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Abstract

Classification accuracies of feature extraction methods – as used in sensory motor rhythm
(SMR) based brain-computer interfaces (BCIs) – in combination with a two-class lin-
ear discriminant analysis classifier are compared in this master’s thesis. An SMR BCI
uses electroencephalographic (EEG) signals to detect movement imagination and controls
certain devices (e.g. wheelchair, entertainment electronics). The following methods were
compared: adaptive autoregressive parameters, band-power, phase locking value, time do-
main parameters (TDP), and Hjorth parameters. Furthermore, it was analyzed if a certain
method combination improves the classification accuracy. A genetic algorithm was used to
find optimal method parameters and an optimal method combination. For that purpose,
a MATLAB toolbox was developed. TDP with a bipolar spatial filter yielded the best
classification accuracies; an subject-specific (individual) method optimization and classi-
fier training is superior to a general optimization/training; a combination of methods has
no advantage in contrast to using only TDP.

Kurzfassung

In dieser Masterarbeit wurden die Klassifikationsgenauigkeiten von Merkmalsextraktions-
methoden, wie sie bei auf sensorimotorischen Rhythmen (SMR) basierten Brain-Computer
Interfaces (BCIs) verwendet werden, verglichen. Als Klassifikator wurde eine lineare Dis-
kriminanzanalyse für zwei Klassen eingesetzt. Ein SMR-BCI verwendet die Elektroenze-
phalografie (EEG) um Bewegungsvorstellungen zu erkennen und steuert damit bestimmte
Geräte (z.B. Rollstuhl, Unterhaltungselektronik). Folgende Methoden wurden miteinan-
der verglichen: adaptive autoregressive Parameter, Bandleistung, Phase Locking Value,
Time Domain Parameters (TDP) und Hjorth Parameter. Weiters wurden diese Metho-
den miteinander kombiniert um zu untersuchen, ob dadurch die Klassifikationsgenauigkeit
verbessert werden kann. Die optimalen Parameter der einzelnen Merkmalsextraktionsme-
thoden und die optimale Methodenkombination wurden mittels eines genetischen Algo-
rithmus gefunden. Dafür wurde eigens eine MATLAB-Toolbox entwickelt. TDP (bipolar
abgeleitet) lieferte die höchste Klassifikationsgenauigkeit. Eine individuelle Optimierung
und ein individuelles Training führten zu höheren Klassifikationsgenauigkeiten als eine ge-
nerelle Optimierung und ein generelles Training. Eine Kombination von Methoden brachte
gegenüber TDP keine Vorteile.
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Chapter 1

Introduction

A brain-computer interface (BCI) is a system which allows a person to control a device with
the brain [18]. This device could be e.g. a PC running a computer game or a fighter aircraft.
However, disabled people gain the largest benefits from such a system: patients with the
locked-in syndrome are able to communicate with people around them, paraplegics with
no function in their four limbs (tetraplegia) can steer a wheelchair or artificial arms can
be moved by a BCI system. Of course, nowadays all these things are only available in
a prototype stage and used solely in research. Nevertheless, BCI research is progressing
quickly and the mentioned applications will be used outside the labs eventually.

A BCI must fulfill the following criteria [13]:

• a BCI must use signals recorded directly from the brain

• at least one of these signals must be intentionally modulated by the user to effect
goal-directed behavior

• the system must react in real time (low latency)

• the system must provide feedback to the user (closed-loop system)

There are many methods to record brain activity: electroencephalography (EEG),
magnetoencephalography (MEG), electrocorticography (ECoG), functional magnetic res-
onance imaging (fMRI), near-infrared spectroscopy (NIRS) and positron emission tomog-
raphy (PET). EEG is the most widely used method for a BCI, because of low costs, good
temporal resolution and simple application. EEG is a non-invasive method where elec-
trodes are placed on the scalp. With these electrodes, electrical activities of neurons from
the cortex are measured.

If a person moves a body part, corresponding areas on the primary motor cortex are
activated. The basic idea behind a specific type of BCI system – the so called event-related
desynchronization (ERD) BCI or sensory motor rhythm (SMR) BCI – is that these areas
are also active when the person only imagines a movement. This activity can be measured
through event-related synchronization/desynchronization (ERS/ERD) effects in the EEG.
If a neural population processes information, the activity becomes desynchronized and the
mean power over this area decreases, for further information see [12] and [14]. A ERD-BCI
system recognizes different types of imagined movements and transforms these in control
commands for a particular device.

In general, an EEG-based BCI system consists of:

• electrode cap
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• measurement amplifier

• signal preprocessing

• feature extraction

• classifier

• the device to be controlled

The basic functionality of a BCI system is shown in figure 1.1. The measurement amplifier

Figure 1.1: basic components of an EEG-based BCI system

records EEG signals (about 10–100 µV) from the electrodes placed on the scalp. These
signals are amplified and digitized. The signal preprocessing unit tries to improve the
signal-to-noise (SNR) ratio. The SNR is usually low, because there are artifacts resulting
from e.g. muscle movements, and volume conduction within the skull blurs the sources.
Therefore, spatial filters like bipolar, common average reference (CAR) or Laplace filter
are often applied. This master’s thesis places emphasis on the feature extraction unit.
Its purpose is to extract relevant information from noisy EEG signals for the subsequent
classifier. A feature extraction unit applies one or more feature extraction methods to
the EEG signal from the signal preprocessing unit. Afterwards, the classifier classifies
the extracted features and a control signal (based on the detected class) is sent to the
device. The BCI user gets feedback from the device, e.g. observes the steering direction
of a wheelchair.
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Many feature extraction methods were developed in the past, but no comprehensive
comparison of these methods was done yet. In the first part of this master’s thesis, such
a comparison was performed. In the second part, a combination of feature extraction
methods which performs better than the individual methods was searched. A single-trial
offline setup with a two-class linear discriminant analysis (LDA) classifier was used. The
following feature extraction methods were evaluated and combined, respectively:

• band-power (BP)

• adaptive autoregressive (AAR) parameters

• bilinear adaptive autoregressive (BAAR) parameters

• multivariate adaptive autoregressive (MVAAR) parameters

• phase locking value (PLV)

• Hjorth (HJORTH) parameters

• time domain parameters (TDP)

Each of these feature extraction methods has parameters which need to be set. The
concrete values of these parameters have an effect on how well the information from
the EEG signal is extracted. Therefore, it is crucial to carefully tune these parameters,
otherwise a potentially good method with a bad parameter set could be compared to a bad
method with a good parameter set. Such a comparison would be unfair and no meaningful
evaluation result could be expected. Therefore, a genetic algorithm was employed to
tune the parameter sets of the feature extraction methods to get meaningful evaluation
results. To facilitate this comparison approach, the toolbox “TestFEM”, which is based
on MATLAB (The MathWorks, Inc.1) was written. Beside parameter tuning and method
evaluation, this toolbox was also used to find the best combination of feature extraction
methods.

Motivation and Aim of this Work Generally one want to apply a feature extraction
method which yields a high classification accuracy. Also, the optimal parameters of such
a feature extraction method are interesting. Furthermore, it is possible that a certain
combination of feature extraction methods yields better classification accuracies then the
best individual method. A comprehensive method comparison is essential to provide
answers to these points, but no such comparison (with parameter optimization) has been
found by the author. The aim of this work was to carry out the necessary comparisons.
Therefore, the following tasks were performed:

• a comparison of classification accuracies of feature extraction methods (see Chapter
4.2)

• a search for a combination of feature extraction methods with the best classification
accuracy (see Chapter 4.3)

1http://www.mathworks.com
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• development of a test toolbox (see Chapter 6)

Chapters 2 and 3 explain basics of the methods used. Chapter 4 and 5 deal with the per-
formed tests. Chapter 6 explains the TestFEM toolbox, this chapter is mostly independent
from the other ones.
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Chapter 2

Feature Extraction and Combination
Methods

A feature extraction method is applied to raw EEG signals after the preprocessing step.
These preprocessed signals are typically bandpass and/or spatially filtered. Features are
extracted and afterwards classified through a classifier. In this work, the signals were band-
pass filtered in the frequency range from startFrq to stopFrq before a feature extraction
method was applied. In the case of band-power this band-pass filter was not applied,
because the filter is integrated in the method itself. The exact values of startFrq and
stopFrq were determined by a genetic algorithm. The mathematical principles of the
used feature extraction methods are presented in this chapter. Afterwards, two feature
combination methods are shown.

2.1 Adaptive Autoregressive Parameters

Adaptive autoregressive (AAR) parameters are obtained from an adaptive autoregressive
model. This adaptive model is based on the autoregressive model (note the missing word
adaptive) and some parameter estimation algorithm (here: Kalman filter). An extension
to a multivariate AAR (MVAAR) model or a bilinear AAR (BAAR) model can be made.
The autoregressive model, the Kalman filter and the application of the Kalman filter on the
autoregressive model to estimate the AAR model is described here. Also, the multivariate
and bilinear extensions are shown. All explanations are based on [15] and [2].

2.1.1 Autoregressive Model

An autoregressive (AR) model is used for the description or modeling of time series. This
is the definition of an AR model of order p:

xk =

p∑
i=1

aixk−i + εk (2.1)

p . . . model order
xk . . . one-dimensional signal value at time k
ai . . . i-th autoregressive parameter
εk . . . white noise process
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The signal value of x at time k consists of the linear combination of the p previous
values of x and a white noise term εk. This model can be interpreted as a linear infinite
impulse response filter with white noise input. The noise term εk describes the signal part
which could not be explained by the AR parameters ai. Thus, εk can also be seen as an
error term.

The AR parameters are fixed in time and only stationary processes can be described.
However, EEG signals are non-stationary, and therefore, an extension to the AR model
must be made: the AR parameters are allowed to vary in time. The resulting model is
shown below:

xk =

p∑
i=1

ai,kxk−i + εk (2.2)

There are many estimation methods for the parameters ai,k [15]. The most commonly
used method is the Kalman filter, which is explained in the next section.

Multivariate Autoregressive Model If the signal x has more than one dimension
(channels in the context of EEG signal processing), a multivariate model can be defined:

xm,k =

p∑
i=1

M∑
j=1

aj,i,mxj,k−i + εm,k (2.3)

p . . . model order
M . . . number of dimensions (channels)
xm,k . . . signal value of channel m at time k
aj,i,m . . . autoregressive parameters
εm,k . . . white noise process

vector/matrix notation:

xk =

p∑
i=1

Aixk−i + εk (2.4)

xk =
[
x1,k, . . . , xm,k, . . . , xM,k

]T
(2.5)

Ai =


a1,i,1 . . . aj,i,1 . . . aM,i,1

...
a1,i,m . . . aj,i,m . . . aM,i,m

...
a1,i,M . . . aj,i,M . . . aM,i,M

 (2.6)

εk =
[
ε1,k, . . . , εm,k, . . . , εM,k

]T
(2.7)

Bilinear Autoregressive Model Linear models are easy to handle, but they cannot
express non-linearities. It is likely that EEG data contains non-linearities, therefore the
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bilinear autoregressive model has been devised. As in [2], a slightly simplified version of
this bilinear model was used:

xk =

p∑
i=1

aixk−i + εk +

q1∑
i=1

q2∑
j=1

bi,jxk−iεk−j (2.8)

p . . . autoregressive model order
q1, q2 . . . model orders of the bilinear term
xk . . . one-dimensional signal value at time k
ai . . . autoregressive parameters
bi,j . . . bilinear parameters
εk . . . white noise process

A combination of the multivariate and bilinear autoregressive model has not been used,
because the resulting model would have had too many parameters a, b, and therefore would
not have been feasible. Subsequently, as with the standard AR model, the parameters a
and b are allowed to vary in time.

2.1.2 Kalman Filter

The Kalman filter [9] provides a means to estimate the internal state of a discrete linear
dynamic system. Note that only indirect measurements of this state can be made. This
filter is optimal in a way that it minimizes the mean of the squared error. One advantage
of the Kalman filter is its recursive operation. It is not necessary to store all past values
and allows an easy implementation on a computer system. The explanations provided are
obtained from [17] and [2].

State Space Model

In the state space, all measurements, inputs and outputs of the system are combined into a
feasible structure. However, in the case of AAR models, there is no input to this structure,
so this term is discarded.

The first state space equation is the system equation (a linear stochastic difference
equation):

yk = Φk−1yk−1 + wk−1 (2.9)

Equation (2.9) describes the system dynamics: the state transition from state yk−1 to
the next state yk. yk is a vector and consists of the state parameters at time k. Φk is
the state transition matrix, which relates two successive states. In general, this matrix is
time-depended, but here (AAR model) it is assumed to be constant. wk−1 is the process
noise.

The second state space equation is the measurement equation:

zk = Hkyk + vk (2.10)
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Equation (2.10) shows the relation between the system state yk and the measurement zk
at time k. Hk is called measurement matrix and vk measurement noise.

The process noise wk and the measurement noise vk are assumed to be independent of
each other. Both are Gaussian distributed with zero mean and covariance matrices Qk

respectively Rk:

wk = N (0,Qk) (2.11)

vk = N (0,Rk) (2.12)

Table 2.1 shows all state space variables, their names and their dimensions. In summary,
the Kalman filter takes the measurement zk and calculates the system state yk. Φk, Hk,
Qk and Rk must be known, they can be constant or change in time.

symbol name dimension

yk state vector n× 1
Φk state transition matrix n× n
wk process noise n× 1
Qk covariance matrix of wk n× n
zk measurement vector m× 1
Hk measurement matrix m× n
vk measurement noise m× 1
Rk covariance matrix of vk m×m

Table 2.1: Kalman filter state space variables

Equations

Let ŷ−k be the a priori state estimate of yk and ŷ+
k the a posteriori state estimate of yk.

The a priori state estimate has only knowledge about the system prior to step k, whereas
the a posteriori state estimate has knowledge about the system given the measurement
zk.

A priori and a posteriori estimate errors can be defined as:

e−k = yk − ŷ−k (2.13)

e+
k = yk − ŷ+

k (2.14)

The a priori estimate error covariance and the a posteriori estimate error covariance are
then:

P−k = E
〈
e−k e−Tk

〉
(2.15)

P+
k = E

〈
e+
k e+T

k

〉
(2.16)

The a posteriori estimate error covariance in equation (2.16) has to be minimized. First,
the a posteriori state estimate ŷ+

k must be expressed through a linear combination of the
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a priori state estimation ŷ−k and a weighted difference between zk (actual measurement)
and Hkŷ

−
k (predicted measurement):

ŷ+
k = ŷ−k + Kk

(
zk −Hkŷ

−
k

)
(2.17)

The term
(
zk −Hkŷ

−
k

)
in equation (2.17) represents the difference between the actual

measurement and the predicted measurement and is called measurement innovation or
residual. If the residual is small (estimation is good), ŷ−k is already a good estimation of
yk and will be changed less than when the residual is large (estimation is bad).

Kk is the Kalman gain factor and is responsible that the a posteriori estimate error
covariance in equation (2.16) will be minimized. To obtain the gain factor Kk, equation
(2.17) has to be substituted into equation (2.14). The resulting expression is substituted
into equation (2.16) and the expectation operator is applied. The trace from the resulting
matrix is derived, set to zero and solved for Kk (which is an n×m matrix):

Kk = P−k HT
k

(
HkP

−
k HT

k + Rk

)−1
(2.18)

Algorithm

The algorithm can be split in two equation groups: time update and measurement update
equations.

Time update equations:

ŷ−k = Φk−1ŷ
+
k−1 (2.19)

P−k = Φk−1P
+
k−1Φ

T
k−1 + Qk−1 (2.20)

These equations project the state estimation and the estimate error covariance ahead in
time (from k − 1 to k).

Measurement update equations:

Kk = P−k HT
k

(
HkP

−
k HT

k + Rk

)−1
(2.21)

ŷ+
k = ŷ−k + Kk

(
zk −Hkŷ

−
k

)
(2.22)

P+
k = (I−KkHk) P−k (2.23)

Here, the current Kalman gain is calculated and the current measurement is included. Sub-
sequently, the a posteriori state estimation and the a posteriori estimate error covariance
are calculated.

The time update equations are predictor equations, whereas the measurement update
equations are corrector equations: a prediction of the current state is made, which is
corrected afterwards. At every time step k, the prediction and correction steps are exe-
cuted, whereas only data from the preceding step and the current measurement need to
be known. This gives the Kalman filter its recursive character and makes it feasible even
with large amounts of data. The initial values of ŷ+

k , P+
k , Qk and Rk must be known or

chosen appropriately. It must also be defined how Qk and Rk are updated. These things
depend on the actual application of the Kalman filter.
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2.1.3 Adaptive Autoregressive Model

The AR model was extended in section 2.1.1 with time depended AR Parameters ai,k (see
equation (2.2)). These parameters should now be estimated in every time step with the
Kalman filter. The AR model is integrated into the Kalman filter as follows:

yk =
[
a1,k, . . . , ai,k, . . . , ap,k

]T
(2.24)

zk = xk (2.25)

The dimensions are given below (cf. table 2.1):

n = p (2.26)

m = 1 (2.27)

Note: zk, vk and Rk are scalars because xk is a one-dimensional signal. The state vector
of the Kalman filter represents the AAR parameters. The measurement vector or scalar,
respectively, corresponds to the EEG signal.

The real state transition matrix is not known and a good approximation to the current
state is simply the preceding state. Thus, the state transition matrix Φk is set to the
identity matrix I. As can be seen from equation (2.9), the current state is then derived
from the preceding state.

Φk = I (2.28)

The measurement matrix Hk must be constructed so that equation (2.10) has the shape
of equation (2.2). To accomplish this, Hk is set to a vector consisting of the p previous
EEG signal values:

Hk =
[
xk−1, xk−2, . . . , xk−p

]
(2.29)

The state space model adapted for AAR models is shown below:

System equation (compare with equation (2.9)):
a1,k

a2,k
...

ap,k

 =


a1,k−1

a2,k−1
...

ap,k−1

+ wk−1 (2.30)

Measurement equation (compare with equation (2.10)):

xk =
[
xk−1, xk−2, . . . , xk−p

]
·


a1,k

a2,k
...

ap,k

+ vk (2.31)
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The initial values of the variables are chosen as follows:

ŷ+
0 =

[
0, . . . , 0

]T
or ai,0 = 0 (2.32)

P+
0 = I (2.33)

Q0 = I ·UC (2.34)

R0 = 1 (2.35)

The newly introduced variable UC is the update coefficient. It controls how fast the AAR
model can adapt to changes in non-stationary signals. With a small UC the AAR model
can not follow all changes, but a large UC results in a high variance of the estimated
parameters. Usually, UC is set to a value between 10−6 and 10−1.

It also has to be defined how the covariance matrices Qk and Rk are updated. There
are many update methods and only a few of them have been used in this work. Table 2.2
shows the update methods for the process noise covariance matrix Qk, Table 2.3 for the
measurement noise covariance matrix Rk. Here, Rk is (standard AAR model) a scalar,
but for the purpose of generalization, it is considered as a matrix. An overview and a
comparison of more update methods can be found in [15]. According to [15], the Qk

update method with mode 2 and the Rk update method with modes 0 and 1 lead to good
results and are favorable in the set of all compared update methods. In other words, the
best update methods are included in the subset used in this work.

Q mode update method

0 Qk = Qk−1

1 Qk = diag
(
P+
k

)
·UC

2 Qk = I ·UC · trace
(
P+
k

)
/n

Table 2.2: update methods for the process noise covariance matrix Qk

R mode update method

0 Rk = Rk−1

1 Rk = (1−UC) Rk−1 + UC · eeT , e = zk −Hkŷ
−
k

Table 2.3: update methods for the measurement noise covariance matrix Rk

The purpose of this whole framework is to extract AAR parameters ai,k at each time
step k from the EEG signal (respectively aj,i,m,k in the case of a MVAAR model and ai,k,
bj,i,k with a BAAR model). These are the calculated features of this feature extraction
method and used for further classification.

Multivariate Autoregressive Model The integration of the multivariate autoregres-
sive model into the Kalman filter is similar to the AAR model and only differences are
described here. Now, the parameters aj,i,m,k from equation (2.3) are estimated. Note, the
time dependency of the parameters on k is not explicitly shown in equation (2.3). These
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are the values of the state and measurement vectors:

yk =
[
a1,1,1,k, . . . , aM,1,1,k, a1,2,1,k, . . . , aM,p,1,k, a1,1,2,k, . . . , aj,i,m,k, . . . , aM,p,M,k

]T
(2.36)

zk =
[
x1,k . . . xm,k . . . xM,k

]T
(2.37)

The dimensions are given below (cf. Table 2.1):

n = MMp (2.38)

m = M (2.39)

Note that M specifies the number of channels.

Hk is constructed differently when considering an MVAAR model. Hk is now the
Kronecker tensor product between the identity matrix with dimensions m × m and a
vector of previous EEG signal values:

Hk = I⊗
[
x1,k−1, . . . , xM,k−1, x1,k−2, . . . , xm,k−i, . . . , xM,k−p

]
(2.40)

Hk =

x1,k−1, . . . , xM,k−1, x1,k−2, . . . , xM,k−p 0 . . . . . . 0
0 . . . 0 x1,k−1, . . . , xM,k−1, x1,k−2, . . . , xM,k−p 0 . . . 0

...
...

...


(2.41)

Because Rk is a matrix in the MVAAR model, R0 is initialized with the identity matrix:

R0 = I (2.42)

Bilinear Autoregressive Model Only the differences to the standard AAR model
are shown. The parameters ai,k and bj,i,k from equation (2.8) are estimated through the
Kalman filter. Note, the time dependency of the parameters on k is not explicitly shown
in equation (2.8). This is the state vector:

yk =
[
a1,k, . . . , ap,k, b1,1,k, b1,2,k, . . . , b1,q2,k, b2,1,k, . . . , bq1,q2,k

]T
(2.43)

The dimensions are given below (cf. Table 2.1):

n = p+ q1q2 (2.44)

m = 1 (2.45)

To reflect the structure in equation (2.8), Hk must be changed as follows:

Hk =
[
xk−1, . . . , xk−p, xk−1εk−1, xk−1εk−2, . . . , xk−1εk−q2 , xk−2εk−1, . . . , xk−q1εk−q2

]
(2.46)

εk is calculated with:

εk = zk −Hkŷ
−
k (2.47)
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2.2 Band-Power

To calculate the band-power BP in the frequency range from a to b of a continuous signal
x(t), the following steps have to be executed. First, x(t) must be band-pass filtered with
lower cutoff frequency a and upper cutoff frequency b:

x1(t) = bandpass(x(t), a, b) (2.48)

Second, the signal is squared:

x2(t) = x2
1(t) (2.49)

Third, a moving average over a time window with length T is calculated:

x3(t) =
1

T

∫ t

t−T
x2(τ)dτ (2.50)

Fourth, the logarithm of the signal is calculated. See Section 7.4 for further notes on this
log-transformation.

BP(t) = log(x3(t)) (2.51)

2.3 Hjorth Parameters

The Hjorth parameters were introduced by Hjorth [7]. In [16] the parameters were defined
as follows:

Activity = var(x(t)) (2.52)

Mobility =

√√√√Activity
(
dx(t)
dt

)
Activity (x(t))

(2.53)

Complexity =
Mobility

(
dx(t)
dt

)
Mobility (x(t))

(2.54)

Activity is the signal power, Mobility is the mean frequency, and Complexity is the change
in frequency.

For EEG classification, these parameters are not extracted from the whole signal, rather
within short time segments of length T . Usually, T is about a second. E.g. the Activity
of a continuous signal x at time t is calculated as:

Activity(t) = var(x(t̄)), t̄ = [t− T, t] (2.55)

These definitions use a continuous input signal x(t) and can easily be adapted to discrete
signals as well (the derivation is calculated as the difference between two sequent sample
values).
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2.4 Time Domain Parameters

Time Domain Parameters TDP are a generalization of the Hjorth parameters and de-
scribed in [16]. p derivations of the original signal are calculated:

TDPi(t) = log

(
var

(
dix(t)

dti

))
, i = 0, . . . , p (2.56)

The logarithm ensures approximately a Gaussian distribution of the p TDP features, see
Section 7.4 for a discussion on that. As in Section 2.3, the TDP features are calculated
within a short time segment of length T and not from the whole signal.

2.5 Phase Locking Value

The explanations are based on [4] and [6]. φx and φy are phases of the signals x(t) and
y(t). The phase locking value PLV is a measure how stable the phase difference between
φx and φy is within a specific time window of length T . In other words, it is a measure
for the synchrony between areas on the cortex. The PLV at time t is calculated as shown:

PLV(t) =
∣∣〈ej∆φ(t̄)

〉∣∣, t̄ = [t− T, t] (2.57)

∆φ(t) = φx(t)− φy(t) (2.58)

The expectation operator is usually applied over the trials, but this is not possible in a
single-trial setup. Accordingly, ej∆φ(t̄) is averaged over the time window. If the phase
difference ∆φ(t) is constant across the time window, all complex vectors ej∆φ(t̄) point in
the same direction and the magnitude of the expectation value is 1. If the phase differences
are randomly distributed from 0 to 2π, the expectation value of all complex vectors is 0,
and therefore also the magnitude.

First, to calculate the PLV, the instantaneous phases φx(t) and φy(t) have to be com-
puted. x(t) and y(t) are real-valued. The imaginary parts are found with the Hilbert
transformation. Together with the real parts, the instantaneous phases can be calculated.

The real part is already known:

xreal(t) = x(t) (2.59)

The imaginary part is computed with the Hilbert transform (p.v. denotes the Cauchy
principal value):

ximag(t) =
1

π
p.v.

∫ ∞
−∞

xreal(τ)

t− τ
dτ (2.60)

The instantaneous phase is given as:

φx(t) = arctan

(
ximag(t)

xreal(t)

)
(2.61)

[6] provides a mathematically equivalent, but in practice faster algorithm how to compute
ej∆φ(t̄) from xreal(t) and ximag(t).

Of course, the procedure is analogous for y(t), as well as for discrete signals.
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2.6 Feature Combination Methods

If more than one feature extraction method has to be used, one must use a feature com-
bination method. Two methods from [5] are presented: CONCAT and META. In the
test setup described in Section 4.3, feature extraction methods were combined solely with
META.

CONCAT CONCAT concatenates simply all feature vectors of all feature extraction
methods. This concatenated feature vector is afterwards classified with a LDA classifier.

META META uses two levels of classifiers. Each feature vector of a feature extraction
method is classified with one separate classifier. The continuous output from these clas-
sifiers is classified afterwards by a meta LDA classifier. A customized classifier (linear,
non-linear) could be used for each feature vector, however only LDA classifiers were used.
According to [5] META leads in practice to a better classification accuracy as CONCAT.
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Chapter 3

Genetic Algorithm

3.1 The Genetic Algorithm

A genetic algorithm (GA) is a stochastic optimization method which is based on natural
evolution. An individual in nature is subjected to natural selection because resources
(e.g. food, living space) are limited. Each individual has a genome which contains the
genes. Genetic changes which lead to an advantage – with respect to reproduction and
surviving – for an individual in its environment are likely to become common in the
population. These changes result from mutations and recombinations of genes during
sexual reproduction. A GA uses these principles and applies it to optimization problems.
See [11] for additional notes on this topic and further references; this chapter is based on
this reference.

First, it has to be asked how the genes of an individual (hypothesis) are represented.
Mostly, they are a bit string or a vector of numbers. The interpretation of this e.g. bit
string depends on the application. Second, a so-called “fitness function” evaluates how
well a specific individual with its genes is working. This is the analog to the reproduction
and surviving advantage of real individuals in nature. It is the goal of the GA to alter the
genes of an individual in a way that minimizes (or maximizes, that depends on the actual
implementation of a GA) the value of the fitness function. For example, imagine that a
GA should find out if someone can do outdoor sport depending on the weather (sunny,
cloudy, rainy). For that problem, an individual is represented with a bit string of 3 bits.
Each bit corresponds to one of the three weather conditions and the bits are combined
with the “or” operator: for instance, “001” means it is rainy, “110” means it is sunny
or cloudy. The fitness function interprets the genetic code and assigns a fitness score to
an individual. “110” would get a low (good) fitness score (because you can do outdoor
sport when it is sunny or cloudy), “001” would get a high fitness score (it would be a bad
idea to do outdoor sports when it is raining), and e.g. “100” would get a moderate fitness
score (it is right that you can do outdoor sport when the sun shines, but you can also do
so when it is cloudy). The genetic code and the fitness function are highly application-
dependent, and there could be many other representations and fitness functions to model
this problem.

Next, three operations – crossover, mutation and selection – have to be defined. These
operations are in general not application-dependent as long as the individual is represented
in some “standard” form, e.g. a bit string. The crossover operation combines two parents
and creates one child with genes from each of the two parents. The mutation operation
alters in a random manner the genes of an individual, e.g. bits. The selection operation
selects probabilistically individuals from the population. Individuals with a low (good)
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fitness score are selected with a higher probability than individuals with a higher fitness
score.

The sequence of a GA is as follows:

1. Initialization: create a start population; all individuals are initialized with random
values

2. Selection: select probabilistically individuals from the population

3. Crossover: combine some selected individuals and create children

4. Mutate: mutate some selected individuals

5. children and mutated individuals yield the new population

6. go to step 2.

This sequence is depicted in Figure 3.1. The explanations are somewhat vague (e.g. will
the children also be mutated?), because the various GA implementations differ from each
other in detail.

Figure 3.1: GA sequence

Each cycle in the procedure listed above creates a new generation. Generations are
created until some stop criterion is reached. A stop criterium could be when:

• the maximum number of generations is reached

• a certain best fitness score is reached
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• the best fitness score stalled for some generations

The genetic code of the individual with the best fitness score in the last generation is the
solution of the optimization problem. However, this is a stochastic optimization method
and there is no guarantee that a global optimum has been found.

The idea behind the crossover operation is that from two good parents an even better
child could arise (which accelerates the GA), and mutation leads to diversity in the gene
pool. If the diversity is too small in the population, all individuals would test nearly the
same hypothesis and slow down the progress of the GA. As a result of a slow progress, the
GA could get stuck in a local optimum if the GA is stopped too early. As with a higher
probability the better individuals become combined and mutated, the GA optimizes the
fitness function. The schema theorem [8] is an approach to characterize the evolution of
the population.

Often, a small extension is made to the GA: “elitest selection”. In addition to individ-
uals resulting from crossover and mutation operations, also some percentage of the best
individuals from a generation are passed unaltered to the next generation. This guarantees
that the best fitness score of a generation never increases.

The use of GA is encouraged by some points:

• natural evolution works well, and so should GA

• a GA can optimize hypotheses with complex interacting parts

• no derivation of a error function is needed

• it is straightforward to parallelize GAs

Selection Two prominent selection concepts are presented: roulette wheel (fitness pro-
portionate) selection and tournament selection.

Roulette wheel selects an individual proportional to its fitness score. The probability
that an individual Ii with fitness score Fitness(Ii) in a population of size p is selected is
given by (note: the fitness score is maximized here, because the associated formula is more
intuitive):

P (Ii) =
Fitness(Ii)∑p
j=1 Fitness(Ij)

(3.1)

An issue is the range of the fitness score. If this range is too large, individuals with a good
fitness score are mostly selected. This narrows the diversity. If this range is too small, all
individuals will be selected with almost same probability, slowing down the progress of the
GA. Often, a fitness scaling function is used to mitigate this problem. This function alters
the raw fitness score before the selection function is applied. A fitness scaling function
could be used, which gives a fitness score proportionate to the rank regarding the raw
fitness score of an individual.

Tournament selection chooses randomly two or more individuals from the whole popu-
lation. From this subset the individual with the best fitness function is finally selected.
Tournament selection often results in a population with higher diversity than roulette
wheel selection [11].
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Crossover The crossover operator depends on the actual representation of the code
(e.g. bit string or number vector). In the case of a bit string three crossover operations
can be defined:

• single-point crossover: the bit string of the child is a concatenation of two substrings
from the parents: the first n bits are chosen from the first parent, the remaining bits
are chosen from the second parent

• two-point crossover: the bit string of the child is a concatenation of three substrings
from the parents: the first n bits are chosen from the first parent, the next m bits are
chosen from the second parent, the remaining bits are chosen from the first parent

• uniform crossover: the individual bits of the child are chosen randomly from the
first or second parent

In the case of a real-numbered vector representation, a child could be created as the
arithmetic mean value of its parents.

Mutation In the case of bit strings, a point mutation could be realized. A randomly
chosen bit in the bit string is inverted with a certain probability. In the case of num-
ber vectors with real values, one possibility is to add a value sampled from a Gaussian
distribution with mean 0 and standard variation σ. Typically, σ is decreased with every
generation.

3.2 Application of the Genetic Algorithm to Feature
Extraction Methods

Individual A genetic algorithm has been used to optimize feature extraction methods.
Each feature extraction method has a different number and different types of parameters
(e.g. integers, real numbers, bit strings). Furthermore, it should be possible to combine
various feature extraction methods. A simple bit string or a vector of real values would
be insufficient to fulfill these requirements. Therefore, an individual consists here of one
or more structures (a list of structures). Each structure represents a feature extraction
method and has the entries shown in Table 3.1. The “parameters” entry is again a structure
and contains the parameters of a method. These parameters could be of different types
and depend on the used feature extraction method. See Table 3.2 for a list of possible
parameter types. For implementation details see Chapter 6.

entry description

method corresponding feature extraction method

channels list of channels on those this method is applied

parameters structure which contains the method parameters

Table 3.1: structure entries describing a method
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parameter type

integer

nominal number (categorical number)

real number

bit string

Table 3.2: possible types of parameters

Fitness Score The features are extracted from the EEG data set with the methods,
the parameters and the channels specified by the individual. The EEG data set used is
divided in trials. These trials are divided by a 10 × 5-fold cross-validation in 10 · 5 = 50
sets of train trials and test trials. For each set,

• a classifier is trained with the features from the train trials in this set,

• and afterwards, the classes of the samples within the test trials in this set are deter-
mined and compared against the true classes.

A classification accuracy is calculated over corresponding samples of all test trials (see
Figure 3.2). The fitness score of an individual is 1 minus the 90% quantile of the classifi-
cation accuracies between cue and end of trial. To improve performance, not every sample
or feature vector, respectively, within a trial is used for training and testing the classifier.

If an individual uses more than one feature extraction method, the features are combined
with “CONCAT” or “META” (see Section 2.6).

The GA aims to minimize the fitness score of the individuals, and therefore optimizes
the parameters of each feature extraction method and the combination of methods an
individual uses.

Crossover Because an individual consists of a more complicated structure as a bit string,
modified crossover and mutation operations must be applied. An individual has two
levels of information which need to be crossed over: the used methods itself and their
parameters/channels. First, the two parents are searched for methods which exist in only
one parent. Each of these methods is copied unmodified to the new child with a chance of
50% (but at least one of these methods is copied). Methods of the same type which exist
in both parents are definitely copied to the child, but their parameters and channels are
crossed over. Table 3.3 shows the crossover operations for the different parameter types.
The channels are selected randomly from channels of the parents.

Mutation This operation mutates the individual on two levels: methods are added/
deleted and method parameters/channels are altered. One method is added/deleted from
an individual with a probability of 30%. All parameters of all methods of an individual are
mutated according to Table 3.4. For the k-th generation out of a total of G generations,
scalek is calculated as:

scalek = scale0

(
1− shrink

k

G

)
(3.2)
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Figure 3.2: calculation of the classification accuracy; the fitness score is 1 minus the clas-
sification accuracy

parameter type crossover operation

integer rounded mean value

nominal number value from one parent

real number mean value

bit string uniform crossover

Table 3.3: crossover operations for the parameter types
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scale0 and shrink were set as follows:

scale0 = 0.5 (3.3)

shrink = 0.7 (3.4)

scalek decreases linearly from 0.5 to 0.15. σk in Table 3.4 is calculated as follows:

σk = scalek
upper− lower

2
(3.5)

upper and lower are the upper and lower limits of the corresponding parameter. At the
beginning, there is a high mutation rate and the GA makes large steps in the search space.
At the end, there is a low mutation rate and the GA converges toward a solution. Channels
are deleted or added with a probability of 30%.

parameter type mutation operation

integer add Gaussian distributed noise (mean 0, std. dev. σk) and round

nominal number a new value is chosen with a probability of 30%

real number add Gaussian distributed noise (mean 0, std. dev. σk)

bit string change each bit with a probability of scalek

Table 3.4: mutation operations for the parameter types
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Chapter 4

Test Setup

4.1 EEG Data

All feature extraction methods were applied to prerecorded data (offline analysis) from
the BCI competition IV [3]. EEG data from 9 subjects (test persons), all with 2 sessions
recorded on different days, were available. A session consisted of 6 runs, each with 48 trials.
In each trial, a cue appeared on a screen and the subject had to perform a cue-associated
mental task: motor imagery of the left hand (class 1), right hand (class 2), both feet (class
3) or of the tongue (class 4). The cue-based paradigm is illustrated in Figure 4.1. A cross
was shown on the screen at the beginning of a trial, and simultaneously a short signal tone
was played. After 2 seconds, the cue appeared for 1.25 seconds in the form of an arrow
showing left (class 1), right (class 2), down (class 3) or up (class 4). The subject had to
imagine the corresponding movement, as long as the cross was shown (until second 6 in a
trial). A short break with a blank screen followed. No feedback was provided during the
trials. Data from the first session is from now on called “optimization data”, and data
from the second session “evaluation data” .

Figure 2: Timing scheme of the paradigm.

left hand, right hand, foot or tongue) appeared and stayed on the screen for
1.25 s. This prompted the subjects to perform the desired motor imagery
task. No feedback was provided. The subjects were ask to carry out the
motor imagery task until the fixation cross disappeared from the screen at
t = 6 s. A short break followed where the screen was black again. The
paradigm is illustrated in Figure 2.

Data recording

Twenty two Ag/AgCl electrodes (with inter-electrode distances of 3.5 cm)
were used to record the EEG; the montage is shown in Figure 3 left. All
signals were recorded monopolarly with the left mastoid serving as reference
and the right mastoid as ground. The signals were sampled with 250Hz and
bandpass-filtered between 0.5Hz and 100Hz. The sensitivity of the amplifier
was set to 100 µV. An additional 50 Hz notch filter was enabled to suppress
line noise.

Figure 3: Left: Electrode montage corresponding to the international 10-20
system. Right: Electrode montage of the three monopolar EOG channels.

In addition to the 22 EEG channels, 3 monopolar EOG channels were

2

Figure 4.1: cue-based paradigm (this figure was copied with permission from [3])

The EEG was recorded monopolarly (the left mastoid was used as reference, the right
as ground) with Ag/AgCl electrodes, which were arranged as shown in Figure 4.2. The
signals were sampled at 250 Hz and afterwards band-pass filtered from 0.5 Hz to 100 Hz.
In addition, a 50 Hz notch filter was applied. All trials were inspected by an expert and
marked if they contained artifacts. [3]

In the test setups, a 2-class classifier was employed, thus only the classes 1 and 2 of the
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EEG data were used. For further data reduction, the signals were lowpass filtered with
a Butterworth filter of order 5 with a cut-off frequency of 55 Hz and afterwards down-
sampled to 125 Hz. It was also necessary to calculate Laplace, common average reference
(CAR) and bipolar filtered data from the monopolar data. The channel positions of the
spatially filtered signals are illustrated in Figure 4.3.

Figure 4.2: The montage of the electrodes. Electrode positions which correspond to elec-
trodes in the international 10–20 system are labeled.
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Figure 4.3: channel positions and numbers of the spatially filtered signals (monopolar,
bipolar, CAR, Laplace); bipolar channels indicate with a line between which
monopolar channels the difference was calculated
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4.2 Comparison of Feature Extraction Methods

The feature extraction methods were compared in two different ways:

1. Individual comparison: A certain method was optimized using the optimization data
of a subject, and evaluated against the evaluation data of the same subject.

2. General comparison: The optimization data from all 9 subjects were combined into
one large optimization data set. A method was optimized using this large data set,
and then evaluated separately against the evaluation data of the subjects.

4.2.1 Individual Comparison

The individual comparison approach optimized each method for a subject, and then eval-
uated the classification accuracy. With this per-subject optimization, the real potentials
of the feature extraction methods were found and compared.

All feature extraction methods used data from C3 and C4 electrodes (international
10–20 system) with their corresponding spatial filters. AAR, BAAR, BP, HJORTH and
TDP compute features separately from each channel (in contrast to MVAAR). Therefore,
computed features (from C3 and C4) of the aforementioned feature extraction methods
had to be concatenated.

There is strong evidence that no phase coupling occurs on primary motor cortex areas
between the left and right hemisphere. Instead, phase couplings were observed between
central and lateral positions on the primary motor cortex, as well as between the primary
motor cortex and the premotor area/supplementary motor area [4]. Due to that finding,
in addition to 2 channels (C3, C4), also 3 and 4 different channels were used for the
PLV feature extraction method (see Tables 4.2 and 4.3). To get PLV information from
both hemispheres, it was necessary to use 2 PLV feature extraction methods (one for each
hemisphere). The feature values of all PLV feature extraction methods at each time step
were simply concatenated into a feature vector.

There is another special case: the BP feature extraction method. As the frequency
bands with discriminative information are more or less specific to a hemisphere, two BP
feature extraction methods (one for each hemisphere) with their own frequency band setup
were employed. Again, the computed features from both hemispheres were concatenated.

Thus, AAR, BAAR, HJORTH and TDP concatenated features from both hemispheres.
MVAAR computed features considering all input channels, and therefore, it was unneces-
sary to concatenate features. BP and PLV used separate feature extraction methods for
each hemisphere with their own parameter setup.

Depending on the feature extraction method and the spatial filter, several channel sets
were tested (see Tables 4.1, 4.2 and 4.3). The optimization step and the evaluation step
were executed for all combinations of subjects, methods and spatial filters with their
channel sets. These two main steps were implemented in the MATLAB toolbox TestFEM.
For details on the toolbox TestFEM see Chapter 6.

Figure 4.4 shows the basic procedure how the classification accuracy for a feature ex-
traction method was determined.
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Figure 4.4: procedure for determining the classification accuracy of a feature extraction
method

spatial filter channels

monopolar 8 & 12

bipolar 2 & 6 7 & 11 24 & 28

Laplace 2 & 6

CAR 8 & 12

Table 4.1: channel sets used for all feature extraction methods; the channel positions are
depicted in Figure 4.3
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spatial filter channels

monopolar 8 & 10, 10 & 12 8 & 4, 4 & 12 8 & 1, 1 & 12

bipolar 2 & 1, 1 & 6 7 & 4, 4 & 11 7 & 1, 1 & 11
2 & 4, 4 & 6 7 & 9, 9 & 11 24 & 29, 29 & 28 24 & 26, 26 & 28

Laplace 2 & 1, 1 & 6 2 & 4, 4 & 6

CAR 8 & 10, 10 & 12 8 & 4, 4 & 12 8 & 1, 1 & 12

Table 4.2: channel sets with 3 different channels, used additionally for PLV; the comma
separates channels by their hemisphere (each hemisphere has a PLV feature
extraction method, see text above)

spatial filter channels

monopolar 8 & 3, 5 & 12 8 & 2, 6 & 12 8 & 9, 11 & 12

bipolar 7 & 3, 5 & 11 2 & 8, 6 & 10 2 & 3, 5 & 6
7 & 8, 10 & 11 24 & 25, 27 & 28 7 & 2, 6 & 11

Laplace 2 & 3, 5 & 6

CAR 8 & 3, 5 & 12 8 & 2, 6 & 12 8 & 9, 11 & 12

Table 4.3: channel sets with 4 different channels, used additionally for PLV; the comma
separates channels by their hemisphere

Optimization Step In this step, the parameters of a feature extraction method were
optimized – specifically for a subject, spatial filter and channel set – with a genetic algo-
rithm (see Chapter 3). An individual consisted of one feature extraction method, except
in the cases of BP and PLV (see text above). The size of the population was 50, and 300
generations were generated. The fitness score of an individual, which was minimized by
the genetic algorithm, was calculated as 1 subtracted by the 90% quantile of the classifica-
tion accuracy of an LDA classifier over a trial (see Section 3.2, particular Figure 3.2). This
classifier was trained with features extracted in an interval of 300 ms between second 3
and 6 within a trial, and tested against features extracted in an interval of 300 ms between
second 2 and 6 within a trial. Train and test trials were selected through a 10 × 5-fold
cross validation. Only data from the first session was used (optimization data). To reduce
data, pauses between trials were cut out. Trials which contained artifacts were marked by
an expert and removed [3].

Evaluation Step The optimized feature extraction method was used to extract features
from the optimization and evaluation data, and the whole data were used (including pauses
and artifacts). The LDA classifier was trained with features from the optimization data
and tested against features from the evaluation data. Train features were extracted in an
interval of 40 ms between second 3 and 6 within a trial, and test features were extracted
in an interval of 8 ms (every sample) between second 2 and 6 within a trial. Again, the
90% quantile of the classification accuracy over a trial was taken as the final classification
accuracy (similar as in Figure 3.2).

28



To simplify results and their interpretation, only the channel set with the highest re-
sulting classification accuracy for a certain subject/method/spatial filter combination was
considered for further analysis. Because this is an optimization, the fitness score of the
best individual from the optimization step (and not the final classification accuracy from
the evaluation step!) was used to select the best channel set.

It is important to emphasize that only unseen data were used for testing the classifier
in the evaluation step.

4.2.2 General Comparison

In this approach, all optimization data from all 9 subjects were concatenated temporally
consecutively. This concatenated data set was used in the optimization step and for
training in the evaluation step. Hence, all of the optimization data was used at once
for the optimization, the genetic algorithm could not have optimized a feature extraction
method for a specific subject. Rather, the feature extraction methods were optimized in
a general way.

Optimization Step This step was primarily the same as in Section 4.2.1, except that
the data from all subjects were combined before.

Evaluation Step The LDA classifier was trained with features extracted from the con-
catenated optimization data, and tested separately against the evaluation data of each
subject. All other steps were the same as described in Section 4.2.1.

Again, to simplify results, only the channel set with the highest resulting classification
accuracy for a certain subject/method/spatial filter combination was further used. The
fitness score of the best individual from the optimization step was used to select the best
channel set. Because subjects with the same method/spatial filter/channel set combination
used the same optimization step in this setup (and therefore had the same final fitness
score), all subjects with the same method and spatial filter selected the same channel set
for further analysis.

4.3 Combination of Feature Extraction Methods

In this test setup, combinations of feature extraction methods which yield the highest
possible classification accuracies for subjects were searched. Basically it was the same
process as in Section 4.2, but now a combination of methods has been optimized and
afterwards evaluated.

The methods were not restricted to the C3 and C4 electrodes. All electrodes – except
electrodes over the parietal lobe (electrodes 19–22, Figure 4.2) – could be used.

The feature vectors resulting from the feature extraction methods were combined with
the META method, explained in Section 2.6.

Optimization Step This optimization step was executed for each subject. Not only
the parameters of a method were optimized with the genetic algorithm, but also the
combination of methods itself. This was a generalization of the optimization step from
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the previous section: an individual consisted of one or more methods instead of exactly
one. An individual could have had more methods from one type, e.g. 2 BP methods with
different frequency bands for different channels. Because it was not necessary, BP and PLV
methods were not handled in some special way as in the previous section. Each method
used an own selection of available channels (= all electrodes with all spatial filters, but no
electrodes from the parietal lobe). The population size was increased to 100 individuals
and 300 generations were evolved. Because of finite computing power, some limitations
must have been made: each method could not have used more than 6 channels at once
(however, the PLV method used exactly two channels, but more PLV methods could be
used by one individual); an individual could have used maximally one BAAR and one
MVAAR method, but more methods from other types; an individual could have had
maximally 6 feature extraction methods.

Evaluation Step The LDA classifiers (here: META) were trained with features from
the optimization data and tested against features from the evaluation data of a subject.
This test procedure was already explained in Section 4.2.1.
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Chapter 5

Results

5.1 Individual Comparison Results

A feature extraction method was optimized for one person and evaluated against the same
person. For the optimization and evaluation step, EEG data sampled at 125 Hz from two
different sessions have been used. As final classification accuracy, the 90% quantile of the
classification accuracies over the time within a trial was taken (see Figure 3.2). Several
channel combinations were tested for each spatial filter, but only the channel combination
with the best classification accuracy was used for that person and that spatial filter.
The test procedure is explained in Section 4.2.1 in more detail. Section 5.1.1 compares
the classification accuracies (descriptive statistics, significance tests), and Section 5.1.2
analyses the parameters of the feature extraction methods found by the genetic algorithm.

5.1.1 Classification Accuracies

Descriptive Statistics

A summary of the classification results of all 9 subjects is presented here. Table 5.1 shows
the means, Table 5.2 the standard deviations, and Table 5.3 the medians of the classifi-
cation accuracies broken down by feature extraction method and spatial filter. Table 5.4
and 5.5 show mean values, standard deviations and medians of feature extraction meth-
ods and spatial filters, respectively. Figure 5.1 shows a box-and-whisker plot. The rank
of a feature extraction method (regarding the mean of the classification accuracies), the
best spatial filter for a method, and the approximate distribution of the evaluation results
can be read from this plot. TDP with a bipolar spatial filter gives the best classification
results. Figure 5.2 shows the mean values and standard deviations of the classification
accuracies from all feature extraction methods and their spatial filters. The effect of the
spatial filter on the classification accuracies can be seen clearly in this figure. Except with
PLV, bipolar and Laplace spatial filters work better than CAR and monopolar spatial
filters. Furthermore, bipolar filters lead almost always to a better mean accuracy than
Laplace filters. With PLV, exactly the opposite is the case.
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bipolar CAR Laplace monopolar

AAR 0.74 0.65 0.71 0.61

BAAR 0.68 0.62 0.70 0.60

BP 0.77 0.69 0.74 0.64

HJORTH 0.76 0.69 0.73 0.63

MVAAR 0.74 0.66 0.69 0.62

PLV 0.63 0.67 0.65 0.66

TDP 0.78 0.70 0.74 0.63

Table 5.1: mean values of the classification accuracies

bipolar CAR Laplace monopolar

AAR 0.12 0.09 0.11 0.09

BAAR 0.15 0.07 0.13 0.11

BP 0.11 0.10 0.13 0.10

HJORTH 0.12 0.10 0.11 0.10

MVAAR 0.13 0.10 0.09 0.09

PLV 0.07 0.09 0.06 0.12

TDP 0.11 0.11 0.11 0.10

Table 5.2: standard deviations of the classification accuracies

bipolar CAR Laplace monopolar

AAR 0.80 0.68 0.73 0.58

BAAR 0.63 0.64 0.68 0.54

BP 0.77 0.66 0.69 0.60

HJORTH 0.77 0.67 0.71 0.58

MVAAR 0.83 0.60 0.71 0.58

PLV 0.63 0.65 0.61 0.61

TDP 0.82 0.67 0.72 0.59

Table 5.3: medians of the classification accuracies
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mean sd median

AAR 0.68 0.11 0.66

BAAR 0.65 0.12 0.60

BP 0.71 0.12 0.67

HJORTH 0.70 0.11 0.69

MVAAR 0.68 0.11 0.63

PLV 0.65 0.08 0.63

TDP 0.71 0.12 0.69

Table 5.4: mean values, standard deviations and medians of the classification accuracies
of feature extraction methods

mean sd median

bipolar 0.73 0.12 0.71

CAR 0.67 0.09 0.65

Laplace 0.71 0.11 0.70

monopolar 0.63 0.10 0.58

Table 5.5: mean values, standard deviations and medians of the classification accuracies
of spatial filters

33



TDP BP HJORTH MVAAR AAR BAAR PLV

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

box−and−whisker plot of the classification accuracies

spatial filter = best

feature extraction method

c
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 [

.]

bipolar

car

laplace

monopolar

Figure 5.1: Box-and-whisker plot of the mean classification accuracies when the spatial
filter with the highest mean accuracy for each feature extraction method was
used. The feature extraction methods are sorted by the mean value of their
classification accuracies. The thicker black solid line shows medians, the dotted
line with the square marks mean classification accuracies of feature extraction
methods.
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Figure 5.2: overview of mean values and standard deviations of the classification accuracies
for all feature extraction methods and all spatial filters
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ANOVA

A two-way repeated measures ANOVA was computed over the classification accuracies.
The ANOVA tests if a certain choice of a feature extraction method and/or spatial filter
has a significant effect on the classification accuracy. Feature extraction method (here
often abbreviated with method) and spatial filter are called factors. Each factor has a
certain number of levels. The factor method has e.g. 7 levels (AAR, BAAR, BP, etc.). A
certain method/spatial filter combination is called group. Because there are 7 levels for
the factor method and 4 levels for the factor spatial filter, there are 7 · 4 = 28 groups.
A group contains the classification accuracies of the subjects which were evaluated with
the method/spatial filter combination from that group. If a factor leads to significant
differences in the mean values of the groups collapsed over all other factors, it is called
main effect. If a factor influences another factor, it is called interaction effect. The ANOVA
tests if there are any main effects or interactions; the null hypotheses are: there are no
main effects/interactions.

A repeated measures ANOVA must be used, because each subject was tested with all
combinations of the two (within-subject) factors: feature extraction method and spatial
filter. In other words, a subject was repeatedly tested.

A so called p-value is important. This value specifies the probability that the null
hypotheses is true. If p has a value smaller than 0.05, the null hypothesis can be rejected.

Normal distribution of the groups and sphericity are preconditions for the repeated mea-
sure ANOVA. Normal distribution was tested with the Shapiro-Wilk test. The resulting
p-values are shown in Table 5.6 (null hypothesis: data is normally distributed). Sphericity
was tested with Mauchly’s sphericity test (null hypothesis: sphericity can be assumed),
see Table 5.7 for the p-values. The sphericity assumption for the factor method is not
valid, because the p-value is smaller than 0.05.

The ANOVA is shown in Table 5.8. Because the sphericity assumption is violated for
the factor method, the Greenhouse & Geisser (G-G) or Huynh & Feldt (H-H) corrected
p-values must be used for that factor. Both values are smaller than 0.05 and so it does not
matter which correction is used. The null hypotheses of the ANOVA must be rejected,
and there exist two main effects (method, spatial filter) and one interaction effect between
the factors. The ANOVA does not show which group means differ. For that purpose,
Tukey’s post-hoc tests must be used (see next section).

bipolar CAR Laplace monopolar

AAR 0.23 0.19 0.52 0.05

BAAR 0.13 0.98 0.17 0.00

BP 0.29 0.35 0.35 0.00

HJORTH 0.54 0.97 0.52 0.01

MVAAR 0.02 0.09 0.11 0.04

PLV 0.73 0.08 0.09 0.12

TDP 0.30 0.93 0.64 0.01

Table 5.6: p-values of the Shapiro-Wilk test (p-values smaller than 0.05 are colored)

36



factor p

method 0.02

spatial filter 0.20

method*spatial filter 1.00

Table 5.7: p-values of Mauchly’s sphericity test

factor DoF F p G-G ε G-G p H-F ε H-F p

method 6 8.20 0.00 0.45 0.00 0.70 0.00

error 48

spatial filter 3 8.63 0.00 0.69 0.00 0.93 0.00

error 24

method*spatial filter 18 2.58 0.00 0.20 0.06 0.39 0.02

error 144

Table 5.8: results of ANOVA with sphericity corrected p-values
DoF . . . degree of freedom
G-G . . . Greenhouse & Geisser
H-H . . . Huynh & Feldt

Tukey’s Test

Tukey’s test shows which groups have different mean values. The null hypothesis of Tukey’s
test is: the group mean values are equal. Tukey’s test compares all groups against each
other. Here, this would be 28 · 28 = 784 comparisons. It is not feasible to show all
comparison results. The test results of the methods using their best spatial filter are
shown in Table 5.9. These are also the methods which are depicted in Figure 5.1. Only
the mean classification accuracy of the PLV (CAR) method differs significantly from the
mean classification accuracies of the TDP (bipolar) and BP (bipolar) method. The test
results of all 4 spatial filters in combination with the best method from Figure 5.1 (TDP)
are shown in Table 5.10. The monopolar spatial filter differs significantly from the bipolar
and Laplace spatial filters when the TDP feature extraction method is used.

An assumption of Tukey’s test is the normal distribution of the groups. This was
tested with the Shapiro-Wilk test, see Table 5.6. All groups in Tables 5.9 and 5.10 do
not differ significantly from the normal distribution (except MVAAR (bipolar) and TDP
(monopolar)).

5.1.2 Feature Extraction Methods Parameters

The genetic algorithm optimized the parameters of the feature extraction methods and
these optimized parameters are analyzed in Tables 5.11–5.17. Mean values and variances
are shown. For nominal scaled parameters, only the mode was calculated. The meaning of
the parameters can be looked up in Chapter 2; the variable names are the same. “startFrq”
and “stopFrq” belong to a band-pass filter applied to the EEG signal beforehand. Only
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AAR BAAR BP HJORTH MVAAR PLV TDP

AAR (bipolar) 1.00 1.00 1.00 1.00 0.42 1.00

BAAR (Laplace) 1.00 0.51 0.92 1.00 1.00 0.25

BP (bipolar) 1.00 0.51 1.00 1.00 0.01 1.00

HJORTH (bipolar) 1.00 0.92 1.00 1.00 0.10 1.00

MVAAR (bipolar) 1.00 1.00 1.00 1.00 0.40 1.00

PLV (CAR) 0.42 1.00 0.01 0.10 0.40 0.00

TDP (bipolar) 1.00 0.25 1.00 1.00 1.00 0.00

Table 5.9: p-values from Tukey’s test of the methods with their best spatial filters (as
shown in Figure 5.1)

TDP bipolar CAR Laplace monopolar

bipolar 0.17 1.00 0.00

CAR 0.17 0.99 0.78

Laplace 1.00 0.99 0.01

monopolar 0.00 0.78 0.01

Table 5.10: p-values of Tukey’s test of all 4 spatial filters in combination with the TDP
method

the parameters which belong to the best spatial filter for a feature extraction method are
analyzed.

The BP feature extraction method used several frequency bands between 4 Hz and
39 Hz. It was the task of the genetic algorithm to find frequency bands which include
information useful for classification. Frequency bands which include more discriminative
information had a bigger chance to appear in the parameter set of the final optimized
method than frequency bands with no useful classification information. All frequencies
used by the optimized BP methods of all subjects were considered, and their probability
density function (PDF) was estimated with a kernel density estimation method. The
PDFs of the frequencies used by the optimized BP methods are shown in Figures 5.3 and
5.4. Remember, as stated in Section 4.2.1, BP and PLV used one method per hemisphere
(with their own parameters). Therefore, there are two PDFs, and also the parameters in
the corresponding tables are prefixed with the words left or right. The PDFs in Figures
5.3 and 5.4 show three ranges where discriminative information is probably found: mainly
in the α- and γ-bands and to a certain extend in the β-band.

It is interesting that TDP and HJORTH have similar frequency ranges for the preced-
ing band-pass filter (ca 10–20 Hz). Also, AAR, BAAR, MVAAR and PLV have similar
frequency ranges (ca 10 – 30 Hz).

The optimal update coefficient UC used by AAR, BAAR and MVAAR depends on the
choice of the update mode for the Qk matrix (process noise covariance matrix). See Tables
5.14–5.16 for the ranges of UC.
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TDP (bipolar)

startFrq [Hz] stopFrq [Hz] T [s] p

mean value 12.22 23.89 0.91 6.33

std deviation 6.80 7.69 0.15 2.92

channel set
mode 2 & 6

Table 5.11: optimal parameters for TDP

BP (bipolar)

left T [s] right T [s]

mean value 0.69 0.79

std deviation 0.13 0.13

channel set
mode 2 & 6

Table 5.12: optimal parameters for BP

HJORTH (bipolar)

startFrq [Hz] stopFrq [Hz] T [s]

mean value 9.33 20.89 0.91

std deviation 7.68 7.74 0.12

channel set
mode 2 & 6

Table 5.13: optimal parameters for HJORTH

MVAAR (bipolar)

startFrq [Hz] stopFrq [Hz] p UC (Q mode = 0) UC (Q mode > 0)

mean 5.11 31.67 4.11 10−6 – 10−4 10−3

std dev 3.62 10.17 2.20

channel set Q mode R m.
mode 2 & 6 0 0

Table 5.14: optimal parameters for MVAAR
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Figure 5.3: BP: estimated PDF of the frequency components used for classification on
channel C3 (bipolar); this figure shows how likely it is that a frequency contains
discriminative information

AAR (bipolar)

startFrq [Hz] stopFrq [Hz] p UC (Q mode = 0) UC (Q mode > 0)

mean 7.56 33.11 4.22 10−6 – 10−5 10−3

std dev 9.59 7.90 1.86

channel set Q mode R m.
mode 2 & 6 0 1

Table 5.15: optimal parameters for AAR
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Figure 5.4: BP: estimated PDF of the frequency components used for classification on
channel C4 (bipolar); this figure shows how likely it is that a frequency contains
discriminative information

BAAR (Laplace)

startFrq [Hz] stopFrq [Hz] p q1 q2 UC (Q. = 0) UC (Q. > 0)

mean 8.22 34.22 5.67 2.22 4.11 10−5 – 10−2 10−2

std dev 4.58 5.78 1.22 0.83 2.85

channel set Q mode R m.
mode 2 & 6 0 0

Table 5.16: optimal parameters for BAAR
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PLV (CAR)

left startFrq [Hz] left stopFrq [Hz] left T [s]

mean value 11.22 29.56 0.76

std deviation 8.06 10.11 0.16

right startFrq [Hz] right stopFrq [Hz] right T [s]

mean value 11.44 27.56 0.62

std deviation 9.71 9.30 0.32

channel set
mode 8 & 2, 6 & 12

Table 5.17: optimal parameters for PLV
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5.2 General Comparison Results

The data from the training session was concatenated and a feature extraction method was
optimized with this data, also the LDA classifier in the evaluation step was trained with
this data. Because this data consisted of samples from all 9 subjects, the feature extraction
method had no chance in the optimization step to adapt to one subject. The optimized fea-
ture extraction method was afterwards evaluated individually against the evaluation data
from each subject. Here, each subject with the same feature extraction method, spatial
filter and channel set was evaluated with the same parameters of the feature extraction
method. To simplify things, only the channel set which leads to the best classification
accuracy for a certain subject/method/spatial filter combination was used further. See
Section 4.2.2 for a more detailed description. Classification accuracies are analyzed in
Section 5.2.1, also a comparison is made between individual optimization/training results
(Section 5.1) and general optimization/training results in this section. Parameters of the
optimized methods are noted in Section 5.2.2.

5.2.1 Classification Accuracies

Descriptive Statistics

Mean values, standard deviations and medians of the classification accuracies of the 9
subjects are shown in Tables 5.18–5.20 (broken down by feature extraction method and
spatial filter). Table 5.21 and 5.22 show mean values, standard deviations and medians of
feature extraction methods and spatial filters, respectively. A box-and-whisker plot with
the best spatial filter for each method is depicted in Figure 5.5. TDP (bipolar) works
best. Principally, this figure shows the same situation as 5.1, except that the BAAR
method works better with a bipolar spatial filter. Also, the ranking of the AAR, BAAR
and MVAAR methods differ among each other. Figure 5.6 shows the mean values and
standard deviations of the classification accuracies from all methods and all spatial filters.
The effect of the spatial filter is the same as in the preceding section. For all methods –
except PLV – bipolar and Laplace spatial filters yield better mean classification accuracies
than CAR and monopolar filter.

bipolar CAR Laplace monopolar

AAR 0.71 0.63 0.67 0.57

BAAR 0.72 0.62 0.66 0.57

BP 0.73 0.65 0.70 0.60

HJORTH 0.73 0.65 0.68 0.60

MVAAR 0.71 0.64 0.67 0.57

PLV 0.61 0.65 0.63 0.65

TDP 0.74 0.67 0.69 0.61

Table 5.18: mean values of the classification accuracies
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bipolar CAR Laplace monopolar

AAR 0.10 0.07 0.08 0.06

BAAR 0.08 0.04 0.09 0.02

BP 0.12 0.05 0.10 0.06

HJORTH 0.11 0.06 0.10 0.08

MVAAR 0.11 0.05 0.12 0.05

PLV 0.07 0.09 0.06 0.08

TDP 0.12 0.07 0.10 0.08

Table 5.19: standard deviations of the classification accuracies

bipolar CAR Laplace monopolar

AAR 0.68 0.64 0.64 0.57

BAAR 0.67 0.60 0.63 0.56

BP 0.70 0.65 0.67 0.58

HJORTH 0.69 0.64 0.69 0.56

MVAAR 0.69 0.65 0.63 0.56

PLV 0.58 0.61 0.62 0.63

TDP 0.70 0.67 0.65 0.58

Table 5.20: medians of the classification accuracies

mean sd median

AAR 0.64 0.09 0.63

BAAR 0.64 0.08 0.62

BP 0.67 0.10 0.65

HJORTH 0.66 0.10 0.65

MVAAR 0.65 0.10 0.63

PLV 0.64 0.07 0.61

TDP 0.68 0.10 0.65

Table 5.21: mean values, standard deviations and medians of the classification accuracies
of feature extraction methods

mean sd median

bipolar 0.71 0.11 0.68

CAR 0.64 0.06 0.64

Laplace 0.67 0.09 0.64

monopolar 0.60 0.07 0.58

Table 5.22: mean values, standard deviations and medians of the classification accuracies
of spatial filters
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Figure 5.5: Box-and-whisker plot of the classification accuracies when the spatial filter with
the highest mean classification accuracy for each feature extraction method
was used. Feature extraction methods are sorted by the mean value of their
classification accuracies. The thicker black solid line shows medians, the dotted
line with the square marks mean classification accuracies of feature extraction
methods.
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Figure 5.6: overview of mean values and standard deviations of the classification accuracies
for all feature extraction methods and all spatial filters
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ANOVA

An ANOVA was used to test for significant effects. The factors were: method and spatial
filter. Some preconditions must be fulfilled (see Section 5.1.1). The test results for normal
distribution are shown in Table 5.23, and the test results for sphericity are shown in Table
5.24. As in the previous chapter, the sphericity assumption for the factor method is not
valid and so, the p-value of the factor method must be corrected when applying the ANOVA
(with Greenhouse & Geisser or Huynh & Feldt). Table 5.25 shows the ANOVA results. It
is not important which correction is used, because both p-values show an significant effect
of the factor method. Spatial filter has an main effect and it exists an interaction effect
between the factors.

bipolar CAR Laplace monopolar

AAR 0.07 0.44 0.03 0.27

BAAR 0.13 0.17 0.33 0.01

BP 0.63 0.75 0.42 0.17

HJORTH 0.23 0.56 0.51 0.00

MVAAR 0.73 0.38 0.12 0.00

PLV 0.08 0.07 0.47 0.27

TDP 0.17 0.82 0.15 0.00

Table 5.23: p-values of the Shapiro-Wilk test (p-values smaller than 0.05 are colored)

factor p

method 0.01

spatial filter 0.56

method*spatial filter 1.00

Table 5.24: p-values of the Mauchly’s sphericity test

factor DoF F p G-G ε G-G p H-F ε H-F p

method 6 3.54 0.01 0.39 0.04 0.56 0.02

error 48

spatial filter 3 9.46 0.00 0.73 0.00 1.00 0.00

error 24

method*spatial filter 18 3.93 0.00 0.20 0.01 0.37 0.00

error 144

Table 5.25: results of ANOVA inclusive sphericity corrected p-values
DoF . . . degree of freedom
G-G . . . Greenhouse & Geisser
H-H . . . Huynh & Feldt
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Tukey’s Test

Significant differences in the mean values of the methods shown in Figure 5.5 (the best
spatial filter was used for each method) were identified with Tukey’s test. Results are
shown in Table 5.26. Only TDP (bipolar) differs significantly from PLV (monopolar).
Additionally, the spatial filters of the method with the best mean value in Figure 5.5
(TDP) were tested for significant differences. Results are in Table 5.27: when using the
TDP method, the monopolar spatial filter differs significantly from the bipolar and Laplace
spatial filters.

AAR BAAR BP HJORTH MVAAR PLV TDP

AAR (bipolar) 1.00 1.00 1.00 1.00 0.70 1.00

BAAR (bipolar) 1.00 1.00 1.00 1.00 0.38 1.00

BP (bipolar) 1.00 1.00 1.00 1.00 0.07 1.00

HJORTH (bipolar) 1.00 1.00 1.00 1.00 0.11 1.00

MVAAR (bipolar) 1.00 1.00 1.00 1.00 0.49 1.00

PLV (monopolar) 0.70 0.38 0.07 0.11 0.49 0.01

TDP (bipolar) 1.00 1.00 1.00 1.00 1.00 0.01

Table 5.26: p-values from Tukey’s test of the methods with their best spatial filters (as
shown in Figure 5.1)

TDP bipolar CAR Laplace monopolar

bipolar 0.11 0.92 0.00

CAR 0.11 1.00 0.76

Laplace 0.92 1.00 0.04

monopolar 0.00 0.76 0.04

Table 5.27: p-values of Tukey’s test of all 4 spatial filters in combination with the TDP
method

Individual vs. General Optimization/Training

All classification accuracies from Section 5.1 and from this section were compared with a
repeated measures ANOVA. In addition to the already used factors “method” and “spatial
filter”, a factor was added: “comparison”. This factor consisted of two levels: one level
contains data from Section 5.1, the other level contains data from Section 5.2. The results
of Mauchly’s sphericity test can be looked up in Table 5.28. The degree of freedom for the
factor comparison is 1, so there is no entry for this factor in the table. The main effect of
the factor method and interactions with this factor are interesting. No significant effect
regarding this factor can be concluded from the test results in Table 5.29.
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factor p

comparison -

method 0.00

spatial filter 0.49

comparison*method 0.79

comparison*spatial filter 0.07

method*spatial filter 1.00

comparison*method*spatial filter 1.00

Table 5.28: p-values of Mauchly’s sphericity test

factor DoF F p G-G ε G-G p H-F ε H-F p

comparison 1 2.56 0.15 1.00 0.15 1.00 0.15

error 8

method 6 6.90 0.00 0.39 0.00 0.56 0.00

error 48

spatial filter 3 10.49 0.00 0.68 0.00 0.92 0.00

error 24

comparison*method 6 2.20 0.06 0.60 0.10 1.00 0.06

error 48

comparison*spatial filter 3 0.30 0.83 0.71 0.76 0.98 0.82

error 24

method*spatial filter 18 3.92 0.00 0.18 0.02 0.31 0.00

error 144

comp.*method*spatial f. 18 0.77 0.73 0.23 0.56 0.52 0.65

error 144

Table 5.29: results of ANOVA inclusive sphericity corrected p-values
DoF . . . degree of freedom
G-G . . . Greenhouse & Geisser
H-H . . . Huynh & Feldt
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5.2.2 Feature Extraction Methods Parameters

The feature extraction methods were optimized and the resulting parameters of each
method are shown in Tables 5.30–5.33. In contrast with the individual comparison (Sec-
tion 5.1) where a method was optimized separately for each subject, the methods were
optimized with the concatenated data from all subjects. As a consequence, for each
method/spatial filter/channel set combination exists only one optimized method (instead
of 9). Therefore, no mean values etc. can be shown here, but the concrete parameters of
the optimized methods. Only the parameters of a feature extraction method which belong
to the spatial filter with the best mean classification accuracy are shown.

channels startFrq [Hz] stopFrq [Hz] T [s] p

TDP 2 & 6 1.00 16.00 0.99 10

HJORTH 24 & 28 1.00 33.00 0.99 -

Table 5.30: optimal parameters for TDP and HJORTH (bipolar)

channels startFrq [Hz] stopFrq [Hz] p q1 q2 UC Q m. R m.

AAR 24 & 28 3 13 2 - - 10−6 0 0

BAAR 24 & 28 1 38 9 1 5 10−6 0 0

MVAAR 2 & 6 1 32 4 - - 0.003 2 1

Table 5.31: optimal parameters for AAR, BAAR and MVAAR (bipolar)

channel frequency bands [Hz] T [s]

BP left 2 10-13, 16-27, 32-39 0.71

BP right 6 10-23, 28-31 0.79

Table 5.32: optimal parameters for BP (bipolar)

channels startFrq [Hz] stopFrq [Hz] T [s]

PLV left 8 & 3 11 32 0.81

PLV right 5 & 12 6 40 0.72

Table 5.33: optimal parameters for PLV (monopolar)
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5.3 Combination of Feature Extraction Methods

As described in Section 4.3 the genetic algorithm tried to find a combination of feature ex-
traction methods which gives a ideally high classification accuracy. This optimization was
done per subject. The mean value, standard deviation and median over the classification
accuracies over all 9 subjects can be found in Table 5.34. Figure 5.7 shows a box-and-
whisker plot of the classification accuracies, together with the TDP method already shown
in Figure 5.1.

combination of methods

mean value 0.78

standard deviation 0.13

median 0.81

Table 5.34: mean value, standard deviation and median over the classification accuracies
of all 9 subjects

5.3.1 One Method vs. Combination of Methods

The method with the highest mean classification accuracy from Section 5.1 – TDP with a
bipolar spatial filter – was compared against the classification accuracies from Section 5.3.
For that purpose a paired t-test was applied. This test yielded a non-significant p-value
of 0.77. Thus, method combinations do not result in better classification accuracies than
the best method from Section 5.1 (TDP, bipolar spatially filtered). See Figure 5.7 for a
graphic comparison.

Normal distribution is a precondition for a paired t-test. The classification accuracies
resulting from the TDP (bipolar) method were already tested for normal distribution
(they are normal distributed). The classification accuracies from Section 5.3 are also
normal distributed, because the p-value from the Shapiro-Wilk test is 0.68. The result of
the paired t-test should therefore be valid.
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Figure 5.7: Box-and-whisker plot of the classification accuracies of the combined feature
extraction methods and TDP (bipolar spatially filtered, from Section 5.1). The
thicker black solid line shows medians, the dotted line with the square marks
mean values of the classification accuracies.
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Chapter 6

TestFEM Toolbox

A MATLAB toolbox called “TestFEM” was developed to facilitate the tests explained in
Chapter 4. This toolbox is based on the “BioSig” project1 which provides a comprehensive
toolbox for processing bio-signals, and the “Global Optimization Toolbox” integrated in
MATLAB. TestFEM

1. optimizes a feature extraction method or a combination of them,

2. trains a classifier using the optimized methods,

3. and tests a classifier using the optimized methods.

All steps operate on offline data, recorded with a cue-based paradigm. Step 1 is called
“optimization step”, steps 2 and 3 are called “evaluation step”. The genetic algorithm as
described in Section 3.2 is used in the optimization step. A certain classifier is trained
in the evaluation step and tested afterwards. The test result is a vector of classification
accuracies over a trial. The classification accuracies over a trial are determined as in the
optimization step (see Figure 3.2, but no 90% quantile is taken).

The next sections show an overview of the data format, the in- and output parameters
of a feature extraction method, and how to evaluate a method.

6.1 EEG Data

The EEG data must be stored in MAT-files, GDF files are not directly supported. Such
a MAT-file must contains two variables: signals and header. signals is a cell ar-
ray which contains spatially pre-filtered input signals. Table 6.1 shows which index of
signals corresponds to which spatial filter. The signals itself are stored as double ma-
trices. The columns correspond to EEG channels, the rows to sample points. header

is a struct and constructed like a GDF header. header must have the following (GDF)
entries: Classlabel, TRIG, ArtifactSelection and SampleRate. ArtifactSelection is
a boolean value and indicates if a trial contains artifacts (TRUE: trial contains artifacts).

6.2 Feature Extraction Methods

Feature extraction methods perform the actual work, they process EEG signals and com-
pute features. In the context of this chapter, they are functions which are called from

1http://biosig.sourceforge.net
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index spatial filter

1 monopolar

2 bipolar

3 Laplace

4 CAR

Table 6.1: indices and spatial filters of the cell array signals

MATLAB. To work together with TestFEM, these functions must be in the search path
and have a specific method signature:

features = method(signals, fs, min_interval, parameters)

Table 6.2 explains the arguments. “compute & hold” means that it is basically not neces-
sary to compute for every sample an appropriate feature vector, instead the last computed
feature vector can be reused. Only every min_interval samples a new feature vector must
be calculated. This should reduce the computing effort if supported by the feature extrac-
tion method. parameters is a structure and consists of parameters used by the feature
extraction method. Only the feature extraction method is responsible for the interpre-
tation of these parameters. The next section shows how these parameters are set (fixed
parameters) and created/modified by the GA (unfixed parameters).

Each column of signals corresponds to an EEG channel. A function must compute
features using all channels of the input signal. The order and the number of channels will
change as the GA progresses. The dimension of the feature vectors is solely determined
by this function.

argument type dimension description

signals double matrix samples× channels EEG signals

fs integer scalar sampling frequency [Hz]

min_interval integer scalar
”
compute & hold“

parameters structure scalar parameters used by the method

features double matrix samples× features computed features

Table 6.2: arguments of a feature extraction method

6.3 Testing a Method

Testing a feature extraction method means that the classification accuracy in combination
with some classifier is determined. The feature extraction methods and the test procedure
must be configured before.

Configuring the Feature Extraction Methods A feature extraction method is con-
figured through a prototype. This prototype contains a name, the actual feature extraction
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method, fixed parameters and parameters which should be determined by the genetic al-
gorithm (unfixed parameters). A prototype is a MATLAB structure and contains the
entries shown in Table 6.3. methodHandle is a MATLAB function handle and points to a
feature extraction method. This feature extraction method must be created as described
in Section 6.2. parameters is a structure and will be referred to a feature extraction
method. Method parameters which should be fixed (not optimized) must be stored in this
structure. name is a unique name and identifies a prototype. More prototypes with the
same methodHandle, but e.g. a different parameters structure could be defined. However,
their names must be different. name is also used for crossover (see Section 3.2): methods
can only be combined if their name fields match. It must be noted that one entry is not
shown in Table 6.3, because this entry is created at runtime by the GA: channels. This
is a vector containing the used channel numbers.

At runtime in the optimization step, an individual consists of one or more instances
of prototypes. More precisely, these instances (prototype structure + unfixed parameters
+ channels) are stored within a cell array of the individual. When the fitness function
calculates the fitness score, for each instance the associated feature extraction method
(methodHandle) is invoked with the parameters specified in parameters. In addition to
the fixed parameters specified in the prototype, the GA also creates parameters in the
structure parameters and modifies them at runtime. For a feature extraction method,
there is really no principal difference between fixed and unfixed parameters, both are
stored in the same structure at runtime.

How are parameters specified which should be optimized by the GA? This is the
task of the GAConfig structure. The content of this structure is shown in Table 6.4.
fixedChannels is a vector of channel numbers which all instances of a prototype must
use. Normally, the GA alters the channels for each instance in crossover and mutation op-
erations, but this is not the case when fixedChannels is used. fixedNumberOfChannels

specifies the exact number of channels an instance must use, but the channels itself can
change. This is useful for e.g. the PLV method, which can only be applied to two chan-
nels in a meaningful manner. maxNumberOfChannels specifies the maximum number of
channels an instance can use. If singleInstance is set to true (default: false), an indi-
vidual can not have more than one instance of the corresponding prototype. The latter
two options are useful for computationally expensive methods like MVAAR.
GAConfig.parameters is a structure, and each parameter which shall be optimized

is stored again as a structure in it (the parameter name is used as the field name),
e.g. GAConfig.parameters.exampleParameter. exampleParameter is a structure and
simultaneously the name of a parameter which should be optimized. This structure con-
tains information how the GA should initiate, crossover and mutate this parameter; the
fields are: type, range and optionally loginit. type is a string and one of: int, double,
selector (= nominal number) and bitstring. The values of type correspond to the
types shown in Table 3.2. The value range of a parameter is specified with range: a two
element vector containing upper and lower bounds for “int”, “double” and “selector”; an
integer for “bitstring”, setting the string length.

“int”, “double” and “selector” parameter values are initialized with values from a uni-
form distribution over their range; each bit of a “bitstring” is switched on with a 50%
probability. The range of a number parameter could extend over some magnitudes, e.g. UC
for AAR was optimized within the range 10−6 to 1. The problem is that samples taken
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from a uniform distribution over such a wide range are almost near the upper limit. In-
stead, the exponential of the initial value could be taken from a uniform distribution.
loginit = true does exactly that (default: false), and mutations are also applied to the
exponent of a value.

The parameters specified in the GAConfig structure are created by the toolbox in the
parameters structure (in addition to the fixed parameters) and initialized accordingly.
These parameters will be optimized by the GA.

entry type description

name string name of this method

methodHandle function handle method which is invoked

parameters struct parameters for the method

GAConfig struct configures how the GA processes parameters

Table 6.3: structure entries of a method prototype

entry type dimension

parameters struct scalar

fixedChannels integer vector channels

fixedNumberOfChannels integer scalar

maxNumberOfChannels integer scalar

singleInstance bool scalar

Table 6.4: structure entries of GAConfig

Configuring the Test Procedure The test procedure is set up with a structure, its
entries are shown in Table 6.5. gaData sets the name of the data file containing the
data used in the optimization step and for training the classifier in the evaluation step;
evaluationData sets the name of the data file used for testing the classifier in the eval-
uation step. evaluationData could also be a cell array of strings. Each string indicates
a data file against which the classifier is tested separately. These data files must be in
the format specified in Section 6.1. All loaded EEG data is organized in a matrix with
dimensions samples× channels.
spatialFilters and loadChannels specify which data should be loaded from the data

files. Valid values for spatialFilters are: monopolar, bipolar, laplace and car. It is
possible to load data from more than one spatial filter. In this case, spatialFilters must
be a cell array of strings. The data from the different spatial filters is concatenated column
wise with the same order as in spatialFilters. loadChannels specifies which channels
should be loaded. If this entry is empty ([]) or not created, all channels from all given spa-
tial filters are loaded. If only some specific channels should be loaded and spatialFilters

is a string, loadChannels must be a vector containing the desired channel numbers for
that spatial filter. If specific channels should be loaded and spatialFilters is a cell array
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of strings, loadChannels must be a cell array of vectors. This cell array must have exactly
as many entries as spatialFilters. Each vector specifies the channels of that spatial fil-
ter which should be loaded. For example, if channels 1 and 2 of the monopolar data and
channels 10 and 20 of the bipolar data should be loaded, spatialFilters would contain
{’monopolar’, ’bipolar’} and loadChannels would be set to {[1 2], [10 20]}. As
noted above, the loaded EEG data is stored in a matrix with dimension sample×channels;
channels would be 4 in this case. It is important to understand that the code in the op-
timization and evaluation step only sees the loaded EEG data, which is usually a subset
of the original data in the data file. Therefore the channel numbering changes. To stay
with the example, if a method uses channels 3 and 4 (within the code in the toolbox),
the channels really used would be 10 and 20 bipolar spatially filtered. Further note that
the dimension variable channels mentioned before is not the same variable as in Table 6.2.
The variable channels in Table 6.2 refers to the number of channels actually used by a
method, whereas channels used here refers to the number of channels of the loaded EEG
data. The structure field channels of a method instance selects which channels of the
loaded EEG data a feature extraction method should use.
methods defines the feature extraction methods available in the optimization and eval-

uation step. methods could be set directly to a prototype (= structure) of a method, in
this case all individuals use the same method and only the parameters of a method will be
optimized. methods could also be set to a cell array consisting of prototypes. In this case,
individuals use different combinations of methods and in addition to the parameters, also
the combination will be optimized. Basically, an individual uses not all available methods;
which methods an individual use is rather determined by the GA. If a prototype defines
GAConfig.fixedChannels, an individual will always use an instance of this prototype.
maxNumberOfMethods sets a limit how much instances an individual could use. Thus, it is
possible that methods defines many methods, but only a certain amount of them can be
used at the same time by an individual. This is useful for reducing the computation effort
and simultaneously ensure that the best methods will be combined.
gaTrainInterval selects the samples within a trial used for training the classifier

in the optimization step. gaTrainInterval is a 3 element vector: start time, inter-
val, end time. E.g. if set to [3 0.1 6], only feature vectors extracted 3 seconds af-
ter trial start until second 6 with a 0.1 second spacing between them will be used for
training. gaTestInterval, evaluationTrainInterval and evaluationTestInterval

are now self-explanatory. Start and end times depend on the actual paradigm used, and
often it is not desired to use every extracted feature vector for training and testing a
classifier.
trimGaData can be used to reduce the data used in the optimization step. If this

parameter is specified, TestFEM cuts out a certain range of all trials and concatenates
these fragments. At least all breaks between trials are removed. For example, [0 6]

concatenates trials ranging from second 0 to second 6 of the original trial. This reduces
the computation effort, because less feature vectors have to be computed. However, one
must take care of the settling time of the used feature extraction methods. If trimGaData
is specified, the optimization step uses the reduced data, but not the evaluation step.
featureCombination can be set to ’concat’ (default) or ’meta’, see Section 2.6 for

an explanation of these methods.
classifier specifies the used classifier. All classifiers supported by the BioSig toolbox
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(see functions train sc and test sc) which do not require any additional parameters are
supported, e.g. ’LDA’.
classes is a two element array consisting of the class numbers used. TestFEM supports

only two classes and only trials belonging to one of these classes are considered in the
optimization and evaluation step. With some moderate code changes, TestFEM should
be extensible to more classes.
gaPopulationSize and gaGenerations specify the size of the population and how much

generations will be created.

entry type description

name string name of the test

gaData string GA and training data

evaluationData string/cell array of strings testing data

spatialFilters string/cell array of strings used spatial filters

loadChannels vector/cell array of vectors used channels

methods struct or cell array of structs method prototypes

maxNumberOfMethods integer maximum number of methods

gaTrainInterval double array trial interval used for training

gaTestInterval double array trial interval used for testing

evaluationTrainInterval double array trial interval used for training

evaluationTestInterval double array trial interval used for testing

trimGaData integer array trim GA data

featureCombination string feature combination method

classifier string used classifier

classes array used classes

gaPopulationSize integer population size

gaGenerations integer number of generations to create

Table 6.5: structure entries for setting up the test procedure

Start the Test After prototypes and the test procedure are set up, the actual test is
started with:

test_result = doTest(test, data_dir, cache_dir, plot_progress)

test is the structure which sets up the test procedure; data_dir is the directory containing
the files specified in test.gaData and test.evaluationData; cache_dir is the directory
containing the cache files; plot_progress is a boolean value which configures if a plot
containing the GA progress should be shown (a progress on the console is always shown).

A few notes about caching: TestFEM saves the current GA state into a cache file every
tenth generation. If the optimization step is aborted and started again, it will resume
from the last saved generation. The test procedure must not be altered in the meantime
– with the exception of test.gaGenerations, because this way the GA can resume from
an already finished optimization step if test.gaGenerations is increased afterwards.
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test_result is a structure containing the original test structure and structure result.
test_result.result contains the entries shown in Table 6.6.
methods is the individual with the lowest fitness score in the last generation of the GA

and therefore represents the found optimum. Each cell entry of methods is an optimized
instance of a method prototype. finalScore is the fitness score reached by this individual.
scores contains the fitness scores of all gaPopulationSize individuals in all gaGenerations
generations. The progress of the GA – e.g. mean and minimum over the scores of each
generation – can be checked with these fitness scores.

The actual result is composed of the classification accuracies over a trial (like in Fig-
ure 3.2). test.evaluationTestInterval determines which classification accuracies are
assessed. These are stored in a double vector. However, data.evaluationData could be
a cell vector, specifying more than one evaluation file, and so for each evaluation file a
separate double vector with the classification accuracies would be determined. Therefore,
accuracy is always – even if data.evaluationData is a string – a cell vector containing
the separate double vectors with the classification accuracies. If data.evaluationData
is a string, then accuracy stores only one double vector; if data.evaluationData is a
cell vector with evaluationFiles entries, then accuracy has also evaluationFiles entries
(accuracy{i} contains the classification accuracies for data.evaluationData{i}).

Trials which contain artifacts (indicated by ArtifactSelection, see Section 6.1) are
cut out in the optimization step, but not in the evaluation step. accuracyWOA contains
the resulting classification accuracies when artifact contaminated trials are also cut out in
the evaluation step.

entry type dimension description

methods cell array instances optimized methods

finalScore double scalar fitness score of the best individual

scores double matrix gaGen.× gaPop. fitness scores in all generations

accuracy cell array evaluationFiles test results

accuracyWOA cell array evaluationFiles test results (without artifacts)

optTime double scalar duration of the optimization step [s]

evalTime double scalar duration of the evaluation step [s]

Table 6.6: entries of the test result.result structure
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Chapter 7

Discussion

7.1 Individual Comparison

7.1.1 Spatial Filters

According to Figure 5.2, it can be said that for AAR, BP, HJORTH, MVAAR and TDP
a bipolar spatial filter results in a better mean classification accuracy than other spatial
filters. This is also true when comparing the medians in Table 5.3. For all named methods,
a ranking of the spatial filters regarding the classification accuracy looks as follows: bipolar
> Laplace > CAR > monopolar. It is nearly the same situation with BAAR, except
that bipolar and Laplace are interchanged. Of course, the standard deviations are high
(cf. Table 5.2). For PLV, CAR and monopolar spatial filters work better than bipolar
and Laplace spatial filters, this is exactly the opposite in contrast with other methods.
For all methods except PLV, it can be said that a bipolar spatial filter using C3/C4 and
the corresponding anterior electrodes give better results than using the corresponding
posterior electrodes (see mostly used channel sets in the tables in Section 5.1.2). One can
conclude that the information sources (mainly ERD/ERS effects) are not located directly
under C3 and C4 electrodes, because in that case it would not matter if an anterior or
posterior bipolar electrode montage is used. They are rather located under the anterior
electrodes (2 and 6 in Figure 4.2). This is consistent with the current opinion that the most
discriminative information – regarding a BCI system as mentioned in the introduction –
can be extracted from the primary motor cortex which is located below these electrodes.
The Laplace spatial filter extracted information under C3 and C4 electrodes. Maybe this
is a disadvantage and led to the lower classification accuracies of the Laplace spatial filter.

7.1.2 Best Feature Extraction Method

From Figure 5.1 it can be seen that the TDP method reaches the highest mean classification
accuracy (0.78), and the MVAAR method reaches the highest median of the classification
accuracies (0.83). The median of the TDP method is 0.82. Because TDP

• reaches the highest mean classification accuracy,

• nearly the same median value as MVAAR,

• has only few parameters,

• and is cheap from a computational point of view,

it must be concluded that TDP is the ideal method for extracting features. Of course,
this is only valid for comparable paradigms and an LDA classifier.
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7.1.3 Effects of Feature Extraction Methods and Spatial Filters

A repeated measures ANOVA was used to test for main and interaction effects of the
factors “method” and “spatial filter” on the classification accuracy. Table 5.8 shows that
each factor has a main effect and also an interaction effect exists (PLV works better with
CAR and monopolar spatial filters, but not other methods). Therefore, it is important
which feature extraction method and spatial filter are chosen. Tukey’s test was used to
find out which groups differ in their mean value, but it is not feasible to show all test
results. When using the best spatial filter for each method (cf. Table 5.9), then there is
only a significant difference between PLV and {BP, TDP}. Furthermore, the spatial filters
in combination with the TDP method have been compared with Tukey’s test (Table 5.10).
Significant differences have been found between monopolar and {bipolar, Laplace} spatial
filters. The spread of the classification accuracies in each group is high (e.g. see Figure
5.1). Tukey’s test has probably not reached significance, because a set of 9 subjects is too
small.

7.1.4 Parameters

Section 5.1.2 analyzes the parameters found in the optimization step. It is remarkable
that HJORTH and TDP extracted information from similar frequency bands, as well as
AAR, BAAR and MVAAR. This is due to similarities in their algorithms. Based on the
found frequency limits of their preceding band-pass filter, there are 3 groups: {HJORTH,
TDP}, {AAR, BAAR, MVAAR} and PLV. BP had no preceding band-pass filter, because
band-pass filters are integrated in the method itself. According to Figures 5.3 and 5.4, BP
uses the alpha band and frequencies close to 22 and 34 Hz. Further, the optimal update
coefficient (UC) of the AAR, BAAR and MVAAR methods is dependent on the chosen
update method of the process noise covariance matrix (Q mode).

7.2 General Comparison

7.2.1 Classification Accuracies

Figure 5.5 shows the classification accuracies when the feature extraction methods have
been optimized and a classifier has been trained in a general manner. The ranking regard-
ing the mean classification accuracy is similar to Figure 5.1, only the AAR-like methods
are interchanged. The bipolar spatial filter shows again the best mean classification ac-
curacy for all methods except PLV. This is also valid regarding the medians (see Table
5.20). Monopolar and CAR spatial filters yield better results for the PLV method (cf. Fig-
ure 5.6). The influence of the spatial filters is very similar as when optimizing and training
individually (compare Figure 5.2 and 5.6). TDP with a bipolar spatial filter results in the
highest mean and median of the classification accuracies.

7.2.2 Effects of Feature Extraction Methods and Spatial Filters

The repeated measures ANOVA indicates that there exist main and interaction effects of
the factors “method” and “spatial filter” (see Table 5.25). When using the best spatial
filter for each method, significant differences were only found between PLV and TDP
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(see Table 5.26). When using the TDP method, significant differences were found between
monopolar and {bipolar, Laplace} spatial filters. However, there were probably not enough
subjects to make sound statements (finding more significant differences).

7.2.3 Individual vs. General

The individual and the general comparison yield qualitatively similar results (Section
7.2.1). It is now interesting if they also give the same results quantitatively. A repeated
measures ANOVA with three factors “method”, “spatial filter” and “comparison” was
executed. “comparison” indicates if the data come from the individual comparison or the
general comparison approach. “comparison” shows no significant effect. The interaction
effect between “comparison” and “method” has a low p-value of 0.06. This is due to the
fact that the mean classification accuracies of all methods got worse (but not significantly)
except with BAAR and PLV where it stays nearly a the same level. This is not shown
explicitly in a diagram or table. It could be concluded that it does not have any impact if a
general optimization and training is used instead of an individually one. Nevertheless, the
means in Table 5.18 are always slightly worse than in Table 5.1, except at BAAR/bipolar.
This difference is even more apparent when considering the medians in Table 5.20 and 5.3
(e.g. TDP and BP bipolar). The medians in the general comparison are lower, except in 5
cases than in the individual comparison, especially with bipolar spatial filters. In summary,
it must therefore be concluded that it is beneficial to optimize and train individually.
Although it is unknown whether an individual optimization or an individual training or
both yield higher classification accuracies.

7.2.4 Parameters

The found feature extraction parameters are shown in Section 5.2.2. AAR and TDP used
comparatively small frequency bands (1–16 Hz and 3–13 Hz). TDP reached the highest
mean and median of the classification accuracies, AAR results are similar (Figure 5.5).
The discriminative information lies therefore mainly in lower frequency bands.

7.2.5 About the Test

In order to evaluate the generalizing properties of a feature extraction method, one should
use different subjects for the optimization and evaluation step. Otherwise, the feature
extraction method could adapt to subject specific properties, and perform better than
usual in the evaluation step. However, this subject separation was not done. If 9 subjects
were divided into an optimization and evaluation group, these groups would have been
very small. Due to the high variances in the final classification accuracies (see Section
5.2.1), unreliable results would follow. Furthermore, the optimization data of the subject,
against that the classifier was tested in the evaluation step, constituted only 1/9 of the
entire optimization data. This limited the aforementioned adaption effect.

7.3 Combination of Methods

The mean and median values of the classification accuracies of the combined methods are
0.78 and 0.81, respectively. This is close to the mean and median values of the TDP method
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with a bipolar spatial filter from the individual comparison: 0.78 and 0.82, respectivly.
A paired t-test showed (see Section 5.3.1) that there is no significant difference in their
mean values. The conclusion is that a method combination has no advantage, but it has
high computational costs. One must keep in mind that some constraints regarding the
optimization step were used, see Section 4.3. Therefore, the GA had not full freedom
in finding an optimal solution. Furthermore, this conclusion is only true for the META
combination method together with an LDA classifier. Maybe other combination methods
and/or classifiers would lead to a significant advantage when combining methods.

7.4 About the Classifier

Linear discriminant analysis (LDA) is often used synonymous with Fisher’s linear discrim-
inant analysis (FLDA), so also in this work. Nevertheless, there is a difference between
these methods: the FLDA does not assume normally distributed classes or equal class
covariances. The classifier used in this work was an FLDA classifier [1]. Therefore, a bias
in the classification accuracies, resulting from the distribution of the extracted features,
does not exist. The TDP and BP methods used from the BioSig toolbox implemented a
log-transformation to compute Gaussian distributed features. This was strictly speaking
unnecessary. However, such a transformation is not harmful (log is a strictly increasing
function).

One must keep in mind that all classification accuracy results are only valid with the used
LDA classifier. The results could be different for e.g. support vector machines (SVMs).
The LDA classifier was chosen because it is used widely in practice and it is computation-
ally cheap.

To obtain sound classification accuracies, it is very important that the classifier is tested
with unseen data. For that reason, the second session of the subjects was only used for
testing the classifier and nothing else.

7.5 About the Genetic Algorithm

The optimization problem is quite complex: different types of parameters for a feature
extraction method exist (integers, real numbers, bit strings, nominal numbers), and even
different numbers of methods, each with a different channel/parameter set, could be com-
bined. This search space could easily be too large for exhaustive search. It is further
not possible to calculate the derivation of an error function and therefore gradient-based
optimization methods cannot be used. Fortunately, metaheuristic optimization algorithms
can be used. They try to iteratively improve a certain solution with regard to an objective
function. The used genetic algorithm (GA) is such a metaheuristic optimization algo-
rithm. A representation of an individual has been found which had the power to express
the demanded complexity (see Section 3.2). This model arises in an intuitive manner when
using a GA, but it is not so clear how this complexity can be handled with e.g. particle
swarm optimization (PSO) [10]. Of course, crossover and mutation operations have to
be adapted. Two points are important for the speed of the GA. First, the representation
of the individual and the crossover operation must facilitate that two good parents could
result in an even better child. The crossover operation must be in some sense meaningful.
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Second, the representation of an individual and the mutation operation should be defined
so that even single mutations lead to a better fitness score. If only a certain combination of
mutations lead to a better fitness score, it lasts longer until the GA finds that combination.
Therefore, an individual should not be more complex than necessary.

A disadvantage of metaheuristic algorithms is that they cannot guarantee that a global
optimum has been found. The optimum found could also be a local optimum. Therefore,
it is crucial when applying a GA to analyze the behavior on the current problem set. In
practice, this will be a trial-and-error tuning of the meta parameters (e.g. mutation rate,
selection function, crossover fraction, stopping criterion) with a smaller population set.
When the correct values have been found, the GA is started with the full population set.
The use of the tournament selection function also minimizes the risk of finding a local
optimum (see Section 3.1).
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Appendix A

Additional Results

Not all results are shown in sections 5.1 and 5.2. Box-and-whisker plots of the classification
accuracies from all methods and all spatial filters are shown below.
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A.1 Individual Comparison
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A.2 General Comparison
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