
Sandra Kreuzhuber, BSc

A Flexible Cross-Platform Framework
for Integrating

Multi-Factor Authentication

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Software Development and Business Management

submitted to

Graz University of Technology

O.Univ.-Prof. Dipl.-Ing. Dr.techn. Reinhard Posch
Dipl.-Ing. Dr.techn. Peter Teufl

Institute for Applied Information Processing and Communications (IAIK)

 Diplom-Ingenieurin

Tutor

Graz, November 2015

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis dissertation.

Date Signature

Abstract

During the past years, users have progressively changed their habits towards accessing online services
with their mobile devices. Often, these services require the user to authenticate. Numerous incidents and
studies have shown that simple authentication schemes based on the username and password paradigm
do not provide adequate protection. Therefore, many online services have started to deploy multi-factor
authentication. The solutions currently available range from mechanisms, such as one-time passwords
delivered via SMS to the user’s mobile device, to the use of smart cards or USB tokens in addition to
username and password. However, many of the deployed multi-factor authentication methods are not
applicable to mobile use cases. For example, the use of smart cards or USB tokens is not feasible on
smartphones. These usage limitations do not suit the mobile computing paradigm.

In this thesis, we propose a flexible authentication framework that supports the easy integration of
multi-factor authentication methods. The proposed framework has been implemented as authentica-
tion app for mobile devices. The implementation features different authentication plugins that leverage
features present on current mobile devices to establish a proper proof-of-possession. In order to be
platform-independent, we make use of a popular cross-platform development framework. The Apache
Cordova framework enables developers to access native mobile device features using web technologies,
such as HTML and JavaScript.

To evaluate the security of our implementation, we adhere to the well-proven structure of the Com-
mon Criteria for Information Technology Security Evaluation. Until now, little work has been done on
analysing the security of applications that have been developed using cross-platform development frame-
works. Therefore, the conducted evaluation particularly focuses on security aspects resulting from the
use of Apache Cordova. Although some gaps comparing to native mobile applications have been identi-
fied, we conclude that by following some security guidelines, a decent level of security can be achieved
with cross-platform mobile applications. Our results show that developers especially need to protect their
applications against security threats inherent to the nature of web application development, such as code
injection and cross-site scripting.

Summarising, we have implemented an authentication app that features three different multi-factor
authentication methods. The security of the authentication app has been thoroughly evaluated. There-
fore, our security evaluation gives an in-depth analysis on the security of applications developed using
the Apache Cordova framework. Furthermore, the structure of the evaluation is applicable to arbitrary
multi-factor authentication schemes on mobile devices. The definition of threat agents, assets, threats
and security objectives thus represents a valuable contribution for future work in this area.

Keywords. Cross-Platform Development, Mobile Security, Apache Cordova, Multi-Factor Authen-
tication

Kurzfassung

Im Laufe der letzten Jahre ist die Relevanz mobiler Endbenutzergeräte stetig gestiegen. Viele Benut-
zerinnen und Benutzer verwenden nunmehr ihr Mobilgerät, um auf Online-Dienste zuzugreifen. Für den
Zugriff auf E-Mail Konten, Soziale Medien, e-Banking oder e-Government-Anwendungen ist eine Au-
thentifizierung der Benutzerin bzw. des Benutzers notwendig. Zahlreiche Studien und wissenschaftliche
Arbeiten bemängeln jedoch die Sicherheit von Authentifizierungsmethoden basierend auf Benutzerna-
men und Passwort. Aus diesem Grund bieten einige Dienste mittlerweile Methoden zur Mehr-Faktor-
Authentifizierung an. Aktuell verfügbare Lösungen reichen von Einmalpasswörtern, über SMS-TAN-
Verfahren bis hin zur Verwendung von Chipkarten und USB-Token. Nicht alle Lösungen sind jedoch
auf mobilen Endgeräten anwendbar. Chipkarten oder USB-Token beispielsweise, sind nicht für eine
Benutzung mit Smartphones ausgelegt. Aus diesem Grund werden alternative Lösungen benötigt, um
Mehr-Faktor-Authentifizierung auch auf mobilen Geräten sicherzustellen.

Diese Arbeit stellt ein flexibles Framework zur Mehr-Faktor-Authentifizierung vor. Ziel dieses Fra-
meworks ist es, den leichten Austausch von Authentifizierungsmethoden zu ermöglichen. Das vorge-
schlagene Framework wurde als mobile Applikation umgesetzt. Für die Serverkomponente wurde ein
bestehendes Authentifizierungsframework verwendet. Die mobile Applikation nutzt unterschiedlichste
Gerätefunktionen, um den Faktor Besitz im Zuge des Authentifizierungsvorganges sicherzustellen. Für
die Implementierung der Authentifizierungs-App wurde Apache Cordova verwendet. Apache Cordova
erlaubt die Entwicklung von Cross-Plattform-Applikationen unter Zuhilfenahme von Web-Technologien.
Native Gerätefunktionen werden dabei über JavaScript-Schnittstellen zur Verfügung gestellt.

Mehr-Faktor-Authentifizierung wird zur Sicherung von sensiblen Daten und Funktionen verwen-
det. Daher ist es unabdingbar, diese Funktionen vor Angriffen zu schützen. Aus diesem Grund wur-
de eine ausführliche Sicherheitsanalyse der entwickelten Komponenten durchgeführt. Die Sicherheits-
analyse wurde basierend auf den Gemeinsamen Kriterien für die Prüfung und Bewertung von Syste-
men der Informationstechnik aufgebaut. Da bisher kaum Publikationen zur Sicherheit von mit Cross-
Plattform-Frameworks entwickelten Applikationen vorliegen, wurde der Fokus dieser Sicherheitsanaly-
se auf Aspekte der Cross-Plattform-Entwicklung gelegt. Die Resultate unserer Sicherheitsanalyse zei-
gen, dass unter Berücksichtigung einiger Empfehlungen ein vernünftiges Maß an Sicherheit in Cross-
Plattform-Applikationen erreicht werden kann.

Im Zuge dieser Arbeit wurde eine Authentifizierungs-App entwickelt und es wurden drei unter-
schiedliche Authentifizierungsmethoden integriert. Die durchgeführte Sicherheitsanalyse gibt einen weit-
reichenden Einblick in Sicherheitsaspekte von Cross-Plattform-Applikationen. Die Struktur der Sicher-
heitsanalyse ist jedoch nicht auf unsere Implementierung beschränkt. Die definierten Assets, mögliche
Angreifer und Angriffsszenarien wie auch die abgeleiteten Sicherheitsziele, sind auf beliebige Methoden
zur Mehr-Faktor-Authentifizierung auf mobilen Endgeräten anwendbar.

Schlüsselwörter. Mobile Cross-Plattform-Entwicklung, Mobilsicherheit, Apache Cordova, Mehr-
Faktor-Authentifizierung

Contents

Contents ii

List of Figures iii

List of Tables v

List of Listings vii

Acronyms ix

Acknowledgements xi

1 Introduction 1
1.1 Contribution . 2

1.2 Outline . 3

2 Background 5
2.1 Cross-Platform Mobile Application Development . 5

2.2 User Authentication Basics . 14

3 Related Work 15
3.1 Multi-Factor Authentication Methods . 15

3.2 Authentication Frameworks . 20

3.3 Existing Security Evaluations of User Authentication Methods 21

4 Authentication Building Blocks 23
4.1 Building Blocks of Authentication Methods . 23

4.2 Mobile-Device Features . 24

5 Authentication Methods 33
5.1 Terminology . 33

5.2 Overview . 33

5.3 Triple Key AES OTP . 34

5.4 Triple Key AES OTP with Knowledge Proof . 37

5.5 Double Key AES OTP with Knowledge Proof . 41

i

6 A Flexible Cross Platform Multi-Factor Authentication Framework 45
6.1 Multi-Factor Authentication Server . 45

6.2 Mobile Multi-Factor Authentication Client . 46

6.3 Integration of New Authentication Methods . 52

6.4 Lessons Learned . 54

7 Security Evaluation 57
7.1 Methodology . 57

7.2 Target of Evaluation . 60

7.3 Actors . 62

7.4 Security Assumptions . 62

7.5 Assets . 63

7.6 Threat Agents . 64

7.7 Security Threats . 65

7.8 Security Objectives . 69

7.9 General Countermeasures . 72

7.10 Specific Countermeasures . 77

7.11 Known Issues . 88

7.12 Discussion . 90

8 Conclusion 93

A Screenshots 95
A.1 Registration . 95

A.2 Authentication . 99

B Security Evaluation Rationale 103
B.1 Mapping Threats to Assets . 103

B.2 Mapping Threat Agents to Threats . 104

B.3 Mapping Objectives to Threats . 104

B.4 Evaluating Security Measures . 106

Bibliography 107

ii

List of Figures

2.1 Apache Cordova Native Application Packaging . 9

2.2 Apache Cordova Architecture . 9

2.3 Apache Cordova Plugins . 10

2.4 Anatomy of an Apache Cordova Project . 11

4.1 General Architecture of a Point-to-Point Push Notification Service 25

4.2 Apple Push Notification Service Device Token Handling 27

4.3 Apple Push Notification Service Mutual Authentication 28

5.1 Authentication Method Triple Key AES OTP . 35

5.2 Authentication Method Triple Key AES OTP with Knowledge Proof 39

5.3 Authentication Method Double Key AES OTP with Knowledge Proof 42

6.1 General Overview of the Mobile Authentication Framework 47

7.1 Basic Structure of a Protection Profile According to ISO/IEC 15408 58

7.2 The Derived Security Evaluation Methodology . 60

7.3 Target of Evaluation . 61

A.1 Screenshot: Starting the Mobile Application . 95

A.2 Screenshot: Account Overview Page . 96

A.3 Screenshot: New Account Page . 96

A.4 Screenshot: Authentication Service Initial Setup . 97

A.5 Screenshot: Adding a New Account . 97

A.6 Screenshot: New Account Added . 98

A.7 Screenshot: Authentication Plugin Initialised . 98

A.8 Screenshot: Demo Application . 99

A.9 Screenshot: Username and Password Plugin . 99

A.10 Screenshot: Triple Key AES OTP Plugin . 100

A.11 Screenshot: New Push Notification . 100

A.12 Screenshot: Start Authentication Method Triple Key AES OTP 101

A.13 Screenshot: Finishing the Authentication Method Triple Key AES OTP 101

A.14 Screenshot: Enter the OTP . 102

A.15 Screenshot: Signature Creation Successful . 102

iii

iv

List of Tables

B.1 Mapping Security Threats to Assets . 103

B.2 Mapping Threat Agents to Security Threats . 104

B.3 Mapping Security Objectives to Security Threats . 105

B.4 Evaluating Security Measures . 106

v

vi

Listings

2.1 The Native Class CordovaApp.java for the Android Platform 12

2.2 Call to cordova.exec() to Invoke the Native Part of an Apache Cordova Plugin 12

vii

viii

Acronyms

API application programming interface

APNS Apple Push Notification Service

ATM automated teller machine

CLI command-line interface

CSP Content Security Policy

ECB Electronic Codebook

EGIZ E-Government Innovation Center

eID electronic identity

FIDO Fast Identity Online

GCM Google Cloud Messaging

HMAC Hashed Message Authentication Code

HOTP HMAC-based One-Time Password Algorithm

IPT Identity Protection

NFC Near Field Communication

OTP one-time password

PRNG pseudo-random number generator

SDK software development kit

SMS Short Message Service

SSID Service Set Identifier

TAN Transaction Authentication Number

TOTP Time-Based One-Time Password Algorithm

TOE Target of Evaluation

UAF Universal Authentication Framework

U2F Universal Second Factor

URL Uniform Resource Locator

ix

UUID Universally Unique Identifier

W3C World Wide Web Consortium

XMPP Extensible Messaging and Presence Protocol

x

Acknowledgements

First and foremost, I would like to thank my supervisor Peter Teufl, whose passion for mobile security
had motivated me to deepen my knowledge in this area. His comments and encouragement helped me in
all the time of research and writing this thesis.

Besides my supervisor, I want to thank my colleagues at the Institute for Applied Information Pro-
cessing and Communications at Graz University of Technology for their valuable feedback, their effort
in correcting draft versions of this thesis, and for all the fun we have had in the last three years. My
thanks also go to Herbert Leitold, who provided me the opportunity to join the A-SIT group.

The practical part of this thesis has considerably benefited from the authentication server developed
by EGIZ. Therefore, special thanks go to Andreas Fitzek for his support during the implementation of
the server-side components.

Finally, I would like to thank my partner Thomas, my friends and family for the support they have
been showing the last years.

Sandra Kreuzhuber
Graz, Austria, November 2015

xi

xii

Chapter 1

Introduction

The hack of Wired reporter Mat Honan’s digital life in 2012, among others, brought attention to the rele-
vance of using multi-factor authentication to protect important online accounts [35]. Several of his online
accounts, including his accounts at Google, Amazon, Twitter and his AppleID were hacked because they
were somehow connected. The fall of one online account helped the attacker to gain access to the other
accounts as well. His online accounts were protected by means of simple username and password au-
thentication. Thereby, e-mail accounts, typically, act as a mean to regain access to online accounts in
case of lost passwords. The thus resulting entanglement of online accounts enables potential attackers
to gain access to a broad range of the victim’s digital life. To reduce the attack surface, several online
services, such as e-banking providers or services like Google Mail launched authentication methods that
require for additional factors to log in successfully. These authentication mechanisms vary from mech-
anisms, such as one-time passwords (OTPs) sent via Short Message Service (SMS) to the user’s mobile
device to the use of USB tokens in addition to username and password. However, providing multi-factor
authentication methods that are applicable for a wide range of users is non-trivial.

Many tasks that have required the use of a desktop computer a few years ago can now be carried
out on the go, by using mobile devices. A report from Facebook for the first quarter of 2015 shows that
approximately 40 percent of monthly active users access their account only from their mobile devices
[22]. These figures confirm the progressive shift from traditional desktop computers to mobile devices.
This development results in users accessing confidential data and online services that have higher security
requirements from their mobile device as well. Unfortunately, many available multi-factor authentication
mechanisms are not applicable for the use with mobile devices.

Multi-factor authentication using mobile devices faces some substantial challenges. First and fore-
most, it has to be ensured that an attacker cannot clone the mobile device covering the second factor.
Therefore, a strong binding between the user’s account and her mobile device has to be employed. This
binding can, for example, be realised by storing secret authentication data on the mobile device. Whilst
some tokens, e.g. smart cards that store secret key material, offer tamper-resistant hardware security, mo-
bile devices, in general, cannot be trusted in protecting data against unauthorised access. Some mobile
devices already include hardware-backed storage mechanisms. However, additional means of protection
are needed. The second line of defence might present push notifications. The mobile platform’s push-
notification services ensure that messages are only received by the legitimate application on a particular
mobile device.

Second, it has to be guaranteed that an attacker cannot use a stolen device for authentication. This
can be achieved by combining the possession proof on the mobile device with supplying additional
knowledge. This way, encryption using a password-derived key might provide additional protection
against unauthorised access. However, long and complicated passwords present a hassle for the user and
thus do not suit mobile devices well.

Sophisticated authentication methods that are applicable on mobile devices require a high degree of

1

2 1. Introduction

development effort. The main challenge is that they have to be developed for different mobile platforms
separately. The development of applications for multiple mobile platforms requires the use of different
programming languages and build tools. Furthermore, it takes time to learn the respective platform’s
architectural concepts, design paradigms and the different security mechanisms.

To ease development for multiple mobile platforms, various cross-platform frameworks have emerged.
These frameworks aim to minimise platform-specific modifications and favour code-reuse. However, lit-
tle is known about security mechanisms provided by state-of-the-art cross-platform frameworks. Multi-
factor authentication has high requirements regarding access to security mechanisms. The developer has
to ensure secure storage of sensitive authentication data and communication between the mobile device
and external services has to be protected adequately. These requirements qualify multi-factor authenti-
cation as an ideal use case for demonstrating access to security features and evaluating the security of
cross-platform development techniques. Summarising, this thesis pursues two goals:

(a) the development of a flexible framework enabling multi-factor authentication on mobile devices us-
ing a state-of-the-art cross-platform framework and

(b) a thorough security evaluation of the implemented authentication framework.

In the following, we provide an overview of the implemented flexible multi-factor authentication
framework and shortly introduce the conducted security evaluation.

1.1 Contribution

The purpose of this thesis is (a) to design and implement a flexible cross-platform framework for inte-
grating multi-factor authentication on current mobile devices and (b) a thorough security evaluation of
the implemented components. In the following, a short overview of our contribution is given.

We have developed a framework that provides multi-factor authentication on mobile devices whilst
being developed using state-of-the-art cross-platform development techniques. The focus of our frame-
work is on providing ways to easily integrate new authentication methods and, therefore, enable a fast
adaptation to new technologies.

The implementation is divided into a server part and a client part that is executed on the mobile
device. For the server part, this thesis extends a newly developed authentication framework of EGIZ1.
The server-side framework provides the interface to service providers and the ability to configure suitable
authentication mechanisms based on the domain of the service provider. Authentication methods can be
integrated by developing authentication plugins that interact with the framework core using OpenID
Connect2. For this thesis, several new authentication plugins have been implemented. In addition to
performing the actual authentication process, authentication plugins take care of setting up the respective
plugin for a new user, including the rollout of cryptographic keys and setting up the push-notification
service for the user’s mobile platform.

For the client part, common modules of different authentication mechanisms have been identified
and act as a basis for the implementation of a flexible authentication module. The authentication mod-
ule has been implemented as a mobile application. The authentication module implements a dynamic
routeing mechanism to trigger the requested authentication plugin. Thus, new authentication methods
can be easily integrated. The flexibility of the module has been demonstrated by integrating several new
authentication methods.

To ensure an adequate binding between the user’s account and a particular mobile device covering the
second factor, we employ a combination of cryptographic material stored on the device, the respective

1https://www.egiz.gv.at/de/projekte/156-ALAP
2http://openid.net/connect/

https://www.egiz.gv.at/de/projekte/156-ALAP
http://openid.net/connect/

1.2. Outline 3

platform’s push-notification service and a user-chosen password. By combining multiple technologies
and device features, decent security is achieved.

The mobile application has been implemented using the cross-platform framework Apache Cordova.
Apache Cordova allows for the development of mobile applications using standard web technologies.
Applications are rendered within so-called WebViews, browser windows that are embedded within native
mobile applications. For accessing native device APIs that are not available within the mobile browser,
Apache Cordova supports the development of plugins written in the programming language of the re-
spective mobile platform. In contrast to the code running within WebViews, plugins have to be developed
for each platform separately. In order to provide a protected storage for cryptographic keys used within
authentication, we have implemented an Apache Cordova plugin that accesses the underlying platform’s
key-storage facilities.

After implementing the proposed multi-factor authentication framework, we were able to evaluate
the feasibility of cross-platform development techniques when deployed in security-critical applications.
Therefore, we analyse the security features of the underlying cross-platform framework Apache Cordova
and inspect how the security features of the mobile operating system can be integrated into cross-platform
applications. Furthermore, the integration of available data storage mechanisms and the respective mo-
bile platform’s push-notification service is analysed.

For the security evaluation, we rely on an approved methodology that follows a systematic approach.
Therefore, we chose to roughly adhere to Common Criteria for Information Technology Security Evalua-
tion. Common Criteria defines the main components of a security evaluation. Summarising, the security
evaluation specifies the concrete system under evaluation, defines various assets and identifies threats,
which potentially compromise the security of the defined assets. To evaluate the security of our im-
plementation, countermeasures offered by the mobile client and provided by the different implemented
authentication methods are listed.

The conducted security evaluation is tailored to the multi-factor authentication use case. However,
the structure of the evaluation, the defined assets, threats and objectives are applicable to other solutions
that provide multi-factor authentication as well and thus represent a valuable contribution to future work
focusing on securing multi-factor authentication on mobile devices.

1.2 Outline

The thesis is structured as follows. Chapter 2 provides the reader with necessary background knowl-
edge on developing cross-platform applications. Subsequently, Chapter 3 discusses existing methods for
multi-factor authentication. This includes a short presentation of commercial solutions for authentication
methods and some thoughts about security as well. Chapter 4 extracts building blocks found in typical
authentication methods. Based on the extracted building blocks and features available on mobile devices,
Chapter 5 introduces new authentication methods. After having presented the authentication methods,
Chapter 6 presents the implemented authentication framework. Besides describing the architecture of the
implemented modules, this thesis focuses on a thorough security analysis of the components running on
the mobile device. Therefore, Chapter 7 systematically analyses the security of the implemented frame-
work and the integrated authentication methods. For the analysis, we roughly adhere to the Common
Criteria for Information Technology Security Evaluation. In addition to assessing the security of the
integrated authentication methods, special focus is put on the security of Apache Cordova applications.
Final conclusions are drawn in Chapter 8.

4 1. Introduction

Chapter 2

Background

Developing mobile applications for multiple different platforms leads to increased effort, as applications
have to be developed separately for each platform. To minimize the effort required to support multiple
mobile platforms, several approaches for cross-platform development have emerged. This chapter pro-
vides a general introduction to cross-platform development. First, an overview of different approaches
for creating applications for multiple mobile platforms is given. We continue with a more detailed pre-
sentation of the cross-platform framework Apache Cordova1. Apache Cordova has been used within the
implementation of the practical part of this thesis. As this thesis implements a multi-factor authentication
framework, we conclude with the basic principles of user authentication.

This chapter provides basic knowledge about cross-platform development and user authentication
using multiple factors. In particular, the detailed introduction to Apache Cordova equips the reader with
the knowledge required for Section 6 and 7 that focus on the implemented authentication framework and
provide a security evaluation of the implemented components.

2.1 Cross-Platform Mobile Application Development

During the past years, a range of different mobile platforms have emerged. To name a few popular
examples, in 2007 Apple has introduced iOS, Google Android followed in 2008 and Microsoft has
launched Windows Phone 7 by the end of 2010. Each mobile platform allows application developers
to develop mobile applications that can be installed from the device vendor’s application store. As
the platforms offer different frameworks and application programming interfaces (APIs) for application
development, applications have to be developed separately for each platform. Consequently, this leads to
increased effort for both, developing and maintaining multiple versions of the same product. Therefore,
new approaches for developing mobile applications have emerged. The goal of these new application
development technologies is to provide mechanisms to facilitate the reuse of application code between
multiple platforms. The following section describes different approaches for cross-platform development
and assesses advantages and disadvantages of each approach.

2.1.1 Approaches for Cross-Platform Mobile Application Development

Native applications enable full use of the underlying platform’s API. Developers use native user interface
widgets and thus provide the look and feel of the respective platform. Inherently, a set of native appli-
cations provide similar and mostly consistent experience to the user. However, building native mobile
applications requires a separate development process for each mobile platform. Current mobile platforms
require developers to use different development tools and programming languages. Furthermore, they

1https://cordova.apache.org/

5

https://cordova.apache.org/

6 2. Background

propose diverging concepts regarding the architecture of a mobile application and differ in available se-
curity functions and their usage. Both developing and maintaining multiple versions of the same product
is costly, therefore, technologies trying to achieve code portability between multiple mobile platforms
have emerged. The main challenge for these so-called cross-platform frameworks is to provide the user
with native user experience whilst trying to run on as many platforms as possible. In general, technolo-
gies for cross-platform mobile application development can be categorised into four approaches [79]:
The development of

• mobile web applications,

• hybrid applications,

• interpreted applications and

• generated applications.

Mobile Web Applications

Mobile web applications can be accessed by loading a Uniform Resource Locator (URL) in the mo-
bile browser. Mobile web applications are built with standard web technologies (HTML, CSS and
JavaScript). Multiple libraries such as JQuery Mobile2, Sencha Touch3 and others try to provide graph-
ical user interface designs suitable especially for mobile clients. Basically, mobile web applications
represent conventional web pages that have been adapted to the needs of mobile users. Web applications
can only use features provided by the mobile web browser. With the emergence of the HTML5 standard,
new APIs for storing data, playing video files and many more have been introduced. However, there are
still numerous device features that cannot be used by mobile web applications. Especially web applica-
tions cannot access the file system directly to browse files stored locally on the device. Equally, security
features like the secure storage of credentials are not accessible within web applications.

Hybrid Applications

Hybrid applications represent a combination of mobile web applications and native applications. Hybrid
applications are mainly built using web technologies such as HTML5, JavaScript and CSS and are exe-
cuted in so-called WebViews. A WebView defines a browser window embedded within a native mobile
application4. Thus, hybrid applications provide the business logic and user interface within a browser
window but are packaged as native applications that can be installed from the official application store
of the respective mobile platform vendor. The most popular framework for creating hybrid applications
is Apache Cordova [76]. Apache Cordova allows to extend the mobile browser with so-called plugins.
Plugins allow the access to a mobile platform’s hardware features and data storage. Plugins are written
in native code and provide JavaScript interfaces that can be called from within a WebView. The business
logic, the user interface, the core Cordova library and plugin code are packaged as native application.
Applications that have been packaged using the Cordova tools can be installed in the same way as na-
tive applications. To provide a platform’s native look and feel, user interface widgets such as buttons
and menus have to be built using CSS. For each mobile platform different CSS themes have to be in-
cluded. User interface frameworks such as Ionic5 and Sencha Touch build up on Apache Cordova and
provide CSS themes for different mobile platforms. Both provide native-styled user interface widgets
and thus enable the development of HTML5 applications that provide a similar look-and-feel as native
applications. Section 2.1.2 discusses Apache Cordova and its plugin-based approach in more detail.

2http://jquerymobile.com/
3http://www.sencha.com/products/touch/
4In iOS it is called UIWebView, but for simplicity, we use WebView for both, the iOS and Android operating system

throughout this thesis.
5http://ionicframework.com/

http://jquerymobile.com/
http://www.sencha.com/products/touch/
http://ionicframework.com/

2.1. Cross-Platform Mobile Application Development 7

Interpreted Applications

Frameworks as for example Appcelerator Titanium6 and Xamarin7 enable the development of interpreted
applications. Appcelerator Titanium allows the developer to write the application code in JavaScript. The
JavaScript code is interpreted at runtime. Applications are packaged as native applications and can be
provided via the platform vendor’s application store. The goal of Titanium is to allow the development
of cross-platform compatible code for the application’s business logic, networking, database and event
handling code.

Mobile web applications and hybrid applications look and behave like conventional websites, where
the user interface is realised by using CSS. Titanium applications, on the other hand, use native user inter-
face controls and thus provide a native look & feel. During execution, proxy objects for accessing native
APIs and user interface controls are created. These proxy objects act as a bridge between the JavaScript
and the native context. According to the official documentation of Appcelerator Titanium, the framework
follows a ‘write once, adapt everywhere’ [9] approach. Therefore, developers have to maintain branches
within the application code for the different platforms. Titanium currently supports the development
of iOS, Android and Blackberry applications [10]. Summarizing, Titanium allows the development of
native mobile applications without knowledge of the underlying platform or the programming language,
as a JavaScript API exposes native APIs to the developer. On the downside, Titanium applications can
only use APIs that have been integrated within the Titanium software development kit (SDK).

Xamarin is another popular solution for building cross-platform mobile applications. Xamarin ap-
plications are developed using the C# programming language. Xamarin uses the Mono C# compiler and
the Mono Runtime, an open source implementation of Microsoft’s .NET framework. Native device APIs
are made available through bindings in Xamarin’s API. Xamarin.Forms includes a large set of user in-
terface controls that are mapped to native controls at runtime. Ideally, user interface code only has to be
written once. For Android, Xamarin applications are packaged as .NET applications with an integrated
Mono runtime. Applications are interpreted and run by Mono at runtime [78]. As iOS does not allow for
runtime code generation, Xamarin applications are compiled to ARM assembly language ahead-of-time.
Xamarin enables developers to reuse existing third-party libraries provided in the programming language
of the respective platform.

Both, Titanium and Xamarin might lead to a technology lock-in as the SDK provides a whole new
set of APIs for creating the user interface and accessing device features. In contrast, Apache Cordova
applications build on standardized web technologies and can be run as web applications on a desktop
computer as well.

Generated Applications

The idea of model-driven software development is to specify requirements in a model and generate appli-
cation code from the provided model definition. iPhonical8 has been developing a framework for creating
native iOS applications using a model-driven approach. Later, they started developing a code generator
for Appcelerator Titanium which supports the creation of CRUD (Create, Report, Update, Delete) appli-
cations from models which have been defined using a Domain Specific Language. MD2 is an automatic
code generation tool developed by the University of Münster [32]. Their goal is to build native appli-
cations from a model description, whereas the model can be created without considering the underlying
platform. They enable the automatic creation of data models, user interfaces, event handling code and
can even access device features such as GPS. Their framework has been implemented as prototype and
supports the creation of native iOS and Android applications.

6http://www.appcelerator.com/titanium/
7http://xamarin.com/
8https://code.google.com/p/iphonical/

http://www.appcelerator.com/titanium/
http://xamarin.com/
https://code.google.com/p/iphonical/

8 2. Background

Automatic code generation frameworks are still in early stages as they are lacking access to sophis-
ticated device APIs and wide platform support. Currently, they can be used for rapid prototyping and as
extension to other cross-platform technologies.

2.1.2 Apache Cordova

This section provides an introduction to Apache Cordova. Apache Cordova has been used for the im-
plementation of the proposed multi-factor authentication framework. We chose Apache Cordova as it
allows access to all underlying device APIs and therefore, provides great flexibility with regard to the
use of the mobile devices’ security features.

As more and more developers continue choosing cross-platform development techniques, attack
potential is increased. Thus, it is of particular interest to inspect security properties of these frame-
works. Apache Cordova is the most popular cross-platform development framework [76], which qualifies
Apache Cordova perfectly for a thorough security evaluation.

In the following, the anatomy of an Apache Cordova application is discussed and Cordova’s plugin
approach is presented. The security evaluation in Section 7 builds up on the knowledge provided in this
section.

History

Cordova, formerly called Phonegap, has been started around 2009 by the Canadian company Nitobi
[14][15]. In 2011, Adobe acquired Nitobi and thereby the rights on the brand Phonegap. The code
base, however, has been donated to the Apache Software Foundation and since has been available under
the Apache License 2.0. The new name Apache Cordova and the fact that Adobe continued maintain-
ing Phonegap has created wide confusion in the developer community. Nowadays, the term Phonegap
describes Cordova plus Adobe’s ecosystem around Cordova. One example is Adobe’s cloud service
Phonegap Build that allows developers to compile their Cordova applications in the cloud and thus to
eliminate the need for installing MacOS when developing an iOS application and installing Windows
when developing for Windows Phone. Summarizing, Apache Cordova is the core technology that Phone-
gap builds up on. Cordova is open source and can be used for free, whereas the tools around Phonegap
are commercial.

Overview

Apache Cordova is a platform for developing native mobile applications using web technologies such
as HTML, JavaScript and CSS. HTML, JavaScript and CSS files are packaged as resource files within a
native mobile application [18]. Basically, Apache Cordova applications are implemented as a web page.
Each application contains a file named index.html that acts as an entry point to the web application and
references JavaScript, CSS and other resource files. As illustrated in Figure 2.1, Apache Cordova bundles
web application files as data within a native mobile application. The packaging process has to be executed
separately for supporting different platforms. The packaged applications can then be hosted on the
platform-specific application store and installed the same way as conventional native mobile applications.
Besides the popular mobile platforms iOS, Android and Windows Phone, Apache Cordova currently
supports Blackberry 10, Amazon FireOS, FirefoxOS and Tizen, as well as Desktop operating systems
like Windows (starting from version 8) and Ubuntu.

During execution of Cordova applications, the application files are rendered within a WebView. A
WebView is a browser window that is embedded within a native mobile application. In contrast to a
mobile browser, WebViews do not display a location bar and can be used to load HTML files from the
file system. The application’s user interface is entirely made of HTML, CSS and JavaScript that is being
rendered within the WebView and by default does not provide a native look and feel.

2.1. Cross-Platform Mobile Application Development 9

Figure 2.1: Apache Cordova bundles web application files, such as HTML files, JavaScript, CSS
and third-party libraries as data within a native mobile application. The web application
is rendered in a WebView within the application.

Figure 2.2: JavaScript code running inside the WebView can invoke functionality on the native side
using the JavaScript API provided by Cordova. The JavaScript API acts as a bridge to
the native Cordova library that provides a mapping to native platform functions.

10 2. Background

In addition to loading the HTML files packaged within the application into the WebView, Apache
Cordova allows developers to use features that are originally not available within a WebView. There-
fore, JavaScript code running inside the WebView can invoke functionality on the native side using a
JavaScript API provided by Cordova. This JavaScript API provides a bridge to the native Cordova li-
brary that invokes platform functions. Figure 2.2 illustrates the general architecture of Apache Cordova.

Figure 2.3: Apache Cordova uses so-called plugins for accessing device features that are not ac-
cessible from within the WebView. Plugins have to be implemented for each supported
platform separately.

Functions that are not available from within a WebView can be added to the Apache Cordova frame-
work as so-called plugins. Figure 2.3 illustrates the plugin concept. Cordova provides several plugins
from stock, for example for accessing the logging console, camera, file system, battery status and many
more. In addition, various third-party plugins9 are available and developers can implement their own
native plugins.

Anatomy of an Apache Cordova Application

Mobile applications using Apache Cordova are web applications packaged within native mobile applica-
tions. Applications need to follow a specified structure. Thus Figure 2.4 provides an illustration of the
components within an Apache Cordova project.

Each project has to provide a config.xml file that provides general information about the application.
This file includes the name of the application, information about the author, a short description and the
path to index.hml file.

The www folder represents the core of the project and includes all necessary HTML, JavaScript and
CSS files of the application. If the application should be usable whilst being offline as well, external
libraries and resources have to be downloaded and included in that folder. The www folder also contains
the index.html file, which acts as a starting point for the web application that should be rendered within
the WebView. Most importantly, the index.html file specifies the required dependencies to JavaScript li-

9http://plugins.cordova.io/

http://plugins.cordova.io/

2.1. Cross-Platform Mobile Application Development 11

CordovaApplication
platforms

android
assets
bin
CordovaLib
res
src
AndroidManifest.xml
...

ios
...

plugins
org.apache.cordova.device
com.phonegap.plugins.barcodescanner
my.custom.plugin
...

www
css
js
views
index.html

config.xml

Figure 2.4: The anatomy of an Apache Cordova project.

braries and includes the Cordova JavaScript API that makes Cordova features available to the application
developer.

A newly generated Apache Cordova project consists of empty platforms and plugins folders. When
support for a specific platform should be enabled, the respective platform has to be added using the
Cordova command-line interface (CLI). Plugins can be added using the Cordova CLI as well. The
platforms folder includes the native Cordova library and the application’s native entry point. On the
Android platform the native class CordovaApp.java represents the native entry point of the application.
Listing 2.1 comprises the Android-specific code within CordovaApp.java. This class creates a WebView
component and loads the index.html file that acts as an entry point for the cross-platform web application
code.

Equal to native applications, Cordova applications have to contain application configuration files
required for the specific platform. In case of Android, the platforms folder contains the AndroidMani-
fest.xml file. Cordova applications have to define the required application permissions that control access
to device specific features within the manifest file. However, the developer does not have to manually
edit these platform-specific configuration files but can do so by providing the required settings in config-
uration files provided by Cordova. The Cordova CLI then processes these settings and injects the relevant
sections into the platform-specific configuration files. The plugins folder includes platform-specific na-
tive code, possible native libraries and the platform-independent JavaScript code that acts as the interface
to the plugin.

The next section will explain the development of custom Apache Cordova plugins in detail and will
examine how they are included within the mobile application.

12 2. Background

1 import android .os .Bundle ;
2 import org .apache .cordova . * ;
3
4 public class CordovaApp extends CordovaActivity
5 {
6 @Override
7 public void onCreate (Bundle savedInstanceState)
8 {
9 super .onCreate (savedInstanceState) ;

10 super .init () ;
11 / / Set by <content src="index .html" / > in config .xml
12 loadUrl (launchUrl) ;
13 }
14 }

Listing 2.1: On the Android platform the native class CordovaApp.java represents the entry
point of the mobile application. It creates the WebView and loads the starting
HTML file.

Development of Native Cordova Plugins

Cordova applications are rendered within a WebView that has the same capabilities as the mobile browser.
To expose native device APIs to the WebView, Apache Cordova has introduced the plugin concept. A
Cordova plugin is a package of code that allows the WebView to communicate with the native platform.
Plugins thus act as a bridge to the underlying platform and provide access to device features that are
not available to web applications. Since version 3.0, the core APIs of Apache Cordova are provided as
plugins10. Among other functionality, these provided plugins comprise access to the mobile camera, the
file system, battery status and more. As these features have been exposed as plugins, they can be updated
easily without having to update the Cordova core libraries entirely. In addition to Apache Cordova core
plugins and a multitude of third-party plugins, any developer familiar with native mobile application
development can implement custom plugins for Apache Cordova.

1 cordova .exec (
2 function (param) {} ,
3 function (error) {} ,
4 "serviceName " ,
5 "actionName " ,
6 ["arg1 " , "arg2 " , 3]) ;

Listing 2.2: A call to cordova.exec() invokes the native part of the Apache Cordova plugin.
In addition to the parameters serviceName and actionName that define a method
within the plugin, the application has to pass a success and error handler that will
be called after the plugin has finished execution.

Each plugin consists of a JavaScript interface along with native code for each supported platform.
The JavaScript interface should remain the same for each platform and thus hide the platform-specific
aspects from the web application. The native code of a plugin has full access to the underlying native
SDK. Therefore, applications using Apache Cordova essentially do not lack any capabilities compared
to native mobile applications. A plugin consists of the following components:

• The JavaScript Interface
The JavaScript interface represents the most important part of the application as it exposes the

10http://cordova.apache.org/docs/en/4.0.0/guide_cli_index.md.html

http://cordova.apache.org/docs/en/4.0.0/guide_cli_index.md.html

2.1. Cross-Platform Mobile Application Development 13

plugin’s methods to the web application. For communicating with the native part of the plugin,
the cordova.exec() method has to be called from within the JavaScript interface. This method
acts as a bridge between the JavaScript interface and the respective native implementation. It
allows for passing parameters from the JavaScript interface to the native implementation and back
to the web application again. Listing 2.2 provides the method signature of the cordova.exec()
method. Several parameters are passed to this method: each call includes a serviceName and an
actionName, two callback functions and an array of parameters that should be passed along to
the plugin. The serviceName is used to identify the plugin that is being called. The actionName
can be used to identify a special feature or method of the plugin and is used as defined by the
developer. All calls to Apache Cordova plugins are asynchronous. Therefore, the two callback
functions comprise a success handler and an error handler. Either of them is called after the plugin
finishes execution. To use the plugin within the web application, the developer has to include the
JavaScript file with the application and then the developer can call the plugin in the same way as
any other JavaScript function.

• The Native Interface
Each JavaScript interface associates with one or more native implementations. Depending on
the underlying platform, the implementation differs. On Android, the plugin has to extend the
class org.apache.cordova.CordovaPlugin and on iOS the class CDVPlugin has to be extended.
These base classes provide capabilities to register listeners, allow for background processing and
they can access the native APIs the same way as any native mobile application. After the plugin
finishes execution, the success callback function is invoked and parameters can be passed back
to the JavaScript side. The callback methods can be invoked multiple times, for example for
implementing event listeners and thus notify the web application about events received in the
background. For instance, push notifications are realised as a plugin. Whenever a new message is
received, the native side of the plugin invokes the callback function and hands over the received
message to the JavaScript side of the plugin.

• plugin.xml
Each plugin features a plugin.xml file located in the top-level of the respective plugin’s folder.
This file defines the structure of a plugin and includes a list of files required for the successful
execution of the plugin. For each platform, a <feature> tag including the name of the plugin and
the starting class of the plugin has to be added. This <feature> tag is injected in the config.xml file
that is located in each platform-specific folder within the platforms folder. Based on the feature
mappings provided by the config.xml file, calls from the JavaScript interface can be mapped to
the native plugin implementation. Additionally, the plugin.xml file has to include all class files
and dependencies that should be included in the plugin. Based on the provided listing, these
files will be copied to the application that wants to include the plugin and placed into the correct
platform-specific folder within the platforms folder. The process of copying the required files is
done automatically by the Cordova CLI when executing the command to add a new plugin.

Summarising, Apache Cordova applications are web applications that are packaged as native mobile
applications. Cordova applications are rendered within a WebView. By adding plugins to an application,
the WebView can communicate with the underlying native platform. A Cordova plugin is a package
of code that is injected into the application that is adding the plugin. A plugin consists of a JavaScript
interface that remains the same for each platform and a set of native interfaces that have to be imple-
mented by using the native SDKs and programming languages of the supported platforms. Thus, plugins
provide access to device and platform functionality that is ordinarily unavailable to web applications.
All the main Cordova API features are implemented as plugins. In addition, developers can implement
their own plugins. Third-party plugins can be published to the Cordova Plugin Registry so that other
developers can easily install a plugin using the Apache Cordova CLI.

14 2. Background

2.2 User Authentication Basics

IT services such as e-mail, online banking, enterprise IT systems or social media platforms build around
the concept of user accounts. Each user account is associated with potentially sensitive data and legiti-
mate users can execute actions, such as confirming money transfers or sending e-mails on their behalf. It
is obvious that these services require some access control. First, the service has to determine the identity
of the user and secondly, the service requires some proof that the user is, who she claims to be. The
process of associating a personal identifier with an individual person is called identification [17]. In real-
world scenarios, identification is often done by presenting some legal document, for example a passport
or driver’s license. Authentication, on the other hand, is the process of proving the association between
the person and the personal identifier.

In the digital world, the username/password paradigm is ubiquitous. Identification is done by pro-
viding a username, whereas authentication is performed by providing a password that should be kept
secret. The password presents a single piece of information and once it falls in the hand of an attacker,
she has full access to the service. This might include access to sensitive enterprise data as well as the
possibility to impersonate the victim by sending messages on her behalf. However, the username/pass-
word paradigm suffices for applications that require a low level of assurance about the identity of the
user. However, for many services it is desirable to have additional measures to prove that the user is, who
she claims to be. These additional measures are often referred to as multi-factor authentication.

Multi-factor authentication enables multi-dimensional access control, which requires the user to
present at least two authentication factors out of the following categories:

• factor knowledge or "something the user knows"

• factor possession or "something the user has"

• factor inherence or "something the user is"

Requiring more than one factor increases the difficulty for an attacker to successfully complete an au-
thentication process. For example, modern automated teller machine (ATM) cards that allow the user to
withdraw money from her account, require an attacker both, to steal the ATM card and to gain knowledge
of the user’s secret PIN. The ATM card represents the factor possession, whereas the PIN represents the
factor knowledge. Typical examples for the factor possession are smart cards and smart tokens that com-
prise secret cryptographic keys. Services that require a substantially high assurance about the identity of
the user, often employ authentication based on physical attributes of a person. Popular examples include
voice recognition systems, measuring a person’s heart beat [74], retina pattern recognitions systems, iris
and fingerprint scanning systems.

Based on the identified need for multi-factor authentication, we construct several authentication
methods. Therefore, in Chapter 4 we start by extracting building blocks typically found in multi-factor
authentication methods and introduce features available to state-of-the-art mobile devices. A presenta-
tion of the constructed multi-factor authentication methods is then given in Chapter 5.

Chapter 3

Related Work

This chapter provides an overview of currently deployed multi-factor authentication methods that are
applicable to mobile end-user devices. While there are many new authentication methods available,
few projects aim to provide interfaces and standards for authentication methods or a more generalized
authentication framework that provides a single interface to online services and enable the easy exchange
or extension of authentication methods. Therefore, a review of approaches towards unifying access to
multi-factor authentication methods is given. We conclude with a review of publications that aim to
evaluate the security of user authentication methods. Some of the proposed evaluation criteria will act as
a basis for our security evaluation in Chapter 7.

3.1 Multi-Factor Authentication Methods

Many online services, enterprises and public institutions have realised that simple password-based au-
thentication does not provide sufficient protection against impersonation or theft of confidential data.
Therefore, many service providers require the user to present a second factor during login. Currently,
deployed multi-factor authentication methods comprise:

• the use of one-time passwords that rely on a pre-shared cryptographic key for the computation of
a character string that can only be used in a single login process,

• Public Key Infrastructure systems that rely on the user presenting a token that stores a secret cryp-
tographic key to compute a challenge. These systems comprise smart cards or USB dongles that
include tamper-resistant storage for private keys. Furthermore, tokens interacting over a wireless
Near Field Communication (NFC) interface can be used as well.

• the use of static Transaction Authentication Numbers (TANs), where a TAN is sent to the user using
a different communication channel, e.g. by using SMS technology to send a TAN and

• biometrics such as fingerprint or iris scanning system and voice recognition systems.

In the following, we take a closer look at two-factor authentication methods that are applicable to mo-
bile devices. First, authentication based on the computation of OTPs and TANs are briefly discussed.
Although it is possible to use smart cards with some mobile devices, they rely on the user carrying an
additional smart card reader1 and thus decrease usability drastically. However, we inspect the recently
published Fast Identity Online (FIDO) standard, which includes standardization for the use of NFC-
enabled tokens. In addition, a short review of biometric systems that are already deployed on mobile
devices is given.

1http://www.thursby.com/products/pkard-android

15

http://www.thursby.com/products/pkard-android

16 3. Related Work

3.1.1 Transaction Authentication Numbers

Several online banking services within Europe use mobile TAN in addition to password-based authen-
tication. Thereby, the user’s mobile phone implements the factor possession. During the authentication
process, the TAN is sent to the user’s mobile phone using SMS technology. By proving reception of
the TAN, the user proves possession of the SIM card within the mobile phone. The security of TANs
is mainly given due to two separate end user devices being used. Whereas the password is entered at
a desktop computer, the SMS is sent to the mobile phone. The nature of using two separate devices
increases the difficulty for an attacker trying to compromise the authentication process.

However, in 2011, security analysts discovered Zeus-In-The-Mobile [21][52], a malware targeting
mobile TAN solutions. Zeus-In-The-Mobile intercepts TAN messages sent by the bank and forwards
them to the attacker. To intercept the received SMS messages, the malware tricks the user into installing
a malicious application on her smartphone. By pretending to protect the user from Internet fraud, the
malicious application forwards incoming SMS to the attacker’s server. A malicious program installed at
the user’s personal computer allows for stealing the user’s login credentials used for the online banking
service. The attackers were able to transfer money to arbitrary accounts by using the login credentials
and the dynamically generated TAN.

Modern smartphones include a broad range of third-party applications that might contain malicious
code for accessing SMS messages. Due to increasing screen sizes, increased usability and software as
advanced as on the desktop computer, users tend to consume online services solely using their mobile
device. However, the security of TAN systems decreases in case of using the same device for entering
your credentials and proving reception of the TAN. Malicious applications might capture user input and
at the same time gain access to SMS messages.

3.1.2 One-time Passwords

Authentication mechanisms that rely on the computation of OTPs require the user to enter an OTP in
addition to username and password. The entered OTP is computed on the user’s mobile device or some
token that is in control of the user. For the computation of OTPs, a cryptographic key and some dynamic
factor are needed. The cryptographic key is kept secret and is shared between the server and the client
that computes the OTP first. For the dynamic factor, multiple implementation variants exist. Following
the Time-Based One-Time Password Algorithm (TOTP) [57], the current time is used as dynamic fac-
tor. With the HMAC-based One-Time Password Algorithm (HOTP) [56] standard, a counter, which is
stored on both the client and on the server side and incremented with every OTP computation, is used
as a dynamic factor. In order to be able to verify the entered OTP, the server has to perform the same
computation using the shared cryptographic key and the dynamic factor. When using the current time for
OTP computation, a so-called time step is used instead of the exact time. The use of time steps enables
both client and server to compute the same OTP within a specified period of time. Typically, a period of
30 or 60 seconds is used for the time step. When using a shared counter instead, the server has to provide
mechanisms for the synchronization of the counter, such as computing OTPs with multiple future values
of the counter, to absorb inconsistencies caused by unsuccessful authentication attempts.

By requiring OTPs that are computed on the client instead of using TANs sent via SMS, no costs for
the transport of the TAN incur. Furthermore, the mobile device does not have to be online to compute the
OTP and thus can be used abroad without limitations regarding roaming fees. The security of authenti-
cation mechanisms that rely on the computation of OTPs mainly builds on the security of the underlying
key storage mechanism. Whereas most solutions use software storage, several hardware devices such
as USB or NFC tokens can be used for OTP computation as well. In the following, we describe some
services that use OTP computation as the second factor during authentication.

3.1. Multi-Factor Authentication Methods 17

Google Authenticator

The Google Authenticator2 application is one of the most popular ways for computing OTPs on smart-
phones. Google Authenticator is not limited to Google’s web services, but can be used with other services
such as Dropbox, Facebook, Microsoft and even during SSH login [50]. The Google Authenticator ap-
plication follows the previously mentioned TOTP and HOTP standards. Third-party applications can
integrate two-factor authentication with Google Authenticator as well. There are several implementa-
tions for the corresponding authentication server available3. The Google Authenticator client application
is available for iOS, Android and BlackBerry4. As basically any application that follows the TOTP
and HOTP standards can be used, Microsoft has implemented their own Authenticator application for
Windows Phone devices5.

There are large differences regarding the security of the secret key required for OTP computation.
The iOS application stores the key within the Keychain6, a mechanism for the storage of user credentials
and cryptographic keys. The Android version of the Google Authenticator stores the secret key in an
SQLite Database7 on the file system. The iOS Keychain prevents attackers from stealing the secret OTP
key, whereas an attacker might be able to clone the key by inspecting the internal storage of the Android
application.

YubiKey

The company Yubico8 offers USB and NFC tokens that can be used as a second factor during login.
Yubico’s first token, the YubiKey, operates on all platforms that support USB without requiring additional
drivers. When the user presses the button on top of the Yubikey, the token computes an OTP. By
implementing the Human Interface Device specifications, the YubiKey acts like a conventional keyboard
and thus the OTP is directly entered in the authentication form of the web service. To support mobile
devices as well, Yubico has launched the YubiKey NEO. The YubiKey NEO provides support for NFC
and can be used on NFC-enabled smartphones. By simply tapping the YubiKey NEO on the NFC-enabled
mobile device, the OTP is transmitted to the device and added to the authentication form. Amongst a
range of protocols, the YubiKey supports the generation of HOTP and TOTP conforming OTPs. The
YubiKey stores cryptographic keys on a dedicated Hardware Secure Element, thus the YubiKey offers
good protection against attacks that aim to extract the secret key. However, currently the YubiKey NEO
can only be used on the Android platform by installing a mobile application from Yubico [20]. Although
iOS 8 supports NFC, third party developers cannot access the NFC interface [80]. Due to implementation
issues, the Yubikey NEO is currently not working on Windows Phone 8 devices [54].

Intel Identity Protection

Intel Identity Protection (IPT) [36] provides hardware-based authentication mechanisms integrated di-
rectly with Intel processors. Amongst other features, Intel IPT ships with an OTP generator. The OTP
generator is integrated as embedded processor, the so-called Manageability Engine of the device’s moth-
erboard. OTP computation is performed in isolation from the operating system and the cryptographic key
required for OTP computation is stored on a dedicated area within hardware. Users can associate their
device with a particular user account at online services that support Intel IPT with OTP. Some services,
such as PayPal, have already integrated login with Intel IPT with OTP [67]. In contrast to hardware

2https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2&hl=en
3https://github.com/wstrange/GoogleAuth
4https://github.com/google/google-authenticator
5https://www.windowsphone.com/en-us/store/app/authenticator/e7994dbc-2336-4950-91ba-ca22d653759b
6https://github.com/google/google-authenticator/blob/master/mobile/ios/
7https://github.com/google/google-authenticator-android/
8https://www.yubico.com/

https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2&hl=en
https://github.com/wstrange/GoogleAuth
https://github.com/google/google-authenticator
https://www.windowsphone.com/en-us/store/app/authenticator/e7994dbc-2336-4950-91ba-ca22d653759b
https://github.com/google/google-authenticator/blob/master/mobile/ios/
https://github.com/google/google-authenticator-android/
https://www.yubico.com/

18 3. Related Work

tokens used for OTP computation, Intel IPT does not require the user to present an additional device and
thus improving usability drastically. However, currently only five mobile devices are equipped with Intel
CPUs and not all of them provide support for Intel IPT [37]. As Intel IPT is a proprietary implementa-
tion, implementation details are not publicly available. Therefore, little can be said about the security of
the hardware-based OTP generator.

3.1.3 FIDO Universal Second Factor

The FIDO alliance9 is working towards standardization for strong authentication devices. The FIDO
alliance comprises popular companies such as Google, Microsoft, ARM, Lenovo, Yubico and others.
Their Universal Second Factor (U2F) specification [4] provides a standardized interface for tokens that
can be used as second factor during authentication. Therefore, first the user authenticates using a con-
ventional username and password scheme and as second step she is requested to present her U2F token.
Current U2F tokens are realised as USB, NFC or Bluetooth tokens. The main goal of U2F is to integrate
support for U2F tokens directly into web browsers and, thus, render additional middleware that has to
be installed on the user’s device unnecessary. Google Chrome already provides native U2F support10.
Google provides the possibility for users to register U2F tokens for authentication with their Google
accounts. The built-in browser API, however, can be used by any web service that aims to integrate U2F
for authentication. Currently, FIDO U2F tokens can be purchased starting with a price around 6 USD
per token11.

FIDO U2F uses standardized public-key cryptography for proving possession of a U2F token. Dur-
ing registration, the user’s U2F token creates a new public and private key pair for each web service.
The registration response returned to the web service includes the newly generated public key, a key
handle for the corresponding private key and the attestation certificate [2]. FIDO recommends the use of
hardware-backed storage mechanisms for cryptographic keys on the device. To check that a U2F device
provides a certain level of security, the U2F specification introduces attestation. Therefore, the regis-
tration message is signed using a so-called attestation key. The private attestation key is stored on the
U2F token by the device manufacturer. The web service can then verify the signature of the registration
response using the public key included in the attestation certificate. Furthermore, the web service should
verify whether the attestation certificate was issued by a trusted certification authority. For privacy rea-
sons, a large number of U2F tokens from the same manufacturer share the same attestation key. This
prevents identification and tracking of users across origins based on their attestations key.

In subsequent authentication processes the user proves possession of the private key by creating a
cryptographic signature on her U2F token. Therefore, the web service provides the key handle that
identifies the private key and some challenge that should be signed by the token. Due to the U2F token
having its own key pair for every web service that has been registered, the token only signs challenges
for the origin, the key pair was generated for. As a key pair can only be used for the origin of one web
service, the user is protected against tracking across multiple web services.

3.1.4 Tiqr

In 2011, the company SURFnet has developed Tiqr [75]. Tiqr is a smartphone application that enables
two-factor authentication using QR codes and a shared secret stored both on the mobile device and the
server. QR codes represent two-dimensional barcodes that can be used to encode up to 4 Kilobytes of

9https://fidoalliance.org/
10https://support.google.com/accounts/answer/6103523?hl=en
11http://www.amazon.com/s/ref=nb_sb_ss_i_0_6?url=search-alias%3Daps&field-keywords=u2f+security+

key&sprefix=u2f+se%2Caps%2C416

https://fidoalliance.org/
https://support.google.com/accounts/answer/6103523?hl=en
http://www.amazon.com/s/ref=nb_sb_ss_i_0_6?url=search-alias%3Daps&field-keywords=u2f+security+key&sprefix=u2f+se%2Caps%2C416
http://www.amazon.com/s/ref=nb_sb_ss_i_0_6?url=search-alias%3Daps&field-keywords=u2f+security+key&sprefix=u2f+se%2Caps%2C416

3.1. Multi-Factor Authentication Methods 19

alphanumeric data. Currently, SURFnet provides an iOS12 and an Android13 version of their mobile
application.

When navigating to a web service that supports authentication via Tiqr, the user is presented with a
QR code that contains a challenge and information about the web service that requests authentication.
After scanning the QR code with the mobile device, the Tiqr application displays the service information
to the user and prompts the user to enter her PIN for approving authentication. Tiqr uses a 4-digit PIN
to secure a shared secret required for computing an OTP. Therefore, Tiqr makes use of Password-Based
Encryption according to PKCS#5. The authors claim that although only a simple 4-digit PIN is used,
brute-force attacks on the PIN do not impair the security of Tiqr. When trying all possible PIN values
to derive the encryption key, the attacker usually requires a way to verify that the decrypted content
represents the original plaintext. As the plaintext itself represents a random byte string, the only way
to verify its correctness is to compute an OTP with the decrypted key. To verify the OTP, the attacker
has to enter the OTP at the web service. Only the server can check the correctness of the OTP and thus
if the key was decrypted with the correctly derived key. By specifying a maximum number of failed
authentication attempts at the server side, this issue can be mitigated.

In addition to the shared secret, a changing factor such as the current time, a counter or other means
of a challenge is required for OTP computation. Tiqr uses a challenge that is encoded within the QR
code. The computed OTP is sent to the authentication endpoint of the web service. Thus, Tiqr does not
require the user to type the OTP at the web service.

3.1.5 Biometric Authentication on Mobile Devices

In 2013, Apple launched the first iPhone that includes a fingerprint sensor, the so-called Touch ID [13].
Data required to match a user’s fingerprint is stored in encrypted memory within the Secure Enclave, a
coprocessor that, amongst others, provides cryptographic operations for the iOS Data Protection system.
Fingerprint data from the Touch ID sensor is processed by the Secure Enclave and never leaves the
mobile device. Since iOS 8, third-party application developers can leverage the fingerprint sensor for user
authentication within their applications. The application is notified whether the authentication process
was successful, but it does not receive any data associated to the user’s fingerprint. Currently, Touch ID
offers two capabilities for third-party applications [45]. Obviously, applications can request the user to
authenticate using Touch ID. Applications do not receive any signed token or cryptographic proof that
the user is authenticated successfully, only a notification that authentication has been successful. Second,
applications can use Touch ID to unlock the iOS Keychain that provides protected storage for credentials.
However, both methods do not provide a mechanism to authenticate the user to a remote web service.
Thus, third-party applications need to implement additional means for remote authentication.

Starting with its flagship mobile phone Galaxy S5 in 2014, Samsung has equipped multiple devices
with fingerprint sensors as well. Developers of third-party applications can use the Samsung Pass SDK
to integrate fingerprint scanning into their applications14. Similar to Apple’s Touch ID, the API returns
no additional token, only a notification whether the fingerprint of the user matches the registered fin-
gerprint. Samsung’s fingerprint system has already been subject to serious security vulnerabilities [82].
Researchers from FireEye have found that it is possible for malicious applications to directly access the
fingerprint sensor to read the scanned fingerprint before it is being stored within the ARM TrustZone of
the device. Zhang et al. [82] highlight the severity of this leak, as fingerprints are associated with a series
of records from public institutions, such as passports or criminal records.

12https://itunes.apple.com/us/app/tiqr/id430838214?mt=8
13https://play.google.com/store/apps/details?id=org.tiqr.authenticator&hl=en
14http://developer.samsung.com/galaxy#pass

https://itunes.apple.com/us/app/tiqr/id430838214?mt=8
https://play.google.com/store/apps/details?id=org.tiqr.authenticator&hl=en
http://developer.samsung.com/galaxy#pass

20 3. Related Work

3.2 Authentication Frameworks

The preceding presentation of current multi-factor authentication methods on mobile devices illustrates
that there are plenty of methods available for enabling multi-factor authentication with mobile de-
vices. However, no single authentication method has yet gained sufficient popularity among both service
providers and users in order to replace the conventional username and password scheme on large scale.
Based on the user’s mobile device or tokens she already possesses, she might prefer a specific authentica-
tion scheme. Thus, in order to provide multi-factor authentication to all users, service providers need to
support multiple different authentication schemes. However, integrating several different authentication
mechanisms poses a challenge to both service providers and vendors of authentication solutions. When
using commercial solutions, authentication methods from different vendors provide different interfaces,
thus the integration into services is tailored to a single authentication method. Therefore, some vendors
have started to provide authentication frameworks that integrate several different authentication methods.
In this section, we will review some authentication frameworks from industry and provide a short review
of the first standard proposing a universal authentication framework.

3.2.1 FIDO Universal Authentication Framework

Besides providing specifications for second-factor authentication tokens, the FIDO alliance has pub-
lished specifications for a Universal Authentication Framework (UAF) [3]. The goal of FIDO UAF is
to use so-called local authentication actions in order to allow for a password-less authentication process.
Therefore, the user registers local authentication actions with a web service. These actions can, for ex-
ample, consist of presenting biometrics, entering a PIN or presenting a NFC token. Each authenticator
that provides a local authentication action possesses a cryptographic key pair. During authentication
the authenticator validates the performed authentication action (e.g. by sampling biometric data such
as a fingerprint or voice print or by verifying the entered PIN). If the verification has succeeded, the
authenticator signs a provided challenge and returns the challenge to the web service.

In detail, FIDO UAF provides web services with mechanisms to choose the required action based on
a policy. Within this policy, the web service can for example define the required key storage type (e.g. a
secure element, software or a remote key handle), the type of user verification and if the authenticator is
able to display transaction information to the user. This policy is included within the registration request
from the web service. The UAF implementation on the client, for example, the user agent, matches the
policy against all available authenticators and chooses a suitable authenticator. Therefore, FIDO UAF
is an enhancement of the FIDO U2F standard. Whilst U2F tokens simply sign a challenge provided by
the server, the UAF standard defines authenticators and requires the user to perform some action such as
presenting a fingerprint before the challenge is signed and returned to the web service. In addition, UAF
includes the possibility to display transaction-related data to the user. For example, this can be used for
confirming an online banking transaction.

The FIDO UAF specification comprises the protocol that defines how web services can request the
user to perform a local authentication action, the documents that define the format of UAF protocol
messages, the client-side APIs that can be used within the web applications to utilize FIDO UAF and
an authenticator API, which defines the interface for implementations of local authentication actions as
plugins.

As FIDO UAF provides a common interface for authenticator modules, UAF supports the easy ex-
change of authentication actions. Thus UAF adapts well to the emergence of new technologies and
potential new methods that can be used during authentication. However, currently no user agent supports
UAF natively. In order to use UAF, additional native clients for desktop operating systems or mobile
devices are required.

3.3. Existing Security Evaluations of User Authentication Methods 21

3.2.2 Commercial Authentication Frameworks

In the following, we will shortly enumerate commercially available authentication frameworks including
the FIDO UAF implementations of early adopters. Due to most projects being closed-source, only vague
information is available about their features and security properties.

RCDev offers OpenOTP15, a server side authentication framework that includes various two-factor
authentication methods. OpenOTP includes integration for standardized HOTP and TOTP tokens, FIDO
U2F, SMS TAN and others. OpenOTP does not require a specific mobile application as it can be used
with existing OTP applications, such as Google Authenticator. Service providers can access OpenOTP
using different interfaces such as SOAP.

The company Nok Nok Labs implements the FIDO UAF standard [46]. They offer mobile applica-
tions for Android and iOS that act as FIDO UAF client implementation. For example, Apple’s Touch ID
can be used as FIDO authenticator. Further, they have implemented face recognition, voice recognition
and a simple PIN authenticator. The Nok Nok App SDK enables application developers to integrate a
FIDO UAF client into their applications.

Similar to the solution provided by Nok Nok Labs, Sure Pass ID [66] provides a UAF compliant
authentication framework. In addition to UAF, they support authentication using OTPs and TAN and
can be used with existing applications or hardware tokens that compute OTPs and smart cards. Their
authentication server is operated as cloud service.

Besides offering FIDO U2F integration, the US-based company Duo Security has launched their
mobile application DuoPush [41]. DuoPush receives authentication requests via the mobile platform’s
push-notification service. The authentication request contains a challenge. When approving to sign
in, the application uses a private key stored on the mobile device to cryptographically sign the given
challenge.

When implementing these multi-factor authentication frameworks, the development has to be carried
out for multiple mobile platforms separately. Thus, developers have to gain knowledge about the APIs,
build tools and the security properties of each mobile platform. Furthermore, they have to provide several
different implementations for the storage of secret keys, the reception of push notifications and so on. In
addition, maintaining and updating several versions of the same product is costly. Therefore, this thesis
provides the implementation of a mobile authentication framework using cross-platform technologies
and thus minimizing the effort for customization for different mobile platforms.

3.3 Existing Security Evaluations of User Authentication Methods

Username and password schemes are still very popular for user authentication on the web. Bonneau
et al. [16] criticize that although decades of research have shown that passwords do not provide suffi-
cient security, still no authentication scheme was able to replace the traditional username and password
scheme. Furthermore, they criticise the lack of standard evaluation criteria, as evaluation of authentica-
tion schemes tend to be biased depending on the domain of the respective authors. Therefore, Bonneau
et al. have provided an evaluation framework for authentication methods on the web. They have derived
25 criteria that an ideal authentication scheme should meet. The proposed criteria have been grouped
into the categories Usability, Deployability and Security. The authors have applied their framework to
35 authentication methods, including conventional username-password schemes, password managers,
hardware tokens and OTP variants.

Whilst Bonneau et al. did an evaluation of user authentication methods in general, Rijswijk et
al. [75] aim to provide evaluation criteria particularly targeting two-factor authentication methods.
They have introduced six categories to judge two-factor authentication methods. These categories com-

15http://www.rcdevs.com/products/openotp/

http://www.rcdevs.com/products/openotp/

22 3. Related Work

prise Hardware-independence, Software-independence, Security, Costs, Open Standards Compliance
and Ease-of-Use. Based on these categories, they have evaluated several two factor authentication
schemes, including mobile TAN systems, mobile applications that compute OTPs and their newly pro-
posed authentication scheme Tiqr. A short review of Tiqr has been provided in Section 3.1.4.

To evaluate the security of our proposed authentication framework and the integrated authentication
methods, the defined criteria act as input for the definition of security threats and the subsequent deriva-
tion of objectives that have to be met by the integrated authentication methods. Chapter 7 includes a
detailed description of the methodology used for the security evaluation.

Chapter 4

Authentication Building Blocks

Based on the authentication methods presented in the previous chapter, this chapter extracts building
blocks found in multi-factor authentication methods. Furthermore, we discuss device features typically
available on mobile devices. From the extracted building blocks and the presented mobile device features,
authentication methods suitable for the mobile use are constructed in Chapter 5.

4.1 Building Blocks of Authentication Methods

Chapter 3 describes several methods for proving the factor possession in addition to username and pass-
word during login. In this section, we extract building blocks found in the previously described authen-
tication methods. In general, we can observe that the discussed authentication methods typically rely on
the user to provide some response to a challenge. The challenge-response schemes can be categorized
into two basic types.

(a) With FIDO and with schemes relying on the use of smart cards or other cryptographic tokens, the
verifier generates a challenge and transfers the challenge to the user’s token or mobile device. On the
mobile device, the token or authentication app performs some cryptographic operations and returns
the response to the verifier. After successful verification of the response, the verifier assumes that
the user is genuine and authorised to access the web service.

(b) In the case of OTPs, the challenge is often not supplied by the verifier but implemented as counter in
the authentication app or the challenge is derived from the current time. Therefore, methods relying
on OTP methods require a shared cryptographic key present with both, the user and the verifier.

When using asymmetric cryptography, the user needs to adequately protect the private key. Sym-
metric cryptography relies on some shared secret key between the user and the verifier. However, both
approaches require a key-storage facility on the mobile device. So far, we have identified the need for
some key-storage facility on the mobile device and a communication link from the verifier to the user in
order to distribute the challenge and return the response to the verifier. This communication link does
not necessarily have to present a data channel but can also require the user to manually enter some data.

For computing the response to a challenge, applications typically make use of cryptographic primi-
tives. These comprise the generation of digital signatures or the computation of a message authentication
code. Furthermore, authentication methods require mechanisms for protecting against common attacks.
For example, cloning of the device that represents the factor possession allows an attacker to perform au-
thentication without having access to the user’s mobile device. In addition, authentication methods also
have to protect against phishing, where the genuine device is used to compute the response to a chal-
lenge that can be used in a subsequent authentication process initiated by the attacker. Cryptographic
primitives are used to meet these security requirements.

23

24 4. Authentication Building Blocks

As additional protection against cloning or the theft of the device covering the second factor, a web
service might require proof that only the legitimate user is operating the mobile device. This can be
realised by requiring the user to present some knowledge. Most commonly, this is realised by prompting
the user for a password or PIN. If no password is entered in the process of identification, the application
can require the user to enter a password for employing a combination of knowledge and possession for
authentication.

Furthermore, it is desirable to inform the user about the current authentication process. Therefore,
methods for displaying information about the service she is authenticating for or the transaction she is
authorising can be displayed.

Summarising, an authentication method based on the challenge-response principle ideally comprises

• a communication link for exchanging the challenge and the computed response,

• the implementation of cryptographic primitives for computing the response to the challenge,

• key-storage facilities that adequately protect sensitive key material,

• mechanisms for binding the user to a single device and thus prevent cloning of the factor posses-
sion,

• an optional knowledge proof to make sure that the genuine user operates the device covering the
second factor

• and an optional way for displaying transaction-related data to the user.

Modern mobile devices offer a range of different communication technologies, sensors and consid-
erable computational power and storage space. Hence, these devices might well cover the just defined
functional requirements.

4.2 Mobile-Device Features

This section presents features and technologies available to modern mobile applications. This includes
the functioning of push notifications, storage options available on the device and a short review of other
promising features.

4.2.1 Service-to-Device Communication

The GSM standard defines the Short Message Service (SMS) that allows for the transmission of short text
messages using the GSM network. Messages are sent to the SMS center of the mobile network operator.
As soon as the recipient can be reached, the message is sent to the device and thus employing a so-
called store-and-forward mechanism. SMS messages are broadly supported by mobile devices. They are
used for advertising, news and multi-factor authentication, for example within SMS-based TAN systems.
However, SMS technology has various disadvantages. First, the message size is quite limited with a
maximum of 140 8-bit characters. Second, SMS messages do not satisfy the requirements of modern
mobile applications. It is fundamental to many mobile applications to deliver data in near real time. Data
is then processed by the service’s mobile application on the device. Some platforms, for example iOS,
do not allow for automatic processing of data received via SMS, as third-party applications do not have
access to the content of incoming SMS messages.

To meet the requirements of many modern mobile applications, push technology has emerged. Push
notifications refer to an Internet-based communication technology, which enables the transmission of
messages from a centralised server to a mobile device. For this purpose, the mobile device establishes

4.2. Mobile-Device Features 25

a connection with a central push-notification service and receives messages from this service over a
persistent TCP/IP connection. Each platform vendor, such as Google, Microsoft, Apple and BlackBerry,
provides and operates its own push-notification service. The different push-notification services differ
regarding the format of notifications and the API that is provided by the platform vendor.

Figure 4.1: In order to use push notifications, the application on the mobile device has to register
with the Push Notification Gateway. The obtained token has to be transmitted to the
Content Provider. By specifying the received token the Content Provider can send
messages to the mobile device via the platform specific push-notification service [77].

Figure 4.1 illustrates the general workflow for setting up push notifications for an application. If
a web service wants to send push notifications to a mobile device, the mobile device has to register
with the push-notification service first (Step (1.)). Only after registration, the mobile device is able to
obtain notifications from a specific content provider. Upon registration, the mobile device obtains a
token or registration ID (Step (2.)), which has to be transmitted to the content provider (Step (3.)). Using
this token or registration ID, the content provider can unambiguously specify the receiver of the push
notification. The desired message and data identifying the receiver are passed to the platform vendor’s
push-notification service (Step (4.)), from where it is forwarded to the mobile device (Step (5.)).

In the following, we shortly describe the push-notification systems of the two most popular mobile
platforms: Google Android and Apple iOS. We discuss the general functioning, the registration work-
flow, available features and security implications. In particular, we illustrate how the binding to the
device and a particular mobile application is realised and which mechanisms aim to protect the different
communication paths.

Google Cloud Messaging

Google Cloud Messaging (GCM) [28] offers push-notification services for Android devices. Therefore,
messages are sent from the content provider, which is in control of the application developer, to the
mobile application via the GCM Connection Server, which corresponds to the push-notification gateway
in Figure 4.1. The GCM services can be used for free. GCM allows sending a maximum of 4 Kilobytes
of data to the mobile device. Data can be represented as plain text or as a JSON-encoded data structure.
Currently, two communication protocols are supported: HTTP and Extensible Messaging and Presence
Protocol (XMPP) [64]. XMPP, originally named Jabber, enables upstream messages as well. This way,
mobile applications can send updates to the server.

In May 2015, Google announced changes regarding APIs and features of GCM. Since then, GCM
can be used for iOS devices as well and therefore, significantly reduces development effort when de-
veloping applications for multiple mobile platforms. There is a new plugin1 for the Apache Cordova

1https://github.com/gonzaloaune/GCMPushPlugin

https://github.com/gonzaloaune/GCMPushPlugin

26 4. Authentication Building Blocks

framework, which provides the new GCM features to iOS and Android devices. However, our frame-
work still uses the former GCM API as covered by another plugin2. This means that the subsequent
statements are valid for the old GCM system. The following remarks adhere to the GCM analysis of Li
et al. [48]. However, changes to the GCM system mainly affect the naming of APIs whereas the general
functioning remains untouched.

• Device binding

Android uses a process running in the background, to monitor incoming messages and wake up
subscribing applications. This GCM service is the same for all applications on the mobile device.
When registering push notifications for an application, the application uses the APIs provided by
the GCM service. The application fires an Intent3 with the content provider’s sender ID. The sender
ID is uniquely assigned when registering a content provider for push notifications using the Google
API console. The GCM service further sends a registration request to the GCM connection service.
This registration request includes the sender ID, which identifies the content provider, the unique
Android ID, which identifies the mobile device and the application ID, which is constructed from
the package name and, therefore, identifies the mobile application. The GCM generates a new
registration ID for the application on this specific device. The registration ID is used to locate the
right application on the right mobile device and, therefore, has to be added to each push notification
that should be sent. When sending a message, the content provider hands the message data and the
recipient’s registration ID to the GCM Connection Server. The GCM Connection Server stores the
message and delivers it as soon as the device is online. On the device, the notification is delivered
to the GCM service, which then forwards it to the right application.

This makes clear that the registration ID has to be kept confidential. Manipulation of the registra-
tion ID might lead to the wrong party receiving messages intended for a legitimate user. Therefore,
special care has to be taken for the protection of the registration ID during transmission from the
mobile application to the content provider. Furthermore, it has to be protected when the applica-
tion communicates with the GCM service on the client and during communication between content
provider and the GCM Connection Servers.

• Communication: Content Provider↔ Push Notification Gateway

The GCM Connection Server provides an HTTPS endpoint only. When sending a push notifica-
tion, the content provider has to supply its API key within the HTTP Authorization request-header
field [23]. Therefore, it is important that the API key is kept confidential on the server.

• Communication: Push Notification Gateway↔ Mobile Device

During registration, the GCM service on the device contacts the GCM Connection Server. Li et
al. [48] have inspected the sent data packages and conclude that registration requests for obtaining
the registration ID use SSL/TLS.

• Communication: Mobile Device↔ Content Provider

The communication path between device and content provider is needed to send the newly ob-
tained registration ID to the content provider. Application developers have to take care of adequate
protection. This involves the use of SSL/TLS and techniques for detecting man-in-the-middle
attacks, e.g. certificate pinning [73].

2https://github.com/phonegap/phonegap-plugin-push
3Google Android uses so-called Intents for inter-process communication. An Intent is the description of an operation to be

performed.

https://github.com/phonegap/phonegap-plugin-push

4.2. Mobile-Device Features 27

Apple Push Notification Service

Apple Push Notification Service (APNS) is the equivalent of GCM but for iOS devices. In order to
set up the push-notification service, Apple requires a paid Apple Developer Account. With APNS, the
content provider can send up to 2 Kilobytes per message to the mobile device. The payload has to be
JSON-encoded. Apple has put various mechanisms in place for providing security to its push-notification
system [12]. In the following, deployed security mechanisms at each communication link are listed.

Figure 4.2: APNS generates a device token based on data extracted from the unique device cer-
tificate. The device token is encrypted with the token key, which is only available to
APNS. The device receives the encrypted device token and forwards it to the content
provider. When receiving a message from the content provider, APNS decrypts the
device token to identify the recipient of the message. (Figure adheres to [12])

• Device binding

Each application needs to register before being able to receive push notifications. This is typically
done right after the application is installed on the device. The registration request is performed
by calling an API. The first time an application calls the respective API, iOS presents a dialog
that asks for the user’s permission to present the types of notifications the app registered for. The
system forwards the registration request to the APNS.

Each iOS device features a device certificate, used for setting up a mutually authenticated SSL/TLS
connection to the APNS. Based on data extracted from the device certificate, a device token is
generated. The device token, therefore, contains a unique device identifier. The device token is
encrypted with a token key only available to APNS. The encrypted device token is then returned
to the device. As the device token is constructed using the unique device identifier, the APNS
uses it for routing notifications to the right application on a particular mobile device. Furthermore,
the token key ensures that only the APNS can issue device tokens. When receiving notifications
from the content provider, the APNS can check the validity of the device token by decrypting it.
The notification is then forwarded to the device uniquely identified by the decrypted device token.
Figure 4.2 illustrates the handling of the device token.

• Communication: Content Provider↔ Push Notification Gateway

When registering a content provider with APNS, the developer obtains a cryptographic key pair
and the corresponding public key certificate. The certificate includes the bundle ID of the ap-
plication (i.e. the package name). For that reason, the provider certificate is only valid for one
application. When communicating with APNS, a mutually authenticated SSL/TLS connection is
required. This way, both, the content provider and APNS, can validate each other’s identity.

• Communication: Push Notification Gateway↔ Mobile Device

28 4. Authentication Building Blocks

As previously mentioned, each iOS device possesses a unique key pair and a certificate. The con-
nection between APNS and the mobile device is protected using SSL/TLS with client and server
authentication as well. The required key and certificate are obtained when activating the mobile
device. According to Apple, the obtained credentials are stored using the device’s Keychain, a
hardware-backed key store available to iOS devices. When exchanging heartbeat messages with
APNS, the mobile device initiates an SSL/TLS connection and receives the server’s certificate.
The device validates the server certificate and returns the device certificate to APNS. After valida-
tion of the device certificate, the SSL/TLS connection has been established. Figure 4.3 illustrates
this procedure.

Figure 4.3: In order to set up a secure connection between the mobile device and APNS, the mobile
device and APNS exchange their respective certificate (figure adheres to [12]).

• Communication: Mobile Device↔ Content Provider

The application has to transfer the obtained device token to the content provider to enable the con-
tent provider to send messages to the device. The application developer needs to ensure adequate
protection of this communication path.

Although GCM and APNS provide protection mechanisms for the various communication links, pay-
load data is available in plaintext at their premises. This can present a serious security risk if potentially
confidential data is transmitted to the device. Furthermore, push-notification services lack mechanisms
for providing integrity and proving that a device has received a specific push notification. These secu-
rity mechanisms have to be put in place from the developer of the specific application and the content
provider associated with this application.

When transferring sensitive data, the so-called poke-and-poll model should be preferred [77]. With
poke-and-poll, the mobile application only receives the information that new data is available. This way,
the application can retrieve the data over a direct and assumably secure connection with the content
provider. Hence, the push notifications sent do not include sensitive data and do not carry application
state.

4.2.2 Storage

Typically, mobile applications require facilities for storing application data, user preferences and other
data locally on the device. Special considerations apply to applications that store sensitive data. The
developed authentication framework, for example, represents an application that requires the storage of
sensitive data. Authentication methods relying on the challenge-response principle require cryptographic
primitives for computing the response to a given challenge. In order to protect the used cryptographic
keys against various threats, such as malware or theft of the device, the authentication app requires
storage facilities appropriate for storing key material.

4.2. Mobile-Device Features 29

In the following, storage options available on mobile devices are discussed. We focus on storage
options that can be used by applications developed using the cross-platform framework Apache Cordova.
There are four different ways to store data locally in Apache Cordova applications: on the one hand,
the WebView itself provides WebStorage and IndexedDB, which conform to specifications from the
World Wide Web Consortium (W3C) and the now outdated WebSQL technology. On the other hand,
developers can use the Cordova File Plugin, for accessing the local file system. As we put our focus on
storing sensitive data, such as cryptographic keys, methods for accessing the platform-specific key store
are discussed as well.

WebStorage

WebStorage as defined within a W3C Candidate Recommendation [34] provides persistent storage fa-
cilities with an API integrated into the web browser. WebStorage is also often referred to as HTML5
storage. WebStorage allows developers to store key-value pairs where both, key and value items, are
string values. Traditionally, small amounts of data were mainly stored within session cookies. Web-
Storage aims to provide additional storage facilities beyond session cookies. When using cookies for
storing data, the stored data is transmitted with every request. Therefore, bigger amounts of data cause
unnecessary network traffic and data might get leaked during transmission. WebStorage eliminates the
need for transferring the data with every request.

The WebStorage standard defines two implementations of the WebStorage interface. A session-based
store similar to cookies, the so-called Session Storage and a persistent store spawning over multiple
sessions, the Local Storage.

The Session Storage is available for each browsing context. Therefore, data items stored in the
Session Storage are accessible to any page from the same site opened within the same browser window.
In contrary to conventional session cookies, data is not accessible to the same site opened in a different
browser window.

Local Storage, on the other hand, provides a storage object for each origin (protocol, domain and
port). Items stored in Local Storage are shared across every window or tab running within the same
origin. Thus, the stored items are also accessible when a user opens a site from a specific origin within
another browser window. The Local Storage is cleared either when the user requests the browser to do
so (e.g. by clearing the browsing data) or in the case of limited storage space. Due to its ease of use, the
Local Storage is a popular choice for web application developers wanting to locally store data. However,
Local Storage only allows string values, therefore, complex objects that cannot be serialised to string
objects cannot be stored in Local Storage. In addition, Local Storage only supports data retrieval based
on the provided key, thus Local Storage is not suitable for use cases that require more complex data
queries.

When using Apache Cordova for developing mobile applications, the application is rendered within
a WebView, an embedded browser window. The WebStorage API is provided by all mobile browsers
that provide a WebView component4. Each application is assigned its own cache, cookie store and Local
Storage area [25]. This is particularly important, as Apache Cordova applications do not support the
notion of origins. Each application is executed in the origin file://, without specification of any host
name or port number. By having their own storage areas, applications are not able to access other
application’s data items in Local Storage. The Local Storage of Apache Cordova applications is cleared
when uninstalling the application from the device, manually calling the clear() method or the user
clearing application data in the application settings5.

4http://caniuse.com/#search=webstorage
5http://stackoverflow.com/questions/15184567/is-local-storage-for-a-phonegap-app-on-an-android-

device-separate-from-the-built

http://caniuse.com/#search=webstorage
http://stackoverflow.com/questions/15184567/is-local-storage-for-a-phonegap-app-on-an-android-device-separate-from-the-built
http://stackoverflow.com/questions/15184567/is-local-storage-for-a-phonegap-app-on-an-android-device-separate-from-the-built

30 4. Authentication Building Blocks

WebSQL

WebStorage might be sufficient for locally storing simple keys and their respective values. However,
WebStorage does not provide means for searching over values or retrieving keys in a pre-defined order.
That is where classical database systems come in. The WebSQL API, supported by WebViews on An-
droid and iOS devices, offers support for relational databases [33]. WebSQL represents a client-side
database that supports classical SQL queries. Before using a WebSQL database, the developer has to
define a schema specifying the layout of the database. Currently, WebSQL is broadly supported on mo-
bile platforms6. However, in 2010 the W3C Working Group announced that the draft for the WebSQL
specification is no longer maintained.

IndexedDB

The W3C has started working on an evolution of WebSQL, the so-called IndexedDB [53]. The In-
dexedDB specification has been finished and is available as W3C Recommendation since the beginning
of 2015. IndexedDB represents a large SQL table filled with key-value pairs. When creating a new
database, no schema has to be provided. Developers can store unstructured data, such as complex ob-
jects in the IndexedDB database. To enable more complex queries, IndexedDB allows developers to
specify values as indexes in addition to the key. Therefore, IndexedDB supports queries over values as
well. Currently, all major browsers support the IndexedDB API7.

Summarising, each Apache Cordova application includes separate files that store the IndexedDB
database and files for the Local Storage. Although these files are stored within the internal storage of
the application and thus protected against access from other applications, attackers with root access or
attackers with full access to the hard drive of the device may be able to retrieve the therein stored data.
The presented storage options provide no specific data protection mechanisms.

In the following, storage options that are implemented on top of native device APIs and thus provided
to Apache Cordova applications through plugins are discussed. All statements regarding the security
of stored data equally apply to the previously described storage mechanisms, as these data stores are
implemented as conventional files in the file system.

File System

Apache Cordova applications can access the mobile device’s filesystem by using a plugin. The most
popular plugin8 is based on the interfaces defined by the W3C Working Draft File API [63]. The plugin
allows developers to choose the desired storage location. Among others, for example, the application’s
internal storage, external storage (if available) or a cache folder.

In order to protect all data stored on the mobile device, mobile platforms offer file-system encryption.
On iOS devices and the newest generation of Android devices, the encryption of the file system is enabled
by default [13][30]. When using devices running Android version prior 5 or migrating from a lower
Android version to version 5 or later, encryption has to be explicitly enabled. However, differences
regarding the implementation of file-system encryption exist. In the following, the iOS and Android
encryption system is described.

Apple iOS devices include a chip—further referred to as hardware element—that features a unique
device key, the UID key. A key derived from the UID key is used to encrypt the data partition of the
device. By including a hardware element in the encryption and decryption process of the file system,
attempts to decrypt the file system have to be carried out on the device itself. It is not possible to access

6http://caniuse.com/#search=websql
7http://caniuse.com/#search=indexeddb
8https://github.com/apache/cordova-plugin-file/blob/master/README.md

http://caniuse.com/#search=websql
http://caniuse.com/#search=indexeddb
https://github.com/apache/cordova-plugin-file/blob/master/README.md

4.2. Mobile-Device Features 31

data within file-system images that are constructed by cloning or extracting the device storage. This way,
brute-force attacks on the key cannot be parallelised and thus are slowed down considerably. Apple’s
file-system encryption features a substantial weakness: the encryption system does not include the user’s
passcode. So, when applying a jailbreak, the attacker can bypass the device lock and, therefore, the lock
screen password and access the decrypted file system.

To counterfeit this weakness, Apple has introduced an additional file-based encryption system called
Data Protection. The Data Protection system is used on top of file-system encryption and provides
additional protection for single files. The Data Protection system should be used by developers to protect
sensitive data. The encryption keys are derived from the key in the hardware element and the user’s lock
screen password. When jailbreaking a device, the attacker gains access to the file system. However,
files that have been protected using the Data Protection system can only be decrypted, if the attacker
gains knowledge of the correct passcode. The Data Protection system is activated by setting a so-called
Protection Class. The Protection Class specifies when to encrypt and decrypt a specific file. This is
useful for scenarios where an application requires file access even when the device is locked.

In contrast to iOS, the Android file-system encryption solely relies on a key derived from the user’s
password. The user has to enter her password when booting the Android device. The password and a
random salt value are used to derive a symmetric key. This derived key is then used to protect the file
encryption master key. Android does not depend on a hardware element for file-system encryption. This
way, attackers can attempt brute-force attacks on the password even off-device. When, for example,
using several cloud instances, finding the correct password is sped up considerably. The security of
Android’s file-system encryption, therefore, heavily depends on the complexity of the chosen password.
Teufl et al. have conducted a detailed analysis of brute-force times required to find the correct decryption
key. For this listing, as well as for further information regarding the Android and iOS encryption systems
we refer to the work of Teufl et al. [69][70][71].

For storing cryptographic key material and therefore arguably the most sensitive data, both platforms
provide dedicated key-storage mechanisms. The following paragraphs shortly describe the mechanisms
available on the Android and iOS platform.

Dedicated Key Storage

The iOS Data Protection system is also used to protect the entries within the iOS Keychain, a dedi-
cated data store for cryptographic keys, passwords and other credentials [71]. There exist two main
differences to Data Protection for files: Data Protection for the Keychain varies in the set of available
Protection Classes. Furthermore, it introduces the possibility to specify whether the Keychain entry can
be transferred to another device or is included in the backup. The security implications are equal to Data
Protection for files. Hence, Keychain entries are protected in the case of a jailbreak and the security of
credentials stored in the Keychain then mainly depends on the complexity of the chosen password.

The Android platform allows applications to use the so-called Keystore to store cryptographic keys
and certificates [26]. Until recently, the Keystore could only handle private keys as used for asymmetric
cryptography. Since Android version 6.0, the Keystore can be used for symmetric key material as well.
Keys stored in the Keystore can be used for cryptographic operations, but the raw cryptographic key can-
not be exported from the Keystore. The keys stored in the Keystore are only accessible to the application
itself, and other applications cannot access those Keystore entries.

Different variants of the Android Keystore exist: depending on the device, the implementation can
either be software- or hardware-based [70]. Android provides an API call in order to enable developers
to check whether the mobile device features a secure hardware Keystore. For the software-based imple-
mentation, an AES key is derived from the user’s passcode. The passcode is the same passcode as used
for Android’s file-system encryption and entered during the boot process. The password-derived key is
used to encrypt a master key that protects all Keystore entries. For hardware-based implementations,

32 4. Authentication Building Blocks

a master key resides inside secure hardware (e.g., Trusted Execution Environment or Secure Element).
The Keystore entries are stored on the file system and encrypted with the master key from the hardware
element. The master key in the hardware element is additionally protected with the password-derived
key.

Depending on the implementation, a successful brute-force attack on the user’s passcode has different
implications: for software-based implementations, the attacker can decrypt the keys, whilst for hardware-
based implementations, the master key cannot be extracted from the hardware element and thus the
attacker cannot decrypt the Keystore entries. However, the attacker may still be able to use the keys
stored in the Keystore on the specific mobile device.

Summary

Summarising, developers of Apache Cordova applications have various options for storing data locally
on the mobile device. For small amounts of simple data structures, Local Storage seems to be a good
choice. Local Storage is easy to use for developers, as it requires no knowledge about the underlying
mobile platform and omits the overhead for setting up a database scheme. It might be feasible to protect
sensitive data by deploying encryption using a key derived from a user-supplied password. However, the
implementation of such protection mechanisms can be quite erroneous (e.g., using too few iterations for
the password-based key derivation or relying on a fixed or low-entropy salt value). Thus, Local Storage
should not be used for storing sensitive data. When storing sensitive data, it is best to rely on the platform
features and use the provided key-storage mechanisms. Apache Cordova allows the use of plugins that
make native device APIs available to the application running in the WebView. For our authentication
framework, we have implemented a plugin that accesses the Android Keystore and the iOS Keychain.
For more information, we refer to Chapter 6.

4.2.3 Sensors

In addition to push notifications and the storage of data locally on the mobile device, devices offer a
multitude of features and sensors. Modern mobile devices feature communication technologies such as
NFC and Bluetooth. These communication technologies can, for example, be used to communicate with
a hardware token such as the YubiKey NEO. Such tokens offer key-storage facilities and act as a second
factor during authentication.

Modern mobile devices feature a camera. The camera of the mobile device can be used to scan a QR
code or any other type of barcode. The use of QR codes has emerged to a popular way of transferring
small amounts of data and therefore, represents an easy-to-use communication link. The Google Au-
thenticator application, for example, uses QR codes for transferring the secret key to the mobile device.

Among other sensors, mobile devices include GPS sensors that allow to determine the device’s cur-
rent position. Inspired by Geo Control and Geo Blocking features offered by banks and credit card
companies9, these sensors might be used to restrict the acceptance of authentication on a geographical
basis and discover anomalies in the usage habits of the user.

9https://www.six-payment-services.com/financial-institutions/en/shared/success-stories/

geoblocking.html

https://www.six-payment-services.com/financial-institutions/en/shared/success-stories/geoblocking.html
https://www.six-payment-services.com/financial-institutions/en/shared/success-stories/geoblocking.html

Chapter 5

Authentication Methods

Mobile devices offer a multitude of different features and sensors. Based on the building blocks presented
in Chapter 4 this chapter presents authentication methods that have been constructed in the course of this
thesis. The constructed authentication methods have been integrated into the developed authentication
framework, which will be presented in the next chapter.

5.1 Terminology

For the sake of clarity, we first introduce terms that are heavily used throughout this chapter. The prover
denotes a user that wants to authenticate. Therefore, the prover uses the authentication app that imple-
ments different authentication methods. The authentication process describes the set of authentication
methods that is required to state whether the prover is genuine. The verifier describes the web service or
identity provider the prover is authenticating at.

Furthermore, we are operating on the assumption that each successful authentication process relies
on a combination of proving possession and proving knowledge to the verifier. Therefore, our analysis
assumes that the user first identifies to the web service. This can, for example, be realised by prompting
the prover for her username or some other identification. As a next step, the prover proves the factors
knowledge and possession. The factor knowledge can already be added to the identification process if the
web service prompts the prover for her username and password or can be provided during the possession
proof. Biometrics are not considered, as secure biometric verification is not yet widely deployed on
mobile devices. In addition, attacks on biometric systems deployed on current mobile devices are known
[82]. However, we do not rule out biometric verification for future implementations of authentication
methods.

5.2 Overview

After having extracted the building blocks of authentication methods and having presented some features
available to modern mobile devices, we continue with the presentation of authentication methods that
have been implemented using our authentication framework.

So far, the focus is put on the implementation of authentication methods using OTPs. Therefore, we
reuse the algorithms defined by [56] and [57]. However, we have added new variations regarding the
protection of the used key and changing challenges. We have chosen to start with variants of authentica-
tion methods using OTPs, as those are already widely deployed by industry. In addition, these methods
require only a few adaptations to integrate them with existing SMS-based TAN systems.

33

34 5. Authentication Methods

For each implemented authentication method, its usage scenario and requirements towards the au-
thentication method are stated. We proceed with the registration workflow and steps involved in a typical
authentication process. From this overview, we assess how the defined requirements have been met and
give a short disclaimer on security implications of the implemented authentication method. The detailed
security evaluation of all authentication method follows in Chapter 7.

5.3 Triple Key AES OTP

The first of the implemented authentication methods requires three different cryptographic keys to com-
pute the correct OTP. It relies on a key sent by push notification, a key stored on the mobile device and
a key encoded in a QR code that has to be scanned during the authentication process.

5.3.1 Usage Scenario

This authentication method uses the mobile device to prove the factor possession during authentication.
The prover supplies username and password at a desktop computer and uses her device to scan a QR code
and receive a push notification to compute the result to the challenge. In total, three cryptographic keys
are required to correctly compute the response. This authentication method is intended as a replacement
for SMS-based TAN systems.

5.3.2 Requirements

For this authentication method the following requirements should be considered:

(a) The authentication method should protect against cloning. Hence, an attacker should not be able to
equip a second mobile device with the capabilities to compute a correct response to the challenge.

(b) The authentication method should employ mechanisms for device binding. Thus, even if all data is
cloned to a second device or an attacker extracts the device storage, it is not possible to complete
authentication.

(c) This authentication method should not require additional password input on the mobile device, as
the password (factor knowledge) is already entered on the desktop system.

(d) The authentication process must not be performed in the background. Thus, it is required that the
prover triggers the authentication method or sets some action to complete authentication.

5.3.3 Workflow: Registration

The following paragraph summarises the necessary steps for setting up the Triple Key AES OTP au-
thentication method. We assume that the mobile application has already registered with the platform’s
push-notification service and hence locally stores the obtained registration ID or device token. We will
further refer to the device token as used by iOS devices and the registration ID as used by Android as
Push ID.

1. The server-side application randomly generates a 256-bit symmetric key. This cryptographic key
and some metadata are encoded in the form of a QR code and displayed to the prover.

2. The prover opens the authentication app on the mobile device and adds a new so-called account1

by scanning the provided QR code.
1The authentication app on the mobile device allows for adding multiple accounts. An account denotes an authentication

method for a specific web service.

5.3. Triple Key AES OTP 35

Figure 5.1: Workflows and cryptographic keys involved in the authentication method Triple Key
AES OTP.

36 5. Authentication Methods

3. The authentication app on the mobile device decodes the data from the QR code. The symmetric
key encoded in the QR code is stored persistently on the mobile device using the device’s key-
storage facilities.

4. The metadata transferred in the QR code includes a response URL, to which the mobile authen-
tication app sends the Push ID obtained by the platform’s push-notification service. The Push
ID has been obtained by the mobile application before and stored securely using the key-storage
facilities.

5. After receiving the Push ID, the server is able to send push notifications to the mobile device.

5.3.4 Workflow: Authentication

In the following, we describe a typical authentication workflow. We assume that the authentication
method has been set up correctly. A 256-bit secret key (Key_A) is stored in the device’s key storage and
the push-notification system has been set up for this application. Hence, the Push ID has been transmitted
to the server. Figure 5.1 illustrates the workflow.

1. The application on the server side generates two random keys with 256-bit length: Key_1_random
and Key_2_random. For the key generation a secure pseudo-random number generator (PRNG) is
used.

2. Key_1_random is encrypted with Key_A using the AES algorithm in Electronic Codebook (ECB)
mode. ECB mode lacks an initialisation vector, therefore, identical plaintext result in the same
ciphertext. Furthermore, ECB mode allows attackers to detect patterns in the ciphertext. However,
as we encrypt random sequences of bytes without any reoccurring patterns, it is justifiable to use
AES in ECB mode.

3. Key_2_random is encrypted using Key_1_random with AES in ECB mode.

4. The encrypted Key_1_random is transmitted via the mobile platform’s push-notification system to
the authentication app on the mobile device.

5. The encrypted Key_2_random is encoded in the form of a QR code and displayed in the prover’s
desktop browser.

6. The received push notification triggers the correct user interface for the authentication method,
which includes user instructions how to proceed the authentication process.

7. The prover scans the provided QR code.

8. As the authentication app now obtained all three keys, the decryption process starts. Key_A, which
is stored in the key store of the mobile device is used to decrypt the encrypted Key_1_random. The
decrypted Key_1_random is used to decrypt the encrypted Key_2_random.

9. The authentication app computes an Hashed Message Authentication Code (HMAC) code using
Key_2_random and the counter stored on the mobile device as input. Based on the obtained HMAC
code, the required 6-digit OTP is computed according to RFC 4226 [56].

10. The prover enters the computed OTP at the web form provided by the server.

11. The server uses Key_2_random and the counter stored for this prover to compute the OTP. If both
OTPs match, the prover has proven the factor possession.

5.4. Triple Key AES OTP with Knowledge Proof 37

5.3.5 Assessment

This section briefly summarises implications of the Triple Key AES OTP method and, therefore, assesses
how the defined requirements have been met. For the detailed security evaluation, we refer to Chapter 7.

The authentication method Triple Key AES OTP uses the prover’s mobile device as the second fac-
tor during authentication. Thereby, the user proves possession of the mobile device. It is crucial that
attackers cannot clone the device covering the second factor. Therefore, this authentication method uses
device binding in the form of a combination of cryptographic key material stored on the device and the
platform’s push-notification system.

By using the hardware-backed key-storage facilities available to some platforms, attackers cannot
easily copy the cryptographic key material (Requirement (a)). Even if the cryptographic key falls in the
hand of an attacker, the attacker needs to receive both the key from the QR code and the key sent as push
notification to successfully complete the authentication method. The Push ID from the push-notification
system (Requirement (b)) uniquely identifies an application on a specific mobile device. Hence, a second
device does not receive notifications intended for the legitimate receiver. Summarising, push notifications
can only be received by the device, whose Push ID is known to the server application. Special focus has
to be put on assuring that the Push ID cannot be overwritten on the server side.

Only by getting hold of all three keys, the correct OTP can be computed. Thus, neither sniffing the
push notification key nor accessing only the key stored persistently on the device allows the attacker to
authenticate.

The prover does not have to enter an additional password on the mobile device (Requirement (c)). It is
recommended, however, that the device holder protects her device against unauthorised access by setting
a lock-screen password. On some platforms, the lock-screen password acts as input to platform-specific
encryption mechanisms. For more information we refer to Section 4.2.2.

Although the prover does not have to express consent by providing a password, the authentication
method requires explicit user action. This has been realised by requiring the prover to manually scan the
QR code and further enter the computed OTP on the desktop computer (Requirement (d)).

5.4 Triple Key AES OTP with Knowledge Proof

We extend the Triple Key AES OTP method with a proof of knowledge. By employing password-based
key derivation, we ensure that the prover has entered the correct password on the mobile device.

5.4.1 Usage Scenario

This authentication method combines a possession proof and the factor knowledge. The user proves
possession similar to the Triple Key AES OTP method by using a key stored in the device’s key storage
and by assuring device binding by using the mobile platform’s push-notification system. In addition to
scanning a QR code, the prover has to enter a password on the mobile device. As a consequence, the
authentication service can make sure that only legitimate persons operate the mobile device covering the
second factor. This authentication method is intended as a replacement for SMS-based TAN systems.
Although, entering a password in the web browser can be omitted, the prover has to identify towards the
authentication service. The identification of the prover is necessary for sending the push notification to
the desired mobile device.

5.4.2 Requirements

For this authentication method the following requirements should be considered:

38 5. Authentication Methods

(a) The authentication method should protect against cloning. Hence, an attacker should not be able to
equip a second mobile device with the capabilities to compute a correct response to the challenge.

(b) The authentication method should employ mechanisms for device binding. Thus even if all data is
cloned to a second device or an attacker extracts the device storage it is not possible to complete
authentication.

(c) The authentication method should employ mechanisms to ensure that the legitimate prover is oper-
ating the device covering the second factor. Therefore, the server application has to ensure that the
prover has entered a password on the mobile device.

(d) The authentication process must not be performed in the background. Thus, it is required that the
prover triggers the authentication method or sets some action to complete authentication.

(e) The authentication method should allow transaction binding. Meaning, it should be possible to map
the sent challenge to a specific authentication transaction.

5.4.3 Workflow: Registration

In the following, the necessary steps for setting up this authentication method are summarised. Again, we
assume that the mobile application has already registered with the platform’s push-notification service
and hence locally stores the obtained Push ID.

1. The server-side application randomly generates a 256-bit symmetric key. Furthermore, a 128-bit
random salt is generated. The cryptographic key, the salt and some metadata are encoded in the
form of a QR code and displayed to the prover.

2. The server-side application prompts the prover to enter a password. The previously computed salt
and the password act as input for the password-based key derivation function SCrypt [68]. The
derived key is stored on the server-side, whereas the entered password is not stored.

3. The prover opens the authentication app on the mobile device and adds a new account by scanning
the provided QR code.

4. The authentication app on the mobile device decodes the data from the QR code. The symmetric
key and the salt value encoded in the QR code are both stored persistently on the mobile device
using the device’s key-storage facilities.

5. The metadata transferred in the QR code include a response URL, to which the mobile authentica-
tion app sends the Push ID obtained by the platform’s push-notification service. The Push ID has
been obtained by the mobile application before and stored securely using the key-storage facilities.

6. After receiving the Push ID, the server is able to send push notifications to the mobile device.

5.4.4 Workflow: Authentication

In the following, we describe a typical authentication workflow. We assume that the authentication
method has been set up correctly. Hence, the 256-bit secret key (Key_A) and the 128-bit salt value are
stored in the device’s key storage and the push notification system has been set up for this application.
Hence, the Push ID has been transmitted to the server). Both, the key derived from the prover’s password
(Key_PW_Derived) and the persistent device key (Key_A) are stored on the server side. Figure 5.2
illustrates the involved cryptographic keys and operations.

5.4. Triple Key AES OTP with Knowledge Proof 39

Figure 5.2: Workflows and cryptographic keys involved in the authentication method Triple Key
AES OTP with Knowledge Proof.

40 5. Authentication Methods

1. The application on the server side generates the random 256-bit Key_random and the random
number nonce. Therefore, a secure PRNG is used. The nonce represents a transaction-specific
challenge.

2. Key_random is encrypted with Key_PW_Derived using the AES algorithm in ECB mode.

3. The random nonce is encrypted using the persistent device key Key_A with AES in ECB mode.

4. The encrypted nonce is transmitted via the mobile platform’s push-notification system to the au-
thentication app on the mobile device.

5. The encrypted Key_random is encoded in the form of a QR code and displayed in the user’s desktop
browser.

6. The received push notification triggers the correct user interface for the authentication method,
which includes user instructions.

7. The prover scans the provided QR code and is prompted for her password.

8. Using the entered password and the salt stored on the mobile device, Key_PW_Derived is derived.
The encrypted Key_random is decrypted using the password-derived key.

9. Key_A, which is stored in the key store on the mobile device is used to decrypt the encrypted nonce
from the push notification.

10. The authentication app computes an HMAC code using Key_random and the decrypted nonce.
Based on the obtained HMAC code, the required 6-digit OTP is computed according to RFC 4226
[56].

11. The prover enters the computed OTP at the web form provided by the server.

12. The server uses Key_random and the transaction-specific nonce to compute the OTP. If both OTPs
match, the user has proven the factor possession.

5.4.5 Assessment

The authentication method Triple Key AES OTP with Knowledge Proof uses the prover’s mobile de-
vice to provide a combination of knowledge and possession proof. This authentication method com-
plies with Requirement (a) and Requirement (b) by storing sensitive data using the device’s hardware-
backed key-storage facilities and employing additional device binding through the mobile platform’s
push-notification service.

To compute the correct OTP, the prover requires the persistent key stored on the device, the nonce
encoded in the push notification, the random key encoded in the QR code and a key derived from the
prover’s password. Only if all of these values are correct, the correct OTP can be computed. This way,
the authentication service can ensure that the correct password has been entered on the mobile device
(Requirement (c)).

By requiring a password on the mobile device and scanning a QR code, the authentication method
ensures the prover’s explicit consent for a transaction (Requirement (d)).

In order to meet Requirement (e), we use a nonce provided from the server. Exchanging the supplied
random value with e.g. a transaction-specific identifier, the first part of a hash value or some other token
allows for a more concrete transaction binding.

Chapter 7 evaluates the security implications of this combined proof of possession and knowledge in
detail.

5.5. Double Key AES OTP with Knowledge Proof 41

5.5 Double Key AES OTP with Knowledge Proof

This section describes a variation of Triple Key AES with Knowledge Proof, which is designed for the
mobile-only use. It requires two cryptographic keys and a random nonce for computing the correct OTP.
One key is stored in the key store on the mobile device and the other key is derived from a user-supplied
password. The password-derived key is used to decrypt the random nonce sent via the mobile platform’s
push-notification service.

5.5.1 Usage Scenario

This authentication method presents a variation of Triple Key AES with Knowledge Proof without re-
quiring a separate desktop computer for conducting authentication. Therefore, the user proves posses-
sion by using a key stored in the device’s key storage and by assuring device binding by using the mobile
platform’s push-notification system. As the prover has to enter a password on the mobile device, the
authentication service can make sure that only legitimate persons operate the mobile device covering the
second factor. This authentication method is intended as a replacement for SMS-based TAN systems.
The goal is to provide an authentication method that can be triggered within the web browser on the
mobile device and further allows to perform the entire authentication process on the same mobile device.

5.5.2 Requirements

For this authentication method the following requirements should be considered:

(a) The authentication method should protect against cloning. Hence, an attacker should not be able to
equip a second mobile device with the capabilities to compute a correct response to the challenge.

(b) The authentication method should employ mechanisms for device binding. Thus even if all data is
cloned to a second device or an attacker extracts the device storage it is not possible to complete
authentication.

(c) The authentication method should employ mechanisms to ensure that the legitimate user is operating
the device covering the second factor. Therefore, the server application has to ensure that the prover
has entered a password on the mobile device.

(d) The authentication process must not be performed in the background. Thus, it is required that the
prover triggers the authentication method or sets some action to complete authentication.

(e) The authentication method should allow transaction binding. Meaning, it should be possible to map
the sent challenge to a specific authentication transaction.

(f) Furthermore, this authentication method should be suitable for mobile-only scenarios, where no web
browser on a separate computer is used during the authentication process.

5.5.3 Workflow: Registration

In the following, the necessary steps for setting up this authentication method are summarised. Again, we
assume that the mobile application has already registered with the platform’s push-notification service
and hence locally stores the obtained Push ID. Although this authentication method is designed for the
mobile-only use case, a web browser on a separate computer is required for registration.

1. The server-side application randomly generates a 256-bit symmetric key. Furthermore, a 128-bit
random salt is generated. The cryptographic key, the salt and some metadata are encoded in the
form of a QR code and displayed to the prover.

42 5. Authentication Methods

2. The server-side application prompts the prover to enter a password. The previously computed salt
and the password act as input for the password-based key derivation function SCrypt. The derived
key is stored on the server-side, whereas the entered password is not stored.

3. The prover opens the authentication app on the mobile device and adds a new account by scanning
the provided QR code.

4. The authentication app on the mobile device decodes the data from the QR code. The symmetric
key and the salt value encoded in the QR code are both stored persistently on the mobile device
using the device’s key-storage facilities.

5. The metadata transferred in the QR code includes a response URL, to which the mobile authen-
tication app sends the Push ID obtained by the platform’s push-notification service. The Push
ID has been obtained by the mobile application before and stored securely using the key-storage
facilities.

6. After receiving the Push ID, the server is able to send push notifications to the mobile device.

5.5.4 Workflow: Authentication

Figure 5.3: Workflows and cryptographic keys involved in the authentication method Double Key
AES OTP with Knowledge Proof.

5.5. Double Key AES OTP with Knowledge Proof 43

In the following, we describe a typical authentication workflow. We assume that the authentication
method has been set up correctly. Hence, the 256-bit secret key (Key_A) and the 128-bit salt value
are stored in the device’s key storage and the push-notification system has been set up for this appli-
cation. Both, the key derived from the prover’s password (Key_PW_Derived) and the persistent device
key (Key_A) are stored on the server side. Figure 5.3 illustrates the involved cryptographic keys and
operations.

1. The application on the server side generates the random number nonce. Therefore, a secure PRNG
is used. The nonce represents a transaction-specific challenge.

2. The random nonce is encrypted with Key_PW_Derived using the AES algorithm in ECB mode.

3. The encrypted nonce is transmitted via the mobile platform’s push-notification system to the au-
thentication application on the mobile device.

4. The received push notification triggers the correct user interface for the authentication method.

5. The application prompts the prover for her password.

6. Using the entered password and the salt stored on the mobile device, Key_PW_Derived is derived.
The encrypted nonce is decrypted using the password-derived key.

7. The authentication app computes an HMAC code using Key_A, which is stored in the key store
of the mobile device and the decrypted nonce. Based on the obtained HMAC code, the required
6-digit OTP is computed according to RFC 4226 [56].

8. The prover enters the computed OTP at the web form provided by the server.

9. The server uses the stored Key_A and the transaction-specific nonce to compute the OTP. If both
OTPs match, the user has proven the factor possession.

5.5.5 Assessment

The here presented authentication method complies with Requirement (a) and Requirement (b) by storing
sensitive data using the device’s hardware-backed key-storage facilities and employing additional device
binding through the mobile platform’s push-notification service.

This authentication method requires the prover to enter a password. Therefore, the service can make
sure that only the legitimate user operates the device (Requirement (c)) and that she expresses explicit
consent for performing the transaction (Requirement (d)). Transaction binding (Requirement (e)) is
achieved by using a transaction-specific nonce. As no QR code has to be scanned during authentica-
tion, this authentication method can be conducted without using a desktop computer (Requirement (f)).
Solely for registration, a separate computer has to be used.

44 5. Authentication Methods

Chapter 6

A Flexible Cross Platform Multi-Factor
Authentication Framework

As a practical part of this thesis, we have implemented an authentication framework based on cross-
platform technologies. This chapter introduces the implemented framework. The framework consists of a
server and a client part. For the server part, an existing framework has been used, whilst the mobile client
part has been implemented from scratch. After a short presentation of the used authentication server,
focus is put on the mobile client. For this purpose, the architecture of the mobile client is illustrated
and the implemented components are presented. We conclude with the steps required to integrate new
authentication methods into our framework.

6.1 Multi-Factor Authentication Server

The main focus of this thesis was to employ state-of-the-art cross-platform development techniques in a
security-critical environment. Therefore, we have chosen to rely on existing components for the server
part in order to focus rather on the mobile components. For the server part of the authentication frame-
work, a newly-developed multi-factor authentication service provided by the E-Government Innovation
Center (EGIZ)1 has been used. This authentication server enables the use of third-party authentication
plugins. These authentication plugins can be registered dynamically at the authentication server. During
user authentication, the authentication server chooses suitable multi-factor authentication methods based
on dynamic policies. The following enumeration lists the core features of the used authentication server.

• Plugin-Based Approach

The authentication server allows the usage of external authentication plugins. These plugins han-
dle user authentication and issue a signed JSON Web Token [42] if the user has authenticated
successfully at the authentication plugin.

• Configurable Domains

The authentication server supports the notion of different domains. A domain comprises, for
example, a set of web services of a particular company or web services associated with a particular
business segment.

• Dynamic Authentication Policies

In order to find a combination of different authentication methods, the authentication server
features dynamic authentication policies. These policies state requirements towards valid user-
authentication methods for a specific domain. The policies are not limited to the specification of a

1https://www.egiz.gv.at/

45

https://www.egiz.gv.at/

46 6. A Flexible Cross Platform Multi-Factor Authentication Framework

single valid authentication method but can also enforce a combination of different authentication
methods. Therefore, each authentication plugin is assigned a plugin type that states, for example,
if the plugin covers the factor knowledge or the factor possession.

• Unified Configuration Interface

The authentication server offers one single entry point for initialising authentication plugins for
the user. The user can activate and manage her authentication plugins. In order to access this
configuration platform, the user has to login using strong credentials. In practice, this has been
realised by using an accredited electronic identity (eID), the Citizen Card offered by the state of
Austria [47].

• Protected Configuration Data

Each external authentication plugin requires configuration data for a specific user and a particu-
lar domain. This configuration data is stored centrally at the authentication server and retrieved
from the authentication plugin when needed. As this data might comprise sensitive user data (e.g.
a password or cryptographic key), the data is encrypted and signed before being transferred to
the authentication server. Hence, configuration data is protected against unauthorised access and
manipulation by unauthorised parties.

To demonstrate the authentication methods presented in Chapter 5, a server-side authentication plu-
gin for each authentication method that has been integrated into our mobile authentication app has been
developed. For the mobile multi-factor authentication framework, we use a plugin-based approach as
well. The following section presents the implemented mobile multi-factor authentication framework.
Section 6.3 describes the steps required to integrate a new authentication plugin both on the mobile and
on the server-side.

6.2 Mobile Multi-Factor Authentication Client

This section illustrates the chosen architecture of the mobile part of the implemented multi-factor authen-
tication framework. Moreover, a short description of the implemented components and the technologies
used is given.

6.2.1 Architecture

The idea of our authentication framework is to ease the integration of newly developed authentication
methods. Therefore, the framework offers the basic functionality as for example cryptographic methods,
access to remote notifications and device features. The different device features and mechanisms have
been split into services. A service, for example, comprises methods for deriving a cryptographic key
from a password or accessing the device’s key-storage facilities.

Each authentication method is implemented by an authentication plugin. An authentication plugin
can make use of the offered services and only has to combine the different services to construct the
authentication method. The authentication app supports multiple instances of the same authentication
method, however a specific authentication method can only exist once per domain. For example, the user
might have added three different domains which all provide the same authentication method but with
different cryptographic key material.

In order to support different authentication plugins, we first had to extract components that differ
between various authentication plugin implementations. First of all, each authentication method requires
distinct configuration data that has to be stored locally on the device. In addition, when setting up a new
authentication method, communication with the authentication service running on a remote server might

6.2. Mobile Multi-Factor Authentication Client 47

Figure 6.1: The general architecture of the implemented authentication framework. Components
specific to a single authentication method have been highlighted.

be required. Therefore, each authentication plugin has to provide a data model and a corresponding
configuration method that performs all steps required during the rollout of a new authentication method
to the prover’s mobile device.

Further differences exist during the authentication process itself. Each authentication plugin requires
different steps and distinct user interaction for performing the authentication method. Thus, we had to
enable authentication plugins to provide their own user interface and the corresponding business logic
that aims to compute the response to a received challenge.

We tried to keep the effort for integration of new authentication methods minimal. A developer seek-
ing to integrate a new authentication plugin has to provide a data model for her plugin, a simple HTML
template, which acts as an entry point to the authentication method and the corresponding controller.
Figure 6.1 shows the general architecture and highlights components specific to an authentication plu-
gin. More information on the implementation steps required to integrate a new authentication plugin can
be found later in this chapter.

Communication between the server and the mobile client is processed within the authentication app.
For example, the message receiver within the authentication app handles all incoming push notifications.
We have defined an own messaging format for the message exchange between the server and the mobile
client. This message format includes the name of the authentication plugin and the current domain. In
order to implement the routing mechanism to the correct authentication plugin, all sent messages have
to comply to this format. Hence, this message format is also used for the rollout of a new authentication
method to the mobile device. Currently, during rollout messages are encoded in a QR code. However,
other communication paths are possible as well and it might be feasible to implement an input form for
the user to manually enter the authentication plugin’s initialisation data.

Communication between the mobile client and the server has to be handled by the respective imple-
mentation of the authentication plugin. This communication includes the transfer of the Push ID or the
response to a challenge.

6.2.2 Implementation

The mobile part of the authentication framework has been implemented as a hybrid mobile applica-
tion. Therefore, most parts of the application are implemented using web technologies such as HTML5,

48 6. A Flexible Cross Platform Multi-Factor Authentication Framework

JavaScript and CSS and are run within a WebView. Features not available to the WebView are imple-
mented using native technologies as so-called plugins. Plugins provide a JavaScript interface and thus
can be interfaced from within the WebView. Apache Cordova enables this plugin mechanism and pro-
vides the packaging of web applications as native mobile applications.

When implementing hybrid mobile applications, providing a user experience similar to native mobile
applications, poses the main challenge. For the user interface design, we rely on the Ionic framework2.
Ionic is an HTML5 SDK that allows for building native-feeling mobile applications using web technolo-
gies. Therefore, Ionic bundles compiled JavaScript and CSS files and some resources such as icons.
Ionic aims to fill the gap between HTML5 and native application development [1]. Ionic builds on the
popular JavaScript framework AngularJS3. AngularJS addresses the challenges encountered when im-
plementing single-page applications. AngularJS extends the HTML5 vocabulary to provide data binding
and facilitate a slick model-view-controller architecture. For more information on AngularJS and Ionic
we point to the official documentation [27][38].

Besides secure storage of cryptographic key material or connecting to the platform’s push-notification
service, multi-factor authentication requires a huge set of different device features and particularly cryp-
tographic methods. In order to cover the required functionality we had to rely on various Apache Cordova
plugins and even had to develop our own plugins. However, the developed or extended plugins can be
easily integrated into other Apache Cordova applications as well.

In the course of this work, we have mainly developed the components required for the integration
of authentication methods presented in Chapter 5. However, the developed components can easily be
combined to create new authentication methods or to be used in other hybrid mobile applications with
higher security demands. In general, the focus has been put on providing extensible components that can
be reused in other hybrid mobile applications. This does not only apply to Apache Cordova plugins but
also to the developed JavaScript components.

The mobile authentication app covers Android and iOS devices. In order to support other platforms
as well, some of the used Apache Cordova plugins have to be adapted. According to Net Marketshare4,
Android holds a market share of 54 percent and iOS 39 percent. By developing for these two platforms,
the vast majority of mobile devices is covered. For this reason, we decided that support for Windows
Phone devices and other mobile platforms is subject of future work.

In the following, a presentation of the developed components is given. First, we describe the imple-
mented AngularJS components. Second, the required Apache Cordova plugins are listed. The described
plugins fill the gap between functionality available within the WebView and features only accessible via
native device APIs.

AngularJS Components

The goal of the authentication framework was to provide components heavily used within multi-factor
authentication. AngularJS relies on dependency injection to describe how the application is wired. There-
fore, we have chosen to implement large parts of the framework as AngularJS services that can be easily
integrated with new components. This way, the framework should simplify the integration of new au-
thentication methods. In the following, the developed AngularJS services are presented.

• KeychainService

In the course of this thesis, we have implemented an Apache Cordova plugin that provides access
to the underlying platform’s key-storage facilities. An AngularJS service has been implemented to

2http://ionicframework.com/
3https://angularjs.org/
4Net Marketshare provides statistics based on data collected by analysing the browser access statistics. The statistics

can be found at the following URL: https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=
8&qpcustomd=1

http://ionicframework.com/
https://angularjs.org/
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=8&qpcustomd=1
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=8&qpcustomd=1

6.2. Mobile Multi-Factor Authentication Client 49

ease access to the developed Apache Cordova plugin. It provides methods to check the availability
of the implementation on the respective mobile device and methods to store and retrieve cryp-
tographic keys represented as Base64-encoded strings. For more information on the developed
Apache Cordova plugin, we refer to the ensuing plugin description.

• OTPService

All of the currently integrated authentication methods rely on the computation of OTPs. The
OTPService provides OTP computation according to the HOTP [56] and TOTP [57] standard.
Currently, this implementations uses the CryptoJS cryptography library for the underlying cryp-
tographic operations. We chose to use CryptoJS here, as support for the different cryptographic
functions of the Web Cryptography API [65] strongly depends on the particular version of the mo-
bile platform. This choice seemed viable at the beginning of this work. However, support for the
Web Cryptography API continuously evolves. Therefore, future work should prefer the use of the
Web Cryptography API built in the mobile browser.

• KeyDerivationService

Some authentication methods require the user to present some knowledge (e.g. a password) on the
mobile device. Key derivation functions, such as SCrypt [68], are used to derive a cryptographic
key from the user’s password. The KeyDerivationService provides an interface to the SCrypt
implementation offered by the JavaScript library js-scrypt5.

• CryptoService

The integrated authentication methods heavily rely on the entanglement of multiple cryptographic
keys. In order to be able to compute the correct OTP, a set of cryptographic keys has to be obtained.
These cryptographic keys are used to decrypt the key used for OTP computation. The CryptoSer-
vice provides methods for encrypting and decrypting using AES with ECB mode. ECB mode has
been used, as no additional data such as an initialisation vector or other parameters have to be
exchanged between the server and the mobile authentication app. The use of the CryptoService
is thus limited to the encryption and decryption of cryptographic keys, which represent randomly
generated sequences of data. The use of ECB mode is only justifiable as the encrypted data will
not show a repetitive pattern.

• ConfigService

The ConfigService holds general configuration parameters for the mobile platform’s push-notification
system. It further provides methods to store and retrieve the obtained Push ID. The Push ID should
be protected against disclosure to non-authorised parties, such as malicious applications on the mo-
bile device or an attacker analysing data stored on the device. On this account, the KeychainService
is used to store the Push ID by utilizing the mobile platform’s key-storage facilities.

• PluginDataService

With our framework, each authentication plugin requires a set of data locally stored on the device.
This data includes the name of the authentication plugin, the domain it is associated with and
prospective aliases used to address cryptographic key material or salt values that have been stored
securely using the KeychainService. The PluginDataService, therefore, uses the Local Storage
API provided by the browser to store the plugin data in the application-internal storage area.

The authentication framework introduces PluginData objects that define the basic structure of
the authentication plugin data. For each authentication plugin, an implementation that inherits
from PluginData has to be provided. This customized PluginData is used to interface with the
PluginDataService.

5https://github.com/tonyg/js-scrypt

https://github.com/tonyg/js-scrypt

50 6. A Flexible Cross Platform Multi-Factor Authentication Framework

• MessageDispatcherService

Whenever a new remote message arrives, the MessageDispatcherService routes the message to the
correct authentication plugin within the mobile authentication app. Currently, the MessageDis-
patcherService is only used in conjunction with the mobile platform’s push-notification service.
However, it is not limited to any particular technology. Each message represents a JSON message
that follows some general format. For example, the message has to contain the name of the au-
thentication plugin, as well as the domain the authentication should be performed for. Based on
the name of the authentication plugin, the correct template of the authentication plugin is loaded.
Furthermore, the service is used to hand the received message to the controller of the loaded tem-
plate.

Even though different authentication methods require different steps to fulfil authentication and thus
differ regarding their user interface, some common parts can be extracted. For these user-interface parts,
we decided to offer so-called partials, i.e. HTML templates that are embedded in other templates. For
example, our framework offers a partial that displays the computed OTP. The framework also includes
the accompanying AngularJS controller implementation that performs the computation of the OTP.

Apache Cordova Plugins

Apache Cordova applications are restricted to functionality offered by the WebView component on the
mobile device. The use of functionality beyond the browser APIs requires the use of plugins that provide
the platform-specific implementation. The developed authentication app requires several plugins to cover
the functionality of the different authentication methods. In the following, the used plugins are listed.
Plugins that have been developed or adapted will be covered in more detail.

• Keychain Plugin

In order to use the key-storage facilities provided by Android and iOS, we have implemented
a plugin for the Apache Cordova framework. The developed plugin offers two methods, a
method for storing a key window.storeKeyInKeychain(alias, key, [protectionClass,
thisDeviceOnly]) and a method for retrieving the key window.loadKeyFromKeychain(
alias). The parameter alias denotes the identifier of the key and has to be passed to the plugin to
be able to access the key later again. The parameter key comprises the key encoded as a Base64-
encoded string. If a key is added with the same alias, the plugin silently overrides the stored key
value.

The developed plugin provides an interface to the iOS Keychain and the Android Keystore. In the
following, platform-specific implementation details are discussed.

Prior to Android version 6.0, the Keystore does not allow for the storage of symmetric keys. How-
ever, to still use the security provided by the Keystore for symmetric keys, we have implemented
a simple key-wrapping mechanism. Hence, when adding a new entry to the Keystore, a new RSA
key pair is created. The key string is encrypted with the public RSA key and stored on the file
system in the internal storage area of the mobile application. The plugin uses RSA with PKCS#1
padding in ECB mode for encryption. The security of the Android Keystore highly depends on
the underlying implementation. Hardware-based implementations protect the private keys from
being extracted and thus being transferred to other devices. Unfortunately, not all devices offer a
hardware-based implementation. Developers can check the security features of the Android Key-
store. However, currently, our plugin does not support to query whether the stored key is stored
inside secure hardware6.

6https://developer.android.com/reference/android/security/keystore/KeyInfo.html#

isInsideSecureHardware()

https://developer.android.com/reference/android/security/keystore/KeyInfo.html#isInsideSecureHardware()
https://developer.android.com/reference/android/security/keystore/KeyInfo.html#isInsideSecureHardware()

6.2. Mobile Multi-Factor Authentication Client 51

On iOS devices, the plugin stores the key values as generic password and therefore, arbitrary
strings of data are supported. For the iOS version of the plugin we have added the parameters
protectionClass and thisDeviceOnly. This way, developers can choose when the Keychain entry
should be available to the application and thus when the system decrypts it. Apple uses multiple
so-called protection classes to specify the decryption point. For each protection class there exists
a thisDeviceOnly variant that hinders the transfer to other devices and the inclusion in the iOS
backup. If this parameter is not set, items are created with thisDeviceOnly defaulting to false. In
the following, a listing of available protection classes7 is given:

– The protection class AccessibleAfterFirstUnlock implies that after a restart the Keychain item
cannot be accessed until the device has been unlocked once by the user. This protection class
is recommended for applications that require access to a key while running in the background.

– Regardless of the device being locked or unlocked, the application can always access Key-
chain items with class AccessibleAlways.

– AccessibleWhenUnlocked allows applications to access items only if the device is unlocked
at that time. This is the default value if no protection class has been specified.

– The protection class AccessibleWhenPasscodeSet provides the same properties as Accessible-
WhenUnlocked, but it can only be used with devices where the passcode is set. Thus when
removing the passcode, the system deletes all items of this class. In addition, items cannot
be migrated to other devices as this class is only available in the "ThisDeviceOnly" variant.

• Dialog Plugin

Some authentication methods require the user to enter a secret PIN or password on the mobile
device. In order to use the native user-interface style for dialog and notification windows, we
chose to use a dedicated plugin8. However, this plugin does not yet feature a password field that
masks the entered characters. We have extended the plugin such that the developer can specify the
expected input type. Currently, the plugin supports the two parameters alphanumeric and numeric
for specifying the keyboard type that should be presented to the user. If neither of both values is
passed to the plugin, the input is not treated as a password.

• Push Plugin

To access the mobile device’s push-notification service, Apache Cordova applications require the
use of a plugin. The push-notification plugin9 currently supports Android, iOS and Windows
devices. The plugin handles registration of the device with the platform vendor’s push-notification
service and forwards incoming notifications to the Apache Cordova application running in the
WebView. The application developer can specify various options, such as, playing a sound when
receiving a new notification. For Android, the GCM service is used. Although GCM is now
available for iOS devices as well, this plugin uses Apple’s APNS.

• BarcodeScanner Plugin

The BarcodeScanner plugin10 for Apache Cordova provides a cross-platform implementation of
QR code and other barcode scanning functionality. For retrieving the QR code, the device camera
is used. In our authentication app, QR codes are heavily used for the rollout of new authentication
methods, as QR codes represent a simple way for transferring initial authentication data, such as
cryptographic keys, from the server to the mobile device.

7https://developer.apple.com/library/prerelease/ios/documentation/Security/Reference/

Keychainservices/#//apple_ref/doc/constant_group/Keychain_Item_Accessibility_Constants
8https://github.com/apache/cordova-plugin-dialogs
9https://github.com/phonegap/phonegap-plugin-push

10https://github.com/phonegap/phonegap-plugin-barcodescanner

https://developer.apple.com/library/prerelease/ios/documentation/Security/Reference/Keychainservices/#//apple_ref/doc/constant_group/Keychain_Item_Accessibility_Constants
https://developer.apple.com/library/prerelease/ios/documentation/Security/Reference/Keychainservices/#//apple_ref/doc/constant_group/Keychain_Item_Accessibility_Constants
https://github.com/apache/cordova-plugin-dialogs
https://github.com/phonegap/phonegap-plugin-push
https://github.com/phonegap/phonegap-plugin-barcodescanner

52 6. A Flexible Cross Platform Multi-Factor Authentication Framework

• Device Plugin

The device plugin11 offers information on the mobile device’s hardware and software capabilities.
The device plugin is for example used to determine whether the authentication app is running on an
Android or iOS device. Using the device plugin, the application can read the Universally Unique
Identifier (UUID) that uniquely identifies the mobile device.

• Certificate Pinning Plugin

The Apache Cordova framework does not support certificate pinning. However, there are third-
party plugins that check the server’s certificate on every connection. Cordova HTTP12, for exam-
ple, provides an AngularJS service handling HTTP communication from within the WebView. In-
stead of using the conventional AngularJS HTTP service13, the developer uses the plugin’s HTTP
service for placing requests to the server. The plugin pins against certificate files included within
the application. It has to be noted that this plugin only covers HTTP requests issued from the
WebView. It does not affect requests placed from within other plugins.

• Whitelist Plugin

Since Apache Cordova version 4.0, whitelisting is realised by using a Cordova plugin14. This
plugin allows setting URL whitelists for navigation, network requests and intents. For network
requests, however, it is recommended to rely on the Content Security Policy (CSP) set in the HTML
templates to control which requests are allowed to be made. It has to be noted that the available
whitelisting mechanisms only apply to calls originating from within the WebView. Requests placed
from within Cordova plugins are not restricted.

To put the pieces together, all implemented AngularJS components and Apache Cordova plugins
have been integrated into the authentication app. The authentication app allows users to add new au-
thentication methods for different domains and manage these authentication methods, e.g. remove the
authentication method from the mobile device. Annex A provides screenshots with accompanying ex-
planation of the implemented authentication app.

6.3 Integration of New Authentication Methods

The implemented authentication framework pursues the goal to enable an easy integration of new au-
thentication methods. Each implementation of an authentication method consists of code running as
authentication plugin on the server and code running within the mobile application on the client. To add
new authentication methods, both parts need to be implemented.

6.3.1 Server-side

The authentication service features external authentication plugins that handle user authentication. An
external authentication plugin represents a web application that does not necessarily have to run on the
same server as the authentication plugin. Each authentication plugin has to offer a configuration endpoint
and an authentication endpoint, to whom the prover is being redirected by the authentication service.

In order to add a new external authentication plugin to be used by the authentication service, the
administrator has to add the plugin to the plugin repository. Therefore, the authentication service offers
an intuitive user interface. In addition to stating the configuration and authentication endpoint, the ad-
ministrator has to provide two public-key certificates. One certificate is used during authentication for

11https://github.com/apache/cordova-plugin-device
12https://github.com/wymsee/cordova-HTTP
13https://docs.angularjs.org/api/ng/service/$http
14https://github.com/apache/cordova-plugin-whitelist

https://github.com/apache/cordova-plugin-device
https://github.com/wymsee/cordova-HTTP
https://docs.angularjs.org/api/ng/service/$http
https://github.com/apache/cordova-plugin-whitelist

6.3. Integration of New Authentication Methods 53

verifying the signature of the signed JSON Web Tokens, whereas the second certificate is required for
the protection of the configuration data.

In the following, the main components of an external authentication plugin are introduced in more
detail.

• Configuration Pack

Each external authentication plugin has to include some configuration data represented in a so-
called Configuration Pack. The Configuration Pack, for example, comprises credentials or the
mobile device’s Push ID. The Configuration Pack is stored centrally at the authentication service.
The authentication plugin only has to provide the description of the used data model. When trans-
ferring the Configuration Pack to the authentication service, the data is encoded as JSON data
structure and protected via means of JSON Web Encryption and JSON Web Signature.

• Configuration Controller

To initialise an external authentication plugin for a specific user, the plugin has to provide a con-
figuration endpoint. This endpoint implements the user interface and business logic for the rollout
of the authentication method to the mobile authentication app.

The authentication methods that have been integrated so far use QR codes for transferring initial
data from the server to the mobile authentication app. Therefore, the configuration controller has
to first generate the initialisation data, display the data within a QR code and eventually let the
user enter a password. The initialisation data might include randomly generated salt values and
cryptographic keys.

• Authentication Controller

During authentication, the prover is redirected to the authentication endpoint of an external authen-
tication plugin that complies with the current domain’s authentication policy. The authentication
endpoint provides the user interface and business logic for performing a particular authentication
method. For example, this might include the generation of transaction-specific values such as
a random nonce, communication with the mobile authentication app and the verification of the
obtained response from the authentication app. Upon successful verification, the external authen-
tication plugin returns a signed JSON Web Token to the authentication service, stating that the user
has authenticated successfully at this authentication plugin.

6.3.2 Client-side

The Ionic framework that builds on AngularJS has been used for the implementation of the mobile part of
the authentication framework. AngularJS provides a slick separation between model, view and controller
code. To integrate a new authentication method, the developer has to extend the mobile app with a model,
view and controller of the respective authentication methods. Thus, new authentication methods can be
integrated with three steps.

• Data Model

Each authentication method needs some data locally stored on the device. Depending on the
authentication method, this data comprises, for example, cryptographic key material, a counter or
a salt value required for key derivation. Although sensitive data, such as key material or salt values,
is stored using the device’s key-storage facilities, the mobile application still has to track the alias
of the stored data. For the storage of this authentication data, we make use of the Local Storage
provided by the WebView. We refer to Section 4.2.2 for an introduction to Local Storage.

54 6. A Flexible Cross Platform Multi-Factor Authentication Framework

Thus, for integrating a new authentication method, a new data model has to be created. This data
model has to inherit from the PluginData object15. The PluginData object holds some general
information on the authentication method, e.g. its name, a short description and the domain. The
domain corresponds to the notion of domains as used on the server side framework. The domain is
required for allowing multiple instances of the same authentication method for different services.

For each data model a corresponding method for setting up this authentication method has to be
implemented. This method includes the logic for extracting the relevant data from the QR code,
adding the sensitive data to the device’s key-storage facilities and returning the Push ID required
for the push-notification system to the authentication plugin on the server-side.

• View

The client-side framework features dynamic routing to the correct authentication method. When
receiving a push notification, a modal, a new pop-up window, is opened which comprises the
necessary steps to complete the authentication method. This might include entering a password or
some other user action. Therefore, an HTML template has to be created for each authentication
method. For heavily used functionality, such as displaying the computed OTP, existing templates
or so-called partials can be integrated in the template and thus do not need to be implemented for
each authentication method separately.

• Controller

For each HTML template an accompanying controller has to be created that provides the imple-
mentation of the business logic. This applies to the authentication method templates as well. The
controller might use all core framework services for processing the authentication method. Hence,
the controller, for example, calls the KeyStoreService to retrieve the secret key and some of the
provided cryptography services to complete cryptographic operations.

6.4 Lessons Learned

Apache Cordova has evolved towards a powerful tool for developing hybrid mobile applications for
multiple platforms. However, while using Apache Cordova and related projects, in particular external
plugins, we came across multiple weaknesses and challenges compared to using the native API stack
provided by the mobile platform vendors.

The plugin approach that allows accessing native device APIs from within the WebView component
is one of the core features of the cross-platform framework Apache Cordova. However, this might also
lead to substantial security vulnerabilities. When using important device features, such as push notifi-
cations or file-system access, developers have to rely on source code provided by external developers.
There are no official review mechanisms for these publicly available Apache Cordova plugins. Anyone
can release plugins to the public using the official Cordova Plugin registry16.

One of our findings show that the Barcode Scanner plugin17, heavily used in our mobile authentica-
tion app, silently stored the raw data of each scanned barcode to the Local Storage area of the application.
For our authentication app this was fatal. During the rollout of new authentication methods to the mobile
device, the user scans a QR code. This QR code contains the cryptographic key material that is then
stored using the mobile device’s key storage facilities. However, at the same time the presumably sensi-
tive key material resides in the internal storage area of the application as well. This behaviour was not

15JavaScript is a prototype based language. Hence, each object has an internal link to another object, its prototype. This
way, a prototype chain can be constructed until an object is reached that has no prototype. For more details, we refer to the de-
veloper documentation of Mozilla: https://developer.mozilla.org/en/docs/Web/JavaScript/Inheritance_and_the_
prototype_chain

16http://cordova.apache.org/plugins/
17https://github.com/phonegap/phonegap-plugin-barcodescanner

https://developer.mozilla.org/en/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
http://cordova.apache.org/plugins/
https://github.com/phonegap/phonegap-plugin-barcodescanner

6.4. Lessons Learned 55

documented by the developers of the plugin. However, this behaviour is no longer present in the current
version of the plugin.

The Ionic framework builds on the popular model-view-controller framework AngularJS. AngularJS
uses services and dependency injection to encapsulate large parts of the business logic. Therefore, it
arguably makes sense to provide Apache Cordova plugins as services as well. This way, application
code can remain clear and structured. The ngCordova project18 provides a collection of AngularJS
services that interface with the most commonly used Apache Cordova plugins. However, this arguably
useful project adds another layer of abstraction and thus insecurity to the Apache Cordova ecosystem.
We can illustrate this with an example. The beforehand hard to use API of the popular push-notification
plugin19 has been updated, but the integration via ngCordova has not yet reflected the API changes and
thus cannot be used with recent versions of the plugin. This makes clear that when relying on externally
provided plugins it is hard to use the Apache Cordova ecosystem in a production environment.

Similar to the well-known differences regarding supported APIs in the desktop browser environment,
we face similar challenges in the mobile environment. There are different versions of the WebView
components employed across devices. This way, the WebView differs regarding support for important
features, such as, for example, the Web Cryptography API. Android devices that are running an operating
system version prior to 5, lack support for the API altogether. Whereas on iOS devices, the API has been
prefixed and thus API calls differ from Android to iOS devices. For compatibility reasons, we decided
to not use the Web Crypto API within our authentication app yet. However, with the increasing market
share of devices that support the Web Crypto API future developments should favour the standardized
Web Crypto API over conventional JavaScript cryptography libraries. Multiple use cases would highly
benefit from using the built-in Web Crypto API. Currently, some authentication methods use the SCrypt
key-derivation function, which internally uses a hash function implemented purely in JavaScript. Using
hash functions provided by the Web Crypto API would considerably improve the performance of this
SCrypt implementation.

Although developing mobile applications with the help of Apache Cordova poses some challenges,
it turned out as a decent choice for the implemented authentication framework. With the use of web
technologies, the effort for adopting the application to other mobile platforms is minimized and limited
to the implementation of plugins, that provide an interface to native device APIs. The next chapter
provides the security evaluation of the implemented mobile components and hence analyses the security
aspects of the Apache Cordova framework in detail.

18http://ngcordova.com/
19https://github.com/phonegap/phonegap-plugin-push

http://ngcordova.com/
https://github.com/phonegap/phonegap-plugin-push

56 6. A Flexible Cross Platform Multi-Factor Authentication Framework

Chapter 7

Security Evaluation

In this chapter, the security evaluation of the implemented authentication framework and the integrated
authentication methods is presented. For the evaluation, we roughly adhere to the Common Criteria for
Information Technology Security Evaluation. We start with a presentation of the methodology used in
this evaluation. The subsequent sections concisely define the system under evaluation, its assets and the
resulting threats. Before concretely evaluating the system and the countermeasures it provides, we define
security objectives that should be met by the mobile authentication app and the integrated authentication
methods. For this thesis, the focus is on analysing the security of the implemented authentication methods
and the authentication app on the client device with special considerations of the use of the Apache
Cordova framework and web technologies on Android and iOS devices.

7.1 Methodology

Common Criteria for Information Technology Security Evaluation as standardized in ISO/IEC 15408
[39] provides a framework for the security evaluation of IT systems. Common Criteria is, for example,
well-established in the security evaluation of Integrated Circuit Cards or commonly known as smart
cards. Therefore, ISO/IEC 15408 provides the structure of Protection Profiles applicable for different
technologies and IT systems. A Protection Profile defines an implementation-independent set of security
requirements for a category of devices or systems. Besides smart cards, Common Criteria also hosts
Protection Profiles for operating systems, databases and many more1. Based on the requirements defined
in the Protection Profile, evaluators can determine the security properties of the system under evaluation
and identify potential gaps. Furthermore, Protection Profiles can be used by consumers to express their
IT security needs.

Each Protection Profile follows a common structure. To provide a rough overview, a Protection
Profile first defines the system that should be evaluated, entities or values the system aims to protect,
potential attacks on these values and security objectives aiming to counterfeit these attacks. Based on the
defined security objectives, IT security requirements are derived. This means that the Protection Profile
defines requirements that should be met by a particular system and its environment.

This security evaluation roughly adheres to the general structure of security evaluations based on
Protection Profiles according to ISO/IEC 15408. It has to be noted that this work does not present a full-
featured Protection Profile but only makes use of its well-proven structure for security evaluation. Other
authors have shown that is common practice to tailor the principal components of ISO/IEC 15408 to the
special characteristics of the system under evaluation [81]. This section introduces the methodology of
the conducted security evaluation. First, we establish the main concepts of security evaluations according
to ISO/IEC 15408. While some parts of the standardized methodology are an overkill for this thesis, the

1http://www.commoncriteriaportal.org/pps/

57

http://www.commoncriteriaportal.org/pps/

58 7. Security Evaluation

definition of additional components well complements our evaluation. Therefore, we provide remarks,
when diverging from the structure as defined in ISO/IEC 15408.

7.1.1 ISO/IEC 15408

Figure 7.1: The basic structure of a Protection Profile according to ISO/IEC 15408 [39].

Figure 7.1 provides an overview of the structure of ISO/IEC 15408 Protection Profiles. In the fol-
lowing, the different components are discussed.

• Introduction

The introduction provides some general information about the Protection Profile and summarises
the Protection Profile in narrative form.

• TOE Description

A security evaluation according to Common Criteria starts with the definition of the system that
will be analysed. The Target of Evaluation (TOE), therefore, represents the scope of the security
evaluation. The TOE defines the category of software or hardware that will be evaluated. It is up
to the authors of the evaluation to define the TOE as the whole IT product or only a small part or
combination of parts.

• TOE security environment

The TOE security environment describes security aspects of the environment the TOE is intended
to be used. It includes the following:

– Assumptions that provide information about the intended use of the TOE, the potential value
of assets, usage limitations and information about the environment the TOE is used.

– The Protection Profile proceeds with a description of all threats to the previously defined
assets, against the TOE should provide adequate protection. These threats might include the
leak of assets or their modification. Each threat description should include the threat agent,
the asset that is under attack and the attack scenario.

– A description of organizational security policies identifies rules the TOE must comply to.

7.1. Methodology 59

• Security objectives

Based on the identified threats this part defines security objectives that aim to provide countermea-
sures to the previously defined threats and cover the listed organisational security policies. The
security objectives for the environment cover threats that cannot be countered by the TOE and,
therefore, have to be met by the environment of the TOE.

• IT security requirements

As the system under evaluation has been described and security objectives have been defined, the
next logical step is the collection of security requirements. These can be categorised into functional
requirements towards the TOE and optional security requirements for the environment the TOE is
operated in.

• Rationale

The rationale aims to present the completeness of the Protection Profile. Therefore, it demonstrates
that all threats have corresponding security objectives aiming to counterfeit the threats. Further-
more, it includes a mapping that shows that the derived security requirements or a combination of
security requirements succeed in meeting the defined security objectives.

The structure described in ISO/IEC 15408 does not fully align to the intentions of our security evalua-
tion and the use case of our work. As the practical part of this work represents a prototype, the definition
of organisational security policies seems to be an overkill. On the other hand, the definition of assets
the TOE aims to protect is crucial for the secure implementation and operation of the TOE. Therefore,
the definition of assets should be given more importance. The following paragraphs will explain our
modified methodology.

7.1.2 Derived Methodology

Figure 7.2 summarises the methodology we have derived from ISO/IEC 15408 and that will be used for
this security evaluation. Our security evaluation starts with the definition of the TOE. As defined by
ISO/IEC 15408 we describe the system under evaluation and its environment. Section 7.2 defines the
TOE of this work. As part of the environment, we define the parties that will interact with our system (the
so-called actors, see Section 7.3). In Section 7.4 we proceed with a set of security assumptions about the
TOE. These might include assumptions about the security of cryptographic methods or technologies.

When evaluating the security of a system, it is most relevant to analyse how well the system succeeds
in protecting its assets. In order to be able to make any statement about the security of an IT system,
the implementor or evaluator needs to be aware of the assets the TOE aims to protect. Therefore, as
a next separate step, we extract the assets. Assets can, for example, include sensitive data about the
system’s user or key material the system aims to protect. Section 7.5 contains the assets our system
seeks to protect. Based on the extracted assets, a definition of threats to each asset follows. The threat
model in section 7.7 also contains information about the potential attacker. To model the different types
of potential attackers we define so-called threat agents, beforehand. A threat agent describes the level
of expertise, available resources and motivation of a potential attacker. Section 7.6 contains the threat
agents relevant to our work.

Based on the identified threats, Section 7.8 derives security objectives that should be met to be able to
counterfeit the defined threats. These security objectives should be met either by the TOE itself or the en-
vironment of the TOE. The simplified methodology abandons the definition of security requirements but
immediately proceeds with a description of implemented countermeasures. A countermeasure describes
how the system is protected against a threat by fulfilling a specific security objective. Each countermea-
sure is mapped to the security objectives it fulfills. As our system consists of the mobile authentication
app that features multiple authentication methods, countermeasures are grouped into countermeasures

60 7. Security Evaluation

provided by the authentication app and, therefore, valid for all authentication methods and countermea-
sures specific to a single authentication method.

Figure 7.2: Adhering to the schema defined by ISO/IEC 15408 [39] we have derived a simplified
methodology for the security evaluation of the implemented authentication framework.

Except the part on implemented countermeasures, our security evaluation is held implementation-
independent. Therefore, the structure of the security evaluation including its definition of assets, threats
and security objectives can be applied to other multi-factor authentication systems as well.

7.2 Target of Evaluation

The TOE defines the scope of the security evaluation. We have split the description of the TOE into two
parts. The first part describes the IT system under evaluation, whereas the second part denotes the two
use cases that have been considered.

7.2. Target of Evaluation 61

Figure 7.3: The general architecture of the implemented authentication framework. In the course
of this security evaluation we define the TOE as the mobile authentication app and the
plugin implementation on the server side. The relevant components have been been
highlighted.

7.2.1 IT System

A first step of the security evaluation is to define the IT system under evaluation. The implemented
authentication framework consists of a mobile application with the various authentication plugins and
an authentication server featuring multiple external authentication plugins. Within this thesis, the mo-
bile application and several server-side authentication plugins have been developed, whereas an existing
authentication server has been used. Therefore, we define the TOE as the mobile application and the
server-side authentication plugins. It is crucial to include the server-side authentication plugins within
our evaluation, as the communication path between authentication plugin and mobile authentication app
might present a critical path, where presumably sensitive data is exchanged. Figure 7.3 provides a graph-
ical representation of the TOE.

Our security evaluation focuses on the two mobile platforms Google Android and Apple iOS. Hence,
when stating the countermeasures to specific threats, differences regarding security properties of the two
platforms are considered.

7.2.2 Use Cases

For our security evaluation we have to consider two different use cases:

• Registration

The registration of a new authentication method denotes the process of exchanging initial authen-
tication data, such as secret key material or the mobile device’s Push ID.

• Authentication

The actual authentication process requires the use of one or multiple authentication method(s).
Therefore, we evaluate the security of our implemented authentication methods.

62 7. Security Evaluation

7.3 Actors

In the following, legitimate actors that communicate or influence the TOE are introduced.

• User

The user or also referred to as device holder uses an authentication method within the authenti-
cation app on her mobile device to authenticate at a service (the relying party). The user has full
access to her mobile device.

• Authentication Plugin Provider

The server components provided by EGIZ support external authentication plugins that might be
operated by third-parties. These plugins handle communication with the user and in our case with
the user’s mobile device in order to process authentication. The authentication plugin provider only
has access to the user’s authentication data (e.g. cryptographic key material, etc.) for a particular
authentication plugin. The authentication plugin provider initialises new authentication plugins for
the user and completes all steps during authentication.

• Authentication Service Provider (out of scope)

The authentication service provider operates the authentication service. It receives requests from
the relying party and requests the user to complete a set of authentication plugins in order to
authenticate successfully. Upon successful authentication, the authentication service provider re-
sponds to the relying party’s request. Furthermore, the authentication service provider manages
the set of available authentication plugins.

The defined TOE explicitely excludes the authentication service from evaluation. Therefore, we
have listed the authentication service provider mainly for the sake of completeness.

• Relying Party (out of scope)

The relying party operates a service that requests user authentication from the authentication ser-
vice provider. The relying party belongs to a specific domain. Depending on the domain, the server
components provided by EGIZ allow the specification of authentication policies. These policies
define the set of available authentication plugins to the user.

The defined TOE does not include the relying party. Therefore, the relying party will not be
considered in the course of this evaluation.

In the following security evaluation, we focus on the two actors user and authentication plugin provider.
The authentication service provider and the relying party are considered out of scope, as this evaluation
focusses on the interaction between the server-side authentication plugins and the authentication app on
the user’s mobile device. We omit those two actors, as we do not intend to conduct a security evaluation
of the server components provided by EGIZ, but solely focus on the server-side authentication plugin
and its mobile counterpart.

7.4 Security Assumptions

The following assumptions describe properties of the TOE and the environment in which the TOE is
operated.

(AS1) The server-side authentication service and the server-side authentication plugin are trustworthy.
This includes that the authentication plugins on the server are authenticated towards the authenti-
cation service.

7.5. Assets 63

(AS2) The server computers are trusted. Only authorised personnel has access to the servers. Hence,
data and software running on the server-side is protected from unauthorised modification.

(AS3) All cryptographic algorithms that are in use are implemented correctly. This also includes PRNGs.

(AS4) The authentication service and all authentication plugins feature a valid certificate issued by a
verified certificate authority.

(AS5) The services comprised in the TOE are available during the registration and the authentication
process.

7.5 Assets

The security of a system is mainly measured in how well it succeeds in protecting its assets. Assets
describe data or components that should be protected by the TOE. This section carefully defines assets
relevant for this security evaluation. For the sake of clarity, we chose to hierarchically define the assets
to be protected by the TOE.

7.5.1 Primary Assets

A service that integrates multi-factor authentication typically tries to enhance the protection of sensitive
data or components by increasing the barrier for potential attackers to gain access to those. The assets
typically reside on the server-side and differ from service to service. Such assets typically are:

• Sensitive data in general. Sensitive data, for example, can include access to company internal
documents and services or access to the an e-mail account (e.g. Google Mail).

• The eID of a person. Multiple member states of the European Union provide citizens with an
eID that enables access to online governmental services such as filing a tax return or residence
registration.

• The private signature key for creating electronic signatures. Austria, for example, provides a
server-based signature solution for creating qualified electronic signatures, the so-called Mobile
Phone Signature2. In order to access the private signature key, the user has to authenticate using
TANs sent via SMS.

• Access to online banking services. Most banks offer services for triggering money transfers or
checking the balance online.

7.5.2 Secondary Assets

The primary assets are protected by the user authentication process. Upon successful authentication, the
user can access the previously defined primary assets. For authentication, the user typically provides
the response to a challenge issued by the service. This response can either be a simple password or
some cryptographic result (e.g. an HMAC or a digital signature). Hence, we define the response to the
challenge as secondary asset.

• Response to a challenge

2https://www.handy-signatur.at/

https://www.handy-signatur.at/

64 7. Security Evaluation

7.5.3 Tertiary Assets

Within the context of this evaluation, we consider systems that rely on some computational steps for
supplying the response to the challenge. Our TOE computes the response to the challenge on the mobile
device. Therefore, the authentication app on the mobile device uses various input vectors. Amongst
others, it uses data that resides locally on the device, input from the user or other features available on
the device. This means that the security of the TOE depends on the protection of the different input
vectors. Consequently, we define the tertiary assets as follows.

(A1) Cryptographic key material stored on the mobile device. The cryptographic keys must be held
secret and protected against access by malicious parties.

(A2) The user-supplied password that is used to compute the response to a challenge. It is important to
ensure that the password is not leaked and that malicious parties are not able to derive the password
from the computed result.

(A3) The Push ID for the platform’s push-notification service defines to whom data is sent. This iden-
tifier requires adequate protection when stored on the mobile device and during transfer to the
application server.

(A4) The physical device itself. Authentication methods relying on some sort of device binding (for
example when using push-notification services or SMS) require the physical device to be protected
against malicious access.

(A5) The response to the challenge itself. This can, for example, be represented by an OTP.

Cryptographic key material stored on the server has been omitted intentionally, as the cryptographic
key material is not stored within the authentication plugin on the server but transferred to the authenti-
cation service, which is not part of the TOE. The authentication service only receives the encrypted and
signed plugin data packages and has no way of accessing the plain data.

The tertiary assets represent the data and components our authentication frameworks needs to protect.
For that reason, we abandon the primary and secondary assets in the subsequent deliberations.

7.6 Threat Agents

Common Criteria defines a threat agent as an “entity that can adversely act on assets” [19]. Threat
agents describe individual entities, but can also be used to describe a type of entities. Common Criteria
lists the following examples: hackers, users, computer processes and accidents. To additionally refine
the description of threat agents, a statement about their expertise, available resources, opportunity and
motivation can be added.

In the course of this security evaluation, we have defined multiple threat agents. For each threat
agent, the capabilities and characteristics are listed.

(TA1) Standard Attacker: attacker with access to standard malware on device

(TA2) Advanced Attacker: attacker with malware that has or gains root access on the device

(TA3) Nearby Attacker: attacker that has physical access to the device, e.g. a thief or someone willing
to perform a targeted attack on a user

(TA4) Network Attacker: attacker with access to the network, who is able to inspect and/or manipulate
traffic between the mobile device and the authentication plugin, i.e. a classical man-in-the-middle
attacker

7.7. Security Threats 65

(TA5) Web Attacker: attacker that hosts malicious JavaScript code, and therefore controls one or more
domains, e.g. a malicious advertiser that wants to collect sensitive data about the user

7.7 Security Threats

This section describes possible attack scenarios (the so-called threats) that affect the assets listed in
Section 7.5. According to Common Criteria, "a threat consists of an adverse action performed by a threat
agent on an asset" [19]. Hence, for each threat we state the affected asset or group of assets. Furthermore,
each threat definition contains the involved threat agent and a short description of the possible attack
scenario. In addition, a short statement about the implications of a successful attack is included.

7.7.1 Primary Threats

In the interests of clarity, we provide a hierarchical listing of our threats. Primary threats denote general
threat scenarios whereas secondary threats discuss, how an attacker might be able to achieve this general
attack.

• Impersonate Legitimate User Once

The attacker is able to impersonate the user once. An attacker can achieve this, for example, by
mounting a man-in-the-middle attack. This general threat requires the user to start an authen-
tication process first. The attacker can then apply means to eavesdrop, intercept or replay the
authentication process.

• Impersonation Without Involvement of the Legitimate User

The attacker is able to impersonate a legitimate user without interfering with an ongoing authenti-
cation process. This might, for example, be the case when an attacker is able to clone the device
covering the second factor.

• Hinder a Legitimate User From Authenticating Successfully

The attacker is able to block the legitimate user from authenticating towards the authentication
service. However, the attacker does not accomplish a successful authentication on behalf of the
legitimate user.

7.7.2 Secondary Threats

Secondary threats describe threats that directly or indirectly enable an attacker to mount a primary threat.
For example, stealing the device covering the second factor and phishing the user’s credentials allow the
attacker to impersonate the legitimate user. Hence, secondary threats enable primary threats. Some of the
presented secondary threats are inspired by Bonneau et al.’s listing of benefits that an ideal authentication
scheme should provide [16]. In addition a subset of the OWASP Top Ten Security Threats regarding Web
Security [59] and Mobile Security [72] has been incorporated.

(T1) Device Theft

The attacker gains access to the mobile authentication app by stealing the mobile device. Usage of
the authentication app enables the attacker to authenticate successfully at the authentication service
and thus impersonate the user.

Depending on the deployed authentication method, the security implications of a device theft vary.
If the user is required to provide the factor knowledge as well, the impact of this attack is reduced
as the attacker has to additionally guess or eavesdrop the correct password in order to authenticate
successfully.

66 7. Security Evaluation

Affected Asset(s): (A4) Physical Device

Involved Threat Agent(s): (TA3) Nearby Attacker

(T2) Copy or Extract Device Storage

The attacker gains physical access to the storage of the mobile device. This is realised by physically
accessing the device and extracting the device storage. This threat does not differentiate between
device storage in general and the private storage area of the application.

This scenario might enable an attacker to extract sensitive data present on the mobile device and
thus clone the device covering the second factor.

Affected Asset(s): (A1) Cryptographic key material, (A3) Push ID

Involved Threat Agent(s): (TA3) Nearby Attacker

(T3) Accessing Data On-Device

The attacker is able to access the storage on device. Access can be gained by deploying malware
with root access on the mobile device.

This scenario might enable other applications to access sensitive data present on the mobile device.
This data can further be used to clone the device covering the second factor.

Affected Asset(s): (A1) Cryptographic key material, (A3) Push ID

Involved Threat Agent(s): (TA2) Advanced Attacker, (TA5) Web Attacker

(T4) Accessing Data During Transport

The attacker accesses data during the transport from the mobile device to the authentication plugin
on the server-side. This can be realised by sniffing data traffic or employing a man-in-the-middle
attack.

This scenario might enable an attacker to gain access to presumably sensitive data.

Affected Asset(s): (A1) Cryptographic key material, (A3) Push ID, (A5) Response

Involved Threat Agent(s): (TA4) Network Attacker

(T5) Phishing

An attacker who fakes the authentication service tricks the user into supplying her credentials and
thus enables the attacker to collect valid credentials.

It has to be distinguished between the user leaking the persistent factor knowledge and a dynami-
cally generated token, such as an OTP or TAN. The security implications differ regarding the type
of the leaked credential.

Affected Asset(s): (A2) Password, (A3) Push ID, (A5) Response

Involved Threat Agent(s): (TA1) Standard Attacker, (TA5) Web Attacker

(T6) Throttled Guessing

Although the rate of guessing is constrained by the authentication service, the attacker manages to
guess the correct response to the challenge. The attacker could, for example, try to guess the factor
knowledge, or the response to the transaction-specific challenge.

This scenario might enable the attacker to authenticate successfully.

Affected Asset(s): (A2) Password, (A5) Response

7.7. Security Threats 67

Involved Threat Agent(s): (TA1) Standard Attacker

(T7) Unthrottled Guessing

The rate of guessing is only constrained by available computing resources. Therefore, an attacker
manages to guess the correct response to a challenge. Besides trying to guess the factor knowledge
or a transaction-specific response to the challenge the attacker can also apply brute-force attacks
on the involved cryptographic key.

This scenario might enable the attacker to authenticate successfully.

Affected Asset(s): (A1) Cryptographic key material, (A2) Password, (A5) Response

Involved Threat Agent(s): (TA1) Standard Attacker

(T8) Leak from Verifier

The authentication plugin on the server side verifies the response to the challenge and informs the
user about the outcome of the verification. Some information the server could possibly leak, helps
an attacker to impersonate the user by giving the attacker knowledge of the expected outcome.

Affected Asset(s): (A5) Response

Involved Threat Agent(s): (TA1) Standard Attacker, (TA4) Network Attacker

(T9) Internal Observation

The attacker intercepts user input on the mobile device (e.g. by installing a key logger) or monitors
network traffic. The hereby gained information can be used to successfully authenticate at the
authentication plugin.

The implications of the attack depend on whether the attacker being able to complete a single
authentication process or being able to authenticate in future sessions as well.

Affected Asset(s): (A2) Password, (A5) Response

Involved Threat Agent(s): (TA1) Standard Attacker, (TA2) Advanced Attacker, (TA5) Web At-
tacker

(T10) Physical Observation

By observing the user during authentication one or more times, the attacker is able to authenti-
cate successfully. For example, when relying only on username and password for authentication,
observing the user entering the password enables the attacker to impersonate the legitimate user.

This scenario enables an attacker to authenticate successfully by solely observing the user perform-
ing the authentication.

Affected Asset(s): (A2) Password, (A5) Response

Involved Threat Agent(s): (TA3) Nearby Attacker

(T11) Manipulation of Authentication Data

The attacker is able to manipulate authentication data, such as cryptographic key material, on the
mobile device.

The attacker hence hinders the legitimate user from authenticating at the server-side authentication
plugin.

Affected Asset(s): (A1) Cryptographic key material, (A5) Response

68 7. Security Evaluation

Involved Threat Agent(s): (TA2) Advanced Attacker, (TA5) Web Attacker

(T12) Manipulation of Push ID

The attacker modifies the Push ID and hence hinders the legitimate mobile device from receiving
messages from the server.

Messages redirected to the attacker’s device allow the attacker to authenticate successfully.

Affected Asset(s): (A3) Push ID

Involved Threat Agent(s): (TA2) Advanced Attacker, (TA4) Network Attacker, (TA5) Web At-
tacker

(T13) Intercepting Remote Notifications On-Device

The attacker intercepts remote notifications on the mobile device before the received data is handed
to the legitimate mobile application.

Using the data encoded within the remote notification, the attacker computes the correct response
and hence authenticates successfully.

Affected Asset(s): (A5) Response

Involved Threat Agent(s): (TA2) Advanced Attacker

(T14) Intercepting Remote Notifications During Transport

The attacker intercepts remote notifications during transport before the notification reaches the
legitimate mobile device.

Using the data encoded within the remote notification, the attacker computes the correct response
and hence authenticates successfully.

Affected Asset(s): (A5) Response

Involved Threat Agent(s): (TA4) Network Attacker

(T15) Code Injection

The attacker injects malicious code by supplying manipulated input data. Code injection occurs
whenever the application takes data without validation or escaping. The most popular type of
code injection is cross-site scripting, which allows an attacker to execute scripts in the user’s web
browser.

Input fields, QR codes or other data is prone to this attack. Injected code might steal sensitive data
or perform unwanted actions.

Affected Asset(s): (A1) Cryptographic key material, (A3) Push ID, (A5) Response

Involved Threat Agent(s): (TA1) Standard Attacker, (TA5) Web Attacker

(T16) Missing Function Level Access Control

An attacker with network access sends a request to the server-side authentication plugin, as the
plugin does not protect its API properly.

This request allows the attacker to access private functionality or manipulate user data.

Affected Asset(s): (A3) Push ID, (A4) Response

Involved Threat Agent(s): (TA1) Standard Attacker

7.8. Security Objectives 69

(T17) Forging the Mobile Application

By means of reverse-engineering, the attacker implements a mobile application that behaves like
the benign authentication app. The deployed application, however, is malicious, e.g. it forwards
sensitive data to the attacker.

The attacker is in full control of the mobile authentication app. Whilst the user can authenticate
successfully using the forged authentication app, the attacker is also able to use the app under his
control to authenticate successfully.

Affected Asset(s): (A1) Cryptographic key material, (A2) Password, (A3) Push ID, (A5) Re-
sponse

Involved Threat Agent(s): (TA1) Standard Attacker

(T18) Automatically Process Authentication Without The User’s Consent

The authentication process can be performed without the explicit consent of the user.

The attacker triggers the authentication process and also performs the authentication method suc-
cessfully without the user noticing and without her assistance.

Affected Asset(s): (A5) Response

Involved Threat Agent(s): (TA1) Standard Attacker; (TA2) Advanced Attacker, (TA5) Web At-
tacker

Each defined threat covers one or multiple assets. Table B.1 provides the concrete mapping between
threats and assets. Furthermore, the mapping between threat agents and threats is given in Table B.2.
This mapping describes which threat agent is able to mount an attack and thus to pose a concrete threat
to the TOE.

7.8 Security Objectives

In order to counterfeit the previously listed threats, the following set of security objectives has to be met.

(O1) Protected Storage of Sensitive Data

The TOE ensures that sensitive data such as cryptographic key material or the Push ID is stored
protected against unauthorised access and modification.

Covered Threat(s): (T2) Copy or Extract Device Storage, (T3) Accessing Data On-Device, (T11)
Manipulation of Authentication Data, (T12) Manipulation of Push ID

(O2) Avoid Side-Channel Data Leakage

The TOE ensures that sensitive data does not end up in operating system logs or web browser
caches.

Covered Threat(s): (T3) Accessing Data On-Device

(O3) Detect Manipulation of Sensitive Data

The TOE ensures that any alterations or manipulations of sensitive data are detected.

Covered Threat(s): (T11) Manipulation of Authentication Data, (T12) Manipulation of Push ID

70 7. Security Evaluation

(O4) Detect Rooted and Jailbreaked Devices

The TOE ensures that the authentication app is not started, if the mobile device is rooted or jail-
breaked.

Covered Threat(s): (T3) Accessing Data On-Device, (T9) Internal Observation, (T11) Manipu-
lation of Authentication Data, (T12) Manipulation of Push ID, (T13) Intercepting Remote
Notifications On-Device

(O5) Validate and Escape User Input

In order to counterfeit code injection, the TOE validates and escapes all user-supplied input. This
data comprises text input, as well as data retrieved from QR codes and remote notifications.

Covered Threat(s): (T15) Code Injection

(O6) Do Not Run Code from Untrusted Sources

The TOE does not load source code (e.g. JavaScript libraries) from external sources. Only source
code packaged within the mobile authentication app or loaded from the origin of the server-side
authentication plugin is executed on the device. If content from the authentication plugin is loaded,
state-of-the-art transport layer security is used.

Covered Threat(s): (T15) Code Injection

(O7) Detect Forged Mobile Applications

The TOE employs measures to detect whether the mobile authentication app is legitimate.

Covered Threat(s): (T17) Forging the Mobile Application

(O8) Code Obfuscation

In order to harden reverse-engineering and thus forging the mobile application, the TOE employs
code obfuscation.

Covered Threat(s): (T17) Forging the Mobile Application

(O9) Employ State-of-the-Art Transport Security

The TOE uses state-of-the-art transport layer security for protecting traffic between the mobile
authentication app and the server-side authentication plugin.

Covered Threat(s): (T4) Accessing Data During Transport, (T12) Manipulation of Push ID

(O10) Employ Certificate Pinning

To provide security against man-in-the-middle attacks the TOE employs certificate or public-key
pinning.

Covered Threat(s): (T4) Accessing Data During Transport, (T12) Manipulation of Push ID

(O11) Protection of Server-Side APIs

The TOE protects server-side APIs adequately such that attackers cannot access or manipulate
another user’s data.

Covered Threat(s): (T16) Missing Function Level Access Control

7.8. Security Objectives 71

(O12) Protection of Sensitive Data in Remote Notifications

If sensitive data is sent using remote notifications, the TOE ensures that data is additionally pro-
tected by means of encryption.

Covered Threat(s): (T13) Intercepting Remote Notifications On-Device, (T14) Intercepting Re-
mote Notifications During Transport

(O13) High Password Entropy

In order to increase entropy, the TOE ensures that user-chosen passwords provide sufficient en-
tropy, e.g. by complying to a password policy.

Covered Threat(s): (T6) Throttled Guessing, (T7) Unthrottled Guessing

(O14) High Response Entropy

The response to the challenge shall have sufficient entropy to render an exhaustive search compu-
tationally infeasible. If the server-side authentication plugin limits the number of tries, measures
have to be taken, that the computed response does not show repetitive patterns and hence remains
unpredictable.

Covered Threat(s): (T6) Throttled Guessing, (T7) Unthrottled Guessing, (T9) Internal Observa-
tion

(O15) High Cryptograhic Key Entropy

Cryptographic keys used by the TOE shall have sufficient strength to render an exhaustive search
with respect to the cryptographic key computationally infeasible. If the verification whether the
used key is correct is happening at the server-side authentication plugin, the plugin has to limit
the number of tries. Furthermore, measures have to be taken, that the computed response does not
show repetitive patterns and hence the used cryptographic keys remain unpredictable.

Covered Threat(s): (T6) Throttled Guessing, (T7) Unthrottled Guessing

(O16) Adequate Verification Info

The TOE provides no hints or detailed information in case of wrong user credentials or wrong
responses. This, for example, includes advoiding displaying detailed error and exception messages.

Covered Threat(s): (T6) Throttled Guessing, (T8) Leak from Verifier

(O17) Explicit User Consent

The TOE has to ensure that the user explicitely gives her consent for performing authentication on
the mobile device.

Covered Threat(s): (T18) Automatically Process Authentication Without The User’s Consent

(O18) Transaction-Specific Response

The TOE ensures that the response to the challenge is transaction-specific, hence, the response
cannot be used for subsequent authentication processes and is only valid for one particular authen-
tication.

Covered Threat(s): (T5) Phishing, (T7) Unthrottled Guessing

72 7. Security Evaluation

(O19) Assure Legitimate User is Operating the Device

The TOE employs measures to assure that the legitimate user is operating the mobile device cov-
ering the second factor. This might be realised by requiring additional knowledge or biometric
verification.

Covered Threat(s): (T1) Device Theft, (T18) Automatically Process Authentication Without The
User’s Consent

(O20) Assure Factor Possession is Required for Authentication

The TOE ensures that an attacker cannot authenticate at the authentication plugin without being in
possession of the device covering the factor possession.

Covered Threat(s): (T9) Internal Observation (T10) Physical Observation

Each defined threat is countered by fulfilling one or a combination of multiple security objectives.
Table B.3 provides a mapping between security objectives and threats.

7.9 General Countermeasures

This section states measures aiming to meet the previously described security objectives. The listed
countermeasures have been split into (a) General Countermeasures that have been implemented within
the authentication app and are valid for all authentication methods and (b) Specific Countermeasures
that vary between the different integrated authentication methods. Most countermeasures equally apply
to iOS and Android devices. If necessary, platform-specific solutions or implications depending on the
particular threat agent are added.

(O2) Avoid Side-Channel Data Leakage

Cordova provides the functionality to write JavaScript logging messages to the operating system
logs. By removing the required Cordova plugin, no JavaScript logs and thus no potentially sensitive
data gets leaked to the operating system. The official documentation recommends removing this
plugin before building release packages3.

(O3) Detect Manipulation of Sensitive Data

Sensitive data stored within the mobile device’s key-storage facilities is currently not protected
regarding integrity. Meaning, no cryptographic signatures or message authentication codes have
been used.

It could be suspect of future work, to enhance the implemented Keychain Plugin with support for
cryptographic signatures.

(O4) Detect Rooted and Jailbreaked Devices

Apple iOS devices, by default, do not allow the installation of applications from other locations
as the official AppStore. In order to remove software restrictions, many users employ jailbreaks.
A jailbreak allows using software not authorised by Apple. However, jailbreaks add numerous
security vulnerabilities, e.g. jailbreaked devices cannot be relied on adequately protecting sensitive
application data.

3http://ionicframework.com/docs/guide/publishing.html

http://ionicframework.com/docs/guide/publishing.html

7.9. General Countermeasures 73

In contrast to iOS, Android devices allow the installation of applications from external sources.
Therefore, on Android, rooting is only performed for gaining privileged access to the mobile de-
vice. With root access, the entire operating system can be manipulated as well as data from other
applications can be accessed.

As rooted or jailbreaked devices pose a serious security threat, many applications employ detection
mechanisms and only offer full functionality if the device is not rooted or jailbreaked. Two Apache
Cordova plugins offer root and jailbreak detection mechanisms4 for Android and iOS5 devices.
Both plugins check for specific files and folders typically present on rooted or jailbreaked devices.

These checks might well work for a large number of devices, but they do not counterfeit targeted
attacks. Advanced attackers can simply render the detection mechanisms useless by renaming
files and folders that are most commonly checked. Although more complex detection mechanisms
exist, this still constitutes an arms race between attackers and developers aiming detection.

Currently, no root or jailbreak detection mechanisms have been deployed in the authentication app.

(O5) Validate and Escape Input Data

Web browsers interpret strings present within a <script> tag as JavaScript code. Therefore,
special care has to be taken when processing data received from untrusted sources or user input.

In contrast to the typical web use case, mobile devices offer a greater range of possible unsafe input
vectors [40]. For example, the Service Set Identifier (SSID) of wireless networks, contact data,
SMS, QR codes and many other data sources might act as a channel for code injection. A Cordova-
based SMS viewer, for example, might be susceptible to cross-site scripting attacks if JavaScript
code is injected into the received messages. This shows that input validation and escaping is of
particular relevance to hybrid mobile applications.

To counterfeit script injection, AngularJS escapes all data that is dynamically added to HTML
templates by default6. In the case of plain HTML code that should be inserted, the $sanitize

service can be used to remove unsafe instructions, i.e. JavaScript code. As long as the developer
does not explicitly deactivates these protection mechanisms, any source code potentially encoded
within QR codes, push notifications or user input will not be executed when being added to HTML
pages7.

(O6) Do Not Run Code from Untrusted Sources

Conventional web applications can rely on two protection mechanisms in place by the web browser.
First of all, the browser sandbox hinders applications from accessing resources such as sensors or
the file system of the underlying system. Second, the same-origin-policy prohibits applications
from accessing data or source code from applications of a different origin.

With hybrid applications, a WebView is embedded within a native application. Access to resources
of the underlying system is governed by the respective operating system’s permission model. This
means that web content running within the WebView, disregarding of its origin, has full access to
the underlying system’s APIs via Cordova plugins. This seems particularly drastic, as applications
often tend to include external JavaScript code, i.e. for advertising purposes. Therefore, the official
documentation on Apache Cordova highlights that it is not recommended to use iFrames unless
the server that hosts the iFrame content is under the control of the developer as well [8].

4https://github.com/trykovyura/cordova-plugin-root-detection
5https://github.com/leecrossley/cordova-plugin-jailbreak-detection
6https://docs.angularjs.org/api/ngSanitize/service/$sanitize
7The JavaScript eval (...) function should be used with care. See the following resource for more details on safely

using eval(): https://www.owasp.org/index.php?title=JavaScript_Closure_Within_Eval. None of the integrated
authentication methods uses this function.

https://github.com/trykovyura/cordova-plugin-root-detection
https://github.com/leecrossley/cordova-plugin-jailbreak-detection
https://docs.angularjs.org/api/ngSanitize/service/$sanitize
https://www.owasp.org/index.php?title=JavaScript_Closure_Within_Eval

74 7. Security Evaluation

Apache Cordova uses a whitelisting mechanism in order to restrict access to external domain and
disable loading of untrusted content. The integrated whitelisting mechanism has changed drasti-
cally with the release of Cordova version 4.0 in April 20158. Since then, whitelisting is handled
by the whitelist plugin9. Therefore, whitelisting policies have to be added to the applications
config.xml file. The plugin includes the following whitelisting features:

• Navigation Whitelisting
The developer can whitelist the URLs the WebView can be navigated to, e.g. by using
JavaScript’s location.href property. By default, only navigations to file:// URLs are
allowed. In order to allow other URLs, the developer has to provide a whitelist using the
<allow−navigation> tag.
During inspection of the source code of the Apache Cordova framework for Android, we
found that the navigation whitelist also limits access to the Cordova bridge, which enables
calling native Cordova plugins from within the WebView10.

• Intent Whitelisting
The intent whitelist controls, which URLs the application is allowed to ask the system to
open. By default, no external URLs are allowed. However, this whitelist does not apply
to Cordova plugins, only to hyperlinks and calls to window.open() placed the application
running in the WebView.

• Network Request Whitelisting
In order to whitelist network requests, the developer can choose between specifying a whitelist
by extending the config.xml file or using a CSP within the HTML template.
When using the config.xml approach, the whitelist has to be added via <access> tags. This
whitelist covers network requests such as XMLHttpRequest or embedded resources via <
img> and <script> tags. If no whitelist is present, only file:// URLs are allowed, but
newly created Cordova applications include <access origin="*"> already and thus by de-
fault allow access to all URLs. The config.xml approach, however, does not cover all proto-
cols. For example, on Android, the whitelist does not apply to Web Sockets requests, <video
> and <audio> tags11. Therefore, it is recommended to rely on the CSP for whitelisting. The
config.xml approach is thus mainly intended for WebViews that do not support CSP.
The CSP offers a more fine-grained whitelisting mechanism. The developer can provide
different settings for network requests, <script> tags and media resources. On Android,
the CSP is available starting with version 4.4 of the Android operating system. Apple iOS
devices offerCSP support starting with iOS 7. Mozilla provides a complete documentation
on all available CSP directives [55].

The authentication app makes use of a CSP. Source code is only allowed to be loaded from local
files and HTTP requests are limited to servers running authentication plugins. For the communi-
cation between the WebView and Cordova plugins it is required to set the options unsafe−eval,
whereas unsafe−inline is needed for certain AngularJS features [7]. The whitelist plugin’s
navigation is used to restrict access to local files only.

(O7) Detect Forged Mobile Applications

8https://cordova.apache.org/announcements/2015/04/15/cordova-android-4.0.0.html
9https://github.com/apache/cordova-plugin-whitelist

10The Java class https://github.com/apache/cordova-android/blob/master/framework/src/org/apache/

cordova/CordovaBridge.java includes the whitelisting mechanisms for accessing native URLs via plugins. Therefore, the
navigation whitelist also "protects against random iframes being able to talk through the bridge" in order to "trust only pages
which the app would have been allowed to navigate to anyway".

11http://cordova.apache.org/docs/en/4.0.0/guide/appdev/whitelist/index.html

https://cordova.apache.org/announcements/2015/04/15/cordova-android-4.0.0.html
https://github.com/apache/cordova-plugin-whitelist
https://github.com/apache/cordova-android/blob/master/framework/src/org/apache/cordova/CordovaBridge.java
https://github.com/apache/cordova-android/blob/master/framework/src/org/apache/cordova/CordovaBridge.java
http://cordova.apache.org/docs/en/4.0.0/guide/appdev/whitelist/index.html

7.9. General Countermeasures 75

Currently, there is no way for the authentication server to check whether an application on the
mobile device has been tampered with or forged. In general, it is not possible to reliably protect
against decompilation and repackaging of an application. As long as the application behaves like
the legitimate application, the server cannot detect manipulations. Cryptographic keys or other
tokens that might identify the legitimate application can be extracted and included in the forged
application.

Android applications have to be signed using a self-signed certificate of the developer [6]. The sig-
nature mainly influences application updates and access to application resources. Two applications
signed with the same cryptographic key can share resources and data on the device. Thus, Android
developers, for example, could compare the cryptographic signature of the installed application to
detect any tampering. Attackers, however, might remove these checks, repackage the application
and distribute a forged application to the users.

To ensure that applications have been approved by Apple and have not been modified, Apple
requires all applications to be signed using a certificate issued by Apple [13]. At runtime, the
signature of the application code is verified in order to detect if the application has been tampered
with. For attackers it is considerably harder to submit repackaged applications to Apple’s App-
Store, as Apple requires a paid Developer account backed by a valid credit card and also performs
some checks before releasing applications. As users cannot install applications from other sources
than the AppStore, attackers cannot easily distribute forged applications.

(O8) Code Obfuscation

Apache Cordova applications allow developers to write most of the code using web technologies,
such as JavaScript, HTML5 and CSS, which is executed within WebViews. On Android, the
resulting platform-independent source code is packaged in the assets/ folder of the application. On
iOS the files are bundled as resources or added bundled within a separate www/ folder. Thus, by
unpacking application packages the source code of the packaged JavaScript files is available easily.
Therefore, application developers aiming to protect their source code, have to apply additional
means of protection.

Often, the term code obfuscation and tools to minify or uglify code are used interchangeably.
However, code obfuscation differs from pure code minimization. Code minimization tools are
heavily used for reducing the size of JavaScript libraries that have to be downloaded from re-
mote servers to the client. Minimization mainly happens by removing unnecessary characters in
the source files. Code obfuscation tools, however, transform source code and control flow to be
as incomprehensible as possible. When employing code obfuscation tools for Apache Cordova
applications, it is particularly important that calls to JavaScript functions within HTML code and
plugin-specific code are included in the obfuscation process as well. One tool for proper JavaScript
obfuscation is jscrambler12. Nevertheless, code obfuscation should not be considered as a security
feature. Rather, code obfuscation protects the intellectual property of the developers and make
reverse-engineering more difficult, yet not impossible.

The developed authentication app does not yet feature code obfuscation, as it only presents a
prototypical implementation. It has to be noted that in order to obfuscate applications that rely on
the AngularJS framework and its dependency injection capabilities, the developer is required to
change the way dependencies are declared13.

(O9) Employ State-of-the-Art Transport Security

In order to communicate with authentication plugins on the server side, the application uses SS-
L/TLS connections. The WebView accesses the same truststore as the web browser, the system-

12https://jscrambler.com/
13See https://docs.angularjs.org/tutorial/step_05 for a reference of changes required before minifying or obfus-

cating AngularJS applications

https://jscrambler.com/
https://docs.angularjs.org/tutorial/step_05

76 7. Security Evaluation

wide truststore. The server running the authentication plugins uses a certificate from a trusted
certificate authority.

By modifying the behaviour of the WebView, a developer is able overwrite the handling of SS-
L/TLS errors and thus disable certificate verification entirely. Some resources recommend these
modifications for testing with self-signed certificates14. However, there is always the risk that those
modifications for testing remain present in the release version of the application as well. Android
has introduced the debuggable flag in the manifest file. When debugging is enabled the system ig-
nores SSL/TLS errors such as certificate validation or the use of self-signed certificates not present
in the system-wide truststore. However, this configuration should not be used in production and
thus should be disabled before building the release version of the application.

(O10) Employ Certificate-Pinning

Certificate pinning, also known as SSL pinning, is a technique for counterfeiting man-in-the-
middle attacks by checking whether the certificate returned from the server matches the expected
certificate. This implies that certificate pinning can only be employed in cases where the host to
connect to is known in advance.

Apache Cordova does not provide support for certificate pinning. The official documentation states
that "the main barrier to this is a lack of native APIs in Android for intercepting SSL connections
to perform the check of the server’s certificate. (Although it is possible to do certificate pinning on
Android in Java using JSSE, the webview on Android is written in C++, and server connections are
handled for you by the webview, so it is not possible to use Java and JSSE there.)" [8]. However,
certificate pinnning can be realised on a per-request basis by using third-party Cordova plugins.

The Cordova HTTP15 plugin, for example, allows the developer to supply a list of trusted certifi-
cates. Whenever the plugins get() and post() methods are called, a certificate check is enforced.
The plugin currently supports Android and iOS devices. However, this plugin-based approach
requires the developer to make use of the plugin’s methods for each single HTTP request. Usu-
ally, hybrid applications use XMLHttpRequest or any of its wrappers for sending HTTP requests.
Compared to XMLHttpRequest the plugin still has a range of limitations. For example, it is not
supported to access the HTTP headers returned by the server. Furthermore, the plugin does not
support automatic cookie handling, which might limit applicability for many mobile applications.
Neither, HTTP requests originating from other Cordova plugins are covered.

The authentication app currently uses HTTP requests only during registration for sending the Push
ID to the authentication plugin on the server. For these requests, the certificate-pinning mecha-
nism from the Cordova HTTP plugin is used. This requires that the certificates of servers running
trusted authentication plugins are packaged within the application. The downside of this plugin-
based approach is that the CSP does not cover these requests, as only requests originating from
the WebView, e.g. by using XMLHttpRequest are restricted but not calls from the native side.
This actually presents a dilemma for application developers, either rely on the security mecha-
nisms in place by the web browser and thus the WebView or trust in plugins that offer sending
HTTP requests. Using plugins, the developer cannot be sure whether the plugin handles certificate
validation correctly, provides a modified truststore or even disables verification entirely.

14http://ivancevich.me/articles/ignoring-invalid-ssl-certificates-on-cordova-android-ios/
15https://github.com/wymsee/cordova-HTTP

http://ivancevich.me/articles/ignoring-invalid-ssl-certificates-on-cordova-android-ios/
https://github.com/wymsee/cordova-HTTP

7.10. Specific Countermeasures 77

7.10 Specific Countermeasures

In the following, countermeasures specific to the integrated authentication methods are described.

7.10.1 Triple Key AES OTP

The Triple Key AES OTP method relies on three different cryptographic keys in order to compute the
correct OTP: (a) a key received via the mobile platform’s push-notification service, (b) a key encoded
within a QR code, which has to be scanned by the user and (c) a key stored on the mobile device, using
dedicated key-storage facilities. The cryptographic keys encrypt each other. Thus all three keys and an
incrementing counter are required to compute the correct response. In addition to the application-wide
countermeasures described in Section 7.9, countermeasures specific to this authentication method are
detailed.

(O1) Protected Storage of Sensitive Data

The authentication method Triple Key AES OTP requires two sensitive data values stored perma-
nently on the device: Key_A and the Push ID. Both values are stored using the mobile device’s
key-storage facilities. In the following, the platform-specific implications are given.

Android devices: On the Android platform, the Keystore is used. Android versions prior to ver-
sion 6 do not support storing symmetric key strings. Thus the Base64-encoded Key_A and
the Push ID strings are encrypted using a randomly generated RSA key pair16. The encrypted
strings are stored on the file system in the internal storage of the authentication app. For each
value that is stored in the Keystore a new random key pair is generated.
The security of the stored data mostly depends on the Keystore implementation variant. Sev-
eral devices offer a hardware-backed Keystore, where the private keys cannot be extracted.
Software-based implementations, however, use a key derived from the user’s passcode. De-
pending on the considered threat agent, different security implications apply.

(TA1) Standard Attacker
An attacker that deploys malware on the mobile device does not have access to another
application’s data. Therefore, an attacker neither has access to Keystore entries of the
authentication app nor to the encrypted values in the file system.

(TA2) Advanced Attacker
An attacker able to gain root access to the mobile device, basically, might control the en-
tire operating system and thus access the files and Keystore entries of other applications.
A leak of Key_A and the Push ID, however, do not yet allow for authenticating suc-
cessfully. Still Key_1_random encoded in the push notification key and Key_2_random
encoded within the QR code are needed. As push notifications can only be received on
the device identified by the specific Push ID any further attacks have to be carried out
on the device of the victim or the attacker has to forward incoming push notifications.
Finally, the Triple Key AES OTP method is used in conjunction with a username and
password plugin. Thus, the attacker has to brute force or phish the user’s password on
the desktop computer.

(TA3) Nearby Attacker
Software-based Keystore implementations: When extracting the device storage, an at-
tacker can mount a brute-force attack on the passcode, in order to retrieve the master
key that decrypts all Keystore entries.

16This implementation uses 2048-Bit RSA keys, as the Keystore API currently does not allow to specify the desired key size
[58].

78 7. Security Evaluation

Hardware-backed Keystore implementations: The master key encrypting the Keystore
entries is protected by hardware and the user’s passcode. Thus, with hardware variants
keys in the Keystore can only be accessed on the device. In our case, however, the
sensitive data is stored on the file system but can only be decrypted with the key stored in
the Keystore. An attacker, however, can try to bruteforce the private RSA keys required
to decrypt Key_A and the Push ID.
In order to verify whether the decrypted string represents the correct Key_A the at-
tacker has to query the authentication server. Therefore, the attacker needs the keys
from the QR code and the push notification to compute an OTP. As Key_1_random
and Key_2_random change for every transaction and the server only accepts a limited
amount of incorrect OTPs, Key_A can be seen as secure.
A leaked Push ID does not enhance the attackers capabilities, as only the legitimate
device associated with that Push ID receives push notifications.

(TA5) Web Attacker
An attacker that succeeds in injecting malicious JavaScript into the authentication app
has full access to the native Cordova bridge and thus can access the application’s Key-
store entries. It has to be differentiated between malicious scripts running in an iFrame
(e.g. an advertising service) and malicious scripts injected in the origin of the authenti-
cation app. In the latter case, the script has unconditional access to the Keystore entries.
In case of an iFrame, the authentication app can protect the native Cordova bridge by
setting the whitelisting mechanisms correctly. However, this feature is currently not doc-
umented by Apache Cordova but has been observed during source code inspection. If a
web attacker has succeeded in injecting malicious JavaScript, we cannot reliably protect
the sensitive data. However, we can protect against code injection and untrusted code in
the first place.

iOS devices: For iOS devices, the Keychain is used for storing Key_A and the Push ID. Keychain
entries are protected by a key derived from a hardware key and the user’s passcode. In
contrast to Android, the iOS Keychain supports the storage of arbitrary strings. Thus, no
extra encryption is needed.
Teufl et al. [71] have highlighted the risk connected with encrypted iTunes backups where a
user-chosen password is used to derive the key that encrypts the Keychain. An attacker can
thus perform brute-force attacks on the password off-device. To counterfeit this threat, the
authentication app stores all values using the thisDeviceOnly option of the Keychain. Mean-
ing, the sensitive data will not be included in the iTunes backup and thus is only available on
the user’s device.

(TA1) Standard Attacker
An attacker that deploys malware on the mobile device does not have access to another
application’s Keychain entries.

(TA2) Advanced Attacker
On a jailbreaked device, the attacker might have full access to the operating system and
other application’s data. Equally to Android, access to Key_A alone, will not allow the
attacker to authenticate successfully.

(TA3) Nearby Attacker
The attacker cannot access Keychain entries off-device.

(TA5) Web Attacker
The same security implications as for Android devices apply.

The listed security observations do not consider the encryption of the mobile device’s file system.
File system encryption adds an extra layer of protection, however, at least for Android devices

7.10. Specific Countermeasures 79

we cannot assume that the device is encrypted, whereas on iOS the device lock and thus the file
system encryption can be circumvented with a jailbreak.

(O11) Protection of Server-Side APIs

During registration, the user scans a QR code holding Key_A and some other data such as the plu-
gin name, the domain and the return URL where the authentication app has to send the Push ID.
Encoded within this return URL are the user ID and the plugin ID. Based on these two values the
correct configuration data of the respective user can be updated on the server-side. The authentica-
tion app can only set the value for the Push ID once. Thus, an attacker gaining access to the URL
cannot update the Push ID pointing to a device under her control.

(O12) Protection of Sensitive Data in Remote Notifications

This authentication method uses the mobile platform’s push-notification service for distributing a
symmetric key Key_1_random to the mobile device. In addition, the push notification contains a
transaction id, the current domain and the name of the authentication method to start. The sym-
metric key presents sensitive data, as it influences the computation of the response. Key_1_random
is encrypted using Key_A which is stored using the mobile device’s Keychain or Keystore respec-
tively. Thus, the confidentiality of Key_1_random is achieved as long as the attacker does not get
hold off Key_A. The transmitted transaction id is used to map the data from the QR code to the
correct push notification.

Currently, the integrity of the sent key is not protected. Manipulating the value of the encrypted
Key_1_random further results in a wrong decrypted Key_2_random. As this key is used for the
computation of the required OTP, a manipulation of the encrypted Key_1_random causes the com-
putation of a wrong OTP and thus represents a denial-of-service attack, as the legitimate user
cannot finish authentication.

(O13) High Password Entropy

No password is required for this authentication method. However, a typical authentication process
consists of various subsequent authentication methods. The authentication process has to start
with an authentication method, identifying the current user. This is currently realised as simple
username and password plugin, where the user has to enter her credentials at the web browser.

(O14) High Response Entropy

The computed OTP consists of six digits, thus 106 different possible values. The server checks
whether the computed OTP is correct. Therefore, the server-side authentication plugin limits the
amount of tries, which counterfeits brute-force attacks. For each transaction a new Key_1_random
and Key_2_random is computed and the used counter is incremented. Thus, no patterns regarding
the layout of the OTP can be observed.

(O15) High Cryptographic Key Entropy

Each of the three cryptographic keys is realised as a randomly generated sequence of 256 Bits.
The cryptographic keys are created on the server-side using a secure PRNG. An attacker aiming
to brute force any of the cryptographic keys faces a substantial challenge: The attacker has no
way of verifying whether the guessed key is correct without consulting the server. Only if each of
the three cryptographic keys is correct, the correct OTP can be computed. In the case of a wrong
cryptographic key, another value for the OTP is computed. Thus, the attacker is limited by the
available tries granted by the server-side authentication plugin.

(O16) Adequate Verification Info

When entering a wrong OTP at the server-side authentication plugin, no valuable information is
leaked to the attacker. The attacker is only informed of the entered value being wrong.

80 7. Security Evaluation

For all encryption processes, AES in ECB mode without padding was used. As all cryptographic
keys have 256-bit no padding is required. In the case of wrong values for the cryptographic key,
decryption does not result in an error but a wrong decrypted value.

(O17) Explicit User Consent

To complete authentication, the user is required to retrieve the third cryptographic key by scanning
a QR code. Thus, the user explicitly has to perform an action and thereby expresses her consent.
Furthermore, she has to manually enter the computed OTP at the authentication service in the web
browser.

(O18) Transaction-Specific Response

This authentication method uses three different cryptographic keys for each authentication process.
Key_A is stored permanently in the mobile device’s key-storage facilities, however, a new pair of
Key_1_random and Key_2_random is randomly generated for each transaction. Therefore, an OTP
can only be used for one specific transaction, which counterfeits phishing attacks where an attacker
uses a maliciously retrieved OTP for future authentication.

(O19) Assure Legitimate User is Operating the Device

The authentication method Triple Key AES OTP provides no assurance whether the legitimate user
is operating the device covering the second factor. Anyone with access to the mobile device can
successfully perform this authentication method. In practice, many devices comprise a passcode
for locking the device. However, we cannot assume that the device is adequately protected.

(O20) Assure Factor Possession is Required for Authentication

This authentication method includes two mechanisms to ensure a binding to a particular mobile
device: (a) the secret key Key_A stored in the key-storage facilities of the device and (b) by em-
ploying the push-notification service of the respective platform. Push notifications can only be
received by a particular application on a mobile device identified by its Push ID.

(TA1) Standard Attacker

Key_A stored permanently on the mobile device cannot be extracted. Furthermore, an attacker
cannot interfere with push notifications received on the device. Summarising, an attacker cannot
clone the device covering the second factor.

(TA2) Advanced Attacker

An attacker with root access to the device might gain access to the sensitive data stored in the
device’s key-storage facilities. Furthermore, root access allows an attacker to control the entire
operating system. Therefore, received push notifications can be intercepted and forwarded to third
parties. Still, if an attacker manages to extract Key_A and intercepts push notifications, she has to
get hold of the user’s password that has to be entered on the desktop system for the username and
password plugin.

(TA5) Web Attacker

In the case of a web attacker, two different scenarios have to be distinguished. If malicious
JavaScript code has been embedded via an iFrame (e.g. an advertising service) the attacker might
have access to the native Cordova bridge and thus can retrieve Key_A from the key-storage fa-
cilities. However, this can be mitigated by employing the whitelisting mechanisms correctly.
JavaScript injected in the application, e.g. using not validated input vectors, on the other hand,
is executed in the origin of the application and has unlimited access to the native Cordova bridge.
This cannot be addressed by whitelisting mechanisms and therefore, highlights the need for con-
sequent validation of all input data.

7.10. Specific Countermeasures 81

Summary

The Triple Key AES OTP method employs device binding by using the mobile platform’s push-notification
service and key material stored on Android and iOS devices. The authentication app has to adequately
protect these two components against attackers. The main protection mechanisms are shortly sum-
marised. Finally, some remaining problems are discussed

The authentication app stores the secret Key_A by using the Keystore on Android and the iOS Key-
chain. These key-storage facilities provide adequate protection against a standard attacker on the mobile
device. Unfortunately, the key material cannot be protected against attackers with root access that are able
to extract and manipulate the stored values. In the case of an attacker extracting the storage device, we
have to distinguish between iOS and Android devices. On iOS devices, by default, a hardware-element
is included in the key hierarchy. Thus keys can only be accessed on the iPhone. Whereas on Android de-
vices, different implementations of the Keystore exist. For software-based implementations, an attacker
that brute forces the user-chosen lock screen password can access the Keystore entries. Hardware-based
implementations offer similar security to iOS.

There is a major risk of cryptographic material getting exposed to web attackers. Attackers that are
able to inject or run malicious JavaScript code in the authentication app can easily access the crypto-
graphic key material using the native Cordova bridge. Thus, it is of particular relevance to use whitelist-
ing and escaping mechanisms offered by the framework.

The temporary keys distributed via the mobile platform’s push-notification system are encrypted with
the Key_A stored on the mobile device. An attacker that is able to access the push notification during
transport or on the device thus cannot decrypt the key encoded within the push notification.

An attacker that is not able to access the raw key material might aim for brute-force attacks on the
cryptographic keys or the response to the challenge. As a security measure, an attacker cannot verify on
the device, whether the guessed values are correct. Only the server can do so, by verifying the entered
OTP. Furthermore, the cryptographic keys encoded within the QR code and the push notification change
for each transaction, which successfully counterfeits phishing attacks. A phished OTP, thus, cannot be
used in any subsequent transactions.

Although, we were able to implement various measures to counter common security risks, still some
problems exist. First of all, we cannot reliably protect our assets against an attacker with root access
to the mobile device. Root access allows for controlling the entire operating system, which includes
accessing cryptographic key material that has been stored in the Keystore or Keychain. In this case,
the username and password entered on the desktop system represents the last line of defence. However,
there exist various root detection methods for mobile devices. Along with exploits that allow attacker to
gain root access, root detection methods constantly change. An attacker willing to hide root access can
circumvent these detection methods. For example, many root detection methods check if specific files
are present on the mobile device. An attacker can bypass these checks by renaming these files.

Similar considerations apply in the case of device theft. Apart from potential passwords used to lock
the mobile device, the user is not required to supply additional knowledge on the device. Meaning, a
thief can successfully operate the device covering the second factor. Only the username and password
entered on the desktop system might hinder the thief from authenticating successfully.

Second, we cannot reliably protect the mobile application against forging. Attackers might decompile
the application, modify the application’s code and repackage the app. Android devices allow users to
install applications from other sources than the official application store. This sideloading of applications
enables attackers to distribute forged applications via third-party stores or by directly advertising them
to the user. Whereas on iOS devices, applications can only be installed from AppStore. Thus, forged
applications need to pass Apple’s checks to be able to make it into AppStore, which somewhat increases
security.

The authentication app and the server running authentication plugins deploy state-of-the-art transport

82 7. Security Evaluation

layer security. To counterfeit man-in-the-middle attacks, certificate pinning has been integrated. How-
ever, currently, the API on the server side requires no authentication from the mobile device. During
registration, the user scans a QR code that includes her user id, a plugin id, Key_A and the URL the Push
ID should be sent to. If an attacker gets hold of the user id, the plugin id and the URL, requests including
the Push ID of any other device can successfully update the Push ID on the server side. A manipulated
Push ID allows the attacker to receive push notifications intended for the legitimate user on any other
device.

Summarising, our authentication app and mobile applications in general, cannot be reliably protected
against attackers with root access to the device. However, by deploying security measures such as strict
whitelisting, input validation and by using hardware-backed key storage we counterfeit a large number
of threats.

7.10.2 Triple Key AES OTP with Knowledge Proof

This authentication method Triple Key AES OTP with Knowledge Proof combines a possession proof
and the factor knowledge. The user proves possession similar to the Triple Key AES OTP method by
using a key stored using the device’s key-storage facilities and by assuring device binding by using the
mobile platform’s push-notification system. In addition to scanning a QR code, the user has to enter a
password on the mobile device.

In total, three different cryptographic keys are needed to compute the correct OTP: (a) Key_A stored
on the mobile device, (b) Key_PW_Derived derived from the user’s password and a random salt and
(c) the transaction-specific Key_random. Key_PW_Derived is used to encrypt Key_random, which is
displayed to the user encoded in a QR code and Key_A encrypts the random nonce sent via the mobile
platform’s push-notification service.

In addition to the application-wide countermeasures described in Section 7.9, countermeasures spe-
cific to this authentication method are detailed.

(O1) Protected Storage of Sensitive Data

The authentication method Triple Key AES OTP with Knowledge Proof requires two sensitive
data values stored permanently on the device: Key_A used to decrypt the nonce and the salt value
required for password-based key derivation.

In general, similar considerations as for the authentication method Triple Key AES OTP apply. In
the following, differences are given.

Android devices: Equally to Triple Key AES OTP, a simply key wrapping mechanism has been
deployed. Key_A, the Push ID and the salt value are encrypted using a randomly generated
RSA key pair.

(TA1) Standard Attacker
An attacker that deploys malware on the mobile device does not have access to another
application’s data. Therefore, an attacker neither has access to Keystore entries of the
authentication app nor to the encrypted values in the file system.

(TA2) Advanced Attacker
An attacker able to gain root access to the mobile device, basically, might control the en-
tire operating system and thus access the files and Keystore entries of other applications.
A leak of Key_A, the salt and the Push ID, however, does not yet allow for authenticating
successfully. Still, the nonce encoded in the push notification, Key_PW_Derived derived
from the user’s password and Key_random encoded within the QR code are needed. As
push notifications can only be received on the device identified by the specific Push ID,
any further attacks have to be carried out on the device of the victim or the attacker has

7.10. Specific Countermeasures 83

to intercept incoming push notifications and forward them to the attacker. Finally, this
authentication method requires the user to enter two passwords. Thus, an attacker has to
brute force or phish the user’s password on the desktop computer and the password that
is used for key derivation on the mobile device, which further increases the complexity
of the attack.

(TA3) Nearby Attacker
An attacker that has achieved to decrypt Key_A and the salt, still needs to bruteforce the
password. To verify whether the Key_PW_Derived is correct, the attacker has to query
the authentication server. Therefore, the attacker needs the Key_random from the QR
code and the nonce from the push notification for computing the OTP. As Key_random
and the nonce change for every transaction and the server only accepts a limited amount
of incorrect OTPs, brute-force attacks do not present a realistic threat scenario.
A leaked Push ID does not enhance the attackers capabilities, as only the legitimate
device associated with that Push ID receives push notifications.

(TA5) Web Attacker
An attacker that succeeds in injecting malicious JavaScript into the authentication app
has full access to the native Cordova bridge and thus can access the application’s Key-
store entries. It has to be differentiated between malicious scripts running in an iFrame
(e.g. an advertising service) and malicious scripts injected in the origin of the authenti-
cation app. In the latter case, the script has unconditional access to the Keystore entries.
In the case of an iFrame, the authentication app can protect the native Cordova bridge
by setting the whitelisting mechanisms correctly. If a web attacker has succeeded in
injecting malicious JavaScript, we cannot reliably protect the sensitive data. However,
we can protect against code injection and untrusted code in the first place.

iOS devices: For iOS devices the Keychain is used for storing Key_A, the Push ID and the salt
value. The authentication app stores all values using the thisDeviceOnly option of the Key-
chain.

(TA1) Standard Attacker
An attacker that deploys malware on the mobile device does not have access to another
application’s Keychain entries.

(TA2) Advanced Attacker
On a jailbreaked device, the attacker might have full access to the operating system and
other application’s data. Equally to Android, access to Key_A, the Push ID and the salt,
will not allow the attacker to authenticate successfully.

(TA3) Nearby Attacker
The attacker cannot access Keychain entries off-device.

(TA5) Web Attacker
The same security implications as for Android devices apply.

(O11) Protection of Server-Side APIs

The same considerations as for the authentication method Triple Key AES OTP apply.

(O12) Protection of Sensitive Data in Remote Notifications

This authentication method uses the mobile platform’s push-notification service for distributing a
nonce to the mobile device. In addition, the push notification contains a transaction id, the current
domain and the name of the authentication method to start. The nonce presents sensitive data, as
it influences the computation of the response. The nonce is encrypted using Key_A which is stored
using the mobile device’s Keychain or Keystore respectively. Thus, the confidentiality of the nonce
is achieved as long as the attacker does not get hold off Key_A. The transmitted transaction id is
used to map the data from the QR code to the correct push notification.

84 7. Security Evaluation

Currently, the integrity of the sent nonce is not protected. As the nonce is used for the computation
of the required OTP, a manipulation of the encrypted nonce causes the computation of a wrong
OTP and thus represents a denial-of-service attack, as the legitimate user cannot finish authentica-
tion.

(O13) High Password Entropy

Currently, no password policy is deployed within the mobile authentication app. Thus, users might
choose weak passwords. In addition to guessing the chosen password, the salt value either has to
be extracted from the key-storage facilities or guessed as well. However, for verifying whether the
thus resulting Key_PW_Derived is correct, the attacker has to contact the authentication service.
On the mobile device, no information on the correctness of the derived key is given. For the
encryption of Key_random AES is used in ECB mode without any padding in place. Decrypting
Key_random with an incorrect Key_PW_Derived results in a different value Key_random, but will
not fail and thereby giving valuable information to the attacker.

Future work could further enhance security by enforcing a password policy.

(O14) High Response Entropy

The computed OTP consists of six digits, thus 106 different possible values. The server checks
whether the computed OTP is correct. Therefore, the server-side authentication plugin limits the
amount of tries, which counterfeits brute-force attacks. For each transaction a new Key_random
and random nonce are generated, thus, no patterns regarding the layout of the OTP can be observed.

(O15) High Cryptographic Key Entropy

Cryptographic keys are randomly generated sequences of 256 Bits. The cryptographic keys are
created on the server-side using a secure PRNG. Key_PW_Derived is derived using a secret user-
chosen password and a salt value stored on the device. For key derivation, the SCrypt algorithm is
used.

An attacker aiming to brute force any of the cryptographic keys or the password and salt value
faces a substantial challenge: The attacker has no way of verifying whether the guessed values are
correct without consulting the server. Only if each of the values are correct, the correct OTP can be
computed. In the case of a wrong input value, a different OTP gets computed. Thus, the attacker
is limited by the available tries granted by the server-side authentication plugin.

(O16) Adequate Verification Info

When entering a wrong OTP at the server-side authentication plugin, no valuable information is
leaked to the attacker. The attacker is only informed about the entered value being wrong.

For all encryption processes, AES in ECB mode without padding was used. As all cryptographic
keys and the nonce have 256-bit, no padding is required17. In the case of wrong values for the
cryptographic key, decryption does not result in an error but in a wrong decrypted value.

(O17) Explicit User Consent

To complete authentication, the authentication app requires three different cryptographic keys.
Both, Key_PW_Derived and Key_random can only be obtained with explicit user involvement.
As the user is required to scan a QR code and enter a secret password, she thereby expresses her
consent. Furthermore, she has to manually enter the computed OTP at the authentication service
in the web browser.

17It has to be noted that although a 256-bit nonce is sent to the authentication app, only the last 32 bit act as input for the
OTP computation. However, this does not decrease security, as still, the attacker can verify the correctness of the OTP only by
querying the server.

7.10. Specific Countermeasures 85

(O18) Transaction-Specific Response

This authentication method uses two different cryptographic keys and a random nonce for each
authentication. Key_A is stored permanently in the mobile device’s key-storage facilities, however,
Key_random and the nonce are randomly generated for each transaction. Therefore, an OTP can
only be used for one specific transaction, which counterfeits phishing attacks where an attacker
uses a maliciously retrieved OTP for future authentication.

(O19) Assure Legitimate User is Operating the Device

The transaction-specific Key_random used for OTP computation is encrypted with a key derived
from the user’s password. The password is never stored locally on the device and has to be entered
for each authentication transaction. If the user-supplied a correct OTP to the server, the authentica-
tion plugin on the server side can assume that the legitimate user is operating the device covering
the second factor.

(O20) Assure Factor Possession is Required for Authentication

The same considerations as for the authentication method Triple Key AES OTP apply.

Summary

Similar to the Triple Key AES OTP method this authentication method employs device binding by using
the mobile platform’s push-notification service and key material stored on Android and iOS devices.
Furthermore, a key derived from a user-chosen password makes sure that only legitimate persons can
operate the device covering the second factor. A summary on security implication of Triple Key AES
OTP with Knowledge Proof is given.

The user needs to enter a password in order to decrypt the transaction-specific Key_PW_Derived
encoded within the QR code. The password is neither stored on the mobile device nor on the server. The
server only stores the derived key and the salt. Compared to the Triple Key AES OTP method, the use
of an additional password somewhat increases the barrier for thieves or an attacker with root access to
the device. Having access to the device or the data stored in the key-storage facilities and the operating
system to be able to intercept push notifications, still does not allow for successful authentication. The
attacker has to apply attacks on the password as well. For an attacker with root access to the device, this
might be realised by installing a keylogger, a thief, however, is required to employ brute-force attacks
on the password. Equally to brute-force attacks on the keying material, an attacker cannot check the
correctness of the entered password on the mobile device. A wrong password leads to a different value
for Key_PW_Derived and thus results in a different OTP.

Summarising, Triple Key AES OTP with Knowledge Proof slightly enhances the security compared
to the authentication method Triple Key AES OTP. The additional password input on the mobile device
offers valuable protection in case of theft and increases the complexity for attackers aiming to clone the
factor possession or process unauthorised authentication transactions on the legitimate user’s device.

7.10.3 Double Key AES OTP with Knowledge Proof

Double Key AES with Knowledge Proof is designed for the mobile-only use. Therefore, the user is not
required to scan a QR code. Double Key AES with Knowledge Proof requires two cryptographic keys,
Key_A and Key_PW_Derived respectively, and a random nonce for computing the correct OTP. Key_A
is stored in the key store on the mobile device and the Key_PW_Derived is derived from a user-supplied
password. The password-derived key is used to decrypt the random nonce sent via the mobile platform’s
push-notification service.

In addition to the application-wide countermeasures described in Section 7.9, countermeasures spe-
cific to this authentication method are detailed.

86 7. Security Evaluation

(O1) Protected Storage of Sensitive Data

The same considerations as for the authentication method Triple Key AES OTP with Knowledge
Proof apply.

(O11) Protection of Server-Side APIs

The same considerations as for the authentication method Triple Key AES OTP apply.

(O12) Protection of Sensitive Data in Remote Notifications

This authentication method uses the mobile platform’s push-notification service for distributing
the encrypted nonce to the mobile device. In addition, the push notification contains a trans-
action id, the current domain and the name of the authentication method to start. The nonce
presents sensitive data, as it influences the computation of the response. The nonce is encrypted
using Key_PW_Derived which is only known to the user. Thus, the confidentiality of the nonce is
achieved as long as the attacker does not get hold off Key_PW_Derived. The transmitted transac-
tion id is used to map the data from the QR code to the correct push notification.

Currently, the integrity of the sent nonce is not protected. As the nonce is used for the computation
of the required OTP, a manipulation of the encrypted nonce causes the computation of a wrong
OTP and thus represents a denial-of-service attack, as the legitimate user cannot finish authentica-
tion.

(O13) High Password Entropy

No password policy is deployed within the mobile authentication app. Thus, users might choose
weak passwords. In addition to guessing the chosen password, the salt value either has to be ex-
tracted from the key-storage facilities or guessed as well. However, for verifying whether the thus
resulting Key_PW_Derived is correct, the attacker has to contact the authentication service. On
the mobile device, no information on the correctness of the derived key is given, as for encrypting
the nonce AES is used in ECB mode without any padding in place. Decrypting the nonce with an
incorrect Key_PW_Derived results in a different value for the nonce, but will not fail and thereby
giving valuable information to the attacker.

(O14) High Response Entropy

The computed OTP consists of six digits, thus 106 different possible values. The server checks
whether the computed OTP is correct. Therefore, the server-side authentication plugin limits the
amount of tries, which counterfeits brute-force attacks. For each transaction a new random nonce
is computed. The nonce and the permanent key Key_A are used for the computation of the OTP.

(O15) High Cryptographic Key Entropy

The same considerations as for the authentication method Triple Key AES OTP with Knowledge
Proof apply.

(O16) Adequate Verification Info

When entering a wrong OTP at the server-side authentication plugin, no valuable information is
leaked to the attacker. The attacker is only informed of the entered value being wrong.

For all encryption processes, AES in ECB mode without padding was used. As all cryptographic
keys and the nonce have 256-bit, no padding is required18. In the case of wrong values for the
cryptographic key, decryption does not result in an error but in a wrong decrypted value.

18It has to be noted that although a 256-bit nonce is sent to the authentication app, only the last 32 bit act as input for the
OTP computation. However, this does not decrease security, as still, the attacker can verify the correctness of the OTP only by
querying the server.

7.10. Specific Countermeasures 87

(O17) Explicit User Consent

In order to complete authentication, the user is required to enter a secret password and thereby
expresses her consent. Furthermore, she has to manually enter the computed OTP at the authenti-
cation service in the web browser.

(O18) Transaction-Specific Response

This authentication method uses a random nonce for each authentication process. Key_A is stored
permanently in the mobile device’s key-storage facilities, however, the nonce is randomly gener-
ated for each transaction. Therefore, an OTP can only be used for one specific transaction, which
counterfeits phishing attacks where an attacker uses a maliciously retrieved OTP for future authen-
tication transactions.

(O19) Assure Legitimate User is Operating the Device

The nonce used for OTP computation is encrypted with a key derived from the user’s password.
The password is never stored locally on the device and has to be entered for each authentication
transaction. If the user has supplied a correct OTP to the server, the authentication plugin on the
server side can assume that the legitimate user is operating the device covering the second factor.

(O20) Assure Factor Possession is Required for Authentication

This authentication method includes two mechanisms to ensure a binding to a particular mobile
device: (a) the secret key Key_A stored in the key-storage facilities of the device and (b) by em-
ploying the push-notification service of the respective platform. Push notifications can only be
received by a particular application on a mobile device identified by its Push ID.

(TA1) Standard Attacker

Key_A stored permanently on the mobile device cannot be extracted. Furthermore, an attacker
cannot interfere with push notifications received on the device. Summarising, an attacker cannot
clone the device covering the second factor.

(TA2) Advanced Attacker

An attacker with root access to the device might gain access to the sensitive data stored in the
device’s key-storage facilities. Furthermore, root access allows an attacker to control the entire
operating system. Therefore, received push notifications can be intercepted and forwarded to third
parties and keyloggers can be installed. As this authentication method is designed for the mobile-
only use, username and password will be entered within the mobile browser. Thus an attacker with
root acceess can collect all data required for a successful authentication.

(TA5) Web Attacker

In the case of a web attacker, two different scenarios have to be distinguished. If malicious
JavaScript code has been embedded via an iFrame (e.g. an advertising service) the attacker might
have access to the native Cordova bridge and thus can retrieve Key_A from the key-storage fa-
cilities. However, this can be mitigated by employing the whitelisting mechanisms correctly.
JavaScript injected in the application, e.g. using not validated input vectors, on the other hand,
is executed in the origin of the application and has unlimited access to the native Cordova bridge.
This cannot be addressed by whitelisting mechanisms and therefore, highlights the need for con-
sequent validation of all input data.

Summary

The authentication method Double Key AES OTP with Knowledge Proof is tailored to the mobile-only
use case. The user enters her username and password at the mobile web browser and finishes authenti-

88 7. Security Evaluation

cation using the mobile authentication app. Enabling both steps to be carried out on the mobile devices,
conceptually decreases security as an attacker only has to compromise one device.

To hinder an attacker to clone the device, the same measures as with the preceding two authentica-
tion methods are in place. Key material is protected using the mobile device’s key-storage facilities. The
nonce required for OTP computation is encrypted with a key derived from a user-chosen password and
sent via the push-notification service. In the case of device theft, the attacker cannot perform authenti-
cation without gaining knowledge of the password used to derive Key_PW_Derived and thus decrypt the
nonce.

However, different security implications apply for an on-device attack. Whilst key material and the
password are protected against standard attackers, web attackers and attackers with root access pose a
serious threat. A web attacker might be able to access the native Cordova bridge and thus the crypto-
graphic key material and the salt value stored on the device. The attacker can also invoke the PIN dialog
to phish the password used to derive Key_PW_Derived. To counterfeit this threat, special care has to be
taken with input validation. Furthermore, by configuring the whitelisting mechanisms adequately source
code from other origins is denied execution.

Similar considerations apply to attackers with root access to the mobile device. By gaining root
access, all key store entries of the mobile authentication app can be accessed. As attackers with root
access control the entire operating system, keyloggers can be installed for stealing the username and
password in the mobile web browser and the password used for key derivation.

Although, this authentication method successfully counterfeits threat scenarios such as theft or ex-
tracting device storage, it cannot protect against attackers with root access to the device. Authentication
methods that rely on the user to enter her credentials on the desktop computer implement a second line of
defence, whereas this authentication method is entirely exposed to the attacker. However, this dilemma
is omnipresent for all type of mobile applications and, unfortunately, could not be resolved in the course
of this work.

7.11 Known Issues

The mobile device ecosystem is extremely fragmented. As developing a product for different platforms
generates a tremendous development effort, more application developers make use of cross-platform
frameworks. Hybrid frameworks that allow the development of web applications packaged within a na-
tive mobile application whilst still having access to native device APIs, present the most popular approach
for cross-platform development [76]. Apache Cordova is currently the most popular hybrid framework.
However, from a security perspective, these hybrid frameworks enclose a serious of vulnerabilities and
conceptual security risks. In this section, we highlight known security issues in hybrid application devel-
opment with particular reference to the Apache Cordova framework that was used for the implementation
of our authentication framework.

Georgiev et al. [24] present a comprehensive work on the conceptual security problems of hybrid
application development. The authors criticise that hybrid applications do not fully align with the basic
principles of web security: The same-origin policy and the web browser’s sandboxing mechanisms.
First, conventional applications are executed within the sandbox of the browser and cannot access the
underlying device features, such as the file system or sensors. Hybrid frameworks, however, expose
device features to applications running within a WebView. Malicious code that has been injected into the
application or loaded from untrusted sources, therefore, can break out of the sandbox and gain access to
the user’s data, for example, her contact list, photos, files on the file system and many more. Second,
although the WebView enforces the same-origin policy, the hybrid framework does not support the notion
of origins. Meaning, an iFrame that includes third-party code, for example, an advertising service can
access data from the main frame that has been stored on the filesystem or even worse, stored using
the device’s key-storage facilities. This disregard of the same-origin policy even goes further than that.

7.11. Known Issues 89

Some platforms are prone to frame confusion, where the hybrid frameworks forwards the results of
native API calls to the wrong frame within the WebView. In the following, more details on the described
vulnerabilities are given. It has to be noted that the highlighted problems do not only affect Apache
Cordova but other hybrid frameworks as well.

Hybrid frameworks fail to guarantee that content from untrusted domains cannot access the native
APIs available through the hybrid framework. The security architecture of Apache Cordova, for example,
allows the developer to whitelist trusted URLs. Thereby, only content from these domains can be loaded.
The business model of many applications, however, relies on embedding advertising services from third-
parties. To counterfeit this security risk, the authors have proposed their extension to Apache Cordova
called NoFrak, which requests each origin to authenticate with a secret token before being allowed to
access the native bridge. Their idea is to store this token into the Local Storage of the WebView that is
only accessible by the legitimate origin. It appears that the proposed solution has been integrated into the
Apache Cordova framework for Android. However, no official documentation on this mechanism exist.
During inspection of the source code of the native Apache Cordova for Android devices, we stumbled
across the bridge secret19. The bridge secret is a randomly generated string only supplied to origins that
have been added to the navigation whitelist20 and is stored as local variable within the JavaScript part of
the Apache Cordova framework for Android. It has to be noted that this information is from source code
inspection, no official documentation on this mechanism exist. In November 2015, Apache Cordova
announced an open bug 21 targeting the lack of randomness in the generated bridge secret in older
version of the Apache Cordova framework for Android. As this features is not documented officially, we
recommend not to include content of untrusted sources. The implemented authentication app, therefore,
does not include any third-party content in iFrames and does only rely on JavaScript libraries, which are
already packaged within the Cordova application.

There are different ways to communicate between the JavaScript part of a hybrid framework and the
native library. On Windows Phone and iOS devices, JavaScript strings constructed on the native side
can be used to inject JavaScript into the WebView. For Android devices, JavaScript code can be added
to the loadURL(...) method of the WebView. However, for all three platforms this code is executed in
the main frame, which presents a problem for a legitimate iFrame wanting to access native device APIs.
This behaviour has also been observed when events delivered to the main frame are used as a means of
communication between the native framework and the JavaScript side of the framework. Luo et al. [51]
describe this observation as the problem of "frame confusion", where WebView components incorrectly
deliver their responses to the main frame. Commonly, the legitimate application is running on the main
frame. However, malicious JavaScript running inside an iFrame can still call the native bridge, e.g. to
delete data on the device or send SMS, but will not receive the response from the native side.

In 2014, Kaplan et al. [44] from IBM Security Systems have released a list of serious vulnerabili-
ties in the Apache Cordova framework, which even allow for remote exploitation22. By combining the
found vulnerabilities, they could perform the exploit remotely, by simply tricking the user to browse to a
malicious website. The malicious website causes the user’s web browser to download an HTML file and
store the file on the device’s SD card. By generating an Intent object, the website causes a vulnerable
Cordova application to start. The website passes the path to the downloaded HTML file as a parameter
with the Intent. The vulnerable Cordova application loads the downloaded HTML file into the WebView
and thus gains access to any data or native APIs the application has access to. This exploit can even be
used to forward data to the attacker or steal sensitive information, such as cookies, as the HTML file
can include arbitrary JavaScript code. These vulnerabilities have been fixed with the release of Cordova

19https://github.com/apache/cordova-android/blob/master/cordova-js-src/exec.js
20https://github.com/apache/cordova-android/blob/master/framework/src/org/apache/cordova/

CordovaBridge.java and https://github.com/apache/cordova-android/blob/master/framework/src/org/apache/

cordova/CordovaPlugin.java
21https://cordova.apache.org/announcements/2015/11/20/security.html
22A list of all registered Apache Cordova CVE’s can be found here: http://www.cvedetails.com/vulnerability-list/

vendor_id-45/product_id-27153/Apache-Cordova.html

https://github.com/apache/cordova-android/blob/master/cordova-js-src/exec.js
https://github.com/apache/cordova-android/blob/master/framework/src/org/apache/cordova/CordovaBridge.java
https://github.com/apache/cordova-android/blob/master/framework/src/org/apache/cordova/CordovaBridge.java
https://github.com/apache/cordova-android/blob/master/framework/src/org/apache/cordova/CordovaPlugin.java
https://github.com/apache/cordova-android/blob/master/framework/src/org/apache/cordova/CordovaPlugin.java
https://cordova.apache.org/announcements/2015/11/20/security.html
http://www.cvedetails.com/vulnerability-list/vendor_id-45/product_id-27153/Apache-Cordova.html
http://www.cvedetails.com/vulnerability-list/vendor_id-45/product_id-27153/Apache-Cordova.html

90 7. Security Evaluation

3.5.1, the new whitelisting plugin and support for CSP.

Rafay Baloch has found multiple vulnerabilities in the Android default browser that also affect the
WebView on Android devices. Due to erroneous handling of null bytes by the URL parser of the browser,
attackers can bypass the same-origin-policy and access data from other domains or take over authenti-
cated user sessions [62]. He found a second bug that also allows attackers to bypass the same-origin-
policy [60]. Whilst the bug was fixed in Google Chrome years ago, the fix was not integrated in the
Android default browser. In May 2015, he discovered that the Android browser enables URL spoofing
attacks [61]. This vulnerability results from improper handling of the HTTP error "No Response", error
code 204 and allows an attacker to open a new tab and to visit a different website than shown in the
address bar.

However, these and various other vulnerabilities remain still unfixed on a large number of Android
devices. Android faces a serious problem with operating system fragmentation. Each operating system
update or security patch has to be delivered from Google to the OEMs and carriers before reaching the
devices. This update policy causes many devices to still run old Android versions with a significant
number of security vulnerabilities. In November 2015, only 25 percent of devices run Android version 5
or higher [29]. Changing the WebView to the Chromium WebView with version 4.4 counterfeits various
security problems. However, until Android version 5, the WebView component could only be updated
in the course of a firmware update, causing the previously described security vulnerabilities still being
present on a large number of devices. The following listing gives an overview of the used WebView
components and the respective update policy [49].

• Android 1.x - 3.x
Both the included web browser and the WebView are based on WebKit and can only be updated
via a firmware update.

• Android 4.x - 4.3
Google ships Chrome as default browser, which is updated via Google Play. However, the Web-
View is still based on WebKit and can only be updated via a firmware update.

• Android 4.4 - 4.4.4
Chrome is shipped as default browser and the WebView is now also based on Chromium. However,
to update the WebView it is still required to install a firmware update.

• Android 5.0 and Beyond
Both, Chrome and the WebView based on Chromium are updated via Google Play.

In contrast to Android, Apple directly distributes firmware updates to iOS devices. In November
2015, already 67 percent of all devices are running iOS 9, which was released only two months earlier
[11]. The fast adoption of new operating system versions and the direct distribution of updates allows
for security vulnerabilities being closed promptly. Thus, compared to Android, exploits in the WebView
components cannot be misused still years after their disclosure.

7.12 Discussion

The conducted security evaluation reveals that the TOE does not fulfill all of the derived security ob-
jectives. Table B.4 illustrates the evaluation results for each of the integrated authentication methods.
This section discusses the remaining security risks and assesses the reasons for the lack of corresponding
countermeasures.

The TOE fails to meet the security objectives (O4) Detect Rooted and Jailbreaked Devices, (O7)
Detect Forged Mobile Applications and (O8) Code Obfuscation. The authentication app does not employ
root detection and code obfuscation for various reasons. First, the application is still in prototype stage. In

7.12. Discussion 91

the case of the developed components being used in a productive environment, these measures should be
put in place. Second and most importantly, obfuscation does not reliably counterfeit reverse-engineering
and forged applications, similarly, advanced attackers can circumvent root detection mechanisms. This
can be clarified with the aid of an example. In October 2014, security issues present with the pushTAN
method of the German bank Sparkasse have been disclosed [43]. The involved security researchers have
released a detailed analysis of the employed security measures and show why the Android version of the
online banking solution of Sparkasse is prone to attacks [31]. In the following, the observations of the
authors are summarised.

Since 2014, the German Sparkasse offers a mobile banking application for Android and iOS devices,
which is called Sparkasse23. In order to authorise transactions, Sparkasse makes use of a separate mobile
application, the S-pushTAN app24, which is advertised as being certified by the German TÜV. Transac-
tion processing involves the following steps: First, the user enters the transaction details at the Sparkasse
app. The transaction details are transferred to the server that in turn sends an encrypted TAN to the
S-pushTAN app. After that, the user verifies the transaction details displayed in the S-pushTAN app. By
confirming the transaction, the TAN is transferred to the Sparkasse app using inter-application commu-
nication. Thus, the user does not need to manually enter the TAN at the online-banking application. The
S-pushTAN app includes various security measures:

• When starting, both apps require the user to enter a PIN. In case a wrong PIN is entered five times,
all application data gets wiped.

• A custom keyboard for counterfeiting keyloggers potentially included in third-party keyboards.

• Device fingerprinting based on hardware features and the installed Android version should coun-
terfeit cloning of the S-pushTAN app.

• Root detection mechanisms provided by the PROMON shield25 framework allow the app to refuse
execution on rooted devices.

• The S-pushTAN app employs code obfuscation using ProGuard26.

• Certificate pinning is used to counter man-in-the-middle attacks.

Haupert and Müller present an attack that lets them manipulate the recipient and the amount in bank-
ing transactions. The security researchers apply instrumentation to both applications. Therefore, they use
the Xposed framework27, which allows to change the behavior of the Android system and the installed
applications without modifying any application packages. For installing Xposed, the Android device
has to be rooted. Even if the device has not been rooted by the user intentionally, there exist malware
that is able to perform root exploits. Recent discoveries have shown that malicious applications that
perform root exploits can even make it into the official application store [5]. With the help of the Xposed
framework, the security researchers are able to disable root detection mechanisms and manipulate the
transaction data sent from the Sparkasse app to the server. Thus, the server issues a TAN to a different
transaction as intended by the user. The displayed transaction data in the S-pushTAN app is manipulated
to show the original transaction details. Thus the user cannot detect transaction manipulation.

Summarising, the detailed analysis of the S-pushTAN application shows that no reliable protection
mechanisms against attackers with root access exist. That way, it has to be admitted that authentication
cannot be securely realised in a mobile-only scenario with only a single device in place. Whereas,

23https://play.google.com/store/apps/details?id=com.starfinanz.smob.android.sfinanzstatus
24https://play.google.com/store/apps/details?id=com.starfinanz.mobile.android.pushtan
25http://www.promon.no/products/promon-shield/
26http://proguard.sourceforge.net/
27http://repo.xposed.info/module/de.robv.android.xposed.installer

https://play.google.com/store/apps/details?id=com.starfinanz.smob.android.sfinanzstatus
https://play.google.com/store/apps/details?id=com.starfinanz.mobile.android.pushtan
http://www.promon.no/products/promon-shield/
http://proguard.sourceforge.net/
http://repo.xposed.info/module/de.robv.android.xposed.installer

92 7. Security Evaluation

two authentication methods require username and password to be entered on the desktop computer, the
authentication method Double Key AES OTP with Knowledge Proof aims to be applicable in mobile-
only scenarios where authentication is triggered within the web browser on the mobile device. However,
an attacker with root access might access the key material stored on the device, install a keylogger or
intercept and forward received push notifications. Therefore, the authentication method Double Key
AES OTP with Knowledge Proof fails to meet the objective (O20) Assure Factor Possession is Required
for Authentication in mobile-only scenarios.

Currently, no measures are in place to detect the manipulation of sensitive data, such as key material,
stored on the mobile device. Thus, the TOE does not fulfill the objective (O3) Detect Manipulation of
Sensitive Data. This has various reasons. Data stored using the Android Keystore and the iOS Keychain
is protected against access from standard malware on the mobile device. Other applications cannot access
the mobile authentication app’s cryptographic key material. As they are not able to access this data, no
manipulation can be performed. The situation is different for attackers with root access to the device
or web attackers that have gained access to the native Cordova bridge. These attackers can access the
cryptographic key in the Keystore and Keychain. However, there is no reliable way to protect against
data manipulation. One possibility is to compute a cryptographic signature or message authentication
code for each stored entry. This requires additional key material residing on the device. The question
arises, how to protect this key material against illegitimate access. If it is stored using the key-storage
facilities, the attacker can access it as well. If it is stored using, for example, the Local Storage, attackers
with root access or web attackers can gain access to the key pair and only recompute the signature after
data manipulation. To counterfeit data manipulation by web attackers, applications should hinder code
injection and execution of code from untrusted sources. As previously assessed, there is no reliable
protection against attackers with root access to the mobile device.

During registration of new authentication methods, the authentication app transmits the Push ID to
the server-side authentication plugin. The previously scanned QR code includes the therefore used end-
point. Currently, the implementation allows the Push ID to be set only once. Thus, a leaked endpoint
does not allow the attacker being able to overwrite the Push ID of the legitimate user. However, no
measures are in place for protecting the user against an attacker that contacts the server before the au-
thentication app. In the case of not being able to set the Push ID, an error message is returned to the
authentication app. It is the responsability of the user to take action and disable the authentication plugin
on the server.

We can conclude the conducted security evaluation with the résumé of Haupert and Müller [31].
Similar to online banking, multi-factor authentication using a single mobile device faces conceptional
weaknesses. Mobile applications cannot be fully secured to counterfeit state-of-the-art attacks involving
root exploits. Thus it is recommended to use a second independent factor. In case of the developed
authentication framework, this is realised by entering username and password on a separate device, such
as a desktop computer.

Chapter 8

Conclusion

During the past few years, technological advances have allowed users to progressively use their mobile
devices in everyday life. Tasks that have required the use of a desktop computer a few years ago can now
be carried out on the go, by using mobile devices. Many online services process sensitive data about the
user or enable users to perform transactions on their behalf, e.g. online-banking services allow users to
authorise money transfers. Online services thus need to employ adequate access protection mechanisms,
to ensure that only legitimate users access the service. As the username and password scheme is prone
to attacks, many services have introduced multi-factor authentication. These multi-factor authentication
methods might include presenting a token, such as a USB token or smart card, or rely on TANs only
valid for a limited period. However, the deployed multi-factor authentication mechanisms are often not
applicable for the use with mobile devices.

In this thesis, we have developed a multi-factor authentication framework for mobile devices. The
developed framework allows to easily add new authentication methods and thus present the user with
multiple methods to choose from. We have successfully integrated three different authentication meth-
ods that leverage the security features offered by mobile devices. To support multiple mobile platforms, a
state-of-the-art cross-platform development framework has been used for the implementation of the mo-
bile components. Apache Cordova, arguably the most popular cross-platform development framework,
allows developers to build applications using web technologies such as HTML, JavaScript and CSS. Ap-
plications are executed in a WebView, a browser window embedded within a native mobile application.
Applications running within the WebView can access native device APIs by using plugins.

Multi-factor authentication imposes high security requirements. For example, the device covering the
factor possession needs to be protected against cloning. Therefore, the implemented authentication meth-
ods employ device binding by combining the device’s key-storage facilities and the mobile platform’s
push-notification services. Furthermore, the developed application has to provide protection against an
attacker aiming to inject malicious code or intercepting the communication between the authentication
server and the mobile device. If any of these components is not properly protected, an attacker might
gain access to a user’s sensitive data or perform actions on behalf of the user.

To evaluate the security of the developed multi-factor authentication framework, a thorough secu-
rity evaluation based on Common Criteria for Information Technology Security Evaluation has been
conducted. Whilst many publications analyse the security of mobile platforms and mobile application
development, little work has been done in analysing the security of cross-platform development frame-
works. Therefore, the conducted security evaluation especially focuses on security aspects resulting from
the use of Apache Cordova.

Within the course of the security evaluations, we came across several issues related to the use of
Apache Cordova. Thus, to use Apache Cordova for security-critical applications several recommenda-
tions have to be followed. As applications are implemented using web technologies they are prone to
code injection attacks. Developers have to take special care for input validation. Apart from validating

93

94 8. Conclusion

user input, QR codes, push notifications, contact data and even file names might include malicious code.
Code injection is particularly serious as depending on the application an attacker might gain access to
sensitive data of the user, including her physical location or private messages. Second, by default, appli-
cation code embedded within an iFrame can fully access the device APIs. Thereby, applications should
not include any iFrames where the developer is not in control of the served content. This opposes the
business model of many applications that leverage advertising services. Ultimately, applications that re-
quire the use of many features from the underlying mobile platform need to rely on plugins developed by
third-parties. Plugins present a serious security risk, as up-to-date there is no validation process for plu-
gins. Everyone can publish plugins. As the plugin developer decides how to map the requested feature
to the underlying device APIs, some plugins are of poor quality and simply do not provide the security
they promise by using APIs in a wrong way. Therefore, we recommend inspecting the source code of
each plugin before adding the plugin to an application.

The conducted evaluations show that the developed framework offers good protection against attack-
ers with standard malware on the mobile device and attackers that gain physical access to the device. By
implementing strict input validation and only running code bundled with the application at install-time
we counterfeit web attackers. However, some security risks remain. We cannot reliably protect against
attackers with root access to the device. This particularly poses a threat in a single device scenario where
the user triggers authentication within the mobile browser and leverages the authentication framework
on the same device.

The authentication framework has been implemented as a prototype. The integrated authentication
methods are limited to authentication methods that compute OTPs. To provide a broader range of authen-
tication mechanisms, new methods implementing other challenge-response schemes might be integrated.
It would be particularly interesting to include authentication leveraging NFC-enabled FIDO tokens.

Appendix A

Screenshots

A.1 Registration

In the following, a sample process of registering a new authentication method is shown. Therefore, the
user has to enable the desired authentication method at the server-side authentication service provided
by EGIZ and perform the pairing with the authentication app on the mobile device. The screenshots
illustrate the process for the authentication method Triple Key AES OTP. The pairing is required for
transferring the permanent cryptographic key Key_A to the device. In addition, the displayed QR code
includes the URL where the authentication app has to transmit the Push ID.

Figure A.1: The starting screen of the mobile authentication app.

95

96 A. Screenshots

Figure A.2: The application supports multiple so-called accounts. An account represents a specific
multi-factor authentication method for a particular domain. The same authentication
method can be added multiple times, but only for different domains.

Figure A.3: The user can add a new account by scanning a QR code.

A.1. Registration 97

Figure A.4: By choosing the desired authentication method, the user is presented with the initial
authentication data required for the particular authentication method.

Figure A.5: The user scans the QR code and is presented with a confirmation dialog. As the au-
thentication app still presents a prototype, all data encoded in the QR code is displayed
to the user.

98 A. Screenshots

Figure A.6: After confirming that the authentication method should be added, the authentication
app transmits its Push ID to the authentication service and a new account is added to
the account overview page.

Figure A.7: After refreshing the authentication service page, the transmitted Push ID and corre-
sponding mobile platform are displayed.

A.2. Authentication 99

A.2 Authentication

The following screenshots illustrate an authentication process to allow the creation of a digital signature.
For the digital signature, a cryptographic key on a central server is used. The central server uses the
authentication server to authenticate its users. For this authentication process, a simple authentication
plugin realising the username and password scheme and the Triple Key AES OTP method are used.

Figure A.8: The user starts authentication in order to authorise her private key to be used for sig-
nature creation.

Figure A.9: The username and password plugin is started. The user enters her credentials.

100 A. Screenshots

Figure A.10: The entered credentials are correct. Hence, the user is forwarded to the second au-
thentication method, the Triple Key AES OTP method.

Figure A.11: A new push notification is received on the mobile device. By clicking on the push
notification, the authentication app is started.

A.2. Authentication 101

Figure A.12: The authentication app launches and immediately opens the window performing the
authentication method Triple Key AES OTP. The user is requested to scan the QR
code.

.

Figure A.13: The authentication app decrypts the keys encoded in the push notification and the QR
code and subsequently computes an OTP.

102 A. Screenshots

Figure A.14: The users enters the OTP at the authentication service.

Figure A.15: The entered OTP is correct. Hence, the authentication service authorises signature
creation.

Appendix B

Security Evaluation Rationale

B.1 Mapping Threats to Assets

(A
1)

C
ry

pt
og

ra
ph

ic
K

ey
M

at
er

ia
l

(A
2)

Pa
ss

w
or

d

(A
3)

Pu
sh

ID

(A
4)

Ph
ys

ic
al

D
ev

ic
e

(A
5)

R
es

po
ns

e

(T1) Device Theft X
(T2) Copy or Extract Storage X X
(T3) Accessing Data On-Device X X
(T4) Accessing Data During Transport X X X
(T5) Phishing X X X
(T6) Throttled Guessing X X
(T7) Unthrottled Guessing X X X
(T8) Leak from Verifier X
(T9) Internal Observation X X
(T10) Physical Observation X X
(T11) Manipulation of Authentication Data X X
(T12) Manipulation of Push ID X
(T13) Intercepting Remote Notifications On-Device X
(T14) Intercepting Remote Notifications During Transport X
(T15) Code Injection X X X
(T16) Missing Function Level Access Control X X
(T17) Forging the Mobile Application X X X X
(T18) Automatically Process Authentication Without The User’s Consent X

Table B.1: Assets targeted by security threats.

103

104 B. Security Evaluation Rationale

B.2 Mapping Threat Agents to Threats

(T
A

1)
St

an
da

rd
A

tta
ck

er

(T
A

2)
A

dv
an

ce
d

A
tta

ck
er

(T
A

3)
N

ea
rb

y
A

tta
ck

er

(T
A

4)
N

et
w

or
k

A
tta

ck
er

(T
A

5)
W

eb
A

tta
ck

er

(T1) Device Theft X
(T2) Copy or Extract Storage X
(T3) Accessing Data On-Device X X
(T4) Accessing Data During Transport X
(T5) Phishing X X
(T6) Throttled Guessing X
(T7) Unthrottled Guessing X
(T8) Leak from Verifier X X
(T9) Internal Observation X X X
(T10) Physical Observation X
(T11) Manipulation of Authentication Data X X
(T12) Manipulation of Push ID X X X
(T13) Intercepting Remote Notifications On-Device X
(T14) Intercepting Remote Notifications During Transport X
(T15) Code Injection X X
(T16) Missing Function Level Access Control X
(T17) Forging the Mobile Application X
(T18) Automatically Process Authentication Without The User’s Consent X X X

Table B.2: Threat agents that are able to pose a specific security threat.

B.3 Mapping Objectives to Threats

B.3. Mapping Objectives to Threats 105

(O1) Protected Storage of Sensitive Data

(O2) Avoid Side-Channel Data Leakage

(O3) Detect Manipulation of Sensitive Data

(O4) Detect Rooted or Jailbreaked Devices

(O5) Validate and Escape User Input

(O6) Do Not Run Code from Untrusted Sources

(O7) Detect Forged Mobile Applications

(O8) Code Obfuscation

(O9) Employ State-of-the-Art Transport Security

(O10) Employ Certificate-Pinning

(O11) Protection of Server-Side APIs

(O12) Protection of Sensitive Data in Remote Notifications

(O13) High Password Entropy

(O14) High Response Entropy

(O15) High Cryptographic Key Entropy

(O16) Adequate Verification Info

(O17) Explicit User Consent

(O18) Transaction-Specific Response

(O19) Assure Legitimate User is Operating the Device

(O20) Assure Factor Possession is Required for Authentication

(T
1)

D
ev

ic
e

T
he

ft
X

(T
2)

C
op

y
or

E
xt

ra
ct

St
or

ag
e

X
(T

3)
A

cc
es

si
ng

D
at

a
O

n-
D

ev
ic

e
X

X
X

(T
4)

A
cc

es
si

ng
D

at
a

D
ur

in
g

Tr
an

sp
or

t
X

X
(T

5)
Ph

is
hi

ng
X

(T
6)

T
hr

ot
tle

d
G

ue
ss

in
g

X
X

X
X

X
(T

7)
U

nt
hr

ot
tle

d
G

ue
ss

in
g

X
X

X
(T

8)
L

ea
k

fr
om

V
er

ifi
er

X
(T

9)
In

te
rn

al
O

bs
er

va
tio

n
X

X
X

(T
10

)P
hy

si
ca

lO
bs

er
va

tio
n

X
(T

11
)M

an
ip

ul
at

io
n

of
A

ut
he

nt
ic

at
io

n
D

at
a

X
X

X
(T

12
)M

an
ip

ul
at

io
n

of
Pu

sh
ID

X
X

X
X

X
(T

13
)I

nt
er

ce
pt

in
g

R
em

ot
e

N
ot

ifi
ca

tio
ns

O
n-

D
ev

ic
e

X
X

(T
14

)I
nt

er
ce

pt
in

g
R

em
ot

e
N

ot
ifi

ca
tio

ns
D

ur
in

g
Tr

an
sp

or
t

X
(T

15
)C

od
e

In
je

ct
io

n
X

X
(T

16
)M

is
si

ng
Fu

nc
tio

n
L

ev
el

A
cc

es
s

C
on

tr
ol

X
(T

17
)F

or
gi

ng
th

e
M

ob
ile

A
pp

lic
at

io
n

X
X

(T
18

)A
ut

om
at

ic
al

ly
Pr

oc
es

s
A

ut
he

nt
ic

at
io

n
W

ith
ou

tT
he

U
se

r’
s

C
on

se
nt

X
X

Ta
bl

e
B

.3
:

C
ou

nt
er

fe
iti

ng
a

se
cu

ri
ty

th
re

at
by

fu
lfi

lli
ng

a
se

cu
ri

ty
ob

je
ct

iv
e

or
a

co
m

bi
na

tio
n

of
m

ul
tip

le
se

cu
ri

ty
ob

je
ct

iv
es

.

106 B. Security Evaluation Rationale

B.4 Evaluating Security Measures

Tr
ip

le
K

ey
A

E
S

O
T

P

Tr
ip

le
K

ey
A

E
S

O
T

P
w

ith
K

no
w

le
dg

e
Pr

oo
f

D
ou

bl
e

K
ey

A
E

S
O

T
P

w
ith

K
no

w
le

dg
e

Pr
oo

f

(O1) Protected Storage on Sensitive Data
√ √ √

(O2) Avoid Side-Channel Data Leakage
√ √ √

(O3) Detect Manipulation of Sensitive Data
(O4) Detect Rooted and Jailbreaked Devices
(O5) Validate and Escape User Input

√ √ √

(O6) Do Not Run Code from Untrusted Sources
√ √ √

(O7) Detect Forged Mobile Applications
(O8) Code Obfuscation
(O9) Employ State-of-the-Art Transport Security

√ √ √

(O10) Employ Certificate-Pinning
√ √ √

(O11) Protection of Server-Side APIs ∼ ∼ ∼
(O12) Protection of Sensitive Data in Remote Notifications

√ √ √

(O13) High Password Entropy N/A ∼ ∼
(O14) High Response Entropy

√ √ √

(O15) High Cryptograhic Key Entropy
√ √ √

(O16) Adequate Verification Info
√ √ √

(O17) Explicit User Consent
√ √ √

(O18) Transaction-Specific Response
√ √ √

(O19) Assure Legitimate User is Operating the Device
√ √

(O20) Assure Factor Possession is Required for Authentication
√ √

∼

Table B.4: Evaluation of deployed countermeasures, which fulfil the derived security objectives.

Bibliography

[1] Adam Bradley. Where does the Ionic Framework fit in? 2013. http://blog.ionic.io/where-
does-the-ionic-framework-fit-in/.

[2] The FIDO Alliance. FIDO U2F Raw Message Formats. Technical report. The FIDO Alliance,
2014.

[3] The FIDO Alliance. FIDO UAF Architectural Overview. Technical report. The FIDO Alliance,
2014.

[4] The FIDO Alliance. Universal 2nd Factor (U2F) Overview. Technical report. The FIDO Alliance,
2015.

[5] Andrey Polkovnichenko and Alon Boxiner. BrainTest – A New Level of Sophistication in Mobile
Malware. 2015. http://blog.checkpoint.com/2015/09/21/braintest-a-new-level-of-
sophistication-in-mobile-malware/.

[6] Android Developer Documentation. Signing Your Applications. 2015. http://developer.android.
com/tools/publishing/app-signing.html.

[7] AngularJS. API Reference ngCSP. 2015. https://docs.angularjs.org/api/ng/directive/
ngCsp.

[8] Apache Cordova. Security Guide. 2015. https://cordova.apache.org/docs/en/5.4.0/
guide/appdev/security/index.html.

[9] Appcelerator. Supporting Multiple Platforms in a Single Codebase. 2015. http://docs.appcelerator.
com/platform/latest/%5C#!/guide/Supporting_Multiple_Platforms_in_a_Single_

Codebase.

[10] Appcelerator. Titanium Compatibility Matrix. 2015. http://docs.appcelerator.com/titanium/
3.0/%5C#!/guide/Titanium_Compatibility_Matrix.

[11] Apple. App Store: iOS Version Distribution. 2015. https://developer.apple.com/support/
app-store/.

[12] Apple. Apple Push Notification Service. 2015. https://developer.apple.com/library/ios/
documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/.

[13] Apple. iOS Security. 2015. https://www.apple.com/business/docs/iOS_Security_Guide.
pdf.

[14] Phonegap Blog. PhoneGap, Cordova, and what’s in a name? 2012. http://phonegap.com/
2012/03/19/phonegap-cordova-and-what%C3%A2%C2%80%C2%99s-in-a-name/.

[15] The Official Ionic Blog. The Last Word on Cordova and PhoneGap. 2014. http://ionicframework.
com/blog/what-is-cordova-phonegap/.

107

http://blog.ionic.io/where-does-the-ionic-framework-fit-in/
http://blog.ionic.io/where-does-the-ionic-framework-fit-in/
http://blog.checkpoint.com/2015/09/21/braintest-a-new-level-of-sophistication-in-mobile-malware/
http://blog.checkpoint.com/2015/09/21/braintest-a-new-level-of-sophistication-in-mobile-malware/
http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/app-signing.html
https://docs.angularjs.org/api/ng/directive/ngCsp
https://docs.angularjs.org/api/ng/directive/ngCsp
https://cordova.apache.org/docs/en/5.4.0/guide/appdev/security/index.html
https://cordova.apache.org/docs/en/5.4.0/guide/appdev/security/index.html
http://docs.appcelerator.com/platform/latest/%5C#!/guide/Supporting_Multiple_Platforms_in_a_Single_Codebase
http://docs.appcelerator.com/platform/latest/%5C#!/guide/Supporting_Multiple_Platforms_in_a_Single_Codebase
http://docs.appcelerator.com/platform/latest/%5C#!/guide/Supporting_Multiple_Platforms_in_a_Single_Codebase
http://docs.appcelerator.com/titanium/3.0/%5C#!/guide/Titanium_Compatibility_Matrix
http://docs.appcelerator.com/titanium/3.0/%5C#!/guide/Titanium_Compatibility_Matrix
https://developer.apple.com/support/app-store/
https://developer.apple.com/support/app-store/
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
http://phonegap.com/2012/03/19/phonegap-cordova-and-what%C3%A2%C2%80%C2%99s-in-a-name/
http://phonegap.com/2012/03/19/phonegap-cordova-and-what%C3%A2%C2%80%C2%99s-in-a-name/
http://ionicframework.com/blog/what-is-cordova-phonegap/
http://ionicframework.com/blog/what-is-cordova-phonegap/

108 Bibliography

[16] Joseph Bonneau et al. “The Quest to Replace Passwords: A Framework for Comparative Evalua-
tion of Web Authentication Schemes”. In: Proceedings of the 2012 IEEE Symposium on Security
and Privacy. SP ’12. Washington, DC, USA: IEEE Computer Society, 2012, pages 553–567. ISBN

978-0-7695-4681-0. doi:10.1109/SP.2012.44. http://dx.doi.org/10.1109/SP.2012.44.

[17] Roger Clarke. “Human Identification in Information Systems”. In: Information Technology & Peo-
ple 7.4 (1994), pages 6–37. doi:10.1108/09593849410076799. eprint: http://dx.doi.org/10.
1108/09593849410076799. http://dx.doi.org/10.1108/09593849410076799.

[18] Apache Cordova. Apache Cordova Documentation. 2015. http://cordova.apache.org/docs/
en/5.1.1/index.html.

[19] Common Criteria. Common Criteria for Information Technology Security Evaluation - Part 1:
Introduction and general model. https://www.commoncriteriaportal.org/files/ccfiles/
CCPART1V3.1R4.pdf. 2012.

[20] Nikolay Elenkov. Unlocking Android devices using an OTP via NFC. 2014. http://nelenkov.
blogspot.co.at/2014/03/unlocking-android-using-otp.html.

[21] Evild3ad. Analysis of Android.Zitmo-Urlzone. 2013. http://www.evild3ad.com/3008/analysis-
of-android-zitmo-urlzone/.

[22] Facebook. Facebook Q1 2015 Results. 2015. http://files.shareholder.com/downloads/
AMDA-NJ5DZ/75562925x0x822961/fd718a09-c312-4605-9a17-1d6ef07bdd5a/FB_Q115EarningsSlides.

pdf.

[23] J. Franks et al. An Extension to HTTP : Digest Access Authentication. Technical report. RFC 2069,
1997.

[24] Martin Georgiev, Suman Jana, and Vitaly Shmatikov. “Breaking and Fixing Origin-Based Ac-
cess Control in Hybrid Web/Mobile Application Frameworks”. In: 21st Annual Network and Dis-
tributed System Security Symposium, NDSS 2014, San Diego, California, USA, February 23-26,
2014. 2014. http://www.internetsociety.org/doc/breaking-and-fixing-origin-based-
access-control-hybrid-webmobile-application-frameworks.

[25] Google. Android Documentation on WebView. 2015. http://developer.android.com/reference/
android/webkit/WebView.html.

[26] Google. Android Keystore System. 2015. https://developer.android.com/training/articles/
keystore.html.

[27] Google. AngularJS. 2015. https://angularjs.org/.

[28] Google. Google Cloud Messaging. 2015. https://developers.google.com/cloud-messaging/
gcm.

[29] Google. Platform Versions. 2015. http : / / developer . android . com / about / dashboards /
index.html.

[30] Google. Security. 2015. https://source.android.com/devices/tech/security/encryption/.

[31] Vincent Haupert and Tilo Müller. “(Un)Sicherheit von App-basierten TAN-Verfahren im On-
linebanking”. In: 2015. https://www1.cs.fau.de/filepool/projects/apptan/Unsicherheit-
AppTAN.pdf.

[32] Henning Heitkötter and TimA. Majchrzak. “Cross-Platform Development of Business Apps with
MD2”. English. In: Design Science at the Intersection of Physical and Virtual Design. Edited
by Jan vom Brocke et al. Volume 7939. Lecture Notes in Computer Science. Springer Berlin

http://www.amazon.com/exec/obidos/ASIN/978-0-7695-4681-0/keithandrewshcic
http://dx.doi.org/10.1109/SP.2012.44
http://dx.doi.org/10.1109/SP.2012.44
http://dx.doi.org/10.1108/09593849410076799
http://dx.doi.org/10.1108/09593849410076799
http://dx.doi.org/10.1108/09593849410076799
http://dx.doi.org/10.1108/09593849410076799
http://cordova.apache.org/docs/en/5.1.1/index.html
http://cordova.apache.org/docs/en/5.1.1/index.html
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R4.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R4.pdf
http://nelenkov.blogspot.co.at/2014/03/unlocking-android-using-otp.html
http://nelenkov.blogspot.co.at/2014/03/unlocking-android-using-otp.html
http://www.evild3ad.com/3008/analysis-of-android-zitmo-urlzone/
http://www.evild3ad.com/3008/analysis-of-android-zitmo-urlzone/
http://files.shareholder.com/downloads/AMDA-NJ5DZ/75562925x0x822961/fd718a09-c312-4605-9a17-1d6ef07bdd5a/FB_Q115EarningsSlides.pdf
http://files.shareholder.com/downloads/AMDA-NJ5DZ/75562925x0x822961/fd718a09-c312-4605-9a17-1d6ef07bdd5a/FB_Q115EarningsSlides.pdf
http://files.shareholder.com/downloads/AMDA-NJ5DZ/75562925x0x822961/fd718a09-c312-4605-9a17-1d6ef07bdd5a/FB_Q115EarningsSlides.pdf
http://www.internetsociety.org/doc/breaking-and-fixing-origin-based-access-control-hybrid-webmobile-application-frameworks
http://www.internetsociety.org/doc/breaking-and-fixing-origin-based-access-control-hybrid-webmobile-application-frameworks
http://developer.android.com/reference/android/webkit/WebView.html
http://developer.android.com/reference/android/webkit/WebView.html
https://developer.android.com/training/articles/keystore.html
https://developer.android.com/training/articles/keystore.html
https://angularjs.org/
https://developers.google.com/cloud-messaging/gcm
https://developers.google.com/cloud-messaging/gcm
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
https://source.android.com/devices/tech/security/encryption/
https://www1.cs.fau.de/filepool/projects/apptan/Unsicherheit-AppTAN.pdf
https://www1.cs.fau.de/filepool/projects/apptan/Unsicherheit-AppTAN.pdf

Bibliography 109

Heidelberg, 2013, pages 405–411. ISBN 978-3-642-38826-2. doi:10.1007/978- 3- 642- 38827-
9_29. http://dx.doi.org/10.1007/978-3-642-38827-9_29.

[33] Ian Hickson. Web SQL Database. W3C Working Group Note. http://dev.w3.org/html5/
webdatabase/. 2010.

[34] Ian Hickson. Web Storage. W3C Candidate Recommendation. http://www.w3.org/TR/webstorage/.
2015.

[35] Mat Honan. How Apple and Amazon Security Flaws Led to My Epic Hacking. 2012. http://www.
wired.com/2012/08/apple-amazon-mat-honan-hacking/.

[36] Intel. Intel Identity Protection Technology. 2015. http : / / www . intel . in / content / www /

in/en/architecture- and- technology/identity- protection/identity- protection-

technology-general.html.

[37] Intel. Intel Smartphone - A Faster Experience. 2015. http://www.intel.com/content/www/us/
en/smartphones/smartphones.html.

[38] Ionic Framework. Ionic Documentation. 2015. http://ionicframework.com/docs/.

[39] ISO/IEC. Information technology - Security techniques – Evaluation criteria for IT security – Part
1: Introduction and general model. ISO/IEC 15408-1. 1999.

[40] Xing Jin et al. “Code Injection Attacks on HTML5-based Mobile Apps”. In: Ccs (2014), pages 66–
77. doi:10.1145/2660267.2660275.

[41] Jon Oberheide. RSA-proofing our Duo Push two-factor authentication. 2011. https://www.
duosecurity.com/blog/rsa-proofing-our-duo-push-two-factor-authentication.

[42] M. Jones, J. Bradley, and N. Sakimura. JSON Web Token (JWT). Technical report. RFC 7519,
2015.

[43] Jürgen Schmidt. Forscher demontieren App-TANs der Sparkasse. 2015. http://www.heise.de/
security/meldung/Forscher-demontieren-App-TANs-der-Sparkasse-2853492.html.

[44] David Kaplan and Roee Hay. Remote Exploitation of the Cordova Framework. W3C Recommen-
dation. http://www.ibm.com/developerworks/library/se- remote- apache- cordova/
index.html. 2014.

[45] Nok Nok Labs. Leveraging Fingerprint Authentication On Mobile Devices: Apples Touch ID API
and More. 2014. https://www.noknok.com/what-they-say/blog/apple-touch-id-app-
for-mobile-fingerprint-authentication.

[46] Nok Nok Labs. Technical White Paper: Nok Nok Labs Multifactor Authentication. Technical re-
port. Nok Nok Labs, Inc., 2013.

[47] Posch R. Leitold H. Hollosi A. “Security Architecture of the Austrian Citizen Card Concept”.
In: Proceedings of 18th Annual Computer Security Applications Conference (ACSAC’2002), Las
Vegas, 9-13 December 2002. pp. 391-400, IEEE Computer Society, ISBN 0-7695-1828-1, ISSN
1063-9527. 2002, n/a.

[48] Tongxin Li et al. “Mayhem in the Push Clouds: Understanding and Mitigating Security Haz-
ards in Mobile Push-Messaging Services”. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. CCS ’14. Scottsdale, Arizona, USA: ACM, 2014,
pages 978–989. ISBN 978-1-4503-2957-6. doi:10.1145/2660267.2660302. http://doi.acm.
org/10.1145/2660267.2660302.

http://www.amazon.com/exec/obidos/ASIN/978-3-642-38826-2/keithandrewshcic
http://dx.doi.org/10.1007/978-3-642-38827-9_29
http://dx.doi.org/10.1007/978-3-642-38827-9_29
http://dx.doi.org/10.1007/978-3-642-38827-9_29
http://dev.w3.org/html5/webdatabase/
http://dev.w3.org/html5/webdatabase/
http://www.w3.org/TR/webstorage/
http://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/
http://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/
http://www.intel.in/content/www/in/en/architecture-and-technology/identity-protection/identity-protection-technology-general.html
http://www.intel.in/content/www/in/en/architecture-and-technology/identity-protection/identity-protection-technology-general.html
http://www.intel.in/content/www/in/en/architecture-and-technology/identity-protection/identity-protection-technology-general.html
http://www.intel.com/content/www/us/en/smartphones/smartphones.html
http://www.intel.com/content/www/us/en/smartphones/smartphones.html
http://ionicframework.com/docs/
http://dx.doi.org/10.1145/2660267.2660275
https://www.duosecurity.com/blog/rsa-proofing-our-duo-push-two-factor-authentication
https://www.duosecurity.com/blog/rsa-proofing-our-duo-push-two-factor-authentication
http://www.heise.de/security/meldung/Forscher-demontieren-App-TANs-der-Sparkasse-2853492.html
http://www.heise.de/security/meldung/Forscher-demontieren-App-TANs-der-Sparkasse-2853492.html
http://www.ibm.com/developerworks/library/se-remote-apache-cordova/index.html
http://www.ibm.com/developerworks/library/se-remote-apache-cordova/index.html
https://www.noknok.com/what-they-say/blog/apple-touch-id-app-for-mobile-fingerprint-authentication
https://www.noknok.com/what-they-say/blog/apple-touch-id-app-for-mobile-fingerprint-authentication
http://www.amazon.com/exec/obidos/ASIN/978-1-4503-2957-6/keithandrewshcic
http://dx.doi.org/10.1145/2660267.2660302
http://doi.acm.org/10.1145/2660267.2660302
http://doi.acm.org/10.1145/2660267.2660302

110 Bibliography

[49] Liam Tung. Lollipop stops Chromium bugs from endangering Android. 2014. http://www.zdnet.
com/article/lollipop-stops-chromium-bugs-from-endangering-android/.

[50] Linux.com. Securing SSH with two factor authentication using Google Authenticator. 2014. https:
//www.linux.com/community/blogs/133-general-linux/783135-securing-ssh-with-

two-factor-authentication-using-google-authenticator.

[51] Tongbo Luo et al. “Attacks on WebView in the Android system”. In: Annual Computer Security
Applications Conference (ACSAC) (2011), page 343. doi:10 . 1145 / 2076732 . 2076781. http:
//dl.acm.org/citation.cfm?doid=2076732.2076781.

[52] Denis Maslennikov. ZeuS-in-the-Mobile – Facts and Theories. 2011. http://securelist.com/
analysis/36424/zeus-in-the-mobile-facts-and-theories/.

[53] Nikunj Mehta et al. Indexed Database API. W3C Recommendation. http://www.w3.org/TR/
IndexedDB/. 2015.

[54] Microsoft. Microsoft Support Thread regarding YubiKey on Windows Phone 8 devices. 2014.
http://answers.microsoft.com/en- us/winphone/forum/wp8- wpupdate/buggy- nfc-

implementation/939e7549-0170-45be-a6d5-4b8fcede7614.

[55] Mozilla Developer Network. CSP Policy Directives. 2015. https://developer.mozilla.org/
en-US/docs/Web/Security/CSP/CSP_policy_directives.

[56] D. et al. M’Raihi. HOTP: An HMAC-Based One-Time Password Algorithm. Technical report. RFC
4226, 2005.

[57] D. et al. M’Raihi. TOTP: Time-Based One-Time Password Algorithm. Technical report. RFC 6238,
2011.

[58] Nikolay Elenkov. Credential storage enhancements in Android 4.3. 2013. http://nelenkov.
blogspot.co.at/2013/08/credential-storage-enhancements-android-43.html.

[59] The Open Web Application Security Project. The Ten Most Critical Web Application Security
Risks. OWASP Top 10 - 2013. https://www.owasp.org/index.php/Top10#OWASP_Top_10_
for_2013. 2013.

[60] Rafay Baloch. A Tale Of Another SOP Bypass In Android Browser < 4.4. 2014. http://www.
rafayhackingarticles.net/2014/10/a-tale-of-another-sop-bypass-in-android.html.

[61] Rafay Baloch. Android Browser All Versions - Address Bar Spoofing Vulnerability - CVE-2015-
3830. 2015. http://www.rafayhackingarticles.net/2015/05/android-browser-address-
bar-spoofing-vulnerability.html.

[62] Rafay Baloch. Android Browser Same Origin Policy Bypass < 4.4 - CVE-2014-6041. 2014. http:
//www.rafayhackingarticles.net/2014/08/android-browser-same-origin-policy.html.

[63] Arun Ranganathan and Jonas Sicking. File API. W3C Working Draft. http://www.w3.org/TR/
FileAPI/. 2015.

[64] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core. Technical report.
RFC 6120, 2011.

[65] Ryan Sleevi and Mark Watson. Web Cryptography API. W3C Candidate Recommendation. http:
//www.w3.org/TR/WebCryptoAPI/. 2014.

[66] Sure Pass ID. FIDO Authentication Server Datasheet. 2014. http://www.surepassid.com/wp/
wp-content/uploads/2014/03/SurePassID-FIDO-Server-Datasheet-03-04-2014.pdf.

http://www.zdnet.com/article/lollipop-stops-chromium-bugs-from-endangering-android/
http://www.zdnet.com/article/lollipop-stops-chromium-bugs-from-endangering-android/
https://www.linux.com/community/blogs/133-general-linux/783135-securing-ssh-with-two-factor-authentication-using-google-authenticator
https://www.linux.com/community/blogs/133-general-linux/783135-securing-ssh-with-two-factor-authentication-using-google-authenticator
https://www.linux.com/community/blogs/133-general-linux/783135-securing-ssh-with-two-factor-authentication-using-google-authenticator
http://dx.doi.org/10.1145/2076732.2076781
http://dl.acm.org/citation.cfm?doid=2076732.2076781
http://dl.acm.org/citation.cfm?doid=2076732.2076781
http://securelist.com/analysis/36424/zeus-in-the-mobile-facts-and-theories/
http://securelist.com/analysis/36424/zeus-in-the-mobile-facts-and-theories/
http://www.w3.org/TR/IndexedDB/
http://www.w3.org/TR/IndexedDB/
http://answers.microsoft.com/en-us/winphone/forum/wp8-wpupdate/buggy-nfc-implementation/939e7549-0170-45be-a6d5-4b8fcede7614
http://answers.microsoft.com/en-us/winphone/forum/wp8-wpupdate/buggy-nfc-implementation/939e7549-0170-45be-a6d5-4b8fcede7614
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives
http://nelenkov.blogspot.co.at/2013/08/credential-storage-enhancements-android-43.html
http://nelenkov.blogspot.co.at/2013/08/credential-storage-enhancements-android-43.html
https://www.owasp.org/index.php/Top10#OWASP_Top_10_for_2013
https://www.owasp.org/index.php/Top10#OWASP_Top_10_for_2013
http://www.rafayhackingarticles.net/2014/10/a-tale-of-another-sop-bypass-in-android.html
http://www.rafayhackingarticles.net/2014/10/a-tale-of-another-sop-bypass-in-android.html
http://www.rafayhackingarticles.net/2015/05/android-browser-address-bar-spoofing-vulnerability.html
http://www.rafayhackingarticles.net/2015/05/android-browser-address-bar-spoofing-vulnerability.html
http://www.rafayhackingarticles.net/2014/08/android-browser-same-origin-policy.html
http://www.rafayhackingarticles.net/2014/08/android-browser-same-origin-policy.html
http://www.w3.org/TR/FileAPI/
http://www.w3.org/TR/FileAPI/
http://www.w3.org/TR/WebCryptoAPI/
http://www.w3.org/TR/WebCryptoAPI/
http://www.surepassid.com/wp/wp-content/uploads/2014/03/SurePassID-FIDO-Server-Datasheet-03-04-2014.pdf
http://www.surepassid.com/wp/wp-content/uploads/2014/03/SurePassID-FIDO-Server-Datasheet-03-04-2014.pdf

Bibliography 111

[67] Symantec. Two Factor Authentication with Intel IPT and Symantec VIP. 2011. http://www.
symantec.com/connect/videos/two-factor-authentication-intel-ipt-and-symantec-

vip.

[68] Tarsnap. The scrypt key derivation function. 2015. http://www.tarsnap.com/scrypt.html.

[69] Peter Teufl, Thomas Zefferer, and Christof Stromberger. “Mobile Device Encryption Systems”.
In: 28th IFIP TC-11 SEC 2013 International Information Security and Privacy Conference. 2013,
pages 203–216.

[70] Peter Teufl et al. “Android Encryption Systems”. In: International Conference on Privacy & Se-
curity in Mobile Systems. in press. 2014.

[71] Peter Teufl et al. “iOS Encryption Systems - Deploying iOS Devices in Security-Critical Environ-
ments”. In: SECRYPT. 2013, pages 170–182.

[72] The Open Web Application Security Project. OWASP Mobile Security Project - Top Ten Mobile
Risks. 2015. https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_
Project_-_Top_Ten_Mobile_Risks.

[73] The Open Web Application Security Project (OWASP). Certificate and Public Key Pinning. 2015.
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning.

[74] Lisa Vaas. Bank tests heartbeat-encoded wristbands for online authentication. 2015. https://
nakedsecurity.sophos.com/2015/03/16/bank-tests-heartbeat-encoded-wristbands-

for-online-authentication/.

[75] Roland M. Van Rijswijk and Joost Van Dijk. “Tiqr: A Novel Take on Two-factor Authentication”.
In: Proceedings of the 25th International Conference on Large Installation System Administration.
LISA’11. Boston, MA: USENIX Association, 2011, pages 7–7. http://dl.acm.org/citation.
cfm?id=2208488.2208495.

[76] VisionMobile. Cross-Platform Tools 2015. 2015. http://www.visionmobile.com/product/
cross-platform-tools-2015/.

[77] I. Warren et al. “Push Notification Mechanisms for Pervasive Smartphone Applications”. In: Per-
vasive Computing, IEEE 13.2 (Apr. 2014), pages 61–71. ISSN 1536-1268. doi:10.1109/MPRV.
2014.34.

[78] Xamarin. Understanding the Xamarin Mobile Platform. 2015. http://developer.xamarin.
com/guides/cross- platform/application_fundamentals/building_cross_platform_

applications/part_1_-_understanding_the_xamarin_mobile_platform/.

[79] Spyros Xanthopoulos and Stelios Xinogalos. “A Comparative Analysis of Cross-platform Devel-
opment Approaches for Mobile Applications”. In: Proceedings of the 6th Balkan Conference in
Informatics (2013), pages 213–220. doi:10.1145/2490257.2490292. http://doi.acm.org/10.
1145/2490257.2490292.

[80] Yubico. YubiKey Neo and YubiKey Neo-N. 2015. https://www.yubico.com/products/yubikey-
hardware/yubikey-neo/.

[81] Thomas Zefferer and Bernd Zwattendorfer. “An Implementation-independent Evaluation Model
for Server-based Signature Solutions”. In: WEBIST 2014 - Proceedings of the 10th International
Conference on Web Information Systems and Technologies, Volume 1, Barcelona, Spain, 3-5 April,
2014. 2014, pages 302–309. doi:10.5220/0004839603020309. http://dx.doi.org/10.5220/
0004839603020309.

http://www.symantec.com/connect/videos/two-factor-authentication-intel-ipt-and-symantec-vip
http://www.symantec.com/connect/videos/two-factor-authentication-intel-ipt-and-symantec-vip
http://www.symantec.com/connect/videos/two-factor-authentication-intel-ipt-and-symantec-vip
http://www.tarsnap.com/scrypt.html
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://nakedsecurity.sophos.com/2015/03/16/bank-tests-heartbeat-encoded-wristbands-for-online-authentication/
https://nakedsecurity.sophos.com/2015/03/16/bank-tests-heartbeat-encoded-wristbands-for-online-authentication/
https://nakedsecurity.sophos.com/2015/03/16/bank-tests-heartbeat-encoded-wristbands-for-online-authentication/
http://dl.acm.org/citation.cfm?id=2208488.2208495
http://dl.acm.org/citation.cfm?id=2208488.2208495
http://www.visionmobile.com/product/cross-platform-tools-2015/
http://www.visionmobile.com/product/cross-platform-tools-2015/
http://worldcatlibraries.org/wcpa/issn/1536-1268
http://dx.doi.org/10.1109/MPRV.2014.34
http://dx.doi.org/10.1109/MPRV.2014.34
http://developer.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/part_1_-_understanding_the_xamarin_mobile_platform/
http://developer.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/part_1_-_understanding_the_xamarin_mobile_platform/
http://developer.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/part_1_-_understanding_the_xamarin_mobile_platform/
http://dx.doi.org/10.1145/2490257.2490292
http://doi.acm.org/10.1145/2490257.2490292
http://doi.acm.org/10.1145/2490257.2490292
https://www.yubico.com/products/yubikey-hardware/yubikey-neo/
https://www.yubico.com/products/yubikey-hardware/yubikey-neo/
http://dx.doi.org/10.5220/0004839603020309
http://dx.doi.org/10.5220/0004839603020309
http://dx.doi.org/10.5220/0004839603020309

112 Bibliography

[82] Yulong Zhang and Tao Wei. To Swipe or Not to Swipe: A Challenge for Your Fingers. 2015.
https://www.rsaconference.com/writable/presentations/file_upload/hta-f01-to-

swipe-or-not-to-swipe-a-challenge-for-your-fingers_final.pdf.

https://www.rsaconference.com/writable/presentations/file_upload/hta-f01-to-swipe-or-not-to-swipe-a-challenge-for-your-fingers_final.pdf
https://www.rsaconference.com/writable/presentations/file_upload/hta-f01-to-swipe-or-not-to-swipe-a-challenge-for-your-fingers_final.pdf

	Contents
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Acknowledgements
	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 Background
	2.1 Cross-Platform Mobile Application Development
	2.2 User Authentication Basics

	3 Related Work
	3.1 Multi-Factor Authentication Methods
	3.2 Authentication Frameworks
	3.3 Existing Security Evaluations of User Authentication Methods

	4 Authentication Building Blocks
	4.1 Building Blocks of Authentication Methods
	4.2 Mobile-Device Features

	5 Authentication Methods
	5.1 Terminology
	5.2 Overview
	5.3 Triple Key AES OTP
	5.4 Triple Key AES OTP with Knowledge Proof
	5.5 Double Key AES OTP with Knowledge Proof

	6 A Flexible Cross Platform Multi-Factor Authentication Framework
	6.1 Multi-Factor Authentication Server
	6.2 Mobile Multi-Factor Authentication Client
	6.3 Integration of New Authentication Methods
	6.4 Lessons Learned

	7 Security Evaluation
	7.1 Methodology
	7.2 Target of Evaluation
	7.3 Actors
	7.4 Security Assumptions
	7.5 Assets
	7.6 Threat Agents
	7.7 Security Threats
	7.8 Security Objectives
	7.9 General Countermeasures
	7.10 Specific Countermeasures
	7.11 Known Issues
	7.12 Discussion

	8 Conclusion
	A Screenshots
	A.1 Registration
	A.2 Authentication

	B Security Evaluation Rationale
	B.1 Mapping Threats to Assets
	B.2 Mapping Threat Agents to Threats
	B.3 Mapping Objectives to Threats
	B.4 Evaluating Security Measures

	Bibliography
	Blank Page

		2015-11-30T10:32:58+0100
	Sandra Julia Kreuzhuber
	Signaturpruefung unter http://www.signaturpruefung.gv.at

