
Alexander Marsalek, BSc

An Android Malware-Detection
Framework based on Dynamic

Analysis

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Computer Science

submitted to

Graz University of Technology

Univ.-Prof. Ph.D. Roderick Bloem
Dipl.-Ing. Dr.techn. Peter Teufl

Dipl.-Ing. Daniel Hein

Institute of Applied Information Processing and Communications (IAIK)

 Diplom-Ingenieur

Supervisor

Graz, December 2015

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis dissertation.

Date Signature

Abstract

During the past years, smartphones have evolved to omnipresent accessories. For

many users, smartphones play a central role in their daily lives. They produce and

store sensitive data such as location information, photos, voice recordings, contacts,

appointments, and messages. In this regard, especially Android shows a high level of

functionality and flexibility. Its openness, extendability, and other features make it

the most popular mobile operating system. Android’s popularity and the presence

of sensitive data have recently attracted the attention of malware authors. The

majority of mobile malware samples found in 2013 target Android devices. Thus,

sensitive data stored on Android devices must not be assumed to be secure. To

address this issue, a malware detection framework for Android is proposed. Based

on the proposed framework, two analyses have been developed. The first analysis

is based on the DroidBox Application Sandbox. It aims to detect malware that

leaks sensitive data or produces costs for the user by sending short messages or

starting phone calls. The second analysis is called Tripwire. It aims to detect

malware that use root exploits, by analysing file-system changes. Obtained results

reveal that several malware families can be reliably detected with the proposed

framework. However, dynamic analysis techniques are not suited for all families.

Dynamic analysis techniques have the advantage that they are not hampered by

encryption, code obfuscation, and dynamic code loading. The drawback is that only

one execution path is examined. This means the malicious code is only analysed

if it is executed. Despite its limitation, the proposed framework contributes to a

reliable automated malware detection on Android devices.

Keywords. Android, Malware, Dynamic Analysis, Framework, Malware Detec-

tion, DroidBox, Tripwire, exploits, Monkey

iii

Acknowledgments

First and foremost, I want to thank my advisors Roderick Bloem, Peter Teufl and

Daniel Hein for their guidance and their endless support. Their encouragement and

feedback helped me during all phases of this thesis.

Besides my supervisors, I also want to thank my colleagues at the Institute of

Applied Information Processing and Communications for the stimulating environ-

ment.

Finally, I would like to thank my family and my friends for their comprehensive

support.

v

Contents

1 Introduction 1

2 Background 5

2.1 Android Platform . 5

2.1.1 Boot Process . 5

2.1.2 Recovery Mode . 6

2.1.3 Developer Tools . 7

2.1.4 Android Applications . 7

2.1.4.1 Application Components 8

2.1.5 Security . 10

2.1.5.1 Application SandBox 10

2.1.5.2 Permissions . 10

2.1.5.3 Bouncer . 11

2.1.5.4 Remote Malware Removal 12

2.1.6 Fragmentation Problem . 12

2.2 Malware Types . 13

2.2.1 Malware . 14

2.2.2 Personal Spyware . 14

2.2.3 Grayware . 14

2.3 Malware Detection Methods . 14

2.3.1 Static Program Analysis . 15

2.3.2 Dynamic Program Analysis 16

2.3.2.1 TaintDroid . 17

2.3.2.2 DroidBox . 19

3 Related Work 25

3.1 Malware Impacts . 25

3.2 Malware Detection . 26

3.2.1 Static Analysis . 26

vii

viii CONTENTS

3.2.2 Dynamic Analysis . 27

3.2.3 Application Permission Analysis 29

3.2.4 Cloud-Based Detection . 29

3.2.5 Battery Life Monitoring . 30

3.2.6 Summary . 30

3.3 Malware Collection . 30

3.3.1 DroidRanger . 31

3.3.2 Android Malware Genome Project 32

3.4 Malware Defence . 32

3.5 Malware Forensic . 33

3.6 Automated Testing . 34

4 Software Framework 35

4.1 Architecture . 35

4.1.1 MDFCore . 35

4.1.2 Analysis . 36

4.1.3 Plugin Manager . 37

4.1.4 Plugin . 37

4.1.5 AdbWrapper . 38

4.1.6 ApkFile . 40

4.1.7 Logcat . 40

4.1.8 Broker . 41

4.1.9 Report . 41

4.2 Framework Execution Sequence . 41

5 Plugins and Analyses 43

5.1 Malware Detection Plugins . 43

5.1.1 DroidBox Plugin . 43

5.1.2 Tripwire Plugin . 46

5.1.3 Helper Plugins . 48

5.2 DroidBox Analysis . 49

5.3 Tripwire Analysis . 51

6 Results 55

6.1 Combined Results . 55

6.2 DroidBox . 61

6.2.1 Top Free Applications . 65

6.3 Tripwire . 70

6.3.1 Initial Results . 71

CONTENTS ix

6.3.2 Improved Results . 71

6.3.3 Non-Root Malware . 79

7 Conclusion and Outlook 83

A Acronyms 85

Bibliography 87

List of Figures

2.1 Android Fragmentation . 13

2.2 TaintDroid Architecture . 18

4.1 Framework Components . 36

4.2 An Example Framework Sequence . 42

5.1 DroidBox Analysis Overview . 51

5.2 Tripwire Analysis Overview . 53

6.1 Detection Results of the DroidBox and the Tripwire Analysis 57

6.2 Detection Results DroidBox . 62

6.3 DroidBox Analysis : Plugin Runtime 63

6.4 DroidBox Analysis : Plugin Suspicious Score 63

6.5 DroidBox Analysis : Suspicious Score Monkey Plugin 64

6.6 DroidBox Analysis : Suspicious Score Monkey 65

6.7 DroidBox Analysis : False Positives 66

6.8 DroidBox Analysis : Plugin Runtime 68

6.9 DroidBox Analysis : Suspicious Score Monkey Plugin, Top Free Ap-

plications . 69

6.10 DroidBox Analysis : Suspicious Events 70

6.11 Initial Results of Tripwire on Rooted Phone 71

6.12 Initial Results of Tripwire on Phone With a Modified SU-Binary . . . 72

6.13 Initial Results of Tripwire on Unrooted Phone 72

6.14 Improved Results of Tripwire on Rooted Phone 76

6.15 Improved Results of Tripwire on Phone With a Modified SU-Binary . 76

6.16 Improved Results of Tripwire on Unrooted Phone 77

6.17 Tripwire Analysis : Plugin Runtime 77

6.18 Tripwire Analysis : Application Runtime 78

6.19 Tripwire Analysis : Suspicious Score 78

xi

xii LIST OF FIGURES

6.20 Results of Tripwire for Non-Root Malware on Phone with a Modified

SU-Binary . 81

List of Tables

2.1 Taint Sources . 20

2.2 Hamber Emulator Hiding . 23

5.1 Suspicious Score Table . 45

xiii

Chapter 1

Introduction

Android is the world’s most popular mobile platform [1] with over 400 million ac-

tivated devices [2] and a global market share of 81.3% [3] in the third quarter of

2013. During the Google I/O1 event held in June 2012, Google announced that over

a million of Android devices are activated every day.

Android allows the user to extend the smartphone functionality with applications.

Applications are distributed via markets that provide thousands of applications for

Android, Google Play2,3 alone, the official market from Google, offers over 600,000 [1]

applications and games which are downloaded over 1.5 billion times a month [4].

Android provides an easy interface for developers to access many resources on the

smartphone. For example, Android applications can access resources, like the cam-

era, the microphone, the Internet, the location, or the contacts. Android apps can

even send short messages or start phone calls. These features allow developers to

create powerful applications.

Some of these resources provide access to sensitive data. Consequently, the access

to these resources is regulated by security policies. Android offers many security

features, such as an application sandbox, Bouncer, and the Android permission sys-

tem.

Every Android application is executed in a sandbox. If it needs access to a resource

1https://developers.google.com/events/io/
2https://play:google:com/store
3Google Play merges Android Market, Google Music and the Google eBookstore4
4http://googleblog.blogspot.co.at/2012/03/introducing-google-play-all-your.html

1

2 Chapter 1. Introduction

outside of the sandbox, it has to declare the respective permission. At the time of

installation, the user sees an overview of all requested permissions and can either

allow or abort the installation of the application.

Another security feature of Android is Bouncer. Bouncer is a cloud-based Android

application scanner. Every application that is uploaded to the Google Play store is

scanned automatically. Moreover, Android supports scanning applications installed

from unknown sources5 with Bouncer.

Google improves the security of Android with every version [5], but most devices

run with an outdated Android version. This problem is called the fragmentation

problem. On December 3, 2012 ended a 14-day period, where Google collected data

of Android devices that accessed Google Play, with the result that 64.2% of devices

run with Android Gingerbread6 or below [6]. Only 0.8% of the devices run with An-

droid Jelly Bean, the then current Android version. Using an old Android version

can cause security problems, as these versions may contain security flaws.

The popularity and presence of sensitive data on the devices enticed malware au-

thors [7–13]. In the year 2012 Trend Micro7 found 25,000 Android malware samples

in the wild [13]. Heise estimates that there are about 300 malware families [14]. A

malware family consists of samples with similar code and behaviour. At the end of

2013 Kaspersky8 had already found 148,778 mobile malware samples, belonging to

777 families [15]. The majority of these mobile malware samples (98.05%) targeted

Android devices.

Mobile threats can be divided into three types, grayware, personal spyware, and, the

most dangerous type, software with malicious intends, also referred to as malware.

Basically, there are two ways how malware can achieve its goals on Android. The

first method is to request the necessary permissions, and the second method is to

use a root exploit to obtain root privileges, which circumvents the security model

of Android. Zhou and Jiang collected and analysed 1260 Android malware samples,

belonging to 49 malware families [16]. 36.7% of the samples use root exploits to

attain privileged control. 45.3% of the samples make phone calls or send short mes-

5Applications not installed by Google Play
6Android 2.3.x
7http://www.trendmicro.com/
8www.kaspersky.com

3

sages without the users being aware of it. 51.1% of the samples steal private data.

Several malware detection techniques exist, the most relevant techniques are static

and dynamic program analyses. Other methods to detect malware are for exam-

ple application permission analysis, cloud-based detection, or battery life monitor-

ing [17]. Several tools are available that are based on these and other methods, each

with its advantages and disadvantages.

The goal of this thesis is to create, in joint work with Bergler [18], a fully automatic

Android malware-detection framework that is easily usable and extendable. Conse-

quently, the framework needs to be compatible with existing Android tools. To be

easily extendable, we decided that the framework should support Plugins.

To demonstrate the capabilities of the framework and the Plugin system two Anal-

yses are created. In this work, the term Analysis refers to a framework compo-

nent that defines an analysis workflow. This workflow mainly defines which Plugins

should be executed in which order, on which device, and on which applications.

Usually, an Analysis will produce a result, for example, the two developed Analy-

ses classify the analysed applications into suspicious and unsuspicious applications.

Both Analyses introduced in this thesis are based on dynamic detection techniques.

Bergler [18] created some Analyses based on static detection techniques. For more

details on the static capabilities of the framework refer to [18].

The first dynamic Analysis aims to detect malicious applications that steal pri-

vate data, send short messages or initiate phone calls. An existing tool named

DroidBox, which is an Android application sandbox, fulfils all these goals and even

more [19, 20]. To demonstrate the powerfulness of the Plugin system this tool is

integrated as Plugin. DroidBox is based on TaintDroid; it combines taint tracking

with API hooking to monitor applications. The DroidBox Analysis basically starts

an emulator running the DroidBox system and subsequently installs and uses all ap-

plications. After the execution of an application the monitored events are analysed

and a suspicious score is calculated. Before the execution of the next application

the emulator is restored to a known clean state.

The second Analysis aims to detect applications that use root exploits. To achieve

this goal the Tripwire Plugin was implemented. The Plugin is named after the Unix

tool Tripwire developed by Kim et. al. [21]. Like the UNIX tool, this Plugin is a file

4 Chapter 1. Introduction

system integrity checker. It compares two snapshots of the file system and analyses

the changes. The first snapshot is made before the installation and execution of the

application under analysis, the second snapshot is created afterwards. The Tripwire

Analysis basically creates an initial snapshot of a clean system and subsequently

installs and executes all applications under test. After the execution of a suspicious

application the file-system changes are analysed and a suspicious score is calculated.

After this, the device is restored to a clean state. As the operating system is poten-

tially not trustworthy after the execution of potential root malware, the filesystem

examination and the restore process are executed in the recovery mode. The recov-

ery mode is a separate minimal operating system that is completely independent of

the normal operating system. Both Analyses are evaluated against the 1260 mal-

ware samples from the Malgenome project [16].

The remaining thesis is structured as follows. The next chapter gives some back-

ground by introducing the Android platform with a focus on its security features,

the different Android malware types and the malware detection methods. As part

of the dynamic detection methods the tools TaintDroid and DroidBox are discussed.

Chapter 3 gives an overview of work related to Android malware detection and collec-

tion. Chapter 4 introduces the developed framework and its components. Chapter 5

presents the developed Plugins and Analyses. It starts with the two core Plugins

DroidBox and Tripwire; then it explains the other Plugins needed for the dynamic

analysis of Android applications. Finally, the chapter presents the two Analyses

named after their main Plugins. Chapter 6 presents the detection results. First the

chapter presents the merged results, then the individual results of the two Analyses

are described in more detail. The thesis ends with Chapter 7 where the résumé and

an outlook is given.

Chapter 2

Background

This chapter starts with an overview of the Android platform, with a focus on

its applications and its security features1. Then it describes the different Android

malware types, and finally it deals with methods to detect malware. It explains static

and dynamic methods, and will introduce the dynamic analysis tool TaintDroid and

its enhancement, DroidBox, an application sandbox.

2.1 Android Platform

Android is a Linux-based operating system optimised for mobile devices. Initially,

it was developed by Android Inc., and acquired by Google in 2005 [22]. Since that

time, the code is maintained and further developed by the Android Open Source

Project (AOSP), led by Google. At the moment, Android is the world’s most popular

mobile platform [1]. Unfortunately, the popularity of Android and the existence of

sensitive information on the devices attracts malware authors [23].

2.1.1 Boot Process

After turning on the Boot ROM code is executed. This code is hardwired and

can only use the internal RAM. The Boot ROM code initializes the system and

then it loads the boot loader. The boot loader initializes the external RAM and

loads the main boot loader into it. The primary duties of the main boot loader are

1The Android versions KitKat and Lollipop are not covered in this thesis.

5

6 Chapter 2. Background

to set-up the file system, the low-level memory protection and to provide network

support. After the initialization the boot loader loads either the kernel of the main

Android operating system or the kernel of the Android Recovery system. Under

normal circumstances, the kernel of the main Android operating system is loaded.

The kernel has similar tasks as on a normal personal computer. It will initialize

everything that is needed for the system to run. Then it loads the init-process as first

user space program. The init-process will parse the init.rc script and start the system

processes. One of the system processes is called Zygote. Zygote starts the Dalvik

virtual machine (VM). The Dalvik VM is the software that executes applications on

Android devices. The first started Java component is the System server. It starts

all Android services, for instance Bluetooth or the telephony manager. Once all

services are started the BOOT COMPLETED2 intent is fired [24–26]. This intent

can be used to auto-start applications.

2.1.2 Recovery Mode

The Android recovery mode is a mini operating system, which has its own kernel

and is completely independent of the main Android operating system. It can be

used even if the main Android system is broken. It is supposed to help the user

if there is an issue with the main OS. Several replacement recovery systems are

available for typical Android devices. In this thesis the ClockworkMod-Recovery3,4

operating system is used. It is a special recovery system that was developed by

Koushik Dutta. Compared to the original Android recovery system it provides

more features, such as creating and restoring backups, flashing a new ROM, and an

Android Debug Bridge (adb) shell. For this thesis, the most important feature of

the ClockworkMod-Recovery operating system is the ability to create and restore

Nandroid backups. Nandroid backups allow to completely backup and restore a

complete Android system including all settings, all installed applications and their

data.

2android.intent.action.BOOT COMPLETED
3http://forum.xda-developers.com/wiki/ClockworkMod Recovery
4http://www.clockworkmod.com/rommanager

2.1. Android Platform 7

2.1.3 Developer Tools

The Android SDK includes several tools that help to develop Android applications.

Some of these tools namely adb, logcat, Monkey and Android Virtual Device (AVD)

are used in this thesis.

The adb tool is a command line tool that communicates with an Android device. It

supports real devices and emulated devices. The adb is a client-server program that

consists of three components. These components are a client and a server which

run on the development machine as well as a daemon that runs on the Android

device. When an adb client is started, it first checks whether the server is running.

If the server is not running it is started by the client. The server connects to all

attached Android devices via the daemon. The client can then execute commands,

such as listing all attached devices, installing or removing applications, pulling or

pushing files, and opening a shell.

Logcat is a tool that allows to view the log messages of various applications and the

system.

Monkey is a program that runs on the Android device and generates a specified

number of pseudo-random user and system-level events. Several other options allow

to define the behaviour of Monkey, for example, how many percent of the events

should be of a particular type, or what happens if the application crashes or does

not respond. It is commonly used to stress-test applications.

The Android SDK provides an AVD manager, which allows to create, modify and

delete Android emulators. Several properties can be defined for an AVD, such as

the Android version, the screen resolution and which sensors are available. Another

advantage of the emulator is that it is possible to create snapshots and to revert to

them.

2.1.4 Android Applications

Android applications are primarily written in the Java programming language. It

is also possible to implement parts in C or C++. The compiled code together

with the data, resource files and the AndroidManifest.xml are packaged into an

Application Package File (APK). The following tree shows the files and folders of a

8 Chapter 2. Background

usual APK:

|-- AndroidManifest.xml

|-- classes.dex

|-- resources.arsc

|-- assets

|-- META-INF

| |-- CERT.RSA

| |-- CERT.SF

| ‘-- MANIFEST.MF

‘-- res

The AndroidManifest.xml defines among others, the name, the version, the nec-

essary permissions and the components of the application. The file itself is encoded

in binary XML, meaning it is not human readable. Tools like AXMLPrinter25, apk-

tool6 or Androguard7 can convert the file into human-readable (plaintext) XML. The

classes.dex is the Dalvik executable8, it contains the compiled classes in Java byte

code format. The resources.arsc file contains compiled resources, such as binary

XMLs or layouts. The assets folder contains application assets. Android provides

special low-level API to open and read these raw files. Android recommends to

put raw files like textures or game data into this folder. The META-INF direc-

tory contains data that ensures the integrity of the APK. The MANIFEST.MF

file contains the digest of every file of the APK, the CERT.SF file contains the

digest of the corresponding lines in the MANIFEST.MF file. The CERT.RSA

file contains the signature and the certificate that authenticates the public key that

corresponds to the private key used for signing. The name of the CERT.RSA and

the CERT.SF file is variable, only the file extension is fixed [27].

2.1.4.1 Application Components

According to [28] there are four different components that can be used by Android

applications. These essential building blocks are Activities, Services, Content

5https://code.google.com/p/android4me/downloads/list
6https://code.google.com/p/android-apktool/
7https://code.google.com/p/androguard/
8The Dalvik virtual machine is the software that executes applications on Android devices.

2.1. Android Platform 9

providers and Broadcast receivers. The following quotes explain each of these

components:

“A Service is an application component that can perform long-running

operations in the background and does not provide a user interface. An-

other application component can start a service and it will continue to

run in the background even if the user switches to another application.”

Android Developers [29]

“A broadcast receiver is a component that responds to system-wide

broadcast announcements. Many broadcasts originate from the system-

for example, a broadcast announcing that the screen has turned off, the

battery is low, or a picture was captured. Applications can also initiate

broadcasts-for example, to let other applications know that some data

has been downloaded to the device and is available for them to use.”

Android Developers [28]

“Content providers manage access to a structured set of data. They

encapsulate the data, and provide mechanisms for defining data security.

Content providers are the standard interface that connects data in one

process with code running in another process.”

Android Developers [30]

“An Activity is an application component that provides a screen with

which users can interact in order to do something, such as dial the phone,

take a photo, send an email, or view a map.”

Android Developers [31]

Each component is a different entry point of the application. Three out of the four

components are activated by an intent, namely Activities, Services and Broad-

cast receivers. An intent is a messaging object that can be used to request an

10 Chapter 2. Background

action from a different component [32]. This component can be a part of a different

application. For example, if the user clicks on an application icon, the system issues

an intent, which starts the application’s activity defined in the AndroidManifest file.

Not all intents are triggered by the user, for example, the system issues an intent

if the system is completely booted or if a short message is received. By default, an

application is not allowed to receive or issue arbitrary intents. It has to declare the

necessary permissions. The Android permission model and other security features

are introduced in the next Section.

2.1.5 Security

Android offers many security features, such as sandboxing or the Android permission

model [5]. As Android is build on top of the Linux kernel, it uses several Linux

security features, such as process isolation, protection of user data, and resource

management.

2.1.5.1 Application SandBox

In Android every application runs in a sandbox that isolates the operating system

kernel from the applications and the applications from each other. Every Android

application gets assigned a unique user identifier (UID) and runs in a separate

process, except applications signed with the same certificate. Applications from the

same developer, signed with the same certificate have the same UID, because there

is no need to protect these applications from each other. Furthermore, the same

UID allows easy and secure data sharing using content providers. An application

can only access resources outside the sandbox if it has the required permission.

2.1.5.2 Permissions

A limited range of system resources can be accessed by default, but resources that

could adversely impact the data on the device, the network, or the user experience

are protected by permissions [33, 34]. If an application needs access to critical

resources like the location or the contact list, it needs to declare the respective

permissions [5]. These permissions are shown to the user at installation time. The

2.1. Android Platform 11

permissions are supposed to help the user to understand what the application is

capable of. They can also help the user to recognise suspicious applications. For

example, usually a wallpaper application does not need to send short messages.

In practice the permission system has a usability problem, the average user is not

aware of the impacts of distinct permissions nor of the impacts of the combination

of different permissions. Based exclusively on the requested permissions, even

experts cannot determine if an application is legitimate or not. For example, an

application with access to the Internet and the short message storage is potentially

able to leak messages to a third party. However, there is no way for the user to

detect this behaviour solely based on the permissions.

Nevertheless even if the user would be aware of the impacts, Android does not

allow to deny individual permissions. The user can only accept all permissions or

abort the installation process. Another problem is that applications can share their

permissions.

That means an application that has the READ SMS 9 permission or the

RECEIVE SMS 10 permission and a second application that has the INTERNET 11

permission could work together and send the short messages to an adversary’s

server [35].

Some malware can circumvent the permission system by using root exploits. After

gaining root privileges an application effectively gains complete control over the

attacked device, the security mechanism are completely broken.

2.1.5.3 Bouncer

Bouncer [36] is the codename of a service developed by Google that automatically

scans the Google Play store for malware. Bouncer scans every uploaded application

for known malware. Bouncer also executes the applications in Google’s cloud infras-

tructure to look for hidden malicious behaviour.

Oberheide and Miller [37] found several ways to circumvent Bouncer. One way

to circumvent Bouncer is to wait five minutes before doing anything bad because

Bouncer runs the applications only for five minutes. Another way is to recognise

9“android.permission.READ SMS”
10“android.permission.RECEIVE SMS”
11“android.permission.INTERNET”

12 Chapter 2. Background

that the application is executed by Bouncer. This is possible, because Bouncer ex-

ecutes the applications on an emulator and not on a real device. This can be done

amongst others by querying the getprop attributes or by analysing the output of the

cpuinfo command.

Android also provides a ”Verify apps“ option. If it is activated, all installed ap-

plications are regularly checked for malware and the device warns or blocks the

installation of potentially dangerous applications from other markets and unknown

sources.

2.1.5.4 Remote Malware Removal

Android has a feature that allows to remotely remove applications. If a malicious

application that poses a threat is detected, it will be removed using this feature.

The involved users will receive a notification [38].

2.1.6 Fragmentation Problem

On December 3, 2012 ended a 14-day period, where Google collected data of Android

devices that accessed Google Play, with the result that 64.2% of devices run with

Gingerbread12 or below [6] and only 0.8% of devices run with the, at that time, up-

to-date Jelly Bean13 version. As the Android updates bring not only new features,

but also security fixes and new security features it may be dangerous to use an

outdated Android version [39]. Figure 2.1 shows the distribution.

12Android 2.3.x
13Android 4.2

2.2. Malware Types 13

Figure 2.1: Distribution of the different Android versions (Source: [6])14.

This OS fragmentation is called the fragmentation problem. It is caused by

phone vendors and carriers [40]. Delays can be caused because the vendor or carrier

typically modify the operating system or add applications. These modifications can

not only cause delays; the can also bring additional security threats [41, 42]. Another

problem is that keeping old systems up to date is expensive and both, the vendor

and the carrier, would rather sell new phones and therefore may decide not provide

an update for older phones.

2.2 Malware Types

Unfortunately, the popularity, the presence of sensitive information on the devices,

the fragmentation problem and the resultant security problems, make Android an

attractive target for malware developers [7–12]. Felt et al. distinguish between

three types of mobile threats: malware, personal spyware, and grayware [43]. The

distinction is based on the delivery method, legality, and the notice to the user. All

three types use different attack vectors and have different motivations. An attack

14Portions of this page are reproduced from work created and shared by the Android Open
Source Project and used according to terms described in the Creative Commons 2.5 Attribution
License.

http://code.google.com/policies.html
http://code.google.com/policies.html
http://creativecommons.org/licenses/by/2.5/
http://creativecommons.org/licenses/by/2.5/

14 Chapter 2. Background

vector describes how the payload is installed and executed on the device.

2.2.1 Malware

Malware is the most threatening malicious software type. It is build to gain access

to a device and damage it, steal data, or violate the data integrity. Malware uses

either device vulnerabilities or defrauds the user to get installed. It provides no legal

notice and is considered illegal in most countries. Google will remove this kind of

application immediately after detection from its store. Zhou and Jiang collected and

analysed 1260 Android malware samples that belong to 49 malware families [16].

36.7% of the samples use root exploits to attain privileged control. 45.3% of the

samples make phone calls or send short messages without the user’s awareness.

51.1% of the samples steal private data.

2.2.2 Personal Spyware

Personal spyware collects and sends personal information, without the user’s knowl-

edge, to the person who installed the spyware. The person who installs the software

is probably not the user, but for example his/her spouse. Personal spyware does not

send information to the author, therefore its sale is not illegal, but the installation

without user’s consent may be illegal, depending on the local law.

2.2.3 Grayware

Grayware is not built to harm the user; it has no malicious intention. Grayware

typically provides some advantages to the user, but collects user data in the back-

ground. The collected data is sent to a remote location, such as an advertisement

server, to gain money or to create a user profile. This type of software is normally

installed by the user themselves.

2.3 Malware Detection Methods

Chandramohan and Tan review and analyse methods for detecting mobile mal-

ware [17]. They differentiate between the following techniques: static analysis, dy-

2.3. Malware Detection Methods 15

1 SmsManage r sm = SmsManage r . ge tDe f au l t () ;
2 St r i ng de s t i na t i onAddr e s s = ”12345678” ;
3 St r i ng t ex t = ”Tex t ” ;
4 sm. s endTex tMe s s ag e(de s t i na t i onAddr e s s , nu l l , t ex t , nu l l , nu l l) ;

Listing 2.1: Original Java source code

namic analysis, application permission analysis, cloud-based detection, and battery

life monitoring. A short introduction to static and dynamic analysis techniques is

given in the following sections. The other three techniques are currently not used

by the developed framework and will, therefore, not be discussed in this section.

However, a brief description of these techniques is given in Section 3.2.

2.3.1 Static Program Analysis

Static analysis means that the program is analysed without actually executing it.

It works on source code or on binaries. Further advantages are that it can detect

flaws and threats, and their exact location that cannot be detected by dynamic

analysis15. While dynamic analysis examines only one execution path, static analysis

inspects all paths of a program. If the source code is not available, it is possible

to disassemble or decompile the program. There are many tools to disassemble

or decompile Android applications. Although decompilers do not reconstruct the

original source code, they can achieve good results. For example, Listing 2.2 and

Listing 2.3 show the disassembled and decompiled version of the compiled original

source code shown in Listing 2.1. For disassembling the tool baksmali16 was used,

it produces Smali code. The decompiled code was created using dex2jar 17 and JD-

GUI 18. Another very powerful tool is Androguard19, it provides many features, such

as, disassembling, decompiling, and diffing (calculating the similarities/differences)

of Android applications. Static analysis is hampered, if code obfuscation is used [44].

This thesis focuses on dynamic analysis, for more details about static analysis refer

to [45–53].

15At least not in one run.
16http://code.google.com/p/smali/
17http://code.google.com/p/dex2jar/
18http://java.decompiler.free.fr/?q=jdgui
19http://code.google.com/p/androguard/

16 Chapter 2. Background

1 . l i ne 18
2 i nvoke−s t a t i c {} , Landr o i d/ t e l ephony/SmsManager;−>
3 ge tDe f au l t ()Landr o i d/ t e l ephony/SmsManage r ;
4 move−r e su l t−ob j e c t v0
5 . l i ne 21
6 . l o ca l v0 , sm:Landr o i d/ t e l ephony/SmsManage r ;
7 const−s t r i ng v1 , ”12345678”
8 . l i ne 22
9 . l o ca l v1 , de s t i na t i onAddr e s s : L j ava/ l ang/St r i n g ;

10 const−s t r i ng v3 , ”Tex t ”
11 . l o ca l v3 , t ex t : L j ava/ l ang/St r i n g ;
12 move−ob j e c t v4 , v2
13 move−ob j e c t v5 , v2
14 . l i ne 23
15 i nvoke−v i r tua l / r ange {v0 . . v5} , Landr o i d/ t e l ephony/SmsManager;−>
16 s endTex tMe s s ag e(L j ava/ l ang/St r i n g ;L j ava/ l ang/St r i n g ;
17 Lj ava/ l ang/St r i n g ;Landr o i d/app/Pend i ng Int en t ;
18 Landr o i d/app/Pend i ng Int en t ;)V

Listing 2.2: Smali code (using baksmali)

1 SmsManage r . ge tDe f au l t () .
2 s endTex tMe s s ag e(”12345678” , nu l l , ”Tex t ” , nu l l , nu l l) ;

Listing 2.3: Decompiled Java byte code (using dex2jar and JD-GUI)

2.3.2 Dynamic Program Analysis

Dynamic analysis means that the application is executed and monitored, mostly in

a secure virtual environment, also called a sandbox [54]. For this thesis, there are

two relevant techniques:

Behaviour-based analysis monitors the actions performed while the application

is executed. One way of monitoring the actions is to hook the Application

Programming Interface (API) of the operating system. Hooking is a tech-

nique that allows to monitor or alter the behaviour of an operating system

by intercepting API calls. For example, if a malware sends a short message

using the Android API, this technique is able to abort the sending of the short

message or to access or modify the message content and the recipient. The

advantage of this method is that it provides very detailed information, such

as the arguments and the return value of monitored API functions, the disad-

vantage is that this technique needs either a modified execution environment

or the application itself has to be adapted. DroidBox uses this technique.

2.3. Malware Detection Methods 17

Another approach is to use dynamic information flow tracking. Information

flow tracking enables to track the information flow between sources and sinks.

For this, a taint tag is added to every data retrieved from a specific source.

The taint tag is propagated according to a taint policy whenever the tainted

data is processed. Let’s assume we have the assignment x = y + z. If y or z

is tainted, then the taint tag will be propagated to x. An advantage of this

method is that it can provide very accurate information. For example with this

method it is possible to detect that a malware accessed a short message and

sent it to a remote server. A disadvantage of this method is that it also needs

either an adapted execution environment or a special prepared application.

Another disadvantage is that a variety of anti-taint analysis techniques exist.

Golam et. al. [55] present some of them against TaintDroid. TraintDroid is

an example of a tool that uses this analysis technique.

Difference-based analysis works by comparing two snapshots of the file system

and analysing the changes. Usually, one snapshot is created prior the execution

of the to be analysed application and one afterwards. Generally, this method

is easier to implement and more difficult to detect by malware [20]. However,

difference based analysis provides no real time monitoring and not as much

information as API hooking. It can only analyse what files have been added,

modified, or deleted between two snapshots. For example, this technique is

well-suited for detecting permanent root exploits. In this case a binary file

could be added by the malware under analysis, which has the SUID (Set User

ID) bit set and belongs to the root user. The Tripwire Plugin (see 5.1.2) is

based on this technique.

2.3.2.1 TaintDroid

This thesis uses DroidBox, which is based on TaintDroid. Therefore, an overview

of TaintDroid and DroidBox is given. TaintDroid [56] is a real time information

flow tracking system. It uses dynamic taint analysis to track sensitive information

through third-party applications.

TaintDroid uses four granularities of taint propagation: variable-level, method-level,

message-level, and file-level.

18 Chapter 2. Background

Variable-level tracking within the untrusted application code is achieved by in-

strumenting the VM interpreter.

Method-level tracking is used by TaintDroid for system-provided native libraries.

It means the code is not instrumented, the taint propagation is patched on

return. This can be done because these methods have a known information

flow. TaintDroid uses a simple heuristic for most methods. This heuristic

assigns the union of the methods parameter taint tags to the return value.

For selected methods, the authors defined profiles which specify flows between

parameters and return values.

Message-level tracking is used instead of tagging data within the message to min-

imize the Interprocess Communication (IPC) overhead.

File-level tracking is used to ensure that persistently stored information keeps its

taint tags.

Figure 2.2: Architecture of TaintDroid [Source [56]].

2.3. Malware Detection Methods 19

Figure 2.2 shows the TaintDroid architecture. First, sensitive information sources

are identified as taint sources (1). For example, the location provider, the camera,

and the microphone are used as taint sources. TaintDroid adds taint markings to

data retrieved from these sources. The taint information is stored in the virtual taint

map (2). A taint propagation logic is used to spread the taint tags, according to data

flow rules (for details refer to Table 1: DEX Taint Propagation Logic of [56]) when

an application uses the tainted information (3). For example, these rules specify

that if a constant value is assigned to a tainted variable, the taint will be deleted or

that if a tainted and an untainted variable are added the result will also be tainted.

The modified binder library20 (4) ensures that taint tags are preserved when an

application uses IPC transactions. For this, a taint tag is added to the message that

contains the combined taint tags of all the data sent. The downside is that this can

produce many false positives. Then the message is passed through the kernel (5)

and received by the modified binder library of the VM instance of the requesting

application. The modified binder library adds taint tags to all values read from the

message (6). The taint propagation logic is used to spread the taint tags (7). If an

untrusted application uses a taint sink, like the network interface, via a library call,

the taint tag is retrieved (9) and the event is reported.

2.3.2.2 DroidBox

DroidBox [19, 20] is an application sandbox that was developed by Patrik Lantz.

It allows to dynamically analyse Android applications in an emulator and logs

information leaks. For this, DroidBox uses an Android emulator with a modified

system image. DroidBox is based on TaintDroid [56] (see 2.3.2.1), but adds more

taint sources. The used sources are shown in Table 2.1.

While TaintDroid notifies the user when sensitive information leaves the phone,

DroidBox adds a message in JavaScript Object Notation (JSON) format to the

Android logging system. The JSON encoding simplifies the processing on the

host side. These log messages can be viewed on the PC using the logcat21 tool.

Listing 2.4 shows a log message that was created after a sample of the HippoSMS 22

20The binder is an IPC mechanism optimised for Android.
21http://developer.android.com/tools/help/logcat.html
22http://www.csc.ncsu.edu/faculty/jiang/HippoSMS/

20 Chapter 2. Background

Tag Description Added
TAINT ACCELEROMETER Data from accelerometer No
TAINT ACCOUNT Google account data No
TAINT BROWSER Browser bookmarks Yes
TAINT CALENDAR Calendar data Yes
TAINT CALL LOG Call history Yes
TAINT CAMERA Data taken by camera No
TAINT CLEAR No taint No
TAINT CONTACTS Contact name and number Yes
TAINT DEVICE SN Device serial number No
TAINT EMAIL Email data Yes
TAINT FILECONTENT Content of a file Yes
TAINT ICCID ICCID value No
TAINT IMEI IMEI value No
TAINT IMSI IMSI value No
TAINT LOCATION Location No
TAINT LOCATION GPS GPS coordinates No
TAINT LOCATION LAST Last known location No
TAINT LOCATION NET Network location No
TAINT MIC Data recorded by microphone No
TAINT OTHERDB Other database values Yes
TAINT PACKAGE Installed packages Yes
TAINT PHONE NUMBER Number of the phone No
TAINT SETTINGS System settings Yes
TAINT SMS Numbers and messages Yes

Table 2.1: This table shows the different Taint sources used by DroidBox [Modified,
based on [20]].

1 Dro i dBo x : { ”SendSMS” : { ”numbe r ” : ” 1066156686” , ”me s s age” : ”8” } }

Listing 2.4: DroidBox dectects a short message sent by HippoSMS malware

malware sent a short message with the text “8” to the number “1066156686”.

DroidBox comes with two scripts that are relevant for the user, startemu.sh and

droidbox.sh. First it is necessary to setup an AVD. That can be done using

the AVD Manager. Currently only Android 2.1 and Android 2.3 are supported

by DroidBox. Then the AVD can be started using the startemu.sh script:

./startemu.sh <AVD name>, where <AVD name> is the name of the AVD. This

2.3. Malware Detection Methods 21

1 Dro i dBo x : { ”FdAc c e s s ” : { ”pa th” : ”2 f646174612 f646174612 f636 f6 d2 e7669727369722←↩
e616 e64726 f69642 e6368696 e616d6 f62696 c6531303038362 f7368617265645 f70726566732←↩
f73657474696 e672 e786d6c f c” , ” i d” : ” 1176829910” } }

2 Dro i dBo x : { ”F i l eRW” : { ”ope r a t i on” : ”wr i t e” , ”da t a” : ”3c3 f786 d6 c2076657273696 f6←↩
e3 d27312 e302720656 e636 f64696 e673 d277574662 d3827207374616 e64616 c6 f6 e653←↩
d2779657327203 f3 e0 a3 c6 d61703 e0 a3 c737472696 e67206 e616 d653d2266697273745←↩
f73746172745 f74696 d65223 e312053657020323031322031353 a33333 a323920474 d543 c2←↩
f737472696 e673 e0 a3 c2 f6 d61703 e0a” , ” i d” : ” 1176829910” } }

Listing 2.5: DroidBox detects an app is writing to a file (The path and the data is
hex-encoded)

script starts the AVD with the modified images. When the emulator is running,

the user can start the second script. The second script needs the path of the

application that should be analysed as argument and optional the analysis duration:

./droidbox.sh <file.apk> <duration in secs (optional)>. The script pipes

the logcat output into a python script. The python script performs a static

pre-check and extracts essential information from the AndroidManifest file. This

information is used to install and start the application using a monkeyrunner 23

script. The python script also parses the logcat output and generates an analysis

report. The analysis report contains the following information:

File hashes: The script calculates the hash value also known as file fingerprint or

checksum of the tested application using cryptographic hash functions such as

MD524, SHA125, and SHA25626.

File activities: DroidBox monitors file activities. The generated information con-

tains the path of the file, the file operation, and the data read or written.

Listing 2.5 shows two example log messages. The first message contains the

path, and the second message contains the operation and the data written.

Crypto API activities: DroidBox logs the used algorithm, the operation, and the

input and output data for cryptographic operations that are performed using

the Android API.

23http://developer.android.com/tools/help/monkeyrunner concepts.html
24http://tools.ietf.org/html/rfc1321
25http://tools.ietf.org/html/rfc3174
26http://tools.ietf.org/html/rfc4634

22 Chapter 2. Background

Network activity: DroidBox monitors opened TCP and UDP connections and

their incoming and outgoing traffic. For opened connections, the destination

address and the port are stored. The source/destination address and the

received/sent data is logged for incoming/outgoing network traffic.

DexClassLoader: The path of the loaded DEX-file is logged.

Broadcast receivers: DroidBox also includes the names and actions of broadcast

receivers that an application is listening to, in the report. This data is ex-

tracted from the AndroidManifest27 file.

Started services: DroidBox logs the names of all started services.

Enforced permissions: DroidBox lists the permissions that are declared in the

AndroidManifest file in the report.

Permissions bypassed: DroidBox calculates the bypassed permissions from the

information that is gathered during runtime and the declared permissions in

the AndroidManifest file. For example, in earlier Android versions, an appli-

cation could upload information to a server without the Internet permission

by coding the information into a URL and starting an intent which opens the

URL in the Android browser [57].

Sent SMS messages: DroidBox logs the destination number and the message con-

tent.

Information leaks via file, network and SMS: DroidBox logs if tainted data

is leaked via file, network, or SMS. For all three types of leaks, the taint tags

and the data sent are logged. Additionally, the destination address and port

are logged for network leaks. For SMS leaks, the destination number is logged

and for file leaks the path and the file operation are logged.

Phone calls: Regarding phone calls, DroidBox logs the destination number.

The time of every event is implicitly contained through the creation time of the

corresponding logcat entry. As malware could easily detect that it is running in an

27http://developer.android.com/guide/topics/manifest/manifest-intro.html

2.3. Malware Detection Methods 23

emulator by querying one of the hard-coded values shown in table 2.2, DroidBox

uses modified values.

Name Standard Android 2.1 emulator Emulator with DroidBox 2.1

ro.product.model sdk GT-I9000
ro.product.brand generic Samsung
ro.product.name sdk Samsung GT-I9000
ro.product.device generic GT-I9000

IMEI 000000000000000
IMSI 3126000000

Table 2.2: This table shows the values that were changed by DroidBox to hamper
emulator detection.

Chapter 3

Related Work

This chapter gives an overview of related work on the topics of this thesis. It starts

with a work that discusses the impacts of malware. Then Section 3.2 introduces

work related to malware detection broken down to the used analysis techniques.

Section 3.3 presents two works related to malware collection. The malware collection

Malgenome from Zhou and Jiang [16] is used to evaluate the detection rate of the

developed framework i.e. its Analyses. Section 3.4 presents a work from Park et

al. called RGBDroid [58]. RGBDroid does not try to prevent root attacks but

responds to them and shields malware from keeping the root privilege. Section 3.5

presents the work of Li, Gu, and Luo [59]. Li, Gu, and Luo propose a systematic

Android malware forensic analysis process. Some of the presented tools are used by

the framework proposed in this thesis. Finally, Section 3.6 discusses work related to

automated testing. As the framework is supposed to analyse Android applications

on its own, it needs tools to automatically test or use applications.

3.1 Malware Impacts

Wei et al. discusses which sensitive data is available on Android smartphones,

and what impacts malicious and benign applications can have for enterprises [60].

Sensitive data includes the International Mobile Equipment Identity (IMEI), In-

ternational Mobile Subscriber Identity (IMSI), phone number, contacts, location,

SMS messages, and data generated by physical sensors. Malicious applications can

25

26 Chapter 3. Related Work

for example, download and install new applications, monitor and exfiltrate data,

or call/text premium numbers. However, not only malicious applications are a

problem, also insecurely implemented benign applications can cause problems, e.g.,

through unencrypted storing of account information. Preinstalled applications like

HTCLogger (which collected sensitive information, stored it unencrypted and made

it available to any application) can cause another problem [42]. The authors present

the impacts to the enterprise, for example, loss of privacy, data loss, data integrity

loss, monetary loss, and loss of competitive advantage. They also propose some

defence strategies, e.g., educating the users, building an enterprise market, using of

strict enterprise content management policies, user monitoring, user profiling, and

creating of snapshots of the smartphone’s software and data.

3.2 Malware Detection

Chandramohan and Tan review and analyse methods for detecting mobile

malware [17]. They differentiate between the following techniques: static analysis,

dynamic analysis, application permission analysis, cloud-based detection, and

battery life monitoring.

3.2.1 Static Analysis

Regarding static analysis, Chandramohan and Tan [17] distinguish between system

call based static analysis, static taint analysis, and source code based static analysis.

System call based static analysis was proposed by Schmidt et al. [61]. The system

calls are extracted and clustered, to classify the application as benign or malicious.

Static taint analysis was proposed by Egele et al. [62]. The application is disassem-

bled, and a control flow graph is constructed. Every path from a sensitive source is

considered and checked against information leaks, where sensitive information leaves

the device. Source code based static analysis is a malware detection method that

was proposed by Enck et al. [63]. First the application is decompiled, then a static

code analysis suite is used to check the source code.

Another example for static source code analysis is the work from Apvrille and

3.2. Malware Detection 27

Strazzere [64]. Apvrille and Strazzere concentrated on finding unknown Android

malware (malware that is not detected by any virus scanner). Therefore, they im-

plemented an Android Market scanner which can crawl all existing applications, and

not only those, which are visible on a given device. A static analyser checks 39 dif-

ferent properties from 7 categories. These categories are: required permissions, API

call detectors, command detectors, presence of executables or zip files, geographic

detectors, URL detectors, size of code and special combinations. After the analy-

sis, the static analyser calculates a risk score. If the score is greater than a given

threshold the application is marked as suspicious and can be analysed in detail. In

contrast, this thesis does not include a Market scanner. Instead the proposed frame-

work is evaluated against the malware samples from the Android Malware Genome

project [16]. In addition to static analysis the proposed framework also supports

dynamic analysis.

3.2.2 Dynamic Analysis

Regarding dynamic analysis, TaintDroid [56] and Android Application Sandbox [54]

are introduced. TaintDroid was presented in Section 2.3.2.1. Bläsing et al. [54]

created the Android Application Sandbox. It analyses Android applications using

static and dynamic analysis techniques. The static analysis decompiles the appli-

cation and scans for potential malicious patterns, such as, usage of reflection, of

the Java Native Interface (JNI), or the System.getRuntime().exec() command.

The dynamic analysis hijacks systems calls and logs passed information while the

application is automatically stimulated by Android Monkey1. Not all publications

relevant for this thesis were covered in [17], therefore, additional work related to

dynamic analysis is introduced, starting with DroidBox [19, 20]. DroidBox is an

application sandbox and a progression of TaintDroid. It was developed by Patrik

Lantz and is very important for this thesis as one of the developed Plugins uses the

DroidBox images. It was already introduced in detail in Section 2.3.2.2.

The next work was created by Dixon et al., it has similarities to the developed

Tripwire Plugin. Dixon et al. implemented a PC-based prototype which compares

the hashes of all files on the phone, when it is connected to the PC [65]. When the

1http://developer.android.com/tools/help/monkey.html

28 Chapter 3. Related Work

phone is connected to the PC the first time, all hashes are calculated and stored

together with the files on the PC. On every subsequent connection, all hashes are

calculated again and compared with the stored ones. Only those files that have

changed are copied to the PC for scanning. To address rootkits, which could store

and send the “correct” hash, the authors are currently exploring mechanisms that

look, for example, at the execution time. In contrast to Dixon et al., this work

tries to address rootkits by booting into the recovery mode and copying files there.

Another difference is that the smartphone is restored to a known state before every

analysis. This makes it easier to relate changes to an analysed application.

Next, a community-based approach to detect malware is introduced. Zhao et al.

proposed a new framework named RobotDroid to detect malware [66]. It is based

on Support Vector Machines (SVMs) using an active learning algorithm. Their ap-

proach is to distinguish benign applications from their malicious copies with the

same name and version by observing their behaviour with the help of the Android

user community.

In [67] Shabtai et al. describe Andromaly. It is an Android malware-detection frame-

work that is light-weight enough to run as a smartphone application. The authors

assume that unknown malware can be detected by measuring system metrics and

comparing them with system metrics of known malware. The application consists of

four main groups: feature extractors, processors, the main service, and the graphical

user interface. The feature extractors sample various system metrics like the CPU

consumption, the number of network packets sent, the battery level, and the number

of running processes. The main service sends that information in form of feature

vectors to the processors. The feature vectors are analysed by the processors, which

use machine learning techniques. The main service manages the detection flow. The

graphical user interface allows the user to configure the application and to explore

the collected data. Shabtai et al. had no Android malware available. Therefore,

the authors wrote their own malware and tested their framework with them. In

contrast to Andromaly, most parts of the proposed framework run on the PC and

only some parts run on the smartphone. Furthermore, as malware is available now,

the proposed framework is evaluated with real malware.

3.2. Malware Detection 29

3.2.3 Application Permission Analysis

Application permission analysis examines the requested permissions of an appli-

cation. Chandramohan and Tan [17] introduce for example, Kirin, a lightweight

mobile phone application certification proposed by Enck et al. [68]. Kirin checks the

requested permissions against a set of rules at installation time and alerts the user,

if the check fails.

3.2.4 Cloud-Based Detection

Cloud-based detection solves the problem of limited resources (such as CPU power

or energy) on a smartphone. They authors introduce Paranoid Android, proposed

by Portokalidis et al. [69] and Crowdroid [70].

Crowdroid, developed by Burguera et al. is a behaviour-based malware detection

system for Android. The system consists of three components: data acquisition,

manipulation of data, and finally data analysis. The first component — data acqui-

sition — is an Android application that collects basic device information, the list of

installed applications, and the list of system calls used by the monitored application.

Then the collected information is sent to the server, where the other two components

process and analyse the data. The second component parses the collected informa-

tion, stores the basic device information in a database and creates a feature vector.

The feature vector contains the call counts of the Android system calls made by the

application. The last component uses a k-means algorithm to classify the feature

vectors into two clusters to distinguish between benign and malicious applications.

The authors of Crowdroid assume that the “good” applications are executed more

often. The quality of the analysis will increase with the number of people contribut-

ing data by using the application. The application is available in the Google Play

Store. The disadvantage of this method is that it only compares the information of

different runs of the same application, identified by name and version. While this

works well for identifying malware that is added to benign applications, it is not able

to detect unknown malware that is not attached to an existing benign application.

Paranoid Android uses a tracer to record the necessary information on the smart-

phone. A proxy mirrors the traffic to the analysis server. The server uses a replayer

30 Chapter 3. Related Work

to replay the recorded information on an emulator. Static and dynamic analysis

techniques are used to analyse the sample.

3.2.5 Battery Life Monitoring

Battery life monitoring works by observing the energy consumption on the phone.

This approach expects that malicious applications consume more energy than

benign applications. Kim et al. [71] and Liu et al. [72] evaluated this approach for

Symbian OS.

3.2.6 Summary

Finally, Chandramohan and Tan conclude that static analysis is a fast and cheap

technique for detecting malware, but suffers from code obfuscation. Dynamic analy-

sis faces the problems of static analysis, but needs much power and implementation

effort.

3.3 Malware Collection

Access to malware is essential to evaluate the recognition rate of malware detection

methods. Therefore, two works from Zhou et al. [16, 73], which are related to mal-

ware collection, are introduced. The first work describes DroidRanger, the second

originated the Android Malware Genome project. The malware from the Android

Malware Genome project is used to evaluate the detection rate of the developed

framework.

3.3. Malware Collection 31

3.3.1 DroidRanger

Zhou et al. collected 204,040 applications from five different markets (Android

Market2 [74], eoeMarket3, alcatelclub4, gfan5, and mmoovv6) to analyse the health

of these markets [73]. Their software is called DroidRanger and consists of two

detection engines, one for detecting known Android malware, and one for detecting

unknown Android malware.

The first engine consists of two steps: permission-based filtering and behavioural

footprint matching. The first step permission-based filtering aims to quickly

reduce the amount of applications, and therefore filters unrelated applications.

The authors filter applications by permissions that are essential for malware. For

example, the Zsone malware family7 sends SMS messages to certain premium

numbers and removes incoming billing-related SMS messages. Therefore,

this malware family can be detected by searching for applications that use

the SEND SMS8 and the RECEIVE SMS9 permissions. The second step

behavioural footprint matching uses multiple dimensions to describe malicious

behaviours, e.g., the used broadcast receivers, or used APIs. To illustrate this,

the authors describe a footprint for Zsone: Applications that use a receiver for

“android.provider.Telephony.SMS RECEIVED” and send SMS messages to specific

premium numbers and intercept incoming SMS messages from certain numbers

(e.g., by using the abortBroadcast method).

The second engine consists of two steps too: heuristics-based filtering and dynamic

execution monitoring. The authors use two heuristics, dynamic loading of new

code (using DexClassLoader) and dynamic loading of native code from a directory

other than the default one (lib/armeabi). The dynamic execution monitoring

records any call related to dynamic loading of Java code and system calls used by

existing Android malware (e.g., the sys mount system call). After the execution,

2https://play.google.com/store
3http://www.eoemarket.com/
4http://www.alcatelclub.com
5http://www.gfan.com/
6http://android.mmoovv.com/web/index.html (not available anymore)
7http://blog.mylookout.com/blog/2011/05/11/security-alert-zsone-trojan-found-in-android-

market/
8“android.permission.SEND SMS”
9“android.permission.RECEIVE SMS”

32 Chapter 3. Related Work

the authors analyse the log files and manually validate suspicious applications. The

authors detected 211 (32 in the official Google Play store) malicious applications

including two zero-day malware samples (one of them in the official Google Play

store). The infection rate among the 204,040 applications was 0.02% for the Google

Play store and ranged from 0.20% to 0.47% for the alternative markets.

3.3.2 Android Malware Genome Project

Zhou and Jiang accomplished three contributions. First, they present the first large

collection of Android malware with 1,260 samples10 [16]. These samples belong

to 49 different malware families. They detected that 86% of the samples were a

repackaged version of a benign application, 36.7% contained a root exploit, and

93% of the malware samples had bot-like capabilities. Second, they performed a

timeline analysis of the collected malware and characterized them based on their

behaviour (e.g., installation type, activation, and payloads). Third, they performed

an evolution-based study, which showed that malware is rapidly evolving. The

reviewed four anti-virus applications available in the official Google Play store. The

result was that the best one (Lookout Security & Antivirus v6.9) detected 79.6% of

the samples, while the worst one (Norton Mobile Security Lite v2.5.0.379) detected

only 20.2% of the samples. The proposed framework detects about 40% of the

samples.

3.4 Malware Defence

Park et al. developed RGBDroid, a Loadable Kernel Module that responds to root

attacks [58]. RBGDroid uses a pWhitelist and a Criticallist. Only processes in

the pWhitelist are allowed to use root privileges. While malware can still obtain

temporary root privileges using a privilege escalation attack, it fails to keep the root

privilege. The Criticallist protects system layer resources that do not need to be

modified, against being manipulated by malware with root privilege. The Criticallist

contains all resources in the “/System/framework” and the “/System/lib” directory

10http://www.malgenomeproject.org

3.5. Malware Forensic 33

as well as the “/System/etc/hosts” file. Park et al. demonstrated the features

of RGBDroid by trying to get a root shell via adb and by a managed code rootkit

attack, and both failed. A managed code rootkit attack is an attack that manipulates

resources required by a virtual machine (e.g., Framework.jar or Core.jar on Android).

The authors measured the performance on an H-AndroSV210 board with Android

2.2. The average I/O throughput was decreased by 7%, and the user program

processing time was increased by 7%.

3.5 Malware Forensic

Li, Gu, and Luo propose a systematic process for Android malware forensic analy-

sis [59]. The process consists of three parts: identifying suspicious applications, de-

feating of the anti-forensic code, and finally recognizing typical malicious behaviour

and then deducting of criminal events. Suspicious applications can be identified by

their message digest (e.g., build a database for benign applications from the Google

Play store), the required permissions (most malicious applications request a list of

high-privilege permissions), and the structure of their components (e.g., malware

authors often use a receiver for the BOOT COMPLETED11 intent). Malware often

implements anti-forensics techniques like obfuscation, encryption or environment

verification. The proposed countermeasures are decompilation and deobfuscation

(e.g., with apktool12, dex2jar13 and jd-gui14), decryption and program patching (to

avoid the environment verification). The authors provide a list of essential functions

that are related to malicious behaviour (e.g., cryptographic utilities, self-defined

communication protocols, or sensitive data access). Finally, the authors provide a

complete forensic analysis of a mobile malware sample from the Honeynet Forensic

Challenge 915.

11“android.intent.action.BOOT COMPLETED”
12http://code.google.com/p/android-apktool/
13http://code.google.com/p/dex2jar/
14http://java.decompiler.free.fr/?q=jdgui
15http://www.honeynet.org/node/751/

34 Chapter 3. Related Work

3.6 Automated Testing

This section presents work related to automated testing. Kropp and Morales [75]

compare the strengths and weaknesses of the Android Instrumentation Framework16

and the Positron Framework17 in relation to automated GUI testing. Based on sam-

ple code for both frameworks, the authors conclude that the Android Instrumenta-

tion Framework provides great flexibility through its low-level API, but needs more

test code, which increases the maintenance work and the error rate. The Positron

Framework provides a high-level interface which decreases the amount of test code

and maintenance work. Compared to GUI desktop testing tools, both frameworks

show limitations.

Piotrowski [76] explains some basic test classes for automated testing of Android

applications. He explains the Android Instrumentation Framework as well as the

Positron framework that is no longer maintained.

The integration of GUI testing frameworks was tested, but none of the tested frame-

works allowed a stable and automated analysis of unknown applications. The final

version of the developed framework uses the UI/Application Exerciser Monkey [77].

The Android Monkey tool is a simple tool that runs on the Android device and

generates pseudo-random user events.

16http://developer.android.com/guide/topics/testing/testing android.html
17http://code.google.com/p/autoandroid/wiki/Positron

Chapter 4

Software Framework

This chapter describes a new novel malware analysis framework developed jointly

with Bernd Bergler. The goal is to create an easily usable and extendable frame-

work. Furthermore, the framework should support the automation of analyses in

a simple manner. To achieve these goals, the framework is compatible with exist-

ing Android developer tools like adb or logcat. It is designed in a way that allows

developers to quickly add new Analyses, to rapidly prototype new features and to

easily integrate existing tools. The remainder of this chapter discusses the overall

architecture of the framework, the execution flow and the interaction between the

framework components.

4.1 Architecture

Figure 4.1 gives an overview of the components. The components shown in grey

are not required for dynamic Analyses. These components play an essential role

for static Analyses and are described in Bergler’s work in full detail [18]. All other

components are explained in the following sections.

4.1.1 MDFCore

The MDFCore component is the starting point of the framework. It allows to

specify which Analysis should be executed and which Android applications should

be analysed. The framework will then initialize itself and start the defined Analysis

35

36 Chapter 4. Software Framework

Plugin
Manager

Plugin

Androguard Decompiler Code Analyzer

AnalysisMDFCore

Report

ADB LogCatApkFile Broker

Figure 4.1: This figure shows the components of the framework.

for every specified APK. If for some reason an Analysis is interrupted, the framework

supports to continue the Analysis with the first not analysed application.

4.1.2 Analysis

The Analysis component defines which Plugins should be executed, their order of

execution, and assigns, if needed, a device to the Analysis. An analysis workflow

can use any number of different Plugins, but currently it is not supported to use

more than one device. Theoretical it would be possible to run several Analysis in

parallel on different devices, but duo to adb instabilities it was decided that only one

Analysis should run at one time. The adb issue will be discussed in Section 4.1.5.

The framework supports multiple attached Android devices, which allows to au-

tomatically execute an Analysis consecutively on different devices. The Analysis

component has access to the Plugin Manager. The developer needs to add the Plu-

gins to the Plugin Manager. Optionally, the user can pass a configuration to the

Plugin. The framework will execute the Plugins in the order they were added to the

Plugin Manager. Furthermore, the Analysis component has access to the adbFac-

4.1. Architecture 37

tory. The adbFactory returns an adb component for a given serial number. Every

adb command will be directed directly to the device with the given serial number.

4.1.3 Plugin Manager

The main task of the Plugin Manager is to register and start the Plugins. The Plugin

approach allows to extend the framework’s functionality easily. Additionally, the

Plugin Manager checks if all Plugin dependencies are satisfied. Plugin dependencies

can be specified using annotations and allow to specify that a Plugin depends on

another Plugin that has to be executed before. For example, a Plugin that analyses

data could depend on a Plugin that produces the data to be analysed. A Plugin can

be configured with an optional configuration object. After the execution of a Plugin,

the Plugin Manager will retrieve its output and add it to the analysis report.

4.1.4 Plugin

The Plugin component allows to easily extend the framework functionality. If a new

tool is integrated into the framework, it should be implemented as Plugin. A Plugin

should address one task, like installing an application. To complete the task, a Plugin

can use up to four different run phases. The developer can annotate methods to

define in which run phase the methods should be executed. The framework supports

the following four run phases:

@Init Methods annotated with @Init are only executed once per

Analysis. Methods with this annotation are executed before

all other methods. The @Init phase is intended for expensive

operations that need to be done only once before the Analysis,

like starting an Android emulator.

@preRun

@Run

@postRun

Methods annotated with @preRun, @Run, or @postRun are

executed once for every application that should be analysed

by the associated Analysis. First all methods of all Plugins

annotated with @preRun will be executed, after that methods

annotated with @Run will be executed and finally all methods

annotated with @postRun will be executed.

38 Chapter 4. Software Framework

The four run phases allow to map complex processes into one simple Plugin. For

example, a single Plugin can be used to start an emulator with a modified oper-

ating system in the Init phase, restore the emulator to a known state and start

the measurement process in the preRun phase and finally analyse the measurement

results in the postRun phase. Other Plugins can use the Run phase to start the

application under analysis and to use it. The described Plugin covers basically the

whole DroidBox sequence. It will be described in more detail in Section 5.1.1. Every

Plugin can use a configuration object and an output object. Both object types can

be defined by the Plugin. The configuration object is only available, if the frame-

work user registered the Plugin together with a configuration object. The output

object is always available, its content is added to the analysis report. The output

object provides an easy mechanism to permanently store arbitrary data. For details

see Section 4.1.9. To fulfil all its tasks, a Plugin also has access to the following

framework components:

ApkFile: It provides access to the currently analysed APK. For details see Sec-

tion 4.1.6.

DataBroker/DataReceiver : The DataBroker allows to send data to other Plu-

gins. If a Plugin wants to receive data from another Plugin it can use a

DataReceiver. The DataReceiver will be called every time a Plugin sends data

in a format that the receiver is subscribed to. For details see Section 4.1.8

AdbWrapper : It provides methods for the device interaction, like installing an

application. For details see Section 4.1.5.

Logger : The logger allows logging messages with different log levels. These mes-

sages will be included into the analysis log file.

4.1.5 AdbWrapper

The AdbWrapper component manages interactions with a real device or an emulator.

All adb commands are directed to the associated device. Therefore, it is no problem

if several devices are connected to the PC at the same time. The component provides

most of the standard adb commands shown at [78] and some other useful features

4.1. Architecture 39

like loading an emulator snapshot. A description of the most important features of

this component follows.

Install: The AdbWrapper can install an application on the associated Android de-

vice.

Uninstall: The deinstallation of an application is also supported. The package

name of the application is required to uniquely identify the application.

Load A SnapShot: This command loads a previously created snapshot, it works

only on AVDs.

Boot device into recovery: This command reboots the device into the recovery

mode and waits until the device state is “recovery”. This command works

only on physical devices.

Monkey: The AdbWrapper can also start the Android Monkey tool [77]. The user

can specify how many pseudo-random events should be sent to the application.

Additional the maximal run time of the Monkey command can be defined.

After this time, the Monkey process gets killed.

Copying of data: The AdbWrapper supports to copy data from and to an Android

device.

Restart Server: This command restarts the adb server.

Send Broadcast: This command sends a broadcast. The list of broadcast receivers

can be retrieved via the ApkFile component.

Start Activity or Service: The AdbWrapper component also provides methods

to start an activity or a service. The list of activities and services can be

retrieved via the ApkFile component.

From time to time, the adb connection gets lost. This is not a framework issue,

but an adb problem. If the connection to the device gets lost, the framework tries

to re-establish it by restarting the adb server. If the framework is not able to re-

establish the connection it will inform the user about the problem and will wait

40 Chapter 4. Software Framework

until the connections is restored by manual intervention, such as unplugging and

replugging the device. The problem is that while the framework tries to reconnect

to a device all other adb connections are also closed. Currently, the framework has

no mechanism implemented that manages this problem. This is the reason, why

the current version does not support the execution of several Analyses on different

devices in parallel.

4.1.6 ApkFile

The ApkFile component provides easy access to the APK itself and to the infor-

mation stored in the AndroidManifest1 via the ManifestParser. This component

provides identifiers of the application under analysis, like the MD5 or SHA1 finger-

print and the package name. The package name uniquely identifies an application

on the device or the Google Play store. However, it does not uniquely identify a file,

because different versions of an application typically use the same package name.

Furthermore, the list of activities, services and content providers of the application

can be retrieved. It is also possible to retrieve only activities that serve as main en-

try point of the application2. All the information, except fingerprints, is extracted

from the AndroidManifest. Dynamically generated services or activities cannot be

detected using this method, but these services or activities are anyway not accessible

from outside the application.

4.1.7 Logcat

Similar to the logcat3 command, this framework component is intended to view

messages from the Android logging system. The logcat related methods can be

accessed through the AdbWrapper component. Plugins can subscribe themselves to

a logcat observer to receive the log messages as they come in, or retrieve all collected

log messages at once. If the adb connection gets lost, the recording of log messages

stops. At the moment, this component does not automatically resume the recording

when the device is ready again. This means, for example that the developer has to

1http://developer.android.com/guide/topics/manifest/manifest-intro.html
2http://developer.android.com/training/basics/activity-lifecycle/starting.html
3http://developer.android.com/tools/help/logcat.html

4.2. Framework Execution Sequence 41

start the logging process again after a device reboot or similar events that cause a

lost connection.

4.1.8 Broker

The data broker provides an easy way to exchange data between Plugins. If a

Plugin wants to send data, it can pass the data to the broker. Every Plugin that

implements a DataReceiver for the published data type will receive the data. A

Plugin can publish different data several times, but the receiving Plugins have to

store the information themselves if they need it, the framework does not store this

information for later processing.

4.1.9 Report

The framework creates a report for every analysed application. The report contains

all relevant information, like the configuration, the execution time and the output

of every Plugin. The runtime is stated for all run phases separately. In addition,

the report contains the filename of the analysed application as well as a Boolean

value that indicates if the Analysis succeeded or failed. An Analysis fails if a Plugin

throws an exception that is not caught inside the Plugin. Every Plugin can add

arbitrary output data to the report. The report will be stored on the hard disk

in XML format. The XML format was chosen because it allows easy, automated

processing, and it is human readable.

4.2 Framework Execution Sequence

Figure 4.2 shows the basic execution sequence of an Analysis with three Plugins and

a device. Plugin 1 uses the Init, preRun and Run phase. Plugin 2 uses only the

Init and the Run phase, while Plugin 3 uses only the postRun phase. This sequence

is intended to help the reader to better understand the different run phases of the

Plugins and the execution sequence of the framework.

First the framework is started by creating an MDFCore object. Then the user defines

which Analysis should be executed and what applications should be analysed. The

42 Chapter 4. Software Framework

framework executes the Analysis for every application that should be analysed. The

Analysis defines which Plugins should be executed and the Plugin execution order.

In this example Plugin 1 is added (and therefore executed) first, followed by Plugin

2 and Plugin 3.

MDFCore Analysis Plugin 1 Plugin 2 Plugin 3 Device

Init

Init

preRun

install application

Run

Run
start Monkey

postRun

LoopLoop For every APK

Figure 4.2: An example framework sequence of an Analysis with three Plugins.

The framework fulfils all its design goals. It is easy to use and it can automatically

analyse huge amounts of applications. Furthermore, the Plugin component enables

developers to easily extend its functionality.

Chapter 5

Plugins and Analyses

This chapter presents the developed Plugins and Analyses. First the Plugins are

explained with a focus on the DroidBox Plugin and the Tripwire Plugin. Later on

the two Analyses, the DroidBox Analysis and the Tripwire Analysis, are described.

These Analyses are mainly based on the same named Plugins.

5.1 Malware Detection Plugins

This section describes the Plugins, developed to detect malware. The two main

Plugins, DroidBox, an application sandbox, and Tripwire, a file system integrity

checker, are described in Section 5.1.1 and 5.1.2 respectively. Section 5.1.3 gives an

overview of other Plugins needed during the Analyses.

5.1.1 DroidBox Plugin

The goal of the DroidBox Plugin is to integrate the existing Android application

sandbox tool named DroidBox into the framework and to extend its functionality.

The DroidBox tool and its capabilities were previously introduced in Section 2.3.2.2.

To use the tools functionality, the Plugin has to start an Android emulator with the

DroidBox images and record its logged events. In contrast to the original DroidBox

tool, this Plugin also analyses the recorded events and calculates a suspicious score

for every analysed application. Furthermore, the Android emulator is reset to a

known state for every application that is analysed. This Plugin is an integral part

43

44 Chapter 5. Plugins and Analyses

of the DroidBox Analysis, described in Section 5.2. A description of the different

run-phases of this Plugin follows, a complete Analysis sequence that includes this

Plugin is shown in Figure 5.1 located in Section 5.2. The sequence will be described

in Section 5.2.

Init: In the Init phase, the Plugin starts the emulator with the modified images.

PreRun: In the preRun phase, the Plugin loads the previously created snapshot,

and starts logging the logcat output.

Run: The Run phase is not used by this Plugin.

PostRun: In the postRun phase, the Plugin stops logging the logcat output. Then

the Plugin filters and parses the logcat output into Java classes. Finally, the

output is analysed and a suspicious score is calculated, according to table 5.1

The values in Table 5.1 were chosen empirically to meet the design goals of this

Plugin and the DroidBox Analysis. One of the goals is to detect malware that

sends short messages or starts phone calls, for this the respective DroidBox events

“phonecall” and “sendsms” increase the score by ten. For this Analysis, a suspi-

cious score greater than or equal to ten means that this application is suspicious

and should be analysed in more detail. As the DexClassLoader is often used by

malware to dynamically load and execute code, the respective event also increases

the suspicious score by ten. Other suspicious events include the accessing of sys-

tem files or the storage of sensitive information like the phone number or a short

message on the file system. For these actions, the suspicious score is also increased

by ten. Another goal of the DroidBox Analysis is to detect malware that leaks

sensitive information. For this purpose, the DroidBox Analysis examines all events

that involve tainted data leaving the device. Depending on the tainted data that

is leaked the suspicious score is increased. The values were adapted several times

to maximize the detection rate and to minimize the false positive rate. In the end

leaked short messages are always considered suspicious, but other tainted data like

the location or the IMSI alone are not enough to mark an application as suspicious.

Most malicious applications that leak sensitive data steal almost everything they

can get. These applications will be detected because this leads to a big accumulated

suspicious score.

5.1. Malware Detection Plugins 45

Score Event Description

10 DexClassLoader
If the usage of the DexClassLoader is
detected, the suspicious score is in-
creased by ten.

10 fdaccess

If the application accesses a file in
the /system directory, or if the appli-
cation stores the phone number, the
SMS number, or the SMS message on
the file system, the suspicious score is
increased by ten.

10 phonecall
Every phone call made by the applica-
tion increases the suspicious score by
ten.

10 sendsms / DataLeakSMS
For every SMS message send by the
application the suspicious score is in-
creased by ten.

10 TAINT SMS

D
at

aL
ea

k
N

et
w

or
k

If data leaks via the network, the score
is increased depending on the taint
tag(s) of the data.

3 TAINT MIC
3 TAINT IMSI
3 TAINT IMEI
3 TAINT ICCID
2 TAINT PHONE NUMBER
2 TAINT LOCATION NET
2 TAINT LOCATION LAST
2 TAINT LOCATION GPS
2 TAINT LOCATION
2 TAINT DEVICE SN
2 TAINT CALL LOG
2 TAINT ACCOUNT
1 TAINT SETTINGS
1 TAINT PACKAGE
1 TAINT OTHERDB
1 TAINT FILECONTENT
1 TAINT EMAIL
1 TAINT CONTACTS
1 TAINT CAMERA
1 TAINT CALENDAR
1 TAINT BROWSER
1 TAINT ACCELEROMETER

Table 5.1: This table shows the suspicious scores of different events.

46 Chapter 5. Plugins and Analyses

5.1.2 Tripwire Plugin

This section describes the Tripwire Plugin. It was developed to detect applications

that gain root access e.g. through an exploit and make changes on the file system

that cannot be done without root access. For this, Tripwire compares the file system

contents before and after the execution of the application under analysis.

All file information is collected on the Android device in the recovery mode, which

works independently from the normal Android operating system. Tripwire com-

pares the following file information to detect changes: the modification date, the

file size, the file permissions, the file owner and group, and the file fingerprint. A

fingerprinting algorithm maps data of arbitrary size to a fixed length bit string

called fingerprint. This Plugin uses SHA-1 as fingerprinting algorithm. The file’s

fingerprint is necessary to reliable detect modifications on the file’s content. Such

modifications are possible without changing other file information [21]. Without the

fingerprint, it would be necessary to copy all files every time from the smartphone

to the PC to compare them. The functionality of Tripwire is split into three phases.

Init: In this phase, the Plugin restores the connected Android smartphone to a

known clean state. Then the Plugin collects all important file information and

copies all files to the PC. These operations are only executed if the smartphone

is used with this Plugin the first time. All these steps are executed in the

ClockworkMod Recovery mode introduced in Section 2.1.2. For collecting

the files and their information the AdbWrapper is used. The ClockworkMod

Recovery mode is used, because it offers a more powerful shell than the Android

operating system and it provides a clean operating system.

PreRun: In this phase, the Plugin loads the previously user created snapshot to

restore the connected Android smartphone to a known clean state. Starting

from a known clean state makes it easier to detect changes and assign them

to the analysed application.

Run: The Run phase is not used by this Plugin.

PostRun: In the postRun phase, the Plugin detects all file-system changes made

between the execution of the preRun phase and this phase. For this, the Plugin

5.1. Malware Detection Plugins 47

reboots the smartphone into the ClockworkMod Recovery mode and collects

all relevant file information. The ClockworkMod Recovery mode is used, be-

cause the Android operating is not trustworthy after the execution of potential

root malware. Then it compares the actual information with the previously

collected information to identify added, changed, and deleted files. If desired,

the Plugin copies all added and changed files to the PC for further manual

analysis.

These changes are stored and analysed using two methods. The first method

checks the fingerprints of the files against a blacklist. The second method

searches for suspicious files attributes. At the moment a simple, but effective

approach is used. Added files are marked as suspicious if they are stored in the

“/data/data/ ” folder and do not belong to an owner and group starting with

“app ”1. The idea behind this rule is that Android creates for every installed

application a folder under “/data/data/app-package-name” which belongs to

the app itself. It is very suspicious, if a file owned by e.g. root is found in this

folder. After a few tests, it was clear that this rule also leads to false positives.

Some special files like the telephony database2 or the Bluetooth-settings file3

belong to others users, like “radio” or “system”. The rule was then extended

to check the owner, group and permissions for this special files against their

default values.

Additional it is suspicious if a file is added, modified or deleted in one of the

following directories: /system, /sbin, /etc, or /ref. These directories contain

system files, which are only changed during a system update. Root permis-

sions are required to modify these files. Every suspicious change increases the

suspicious score of the application by one. The higher this score is, the more

likely the analysed application is malicious. Currently, every application that

has a suspicious score greater than zero is reported as suspicious.

This Plugin allows to identify applications that use permanent root exploits or

make file-system changes that need elevated privileges. It is not suited to detect

1Files in the “lib” folder of the applications are ignored, because they belong not to the appli-
cation itself.

2/data/data/com.android.providers.telephony/databases/telephony.db
3/data/data/com.android.settings/shared prefs/bluetooth settings.xml

48 Chapter 5. Plugins and Analyses

applications that gain temporary root rights and use them in a way that does not

leave suspicious file information. For example, a malicious application could exploit

the phone, steal sensitive data from the system or other applications and send them

to a remote server without being detected by this Plugin.

5.1.3 Helper Plugins

This section describes all other Plugins used in the Analyses. If not stated otherwise

the Plugins use only the RunPhase.

Install Application: The Install Application Plugin installs the application in

question on the device that is associated with the Analysis.

Launch Application: This Plugin starts the first launcher activity of a previously

installed application. In other words, this plugins simulates an user that clicks

on the application’s icon to start it.

Kill Application: This Plugin kills the application under analysis using the Linux

’kill’ command.

Monkey: This Plugin is intended to simulate a user. For this, the Plugin first starts

Monkey (cf. Section 2.1.3) limited to the package of the analysed application.

Monkey will stop after 3000 events or ten minutes. Then this Plugin starts

all activities and instruments each of them with Monkey. This time Monkey

is limited to 300 events and 3 minutes. If the tested application dies, Monkey

gets killed.

Simulate Phone Calls and SMS messages: This Plugin tries to trigger broad-

casts related to short messages and phone calls. For this, the Plugin simulates

an incoming phone call that is denied after two to seven seconds. Then the

Plugin simulates a phone call that is missed. After the missed phone call an

incoming short message is simulated, followed by an outgoing phone call and

an outgoing short message. On a real device, only the outgoing phone call and

the outgoing short message will work.

5.2. DroidBox Analysis 49

Start Services: This Plugin starts all in the manifest declared services by invoking

the start service command offered by the AdbWrapper component. Starting

services will not work with Android 2.1 and prior. This command will fail if

the service needs any special parameters.

Send Broadcasts: This Plugin sends all broadcasts, that the application is lis-

tening to. This command does not specify any options. For example, a

“SMS RECEIVED”4 broadcast will fail because this Plugin does not add the

necessary information like the message content or the number. However, the

Plugin Simulate Phone Calls and SMS messages solves this problem for the

most important broadcasts.

Capture Network Traffic: This Plugin captures the network traffic. Currently, it

works only on an emulator, but it could be easily extended to work on rooted

phones. This Plugin starts the capturing process in the preRun phase and

stops it in the postRun phase. Currently, the traffic captured by this Plugin

is not analysed. Instead, the traffic is obtained and analysed using DroidBox.

This Plugin has the advantage that it creates network captures in the ’libpcap’

format which can be analysed with a variety of programs.

5.2 DroidBox Analysis

The DroidBox Analysis was developed to detect applications that leak sensitive

information, use services that cost money, or use suspicious functions as dexClass-

Loader 5. The main component of the Analysis is the DroidBox Plugin, which uses

the DroidBox system image. For details about the DroidBox Plugin see 5.1.1, for

details on DroidBox see Section 2.3.2.2 or [19, 20].

Figure 5.1 shows a high-level view of the Analysis. First the user has to create an

Android emulator, running either Android 2.1 or 2.3 (1). At the time of writing,

DroidBox supports only those two versions. The next step is to start the AVD

with the associated DroidBox images and populate it with data and configure it

4“android.provider.Telephony.SMS RECEIVED”
5The dexClassLoader is often used by malware to dynamically load a malicious APK that was

previously downloaded via the network [79].

50 Chapter 5. Plugins and Analyses

as desired (2). The emulator should look like a normal phone to the malware. An

empty contact list, no calls in the call log or no received or sent messages could look

suspicious to malware, which may prevent the execution of its malicious payload.

Two numbers were added to the phone’s contact list, and both numbers were called,

so that they appear in the call log. Furthermore, a short message was sent to one of

the two numbers. Once the desired state is achieved, the user has to create a snap-

shot (3). This snapshot will be loaded prior to every Analysis. Now the emulator

is ready, to be used with the automated framework. Steps 5 to 15 are repeated for

every application. If the emulator is not running, the DroidBox Plugin (see 5.1.1)

starts it (4). Then the previously created snapshot is loaded (5). This ensures that

every application has the same initial conditions. After the snapshot is loaded, the

logging process is started. Then the Network Capturing Plugin starts the network

capturing process (6). Afterwards, the Install application Plugin (see 5.1.3) installs

the application to be analysed (7). Then the application is started (8) and killed

after fifteen seconds (9). The starting is required, to see what events happen during

the start of the application without user interaction. The time of fifteen seconds

was chosen as a trade-off between allowing slower applications to start and not to

waste too much time. After the fifteen seconds, the application gets killed, so that

it cannot disrupt the next Plugin. The Simulate Phone Calls and SMS messages

Plugin (see 5.1.3) simulates in- and outgoing Short Message Service (SMS) messages

and phone calls (10). Next the Monkey Plugin (see 5.1.3) is started. As first action,

Monkey tests the main launcher activity, after that Monkey is started for every

activity declared in the manifest (11). The next two Plugins, Send broadcasts and

Start services, are used to trigger as many malicious events as possible. For this, the

Plugin Send broadcasts (see 5.1.3) issues all broadcasts the application is listening

to (12). After that the Plugin Start services (see 5.1.3) starts all declared services

(13). Then the DroidBox Plugin parses and analyses the logcat6 output (14). All

relevant information is stored and a suspicious factor is calculated. The last Plugin

Network Capturing stops the network capturing process7. The Analysis is executed

again starting with step 5 for every application in the Analysis queue. Steps 7 to

6http://developer.android.com/tools/help/logcat.html
7The network data captured by this Plugin is not used by this analysis, it was recorded for a

different project.

5.3. Tripwire Analysis 51

13 are done to trigger as much behaviour of the application as possible. The results

of this Analysis are presented in Section 6.2.

(2) populate emulator with data

Emulator snapshot(3) save snapshot

Install application Run

Start application Run

Kill application Run

SimulatePhoneCallSMS Run

Monkey Run

Send broadcasts Run

Start services Run

DroidBox postRun

NetworkCapture preRun

DroidBox preRun

(4) start emulator

(6) start network capturing

(7) install application

(8) start application

(9) kill application

(10) simulate phone call & SMS

(11) test every activity with monkey

(12) send broadcasts

(13) start services

(15) stop network capturing
NetworkCapture postRun

(14) get logcat output & analyze it

Plugins

Automated
(1) create emulatorManual

DroidBox Init
(5) load snapshot

Android Virtual Device

Figure 5.1: The analysis sequence of the DroidBox Analysis.

5.3 Tripwire Analysis

The Tripwire Analysis was developed to detect applications that use permanent

root exploits or modify the file system in a way that is not possible without root

privileges. This Analysis requires a physical device, because the Android emulator

has no recovery mode. A Nexus One with Android 2.2 was used for this Analysis.

First of all “USB debugging” was enabled and the installation of applications from

“Unknown sources” was granted. Then the Nexus One, was unlocked and rooted,

to be able to flash the ClockworkMod Recovery8,9 mode. The application “No

8http://forum.xda-developers.com/wiki/ClockworkMod Recovery
9http://www.clockworkmod.com/rommanager

52 Chapter 5. Plugins and Analyses

Lock”10 was installed to prevent the screen from locking (1). First tests were made

without this application. After every reboot the screen was locked, which was a

major problem for most Plugins. It is possible to unlock the device using special

key-events, but the unlocking did not work reliably enough. The installation of the

“No Lock” application solved the problem. Two numbers were added to the phone’s

contact list, and both numbers were called, so that they appear in the call log.

Furthermore, a short message was sent to one of the two numbers (2). After these

steps, a backup was created using the ClockworkMod Recovery mode (3). This

backup will be loaded prior to every Analysis. After these preparations, the device

can be used with the proposed malware-detection framework. Figure 5.2 shows a

high-level view of the Tripwire Analysis. The Plugins used by the Tripwire Analysis

are mostly the same as the Plugins used by the DroidBox Analysis. In the Init

phase of the Tripwire Plugin, the device is initialized. That means all important

information is collected and stored on the PC (4). These steps are only done once for

every distinct device backup. After the Init phase is finished, the preRun phase is

executed. In this phase, the Tripwire Plugin restores the device with the previously

created backup (5). The steps 6 to 12 are equal to the steps 7 to 13 described in

the DroidBox Analysis (see Section 5.2). The last step in the Tripwire Analysis is

to collect all important information again, compare it with the previously collected

information and analyse the detected changes of the file system (13). Steps 5 to 13

are repeated for every application under analysis.

10https://play.google.com/store/apps/details?id=org.jraf.android.nolock

https://play.google.com/store/apps/details?id=org.jraf.android.nolock

5.3. Tripwire Analysis 53

(2) Populate phone with data

Phone backup(3) Create backup

Install application Run

Start application Run

Kill application Run

SimulatePhoneCallSMS Run

Monkey Run

Send broadcasts Run

Start services Run

Tripwire postRun

Tripwire preRun

(4) Init device

(6) Install application

(7) Start application

(8) Kill application

(9) Simulate phone call & SMS

(10) Test every activity with monkey

(11) Send broadcasts

(12) Start services

(13) Find & analyze changes

Plugins

Automated
(1) Prepare phoneManual

Tripwire Init
(5) Restore phone

Android Smartphone

Figure 5.2: The analysis sequence of the Tripwire Analysis.

Chapter 6

Results

This chapter presents the results of the DroidBox and Tripwire Analysis. As both

Analyses aim to detect malware, they were evaluated against the malware samples

from the Android Malware Genome1 project [16]. The Android Malware Genome

project contains samples from 49 different malware families including root- as well

as non-root malware. The remaining chapter is structured as follows. Section 6.1

presents the combined detection results of both Analyses. Section 6.2 and Section 6.3

present the results of the DroidBox Analysis and the Tripwire Analysis respectively,

in more detail.

6.1 Combined Results

Figure 6.1 summarises the combined evaluation results of both Analyses. The x-axis

represents the percentage of samples that were detected, grouped by malware fam-

ily. The green colour shades mark detected samples, and the red colour stands for

unrecognised samples. The different shades of green define which Analysis marked

the respective sample as suspicious. The y-axis lists the various malware families.

Most noticeable is that some malware families are not detected by any of the Anal-

yses. Nearly all remaining malware families are almost exclusively detected by one

of the two Analyses and not the other one. The only exception is the GingerMaster

malware family. This framework marked 510 of the 1260 analysed samples as suspi-

1http://www.malgenomeproject.org

55

56 Chapter 6. Results

cious, which leads to a detection rate of 39.8%. Google Bouncer was tested against

the same samples and achieved at the end of 2012 a detection rate of 15.32% [80].

Figure 6.1 clearly shows that some families2 are detected very well, others3 have

a detection rate near zero or zero and the remaining families contain applications

that are detected, as well as applications that did not behave suspicious during

the evaluation. Through the high amount of applications, it was not possible to

investigate all of them in detail. Instead, some randomly picked applications were

analysed manually to learn why they were detected or why they were not detected.

The results of the manual analysis are grouped by malware family.

ADRD: This malware family steals personal data, like the IMEI and IMSI and

sends it to a remote server. A closer look was taken on the repacked sample

with the package name “com.olivephone.cu”4. The application tries to send

personal data to two remote locations5. This sample was not marked as sus-

picious because both addresses were unreachable. Therefore, the application

was not able to transmit the data. For more details on this malware family

refer to [81].

BaseBridge: This malware tries to gain root privileges and to consequently install

a malicious application. The application to be installed is included as resource

(res/raw/anserverb) in the APK of the BaseBridge sample [82, 83]. If the

installation succeeds the second application tries to contact a Command &

Control (C&C) server. The malware can send short messages, dial phone

numbers, and remove incoming short messages. The analysed sample6 contains

the root exploit as well as the app to be installed in the /assets folder. The

service that executes the exploit and consequently installs the application was

called during the automated analysis. It is unclear why the exploit or the

2AnserverBot, Bgserv, Dogwars, DroidCoupon, DroidDream, FakePlayer, Gingermaster, Gold-
Dream, Gone60, HippoSMS, JiFake, jSMSHider, Plankton, SMSReplicator, Walkinwat, and Zsone

3ADRD, BeanBot, CoinPirate, CruseWin, DroidDeluxe, DroidDreamLight, DroidKungFu3,
DroidKungFu4, DroidKungFuUpdate, Endofday, FakeNetflix, GamblerSMS, Geinimi, GGTracker,
GPSSMSSpy, KMin, LoveTRap, NickyBot, NickySpy, RogueLemon, PogueSPPush, SndApps,
Spitmo, Tapsnake, YZHC and Zitmo

4SHA1 fingerprint: 7ded7bb7041acce78e85e811c0ac048338bdc2d9
5http://adrd.xiaxiab.com/pic.aspx and http://adrd.taxuan.net/index.aspx
6SHA1 fingerprint: 4de1730332ac35e99337c78ab9aee4fc93f71fc0

http://adrd.xiaxiab.com/pic.aspx
http://adrd.taxuan.net/index.aspx

6.1. Combined Results 57

1

4

1

185

42

9

1

1
1
7

6

4

46
9

4
1

5

20
8

1

1
1

1

11

5
2

1

15
1

17
19

26
25

2

2

15

2

22
2

3
78

8

1
2

1
1

45
16

10
275

71
1

1
1
1

1
63

1

1

6

1
47

1
1
2

38
3

2
9

10
1
2

21
7

1
1

0% 20% 40% 60% 80% 100%

ADRD
AnserverBot

Asroot
BaseBridge

BeanBot
Bgserv

CoinPirate
CruseWin
DogWars

DroidCoupon
DroidDeluxe
DroidDream

DroidDreamLight
DroidKungFu1
DroidKungFu2
DroidKungFu3
DroidKungFu4

DroidKungFuSapp
DroidKungFuUpdate

Endofday
FakeNetflix
FakePlayer

GamblerSMS
Geinimi

GGTracker
GingerMaster

GoldDream
Gone60

GPSSMSSpy
HippoSMS

Jifake
jSMSHider

KMin
LoveTrap
NickyBot
NickySpy

Pjapps
Plankton

RogueLemon
RogueSPPush

SMSReplicator
SndApps

Spitmo
Tapsnake

Walkinwat
YZHC

zHash
Zitmo
Zsone

Recognized by DroidBox &
Tripwire

Recognized by DroidBox

Recognized by Tripwire

Not recognized

Failed to analyze

Figure 6.1: This figure shows the detection results of the DroidBox and Tripwire
Analysis grouped by malware families.

58 Chapter 6. Results

installation failed. The exploit, although it is on the blacklist, was not detected

by Tripwire because the resources are not extracted. Instead, they are loaded

directly from the APK [84]. However, this malware can be easily detected

using static analysis techniques.

BeanBot: This malware connects to a C&C server and retrieves instructions [85].

The server can e.g. instruct the client to send short messages to premium num-

bers. During the analysis, the address of this server was not found. Therefore,

it was not possible to determine if it is still running. No suspicious behaviour

was monitored during the dynamic Analysis.

CruseWin: This malware7 turns the smartphone into a bot. The application gets

its commands from a C&C server8 in XML form. The C&C server can, for

example, instruct the smartphone to send or forward short messages or to unin-

stall applications [86]. During the analysis, the C&C server was not working

and therefore the application did nothing suspicious.

DroidKungFu 3: Two samples were analysed, the first sample9 was marked as

suspicious during the automated analysis, the second sample10 not. Both

samples include two encrypted root exploits and an encrypted application [87].

The encrypted application is decrypted and subsequently installed after the

malware gains root privileges. The installed application connects to a C&C

server and waits for commands. The first sample copied a binary into the

“/system” folder and installed the application. It is unclear why the second

sample did nothing suspicious.

DroidKungFu 4: The analysed sample11 was marked as suspicious on the rooted

device and the device with the modified su binary. However, it was not marked

as suspicious on the unrooted device. The reason is, this sample (family) does

not include a root exploit. Instead, it asks for root permissions, which failed

on the unrooted device. If this sample obtains root privileges, it copies several

7SHA1 fingerprint: 438e0b566eca22e7168711931a958736d9a50118
8http://crusewind.net/flash/test.xml
9SHA1 fingerprint: 255a1b74428b5615d65f39775ec7234e27bd9e74

10SHA1 fingerprint: 0a51a11062bf106b10500cab45de1b091af2a06f
11SHA1 fingerprint: 971b3df7ea0f9134b69a1c1f89bbd09d085ca855

http://crusewind.net/flash/test.xml

6.1. Combined Results 59

files into the “/system” folder. These binary files try to connect to an C&C

server to receive instructions.

Geinimi: This malware family has botnet-like capabilities. The C&C server can

instruct the client to do a variety of things, like installing an application,

sending a short message, or uploading information to the server [88, 89]. The

C&C server URLs are stored encrypted in the application. Researchers [88]

from Lookout decrypted a sample and found several C&C server URLs. This

sample decrypted a different URL12 and tried to connect to it, during the

automated analysis. This URL and the other URLs mentioned in the related

work were not working at the time of the manual analysis. According to the

Analysis log, it seems that the server did not respond during the dynamic

analysis.

KMin: This malware family collects information on the device and sends it to

a remote server [90]. The collected information consists of the IMEI, the

IMSI, and the current time. The analysed sample13 collected this information

and sent it to the remote server14. It was not marked as suspicious, because

the accumulated suspicious score for these two events is only six. Nearly

all automatically analysed samples showed the same behaviour. Increasing

the score for these events would lead to many false positives, because many

advertisement libraries use this information too.

SndApps: Applications belonging to this family can be categorized as Spyware.

The application registers a receiver for the BOOT COMPLETED15 broadcast

(c.f. 2.1.1) which starts a service. This service steals private data, such as the

e-mail address, the carrier or the deviceId and sends it to a remote location16.

There was no network traffic monitored to this server during the Analysis.

YZHC: This malware connects to a remote server to fetch premium rated numbers.

Consequently, it sends short messages to these numbers. Incoming messages

12http://www.winpowersoft.com:8080/adserver/getAdXml.do
13SHA1 fingerprint: 005ce595935bf1aae4d53ab4bbd92ce7c81e5b2a
14http://su.5k3g.com/portal/m/c5/0.ashx
15android.intent.action.BOOT COMPLETED
16http://www.typ3studios.com/android notifier/notifier.php

http://www.typ3studios.com/android_notifier/notifier.php

60 Chapter 6. Results

that inform the user about these services are deleted [91]. The analysed sam-

ple17 was marked as suspicious because it called the number “10086”. This

number belongs to the customer service portal of China Mobile. Probably this

event was triggered by Monkey. The C&C server18 was not working at the

time of the analysis. This is the reason why the malware did not send short

messages to a premium rated numbers.

Zitmo: Only one sample19 of this malware family was available. Therefore this

sample was analysed. This malware forwards incoming short messages together

with the deviceId to a remote server20. Normally it should be easy to detect

this kind of malware with DroidBox. It was not detected because the remote

server did not exist anymore, and therefore this malware was not able to leak

sensitive information.

Zsone: A closer look was taken on the sample21 that was not detected. It turned

out that the sample contains malicious code, such as sending short messages

to “10621900”, “10626213”, and “106691819”, but this code is never called.

A possible explanation could be, that the malicious code was automatically

added to the benign application and that the patching process failed to add a

call to the malicious code.

The results show that both Analyses have their respective advantages and disadvan-

tages. The DroidBox Analysis is well suited to detect malware that leaks sensitive

information or produce costs for the user. The Tripwire Analysis has its strength

at detecting malware which use permanent root exploits. Both Analyses reveal

the weak points of dynamic analyses. Only one execution path is analysed. If the

malicious code is not triggered for some reason, or the execution of the malicious

code fails, the dynamic analysis can not examine it. During the manual analysis, two

main reasons were found for the failure of the execution of the malicious code. Many

samples tried to connect to an C&C server that was not working. These samples

17SHA1 fingerprint: 7e04d1854382dbb42417ab4e5eab142ebb482ff9
18http://domaindev.51widgets.com/ss/dom/config.xml
19SHA1 fingerprint: c9368c3edbcfa0bf443e060f093c300796b14673
20http://softthrifty.com/security.jsp
21SHA1 fingerprint: 14f5c14af60b5930f9dfbeed30f5529ba814c0e6

http://softthrifty.com/security.jsp

6.2. DroidBox 61

were not able to leak sensitive data or to receive commands. Other samples failed

to use their exploits. This can happen through unforeseen circumstances or through

security updates that fix the exploitable code. A general problem is how to decide

whether an event should be rated as suspicious or unsuspicious. It is very difficult to

decide this automatically, because it depends on the context. Thus, the framework

does not label samples as benign or malicious, but gives them a suspicious score.

The following sections present the analysis results of the respective Analyses in more

detail.

6.2 DroidBox

This section presents the results of the DroidBox Analysis. The Analysis was exe-

cuted in a VM running a 32-bit Ubuntu 12.04. The host machine was an off-the-shelf

Personal Computer (PC) with an Intel Core 2 Quad CPU Q9550 and 8GB RAM. To

speed up the Analysis, three instances of the VM did run in parallel. The samples

were analysed with DroidBox 2.1 and DroidBox 2.3, each with and without access

to the Internet. Figure 6.2 shows the combined detection rate of all four Droid-

Box runs, broken down to the 49 analysed malware families. Samples belonging to

the families AnserverBot, Bgserv, DogWars, FakePlayer, GingerMaster, GoldDream,

Gone60, HippoSMS, JiFake, Plankton, SMSReplicator, Walkinwat, and Zsone were

detected quite well, but the overall detection rate over all families with DroidBox is

only 29.4%. Figure 6.3 shows the runtime of the Plugins in detail. Most noticeable

is the very long maximal runtime of the Monkey Plugin. It is caused by applications

with many activities. It was a goal to start and test every activity with Monkey.

To limit the execution time, Monkey tests the first launcher activity for at most 10

minutes and every other activity from one to three minutes or 300 events depending

on the application’s activity count. The next noticeable thing is that the maximal

runtime for most Plugins is about 5 minutes. That is because from time to time

adb commands hang, and the default kill time was set to five minutes. Figure 6.4

shows the sum of all suspicious events that happened during the execution of the

respective Plugin. The Plugin order in the figure equals the Plugin order during

the Analysis. The Monkey Plugin triggered the most suspicious actions, followed by

62 Chapter 6. Results

185

42

9

1

1
1
8

6

4

4
46

9

4
1

5

20
8

1

1
1

2

11

22
2

8
80

8

1
2

1
1

15
45

33
29

300
96
3
1
1
1

1
60
1

1

6

16
47

1
1
2

38
3

2
9

10
1
2

21
9

1
1

1
1

1

5

0% 20% 40% 60% 80% 100%

ADRD
AnserverBot

Asroot
BaseBridge

BeanBot
Bgserv

CoinPirate
CruseWin
DogWars

DroidCoupon
DroidDeluxe
DroidDream

DroidDreamLight
DroidKungFu1
DroidKungFu2
DroidKungFu3
DroidKungFu4

DroidKungFuSapp
DroidKungFuUpdate

Endofday
FakeNetflix
FakePlayer

GamblerSMS
Geinimi

GGTracker
GingerMaster

GoldDream
Gone60

GPSSMSSpy
HippoSMS

Jifake
jSMSHider

KMin
LoveTrap
NickyBot
NickySpy

Pjapps
Plankton

RogueLemon
RogueSPPush

SMSReplicator
SndApps

Spitmo
Tapsnake

Walkinwat
YZHC

zHash
Zitmo
Zsone

Recognized

Not recognized

Emulator crashed

Figure 6.2: This figure shows the merged detection results of all four DroidBox runs.

6.2. DroidBox 63

0 5 10 15 20 25 30 35 40 45

PluginDroidBox

PluginNetworkCapture

PluginInstallApplication

PluginLaunchApp

PluginKillApp

PluginSimulatePhoneCallSMS

PluginMonkey

PluginSendBroadcasts

PluginStartServices

Runtime (min)

Minimal runtime

Average runtime

Maximal runtime

Figure 6.3: This figure shows the runtime of all Plugins executed during the Droid-
Box Analysis.

the LaunchApp Plugin, the SendBroadcasts Plugin and the SimulatePhoneCallSMS

Plugin. Figures 6.5 and 6.6 show the suspicious score over time while the Mon-

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

PluginDroidBox

PluginNetworkCapture

PluginInstallApplication

PluginLaunchApp

PluginKillApp

PluginSimulatePhoneCallSMS

PluginMonkey

PluginSendBroadcasts

PluginStartServices

Suspicious Score

Suspicious Score DroidBox 2.1 with Internet

Suspicious Score DroidBox 2.1 without Internet

Suspicious Score DroidBox 2.3 with Internet

Suspicious Score DroidBox 2.3 without Internet

Figure 6.4: This figure shows the sum of all suspicious scores that occurred during
the execution of the corresponding Plugin.

64 Chapter 6. Results

key Plugin is running. Figure 6.5 shows the suspicious score, over all activities,

from start to end of the Monkey Plugin. Figure 6.6 shows only the suspicious score

while Monkey was executed on the first launcher activity. These figures illustrate

that most of the suspicious events happen directly after the start-up of the applica-

tions. The next notable property is that almost no new suspicious event occurred

after about 10 minutes. This means that the overall runtime of the Monkey Plugin

could be limited to 10 minutes, for the analysed malware, without losing important

information.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25

Su
sp

ic
io

u
s

Sc
o

re

Runtime (min)

Suspicious Score DroidBox 2.1 with
Internet

Suspicious Score DroidBox 2.1 without
Internet

Suspicious Score DroidBox 2.3 with
Internet

Suspicious Score DroidBox 2.3 without
Internet

Figure 6.5: This figure shows the suspicious events over time during the execution
of the Monkey Plugin on the Malgenome samples.

6.2. DroidBox 65

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1 2 3 4 5 6

Su
sp

ic
io

u
s

Sc
o

re

Runtime (min)

Suspicious Score DroidBox 2.1 with
Internet

Suspicious Score DroidBox 2.1 without
Internet

Suspicious Score DroidBox 2.3 with
Internet

Suspicious Score DroidBox 2.3 without
Internet

Figure 6.6: This figure shows the suspicious events over time during the execution
of Monkey. In contrast to the previous figure, this figure covers only the first run of
Monkey on the main screen of the analysed applications.

6.2.1 Top Free Applications

As the Malgenome project contains only malicious applications, some benign ap-

plications were needed to evaluate the false positive rate. Therefore, the top ap-

plications of all categories from the official Google Play Store were downloaded.

The download happened on November 19, 2012 and incorporated 1282 applications.

These applications were analysed with and without Internet access. Figure 6.7 shows

the results, from the run with Internet access. The most eye-catching thing is that

a high amount of applications failed to install.Most installations failed because of

missing shared libraries. This is most probably caused by the missing Google Maps

API on the emulator. The next notable thing is the very low number of applications

that are marked as suspicious (green). The suspicious applications were analysed in

more detail to learn why they were marked as suspicious.

• at.fhooe.mc.app

This application is called “Rotes Kreuz” and aims to help in emergency situ-

ations. It explains first aid measures and allows to directly call several emer-

gency telephone numbers. It was marked as suspicious because it called the

66 Chapter 6. Results

1

1

2

2

2

1

1

1

4

1

1

2

1

3

1

2

1

1

6

45

12

33

1

7

43

38

40

41

39

36

46

36

37

46

29

45

56

39

40

2

26

28

43

43

26

22

36

1

1

1

1

2

2

1

1

1

1

2

10

6

1

15

6

6

11

10

14

11

14

4

14

12

4

15

2

2

11

9

3

23

16

7

3

25

28

12

0% 20% 40% 60% 80% 100%

ARCADE

BOOKS_AND_REFERENCE

BRAIN

BUSINESS

CARDS

CASUAL

COMICS

COMMUNICATION

EDUCATION

ENTERTAINMENT

FINANCE

HEALTH_AND_FITNESS

LIBRARIES_AND_DEMO

LIFESTYLE

MEDIA_AND_VIDEO

MEDICAL

MUSIC_AND_AUDIO

NEWS_AND_MAGAZINES

PERSONALIZATION

PHOTOGRAPHY

PRODUCTIVITY

RACING

SHOPPING

SOCIAL

SPORTS

TOOLS

TRANSPORTATION

TRAVEL_AND_LOCAL

WEATHER

Recognized

Not recognized

Emulator crashed

Failed to install

Figure 6.7: This figure shows the detection rate (false positives) of DroidBox along
the Top Free Google Play Store applications.

6.2. DroidBox 67

following (emergency) phone numbers:

– 112 (European emergency number),

– 122 (fire brigade),

– 128 (gas emergency),

– 140 (mountain rescue),

– 141 (doctor’s emergency line),

– 144 (emergency medical services),

– 1455 (pharmacy emergency number),

– 116123 (bank card emergency service),

– +43/1589000 (blood donor centre) and

– +43/14064343 (poison information centre)

It would be easy to whitelist these numbers, but then calls initiated by mali-

cious code would not be analysed.

• at.mobilkom.android.handyparken

This application was marked as suspicious because it sent two messages “A30”

and “Nein” to +4382820200 (parking ticket number). The application allows

to buy car park tickets via short messages.

• com.avast.android.mobilesecurity, com.symantec.mobilesecurity and

com.tf.thinkdroid.amlite

The applications “avast! Mobile Security”, “Norton Security & Antivirus”

and “ThinkFree Office Mobile Viewer” were marked as suspicious because

they use the DexClassLoader function.

• com.jb.gosms

This application is an alternative messaging app. It was marked as suspicious

because three short messages were sent during the analysis. These messages

(“:O”, “‘” and “6o”) look like they were generated by pseudo-random events

caused by the Monkey Plugin.

68 Chapter 6. Results

• de.huwig.rhok.notfall.apk

This application aims also to help in emergency situations. It was marked

as suspicious because it called the following phone numbers: +49/8001110111

(crisis line) and +49/55119240 (poison information centre).

• nao.parkscheinpro

The application sent several messages to the number 06646606000 (parking

ticket number). The application allows to buy car park tickets via short mes-

sages.

• The remaining suspicious applications22 were marked as suspicious because

DroidBox reported that tainted data (TAINT SMS) were sent to a remote

server. Manual checks of some randomly picked applications suggest that all

these application were marked incorrectly.

For most applications it is understandable why they were marked as suspicious, only

the ”‘TAINT SMS”’ information seems to be unreliable.

0,0001 0,001 0,01 0,1 1 10 100 1000

PluginDroidBox

PluginNetworkCapture

PluginInstallApplication

PluginLaunchApp

PluginKillApp

PluginSimulatePhoneCallSMS

PluginMonkey

PluginSendBroadcasts

PluginStartServices

Runtime (min)

Minimal Runtime

Average runtime

Maximal Runtime

Figure 6.8: This figure shows the runtime of the different Plugins executed during
the DroidBox Analysis of the Top Free applications.

22com.aol.mobile.engadget, com.aportela.diets.view, com.bianor.ams,
com.bubblesoft.android.bubbleupnp, com.estrongs.android.safer, com.headcode.ourgroceries,
com.linkedin.android, com.mobilityflow.animatedweather.free, com.n7mobile.nplayer,
com.netqin.mobileguard, com.pompeiicity.funpic, com.scoompa.facechanger,
com.skout.android, com.tumblr, de.komoot.android, hr.podlanica, kik.android, laola.redbull,
mobi.lockscreen.magiclocker, tunein.player, tv.dailyme.android

6.2. DroidBox 69

Figure 6.8 shows the Plugin runtime. Due to the huge difference in the magnitudes,

which range from less than one minute to about 600 minutes, a logarithmic scale

was chosen for the time axis. As expected, most Plugins finish quick, the exception

is again the Monkey Plugin. Figure 6.9 shows the suspicious events over time during

the execution of the Monkey Plugin. It confirms that for the analysed applications

the very long runtime of the Monkey Plugin could be limited to about ten minutes

without losing relevant information. As expected more suspicious events are detected

with Internet access. Figure 6.10 shows the suspicious events per Plugin. Again the

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35

Su
sp

ic
io

u
s

Sc
o

re

Runtime (min)

Suspicious Score without Internet

Suspicious Score without Internet

Suspicious Score with Internet

Suspicious Score with Internet

Figure 6.9: This figure shows the suspicious events over time during the execution
of the Monkey Plugin on the Top Free applications.

Monkey Plugin triggered the most suspicious events. Compared to Figure 6.4 it

is noticeable that the LaunchApp Plugin and the SendBroadcasts Plugin triggered

much less suspicious events when executed on benign applications. This means

that benign applications do much less suspicious things without a user (or Monkey)

interaction.

The DroidBox Analysis is well suited to detect malware that leak sensitive in-

formation or produce costs for the user. The best results were achieved with In-

ternet access. This can easily be explained, without Internet access malware can

70 Chapter 6. Results

0

0

0

0

0

0

190

10

10

0 20 40 60 80 100 120 140 160 180 200

PluginDroidBox

PluginNetworkCapture

PluginInstallApplication

PluginLaunchApp

PluginKillApp

PluginSimulatePhoneCallSMS

PluginMonkey

PluginSendBroadcasts

PluginStartServices

Suspicious Score

Suspicious Score

Figure 6.10: This figure shows the suspicious events that occurred during the exe-
cution of the DroidBox Analysis, on the Top Free applications.

not contact their C&C servers. Furthermore, Internet access provides an easy way

to leak sensitive data. The DroidBox system provides accurate results, only the

“TAINT SMS” tag seems to be unreliable.

6.3 Tripwire

The Tripwire Analysis aims to detect applications that use root privileges, by

analysing file-system changes after the execution of the suspicious application. The

Analysis was executed on a Nexus One running Android 2.2. The smartphone was

attached to a Chromebook with Ubuntu, running the analysis framework. To see

if it makes a difference whether the smartphone is rooted or not, all samples were

executed three times one the Nexus One with different system configurations. One

system was non-rooted, one was rooted and one was rooted and had a modified

“su” binary. The non-rooted phone was created by deleting the “su” binary and

the “Superuser.apk”. The phone with the modified “su” binary grants root access

to everyone and creates a file that documents the use. At all runs, the device had

a SIM card inserted and was connected to the Internet. The next sections present

6.3. Tripwire 71

the initial and the final results.

6.3.1 Initial Results

Figure 6.11, 6.12 and 6.13 show the first outcomes of the Tripwire Analysis on

the rooted, modified rooted and unrooted phone respectively. These figures show

only the Malware families that are known to use privilege escalation techniques.

The results of all three runs are very similar, except for the GingerMaster and the

DroidKungFu{1, 2, 3, Sapp}Malware-families. The GingerMaster family shows sus-

picious behaviour only on the non-rooted phone. In contrast, the DroidKungFu{1,
2, 3} families show less suspicious behaviour on the non-rooted phone. The Droid-

KungFuSapp family did not show suspicious behaviour when executed on a phone

with a modified “su” binary. The detection rates are 12.77%, 11.72% and 8.06% on

the rooted, modified rooted and unrooted phone respectively.

1

2

1

15

10

13

23

2

3

7

120

9

1

25

17

285

1

4

8

1

0% 20% 40% 60% 80% 100%

Asroot

BaseBridge

Bgserv

DroidCoupon

DroidDeluxe

DroidDream

DroidKungFu1

DroidKungFu2

DroidKungFu3

DroidKungFuSapp

GingerMaster

zHash

Recognized by behaviour

Not recognized

Failed to install

Figure 6.11: The initial detection rate of the Tripwire Analysis on a rooted phone
with Internet access against the samples from the Malgenome project was 12.77%.

6.3.2 Improved Results

In order to improve the detection rate, the file-system changes from randomly se-

lected samples were analysed in detail. Furthermore, individual samples were ex-

ecuted again but this time stimulated by hand. This was done by using the User

Plugin instead of the Monkey Plugin. For example, one of the manual analysed

72 Chapter 6. Results

2

1

1

14

10

13

20

3

6

121

9

1

1

24

17

288

3

4

8

1

0% 20% 40% 60% 80% 100%

Asroot

BaseBridge

Bgserv

DroidCoupon

DroidDeluxe

DroidDream

DroidKungFu1

DroidKungFu2

DroidKungFu3

DroidKungFuSapp

GingerMaster

zHash

Recognized by behaviour

Not recognized

Failed to install

Figure 6.12: The initial detection rate of the Tripwire Analysis on a phone with
a modified su-binary and Internet access against the samples from the Malgenome
project was 11.72%.

1

1

15

2

16

2

4

3

7

122

9

1

32

30

292

1

8

1

0% 20% 40% 60% 80% 100%

Asroot

BaseBridge

Bgserv

DroidCoupon

DroidDeluxe

DroidDream

DroidKungFu1

DroidKungFu2

DroidKungFu3

DroidKungFuSapp

GingerMaster

zHash

Recognized by behaviour

Not recognized

Failed to install

Figure 6.13: The initial detection rate of the Tripwire Analysis on an unrooted
phone with Internet access against the samples from the Malgenome project was
8.06%.

applications23 a sample belonging to the DroidDeluxe family showed an interesting

behaviour. This sample changed the permission of specific files to world-readable

and world-writable. The affected files are shown in Listing 6.1. These files con-

tain sensitive information such as contacts, account information and messages. By

default, these files have the permission -rw-rw----, meaning that only the appli-

cation that owns the data can access them. After the execution of the application,

23SHA1: 8e2f43e46335b8a4ce68c920660def6e9c14c712.

6.3. Tripwire 73

/da t a/da t a/ com.andr o i d . pr ov i de r s . cont ac t s/da t aba s e s/ cont ac t s 2 . db
/da t a/da t a/ com.andr o i d . pr ov i de r s . s e t t i ng s/da t aba s e s/ s e t t i ng s . db
/da t a/da t a/ com.andr o i d . pr ov i de r s . t e l ephony/da t aba s e s/mms sms . db
/da t a/ sy s t em/ac count s . db .

Listing 6.1: Files with changed permissions (world readable & writable) after the
execution of a DroidDeluxe sample.

pa th=/da t a/ sy s t em/sha r ed pr e f s/ l og f i l e s . xml pe rmi s s i on changed f r om rw−−−−−−− t o←↩
−rw−rw−−−−

pa th=/da t a/ sy s t em/package s . xml pe rmi s s i ons changed f r om −rw−−−−−−− t o −rw−rw−r−−

Listing 6.2: False positive detected files

the permissions were changed to -rwxrwxrwx, which means everyone can access the

files. The contents were not modified. During the three automated runs this be-

haviour could not be observed, and even during the manual tests this behaviour

occurred very rare. Adding a rule that searches for files with changed permissions,

changed owner or changed group did not improve the detection results. The rule

finds “suspicious files” (see Listing 6.2), but these changes occur independently of

the analysed application and therefore lead to false positive results. Therefore, this

rule was deactivated, changes in critical system folders are anyway detected by a

different rule.

During the manual analysis of the changes, it was conspicuous that several applica-

tions contain root exploits but were not marked as suspicious. The reason for this

is, that the owner and the group of the files were the respective applications and the

files were stored in the applications folder. Without looking at the content it is not

possible to decide whether these files are suspicious or not. To detect these files as

well, the Tripwire Plugin was extended to create and maintain a list of suspicious

files, more precise of their fingerprints. The fingerprint of a file allows to find copies

of the file effectively. Every time a suspicious file is detected, the Tripwire Plugin

adds the fingerprint of the file to the list of suspicious files. If the same file is de-

tected in a future Analysis, it will be marked as suspicious even if it has no other

suspicious property.

Another attempt to improve the detection rate was to search for duplicated files.

74 Chapter 6. Results

pa th=/da t a/da t a/ com.gma i l . nagama t u . dr ocap/ f i l e s/ came r a c l i c k . og g , pe rmi s s i ons=−r←↩
w−rw−rw−, owner=app 54 , g r oup=app 54

copy o f : pa th=/sy s t em/med i a/aud i o/u i / came r a c l i c k . og g , pe rmi s s i ons=−rw−r−−r−−, own←↩
er=r oo t , g r oup=r oo t , ha sh=8de b78656237403b094 f c4 f762836b f601 f53547

pa th=/da t a/da t a/ cmp.Loca l Se rv i c e/ f i l e s/DATA Pr e f e r enc e s , pe rmi s s i ons=−rw−rw−−−−, ←↩
owner=app 54 , g r oup=app 54

copy o f : pa th=/da t a/da t a/ com.goog l e . andr o i d . l oca t i on/ f i l e s/DATA Pr e f e r enc e s , pe rmi←↩
s s i ons=−rw−rw−−−−, owner=sy s t em, g r oup=sy s t em, ha sh=c66b f56ddabc2021b84d3a←↩
e2755d0ab05 f f 0 c99 e

pa th=/da t a/da t a/o r g . j i axxhah a . ne t r a f f i c/ sha r ed pr e f s/ ha s s e t de f au l t va l ue s . xml ,←↩
pe rmi s s i ons=−rw−rw−−−−, owner=app 54 , g r oup=app 54

copy o f : pa th=/da t a/da t a/ com.andr o i d . phone/ sha r ed pr e f s/ ha s s e t de f au l t va l ue s . xm←↩
l , pe rmi s s i ons=−rw−rw−−−−, owner=r ad i o , g r oup=r ad i o , ha sh=9d466 c28 c76 a77 c06←↩
f262152705 d01 e952 ea c811

pa th=/da t a/mi s c/b l ue t oo t h/dynami c aut o pa i r i n g . con f , pe rmi s s i ons=−rw−−−−−−−, owne←↩
r=sy s t em, g r oup=sy s t em

copy o f : suspe c t=0 , pa th=/sy s t em/e t c/b l ue t oo t h/aut o pa i r i n g . con f , pe rmi s s i ons=−rw−←↩
r−−−−−, owner=sy s t em, g r oup=sy s t em, ha sh=15298c f e e937dc6 eb71ba3536bd9c147b6d5←↩
aeb f

pa th=/da t a/da t a/ com.a l a n . s iwame i nv7/da t aba s e s/webv i ewCach e . db , pe rmi s s i ons=−rw−r←↩
w−−−−, owner=app 54 , g r oup=app 54 , ha sh=463a f814 f54 b5a f e990748d1 f37 c0627410dc←↩
e12

copy o f : suspe c t=0 , pa th=/da t a/da t a/ com.goog l e . andr o i d . gm/da t aba s e s/webv i ewCach e . d←↩
b , pe rmi s s i ons=−rw−rw−−−−, owner=app 50 , g r oup=app 50 , ha sh=463a f814 f54 b5a f←↩
e990748d1 f37 c0627410dc e12

pa th=/da t a/da t a/o r g . drhu .wa t e rdr op l e t f r e e/da t aba s e s/webv i ew.db , pe rmi s s i ons=−rw−r←↩
w−−−−, owner=app 54 , g r oup=app 54 , ha sh=3a5 f c8b4 f24ba8652096 a24954 f06229dc f3 e←↩
ded

copy o f : suspe c t=0 , pa th=/da t a/da t a/ com.andr o i d . vend i ng/da t aba s e s/webv i ew.db , pe rm←↩
i s s i ons=−rw−rw−−−−, owner=app 15 , g r oup=app 15 , ha sh=3a5 f c8b4 f24ba8652096←↩
a24954 f06229dc f3 eded

Listing 6.3: Examples of false positive detected files

The idea was to detect applications that copy system files or other sensitive files

from the system or other applications. Therefore, all added or changed files are

compared against the files, from the initial snapshot. This approach led to many

false positives. Some of the files that have led to false positives are shown in List-

ing 6.3. These findings are not useful for root malware detection, because these files

are even copied by benign applications without root access. It is even hard to tell

which files were copied, because some of the files just contain an XML definition

and an empty map or a basic database scheme. Nevertheless it could be interest-

ing to take a closer look at some of the findings. For example, many applications

copied databases from different applications. The last two findings in Listing 6.3 are

examples of copied databases. The “webviewCache.db” was copied from the Gmail

6.3. Tripwire 75

Cop i ed f i l e : suspe c t=3 , pa th=/da t a/da t a/ c n . bud i n g . coupon/ f i l e s/busybox , pe rmi s s i o←↩
ns=−rwx rwxrwx , owner=r oo t , g r oup=app 54

copy o f : suspe c t=0 , pa th=/sy s t em/xb i n/e cho , pe rmi s s i ons= l rwx rwxrwx , owner=r oo t , g r←↩
oup=r oo t , ha sh=f57 c5db795d f b323 c157bad2517199 f f e3 c9 f135

Cop i ed f i l e : suspe c t=3 , pa th=/da t a/da t a/ c n . bud i n g . coupon/ f i l e s/busybox , pe rmi s s i o←↩
ns=−rwx rwxrwx , owner=r oo t , g r oup=app 18

copy o f : suspe c t=0 , pa th=/sy s t em/xb i n/mkswap , pe rmi s s i ons= l rwx rwxrwx , owner=r oo t , ←↩
g r oup=r oo t , ha sh=f57 c5db795d f b323 c157bad2517199 f f e3 c9 f135

Cop i ed f i l e : suspe c t=3 , pa th=/da t a/da t a/ com. i gamepowe r . appma s t e r/ f i l e s/ s h , pe rmi s←↩
s i ons=−rws−−x−−x , owner=r oo t , g r oup=r oo t

copy o f : suspe c t=0 , pa th=/sy s t em/b i n/ s h , pe rmi s s i ons=−rwxr−xr−x , owner=r oo t , g r ou←↩
p=she l l , ha sh=dd954 c535 f9 a5851 f028151 f baab30495545 c8 a5

Listing 6.4: Examples of files detected by searching for duplicated files.

application, the “webview.db” database was copied from the Google Play Store ap-

plication. These and other databases could potentially contain sensitive data [92].

For lack of time, these findings were not analysed.

After filtering the approach yields interesting results. Some examples are shown in

Listing 6.4. Most of the findings of the improved rules were already detected by a dif-

ferent rule. Therefore, the detection rate improved only slightly. Figures 6.14, 6.15

and 6.16 show the improved detection results. The improved detection rates are

15.9%, 14.8% and 11.4% on the rooted, modified rooted and unrooted phone re-

spectively. Compared to the initial results the detection rate for the Asroot, Droid-

Dream, DroidKungFu1, DroidKungFu2 and DroidKungFu3 family improved. As

before the rooted phone yields to the best detection results. In contrast to the ini-

tial results, the legend differentiates now between three different recognition types.

Green marks apps that are recognised by behaviour. Dark green marks apps that

show no suspicious behaviour but contain at least one file that is blacklisted. Light

green marks apps that show suspicious behaviour and contain at least one black-

listed file. Figure 6.17 shows the runtime of the distinct Plugins. Because of the

huge runtime differences the time-axis is scaled logarithm. The average runtime

of all Plugins is below ten minutes. The Tripwire Plugin and the Monkey Plugin

have a long maximal runtime. This is caused by adb connection problems that

sometimes occur after a device reboot. The Tripwire Plugin needs a reboot into

recovery mode to work, and the Monkey Plugin restarts the phone to trigger possi-

76 Chapter 6. Results

1

2

1

15

10

13

23

2

3

2

7

6

2

5

120

9

1

18

11

283

1

4

8

1

0% 20% 40% 60% 80% 100%

Asroot

BaseBridge

Bgserv

DroidCoupon

DroidDeluxe

DroidDream

DroidKungFu1

DroidKungFu2

DroidKungFu3

DroidKungFuSapp

GingerMaster

zHash

Recognized by behaviour &
fingerprint

Recognized by behaviour

Recognized by fingerprint

Not recognized

Failed to install

Figure 6.14: The improved detection rate of the Tripwire Analysis on a rooted phone
with Internet access against the samples from the Malgenome project was 15.9%.

2

1

1

14

10

13

20

3

2

1

7

5

2

4

121

9

1

17

12

286

3

4

8

1

0% 20% 40% 60% 80% 100%

Asroot

BaseBridge

Bgserv

DroidCoupon

DroidDeluxe

DroidDream

DroidKungFu1

DroidKungFu2

DroidKungFu3

DroidKungFuSapp

GingerMaster

zHash

Recognized by behaviour &
fingerprint

Recognized by behaviour

Recognized by fingerprint

Not recognized

Failed to install

Figure 6.15: The improved detection rate of the Tripwire Analysis on a phone with
a modified su-binary and Internet access against the samples from the Malgenome
project was 14.8%.

ble BOOT COMPLETED24 broadcast receivers. The framework tries to reconnect,

but from time to time a manual intervention is necessary (physically reconnect the

phone or restart it). Figure 6.18 shows the runtime of the analysed applications.

This figure shows that it took on average about thirteen minutes to analyse an ap-

plication. The figure moreover shows that only during a few Analyses connection

problems occurred that increased the Analysis time. The time-axis is cut at 50

minutes to increase clarity. The maximal runtime was over 5.5 hours (335 minutes).

24“android.intent.action.BOOT COMPLETED”

6.3. Tripwire 77

1

1

15

2

16

2

4

3

2

1

7

6

2

5

122

9

1

25

24

289

1

8

1

0% 20% 40% 60% 80% 100%

Asroot

BaseBridge

Bgserv

DroidCoupon

DroidDeluxe

DroidDream

DroidKungFu1

DroidKungFu2

DroidKungFu3

DroidKungFuSapp

GingerMaster

zHash

Recognized by behaviour &
fingerprint

Recognized by behaviour

Recognized by fingerprint

Not recognized

Failed to install

Figure 6.16: The improved detection rate of the Tripwire Analysis on an unrooted
phone with Internet access against the samples from the Malgenome project was
11.4%.

0,001 0,01 0,1 1 10 100 1000

PluginTripwire

PluginInstallApplication

PluginLaunchApp

PluginKillApp

PluginSimulatePhoneCallSMS

PluginMonkey

PluginSendBroadcasts

PluginStartServices

Runtime (min)

Minimal Runtime

Average Runtime

Maximal Runtime

Figure 6.17: Runtime of Plugins executed during the Tripwire Analysis.

Figure 6.19 shows the suspicious score of all analysed applications. It shows that

many analysed applications did not show a suspicious behaviour during the analysis.

About half of the as suspicious marked applications have a low suspicious score of

one or two and only a few applications behaved really suspicious.

78 Chapter 6. Results

0

5

10

15

20

25

30

35

40

45

50

1

1
9

3
7

5
5

7
3

9
1

1
0

9

1
2

7

1
4

5

1
6

3

1
8

1

1
9

9

2
1

7

2
3

5

2
5

3

2
7

1

2
8

9

3
0

7

3
2

5

3
4

3

3
6

1

3
7

9

3
9

7

4
1

5

4
3

3

4
5

1

4
6

9

4
8

7

5
0

5

5
2

3

5
4

1

A
n

al
ys

is
 T

im
e

 (
m

in
)

App

Application Analysis Time

Figure 6.18: Application analysis time with Tripwire Analysis.

0

5

10

15

20

25

30

1

1
7

3
3

4
9

6
5

8
1

9
7

1
1

3

1
2

9

1
4

5

1
6

1

1
7

7

1
9

3

2
0

9

2
2

5

2
4

1

2
5

7

2
7

3

2
8

9

3
0

5

3
2

1

3
3

7

3
5

3

3
6

9

3
8

5

4
0

1

4
1

7

4
3

3

4
4

9

4
6

5

4
8

1

4
9

7

5
1

3

5
2

9

5
4

5

Su
sp

ic
io

u
s

Sc
o

re

App

Suspicious Score

Figure 6.19: The calculated suspicious score of the analysed applications.

6.3. Tripwire 79

6.3.3 Non-Root Malware

The Tripwire Analysis was also used to analyse the remaining samples of the

Malgenome project. On the one hand these samples can be used to evaluate the

false positive rate, on the other hand for some families the literature is conflicting

whether they use root exploits or not. This time the phone with the modified

su binary has the highest detection rate, namely 6.0%, followed by the rooted

phone with 5.1%, and the non-rooted phone reaches 0.14%. The run on the phone

with the modified su binary has detected every sample that was detected by the

two other runs. Therefore, the results will be discussed based on these findings.

Figure 6.20 shows the detection rate. As expected, most families were not detected,

because they do not use root exploits. The DroidDreamLight sample was marked

as suspicious because it copied the APK of the NoLock application. This sample

is a repacked version of an application backup program. Therefore, this sample

can be seen as a false positive. Listing 6.5 shows the as suspicious marked files of

a sample of the DroidKungFu4 family. This sample added and replaced system

binaries, which makes it suspicious. The other suspicious marked samples of the

DroidKungFu4 family show a similar behaviour. The two as suspicious marked

samples of the Geinimi family and the 15 as suspicious marked samples of the

jSMSHider family were marked as suspicious because they executed the modified

su binary. As the system was not modified, these findings are probably false

positives caused by the root usage of the benign part of the applications.

The Tripwire Analysis is suited to detect malware that use root exploits. The

best results were achieved with the rooted phone. Besides the general drawback of

dynamic analysis techniques, it seems that this Analysis is hampered the most by

files “hidden” in the assets or res folder of the APK. While this drawback is only

an issue when the malicious code is not executed, it could be fixed by using a static

pre-check. This static pre-check could extract the contents of the APK and match

it e.g. against the blacklist. A big advantage of this Analysis is that a physical

device is used, which makes it very hard for malware to detect that it is analysed.

This feature could be further improved if only the User Plugin is used. Also using

the recovery mode for information collection seems to be a good approach. So far

80 Chapter 6. Results

added f i l e : suspe c t=2 , pa th=/sdca r d/ r oo t . t x t , mod i f i ed=Fr i Jan 04 03 : 50 : 28 CET ←↩
2013 , s i z e=91 , pe rmi s s i ons=−rwx rwxrwx , owner=r oo t , g r oup=r oo t , ha sh=800b31526←↩
c eb57b9e6 f280 ebd46 f495 d7462a2a2

added f i l e : suspe c t=2 , pa th=/sy s t em/b i n/dhcpcdd , mod i f i ed=Fr i Jan 04 02 : 47 : 17 CET ←↩
2013 , s i z e=44540 , pe rmi s s i ons=−rwxr−xr−x , owner=r oo t , g r oup=she l l , ha sh=819b←↩
b001b402 f8 e e c0 e8ae87 f69 c50012ab985d6

added f i l e : suspe c t=2 , pa th=/sy s t em/b i n/ i ns t a l l dd , mod i f i ed=Fr i Jan 04 02 : 47 : 18 CE←↩
T 2013 , s i z e=18176 , pe rmi s s i ons=−rwxr−xr−x , owner=r oo t , g r oup=she l l , ha sh=e4b←↩
c e349349 e f9 bc f6 f daa67731540 f83 e e61aaa

added f i l e : suspe c t=2 , pa th=/sy s t em/e t c / . dhcpc d , mod i f i ed=Fr i Jan 04 02 : 47 : 10 CET ←↩
2013 , s i z e=18316 , pe rmi s s i ons=−rw−rw−rw−, owner=r oo t , g r oup=r oo t , ha sh=5c7←↩
b198241 c97179 f20 e00 b966548 f86 d6c7d3 f2

added f i l e : suspe c t=2 , pa th=/sy s t em/e t c / . r i l d c f g , mod i f i ed=Fr i Jan 04 02 : 47 : 12 CE←↩
T 2013 , s i z e=44 , pe rmi s s i ons=−rw−rw−rw−, owner=r oo t , g r oup=r oo t , ha sh=00794 f f←↩
d f6 c6174147 f87 b06 e1 c93190131567b f

added f i l e : suspe c t=2 , pa th=/sy s t em/xb i n/c c b , mod i f i ed=Fr i Jan 04 02 : 47 : 11 CET ←↩
2013 , s i z e=18316 , pe rmi s s i ons=−rwsr−xr−x , owner=r oo t , g r oup=r oo t , ha sh=5c7←↩
b198241 c97179 f20 e00 b966548 f86 d6c7d3 f2

changed f i l e wa s : suspe c t=1 , pa th=/sy s t em/b i n/dhcpc d , mod i f i ed=Sun De c 23 16 : 43 : 23←↩
CET 2012 , s i z e=44540 , pe rmi s s i ons=−rwxr−xr−x , owner=r oo t , g r oup=she l l , ha s←↩

h=819bb001b402 f8 e e c0 e8ae87 f69 c50012ab985d6
changed f i l e i s : suspe c t=2 , pa th=/sy s t em/b i n/dhcpc d , mod i f i ed=Fr i Jan 04 02 : 47 : 17←↩

CET 2013 , s i z e=18316 , pe rmi s s i ons=−rwxr−xr−x , owner=r oo t , g r oup=she l l , ha s←↩
h=5c7 b198241 c97179 f20 e00 b966548 f86 d6c7d3 f2

changed f i l e wa s : suspe c t=1 , pa th=/sy s t em/b i n/ i ns t a l l d , mod i f i ed=Sun De c 23 ←↩
16 : 43 : 23 CET 2012 , s i z e=18176 , pe rmi s s i ons=−rwxr−xr−x , owner=r oo t , g r oup=she l←↩
l , ha sh=e4bc e349349 e f9 bc f6 f daa67731540 f83 e e61aaa

changed f i l e i s : suspe c t=2 , pa th=/sy s t em/b i n/ i ns t a l l d , mod i f i ed=Fr i Jan 04 ←↩
02 : 47 : 18 CET 2013 , s i z e=18316 , pe rmi s s i ons=−rwxr−xr−x , owner=r oo t , g r oup=she l←↩
l , ha sh=5c7 b198241 c97179 f20 e00 b966548 f86 d6c7d3 f2

Listing 6.5: DroidKungFu4, True positive detected files

no malware is known that can hide itself in the recovery mode.

6.3. Tripwire 81

25

1

15

1

1

22
187

8
1
2
1
45

71
1
1
1
6
1
68
1

47
9
6
4
1

1
7

45
1
1
2

58
11
2
9
1

10
1
2
1

22
1

12

0% 20% 40% 60% 80% 100%

ADRD
AnserverBot

BeanBot
CoinPirate
CruseWin
DogWars

DroidDreamLight
DroidKungFu4

DroidKungFuUpdate
Endofday

FakeNetflix
FakePlayer

GamblerSMS
Geinimi

GGTracker
GoldDream

Gone60
GPSSMSSpy

HippoSMS
Jifake

jSMSHider
KMin
Kmin

LoveTrap
NickyBot
NickySpy

Pjapps
Plankton

RogueLemon
RogueSPPush

SMSReplicator
SndApps

Spitmo
Tapsnake

Walkinwat
YZHC

Zitmo
Zsone

Recognized by behaviour &
fingerprint

Recognized by behaviour

Recognized by fingerprint

Not recognized

Failed to install

Figure 6.20: The detection rate of the Tripwire Analysis on a phone with a modified
su-binary and Internet access against the “non-root” samples from the Malgenome
project was 6.03%.

Chapter 7

Conclusion and Outlook

Android is the most prevalent mobile operating system. The popularity and the

presence of sensitive data make it a lucrative target for malware authors.

This work presents a malware-detection framework for Android applications. The

functionality of the framework can be extended by Plugins. The framework allows to

create easily different Analyses. It provides methods that manage the communica-

tion with the Android device, which allows to control it or e.g. get the logcat output.

To demonstrate the functions and the flexibility of the framework two Analyses and

ten Plugins were developed. One Analysis is based on Tripwire. It compares a

snapshot of the file system that is created prior the execution of the to be analysed

application with a snapshot that is created after the execution and tries to find

signs of root usage. This Analysis aims to detect malware that uses root exploits

or achieved root privileges through other ways. The second Analysis is based on

the DroidBox sandbox [19, 20]. This Analysis tries to detect malicious applications

that leak sensitive data or produce costs for the user by sending short messages or

starting phone calls.

The 1260 malware samples of the Malgenome project were analyst with these two

Analyses. 510 from the 1260 samples were detected which leads to a detection rate

of 39.8%. The detection rate can be explained by the drawbacks of dynamic analysis

methods. Only one execution path is evaluated, which means if for some reason the

malicious code is not executed the dynamic methods will not examine it. There can

be several reasons why the malicious code is not executed. For example, during the

83

84 Chapter 7. Conclusion and Outlook

analysis several malware samples were found that tried to connect to a C&C server

which was not available anymore and, therefore, the applications did nothing mali-

cious. Another reason could be that the malware detected that it was analysed or

executed in an emulator. Static analysis can help to detect such malware samples.

Bergler [18] is currently working on Analyses and Plugins that use static analyses

techniques. When these Analyses are finished and the results are merged with the

results of the dynamic analyses the detection rate should improve.

We think combining static and dynamic analysis techniques is the best way to im-

prove the detection rate. However, the detection rate can also be increased by

improving the dynamic analyses. One way to improve the results of dynamic anal-

yses could be to analyse the contents of the added and modified files. The Tripwire

Plugin can copy these files to the host machine, what misses is a Plugin that evalu-

ates the contents. Other problems of the dynamic analyses like the adb connection

problem can probably be solved by using a newer Android version. Tripwire should

work on newer Android versions, as long as a recovery mode is available that sup-

ports adb connections and some basic shell commands. The DroidBox Plugin should

also work with newer Android versions, because in the meantime a new DroidBox

image was released which supports Android 4.1.1. However, both dynamic Anal-

yses could be sped up by restricting the execution time of the Monkey Plugin to

about 10 minutes. The results showed that this can be done without losing relevant

information.

Appendix A

Acronyms

adb Android Debug Bridge

AOSP Android Open Source Project

API Application Programming Interface

APK Application Package File

AVD Android Virtual Device

C&C Command & Control

IMEI International Mobile Equipment Identity

IMSI International Mobile Subscriber Identity

IPC Interprocess Communication

JNI Java Native Interface

PC Personal Computer

JSON JavaScript Object Notation

SMS Short Message Service

SVM Support Vector Machine

85

86 Chapter A. Acronyms

UID user identifier

VM virtual machine

BIBLIOGRAPHY 87

Bibliography

[1] Android. Android. http://www.android.com/about/, 2012. Accessed:

08.11.2012.

[2] Android Developers. https://plus.google.com/+AndroidDevelopers/

posts/jHLD6HTfx9U, 2012. Accessed: 08.11.2012.

[3] Jon Fingas. Android tops 81 percent of smartphone market share in

Q3. http://www.engadget.com/2013/10/31/strategy-analytics-q3-2013-

phone-share/, 2013. Accessed: 08.01.2014.

[4] Android Developers. Android, the world’s most popular mobile platform. http:

//developer.android.com/about/index.html, 2012. Accessed: 13.11.2012.

[5] Android. Android Security Overview. http://source.android.com/tech/

security/, 2012. Accessed: 13.11.2012.

[6] Android Developers. Platform Versions. http://developer.android.com/

about/dashboards/index.html, 2012. Accessed: 13.11.2012.

[7] Emil Protalinski. New Android malware infects 100,000 Chinese smart-

phones. http://www.zdnet.com/new-android-malware-infects-100000-

chinese-smartphones-7000000497/, 2012. Accessed: 7.11.2012.

[8] Rick Merritt. More than a third of Android apps host mal-

ware. http://cdn.eetimes.com/electronics-news/4391305/More-than-a-

third-of-Android-apps-host-malware, 2012. Accessed: 7.1.2013.

[9] Hans Jörg Maron. Trend Micro warnt vor Android-Malware-Flut . http:

//www.inside-it.ch/articles/29457, 2012. Accessed: 7.11.2012.

[10] Emil Protalinski. Android malware numbers explode to 25,000 in

June 2012. http://www.zdnet.com/android-malware-numbers-explode-to-

25000-in-june-2012-7000001046/, 2012. Accessed: 7.11.2012.

http://www.android.com/about/
https://plus.google.com/+AndroidDevelopers/posts/jHLD6HTfx9U
https://plus.google.com/+AndroidDevelopers/posts/jHLD6HTfx9U
http://www.engadget.com/2013/10/31/strategy-analytics-q3-2013-phone-share/
http://www.engadget.com/2013/10/31/strategy-analytics-q3-2013-phone-share/
http://developer.android.com/about/index.html
http://developer.android.com/about/index.html
http://source.android.com/tech/security/
http://source.android.com/tech/security/
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
http://www.zdnet.com/new-android-malware-infects-100000-chinese-smartphones-7000000497/
http://www.zdnet.com/new-android-malware-infects-100000-chinese-smartphones-7000000497/
http://cdn.eetimes.com/electronics-news/4391305/More-than-a-third-of-Android-apps-host-malware
http://cdn.eetimes.com/electronics-news/4391305/More-than-a-third-of-Android-apps-host-malware
http://www.inside-it.ch/articles/29457
http://www.inside-it.ch/articles/29457
http://www.zdnet.com/android-malware-numbers-explode-to-25000-in-june-2012-7000001046/
http://www.zdnet.com/android-malware-numbers-explode-to-25000-in-june-2012-7000001046/

88

[11] Ted Samson. Slow patching puts Android users at further risk.

http://www.infoworld.com/t/mobile-security/slow-patching-puts-

android-users-further-risk-198668, 2012.

[12] Dan Rampe. Android Malware Increased by 3,325% Last Year.

http://www.threatmetrix.com/fraudsandends/uncategorized/android-

malware-increased-by-3325-last-year/, 2012.

[13] Rowena Diocton. Android Malware: How Worried Should You

Be? http://blog.trendmicro.com/trendlabs-security-intelligence/

android-malware-how-worried-should-you-be/, 2012.

[14] Jürgen Schmidt and Achim Barczok. FAQ: Android und Sicher-

heit. http://www.heise.de/ct/hotline/FAQ-Android-und-Sicherheit-

1647138.html, 2012.

[15] Kaspersky Lab Global Research and Analysis Team. Kaspersky Security Bul-

letin 2013. 2013. URL http://media.kaspersky.com/pdf/KSB 2013 EN.pdf.

[16] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization

and evolution. In Proceedings of the 2012 IEEE Symposium on Security and

Privacy, SP ’12, pages 95–109, Washington, DC, USA, 2012. IEEE Computer

Society. ISBN 978-0-7695-4681-0. doi: 10.1109/SP.2012.16. URL http://

dx.doi.org/10.1109/SP.2012.16.

[17] Mahinthan Chandramohan and Hee Beng Kuan Tan. Detection of Mobile

Malware in the Wild. Computer, pages 1–14, 2012. ISSN 0018-9162. doi:

10.1109/MC.2012.36. URL http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=6133256.

[18] Bernd Bergler. Android malware detection framework based on static analysis.

Master’s thesis, Graz, Technical University, 2014.

[19] Patrik Lantz. DroidBox. http://code.google.com/p/droidbox/, 2011.

[20] Patrik Lantz. An Android Application Sandbox for Dynamic Analysis. 2011.

http://www.infoworld.com/t/mobile-security/slow-patching-puts-android-users-further-risk-198668
http://www.infoworld.com/t/mobile-security/slow-patching-puts-android-users-further-risk-198668
http://www.threatmetrix.com/fraudsandends/uncategorized/android-malware-increased-by-3325-last-year/
http://www.threatmetrix.com/fraudsandends/uncategorized/android-malware-increased-by-3325-last-year/
http://blog.trendmicro.com/trendlabs-security-intelligence/android-malware-how-worried-should-you-be/
http://blog.trendmicro.com/trendlabs-security-intelligence/android-malware-how-worried-should-you-be/
http://www.heise.de/ct/hotline/FAQ-Android-und-Sicherheit-1647138.html
http://www.heise.de/ct/hotline/FAQ-Android-und-Sicherheit-1647138.html
http://media.kaspersky.com/pdf/KSB_2013_EN.pdf
http://dx.doi.org/10.1109/SP.2012.16
http://dx.doi.org/10.1109/SP.2012.16
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6133256
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6133256
http://code.google.com/p/droidbox/

BIBLIOGRAPHY 89

[21] GH Kim. The design and implementation of tripwire: A file system integrity

checker. Proceedings of the 2nd ACM Conference on, 1994. URL http://

dl.acm.org/citation.cfm?id=191183.

[22] Ben Elgin. Google Buys Android for Its Mobile Arsenal. http:

//www.businessweek.com/stories/2005-08-16/google-buys-android-

for-its-mobile-arsenal, 2005.

[23] AVG PR. AVG unveils globalCommunity Powered Threat Report -

Q3-2011. http://now.avg.com/avg-unveils-globalcommunity-powered-

threat-report-q3-2011/, 2011. Accessed: 02.03.2012.

[24] Mattias via XDIN Android Blog. The Android boot process from power

on. http://www.androidenea.com/2009/06/android-boot-process-from-

power-on.html. Accessed: 02.08.2013.

[25] Florian Schmidt. Bootprozess. http://www.droidwiki.de/Bootprozess, 2013.

Accessed: 02.08.2013.

[26] Ali Waqas. Bootloader. http://www.addictivetips.com/mobile/what-

is-bootloader-and-how-to-unlock-bootloader-on-android-phones-

complete-guide/, 2010. Accessed: 02.08.2013.

[27] Oracle and/or its affiliates. jarsigner. http://docs.oracle.com/javase/7/

docs/technotes/tools/windows/jarsigner.html. Accessed: 02.08.2013.

[28] Android Developers. Application Fundamentals. http://

developer.android.com/guide/components/fundamentals.html, 2012.

Accessed: 13.11.2012.

[29] Android Developers. Services. http://developer.android.com/guide/

components/services.html, 2012. Accessed: 13.11.2012.

[30] Android Developers. Content Providers. http://developer.android.com/

guide/topics/providers/content-providers.html, 2012. Accessed:

13.11.2012.

http://dl.acm.org/citation.cfm?id=191183
http://dl.acm.org/citation.cfm?id=191183
http://www.businessweek.com/stories/2005-08-16/google-buys-android-for-its-mobile-arsenal
http://www.businessweek.com/stories/2005-08-16/google-buys-android-for-its-mobile-arsenal
http://www.businessweek.com/stories/2005-08-16/google-buys-android-for-its-mobile-arsenal
http://now.avg.com/avg-unveils-globalcommunity-powered-threat-report-q3-2011/
http://now.avg.com/avg-unveils-globalcommunity-powered-threat-report-q3-2011/
http://www.androidenea.com/2009/06/android-boot-process-from-power-on.html
http://www.androidenea.com/2009/06/android-boot-process-from-power-on.html
http://www.droidwiki.de/Bootprozess
http://www.addictivetips.com/mobile/what-is-bootloader-and-how-to-unlock-bootloader-on-android-phones-complete-guide/
http://www.addictivetips.com/mobile/what-is-bootloader-and-how-to-unlock-bootloader-on-android-phones-complete-guide/
http://www.addictivetips.com/mobile/what-is-bootloader-and-how-to-unlock-bootloader-on-android-phones-complete-guide/
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/topics/providers/content-providers.html

90

[31] Android Developers. Activities. http://developer.android.com/guide/

components/activities.html, 2012. Accessed: 13.11.2012.

[32] Android Developers. Intents and Intent Filters. http://

developer.android.com/guide/components/intents-filters.html, 2013.

Accessed: 02.08.2013.

[33] Android Developers. Android Permissions. http://developer.android.com/

reference/android/Manifest.permission.html, 2012. Accessed: 13.11.2012.

[34] Android. Android Security Overview. http://source.android.com/devices/

tech/security/#the-android-permission-model-accessing-protected-

apis, 2013. Accessed: 02.08.2013.

[35] Clemens Orthacker, Peter Teufl, Stefan Kraxberger, Günther Lackner, Michael

Gissing, Alexander Marsalek, Johannes Leibetseder, and Oliver Prevenhueber.

Android Security Permissions - Can We Trust Them? In Security and Pri-

vacy in Mobile Information and Communication Systems, volume 94 of Lecture

Notes of the Institute for Computer Sciences, Social Informatics and Telecom-

munications Engineering, pages 40–51. Springer Berlin Heidelberg, 2012. URL

http://dx.doi.org/10.1007/978-3-642-30244-2 4.

[36] Hiroshi Lockheimer. Android and Security. http://

googlemobile.blogspot.co.at/2012/02/android-and-security.html,

2012.

[37] Jon Oberheide. Dissecting Android’s Bouncer. https://

blog.duosecurity.com/2012/06/dissecting-androids-bouncer/, 2012.

[38] Rich Cannings. Exercising Our Remote Application Removal Fea-

ture. http://android-developers.blogspot.co.at/2010/06/exercising-

our-remote-application.html, 2010.

[39] Fahmida Y. Rashid. Android’s Biggest Security Threat: OS Frag-

mentation. http://securitywatch.pcmag.com/android/308966-android-s-

biggest-security-threat-os-fragmentation. Accessed: 08.04.2013.

http://developer.android.com/guide/components/activities.html
http://developer.android.com/guide/components/activities.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://source.android.com/devices/tech/security/#the-android-permission-model-accessing-protected-apis
http://source.android.com/devices/tech/security/#the-android-permission-model-accessing-protected-apis
http://source.android.com/devices/tech/security/#the-android-permission-model-accessing-protected-apis
http://dx.doi.org/10.1007/978-3-642-30244-2_4
http://googlemobile.blogspot.co.at/2012/02/android-and-security.html
http://googlemobile.blogspot.co.at/2012/02/android-and-security.html
https://blog.duosecurity.com/2012/06/dissecting-androids-bouncer/
https://blog.duosecurity.com/2012/06/dissecting-androids-bouncer/
http://android-developers.blogspot.co.at/2010/06/exercising-our-remote-application.html
http://android-developers.blogspot.co.at/2010/06/exercising-our-remote-application.html
http://securitywatch.pcmag.com/android/308966-android-s-biggest-security-threat-os-fragmentation
http://securitywatch.pcmag.com/android/308966-android-s-biggest-security-threat-os-fragmentation

BIBLIOGRAPHY 91

[40] Jamie Lendino. Why Android Fragmentation Is Still a Problem. http://

www.pcmag.com/article2/0,2817,2406991,00.asp, 2012. Accessed: 08.11.2012.

[41] Michael Grace, Yajin Zhou, Zhi Wang, Xuxian Jiang, and Oval Drive. Sys-

tematic Detection of Capability Leaks in Stock Android Smartphones. North,

2012. URL http://handysmarkt.com/gehen/http://www.csc.ncsu.edu/

faculty/jiang/pubs/NDSS12 WOODPECKER.pdf.

[42] Artem Russakovskii. Massive Security Vulnerability In HTC Android Devices

(EVO 3D, 4G, Thunderbolt, Others) Exposes Phone Numbers, GPS, SMS,

Emails Addresses, Much More. http://www.androidpolice.com/2011/10/

01/massive-security-vulnerability-in-htc-android-devices-evo-

3d-4g-thunderbolt-others-exposes-phone-numbers-gps-sms-emails-

addresses-much-more/, 2011.

[43] AP Felt, Matthew Finifter, Erika Chin, and Steven Hanna. A survey of mobile

malware in the wild. smartphones and mobile, 2011. URL http://dl.acm.org/

citation.cfm?id=2046618.

[44] Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static

analysis for malware detection. In ACSAC, pages 421–430. IEEE Com-

puter Society, 2007. URL http://dblp.uni-trier.de/db/conf/acsac/

acsac2007.html#MoserKK07.

[45] V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities

in java applications with static analysis. In Proceedings of the 14th Confer-

ence on USENIX Security Symposium - Volume 14, SSYM’05, pages 18–18,

Berkeley, CA, USA, 2005. USENIX Association. URL http://dl.acm.org/

citation.cfm?id=1251398.1251416.

[46] N. Ayewah, D. Hovemeyer, J.D. Morgenthaler, J. Penix, and William Pugh.

Using static analysis to find bugs. Software, IEEE, 25(5):22–29, Sept 2008.

ISSN 0740-7459. doi: 10.1109/MS.2008.130.

[47] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem,

Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few

http://www.pcmag.com/article2/0,2817,2406991,00.asp
http://www.pcmag.com/article2/0,2817,2406991,00.asp
http://handysmarkt.com/gehen/http://www.csc.ncsu.edu/faculty/jiang/pubs/NDSS12_WOODPECKER.pdf
http://handysmarkt.com/gehen/http://www.csc.ncsu.edu/faculty/jiang/pubs/NDSS12_WOODPECKER.pdf
http://www.androidpolice.com/2011/10/01/massive-security-vulnerability-in-htc-android-devices-evo-3d-4g-thunderbolt-others-exposes-phone-numbers-gps-sms-emails-addresses-much-more/
http://www.androidpolice.com/2011/10/01/massive-security-vulnerability-in-htc-android-devices-evo-3d-4g-thunderbolt-others-exposes-phone-numbers-gps-sms-emails-addresses-much-more/
http://www.androidpolice.com/2011/10/01/massive-security-vulnerability-in-htc-android-devices-evo-3d-4g-thunderbolt-others-exposes-phone-numbers-gps-sms-emails-addresses-much-more/
http://www.androidpolice.com/2011/10/01/massive-security-vulnerability-in-htc-android-devices-evo-3d-4g-thunderbolt-others-exposes-phone-numbers-gps-sms-emails-addresses-much-more/
http://dl.acm.org/citation.cfm?id=2046618
http://dl.acm.org/citation.cfm?id=2046618
http://dblp.uni-trier.de/db/conf/acsac/acsac2007.html#MoserKK07
http://dblp.uni-trier.de/db/conf/acsac/acsac2007.html#MoserKK07
http://dl.acm.org/citation.cfm?id=1251398.1251416
http://dl.acm.org/citation.cfm?id=1251398.1251416

92

billion lines of code later: Using static analysis to find bugs in the real world.

Commun. ACM, 53(2):66–75, February 2010. ISSN 0001-0782. doi: 10.1145/

1646353.1646374. URL http://doi.acm.org/10.1145/1646353.1646374.

[48] P. Louridas. Static code analysis. Software, IEEE, 23(4):58–61, July 2006.

ISSN 0740-7459. doi: 10.1109/MS.2006.114.

[49] C. Artho and A Biere. Applying static analysis to large-scale, multi-threaded

java programs. In Software Engineering Conference, 2001. Proceedings. 2001

Australian, pages 68–75, 2001. doi: 10.1109/ASWEC.2001.948499.

[50] A-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O. Kiraz, K.A Yuksel, S.A

Camtepe, and S. Albayrak. Static analysis of executables for collaborative

malware detection on android. In Communications, 2009. ICC ’09. IEEE Inter-

national Conference on, pages 1–5, June 2009. doi: 10.1109/ICC.2009.5199486.

[51] Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monperrus. Dex-

pler: Converting android dalvik bytecode to jimple for static analysis with soot.

In Proceedings of the ACM SIGPLAN International Workshop on State of the

Art in Java Program Analysis, SOAP ’12, pages 27–38, New York, NY, USA,

2012. ACM. ISBN 978-1-4503-1490-9. doi: 10.1145/2259051.2259056. URL

http://doi.acm.org/10.1145/2259051.2259056.

[52] A Shabtai, Y. Fledel, and Y. Elovici. Automated static code analysis for clas-

sifying android applications using machine learning. In Computational Intel-

ligence and Security (CIS), 2010 International Conference on, pages 329–333,

Dec 2010. doi: 10.1109/CIS.2010.77.

[53] Étienne Payet and Fausto Spoto. Static analysis of android programs. In-

formation and Software Technology, 54(11):1192 – 1201, 2012. ISSN 0950-

5849. doi: http://dx.doi.org/10.1016/j.infsof.2012.05.003. URL http://

www.sciencedirect.com/science/article/pii/S0950584912001012.

[54] T. Bläsing, L. Batyuk, A.-D. Schmidt, S.A. Camtepe, and S. Albayrak. An

Android Application Sandbox System for Suspicious Software Detection. Tech-

http://doi.acm.org/10.1145/1646353.1646374
http://doi.acm.org/10.1145/2259051.2259056
http://www.sciencedirect.com/science/article/pii/S0950584912001012
http://www.sciencedirect.com/science/article/pii/S0950584912001012

BIBLIOGRAPHY 93

niques, pages 55–62, 2010. doi: 10.1109/. URL http://ieeexplore.ieee.org/

xpls/abs all.jsp?arnumber=5665792.

[55] Golam Sarwar, Olivier Mehani, Roksana Boreli, and Mohamed Ali Kaa-

far. On the effectiveness of dynamic taint analysis for protecting

against private information leaks on android-based devices. In Pierangela

Samarati, editor, SECRYPT, pages 461–468. SciTePress, 2013. ISBN

978-989-8565-73-0. URL http://dblp.uni-trier.de/db/conf/secrypt/

secrypt2013.html#SarwarMBK13.

[56] William Enck, Landon P Cox, Peter Gilbert, and Patrick Mcdaniel. Taint-

Droid : An Information-Flow Tracking System for Realtime Privacy Monitor-

ing on Smartphones. Design, pages 1–6, 2010. URL http://appanalysis.org/

tdroid10.pdf.

[57] Yinfeng Qiu. Bypassing Android Permissions: What You Need to

Know. http://blog.trendmicro.com/trendlabs-security-intelligence/

bypassing-android-permissions-what-you-need-to-know/, 2012.

[58] Yeongung Park, ChoongHyun Lee, Chanhee Lee, JiHyeog Lim, Sangchul

Han, Minkyu Park, and Seong-Je Cho. Rgbdroid: A novel response-

based approach to android privilege escalation attacks. In Pre-

sented as part of the 5th USENIX Workshop on Large-Scale Ex-

ploits and Emergent Threats, Berkeley, CA, 2012. USENIX. URL

https://www.usenix.org/conference/leet12/rgbdroid-novel-approach-

effective-response-privilege-escalation-attacks-android.

[59] Juanru Li, Dawu Gu, and Yuhao Luo. Android malware forensics: Recon-

struction of malicious events. In Distributed Computing Systems Workshops

(ICDCSW), 2012 32nd International Conference on, pages 552 –558, june 2012.

doi: 10.1109/ICDCSW.2012.33.

[60] Xuetao Wei, Lorenzo Gomez, and Iulian Neamtiu. Malicious Android Ap-

plications in the Enterprise: What Do They Do and How Do We Fix It?

ICDE Workshop on Secure, 2012. URL http://www.cs.ucr.edu/~neamtiu/

pubs/sdmsm12wei.pdf.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5665792
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5665792
http://dblp.uni-trier.de/db/conf/secrypt/secrypt2013.html#SarwarMBK13
http://dblp.uni-trier.de/db/conf/secrypt/secrypt2013.html#SarwarMBK13
http://appanalysis.org/tdroid10.pdf
http://appanalysis.org/tdroid10.pdf
http://blog.trendmicro.com/trendlabs-security-intelligence/bypassing-android-permissions-what-you-need-to-know/
http://blog.trendmicro.com/trendlabs-security-intelligence/bypassing-android-permissions-what-you-need-to-know/
https://www.usenix.org/conference/leet12/rgbdroid-novel-approach-effective-response-privilege-escalation-attacks-android
https://www.usenix.org/conference/leet12/rgbdroid-novel-approach-effective-response-privilege-escalation-attacks-android
http://www.cs.ucr.edu/~neamtiu/pubs/sdmsm12wei.pdf
http://www.cs.ucr.edu/~neamtiu/pubs/sdmsm12wei.pdf

94

[61] Aubrey-Derrick Schmidt, Jan Hendrik Clausen, Seyit Ahmet Camtepe, and

Sahin Albayrak. Detecting symbian os malware through static function call

analysis. In Proceedings of the 4th IEEE International Conference on Mali-

cious and Unwanted Software (Malware 2009), pages 15–22. IEEE, 2009. doi:

10.1109/MALWARE.2009.5403024.

[62] Manuel Egele, Christopher Kruegel, and Engin Kirda. PiOS : Detect-

ing Privacy Leaks in iOS Applications. Sophia, 2011. URL https://

www.seclab.tuwien.ac.at/papers/egele-ndss11.pdf.

[63] William Enck, Damien Octeau, and P McDaniel. A study of android application

security. the 20th USENIX security, 2011. URL http://www.usenix.org/

event/sec11/tech/slides/enck.pdf.

[64] Axelle Apvrille and Tim Strazzere. Reducing the window of opportunity for

Android malware Gotta catch ’em all. Journal in Computer Virology, 8(1-

2):61–71, apr 2012. ISSN 1772-9890. doi: 10.1007/s11416-012-0162-3. URL

http://www.springerlink.com/index/10.1007/s11416-012-0162-3.

[65] Bryan Dixon and S Mishra. On Rootkit and Malware Detection in Smart-

phones. Current, pages 162–163, 2010. URL http://ieeexplore.ieee.org/

xpls/abs all.jsp?arnumber=5542600.

[66] Min Zhao, Tao Zhang, Fangbin Ge, and Zhijian Yuan. RobotDroid:

A Lightweight Malware Detection Framework On Smartphones. Journal

of Networks, 7(4):715–722, apr 2012. ISSN 1796-2056. doi: 10.4304/

jnw.7.4.715-722. URL http://ojs.academypublisher.com/index.php/jnw/

article/view/6527.

[67] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss.

“Andromaly”: a behavioral malware detection framework for android de-

vices. Journal of Intelligent Information Systems, 2011. ISSN 09259902.

doi: 10.1007/s10844-010-0148-x. URL http://www.springerlink.com/index/

10.1007/s10844-010-0148-x.

https://www.seclab.tuwien.ac.at/papers/egele-ndss11.pdf
https://www.seclab.tuwien.ac.at/papers/egele-ndss11.pdf
http://www.usenix.org/event/sec11/tech/slides/enck.pdf
http://www.usenix.org/event/sec11/tech/slides/enck.pdf
http://www.springerlink.com/index/10.1007/s11416-012-0162-3
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5542600
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5542600
http://ojs.academypublisher.com/index.php/jnw/article/view/6527
http://ojs.academypublisher.com/index.php/jnw/article/view/6527
http://www.springerlink.com/index/10.1007/s10844-010-0148-x
http://www.springerlink.com/index/10.1007/s10844-010-0148-x

BIBLIOGRAPHY 95

[68] William Enck, Machigar Ongtang, and Patrick McDaniel. On lightweight mo-

bile phone application certification. of the 16th ACM conference on, pages

235–245, 2009. URL http://dl.acm.org/citation.cfm?id=1653691.

[69] Georgios Portokalidis and Herbert Bos. Paranoid Android : Versatile Protection

For Smartphones. Network Security, pages 347–356, 2008.

[70] Iker Burguera and Urko Zurutuza. Crowdroid : Behavior-Based Malware

Detection System for Android. Science, 2011. URL http://dl.acm.org/

citation.cfm?id=2046619.

[71] Hahnsang Kim, Joshua Smith, and Kang G. Shin. Detecting energy-greedy

anomalies and mobile malware variants. In Proceedings of the 6th Interna-

tional Conference on Mobile Systems, Applications, and Services, MobiSys

’08, pages 239–252, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-

139-2. doi: 10.1145/1378600.1378627. URL http://doi.acm.org/10.1145/

1378600.1378627.

[72] Lei Liu, Guanhua Yan, Xinwen Zhang, and Songqing Chen. Virusmeter:

Preventing your cellphone from spies. In Proceedings of the 12th Interna-

tional Symposium on Recent Advances in Intrusion Detection, RAID ’09, pages

244–264, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-04341-3.

doi: 10.1007/978-3-642-04342-0 13. URL http://dx.doi.org/10.1007/978-3-

642-04342-0 13.

[73] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, You, Get Off of My

Market: Detecting Malicious Apps in Official and Alternative Android Markets.

of the 19th Annual Network and, 2012. URL http://www.csd.uoc.gr/~hy558/

papers/mal apps.pdf.

[74] Google. Google Play. https://play.google.com/store, 2012. Accessed:

13.11.2012.

[75] Martin Kropp and Pamela Morales. Automated gui testing on the android

platform. on Testing Software and Systems: Short Papers, page 67, 2010.

[76] Stefan Piotrowski. Automated Testing for Android. 2011.

http://dl.acm.org/citation.cfm?id=1653691
http://dl.acm.org/citation.cfm?id=2046619
http://dl.acm.org/citation.cfm?id=2046619
http://doi.acm.org/10.1145/1378600.1378627
http://doi.acm.org/10.1145/1378600.1378627
http://dx.doi.org/10.1007/978-3-642-04342-0_13
http://dx.doi.org/10.1007/978-3-642-04342-0_13
http://www.csd.uoc.gr/~hy558/papers/mal_apps.pdf
http://www.csd.uoc.gr/~hy558/papers/mal_apps.pdf
https://play.google.com/store

96

[77] Android Developers. UI/Application Exerciser Monkey. http:

//developer.android.com/tools/help/monkey.html, 2012. Accessed:

13.11.2012.

[78] Android Developers. Android Debug Bridge. http://developer.android.com/

tools/help/adb.html, 2012. Accessed: 13.11.2012.

[79] Lena Tenenboim-Chekina, Oren Barad, Asaf Shabtai, Dudu Mimran, Lior

Rokach, Bracha Shapira, and Yuval Elovici. Detecting application update at-

tack on mobile devices through network features. In INFOCOM, 2013.

[80] Xuxian Jiang. An Evaluation of the Application (”App”) Verification Service

in Android 4.2. http://www.cs.ncsu.edu/faculty/jiang/appverify/, 2012.

Accessed: 08.01.2013.

[81] Mario Ballano and Takashi Katsuki. Android.Adrd. http:

//www.symantec.com/security response/writeup.jsp?docid=2011-

021514-4954-99&tabid=2, 2011.

[82] Alexey Podrezov. Trojan: Android/BaseBridge.A. https://www.f-

secure.com/v-descs/trojan android basebridge.shtml, 2011.

[83] Piotr Krysiuk Stephen Doherty. Android.Basebridge. http:

//www.symantec.com/security response/writeup.jsp?docid=2011-

060915-4938-99&tabid=2, 2011.

[84] Dave Smith. Android: Are raw resources stored locally on the filesys-

tem? http://stackoverflow.com/questions/7421001/android-are-raw-

resources-stored-locally-on-the-filesystem, 2011.

[85] Xuxian Jiang. Security Alert: New BeanBot SMS Trojan Discovered. http:

//www.csc.ncsu.edu/faculty/jiang/BeanBot/, 2011.

[86] Mark Balanza. Android Malware Acts as an SMS Relay. http:

//blog.trendmicro.com/trendlabs-security-intelligence/android-

malware-acts-as-an-sms-relay/, 2011.

http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://www.cs.ncsu.edu/faculty/jiang/appverify/
http://www.symantec.com/security_response/writeup.jsp?docid=2011-021514-4954-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-021514-4954-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-021514-4954-99&tabid=2
https://www.f-secure.com/v-descs/trojan_android_basebridge.shtml
https://www.f-secure.com/v-descs/trojan_android_basebridge.shtml
http://www.symantec.com/security_response/writeup.jsp?docid=2011-060915-4938-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-060915-4938-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-060915-4938-99&tabid=2
http://stackoverflow.com/questions/7421001/android-are-raw-resources-stored-locally-on-the-filesystem
http://stackoverflow.com/questions/7421001/android-are-raw-resources-stored-locally-on-the-filesystem
http://www.csc.ncsu.edu/faculty/jiang/BeanBot/
http://www.csc.ncsu.edu/faculty/jiang/BeanBot/
http://blog.trendmicro.com/trendlabs-security-intelligence/android-malware-acts-as-an-sms-relay/
http://blog.trendmicro.com/trendlabs-security-intelligence/android-malware-acts-as-an-sms-relay/
http://blog.trendmicro.com/trendlabs-security-intelligence/android-malware-acts-as-an-sms-relay/

BIBLIOGRAPHY 97

[87] Xuxian Jiang. Security Alert: New DroidKungFu Vari-

ant – AGAIN! – Found in Alternative Android Markets.

http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu3/, 2011.

[88] Tim Wyatt. Security Alert: Geinimi, Sophisticated New Android Trojan Found

in Wild. https://blog.lookout.com/blog/2010/12/29/geinimi trojan/,

2010.

[89] OGorman Gavin and Honda Hatsuho. Android.Geinimi. http:

//www.symantec.com/security response/writeup.jsp?docid=2011-

010111-5403-99&tabid=2, 2011.

[90] Microsoft. Trojan:AndroidOS/Kmin.A. http://www.microsoft.com/

security/portal/threat/encyclopedia/entry.aspx?Name=Trojan:

AndroidOS/Kmin.A#tab=2, 2011.

[91] Xuxian Jiang. Security Alert: New Android SMS Trojan – YZHCSMS

– Found in Official Android Market and Alternative Markets. http://

www.csc.ncsu.edu/faculty/jiang/YZHCSMS/, 2011.

[92] Roee Hay. Android SQLite Journal Information Disclosure - CVE-2011-3901.

pages 1–5, 2012.

https://blog.lookout.com/blog/2010/12/29/geinimi_trojan/
http://www.symantec.com/security_response/writeup.jsp?docid=2011-010111-5403-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-010111-5403-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-010111-5403-99&tabid=2
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Trojan:AndroidOS/Kmin.A#tab=2
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Trojan:AndroidOS/Kmin.A#tab=2
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Trojan:AndroidOS/Kmin.A#tab=2
http://www.csc.ncsu.edu/faculty/jiang/YZHCSMS/
http://www.csc.ncsu.edu/faculty/jiang/YZHCSMS/

	Introduction
	Background
	Android Platform
	Boot Process
	Recovery Mode
	Developer Tools
	Android Applications
	Application Components

	Security
	Application SandBox
	Permissions
	Bouncer
	Remote Malware Removal

	Fragmentation Problem

	Malware Types
	Malware
	Personal Spyware
	Grayware

	Malware Detection Methods
	Static Program Analysis
	Dynamic Program Analysis
	TaintDroid
	DroidBox

	Related Work
	Malware Impacts
	Malware Detection
	Static Analysis
	Dynamic Analysis
	Application Permission Analysis
	Cloud-Based Detection
	Battery Life Monitoring
	Summary

	Malware Collection
	DroidRanger
	Android Malware Genome Project

	Malware Defence
	Malware Forensic
	Automated Testing

	Software Framework
	Architecture
	MDFCore
	Analysis
	Plugin Manager
	Plugin
	AdbWrapper
	ApkFile
	Logcat
	Broker
	Report

	Framework Execution Sequence

	Plugins and Analyses
	Malware Detection Plugins
	DroidBox Plugin
	Tripwire Plugin
	Helper Plugins

	DroidBox Analysis
	Tripwire Analysis

	Results
	Combined Results
	DroidBox
	Top Free Applications

	Tripwire
	Initial Results
	Improved Results
	Non-Root Malware

	Conclusion and Outlook
	Acronyms
	Bibliography

