
Test Plan Generation and Veri�cation

for a Modular Power Stress Test System

Master's thesis
submitted by

Klaus Plankensteiner

�������������

supervised by:
Univ.�Prof. Dipl.�Ing. Dr.techn. Horst Bischof

Institute for Computer Graphics and Vision
Graz University of Technology

and:
Univ.�Prof. Dipl.�Ing. Dr.techn. Wilfried Elmenreich

Institute of Networked and Embedded Systems
Alpen-Adria-Universität Klagenfurt

and industrially supervised by:
Benjamin Steinwender, BSc. MSc.

Kompetenzzentrum Automobil- u. Industrieelektronik GmbH

September, 2015

Graz University of Technology
AI

A�davit

I hereby declare in lieu of an oath that

� the submitted academic work is entirely my own work and that no auxiliary
materials have been used other than those indicated,

� I have fully disclosed all assistance received from third parties during the
process of writing the work, including any signi�cant advice from supervisors,

� any contents taken from the works of third parties or my own works that have
been included either literally or in spirit have been appropriately marked and
the respective source of the information has been clearly identi�ed with precise
bibliographical references (e.g. in footnotes),

� to date, I have not submitted this work to an examining authority either in
Austria or abroad and that

� the digital version of the work submitted for the purpose of plagiarism assess-
ment is fully consistent with the printed version. I am aware that a declaration
contrary to the facts will have legal consequences.

(Signature) (Place, date)

I

Abstract

The heart of a new modular power stress test system approach is a test plan which
describes the whole system and test procedure. This test plan has to be created in
a user friendly way and should be veri�ed. The veri�cation includes, among others,
Finite-State Machine (FSM) and Lua script veri�cation.

A Graphical User Interface (GUI) was implemented in Java to ease the task of
the test plan creation. This GUI contains a graphical system to create FSMs with
Lua code inserted per state. An auto completer and code highlighting system was
implemented for the Lua code input to further improve the user experience. Several
additional enhancements were added � like a history system, di�erent layouts and
visual error indication. Additionally, an automatic build and deployment system
was added to ease the deployment of future versions.

The Test-plan Checker represents a static checker and was implemented as an
extra project which is used by the Test-plan Builder . Several FSM conditions had
to be checked for this task. The hardest part was the veri�cation of the Lua code.
This code is distributed on several FSM states and can be executed in arbitrary
order depending on the FSM transitions. The resulting implementation of the Lua
checker turned out to be usable in other Lua projects too. Additionally, a simple,
experimental simulator was implemented which represents the �rst steps to add a
dynamic checker. The Test-plan Checker is also provided as a stand alone command
line tool which will be used by the test system for a �nal validity check before
starting.

II

Zusammenfassung

Das Herz eines neuen modularen Power Stress Tests Systems ist ein Testplan, welcher
das ganze System und den Ablauf beschreibt. Dieser Testplan muss benutzerfre-
undlich erzeugt und auf Fehler überprüft werden. Die Überprüfung beinhaltet unter
anderem FSM und Lua Script Überprüfungen.

Eine GUI wurde in Java implementiert um das erstellen zu erleichtern. Diese
GUI enthält ein gra�sches System zum erstellen von FSMs welche in jedem Zustand
Lua code enthalten. Eine automatisch Vervollständigung und ein Code highlight-
ing System wurde für die Lua Eingabe implementiert um die Benutzer Erfahrung
zu verbessern. Zusätzlich wurden einige Verbesserungen hinzugefügt � wie ein His-
tory System, verschiedene Layouts und visuelle Fehler Kennzeichnung. Es wurde
auch ein automatisches Bau- und Verteilungssystem der Applikation erstellt um die
zukünftige Entwicklung so einfach wie möglich zu gestalten.

Der Test-plan Checker stellt eine statische Fehlerüberprüfung dar und wurde als
zusätzliches Projekt implementiert welches vom Test-plan Builder verwendet wird.
Mehrere FSM Bedingungen mussten für diese Aufgabe überprüft werden. Der schw-
erste Teil war das überprüfen des Lua Codes. Dieser Code ist auf mehreren FSM
Zuständen aufgeteilt und kann in beliebiger Reihenfolge, abhängig von den Übergän-
gen, ausgeführt werden. Es stellt sich heraus, dass die resultierende Implementierung
der Fehlerüberprüfung auch für andere Lua Projekte verwendet werden kann. Zusät-
zlich wurde ein einfacher, experimenteller Simulator implementiert welcher den er-
sten Schritt in Richtung dynamische Überprüfung darstellt. Der Test-plan Checker
ist auch als Kommandozeilen Programm zur Verfügung gestellt um dies für eine
�nale Überprüfung vor dem Teststart zu verwenden.

III

Acknowledgments

I would like to thank some people who have kindly supported the successful com-
pletion of my computer science master studies � Thank you!

Horst Bischof & Wilfried Elmenreich who gave me the opportunity to write
this master thesis.

Josef Fugger & Michael Glavanovics who gave me the opportunity to develop
the resulting application and write this master thesis under fantastic conditions
at KAI.

Benjamin Steinwender who was the best industrial supervisor someone could
think of.

Sascha Einspieler who gave me important inputs for the usability of the resulting
application.

My family who gave me the �nancial support and motivation to �nish my studies
without distractions.

My friends who were responsible for some needed distractions and endless fun in
times of boredom.

IV

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Goals . 3
1.3 Problem de�nition . 4
1.4 Outline of the Thesis . 4

2 Basic concepts 7
2.1 Test-driven programming . 7
2.2 Re�ection . 8
2.3 Generics . 9
2.4 JSON with Gson . 10
2.5 The MoPS testplan . 11
2.6 The MoPS FSM . 13
2.7 Lua veri�cation . 13
2.8 Electronic Data Sheet . 15

3 Test plan generation 17
3.1 MoPS FSM input . 17
3.2 Lua Input . 20
3.3 Ovenplan . 23
3.4 Network data . 24

3.4.1 Con�guration �le data . 25
3.4.2 MoPS and SAM data . 26
3.4.3 EDS data . 27

3.5 Loadable parameter . 28
3.6 Additional features . 29

4 Test plan veri�cation 33
4.1 FSM . 33

4.1.1 Dead end nodes . 34
4.1.2 Lonely nodes . 34
4.1.3 Hardware event . 34
4.1.4 Software event . 35

V

4.2 Lua . 35
4.2.1 Script generation . 35
4.2.2 Code veri�cation framework 36
4.2.3 Code veri�cation . 37
4.2.4 General Lua errors . 39
4.2.5 Project speci�c Lua errors . 46

4.3 Oven plan . 48
4.4 Simple simulator . 50
4.5 Standalone checker . 51

5 Evaluation 53
5.1 Test-plan Builder . 53
5.2 Test-plan Checker . 55

5.2.1 MoPS FSM data . 55
5.2.2 Lua data . 56
5.2.3 Oven plan data . 56
5.2.4 Experimental script simulator 56

6 Conclusion 59

Index of abbreviations 61

Bibliography 62

A Sample source code 67

VI

Chapter 1

Introduction

In semiconductor industry, it is very important to know the reliability of devices to
avoid malfunction in dangerous situations. To achieve this knowledge for semicon-
ductors, long and accurate stress tests are performed with automatic test systems.
Tests which put the devices to their limits until they are destroyed are very common
in this industry to gather data of high quality.
Such a test system in a modular approach (software and hardware) controlled
by micro controllers and a host PC is currently developed at Kompetenzzentrum
Automobil- u. Industrieelektronik GmbH (KAI). It is called Modular Power Stress
[1] (MoPS) test system. In this test system, there are 3 dynamically controlled
hierarchy levels which provide test management, control of each Device Under
Test (DUT), and measurements for diagnosis as shown in Figure 1.1. The fol-
lowing list explains each of these layers:

Test Layer Responsible for test management. This actor handles several node
actors which are lower in the hierarchy level and is located on a host computer.

Node Layer Dedicated interface to the µController to enable communication and
provide a GUI. One actor handles exactly one µController. The actor is
located on the same host computer as the test actor.

µController Executes the test, drives and monitors a DUT. It is located near
the DUT in the test system hardware to simplify wiring and is accessed via
Ethernet from the node actor.

Each of these levels is working individually based on a test plan in JavaScript Object
Notation (JSON) format [2]. Such a test plan consists of one FSM [3] created for
each level. The states of the FSM execute Lua code [4] de�ned by the user through
the test plan. The code in the FSMs are able to trigger transitions for the FSMs
which are in the same or lower hierarchy.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Software Architecture for MoPS (Host Software) (Image created by
Benjamin Steinwender and modi�ed by Klaus Plankensteiner)

1.1 Motivation

Until now, the test plans were written and designed in a text editor. For complex
test plans, this is very hard and error prone, which calls for a more comprehensive
tool with a graphical user interface. There is no existing software which could solve
this task due to the fact that the test plan is very project speci�c. It is actually
the �rst project in which Lua code is combined with a FSM. Therefore, an own
implementation is needed which is described in Chapter 3.

Additionally, the generated test plan should be as error resistant as possible.
This resulted in the implementation of a test plan checker which is described in
Chapter 4. The Lua check could have been a part which is already available because
the Lua scripting language is very common and available since 1993. But research
(summarized in Section 2.7) resulted in a terrible insight � there is no �awless Lua
veri�cation tool available to the public.

1.2. GOALS 3

1.2 Goals

There is a need for verifying the test plan (especially the contained Lua code) since
it is not veri�ed in the current software version. The key goal of the master thesis
is to simplify the creation of the test plan and apply veri�cation to it. Basically,
an evaluation to which extent the test plan can be validated is performed. This
includes Lua script and FSM structure. Static methods are applied to detect the
following errors:

� Testplan �le

� JSON format errors

� FSM (Section 4.1)

� Deadlocks (e.g. Node which has no outgoing edges)

� FSM structure errors

� Unreachable nodes

� Possible transitions

� Empty IDLE node

� General Lua (subsection 4.2.4)

� Always the same or unreachable code (e.g. if a 6= a then end)

� Empty code blocks (e.g. if/else block)

� In�nite loops (e.g. while true do end)

� Unused variables

� Use of uninitialized variables

� Lua syntax errors (checked with parser)

� Project speci�c Lua (subsection 4.2.5)

� Used MoPS-CORE Application Programming Interface (API) with hard-
ware description

� Used Software Architecture for MoPS (SAM) API

Thus, the �rst step is to provide an intuitive application to generate the test plan.
This application includes an intelligent auto-complete system for the Lua code to
support the input for lab engineers which are not used writing in the script language
Lua. The second step is to verify the generated test plan by checking the FSM, Lua
code and parameters. This drastically improves the quality of the used test plans
and reduces the risk of life test crashes. To further increase the maintainability,

4 CHAPTER 1. INTRODUCTION

these two steps are separated and the test plan generation application will use the
veri�cation tool as a separate module.

Parsing of the Lua code is not required since there are already existing tools
which are able to handle this task. Therefore, this task is not part of this master
thesis.

Since this project is written in Java and veri�es Lua code, all code listings and
explanations are focused on these two languages.

1.3 Problem de�nition

This thesis is concerned with the user friendly creation of the test plan �le and error
detection in this �le for the MoPS system. Therefore, the following questions arise:

� How to visualize the creation process to provide an intuitive user experience?

� How to build the FSMs?

� How to easily provide Lua code input to non computer experts?

� How to provide the MoPS-CORE and SAM API in the Lua code?

� How to detect as much errors as possible in the test plan?

� How to verify the FSMs?

� How to verify the Lua code?

� How to generate all possible Lua part combinations from the FSMs for
veri�cation?

� How to verify the in Lua code used API?

� How to verify the machine is able to use the API?

� How to verify the oven plan?

1.4 Outline of the Thesis

This sections concerns with the outline of this thesis and will give some reading
advice.

The introduction is found in Chapter 1 and describes the motivation, goals and
problems of this thesis. It is highly interesting and should not be skipped by anyone
who want to get more insight into this thesis.

Basic concepts are explained in Chapter 2. This includes basic software concepts
and concepts of the parent project. If you do not already know the parent project,
you should de�nitely read about the MoPS test plan in Section 2.5, the MoPS
FSM in Section 2.6 and the Electronic Data Sheet (EDS) �le in Section 2.8. This
knowledge is mandatory to understand certain aspects of this thesis.

1.4. OUTLINE OF THE THESIS 5

The creation of the test plan is described in Chapter 3. That section concerns
mainly with the GUI. If you are not interested in GUI design and user experience
enchantments, just have a look at the network data section (see Section 3.4) and
the loadable parameter section (see Section 3.5).

The test plan veri�cation is described in Chapter 4. It concerns with the static
veri�cation of FSM, Lua and oven plan. Additionally, a dynamic approach for the
Lua veri�cation is described in Section 4.4.

An evaluation of the implementation is done in Chapter 5 and the conclusion
follows in Chapter 6.

Chapter 2

Basic concepts

For better understanding of this thesis, some basic concepts are explained in this
chapter. These basic concepts contain computer science topics and some important
concepts of the parent project, the doctoral dissertation of Benjamin Steinwender [5].
Additionally the usage of these concepts in this thesis is explained too.

2.1 Test-driven programming

Test-driven programming [6] is a simple but powerful software development process.
The idea behind it is to design test procedures before implementing the system.
This makes the developer focus on the requirements before writing new source code
which is a small but powerful di�erence. Additionally, the code is already tested
which increases quality and maintainability a lot. The only downside of this concept
is the time overhead which is needed to write test cases before implementing small
features. This process consists of 4 steps as seen in Figure 2.1.

De�ne requirements The �rst step is to de�ne all requirements and exception
conditions. It can be accomplished, for example, through use cases and user
stories. This step is one of the most important ones since all test cases and
the �nal implementation will be written to meet these requirements. Changing
the requirements afterwards results in time consuming re-factoring of test cases
and the function. In the worst case this also in�uences other implementations.

Implement test The second step are the tests. These will ensure that the function
will meet the requirements and are the backbone of this development process.
It does not matter in which test framework they are written, but the more
precise these tests are, the better. It is also important to test all corner cases.

Implement/Re-factor function The third step is the implementation of the ac-
tual function.

7

8 CHAPTER 2. BASIC CONCEPTS

Test passed? The last step is to test the implementation with the implemented
test. If it passes, the development process of this function is over, otherwise
the process continues in step three by re-factoring the function.

De�ne requirements

Implement test

Implement/Refactor
function

Test
passed?

Finished

y

n

Figure 2.1: Test-driven programming work�ow

This development process turned out to be very useful during implementation of
the Lua code checker (see Section 4.2). First, the errors which had to be recognized
were de�ned by test cases with the JUnit framework [7] and only then the check for
a speci�c code attribute was implemented.

2.2 Re�ection

Re�ection [8] is the ability of a computer program to observe and modify its own
structure. In the beginning, computer programs where created in their native ma-
chine language. These languages were inherently re�ective since you could de�ne
instructions as data and use self modifying code. Over the time higher-level lan-
guages like C where developed to ease the process of programming and therefore the
ability of re�ection got lost. In 1982, Brian Cantwell Smith introduced the idea of
re�ection in higher-level languages in his doctoral dissertation [9].

A big drawback of re�ection is performance. In most cases, it is signi�cantly
slower than its static counterpart because of string comparisons and additional
needed validity checks. Furthermore, the compiler is not able to optimize the code
as he would do for static code. Nevertheless it is a great way to increase runtime
�exibility on parts of the application where performance is not necessary.

2.3. GENERICS 9

Among other things it is possible to read out all members of an object as shown
in Listing 2.1. This easy way to inspect and modify an object in addition to generics
(see Section 2.3) is heavily used in this thesis to alter con�guration Bean [10] classes
with a user de�ned con�guration �le (see Section 3.5).

Listing 2.1: re�ection.java

1 public void r e f l e c t i onExample (Object o) {
2 for (F i e ld f : o . g e tC la s s () . g e tDec l a r edF i e ld s ()) {
3 St r ing f ie ldName = f . getName () ;
4 Object f i e l dVa l u e = f . get (o) ;
5 }
6 }

2.3 Generics

Generics [11] is the ability of a programming language to use parametrized objects.
The type of the object is speci�ed when the function or class is used. This is needed
to avoid duplicate functions or classes in type safe languages. A very simple example
would be a container which holds one arbitrary object. With generics it is possible
to de�ne one single class which changes the data type of the object depending on
the usage. In the example shown in Listing 2.2 the object in the container is an
Integer.

Listing 2.2: GenericContainer.java

1 class Container<T>{
2 T ob j e c t ;
3 }
4

5 Container<Integer> c = new Container<Integer >() ;

The List structure in Java is implemented with Generics. A big advantage of
Java unlike other languages is the possibility to use the extend keyword with generic
types. This allows e.g. to de�ne a type as Comparable which forces all objects used
with this generic to extend the de�ned class. Therefore, it is possible to implement
a parametrized List data structure which provides a sort function.

This mechanic is used in this thesis for loading con�guration Beans with default
parameters. The reason why generics is used instead of polymorphism is, that this
forces both function parameters to be the same type and therefore have the same
�elds. A simpli�ed version of overwriting null values by default values is shown in
Listing 2.3. Since this code snippet uses generics and re�ection (see Section 2.2) it
is highly �exible and can be used with arbitrary classes.

10 CHAPTER 2. BASIC CONCEPTS

Listing 2.3: generic.java

1 <T> void ove r r ideNu l lVa lue s (T toOverr ide , T va lues) {
2 for (F i e ld f : toOverr ide . ge tC la s s () . g e tDec l a r edF i e ld s ())

{
3 i f (f . get (toOverr ide) == null) {
4 f . s e t (toOverr ide , f . get (va lue s)) ;
5 }
6 }
7 }

2.4 JSON with Gson

JSON [2] is a very popular and compact data format which is used in many appli-
cations for data exchange. The two most important advantages of this format is
the simple usage and the human readable format. Furthermore, the encoding and
decoding of this format is implemented in almost every programming language1.
This enables e.g. system environments to encode data on the server, send it to the
client, and decode it there to use the data in a structured way.

Google developed the application Gson [12] on top of JSON. Gson is able to
take a JSON string in addition to an arbitrary class and tries to parse the data into
an object of this class with the help of re�ection Section 2.2. Therefore, it is only
needed to de�ne a class which represents the JSON object to parse the data into an
useful data structure. A simple example of Gson in action is given in Listing 2.4.

Listing 2.4: Simple Gson example

1 public class Person {
2 public St r ing name ;
3 public I n t eg e r age ;
4 }
5 St r ing j s onS t r i n g = "{\"name\" :\"Max\" ,\" age \" :20} " ;
6 Person p = new Gson () . fromJson (j sonSt r ing , Person . class) ;

Lines one to four de�ne the class. This class is represented by the JSON string in
line �ve. Line six converts the string into an actual object.

Gson is very simple to use as shown above, but it also has its downsides. It is not
possible to de�ne standard values for a non present value in the string. If the value
is not in the string, the member gets the null value assigned. Another issue is object
referencing. If there are two members which refer to the same object, the object
is written twice and duplicated on reloading the string. This is the only behavior
which prevents the usage of Gson on complex objects.

1Available JSON parser (September 2015): http://json.org/

http://json.org/

2.5. THE MOPS TESTPLAN 11

Nevertheless, Gson is a very useful application if these issues are kept in mind.
Therefore, it is used on all topics in this work where a human readable format
is required or useful. This includes the caching of network data as described in
Section 3.4 and the loading of user de�ned con�guration parameters as described in
Section 3.5.

2.5 The MoPS testplan

The MoPS system needs a proper test plan as mentioned in Chapter 1. It contains
all values needed to run a MoPS test. The plan is a text �le which contains the values
in JSON format. According to JSON conventions the �le has the .json extension.
Figure 2.2 represents the data structure of one test plan. An overview about every
�eld follows. For a more detailed description of the test plan please refer to the
doctoral thesis of Benjamin Steinwender [13].

Test plan

Test Name: String

Test Fsm: String

Fsm

name: String

Transition

currentNode: String

event: String

nextNode: String

Node

name: String

code: String

Ovenplan

slot: String

dut: String

node: String

uCTarget: String

applicationModule: String

nodeFsm: String

uCFsm: String

type: Actor

Figure 2.2: Testplan datastructure

Test Name Name of the test.

Test FSM Name of the FSM running on the test actor. This FSM controls all

12 CHAPTER 2. BASIC CONCEPTS

node actors. There has to be exactly one de�ned FSM with the same name
and of type test.

FSM Multiple FSMs are possible. De�nes the behavior of an actor in form of a
FSM and Lua code. Since one actor uses one FSM, there are maximal as much
FSMs as actors.

type There are 3 possible actor types: test, node, uc. Actors are only allowed
to use FSMs of the same type. This �eld is only needed for the Test-plan
Checker to be able to generate all errors at once. If this �eld would not
be present, the checker would not know what to check on an unused FSM.
For example, the MoPS-CORE API is only allowed on the µC actor.

name Name of the FSM. Used for assigning a FSM to the corresponding
actor. This name has to be unique for a distinct assignment.

Node Represents one state in the FSM.

name Name of the node in a FSM. Used for assigning nodes in transi-
tions. This name has to be unique in the FSM for a distinct assign-
ment.

code Lua code which is invoked on state transitions. Transitions in own
FSM or FSMs of child actors can be triggered here with the transition
name (event). Furthermore, modules de�ned in MoPS-CORE can be
called per layer, e.g. the MoPS-CORE API is available on the µC
actor FSM. The scripts on each node are called in the same Lua
instance. This provides the possibility to e.g. de�ne variables in one
state and use them in another state.

Transition Possible transitions between the nodes. The code in the new node
will be invoked on transition.

currentNode Name of the current node. A transition is only able to
occur if the current state represents the current node.

event The name of the transition. According to convention, hardware
events (triggered by the hardware) have the pre�x @ and software
events (triggered by the software through the Lua code) do not have
this pre�x. Additionally, the transition name @else is available which
indicates a transition that occurs after the end of the Lua code execu-
tion of one state. The combination of currentNode and event has to
be distinct per FSM to guarantee an unambiguous use of transitions.

nextNode The name of the new node (state) after a transition.

Ovenplan The oven plan describes the required hardware for this test and maps
the hardware to the corresponding FSMs.

slot Location of the DUT in the machine.

2.6. THE MOPS FSM 13

dut Name of the DUT.

node IP addresses of the µC node. This is needed because the communication
between node and µC actor is performed over Ethernet.

ucTarget Name of the hardware target. De�nes for example the µC hardware
which is than checked against the used hardware in the machine.

applicationModule Name of the test application. De�nes the application
hardware which is then checked against the used hardware in the machine.

nodeFsm Name of the FSM running on the node actor responsible for this
DUT. This FSM controls the corresponding µC FSM de�ned through the
uCFsm entry. There has to be exactly one de�ned FSM with the same
name and of actor type node.

uCFsm Name of the FSM running on the µC actor responsible for this DUT.
There has to be exactly one de�ned FSM with the same name and of
actor type uc.

2.6 The MoPS FSM

The MoPS FSM is an FSM with Lua code in the nodes and a modi�ed transition
mechanic. This mechanic is indicated in Figure 2.3. If the MoPS system is in a state,
the Lua code of the corresponding node is executed. At the end of the execution a
check for events is performed. If an event and transition name matches, the FSM
changes its state. If there is no matching transition, either the @else transition is
performed if present, or the same node is executed again.
There are two di�erent types of events.

� Hardware events are triggered in the hardware and do have a naming conven-
tion: prepended @.

� Software events are triggered in the software through the MoPS-CORE and
SAM API in the Lua code.

2.7 Lua veri�cation

Lua[4] is a small and simple scripting language which is very widespread2. It is
also used in the test plan of the MoPS test system to describe the behavior of a
test run. Since this thesis concerns with the veri�cation of the test plan, Lua script
veri�cation has to be done. This section will discuss the need of an own veri�cation
implementation and di�erent solution approaches.

2Where Lua is used (September 2015): https://sites.google.com/site/marbux/home/

where-lua-is-used

https://sites.google.com/site/marbux/home/where-lua-is-used
https://sites.google.com/site/marbux/home/where-lua-is-used

14 CHAPTER 2. BASIC CONCEPTS

Execute Lua of
current state

End of Lua
execution

A transition
matches event?

@else present?

New state is
current state

New state
over event

New state
over @else

Execute Lua of
current state

n

y

n

y

Figure 2.3: MoPS FSM state transition

The search for and evaluation of existing applications, which are able to verify
Lua scripts, resulted in a terrible insight. There is currently no satisfying application
for this task. All of them are in preliminary state, not developed anymore and does
not ful�ll the required error detection rate. Following most promising applications
were found, evaluated and rejected:

LuaLint 3 It does only static analysis of global variable usage in Lua source code.
It does not provide any possibility to travel Lua code in a convenient way or
create an Abstract Syntax Tree (AST). It is not moderated since 2004.

lua-checker 4 It does only implement checks on variables. It has no possibility to
travel Lua source code. It is not moderated since 2013.

LuaInspect 5 It does not �nd uninitialized variables. It has no possibility to travel
Lua source code. It is not moderated since 2011.

3https://github.com/philips/lualint
4https://code.google.com/p/lua-checker/
5https://github.com/davidm/lua-inspect

https://github.com/philips/lualint
https://code.google.com/p/lua-checker/
https://github.com/davidm/lua-inspect

2.8. Electronic Data Sheet 15

LuaFish 6 The source analysis part is superseded by LuaInspect. Di�erent from
LuaInspect, it is possible to travel Lua code in a convenient way. Therefore,
this would have been the most promising application. It is not moderated
since 2011.

The next idea to perform the error detection is to transform the script into
another language and check it in this language. This would be feasible, but a big
problem is the retrieving of the error location in the original language and occurrence
of side e�ects. A similar approach is described in a paper [14] from 2014, which tries
to translate a Lua program to ANSI-C and verify it in this language.

The need of some project speci�c Lua veri�cation and the above evaluations
resulted in an own implementation described in Section 2.7.

2.8 Electronic Data Sheet

Electronic data sheets have already been proposed for sensors in distributed moni-
toring and con�guration architectures [15]. In this work, EDS documents are �les
which are located on every µC in the MoPS test system. These �les describe the
hardware of the corresponding µC. Each of them are also available on a web server
to be fetched by the applications developed in this thesis.

The content of such a �le is crucial for the test plan veri�cation part in this thesis.
A list, which describes some of the information contained in an EDS �le, is following.
This information is used by the test plan checker as described in Chapter 4.

MoPS-CORE version This de�nes the MoPS-CORE API version the µC is ca-
pable of. It describes the functionality of the Lua modules available on corre-
sponding µC. The test plan checker uses this to know the available functions
per MoPS-CORE module.

IP Since the EDS �les are loaded from a web server, there is no actually connection
to the µC on which this �le is located on. This is �xed with this �eld. Every
µC has an IP address and therefore it is possible to match a µC to the cor-
responding EDS �le over the oven plan located in the test plan (Section 2.5).
The test plan checker uses this to map EDS �les to the FSMs speci�ed in the
test plan.

Events This represents a list of possible hardware events. The test plan checker
uses this to perform advanced veri�cation on the FSM structure.

Modules This represents a list of available modules and module instance names.
Only the intersecting modules de�ned in this list and in the MoPS-CORE
API documentation are accessible in the Lua scripts. Therefore, the test plan

6https://github.com/davidm/lua-fish

https://github.com/davidm/lua-fish

16 CHAPTER 2. BASIC CONCEPTS

checker uses this information to verify the right usage of the available modules
in the Lua scripts.

Chapter 3

Test plan generation

A graphical user interface application called Test-plan Builder was developed to
generate test plans in the most convenient way. This application is able to create
a test plan and afterwards export this data to a test plan �le (see Section 2.5).
Additionally, it uses the Test-plan Checker (see Chapter 4) to visualize errors in the
test plan. Only valid test plans can be exported. Therefore the development process
of a test plan is a lot easier, faster and error resistant than writing the test plan �le
by hand.

The result is visible in Figure 3.1. Marked areas in this �gure refer to a section
with implementation details of the corresponding area. These marks include the
FSM generation part of Section 2.6 and the Lua input part of Section 3.2. Another
important area in the Test-plan Builder is the oven plan area. This is hidden in
that �gure but is explained in detail in Section 3.3. The general work �ow of the
application to create a test plan is following:

� Draw the needed FSMs. This will represent the di�erent states of the MoPS
test machine and forces the user to think about the test procedure. The names
of the nodes should represent the activity during this state. See Section 3.1 to
get more details on how to do this and how it is implemented.

� Fill the FSM nodes with Lua code. This code is controlling the hardware at
this state and is responsible for the whole test procedure. See Section 3.2 to
get more details on how to do this and how it is implemented.

� Apply the FSMs to the corresponding hardware by creating the oven plan. See
Section 3.3 to get more details on how to do this and how it is implemented.

3.1 MoPS FSM input

This section will focus on the MoPS FSM input. Refer to Section 2.6 if the MoPS
FSM concept is not already known. The creation process is a very easy and intuitive
one. A drawing space is provided where nodes can be drawn and connected.

17

18 CHAPTER 3. TEST PLAN GENERATION

Section 3.1Section 3.1

Section 3.2Section 3.2

Figure 3.1: Test-plan Builder

The draw process of a node can either be managed with right click → New Node
(see Figure 3.3) or with CTRL + left click drag on a free space. The second option
has the advantage that it is very fast and it is possible to adjust the size of the node
during creation. The node name is checked for all current nodes in the same FSM
on creation. A new name is asked for in case the user enters a duplicate name. It is
also possible to adjust the size of a node after creation by click and drag one of the
edges. Re-positioning is also possible by just click and drag the node. Modifying the
color and name of a node is done by right click → Edit Node as seen in Figure 3.2.
Deletion of a node is possible by selecting and right click → Delete or pressing DEL
on the keyboard. Additionally it is possible to copy and paste a node by the usual
CTRL - C and CTRL - V. All of these functions are also accessible with the context
menu or as shortcuts as seen in Figure 3.16. Furthermore, most of them are possible
to apply on multiple nodes at the same time. Additionally, it is possible to copy
nodes between di�erent FSM areas or share nodes with any social application since
the copy - paste mechanic serializes the node into the clipboard. E.g. copy a node,
paste it into an e-mail (it will paste a string), copy the string from the e-mail and
paste it into the Test-plan Builder .

A system to de�ne the current active FSM is needed since most modi�cations
can also be performed from the global Test-plan Builder menu bar or by shortcuts.

3.1. MOPS! FSM INPUT 19

Figure 3.2: Edit node

The recently active FSM panel is remembered in a database. This is updated if any
changes happens to the FSM view, e.g. re-sizing it, changing data inside or clicking
into it. The background of the current active FSM has a di�erent color than the
others. This indicates the current active FSM to the user and, therefore, the user
will always know which FSM the action will be performed on.

The second important draw process is to connect nodes to represent transitions
in the FSM. This is done either with right click → Connect To... or CTRL + left
click drag from one node to another. The later option has the advantage that it
is very fast. The transition name is checked for all current transitions leaving the
same node on creation. A new name is asked for if this name does already exist.
The sign above the FSM area is able to create an additional FSM area for this

Figure 3.3: Free space right click Figure 3.4: Node right click

actor type since multiple di�erent FSMs are possible on one actor type. There are
option for removing, renaming or clearing the FSM in the context menu as seen in
Figure 3.3.

20 CHAPTER 3. TEST PLAN GENERATION

Sometimes FSMs are getting really big. Therefore, it is important to provide
enough space for the designing part. This is the reason why a layout and zoom
mechanic was implemented. It is possible to hide FSM areas with shortcuts (refer
Figure 3.16) and zoom in or out of them as seen in Figure 3.5. It is also possible
to place graphical notes which are also present in this �gure. Although these notes
will not be in the generated test plan �le, they do hugely improve usability because
they enable grouping of nodes in a visual way.

Hierarchical FSMs (represent a whole FSM with one state) are not supported by
the MoPS system. Nevertheless, it would be possible to provide this functionality
in the graphical user interface and convert the FSM for the test plan. This is
not implemented in the current state but will be in the future. There is only one
downside to this, sub FSMs are lost if the user imports the test plan instead of the
Test-plan Builder save �le.

Figure 3.6 shows all FSM view improvements at a glance.

Figure 3.5: Zoomed big test plan with graphical notes

All of this was implemented from scratch by extending a JComponent. This
method was inspired by the graphpanel project from John Matthews [16].

3.2 Lua Input

A code panel shown in Figure 3.7 is provided per FSM. This panel contains the Lua
code of the current selected FSM state. Code input would not be convenient if two
important components are missing.

The �rst is the code highlighting. This one is added by using code from a Free and
Open Source Software (FOSS) [17] project called RSyntaxTextArea [18]. It provides
a class which implements code highlighting and code folding. Since it is inherited
from a JTextArea it is very convenient to use and to integrate. Furthermore, it

3.2. LUA INPUT 21

Hide other
FSMs

Hide
node info

Zoom in Add
graphical
notes

Figure 3.6: FSM view improvements at a glace

natively supports highlighting of Lua source code. Another highlighting library
called JSyntaxPane [19] was found but this project is not maintained any more and
does not support Lua.

The second important component is the auto-completer. A project called Au-
toComplete [20] is the chosen one to implement this task. It is maintained by the
same people as the RSyntaxTextArea and is also freely available. AutoComplete
has especially good compatibility and features for RSyntaxTextArea because both
projects are a result from the same parent project. There is only one drawback to
this project, it only implements the visual part and does not gather the correct con-
tent like available functions or variables. Thus, there is another project needed for
this � fortunately the creators of RSyntaxTextArea also have such a project called
RSTALanguageSupport [21]. Unfortunately it does not support Lua.

Thus, a simple dedicated implementation is needed. This implementation only
takes Lua keywords, functions and modules of the MoPS-CORE API into account
which are parsed and cached from the API documentation located on a Transport
Layer Security (TLS) secured web server. This API documentation provides every
detail needed for the auto completer as you can see in Figure 3.8 and Figure 3.9.

An error indication is located on the bottom of the text area in addition to the
Lua input. This error indication is a list which shows all detected errors by the Test-
plan Checker . A mapping between error script lines and state lines is created as
shown in Figure 3.10 to convert script lines of the error to state lines. This is needed

22 CHAPTER 3. TEST PLAN GENERATION

Figure 3.7: Lua input

Figure 3.8: AutoComplete

because the Test-plan Checker takes only valid full scripts, and the Lua code of a
state is only a part of it. This enables the Test-plan Builder to visually underline
the errors because the exact location is known. Additionally, it is possible to jump
to the corresponding Lua code location with a double click on an error in the list.

An important factor in user interface design is to be always responsible. This
means an user interface should never be blocked by a long running function. There-
fore, all heavy working processes (like the checker) have to be outsourced from the
GUI thread to a worker thread. An extra checker thread is implemented which
is triggered on data change. After this thread is �nished, it updates the GUI to
indicate found errors. An advanced trigger mechanic was developed since a simple
implementation would trigger a lot of checks. In this advanced mechanic, a �ag is

Figure 3.9: AutoComplete - Parameter Completion

3.3. OVENPLAN 23

INIT

RUN

INIT + RUN
script

INIT: 1-2
RUN: 3-4

Example:
Script line 3
→ RUN line 1

1 a = 1
2 b = 2

1 c = 3
2 d = 4

1 a = 1
2 b = 2
3 c = 3
4 d = 4

Figure 3.10: Script to state line mapping

set to 1 on data change and the checker thread is started if not already running.
The checker thread sets the �ag to 0 at start and reruns at the end if the �ag has
the value 1. This mechanic ensures three things:

1. Only one checker thread is running (and only if needed).

2. Always the latest data state is checked.

3. Some data states are skipped if the checker is not fast enough.

Therefore, the delay between data change and error visualization is de�ned as:
Ω(t) and O(2t), where t is the time of one complete check.

3.3 Ovenplan

The oven plan is a mapping between multiple components. The available compo-
nents with explanations are listed in Section 2.5.

An input has to be provided which maps each DUT to the corresponding values.
Therefore, the input is represented as a table as seen in Figure 3.11.

A usability feature is the last line. It is always empty to provide the space for new
entries. A new empty line is automatically displayed if the user inserts a value into
the last line. Multiple selected lines can be deleted or duplicated with the context
menu.

There are di�erent input methods depending on the column. The Slot and DUT
columns are normal text �elds because there is no information available about these
strings. The remaining �elds are combo-boxes with a forced auto completer. This
means it is possible to write in the �eld but it does only accept values from a
prede�ned list as seen in Figure 3.12.

24 CHAPTER 3. TEST PLAN GENERATION

Figure 3.11: Oven plan input

Figure 3.12: Forced auto completer

This list is either generated by the Test-plan Builder itself (node FSM and µC
FSM) or it is loaded from a web server (see Section 3.4) and locally cached for the
other �elds.

3.4 Network data

The MoPS-CORE and SAM API is still in development and will be changed over
time due to user feedback and hardware changes. This is the reason why hardware
description �les and con�guration �les have to be provided to the Test-plan Builder
and Test-plan Checker . Therefore, a system to provide external data to the appli-
cation has to be implemented. The following three sections will explain how this is
achieved. The general idea is to load the external data from a web server over a
TLS secured connection, parse it into a usable data structure and cache it for o�ine
sessions.

3.4. NETWORK DATA 25

3.4.1 Con�guration �le data

The con�guration �les includes the uC-HW-targets.json and application-
modules.json �le. Both �les contain a JSON string as indicated by the �le name with
version, date and other �elds. It is possible to create a base con�guration class with
version and date since these two �elds exist in every con�guration �le. This enables
the base class to compare con�guration �le versions and, therefore, the application
knows when a new version was downloaded. Furthermore, the base class is able to
provide a loadFromCache() and loadFromNetwork() function since all child classes
have to implement a loadFromJson() method as shown in Figure 3.13.

Con�gurationFileManager

+ getHwTargets() : HwTargets
+ getApplicationModules() : ApplicationModules

Con�gurationBase

+ applicationModules : List<String>

+ isNewerThan(other : BaseCon�guration) : boolean
+ loadFromNetwork() : void
+ loadFromCache() : void
loadFromJson(String string) : void
getFileName() : String

*

ApplicationModules

+ applicationModules : List<String>

loadFromJson(String string) : void
getFileName() : String

HwTargets

+ hwTargets : List<String>

loadFromJson(String string) : void
getFileName() : String

Figure 3.13: Con�guration �le management UML diagram

A con�guration �le manager class is able to handle download, update and caching
to make this system as extendable as possible. This manager is a singleton [22]
containing all con�guration �le classes in an array. The update is done with a
little trick. For each con�guration �le object in the array a clone is produced with
re�ection to keep the object type. Afterwards, the values from the �rst object is
loaded from cache and the values from the second object is loaded from network
with the provided functions de�ned in the base class. Finally, a check for the newer
version is performed with the isNewerThan function.

The implementation allows to add new con�guration �les in a simple way. This
is done by inheriting a new con�guration �le class from the base class and by adding
this to the array in the manager class.

The application is always started with the con�guration �le data cache, updates
the caches in another thread and noti�es the user if the cache was updated to

26 CHAPTER 3. TEST PLAN GENERATION

reduce waiting times. The update thread is exposed by the manager. This enables
the application to wait until the update is complete before exiting. The cache
represents a JSON �le from the actual object. This enables experts to inspect the
cache since a JSON string is a clear text string. Furthermore, the readable cache
has already proven worthy a lot of times during development.

3.4.2 MoPS and SAM data

The MoPS-CORE and SAM API documentation is available on a web server. Since
these two documentations do have the same format, they use the same system in
the Test-plan Builder and Test-plan Checker . The documentation is generated with
LDoc [23] and, therefore, changes in the API can easily applied to the documenta-
tion. This documentation is the perfect location where to get the API speci�cation
since it is always up to date. There is one directory on the web server contain-
ing all documentation versions. This ensures to not break older test plans which
are written for an older API version. Since LDoc puts useful HTML tags into the
generated documentation it is very easy to parse it and therefore there is no other
representation of the API needed.

The implemented parser needs to know the URL to the directory with the docu-
mentation versions. From there on it deletes local version which are missing on the
server or adds new local versions which are new on the server. A documentation
version is parsed into a suitable data structure which contains the actual version and
a list of all found classes and modules in the documentation. The parsing process is
indicted in Figure 3.14. One parsed class or module includes everything useful from
the documentation to not only be able to provide data to the Test-plan Checker but
also to provide the data to the auto completer. Such data includes names or usage
info � just everything which is available in the documentation. Therefore, the user
typically does not need to access the API documentation on the web server at all
since every information from the API documentation is also provided through the
auto completer.

The data is managed by a MoPS-CORE and SAMmanager which is implemented
with the singleton pattern. These managers handle download, update and caching
of the API documentations.

The application is always started with the API documentation cache, updates
the caches in another thread and noti�es the user if the cache was updated to reduce
waiting times. The update threads are exposed by the manager in the same way
as in the con�guration �le section. This enables the application to wait until the
updates are complete before exiting. Since the plain text caching in a JSON �le has
proven very useful as stated in the previous section, it is also used here to cache the
actual object.

3.4. NETWORK DATA 27

Download LDoc
generated content
with provided URL

Create empty
API object

New
module
found?

Return API object

Parse module

Add module
to API object

n

y

LDoc parser

MoPS API manager SAM API manager

Figure 3.14: MoPS-CORE and SAM API parser

3.4.3 EDS data

An EDS �le describes the details of the µC hardware on which the generated test
plan is executed. Therefore, knowledge of this data sheet is helpful for developing a
test plan and should be provided to the user. A detailed explanation of this �le is
available in Section 2.8. The current section concerns only with the retrieving part
and not with the content of such a �le.

All EDS �les are available in a directory accessible over a web server. An EDS
manager class implemented with the singleton pattern is responsible for the down-
load, update and caching of these �les. A PHP script is located on the web server
and returns all EDS �le names and the corresponding content hash of the �le. This
enables the manager to �nd updated EDS �les without downloading all of them.
Additionally the manager removes locally cached EDS �les which are no longer on
the server.

The caching is performed similar to the other network data. The application is
always started with the EDS �les cache, updates the caches in another thread and
noti�es the user if the cache was updated to reduce waiting times. The update thread
is exposed by the manager in the same way as mentioned in the previous sections. As

28 CHAPTER 3. TEST PLAN GENERATION

already stated, the caching in a plain text format is very useful. Therefore this cache
is also implemented with an JSON �le to enable easy debugging or local changes by
experts.

3.5 Loadable parameter

It is important to provide advanced users the possibility to alter the behavior of
the application. This mechanic is implemented via loadable parameters de�ned in
a JSON �le.

The user provides a JSON �le (Listing 3.2) in the root directory of the appli-
cation. This �le is loaded and processed by every con�guration Bean class via the
getLoaded() function (Listing 3.1). In this example the variable name is overwritten
with "p2" and the other values stay at default.

Listing 3.1: PersonCon�g.java

1 public class PersonConfig {
2 public St r ing name = "p1" ;
3 public I n t eg e r age = 20 ;
4 public Float s i z e = 20 .0 f ;
5

6 stat ic private PersonConfig de fau l tVa lue s = new
PersonConfig () ;

7 stat ic public PersonConfig getLoaded () {
8 return LoadableConfig . getConf ig (de fau l tVa lue s) ;
9 }

10 }

Listing 3.2: con�g.json

1 {
2 "name" : "p2" ,
3 "age" : null
4 }

static public <T> T getCon�g(T defaultValue) is implemented with re�ection (Sec-
tion 2.2) and generics (Section 2.3) to be able to use it with arbitrary classes.

Gson (Section 2.4) takes the class of the default values Bean and the JSON �le
as shown in Figure 3.15. Depending on loading success, either the remaining values
(null values) are replaced by default values, or all default values are taken. The
con�guration Bean is only loaded once and managed by the LoadableCon�g class to
improve performance.

Once implemented, this system is very easy and comfortable to use. Additionally,
it is easily possible to upgrade old con�guration �les since the only di�erence to the
old source code is the getLoaded() function.

3.6. ADDITIONAL FEATURES 29

Class of default values
bean and con�g.json

Gson

Exception?

Replace null values
by default values
through re�ection

Loaded values

Use default values

n

y

Figure 3.15: Load arbitrary con�guration Bean from JSON �le with Gson and
default values

3.6 Additional features

This section shortly describes additionally implemented features. Although these
do not represent a big part of the project, they are very important for the user
experience and should be mentioned. Therefore, they are not explained in full
detail. The following features are mainly concerned with usability.

History system This system tracks every modi�cation of the test plan to enable
the user to step back and forward in the modi�cation history. A snapshot of
the whole database is taken on each modi�cation. The snapshot is created by
serializing and deserializing the whole database to remove the need of a clone
method. All snapshots are stored in an ordered list and the current entry
index represents the current state.

The graphical user interface implements a reload method with the composite
pattern [24]. This means every object will reload itself and call a reload method
on all of its children. The reload method will build the corresponding object
according to the database content.

Therefore, it is possible to easily walk backward and forward in the history by
loading the corresponding snapshot and successively calling the reload function
on the root graphical user interface object.

Di�erent layouts Due to di�erent layout requirements caused by the di�erent

30 CHAPTER 3. TEST PLAN GENERATION

combinations of the displayed areas, the user is able to switch between a hori-
zontal and vertical layout as shown in Figure 5.4 and Figure 5.5 of Section 5.1.

Shortcuts Shortcuts are an important feature of graphical user interfaces since
they increase productivity. Furthermore, all popular graphical user interfaces
are providing shortcuts. Therefore, shortcuts have to be provided to improve
intuitive and fast handling by the user. All available shortcuts are visualized
in the menu as shown in Figure 3.16.

Figure 3.16: Shortcuts

FSM transition indication Possible transitions triggered by the selected states
are indicated as shown in Figure 3.17. The sendEvent('start') function of the
selected state triggers all start transitions on the child FSM. Therefore, these
transitions are highlighted to improve usability.

Figure 3.17: Transition indication

3.6. ADDITIONAL FEATURES 31

Error to location jump A double click on an error in the error list under the
Lua input area results in a jump to the corresponding line. This increases the
speed of debugging signi�cantly since the user does not need to scroll through
the Lua code anymore.

Mouse wheel navigation The mouse wheel is able to trigger some navigation
features.

� Mouse wheel scrolls vertically in the FSM

� SHIFT + mouse wheel scrolls horizontally in the FSM

� STRG + mouse wheel zooms in or out of the FSM

Automatic build and deployment An easy way to build and deploy the appli-
cation was requested. Therefore a build system is required which is able to
build the whole project from the command line. Gradle [25] was chosen to be
this build system after a comparison between Ant [26], Maven [27] and Gradle,
which represent the most popular systems. After providing a build script, it is
possible to build the application and automatically upload it to a web server
available to all users.

Git version exposure It is important to expose the Git version of the application
to the user for error reports and debugging. This is done with an informa-
tion dialog which appears if the user opens the About menu. This version is
generated by a Gradle [25] script which creates a resource �le with this string
as single content. Gradle was chosen because it is already used for the auto-
matic build process and therefore this way of version exposure �ts very well
into the current build process. The generated resource �le is deployed within
the application binary. The string is read from this �le during run time to
provide the exact Git version to the application. Thus, it is possible to add
this resource �le to the Git ignore list and therefore not change the Git version
in the moment the version is provided to the project.

Chapter 4

Test plan veri�cation

Errors will occur in the test plan since it is generated by humans. Therefore, the
veri�cation of the test plan represents a very important part of the MoPS work �ow.
The test plan is either available as �le (see Section 2.5) if used from the standalone
checker (see Section 4.5), or already in a suitable data structure if used from the
Test-plan Builder (see Chapter 3). In the �rst case the �le has to be parsed to a
suitable data structure to verify the right format of the test plan �le before checking.
This is done with Gson (see Section 2.4). After availability of the check able data
structure the veri�cation is performed as seen in Figure 4.1.

Standalone
checker

Gson
Check able
datastructure

Verify data

Test plan
builder

Figure 4.1: Data transformation for checker

Multiple checks are performed on the data. Each of the following sections will
describe a check in detail.

4.1 FSM

The test plan contains FSMs as already known from Section 2.5. For detailed
information about them please refer to Section 2.6. Four errors are able to occur in
FSMs as shown in Figure 4.2.

33

34 CHAPTER 4. TEST PLAN VERIFICATION

IDLE IDLE IDLE IDLE IDLE

RUN RUN RUN RUN RUN

@else @else @else @else
@else @else @�n �n

Valid Dead end
Lonley
node

Invalid hw
event *

Invalid sw
event **

* If not de�ned in EDS �le
** If not used by Lua code

Figure 4.2: FSM errors

4.1.1 Dead end nodes

These are nodes that do not have an exit transition. According to the MoPS speci-
�cation, a path is only valid if it is able to end in the initial state IDLE. Therefore,
nodes which are not able to reach the IDLE state are erroneous nodes called �dead
end nodes�.

The simplest case is shown in Figure 4.2. It is enough to check for outgoing
transitions to detect this case. For nodes which have transitions but do not reach
the IDLE node again (e.g. IDLE -> A, A -> B, B -> A) an algorithm is needed.
Basically, this algorithm is a breadth-�rst search algorithm which is common in
trees. Since this is a graph with possible loops there is one little di�erence � nodes
do not need to be visited twice during the search. The �dead end� error is detected
if the IDLE node is not visited.

4.1.2 Lonely nodes

Lonely nodes are nodes with no visitors. If a node does not get any visitors this
state is impossible to occur. This is either a design failure of the test plan or a
transition is missing. It is very easy to detect this error, just a check for incoming
transitions is needed. It is detected in the case of no incoming transition.

4.1.3 Hardware event

Hardware events are events triggered by the hardware and have the pre�x @ by
convention. There is a list of possible events de�ned in the EDS �le. The oven
plan is used to get the corresponding EDS �le for a FSM. Additional to the de�ned
events there is a special event called @else. It is triggered after the Lua code of a
node is �nished. After retrieving the valid hardware events it is possible to check
these against the used hardware events.
An error is detected if a hardware event is not on this list of valid events.

4.2. LUA 35

4.1.4 Software event

Software events are events triggered in the Lua code through function calls. There
are two possible functions to trigger software events:

setEvent(name) Triggers a software event in the own FSM. Since this triggers
in the own FSM, the node in which this is used has to have a corresponding
transition.

sendEvent(name) Triggers a software event in a child FSM. Since a child FSM
is needed usage is only possible in a test or node FSM.

All valid software events have to be gathered to verify the software events in the
FSM. This is done by getting all triggered software events from the corresponding
parent FSM which is de�ned through the oven plan. There are more valid events
per transition since there is the setEvent(name) which is able to trigger an event
in the own FSM. The Lua code of the origin node from the transition has to be
parsed for it. Found triggered events are added to the valid list. This list can now
be checked against the transition software event and if it is not present an error is
detected.

4.2 Lua

It is necessary to have valid full scripts to be able to check the Lua code. Therefore,
it is not possible to just check the Lua code of every node on its own since variables
can be declared in node INIT and used in node RUN as shown in Figure 4.3. In
this case the code in node RUN alone would not be valid since the used variable
has not been initialized. The whole script (INIT + RUN) would be valid.

INIT RUN RUN script
INIT + RUN

script

a = 1 b = a b = a
a = 1
b = a X

Figure 4.3: Script combination

4.2.1 Script generation

This consideration results in the need of a generation method of all possible scripts.
In other words: Generate all possible paths in the FSM with start and end in
node INIT (which is the start node). This is not a trivial problem because loops
generate an in�nite amount of paths in the graph. Therefore two questions arise.

36 CHAPTER 4. TEST PLAN VERIFICATION

How often should loops be executed and how to ensure there is no error in the n+1
time. Luckily we do not need to consider such problems since rede�nition in Lua
is valid and only a static analysis is applied. Because of the static analysis values
of variables are not considered and therefore a second run of a code part does not
change anything for the veri�cation.

This results in a new de�nition of the path generation problem: Generate all
possible paths in the FSM with start and end in node INIT by visiting each node
only once per path. This rede�nition eases the problem signi�cantly and results
in a simple algorithm. If this algorithm should not meet the requirements in the
future, it is easily replaced since it is possible to provide an own generator class to
the Test-plan Checker .

After knowing the path it is easy to generate all scripts by just appending the
content of the nodes of one path. But that is not all. Some additional code is
necessary before the actual script is veri�ed since the Lua code has access to the
MoPS-CORE and SAM API. The API de�nitions are loaded from a web server as
mentioned in Section 3.4 and added as compatible Lua code in front of the checked
script. Only empty dummy functions without return values are needed since Lua is
not a type safe language and this is only a static veri�cation.

4.2.2 Code veri�cation framework

The reason why a proprietary implementation is needed and di�erent solution ap-
proaches are discussed in Section 2.7. For better maintainability and re-usability,
the veri�cation is split in project speci�c checks and general Lua checks. This has
the advantage that the general Lua checking part can be easily replaced or extended
by future Lua checkers which verify more than this implementation. Checked scripts
are generated as general valid Lua scripts as described above for further advantages
of this idea. Additionally many project speci�c checks are performed as general Lua
checks by adding additional source code to the scripts. e.g. the MoPS-CORE and
SAM API as described in the above script generation part.

The implementation of the veri�cation is split into several layers to ensure main-
tainability and future improvement of the veri�cation. As shown in Table 4.1 the
�rst step is to �nd errors. These errors are converted to LuaErrorTokens which
contain the error and location in the script. Afterwards the LuaErrorTokens are
converted to FSMErrorTokens via line mapping which contain the FSM path, the
node and location in this node. These updated tokens are exposed and used by the
Test-plan Builder (see Chapter 3) and standalone checker (see Section 4.5).

It is only necessary to generate LuaErrorTokens due to this layered implemen-
tation and the rest is done by the implemented framework. As stated above it is
easily possible to use an external Lua script checker. The only additional implemen-
tation is the conversation of the new Lua checker errors to LuaErrorTokens of this
framework. The next section will describe how to �nd errors.

4.2. LUA 37

Test-plan Builder Standalone checker
FSMErrorToken
LuaErrorToken

Error

Table 4.1: Code veri�cation layers

4.2.3 Code veri�cation

The �rst error type to handle in every language are syntax errors. For this a parser
is needed. This parser will be also used for other error detection like uninitialized
variables. Therefore, this parser should provide a simple way to travel the source
code or to generate an AST. An AST also provides a convenient way to travel
the source code to �nd errors and respected programs like Lint [28] use the same
approach. Optionally it would be helpful to execute Lua with this application to
implement a simple simulator which should be usable in Java. Additionally the
application has to return the location of the parsing error. Thus the application has
to meet following requirements:

� Usable in Java

� Travel code or generate an AST

� Location of parsing error

� Maintained software

� Support of latest Lua version

� Execute Lua code (optional)

Only Java applications are considered since the usage in Java is a requirement within
this project. The following applications are available:

Kahlua2[29] It is a virtual machine for Lua and does not provide any possibility
to travel the Lua code or generate an AST by itself. LuaJ has to be provided,
to enable this feature. Since LuaJ is on the list of considered applications
Kahlua2 is not suitable to solve the required tasks. Furthermore, it has not
been maintained since 2013.

Mochalua[30] It is a virtual machine like kahlua2. It also provides no ability to
travel the code or build a AST. Furthermore, it has not been maintained since
2008. Therefore, this is also no suitable application for the needed tasks.

LuaJ [31] Maintained interpreter which provides a convenient way to travel the
Lua source code. It does not only know the exact location of the traveled

38 CHAPTER 4. TEST PLAN VERIFICATION

tokens, but also returns the exact location of parsing errors (in most cases).
Furthermore it supports the latest Lua version and is still getting updated for
future versions of Lua. Additional to the necessary requirements, it provides
the optional requirements. LuaJ implements a virtual machine in Java which
is able to execute Lua code.

JNLua[32] It is a virtual machine and requires the installation of the JNLua Native
Library on the running operating system. This is unreasonable for a productive
tool. People want to get the Java application and be able to run it without
any further setup. Moreover, there is no system provided for code traveling.

LuaJ was chosen to do the job after comparison of available applications because it
meets all needed and optional requirements. It provides an useful way to travel the
code and implements the possibility to execute Lua code. Thus, a simple simulator
(see Section 4.4) has also been implemented to perform additional checks.

LuaJ provides a very convenient way to travel the source code, such as traveling
an AST without building an AST �rst. It implements a visitor framework. To use
this, it is needed to create an inherited class, implement a visit method for every
needed syntax element and pass this class to the parser. Visited syntax elements
are shown in Table 4.2. A visitor is implemented for every error which needs to
be detected. Listing 4.1 is a sample visitor implementation to detect empty code
blocks.

Listing 4.1: EmptyCodeBlock.java

1 public class EmptyCodeBlock extends Vi s i t o r {
2 @Override
3 public void v i s i t (Block block) {
4 super . v i s i t (b lock) ;
5 i f (b lock . s t a t s . s i z e () == 0) {
6 // Empty code b l o c k d e t e c t e d !
7 }
8 }
9 }

The EmptyCodeBlock class is inherited from the Visitor class to be able to use it
with the parser. Every occurrence of a Block will trigger this visit method. An
example for a Block is the content of if or while. The call of the super.visit(block)
method is very important since the parser would stop if it is missing.

All Lua speci�c errors are recognized with this system. One visitor is imple-
mented for each error to recognize. Errors and how they are found are described in
the next two sections. The programming strategy at this part of the project is test
driven programming. As mentioned in Section 2.1 there is one test class for every
implemented visitor. These test classes de�ne the valid and invalid code for every
visitor. Thus, the valid code structures are de�ned by the test cases and the visitors
are implemented correctly if all test cases pass.

4.2. LUA 39

Chunk Block Stat.Assign Stat.Break
Stat.FuncCallStat Stat.FuncDef Stat.GenericFor Stat.IfThenElse
Stat.LocalAssign Stat.LocalFuncDef Stat.NumericFor Stat.RepeatUntil
Stat.Return Stat.WhileDo FuncBody FuncArgs
TableField Exp.AnonFuncDef Exp.BinopExp Exp.Constant
Exp.FieldExp Exp.FuncCall Exp.IndexExp Exp.MethodCall
Exp.NameExp Exp.ParensExp Exp.UnopExp Exp.VarargsExp
ParList TableConstructor Name String
NameScope Stat.Goto Stat.Label

Table 4.2: Syntax elements visited by LuaJ

4.2.4 General Lua errors

This section describes the detection of general Lua errors. Some of the listed er-
ror detection methods are also used to �nd project speci�c errors described in the
next section. This is because the focus was on �nding project speci�c Lua errors
in the most general way. Every listed error will provide an example of the Test-
plan Builder . This example uses already the Test-plan Checker and the described
method.

� Always the same (and unreachable code)

Statements shown in Table 4.3 are considered as always the same. In addition
to the listed statements, a statement is also detected if a is the same constant
for all a in one statement (e.g. a == a is the same as 2 == 2). Since these
statements result in the same values every time this also results in unreachable
code at e.g. if statements.

The detection of these errors is very simple. The visit(Exp.BinopExp exp)
method has to be overridden. This method visits all statements shown in
Table 4.3. At this point there is only one step left: The check if Exp.BinopExp
exp matches any of the listed statements.

Figure 4.4 shows some examples in action.

� Bad coding practice

Bad coding practice is considered code which is allowed by the language, but
should not be used since most of these practices result in error prone source
code or maintainability problems. One of these practices is the usage of the
goto statement. Therefore, it is prohibited in the test plan. To recognize this
statement it is enough to override the visit(Stat.Goto gotostat) method. No
further implementation is needed for this.

Figure 4.5 shows an example of this error in action. The important line 2 is
skipped because of the goto statement. Therefore a would not be initialized.

40 CHAPTER 4. TEST PLAN VERIFICATION

a + 0 always a
0 + a always a
a - 0 always a

a == a always true
a < a always false
a > a always false
a >= a always true
a <= a always true
a 6= a always false

a / 0 always in�nity
a / 1 always a
0 / a always 0

a * 0 always 0
a * 1 always a
0 * a always 0
1 * a always a

Table 4.3: Always the same

Figure 4.4: Always the same

� Empty code block

This recognition is similar to the bad coding practice. It indicates source
code the user forgot to write. As shown in Listing 4.1 it is only needed to
override the visit(Block block) method. Furthermore a check for the number of
statements in the block is required to recognize empty code blocks. Examples
for empty code blocks would be empty loops, if -blocks or functions.

Figure 4.6 shows an example of this error in action. In line 2 an empty block
is detected because someone forgot to implement this function.

� Unde�ned functions

Uninitialized functions are a little bit more complicated to detect. The detec-
tion is split into two parts since a function has to be de�ned and afterwards

4.2. LUA 41

Figure 4.5: Bad coding practice

Figure 4.6: Empty block

used in the right scope.

The �rst part is the function de�nition. Multiple visitor methods have to be
used for this to add available functions to a function list. This function list
will be accessed later to verify the usage of a function.

visit(Stat.FuncDef stat) This visits a normal global function de�nition
which is available in every scope. An example would be function test()
end. If this occurs a new function with name and parameter count is
added to the possible function list.

visit(Stat.LocalFuncDef stat) This visits a normal local function de�nition
which is available only in this scope. An example would be local function
test() end. If this occurs a new function with name, parameter count and
corresponding scope is added to the possible function list.

visit(Stat.Assign stat) In Lua it is possible to de�ne functions with an
assignment. An example would be test = function() end. This visit
method does not necessarily visit a function assignment. Thus only a
possible function is added if a function is assigned. The function is added
with name and parameter count to the possible function list since this is
a global assignment.

42 CHAPTER 4. TEST PLAN VERIFICATION

visit(Stat.LocalAssign stat) This is the local counter part to the
visit(Stat.Assign stat) method. An example would be local test = func-
tion() end. The function is added with name, parameter count and scope
to the possible function list.

The Exp.AnonFuncDef visitor is missing on purpose because it visits the func-
tion de�nition in an assignment. There would be no name and scope informa-
tion if the Exp.AnonFuncDef visitor is used instead of the assignment visitors.

The second part is the check if used functions are de�ned. There is not a lot of
work left since a list of possible functions is already generated in part one. The
method visit(Exp.FuncCall exp) has to be overridden to detect used functions.
The function is checked for valid usage depending on the Exp.FuncCall. Only
a function in the form of test() is checked since other types (e.g. a.test()) are
handled in the next checker. A function is valid if it matches an entry in the
possible function list with name, parameter count and scope.

It is important to mention that part one and two do not work in sequence.
Since the methods are implemented in the same visitor a function has to be
de�ned before usage. If a function is de�ned after usage the visitor will detect
an error.

Figure 4.7 shows an example of this error in action. In line 4 a typo causes a
call to an unde�ned function.

Figure 4.7: Unde�ned functions

� Unde�ned classes & methods

It is not possible to write Object-oriented programming (OOP) code nativity
in Lua. But with some workarounds and table tricks it can be simulated. To
be able to check classes and methods a valid syntax has to be created. For
this purpose a class function shown in Listing A.1 is de�ned. With this trick it
is now possible to de�ne classes with ai = class(function(a,name)end for the
usage like obj = ai('name'). Furthermore it is possible to de�ne methods with
function ai:print() end and use them like obj:print(). This is now the only

4.2. LUA 43

valid OOP syntax in the test plan which is checked and it is de�ned in this
way because the MoPS-CORE API is accessible with this syntax. To verify
the right usage there are four steps required.

� The �rst one is the availability of the actual class. The visitors for local
and global assignments are overridden. The implementation adds a new
class to the valid class list if a class assignment is detected.

� The second step is the availability of the class methods. The method
visit(Stat.FuncDef stat) is overridden. The implementation checks if this
is a method de�nition. If it is a method de�nition it will either add a
possible function with name and parameter count to the class, or it will
generate an error token if the class is not already in the valid class list.

� Variables are mapped to classes in the third step. On every assignment
a variable is cleared from the class mapped to it. If the assigned value
is the simulated constructor function, either the class is mapped to it, or
an error token is generated if the class is not in the valid class list.

� The last step veri�es the right usage of an object. For this the
visit(Exp.MethodCall exp) is overridden. The implementation checks if
the variable has a class mapped to it. An error token is generated if
no class was found. Otherwise the method is compared to the method
de�nitions in this class.

Additional to the usage check it also checks for double assignment of a class.
It is not possible e.g. to assign something to C after creating the class C.

It is important to mention that these parts do not work in sequence. Since the
methods are implemented in the same visitor the class and methods have to
be de�ned before usage. If a class or method is de�ned after usage the visitor
will detect an error.

Figure 4.8 shows an example of this error in action. It is not possible to add a
method to a not de�ned class in line 1. In line 4 the assignment fails because
the class does not exist. Line 5 tries to call a method, but the variable is not
a class object.

� Unde�ned tables & table functions

A table is de�ned with t = {} and function are added with function t.clear()
end. It is possible to use the function like t.clear(). This is now the only valid
table function syntax in the test plan which is checked and it is de�ned in this
way because the MoPS-CORE API is accessible with this syntax. To verify
the right usage there are three steps required.

� The �rst one is the availability of the actual table. The visitors for local
and global assignments are overridden. The implementation adds a new
table to the valid table list if the assignment of {} is detected.

44 CHAPTER 4. TEST PLAN VERIFICATION

Figure 4.8: Unde�ned classes & methods

� The second step is the availability of the table functions. The method
visit(Stat.FuncDef stat) is overridden. The implementation checks if this
is a function de�nition. If it is a function de�nition it will either add a
possible function with name and parameter count to the table, or it will
generate an error token if the table is not already in the valid table list.

� The last step veri�es the right usage of the table. For this the
visit(Exp.FuncCall exp) is overridden. The implementation compares the
function to the function de�nitions in this table.

Additional to the usage check it also checks for double assignment of a table.
It is not possible e.g. to assign something to t after creating the table t.

It is important to mention that these parts do not work in sequence. Since the
methods are implemented in the same visitor the table and functions have to
be de�ned before usage. If a table or function is de�ned after usage the visitor
will detect an error.

Figure 4.9 shows an example of this error in action. In line 3 a typo tries to
add a function to a not de�ned table and line 4 causes a call to an unde�ned
function on the table t.

� In�nite loops

In�nite loops are detected by inspecting the statement in the condition. For
this the visit(Stat.RepeatUntil stat) and visit(Stat.WhileDo stat) methods have
to be overridden. Both result in the same function which accepts condition
statements and body statements. There are two cases of in�nity loops.

The �rst one occurs if the condition is a true constant. Conditions which
always evaluate to true are already recognized by another check.

The second case occurs if no variable of the condition is modi�ed within the
body. Therefore the body is searched for an assignment to one of the variables
in the condition. If none is found an error token is generated.

4.2. LUA 45

Figure 4.9: Unde�ned tables & table functions

Figure 4.10 shows an example of this error in action. There was a typo (i
assignment) in line 4 and therefore i is never modi�ed in the while loop.

Figure 4.10: In�nity loop

� Uninitialized variables

Variables should be accessed after initialization only. The fast implementation
would be to override the visit(Exp.NameExp stat), resolve the variable for it
and handle it depending on read or write access. But an implementation is
needed which is able to distinguish between read or write access since there
is no distinction between these two access types in this method. For this the
veri�cation is divided into two parts. The �rst is the variable initialization
part and the second is the check on usage part.

Two methods has to be overridden to perform part one: visit(Stat.LocalAssign
stat) and visit(Stat.Assign stat). Luckily variables are already handled nicely
in Luaj. There is a distinction between local and global variables in the parser.
Therefore it is only needed to add an isAssigned member to the variable class
and set it to true.

The second part is as easy as the �rst one but needs a little bit more imple-
mentation work. Every visitor method in which read access is able to occur

46 CHAPTER 4. TEST PLAN VERIFICATION

is overridden. The read access statements are checked for variables in the
implementation . If there are variables found, they are checked for the new
isAssigned member.

Figure 4.11 shows an example of this error in action. Variable a on line 5 was
never assigned. Therefore it is uninitialized. This example showcases, that
the recognition is scope sensitive. Additionally to scopes it also considers loop
variables.

Figure 4.11: Uninitialized variables

4.2.5 Project speci�c Lua errors

Project speci�c errors are only able to occur in relation to the MoPS project. Nev-
ertheless the focus of the following detection methods is on �nding these errors in
the most general way. Therefore the following methods will partly use the previ-
ously implemented detection methods. This results in the fact, that the successful
detection of project speci�c errors does highly depend on the successful detection of
general Lua errors.

� MoPS-CORE API access

It is possible to access the MoPS-CORE API within Lua in the µC FSM.
There are two access types:

Modules MoPS-CORE modules are comparable to singleton classes with
static access. They are de�ned in the MoPS-CORE documentation and
updated in the Test-plan Builder and Test-plan Checker by parsing the
documentation available on a web server. The API is implemented in C
in MoPS-CORE and the documentation is generated with LDoc [23].
Examples for this API are uc.clear() and time.print().

Classes Classes are normal classes. They are de�ned and updated like mod-
ules. Other than modules, class instances have to be created in the Lua
script.
An examples for this API is scan0 = ai("scan0"); scan0:setChn(0, 1).

4.2. LUA 47

Prepended code for the tested Lua scripts is generated to verify the API access
in the most general way. Therefore dummy Lua code is created with the same
syntax de�ned in the previous visitors. It is important that this generated
code is not only valid for this checker implementation but also for general
Lua. This provides the possibility to add external Lua checkers in the future
if available.

The used API content is generated from EDS �les explained in Section 2.8
since the available APIs are able to evolve over time. Furthermore not every
hardware can use all modules/classes de�ned in the corresponding API docu-
mentation. The available modules/classes are de�ned in the EDS �le. There-
fore it is necessary to generate a common API content (intersection) for every
hardware using the same Lua script. The prepended code for the Lua script is
generated from the common API content. Afterwards, the MoPS-CORE API
errors are detected by the Unde�ned classes & methods and Unde�ned tables
& table functions checker.

Figure 4.12 shows an example of this error in action. The MoPS-CORE ai class
is assigned to the variable a on line 1. Afterwards various method accesses
are tried. Most of them fail because they are not de�ned. Afterwards the
MoPS-CORE time module is accessed on line 6 and 7. The second one fails
because this function is not de�ned in this module.

Figure 4.12: MoPS-CORE API access

� SAM API access

It is possible to access the SAM API within Lua. This API is implemented
in LabVIEW and the documentation is provided in the same way like the
MoPS-CORE API. The only di�erent to the MoPS-CORE API is, that the

48 CHAPTER 4. TEST PLAN VERIFICATION

SAM API provides functions for the test and node FSM instead of classes and
modules. Therefore the only access type is:

Global functions They are prede�ned functions which are accessible via
Lua. They are de�ned in the SAM documentation and updated in the
Test-plan Builder and Test-plan Checker by parsing the documentation
available on a web server. The API is implemented in LabVIEW on SAM
and the documentation is generated with LDoc [23].
Examples for this API are sendEvent(event) and print(text).

Prepended code is added to the tested Lua scripts as for the MoPS-CORE
API check. It is important, that this code represents valid Lua code to enable
the checker to verify the API in the most general way. Afterwards, the SAM
API errors are detected by the Unde�ned functions checker. This provides the
possibility to add external Lua checkers in the future if available.

The used API version, which determine all additional valid functions, is indi-
cated by the SAM version �eld in the test plan.

Figure 4.13 shows an example of this error in action. A function de�ned by
the SAM API is called on line 1. The function on line 2 does no exist.

Figure 4.13: SAM API access

� Code in IDLE node

Source code other than comments is not allowed in the IDLE node. Only
the content of the IDLE node is considered to recognize this. Every visit
function has to be overridden and an error token is generated if any of them
are triggered. This is the safest way to implement this detection since a regular
expression check for comment tags is very error prone.

4.3 Oven plan

The oven plan is a mapping between multiple components. The available compo-
nents with explanations are listed in Section 2.5.

4.3. OVEN PLAN 49

There should be one oven plan entry for every DUT in the test machine. Unfortu-
nately the Test-plan Checker does not know the DUTs used in the test machine since
it has no physical access to them. This is because the test plan is built and checked
before the machine is set up to run this test. Therefore this has to be checked by
the test machine itself.

On the other side it is possible to check every existing entry in the oven plan.
Every entry has to contain exactly one of each component described above and
depending on the chosen components, other components are valid or not. This is
why multiple checks are needed to verify the oven plan.

Missing values Every entry is checked for missing components. As mentioned
above it is mandatory for each entry to contain a value for every component.

Double values The components slot, dut and node have to be unique in the oven
plan. This is because slot is the location of a DUT and it is not possible to
put multiple DUTs into the same location. dut maps a DUT to this entry and
if there would be more DUTs with the same name it would not be possible to
assign an entry unambiguously. node is the IP address of the µC and only one
unique IP address is allowed in a network as commonly known.

µCTarget and application module values Multiple con�guration �les are
loaded from the network as described in Section 3.4. One of these �les con-
tains a list with possible µCTarget and application module values. Therefore
this has to be checked against this list. Further checks regarding these values
are performed by the test machine since it has physical access to the used
hardware and the Test-plan Checker has not.

Node values (IP) Multiple �les are loaded from the network as already men-
tioned. These �les also contain EDS �les (see Section 2.8) which contain
useful data for the oven plan check. To understand this check it is important
to know, that EDS �les are the description of the µC. It includes among others
the IP address of the µC, which is used here, and the MoPS software running
on it, which is used in the Lua check (see Section 4.2). To verify the node
value it is enough to �nd an EDS �le which contains the IP address. The
check if this is the right µC has to be performed by the test machine since it
has physical access to the used hardware and the Test-plan Checker has not.

FSM usage The components nodeFSM and ucFSM are de�ning the used FSMs
for the corresponding DUT. A value is valid if the corresponding FSM exists
and has the right type. nodeFSM has to have the type Node and ucFSM has
to have the type uC. This is also the place where the testFSM from the test
plan is checked for the right type, which has to be Test.

Additionally the Test-plan Checker searches for unused FSMs which also in-
dicates a wrong oven plan.

50 CHAPTER 4. TEST PLAN VERIFICATION

4.4 Simple simulator

The simple simulator is an experimental feature of the Test-plan Checker . Therefore,
it has to be enabled by the user with an con�guration �le. The idea is to improve the
Test-plan Checker by extending the static checking behavior by a simple dynamic
check. This would enable the checker to reliable detect run time errors like in�nite
loops or null table access.

It is enough to execute the tested Lua script and observe a successful stop of the
script in the simplest case. LuaJ is used to perform this task. It implements a virtual
machine in Java which returns the exact error location with detailed information if
an error occurs.

Sadly the implementation of a working simulator is not that easy since the Lua
script has access to the MoPS-CORE and SAM API. This means that some methods
and functions will return values depending on the hardware. It would go beyond the
scope of this master thesis to cover all of these values or implement a full simulator.

Nevertheless, a simple implementation was performed. Dummy code which sim-
ulates the API is prepended to the script as already mentioned in subsection 4.2.1.
This implementation assumes that the API methods and functions return the same
values all the time. Therefore the scripts will have a slightly di�erent behavior on
the simulator compared to the real system. An obvious example is the following
valid script which results in an in�nite loop on the simulator.

1 a i1 = a i (" a i1 ")
2 while a i1 : read (2) < 5 do
3 end

The read function from line two will always return the same value on the simulator,
therefore it will never leave the loop. But on the real system, this method returns
di�erent values all the time.

Another problem arises in the form of the halting problem. This problem con-
cerns with the question if an application has a �nite run time or not. It can not be
solved as proven by Alan Turing [33] in 1936. Another resource to this problem is
the dissertation of Peter Puschner [34] in which he presents a method for the analysis
of program execution time. Raimund Kirner follows another approach by develop-
ing a whole programming language which is designed for execution time analysis
in his master thesis [35]. Therefore, a practical solution has to be implemented to
bypass this problem. This implementation assumes that the application will not
�nish anymore if it has not �nished during a speci�ed timeout. This timeout has
to be speci�ed by the user within a con�guration �le. The Lua script will stop and
generate an error token with the current executed line if the timeout occurs. At
this point the user has to evaluate if the generated error token is a real error or a
false-positive.

This dynamic check is disabled by default since the simple simulator produces
false-positives and the handling of this simulator needs additional knowledge and

4.5. STANDALONE CHECKER 51

1 $ java −j a r checker . j a r −V −s tp . j son
2 v1.0−5−gc5e16 f e
3 [INFO] Cache update mode : SERIAL
4 [MoPS Module Manager] Cache i s g e t t i n g syncron i zed .
5 [EDS Manager] Cache i s g e t t i n g syncron i zed .
6 [Conf ig F i l e Manager] Cache i s g e t t i n g syncron ized .
7 [INFO] Loading t e s t p l an
8 [INFO] Checking t e s t p l an
9 ########################## TOKENS ##########################

10 [GRAPH] BUG NODE (uC) :WARNING: 0 : 0 : 0 : 0 : I nva l i d path : I nva l i d path found :
IDLE −> RUN −> STOP −> BUG NODE

11 [GRAPH] NOT USED NODE (uC) :WARNING: 0 : 0 : 0 : 0 : Lonely node : Unused node
found

12 [GRAPH] STOP (uC) :ERROR: 4 : 1 : 4 : 9 : a i : Var iab le i s no c l a s s ob j e c t . (Path :
IDLE −> RUN −> STOP)

13 [OVENPLAN] FSM Node i s not used in the ovenplan .
14 [OVENPLAN] FSM uC i s not used in the ovenplan .
15 RETURN CODE: −2

Figure 4.14: Standalone checker sample

con�guration values. Nevertheless it provides very useful information in some cases
and therefore it is provided to power users.

4.5 Standalone checker

It is not guaranteed that loaded test plans in MoPS are created with the Test-
plan Builder application or that users do not change generated test plans with a
text editor. This results in potentially erroneous test runs. To prevent this case
a stand alone command line tool of the Test-plan Checker is provided which will
be used before a test is started in MoPS. This command line tool implements
the commands described in Table 4.4 exclusive some combinations mentioned in
Table 4.5. Additionally the application provides return codes described in Table 4.6
for easier usage. Depending on this return code, either the test will be started, or
manual investigation is needed. A sample output for a small erroneous test plan is
shown in Figure 4.14.

52 CHAPTER 4. TEST PLAN VERIFICATION

-V, --version Prints the version of the application.
-u, --updateCache Updates API, EDS and network con�guration caches asynchronously.

New cache will be used on next run.
-c, --check Checks the given test plan.

The path to the test plan has to be provided.
eg.: app --check "path/to/test plan"

-s, --serialize Update cache and check the test plan with the new cache.
The path to the test plan has to be provided.
eg.: app --serialize "path/to/test plan"

-e, --eds Use alternative EDS �les for checking.
The path to the directory with the EDS �les has to be provided.
eg.: app --eds "path/to/eds/dir"

Table 4.4: Standalone checker commands

--serialize & --check Has no e�ect since --serialize already checks the test plan.
Simultaneous usage could be confusing for users.

--serialize & --updateCache Has no e�ect since --serialize already updates everything.
Simultaneous usage could be confusing for users.

Table 4.5: Standalone checker prohibited command combinations

1 Validation succeeded but includes warnings
0 Validation succeeded
-1 Validation failed because of an unexpected error
-2 Validation failed because of found errors

Table 4.6: Standalone checker return codes

Chapter 5

Evaluation

This chapter covers the evaluation of the �nal implementation. The �rst part focuses
on the graphical user interface of the Test-plan Builder . The second part focuses on
the Test-plan Checker which provides error tokens to the Test-plan Builder .

5.1 Test-plan Builder

Figure 5.1: Test-plan Builder

The graphical user interface got very intuitive after several user reviews, productive

53

54 CHAPTER 5. EVALUATION

usage from a small user group during development and refactoring. Over the time
it got more and more compact which provides a lot of space for the important areas
as you can see in Figure 5.1.
Nevertheless it is hard to design big FSMs if only one third of the screen is available.
It is getting worse on very small screens as shown in Figure 5.2. To solve this issue
it is possible to hide areas as shown in Figure 5.3. Shortcuts are provided for every
possible task to further improve development speed of power users as seen in the
same �gure.

Figure 5.2: Too little space Figure 5.3: Shortcuts

Due to di�erent layout requirements caused by the di�erent combinations of shown
areas, the user is able to switch between a horizontal and vertical layout as shown
in Figure 5.4 and Figure 5.5.

Figure 5.4: Horizontal layout Figure 5.5: Vertical layout

The most di�cult part for non computer experts is the Lua input. An auto completer
is provided which contains all API access code to talk with the hardware. In all

5.2. TEST-PLAN CHECKER 55

situations where the auto completer is called, it will give detailed instructions of
the possible options as seen in Figure 5.6. Furthermore it provides example code for
easy Lua code writing. The shown information is always up to date since it is parsed
(and cached) from the documentation server on every Test-plan Builder start up.

Figure 5.6: AutoComplete

Nevertheless, errors are able to occur in the Lua code. A red line will mark Lua
errors and detailed error information is visible in a window below the Lua code. The
FSMs are also able to contain errors � these are visualized through red marks and
are also listed below the Lua code for detailed error information.

The combination of various graphical user interface layouts, programming sup-
port techniques, a history system and visual error indication provides a smooth and
intuitive user experience. Generally spoken, the implementation of the Test-plan
Builder is a huge success. Furthermore, the modular implementation of the graph-
ical user interface and error detection (see next section) enables the MoPS system
and future projects to easily check test plans for errors.

5.2 Test-plan Checker

The Test-plan Checker provides a very high error coverage of the test plan. There
are multiple locations in the test plan where errors can occur. Thus, this evaluation
is split into multiple sections for a detailed evaluation. These error sections include
FSM, Lua and oven plan data. An evaluation of the experimental script simulator is
provided in subsection 5.2.4 which explains why and how this feature is only usable
by power users.

5.2.1 MoPS FSM data

All known possible static errors are detected by the Test-plan Checker . These errors
do not only include real errors like malformed FSMs but also include user errors in

56 CHAPTER 5. EVALUATION

combination with the Lua code or hardware. Every transition has to be able to
occur in the software or hardware for example.

Nevertheless, there is no guarantee that the FSMs do not end in an in�nity loop
during run time since this is only a static check. Some transitions do highly depend
on the hardware because some of them are only triggered by the hardware during
run time. The FSM is stuck in a state if the hardware do not trigger such an event.

5.2.2 Lua data

The error detection rate in the Lua scripts is pretty high. All basic user mistakes
are found by the error checker. This covers all target errors de�ned for this thesis.
There are only problems in advanced use cases where users use self de�ned nested
tables and modules. But this is not surprising since only a static check is performed.

Nevertheless, the focus on maintainability during implementation enables the
Lua checker to get easily upgraded by external checkers. As described in Section 4.2,
the implementation was tested with the JUnit framework. All errors which should
be found were de�ned in test cases which passed after implementation. Furthermore
the checker is already successfully tested by all users who use the Test-plan Builder .
The exact errors found and examples are listed in subsection 4.2.4.

5.2.3 Oven plan data

All known possible errors are detected by the Test-plan Checker . This data is not
in�uenced by run time since it just describes the hardware. Therefore the oven plan
data is bullet proof.

5.2.4 Experimental script simulator

The script simulator is an attempt to extend the static checks by a dynamic check.
This simulator takes a script and launches it. An error token is generated with the
exact location if any error occurs on run time . This is possible because all project
speci�c functions and modules are added to the scripts as precode by the Test-plan
Checker to generate a valid Lua script.

All possible script combinations are already generated from the Test-plan Checker
as explained in Section 4.2. This results in the conclusion that if all of these script
combinations run without errors, the whole test plan should be valid. For most
scripts it does work pretty well but there are some special cases where the script
simulator fails:

Detect non halting scripts This results in the halting problem [33] which is un-
solvable. A practical solution is to de�ne a script timeout to bypass this
problem. If the script does not halt in this time span, it is stopped and an
error token is generated with the current run time location of the script.

5.2. TEST-PLAN CHECKER 57

Handle hardware generated values The Lua code is closely tied to the hard-
ware with an API access. In the script this API access functions are added
as precode as mentioned before. These dummy function does never change
their return values. Following code snipped is valid and working code on the
hardware but will never leave the while loop on the simulator.

1 a i1 = a i (" a i1 ")
2 while a i1 : read (2) < 5 do
3 end

Despite these two cases the simulator provides a very useful check � if able to �nish.
Due to this condition it is not suitable for non power users since they have to analyze
the error and decide if it is a real error or not. Therefore the simple script simulator
is disabled as default and needs to be enabled by power users with the help of a
con�guration �le.

Chapter 6

Conclusion

Two applications have been implemented during this master thesis. The Test-plan
Builder which uses the second one � the Test-plan Checker . The applications where
implemented in close relation to additionally provide the Test-plan Checker in form
of a console application. This application is used for test plan veri�cation inde-
pendent from the Test-plan Builder . All problems regarding the user friendly test
plan creation and veri�cation described in Section 1.3 have been solved during the
implementation. The veri�cation of dynamically attached Lua chunks as well as the
creation of such a system was not found in any previous project during research.

The creation process is visualized through a GUI (see Chapter 3). This GUI
provides a simple and intuitive way to create FSMs � the user is able to �draw� and
connect FSM states with the mouse. The Lua code input �eld per state is enhanced
with an auto completer and code highlighting. Additionally, detected errors from
the Test-plan Checker are visualized in the GUI, for example by displaying a red line
in the Lua code. The MoPS-CORE and SAM API is provided as documentation on
a TLS secured web server. This documentation is parsed, cached and provided in a
usable data structure to the Test-plan Checker and to the auto-complete system of
the Test-plan Builder .

The task of test plan veri�cation was also successfully achieved. The FSM states
and transitions were checked to match the MoPS FSM de�nition. The Lua code
is veri�ed by generating all possible paths through the FSM. Since rede�nition is
allowed in Lua, every node is only visited once per path. This fact hugely simpli�es
the generation problem and removes issues with loops and revisiting. Every gener-
ated path stands for one Lua script which has to be valid in a general Lua checker.
A dedicated Lua checker is implemented by a static analysis of the code since no
suitable Lua checkers are available. The MoPS-CORE and SAM API is prepended
to the checked Lua scripts as valid Lua code. Therefore, the project speci�c parts
are checked in the same way as the general Lua code. This enables developers to
easily upgrade the Lua checker because it is possible to add an external general Lua
checker to the framework. The veri�cation of the oven plan and other hardware
speci�c values is performed by fetching an electronic data sheet �le. This �le con-

59

60 CHAPTER 6. CONCLUSION

tains all hardware relevant information and is provided through the TLS secured
web server.

Outlook

Although the two implemented applications work pretty well, there is always space
for improvements. In the following, some possible improvements and additional
implementation ideas are covered.

The �rst improvement concerns the improvement of the graphical user interface.
After some months of productive usage and increase of the user base, criticism about
di�erent styles of the applications and usability improvement requests is expected.
These comments and ideas should be gathered in an appropriate tracking applica-
tion. This will grow to a huge resource of visual and usability improvements over
time.

The next improvement is to support the loading of test plan �les in the Test-plan
Builder . The test plan �le is not designed to hold meta data like graphical state
location because this information is not useful for the MoPS system. Therefore, the
Test-plan Builder has its own save �le (mtp) since this information has to be stored
somewhere. It is expected that users will lose some mtp �les over time but still have
the corresponding test plan �le. Therefore, the possibility to import the test plan
�le should be provided in the future. One interesting problem which arises on this
task is the initial positioning of the FSM states.

Another GUI improvement would be the implementation of hierarchical FSMs.
This means the support of sub FSMs in an FSM. The MoPS test system cannot
handle this but it could be provided by the GUI. The hierarchical FSM has to be
translated to a normal FSM during test plan generation. The only downside is the
loss of sub FSMs if the mtp �le is lost.

Although the Lua error detection rate is appreciably high, there are some cases
where errors may not be detected. The Lua detection implementation can be ex-
tended to solve this issue. Furthermore, additional Lua veri�cation software can be
included to catch more errors if useful veri�cation software is available. The Test-
plan Checker was implemented in an extendable way to support both approaches.

The current implementation of the software and hardware event checks does
only cover basic tests. More sophisticated tests could be added. e.g. unambiguous
transitions � two di�erent events are set, which are leaving the same node.

Last but not least, the simple experimental simulator could be improved to evolve
to a full scale dynamic checker. A method to simulate hardware API values and
events has to be implemented. Additionally, a better recognition for non-stopping
scripts can be developed.

Index of abbreviations

API Application Programming Interface

AST Abstract Syntax Tree

DUT Device Under Test

EDS Electronic Data Sheet

FOSS Free and Open Source Software

FSM Finite-State Machine

GUI Graphical User Interface

JSON JavaScript Object Notation

KAI Kompetenzzentrum Automobil- u. Industrieelektronik GmbH

MoPS Modular Power Stress [1]

OOP Object-oriented programming

TLS Transport Layer Security

SAM Software Architecture for MoPS

61

Bibliography

[1] B. Steinwender, S. Einspieler, M. Glavanovics, and W. Elmenreich, �Distributed
power semiconductor stress test & measurement architecture,� in Industrial
Informatics (INDIN), 2013 11th IEEE International Conference on. IEEE,
2013, pp. 129�134.

[2] D. Crockford, �The application/json Media Type for JavaScript Object nota-
tion (JSON),� 2006.

[3] D. Harel, �Statecharts: a visual formalism for complex systems,� Science of
Computer Programming, vol. 8, no. 3, pp. 231�274, Jun. 1987.

[4] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes, �The evolution of Lua,� in
Proceedings of the third ACM SIGPLAN conference on History of programming
languages. ACM, 2007, pp. 2�1.

[5] B. Steinwender, �Distributed Smart Controller Network for Modular Power
Stress Test,� Ph.D. dissertation, University of Klagenfurt, in writing.

[6] K. Beck, Test-driven development: by example. Addison-Wesley Professional,
2003.

[7] V. Massol and T. Husted, Junit in action. Manning, 2003.

[8] I. R. Forman and N. Forman, Java re�ection in action. Manning, 2004.

[9] B. C. Smith, �Procedural re�ection in programming languages,� Ph.D. disser-
tation, Massachusetts Institute of Technology, 1982.

[10] R. Englander, Developing Java Beans. O'Reilly Media, Inc., 1997.

[11] G. Bracha, �Generics in the Java programming language,� Sun Microsystems,
pp. 1�23, 2004.

[12] �Gson,� Aug. 2015. [Online]. Available: https://en.wikipedia.org/wiki/Gson

[13] B. Steinwender, M. Glavanovics, and W. Elmenreich, �Executable Test De�-
nition for a State Machine Driven Embedded Test Controller Module,� in In-
dustrial Informatics (INDIN), 2015 11th IEEE International Conference on.
IEEE, 2015.

63

https://en.wikipedia.org/wiki/Gson

64 BIBLIOGRAPHY

[14] F. Januario, L. Cordeiro, V. De Lucena, and E. De Lima Filho, �BMCLua:
Veri�cation of Lua programs in digital TV interactive applications,� in Con-
sumer Electronics (GCCE), 2014 IEEE 3rd Global Conference on, Oct 2014,
pp. 707�708.

[15] P. Peti, R. Obermaisser, W. Elmenreich, and T. Losert, �An architecture sup-
porting monitoring and con�guration in real-time smart transducer networks,�
in Proceedings of the First IEEE International Conference on Sensors, 2002,
pp. 1479�1484.

[16] M. John, �Simple example of an object drawing program in Java,� Aug.
2015. [Online]. Available: https://sites.google.com/site/drjohnbmatthews/
graphpanel

[17] R. Stallman and G. Joshua, Free software, free society: Selected essays of
Richard M. Stallman. CreateSpace Independent Publishing Platform, 2009.

[18] F. Robert, �A syntax highlighting, code folding text editor for Java Swing
applications,� Aug. 2015. [Online]. Available: https://github.com/bobbylight/
RSyntaxTextArea

[19] Ayman, �Java EditorPane with support for Syntax Highlighting,� Aug. 2015.
[Online]. Available: https://code.google.com/p/jsyntaxpane/

[20] F. Robert, �A code completion library for Swing text components, with
special support for RSyntaxTextArea,� Aug. 2015. [Online]. Available:
https://github.com/bobbylight/AutoComplete

[21] ��, �A library adding code completion and other advanced fea-
tures.� Aug. 2015. [Online]. Available: https://github.com/bobbylight/
RSTALanguageSupport

[22] F. Buschmann, K. Henney, and D. Schimdt, Pattern-oriented Software Archi-
tecture: On Patterns and Pattern Language. John Wiley & sons, 2007, vol. 5.

[23] D. Steve, �LDoc - A Lua Documentation Tool,� Aug. 2015. [Online]. Available:
https://github.com/stevedonovan/LDoc

[24] D. Riehle, �Composite design patterns,� in ACM SIGPLAN Notices, vol. 32,
no. 10. ACM, 1997, pp. 218�228.

[25] B. Muschko, Gradle in Action. Manning, 2014.

[26] S. McIntosh, B. Adams, and A. E. Hassan, �The evolution of ant build systems,�
in Mining Software Repositories (MSR), 2010 7th IEEE Working Conference
on. IEEE, 2010, pp. 42�51.

https://sites.google.com/site/drjohnbmatthews/graphpanel
https://sites.google.com/site/drjohnbmatthews/graphpanel
https://github.com/bobbylight/RSyntaxTextArea
https://github.com/bobbylight/RSyntaxTextArea
https://code.google.com/p/jsyntaxpane/
https://github.com/bobbylight/AutoComplete
https://github.com/bobbylight/RSTALanguageSupport
https://github.com/bobbylight/RSTALanguageSupport
https://github.com/stevedonovan/LDoc

BIBLIOGRAPHY 65

[27] V. Massol and T. M. O'Brien, Maven: A Developer's Notebook: A Developer's
Notebook. O'Reilly Media, Inc., 2005.

[28] S. C. Johnson, �Lint, a C Program Checker,� 1978, pp. 78�1273.

[29] K. Kristofer, �Kahlua2,� Aug. 2015. [Online]. Available: https://github.com/
krka/kahlua2

[30] M. Patrick, �Mochalua,� Aug. 2015. [Online]. Available: https://code.google.
com/p/mochalua/

[31] R. Jim, �Luaj - Lua vm written in Java,� Aug. 2015. [Online]. Available:
http://www.luaj.org/luaj.html

[32] N. Andre, �JNLua - Java Native Lua,� Aug. 2015. [Online]. Available:
https://code.google.com/p/jnlua/

[33] A. M. Turing, �On computable numbers, with an application to the Entschei-
dungsproblem,� Journal of Math, vol. 58, no. 345-363, p. 5, 1936.

[34] P. Puschner, �Zeitanalyse von Echtzeitprogrammen,� Ph.D. dissertation, Vi-
enna University of Technology, 1993.

[35] R. Kirner, �Integration of Static Runtime Analysis and Program Compilation,�
Master's thesis, Vienna University of Technology, 2000.

https://github.com/krka/kahlua2
https://github.com/krka/kahlua2
https://code.google.com/p/mochalua/
https://code.google.com/p/mochalua/
http://www.luaj.org/luaj.html
https://code.google.com/p/jnlua/

Appendix A

Sample source code

Listing A.1 is an implementation of the class function. It is used to implement classes
which can be instantiated like in any object orientated programming language. The
implementation of Unde�ned classes & methods in subsection 4.2.4 describes why
this is needed.

Listing A.1: Lua class function - http://lua-users.org/wiki/SimpleLuaClasses

1 function c l a s s (base , i n i t)
2 local c = {} −− a new c l a s s in s tance
3 i f not i n i t and type (base) == ' func t i on ' then
4 i n i t = base
5 base = ni l
6 e l s e i f type (base) == ' tab l e ' then −− our new c l a s s i s a

sha l l ow copy o f the base c l a s s !
7 for i , v in pa i r s (base) do
8 c [i] = v
9 end

10 c . _base = base
11 end
12

13 −− the c l a s s w i l l be the meta tab l e f o r a l l i t s o b j e c t s ,
14 −− and they w i l l l ook up t h e i r methods in i t .
15 c . __index = c
16

17 −− expose a cons t ruc t o r which can be c a l l e d by <classname
>(<args >)

18 local mt = {}
19 mt . __call = function (c la s s_tb l , . . .)
20 local obj = {}
21 se tmetatab l e (obj , c)
22 i f i n i t then

67

http://lua-users.org/wiki/SimpleLuaClasses

68 APPENDIX A. SAMPLE SOURCE CODE

23 i n i t (obj , . . .)
24 else −− make sure t ha t any s t u f f from the base c l a s s i s

i n i t i a l i z e d !
25 i f base and base . i n i t then
26 base . i n i t (obj , . . .)
27 end
28 end
29 return obj
30 end
31

32 c . i n i t = i n i t
33 c . is_a = function (s e l f , k l a s s)
34 local m = getmetatab le (s e l f)
35 while m do
36 i f m == k l a s s then return true end
37 m = m. _base
38 end
39 return fa l se
40 end
41 se tmetatab l e (c , mt)
42 return c
43 end

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Problem definition
	1.4 Outline of the Thesis

	2 Basic concepts
	2.1 Test-driven programming
	2.2 Reflection
	2.3 Generics
	2.4 JSON with Gson
	2.5 The MoPS testplan
	2.6 The MoPS FSM
	2.7 Lua verification
	2.8 Electronic Data Sheet

	3 Test plan generation
	3.1 MoPSFSM input
	3.2 Lua Input
	3.3 Ovenplan
	3.4 Network data
	3.4.1 Configuration file data
	3.4.2 MoPS and SAM data
	3.4.3 EDS data

	3.5 Loadable parameter
	3.6 Additional features

	4 Test plan verification
	4.1 FSM
	4.1.1 Dead end nodes
	4.1.2 Lonely nodes
	4.1.3 Hardware event
	4.1.4 Software event

	4.2 Lua
	4.2.1 Script generation
	4.2.2 Code verification framework
	4.2.3 Code verification
	4.2.4 General Lua errors
	4.2.5 Project specific Lua errors

	4.3 Oven plan
	4.4 Simple simulator
	4.5 Standalone checker

	5 Evaluation
	5.1 Test-plan Builder
	5.2 Test-plan Checker
	5.2.1 MoPSFSM data
	5.2.2 Lua data
	5.2.3 Oven plan data
	5.2.4 Experimental script simulator

	6 Conclusion
	Index of abbreviations
	Bibliography
	A Sample source code

