random or informed) and the amount of existing
users removed from the networks (1%, 5% and 10% of existing users).

As Table 7.1 lists, removing 1% of existing users results in a loss of 1.7% to
2.1% for the StackExchange.com networks and 0% to 2.7% for the Semantic
MediaWiki networks. When randomly removing 5% of all existing users of
the networks, these numbers range from 9% to 10.9% and 0% to 9.6%. The
removal of 10% of existing users from the collaboration network resulted in a
decrease of activity ranging from 19.1% to 20.4% for the StackExchange.com
data sets and from 0% to 20.8% for the Semantic MediaWiki data sets relative
to the non-manipulated simulated activity resulting from the empirical
networks.

The informed approach has a stronger impact on overall activity and therefore
harms the networks more effectively than the random approach. Specifically
removing 1% of existing users already reduces overall activity in a range
of 19.1% to 84.3% for our StackExchange.com networks and 32.2% to 100%
for our Semantic MediaWiki networks. By specifically removing 5% of all
existing nodes, the decrease of activity ranges from 61.7% to 99.8% for the
StackExchange.com data sets and from 96.1% to 100% for our Semantic Me-
diaWiki data sets. With the removal of 10% of users from the collaboration
network, all Semantic MediaWiki networks show zero activity at the end
of the simulation (100% decrease), leaving them in a “dead” state. The rela-
tive decrease ranges between 95.7% and 100% for our StackExchange.com
networks.
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Figure 7.1: Results of the Mass Emigration Scenario. This figure illustrates the simulation
results for the Mass Emigration scenario applied to our StackExchange.com data
sets (top) and our Semantic MediaWiki data sets (bottom). The gray lines with
circles represent empirically observed activities of the corresponding data sets,
while the black lines with squares represent the non-manipulated simulated
activities of the original Activity Dynamics framework. The remaining lines
represent the simulation results of our different approaches of the scenario.
Each approach is simulated for 4 months, starting at month 8 (indicated by the
vertical dashed line). We observe a decrease in activity for all used empirical
data sets if users leave the networks, which is especially affecting the network’s
overall activity when we specifically select the high degree nodes (informed
approach) and remove them from the network.
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7.1.2 Mass Immigration

This scenarios is the exact counterpart to the Mass Emigration scenario.
Whenever users are randomly added to the collaboration network, a propor-
tional increase in activity can be seen (see Figure 7.2). Similar observations
have been made for the informed approach and the Semantic MediaWiki
networks. However, when we added more than the additional 5% to the
StackExchange.com networks and linked them with high degree users
(informed), activity decreases. The numbers for both approaches and the
different amounts of users added to our empirical networks (1%, 5% and
10% of existing users) are listed in Table 7.1.

The following observations have been made for this scenario: When adding
the total amount of 1% of existing users and randomly connecting them
with existing ones, the gain in activity ranges from 1.1% to 2.1% for all
StackExchange.com networks and from 0% to 1.1% for all Semantic Me-
diaWiki networks. When we add the amount of 5% of existing users, the
increase of activity ranges between 5.3% and 6.4% for StackExchange.com
data sets and between 0% and 6.6% for the Semantic MediaWiki data sets.
By adding the amount of 10% of users, activity is lifted in the range of 10.6%
to 12.8% for the StackExchange.com networks and between 0% and 13.5%
for the Semantic MediaWiki networks.

Again, the informed approach had a more decisive impact on simulation
results compared to the random approach. By adding the amount of 1% of
existing users, activity sees a gain between 1.1% and 3.4% for our Stack-
Exchange.com networks and between 0% and 1.5% for our Semantic Me-
diaWiki networks. For the approach, where the amount of 5% of existing
users were added to the collaboration network, these numbers are −1.3% to
6.4% and 0% to 5.8%. Note the decrease of activity for two of the StackEx-
change.com networks (illustrated in Figure 7.2(b) and Figure 7.2(d)). When
we add the amount of 10% of existing users to our empirical networks, the
StackExchange.com data sets lost or gained activity in a range from −8.6%
and 4.3% and the Semantic MediaWiki networks gained activity in the range
from 0% to 8.5%.
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Figure 7.2: Results of the Mass Immigration scenario. This figure illustrates the simulation
results for the Mass Immigration scenario applied to our StackExchange.com data
sets (top) and our Semantic MediaWiki data sets (bottom). The gray lines with
circles represent empirically observed activities of the corresponding data sets,
while the black lines with squares represent the non-manipulated simulated
activities of the original Activity Dynamics framework. The remaining lines
represent the simulation results of our different approaches of the scenario.
Each approach is simulated for 4 months, starting at month 8 (indicated by
the vertical dashed line). We observe an increase of activity whenever we
applied our random approach. However, the informed approach reveals a possible
decrease of activity for all the StackExchange.com networks (top) if the amount
of newly added users is high enough. In contrast to that, activity increases in
all Semantic MediaWiki networks for the informed approach.
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7.1.3 Breaking Collaborative Ties

The results of this scenario are similar to the ones observed in the Mass
Emigration scenario where activity decreases in each approach, as illustrated
by Figure 7.3. In general, we observed a decrease of overall activity that
is proportional to the amount of collaboration edges removed from the
network. Exact numbers of the changes in overall activity levels for each
approach (random and informed) and each amount of collaboration edges
removed from the network (10%, 30% and 50% of existing users) can be
found in Table 7.1.

When we remove 10% of existing collaboration edges, the StackExchange.com
networks show a reduction of activity ranging from 0.3% to 2.1% and the
Semantic MediaWiki networks a reduction ranging from 0% to 3%. The
removal of 30% of existing edges from the network resulted in 1.6% to 6.4%
decrease of activity for the StackExchange.com data sets and 0% - 16.5%
for the Semantic MediaWiki data sets. Randomly removing 50% of existing
collaboration edges leads to a decrease of activity in the range from 3.6%
to 10.6% for StackExchange.com networks and from 0% to 31.1% for the
Semantic MediaWiki networks.

Similar to the other scenarios, the informed approach harms the network’s
overall activity more effectively than the random approach of this scenario.
The loss of activity by the specific removal of 1% of edges between high
degree users varies between 8.5% and 15.1% for the StackExchange.com
data sets and between 0% and 21.2% for the Semantic MediaWiki data
sets. By specifically removing 30% of existing collaboration edges, overall
levels of activity of the StackExchange.com data sets were decrease by 26.3%
to 34.5% and overall activity of the Semantic MediaWiki networks by 0%
to 50%. Again, when we remove 50% of existing collaboration edges, the
network is harmed the most: The decrease of activity ranges from 37.7%
to 54.8% for our StackExchange.com networks and from 42.7% to 100% for
our Semantic MediaWiki networks.
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Figure 7.3: Results of the Breaking Collaborative Ties Scenario. This figure illustrates
the simulation results for the Breaking Collaborative Ties scenario applied to
our StackExchange.com data sets (top) and our Semantic MediaWiki data sets
(bottom). The gray lines with circles represent empirically observed activities
of the corresponding data sets, while the black lines with squares represent
the non-manipulated simulated activities of the original Activity Dynamics
framework. The remaining lines represent the simulation results of our different
approaches of the scenario. Each approach is simulated for 4 months, starting at
month 8 (indicated by the vertical dashed line). When we remove any amount
of collaboration edges from the collaboration networks, it simultaneously equals
a reduction of overall activity. However, even when we randomly remove 50%
of all edges, activity does not reach zero and keeps almost the same level of
activity compared to non-manipulated simulations.
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7.1.4 Establishing New Collaborations

We added new connections between existing users within the collaboration
networks for this scenario. Our results show that the levels of activity are
increased for all ten empirical data sets. However, the level of overall activity
is not affected as much as one would expect when adding half the amount
of already existing edges between randomly selected users. Our informed
approach shows that activity within networks is increased more significantly.
Figure 7.4 depicts the resulting plots for all StackExchange.com data sets
and all Semantic MediaWiki data sets.

By randomly adding 10% of the amount of existing edges, we pushed activity
by an increase of 0.5% to 2.1% for StackExchange.com networks, when we
add the amount of 30% of existing edges activity increases by 1.5% to 6.4%
and when adding half of the amount of existing edges (50%), a gain of
2.5% to 10.6% of activity is observed. For the Semantic MediaWiki data
sets the increase in activity is just as small. When we add 10% of existing
edges, activity is pushed by 0% to 2.7%, when adding 30% of existing edges
activity is increased by 0% to 7.8% and when we add half of the amount
of already existing collaboration edges, activity for Semantic MediaWiki
networks is pushed by a range of 0% to 13.8%.

Our informed approach increased the overall activity within the network
more than the random one. When we, in particular, take a look on the
StackExchange.com data sets, activity increases between 4.3% to 25.4% for
10% added edges, between 17% to 50% for 30% added edges and between
15.8% to 25.8% for half of the amount of existing edges. When we take a
look on the Semantic MediaWiki data sets, these values are between 0% and
21.4% for 10% added edges, between 0% and 24.7% for 30% added edges
and between 0% and 22.4% for 50% added edges.
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Figure 7.4: Results of the Establishing New Collaborations Scenario. This figure illus-
trates the simulation results for the Establishing New Collaborations scenario
applied to our StackExchange.com data sets (top) and our Semantic MediaWiki
data sets (bottom). The gray lines with circles represent empirically observed
activities of the corresponding data sets, while the black lines with squares
represent the non-manipulated simulated activities of the original Activity Dy-
namics framework. The remaining lines represent the simulation results of our
different approaches of the scenario. Each approach is simulated for 4 months,
starting at month 8 (indicated by the vertical dashed line). A noticeable increase
in the overall levels of activity for all the StackExchange.com data sets (top)
can be observed for the informed approach, whereas our random approach is
not notably affecting the network’s overall activity. Adding edges is nearly
indistinguishable from the non-manipulated simulated activity for all Semantic
MediaWiki data sets (bottom).
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7.1.5 Providing Incentives

According to our results for the five StackExchange.com data sets and the
five Semantic MediaWiki networks depicted in Figure 7.5, providing in-
centives increases the overall activity within collaboration networks, with
exceptions in the following networks: The ElectronicsStackExchange (Fig-
ure 7.5(c)), PhysicsStackExchange (Figure 7.5(d)) as well as the PracticalPlants
(Figure 7.5(j)) networks did not experience an increase in overall activity
when 1 randomly incentivized user was added to the networks. All specific
numbers for the random and informed approaches and all amounts of added
incetivized users (1, 5 and 10) are listed in Table 7.1.

In the random approach, were we introduced 1 incentivized user to the
networks, we increased the overall activity between 0% and 12.8% for the
StackExchange.com networks and between 0% and 200% for the Semantic
MediaWiki networks. We reached a higher gain in activity by randomly
selecting 5 existing users, where the StackExchange.com networks show an
increase in activity between 0.2% and 78.7% and all our Semantic MediaWiki
networks show an increase in activity between 1.9% to 700%. Even better
results are reached when randomly adding 10 incentivized users, where the
activity of the StackExchange.com networks could be increased by 0.3% to
123.4% and the activity of the Semantic MediaWiki networks between 3.7%
and 1050%.

Our informed approach increased activity even more. Between 3.5% and
151.1% for our StackExchange.com networks and 9% and 11200% for the Se-
mantic MediaWiki networks could be reached by only adding 1 incentivized
user with the highest degree among all existing users in the collaboration
network. When specifically adding 5 incentivzed users, we reached a gain
between 15.4% and 485.1% for StackExchange.com data sets and between
18.2% and 20600% for the Semantic MediaWiki data sets. By adding a total
amount of 10 incentivized users, the activity could be pushed between 26%
and 672.3% for the StackExchange.com networks and between 20.1% and
27500% for the Semantic MediaWiki networks.
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Figure 7.5: Results of the Providing Incentives Scenario. This figure illustrates the sim-
ulation results for the Providing Incentives scenario applied to our StackEx-
change.com data sets (top) and our Semantic MediaWiki data sets (bottom).
The gray lines with circles represent empirically observed activities of the
corresponding data sets, while the black lines with squares represent the non-
manipulated simulated activities of the original Activity Dynamics framework.
The remaining lines represent the simulation results of our different approaches
of the scenario. Each approach is simulated for 4 months, starting at month
8 (indicated by the vertical dashed line). Providing incentives increases the
overall levels of activity for all our data sets, except for ElectronicsStackExchange
(c), PhysicsStackExchange (d) and PracticalPlants (j), where the introduction of
one randomly added incentivized user had only a minimal influence on overall
activity.
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7.1.6 Emergence of Trolls

We present the results for the introduction of trolls to our ten empirical
collaboration networks in Figure 7.6. In all our smaller networks, the intro-
duction of only one single troll—connected either randomly or informed to
existing users—reduces the activity to zero, leaving the network in a “dead”
state for the rest of the simulation (see Figures 7.6(a), 7.6(f), 7.6(g), 7.6(i)
and 7.6(j)). In more active collaboration networks, the activity is decreased
proportional to the number of trolls added during the random and informed
approaches. The Exact results for our random and informed approaches and
for all amounts of introduced trolls (1, 5, 10) can be found in Table 7.1.

When introducing trolls to StackExchange.com networks and connecting
them through the random approach, results depend on the total amount of
trolls added. If we only add 1 troll to the networks, activity declines by 0.2%
to 100%. When adding 5 trolls, activity is decreased between 0.8% and 100%.
Finally, when adding 10 trolls to our StackExchange.com networks, activity
is reduced between 1.2% and 100%. We observe a similar outcome for all
Semantic MediaWiki networks. Adding 1 troll to these networks decreases
activity between 0.5% to 100%. Adding a total of 5 trolls decreases activity
between 2.5% and 100%. When we add a total of 10 trolls to these networks,
activity declines by 100% to zero overall activity, ultimately resulting in
“dead” networks.

Again, our informed approach significantly damages all of our ten empirical
networks. All StackExchange.com data sets see a decrease of activity that
ranges from 10.7% to 100% when we add 1 troll to the networks. By adding 5
trolls, we reached a decrease of activity between 43.4% and 100% compared
to non-manipulated activity. The total amount of 10 trolls added to our
StackExchange.com networks leads to an activity decrease between 68.1%
and 100%. Our Semantic MediaWiki networks, which are smaller in size,
had more difficulties in dealing with trolls. When we added 1 troll to these
networks, activity declined between 84.3% and 100%. The amount of 5 and
10 introduced trolls stopped overall activity of our Semantic MediaWiki
networks for the rest of simulations as the activity decreased by 100%.
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Figure 7.6: Results of the Emergence of Trolls scenario. This figure illustrates the simula-
tion results for the Emergence of Trolls scenario applied to our StackExchange.com
data sets (top) and our Semantic MediaWiki data sets (bottom). The gray lines
with circles represent empirically observed activities of the corresponding data
sets, while the black lines with squares represent the non-manipulated sim-
ulated activities of the original Activity Dynamics framework. The remaining
lines represent the simulation results of our different approaches of the scenario.
Each approach is simulated for 4 months, starting at month 8 (indicated by the
vertical dashed line). The more trolls we introduce, the harder it becomes for all
empirical data sets to maintain (wanted) high levels of activity.
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7.2 Centrality Analysis

This section covers all the results obtained from our Centrality Analysis
experiment explained in Chapter 5. As we observed similar results for all our
empirical data set, we have only visualized results where the corresponding
correlation is the maximum out of all possible values of k for each of our
StackExchange.com data sets and each of our Semantic MediaWiki data sets.
However, we list the calculated correlation coefficients for all empirical data
sets in Table 7.2 at the end of this section. The following paragraphs describe
the results for each approach conducted as part of this experiment.

Eigenvector Centrality. The Pearson Correlation Coefficient between sim-
ulated activity and eigenvector centrality is exactly 1 for all our empirical
data sets and all values of k (1, 2 and 3).

Hence, we observed a linear correlation between these two values and po-
tentially uncovered a limitation of the Activity Dynamics framework. We will
discuss this incident later on in Chapter 8 Discussion. Figure 7.7 illustrates
the linear correlation for all StackExchange.com networks and all Semantic
MediaWiki networks for k = 1.
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Figure 7.7: Correlation Between Eigenvector Centrality and Simulated Activity for All
Empirical Networks. This figure illustrates the correlation between simulated
activity and eigenvector centrality for all StackExchange.com data sets (top) and
all Semantic MediaWiki data sets (bottom). Blue circles represent users and circle
sizes show eigenvector centrality. The value of k states the required amount of
interaction between two users in order to connect them with a collaboration
edge. ρ is the calculated Pearson Correlation Coefficient. Simulated activity
and eigenvector centrality of nodes correlate linearly as ρ = 1 for all empirical
networks, potentially uncovering a limitation of the Activity Dynamics framework.
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Degree Centrality. The degree of nodes correlates strongly with the sim-
ulated activity and gets either closer to 1 (total correlation) or closer to 0
whenever the required amount of interaction between two users in order
to connect them with a collaboration edge is set higher (k = 2 and k = 3).
When we construct the network in the original way of the Activity Dynam-
ics framework (k = 1), the Pearson Correlation Coefficients are 0.942 for
BeerStackExchange, 0.898 for BitcoinStackExchange, 0.881 for ElectronicsStackEx-
change, 0.886 for PhysicsStackExchange and 0.940 for the GamingStackExchange
network. Similar numbers have been observed for the Semantic MediaWiki
networks. The degree centrality of users within ComplexOperations correlates
with simulated activity with 0.893, for BioInformatics with 0.859, for NeuroLex
with 0.875, for DotaWiki with 0.889 and for PracticalPlants with 0.811.

The correlation coefficients are higher for a higher number of k. So when
we set the needed amount of interactions to create a collaboration edge
between to users to k = 2 and further to k = 3, we get 0.952 and 0.962
for the BeerStackExchange network, 0.907 and 0.910 for BitcoinStackExchange,
0.878 and 0.880 for ElectronicsStackExchange, 0.892 and 0.899 for PhysicsStack-
Exchange and 0.945 and 0.943 for GamingStackExchange. Note that if k = 3
the GamingStackExchange network showed different behavior to the other
StackExchange.com networks by obtaining a smaller correlation coefficient
compared to k = 2. Similar to this, we have our Semantic MediaWiki net-
works with 0.812 (k = 2) and 0.806 (k = 3) for ComplexOperations, 0.871
and 0.870 for BioInformatics, 0.882 and 0.924 for NeuroLex, 0.862 and 0.908
for DotaWiki and 0.856 an 0.989 for PracticalPlants.

Figure 7.8 illustrates the maximum correlation between simulated activity
and degree among all values of k (1, 2 or 3) for each of our empirical data
sets.

70



7 Results

0 10 20 30 40 50 60

0
5

10
15

20

Simulated Activity

D
eg

re
e

Correlation Between Simulated Activity and Degree

for BeerStackExchange  (k =  3, ρ =  0.9615609)

(a) BeerStackEx-
change

0 50 100 150 200 250

0
50

10
0

15
0

Simulated Activity

D
eg

re
e

Correlation Between Simulated Activity and Degree

for BitcoinStackExchange  (k =  3, ρ =  0.9103515)

(b) BitcoinStackEx-
change

0 100 200 300 400 500

0
10

00
20

00
30

00
40

00

Simulated Activity

D
eg

re
e

Correlation Between Simulated Activity and Degree

for ElectronicsStackExchange  (k =  1, ρ =  0.881369)

(c) Electronic-
sStackExchange

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00

Simulated Activity

D
eg

re
e

Correlation Between Simulated Activity and Degree

for PhysicsStackExchange  (k =  3, ρ =  0.8993182)

(d) PhysicsStack-
Exchange

0 100 200 300 400 500

0
20

0
40

0
60

0
80

0
10

00

Simulated Activity

D
eg

re
e

Correlation Between Simulated Activity and Degree

for GamingStackExchange  (k =  2, ρ =  0.9454744)

(e) GamingStack-
Exchange

0 50 100 150

0
20

40
60

80

Simulated Activity

D
eg

re
e

Correlation Between Simulated Activity and Degree

for ComplexOperations  (k =  1, ρ =  0.8930116)

(f) ComplexOpera-
tions

0 2 4 6

0
5

10
15

20
25

Simulated Activity

D
eg

re
e

Correlation Between Simulated Activity and Degree

for BioInformatics  (k =  2, ρ =  0.8714608)

(g) BioInformatics

0 200 400 600

0
20

40
60

80

Simulated Activity

D
eg

re
e

Correlation Between Simulated Activity and Degree

for Neurolex  (k =  3, ρ =  0.9236908)

(h) NeuroLex

0 20 40 60

0
20

40
60

80
10

0
12

0

Simulated Activity

D
eg

re
e

Correlation Between Simulated Activity and Degree

for DotaWiki  (k =  3, ρ =  0.9084789)

(i) DotaWiki

0 200 400 600 800 1000 1200

0
5

10
15

20

Simulated Activity

D
eg

re
e

Correlation Between Simulated Activity and Degree

for PracticalPlants  (k =  3, ρ =  0.8975674)

(j) PracticalPlants

Figure 7.8: Highest Correlation Between Degree and Simulated Activity for All Empiri-
cal Networks. This figure illustrates the correlation between simulated activity
and degree for all StackExchange.com data sets (top) and all Semantic Me-
diaWiki data sets (bottom). Blue circles represent users and circle sizes show
degree centrality. The value of k states the required amount of interaction be-
tween two users in order to connect them with a collaboration edge. ρ is the
calculated Pearson Correlation Coefficient. Simulated activity and degree of
nodes correlate strongly. Note that the value of k is different for our networks,
as we only illustrate the plots with the highest correlation among all values of k
(1, 2 or 3).
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PageRank Centrality. The correlation between Google’s PageRank and sim-
ulated activity resulting from the Activity Dynamics framework is different
for each network and each k. The calculated Pearson Correlation Coefficient
for k = 1 and BeerStackExchange is 0.882. This raises to 0.886 if we set k = 2
and decreases to 0.879 if k = 3. In the case of the BitcoinStackExchange
network, the coefficients decrease from 0.878 with k = 1 to 0.875 with k = 2
and to 0.867 with k = 3, so they decrease with a higher k. The correlations
between PageRank and the simulated activity of the ElectronicStackExchange
network is similar to this. Here we calculated a coefficient of 0.863 (k = 1),
0.855 (k = 2) and 0.854 (k = 3). With the PhysicsStackExchange network, the
values increase with a higher k, so with k = 1 we obtained 0.867, with k = 2
we calculated 0.870 and with k = 3 we got 0.877. This is the only occurrence
of a constant increase in correlation between simulated Activity and PageR-
ank among our StackExchange.com data sets. The simulated activity within
the GamingStackExchange network also correlates strongly with PageRank
centrality, but again, coefficients are decreasing with a higher k so we get
0.924 (k = 1), 0.922 (k = 2 and 0.913 (k = 3).

The resulting correlation coefficients of the Semantic MediaWiki data sets are
equally unpredictable in behavior when we change k. The simulated activity
in the ComplexOperations network correlates strongly with PageRank at 0.841
and k = 1. However, this correlation decreases to 0.699 if we set k = 2 and
to 0.649 if k = 3. Similar observations can be made with the BioInformatics
network where we calculated 0.843 for k = 1, 0.839 for k = 2 and 0.781 for
k = 3. The trend of correlations is different for the NeuroLex network, where
the correlation first decreases and then increases again, depending on k. We
obtained 0.839 (k = 1), 0.825 (k = 2) and 0.896 (k = 3) for this network.
The correlations of DotaWiki evolve similar to NeuroLex where with k = 1
we get 0.879. This decreases to 0.835 for k = 2 and increases again to 0.880 if
we set k = 3. A constant increase of correlations subject to k can be observed
with the PracticalPlants network. Here we received a correlation coefficient
of 0.796 for k = 1, 0.836 for k = 2 and 0.877 for k = 3.

We show the maximum correlation of PageRank and simulated activity
among all possible values of k for each data set in Figure 7.9.
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Figure 7.9: Highest Correlation Between PageRank and Simulated Activity for All Em-
pirical Networks. This figure illustrates the correlation between simulated
activity and PageRank for all StackExchange.com data sets (top) and all Seman-
tic MediaWiki data sets (bottom). Blue circles represent users and circle sizes
show degree centrality. The value of k states the required amount of interaction
between two users in order to connect them with a collaboration edge. ρ is the
calculated Pearson Correlation Coefficient. Simulated activity and PageRank of
nodes correlate strongly. Note that the value of k is different for our networks,
as we only illustrate the plots with the highest correlation among all values of k
(1, 2 or 3).
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Table 7.2: Correlation Coefficients Between Simulated Activity and Centrality Measures.
This table lists the calculated correlation coefficients for the Centrality Analysis
experiment. Correlation coefficients are listed for k = 1 to k = 3 and all used
empirical data sets.

Data Set Centrality Measure k = 1 k = 2 k = 3

Degree 0.942 0.952 0.962
BeerStackExchange Eigenvector Centrality 1 1 1

PageRank 0.882 0.886 0.879

Degree 0.898 0.907 0.910
BitcoinStackExchange Eigenvector Centrality 1 1 1

PageRank 0.878 0.875 0.867

Degree 0.881 0.878 0.880
ElectronicsStackExchange Eigenvector Centrality 1 1 1

PageRank 0.863 0.855 0.854

Degree 0.886 0.892 0.899
PhysicsStackExchange Eigenvector Centrality 1 1 1

PageRank 0.867 0.870 0.877

Degree 0.940 0.945 0.943
GamingStackExchange Eigenvector Centrality 1 1 1

PageRank 0.924 0.922 0.913

Degree 0.893 0.812 0.806
ComplexOperations Eigenvector Centrality 1 1 1

PageRank 0.841 0.699 0.649

Degree 0.859 0.871 0.870
BioInformatics Eigenvector Centrality 1 1 1

PageRank 0.843 0.839 0.781

Degree 0.875 0.882 0.924
NeuroLex Eigenvector Centrality 1 1 1

PageRank 0.839 0.825 0.896

Degree 0.889 0.862 0.908
DotaWiki Eigenvector Centrality 1 1 1

PageRank 0.879 0.835 0.880

Degree 0.811 0.856 0.898
PracticalPlants Eigenvector Centrality 1 1 1

PageRank 0.796 0.836 0.877
74



7 Results

7.3 Dynamic Network Structure

This section covers the results of our Dynamic Network Structure experiment
explained in Chapter 6. Using an underlying dynamic network structure for
simulation of activity with the Activity Dynamics framework, significantly
increases the performance of simulations for all empirical data sets, except
for the PracticalPlants network among our Semantic MediaWiki data sets.

We list the differences in user numbers, number of collaboration edges and
the variances of parameters needed for simulation for each of the observed
months for one StackExchange.com data set and one Semantic MediaWiki
data set in Table 7.4. Due to the fact that all networks showed similar results
for this experiments, we only describe changes in the number of users,
collaboration edges, and the difference between simulated and empirical
activity in the following paragraphs and do not list them in particular
tables.

As Figure 7.10 depicts for all our empirical networks, the performance of
activity simulation is very accurate, as all up and down trends of empirical
activity are correctly simulated for the StackExchange.com networks (see
Figure 7.10(a) to Figure 7.10(e)). Note, that in these networks, a large amount
of activity comes from newly joined users at the beginning of each month
(visualized by the dashed green lines). This can especially be observed in
Figure 7.10(c), Figure 7.10(d) and Figure 7.10(e).

In contrast to the StackExchange.com networks, the Activity Dynamics model
did not simulate activity as accurately for all Semantic MediaWiki networks
(see Figure 7.10(f) to Figure 7.10(j)). Furthermore, the amount of activity
coming from newly joined users at the beginning of each month is not
as significant compared to the StackExchange.com data sets. Sudden high
gains in activity were not simulated correctly as seen in Figure 7.10(g) and
especially in Figure 7.10(j).

The root-mean-square error (RMSE) of the simulated activity and actual
empirical activity of the BeerStackExchange network was decreased by 9.64
compared to the original “static” approach. For the BitcoinStackExchange
network, this decrease was even higher and the RMSE could be reduced by
18.09. The RMSE of the ElectronicsStackExchange network was reduced by
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26.46, of the PhysicsStackExchange by 32.45 and of the GamingStackExchange
by 19.95. Similar observations were made for the Semantic MediaWiki net-
works. Our “dynamic” approach reduced the RMSE of ComplexOperations by
302.75 and of BioInformatics by 11.60. Further, we see a decrease of the RMSE
by 275.16 for the NeuroLex network and by 20.32 for the DotaWiki network,
whereas the PracticalPlants network is the aforementioned exception. Here,
we increased the RMSE by 104.69 with our “dynamic” approach. All exact
values can be found in Table 7.3.

Table 7.3: RMSE of the Resulting Simulated Activity and Actual Empirical Activity. This
table lists the RMSE of the original version of the Activity Dynamics framework
where the underlying network structure is considered to be static, and the
RMSE of the improved approach, where the underlying network structure and
parameter calculation are dynamic and change over time. Column Absolute Change
shows the absolute differences between these two RMSE. Performances of all
simulations for our empirical networks have improved as the RMSE shrinks,
except for PracticalPlants where the RMSE was increased.

Datasets RMSE (static) RMSE (dynamic) Absolute Change

BeerStackExchange 10.22 0.58 −9.64
BitcoinStackExchange 20.90 2.81 −18.09
ElectronicsStackExchange 34.48 8.02 −26.46
PhysicsStackExchange 44.80 12.35 −32.45
GamingStackExchange 23.89 3.94 −19.95
ComplexOperations 427.27 124.52 −302.75
BioInformatics 22.40 10.81 −11.60
NeuroLex 606.76 331.60 −275.16
DotaWiki 28.82 8.50 −20.32
PracticalPlants 1933.99 2038.68 +104.69
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Figure 7.10: Simulation Results of the Dynamic Network Structure Experiment. This fig-
ure depicts the simulation results of using a dynamic underlying network
structure for all StackExchange.com data sets (top) and all Semantic MediaWiki
data sets (bottom). The solid gray line with circles shows the empirical activity.
The dashed black line shows the simulated activity from the beginning of one
month to its end and the dashed green line is the activity of newly added
users at the beginning of one month. These two lines result in the solid black
line which shows the corrected simulated activity that is compared to the
empirical activity. The plots illustrate that simulation of activity is very accu-
rate with an underlying dynamic network structure for all StackExchange.com
networks. The simulations of our Semantic MediaWiki networks turned out to
be more accurate compared to the original “static” approach, except for the
PracticalPlants (j) network, where the sudden increase of empirical activity was
not simulated at all.
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Table 7.4: Monthly Structural Changes and Calculated Parameters of the BeerStack-
Echange and ComplexOperations Networks. This table describes changes in
the amount of nodes and edges of the graph and all calculated parameters for
each month (τ1 − τ12). Activity of New Users lists the activity of new users added
to the network at the beginning of each month and Diff. to Emp. Activity the
difference of simulated activity and actual empirical acvtivity at the end of the
simulation of each month. As more users and edges are added to the networks,
this difference varies for each month.

BeerStackExchange τ0 − τ1 τ1 − τ2 τ2 − τ3 τ3 − τ4 τ4 − τ5 τ5 − τ6 τ6 − τ7 τ7 − τ8 τ8 − τ9 τ9 − τ10 τ10 − τ11 τ11 − τ12 τ12

Users 165 198 217 244 271 299 323 341 356 383 408 436 461
Edges 603 677 721 805 851 903 947 973 994 1046 1101 1153 1189
κ1 18.68 18.99 19.08 19.25 19.31 19.39 19.43 19.46 19.47 19.53 19.58 19.62 19.64
Ratio 19.06 19.22 19.22 19.41 19.46 19.61 19.67 19.62 19.62 19.6 19.68 19.94 −
ac 2.12 0.73 0.44 0.5 0.35 0.33 0.22 0.14 0.11 0.17 0.23 0.26 0.12
pmax 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0
g 0.01 0.02 0.03 0.02 0.02 0.03 0.05 0.06 0.08 0.05 0.03 0.05 0.03
q 8.71 3.19 1.98 2.27 1.69 1.63 1.14 0.74 0.59 0.92 1.27 1.46 0.71
Activity of New Users 350 71 44 71 38 50 38 26 19 46 50 59 37
Diff. to Emp. Activity 0.00 −0.44 −0.55 −0.81 −0.87 −0.86 −0.53 −0.3 −0.28 −0.28 −0.67 −0.88 −0.23

ComplexOperations τ0 − τ1 τ1 − τ2 τ2 − τ3 τ3 − τ4 τ4 − τ5 τ5 − τ6 τ6 − τ7 τ7 − τ8 τ8 − τ9 τ9 − τ10 τ10 − τ11 τ11 − τ12 τ12

Users 263 264 264 266 268 268 268 268 269 269 272 280 285
Edges 452 452 452 452 452 452 452 452 452 452 452 452 452
κ1 10.68 10.68 10.68 10.68 10.68 10.68 10.68 10.68 10.68 10.68 10.68 10.68 10.68
Ratio 11.31 10.69 10.88 10.96 10.82 10.68 10.67 10.75 10.63 10.91 10.77 10.55 −
ac 0.95 0.02 0.02 0.02 0.04 0.01 0.01 0.01 0.01 0.04 0.02 3.15 10.16
pmax 0.04 0.04 0.05 0.03 0.04 0.03 0.03 0.02 0.03 0.13 0.04 0.05 0.45
g 0.05 0.92 0.96 0.91 0.7 0.98 0.98 0.83 0.91 0.96 0.88 0.02 0.04
q 8.27 0.42 0.46 0.32 0.51 0.3 0.3 0.18 0.33 1.24 0.43 29.24 96.17
Activity of New Users 249.0 4.0 0.0 4.0 11.0 0.0 0.0 0.0 3.0 0.0 6.0 880.0 21.0
Diff. to Emp. Activity −0.0 −0.01 −0.34 0.01 0.01 −0.03 −0.35 −0.95 −0.33 −3.11 0.01 −0.03 −448.95

Table 7.4 lists the changes in users, edges and parameters performed on
the BeerStackExchange and ComplexOperations network after the complete
simulation of each month. Initially, the simulations of BeerStackExchange
started with 1, 892 users and 4, 000 edges and after 12 months the network
reached a total amount of 2, 023 users and 4, 048 collaboration edges. Hence,
the network experienced only small changes during this time. The differ-
ences in simulated activity and actual empirical activity range from −0.23
to −0.88.

The ComplexOperations network is the smallest one among all our data sets.
It started with 263 users and 452 unique links between these users. At the
end of simulation, the network reached a total amount of 285 users and the
initial amount of collaboration edges, meaning that newly joined users did
not interact at all during the observed 12 months. The error of simulation
ranges from −0.01 to −448.95.
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All results of the other data sets used in this work showed similar behavior:
The error of simulation changes as more and more users join the network.
We sum up the results for each of the remaining StackExchange.com and
Semantic MediaWiki networks in the following paragraphs.

A higher changing of user numbers experienced the BitcoinStackExchange
data set. Here, the network initially started with 4, 567 users and 13, 910
collaboration edges which summed up to 6, 289 unique users and 17, 805
links between them until the end of simulation. The network grew about
half the size from the beginning of the simulation over the observed 12
months. The differences between empirical and simulated activity vary
between −1.84 and −4.21.

The ElectronicsStackExchange network started out with 13, 007 users with
83, 419 unique interactions between those users. At the end of the simulation,
we observed an increase in the number of users by 8, 793 to a total of
21, 800 users with 120, 602 links between them. We experienced a difference
between simulated and empirical activity ranging from −2.21 to −12.62
during simulation.

The PhysicsStackExchange network initially had 14, 334 participants with
85, 350 collaboration edges. During the observed time, these numbers changed
to 23, 608 and 129, 065 with 9, 274 users that have joined the network within
12 months. Even though the network is one of our larger data sets, we
obtained good simulation performance with differences between simulated
and empirical activity ranging from −2.79 to −20.34.

The GamingStackExchange data set is the largest among all StackExchange.com
networks we have used in this work, starting with 24, 957 users and 107, 786
collaboration edges in the first month of simulation. The network increased
to 34, 445 users and 131, 983 edges over the observed 12 months. The ac-
curacy of simulation changes in each month, with differences in observed
empirical and simulated activity ranging from −1.59 to −5.64.

During the observed time, the BioInformatics network attracted only 6 new
users, lifting the number of users in the first month from 302 to 308 at the end
of simulation. These users initially engaged in 310 unique collaborations
which summed up to 314 over the 12 months. The differences between
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simulated activity resulting from the Activity Dynamics framework and real
empirical activity range from −1.49 to −33.01.

A bit larger is the NeuroLex network, with 845 users and 1, 638 collaboration
edges at the beginning of simulation. Over the course of 12 months, 121 new
users joined the network which results in a total of 966 users and 1, 867 links
between these users at the end of simulation. Depending on each month,
the variances between simulated activity and empirical activity range from
−6.32 to −584, 39 for this data set.

The DotaWiki network initially started out with 1, 892 users and 4, 000
collaboration edges. Over 12 months, the network managed to acquire
131 new users, which results in a total amount of 2, 023 users and 4, 048
collaboration edges. The accuracy of the activity simulation of this network
was average, with errors ranging from −0.11 to −27.83 over all 12 months.

The largest data set among the Semantic MediaWiki networks is the Practi-
calPlants Wiki with only 63 unique users and 75 edges between these users
at the beginning of our records. However, it was able to attract 2, 156 new
users within the whole observed time span which ultimately results in a
total amount of 2, 219 users and 148 collaboration edges. The accuracy of
the simulation is varying from −1.23 to −7344.97 for all 12 months.
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8 Discussion

This chapter covers our interpretation and discussion of the results cov-
ered in Chapter 7. It is split into three sections, corresponding to our three
experiments conducted as part of this master’s thesis: the Activity Dynam-
ics Scenarios explained in Chapter 4, the Centrality Analysis explained in
Chapter 5 and the introduced Dynamic Network Structure explained in Chap-
ter 6.

8.1 Activity Dynamics Scenarios

The six plausible real-world scenarios defined in this work and the results of
simulations, as well as the commonalities between the used empirical data
sets, allow us to make assumptions about the outcome of real-world events
that can take place during a collaboration network’s lifetime. Even though
the simulated activity resulting from the Activity Dynamics framework per-
forms well, we consider the following assumptions only as plausible. More
on that can be found in Section 8.4, where we briefly mention the limitations
of our three experiments. The following paragraphs cover the interpretation
and discussion for each of the six scenarios that we have implemented in
this work.

Mass Emigration. The outcome of this scenario suggests that when unim-
portant users leave the network, it is negligible for website owners as activity
is not decreasing significantly. However, when highly connected users leave,
results showed that activity is influenced, as it drastically decreases. Smaller
networks that we used in this scenario seem to better cope with the loss of
a high number of important users, whereas large networks seem to struggle
to keep acceptable levels of activity whenever high amounts of important
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users leave the network. This fact indicates that users in small networks
are equally important and connected, while larger networks have only a
few highly connected users. One possible explanation for this occurrence is
that users with a high degree connect different components of the whole
network and removing them also removes the connections between these
components. Hence, peer influence is not playing such an important part
anymore. This is simultaneously strengthening the effects of the intrinsic
activity decay. In this case we suggest that website owners and administra-
tors should find ways to reconnect separate components in order to slow
down the decrease of activity whenever a high degree user leaves their
networks.

Mass Immigration. The results of this scenario suggest different behavior
among the used empirical data sets. One would expect an increase in activity,
whenever users are added and connected to existing users. However, this is
not the case for the two conducted approaches. Randomly connecting the
new users with existing ones brings an increase of activity along, but when
we specifically connect them with high degree users, our results showed
opposed behavior. One possible explanation for the observed decrease
in overall activity is that newly added users start with zero activity. In
the beginning of the scenario simulation, the activity goes back and forth
between new users and existing high degree users through the mechanism
of peer influence. Once the peer influence, that existing high degree users
are gaining from the newly added users, reaches a certain level, the intrinsic
decay is also increased, and therefore resulting in a decrease of overall
activity. To set this observations in context with a real-world scenario,
we argue that high degree users are influenced by their peers increasing
their activity until a certain threshold is reached where they become over-
exhausted and their activity level starts to decrease again. To prevent this
occurrence, website owners could implement a recommendation system for
newly joined users that preferentially suggests users with a low degree.

Breaking Collaborative Ties. Our results of this scenario suggest similar
behavior compared to the Mass Emigration scenario. Removing edges be-
tween randomly selected users is not significantly affecting the network’s
activity, whereas the specific selection of high degree users leads to a de-
crease in overall activity. We explain this by the importance of these users in
collaboration networks. According to our model, these users have the most
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influence, reaching the largest amount of other users and therefore have
the possibility of starting cascades of activity. When removing connections
from those users, the whole network might break into different components,
making collaborations less likely and less peer influence is impacting ex-
isting users within the network. However, even when removing half of all
the edges and therefore drastically decreasing the network’s overall activity,
the level of activity does not reach zero, indicating that resulting small
components (or partial networks) still experience activity. As it is hard to
predict when and where collaborations between users break, we suggest to
monitor the last time of interaction between connected users. Once a defined
threshold is reached by two connected users, they could be informed about
past activities, eventually bringing them back together.

Establishing New Collaborations. The results of this scenario show differ-
ent observations for the StackExchange.com networks and the Semantic
MediaWiki networks. In general, the introduction of new collaboration edges
between existing users increases activity. However the random approach
does this almost not notably. New connections between high degree users
do increase activity more effectively and already at small amounts of added
edges (10% of existing edges). Furthermore, when we add more edges, the
activity does not relatively increase proportional to that amount as, for
example, the ElectronicsStackExchange network (Figure 7.4(c) in Section 7.1)
reveals. Our empirical Semantic MediaWiki networks show a different be-
havior, as the informed approach performs tremendously better than the
random approach. These circumstances could be explained by possible over-
exhaustion of high degree users already mentioned in the discussion and
interpretation of the Mass Immigration scenario. As the Semantic MediaWiki
networks have a lower average degree and users are equally important and
therefore a higher range of users is affected, activity is spreading among
more users and therefore preventing the over-exhaustion. Again, website
owners could implement recommendation systems that specifically suggests
users with low degree in order to prevent the over-exhaustion.

Providing Incentives. This scenario suggests similar behavior for all our
empirical data sets. The overall activity of networks will increase as long as
10 posts per month and per incentivized user are injected to the collaboration
network. The activity of these users will sooner or later start to spread across
the whole network and will inspire other users to start contributing to the
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network. However, when incentivized users are not paid and do not inject
10 posts per month anymore, activity will start to fall back to normal levels
as other users are not motivated by incentivized users anymore. Based on
our results, the enhancement of activity through this approach is advisable
for website owners.

Emergence of trolls. We expected the overall activity of networks to de-
crease in this scenario and our obtained results strengthen this assumption.
Smaller networks are more prone to trolls than larger and more active
networks. This could be explained by the fact that in larger networks, trolls
perish in the large amount of users, whereas in smaller networks all users
might notice the troll and are negatively influenced by them. However,
when specifically connecting trolls to high degree users in large and active
collaboration networks, the activity is also negatively affected and decreases
more notably. Whenever one single troll is added, our networks are able
to resemble the shape of normal activity, but at lower levels. Five or more
informed trolls can already bring activity to zero, resulting in a “dead” net-
work as long as no external positive influence is introduced to the network.
This is due to the fact that all five trolls are connected to the same important
users and negatively affect them via their peer influence in the informed
approach. Even though trolls do not necessarily harm the network’s overall
activity, we recommend website owners and administrators to quickly deal
with them.

8.2 Centrality Analysis

In this section we interpret the results of the Centrality Analysis experiment
explained in Chapter 5.

Our results show that more centralized users also end up with higher
simulated activity. The centrality of users is strongly depending on the
connections to their neighbors and since edges represent the interactions
between users, the ones with many edges have more activity as they gain
more peer influence. Centralized users have the highest activity weights
after simulation, but they still do not reach their empirical activity. We
explain this by the intrinsic activity decay being more influential than peer
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influence on resulting activity weights of users. However, the centrality of
users or the number of connections to their neighbors does not automatically
imply the amount of resulting activity. For example, there could be one user
with only one single edge to one neighbor, but still half of the network’s
activity can flow over this single edge as these two users might be especially
active. This might explain why some of the least centralized users do not
reach their real empirical activity during the simulation process as centrality
does play an important role on the activity gained over the peer influence.

All of our used centrality measures show strong correlation between re-
sulting simulated activity, suggesting that future activity of users could be
predicted by simply considering the structure of a collaboration network.

Deegre. The degree of users strongly correlates with simulated activity. We
expected this behavior due to the fact that the amount of activity gained
through the peer influence mechanism is depending on the degree of a
user.

Eigenvector Centrality. At the initialization of the simulation, we update
users with activity weights depending on empirical activity and the users’s
eigenvector centrality. The resulting simulated activity linearly correlates with
the eigenvector centrality of users, suggesting that the non-linear part of the
Activity Dynamics model is not or only minimally considered. After further
investigation, we discovered that peer influence values, calculated with
gi(ai, aj) of the Activity Dynamics framework, are too close to zero. Hence,
peer influence is not affecting the resulting activity in a notably way. We
further discuss this occurrence in Section 8.4.

PageRank. The PageRank in an undirected graph matches the degree distri-
bution. Hence, the PageRank also correlates strongly with simulated activity
as we have seen for the correlation coefficients calculated for the degree and
simulated activity.

The construction of different collaboration networks through the manip-
ulation of the required amount of interactions in order to connect users
(denoted by k) did not show any constant improvements compared to the
original approach of the Activity Dynamics framework. Hence, we suggest
that collaboration networks should be constructed as it is already imple-
mented by the Activity Dynamics framework.

85



8 Discussion

8.3 Dynamic Network Structure

The results of our third and last experiment, described in Chapter 6, suggest
that using an underlying dynamic network structure has advantages com-
pared to the static structure of the original Activity Dynamics framework.
We significantly decreased the root-mean-square error (RMSE) of the simu-
lated and empirical activity for each data set, except for the PracticalPlants
network among the Semantic MediaWiki data sets. Here, the RMSE was
increased when using the “dynamic” approach. We explain this by the
long lasting low values of activity in the first months and the following
sudden gain of activity at a later point in time. In the original approach,
where all variables and parameters are only calculated once with averages
of empirical data over all observed months, this peak is better modeled
and included in the ratios. Hence, activity in the months before this peak
can already reach higher levels of activity. When we use the “dynamic”
approach we simulate low levels of activity more accurately, leaving us with
too little activity at the beginning of the month to cover the sudden increase
of activity. Even when our calculated ratios better reflect the real-world
empirical data, activity weights are too low to move away from a state close
to zero activity. However, as long as we are not dealing with activity levels
close to zero, our implemented dynamic network structure improves the
performance of activity simulations.

In our approach we calculate all variables and the parameter λ/µ for each
month. However, the additional run time needed for this calculation is
not significantly higher compared to the original approach of the Activity
Dynamics framework. Hence, we suggest to use our enhanced version for
further experiments in the fields of activity dynamics.

8.4 Limitations

The results of the three conducted experiments in this thesis showed that
the Activity Dynamics framework is capable of simulating activity dynam-
ics with outstanding performance. Hence, we consider our results of the
Activity Dynamics Scenarios and the Centrality Analysis as reasonable. The
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parameter calculation and the underlying network structure for the 10 em-
pirical data sets are considered to be static. However, in a real-world online
collaboration network, the underlying network structure is continuously
changing and ever evolving, whether by newly joining users, leaving users,
new interactions between users or by the breaking of connections between
them. In addition to that, we only applied one approach (degree of users)
for specifically targeting (informed approach) users for our six scenarios.
Furthermore, we had no possibility to evaluate the results of our scenarios
due to the lack of empirical data for comparison with simulated results.
For that reason, we included non-manipulated simulated activity in all our
scenario plots to show that simulated activity for all data sets only exhibits
minor differences to real empirical activity. With this in mind, we argue that
the assumptions made in this master’s thesis provide good approximations
of the impacts of our plausible real-world scenarios on online collaboration
networks.

The discovered linear correlation between simulated activity and the eigen-
vector centrality of users leaves the simulation with the Activity Dynamics
framework pointless, as the peer influence (the non-linear part of the dy-
namical system) has no or only a small effect on simulated activity. Hence,
we need to find a better way to estimate the ratio λ/µ. More on that can be
found in Section 9.2 Future Work.
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The aim of this master’s thesis was to provide owners and administrators
of online collaboration networks a useful analysis of the various drivers
of activity in such networks. Based on the results of the three experiments
conducted and applied on 10 different real-world empirical data sets, we
gained insights in the possible behavior of users within an online collab-
oration network. We conducted these three experiments with the Activity
Dynamics framework introduced by Walk et al. (2015).

The Activity Dynamics Scenarios experiment was about the simulation of six
plausible real-world scenarios applied to our empirical data sets. To be able
to simulate these different events, we adopted and further extended the Ac-
tivity Dynamics framework. Our results suggest complex interdependencies
between new users and high degree users (Mass Immigration and Establishing
New Collaborations scenarios), high amounts of randomly removed collabora-
tion edges between users in order to significantly decrease activity (Breaking
Collaborative Ties) and quickest gains in activity by adding new collaboration
edges (Establishing New Collaborations) or by providing incentivized users
(Providing Incentives). Trolls harm the overall activity of the network by
negatively influencing other users (Emergence of Trolls). We quantified all
differences between non-manipulated dynamics and manipulated dynamics
in order to provide the reader a detailed overview of the impacts of our
scenarios.

The Centrality Analysis experiment provided us with insights into the effects
of centralized users on resulting simulated activity in the context of our
model. For that, we calculated three different centrality measures (degree,
eigenvector centrality and PageRank) of each user and compared them with
the resulting simulated activity by calculating the Person Correlation Coeffi-
cient. The user’s degree and PageRank turned out to strongly correlate with
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simulated activity. The eigenvector centrality even linearly correlated with
simulated activity, suggesting the disregard of the non-linear part within
the Activity Dynamics framework, leaving it for improvements possibly done
in future work.

In the Dynamic Network Structure experiment we further extended the origi-
nal Activity Dynamics framework in order to consider the dynamic network
structure of collaboration networks. With the implemented improvements,
we can now calculate all parameters for model setup and model initial-
ization for each observed month of our empirical data sets. To compare
the simulation performance of the original approach and the new dynamic
approach, we calculated the root-mean-square error (RMSE) of simulated
and empirical activity for both approaches. Our results suggest that activ-
ity dynamics can be simulated even more accurately with an underlying
dynamic network structure.

The results of these three experiments can be seen as a first step towards
new tools and models for website owners to simulate the impact of various
events affecting the dynamics of activity in online collaboration networks.

9.1 Contributions

This master’s thesis uses the Activity Dynamics framework to simulate ac-
tivity dynamics in 10 different real-world collaboration networks. Further,
this work investigates the impact of six plausible real-world scenarios ap-
plied on these data sets and uncovers the importance of user centrality for
simulation results. To this end, the original version of the Activity Dynamics
framework is extended, allowing the natural dynamic network structure of
collaboration networks to be taken into account.

9.2 Future Work

The conducted experiments leave us with many further possible improve-
ments for the Activity Dynamics framework. Besides the simulation of the
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Activity Dynamic Scenarios and the Centrality Analysis with the introduced
Dynamic Network Structure, the implementation of different filters (for ex-
ample an alpha beta filter) could be used to further improve simulation
performance. Furthermore, the uncovering of the non-linear part not being
considered in most cases during simulation suggests for finding a better
way to estimate the ratio λ/µ, for example through the field of System Identi-
fication. On the other hand, we could further investigate the initialization
of the model and its effect on the non-linear part of activity dynamics. To
better evaluate the outcome of our Activity Dynamics Scenarios, we could
seek and prepare further empirical data sets that actually experienced the
simulated events.
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