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Abstract

English Version

The aim of this thesis is to provide an improved information exchange in a two-scale
model. On the macroscale of this model, the equations of continuum mechanics
of solids are solved using a non-linear FE-formulation. The microscale, on which
a canonical ensemble of statistical mechanics is simulated using molecular dyna-
mics, is replacing a classic material formulation. However, the molecular dynamics
simulation produces noise-corrupted output as due to reasons of computational ef-
ficiency no thermodynamic equilibrium is reached. This noise prevents the model
from a classical convergence behavior and creates a setting that reminds heavily of
iteration schemes in stochastic approximation. Different strategies to improve con-
vergence behavior known from stochastic approximation will therefore be applied.
Their use on numerical examples shall prove and compare their effectiveness.

Deutsche Version

Ziel dieser Arbeit ist die Verbesserung des Informationsaustausches in einem Zwei-
skalenmodell. Auf der Makroskala dieses Modells werden die Gleichungen der
Festkörper-Kontinuumsmechanik mittels einer nichtlinearen FE-Formulierung ge-
löst. Die Mikroskala, auf der ein kanonisches Ensemble der statistischen Mechanik
mittels Molekulardynamik simuliert wird, ersetzt hierbei eine klassische Material-
formulierung. Die Molekulardynamik-Simulation liefert allerdings störungsbehaftete
Größen, da aus Gründen der Recheneffizienz kein thermodynamisches Gleichge-
wicht erreicht wird. Diese Störungen verhindern ein klassisches Konvergenzverhal-
ten und erzeugen eine Konfiguration die starke Ähnlichkeit zu Iterationsschemen
der stochastischen Approximation aufweist. Daher werden verschiedene, aus der
stochastischen Approximation bekannte, Methoden zur Konvergenzverbesserung
auf ihre Eignung untersucht. Numerische Beispiele sollen ihre Wirksamkeit zeigen
und miteinander vergleichen.
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Chapter 1

Introduction

In the following chapters, a brief basis will be presented in a relevant extent to
cover the problem characteristics. For further insight please consult the resources
given at the beginning of each chapter.

Chapter 2 will cover the basics of continuum mechanics, which will prove ben-
eficial in the remainder of this work. Basic strain and stress measures will be
introduced in section 2.2 and 2.3, the principle of virtual work is discussed in
section 2.4 and the transition to the finite element method is established in sec-
tion 2.5. In chapter 3, a linear and non-linear finite element formulation will be
deduced, in which isoparametric elements are used. Some of these elements will
be shown exemplarily. Molecular dynamics will be discussed briefly in the sub-
sequent chapter 4. Different statistical ensembles will be covered using a single
Hamiltonian, and it will be shown how to extract macroscopic observables from
the MD simulation. In the following chapter 5, the connection between the fi-
nite element method, which models the macroscale, and molecular dynamics, the
method on the microscale, will be explained. The resulting equations for the two-
scale model exhibit strong similarities to stochastic approximation (SA) methods.
This allows us to adopt well-known strategies from SA, that show potential to
improve convergence behavior. These relationships are described in chapter 7. A
brief introduction to stochastic approximation will be given in chapter 6. In the
final chapter 8, the advantages in using stochastic approximation methods will be
revealed in the light of two numerical examples.
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Chapter 2

Continuum Mechanics

The basis for the following sections 2.1 to 2.4 were the books of Bonet and Wood
(1997) and Bathe (1996), whereas most of the information of section 2.5 is referred
to Daxner and Rammerstorfer (2011).

Continuum mechanics deals with the deformation of bodies, modeled as a con-
tinuous mass, under external loads. To study some basic relations, consider a
deformable body as shown in figure 2.1.

E1

E2

E3 X

u

ϕ

x

time = 0 time = t

Figure 2.1: General deformable body in its referential (or material) and its current
(or spatial) configuration. For simplicity, it is assumed that the the material and
spatial configuration share a common Cartesian basis Ei.

At time 0, the body is in its undeformed, referential or material configuration. The
position of the continuum particles in this configuration is described by vectors X.
Due to external loading, the body will change its shape and position. If we consider
an arbitrary time t during this deformation process, we can describe the continuum
particles by vectors x and call this the deformed, current or spatial configuration.1

1Generally, we will denote properties of the material configuration with capital letters, whereas
properties of the spatial configuration are written in lower-case letters.
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CHAPTER 2. CONTINUUM MECHANICS

This allows us to write the displacement as

u = x−X. (2.1)

The motion of the body is described by a mapping

x = ϕ(X, t). (2.2)

While this mapping gives the spatial positions for given material points and time,
the inverse mapping, as a counterpart, can be written as

X = ϕ−1(x, t). (2.3)

2.1 Deformation Gradient Tensor

The deformation gradient tensor F is a fundamental measure used to describe the
local deformation at body points in continuum mechanics and is defined as

F =
∂x

∂X
. (2.4)

The deformation gradient tensor allows to calculate the corresponding spatial vec-
tor to an infinitesimal vector dX in the material configuration as

dx = FdX. (2.5)

Using the relation x = X + u for the spatial coordinates allows us to further write

F =
∂x

∂X
=
∂(X + u)

∂X
=
∂X

∂X
+
∂u

∂X
= 1 + G (2.6)

in terms of the displacement gradient

G =
∂u

∂X
=

∂ui
∂Xj

.2 (2.7)

The deformation gradient also allows a mapping of volume and area elements be-
tween the two configurations. A small volume element in the spatial configuration
with edges parallel to the Cartesian basis axes can be written as

dv = det[dx1, dx2, dx3], (2.8)

where dxi = xiEi, i = 1, 2, 3 denote the three edge vectors. Using equation 2.5
and the properties of the determinant, this can be written as

dv = det[F dX1,F dX2,F dX3] (2.9)

= det F det[dX1, dX2, dX3] (2.10)

= det F dV (2.11)

2This thesis assumes a Cartesian basis and, therefore, does not distinguish between a covariant
and contravariant basis. For further information the reader is referred to Marsden and Hughes
(1983) and Sokolnikoff (1964).
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2.2. STRAIN MEASURES

or
dv = JdV (2.12)

in terms of the Jacobian J = det F. The mapping of an area element can be
expressed as

n da = JF−TN dA, (2.13)

what is known as Nanson’s formula. For a detailed derivation see Bonet and Wood
(1997).

The deformation gradient F is not suitable as a measure of strain, as it got
some severe drawbacks regarding invariance in rigid body rotation and translation,
independence of direction and is also not symmetric in general. In the next section,
suitable strain measures will be presented, which do not lack these important
properties.

2.2 Strain Measures

2.2.1 Finite strain theory

In finite strain theory, strains are assumed to be arbitrarily large, which means
that the spatial configuration is allowed to differ significantly from the material
configuration. Out of the variety of available strain measures, only two important
ones will be mentioned here, namely the Green-Lagrange and the Euler-Almansi
strain tensor.

If, for example, half the change in the inner product of two elemental vectors
dX1 and dX2 is chosen to describe the deformation and equation 2.5 is used, we
get

1

2
(dx1 • dx2 − dX1 • dX2) =

1

2
(dxT1 dx2 − dXT

1 dX2) (2.14)

=
1

2
(dXT

1 FTFdX2 − dXT
1 dX2) (2.15)

= dXT
1 E dX2 (2.16)

with E being the Green-Lagrange strain tensor

E =
1

2
(C− 1) (2.17)

which relates the change in the inner product to the material vectors dX1 and
dX2. In the equation above, C is the right Cauchy-Green deformation tensor

C = FTF. (2.18)

Alternatively, the change in the inner product can also be written in terms of
spatial vectors dx1 and dx2

1

2
(dxT1 dx2 − dXT

1 dX2) = dXT
1 e dX2, (2.19)
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CHAPTER 2. CONTINUUM MECHANICS

where e is the Euler-Almansi strain tensor

e =
1

2
(1− b−1). (2.20)

In this relation, b is the left Cauchy-Green deformation tensor

b = FFT . (2.21)

2.2.2 Infinitesimal strain theory

Unlike finite strain theory where strains are allowed to be large, infinitesimal strain
theory deals with strains and deformations that are much smaller than the char-
acteristical dimensions of the body.

The components of the Green-Lagrange strain tensor can be written as

Eij =
1

2

[
∂ui
∂Xj

+
∂uj
∂Xi

+
∂uk
∂Xi

∂uk
∂Xj

]
. (2.22)

The assumption of infinitesimal strains allows us to linearize this expression, so
that non-linear terms are neglected

Eij =
1

2

[
∂ui
∂Xj

+
∂uj
∂Xi

]
. (2.23)

Applying this procedure analogous on the Green-Almansi strain tensor leads to

eij =
1

2

[
∂ui
∂xj

+
∂uj
∂xi

]
. (2.24)

Because the difference between material and spatial configuration is assumed to be
infinitesimally small, these configurations approximately coincide and those two
linearized strain tensors are approximately equal

Eij ≈ eij ≈ εij (2.25)

and can therefore be replaced by the small strain tensor ε with its well-known
components for normal strains

εxx =
∂u

∂X
εyy =

∂v

∂Y
εzz =

∂w

∂Z
(2.26)

and

εxy =
1

2

(
∂u

∂Y
+

∂v

∂X

)
εyz =

1

2

(
∂v

∂Z
+
∂w

∂Y

)
εzx =

1

2

(
∂w

∂X
+
∂u

∂Z

)
(2.27)

for shear strains. In equations 2.26 and 2.27 the displacements u,v and w are in
the x-,y- and z-direction, respectively.
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2.3. STRESS MEASURES

2.3 Stress Measures

In this section, stress will be introduced as force elements per unit elements in
order to assess the effects of deformation. While in infinitesimal strain theory,
forces are always related to the areas in the material configuration, forces in finite
strain theory can be either per area in the material or per area in the spatial
configuration.

2.3.1 Cauchy stress tensor

Consider a general deformable body in its current position. If the body is sliced
in two, and we take a closer look at an area ∆a with the normal vector n on one
of the two parts, we can see that the other part exerts the resulting force ∆p onto
this area element as shown in figure 2.2.

E1

E2

E3

∆a

n
∆p

Figure 2.2: Resulting force ∆p on an area element ∆a.

The traction vector is then defined as

t(n) = lim
∆a→0

∆p

∆a
. (2.28)

The normal vector n is now related to the traction vector t by a second order
tensor, called the Cauchy stress tensor σ,

t = σn. (2.29)

The Cauchy stress tensor as a stress measure comes closest to the physical concep-
tion of stresses, therefore it is often denoted as true stress. The symmetrical prop-
erty σ = σT follows from the rotational equilibrium on the infinitesimal volume
element. While the Cauchy stress tensor represents a purely spatial description,

13



CHAPTER 2. CONTINUUM MECHANICS

as only forces and areas of the current configuration are involved, there are also
other equivalent stress measures related to the material configuration, which will
be discussed in the next section.

2.4 Principle of Virtual Work

In order to be able to apply the finite element method, a weak formulation of the
characteristical differential equations is intended. One possibility to obtain such a
formulation is the principle of virtual displacements.

If we limit ourselves to static problems, the equilibrium at the body in the
deformed configuration is ∫

v

(σij,j + fBi ) dv = 0, (2.30)

where fBi are the volumetric body forces and σij,j = divσ are the the traction
forces.

Consider a similar configuration as before, shown in figure 2.3, with a body in
its initial configuration at time 0 and in its current deformed configuration at time
t.

E1

E2

E3 X

u δu

ϕ

x

sU

time = 0 time = t

Figure 2.3: General deformable body in its material and spatial configuration with
superposed arbitrary virtual displacements.

Introducing arbitrary virtual displacements δui, which are superposed to the ex-
isting deformation and fulfill the prescribed displacement boundary conditions
δui = 0 on sU ,3 leads to

δW =

∫
v

(σij,j + fBi )δui dv = 0. (2.31)

3The surface of the body s = sU ∪ sF , where sU is the part of the surface with prescribed
displacement boundary conditions ui = ûi and sF is the part of the surface with natural force
boundary conditions σijnj = fsi . Since virtual displacements are additional displacements, they
must be zero at those parts of the surface, where displacements are prescribed.

14



2.4. PRINCIPLE OF VIRTUAL WORK

By using the relation (σijδui),j = σij,jδui + σijδui,j we can write this in an alter-
native form

δW =

∫
v

( (σijδui),j − σijδui,j + fBi δui ) dv = 0. (2.32)

Next, if the mathematical identity
∫
v
(σijδui),j dv =

∫
s
(σijδui)nj ds obtained from

the divergence theorem is applied, we get

δW =

∫
v

(−σijδui,j + fBi δui ) dv +

∫
sF

(σijδui)nj dsF = 0, (2.33)

or

δW = −
∫
v

σ : grad δu dv︸ ︷︷ ︸
δWint

+

∫
v

δu • fB dv +

∫
sF

δu • tS dsF︸ ︷︷ ︸
δWext

= 0, (2.34)

in symbolic notation, where tS are the surface loads and the virtual work is split
into the internal and external virtual work. The pair σ and grad δu is said to be a
work conjugate stress-strain pair with respect to the current volume, as it denotes
the work per current volume. Equation 2.34 is also known as the spatial virtual
work equation. The notation grad δu denotes the derivative of δu with respect to
the spatial coordinates x.

Remark 2.4.1. Note that due to symmetry of σ, grad δu can be replaced by its
symmetrical part and we can write

σ : grad δu = σ : Sym(grad δu)

= σ :
1

2
(grad δu + (grad δu)T )

= σ : δε,

where we have postulated small strains in the last equation, and δε is the variation
of the small strain tensor defined in section 2.2.2.

By using the chain rule, it can be easily shown that grad δu = Grad δu F−1, where
Grad δu now stands for the derivative with respect to the material coordinates X.

Since the displacements are u = x − X, and therefore δu = δx, the internal
virtual work can be further written as

δWint = −
∫
v

σ : δF F−1 dv. (2.35)

By using the properties of the trace A : BC = tr(A(BC)T ) = tr(ACTBT ) =
ACT : B and equation 2.12, this is further

δWint = −
∫
V

JσF−T : δF dV = −
∫
V

P : δF dV, (2.36)

15



CHAPTER 2. CONTINUUM MECHANICS

where P, the first Piola-Kirchhoff stress tensor, is one of the possible stress mea-
sures mentioned in section 2.3.1. In contrast to the Cauchy stress tensor, the first
Piola-Kirchhoff is unsymmetric and gives a mixed description since it relates the
force in the spatial configuration to an oriented area vector in the material config-
uration. In P and δF we can see another work conjugate pair, although this one
is work conjugate with respect to the initial volume.

The internal work can further be written as

δWint = −
∫
V

P : δF dV

= −
∫
V

tr(PδFT ) dV

= −
∫
V

tr(PδFTFF−1) dV

= −
∫
V

tr(δFTFF−1P) dV

= −
∫
V

tr(PTF−T δFTF) dV

= −
∫
V

F−1P : δFTF dV, (2.37)

where

S = F−1P = JF−1σF−T (2.38)

is the second Piola-Kirchhoff stress tensor, which can be easily proven to be sym-
metric. Since S relates forces in the undeformed configuration to areas in the same
configuration, a purely material description is established. Due to the symmetrical
property of S, we can express δFTF in equation 2.37 by its symmetrical part. This
gives

δWint = −
∫
V

S :
1

2
(δFTF + FT δF) dV (2.39)

= −
∫
V

S : δE dV, (2.40)

where S and the variation of the Green-Lagrange strain tensor E denote another
work conjugate stress-strain pair. By considering equation 2.17 we find δE =
1/2 δC. This definition can now be used to restate equation 2.34 as∫

V

S : δE dV = δWext. (2.41)

This form of the virtual work equation can now be further rearranged in order to
establish the link to a non-linear finite element formulation.
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2.5. TRANSITION TO THE NON-LINEAR FINITE ELEMENT METHOD

2.5 Transition to the Non-linear Finite Element

Method

Let us now assume a configuration as shown in figure 2.4.

E1

E2

E3

0 m m+ 1

mu ∆u
δ(∆u)

Figure 2.4: General deformable in its spatial configuration (0) and a known de-
formed configuration (m). The next configuration (m+1) is needed.

A general deformable body was originally located in position (0) and was then de-
formed to configuration (m), while it can be assumed that all quantities describing
configuration (m) are well known and also that every state between the original
configuration (0) and (m) is well known. Due to a change in load, the body will
further deform to the unknown configuration (m + 1). For (m + 1), the virtual
work equation is ∫

V

m+1S :m+1δE dV =m+1δWext. (2.42)

In this equation, volume V =0V as well as the stresses and strains are related to
the material configuration (0).4

The unknown configuration (m+ 1) can be expressed in terms of known quan-
tities in configuration (m) and incremental values

m+1u =mu + ∆u m+1E =mE + ∆E m+1S =mS + ∆S. (2.43)

The Green-Lagrange strain tensor can be expressed in terms of the displacement
gradient, defined in equation 2.7, as

E =
1

2

(
G + GT + GTG

)
. (2.44)

4Since all configurations between (0) and (m) are known, the description can be related to
any of these. This means that different formulations are available. We relate all quantities to
the material configuration (0) which is known as the total Lagrangian formulation.
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CHAPTER 2. CONTINUUM MECHANICS

The displacement gradient can now be expressed similarly to equation 2.43 as

m+1G =mG + ∆G. (2.45)

This gives the increment of the Green-Lagrange strain tensor

∆E =m+1 E−mE

=
1

2

(
∆G + ∆GT + ∆GT (mG) + (mG)T∆G

)
︸ ︷︷ ︸

∆Elin

+
1

2
∆GT∆G︸ ︷︷ ︸

∆Enl

(2.46)

where ∆Elin is a linear function of the displacement gradient increments, whereas
in ∆Enl quadratic terms of ∆G occur.

The variation of the Green Lagrange strain tensor, which is part of equa-
tion 2.42, is further

m+1δE = δ(mδE + ∆E)

= δ(∆E)

= δ(∆Elin + ∆Enl). (2.47)

The variation of these two terms shows that while the increment of the displace-
ment gradient ∆G only occurs as its variational form δ(∆G) in the linear part
δ(∆Elin), the non-linear part δ(∆Enl) also involves ∆G itself. As ∆G consists of
the derivatives of the sought displacement increments ∆u, while δ(∆G) consists
of the derivatives of δ(∆u) (which can be chosen arbitrarily and can therefore be
assumed as known quantities), the non-linear part Enl is unknown, while the linear
part Elin is known.

Besides ∆E, the increment of the second Piola-Kirchhoff stress tensor ∆S is
also needed and can be approximated by linearization of a Taylor series expansion

∆S ≈ ∂ mS

∂ mE
∆E + ...

∆S ≈ mC∆E = mC
(
∆Elin + ∆Enl

)
, (2.48)

where mC denotes the stress-strain tensor (or elasticity tensor) in configuration
(m).

Remark 2.5.1. In the finite element method, the stresses mS and the elasticity
tensor mC may be obtained from the material description. For example, for an
hyperelastic material, those quantities can be gained through derivation of an elastic
potential Ψe with respect to proper deformation measures. Elastic potentials Ψe are
built using experimental data.

In this work, a molecular dynamics simulation will take the place of the material
description. The MD simulation gets a measure of deformation as its input and
returns the material’s response. Therefore we will not cover any ‘classical’ material
descriptions in this work. For discussion see e.g. Bathe (1996).
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2.5. TRANSITION TO THE NON-LINEAR FEM

Using the results of equation 2.43, 2.47 and 2.48 in equation 2.42 gives∫
V

[
mS +mC(∆Elin + ∆Enl)

]
: δ
[
∆Elin + ∆Enl

]
dV =m+1δWext. (2.49)

This equation is now rearranged, so that known terms are found on the right-hand
side, while unknown terms appear on the left-hand side5∫

V

[
mC(∆Elin + ∆Enl)

]
: δ
[
∆Elin + ∆Enl

]
dV +

∫
V

mS : δ∆Enl dV

=m+1δWext −
∫
V

mS : δ∆Elin. (2.50)

The first term on the left-hand is now linearized in the following way, so that the
whole set of equations is only linearly dependent on the displacement increments
∆u∫
V

[
mC∆Elin

]
: δ
[
∆Elin

]
dV +

∫
V

mS : δ∆Enl dV =m+1δWext −
∫
V

mS : δ∆Elin dV.

(2.51)

As all tensors in the equation above are symmetrical, it is convenient to use Voigt
notation, in which the 6 independent values of the tensors E and S are arranged
in the following way

E∼ =
[
E11 E22 E33 2E23 2E13 2E12

]T
S∼ =

[
S11 S22 S33 S23 S13 S12

]T
. (2.52)

The 21 independent values of the stress-strain tensor C are arranged in a [6 × 6]
matrix C

≈
. This notation, together with the property of the tensor contraction

A : B = B : A allows to rewrite equation 2.51. The first term on the left-hand
side is therefore∫

V

[
mC∆Elin

]
: δ
[
∆Elin

]
dV =

∫
V

δ
[
∆E∼

lin
]
• [mC

≈
∆E∼

lin] dV, (2.53)

where the vector notation allowed to replace the tensor contraction with the scalar
product (•). This notation also allows to express the increments of the Euler-
Lagrange strain tensor as

∆E∼
lin = D

≈L
∆u∼ δ[∆E∼

lin] = D
≈L
δ[∆u∼], (2.54)

5It must be noted that in case of deformation dependent loads, the variation of the external
work δWext is not only dependent on the variation of the displacement δu but also on the
displacement u itself. Therefore, deformation dependent loads result in additional terms on the
left-hand side of equation 2.50.
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CHAPTER 2. CONTINUUM MECHANICS

where ∆u∼ is a [3×1] vector and D
≈L

is the linear [6×3] differential operator matrix

D
≈L

=



∂1 + mu1,1∂1
mu2,1∂1

mu3,1∂1

mu1,2∂2 ∂2 + mu2,2∂2
mu3,2∂2

mu1,3∂3
mu2,3∂3 ∂3 + mu3,3∂3

mu1,2∂3 + mu1,3∂2 ∂3 + mu2,2∂3 + mu2,3∂2 ∂2 + mu3,2∂3 + mu3,3∂2

∂3 + mu1,1∂3 + mu1,3∂1
mu2,1∂3 + mu2,3∂1 ∂1 + mu3,1∂3 + mu3,3∂1

∂2 + mu1,1∂2 + mu1,2∂1 ∂1 + mu2,1∂2 + mu2,2∂1
mu3,1∂2 + mu3,2∂1


,

(2.55)
which is clearly dependent on the derivatives of the displacement field in con-
figuration (m). The form of D

≈L
follows directly from the definition of ∆E∼

lin in
equation 2.46. The notation used can be understood as

∂i =
∂

∂Xi

mui,j =
∂ mui
∂Xj

. (2.56)

Substituting equation 2.54 into equation 2.53 yields∫
V

δ
[
∆E∼

lin
]
• [mC

≈
∆E∼

lin] dV =

∫
V

D
≈L
δ[∆u∼] • [mC

≈
D
≈L

∆u∼] dV. (2.57)

Making use of the relation Au • v = u • ATv yields∫
V

D
≈L
δ[∆u∼] • [mC

≈
D
≈L

∆u∼] dV =

∫
V

δ[∆u∼] • D
≈
T

L

mC
≈
D
≈L

∆u∼ dV. (2.58)

This representation already reminds us heavily of the finite element formulation
and should be the end result for now.

There are two other terms to be considered in equation 2.51 that will now be
treated in a similar way. The second term on the left-hand side can written as∫

V

mS : δ∆Enl dV =

∫
V

mS : [δ(∆G)T∆G] dV. (2.59)

Using the relation A : BC = tr(ACTBT ) = tr(BTACT ) = BTA : C gives∫
V

mS : [δ(∆G)T∆G] dV =

∫
V

[δ(∆G)mS] : ∆G dV. (2.60)

A similar notation to Voigt’s notation, used in the last derivation is now intended.
Due to the general non-symmetry of ∆G, ∆G∼ is now a [9× 1] vector. In order to
be able to write A : B as A∼

TB∼ , this equation needs to be rewritten as∫
V

[δ(∆G)mS] : ∆G dV =

∫
V

δ(∆G∼
T )mS

≈
∆G∼ dV, (2.61)
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2.5. TRANSITION TO THE NON-LINEAR FEM

where mS
≈

is now a [9× 9] field with the following assignment

mS
≈

=

mS 0 0

0 mS 0

0 0 mS

 . (2.62)

In analogy to equation 2.54, the increment of the displacement gradient and its
variation can be written as

∆G∼ = D
≈NL

∆u∼ δ[∆G∼ ] = D
≈NL

δ[∆u∼], (2.63)

where D
≈NL

is the [9× 3] differential operator matrix

∂1 0 0

∂2 0 0

∂3 0 0

0 ∂1 0

0 ∂2 0

0 ∂3 0

0 0 ∂1

0 0 ∂2

0 0 ∂3


. (2.64)

This leads to∫
V

δ(∆G∼
T )mS

≈
∆G∼ dV =

∫
V

δ[∆u∼] •D
≈
T

NL

mS
≈
D
≈NL

∆u∼ dV. (2.65)

The last term to be investigated in equation 2.51 is the second term on the right-
hand side. With the considerations used before, this term can be rewritten without
additional effort as ∫

V

mS : δ∆Elin dV =

∫
V

mS∼ • δ∆E∼
lin dV

=

∫
V

δ∆E∼
lin • mS∼ dV

=

∫
V

D
≈L
δ[∆u∼] • mS∼ dV

=

∫
V

δ[∆u∼]TD
≈
T

L

mS∼ dV

=

∫
V

δ[∆u∼]TD
≈
T

L

mS∼ dV

=

∫
V

δ[∆u∼] •D
≈
T

L

mS∼ dV. (2.66)
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Summarizing the last transformations, equation 2.51 can finally be written as∫
V

δ[∆u∼] • D
≈
T

L

mC
≈
D
≈L

∆u∼ dV +

∫
V

δ[∆u∼] •D
≈
T

NL

mS
≈
D
≈NL

∆u∼ dV =

m+1δWext −
∫
V

δ[∆u∼] •D
≈
T

L

mS∼ dV. (2.67)

It has again to be noted that this expression implies deformation-independent
external loads.
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Chapter 3

Finite Element Method

The basis for the following sections were the books of Bathe (1996), Wriggers
(2008) and Zienkiewicz and Taylor (2000).

The standard formulation of finite element method for solids is the displacement-
based method, in which the nodal displacements are the solution field. In sec-
tion 2.5, some important equations towards this formulation have been established,
and will be completed in this chapter.

The main aspect of finite element analysis in general is subdividing a given
body into finite elements, as shown in figure 3.1 for a two-dimensional domain.
This subdivision process allows us to write the volume and surface integrals in
equation 2.67 in terms of a sum over the amount of elements M in the element
assemblage ∫

V

(...)dV =
M∑∫

V (e)

(...)dV (e)

∫
S

(...)dSF =
M∑∫

S
(e)
F

(...)dS
(e)
F , (3.1)

where the superscript (e) will from now on denote quantities of element e. We
can see that the calculations are performed over the element volumes and surfaces
only, therefore any convenient coordinate system can be used. Thus, it is practical
to switch over to a natural coordinate system for each element, which is also shown
in figure 3.1. Using a mapping to a natural coordinate system is one aspect of the
isoparametric concept.

3.1 Isoparametric Concept

In general in finite element analysis, the main field variables are approximated by
interpolation functions. In case of the displacement-based formulation, these main
field variables are, naturally, the displacements itself. The interpolation in natural
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r

s

X
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ϕ
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1 1
3 3

14
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2
2

Figure 3.1: Left side: discretization of a two-dimensional body in the material con-
figuration. Clearly, the surface of the outer element boundary only approximates
the real body surface. Right side: discretized body in the spatial configuration.
Middle: mapping of element 14 in natural coordinates.

coordinates for any element reads as

u =
n∑
i=1

Ni(r)ûi, (3.2)

where n is the number of nodes of the element, r are the natural coordinates,
Ni(r) is the shape function for node i and ûi are the displacements for node i.
This allows to write the displacements as

u = H(r)û (3.3)

using the displacement interpolation matrix H.
Isoparametric means that the geometry is interpolated in the same way as the

displacements. For the material and spatial coordinates we can therefore write

X =
n∑
i=1

Ni(r)X̂i and x =
n∑
i=1

Ni(r)x̂i (3.4)

The mapping from the natural coordinates to material and spatial coordinates is
done by the Jacobian matrices

J =
∂X

∂r
and j =

∂x

∂r
. (3.5)
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3.1. ISOPARAMETRIC CONCEPT

This allows us to calculate the deformation gradient as

F = j J−1. (3.6)

Interpolation functions that work well with the isoparametric concept are La-
grangian polynomials

lnk (r) =
n∏
i=0
i 6=k

r − ri
rk − ri

, (3.7)

where n describes the order of the polynomial. Therefore, n = 1 leads to linear
functions, n = 2 to quadratic functions etc. The usage of these polynomials
leads to the so-called Lagrangian elements. A few of those elements will now be
introduced for one- and two-dimensional problems. The transition to the third
dimension is naturally given. There are many other different types of elements
available. For a comprehensive overview of available elements see e.g. Wriggers
(2008) and Zienkiewicz and Taylor (2000).

3.1.1 One-dimensional Lagrange elements

In one dimensional problems described by a variable r, the shape function reads
as

Ni(r) = lnk (r), (3.8)

with the Lagrange polynomial given in equation 3.7.
For the linear one-dimensional Lagrange element shown in figure 3.2a, n is

chosen to be 1 and the shape functions for the two nodes are

N1
1 (r) =

1

2
(1− r) N1

2 (r) =
1

2
(1 + r). (3.9)

r = 0r = −1 r = +1

1 2

(a) Linear element

r = 0r = −1 r = +1

1 23

(b) Quadratic element

Figure 3.2: One-dimensional Lagrange elements

For the quadratic one-dimensional Lagrange element shown in figure 3.2b, n is
chosen to be 2 and the shape functions for the three nodes are accordingly

N1
2 (r) =

1

2
r(r − 1) N2

2 (r) =
1

2
r(r + 1) N3

2 (r) = 1− r2. (3.10)

One can already see that the shape function Ni has the value 1 at node i and
0 on all others. This property is also preserved in higher dimensions and higher
polynomial order.
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CHAPTER 3. FINITE ELEMENT METHOD

3.1.2 Two-dimensional Lagrange elements

Rectangular Lagrange elements The shape functions for these elements are
obtained by multiplication of the Lagrangian polynomials in their two directions
r and s. Thus, for the linear Lagrangian element shown in figure 3.3a it follows
that

Ni(r, s) = NIJ = l1I(r)l
1
J(s), (3.11)

where node i is represented by a node number I in direction of r and an accordingly
node number J in s-direction.

s

r

1

2

4

3

(a) Linear element

s

r

1

5

6

4

7

3 2

8

9

(b) Quadratic element

Figure 3.3: Two-dimensional rectangular Lagrange elements

And for the quadratic element in figure 3.3b, we can write

Ni(r, s) = NIJ = l2I(r)l
2
J(s). (3.12)

This procedure can be pursued to gain cubic and higher order rectangular Lagrange
elements using

Ni(r, s) = NIJ = lnI (r)lnJ(s). (3.13)

Note that we assumed the same amount of nodes n in direction of r and s here,
as this is the standard case.

Triangular Lagrange elements For these elements, the approach is to write
the shape functions as a multiplication of three Lagrange polynomials

Ni(L1, L2, L3) = lII (L1)lJJ (L2)lKK(L3), (3.14)

where Li are the area coordinates of the triangle. In natural coordinates, these
area coordinates correspond to

L1 = r L2 = s L3 = 1− r − s. (3.15)

The meaning of the indices I, J and K will become clear in the light of figure 3.5.
For the linear triangular element shown in figure 3.4a, this simply yields

N1 = L1 = r N2 = L2 = s N3 = L3 = 1− r − s, (3.16)
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r
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(a) Linear element

r
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13 6

2

45

(b) Quadratic element

Figure 3.4: Two-dimensional triangular Lagrange elements

and for the quadratic element, shown in figure 3.4b, this gives

N1 = L1(2L1 − 1), N2 = ... (3.17)

for corner nodes, and
N4 = 4L1L2, N5 = ... (3.18)

for mid-side nodes.

3.1.3 Computation of derivatives

In order to compute the strains, derivatives of the displacements in the form

∂u

∂X
=

n∑
i=1

∂Ni(r)

∂X
ûi (3.19)

are needed. Since the shape functions depend on the natural coordinates, the chain
rule has to be applied

∂u

∂X
=

(
n∑
i=1

∂Ni(r)

∂r
ûi

)
∂r

∂X
, (3.20)

where ∂r/∂X is the inverse of the Jacobian operator matrix defined in equation 3.5.
For example, the component-wise derivatives for the two-dimensional rectan-

gular Lagrange element are

∂Ni(r)

∂r
=
∂lnI (r)

∂r
lnJ(s) and

∂Ni(r)

∂s
= lnI (r)

∂lnJ(s)

∂s
. (3.21)

And for the two-dimensional triangular Lagrange elements, the derivatives are

∂Ni(r)

∂r
=
∂lII (r)

∂r
lJJ (s)lKK(1− r − s) + lII (r)l

J
J (s)

∂lKK(1− r − s)
∂r

(3.22)

and

∂Ni(r)

∂s
= lII (r)

∂lJJ (s)

∂s
)lKK(1− r − s) + lII (r)l

J
J (s)

∂lKK(1− r − s)
∂s

. (3.23)
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L1 = 0, I = 0

L2 = 0, J = 0

L
3 =

0,
K

=
0
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1,
K

=
3

L
3 =

1/3,
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=
1

L
3 =
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L2 = 2/3, J = 2

L2 = 1, J = 3

L1 = 1, I = 3

L1 = 1/3, I = 1
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Figure 3.5: Indices I, J,K for the cubic triangular Lagrange element. Note that
for every node, I + J + K = M = 3, whereas M = 1 for the linear element and
M = 2 for the quadratic element.

3.1.4 Integration over the reference volume

By using a mapping to natural coordinates, the volume integrals of an element e
can be written as

∫
V (m)

f(X)dV (e) =

∫ +1

−1

∫ +1

−1

∫ +1

−1

f(r, s, t) det Jdrdsdt. (3.24)

Due to rational terms, these integrals are usually evaluated numerically. An effi-
cient method is using the Gauss quadrature

∫ +1

−1

∫ +1

−1

∫ +1

−1

f(r, s, t) det Jdrdsdt ≈
np∑
p=1

f(rp, sp, tp) det J(rp, sp, tp)Wp, (3.25)

where np is the number of evaluation points (or Gauss points) with coordinates
rp, sp and tp. The function f(r) and the Jacobian operator matrix are evaluated at
the Gauss points and multiplied with weighting factors Wp. The number of Gauss
points is related to the order of the polynomials in the integrand. For an overview
of coordinates rp and corresponding weighting factors for different element types
see Wriggers (2008).
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3.2 Linear/Non-linear Finite Element Analysis

The two main subgroups of finite element analysis of solid materials are the linear
and non-linear analysis. In the last section a basis for the non-linear formulation
was established, without any discussion of its meaning.

The non-linear effects, that necessitate a non-linear analysis, originate from

• geometric (or kinematic) non-linearity due to large strains and rotations,

• material non-linearity, where the material stress response is a non-linear
function of the applied strains and can also be path-dependent,

• non-linear boundary conditions (contact problems),

• or equilibrium bifurcation.

In contrast to this, linear analysis can only be applied if none of those non-
linearities are present. Considering the first point, this means that only small
strains and rotations exist, so that the infinite strain measures may be applied
and the deformed configuration differs only little from the material configuration.
In the light of material response, this means that the stresses are strictly linearly
dependent on the strains. Also there are no non-linear boundary conditions or bi-
furcations of equilibrium. There are of course cases where some of the mentioned
non-linearities are present, while others are not, such as in ‘material non-linearity
only’, where the strains and rotations are small, but the material behavior is non-
linear.

One can already assume that the non-linear finite element formulation is more
general and the linear finite element formulation can be derived through some
simplifications. Before we finish the non-linear formulation, these simplifications
will now be shown first, as this discussion will be useful in the subsequent non-
linear formulation.

3.2.1 Linear finite element formulation

In this section, the spatial virtual work equation will be adapted to fit linear finite
element analysis.

In the light of remark 2.4.1, equation 2.34 will be stated here again, as it will
be the basis for the following procedure

δW = −
∫
v

σ : δε dv︸ ︷︷ ︸
δWint

+

∫
v

δu • fB dv +

∫
sF

δu • tS dsF︸ ︷︷ ︸
δWext

= 0.

For small deformations and rotations, the spatial configuration differs only little
from the material configuration, so it can be assumed that dv = dV , dsF = dSF
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and, therefore, there can also be no deformation-dependent load. Due to the
symmetry of σ and δε we can again use Voigt notation and write∫

V

δε∼
Tσ∼ dV =

∫
V

δu∼
Tf

∼

B dV +

∫
SF

δu∼
T t∼

S dSF . (3.26)

As we also assume linear-elastic material behavior, the Cauchy stresses can be
written as σ∼ = C

≈
ε∼. The strains can be written as

ε∼ = D
≈
u∼, (3.27)

where D
≈

is the differential operator matrix

D
≈

=



∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

∂
∂y

∂
∂x

0

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x


(3.28)

in case of an x, y, z coordinate system.
When using isoparametric elements as shown in section 3.1, the displacements

are interpolated using the interpolation matrix H
≈

(m)(r, s, t). As H
≈

(m) is depen-
dent on natural coordinates rather than global coordinates, the elements of the
differential operator matrix D

≈
need to be written as

∂
∂x
∂
∂y
∂
∂z

 =


∂r
∂x

∂s
∂x

∂t
∂x

∂r
∂y

∂s
∂y

∂t
∂y

∂r
∂z

∂s
∂z

∂t
∂z


︸ ︷︷ ︸

J−1


∂
∂r
∂
∂s
∂
∂t

 . (3.29)

This gives
ε∼

(e) = B
≈

(e)(r, s, t)û∼, (3.30)

where the strain-displacement matrix B
≈

(e)(r, s, t) was gained by using the (modi-
fied) differential operator matrix on the interpolation matrix

B
≈

(e)(r, s, t) = D
≈
H
≈

(e)(r, s, t). (3.31)

The values ofB
≈

(e) are derivatives of the shape functions with respect to the natural
coordinates. These derivatives were already presented for some Lagrangian element
types in section 3.1.3.

The same procedure applied on the virtual strain gives

δε∼
(e) = B

≈
(e)(r, s, t)δû∼. (3.32)
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Using the above, and defining the nodal displacement vector û∼ as well as the
virtual nodal displacements δû∼ to have n entries, where n are the total degrees of
freedom, the left side of equation 3.26 is

δû∼
T

M∑
i=1

∫
V

(e)
r

B
≈

(e)TC
≈

(e)B
≈

(e) det(J)dV (e)
r︸ ︷︷ ︸

K
≈

(e)︸ ︷︷ ︸
K
≈

û∼, (3.33)

where the volume integration is approximated by the sum of element integrations
over the volume V

(e)
r in natural coordinates, which are usually evaluated in a nu-

meric way, e.g. as shown in section 3.1.4. The virtual and real nodal displacements
are independent of volume and have therefore been pulled out of the integrand.
K
≈

(e) is the element stiffness matrix, and K
≈

is the stiffness matrix of the element
assemblage. The summation in equation 3.33 must be understood as an assembling
operation. For further information please see e.g. Bathe (1996) or Zienkiewicz and
Taylor (2000).

For the right side of equation 3.26, an analogous procedure leads to

δû∼
T

M∑
i=1

∫
V

(e)
r

H
≈

(e)Tf
∼

B det(J)dV (e)
r︸ ︷︷ ︸

F∼
B(e)

ext︸ ︷︷ ︸
F∼

B

ext

(3.34)

and

δû∼
T

M∑
i=1

∫
S
(e)
rF

H
≈

(e)T

S
t∼
S det(JS)dS

(e)
rF︸ ︷︷ ︸

F∼
S(e)

ext︸ ︷︷ ︸
F∼

S

ext

, (3.35)

where the Jacobian matrix JS is a mapping of the surface area in the natural
coordinates to a surface area in global coordinates, and the surface interpolation
matricesH

≈
(e)T

S
are obtained by proper adaption of the elements of the interpolation

matrices H
≈

(e)T .
Inserting the results of equations 3.33, 3.34 and 3.35 into equation 3.26 and

applying the principle of virtual displacements n times, where

δû∼
T
1

=
[
1 0 0 ...

]
, δû∼

T
2

=
[
0 1 0 ...

]
, ..., δû∼

T
n

=
[
... 0 0 1

]
leads to the well-known set of equations

K
≈
û∼ = F∼

B
ext

+ F∼
S
ext︸ ︷︷ ︸

F∼ ext

. (3.36)
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After incorporation of the boundary conditions, this set of equations allows us to
compute the unknown nodal displacements û∼. For the sake of brevity, we will
not show how the boundary conditions can be included into equation 3.36. For
discussion of this topic see e.g. Bathe (1996).

3.2.2 Non-linear finite element formulation

In the last step in section 2.5, we gained equation 2.67∫
V

δ[∆u∼] • D
≈
T

L

mC
≈
D
≈L

∆u∼ dV +

∫
V

δ[∆u∼] •D
≈
T

NL

mS
≈
D
≈NL

∆u∼ dV =

m+1δWext −
∫
V

δ[∆u∼] •D
≈
T

L

mS∼ dV,

where deformation-independent loads where postulated. For simplicity reasons,
deformation-dependent loads will also not be part of this section. For discussion
of this topic see again e.g. Bathe (1996).

With the knowledge gained in the last section, the first term on the left-hand
side of this equation can be rewritten as

δ∆û∼
T

M∑
i=1

∫
V

(e)
r

B
≈

(e)T

L

mC
≈

(e)B
≈

(e)

L
det(J)dV (e)

r︸ ︷︷ ︸
mK

≈L

∆û∼, (3.37)

where mK
≈L

is the linear strain incremental stiffness matrix.
Accordingly, the second term on the left-hand side is

δ∆û∼
T

M∑
i=1

∫
V

(e)
r

B
≈

(e)T

NL

mS
≈

(e)B
≈

(e)

NL
det(J)dV (e)

r︸ ︷︷ ︸
mK

≈NL

∆û∼, (3.38)

where mK
≈NL

is the non-linear strain incremental stiffness matrix.
In the computation of the linear and non-linear strain-displacement matrices

B
≈

(e)

L
and B

≈
(e)

NL
the influence of the natural coordinate mapping must be included

properly, as already mentioned in section 3.2.1.
The first term on the right-hand side, that represents the external virtual work,

m+1δWext can be adopted directly from equation 3.34 and 3.35. The second term
on the right-hand side can be represented as

δ∆û∼
T

M∑
i=1

∫
V

(e)
r

B
≈

(e)T

L

mS∼
(e) det(J)dV (e)

r︸ ︷︷ ︸
mF∼int

, (3.39)
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where mF∼int is the internal force vector. The element volume integrations in all
of these terms are again usually evaluated numerically as briefly shown in sec-
tion 3.1.4.

The results of equation 3.37, 3.38, 3.34, 3.35 and 3.39 together with the usage
of the principle of virtual displacements mentioned in section 3.2.1 leads to the
non-linear finite element formulation(

mK
≈L

+ mK
≈NL

)
︸ ︷︷ ︸

mK
≈

∆û∼ =m+1F∼ ext
−mF∼ int

. (3.40)

After the boundary conditions are included, the increments of the nodal displace-
ments ∆û∼ can be calculated iteratively e.g. using the Newton-Raphson method
briefly discussed in the next section.

3.2.3 Newton-Raphson method

A standard iterative solver for non-linear finite element analysis, the Newton-
Raphson (NR) method, is now introduced. The steps of this process will now be
illustrated.

1. The system is in equilibrium in configuration (m), which means that the
internal forces mF∼ int

and external forces mF∼ ext
are in balance.

2. The load is increased to m+1F∼ ext
. This introduces imbalance to the system.

A new equilibrium configuration (m+ 1) is intended.

3. Initialization of the Newton-Raphson procedure.

u∼
(0) =mu∼

F∼
(0)
int

=mF∼ ext

4. Solve

K
≈

(i)∆u∼ =m+1F∼ ext
− F∼

(i)
int

for ∆u, calculate the displacements

u∼
(i+1) = u∼

(i) + ∆u∼

and use u∼
(i+1) to calculate the strains and stresses. Use the results to calcu-

late the internal force vector m+1F∼ int

5. The unbalanced force vector which can be obtained as

m+1R∼ =m+1F∼ ext
−m+1F∼ int

, (3.41)

can then be used to determine the accuracy of the calculated displacements
u(i+1) through a variety of available convergence criteria.
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6. Now there are three possible outcomes:

(a) If the convergence criteria is not met, steps 4 and 5 have to be repeated.

(b) If the iterations exceed a maximum iteration amount imax, the system is
divergent. Which in most cases is caused by oversized load increments.

(c) If the results are satisfying,i.e. the convergence criteria is met, a state
of equilibrium has been found. If another load increment has to be
applied, return to step 2. If not, continue with postprocessing steps.
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Chapter 4

Molecular Dynamics (MD)

The basis for the following sections was the work of Ulz (2015) and the books
of Tadmor and Miller (2011) and Weiner (2002).

In molecular dynamics, atoms are simulated as classical Newtonian particles. The
motion of these atoms is traced by integration of the equations of motion.

Since molecular dynamics originates from statistical mechanics, simulations
corresponding to certain macroscopic constraints are described using statistical
ensembles. To help understanding the ensemble concept, let us first have a look
at the simplest atomic system, which is the NV E system. Here, a cell of N
atoms is constrained to occupy a fixed volume V , while the energy of the whole
system E is kept constant. The system is fully characterized at all times t by
the atoms’ generalized positions q and generalized momenta p. The set of these
generalized positions and momenta is called the microstate of the system. A set
of given macroscopic constraints, such as N ,V and E in this case, can be reflected
by a large amount of microstates. The collection of all microstates consistent with
certain macroscopic constraints is called ensemble.

In contrast to keeping the energy E constant, one is often more interested in
systems with constant temperature T . This leads to NV T systems, which are
part of the NV T ensemble. In order to keep T constant in a MD simulation, the
system is connected to a heatbath which supplies/withdraws energy to/from the
atoms. This connection may be established by different thermostats, such as the
Nosé thermostat (Nosé (1984)), used in this work.

4.1 Hamiltonian

In the last chapters, we applied strains and loads on an arbitrary deformable body
as we were interested in its response. Our main focus here is similar, we need a
model that allows us to extract the stress response and the elastic constants from
a loaded MD cell. Figure 4.1 shows adequate mappings for this purpose (Andersen
(1980);Parrinello and Rahman (1981);Podio-Guidugli (2010)).
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G1
G2

G3

g1
g2

g3

Fsi ri

ξi

h−1
0

h

E1

E3

E2

Figure 4.1: Mappings between referential (initial) and current (deformed) MD cell
with coordinates si and ri, respectively. The referential MD cell may be mapped
onto a unit cube with coordinates ξi as employed in Parrinello and Rahman (1981).
Figure taken from Ulz (2015).

The three linearly independent edge vectors Gk of the undeformed MD cell trans-
form to gk due to deformation. Here, the quantity F is consistent with the deforma-
tion gradient shown in section 2.1 and is therefore referred as the cell deformation
gradient. It allows a mapping of the edge vectors and atomic positions

gk = FGk, and ri = Fsi. (4.1)

Although the proceedings are similar, there is one important difference to the
previous chapters. While the undeformed configuration in chapter 2 and 3 was
fixed, in the sense that they did not change their shape and the continuum particles
did not change their position, the referential configuration will now still preserve
its shape but the positions si will change accordingly with ri.

A different mapping was introduced by Parrinello and Rahman (1981), which
is also shown in figure 4.1. Here, the referential configuration is mapped onto a
unit cube, which is connected to the current configuration by the quantity h =
[g1 g2 g3].

The following approach of an extended N -particle Hamiltonian was proposed
by Ray and Rahman (1985) and is written in terms of continuum mechanics (Podio-
Guidugli (2010), Ulz (2013))

H = Katoms + Vatoms +Kcell + Vcell +Kheatbath + Vheatbath

= C−1 :
1

2

N∑
i=1

1

mif 2
pi ⊗ pi +

N∑
i=1

Ei

+ PTP :
1

2
J−1 + Ω0S

ext : E + P 2 1

2M
+ (3N + 1)kBT∞ ln(f). (4.2)
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4.2. INTERATOMIC POTENTIAL

It consists of kinetic terms Ki and potential terms Vi. In this form, equation 4.2
is the Hamiltonian for the isostress-isothermal (NσT ) ensemble. However, slight
modifications, which will be discussed later, allow us to obtain the Hamiltonian
for the isostress-isenthalpic (NσH) ensemble (Andersen (1980);Parrinello and Rah-
man (1981)), the canonical (NFT ) ensemble (Nosé (1984);Hoover (1985);Hünen-
berger (2005)) or the microcanonical (NFE) ensemble. In equation 4.2, si and pi
denote the atoms’ scaled coordinates and conjugate momenta, respectively. The
coordinates and momenta of the MD cell are F and P, respectively. The thermo-
stat is introduced by the extra degree of freedom f and the conjugate momentum
P .1 While the atoms’ masses are denoted with mi, there is also a ‘thermal mass’
M of the heatbath, which affects the thermal equilibration rate. In addition to
that, the quantity J =

∑N
i=1 mi si⊗ si is the referential inertia tensor. The volume

in the referential configuration is given by Ω0 and the externally applied stress is
given by Sext, which is of the same character as the second Piola-Kirchhoff stress
in continuum mechanics. The associated quantity E corresponds to the Green-
Lagrange strains and C−1 = F−1F−T is the inverse of the right Cauchy-Green
deformation tensor. Equation 4.2 further contains the Boltzmann constant kB
and the temperature of the heatbath T∞.

4.2 Interatomic Potential

The interatomic potential Ei, contained in the atoms’ potential energy term Vatoms,
is a central subject of molecular dynamics as it describes the atoms’ attraction and
repulsion. There are many potentials that approximate these interactions. In this
work, the embedded atom model (EAM) (Daw and Baskes (1984)) has been used,
since it has shown to be very effective especially for metal systems.

Using EAM, the potential energy of atom i can be written as

Ei = Fi

 N∑
j=1
j 6=i

πj(rij)


︸ ︷︷ ︸

ρi

+
1

2

N∑
j=1
j 6=i

φij(rij) (4.3)

where φij is a pair-wise potential, πj is the contribution of the electron charge
density of atom j to the location of atom i and Fi is the embedding function that
represents the energy required to place atom i into the electron cloud and rij is
the distance between atom i and j.

Wadley et al. (2001) proposed a form of the functions ρ, φ and F which are used
in this work. For improved readability, these functions are shown in appendix A.

1In contrast to the NV E ensemble mentioned before, where the microstates are given by its
Hamiltionian in form of HNV E = H(q,p), the microstates of the NσT ensemble are now defined
by additional variables HNσT = H(s,p,F,P, f, P ).
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In section 4.3, we will show the equations of motion for an atom i. To solve
those equations, one first needs to calculate the forces resulting from interaction
of atom i with all other atoms j = 1, .., N ; i 6= j in the system. Again, to facilitate
readability, the calculation of the interatomic forces is shown in appendix B.

In order to approximate these interactions properly for all atoms in the MD
system, the simulation cell is embedded into bulk material using periodic boundary
conditions.

4.2.1 Periodic boundary conditions (PBC)

Periodic boundary conditions are an effective method to simulate bulk material.
But why is this necessary?

Due to computational reasons only small portions of material can be simulated.
If only one MD cell is investigated, it is easily possible to involve N = 104 to 106

atoms. We will later see though, that we are interested in parallel calculation of
hundreds of MD cells. As this would yield unreasonable computational cost, we
will only include a few hundred atoms per MD cell. However, when using such
a small amount of atoms, a large share is located on the surface of the cell or in
close distance to it. Thus treating these surface elements in an inappropriate way
will vastly affect the simulation outcome. Although these surface effects are less
present in large simulations, using PBC is the standard procedure in molecular
dynamics in small and large simulations.

In order to simulate bulk material, replicas of the considered MD cell are at-
tached in each direction to the cell. This is shown in figure 4.2a for a 2-dimensional
domain.

(a) (b)

Figure 4.2: Periodic boundary conditions applied to a 2-dimensional simulation.
(a) Replication of the original cell. (b) Conservation of the quantity of atoms in
the original cell. Figure taken from Wurm (2013).

The atoms in the replicas behave exactly the same way as the original atoms
do. When an atom leaves the cell, a replica cell automatically supplies it with
a copy of that atom, hence the amount of atoms in the cell is preserved. This
is one central property of PBC and is sketched in figure 4.2b. Furthermore, as
it is shown in appendix B, the distance between two atoms plays an important
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4.3. EQUATIONS OF MOTION (EOM)

role in the calculation of interatomic forces. This leads us to the minimum image
convention which states that if we want to compute the interaction of atom j on
atom i, only the closest version of atom j will be considered, whether it is in the
original cell or in one of the replicas.

4.3 Equations of Motion (EOM)

Hamilton’s equations of motion can be found by comparing the total differential
of the Hamiltonian in its standard form with its form in terms of the Legendre
transformation (see e.g. Goldstein et al. (2002)) as

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

. (4.4)

In terms of the Hamiltonian given in equation 4.2 this gives

ṡi =
∂H
∂pi

=
1

mif 2
C−1pi, ṗi = −∂H

∂si
= −C

N∑
j 6=i

χij
rij

sij, (4.5)

Ḟ =
∂H
∂P

= PJ−1, Ṗ = −∂H
∂F

= −Ω0F(Sext + Sint), (4.6)

ḟ =
∂H
∂P

=
1

M
P, Ṗ = −∂H

∂f
=

1

f
(2K − (3N + 1)kBT∞) . (4.7)

We will refrain from showing how to obtain these 6N + 20 equations here as it is
quite space-consuming. For an extensive derivation see Wurm (2013, Appendix).

The quantity

χij(rij) =
∂Fj(ρj)

∂ρj

∂πi(rji)

∂rji
+
∂Fi(ρi)

∂ρi

∂πj(rij)

∂rij
+
∂φij(rij)

∂rij

is derived in appendix B. The instantaneous microscopic stress tensor Sint, which
will be further discussed in section 4.5, is found during derivation of the EOM as

Sint =
1

Ω0

[
−C−1

(
N∑
i=1

1

mif 2
pi ⊗ pi

)
C−1 +

1

2

N∑
i=1

N∑
j 6=i

χij
rij

sij ⊗ sij

]
. (4.8)

and K is the kinetic energy found as

K =
1

2

N∑
i=1

mif
2ṡTi C ṡi. (4.9)

Hamilton’s EOM (equation 4.5 to 4.7) can be condensed to have the form of
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Lagrange’s EOM

s̈imif
2 = −mi

(
f 2C−1Ċ + 2fḟ

)
ṡi −

N∑
j 6=i

χij
rij

sij, (4.10)

F̈J = −Ω0F(Sext + Sint), (4.11)

f̈M =
1

f
(2K − (3N + 1)kBT∞) , (4.12)

which are 3N + 10 second order partial differential equations.

This is a good point to talk about the modifications mentioned before, which
allow us to realize different ensembles using the Hamiltonian given in equation 4.2
and the corresponding equations of motion. As previously mentioned, equation 4.2
and the obtained EOM are valid for the NσT ensemble. In order to get the
EOM for other ensembles, such as the NFT ensemble used in this thesis, different
constraints are used as shown in table 4.1.

NσH f = 1, ḟ = f̈ = 0

NFT F = const., Ḟ = F̈ = 0, Sext = 0

NFE
F = const., Ḟ = F̈ = 0, Sext = 0,

f = 1, ḟ = f̈ = 0

Table 4.1: Possible ensembles.

4.4 Numerical Integrator: Gear’s Predictor Cor-

rector Algorithm

The Lagrangian EOM given in equation 4.10 to 4.12 are integrated numerically for
each time step.2 The integrator used in this work, a high-order integrator which
belongs to the family of predictor-corrector methods, is ‘Gear’s predictor-corrector’
algorithm (Gear (1966); Gear (1971)). As their name implies, predictor-corrector
methods consist of two steps. In the first step, the desired variables are predicted
and in the second step, the corrected variables are calculated. Gear’s method is
available in different orders. In this work, a 6th-order scheme is used and will now
be briefly presented.

The 6th-order scheme uses a 5th-order taylor series to approximate a variable

2Special attention must be paid when choosing the time integrator for MD simulations as
there are several requirements to be met. For further information please see e.g. Tadmor and
Miller (2011).
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a and it’s derivatives3, which allows the predictor step to be written as

a0(t+ ∆t) = a0(t) + ∆t
da(t)

dt
+

(∆t)2

2!

da2(t)

dt2
+

(∆t)3

3!

da3(t)

dt3
+

(∆t)4

4!

da4(t)

dt4
+

(∆t)5

5!

da5(t)

dt5

a0(t+ ∆t) = a0(t) + a1(t) + a2(t) + a3(t) + a4(t) + a5(t)

a1(t+ ∆t) = a1(t) + 2a2(t) + 3a3(t) + 4a4(t) + 5a5(t)

a2(t+ ∆t) = a2(t) + 3a3(t) + 6a4(t) + 10a5(t)

a3(t+ ∆t) = a3(t) + 4a4(t) + 10a5(t)

a4(t+ ∆t) = a4(t) + 5a5(t)

a5(t+ ∆t) = a5(t),

where we have used the abbreviation

an(t) =
(∆t)n

n!

dan(t)

dtn
(4.13)

for n = 1, 2, 3, 4, 5.
This can also be written in the more compact form

aP0 (t+ ∆t)

aP1 (t+ ∆t)

aP2 (t+ ∆t)

aP3 (t+ ∆t)

aP4 (t+ ∆t)

aP5 (t+ ∆t)


=



1 1 1 1 1 1

0 1 2 3 4 5

0 0 1 3 6 10

0 0 0 1 4 10

0 0 0 0 1 5

0 0 0 0 0 1





a0(t)

a1(t)

a2(t)

a3(t)

a4(t)

a5(t)


. (4.14)

The corrected values are calculated by

aC0 (t+ ∆t)

aC1 (t+ ∆t)

aC2 (t+ ∆t)

aC3 (t+ ∆t)

aC4 (t+ ∆t)

aC5 (t+ ∆t)


=



aP0 (t+ ∆t)

aP1 (t+ ∆t)

aP2 (t+ ∆t)

aP3 (t+ ∆t)

aP4 (t+ ∆t)

aP5 (t+ ∆t)


+



c0

c1

c2

c3

c4

c5


∆a2, (4.15)

where ci are the Gear corrector coefficients (also Gear’s ‘magic numbers’) shown
in table 4.2 and ∆a2 = aC2 − aP2 is obtained by substituting aP0 and aP1 into the
equations of motion 4.10 to 4.12.

3The quantity a can be understood as s, F or f . While this notation is correct in the first
two cases, the quantity a should be understood as a scalar a in the third case.
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c0
4 c1 c2 c3 c4 c5

3/16 or 3/20 251/360 1 11/18 1/6 1/60

Table 4.2: Gear’s magic numbers of the 6th-order scheme for integrating second
order differential equations.

4.5 Extraction of Macroscopic Observables

In statistical mechanics, macroscopic observables such as the volume, temperature,
density and many more, are calculated using an ensemble average of a phase
function A(Γ)

〈A(t)〉 =

∫
Γ

A(Γ)f(Γ, t)dΓ, (4.16)

where Γ is the phase space, which consists of all accessible microstates of the en-
semble. The phase space distribution function f(Γ, t) gives the probability density
per unit phase space, i.e. the probability of finding a system in the region Γ + dΓ
at time t. The distribution function needs to fulfill the normalization condition∫

Γ
f(Γ, t)dΓ = 1.
The ergodic hypothesis implies that for stationary systems, which are repre-

sented by a phase space distribution function that does not change in time, the
ensemble average can be replaced by a time average

A =
1

∆t

∫ ∆t

0

A(Γ(τ))dτ (4.17)

over a sufficiently long time frame ∆t. This is what in fact justifies the usage
of molecular dynamics in statistical mechanics, where quantities are estimated by
following a single system over a large amount of timesteps.

As already mentioned in section 4.1, the macroscopic observables of interest to
us are the stress response and the elastic constants. These quantities are deter-
mined by time-averaging using their microscopic equivalents. These microscopic
quantities are obtained through derivatives of thermodynamic potentials with re-
spect to proper deformation measures.

For canonical systems, the corresponding potential is the Helmholtz free energy
(Weiner (2002)) defined as

Ψ = −kBT lnZ = −kBT ln

(∫
Γ

e
− H
kBT dΓ

)
, (4.18)

4It is recommended to use c0 = 3/16 for a = s because the first derivative ṡ appears on the
right-hand side of equation 4.10. For a = F and a = f , c0 = 3/20 should be used. See Allen and
Tildesley (2009, Appendix E).
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where Z is the partition function, T is the temperature of the heatbath and H is
the Hamiltonian of equation 4.2 adapted for the NFT ensemble.

A microscopic stress measure, corresponding to the second Piola-Kirchhoff
stresses, is obtained by derivation of the Helmholtz free energy with respect to
1/2 C

Ω0S
int = 2

∂Ψ

∂C
= −2

kBT

Z

∂Z

∂C
= 2

kBT

kBT

∫
Γ
∂H
∂C

e
− H
kBT∫

Γ
e
− H
kBT

= 2

〈
∂H
∂C

〉
, (4.19)

whereas the ensemble average may be replaced by a time average〈
∂H
∂C

〉
=
∂H
∂C

. (4.20)

An expression for Sint can already be found in equation 4.8.
The isothermal elastic constants are found by the second derivative of the

Helmholtz free energy with respect to 1/2 C

Ω0C = 4
∂Ψ

∂C∂C

= 2
∂

∂C

(
−2kBTZ

−1 ∂Z

∂C

)
= 2

(
2kBTZ

−2 ∂Z

∂C

∂Z

∂C
− 2kBTZ

−1 ∂
2Z

∂C2

)
. (4.21)

The first derivative of the partition function Z with respect to C is already eval-
uated in equation 4.19. Using this relation, the second derivative is found as

∂2Z

∂C2
=

∂

∂C

(
∂Z

∂C

)
=

1

kBT

∂

∂C

(
−
∫

Γ

∂H
∂C

e
− H
kBT dΓ

)
= − 1

kBT

∫
Γ

(
∂2H
∂C2

e
− H
kBT − ∂H

∂C

1

kBT
e
− H
kBT

∂H
∂C

)
dΓ

= − Z

kBT

〈
∂2H
∂C2

〉
+

Z

k2
BT

2

〈
∂H
∂C

∂H
∂C

〉
. (4.22)

Inserting these results into equation 4.21 yields

Ω0C = 4

(
1

kBT

〈
∂H
∂C

〉〈
∂H
∂C

〉
+

〈
∂2H
∂C2

〉
− 1

kBT

〈
∂H
∂C

∂H
∂C

〉)
= 4

[〈
∂2H
∂C2

〉
− 1

kBT

(〈
∂H
∂C

∂H
∂C

〉
−
〈
∂H
∂C

〉〈
∂H
∂C

〉)]
. (4.23)
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It is important to note that computation of the last two terms in equation 4.23
needs averaging over a large amount of micro-timesteps to reach a satisfying ac-
curacy. We will see in chapter 5 that we are interested in keeping the amount
of timesteps on the microscale as small as possible, in order to ensure reasonable
computational cost. Therefore these terms will be neglected, i.e.

Ω0C ≈ 4

〈
∂2H
∂C2

〉
.5 (4.24)

Depending on the used material and the temperature level this simplification af-
fects the calculation in a different magnitude. Fortunately, for the materials and
temperatures used in this thesis, these terms only contribute 3−5% to the elastic-
ity tensor C (Çaǧin and Pettitt (1989)). Due to thermal fluctuations, the obtained
values for the elasticity tensor C and the stresses Sint can be seen as noise-corrupted
measures of the ‘correct’ quantities. Even if we assume this noise could be can-
celed out, the method would have an inherent error of 3 − 5% in C based on the
assumptions presented above. In this situation, the Newton-Raphson algorithm
would still converge relatively fast, although losing its quadratic convergence be-
havior. However, the noise cannot be canceled and negates a classic convergence
behavior.

This problem corresponds to the challenging task of finding roots of noise-
corrupted functions which is addressed in stochastic approximation (SA). The
basics of SA are described in chapter 6.

This discussion already gave insight into some of the characteristics of the two-
scale model subject of this work. This model will be further described in the next
chapter.

5As the calculation of this derivative is rather space-consuming, it will not be part of this
work, nor will the result. Please see the appendix of Ulz (2015) for further information.
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Chapter 5

Two-scale Model

The scope of this thesis is to improve the information exchange of a two-scale model
which consists of a macro- and a microscale. As a result, a hierarchical1 model
suitable for isothermal problems, which fits in the heterogeneous multiscale method
(HMM) framework (E et al. (2007)), is obtained. The basics of the macroscale,
on which the equations of continuum mechanics are solved using a displacement-
based, non-linear finite element formulation, were presented in chapter 2 and 3.
The Newton-Raphson method presented in section 3.2.3 is used as the macroscopic
solver. The purpose of the microscale was already revealed in remark 2.5.1, where
we mentioned that the microscale replaces the macroscopic material description
and gives the stress response and constitutive behavior using molecular dynamics
simulation.

∆t

i

F
Sint,C

Ma∆τ Mb∆τ Mc∆τ

Figure 5.1: Information exchange between macro- and microscale.

The connection between macro- and microscale is sketched in figure 5.1 and can
be described as follows. Every time a new displacement field is obtained on the
macroscale, the deformation gradient is subsequently computed in every integra-
tion point using equation 3.6. A single MD cell is assigned to each of these inte-
gration points as sketched in figure 5.2 (PBC are used to simulate bulk material).

Each MD cell is constrained by its associated deformation gradient and the

1For further information see Tadmor and Miller (2011, Chapter 11)
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CHAPTER 5. TWO-SCALE MODEL

Figure 5.2: An MD cell is located at each integration point of the macroscopic
body.

constant temperature T∞.2 Therefore the NFT ensemble is chosen. After ini-
tialization, the MD cell is traced for a total of M = Ma +Mb +Mc timesteps,
which consist of three phases. The first phase usesMa timesteps to gradually load
the cell with the deformation gradient F. After completion, the cell is traced for
Mb +Mc timesteps under the full load of F. Phases b and c are therefore similar
except that the data for time averaging is only collected in phase c. After the av-
eraged values of the stresses and elastic constants are calculated from the collected
data, the macroscopic solver uses these quantities to compute a new displacement
field and the procedure starts over.3

In section 3.2.3 it was mentioned that the Newton-Raphson method is carried
out until some convergence criteria is met. In our case though, thermal fluctua-
tions of the atoms on the microscale prevent classical convergence behavior. This
means that in every macroscopic timestep, a predefined number of iterations imax
is performed.

It is reasonable to assume that each of these NR iterations, i = 1, 2, 3, ..., imax,
is performed using the same number of microscopic timesteps M, where M is
chosen to be large enough so that equilibrium is established on the microscale in
every iteration (see figure 5.3).

This would indeed be desirable but is highly impracticable due to the fact that
most macroscopic bodies are discretized using hundreds or thousands of elements
and therefore yield at least as much integration points with their corresponding
MD cells. The parallel computation of that many MD cells, to a degree where
equilibrium is guaranteed in every NR iteration, yields tremendous computational

2The MD simulation gives the stresses and the elastic tensor. It is important to make a
distinction between adiabatic and isothermal elastic constants. While the former are associated
with rapid loading, the latter are associated with slow or quasi-static loading. Therefore we are
interested in maintaining a constant temperature in the system.

3In this work, we split the total amount of microscopic timesteps per NR iteration M into
three uniformly distributed phases Ma =Mb =Mc = M/3.
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∆t

M∆τ

imaxi = 1 2

... ... ...

...

Figure 5.3: Macroscopic and microscopic time lines of the described two-scale
model with time t on the macroscale and time τ on the microscale. Every Newton-
Raphson iteration uses the same amount of microscopic timestepsM. Figure taken
from Ulz (2015).

cost. This computational cost can be lessened in two ways: either the amount
of elements and integration points is lowered, and of course, one should always
be interested in rendering the amount of elements to a minimum, or the number
of timesteps on the microscale is reduced. The latter was performed in the work
of Ulz (2015). It was shown that using only a small amount of microsteps in the
first iterations and only letting the microscale reach equilibrium in the very last
iteration does not mean any loss in accuracy but yields considerable computational
savings. The associated scheme is shown in figure 5.4.

∆t

M1∆τ

... ...... ... ... ... ... ...

k = 1 k = 2

... ...

......... k = K

M2∆τ MK∆τ M∆τ

...

Figure 5.4: Macroscopic and microscopic time lines of the described two-scale
model. As proposed in the work of Ulz (2015), the number of microscopic timesteps
is chosen to be small in the first iterations and is increased to M in the final
iteration imax. Figure taken from Ulz (2015).

While the basic idea is adopted in this work, the amount of microscopic timesteps
per NR iteration is adapted to meet certain assumptions used in the stochastic
approximation (SA) method. This is further discussed in chapter 7, where the
equations of macro- and microscale are combined. These resulting equations ex-
hibit strong similarities to stochastic approximation schemes. Therefore, a brief
introduction to SA will be given in the next chapter.
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Chapter 6

Stochastic Approximation

The basis for the following sections were the books of Spall (2003) and Kushner
and Yin (2003).

Stochastic approximation addresses the problem of finding roots or extrema of
noisy functions. In contrast to recursive methods used in classical numerical anal-
ysis (e.g. the Newton-Raphson method), the function itself, g(θ), is not known,
but noisy measurements are available at any desired value of θ (Kushner and Yin,
2003).

Stochastic approximation methods are used in different areas in science and
economics. A lot of focus is laid on machine learning algorithms (Benaim, 1993;
Cheng and Titterington, 1994; López-Rubio and Luque-Baena, 2011). But there
are also fields of application in classical engineering, e.g. in the optimization of
shape designs (El Alem et al., 2011; Seyedpoor et al., 2011), for estimating the
thermal conductivity in boreholes (Wen-Long et al., 2012) or damping approxima-
tion (Sultan, 2010).

Two prototypical algorithms are presented in the literature. The Robbins-
Monro algorithm for root finding problems, and the Kiefer-Wolfowitz algorithm
for extremum problems. Robbins and Monro (1951) proposed the recursive scheme

θn+1 = θn + εnYn, (6.1)

where {εn > 0} is an appropriate gain sequence which eventually goes to zero and
Yn = Y(θn) is a noisy measurement of g(θn). As εn goes to zero, the rate of
change in θ slows down accordingly.

While in this form, the scheme aims for finding a root θ∗ to the function
g(θ) = 0 using its measurements Y, an alternative form for finding a root θ∗ of a
function g(θ)−α = 0 can easily be found as

θn+1 = θn + εn(α−Yn). (6.2)

In any form, the measurement Yn can be written as

Yn = g(θn) + ek(θn), (6.3)
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6.1. AVERAGING OF THE ITERATES

if the noise term ek is dependent on θn. Slight variations of Eq. 6.3 are possible,
e.g. if the noise is also correlated to {θi, i ≤ n}. Next to correlated noise, there
are also many applications where one observes measurements of the form

Yn = g(θn) + δMn (6.4)

where δMn represents a martingale difference noise with the property
E[δMn|Yi, δMi, i < n] = 0. One must be aware, that {εn} is required to meet
additional conditions and its choice has a great influence on the efficiency of the
scheme. For further information see e.g. Kushner and Yin (2003); Spall (2003).

In case of an extremum problem, for example the search of a minimum θ∗ of
L(θ), the corresponding set of equations reads as:

g(θ) =
∂L

∂θ
= 0. (6.5)

Of course, this requires proper conditions to ensure that a root of Eq. 6.5 is a
minimum. If direct measurements of the noisy derivatives g(θ) are available, the
associated solving algorithms are so called stochastic gradient methods. However,
if only noisy measurements of L(θ) are available, the gradients can only be esti-
mated, e.g. via finite differences using the noisy measurements Y . This method is
the so called Kiefer-Wolfowitz algorithm (Kiefer and Wolfowitz, 1952):

θn+1 = θn − εnĝn(θn), (6.6)

where {εn} is required to meet the same conditions as before, and ĝn(θn) is the
finite difference estimate at the iterate θn which is usually either approximated
one-sided or two-sided. The two-sided approximation reads as:

ĝn(θn) =


Y (θn + cnξ1)− Y (θn − cnξ1)

2cn
. . .

Y (θn + cnξp)− Y (θn − cnξp)
2cn

 . (6.7)

In this scheme, {cn} denotes another gain sequence with similar conditions as {εn}
and additionally

∑∞
n=0 ε

2
n/c

2
n <∞. The quantity ξi is a vector which has the value

one at its i-th place and zero in all other places.

6.1 Averaging of the Iterates

Depending on the selected values for εn, the sample average

Θn =
1

Nn

n∑
i=n−Nn+1

θi (6.8)
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CHAPTER 6. STOCHASTIC APPROXIMATION

can be a better estimate of the desired solution θ∗ than θn is. We would like to
refer to this procedure as ‘offline averaging’, since it does not influence the actual
stochastic approximation algorithm, but rather replaces its final estimate by an
average of previous estimates. In this expression, Nn determines the window of
averaging. Therefore, if an average over all samples is desired, one has to chose
Nn = n.

It is commonly known that if εn approaches zero slower than 1/n, averaging
of the iterates will improve the convergence behavior. This was originally found
by Polyak and Juditsky (1992), proof of this can be found in Kushner and Yang
(1993). One possible choice of εn that fulfills this criterion is

εn =
a

a+ n
a > 1. (6.9)

For further information see e.g. Kushner and Yin (2003); Spall (2003).

6.2 Averaging of the Observatives

Another way to improve the convergence behavior under certain conditions is to
use averaged values of the iterates and observatives of the form

θ̃n =
1

n

n∑
i=1

θi Ỹn =
1

n

n∑
i=1

Yi. (6.10)

As this influences the stochastic approximation algorithm, which now reads as

θn+1 = θ̃n + εnỸn, (6.11)

we would like to refer to this procedure as ‘online averaging’.
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Chapter 7

Application of SA to FEM/MD

Let us assume a minor change to the iteration scheme shown in figure 5.4. We want
to adapt the iteration scheme so that there are no more groups k = 1, 2, 3, ..., K
which consist of iterations with equal amount of timesteps, but rather increase the
amount of microsteps gradually from iteration to iteration as shown in figure 7.1.

∆t

M1∆τ

... ... ... ... ... ... ...

...

M2∆τ M3∆τ M4∆τ M5∆τ M6∆τ M∆τ

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = imax

Figure 7.1: Macroscopic and microscopic time lines of the described two-scale
model. The amount of microscopic timesteps per NR iteration is increased grad-
ually. Figure adapted from Ulz (2015).

This two-scale model may be described using the equations

u∼
(i+1) = u∼

(i) +
[
K
≈

(i)(Sint,C)
]−1 [

F∼ ext
− F∼

(i)
int

(Sint)
]
, (7.1)

where

K
≈

(i)(Sint,C) =
M∑
i=1

∫
V

(e)
r

B
≈

(e)T

L

 1

Mc
i

Mc
i∑

j=1

C
≈ j

(e)

B
≈

(e)

L
det(J)dV (e)

r

+
M∑
i=1

∫
V

(e)
r

B
≈

(e)T

NL

 1

Mc
i

Mc
i∑

j=1

S
≈

int

j

(e)

B
≈

(e)

NL
det(J)dV (e)

r (7.2)
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and

F∼
(i)
int

(Sint) =
M∑
i=1

∫
V

(e)
r

B
≈

(e)T

L

 1

Mc
i

Mc
i∑

j=1

S∼
int
j

(e)

det(J)dV (e)
r . (7.3)

In these equations, the element volume integrals are evaluated numerically as
described in section 3.1.4 and the summation over the finite elements i can be
understood as an assembling process as mentioned in section 3.2.1.

The equations in 7.1 show similarities to stochastic approximation schemes of
the form

θn+1 = θn + εn(α−Yn) (7.4)

described in chapter 6. The displacements u∼
(i+1) correspond to θn+1 and the

previous displacement field u∼
(i) corresponds to θn.

Furthermore, in stochastic approximation we are interested in finding the values
of θ = θ∗ which give a root of the function α − g(θ) = 0, where E[Yn] =
g(θ). The same applies here, where we are interested in finding a displacement
field u∼ = u∼

∗ which fulfills F∼ ext
− F∼ int

= 0∼, but only noise-corrupted values of
Sint and C are available. As previously mentioned, this noise originates from the
thermal fluctuations of the atoms on the microscale. The time averaging of the

form 1
Mc

i

∑Mc
i

j=1(•) with increasing microscopic timestep amounts corresponds to

the decreasing sequence {εn}.
In chapter 6,

εn =
a

a+ n
a > 1 (7.5)

was suggested as a possible choice for this sequence, which is also suitable for
offline averaging. If we choose a = 1.1, the microscopic timestep amounts follow
the relation

Mi =
1.1 + i

1.1
. (7.6)

This yields very small timestep amounts which lead to improper results on the
microscale. Therefore, we simply introduce a factor A in the form

Mi =
1.1 + i

1.1
A. (7.7)

which ensures reasonable results. This factor does not violate the criterion which
led to equation 7.5 in section 6.1. Proof of this is straightforward and can be found
in appendix C.

The similarities described above justify the use of the SA averaging concepts
discussed in section 6.1 and 6.2.

7.1 Offline Averaging

At first we take a look at offline averaging. Referring to Spall (2003), two different
search paths in a two-dimensional space are shown in figure 7.2.
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θ∗

θ0

(a)

θ∗

θ0

(b)

Figure 7.2: Two different scenarios of search paths in a two-dimensional SA prob-
lem. Offline averaging is expected to improve the result of the left scenario, but cer-
tainly will not improve the outcome of the right scenario. Figures taken from Spall
(2003).

The two-dimensional search path can be thought of as the movement of a nodal
point in a two-dimensional problem. If the nodal point shows similar behavior
to figure 7.2a, i.e. it fluctuates in a small area in which we can expect the root
θ∗ rather than strictly approaching this point as shown in 7.2b, offline averaging
will potentially improve the iteration result. In fact, we will see in chapter 8 that
thermal fluctuations really cause the nodal points to behave in a similar manner
as shown in figure 7.2a. This means that if offline averaging is applied, we expect
to get a better estimate of the desired displacement field u

≈
∗.

Because we are particularly interested in the stress distribution1, an improved
displacement field is only half the battle. It was shown in chapter 5, that the
stresses are computed on the microscale using the deformation gradients obtained
from the current displacement field. Due to the character of the microscale, the
hereby obtained stresses in an arbitrarily chosen point of the body can be written
as2

S = S̃ + ∆S, (7.8)

where S̃ is the correct stress response for an arbitrary displacement field and ∆S
is the error which originates from the thermal fluctuation of the atoms. Even if
we assume to have found the desired displacement field u∼

∗, the stress response
obtained is

S = S∗ + ∆S, (7.9)

1Due to their physical meaning, we are interested in obtaining the Cauchy stresses σ. In
the used FE formulation only the second Piola-Kirchhoff stresses S are present. We can simply
calculate the Cauchy stresses as σ = J−1FSFT using equation 2.38.

2∆S should not be confused with the increment of the second Piola-Kirchhoff stresses used
in section 2.5.
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where S∗ are the correct stresses for the desired displacement field.

This means, even if offline averaging yields a displacement field arbitrarily close
to the desired displacement field, the stress distribution is still containing errors
and we need to adopt further measures in order to obtain an improved stress dis-
tribution. One possible measure is to reduce the magnitude of ∆S. This can
either be done by averaging over a large amount of timesteps or by increasing
the amount of atoms in the simulation. Both solutions are impracticable due to
increased computational cost. Another possible way to improve the stress distri-
bution is to introduce offline averaging of the stresses. The idea is the same as
in case of the displacements, the influence of the thermal fluctuations is reduced
through averaging. This does also not cause any additional computational cost.

In summary, it can be stated that one possibility which shows potential to
improve the displacement field as well as the stress distribution, is represented by
a combination of offline averaging of the displacements and the stresses.

7.2 Online Averaging

Next to the offline averaging, online averaging was discussed in section 6.2 as a
second method to potentially improve the results of SA schemes. While offline
averaging did not influence the iteration process, online averaging interferes with
the SA scheme as the displacements as well as the stress response and constitutive
behavior are constantly averaged. The iteration scheme of equation 7.1

u∼
(i+1) = u∼

(i) +
[
K
≈

(i)(Sint,C)
]−1 [

F∼ ext
− F∼

(i)
int

(Sint)
]
, (7.1)

is changed to

u∼
(i+1) = ũ∼

(i) +
[
K
≈

(i)(S̃int, C̃)
]−1 [

F∼ ext
− F∼

(i)
int

(S̃int)
]
, (7.10)

using averages of the quantities in previous NR iterations k

ũ∼
(i) =

1

i

i∑
k=1

ũ∼
(k) S̃int =

1

i

i∑
k=1

S̃int,(k) C̃ =
1

i

i∑
k=1

C̃(k). (7.11)

Because the stresses are already averaged during the iteration process, an addi-
tional offline averaging, as introduced in the end of the previous section, is not
applied.

7.3 Online/Offline Averaging

Another method used in this work represents a combination of the previous meth-
ods. The displacement field will be subject to online averaging, whereas the stresses
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and the constitutional behavior are not averaged during the iteration process. The
iteration scheme for this method reads as

u∼
(i+1) = ũ∼

(i) +K
≈

(i)(Sint,C)−1
[
F∼ ext

− F∼
(i)
int

(Sint)
]
. (7.12)

Again, even if this method yields an accurate displacement field, additional offline
averaging of the stresses needs to be applied as discussed in section 7.1.
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Chapter 8

Numerical Examples

In this chapter, the three strategies presented at the end of the last chapter will be
compared by applying them on two numerical examples. We will get insight in the
averaging behavior by looking at how the displacements and stresses evolve over
the NR iterations and we will further compare the resulting stress distributions. It
was already mentioned that additional offline averaging of the stresses may further
improve the results of the strategies presented in section 7.1 and 7.3. To verify this
assumption, we will therefore also compare the results with and without additional
offline stress averaging.

Table 8.1 shows the three different comparison scenarios. To facilitate read-
ability, we introduce the parenthesized abbreviations.1

1 Offline averaging of the
displacements (off:u)

vs. Offline averaging of the
displacements + additional
offline averaging of the
stresses (off:uS )

2 Offline averaging of the
displacements (off:u)

vs. Online averaging (on:uSC )

3 Online averaging of the
displacements (on:u)

vs. Online averaging of the
displacements + additional
offline averaging of the
stresses (on:u;off:S )

Table 8.1: Compared methods.

It was mentioned in the discussion of the two-scale model in chapter 5, that the
amount of microscopic timesteps in the very last NR iteration should be chosen

1It is important to note that both online averaging methods (on:u and on:uSC ) are first
applied after the third NR iterate. This is because the macroscopic observables of MD simulations
generally show large deflections in the first few iterations, which we want to exclude from the
online averaging procedure.
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large enough to ensure equilibrium on the microscale. It is important to note that
we will refrain from this approach due to high computational cost.

In the first example, a plate with a circular notch under uniaxial tension is
investigated, whereas the second example is concerned with an elastic half-plane
under line load. While the material used in the first example is a copper single
crystal, the second one uses a tungsten single crystal.2 In both examples, the
temperature is 300K and the lattice planes are parallel to the boundary planes
in the undeformed configuration of the two macroscopic regions. The geometry
is discretized using a FEM mesh with linear triangular elements as presented in
section 3.1.2. For these elements, only one integration point per element is needed
to achieve reasonable results.3

8.1 Plate with circular Notch under uniaxial Ten-

sion

p

p

Figure 8.1: Plate with circular notch under uniaxial tension.

A plate with dimensions 723x723x1nm and a centrical circular notch of radius
21.69nm is considered as shown in figure 8.1. The plate is loaded with p =
0.667GPa. Due to the symmetrical properties of the problem, only a quarter
will be investigated to avoid unnecessary computational cost. A quarter of the
system is sketched in figure 8.2a. The boundary conditions are chosen accord-
ingly. As the stress gradients in close distance to the notch are assumed to be
much higher than on the outer edges, the element sizing is adapted appropriately,
resulting in a total amount of 546 elements (see figure 8.2b). The load is applied

2We use a different material in the second example to overcome certain disadvantages arising
from the stress distribution of this example. This will be further discussed in section 8.2.

3For the required order of numerical integration for different elements see e.g. Zienkiewicz
and Taylor (2000).
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in a single macroscopic timestep, in which 70 Newton-Raphson iterations are per-
formed. Furthermore, the timesteps on the microscale are increased according to
equation 6.9 as

Mi =
a+ i

a
50 (8.1)

with a = 1.1.

p

y
P

x

(a) (b)

Figure 8.2: Modeled system, boundary conditions and FEM mesh.

8.1.1 Comparison of the averaging behavior

In order to gain insight in the averaging behavior of the proposed strategies, we take
a look at the displacements and stresses at a characteristic point in the macroscopic
domain.4 We chose point P for this purpose (see figure 8.2a).

In section 7.1 we mentioned that offline averaging is expected to improve the
final estimate of the displacement field if the nodal points’ motion over the iterates
shows similar behavior to figure 7.2a. In this figure, a two-dimensional search
path was shown. Because P only holds one degree of freedom, it is unsuitable for
comparison. We will therefore select another characteristic point Q, located at
(x = 1.0169nm; y = 25.95nm) in the undeformed configuration, which will move
along a two-dimensional path.

Displacement field

At first we take a look at the evolution of the displacement of point P in x-direction
over the NR iterates. The displacement fields for off:u and off:uS as well as for
on:u and on:u;off:S coincide5, which only leaves three different curves as shown in
figure 8.3.

4A point is characteristic if it reflects the behavior of most other points and hence allows to
draw conclusions which apply to the majority of all points.

5This is because offline averaging of the stress distribution does not influence the displacement
field.
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Figure 8.3: Displacement of point P over the iterates. The dotted, dashed and
dot-dashed lines show the results for off:u/off:uS, on:uSC and on:u/on:u;off:S,
respectively.

The displacements obtained by off:u exhibit much smaller fluctuations after 35
iterations, and on:u seems to directly adopt this behavior resulting in a relatively
horizontal line. Naturally, both online averaging schemes produce smoother curves,
although in this example, the displacements seem to converge faster using on:u
rather than on:uSC.
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Figure 8.4: Position of point Q over the iterates. An enlarged view of the area
that contains the last 20 iterations is shown in figure 8.5.
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Figure 8.5: Position of point Q over the last 20 iterates. To facilitate orientation
please consider the x- and y-scale in relation to figure 8.4. The area is clearly
limited to a small domain.

In figure 8.4 and 8.5, the two-dimensional search path of a characteristic point
Q is shown. The comparison with figure 7.2a shows that the assumptions made
in section 7.1 apply and therefore offline averaging is expected to improve the
displacement field.

Stress field

Next, we investigate the iterative behavior of the normal stress σxx at point P as
shown in figure 8.6. It is important to note that in contrast to the displacements,
where the displacement fields of off:u and off:uS as well as those of on:u and
on:u;off:S coincided, their stress distributions only coincide until the next-to-last
iteration. In the last iteration, offline stress averaging replaces the final estimate
of the stress values with the averaged values as shown in figure 8.7.

iteration
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σ
x
x
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Figure 8.6: Normal stress σxx at point P over the iterates. The dotted, dashed
and dot-dashed lines show the results for off:u/off:uS, on:uSC and on:u/on:u;off:S
respectively.

The stress value obtained through on:uSC shows increasing behavior over the
iterates and the final estimate is obtained to be too high.
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Figure 8.7: Normal stress σxx at point P over the last 10 iterates. The final
stress estimate for the different strategies is marked using the following symbols:

©: off:u 5: off:uS �: on:u 4: on:u;off:S.

8.1.2 Comparison of the stress distributions

While the preceding discussion provided an insight in the behavior of the proposed
averaging schemes, we will now compare the final estimates of the stress distri-
butions for the cases 1, 2 and 3 which where presented in table 8.1. Therefore,
the normalized normal stresses σxx/p and σyy/p along the x- and y-axis are plot-
ted in figure 8.8 to figure 8.11. The analytical solution taken from Lekhnitskii
(1968)(elastic constants for this solution taken from Lazarus (1949) for copper) is
given by a solid line in all of these figures.

The stress distributions show good overall agreement to the analytical solution,
which implies that the used two-scale model combined with the proposed averaging
schemes is appropriate for this example. Furthermore, the additional offline stress
averaging used in off:uS and on:u;off:S improves the results compared to their
non-stress-averaging counterparts.
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(a) Dotted line: off:u, dashed line: off:uS.
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(b) Dotted line: off:u, dashed line: on:uSC.
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Figure 8.8: Normalized normal stress σxx along the y-axis. The curves in (a),(b)
and (c) correspond to the cases 1,2 and 3, presented in table 8.1, respectively. The
analytical solution is given according to Lekhnitskii (1968) as a solid line.
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Figure 8.9: Normalized normal stress σyy along the y-axis. The curves in (a),(b)
and (c) correspond to the cases 1,2 and 3, presented in table 8.1, respectively. The
analytical solution is given according to Lekhnitskii (1968) as a solid line.
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Figure 8.10: Normalized normal stress σxx along the x-axis. The curves in (a),(b)
and (c) correspond to the cases 1,2 and 3, presented in table 8.1, respectively. The
analytical solution is given according to Lekhnitskii (1968) as a solid line. The
significant discrepancy between the numerical and analytical solutions is due to
discretization faults.

64



8.1. PLATE WITH CIRCULAR NOTCH UNDER UNIAXIAL TENSION

x-a [nm]

0 5 10 15 20 25 30 35 40 45 50

σ
y
y

/p

1

1.5

2

2.5

(a) Dotted line: off:u, dashed line: off:uS.

x-a [nm]

0 5 10 15 20 25 30 35 40 45 50

σ
y
y

/p

1

1.5

2

2.5

(b) Dotted line: off:u, dashed line: on:uSC.

x-a [nm]

0 5 10 15 20 25 30 35 40 45 50

σ
y
y

/p

1

1.5

2

2.5

(c) Dotted line: on:u, dashed line: on:u;off:S.

Figure 8.11: Normalized normal stress σyy along the x-axis. The curves in (a),(b)
and (c) correspond to the cases 1,2 and 3, presented in table 8.1, respectively. The
analytical solution is given according to Lekhnitskii (1968) as a solid line.
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8.2 Elastic infinite Half-Plane under Line Load

F

x

y

z

rθ

σrrσzz

τzr

Figure 8.12: Elastic infinite half-plane under line load. Figure and stress definition
taken from Lekhnitskii (1968).

The second numerical example is shown in figure 8.12. Uniformly distributed
normal forces F are applied to the surface of an elastic infinite half-plane in a
straight line. Similar to the previous example, the symmetrical properties of the
problem are used to simplify the system as shown in figure 8.13a.

F

(a) (b)

Figure 8.13: Simplified system and FEM mesh. The edge length has been chosen
to be 361.5nm following the first example (section 8.1) and was verified to be large
enough to deliver appropriate results.

Although the elastic half-plane spans over an infinite area, if one chooses the edge
length properly with regard to the elastic properties and the applied load, the
problem can also be solved correctly using a finite plate.
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The analytical solution taken from Lekhnitskii (1968)(elastic constants for
tungsten taken from Featherston and Neighbours (1963)) shows a singularity for
the normal stress σrr at the point of origin of the normal force F as shown in
figure 8.14.
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Figure 8.14: Distribution of the normal stress σrr for the elastic half-plane under
line-load.

As this is associated with very high stress gradients in that specific area, a fine
mesh has been chosen in close neighborhood around the upper left corner point as
shown in figure 8.13b. The total amount of elements used is 536.

Due to the high stress gradients, the stress level goes down quickly to low
magnitudes in close distance to the upper left corner. It was shown in equation 4.8,
that the microscopic stresses are calculated using the atoms’ fluctuations. These
fluctuations consist of a thermal part and a potential part due to the atomic
movement according to the deformation of the MD cell. Low stress levels come
with low strain levels, hence also small deformation of the MD cells. If only small
deformations of the cell are present, the thermal fluctuations surmount and the
simulation produces incorrect results.

To overcome this problem, we could simply increase the loading, which would
result in higher stress. However, for the same material, an increased stress results
in increased strain, which may cause the macroscopic solver to diverge.

Another approach is to simply use a different material with larger elastic con-
stants. This means that the load can be increased, resulting in a higher stress
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level, while maintaining an appropriate level of strain. This is the main reason we
chose tungsten in this example, as mentioned at the beginning of this chapter.

Similar to the first example, the load F is applied in one single macroscopic
timestep which consists of 70 NR iterations. The timesteps on the microscale are
also increased in the same manner, by the relation given in equation 8.1.

8.2.1 Comparison of the averaging behavior

Similar to the first example, we will compare the averaging behavior using one
characteristic point in the macroscopic domain. We chose a point P located at
(x = 0nm; y = −7.328nm). Additionally, in order to compare the search paths,
we select another point Q located at (x = 0.256nm;y = −0.06nm).

Displacement field

The displacement of point P in y-direction over the NR iterates is plotted in
figure 8.15.
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Figure 8.15: Displacement of point P over the iterates. The dotted, dashed and
dot-dashed lines show the results for off:u/off:uS, on:uSC and on:u/on:u;off:S
respectively.

It was already mentioned in the first example that the resulting displacement fields
for off:u and off:uS as well as for on:u and on:u;off:S coincide. This time, the dis-
placements obtained by using the online averaging schemes show similar behavior
to each other and especially on:uSC seems to yield better results compared to the
first example.
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Figure 8.16: Position of point Q over the iterates. The rectangle area contains the
position of Q over the last 20 iterates. An enlarged view of this area is shown in
figure 8.17.
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Figure 8.17: Position of point Q over the last 20 iterates.

The search path of point Q is shown in figure 8.16 and 8.17. Again, the behavior
is similar to figure 7.2a and the assumptions made in section 7.1 apply.

Stress field

The iterative behavior of the normal stress σrr of point P is shown in figure 8.18.
The result of offline stress averaging is shown in figure 8.19.
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Figure 8.18: Normal stress σrr at point P over the iterates. The dotted, dashed
and dot-dashed lines show the results for off:u/off:uS, on:uSC and on:u/on:u;off:S
respectively.
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Figure 8.19: Normal stress σrr at point P over the last 10 iterates. The final
stress estimate for the different strategies is marked using the following symbols:

©: off:u 5: off:uS �: on:u 4: on:u;off:S.

It seems notable that compared to the first example, using on:uSC here results
in a much better stress value.

8.2.2 Comparison of the stress distributions

The final estimates of the stress σrr along the negative y-axis according to the
cases 1,2 and 3 presented in table 8.1 are shown in figure 8.20. Similar to the first
example, the stress distribution is in good agreement with the analytical solution.
While on:uSC produced the worst results of all three different strategies in the first
example, its resulting stress distribution is superior to the other two strategies in
this example.
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Figure 8.20: Normal stress σyy along the negative y-axis. The curves in (a),(b)
and (c) correspond to the cases 1,2 and 3, presented in table 8.1, respectively. The
analytical solution is given according to Lekhnitskii (1968) as a solid line.
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Conclusion

The two-scale model used in this work combines continuum mechanics on the
macroscale with statistical mechanics on the microscale. In continuum mechan-
ics, no thermal effects are present due to the large size of the described objects.
In contrast to this, thermal effects hold a central role in statistical mechanics.
Here, macroscopic observables are calculated as averages on the microscale. The
averaging procedure can be seen as a measurement process with the macroscopic
observables as the corresponding measured value. If the microscale reaches thermo-
dynamic equilibrium, we speak of equilibrium statistical mechanics. The equilib-
rium ensures that every measurement yields the same measured value Ã. However,
in practical applications, equilibrium on the microscale is not reached due to im-
mense computational cost. This means that measurements yield noise-corrupted
values A = Ã+ ∆A at variance with measured values in equilibrium.

Our main interest is the computation of the displacement field and stress dis-
tribution on the macroscale. Here, the displacement field is calculated from the
measurements using continuum mechanics. The stress distribution, on the other
hand, is directly obtained as a measured value from the microscale. The atom-
istic model used on the microscale does not reach thermodynamic equilibrium and
therefore only gives noise-corrupted stresses S = S̃ + ∆S and elastic constants
C = C̃ + ∆C. The noise originates from the small amounts of atoms in the MD
cell and microscopic timesteps. Both constraints are due to reasons of compu-
tational efficiency. An approach to diminish the influence of the noise ∆S and
∆C on the calculations of the macroscale is offline or online averaging (off:u or
on:u). It was shown that both these strategies result in a potentially improved
displacement field.

It was mentioned above that the stress distribution, which is our second main
focus, is directly obtained as a measured value from the microscale. The macro-
scopic constraints for this measurement are given by the current displacement field
and a constant temperature. Even if an improved displacement field via off:u or
on:u is used to provide the macroscopic constraint, the resulting stress distribu-
tion is still subject to substantial deflections. Similar to the approach for the
displacement field, this noise may be diminished by offline or online averaging. To
prove this, the strategies off:uS, on:uSC and on:u;off:S have been applied to two
numerical examples. It was shown that depending on the chosen example, these
strategies are capable of improving the stress distribution without introducing
additional computational cost.
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CONCLUSION

Further work on this subject may address a generalization of the model and
study of the convergence behavior and stability criteria. Also plastic or rate-
dependent material behavior and the modeling of crystal defects may be included.
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Appendix A

EAM functions

The following lines show one possible choice for the functions used in the EAM
potential as proposed in Wadley et al. (2001).

ρi =
N∑
j=1
j 6=i

πj(rij) (A.1)

πj(rij) =
fee
−β(

rij
re
−1)

1 +
(
rij
re
− λ
)20 (A.2)

φij(rij) =
Ae−α(

rij
re
−1)

1 +
(
rij
re
− κ
)20 −

Be−β(
rij
re
−1)

1 +
(
rij
re
− λ
)20 (A.3)

Fi(ρi) =
3∑

k=0

Fnk

(
ρi
ρn
− 1

)k
, ρi < ρn, ρn = 0.85ρe (A.4)

Fi(ρi) =
3∑

k=0

Fk

(
ρi
ρe
− 1

)k
, ρn ≤ ρi < ρ0, ρ0 = 1.15ρe (A.5)

Fi(ρi) = Fe

[
1− ln

(
ρi
ρe

)η](
ρi
ρe

)η
, ρ0 ≤ ρi (A.6)

The coefficients contained in these equations are shown in table A.1 for copper
and tungsten.
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Cu W

re(Å) 2.556162 2.740840

fe(eV/Å) 1.554485 3.487340

ρe(eV/Å) 22.150141 37.234847

α 7.669911 8.900114

β 4.090619 4.746728

A(eV ) 0.327584 0.882435

B(eV ) 0.468735 1.394592

κ 0.431307 0.139209

λ 0.86214 0.278417

Fn0(eV) -2.176490 -4.946281

Fn1(eV) -0.140035 -0.148818

Fn2(eV) 0.285621 0.365057

Fn3(eV) -1.750834 -4.432406

F0(eV) -2.19 -4.96

F1(eV) 0 0

F2(eV) 0.702991 0.661935

F3(eV) 0.683705 0.348147

η 0.921150 -0.582714

Fe(eV) -2.191675 -4.961306

Table A.1: EAM coefficients Wadley et al. (2001)
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Calculation of forces

In the following derivation, indices using latin characters declare specific atoms
and are not to be confused with the indical notation previously used in this the-
sis. As an example, rk is the position vector of atom k. Furthermore, we use
rij = ri − rj and rij = |rij|.

The force on an atom i can in general be calculated as

fk = −Vatoms

∂rk
. (B.1)

In case of the EAM potential, this yields

fk = − ∂

∂rk

N∑
i=1

Fi(ρi)ρi +
1

2

N∑
j=1
j 6=i

φij(rij)



= −
N∑
i=1

∂Fi(ρi)∂ρi

∂ρi
∂rk

+
1

2

N∑
j=1
j 6=i

∂φij(rij)

∂rk



= −
N∑
i=1

∂Fi(ρi)∂ρi

N∑
j=1
j 6=i

∂πj(rij)

∂rk
+

1

2

N∑
j=1
j 6=i

∂φij(rij)

∂rk


(B.2)

Remark. To calculate the derivatives in equation B.2 we can make use of the
chain rule in the form

∂A(rij)

∂rk
=
∂A(rij)

∂rij

∂rij
∂rij

∂rij
∂rk

. (B.3)

Calculation of the first term is straightforward.
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The second term gives

rkj = |rkj| =
√

rTkjrkj =
(
rTkjrkj

) 1
2 (B.4)

∂rij
∂rij

=
∂
(
rTijrij

) 1
2

∂rij
(B.5)

Using indical notation, this is

∂rij
∂rij

=
∂ (rijα r

ij
α )

1
2

∂rijβ

=
1

2

(
rijα r

ij
α

)− 1
2 [δαβr

ij
α︸ ︷︷ ︸

rijβ

+ rijα δαβ]︸ ︷︷ ︸
rijβ

=
1

2

1(
rijα r

ij
α

) 1
2

2rijβ . (B.6)

Returning to conventional notation yields

∂rij
∂rij

=
rij
rij
. (B.7)

Using the results given in the remark above, equation B.2 can be written as

fk =
N∑
i=1
i 6=k

[
∂Fi(ρi)

∂ρi

∂πk(rik)

∂rik
+

1

2

∂φik(rik)

∂rik

]
rik
rik

−
N∑
j=1
j 6=k

[
∂Fk(ρk)

∂ρk

∂πj(rkj)

∂rkj
+

1

2

∂φkj(rkj)

∂rkj

]
rkj
rkj

where
∂rik
∂rk

= −1 and
∂rkj
∂rk

= 1 was used. Also
∂rij
∂rk

= 0 for i 6= k, j 6= k.1

Using rik = −rkj and φik(rik) = φkj(rkj) for j = i finally gives

fk = −
N∑
j=1
j 6=k

[
∂Fj(ρj)

∂ρj

∂πk(rjk)

∂rjk
+
∂Fk(ρk)

∂ρk

∂πj(rkj)

∂rkj
+
∂φkj(rkj)

∂rkj

]
rkj
rkj

(B.8)

If we substitute k with i, this result can be rewritten in a more common notation
as

fi = −
N∑
j=1
j 6=i

[
∂Fj(ρj)

∂ρj

∂πi(rji)

∂rji
+
∂Fi(ρi)

∂ρi

∂πj(rij)

∂rij
+
∂φij(rij)

∂rij

]
rij
rij
. (B.9)

11 is the [3× 3] identity matrix and 0 is a [3× 3] null matrix.
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We can also write this as

fi = −
N∑
j=1
j 6=i

χij(rij)
rij
rij
, (B.10)

where the abbreviation

χij(rij) =
∂Fj(ρj)

∂ρj

∂πi(rji)

∂rji
+
∂Fi(ρi)

∂ρi

∂πj(rij)

∂rij
+
∂φij(rij)

∂rij
(B.11)

is used in section 4.3 to write the equations of motion in a more compact way.
The required derivatives of the functions given in appendix A are
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ρn ≤ ρ < ρ0, ρ0 = 1.15ρe:
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Appendix C

Comparison of the convergence
behavior towards zero

In chapter 7, we introduced a factor A in the form

Mi =
a+ i

a
A. (C.1)

that allows us to adjust the amount of microsteps Mi per Newton-Raphson iter-
ation. In section 6.1, we stated that offline averaging only yields proper results
if the chosen sequence f(n) = εn = 1

Mn
shows slower convergence towards zero

than g(n) = 1
n
. Now, we want to proof that this is indeed the case for the chosen

sequence. Both functions are sketched in figure C.1.

ε

n
k k + 1

f(n) = a
a+n

1
A

g(n) = 1
n

Figure C.1: Sketch of the convergence behavior of the two different functions.

The function f(n) goes definitely slower to zero than g(n) if the following
statement is true for any value of k

f(k + 1)

f(k)
>
g(k + 1)

g(k)
. (C.2)
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APPENDIX C. COMPARISON OF THE CONVERGENCE BEHAVIOR
TOWARDS ZERO

Inserting the function values gives

a

a+ k + 1

1

A
a

a+ k

1

A

>

1

k + 1
1

k

a+ k

a+ k + 1
>

k

k + 1

ak + a+ k2 + k > ak + k2 + k

a > 1. (C.3)
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