
Bernhard Spitzer, BSc

Automated Software Diversity

with Unsound Randomization

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Computer Science

submitted to

Graz University of Technology

Dipl.-Ing., Andrea Höller, BSc

Institute for Technical Informatics

 Diplom-Ingenieur

Supervisor

Dipl.-Ing. Dr. techn., Christian Kreiner

Graz, November 2015

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis dissertation.

Date Signature

Kurzfassung

Hardware Komponenten in eingebetteten Systemen werden zunehmend fehleranfällig we-
gen der immer kleineren Bauweise und der Verwendung von handelsüblichen Standard-
Hardware, die eingesetzt wird um mit den stetig steigenden Anforderungen, die an die
Rechenleistung gestellt werden, Schritt halten zu können.

Redundante Systeme ermöglichen es Hardware-Fehler zu tolerieren. Es können jedoch
nur solche Fehler gefunden werden, bei denen der Output von zwei oder mehr Instanzen
unterschiedlich ist. Haben Hardware-Fehler eine gemeinsame Ursache, wie zum Beispiel
Fehler in geteilten Resourcen, wird Diversität benötigt, damit das redundante System den
Fehler erkennen kann.

In dieser Arbeit wird die Robustheit von Software gegenüber Mutationen verwendet
um automatische Software Diversität zu erzeugen indem kleine und zufällige Transforma-
tionen in einem iterativen Prozess angewendet werden um voll funktionsfähige Programm-
Varianten zu erhalten. Diese Transformationen werden auf Quellcode und auf Assembler
Code angewendet. Es wird ein vierstufiges System zur Erzeugung von Software-Diversität
implementiert, damit dieser Ansatz mit Diverse-Compiling Methoden, bezüglich der Fähig-
keit Hardware Fehler zu erkennen, verglichen und erweitert werden kann.

Dieses vierstufige System wird außerdem verwendet um lauffähige Programme auf feh-
lerhafter Hardware zu erzeugen. Die häufigsten Hardware-Fehler eines ARM9 Prozessors
werden mit einem QEMU basierten Fehler Injektions Framework simuliert.

Es werden 15 verschiedene Testprogramme von den Kategorien Industrielle Steuerung,
Netzwerk und Telekommunikation verwendet um verschiedene Ansätze zu vergleichen.
Die Ergebnisse zeigen, dass über 90 % aller eingefügten Instruktions Dekodierer und RAM
Fehler, sowie über 47 % aller eingefügten Register Fehler mithilfe des vierstufigen Systems
zur Erzeugung von Diversität maskiert werden können. Software-Mutationen hatten keinen
Einfluss auf die Maskierung von Hardware-Fehlern.

Die Erkennungsrate von Hardware Fehlern konnte durch Software-Mutationen und der
Verwendung eines Compiler Register-Flags gesteigert werden.

3

Abstract

Hardware components in embedded systems are becoming increasingly vulnerable because
of technology scaling and the usage of commercial off-the-shelf hardware, which is caused
by the necessity to put up with the computing performance requirements. Redundancy can
be used to tolerate hardware faults. However, since the voter in redundant systems only
detects faults if the outputs of two or more instances do not match, diversity is needed to
detect common-cause failures, such as faults in shared resources. In this thesis, software-
mutational-robustness is used to automatically introduce unsound software diversity by
applying small and randomized program transformations to get neutral networks of fully
functional program variants. Source code and assembler code are mutated as part of a
diversity chain. This approach is combined with diverse compiling and register avoidance
strategies giving a four level diversification chain. Each step of this diversification chain is
optional to make possible the comparison of different diversification strategies concerning
hardware fault detection.

Furthermore, the diversification chain is used to recover from permanent hardware
faults, such as CPU register faults, instruction decoder faults and RAM faults.

In order to simulate the most common hardware errors for an ARM9 processor, a
QEMU based fault injection framework is used.

The efficiency of the different strategies is quantified for 15 different test programs out
of the categories Automotive and Industrial Control, Network and Telecommunications.
The results concerning recovery showed that over 90 % of all introduced instruction decoder
faults and RAM faults and over 47 % of all introduced register cell faults which lead to
an error on the reference binary can be masked by using diverse compiling in combination
with the fixed register flag. It was not possible to improve the recovery rates using unsound
software diversity.

Furthermore, the results showed that source mutations and assembler mutations can
improve the fault detection rate when the approach is combined with diverse compiling.

4

Danksagung

Diese Diplomarbeit wurde im Jahr 2015 am Institut für Technische Informatik an der
Technischen Universität Graz durchgeführt.

Ich möchte mich bei meinen beiden Betreuern Andrea Höller und Chrisitan Kreiner sowohl
für die hervorragende Unterstützung bei allen technischen und organisatorischen Fragen
als auch für die Ermöglichung dieses spannenden Diplomarbeits-Themas bedanken.

Bei meinen Eltern sowie meiner gesamten Familie möchte ich mich für Ermöglichung des
Studiums bedanken. Einen sehr großen Dank gebührt auch meiner Freundin Anna und
ihrer Familie, die mich großartig unterstützt haben. Ebenso möchte ich mich bei meinen
Korrektur-Leserinnen Anna und Lisa bedanken.

Schlussendlich möchte ich allen Freunden danken.

Graz, im Monat Jahr Name des Diplomanden

5

Contents

1 Introduction 12
1.1 Motivation . 12
1.2 Goals . 13

1.2.1 Framework for Automatic Software Diversity 13
1.2.2 Integration of FIES . 14
1.2.3 Hardware Fault Detection . 14
1.2.4 Compiler Toolchain . 14
1.2.5 Fault Recovery . 14

1.3 Outline . 14

2 Technical Background and Related Work 16
2.1 Fault Tolerance . 16
2.2 Redundancy Techniques . 17

2.2.1 M-out-of-N Architecture . 17
2.3 ARM926EJ-S Processor . 17

2.3.1 MMU . 18
2.3.2 Registers . 18

2.4 Fault Injection . 18
2.5 Fault Modes . 21

2.5.1 RAM Fault Modes . 21
2.5.2 Instruction Decoder Faults . 22

2.6 Automated Software Diversity . 22
2.6.1 Categorization . 23
2.6.2 Diversification Levels . 24
2.6.3 Diversification During The Software Life-Cycle 26

2.7 Managed Software Diversity . 27
2.8 Evolutionary Algorithms . 28
2.9 Program Representation Tools . 29
2.10 Software Mutational Robustness . 31

2.10.1 Test Suite Quality . 32
2.10.2 Cumulative robustness . 32
2.10.3 Repairing Bugs . 33

6

3 Concept and Design 34
3.1 QEMU . 34

3.1.1 QEMU compared to other emulators 35
3.2 Diversification Chain . 35
3.3 Diverse Compiling . 40
3.4 LLVM . 40

3.4.1 CLANG LibTooling . 41
3.5 Transformations . 43
3.6 Software Neutral Networks . 44

3.6.1 Fitness Evaluation . 46
3.6.2 Evolutionary Algorithm . 46

3.7 Target System . 47
3.8 Software Evolution Library . 48

3.8.1 Implementation . 48

4 Implementation 50
4.1 Diversification Chain . 50
4.2 Mutation . 52

4.2.1 LLVM Source Mutation . 52
4.2.2 High Level Source Mutation . 52
4.2.3 High Level ASM Mutation . 56
4.2.4 Low Level Mutation . 56

4.3 Evolution . 57
4.4 Simulation . 58

4.4.1 Fault Injection Framework . 58
4.4.2 Modifications on FIES . 60
4.4.3 Python Simulator . 61
4.4.4 Fault Library . 62

4.5 Toolchain . 63
4.5.1 Packages and Files . 63
4.5.2 Compilation . 64
4.5.3 Compile to ASM . 65
4.5.4 Precompilation of Libraries and Shared Resources 65

4.6 Restrictions . 66
4.7 Installation . 66

5 Results 68
5.1 Output Methods . 68
5.2 Test Programs . 69

5.2.1 Automotive and Industrial Control 69
5.2.2 Network . 70
5.2.3 Telecommunications . 70

5.3 Fault Detection . 70
5.3.1 RAM Faults . 73
5.3.2 Register Faults . 77
5.3.3 Instruction Decoder Faults . 85

7

5.3.4 Fixed Register Flag . 89
5.4 Fault Recovery . 93

5.4.1 Common RAM Addresses . 96
5.5 Mutation Performance . 99

5.5.1 Source Mutation . 99
5.5.2 ASM Mutation . 100
5.5.3 Runtime Performance . 100

6 Conclusion 103
6.1 Further Work . 104

A Diversification Chain Source 105
A.1 Python . 105
A.2 Shell Scripts . 109
A.3 XML . 112
A.4 Further Work . 112

Literaturverzeichnis 113

8

List of Figures

2.1 Fault Primitives . 21
2.2 General Evolutionary Algorithm . 29
2.3 Program Representations . 30
2.4 Mutation Transformations . 31
2.5 Number of Applied Mutations . 32
2.6 Mutational Robustness of Sorting Algorithms 33

3.1 Diversification Chain . 36
3.2 AST Mutation . 37
3.3 Register Transformation . 38
3.4 Diverse Compiling . 39
3.5 ASM Mutation . 40
3.6 AST of C Source . 42
3.7 Recursive AST Visitor . 43
3.8 ASTConsumer . 43
3.9 MutationAlgorithm . 45
3.10 MutationStep . 46
3.11 Evolutionary Algorithm Software Neutral Networks 47
3.12 Software Evolution Library . 49

4.1 DiversificationChainDesign . 51
4.2 FolderStructure . 53
4.3 FolderStructureTemp . 54
4.4 SequenceDiagramSourceMutation . 55
4.5 FolderStructureASM . 56
4.6 SequenceDiagramEvolutionAlgorithm . 58
4.7 FolderStructureSimulation . 62
4.8 FolderStructureIMX28 . 66

5.1 RAM Register Cell Faults Masked . 74
5.2 RAM Address Decoder Faults Masked . 74
5.3 RAM Register Cell Faults Detected . 75
5.4 RAM Address Decoder Faults Detected . 75
5.5 RAM Register Cell Fault Types . 76
5.6 RAM Register Cell Faults Detected . 77
5.7 RAM Register Cell Faults Not Detected . 77
5.8 Masked Register Faults Source Mutation . 78

9

5.9 Masked Register Faults Source Mutation . 79
5.10 Masked Register Faults per Program . 79
5.11 Register Cell Fault Detection . 80
5.12 Register Cell Fault Detection ASM . 80
5.13 Register Cell Fault Detection GO0 GO3 . 81
5.14 Register Cell Fault Detection MSAGO0 GO3 81
5.15 Register Cell Fault Detection Source And Assembler Mutation 82
5.16 Register Cell Fault Detection Per Input . 82
5.17 Register Cell Fault Types . 83
5.18 Register Cell Faults Detected . 84
5.19 Register Cell Faults Not Detected . 84
5.20 Masked Instruction Decoder Faults Percentage 86
5.21 Instruction Decoder Faults Detection . 86
5.22 Instruction Decoder Fault Types . 87
5.23 Instruction Decoder Faults Detection Voter 88
5.24 Instruction Decoder Faults Not Detection Voter 88
5.25 Register Faults Masked . 89
5.26 Register Faults Detected . 90
5.27 Total Faults Detected . 91
5.28 Detected Register Faults During Source Evolution 92
5.29 Detected Register Faults During ASM Evolution 92
5.30 Recovered Faults Per Program . 94
5.31 Not Recovered Register Faults Per Type . 95
5.32 Masked Faults Per Binary . 96
5.33 Common Accessed RAM Addresses Per Program 97
5.34 Common Accessed RAM Addresses Per Program Recovered Faults 98
5.35 Common Accessed RAM Addresses Masked Faults Per Binary 98
5.36 Source Evolution Time per Program . 102
5.37 ASM Evolution Time per Program . 102

10

List of Tables

2.1 Supported single cell FFMs [AHK15],[AAVdG01] 22

5.1 datatypeSizes. 68
5.2 Binary Shortcuts . 71
5.3 Test Programs Shortcuts . 71
5.4 Masked RAM Faults . 73
5.5 Masked Register Faults . 78
5.6 Masked Instruction Decoder Faults . 85
5.7 Detected Register Faults . 89
5.8 Recovered Faults . 93
5.9 Not Recovered Instruction Decoder Faults 95
5.10 Evolution Algorithm Parameters . 99
5.11 Evolution Statistics . 99
5.12 Timing Statistics of Evolution . 101

11

Chapter 1

Introduction

For embedded safety-critical systems, dependability is a key feature because failures could
result in loss of life or financial damages [HRIK15]. Commercial off-the-shelf hardware
is used with increased regularity to counter the growing demands for high computing
performance and cost-efficiency. Since transistor sizes are continuously shrinking, these
components are becoming increasingly vulnerable. Hardware redundancy and software
redundancy can be used to detect hardware faults. Hardware redundancy is achieved by
duplicating components of a system where the same software is executed in parallel. A
hardware fault is detected when the comparison of the outputs of the parallel executions
does not match. On the other side, when multiple independent programs are created
from the same specification, these different versions can be executed sequentially on the
same hardware. The diverse usage of registers and instructions makes it possible to detect
hardware faults by comparing the output of the different versions. This thesis focuses on
software redundancy in combination with a 1oo2 architecture (see Chapter 2.2.1).

1.1 Motivation

In [SFF+14], the term mutational robustness is defined as “the fraction of random mu-
tations to program code that leave a program’s behavior unchanged”. It is stated that
mutational robustness is an inherent property of software since over 30 % of random
mutations are neutral with respect to their specification.

According to the authors of [SFF+14] the property holds across different classes of
programs, for source code mutations as well as assembly instruction level mutations across
various programming languages, where the test suite coverage influences the results only
to a certain limit.

In this thesis the mutational robustness of software is used to create neutral mutations
of programs. It is investigated how well suited these mutations are for hardware fault
detection and fault tolerance. For this purpose, a diversification chain with five different
diversification methods is implemented to allow the comparison of different approaches
such as diverse compiling and fixed register transformations (see Chapter 3.2).

The authors of [Sch14] use a software evolution library written in common lisp to
modify and evaluate existing software. The software evolution library is capable of:

• mutating the abstract syntax tree with Clang, CIL and LLVM,

12

CHAPTER 1. INTRODUCTION 13

• mutating the executable linkable format (ELF),

• mutating lisp source, and

• mutating assembly code.

This thesis focuses on source mutations generated with the Clang LibTooling library
(see Chapter 3.4.1) and on assembly code mutations which are generated by a python
module. The generated mutations have to be valid according to a provided test suite.
In order to gain even more diversity, the implemented diversification chain allows the
combination different approaches. It is examined which combinations are useful.

C-Programs out of the categories Automotive and Industrial Control, Network
and Telecommunications taken from the MiBench benchmark suite [GRE+01] are used
for the simulation.

1.2 Goals

The goals of this thesis are:

1.2.1 Framework for Automatic Software Diversity

A framework is implemented for automatic software diversity with unsound randomization
techniques (see Chapter 2.6.1) to

• mutate C-family source files with a tool based on the software evolution library
[Sch14],[Sch15b],

• mutate assembler files,

• validate mutated programs against a test suite,

• provide evolution algorithms for source and assembler mutation,

• manage generated mutation files,

• diverse compile programs with GCC and Clang along with the mutation flags -O0

to -O3,

• use the fixed register flag in combination with the GCC compiler,

• generate precompiled versions of the used libraries to enhance the mutation speed,

• compile programs to assembler for ASM mutation, and

• generate meta information used by the simulation algorithms.

CHAPTER 1. INTRODUCTION 14

1.2.2 Integration of FIES

To simulate hardware faults for an ARM9 processor, a QEMU based fault injection frame-
work [Sch15a] should be used within the framework for automatic software diversity. The
framework is adopted to allow the selection of a specific test input during runtime. Fur-
thermore, an easy to use python module is implemented to allow the fast specification
of

• permanent register faults with different fault modes,

• instruction decoder faults, and

• different RAM faults.

For this reason methods are implemented to examine the ELF format of binaries to
get information about the used assembler instructions. In order to inject RAM faults effi-
ciently, a method is implemented to log all accessed RAM addresses during the execution
of a binary. Furthermore, methods for the simulation are provided to generate information
used by fault detection mechanisms.

1.2.3 Hardware Fault Detection

Different diversification methods are compared regarding hardware fault detection and
fault tolerance by using MooN architecture presented in Chapter 2.2.1.

1.2.4 Compiler Toolchain

A compiler toolchain for an Freescale i.MX28 EVK PCB REV D board [Sem11] board to
run bare metal programs is implemented using Ubuntu 14.04.2 as host system.

1.2.5 Fault Recovery

An algorithm based on the diversification chain is implemented to recover from permanent
hardware faults.

1.3 Outline

This thesis consists of six different chapters:

Chapter 2 gives background knowledge about the used components and methods. For the
evaluation of automated software diversification methods presented in this thesis, an ARM
processor is simulated using QEMU. To inject hardware faults into the simulated ARM
processor a fault injection framework called FIES is used which is based on QEMU. The
used automated software diversification method can be categorized as unsound random-
ization technique (see Chapter 2.6.1). There exist many other approaches for automated
software diversity which are listed in Chapter 2.6. A program can be represented in differ-
ent ways during the software life cycle. The representations used for automated software
diversification in this thesis are presented in Chapter 2.9.

CHAPTER 1. INTRODUCTION 15

Chapter 3 presents the components used to create the framework for automated soft-
ware diversity. As described in Section 3.1, QEMU is used by the fault injection tool to
introduce faults into an Freescale i.MX28 EVK PCB REV D board (see Section 3.7). A
diversification chain (see Section 3.2) implements the transformations presented in Sec-
tion 3.5 and offers methods for diverse compiling (see Section 3.3). The presented AST
transformations are implemented using LLVM (see Section 3.4). In Section 3.6 the used
mutation algorithm is presented.

Chapter 4 provides insights into implementation details for

• the diversification chain,

• the mutation and evolution algorithms,

• the simulation with FIES,

• the modifications on FIES, and

• the creation of the compiler toolchain.

Chapter 5 presents the results of this thesis. The diverse compiling approach is compared
to unsound randomization methods regarding fault detection. Furthermore, the diverse
compiling approach is extended with unsound randomization methods to improve the
results. Fault recovery experiments are shown with promising results. Additionally, the
performance of creating software mutations is presented.

Chapter 6 provides a summary of this thesis and gives ideas for further work concerning
hardware fault detection with unsound randomization methods.

Chapter 2

Technical Background and Related
Work

This chapter provides background knowledge about the used components and methods.
For the evaluation of automated software diversification methods presented in this thesis,
an ARM processor is simulated using QEMU. To inject hardware faults into the simu-
lated ARM processor a fault injection framework called FIES is used which is based on
QEMU. The used automated software diversification method can be categorized as un-
sound randomization technique (see Chapter 2.6.1). There exist many other approaches
for automated software diversity which are listed in Chapter 2.6. A program can be rep-
resented in different ways during the software life cycle. The representations used for
automated software diversification in this thesis are presented in Chapter 2.9.

2.1 Fault Tolerance

”
Fault tolerance is the ability of a system to continue performing its intended functions

in presence of faults
”

[Dub13]. Software Fault Tolerance aims at software faults and the
goal of Hardware Fault Tolerance is to tolerate hardware faults. In this thesis hardware
fault tolerance is addressed. The two phases of hardware fault tolerance are fault detec-
tion and system recovery [HRIK15]. System recovery can be performed with backward
recovery or forward recovery. The goal of system recovery is to

”
remove errors and their

effects from the computational state before a failure occurs“ [Pul01]. In this thesis an
approach is presented to recover from permanent hardware faults using unsound random-
ization (see Chapter 2.6.1) along with different compiler flags. Furthermore, the presented
diversification chain (see Chapter 3.2) is evaluated according its capabilities regarding
fault detection. Faults can be detected by using redundancy techniques.

According to the authors of [Pul01], a distinction can be made between the terms fault,
error and failure. The terms fault, error and failure are related to each other yet different
in their exact meaning. An error is caused by an event. This event is called fault and
describes an incorrect state. If a fault occurs, the specification is not fulfilled anymore.
Only if the unfulfilled specification results in broken external services, a failure occurs
[HRIK15].

A fault can be regarded as an incorrect state of a system. An error occurs if a fault is

16

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 17

activated and the resulting state of the system deviates from the specification [HRIK15].
A failure occurs when the service produces incorrect results. The service deviates from
the the specification.

According to the authors of [KML+06], there are three types of faults:

1. Permanent Faults are caused by irreversible physical hardware changes,

2. Transient Faults are caused by temporary environmental conditions, and

3. Intermittent Faults are caused by unstable hardware.

Furthermore, a distinction can be made between the effects of the mentioned faults. A
fail-silent fault occurs when a program on a faulty hardware crashes. On the other side,
when the program does not crash and produces a faulty output it is called a Byzantine
fault.

2.2 Redundancy Techniques

According to the authors of [Pul01], redundancy is achieved by adding
”
additional re-

sources that would not be required if fault tolerance were not being implemented“. In this
thesis redundancy techniques are used for hardware fault detection.

2.2.1 M-out-of-N Architecture

A M-out-of-N (MooN) system consists of N replicas where at least M replicas have to
work correctly [HRIK15],[koo15]. In this thesis a 1oo2 system is used. The results of the
two programs are compared by a voter. It can be distinguished between time and spatial
redundancy techniques. When spatial redundancy is used each replica is executed on
different hardware. Time redundancy repeats the execution of programs using the same
hardware. To detect transient hardware faults it is sufficient to use the same software. For
detecting permanent hardware faults some sort of diversification has to be introduced to
the programs. Otherwise it would be possible that both versions produce the same wrong
output.

2.3 ARM926EJ-S Processor

The ARM926EJ-S processor is a general-purpose microprocessor which belongs to the
ARM9 family [ARM08]. Two different instruction sets are supported: the 32-bit ARM
and the 16-bit Thumb instructions. These two different instruction sets are used to choose
between high performance and high code density. On this CPU, Java byte code execution
performance is comparable to JIT with the advantage of avoiding code overhead. To ease
debugging, the ARM debug architecture can be used. The Harvard cached architecture
comes with a Memory Management Unit (MMU), different interfaces for instruction and
data AMBA AHB buses and different interfaces for instruction and data TCM interfaces.
The implemented v5TEj ARM architecture enables external coprocessors for floating-point
or other hardware acceleration support.

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 18

2.3.1 MMU

Virtual memory features are enabled by the ARM architecture v5 MMU to support Win-
dowsCE, Linux and Symbian OS. To control the memory region attributes, the address
translation and permission checks, the page tables are stored in main memory. A single
unified Translation Lookaside Buffer (TLB) is used to cache page table information and
consists fo the main TLB, which is a two-way, set-associative cache for page table informa-
tion with 32 to 64 entries and a lockdown TLB, which is fully-associative cache for locked
TLB entries with eight entries. The lockdown TLB is used to avoid page table walks for
a specific memory region. There are four different mapping sizes supported:

• sections with 1MB,

• large pages with 64KB,

• small pages with 4KB, and

• tiny pages with 1KB.

Hardware page table walks speed up the MMU performance. Subpage permissions are
useful to specify permissions for quarters of large and small pages.

2.3.2 Registers

A set of 37 32-bit registers are available on the ARM9EJ-S CPU with 31 general purpose
and six status registers, where the accessibility is dependent on the processor state and
operating mode. The registers r0 to r15 and the Program Status Register (CPSR) can be
used when the CPU is in ARM state and user mode. The stack pointer (SP) is located
in the register r13 and the link register (LR) can be found in r14. The program counter
(PC), located in r15, is copied in this LR when a branch is executed. Using the thumb
mode of the CPU reduces the number of usable registers. Only the registers r0 to r7 are
available in this case.

2.4 Fault Injection

Fault injection techniques are useful to

• understand the effects of real faults,

• check the efficacy, failure coverage and latency of the provided fault tolerance mech-
anisms,

• test the target under different workloads,

• find weak spots in the design, and

• investigate the system’s behavior in the presence of faults [ZAV+04].

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 19

The following components can be used to construct a fault injection environment: The
fault injector executes commands from the workload generator and injects faults. Fault
types and fault locations, as well as timing information and hardware semantics are stored
in the fault library. The input for the target is generated in the workload generator.
To store examples for the workloads, a workload library can be used. A controller
controls the experiment. Data collection is initiated by a Monitor, performed by a data
collector, and analyzed by a data analyzer [ZAV+04].

There exist different types of fault injection methods:

• Hardware-Based Fault Injection uses special hardware to add faults into the
target system. In can be differed between injection methods with contact and con-
tactless injection methods. Methods with contact are possible, if the injector has
physical contact with the target system, allowing the tester to use pinlevel active
probes and socket insertion. External sources, to produce radiation or electromag-
netic interferences, are used when contactless injection methods are applied. Hard-
ware based fault injection can introduce faults to places on the chip, which are hard
to test by other methods. Coverage and latency can be determined practically only
with direct hardware insertion methods. The injected faults are very stable in their
signal. Modifications of the target systems are not necessary by using hardware
based fault injection. The near real-time execution speed of the experiments allows
to run a large number of fault injection experiments. By using the real hardware,
design faults can be found easily, since the actual hard and software is used for the
tests. On the downside, hardware fault injection can damage the injected system.
Furthermore, dense packaging of circuits and device integration can limit the possi-
bility of injection. The set of injection points and injectable faults is limited by the
actual hardware. Moreover special hardware is needed to perform the experiments.

RIFLE is a system to inject deterministic and reproducible faults into processor pins,
where errors can be found by tool without the usage of feedback circuits [MRMS94].
The microprocessor-based jet-engine controller of the Boing 747 and 757 aircrafts
are tested with the FOCUS design automation environment [CMR+01].

MESSALINE [Arl90] allows pin-level fault injection and supports stuck-at, open,
bridging and complex logical faults.

GOOFI (Generic Object-Oriented Fault Injection) allows to inject pre-runtime soft-
ware implemented faults (SWIFI) and Scan-Chain implemented faults (SCIFI) [AVFK01].
With SCIFI faults can be injected into the pins and into the internal state elements
of an circuit. Furthermore the internal state state can be observed. SWIFI enables
to inject faults into the program and data areas of the target system. The authors
state, that the GOOFI tool is highly portable between different hosts.

Contact and contactless faults, to introduce transient faults, can be directly injected
into a chip using FIST [KLD+94].

• Software-Based Fault Injection is used to inject hardware faults by simulating
the target system. The set of introducable faults includes timing faults, missing
messages, replays, corrupted memory, corrupted registers and faulty disk reads. Im-
plementation details are important for software-based fault injection. The functional

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 20

behavior of the target system is not affected by the injection software because of the
independency of the injection software. No special-purpose hardware is needed, so
this method is cheap and not complex, compared to hardware-based fault injection.
Like hardware-based fault injection methods, the execution on real hardware enables
to find design faults in the actual hardware. Drawbacks include the limited set of
injection instants, the inability of injecting faults into all hardware locations, the
requirement of modifying the source for the experiments, the limited controllability,
the difficulty of modeling permanent faults and the difficulty to test hard real-time
systems, because of the strict deadlines and the scheduler.

Faults can be injected during compile-time or run-time:

– When the fault is introduced into the source code, before the program is loaded
(compile-time), no additional software is necessary during runtime. This hard-
coded fault effect allows the introduction of permanent faults.

– Run-time methods require mechanisms to trigger fault injection. A simple time-
out can be used to generate an interrupt for fault injection. Traps can be used
to inject faults, whenever specific events or conditions occur. Code insertions
are used to add instructions, which start events.

Software traps are used by FERRARI, to inject CPU, memory and bus faults[KKA92].
The program counter or a timer can be used to trigger events. Permanent and tran-
sient faults are supported.

FTAPE makes use of fault injection drivers to generate errors in CPU modules,
memory locations and disk subsystems [TIJ96].

• Simulation-Based Fault Injection makes use of hardware description languages,
like Very high speed integrated circuit Hardware Description Language (VHDL), to
simulate the system under analysis and introduce faults, according to a distribution
function. The full set of system abstraction levels are supported by this approach,
including the electrical, logical, functional and architectural layer and it is still not
intrusive but allows full control of both fault models and injection mechanisms. No
special purpose hardware is necessary and the same software that will run in the
field is used. Transient and permanent faults are supported as well as timing-related
faults.

The drawbacks of the simulation-based fault injection include the development ef-
forts, the time consuming length of the experiment, the inability of real time fault
injection and the inability of finding design faults.

VERIFY modifies the VHDL language to enable multi-threaded fault injection by
describing faults [STB97].

MEFISTO-C comes with a variety of predefined fault models and makes use of
VHDL simulation models to create fault injection experiments [FSK98].

Permanent and transient faults can be simulated with HEARTLESS, which can be
called a register-transfer-level-fault-simulator [RPB+01].

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 21

• Emulation-Based Fault Injection is faster than simulation-based fault injection,
but the costs for a FPGA based emulation board is quite high and only functional
consequences of faults can be investigated.

• Hybrid Fault Injection methods use combinations of different fault injection tech-
niques.

LIVE is used to evaluate computer-based railway control systems with fault injection
and software testing methods. Software-based and simulation-based fault injection
methods are combined.

2.5 Fault Modes

This section desribes the different fault modes which are used for the simulation on QEMU.
Faults are injected into CPU register cells, RAM register cells and into the instruction
decoder.

2.5.1 RAM Fault Modes

To describe RAM faults a special notation can be used, consisting of three different parts:
< S/F/R >. This triple is called a fault primitive (FP). S is the sensitizing operation
sequence (SOS) that leads to the fault [AAVdG01]. F is a binary number (F ∈ {0, 1})
and contains the value of the faulty cell. R is used to represent the output value of a read
operation. R ∈ {0, 1,−}, where − denotes that a write operations is used.

In Figure 2.1 a taxonomy of FPs is shown, classified by the number of accessed cells
(#C) and the number of operations (#O).

Fault primitives

Number of cells (#C) Number of operations (#O)

#C = 1 #C > 1 #O <= 1 #O > 1

Single-cell
fault primitive

Coupling
fault primitive

Static
fault primitive

Dynamic
fault primitive

Figure 2.1: Taxonomy of fault primitives [AAVdG01].

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 22

In this thesis single cell FFMs are used. In Table 2.1 the supported dynamic and static
FFMs are listed with the according FPs.

Functional fault model Fault primitives

Static FFMs

Stuck-at faults SAF0 =< 0/1/− >, SAF1 =< 1/0/− >
Transition fault TF↑ =< 0w1/0/− >, TF↓ =< 1w0/1/− >
Read disturb fault RDF0 =< 0r0/1/1 >, RDF1 =< 1r1/0/0 >
Write disturb fault WDF0 =< 0w0/1/− >, WDF1 =< 1w1/0/− >
Incorrect read fault IRF0 =< 0r0/0/1 >, IRF1 =< 1r1/1/0 >
Deceptive RDF DRDF0 =< 0r0/1/0 >, DRDF1 =< 1r1/0/1 >

Dynamic FFMs

Read disturb fault RDF00 =< 0w0r0/1/1 >, RDF11 = 1w1r1/0/0 >
RDF01 =< 0w1r1/0/0 >, RDF10 =< 1w0r0/1/1 >

Incorrect read fault IRF00 =< 0w0r0/0/1 >,IRF11 =< 1w1r1/1/0 >
IRF01 =< 0w1r1/1/0 >,IRF10 =< 1w0r0/0/1 >

Deceptive RDF DRDF00 =< 0w0r0/1/0 >,DRDF11 =< 1w1r1/0/1 >,
DRDF01 =< 0w1r1/0/1 >,DRDF10 =< 1w0r0/1/0 >,

Table 2.1: Supported single cell FFMs [AHK15],[AAVdG01]

2.5.2 Instruction Decoder Faults

According to [HRIK15] instruction decoder faults can be classified as inactive, wrong,
or additional. Inactive faults occur when an instruction is not executed. When too
many instructions are executed it is classified as additional fault. The execution of wrong
instructions is called a wrong fault. In this thesis inactive instruction decoder faults are
used by specifying a ’No Operation’ instruction. See Chapter 4.4.4 for the specification
which is used by the fault injection framework presented in Chapter 4.4.1.

2.6 Automated Software Diversity

”
Automated software diversity consists of techniques for artificially and automatically syn-

thesizing diversity in software“ [BM14]. The term
”
Automated Software Diversity“ has

been formed 20 years ago and this idea has been proven to be useful to counter attacks,
by adding uncertainty to the target [LHBF14]. To create attacks, exact knowledge of the
target software is essential. Therefore, diversity allows us to generate a broad defense line.
Although homogenous software, along with standardizations allows us to scale systems,
guarantee consistent behavior and simplifies the logistics of distribution [LHBF14]. Un-
fortunately, this homogeneity can be used by attackers, since the downloaded program
can be probed for vulnerabilities. All systems running the vulnerable program can be at-
tacked, when the vulnerability is turned into an exploit. The goal of automated software
diversity is, that the attacker has to target each system individually, to raise the effort of
the attacker.

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 23

2.6.1 Categorization

Randomization

Randomization can be used to automatically introduce diversity into applications. These
randomization transformations can be categorized:

• Static randomization is used to create different source code versions of a program.
In Section 2.6.2, methods and transformations to randomize source code on different
levels, are presented. Obfuscation is used to prevent reverse engineering, but since
obfuscating is automated, the generation of different versions of one single program
is possible.

• Dynamic randomization adds randomization points to executables. While static
randomization is applied during compile time, dynamic randomization is used during
runtime and enables diverse executions, even under the same input. In [HNL+13],
just-in-time compilation randomization is presented. No randomization points are
used, but the compiler itself is responsible for the randomization by inserting NOP
instructions. Data diversity is introduced in [AK88] and allows to run a program in
the presence of hardware failures. The input data is changed to bypass the failure.
After the computation, an inverse transform function is used to calculate the actual
output of the function. Environment diversity can be used to enable correct program
executions on erroneous hardware by changing the environment.

• Unsound program transformation: While diverse compiling preserve the exact behav-
ior of the original program, the random mutation approach may alter the semantics
of a program. Transformations, which change the semantics of a program are called
unsound program transformations. In [FS10] it is shown that the linking of two
slightly different binary files is possible and useful to tolerate bugs. Transformation
strategies on Java statements are investigated in [BAM14], where the term sosie of
a program is defined as a set of source codes, which pass the same test suite. A large
quantity of variants can be synthesized with different control and data flows. The
impact of skipping a certain amount of loop iterations is investigated in [SDMHR11],
where a trade-off between performance and accuracy is measured.

Domain-specific Diversity

Domain-specific knowledge can be used to create efficient diversification. The diversifi-
cation of SQL statements is presented in [BK04]. All SQL keywords are prefixed with
a specific token to prevent attacks from outside. Hardware faults can be found by ap-
plying program transformations to change numerical operations in a predefined manner
[OMM02]. Metamorphic engines are used by computer viruses to constantly change itself
[BFM10]. This makes it more difficult for the antivirus software to find all variants of a
malign program. In the context of testing, the generation of random input test data is
called adaptive random testing [CKMT10], when the generation approach depends on the
previous generated test case.

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 24

Integrated Diversity

The automatic injection of different kind of diversity into a single program is called inte-
grated diversity [BM14]. Stacked diversity integrates different forms of diversity into an
application, where each diverse transformation improves the application in one perspec-
tive. In [WDHK01] a multi level program diversification is used to enable obfuscation. To
protect a program against code injection attacks, the authors of [BDS03] used multiple
randomization methods. They mutated the base addresses of memory regions, the order
of stack-variables, and introduced random gaps in the memory layout.

The Genesis Diversity Toolkit [LDE+07] can be used to create artificial diversity by

• Address Space Randomization (ASR),

• Stack Space Randomization (SSR),

• Simple Execution Randomization (SER),

• Strong Instruction Randomization (SIR), and

• Calling Sequence Diversity (CSD).

This toolkit is used by [WHD+09], to establish a toolchain for diversity transforma-
tions at compile time, link time, load time and runtime. Runtime diversity is enabled
by the Strata virtual machine technology. Compilation superoptimization is used to en-
able superdifersification by bytecode transformations[jac08]. The introduction of a new
paradigm for software, aiming at massive-scale diversity is done by the authors of [Fra10]
to counter reuse of software vulnerabilities. To protect distributed systems from men-at-
the-end attacks, [CMMN12] use techniques to flatten the control flow, merge functions,
dummy code addition, parameter reordering and variable encoding. A diversity scheduler
is used to enable temporal diversity. When diversification methods are combined some
sort of diversification controller is necassary. In [PSS12], the benefits of diversity manage-
ment controllers are discussed. To detect security issues [CEF+06] uses N-variant systems
to create mutants of a program and run them in parallel [BM14]. Unlike N-version pro-
gramming, N-variant systems are created automatically and not implemented by different
teams.

2.6.2 Diversification Levels

Automated software diversity depends on the set of transformation functions and on the
used software representation. The software representation changes during the software
life-cycle. Simply spoken, it has to be determined, what and when diversification should
take place.

There are many possible diversification-levels available:

• Instruction Level: Instructions of basic blocks are permuted. A sequence of in-
structions is called basic block, if the execution of the first instruction, guarantees
the executions of the other instructions of the block. Equivalent Instruction Substitu-
tion can be used to exchange two equivalent instructions. Equivalent Instruction Se-
quences are used when the functionality of instruction sequences overlaps [LHBF14].

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 25

Instruction Reordering works as long as the dependencies within the instructions are
preserved. Garbage Code Insertion allows to generate infinitely many program vari-
ants, by adding no-operation instructions (NOPs) or more complex statements.

• Basic Block Level: Basic Block Reordering is based on the last instruction of a
basic block, since this instruction may branch to another block. Branch Function
Insertion works by inserting additional code to calculate the return address of a
function based on the caller.

• Function Level: To counter buffer overflow attacks,

– stack frame padding,

– stack variable reordering,

– stack growth reversal, and

– non-contiguous stack allocation

can be used for the transformation. Function Parameter Randomization can be used
to permute existing parameters. The insertion of new parameters is also possible,
when all function-calls are adopted to the changes. Inlining a function means, that
the actual function call is avoided, by replacing the function call with the contents of
the function. Outlining is the process of extracting a basic block into a new function.
If code of a function is outlined, the transformation is called Splitting. Control Flow
Flattening allows to connect basic blocks with indirect jumps through jump tables.

• Program Level: The order of functions within executables and libraries can be cho-
sen arbitrarily, so randomization can be done with less effort. Address Space Layout
Randomization (ASLR) can be implemented, because the virtual address space of
each process is private, therefore the starting address can be chosen at random.
Currently, ASLR is the

”
only deployed probabilistic defense“ [LHBF14]. Program

Encoding Randomization is the method of change the encoding of a program. The
changed encoding of a program can be reversed by a virtual machine which either
interprets the changed encoding or emulates a machine for the changed encoding.
Data Randomization can be used to defend against memory corruption attacks, by

– permutate static variables and add padding, by

– blinding constants, where the actual value of the constant is retrieved during
runtime, by

– randomizing composite data structures such as classes and structs, and by

– adding random padding to objects on the heap.

• System Level: Transformations in this category use knowledge about the system
software. An example would be System Call Mapping Randomization, which is used
to diversify the system call interface between processes and the operating system.

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 26

2.6.3 Diversification During The Software Life-Cycle

The life-cycle of software can be split into the following categories: implementation, com-
pilation, linking, installation, loading, executing and updating.

• Implementation: N-Version programming is a well known method to diversify
software and is based on design diversity [AC77]. Software components are designed
and implemented by using separate teams and programming languages. The goal is
to minimize the probability, that the resulting software contains similar errors. A
voter compares the output of the diverse instances. Design diversity is expensive to
implement and therefore only used by some domains like aerospace or automotive
software.

• Compilation and Linking: Diverse compiling avoids changing the source code by
automatizing the process of diversification. This process is limited, since compilers
do not know the specifications of the program, only the source code is visible. Ad-
ditionally, the semantic of the source has to be kept, so high-level transformations
to change algorithms, are not supported.

Using a compiler for diversification avoids the need for dissassembly. Furthermore,
multiple hardware platforms can be targeted easily and transformations can be added
relatively easy, since compilers contain the needed source analysis tools [HRIK15].

In contrast to compile-time diversification, link-time diversification works with pro-
prietary compilers and linkers.

• Installation: When diversification is done during, or after installation, the disas-
semble of stripped binaries is a challenging task, since errors are introduced when
no debugging symbols are available. In-place diversification [PPK12] rewrites code,
reachable from the program entry point. Unreachable code is not diversified. Many
approaches for diversification are implemented on multiple steps in the software life
cycle. Instruction location randomization is used to create a new program encoding
by rewriting binaries [HNTC+12].

The advantages of post-distribution diversification approaches are:

– Since no source code is needed, proprietary software and legacy software can
be transformed.

– The diversification approach is compatible to current software distribution sys-
tems, because transformation is done on the end user system.

– In contrast to pre-distribution diversification methods, the computing power
needed for the transformations is spread among the entire user base.

There are some drawbacks as well:

– Since diversification is done on client side, there is no protection against client
side attacks.

– The diversification engine must be installed on all clients and therefore becomes
an important target for attacks.

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 27

– This method is not applicable for operating system diversification.

[LHBF14]

• Loading: Diversification is added while the program is loaded into memory by the
operating system. Signed binaries are supported by this approach, since the on-
disk representation is not altered. Dynamic binary rewriting allows to rewrite code
on the fly. A code cache is used to store translated code pages. The downside of
this approach is the runtime overhead, since the translation adds to execution time.
Another drawback of this method is the inability to share code pages for randomized
libraries. In [BAFS05], the instruction set encoding is randomized. Before execution
the instructions are decoded with the valgrind dynamic rewriter [NS07].

• Execution: Dynamically allocated data can be located randomly in memory. The
memory allocator can be changed to randomize one object per time [NB10]

• Updating: Before a patch is generated, the software can be diversified to avoid the
exploiting of bugs which can be found by comparing the updated software with the
original software [CDSDB13].

2.7 Managed Software Diversity

Unlike automated software diversity, managed software diversity approaches control the
introduced diversity in different ways:

N-Version diversity can be applied on the product itself, on the process and the
environment [Avi95]. N-Version programming, as discussed in Section 2.6.3, can be cate-
gorized as a

”
design diversity“ technique. The term

”
N-version design“ is defined as

”
the

independent generation of N ≥ 2 functionally equivalent programs from the same initial
specification“ [AK84] [BM14].

Managed Natural Software Diversity is defined as
”
the existence of different soft-

ware solutions that provide similar functionalities and which spontaneously emerge from
software development processes“ [BM14]. Web browsers, operating systems, firewalls,
database management systems, virtual machines and servers are examples for natural
software diversity. In [WWB03], different versions of servers which run on different oper-
ating systems improve the security level of a system. The term

”
N-version protection“ is

defined in [OCJ08] and makes use of different antivirus and malware programs, where a
cloud is used to put up with the performance overhead.

Managed Functional Diversity Software abstractions are used to hide the diversity
of implementation details and offer a unified abstraction. The Unix file capture concept
is an example for this kind of diversity. A very popular software abstraction is the objekt-
oriented software paradigm, where polymorphism is used to enable code-calls in a non

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 28

predefined manner [BM14]. The late binding of code-calls is essential for enabling diversity.
Software product lines are used to handle a diversity of requirements with a diversity of
software implementations. A feature model can be used to model the requirements and
software solutions. The main challenge is to identify existing parts of software systems for
reuse.

Plugin based software architecture is used to encapsulate functionality and dependency
information to enable open software systems. Eclipse, GIMP and Audacity are just some
examples of successful projects using this approach. Since plugins can be combined in
many variations, the software diversity of such systems is very high.

2.8 Evolutionary Algorithms

The idea behind evolutionary algorithms is to evaluate individuals in a population accord-
ing to a quality function and to apply selection methods where the fittest candidates have
a higher probability to be chosen as parents for the next generation [ES03]. The next
generation can be created by applying mutation transformations on the existing individu-
als or by recombination of existing individuals. Algorithm 1 shows the basic structure of
evolutionary algorithms in pseudo code. Furthermore, the general scheme can be seen in
Figure 2.2.

Algorithm 1 General Evolutionary Algorithm

1: procedure Evolution
2: INITIALISE population with random candidates
3: EVALUATE each candidate
4: while TERMINATION CONDITION do
5: SELECT parents
6: RECOMBINE pairs of parents
7: MUTATE the resulting offspring
8: EVALUATE new candidates
9: SELECT individuals for the next generation

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 29

Initialisation

Parent selection

Recombination

Mutation

Survivor selection

Figure 2.2: The general scheme of an evolutionary algorithm [ES03]

2.9 Program Representation Tools

Programs can be represented by hierarchical trees (AST) or by linear vectors (ASM)
[Sch14]. Common tools for the high-level program representation are based on

• CIL [NMRW02a], and on

• C Language family frontend for LLVM (CLang) [Lat08a].

Low-level program representations can be based on

• argumented ASM code [SFW10], and on

• Low Level Virtual Machine (LLVM) IR [LA04].

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 30

if (a==0){

 printf("%g\n", b); }

else {

 while (b!=0){

 if (a>b){ a=a-b; }

 else { b=b-a; } } }

printf("%g\n", a);

if(a==0)

printf("%g\n", b); while(b!=0)

if(a>b) printf("%g\n", a);

a=a-b; else

b=b-a;

.file "gcd.c"

.globl main

.type main, @function

main:

.cfi_startproc

pushq %rbp

.cfi_def_cfa_offset 16

.cfi_offset 6, -16

movq %rsp, %rbp

.cfi_def_cfa_register 6

subq $48, %rsp

ELF\?

ELF header

program header table

section 1

...

.text section

[55] [48 89 e5] [48 83 ec 20] [48 89 7d e8]

[89 75 e4] [83 7d e4 01] [7e 60]

...

section n

section header table

(a) Source (b) AST

(a) Assembler (a) ELF

Figure 2.3: Program representations [Sch14].

In this thesis, the CLang-AST representation and the assembler representation are
used for generating mutations (see Figure 2.3). According to [Sch14], the CLang-AST
representation is closest to the source code, written by humans. As an result, fine-grained
mutations are possible by using the CLang-AST. The effects of this fine-grained mutation
are discussed in Chapter 5. The GCC compiler is able to generate ASM code, by using the
-S flag. This program representation is mutated per line, so no further transformation is
needed. In Figure 2.4 it is shown how the program representation influences the mutation
transformations. It is distinguished between AST based and vector based approaches.

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 31

Figure 2.4: The used mutation transformations [Sch14].

2.10 Software Mutational Robustness

It already has been stated that mutational robustness is an inherent property of software,
since over 30 % of random mutations are neutral with respect to their specification. A
formal definition of software mutational robustness, can be given as follows:

MutRB(P, T,M) =
|{P ′|m ∈M ∧ P ′ = m(P) ∧ T (P ′) = true}|

|{P ′|m ∈M ∧ P ′ = m(P)}|

P is the program, M is the set of all mutations and T represents the testsuite [SFF+14].
A specific mutation m ∈ M can be understood as a function, which takes a Program P
as input and gives a mutated program P ′. In [SFF+14] it is shown, that the mutational
robustness of software does not rely strongly on T and M . Abstract syntax trees (AST),
generated with the CIL toolkit [NMRW02a], and assembly code (ASM) are used for the
program representation. CIL is used to create a simpler version of a given program and
allows source to source translations, which is used for mutation operations. The assembler
code is generated with the compiler command gcc -O2 -S, where mutations are realized
per line. The tree based high level AST representation and the linear based low level
assembler representation give similar results, so the authors of the paper conclude, that
the mutational robustness does not depend strongly on the chosen representation. Three
language-independent mutation operators are used, as shown in Figure 2.4:

• Copy duplicates a statement and inserts it at a random index.

• Delete remove a statement at a random index.

• Swap exchanges two randomly chosen statements (see Figure 2.4).

To measure the software mutational robustness, it is important to use programs with
high quality test suites. In [SFF+14], fourteen off-the-shelf programs are selected, along
with four programs from the Siemens Software-artifact Infrastructure Repository [DER05].

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 32

For the experiment, a given source code is duplicated over 200 times. Each of these 200
clones is mutated with one of the mutation operators, mentioned in Figure 2.4. Only lines,
which are tested by at least one test of the test-suite, are taken into account. This proce-
dure gives first-order mutations. The results shows, that the average software mutational
robustness is at least 36.8 % and that the specific program influences the result only to a
certain limit.

2.10.1 Test Suite Quality

In [SFF+14] it is stated, that the software mutational robustness is not fully related to
the test-suite quality. In their approach, they only mutated statements, which are covered
by the test-suite. Though the statement-coverage is not very precise, since it only tells
us, whether the line of code was executed by a test-case or not. A fully tested program
reaches a software mutational robustness over 20 %, whereas untested programs reach
about 84.8 %.

2.10.2 Cumulative robustness

A given ASM source code is mutated until 100 neutral first-order mutations are found.
Then, a random generator selects one of the 100 neutral variants and applies a mutation.
This procedure is repeated until 100 neutral second-order mutations are found. The au-
thors of [SFF+14] apply this approach until the mutations are 250 steps away from the
original program. In Figure 2.5 it can be seen, that the percentage of neutral variants rises,
as the number of applied mutation steps gets bigger. During the evolution, the average
number of lines of code rises as well.

Figure 2.5: Number of applied mutations [SFF+14].

Figure 2.6 shows that the mutational robustness holds on multiple programming lan-
guages. Well known implementations of sorting algorithms were used for this purpose.

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 33

Figure 2.6: Mutational robustness of sorting algorithms [SFF+14].

2.10.3 Repairing Bugs

In [SFF+14], the following five bugs-categories are used, to generate faulty programs:

• missing conditional clause,

• extra statement,

• constant should have been variable, and

• wrong parameter.

The defect lines in the programs are covered with test-cases, so it is possible to check,
whether the mutations can fix the bug. For this scenario, 5000 first-order mutations are
generated, by applying the operators which are explained in Chapter 2.10. They show, that
in practice, 5000 mutations are enough to fix at least one bug, in the average case. When
more than 5000 mutations are used, the influence in the performance of repairing bugs,
can be neglected. In 88 % of all cases, the bug repairs are compensatory. That means,
the mutated line of code is unchanged, but other regions of the program are mutated with
the effect of repairing the introduced malfunction.

Chapter 3

Concept and Design

In this chapter the components used to create the framework for automated software
diversity are presented. As described in Section 3.1, QEMU is used by the fault injection
tool to introduce faults into an Freescale i.MX28 EVK PCB REV D board (see Section
3.7). A diversification chain (see Section 3.2) implements the transformations presented
in Section 3.5 and offers methods for diverse compiling (see Section 3.3). The presented
AST transformations are implemented using LLVM (see Section 3.4). In Section 3.6 the
used mutation algorithm is presented.

3.1 QEMU

QEMU can be used to run operating systems in a virtual machine, supporting many
different host operating systems, like Linux, Windows and Mac OS X. Since the state of
a virtual machine can be inspected easily, QEMU is often used for debugging purposes.
The following subsystems are used:

• CPU emulator (x86, PowerPC, ARM, Sparc)

• Emulated devices (VGA display, serial port, mouse and keyboard, hard disk, network
card)

• Generic devices are used to connect host devices to emulated devices.

• Machine descriptions to make instants of the emulated devices

• Debugger

• User interface

[Bel05]
The full system emulation operating mode of QEMU is used to emulate a full system

with a processor. Multiple target operating systems can be launched in parallel [dev15].
To launch processes for a different CPU yet the same operating system as on the host
system, user mode emulation can be used. This mode makes cross-compilation much
easier.

34

CHAPTER 3. CONCEPT AND DESIGN 35

Dynamic translation is used to get native code for gaining speed. Furthermore, self-
modifying code, precise exceptions and floating points are supported. A full software
emulation is possible as well as native host FPU instruction usage. For user mode emu-
lation, generic Linux system calls are converted, the Linux scheduler for threads is used
and the remapping of host signals allows accurate signal handling.

For system emulation, a full software MMU is used. Optionally an in-kernel accelerator
can fasten guest code natively. Symmetric multiprocessing (SMP) can be used, even when
the host system is single-cored.

3.1.1 QEMU compared to other emulators

Dynamic compilation makes QEMU much faster than bochs [Law96]. QEMU is capable
of simulating several processors, while bochs is tied to x86.

Valgrind [NS07] is used for memory debugging and can track uninitialized data, which
is impossible with QEMU. User space emulation and dynamic translation is supported by
valgrind, but closely tied to x86 hosts.

Compared to commercial products (VMWare, VirtualPC, TwoOStwo), QEMU is slower,
but many commercial products need unsafe host drivers and they can not provide cycle
exact simulation. Non commercial QEMU based systems are VirtualBox, Xen and KVM.

3.2 Diversification Chain

A stacked diversity approach (see Chapter 2.6.1), based on the software evolution library,
is implemented, with four different diversification methods:

• Source Mutation

• Register Transformation

• Diverse Compiling

• ASM Mutation

Each step in this chain is optional and can be combined freely. In Chapter 5, the four
methods and combinations of them, are compared to each other.

CHAPTER 3. CONCEPT AND DESIGN 36

Source Mutation

Source Code

Register
Transformation

Diverse Compiling

ASM Mutation

Linking

Diversification
Chain

Figure 3.1: The four different diversification methods, used in this chain.

1) AST Mutation: A given source code is mutated to generate a neutral landscape
with respect to the test suite. For this purpose, a software evolution framework is devel-
oped, where some elements are based on the Software Evolution Library. Parameters for
the

• optimal number of applied mutations, and

• the optimal amount of neutral variants

are investigated during the experiment. The mutational transformations (Figure 2.4) are
implemented with a C++ application based on LLVM (Section 3.4).

CHAPTER 3. CONCEPT AND DESIGN 37

Mutation

Source Code

Register Transformation

Figure 3.2: A given source code is mutated to generate a neutral landscape with respect
to the test suite.

2) Register Transformation: To recover from permanent register faults, a method
is implemented to avoid the usage of the specified registers. The compiler reserves that
registers entirely for this use within the current compilation. It is necessary to recompile
other source code and the used libraries, where the variable is not declared explicitly with
the -ffixed-reg compiler option. For that reason, it is not possible to apply this trans-
formation, when the source of an used library is not available or when Inline-Assembler-
Statements are used, where the specified register is accessed. It is planned to create a
version for every general purpose register. To gain compilation speed, the core libraries
for the i.MX28 EVK board are compiled in advance, getting 15 different versions for each
general purpose register. This transformation is realized during compilation, no source
modification is necessary. CLANG does not support the -ffixed-reg flag, restricting
this approach to GCC.

CHAPTER 3. CONCEPT AND DESIGN 38

Fixed Register
Compilation

Mutated
Source Code

ASM Mutation

Text
Assembler

Precompiled Libraries

Figure 3.3: The -ffixed-reg flag is used to avoid the usage to the specified register along
with precompiled libraries.

3) Diverse Compiling: A simple but efficient way to create automated software di-
versification is called diverse compiling, where different compilers and optimization flags
are combined. I will follow the approach as presented in [HRIK15], where the Gnu Com-
piler Collection and the LLVM Clang compiler are used in combination with the ARM
architecture (see Section 3.3). During the experiment, it is investigated,

• which optimization flags,

• what number of replicas, and

• which combination of replicas

should be used to get the best result. The used libraries are precompiled with the spec-
ified optimization flags, to avoid long compilation times. Each combination of compiler
and optimization flag is used during this precompilation process. Diverse compiling is
strongly connected to register transformation, since register transformation is done by us-
ing a special flag. So the number of precompiled library versions is: number of compilers
× number of optimization flags × number of fixed registers. In fact, the number of pre-
compiled library versions is not exactly this big, since CLANG does not support certain
flags.

CHAPTER 3. CONCEPT AND DESIGN 39

Diverse Compiling

Mutated
Source Code

ASM Mutation

Text
Assembler

Precompiled Libraries

Register
Transformation

Figure 3.4: The mutated source code is compiled to text assembler with GCC and CLANG
compilers, using different flags for optimization.

4) ASM Mutation: This mutation step works on text assembler, generated by the
previous steps, to create a larger neutral landscape with respect to the test suite. For this
purpose, an approach, based on the Software Evolution Library is implemented, where the
parameters for

• the optimal number of applied mutations, and

• the optimal amount of neutral variants

are investigated during the experiment. The final step in the diversification chain would
be to compile the text assembler files to executable programs using the Gnu Compiler
Collection and the LLVM Clang compiler.

CHAPTER 3. CONCEPT AND DESIGN 40

Mutation

Text
Assembler

Linking

Figure 3.5: ASM mutation of text assembler.

3.3 Diverse Compiling

In [HRIK15], the diverse compiling approach is evaluated, in the context of finding faults
in processors. The outcomes are, that 90 % of all register faults and 70 % of all instruction
decoder faults can be detected. Time redundancy is used for fault detection, so the results
of different subsequently runs are compared together. Unmodified compilers are used,
with well tested optimization flags. The development costs can be kept low, because of
this reason. Features of a processor are differently used by diverse compiled versions of
the same source. Therefore, the possibility is very high, that a hardware fault results in
different outputs of two diverse replicas. A simple output comparison check can detect
the fault.

3.4 LLVM

The Low Level Virtual Machine (LLVM), is a

”
compiler framework designed to support transparent, life-long program anal-

ysis and transformation for arbitrary programs, by providing high-level infor-
mation to compiler transformations at compile-time, link-time, run-time, and
in idle time between runs“ [LA04].

A low-level code representation is defined with the following features:

• a language-independent type-system

CHAPTER 3. CONCEPT AND DESIGN 41

• an instruction for typed address arithmetic

• a simple mechanism to implement exception handling in high-level languages

The key operations of ordinary processors are captured by the LLVM instruction set.
Low-level calling conventions, pipelines, physical registers and other machine-specific con-
straints are avoided. As a load/store architecture, LLVM transfers values between registers
and memory only via load and store operations. The avoidance of multiple opcodes for
the same operation, the usage of overloaded opcodes and the three-address form of nearly
all opcodes, make it possible, that the LLVM instruction set can be implemented with 31
opcodes.

The LLVM-GCC 4.2 Front-End is compatible with GCC and existing makefiles and
provides support for C, C++, Objective-C, Ada and FORTRAN [Lat08b]. Using LLVM
as back-end, enables many optimizations of source files, including inlining and constant
propagation. Furthermore, a faster optimizer and a slightly better codegen can be used.

In [Lat08b], it is stated, that
”
GCC’s front-end is slow and memory hungry“, and

that important functionality for the usage in an IDE is missing. The limited source-level-
information and the steep learning curve for developers are stated as well. The CLANG
Front-End for LLVM is introduced to fix this problems, by fulfilling the following goals:

• A unified parser for C, Objective C and C++ with good error and warning messages.

• The library based architecture with C++ API’s is replaceable, reentrant, composable
and extensible.

• Many different usages are possible, like source to source tools, refactoring for IDE’s,
indexing, static analysis and code generation.

• The fast compilation and low memory footprint make CLANG a high performance
front-end for LLVM.

3.4.1 CLANG LibTooling

The library LibTooling [Tea15a] is used, to create a standalone, clang-based tool. Accord-
ing to [Tea15f], the clang AST is closely related to the written C++ code and the C++
standard [Tea15f]. This is the main difference between the Clang AST and the ASTs from
other compilers. A tool to

”
manipulate C-family ASTs with Clang“ [Sch15b] is used to

give an example of the Clang AST. The following source gives the AST which is shown in
Figure 3.6.

int f(int x) {

int result = (x / 42);

return result;

}

CHAPTER 3. CONCEPT AND DESIGN 42

int f(int x) {

 int result = (x / 42);

 return result;

}

{

 int result = (x / 42);

 return result;

}

int result = (x / 42);

(x / 42);

x / 42

x 42

return result;

result;

Figure 3.6: AST of C Source.

The class ASTContext holds all information about the AST of a translation unit.
”
A

translation unit is the ultimate input to a C compiler from which an object file is generated“
[Wik15]. The full AST can be traversed by starting with TranslationUnitDecl, which is
the top declaration context. There are two basic nodes in the Clang AST, statements and
declarations. Expressions are treated as statements. To visit each node of the Clang AST
in preorder depth-first traversal, the RecursiveASTVisitor is implemented. Figure 3.7
shows a minimal inheritance diagram. Three different tasks are performed:

1. Traversal of the Clang AST.

2. For every node, walk up in the class hierarchy.

3. For a given node and class combination, a user-overridable function is called.

Task one is done by the method TraverseDecl(Decl *x), which is the entry point for
the traversal. Task two is implemented by WalkUpFromFoo(Foo *x) and task three is
managed by VisitFoo(Foo *x). The calling sequence starts with Traverse* which calls
WalkUpFrom* and finally Visit* is called.

CHAPTER 3. CONCEPT AND DESIGN 43

clang::RecursiveASTVisitor<Derived>

clang::RecursiveASTVisitor<BodyTransform<BODY_TRANS>>

<BodyTransform<BODY_TRANS>>

clang::arcmt::trans::BodyTransform<BODY_TRANS>

Figure 3.7: Inheritance diagram for the RecursiveASTVisitor class.

To be independent of the AST producer, the abstract interface ASTConsumer is
implemented. Methods to add listeners and enable customized initialization are defined
within the ASTConsumer class. An inheritance diagram is shown in Figure 3.8 [Tea15c]

clang::ASTConsumer

clang::BackendConsumer

clang::CodeGenerator

clang::ento::AnalysisASTConsumer

clang::ento::ModelConsumer

clang::SemaConsumer

Figure 3.8: Inheritance diagram for the ASTConsumer class.

3.5 Transformations

According to [PLMK08], the three simple mutation transformations copy, delete and swap,
in combination with a crossover transformation, are sufficient to evolve novel behavior
[Sch14]. These four transformations do not use domain knowledge of the program which
is manipulated. The transformations can be used on different program representations
and different languages. In this work, AST and ASM are used as program representa-
tions. In [KBLN04] it is stated, that even human software developers use these kind of

CHAPTER 3. CONCEPT AND DESIGN 44

transformations commonly during programming. The fact, that these transformations do
not produce new code is based on the intuition that

”
most extant programs already con-

tain the code required to implement any desirable behavior related to their specification“
[Sch14].

3.6 Software Neutral Networks

In Chapter 2.10.2, the process of generating high level neutral variants is discussed as it is
implemented by [Sch14]. In this work, Algorithm 2 is implemented, to allow the controlled
generation of mutations. The method mutateFile() is explained in detail in Section 4.2.2
and in Section 4.2.4.

Algorithm 2 Evolution

1: procedure Evolution(maxMutationDepth, minimalNumberOfMutationsPerLevel,
numberOfRandomMutations, workingDirectory)

2: while true do
3: mutationDepth ← getHighestMutationDepth(workingDirectory)
4: listOfMutations ← getListOfMutations(workingDirectory, mutationDepth)
5: if mutationDepth == maxMutationDepth ∧ length(listOfMutations) ≥ mini-

malNumberOfMutationsPerLevel then
6: return
7: if mutationDepth ! = None ∧ length(listOfMutations) < minimalNumberOf-

MutationsPerLevel then
8: mutationDepth ← mutationDepth −1
9: listOfMutations ← getListOfMutations(workingDirectory, mutationDepth)

10: fileToMutate ← random(numberOfMutations)
11: mutateFile(fileToMutate, numberOfRandomMutations)

The parameters can be used to control the evolution:

• maxMutationDepth: The procedure will apply the mutation operators, until the
mutations are maxMutationDepth - steps away from the original program. In Figure
3.9, the correlation between maxMutationDepth and minimalNumberOfMutation-
sPerLevel, is shown.

• minimalNumberOfMutationsPerLevel: On each level, the same amount of mu-
tations are generated. For the generation, a random mutation from the level below
is used (algorithm 2, line 10)

• numberOfRandomMutations: This parameter is used for performance issues.
The generation of mutations is very fast, since AST operations, or linear vector
operations on ASM, are cheap. However, the verification of mutations is very slow.
The extern programs for AST and ASM mutations are written in C++ and Python,
so every time a mutation is planned, the program for mutation has to be loaded. To
reduce the number of program loads, numberOfRandomMutations many mutations
are generated at once. Figure 3.10 shows the selection and generation of mutations.

CHAPTER 3. CONCEPT AND DESIGN 45

• workingDirectory: The whole diversity chain is based on a special data structure,
as discussed in Chapter 4.

Mutation Depth

Number of Mutations Per Level

Figure 3.9: The mutation matrix to show the correlation between number of mutation per
level and the mutation depth.

CHAPTER 3. CONCEPT AND DESIGN 46

Mutation 1 Mutation 2 Mutation N

Select Random Mutation

Mutation

Verification

Next Level
Mutations

Figure 3.10: The visualization of the mutation step.

3.6.1 Fitness Evaluation

To test a given mutation of a program for its fitness or correctness, an executable has to
be generated. The test-suite is then applied on this executable to evaluate the functional
correctness of the mutation. Functional evaluation checks if the behavior of a program is
correct or acceptable [Sch14]. No semantic tests are applied during functional evaluation,
so in many cases the program variant computes a different function than the original.
Furthermore, the formal program specification can not be checked during functional eval-
uation.

Nonfunctional evaluation, i.e. tests for nonfunctional runtime properties, are not con-
sidered in this work. In [Sch14] a post-compilation, workload-driven optimization tech-
nique for nonfunctional evaluation is presented.

3.6.2 Evolutionary Algorithm

As discussed in Chapter 2.8 an evolutionary algorithm consists of the following parts:
Initialisation, Mutation and Selection. In Figure 3.11 the main parts of the evolutionary
algorithm are shown. This algorithm is used to improve the hardware fault detection
concerning register faults throughout this thesis. The data structure contains the inherent

CHAPTER 3. CONCEPT AND DESIGN 47

property that given a mutation m1 with mutation depth x: depth(m1) = x so that x > 1
fulfills the property: ∀y : depth(y) < depth(x) → diff(x, y) = 0. This property is used
to avoid the creation of equivalent mutations and can be referred as a silent evaluation
function. The actual evaluation function is made of register fault injection experiments.
The more faults are detected, the better is the fitness of the given individual. Since a
1oo2 architecture is used the binary GO3F03 is chosen as the second binary, because of
the results presented in Chapter 5.

Mutation Depth

1

2

3

N

Mutations

file3bggEZ

fileXK3xng

fileWRN2n

Random selection of
population

Evaluation

Select parents

Generate mutations

Evaluate children

Select best individuals

Eliminate bad individuals

Add random individuals

Figure 3.11: The visualization of an evolutionary algorithm used for experiments through-
out this thesis.

3.7 Target System

The Freescale i.MX28 EVK PCB REV D board [Sem11] is used as target system, to run
bare metal programs. An ARM926EJ-S core with 454MHz and 32KB cache is contained,

CHAPTER 3. CONCEPT AND DESIGN 48

as well as 128KB on-chip RAM. The NAND Flash socket can be used as data storage
media or as boot device.

3.8 Software Evolution Library

The framework for automated software diversity presented in this thesis is influenced by
software evolution library created by Eric Schulte [Sch14, SFF+14]. This chapter gives a
short overview of the main parts of the software evolution library.

The library is used in [Sch14, SFF+14] to
”
enable the programmatic modification and

evaluation of extant software“ [Sch14]. Developed during the genprog project, the software
evolution library can be used for automated program repair. Many software objects, like
linked ELF binaries, compiled assembler, LLVM IR, abstract syntax trees (AST), can be
used due to a common interface. Methods for mutation and evaluation use this interface
to support Search Based Software Engineering (SBSE).

3.8.1 Implementation

Common Lisp is used to implement the software evolution library. Many different types
of software objects are supported:

• ASM: Assembler Code

• CIL: C Intermediate Language

• CLANG: C AST

• LLVM: Low Level Virtual Machine AST

• ELF Mips: Executable Linkable Format (ELF) binaries in MIPS architectures

• ELF-x86: Executable Linkable Format (ELF) binaries in x86 architectures

• LISP: Lisp Source

The following software methods are implemented on top of the abstraction: The func-
tion genome gives the data structure of the underlying object. A tree structure is used for
high level source code, whereas linear structures represent low level objects like assembler
code. A method to return an executable version of a given source code is called phenome.
Deep copies are possible with copy. To select random elements of a genome, pick can
be used. The function mutate mutates the software object by using one of the three
specified mutation operators. To get the crossover of two software objects the function
crossover can be used. Methods, used for file operations are:from-file and to-file.

To configure and interact with the search process, global variables are used. The
list of currently used software objects is stored in the population variable. To limit
the allowable population size max-population-size is used. During the selection, the
variable tournament-size specifies the number of mutants. The fitness of individuals is
compared with an operator, specified in fitnes-predicate. The chance of using cross over

CHAPTER 3. CONCEPT AND DESIGN 49

instead of mutation is defined in cross-chance. Each individual has a mutation rate of
mut-rate. To track the number of fitness evaluations, fitness-evals is used.

There are two implemented search functins: evolve and mcmc. Evolve tries to imitate
natural selection, whereas mcmc performs a markov chain monte carlo search [Gil05]. The
runtime of these two methods can be limited by the maximum number of evaluations and
the maximum number of passed seconds. An overview of the mentioned methods and
variables of the software evolution library API can be seen in Figure 3.12.

Software Object

edits
fitness
...

Globar Variables

population
max-population-size
tournament-size
fitness-predicate
cross-chance
fitness-evals
running

Population Functions

incorporate
evict
tournament
mutate
new-individual
evolve
mcmc

Population

list of software objects

Software Functions

genome
phenome
copy
pick-good
pick-bad
mutate
crossover

max

Evolve Arguments

max-evals
max-time
target
period
period-func
filter

AST

Abstract Syntax Tree
E

ELF

Executable Linkable
Format

E
LISP

Lisp Source

E
ASM

Assembly Code

CLANG

C AST

CIL

C Intermediate
Language

LLVM

LLVM IR

Figure 3.12: Software Evolution API.

Chapter 4

Implementation

In this chapter insights into implementation details for

• the diversification chain,

• the mutation and evolution algorithms,

• the simulation with FIES,

• the modifications on FIES, and

• the creation of the compiler toolchain

are provided.

4.1 Diversification Chain

The high-level aspects of the diversification chain are written in Python, whereas shell
scripts are used for implementing low-level features. In Figure 4.1 the main parts of the
implementation can be seen:

• Python:

– The evolution module implements methods to automatically generate diverse
versions of the specified program source. Methods of the simulation and wrap-
per modules are used.

– The simulation module is capable of simulating different hardware errors and
implements algorithms and methods for error dedection.

– The mutation module is responsible for the mutation process and offers meth-
ods to compile and link a program with the specified mutations.

– The wrapper is the interface between high-level aspects and low-level features.

• Shell Scripts:

– The file system is directly used as information storage, too ease and fasten
the compilation and mutation process.

50

CHAPTER 4. IMPLEMENTATION 51

– To verify mutations, the output is compared to the original program, which is
compiled with no optimization flags using the GCC compiler.

– The execution of programs is done by calling Qemu with the specified param-
eters.

• External Binaries:

– Clang mutate, based on [Sch15b], is used to mutate source code, by modifying
the AST of input files.

• LISP:

– The software evolution library [Sch14] can be used for mutation.

Shel Scripts

Wrapper

File System Operations

Compilation

Verification

Execution

Source Mutation
Software Evolution

Library

Evolution

Simulation

Mutation

Figure 4.1: Overview of the implented modules, used languages and interactions.

CHAPTER 4. IMPLEMENTATION 52

4.2 Mutation

4.2.1 LLVM Source Mutation

To mutate C source files, the library LibTooling [Tea15a] is used to create a standalone
clang-based tool. The mutation program is written in C++ and based on [Sch15b]. Re-
vision 182049 of LLVM is used, which must be built with the .configure and make com-
mands. Note that the framework takes a couple of hours for the compilation and installa-
tion process. The tool can be found in ~/diversity_chain/ClangMutate/clang-mutate/.
To compile the tool, GCC has to be used whereas CLANG is needed for the
linking process. The shell scripts build_clang.sh and build_gcc.sh, provided in the
clang-mutate directory can be used for this purpose.

A path to the source file and a number of mutations must be specified for the tool
to work correctly. An example would be: ./clang-mutate -numberOfMutations 10

file.c --. The -- statement means, that there are no translation database avail-
able [Tea15g]. First the AST is traversed to count the available number of statements.
Then, one of the mutation operators(delete, insert and swap) is applied in a loop until
the expected number of mutation parameter is reached. Note that there is a known
bug, which randomly kills the AST structure, so there is no guarantee that
the expected number of mutations is reached during on run of clang-mutate.

All mutations are placed on the /tmp folder and renamed by the std::tmpnam function
to get a list of files which can be used by the diversification chain.

4.2.2 High Level Source Mutation

To unterstand the sequence diagram, shown in Figure 4.4, the file structure is explained in
Figure 4.2. A example project written in C is used with the three files: Main.c, Calc.c,
and Calc.h. The file to mutate is Calc.c which contains a single function for doing some
calculation. As it can be seen in Figure 4.2 a folder with the name Calc.c_mutations

is generated by the diversification chain, containing a list of subfolders, where the name
of the folder shows how many mutation steps the contained mutated files are away from
the original version. In the example, folder 2 is selected, giving mutation files which
are two steps away from the base version. Each mutation is named randomly and comes
with a mutation information file, where the predecessors of the file are listed to allow the
generation of mutation trees.

CHAPTER 4. IMPLEMENTATION 53

Main.c

Calc.c

Calc.h

1

2

3

N

Calc.c_mutations
file3bggEZ

file3bggEZ_mut
ation_informati

on.txt

fileXK3xng

fileXK3xng_mut
ation_informati

on.txt

Figure 4.2: The mutation folder structure of an example project generated by the diver-
sification chain.

During the mutation process, a temp folder is generated, where the mutations are
compiled and tested (Figure 4.3):

• build: Contains the precompiled object files which are not mutated during the
current run. This is just a temporary folder since the object files are copied to the
parent folder for further processing as it can be seen in Figure 4.3.

• Calc.c_compiled_and_tested: A folder where the tested binaries are located.

• Calc.c_compiled_and_tested_source: The source of the valid mutations of the
current run are located in this folder.

• Calc.c_compiled_mutations: Contains successfully compiled mutations.

• Calc.c_mutations_untested: Untested mutations are first copied to this folder.
This is the content of the /tmp folder, when clang-mutate is used for C-AST muta-
tion.

• Main.o: The precompiled object file of a file, which is not mutated during this run.

• Calc.c: The current mutation which is tested.

CHAPTER 4. IMPLEMENTATION 54

Main.c

Calc.c

Calc.h

build

Calc.c_compiled_and_tested

Calc.c_compiled_and_tested_source

temp

Calc.c_compiled_mutations

Calc.c_mutations_untested

Main.o

Calc.c

Calc.h

Figure 4.3: The folder structure of the temporary folder used for mutation, compilation
and testing.

In Figure 4.4 a sequence diagram shows the generation of source code mutations.
The Python module mutator contains a method mutateSourceFile with the param-
eters pathToFile and numberOfMutations to specify the file and the number of ap-
plied mutations. To communicate with the file system, a wrapper is used where shell
scripts are called. First, the temporary project structure is created as discussed in Figure
4.3. For this purpose, the old folder is deleted and replaced with the current content of
the project. Then, clang-mutate is used to generate the expected number of mutations.
The wrapper opens a subprocess with the clang-mutate tool which creates the mutated
files in the /tmp folder of the system in use. The mutations are then copied into the
/temp/Calc.c_mutations_untested directory when the example is used as in the de-
scription above Figure 4.3. Files which are not mutated in this run can be precompiled to
object files. The next step is time consuming because a loop iterates over each mutation
m and tries to compile and verify the mutation. All valid mutations are then copied to the
folder Calc.c_compiled_and_tested_source and then transferred to the corresponding
file in the main project structure as it can be seen in Figure 4.2.

CHAPTER 4. IMPLEMENTATION 55

mutateSource mutator

mutateSourceFile

shellWrapper

generateTempProject

shell

remove_tmp_folder

copy_source_to_tmp_folder

mutateSourceFile

clangMutate

openSubprocess(numberOfMutations,fileToMutate)

listOfMutationslistOfMutations

compileMutations

Loop

For each muattion : m

precompileNotMutatedFiles

compileProjectWithMutation(m)

binary : b

testBinary(b)

saveValidMutations

numberOfValidMutations

Figure 4.4: The sequence diagram of a source mutation call. Interactions between the
Python module mutator and the wrapper are shown as well as interactions between the
wrapper and the shell and the external binary clangMutate.

Fast Source Mutation

The process of compilation is very slow when the compiler gcc-arm-none-eabi (see Sec-
tion 4.5) is used. Furthermore, the simulation on QEMU is very time consuming for
generating test results. A method is implemented to avoid these time consuming tasks by
simulating the program on the actual operating system. For this reason commonly used
methods are rewritten and placed in the folder ~/imx28_simulation/. The source files are
compiled and tested with the GCC 4.9.2 compiler. Note that this approach only works if
all hardware specific methods are simulated correctly and no precompiled libraries are used
within the project. Obviously this approach can not be applied to assembler mutations
since already cross compiled assembler code can not be simulated on the host system.

CHAPTER 4. IMPLEMENTATION 56

4.2.3 High Level ASM Mutation

Many methods which are used by the source mutation can be used directly for the ASM
mutation, since the main approach is the same. Yet there are some important differences.
To mutate assembler files, the source files have to be compiled before. The compilation
process is described in the diverse compilation chapter. In Figure 4.5 a new folder named
asm can be seen, where subfolders a listed with rising numbers. The numbers are chosen
arbitrarily and have no deeper meaning in opposite to the Calc.c_mutations subfold-
ers, where the name of the folder is equal to the number of mutation steps applied to
the mutation. A file named mutationInformation.txt contains information about the
compilation process (see Figure 4.7). In Figure 4.5 the files Main.s and Calc.s can be
seen, which are generated by compiling Main.c and Calc.c with the -S flag by GCC or
CLANG. Mutations of the Calc.s file are located in the folder Calc.s_mutations where
the name of the subfolders contain information about the mutational distance to the un-
modified file. In this example the contents of folder 2 are visible, where two mutations
with the corresponding mutation_information.txt files can be seen.

Main.c

Calc.c

Calc.h

asm 1

2

3

K

Calc.c_mutations
Main.s

Calc.s

Calc.s_mutations

mutationInformation.txt

1

2

3

N

file3bggEZ

file3bggEZ_mut
ation_informati

on.txt

fileXK3xng

fileXK3xng_mut
ation_informati

on.txt

Figure 4.5: The folder structure of assembler mutations, where the second-order mutations
of the second assembler project are listed. A mutation information file is used to save
compiler options.

4.2.4 Low Level Mutation

Source Mutation

In Listing A.3 the method mutateSourceFile(pathToFile, numberOfMutations,

strictMode=True) is responsible for the AST mutation of C-family files. The parameter
strictMode is set to True by default. This means that all mutations have to be different
when compared to all predecessors of the specified file. The list of predecessors is saved in
the file mutation_information.txt(Figure 4.2). It is possible to mutate already mutated
files so pathToFile can either point to the original file or to a mutation. According to

CHAPTER 4. IMPLEMENTATION 57

Figure 4.2 the mutations of a file are located in a special sub directory in the project
folder. If the file is a mutation, the path to the original file has to be determined. The
/tmp/ directory of the system is used to temporarily save the mutations of file, so it has
to be cleared at the beginning of this method. To avoid changes to the original project,
a subfolder called <path-to-project->/temp/ is created within the project file structure
(see Figure 4.3). The mutated file is then copied to this folder and a sub-process is
started to call the external mutation program with the specified number of mutations. All
mutations are copied from the /tmp/ directory to the _mutations_untested subfolder in
the temporary project, compiled and tested. All successful mutations are saved to the
according subfolder in the main project. The number of successful mutations is saved for
statistical purposes.

Assembler Mutation

The mutation of of assembler files is done by the method mutateAssemblerFile (Listing
A.3) and very similar to source mutation. In contrast to source mutation, a mutation
information file is loaded with information about the compilation process necessary for
the linking process. The mutation is done by a Python script so no external binaries are
included.

4.3 Evolution

Algorithm 2 is implemented using Python(see Listing A.1, function evolutionAlgorithm).
The sequence diagram can be seen in Figure 4.6, where the user starts the evolution
Algorithm with the parameters:

• pathToFile,

• numberOfRandomMutations,

• maximalMutationDepth,

• minimalNumberOfMutationsPerLevel, and

• mutationType.

The evolution algorithm is capable of mutate a single source file which is specified
by a string in the parameter pathToFile. The numberOfRandomMutations is an inte-
ger value specifying the number of mutations generated by the external mutation tool
to boost the performance. The parameter maximalMutationDepth defines the stopping
criteria of the evolution algorithm. When enough mutations are generated (as defined in
minimalNumberOfMutationsPerLevel) on the final level the algorithm is stopped. The
mutationType is a string which is either

• Source,

• ASM, or

• SourceSimulationOnCurrentOS

CHAPTER 4. IMPLEMENTATION 58

to tell the algorithm about the used mutation. The option SourceSimulationOnCurrentOS

is used for fast source mutation and described in Chapter 4.2.2. In Figure 4.6 the evolution
algorithm collects information about the current mutation depth and the current muta-
tions by communicating with the wrapper. Then, a file to mutate is selected randomly.
This file is mutated as described in the Chapters 4.2.3 and 4.2.2.

user mutator shellWrapperevolutor

evolutionAlgorithm

Loop

until mutationDepth
is reached

getHighestMutationDepth

mutationDepth

getMutationsByMutationDepth(mutationDepth)

listOfMutations

selectRandomMutation : mutation

mutateSourceFile

saveMutations

Figure 4.6: The sequence diagram of the evolution algorithm. Interactions with the python
modules evolutor and mutator are shown as well as wrapper calls.

4.4 Simulation

4.4.1 Fault Injection Framework

The simulation of hardware errors is done with a fault injection framework based on
QEMU [Sch15a]. The starterscript automattest.sh located in the QEMU folder, is used
to start the simulation by specifying a binary, a fault XML file and a parameter for the
used input (Section 4.4.4).

CHAPTER 4. IMPLEMENTATION 59

In Listing 4.1 the main file of a simple project can be seen. Arguments are used
to transfer the input values to the program. The actual input is generated by calling
generateInput with the parameter argv. The calculation is done in the method doCalc

where the generated input is passed as parameter. Since no operating system is used on
the target system the usage of argument values is not possible. For this reason, the fault
injection framework is modified to allow the selection of the used input during runtime
(see Section 4.4.2).

To simulate hardware faults during the execution of doCalc() the three variables
sbst_cycle_count, fault_counter and input_data_id have to be defined and initialized
according to Listing 4.2.

The variable sbst_cycle_count has to be initialized to −1, fault_counter needs
to be set to 1 and input_data_id has to be set to −2. To retrieve the value for
input_data_id as specified in the starter script, the method initializeInputDataID()

is called (see Listing 4.3). This method increments input_data_id to signal FIES that
the actual value can be stored in the variable. Since compiler optimizations are used
throughout the experiments in this thesis, the dummy call of the method
writeIntegerToOutput(output, input_data_id) is used to ensure that no math opti-
mization is applied to the incrementation of input_data_id. The method
selectInput(input_data_id) replaces the method generateInput(argv). A mech-
anism to generate input data has to be provided within the program. The variable
input_data_id can be used as seed for this mechanism or to chose between already
defined test inputs.

To tell the fault injection framework about the start of the experiment sbst_cycle_count
is used. This is realized as software to hardware communication [Sch15a]. For this reason
the variable sbst_cycle_count is incremented before doCalc() is called (Listing 4.2 line
10). The variable fault_counter on the other side is used to collect the number of de-
tected faults within software based self tests. Since no software based self tests are used
within this thesis, the variable fault_counter is not used.

To terminate a fault injection experiment the sbst_cycle_count is incremented in a
loop until no further fault injection experiments are defined within the used fault injection
XML file (Listing 4.2 line 12-13). This while loop replaces the return 0 statement.
Increment the variable sbst_cycle_count within a infinite loop while(1) would cause
the compiler to delete the code when the optimization flag -O3 is activated. Furthermore,
the infinite loop would not work in combination with the fast source mutation approach as
described in Chapter 4.2.2 since no fault injection framework is used there. Therefore, the
provided form with the incrementation in the loop header should be used. The number 1
is chosen arbitrarily and can be replaced with any number which is greater than 0 when
only one fault injection experiment is provided within the XML file (Section 4.4.4).

Listing 4.1: The original main file of a simple project where only doCalc() is called.
1 #include ” ca l c . h”
2
3 int main (int argc , char∗ argv []) {
4 int ∗ input = generate Input (argv) ;
5 doCalc (input) ;
6 return 0 ;
7 }

CHAPTER 4. IMPLEMENTATION 60

Listing 4.2: The modified main file of with the introduced variables used by the fault
injection framework.

1 #include ” ca l c . h”
2
3 int s b s t c y c l e c oun t = −1;
4 int f a u l t c oun t e r = 1 ;
5 int i npu t da ta id=−2;
6
7 int main (void) {
8 i n i t i a l i z e I npu tDa ta ID () ;
9 int ∗ input = s e l e c t I npu t (i npu t da ta id) ;

10 s b s t c y c l e c oun t++;
11 doCalc (input) ;
12 while (s b s t c y c l e c oun t++ < 1) {
13 }
14 }

Listing 4.3: A function for retrieving the selected input id.
1 void i n i t i a l i z e I npu tDa ta ID () {
2 // S i g na l QEMU
3 inpu t da ta id++;
4
5 // This c a l l a v o i d s −O3 f l a g o p t im i z a t i o n
6 writeIntegerToOutput (output , i npu t da ta id) ;
7 }

4.4.2 Modifications on FIES

Input Selection

To enable the specification of the used input by the starter script (see Listing A.7) the
following modifications are applied on the source code of FIES:

• vlv.v: In line 3679, the switch is extended to read the address of the variable
input_data_id and the actual input id which is written to the address. The address
and the value are specified by the starter script (see Listing A.7).

• fault-injection-data-analyzer.c: A new method is introduced
(set_input_file_to_use(int num)) to actually set the variable input_data_id to
the specified value.

• fault-injection-controller.c: The method start_automatic_test_process is
adopted to call the method for setting the variable input_data_id. This is done by
polling on the value of input_data_id. When the simulated binary sets the variable
to −1 the value for the input variable from the starter script is assigned.

• fault-injection-config.h: The two variables extern unsigned int

file_input_to_use and extern unsigned int file_input_to_use_address; are
added.

Ubuntu 32-Bit

FIES uses a parser to read XML files which contains information about the introduced fault
(see Section 4.4.4). To parse character arrays the method strtol is used with long int as
return type. On the used host system, a 32-bit linux distribution, long int has 4 bytes. So
numbers higher than 0x7FFFFFFF can not be read by this function. Therefore the method
strtol is replaced by the method strtoul which returns an unsigned long int.

CHAPTER 4. IMPLEMENTATION 61

Print Accessed RAM Addresses

Since the RAM address space is rather big it is not effective to use each register for the
fault detection tests. Therefore a mechanism is implemented to enable the logging of
accessed RAM addresses into a file. The following changes are introduced:

• include/exec/softmmu_header.h: The static inline function glue is extended with
a conditional. When the variable SAVE_ACCESSED_RAM_ADDRESSES_TO_FILE is set
to 1, the current RAM address is written to a file buffer using the hexadecimal
representation.

• fault-injection-config.h: The two variables extern unsigned int

SAVE_ACCESSED_RAM_ADDRESSES_TO_FILE and extern FILE *outfile are added.
Furthermore the line #define OUTPUT_FILE_NAME_FOR_ACCESSED_MEMORY_ADDRESSES

"memory_addresses.txt" is introduced to specify the name for the output variable.

• fault-injection-controller.c: The method start_automatic_test_process is
adopted to open and close the the output file where the accessed RAM addresses
are written to.

• fault-injection-library.c: The function validateXMLInput now supports
"PRINT ADDRESSES TO FILE" as target. SAVE_ACCESSED_RAM_ADDRESSES_TO_FILE

is set to 1, when the above defined target is specified in an XML file.

4.4.3 Python Simulator

For each simulated run a timeout can be specified. In Figure 4.7 a working directory can be
seen on the left side with binaries and .info files which give information about the binary.
In the current example GCC is used as compiler with the optimization flag -O3. The regis-
ter r3 is avoided by the compiler. The AST mutation depth is 50 and 20 mutations are ap-
plied on the ASM representation of the calc.c file. The binaries in a working directory can
be filtered with the module BinaryInformation.py. To filter all binaries with source mu-
tations BinaryInformation.filterSourceMutation(listOfBinaries) can be used on a
list of binaries which is created by the method Simulator.loadDirectory(pathToDirectory).
To filter out binaries which contain source mutations and are compiled with the GCC com-
piler multiple filters can be used:

BinaryInformation.applyFilters([filterSourceMutation, filterCompilerGCC],

listOfBinaries)

Hardware errors are specified by a XML file which is called fault library 4.4.4. The
generation of fault libraries is done dynamically using the Simulator module. To generate
a fault library with a permanent register error on register 4, the command

Simulator.generateFaultLibRegisterPermanent("0x4", "0x00FF")

is used. The second parameter 0x00FF specifies the erroneous content of the register. In
Listing A.2, the method generateFaultLibRegisterPermanent is responsible for creating
the necessary parameters to fill the template fault library with content. The wrapper is
called to actually write content to the file.

CHAPTER 4. IMPLEMENTATION 62

1.info

binaryName: 2

compiler: GCC

optimizationFlags: -O3

fixedRegisters: -ffixed-r5

usedSourceMutations:
 - path: calc.c_mutations/50/fileKLTfbe
 - mutationDepth: 50

usedASMMutations:
 - path: calc.s_mutations/20/fileXTS3kn
 - mutationsDepth: 20

1

2.info

2

L.info

L

Figure 4.7: The simulation file structure can be seen on the left side. Each binary comes
with a .info file holding information about the compilation process.

4.4.4 Fault Library

XML Templates

To define faults for the Qemu based fault injection framework [Sch15a], a XML format is
used. Listing A.8 shows a template XML file for permanent register faults:

• <component>: The used entry REGISTER specifies the faulty component. CPU and
RAM are supported too.

• <target>: The target within the component. REGISTER CELL is used in Listing
A.8. For register components ADDRESS DECODER would be another supported target.
For CPU faults the target can be INSTRUCTION DECODER, INSTRUCTION EXECUTION

or CONDITION FLAGS. In Listing A.9 an instruction decoder fault is shown with
{address} as placeholder for the faulty instruction. RAM faults can target the
ADDRESS DECODER or a single MEMORY CELL.

• <mode> is used to define the fault mode. In Listing A.9 the NEW VALUE mode is used.

• <trigger>: To trigger faults ACCESS, TIME, or PC can be used. In this work the
access trigger is used exclusively.

• <type>: PERMANENT, TRANSIENT and INTERMITTEND fault types are supported by
the library. In Listing A.9 a permanent fault is introduced. For transient faults, a
<duration> has to be defined and intermittend faults require the <interval> field.

• <params> is used to define the parameter description:

CHAPTER 4. IMPLEMENTATION 63

– <address>: Contains a hexadecimal value to describe a memory address. For
permanent register faults the registers from 0x1 to 0x15 are supported.

– <mask>: For permanent register faults (Listing A.8) the inserted value is defined
by this tag.

– <instruction>: Specifies the instruction to be inserted. In Listing A.9 a NOP
operation is created by using 0xDEADBEEF within this tag.

Simulation with Python

The folder diversity_chain/qemu_fault_libs contains template XML files for fault
intruduction which are used by the diversity chain.

• instruction_decoder_nop.xml represents a permanent instruction decoder fault
by introducing NOP instructions. The faulty instruction can be specified by using
the placeholder address. In Listing A.2 the python based simulator is shown with
the method generateFaultLibInstructionDecoderNOP(instructionToReplace)

which takes an instruction address and returns the path to the generated fault library.

• no_error.xml is used to generate reference outputs of binaries. No error is intro-
duced.

• register_permanent_template.xml defines a permanent register fault. In Listing
A.2 the method generateFaultLibRegisterPermanent(address, mask, faultMode)

generates the path to the fault library by taking the parameters address and mask

which are hexadecimal numbers. A fault mode as listed in simulation/FaultModes.py

has to be used. The XML template can be seen in Listing A.8

• print_addresses_to_file.xml is used to tell FIES to print all accessed RAM ad-
dresses. See Section 4.4.2 for all implementation details.

• ram_address_decoder.xml introduces a fault into the RAM address decoder. A
mask and the bits to set have to be specified when this fault is generated.

• ram_memory_cell.xml adds a fault to the specified RAM register cell. A mask and
the bits to set have to be specified when this fault is generated.

4.5 Toolchain

4.5.1 Packages and Files

To compile programs for the Freescale i.MX28 EVK PCB REV D board, a GCC bare
metal cross compiler for embedded ARM-Cortex chips is used. The exact version number
of the gcc-arm-none-eabi package is 4.8.2-14ubuntu1+6. The C library and math library
are included in the package libnewlib-arm-none-eabi, with version number 2.1.0-3.
Important libraries are missing, to create a tool chain for the Freescale board, which are
taken from the Sourcery CodeBench [Gra15] to fill this gap:

• The armv5te folder, located in /usr/lib/arm-none-eabi/lib/armv5te

CHAPTER 4. IMPLEMENTATION 64

• The startup object files in the folder ~/imx28/startup

• The register header files from the folder ~/imx28/registers

• The linker script for Freescale i.MX233 EVK ~/imx28/imx28evk-ram.ld

• The debug output method:

– ~/imx28/debug_uart.c

– ~/imx28/debug_uart.h

• The following files, object files and libraries:

– ~/imx28/arm-names.inc

– ~/imx28/crtbegin.o

– ~/imx28/crtend.o

– ~/imx28/crti.o

– ~/imx28/crtn.o

– ~/imx28/libcs3.a

– ~/imx28/libcs3arm.a

– ~/imx28/libcs3hosted.a

– ~/imx28/libcs3lpc21xx.a

– ~/imx28/libcs3unhhosted.a

– ~/imx28/libg.a

– ~/imx28/libm.a

– ~/imx28/libstdc++.a

– ~/imx28/libsupc++.a

– ~/imx28/specs.o

4.5.2 Compilation

GCC

To cross compile C programs with the GCC, the arm-none-eabi-gcc command is used.
In listening A.4, the parameters for the command can be found from line 24 to line 30
[Fou15]:

• FILES TO COMPILE: Contains a string of file names.

• -w: Inhibit all warning messages

• -T <script>: The <script> is used as linker script.

• PATH TO PRECOMBILED IMX28: This is the path to the shared object
files, which are precompiled for each combination of compiler, optimization flag and
fixed register.

CHAPTER 4. IMPLEMENTATION 65

• -Xlinker: Allows to forward options to the linker.

• -nostartfiles: The standard system startup files are not used by the linker.

• -marm: Enables ARM options.

• -lm: Link the math library.

• ADDITIONAL BUILD PARAMETERS: The -ffixed-reg flag is set via this
shell variable.

CLANG

The package clang-3.6 is used for the compilation process, but linking is done by the GNU
linker, since the LLVM linker is not capable of using the provided linker script. The com-
mand to link the object files can be found from line 36 to line 43 of the listening A.5 Note
that a patch file has to be applied, since some built-in macros are optimized for GCC and
have to be changed in the file: /usr/arm-none-eabi/include/machine/_default_types.h
[Nel15], otherwise unknown type name errors are thrown by the compiler. In Listing A.5,
the build command can be found from line 28 to line 32 [Tea15e]:

• -target <triple>: The target architecture can be defined by a triple, with the for-
mat <arch><sub>-<vendor>-<sys>-<abi>.
In this work, the triple armv5te-none-eabi is used to specify the system, by in-
forming the compiler that an embedded-application binary interface is used with no
system. Furthermore the ARMv5TE architecture is specified.

• -mcpu <cpu-name>: arm926ej-s is used as CPU name.

4.5.3 Compile to ASM

To enable assembler mutations the -S flag of the GCC and CLANG compilers is used
to compile source code to assembler code. In Listing A.6 the COMPILER_STRING contains
the command line instruction for the compilation process. CLANG needs the explixit
inclusion of /usr/lib/arm-none-eabi/include/ and
/usr/lib/gcc/arm-none-eabi/4.8.2/include/ to work properly.

4.5.4 Precompilation of Libraries and Shared Resources

Too speed up the process of compilation, common methods and libraries are precompiled.
The number of precompiled versions is high, since each combination of optimization level,
fixed register and compiler generates different versions. In Figure 4.8, an overview of the
directory structure is given, where the libraries for the command gcc -O0 -ffixed-r3

are selected. It is not possible to compile the startup assembler files with the CLANG
compiler, so the GCC compiler was used for this directory. Furthermore it is not possible,
to use the -ffixed-register flag with the CLANG compiler, so register avoidance is
limited to GCC.

CHAPTER 4. IMPLEMENTATION 66

imx28

libcs3.a

libcs3arm.a

specs.o

precompiled clang

gcc

Optimization Levels

registers

0

Fixed Register

use_all_registers

3

4

15

1

2

3

arm-vector.o

debug_uart.o

reset-ram.o

print_methods.o

start.o

Figure 4.8: The folder structure of the precompiled libraries and common methods.

4.6 Restrictions

• It is not possible to compile the imx28 startup assembler files with CLANG so GCC
was used for the files in the directory ~/imx28/startup/.

• The C++ program used for c-ast mutation must be called within a loop, since
excessive AST transformations can result in program termination.

• The function strlenOwn(portCHAR *string) in /imx28/debug_uart.c is used to
avoid external libraries in combination with register avoidance strategies.

• In imx28/print_methods.c output functions are collected to avoid library usages.

• Precompiled versions of the imx28 library only exist for each pair of (Optimization
Level, Fixed Register) for GCC. Combinations of fixed registers are not used at
the moment, so it is not possible to use precompiled libraries when more than one
register is blocked.

• CLANG does not support the -ffixed-reg flag since it requires additional LLVM
backend support [Tea15b].

• Parallel simulation is not supported at the moment.

4.7 Installation

The following parts are necessary for the diversification chain to work properly:

• FIES: A fault injection tool based on Qemu [Sch15a].

• The LLVM compiler infrastructure 3.4 revision 182049

CHAPTER 4. IMPLEMENTATION 67

• Python 2.7.6

• The gcc-arm-none-eabi package with version number 4.8.2-14ubuntu1+6.

• Additional libraries from the Sourcery CodeBench as described in Chapter 4.5.

Chapter 5

Results

In this chapter the results of this thesis are presented. The diverse compiling approach is
compared to unsound randomization methods regarding fault detection. Furthermore, the
diverse compiling approach is extended with unsound randomization methods to improve
the results. Fault recovery experiments are shown with promising results. Additionally,
the performance of creating software mutations is presented.

5.1 Output Methods

The output functionality on embedded systems is very restricted when no operating system
is used. snprintf can be used to print a formatted string into a buffer. Altough, this
approach induce the the import of <stdio.h>. Since precompiled libraries can not be
diversified, basic output functionality is provided in the files ~/imx28/print_methods.h

and ~/imx28/print_methods.c. The exact knowledge of the size of different data types
on the target system is compulsory. For this reason print_methods.h contains definitions
of the most common data types and their size in bytes for the imx28 board.

Data Type Size in Bytes

char 1

int 4

long 4

long long 8

float 4

double 8

long double 8

int* 4

Table 5.1: Size in bytes of the most common data types.

68

CHAPTER 5. RESULTS 69

5.2 Test Programs

Fifteen different programs out of the categories Automotive and Industrial Control,
Network and Telecommunications are used for simulation and mutation. Many pro-
grams are taken from the MiBench, which is

”
a free, commercially representative embed-

ded benchmark suite“ [GRE+01]. To enable fault injection, the modification presented in
Chapter 4.4.1 are introduced to every test program. Furthermore comments are removed
from the files which are mutated.

5.2.1 Automotive and Industrial Control

The MiBench [GRE+01] offers algorithms which are frequently used on embedded proces-
sors in embedded control systems.

Basicmath

Two programs are used for solving a cubic polynomial and for calculating the integer
square root to simulate basic math algorithms without hardware support.

• Cubic: A cubic polynomial with the form f(x) = ax3 + bx2 + cx + d is solved by
providing the variables a, b, c and d. Used data types are double and long double.
According to Table 5.1, both datatypes are the same size, eight bytes. The library
functions pow, sqrt, fabs, acos and cos are used within this program.

• Integer Square Root: A number x of type unsigned long is taken to calculate⌊√
x× 216

⌋
by using solely bit shift operators without multiplications or divisions.

Sorting Algorithms

The three different sorting algorithms are capable of sorting an array of integer numbers.
These algorithms are not part of the MiBench.

• Quicksort: A quicksort implementation ([Com15]) is taken from the apple open
source collection [Inc15]. The implemented source mutation (see Section 4.2.2) makes
use of a CLANG based formatting tool ([Tea15d]) to ease the comparisons of muta-
tions. Therefore, some definitions have to be changed to put up with the tool. The
core algorithm remains unchanged.

• Merge Sort: The merge sort implementation from [Cpr15a] is used, where only
the call to sizeof(int) is replaced with the defined number SIZE_OF_INT from
print_methods.h (see Table 5.1) to avoid the import of libraries.

• Heap Sort: The unmodified heap sort source code from [Cpr15b] is taken.

Bit Counter

Eight different implementations of bit counters taken from MiBench [GRE+01] are used
to test different bit manipulation approaches. The output functionality is replaced, so
no additional libraries are used. The sixth and seventh implementation are adopted to
support negative values.

CHAPTER 5. RESULTS 70

5.2.2 Network

Algorithms often used on embedded processors in networks are used in this section.

Dijkstra

The source code is taken from the MiBench [GRE+01] and modified by changing the
output methods since many printf statements are used. Furthermore NULL is replaced
by (void *)0 to avoid the import of libraries. The input consists of a adjacency matrix
provided by a two dimensional integer array with 50× 50 entries. No additional libraries
are used by this program.

5.2.3 Telecommunications

To find the frequencies of a given input signal Fast Fourier Transformations are often used
in the telecommunication category.

Fast Fourier Transform

A polynomial function is used for the input of the Fast Fourier Transformation algorithm
taken from the MiBench [GRE+01]. Only the output functionality is adopted to allow the
usage on the imx28 board. The last part is difficult, since the snprintf function delivers
different output when compiled with -O0 and -O3. Therefore the bit representation of
the floating point numbers are used for comparison because even build in functions like
floorf give different results depending on the optimization level. The output function
writeUnsignedToOutput located in ~/imx28/print_methods.c is used to print the bit
representation coded as unsigned value to a buffer.

5.3 Fault Detection

In Chapter 2.2.1 M-out-of-N architectures are discussed. Throughout this experiment, a
1oo2 architecture is used as presented in [HRIK15]. All fifteen programs listed in Chapter
5.2 are mutated as described in Chapter 5.5. The following single cell FFMs are used as
presented in Chapter 2.5.1: Stuck-at faults, Incorrect read faults, Write disturb faults,
Read disturb faults, Deceptive read faults.

In Figure 5.11 the percentage of detected faults can be seen. The registers 0 - 15 are
used in combination with the above described FFMs and different inputs, giving a total
number of 3600 fault injection experiments. For the experiment three different binaries
are used for each of the test programs: GO0, MGO0 and GO3 (see Table 5.2).

CHAPTER 5. RESULTS 71

Binary Name Compiler Flags Mutations

GO0 GCC None None

GO3 GCC O3 None

MGO0 GCC None Source

MAGO0 GCC None ASM

MSAGO0 GCC None Source, ASM

GO3F03 GCC O3, ffixed-r3 None

CO0 CLANG None None

CO3 CLANG O3 None

MCO0 CLANG None Source

Table 5.2: Shortcuts of binaries which are used in the diagrams throughout this chapter
compiled with different flags and mutations.

Shortcut Program Full Name

BC1 - BC8 Different bit counter variants

HS Heap sort

BMSR Basic math square root

MS Merge sort

QS Quick sort

D Dijkstra

BMC Basic math cubic

FFT Fast fourier transformation

Table 5.3: Shortcuts of test programs which are used throughout this chapter.

To allow the measurement of the impact on the fault detection, the following categories
of outputs are considered:

• Crash: An execution leads to a timeout, segmentation fault, or bad RAM pointer.

• Output: An execution that does not crash gives an output Di which differs from
the reference output (Byzantine fault).

• Golden: An output is called golden G when the fault is masked.

When the output of two binaries (Out(B1) = r1 and Out(B2) = r2) is compared, the
following scenarios improve the fault detection [HRIK15]:

CHAPTER 5. RESULTS 72

• Di 6= Dj : The execution does not lead to a crash and gives different outputs r1 and
r2 with r1 = Di ∧ r2 = Dj ∧ r1 6= G ∧ r2 6= G.

• r1 = C ∧ r2 6= C: The same fault gives different results.

• r1 = G ∧ r2 6= G: The fault is masked by one execution.

• r2 = G ∧ r1 6= G: The fault is masked by one execution.

The fault detection is not improved when:

• r1 = r2 = G: The fault is masked by both execution.

• r1 = Di∧r2 = Di: The execution does not lead to a crash but gives the same output
Di with Di 6= G.

• r1 = C ∧ r2 = C: Both executions lead to a crash.

CHAPTER 5. RESULTS 73

5.3.1 RAM Faults

In this chapter the effects of RAM address decoder faults and RAM memory cell faults are
discussed concerning fault detection. For this reason the used fault injection framework is
modified as discussed in Chapter 4.4.2. Only RAM addresses which are actually accessed
by the binaries are tested. Therefore each of the binaries is executed with different inputs
and without introduced faults to detect the accessed RAM addresses. Out of this list, 250
RAM addresses are selected randomly. To simulate permanent stuck at faults a mask is
chosen randomly to select one of the eight bits. The chosen bit is then set to zero or to
one, according to a randomly chosen Boolean value. A RAM fault is a triple consisting of
a RAM address, a mask and the bit to set. All in all 112500 fault injections are performed
to evaluate the presented approaches.

In Table 5.4 the percentages of masked RAM faults for each tested compiler com-
bination can be seen. The proportion of masked faults between binaries using the -O0

optimization flag and the single binary using the -O3 flag is similar to the results of in-
struction decoder faults (see Table 5.6). The selection of the introduced RAM faults is
one explanation for this outcome. RAM addresses are chosen randomly from one of the
binaries. So it seems, that the accessed RAM addresses of the binary with the -O3 flag
are different than the accessed RAM addresses of the other binaries.

The binary with assembler mutations (MSAGO0) and source mutations masks only 70
% of all introduced faults, while the not mutated binary (GO0) is capable of masking 81 %
of the introduced faults. The different memory behavior can be used for fault detection.
This can be seen in Figure 5.3 and in Figure 5.4 which show the detected faults in percent
for each of the

(
5
2

)
= 10 different binary versions. According to the results shown in

Figure 5.3 and in Figure 5.3 it is possible to improve the GO0/GO3 combination by 8% for
RAM register cell faults and by 3% for RAM address decoder faults using a binary with
assembler and source mutations MSAG0/GO3.

GO0 MGO0 MAGO0 MSAGO0 GO3

Register Cell Faults 81% 77% 77% 71% 93%

Address Decoder Faults 92% 92% 90% 89% 95%

Table 5.4: Masked RAM faults listed for all binary categories.

CHAPTER 5. RESULTS 74

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BC3 BC4 BMC BC2 MS BC1 BMSR BC8 BC5 BC7 BC6 HS D QS FFT

Masked RAM Register Faults

 GO0 MGO0 MAGO0 MSAGO0 GO3

Figure 5.1: The possibility that a RAM register cell fault is masked grouped by the five
approaches.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BC4 MS BC6 BMSR BC3 BC2 HS BC5 BC8 BMC BC7 BC1 FFT QS D

Masked RAM Address Decoder Faults

 GO0 MGO0 MAGO0 MSAGO0 GO3

Figure 5.2: The possibility that a RAM address decoder fault is masked grouped by the
five approaches.

CHAPTER 5. RESULTS 75

0%

5%

10%

15%

20%

25%

30%

35%

Fault Detection

Figure 5.3: The possibility that a RAM register cell fault is detected grouped by all
compilation combinations.

0%

2%

4%

6%

8%

10%

12%

14%

16%

Fault Detection

Figure 5.4: The possibility that a RAM address decoder fault is detected grouped by all
compilation combinations.

CHAPTER 5. RESULTS 76

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MGO0 MSAGO0 MAGO0 GO3 GO0

Fault Types

Masked Crash Byzantine

Figure 5.5: Proportion of different effects of RAM faults.

CHAPTER 5. RESULTS 77

0%

5%

10%

15%

20%

25%

30%

35%

Detected Faults

One Crash Byzantine Found

Figure 5.6: Proportion of detected RAM register cell faults.

0%

10%

20%

30%

40%

50%

60%

70%

80%

Not Detected Faults

Byzantine Not Found Golden Both Crash

Figure 5.7: Proportion of not detected RAM register cell faults.

5.3.2 Register Faults

The results in this section are created by using source mutations and assembler mutations
as described in Section 5.5. Mutations which are 100 steps away from the original version

CHAPTER 5. RESULTS 78

are created. Figure 5.9 show the percentage of masked faults for each register from 0 to
15 and for the three different binary categories MGO0, MAGO0, MSAGO0, GO0 and GO3. It can
be seen that the masked register faults are not equally distributed among the registers. In
Figure 5.10 the percentage of masked register faults is shown for each test program. It can
be concluded that the usage of the -O3 flag in combination with the GCC compiler makes
the resulting binary more vulnerable to register faults than the non optimized version
(created with the flag -O0). Overall 18000 faults are injected to generate the results.

MAGO0 MGO0 MSAGO0 GO0 GO3

42% 42% 41% 42% 13%

Table 5.5: Masked register faults listed for all binary categories.

In Figure 5.8 the detected faults in percent can be seen evaluated for all registers,
programs and input data. The pair MSAGO0/GO3 detects nearly 64% of all injected register
faults. This number is equal to the detected faults using GO0/GO3. In Figure 5.15 it can
be seen that the detection rate is slightly different for each of the registers. The usage
of assembler mutations without the -O3 flag enables to detect 10% of the injected faults,
while source mutations are able to find 8%. Merging register and source mutations allows
to detect 13 % of all injected register faults.

The fault detection in absolute numbers for different fault modes can be seen in Figure
5.13 and in Figure 5.14 for the two combinations MSAGO0/GO3 and GO0/GO3. Figure 5.16
shows that the influence of the used input values is negligibly.

0%

10%

20%

30%

40%

50%

60%

70%

Detected Register Faults

Figure 5.8: Detected register faults listed for all binary categories.

CHAPTER 5. RESULTS 79

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Register

Masked Register Faults Per Register

 GO0 MAGO0 MGO0 MSAGO0 GO3

Figure 5.9: Masked register faults listed for each register from 0 to 15 and for the different
binary categories.

0%

10%

20%

30%

40%

50%

60%

BC4 BC5 BC6 BC3 BC8 BC7 BC1 BC2 HS BMSR MS QS D BMC FFT

Register

Masked Register Faults Per Program

 GO0 MGO0 MAGO0 MSAGO0 GO3

Figure 5.10: Masked register faults listed for each test program for the different binary
categories.

CHAPTER 5. RESULTS 80

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Register

Detected Register Faults

GO0/GO3 MGO0/GO3 GO0/MGO0

Figure 5.11: Source mutation: Detected register faults in percent for each register.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Register

Detected Register Faults

GO0/GO3 MAGO0/GO3 GO0/MAGO0

Figure 5.12: Assembler mutation: Detected register faults in percent for each register.

CHAPTER 5. RESULTS 81

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Register

GO0/GO3
Detected Register Faults

 IRF0 RDF0 SF DRDF01 WDF0

Figure 5.13: GO0/GO3: Detected register faults in absolute number for each register and
different fault modes.

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Register

MSAGO0/GO3
Detected Register Faults

 IRF0 RDF0 SF DRDF01 WDF0

Figure 5.14: MSAGO0/GO3: Detected register faults in absolute number for each register
and different fault modes.

CHAPTER 5. RESULTS 82

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 sdf

Register

Detected Register Faults Per Register

 MSAGO0/GO3 GO3/GO0

Figure 5.15: Source and assembler mutation: Detected register faults in percent for each
register.

0%

10%

20%

30%

40%

50%

60%

70%

Fault Detection Per Test Input

Input 1 Input 2 Input 3

Figure 5.16: Detected register faults in percent for each register per input.

In Figure 5.17 the fault effects for the different binaries (see Table 5.2) can be seen.
The binary GO3 is not capable to mask as many register faults as the other approaches.
All other approaches give very similar results. This is one reason for the promising fault

CHAPTER 5. RESULTS 83

detection results when GO3 is combined with a GO0 binary (see Table 5.8).

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

GO0 MAGO0 MASGO0 MGO0 GO3

Fault Types

Byzantine Crash Masked

Figure 5.17: Proportion of different effects of register faults.

In Figure 5.18 the detected faults are distinguished according to the output. If both
binaries are executed without a crash this is called a Byzantine fault. When the output is
different, the fault is detected. In Figure 5.18 this is called Byzantine Found. An existing
hardware fault can also be detected if one binary crashes while the other terminates
correctly. In Figure 5.18 this is called One Crash.

Not detected faults can be found in Figure 5.19. Byzantine faults can not be detected
if the output of the two binaries is the same. This is called Byzantine Not Found in Figure
5.19. When both binaries mask the fault, this is called Golden in Figure 5.19. If both
binaries crash the introduced diversity is not needed, so the fault is not marked as detected
throughout this chapter.

CHAPTER 5. RESULTS 84

0%

5%

10%

15%

20%

25%

30%

35%

40%

GO3/GO0 GO3/MGO0 MAGO0/GO3 GO0/MGO0 MAGO0/GO0

Detected Faults

Byzantine Found One Crash

Figure 5.18: Proportion of detected faults for different compilation pairs.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

GO3/GO0 GO3/MGO0 MAGO0/GO3 GO0/MGO0 MAGO0/GO0

Not Detected Faults

Byzantine Not Found Golden Both Crash

Figure 5.19: Proportion of not detected faults for different compilation pairs.

CHAPTER 5. RESULTS 85

5.3.3 Instruction Decoder Faults

As discussed in Chapter 2.5.2 and specified in Chapter 4.4.4 NOP instructions are used
to simulate inactive instruction decoder faults. To each tested program a set I consisting
of 150 different faulty instructions is introduced. The used binaries are GO0, GO3, MGO0,
MAGO0, and MASGO0. The ten most frequent instructions from each binary are added to I.
The other instructions are selected randomly from one of the used binaries. Altogether
33750 faults are injected.

In Figure 5.20 the masked instruction decoder faults are given for each program and
Table 5.6 gives the absolute results. Compared to Table 5.5 where masked register faults
are listed, GO3 has the most masked faults. The selection of the introduced instruction
decoder faults is one explanation for this outcome. Instructions are chosen randomly from
one of the binaries. So it seems, that the used instructions of GO3 are different than the
used instructions by the other binaries. The diversity between GO0-versions and the GO3

version is better than the diversion between the mutated versions. This can be seen in
Figure 5.21 which shows the detected faults in percent for each of the

(
5
2

)
= 10 different

binary versions. However it is possible to improve the GO0/GO3 combination by 4% using
a binary with assembler mutations MSAG0/GO3.

GO0 MGO0 MAGO0 MSAGO0 GO3

85% 85% 83% 83% 92%

Table 5.6: Masked instruction decoder faults listed for all binary categories.

Figure 5.20 shows that all compilation combinations which include GO3 give the best
results. The combination MAGO0/GO3 which is created with ASM mutations detects about
37.01 % of all injected instruction decoder faults, whereas GO0/GO3 detects about 33.16
%. The ASM mutation improves the result by 3.85 %.

CHAPTER 5. RESULTS 86

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BC4 HS BC7 MS BC1 BC5 BC3 BC8 BC2 BC6 BMSR QS FFT BMC D

Masked Instruction Decoder Faults

 GO0 MGO0 MAGO0 MSAGO0 GO3

Figure 5.20: The possibility that a fault is masked grouped by the five approaches.

0%

5%

10%

15%

20%

25%

30%

35%

40%

Fault Detection

Figure 5.21: The proportion of detected instruction decoder faults by the different com-
binations of the five compilations.

CHAPTER 5. RESULTS 87

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GO0 MAGO0 MSAGO0 MGO0 GO3

Fault Types

Masked Bazantine Crash

Figure 5.22: Proportion of different effects of instruction decoder faults.

In Figure 5.23 the detected faults are distinguished according to the output. If both
binaries are executed without a crash this is called a Byzantine fault. When the output is
different, the fault is detected. In Figure 5.18 this is called Byzantine Found. An existing
hardware fault can also be detected if one binary crashes while the other terminates
correctly. In Figure 5.18 this is called One Crash.

Not detected faults can be found in Figure 5.19. Byzantine faults can not be detected
if the output of the two binaries is the same. This is called Byzantine Not Found in Figure
5.19. When both binaries mask the fault, this is called Golden in Figure 5.24. If both
binaries crash the introduced diversity is not needed, so the fault is not marked as detected
throughout this chapter. In most of the cases the fault is masked by both binaries.

CHAPTER 5. RESULTS 88

0%

2%

4%

6%

8%

10%

12%

Detected Faults

Byzantine Found One Crash

Figure 5.23: The proportion of detected instruction decoder faults by the different com-
binations of the five compilations.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Not Detected Faults

Golden Both Crash Byzantine Not Found

Figure 5.24: The proportion of not detected instruction decoder faults by the different
combinations of the five compilations.

CHAPTER 5. RESULTS 89

5.3.4 Fixed Register Flag

In this section the influence the usage of the fixed register flag is investigated for a 1oo2
system and the GCC compiler. The combination GO0/GO3F03 improves the detection rate
by nearly 5 % (see Table 5.7) when compared to GO0/GO3. The binary GO3F03 is compiled
with the GCC compiler using the flags -O3 and -ffixed-r3.

GO0/GO3 GO0/GO3F03

61.75% 66.31%

Table 5.7: Detected register faults listed for all binary categories.

In Figure 5.26 the detection rate for each register can be seen. Over 87 % of all
register faults which are introduced to register three are detected by using the combination
GO0/GO3F03. This is the influence of the flag -ffixed-r3. In Figure 5.25 the masked faults
per each register are listed. The binary GO3FO3 masks over 87 % of all register faults which
are introduced to register three while the other binaries are not able to mask even a single
fault. Therefore all faults which are masked by GO3FO3 can be detected by the combination
GO0/GO3F03 since the output differs.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Register

Masked Register Faults

 GO0 GO3F03 GO3

Figure 5.25: The proportion of masked register faults per register.

CHAPTER 5. RESULTS 90

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Register

Detected Register Faults

 GO0/GO3 GO0/GO3F03

Figure 5.26: The proportion of detected register faults per register.

In order to analyze the impact of the fixed register flag on the overall fault detection
the Clang compiler is added to the set of used compilers. This results in the three binaries:
CO0, CO3 and MCO0 (see Table 5.2). The usage of assembler mutations in combination with
the Clang compiler is neglected and part of further work (see Chapter 6.1). In Figure 5.27
it can be seen that the top four combinations include the GO3FO3 binary along with source
or assembler mutations. The best combination without mutations is GO3F03/GO0.

The influence of the mutation depth on the fault detection rate for register faults
can be seen in Figure 5.28 for source mutations and in Figure 5.29 for ASM mutations.
The simulation was carried out for the program BC1. It can be seen that the results are
very flaky and non-monotonic. Therefore, it can be concluded that the silent evaluation
function defined in Chapter 3.6.2 is not suited to generate optimal solutions in the context
of register faults.

CHAPTER 5. RESULTS 91

0% 5% 10% 15% 20% 25% 30% 35%

MAGO0/GO3F03

GO3F03/MGO0

MSAGO0/GO3F03

GO3F03/GO0

GO3/CO0

CO0/GO3F03

GO3F03/MCO0

GO3/MCO0

MAGO0/GO3

GO3/MGO0

MSAGO0/GO3

GO3/GO0

CO3/MCO0

CO3/CO0

MSAGO0/CO3

MAGO0/CO3

CO3/MGO0

CO3/GO0

GO3/CO3

CO3/GO3F03

GO3/GO3F03

MSAGO0/CO0

MSAGO0/MCO0

MAGO0/MCO0

GO0/MCO0

MAGO0/CO0

CO0/MGO0

MGO0/MCO0

CO0/GO0

MSAGO0/GO0

MAGO0/MGO0

MSAGO0/MAGO0

MSAGO0/MGO0

MAGO0/GO0

GO0/MGO0

CO0/MCO0

Detected Faults

Instruction Decoder RAM Register

Figure 5.27: The proportion of detected faults for each binary combination.

CHAPTER 5. RESULTS 92

155

160

165

170

175

180

185

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

16
9

17
6

18
3

19
0

19
7

20
4

21
1

21
8

22
5

23
2

23
9

24
6

25
3

26
0

26
7

27
4

28
1

Detected Register Faults During Source Evolution

MGO0/GO3F03 GO0/GO3F03

Figure 5.28: The absolute number of detected register faults during source evolution.

158

160

162

164

166

168

170

172

174

176

178

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

2
0

4

2
1

1

2
1

8

2
2

5

2
3

2

2
3

9

2
4

6

2
5

3

2
6

0

2
6

7

2
7

4

2
8

1

2
8

8

Detected Register Faults During ASM Evolution

MAGO0/GO3F03 GO0/GO3F03

Figure 5.29: The absolute number of detected register faults during ASM evolution.

CHAPTER 5. RESULTS 93

5.4 Fault Recovery

As discussed in Chapter 2.1 the two phases of hardware fault tolerance are fault detection
and fault recovery. In this chapter a special form of fault recovery is evaluated where
diverse compiling is used to mask a given hardware fault. The experiments showed that
unsound randomization techniques do not improve the recovery rate. Therefore unsound
randomization is neglected in this chapter. The GCC compiler with the −O0 flag is used
to generate the reference binary. First, 150 different faults for each test program are
collected which are not masked by the reference binary. This faults consist of

• 50 CPU register cell faults,

• 50 instruction decoder faults, and

• 50 RAM faults.

The CPU register cell faults are specified by the triple consisting of the CPU register,
a fault mode and a bit mask. The distinct set of instruction decoder faults is chosen
randomly. To select 50 different RAM faults the approach as presented in Chapter 4.4.2
is used to retrieve a set of actually accessed RAM addresses during execution. A RAM
fault is specified by a 4-tuple consisting of an address, a mask a bit to set and a target.
Address decoder faults and register cell faults are considered as target.

The usage of different compilers and register flags is evaluated concerning hardware
fault recovery. A binary can be specified by:

• Compiler: GCC or CLANG

• Source mutations: list of used mutations

• Assembler mutations: list of used assembler mutations

• Fixed register flags: list of registers which should be avoided

• Optimization flags: list of optimization flags.

To recover from a fault, different combinations from the above parameters are used
to generate binaries. Note that the CLANG compiler can not be combined with the fixed
register flag. Added together 72 different combinations can be used, to mask a given
hardware fault. According to Table 5.8 100 % of all injected RAM faults are recovered.
More than 90 % of all injected instruction decoder faults and over 46 % of all injected
register faults can be masked using one of the 72 different binaries, specified above.

RAM Register Instruction Decoder

100.00% 47.6% 91.33%

Table 5.8: Proportion of faults which can be masked.

In Figure 5.30 the result for each of the test programs can be seen. The recover rate
for instruction decoder faults and register fault is strongly related to the number of used

CHAPTER 5. RESULTS 94

external libraries by the test program. The programs BMC, QS and FFT are dependent on
libraries which can not be recompiled. When the hardware fault can not be masked by
the libraries there is no way to recover from that fault.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BC2 BC4 BC1 BC5 BC6 BC7 BC8 BC3 HS QS BMSR D MS FFT BMC

Recovered Faults

RAM Instruction Decoder Register

Figure 5.30: The proportion of recovered faults listed per fault type and program.

The absolute number of not recovered register faults can be seen in Figure 5.31. The
values are not equally distributed. One reason for the observed behavior might be the
special purpose of the registers from register 11 to register 15. The frame pointer, in-
struction pointer, stack pointer, linking register and program counter are located in these
registers. Another reason is related to the probability that a certain register is used by
external libraries.

CHAPTER 5. RESULTS 95

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Register

Not Recovered Register Faults

 IRF0 RDF0 SF DRDF01 WDF0

Figure 5.31: The absolute number of not recovered register faults listed for each fault
mode.

A selection of instruction decoder faults which are not masked is shown in Table 5.9.
Only two instructions are not maskable in different programs: bx lr and push {r4, r5, lr}.
The bx instruction is used to branch to the address specified in the register lr.

Occurrences Code Name Registers

14 e12fff1e bx lr

2 e92d4030 push r4, r5, lr

1 e8bd4ff8 pop {r3, r4, r5, r6, r7, r8, r9, sl, fp, lr}

1 e8bd4ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, lr}

1 e8bd40f8 pop {r3, r4, r5, r6, r7, lr}

Table 5.9: A selection of not recovered instruction decoder faults.

In Figure 5.32 the binaries are listed which are able to mask the fault which is in-
troduced to the binary GO0. The results show that each binary seems to be good to
mask on specific fault type. For example binary GO1 masks most of the introduced RAM
faults, whereas the binary GO1FO1 scores highest for masking instruction decoder faults.
Register faults can be masked using the GCC compiler along with the fixed register flag
and optimization flag: GOXFXX. This information can be used to create a very efficient
N-out-of-M architecture for hardware fault detection.

CHAPTER 5. RESULTS 96

0 100 200 300 400 500 600 700 800

GO1

GO1F00

GO3F03

GO1F11

GO2F00

GO3F00

GO0F04

GO2

GO0F02

GO3F02

GO0F03

GO0F00

CO2

GO1F01

GO3

GO1F13

CO0

GO1F03

GO2F06

GO1F07

GO1F08

GO2F11

GO1F10

GO2F15

GO2F04

GO2F05

GO2F02

GO3F13

GO1F04

GO1F15

GO0F11

GO2F13

GO3F05

GO3F01

GO1F09

GO1F14

GO0F09

Masked Faults per Binary

RAM Register Instruction Decoder

Figure 5.32: The absolute number of masked faults listed for all binaries and fault types.

5.4.1 Common RAM Addresses

The experiment presented in Table 5.8 shows that 100% of all injected RAM faults which
are not masked by the reference binary (GO0) can be masked by one of the 72 binaries
which are created using diverse compiling. Therefore, a second experiment is used where
only RAM addresses are taken into account which are accessed by all of the 72 binaries and
by the reference binary. In Figure 5.33 the absolute number of RAM addresses which are
accessed by all of the 73 binaries listed for each program. It can be seen that the number

CHAPTER 5. RESULTS 97

of accessed RAM addresses is not commonly distributed. The programs BMC and FFT
make heavy use of the libraries math.h and stdlib.h, which can be one explanation for the
many common accessed RAM addresses.

In Figure 5.34 the results of an experiment are shown where 50 distinct RAM faults for
the reference binary (GO0) are taken from the pool of common accessed RAM addresses.
However, it was not possible to find 50 distinct RAM faults for all of the tested programs.
Only the programs D, FFT and BMC make use of the intended amount of injected faults.
As described in Section 5.3.1, a RAM fault can be specified as a triple consisting of a RAM
address, a mask and the bit to set. For each of the tested programs 1000 iterations are
used to find RAM faults which lead to a crash on the reference binary. All in all, 99.12%
of all injected RAM faults can be masked with one of the 72 binaries which are created
using diverse compiling.

To recover from the injected RAM faults, the set of generated binaries is iterated until
a binary is found which masks the given fault. The traversal of the set is always the same.
In Figure 5.35 the number of masked RAM faults are listed for the binaries which are
generated with diverse compiling using different compiler parameters.

0

50

100

150

200

250

300

BMC FFT D BC8 BC2 BC3 BC4 BC5 BC6 BC7 BC1 BMSR QS HS MS

Common Accessed RAM Addresses

Figure 5.33: The absolute number of RAM addresses which are accessed by all of the 73
binaries listed for each program.

CHAPTER 5. RESULTS 98

0

10

20

30

40

50

60

D FFT BMC BC8 BC4 BC5 BC6 BC1 BC2 BC7 BC3 BMSR

Recovered Faults per Program

Injected Faults Recovered Faults

Figure 5.34: The absolute number of injected RAM faults is compared with the number
of masked faults for each of the tested programs.

0 50 100 150 200 250 300 350

GO1

GO2

GO0F00

GO3

GO1F01

Masked RAM Faults per Binary

Figure 5.35: The absolute number of masked RAM faults per binary.

CHAPTER 5. RESULTS 99

5.5 Mutation Performance

To evaluate the mutational performance the evolution Algorithm 2 is used with the follow-
ing parameters to generate mutations which are 100 steps away from the original version:

Source Assembler

Mutation depth 100 100

Mutations per level 2 2

Mutations per iteration 20 8

Table 5.10: The used parameters for the source and assembler evolution algorithm.

The only difference concerning the parameters from Table 5.10 is the number for mu-
tations per iteration. This is because of the success rate of a random mutation. Assembler
mutations are more likely to be valid.

All fifteen programs listed in Chapter 5.2 are mutated using the same parameters. The
results are gathered on an Intel Core i5-2500 CPU with 3.30 GHz and 8 GB of RAM. The
host system is an Ubuntu distribution with version number 14.04.2 running in a virtual
machine (Oracle Virtual Box 4.3.28) with 3 GB assigned RAM and no processor speed
restriction.

Source Assembler

Percentage of valid mutations 9.24% 36.83%

Applied mutations 50060 30256

Successful mutations 4810 11144

Percentage of successful linkings 22.34 % 96.63 %

Percentage of successful tests 35.02 % 38.58 %

Percentage of equal mutations 12.28 % 1.21 %

Table 5.11: Number of applied mutations and success rates gathered by the evolution
algorithm by generating mutations which are 100 steps away from the original version
for fifteen different programs. Additionally for the assembler statistics a source mutated
version of each of the programs is mutated.

5.5.1 Source Mutation

According to Table 5.11 the success rate of a random mutation that does not change the
semantic of a program according to the test suite is 6.86%. In [SFF+14] the success rate is
given with 30 %. One explanation for the huge differences might be the different program
representation, although it is stated that

”
the results hold across all classes of programs, for

mutating at both the source code and assembly instructions levels...“. Another explanation
might be the used source mutation approach. In this thesis a C-AST mutation tool based

CHAPTER 5. RESULTS 100

on CLANG [Sch15b] is used, whereas the tool in[SFF+14] is based on CIL [NMRW02a].
Note that the usage of the strict evolution approach (Chapter 4.2.4) only changes the
result by 0.94 %.

Most of the erroneous mutations are filtered out during compilation. Only 22.34 % of
all mutations compile without errors. When a mutation compiles the probability is higher
than 35 % that the mutation is valid in respect to the test suite. The probability that a
generated valid mutation is equal to a previously generated mutation is 12.28 %.

5.5.2 ASM Mutation

With a success rate of 36.83% the assembler mutation is much more efficient than the
source mutation approach. In [SFF+14] the average success rate for assembler mutations
are given with 39.6% which is very close to the results presented in Table 5.11. It can
be seen that nearly 97% of all mutations pass the process of linking. The linker does not
check the code since this is the task of the previous compile process. This is one of the
main deviations between source mutation and assembler mutation. Although there is no
source check the percentage of successful tests of assembler mutation is nearly as high
as the percentage of successful tests of source mutations. It seems easier to find neutral
variants on assembler level so the percentage of equal mutations is only about 1.2 % which
is much lower then the 12.28% of source mutations.

5.5.3 Runtime Performance

In Table 5.12 it can be seen that for both approaches most of the time is used for compi-
lation and testing. The time needed for equality checks and mutating can be neglected.
Especially the assembler mutations are very fast since no external program has to be
started. Concerning source mutations, only 22 % of all random mutations are tested so
the absolute time for testing per mutation would be much higher than the absolute time for
compilation. Since there are no compiler checks when assembler code is mutated nearly
all mutations are tested as binaries. This explains that assembler mutations use more
time for testing than the source mutation approach. Regardless of the used approach,
the time for testing is strongly dependent on the used test suite and program. All in all
mutations on assembler level are much faster than mutations on source level when AST
transformations are applied.

CHAPTER 5. RESULTS 101

Source Assembler

Total time 11.38 hours 7.35 hours

Time for compilation/linking 2.64 hours 1.91 hours

Time for testing 4.44 hours 5.26 hours

Time for mutating 18.3 minutes 0.16 minutes

Time for predecessor checks 8.88 minutes 11.53 minutes

Average time for successful mutation 11.93 seconds 4.75 seconds

Table 5.12: Absolute and average times gathered by the evolution algorithm by generating
mutations which are 100 steps away from the original version for fifteen different programs.

Figure 5.36 and Figure 5.37 lists the used time for the evolution process per program.
The test program for calculating the integer square root (BMSR) (see Section 5.2.1)

is the slowest program when ASM mutations are applied, but the fastest program when
source mutations are used. On the other side the program for fast Fourier transformations
(FFT) is among the fastest programs concering ASM mutations but very slow, when
source mutations are applied. FFT is a relatively big program which uses many imports
and floating point operations. Source mutations are very slow when applied to FFT due
to the complexity of the program, but assembler mutations can be found very fast.

CHAPTER 5. RESULTS 102

0

500

1000

1500

2000

2500

3000

3500

4000

4500

HS FFT MS D BC6 BC5 BC7 BC8 BC4 BMC QSt BMSR

Runtime Source Mutation

Compilation Tests Mutations Predecessor checks

Figure 5.36: Source evolution times listed for each test program.

0

10000

20000

30000

40000

50000

60000

70000

80000

BMSR BC4 BC6 BC7 HS MS QS BC8 BC5 BMC FFT D

Runtime ASM Mutation

Compilation Tests Mutations Predecessor checks

Figure 5.37: Assembler evolution times listed for each test program.

Chapter 6

Conclusion

This thesis provided insights into techniques for automated software diversity with a fo-
cus on unsound randomization techniques in the field of hardware fault tolerance. The
classification of different approaches for automated software diversity was explained and
exemplified by different methods taken from the literature. Furthermore, the most impor-
tant fault injection frameworks were discussed and classified.

The term fault tolerance was discussed and categorized into fault detection and fault
recovery. Methods for both categorizations were implemented and evaluated. For this rea-
son a QEMU based fault injection framework (FIES) was used and modified. FIES was
used to simulate a Freescale i.MX28 EVK development board and to inject permanent
register faults, instruction decoder faults and RAM faults. Moreover, different modifica-
tions were introduced to allow the input selection for the tested programs during execution
and to enable the logging of accessed RAM addresses. The mutational robustness of soft-
ware was utilized to implement an unsound randomization technique. For this reason, a
method to mutate the AST of C source code was implemented using LLVM. This method
is based on the Software Evolution Library. Furthermore, assembler code was mutated
using Python.

In order to enable the generation of automated test results, a framework for auto-
mated software diversity was implemented to offer methods to create mutations of pro-
grams which can be validated against a test suite. An evolution algorithm simplifies the
process of generating mutations which are many steps away from the original file. For this
reason, a compiler toolchain was created with Linux as the host system to support the
GCC compiler and the CLANG compiler along with different compiler flags. This allows
the comparison of unsound randomization techniques with diverse compiling techniques.
Even combinations of both approaches can be produced with promising results concerning
hardware fault tolerance.

For the evaluation, fifteen different programs out of the categories Automotive and In-
dustrial Control, Network and Telecommunications were used. Results for fault detection
and fault recovery were presented. A 1oo2 system was used for fault detection. The re-
sults showed that the diverse compiling approach is much more efficient for fault detection
compared to pure unsound randomization methods. Therefore, unsound randomization
methods were combined with the diverse compiling approach by using source and assem-
bler mutations. It was possible to improve the fault detection rate concerning RAM faults
and instruction decoder faults using source mutations and assembler mutations which are

103

CHAPTER 6. CONCLUSION 104

100 steps away from the original version. It was not possible to improve the detection rate
of register faults with unsound randomization techniques. However, the results showed
that the fixed register flag can be used to improve the diverse compiling approach for
register fault detection.

Furthermore, the evaluation pointed out that diverse compiling can be used for the
recovery from hardware faults where the technique is very efficient concerning RAM faults,
with 99 % of all introduced faults being masked. Over 91 % of all introduced instruction
decoder faults were maskable and it was possible to mask over 46 % of the introduced
register faults. The results showed that unsound randomization techniques are not suited
to recover from permanent register faults.

For safety-critical systems it is very important that the programs are semantically
correct. However, unsound randomization methods can modify programs so that they
are not semantically equivalent to the original program. Furthermore, the introduced
mutations obfuscate the source code and have a bad influence on the readability. Therefore,
the next step would be to analyze the parts of the introduced changes which have an
influence on hardware fault detection. Based on this knowledge algorithms can be created
which do not change the semantic of the program and keep a certain amount of readability.

6.1 Further Work

In this section, some of the most important improvements for the used unsound random-
ization approach are presented.

• Fine grained usage of compiler flags: In this thesis the flags -O0 to -O3 in com-
bination with the fixed register flag -ffixed-r is used for diverse compiling. Since
the optimization flags consist of many different compiler flags which are extended
with flags whenever the optimization level is increased, many combinations could be
created by using the fine grained flags directly. Over 90 different flags are supported
by the GCC compiler giving many different combination possibilities.

• Optimization of mutation time: The code concerning mutations can be opti-
mized. Currently some parts are redundant to make the code more readable.

• Extend the NooM architecture: In this thesis a 1oo2 architecture is used for
hardware fault detection. The usage of different mutations could raise the proportion
of detected faults.

• Precompiled standard library with specified flags: Since external libraries
cannot be mutated or influenced with optimization flags, the usage of precompiled
versions of the standard library would boost the fault detection for all presented
methods. Especially register fault recovery would be much easier.

• Source code analysis for mutations: The success rate and quality of source code
mutations is dependent on many things. It is in the nature of mutations, that the
mutated program consists solely of source code, that already existed in the original
version. The example provided in Listing A.10 is semantically equivalent to the
program in Listing A.11 but the quality of the generated mutations differs. The
usage of CIL based source mutation might address this problem [NMRW02b].

Appendix A

Diversification Chain Source

A.1 Python

Listing A.1: Python module with functions for diverse compilation, evolution algorithms
and over all diversificaton methods

1 import ShellWrapper
2 import Mutator
3 import random
4
5 mutationFunctionMapper = {”Source ” : Mutator . mutateSourceFi le ,
6 ”ASM” : Mutator . mutateAssemblerFi le}
7
8 COMPILERS = [”GCC” , ”CLANG”]
9 OPTIMIZATION FLAGS = [”−O0” , ”−O1” , ”−O2” , ”−O3”]

10 FIXED REGISTERS = [”−f f i x ed−r3 ” , ”−f f i x ed−r4 ” , ”−f f i x ed−r5 ”]
11
12
13 def compi leDiverse (pathToFile , pathToDest inat ionDirectory , l i s tOfMutat ions) :
14 for opt imizat i on in OPTIMIZATION FLAGS:
15 for r e g i s t e r in FIXED REGISTERS :
16 print ”Compile GCC with ” + opt imizat i on + ” ” + r e g i s t e r
17 Mutator . compileSourceToBinary (l i s tOfMutat ions , pathToFile , pathToDest inat ionDirectory ,
18 ”GCC” ,
19 [opt imizat i on] ,
20 [r e g i s t e r])
21 for compi ler in COMPILERS:
22 print ”Compile ” + compi ler + ” with ” + opt imizat i on
23 Mutator . compileSourceToBinary (l i s tOfMutat ions , pathToFile , pathToDest inat ionDirectory ,
24 compiler ,
25 [opt imizat i on] ,
26 [])
27
28
29 def d i v e r s i f yA l l (pathToFile , numberOfRandomMutations , maximalMutationDepth ,
30 minimalNumberOfMutationsPerLevel ,
31 pathToDest inat ionDirectory) :
32 numberOfRandomMutations = str (numberOfRandomMutations)
33
34 # Diver se Compile w i t hou t muta t ions
35 compi leDiverse (pathToFile , pathToDest inat ionDirectory , [])
36 # Mutator . compi leSourceToBinary ([] , pathToFi le , pa thToDes t ina t i onDi r e c t o ry , ”GCC” ,[”−O0 ”] , [])
37
38 # Create source muta t ions
39 evo lut ionAlgor i thm (pathToFile , numberOfRandomMutations , maximalMutationDepth ,
40 minimalNumberOfMutationsPerLevel ,
41 ”Source ”)
42
43 mutationToDiverseCompile = [
44 ShellWrapper . getListOfMutationsFromSpeci f iedMutationDepth (pathToFile ,
45 str (maximalMutationDepth)) [0]]
46
47 # Diver se Compile w i th source muta t ions
48 print ”Compile source mutations ”
49 compi leDiverse (pathToFile , pathToDest inat ionDirectory , mutationToDiverseCompile)
50
51 # Compile to ASM
52 print ”Compile to ASM”
53 pathToASMFile = Mutator . compileToASM(mutationToDiverseCompile , pathToFile , ”GCC” , [”−O0”] , [])
54

105

APPENDIX A. DIVERSIFICATION CHAIN SOURCE 106

55 # Create ASM muta t ions
56 print ”Create assembler mutations ”
57 evo lut ionAlgor i thm (pathToASMFile , numberOfRandomMutations , maximalMutationDepth ,
58 minimalNumberOfMutationsPerLevel ,
59 ”ASM”)
60
61 # Compile ASM muta t ions
62 mutationToCompile = [
63 ShellWrapper . getListOfMutationsFromSpeci f iedMutationDepth (pathToASMFile ,
64 str (maximalMutationDepth)) [0]]
65
66 print ”Compile ASM”
67 Mutator . compileASMToBinary (mutationToCompile , pathToASMFile , pathToDest inat ionDirectory)
68
69
70 def evo lut ionAlgor i thm (pathToFile , numberOfRandomMutations , maximalMutationDepth ,
71 minimalNumberOfMutationsPerLevel ,
72 mutationType) :
73 numberOfRandomMutations = str (numberOfRandomMutations)
74 while True :
75 print ”Ca lcu la te mutation depth”
76 mutationDepth = ShellWrapper . getHighestMutationDepth (pathToFile)
77 l i s tOfMutat ions = []
78 i f mutationDepth == None :
79 l i s tOfMutat ions = [pathToFile]
80 else :
81 l i s tOfMutat ions = ShellWrapper . getListOfMutationsFromSpeci f iedMutationDepth (
82 pathToFile , str (mutationDepth))
83
84 i f mutationDepth > maximalMutationDepth :
85 mutationDepth = maximalMutationDepth
86
87 i f mutationDepth == maximalMutationDepth :
88 i f len (l i s tOfMutat ions) >= minimalNumberOfMutationsPerLevel :
89 print ”Evolut ion f i n i s h e d ”
90 break
91
92 i f mutationDepth != None and len (l i s tOfMutat ions) < minimalNumberOfMutationsPerLevel :
93 mutationDepth −= 1
94 i f mutationDepth == 0 :
95 l i s tOfMutat ions = [pathToFile]
96 else :
97 l i s tOfMutat ions = ShellWrapper . getListOfMutationsFromSpeci f iedMutationDepth (
98 pathToFile ,
99 str (mutationDepth))

100
101 numberOfMutations = len (l i s tOfMutat ions)
102 i f numberOfMutations == 0 :
103 print ” l i s tOfMutat ion has no content ! ”
104 ex i t ()
105
106 indexOfFileToMutate = random . randrange (numberOfMutations)
107 f i leToMutate = l i s tOfMutat ions [indexOfFileToMutate]
108
109 print ”Mutation depth i s ” + str (mutationDepth)
110 mutationFunctionMapper [mutationType] (f i leToMutate , numberOfRandomMutations)

Listing A.2: Python module with functions for generating fault libraries and run binaries
1 import ShellWrapper
2 import BinaryInformation
3
4 import sys
5 import p i c k l e
6
7 FAULT LIBRARY DIRECTORY = ”/home/bernhardsp/ d i v e r s i t y c h a i n / q emu f au l t l i b s ”
8 GENERATED FAULT LIB = ”/home/bernhardsp / d i v e r s i t y c h a i n / q emu f au l t l i b s / g e n e r a t e d f a u l t l i b . xml”
9

10 def generateFaultLibInstruct ionDecoderNOP (inst ruct ionToReplace) :
11 parameters = str ()
12 parameters += (”−e s /\${ address }/” + inst ruct ionToReplace + ”/ ”)
13 templa teF i l e = FAULT LIBRARY DIRECTORY + ”/ in s t ru c t i on de code r nop . xml”
14 ShellWrapper . generateFaul tL ib (templateFi l e , parameters , GENERATED FAULT LIB)
15 return GENERATED FAULT LIB
16
17 def generateFaultLibRegisterPermanent (address , mask) :
18 parameters = str ()
19 parameters += (”−e s /\${ address }/” + address + ”/ ”)
20 parameters += (”−e s /\${mask}/” + mask + ”/”)
21 templa teF i l e = FAULT LIBRARY DIRECTORY + ”/ reg i s t e r pe rmanent t emp la t e . xml”
22 ShellWrapper . generateFaul tL ib (templateFi l e , parameters , GENERATED FAULT LIB)
23 return GENERATED FAULT LIB
24
25 def generateFaultLibNoErrors () :
26 return ”/home/bernhardsp/ d i v e r s i t y c h a i n / q emu f au l t l i b s / no e r r o r . xml”
27
28 def l oadDi rec to ry (pathToDirectory) :

APPENDIX A. DIVERSIFICATION CHAIN SOURCE 107

29 b ina ry In f o rmat i onF i l eL i s t = ShellWrapper . getBinaryIn format ionFi l e sFromDirectory (
30 pathToDirectory)
31 l i s tO fB i n a r i e s = []
32
33 for b ina ry In fo rmat i onF i l e in b ina ry In f o rmat i onF i l eL i s t :
34 b inaryIn format ion = p i c k l e . load (open(b inary In fo rmat ionFi l e , ’ rb ’))
35 l i s tO fB i n a r i e s . append (b inaryIn format ion)
36 return l i s tO fB i n a r i e s
37
38 def runBinary (pathToDirectory , b inaryInformat ion , pathToFaultLib , runDirectory , outputFileName) :
39 ShellWrapper . runInstance (pathToDirectory + ”/” + binaryIn format ion [”binaryName”] ,
40 runDirectory , pathToFaultLib ,
41 outputFileName)

Listing A.3: Python module with functions for AST source mutating, ASM vector mu-
tating, source to binary compilation, source to ASM compilation and ASM to binary
compilation

1 import ShellWrapper
2 import AssemblerMutation
3 import p i c k l e
4
5 COMPILER METHODS = {”GCC” : ShellWrapper . compileFilesToBinaryGCC ,
6 ”CLANG” : ShellWrapper . compi leFi lesToBinaryClang}
7
8
9 def l oadMutat ionIn format ionFi l e (pathToFile) :

10 return p i c k l e . load (
11 open(pathToFile , ’ rb ’))
12
13
14 def saveMutat ionInformationToFi le (mutationInformation , pathToFile) :
15 p i c k l e . dump(mutationInformation , open(pathToFile , ’wb ’))
16
17
18 def getPathToImx28Precompiled (compiler , opt imizat ionFlag , f i x edReg i s t e r) :
19 path = ”/imx28/ precompiled /” + compi ler . lower () + ”/” + opt imizat ionFlag [2 :]
20 i f f i x e dReg i s t e r i s None :
21 path += ”/” + ” u s e a l l r e g i s t e r s ”
22 else :
23 path += ”/” + f i x edReg i s t e r [9 :]
24 return path
25
26
27 def generateMutat ionInformat ion (l i s tO fMutat edF i l e s) :
28 tempList = []
29 for mutatedFile in l i s tO fMutat edF i l e s :
30 mutationDepth = ShellWrapper . getMutationDepthOfFile (mutatedFile)
31 tempList . append ({”path” : mutatedFile , ”mutationDepth” : mutationDepth })
32 return tempList
33
34
35 def compileToASM(l i s tOfMutatedFi l e s , pathToOriginalMainFile , compiler , l i s tOfOpt imizat i onF lags ,
36 l i s tO fF i x edReg i s t e r s) :
37 pathToMainFileInTemporaryProject = ShellWrapper . getPathToMutatedFileInTemporaryProject (
38 pathToOriginalMainFile ,
39 False)
40 ShellWrapper . generateTemporaryProject (pathToOriginalMainFi le)
41 for mutatedFile in l i s tO fMutat edF i l e s :
42 ShellWrapper . copyMutationToTemporaryProject (mutatedFile)
43 ShellWrapper . compileFilesToASM (pathToMainFileInTemporaryProject ,
44 ” ” . j o i n (l i s tO fOpt im i za t i onF lag s) + ” ” + ” ” . j o i n (
45 l i s tO fF i x edReg i s t e r s) , compi ler)
46
47 pathToASMDirectory = ShellWrapper . createNewASMFolder (pathToOriginalMainFi le)
48 ShellWrapper . copyASMFilesToDirectory (pathToMainFileInTemporaryProject , pathToASMDirectory)
49 # Generate mutat ion in f o rma t i on
50 tempList = generateMutat ionInformat ion (l i s tO fMuta t edF i l e s)
51 mutat ionInformation = {”usedSourceMutations ” : tempList ,
52 ” f i x e dReg i s t e r s ” : l i s tO fF ix edReg i s t e r s ,
53 ” opt imiza t i onF lags ” : l i s tOfOpt imizat i onF lags , ” compi ler ” : compi ler }
54 saveMutat ionInformationToFi le (mutationInformation ,
55 pathToASMDirectory + ’ /mutat ionInformation . txt ’)
56 return pathToASMDirectory + ”/” + ShellWrapper . getFileNameWithoutExtension (
57 pathToOriginalMainFi le) + ” . s ”
58
59
60 def compileSourceToBinary (l i s tOfMutatedFi l e s , pathToOriginalMainFile , pathToDest inat ionDirectory ,
61 compiler ,
62 l i s tOfOpt imizat i onF lags , l i s tO fF i x edReg i s t e r s) :
63 pathToMainFileInTemporaryProject = ShellWrapper . getPathToMutatedFileInTemporaryProject (
64 pathToOriginalMainFile ,
65 False)
66 ShellWrapper . generateTemporaryProject (pathToOriginalMainFi le)
67 for mutatedFile in l i s tO fMutat edF i l e s :

APPENDIX A. DIVERSIFICATION CHAIN SOURCE 108

68 ShellWrapper . copyMutationToTemporaryProject (mutatedFile)
69 i f len (l i s tO fF i x edReg i s t e r s) == 0 :
70 f i x edReg i s t e r = None
71 else :
72 f i x e dReg i s t e r = l i s tO fF i x edReg i s t e r s [0]
73 opt imizat ionFlag = l i s tO fOpt im i za t i onF lag s [0]
74 pathToImx28 = getPathToImx28Precompiled (compiler , opt imizat ionFlag , f i x e dReg i s t e r)
75 # Compile source f i l e s or ASM f i l e s
76 COMPILER METHODS[compi ler] (
77 pathToMainFileInTemporaryProject , pathToImx28 ,
78 ” ” . j o i n (l i s tO fOpt im i za t i onF lag s) + ” ” + ” ” . j o i n (
79 l i s tO fF i x edReg i s t e r s))
80 binaryName = ShellWrapper . copyBinaryToDirectoryAndRenameUniquely (
81 pathToMainFileInTemporaryProject ,
82 pathToDest inat ionDirectory)
83 # Generate mutat ion in f o rma t i on
84 tempList = generateMutat ionInformat ion (l i s tO fMuta t edF i l e s)
85 mutat ionInformation = {”usedSourceMutations ” : tempList ,
86 ” f i x e dReg i s t e r s ” : l i s tO fF ix edReg i s t e r s ,
87 ” opt imiza t i onF lags ” : l i s tOfOpt imizat i onF lags , ” compi ler ” : compiler ,
88 ”binaryName” : binaryName}
89 saveMutat ionInformationToFi le (mutationInformation ,
90 pathToDest inat ionDirectory + ’ / ’ + binaryName + ’ . i n f o ’)
91
92
93 def compileASMToBinary (l i s tOfMutatedFi l e s , pathToOriginalMainFile , pathToDest inat ionDirectory) :
94 pathToMainFileInTemporaryProject = ShellWrapper . getPathToMutatedFileInTemporaryProject (
95 pathToOriginalMainFile ,
96 False)
97 pathToOr ig ina lF i l e = pathToOriginalMainFi le
98 pathToASMDirectory = ShellWrapper . getPathToASMDirectory (pathToOr ig ina lF i l e)
99 ShellWrapper . generateTemporaryProject (pathToOriginalMainFi le)

100 for mutatedFile in l i s tO fMutat edF i l e s :
101 ShellWrapper . copyMutationToTemporaryProject (mutatedFile)
102 mutat ionInformationSource = loadMutat ionIn format ionFi l e (
103 pathToASMDirectory + ’ /mutat ionInformation . txt ’)
104 f i x edReg i s t e r = mutat ionInformationSource [” f i x e dReg i s t e r s ”]
105 i f len (f i x e dReg i s t e r) == 0 :
106 f i x edReg i s t e r = None
107 else :
108 f i x edReg i s t e r = f i x edReg i s t e r [0]
109 opt imizat ionFlag = mutat ionInformationSource [” opt imiza t i onF lags ”] [0]
110 opt im i za t i onF lag sS t r ing = ” ” . j o i n (mutat ionInformationSource [” opt imiza t i onF lags ”])
111 f i x e dReg i s t e r s S t r i n g = ” ” . j o i n (mutat ionInformationSource [” f i x e dReg i s t e r s ”])
112 compi ler = mutat ionInformationSource [” compi ler ”]
113 pathToImx28 = getPathToImx28Precompiled (compiler , opt imizat ionFlag , f i x e dReg i s t e r)
114 ShellWrapper . compileFilesToBinaryGCC (pathToMainFileInTemporaryProject , pathToImx28 ,
115 opt im i za t i onF lag sS t r i ng + ” ” + f i x e dReg i s t e r s S t r i n g)
116 binaryName = ShellWrapper . copyBinaryToDirectoryAndRenameUniquely (
117 pathToMainFileInTemporaryProject ,
118 pathToDest inat ionDirectory)
119 # Generate mutat ion in f o rma t i on
120 tempList = generateMutat ionInformat ion (l i s tO fMuta t edF i l e s)
121 mutat ionInformationSource [”usedASMMutations”] = tempList
122 mutat ionInformationSource [”binaryName”] = binaryName
123 saveMutat ionInformationToFi le (mutationInformationSource ,
124 pathToDest inat ionDirectory + ’ / ’ + binaryName + ’ . i n f o ’)
125
126
127 def mutateSourceFi le (pathToFile , numberOfMutations , s tr ictMode=True) :
128 i sF i l eMutat i on = ShellWrapper . i sF i l eMutat i on (pathToFile)
129 pathToMutatedFileInTemporaryProject = ShellWrapper . getPathToMutatedFileInTemporaryProject (
130 pathToFile ,
131 i sF i l eMutat i on)
132 pathToOr ig ina lF i l e = pathToFile
133 i f i sF i l eMutat i on :
134 pathToOr ig ina lF i l e = ShellWrapper . getPathToOrig ina lF i l e (pathToFile)
135 ShellWrapper . emptyTempFolder ()
136 ShellWrapper . generateTemporaryProject (pathToOr ig ina lF i l e)
137 i f i sF i l eMutat i on :
138 ShellWrapper . copyMutationToTemporaryProject (pathToFile)
139 print ”Mutate source f i l e with ” + numberOfMutations + ” mutations ”
140 ShellWrapper . openSubprocessClangMutate (numberOfMutations , pathToMutatedFileInTemporaryProject)
141 ShellWrapper . getMutationsFromTempDirectory (pathToMutatedFileInTemporaryProject)
142 pathToImx28 = getPathToImx28Precompiled (”GCC” , ”−O0” , None)
143 print ”Compile mutations with GCC −O0”
144 ShellWrapper . compileMutations (pathToMutatedFileInTemporaryProject , pathToImx28 , ”−O0”)
145 numberOfSuccess fulCompilat ions = ShellWrapper . getNumberOfSuccessfulCompilat ions (
146 pathToOr ig ina lF i l e)
147 print ”Number o f s u c c e s s f u l compi la t i ons : ” + numberOfSuccess fulCompilat ions
148 ShellWrapper . generateTestResu l t s I fNeeded (pathToOr ig ina lF i l e)
149 print ”Test compiled mutations ”
150 ShellWrapper . testCompiledMutations (pathToMutatedFileInTemporaryProject)
151 numberOfPassedTests = ShellWrapper . getNumberOfSuccessfulMutations (
152 pathToOr ig ina lF i l e)
153 print ”Number o f passed t e s t s : ” + numberOfPassedTests
154 i f numberOfPassedTests > 0 :
155 ShellWrapper . formatCodeOfMutations (pathToMutatedFileInTemporaryProject)

APPENDIX A. DIVERSIFICATION CHAIN SOURCE 109

156 i f str ictMode :
157 print ”Check p r ede c e s s o r s f o r equal code”
158 i f i sF i l eMutat i on :
159 ShellWrapper . de l e t eMuta t i on s I fPr edece s so r I sEqua l (pathToFile)
160 numberOfMutationsAfterPredecessorCheck = ShellWrapper . getNumberOfSuccessfulMutations (
161 pathToOr ig ina lF i l e)
162 print ”Number o f mutations \
163 a f t e r p r edece s so r check : ” + numberOfMutationsAfterPredecessorCheck
164 print ”Save compiled mutations ”
165 ShellWrapper . saveTes tedSourceF i l e s (pathToFile , i sF i l eMutat i on)
166 numberOfSuccessfulMutations = ShellWrapper . getNumberOfSuccessfulMutations (pathToOr ig ina lF i l e)
167 print ”Number o f s u c c e s s f u l mutations : ” + numberOfSuccessfulMutations
168
169
170 def mutateAssemblerFi le (pathToFile , numberOfMutations , s tr ictMode=True) :
171 i sF i l eMutat i on = ShellWrapper . i sF i l eMutat i on (pathToFile)
172 pathToMutatedFileInTemporaryProject = ShellWrapper . getPathToMutatedFileInTemporaryProject (
173 pathToFile ,
174 i sF i l eMutat i on)
175 pathToOr ig ina lF i l e = pathToFile
176 i f i sF i l eMutat i on :
177 pathToOr ig ina lF i l e = ShellWrapper . getPathToOrig ina lF i l e (pathToFile)
178 pathToASMDirectory = ShellWrapper . getPathToASMDirectory (pathToOr ig ina lF i l e)
179
180 mutat ionInformation = loadMutat ionIn format ionFi l e (
181 pathToASMDirectory + ’ /mutat ionInformation . txt ’)
182 f i x edReg i s t e r = mutat ionInformation [” f i x e dReg i s t e r s ”]
183 i f len (f i x e dReg i s t e r) == 0 :
184 f i x edReg i s t e r = None
185 else :
186 f i x edReg i s t e r = f i x edReg i s t e r [0]
187 opt imizat ionFlag = mutationInformation [” opt imiza t i onF lags ”] [0]
188 opt im i za t i onF lag sS t r ing = ” ” . j o i n (mutat ionInformation [” opt imiza t i onF lags ”])
189 f i x e dReg i s t e r s S t r i n g = ” ” . j o i n (mutat ionInformation [” f i x e dReg i s t e r s ”])
190 compi ler = mutat ionInformation [” compi ler ”]
191 pathToImx28 = getPathToImx28Precompiled (compiler , opt imizat ionFlag , f i x e dReg i s t e r)
192 ShellWrapper . emptyTempFolder ()
193 ShellWrapper . generateTemporaryProject (pathToOr ig ina lF i l e)
194 i f i sF i l eMutat i on :
195 ShellWrapper . copyMutationToTemporaryProject (pathToFile)
196 print ”Mutate ASM f i l e with ” + numberOfMutations + ” mutations ”
197 AssemblerMutation . applyMutations (pathToMutatedFileInTemporaryProject , int (numberOfMutations))
198 ShellWrapper . getMutationsFromTempDirectory (pathToMutatedFileInTemporaryProject)
199 print ”Link mutations ”
200 ShellWrapper . compileMutations (pathToMutatedFileInTemporaryProject , pathToImx28 ,
201 opt im i za t i onF lag sS t r ing + ” ” + f i x e dReg i s t e r s S t r i n g)
202 numberOfSuccess fu lLinkings = ShellWrapper . getNumberOfSuccessfulCompilat ions (
203 pathToOr ig ina lF i l e)
204 print ”Number o f s u c c e s s f u l l i n k i n g s : ” + numberOfSuccess fu lLinkings
205 print ”Generating Test Resu l t s ”
206 ShellWrapper . generateTestResu l t s I fNeeded (pathToOr ig ina lF i l e)
207 print ”Test Mutations ”
208 ShellWrapper . testCompiledMutations (pathToMutatedFileInTemporaryProject)
209 numberOfSuccess fulTests = ShellWrapper . getNumberOfSuccessfulMutations (pathToOr ig ina lF i l e)
210 print ”Number o f passed t e s t s : ” + numberOfSuccess fulTests
211 i f str ictMode :
212 print ”Check p r ede c e s s o r s f o r equal code”
213 i f i sF i l eMutat i on :
214 ShellWrapper . de l e t eMuta t i on s I fPr edece s so r I sEqua l (pathToFile)
215 numberOfMutationsAfterPredecessorCheck = ShellWrapper . getNumberOfSuccessfulMutations (
216 pathToOr ig ina lF i l e)
217 print ”Number o f mutations \
218 a f t e r p r edece s so r check : ” + numberOfMutationsAfterPredecessorCheck
219
220 print ”Save Mutations ”
221 ShellWrapper . saveTes tedSourceF i l e s (pathToFile , i sF i l eMutat i on)
222 numberOfSuccessfulMutations = ShellWrapper . getNumberOfSuccessfulMutations (pathToOr ig ina lF i l e)
223 print ”Number o f s u c c e s s f u l mutations : ” + numberOfSuccessfulMutations

A.2 Shell Scripts

Listing A.4: Shell script to cross compile C programs with GCC.
1 #!/ b in / sh
2 ############### PARAMETERS ##################
3 FILE=$1
4 BUILD DIRECTORY=$2
5 PATH TO PRECOMPILED IMX28=$3
6 ADDITIONAL BUILD PARAMETERS=”$4”
7
8 ############### BODY ########################
9 FILE=$1

APPENDIX A. DIVERSIFICATION CHAIN SOURCE 110

10 FILE=$ (r ead l i nk $FILE −f)
11 DIRECTORY=$ (dirname $FILE)
12
13 FILE NAME=${FILE##∗/}
14 FILE NAME=${FILE NAME%.∗}
15
16 cd $DIRECTORY
17 [−d $BUILD DIRECTORY] && rm −R $BUILD DIRECTORY
18
19 FILES TO COMPILE=$ (l s −d $PWD/∗ | grep ” \ . [cso] $”)
20
21 mkdir $BUILD DIRECTORY
22 cd $BUILD DIRECTORY
23
24 COMMAND=”arm−none−eabi−gcc −w −T ˜/ imx28/imx28evk−ram . ld $FILES TO COMPILE
25 $PATH TO PRECOMPILED IMX28/ pr int methods . o −mcpu=arm926ej−s −Xl inker −Map=he l l o .map −marm
26 −n o s t a r t f i l e s −lm ˜/ imx28/ c r t i . o ˜/ imx28/ crtend . o ˜/ imx28/ crtn . o ˜/ imx28/ c r tbeg in . o
27 ˜/ imx28/ specs . o −I ˜/ imx28/ $PATH TO PRECOMPILED IMX28/debug uart . o −I ˜/ imx28/
28 −I ˜/ imx28/ r e g i s t e r s / $PATH TO PRECOMPILED IMX28/ s t a r t . o
29 $PATH TO PRECOMPILED IMX28/imx28evk−r e s e t−ram . o $PATH TO PRECOMPILED IMX28/arm−vector . o
30 −o $FILE NAME $ADDITIONAL BUILD PARAMETERS”
31
32 eval $COMMAND
33
34 i f [! −f $FILE NAME]
35 then
36 cd . . /
37 rm −R $BUILD DIRECTORY
38 echo ”BUILD NOT SUCCESSFUL! ”
39 return 1
40 f i
41 echo ”BUILD SUCCESSFUL! ”
42 return 0

Listing A.5: Shell script to cross compile C programs with CLANG.
1 #!/ b in / sh
2 ############### PARAMETERS ##################
3 FILE=$1
4 BUILD DIRECTORY=$2
5 PATH TO PRECOMPILED IMX28=$3
6 ADDITIONAL BUILD PARAMETERS=”$4”
7
8 ############### BODY ########################
9 FILE=$ (r ead l i nk $FILE −f)

10 DIRECTORY=$ (dirname $FILE)
11
12 FILE NAME=${FILE##∗/}
13 FILE NAME=${FILE NAME%.∗}
14
15 cd $DIRECTORY
16 rm −R $BUILD DIRECTORY
17
18 FILES TO LINK=$ (l s −d $PWD/∗ | grep ” \ . [o] $”)
19 FILE NAMES TO COMPILE=$ (l s −d $PWD/∗ | grep ” \ . [c s] $”)
20
21 mkdir $BUILD DIRECTORY
22 cd $BUILD DIRECTORY
23
24 for FILE TEMP FULL PATH in $FILE NAMES TO COMPILE
25 do
26 FILE TEMP=${FILE TEMP FULL PATH##∗/}
27 FILE TEMP=${FILE TEMP%.∗}
28 COMMAND=”clang −3.6 −w −c −t a r g e t armv5te−none−eab i −f f r e e s t a nd i n g −mcpu=arm926ej−s
29 −fmessage−l ength=0 −marm $FILE TEMP FULL PATH −I ˜/ imx28/
30 −I / usr / l i b /arm−none−eab i / inc lude /
31 −I / usr / l i b / gcc /arm−none−eab i /4 . 8 . 2 / inc lude / $ADDITIONAL BUILD PARAMETERS ”
32 eval $COMMAND
33 FILES TO LINK=$FILES TO LINK” ”$FILE TEMP” . o”
34 done
35
36 echo ”Before Linking ”
37 COMMAND=”arm−none−eabi−gcc −w −T
38 ˜/ imx28/imx28evk−ram . ld $FILES TO LINK $PATH TO PRECOMPILED IMX28/ pr int methods . o
39 −mcpu=arm926ej−s −Xl inker −Map=he l l o .map −marm −n o s t a r t f i l e s −lm ˜/ imx28/ c r t i . o
40 ˜/ imx28/ crtend . o ˜/ imx28/ crtn . o ˜/ imx28/ c r tbeg in . o ˜/ imx28/ specs . o
41 −I ˜/ imx28/ $PATH TO PRECOMPILED IMX28/debug uart . o −I ˜/ imx28/ −I ˜/ imx28/ r e g i s t e r s /
42 $PATH TO PRECOMPILED IMX28/ s t a r t . o $PATH TO PRECOMPILED IMX28/imx28evk−r e s e t−ram . o
43 $PATH TO PRECOMPILED IMX28/arm−vector . o −o $FILE NAME $ADDITIONAL BUILD PARAMETERS ”
44 eval $COMMAND
45
46 i f [! −f $FILE NAME]
47 then
48 cd . . /
49 rm −R $BUILD DIRECTORY
50 return 1
51 f i

APPENDIX A. DIVERSIFICATION CHAIN SOURCE 111

52 return 0

Listing A.6: Shell script to cross compile C programs with CLANG and GCC to assembler.
1 #!/ b in / bash
2 ############### PARAMETER CHECK #############
3 FILE=$1
4 ADDITIONAL BUILD PARAMETERS=”$2”
5 COMPILER=”$3”
6 ############### BODY ########################
7 FILE=$ (r ead l i nk $FILE −f)
8 DIRECTORY=$ (dirname $FILE)
9 DIRECTORY=$DIRECTORY

10
11 FILE NAME WITH EXTENSION=${FILE##∗/}
12 FILE NAME=${FILE NAME WITH EXTENSION%.∗}
13
14 BUILD DIRECTORY=” bui ld ”
15
16 cd $DIRECTORY
17 mkdir $BUILD DIRECTORY
18
19 FILE NAMES=$ (l s −d $PWD/∗ | grep ” \ . c$”)
20
21 cd $BUILD DIRECTORY
22
23 #################### COMPILE ################
24 COMPILER STRING=””
25 i f [$COMPILER == ”GCC”] ; then
26 COMPILER STRING=”arm−none−eabi−gcc −S −mcpu=arm926ej−s −fmessage−l ength=0 −marm
27 −−param ggc−min−expand=100 −−param ggc−min−heaps i z e =131072 −I ˜/ imx28/ ”
28 else
29 COMPILER STRING=”clang −3.6 −S −t a r g e t armv5te−none−eab i −f f r e e s t a nd i n g −mcpu=arm926ej−s
30 −fverbose−asm −fmessage−l ength=0 −marm −I ˜/ imx28/ −I / usr / l i b /arm−none−eab i / inc lude /
31 −I / usr / l i b / gcc /arm−none−eab i /4 . 8 . 2 / inc lude /”
32 f i
33
34 for FILE TEMP FULL PATH in $FILE NAMES
35 do
36 FILE TEMP=${FILE TEMP FULL PATH##∗/}
37
38 COMMAND=$COMPILER STRING” ”$FILE TEMP FULL PATH” ”$ADDITIONAL BUILD PARAMETERS
39 eval $COMMAND
40 done

Listing A.7: Start script for the QEMU based fault injection tool.
1 #!/ b in / bash
2 i f [”$#” −ne 1]
3 then
4 echo ”Usage : . / s t a r tTe s t s . sh <path−to−con f ig−f i l e >”
5 exit 1
6 f i
7 DATA COLLECTOR PATH=” da t a c o l l e c t o r . txt ”
8 CONFIG FILE=$1
9

10 counter=1
11 while read l i n e
12 do
13 KERNEL PATH=$ (echo ” $ l i n e \n” | cut −f 1 −d ,)
14 FAULT LIBRARY PATH=$ (echo ” $ l i n e \n” | cut −f 2 −d ,)
15 FILE INPUT ID=$ (echo ” $ l i n e \n” | cut −f 3 −d ,)
16
17 FAULT COUNTER ADDRESS=$ (r e a d e l f $KERNEL PATH −s | grep f au l t c oun t e r)
18 FAULT COUNTER ADDRESS=$ (echo $FAULT COUNTER ADDRESS | cut −f 2 −d :)
19 FAULT COUNTER ADDRESS=$ (echo $FAULT COUNTER ADDRESS | cut −f 1 −d ’ ’)
20
21 SBST CYCLE COUNT=$ (r e a d e l f $KERNEL PATH −s | grep sb s t c y c l e c oun t)
22 SBST CYCLE COUNT=$ (echo $SBST CYCLE COUNT | cut −f 2 −d :)
23 SBST CYCLE COUNT=$ (echo $SBST CYCLE COUNT | cut −f 1 −d ’ ’)
24
25 INPUT ADDRESS=$ (r e a d e l f $KERNEL PATH −s | grep inpu t da ta id)
26 INPUT ADDRESS=$ (echo $INPUT ADDRESS | cut −f 2 −d :)
27 INPUT ADDRESS=$ (echo $INPUT ADDRESS | cut −f 1 −d ’ ’)
28
29 . / qemu−system−arm −M imx28evk −m 128 −nographic −semihost ing −ke rne l $KERNEL PATH − f i \
30 $FAULT COUNTER ADDRESS,$FAULT LIBRARY PATH,$SBST CYCLE COUNT, $FILE INPUT ID ,$INPUT ADDRESS
31 DATA COLLECTOR OUT=” da t a c o l l e c t o r $ c oun t e r . txt ”
32 cat $DATA COLLECTOR PATH > $DATA COLLECTOR OUT
33 counter=$ ((counter +1))
34 done < $1
35 #echo ” Fau l t i n j e c t i o n exper iment f i n i s h e d ”

APPENDIX A. DIVERSIFICATION CHAIN SOURCE 112

A.3 XML

Listing A.8: A XML file to represent a template for permanent register faults.
1 <?xml version=” 1.0 ” encoding=”UTF−8”?>
2 < i n j e c t i o n>
3 < f a u l t>
4 <id>1</ id>
5 <component>REGISTER</component>
6 <t a r g e t>REGISTER CELL</ ta rg e t>
7 <mode>WDF0</mode>
8 <t r i g g e r>ACCESS</ t r i g g e r>
9 <type>PERMANENT</ type>

10 <params>
11 <address>${ address }</ address>
12 <mask>${mask}</mask>
13 </params>
14 </ f a u l t>
15 </ i n j e c t i o n>

Listing A.9: A XML file to represent a template for permanent instruction decoder faults.
1 <?xml version=” 1.0 ” encoding=”UTF−8”?>
2 < i n j e c t i o n>
3 < f a u l t>
4 <id>1</ id>
5 <component>CPU</component>
6 <t a r g e t>INSTRUCTION DECODER</ ta rg e t>
7 <mode>NEW VALUE</mode>
8 <t r i g g e r>ACCESS</ t r i g g e r>
9 <type>PERMANENT</ type>

10 <params>
11 <address>${ address }</ address>
12 < i n s t r u c t i o n>0xDEADBEEF</ i n s t r u c t i o n>
13 </params>
14 </ f a u l t>
15 </ i n j e c t i o n>

A.4 Further Work

Listing A.10: Source code which is hard to mutate.
1 int main (void) {
2 int column , row , index ;
3 column = index = row = 0 ;
4 while (index++ < 3)
5 doCalc (column , row) ;
6 }

Listing A.11: Source code which is easy to mutate.
1 int main (void) {
2 int column = 0 ;
3 int row = 0 ;
4 int index = 0 ;
5
6 while (index < 3) {
7 index = index + 1 ;
8 doCalc (column , row) ;
9 }

10 }

Bibliography

[AAVdG01] Zaid Al-Ars and A Van de Goor. Static and dynamic behavior of memory
cell array opens and shorts in embedded DRAMs. In Proceedings of the
conference on Design, automation and test in Europe, pages 496–503. IEEE
Press, 2001.

[AC77] Algirdas Avizienis and Liming Chen. On the implementation of N-version
programming for software fault tolerance during execution. Proc. IEEE
COMPSAC, 77:149–155, 1977.

[AHK15] Tobias Rauter Andrea Höller, Nermin Kajtazovic and Christian Kreiner.
Adaptive Automated Software Diversity: Towards Dynamic Hardware Fault
Tolerance. 2015.

[AK84] Algirdas Avizienis and John PJ Kelly. Fault tolerance by design diversity:
Concepts and experiments. Computer, 8(17):67–80, 1984.

[AK88] Paul E Ammann and John C Knight. Data diversity: An approach to soft-
ware fault tolerance. Computers, IEEE Transactions on, 37(4):418–425,
1988.

[Arl90] Jean Arlat. Validation de la sûreté de fonctionnement par injection de fautes,
méthode- mise en oeuvre- application. PhD thesis, 1990.

[ARM08] ARM Limited. ARM926EJ-S Development Chip Refer-
ence Manual. Technical report, ARM Limited, 2008.
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0198e/index.html.

[AVFK01] Joakim Aidemark, Jonny Vinter, Peter Folkesson, and Johan Karlsson.
Goofi: Generic object-oriented fault injection tool. In Dependable Systems
and Networks, 2001. DSN 2001. International Conference on, pages 83–88.
IEEE, 2001.

[Avi95] Algirdas Avizienis. The methodology of n-version programming. Software
fault tolerance, 3:23–46, 1995.

[BAFS05] Elena Gabriela Barrantes, David H Ackley, Stephanie Forrest, and Darko
Stefanović. Randomized instruction set emulation. ACM Transactions on
Information and System Security (TISSEC), 8(1):3–40, 2005.

113

BIBLIOGRAPHY 114

[BAM14] Benoit Baudry, Simon Allier, and Martin Monperrus. Tailored source code
transformations to synthesize computationally diverse program variants. In
Proceedings of the 2014 International Symposium on Software Testing and
Analysis, pages 149–159. ACM, 2014.

[BDS03] Sandeep Bhatkar, Daniel C DuVarney, and Ron Sekar. Address Obfuscation:
An Efficient Approach to Combat a Broad Range of Memory Error Exploits.
In USENIX Security, volume 3, pages 105–120, 2003.

[Bel05] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In
USENIX Annual Technical Conference, FREENIX Track, pages 41–46, 2005.

[BFM10] Jean-Marie Borello, Éric Filiol, and Ludovic Mé. From the design of a generic
metamorphic engine to a black-box classification of antivirus detection tech-
niques. Journal in computer virology, 6(3):277–287, 2010.

[BK04] Stephen W Boyd and Angelos D Keromytis. SQLrand: Preventing SQL
injection attacks. In Applied Cryptography and Network Security, pages 292–
302. Springer, 2004.

[BM14] Benoit Baudry and Martin Monperrus. The Multiple Facets of Soft-
ware Diversity: Recent Developments in Year 2000 and Beyond. CoRR,
abs/1409.7324, 2014.

[CDSDB13] Bart Coppens, Bjorn De Sutter, and Koen De Bosschere. Protecting your
software updates. Security & Privacy, IEEE, 11(2):47–54, 2013.

[CEF+06] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu,
Jack Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser. N-
variant systems: a secretless framework for security through diversity. In
Usenix Security, volume 6, pages 105–120, 2006.

[CKMT10] Tsong Yueh Chen, Fei-Ching Kuo, Robert G Merkel, and TH Tse. Adaptive
random testing: The art of test case diversity. Journal of Systems and
Software, 83(1):60–66, 2010.

[CMMN12] Christian Collberg, Sam Martin, Jonathan Myers, and Jasvir Nagra. Dis-
tributed application tamper detection via continuous software updates. In
Proceedings of the 28th Annual Computer Security Applications Conference,
pages 319–328. ACM, 2012.

[CMR+01] Pierluigi Civera, Luca Macchiarulo, Maurizio Rebaudengo, M Sonza Reorda,
and Massimo Violante. Exploiting FPGA for accelerating fault injection ex-
periments. In On-Line Testing Workshop, 2001. Proceedings. Seventh Inter-
national, pages 9–13. IEEE, 2001.

[Com15] Apple Computer. qsort.c. http://www.opensource.apple.com/source/

xnu/xnu-1456.1.26/bsd/kern/qsort.c, 2015. [Online; accessed 14-
August-2015].

http://www.opensource.apple.com/source/xnu/xnu-1456.1.26/bsd/kern/qsort.c
http://www.opensource.apple.com/source/xnu/xnu-1456.1.26/bsd/kern/qsort.c

BIBLIOGRAPHY 115

[Cpr15a] Cprogramming.com. Merge Sort in C++. http://www.cprogramming.com/
tutorial/computersciencetheory/merge.html, 2015. [Online; accessed
14-August-2015].

[Cpr15b] Cprogramming.com. Simple swapping heapsort source code. http://www.

cprogramming.com/snippets/source-code/simple-swapping-heapsort,
2015. [Online; accessed 14-August-2015].

[DER05] Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel. Supporting
Controlled Experimentation with Testing Techniques: An Infrastructure and
its Potential Impact. Empirical Software Engineering: An International
Journal, 10(4):405–435, 2005.

[dev15] QEMU developers. QEMU Internals. http://qemu.weilnetz.de/

qemu-tech.html, 2015. [Online; accessed 14-August-2015].

[Dub13] Elena Dubrova. Fault-tolerant design. Springer, 2013.

[ES03] Agoston E Eiben and James E Smith. Introduction to evolutionary comput-
ing. Springer Science & Business Media, 2003.

[Fou15] Free Software Foundation. Options for Linking. https://gcc.gnu.org/

onlinedocs/gcc/Link-Options.html, 2015. [Online; accessed 14-August-
2015].

[Fra10] Michael Franz. E unibus pluram: massive-scale software diversity as a de-
fense mechanism. In Proceedings of the 2010 workshop on New security
paradigms, pages 7–16. ACM, 2010.

[FS10] Blair Foster and Anil Somayaji. Object-level recombination of commodity
applications. In Proceedings of the 12th annual conference on Genetic and
evolutionary computation, pages 957–964. ACM, 2010.

[FSK98] Peter Folkesson, Sven Svensson, and Johan Karlsson. A comparison of sim-
ulation based and scan chain implemented fault injection. In Fault-Tolerant
Computing, 1998. Digest of Papers. Twenty-Eighth Annual International
Symposium on, pages 284–293. IEEE, 1998.

[Gil05] Walter R Gilks. Markov chain monte carlo. Wiley Online Library, 2005.

[Gra15] Mentor Graphics. Sourcery CodeBench. http://www.mentor.com/

embedded-software/sourcery-tools/sourcery-codebench/overview,
2015. [Online; accessed 14-August-2015].

[GRE+01] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin,
Trevor Mudge, and Richard B Brown. MiBench: A free, commercially rep-
resentative embedded benchmark suite. In Workload Characterization, 2001.
WWC-4. 2001 IEEE International Workshop on, pages 3–14. IEEE, 2001.

http://www.cprogramming.com/tutorial/computersciencetheory/merge.html
http://www.cprogramming.com/tutorial/computersciencetheory/merge.html
http://www.cprogramming.com/snippets/source-code/simple-swapping-heapsort
http://www.cprogramming.com/snippets/source-code/simple-swapping-heapsort
http://qemu.weilnetz.de/qemu-tech.html
http://qemu.weilnetz.de/qemu-tech.html
https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/overview
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/overview

BIBLIOGRAPHY 116

[HNL+13] Andrei Homescu, Steven Neisius, Per Larsen, Stefan Brunthaler, and Michael
Franz. Profile-guided automated software diversity. In Code Generation and
Optimization (CGO), 2013 IEEE/ACM International Symposium on, pages
1–11. IEEE, 2013.

[HNTC+12] Jason Hiser, Anh Nguyen-Tuong, Michele Co, Mathew Hall, and Jack W
Davidson. ILR: Where’d My Gadgets Go? In Security and Privacy (SP),
2012 IEEE Symposium on, pages 571–585. IEEE, 2012.

[HRIK15] Andrea Höller, Tobias Rauter, Johannes Iber, and Christian Kreiner. Diverse
Compiling for Microprocessor Fault Detection in Temporal Redundant Sys-
tems. In The 13th IEEE International Conference on Dependable Autonomic
and Secure Computing, 2015.

[Inc15] Apple Inc. Apple Open Source. http://www.opensource.apple.com/,
2015. [Online; accessed 14-August-2015].

[jac08] The superdiversifier: Peephole individualization for software protection, au-
thor=Jacob, Matthias and Jakubowski, Mariusz H and Naldurg, Prasad and
Saw, Chit Wei Nick and Venkatesan, Ramarathnam. In Advances in Infor-
mation and Computer Security, pages 100–120. Springer, 2008.

[KBLN04] Miryung Kim, Lawrence Bergman, Tessa Lau, and David Notkin. An ethno-
graphic study of copy and paste programming practices in OOPL. In Empir-
ical Software Engineering, 2004. ISESE’04. Proceedings. 2004 International
Symposium on, pages 83–92. IEEE, 2004.

[KKA92] Ghani A Kanawati, Nasser A Kanawati, and Jacob A Abraham. FER-
RARI: A tool for the validation of system dependability properties. In Fault-
Tolerant Computing, 1992. FTCS-22. Digest of Papers., Twenty-Second In-
ternational Symposium on, pages 336–344. IEEE, 1992.

[KLD+94] Johan Karlsson, Peter Liden, Peter Dahlgren, Rolf Johansson, and Ulf Gun-
neflo. Using heavy-ion radiation to validate fault-handling mechanisms.
IEEE micro, (1):8–11, 1994.

[KML+06] Nektarios Kranitis, Andreas Merentitis, N Laoutaris, George Theodorou,
A Paschalis, Dimitris Gizopoulos, and Constantin Halatsis. Optimal periodic
testing of intermittent faults in embedded pipelined processor applications.
In Proceedings of the conference on Design, automation and test in Europe:
Proceedings, pages 65–70. European Design and Automation Association,
2006.

[koo15] Kuo Zuo koon. The k out of n system model. http://www.ewp.rpi.edu/

hartford/~ernesto/S2008/SMRE/Papers/Kuo-Zuo-koon.pdf, 2015. [On-
line; accessed 14-August-2015].

[LA04] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the Interna-
tional Symposium on Code Generation and Optimization: Feedback-directed

http://www.opensource.apple.com/
http://www.ewp.rpi.edu/hartford/~ernesto/S2008/SMRE/Papers/Kuo-Zuo-koon.pdf
http://www.ewp.rpi.edu/hartford/~ernesto/S2008/SMRE/Papers/Kuo-Zuo-koon.pdf

BIBLIOGRAPHY 117

and Runtime Optimization, CGO ’04, pages 75–, Washington, DC, USA,
2004. IEEE Computer Society.

[Lat08a] Chris Lattner. LLVM and CLang: Next Generation Compiler Technology.
The BSD Conference, pages 1–2, 2008.

[Lat08b] Chris Lattner. LLVM and Clang: Next generation compiler technology. In
The BSD Conference, pages 1–2, 2008.

[Law96] Kevin P Lawton. Bochs: A portable pc emulator for unix/x. Linux Journal,
1996(29es):7, 1996.

[LDE+07] JC LKnight, JW Davidson, D Evans, A Nguyen-Tuong, and C Wang. Gen-
esis: A Framework for Achieving Software Component Diversity. Technical
report, DTIC Document, 2007.

[LHBF14] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. SoK:
Automated Software Diversity. In Proceedings of the 2014 IEEE Symposium
on Security and Privacy, SP ’14, pages 276–291, Washington, DC, USA,
2014. IEEE Computer Society.

[MRMS94] Henrique Madeira, Mário Rela, Francisco Moreira, and João Gabriel
Silva. RIFLE: A general purpose pin-level fault injector. In Dependable
ComputingEDCC-1, pages 197–216. Springer, 1994.

[NB10] Gene Novark and Emery D. Berger. DieHarder: Securing the Heap. In
Proceedings of the 17th ACM Conference on Computer and Communications
Security, CCS ’10, pages 573–584, New York, NY, USA, 2010. ACM.

[Nel15] Ed Nelson. newlib-no-uint-type-defines.diff. https://sourceware.org/ml/
newlib/2014/msg00082/newlib-no-uint-type-defines.diff, 2015. [On-
line; accessed 14-August-2015].

[NMRW02a] G.C. Necula, S. McPeak, S.P. Rahul, and W. Weimer. Cil: An infrastructure
for C program analysis and transformation. International Conference on
Compiler Construction, pages 213–228, 2002.

[NMRW02b] George C Necula, Scott McPeak, Shree P Rahul, and Westley Weimer. CIL:
Intermediate language and tools for analysis and transformation of C pro-
grams. In Compiler Construction, pages 213–228. Springer, 2002.

[NS07] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In ACM Sigplan notices, volume 42,
pages 89–100. ACM, 2007.

[OCJ08] Jon Oberheide, Evan Cooke, and Farnam Jahanian. CloudAV: N-Version
Antivirus in the Network Cloud. In USENIX Security Symposium, pages
91–106, 2008.

https://sourceware.org/ml/newlib/2014/msg00082/newlib-no-uint-type-defines.diff
https://sourceware.org/ml/newlib/2014/msg00082/newlib-no-uint-type-defines.diff

BIBLIOGRAPHY 118

[OMM02] Nahmsuk Oh, Subhasish Mitra, and Edward J McCluskey. ED 4 I: error
detection by diverse data and duplicated instructions. Computers, IEEE
Transactions on, 51(2):180–199, 2002.

[PLMK08] Riccardo Poli, William B Langdon, Nicholas F McPhee, and John R Koza.
A field guide to genetic programming. Lulu. com, 2008.

[PPK12] Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. Smashing
the gadgets: Hindering return-oriented programming using in-place code
randomization. In Security and Privacy (SP), 2012 IEEE Symposium on,
pages 601–615. IEEE, 2012.

[PSS12] Peter Popov, Vladimir Stankovic, and Lorenzo Strigini. An Empirical Study
of the Effectiveness of

”
Forcing“ Diversity Based on a Large Population of

Diverse Programs. In Software Reliability Engineering (ISSRE), 2012 IEEE
23rd International Symposium on, pages 41–50. IEEE, 2012.

[Pul01] Laura L Pullum. Software fault tolerance techniques and implementation.
Artech House, 2001.

[RPB+01] C Rousselle, Matthias Pflanz, A Behling, T Mohaupt, and H Vierhaus. A
register-transfer-level fault simulator for permanent and transient faults in
embedded processors. In date, page 0811. IEEE, 2001.

[Sch14] Eric Schulte. Neutral Networks of Real-World Programs and their Appli-
cation to Automated Software Evolution. PhD thesis, University of New
Mexico, Albuquerque, USA, July 2014. https://cs.unm.edu/ eschulte/dis-
sertation.

[Sch15a] Gerhard Schoenfelder. FIES: A Fault Injection Framework for the Evaluation
of Self-Tests. Master’s thesis, Graz University of Technology, 2015.

[Sch15b] Eric Schulte. Clang-Mutate: Manipulate C-family ASTs with Clang.
https://github.com/eschulte/clang-mutate, 2015. [Online; accessed 14-
August-2015].

[SDMHR11] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin
Rinard. Managing performance vs. accuracy trade-offs with loop perforation.
In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering, pages 124–134. ACM,
2011.

[Sem11] Freescale Semiconductor. i.MX28 EVK Hardware User’s Guide. Technical
Report 924-76415, Freescale Semiconductor, 2011.

[SFF+14] Eric Schulte, Zachary P. Fry, Ethan Fast, Westley Weimer, and Stephanie
Forrest. Software Mutational Robustness. Genetic Programming and Evolv-
able Machines, 15(3):281–312, September 2014.

https://github.com/eschulte/clang-mutate

BIBLIOGRAPHY 119

[SFW10] Eric Schulte, Stephanie Forrest, and Westley Weimer. Automated Program
Repair Through the Evolution of Assembly Code. In Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering,
ASE ’10, pages 313–316, New York, NY, USA, 2010. ACM.

[STB97] Volkmar Sieh, Oliver Tschache, and Frank Balbach. VERIFY: Evaluation of
reliability using VHDL-models with embedded fault descriptions. In Fault-
Tolerant Computing, 1997. FTCS-27. Digest of Papers., Twenty-Seventh
Annual International Symposium on, pages 32–36. IEEE, 1997.

[Tea15a] The Clang Team. Clang 3.8 documentation: LibTooling. http://clang.

llvm.org/docs/LibTooling.html, 2015. [Online; accessed 14-August-
2015].

[Tea15b] The Clang Team. Clang Compiler Users Manual. http://clang.llvm.org/
docs/UsersManual.html, 2015. [Online; accessed 14-August-2015].

[Tea15c] The Clang Team. Clang::ASTConsumer Class Reference. http://clang.

llvm.org/doxygen/classclang_1_1ASTConsumer.html, 2015. [Online; ac-
cessed 14-August-2015].

[Tea15d] The Clang Team. ClangFormat. http://clang.llvm.org/docs/

ClangFormat.html, 2015. [Online; accessed 14-August-2015].

[Tea15e] The Clang Team. Cross-compilation using Clang. http://clang.llvm.org/
docs/CrossCompilation.html, 2015. [Online; accessed 14-August-2015].

[Tea15f] The Clang Team. Introduction to the Clang AST. http://clang.llvm.

org/docs/IntroductionToTheClangAST.html, 2015. [Online; accessed 14-
August-2015].

[Tea15g] The Clang Team. JSON Compilation Database Format Specification. http:
//clang.llvm.org/docs/JSONCompilationDatabase.html, 2015. [Online;
accessed 14-August-2015].

[TIJ96] Timothy K Tsai, Ravishankar K Iyer, and Doug Jewitt. An approach to-
wards benchmarking of fault-tolerant commercial systems. In Fault Tolerant
Computing, 1996., Proceedings of Annual Symposium on, pages 314–323.
IEEE, 1996.

[WDHK01] Chenxi Wang, Jack Davidson, Jonathan Hill, and John Knight. Protection
of software-based survivability mechanisms. In Dependable Systems and Net-
works, 2001. DSN 2001. International Conference on, pages 193–202. IEEE,
2001.

[WHD+09] Daniel Williams, Wei Hu, Jack W Davidson, Janson D Hiser, John C Knight,
and Anh Nguyen-Tuong. Security through diversity: Leveraging virtual ma-
chine technology. Security & Privacy, IEEE, 7(1):26–33, 2009.

[Wik15] Wikipedia. Translation unit (programming) — Wikipedia, The Free Ency-
clopedia, 2015. [Online; accessed 1-September-2015].

http://clang.llvm.org/docs/LibTooling.html
http://clang.llvm.org/docs/LibTooling.html
http://clang.llvm.org/docs/UsersManual.html
http://clang.llvm.org/docs/UsersManual.html
http://clang.llvm.org/doxygen/classclang_1_1ASTConsumer.html
http://clang.llvm.org/doxygen/classclang_1_1ASTConsumer.html
http://clang.llvm.org/docs/ClangFormat.html
http://clang.llvm.org/docs/ClangFormat.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/IntroductionToTheClangAST.html
http://clang.llvm.org/docs/IntroductionToTheClangAST.html
http://clang.llvm.org/docs/JSONCompilationDatabase.html
http://clang.llvm.org/docs/JSONCompilationDatabase.html

BIBLIOGRAPHY 120

[WWB03] Rong Wang, Feiyi Wang, and Gregory T Byrd. Design and implementation
of Acceptance Monitor for building intrusion tolerant systems. Software:
Practice and Experience, 33(14):1399–1417, 2003.

[ZAV+04] Haissam Ziade, Rafic A Ayoubi, Raoul Velazco, et al. A survey on fault
injection techniques. Int. Arab J. Inf. Technol., 1(2):171–186, 2004.

	Introduction
	Motivation
	Goals
	Framework for Automatic Software Diversity
	Integration of FIES
	Hardware Fault Detection
	Compiler Toolchain
	Fault Recovery

	Outline

	Technical Background and Related Work
	Fault Tolerance
	Redundancy Techniques
	M-out-of-N Architecture

	ARM926EJ-S Processor
	MMU
	Registers

	Fault Injection
	Fault Modes
	RAM Fault Modes
	Instruction Decoder Faults

	Automated Software Diversity
	Categorization
	Diversification Levels
	Diversification During The Software Life-Cycle

	Managed Software Diversity
	Evolutionary Algorithms
	Program Representation Tools
	Software Mutational Robustness
	Test Suite Quality
	Cumulative robustness
	Repairing Bugs

	Concept and Design
	QEMU
	QEMU compared to other emulators

	Diversification Chain
	Diverse Compiling
	LLVM
	CLANG LibTooling

	Transformations
	Software Neutral Networks
	Fitness Evaluation
	Evolutionary Algorithm

	Target System
	Software Evolution Library
	Implementation

	Implementation
	Diversification Chain
	Mutation
	LLVM Source Mutation
	High Level Source Mutation
	High Level ASM Mutation
	Low Level Mutation

	Evolution
	Simulation
	Fault Injection Framework
	Modifications on FIES
	Python Simulator
	Fault Library

	Toolchain
	Packages and Files
	Compilation
	Compile to ASM
	Precompilation of Libraries and Shared Resources

	Restrictions
	Installation

	Results
	Output Methods
	Test Programs
	Automotive and Industrial Control
	Network
	Telecommunications

	Fault Detection
	RAM Faults
	Register Faults
	Instruction Decoder Faults
	Fixed Register Flag

	Fault Recovery
	Common RAM Addresses

	Mutation Performance
	Source Mutation
	ASM Mutation
	Runtime Performance

	Conclusion
	Further Work

	Diversification Chain Source
	Python
	Shell Scripts
	XML
	Further Work

	Literaturverzeichnis

