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Abstract

Variational models are among the most successful methods for low-level Computer Vision tasks today.
While such models can be derived and formulated in a completely deterministic setting, they nonetheless
have a deep connection to the probabilistic framework of Bayesian inference. This thesis highlights this
connection and the advantages that a probabilistic approach to variationalmethods can have.

A fundamental question in variational models is the formulation of an appropriate image model. A
especially popular image model is given by the Total Variation prior due to its edge preserving properties.
It will be shown that the usually employed energy minimization approach is not able to fully exploit the
properties of the underlying models if such an image prior is used. An alternative approach that is based
on Bayesian estimation is introduced and the connections to energy minimization are highlighted.

The proposed estimator is defined by a very high-dimensional integral thatcan not be solved with de-
terministic numerical integration algorithms. To tackle this problem, the framework of Markov Chain
Monte Carlo (MCMC) integration is introduced and refined into an algorithm that is specifically tai-
lored to the needs of image processing. To speed up the computations, a parallelization scheme and an
implementation on graphics processing hardware is proposed.

The advantages of the proposed algorithm over the energy minimization approach are shown on convex
image reconstruction models. For non-convex models the MCMC approach allows for global optimiza-
tion. Our experiments on different models for motion estimation and stereo reconstruction show that
such a global optimization approach is not only feasible but also provides superior results.

Keywords: Variational Methods, Total Variation, Estimation Theory, MCMC, Optical Flow, Stereo,
Denoising, GPGPU





Kurzfassung

Variationsmethoden gehören zu den populärsten Verfahren zur L̈osung einer Reihe von low-level Pro-
blemen im Bereich Computer Vision. Solche Modelle werdenüblicherweise vollsẗandig deterministisch
formuliert. Bei genauer Betrachtung stellt sich heraus, dass Variationsmethoden eine Verbindung zur pro-
babilistischen Methode der bayes’schen Modellbildung und Deduktion haben. Diese Masterarbeit zeigt
diese Verbindung und Vorteile einer probabilistische Herangehensweiseauf.

Ein fundamendaler Schritt in der Anwendung von Variationsmethoden, ist die Definition eines passen-
den Bildmodells. Total Variation ist, aufgrund der kantenerhaltenden Eigenschaften, ein weit verbrei-
tetes Bildmodell. Es wird gezeigt, dass ein Energieminimierungsansatz die deskriptiven Eigenschaften
von Modellen, die auf Total Variation basieren, nicht optimal nutzen kann.Ein alternativer bayes’scher
Scḧatzer, der die Eigenschaften des Modells besser nutzt, und dessen Verbindung zu Energieminimie-
rung, wird vorgestellt.

Der Scḧatzer istüber ein sehr hochdimensionales Integral definiert, welches mit deterministischen, nu-
merischen Integrationsverfahren nicht gelöst werden kann. Ein probabilistischer Ansatz zur hochdimen-
sionalen, numerischen Integration, bekannt als “Markov Chain Monte Carlo”-Integration (MCMC) wird
vorgestellt. MCMC-Algorithmen sind typischerweise sehr aufwändig zu berechnen. Zur Beschleunigung
der Algorithmen wird eine GPU-basierte, parallele Implementierung vorgestellt.

Die Vorteile der vorgestellten Methode werden anhand konvexer Modelle zum Entrauschen von Bildern
aufgezeigt. F̈ur nichtkonvexe Modelle k̈onnen MCMC-Methoden zur globalen Optimierung benutzt wer-
den. Anhand von Modellen zur Stereorekonstruktion und der Schätzung von Optical Flow wird gezeigt,
dass globale Optimierung denüblichen Ans̈atzen qualitativ̈uberlegen ist.
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Chapter 1

Introduction

The optimization of variational models is an important subdiscipline of Computer Vision. Many low-
level vision tasks, such as reconstruction, deconvolution, segmentation and optical flow, all of them
inherently inverse and ill-posed problems, can be formulated as energy minimization problems. The de-
sign of such algorithms can be split in two main phases: First, an energy, based on empirical observations
and the task at hand, is formulated. Second, an appropriate optimization procedure is employed to find
a solution to the model. The first part is the most crucial part of the design procedure. The model has to
be powerful enough to capture all relevant properties of the problem at hand. However one cannot define
arbitrarily complicated models. Current mathematical theory of optimization typicallyrequires a certain
form for the energy to have a solution that can be found in reasonable time (or to even have a solution at
all).

Generally, a variational problem is given by an energy

E(u) = D(u) +R(u)

where one seeks for the imageu that minimizes this energy. The energy consists of a data termD(u) and
a regularization termR(u). The data term models the actual data at hand and its form is therefore mainly
driven by the actual application of the model. The regularization term is chosen according to some prior
knowledge about properties of desirable solutions. This knowledge is typically obtained purely from
empirical observations or logical assumptions. Provided that the data term isable to model the input
data sufficiently enough, the quality of the results is mainly driven by the regularization term. In the
context of Computer Vision and image processing, our prior knowledge consists of some assumptions of
how a natural image looks. A simplistic assumption that is often made is that naturalimages consist of
regions of constant color that are separated by sharp jumps, called edges. Such an assumption is suitable
to be used in mathematical framework as there are convenient tools to mathematicallydescribe constant
regions as well as sharp jumps.

An interesting property of such fully deterministic energy minimization problems is that they allow an
alternative viewpoint. Both the data term and the regularization term can be viewed in the context of
probability density functions. In that sense, the data term is attached to a probability of a given observa-
tion to match the data, and the regularization term is attached to a prior probability (i.e. the probability
that an image matches the prior knowledge). Putting both probability density functions together via the
well-known Bayes theorem, one gets a posterior probability density functionthat assigns a probability to
every possible image in the context of the model:

p(u) =
1

Z
exp

{

−E(u)

T

}

(1.1)

The image minimizing the initial variational problem is then equivalent to the image maximizing the
posterior probability (1.1). The implications of such a viewpoint may seem minorat first, it is however
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2 1. Introduction

a well-known fact in the Bayesian practitioners community that the maximizer of a probability function
is not the most typical candidate of the distribution under all circumstances. Moreover, this image often
does not exhibit the properties that were initially modeled, rendering the initialdesign phase at least
questionable.

This discrepancy between model and solution forms the basis of this thesis. We will show that in the
variational models that are employed in Computer Vision, the image that minimizes the model is indeed
not necessarily the “best” image. This opens up the possibility to enhance existing models by chang-
ing the procedure to obtain a solution from the model. We will therefore present an alternative solution
strategy that is based on the sampling of the probability density function (i.e. candidate images are gen-
erated according to the law defined by the posterior distribution). Such a sampling procedure enables
many opportunities: First, it is possible to compute summary statistics of the posterior distribution. We
will show that a specific summary statistic, namely the expected value, offers abetter solution than the
image that maximizes the posterior probability. Second, also the initial optimization problem can profit
from such a sampling based procedure. We will introduce a global optimization algorithm that relaxes
some of the constraints that have to be typically imposed on the design of a model. The presented sam-
pling algorithms fall under a class of algorithms that is called Markov Chain Monte Carlo algorithms,
or short MCMC. Such algorithms cleverly construct a Markov Chain to generate samples from an arbi-
trary probability density function. MCMC algorithms, however, are relatively slow when compared to
optimization algorithms. We therefore propose an implementation on graphics processing hardware to
obtain solutions in reasonable time.

To show the viability of our approach, we will consider two applications: denoising of images and
estimation of motion. For both applications, a variety of data terms and regularizers exist, and we will
more closely examine the influence of those terms and provide a comparison to the results of the usually
employed energy minimization approaches.

1.1 Related Work

In the context of image processing, energy minimization methods have gained alot of attention since the
publication of the ROF model by Rudin, Osher and Fatemi (see [Rudin et al., 1992]). The model was
developed for the denoising of images that were degenerated by additivewhite Gaussian noise and reads

u∗ = min
u

∫

Ω
(u− f)2dx + λ

∫

Ω
|∇u|dx

whereΩ is the image domain,f is the image to be denoised andu∗ is the minimizer of the model. The
model is able to remove noise while steep edges are preserved. This property can be attributed to the
regularizer

∫

Ω |∇u|dx that is used in the model. The expression is known as the total variation semi-
norm and has extensively been used in numerous other image processingapplications, like structure-
texture decomposition [Aujol et al., 2006], blind deconvolution [Chan and Wong, 2002] and optical
flow estimation [Zach et al., 2007]. While the total variation is only defined for gray-valued images,
extensions to account for vector valued images can be found in [Blomgrenand Chan, 1998] and [Aujol
and Kang, 2006].

The total variation regularizer is known to produce block-like artifacts (known as staircases) when used in
the context of energy minimization (we will later see that this is not the case in the presented approach).
Explanations for this behavior can be found in [Caselles et al., 2008]. Much of the ongoing research was
devoted to the reduction of the staircasing artifacts (see for example [Savage and Chen, 2006], [Chan
et al., 2007] and [Chan et al., 2005]). All of those methods change the regularizer in some way or
another and stay within the framework of energy minimization. Nikolova [2007]shows why such ad-hoc
modifications are not optimal. The main problem lies not within the regularizer or the model itself but
instead in the inference procedure, i.e. the image minimizing the variational energy does not follow the
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initial properties that where explicitly modeled. No regularizer that is based on spatial derivatives and
has properties that are desirable in image processing applications (i.e. allows sharp jumps in the solution)
is able to exploit its full potential when used in the framework of energy minimization.

A probabilistic approach to total variation denoising was first published by Louchet [2008]. In this
thesis, a rigorous mathematical justification for the inference of the expectedvalue of the ROF model is
developed.

A very popular method that competes with Total variation based models are Markov Random Fields
(MRFs). Unlike variational models, the MRF based models are defined in a discrete setting. Spatial
relationships between cliques of pixels (i.e. neighboring pixels) are either modeled by hand or learned
by a machine learning algorithm. Such models are inherently probabilistic as the spatial relationships are
modeled as probability density functions. MRFs have a long history in ComputerVision, dating back to
the first applications of the famous Ising model for the denoising of binary images. Notable algorithms
that fall into the MRF category are Fields of Experts [Roth and Black, 2009] and Gaussian Conditional
Random Fields [Tappen et al., 2007]. Fields of Experts was recently extended to the inference of the
expected value with convincing results [Schmidt et al., 2010].

When viewing total variation based models in a discrete and probabilistic setting,a close relationship
between the total variation norm and MRF based models becomes apparent. After discretization the
total variation regularizer also models spatial relationships between directly neighboring pixels using a
probability density function. In some way, the discretization of variational models can therefore also be
seen as a special case of MRF based models.

1.2 Organization of this Thesis

This thesis is organized as follows:

In chapter 2, a simple variational denoising model, based on probabilistic arguments, is introduced.
Standard techniques for the local optimization of this model and the importance of correct modeling
of prior knowledge are demonstrated using two well-known instances of thepresented model. Based
on the previous probabilistic derivation of the model, we show that the deterministic optimization of a
variational model can also be considered as a probabilistic estimation problem,known as Maximum-A-
Posteriori estimation (MAP).

Chapter 3 shows problems and shortcomings of the MAP approach. Using our previous stochastic deriva-
tion, we propose an alternative inference procedure that is known as least-squares estimation in literature.
This inference procedure, however, is far more difficult to implement thanthe standard MAP approach
because it relies on the integration of a very high-dimensional integral.

To solve said integral, we introduce a stochastic technique for approximate high-dimensional integration
in chapter 4. This approach is based on the construction of Markov Chains to sample probability density
functions and generally known as Markov Chain Monte Carlo (MCMC). Weprovide an introduction to
general state-space Markov Chains and present some of the most important algorithms of the MCMC
family.

Chapter 5 is concerned with the development of efficient algorithms for ourspecific applications. More-
over, we introduce a global optimization procedure that is also based on thepreviously introduced sam-
plers.

Details for the implementation of the algorithms on graphics processing hardware are provided in chapter
6. Starting with an overview of general purpose computing on graphic-processing hardware, a simple
design along with the most outstanding obstacles for a parallel implementation arediscussed.

Chapter 7 shows applications and experimental evaluations of our approach. Different denoising models
as well as the estimation of optical flow and stereo stereo reconstruction arecovered.
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Finally, chapter 8 summarizes our findings and gives a conclusion and a short outlook on unsolved
problems.



Chapter 2

Optimization in Computer Vision

Optimization generally refers to a procedure of finding the best solution to a problem among its set
of possible solutions. More precisely, optimization in mathematics refers to algorithms that find the
extrema of a functionf(x) subject to some constraints. Many problems in Computer Vision, among
others Denoising, Blind Deconvolution, Stereo Reconstruction and OpticalFlow, can be formulated as
energy minimization problems and are therefore subject to some optimization procedure.

The chapter at hand is organized as follows: Section 2.1 introduces a simpleclass of denoising model
based on probabilistic arguments, that will serve as an exemplar optimization problem for the rest of
the chapter. Section 2.2 shows the optimization of two particular (convex) instances of the previously
defined optimization problem. Finally, Section 2.3 gives a brief summary of the concepts developed in
this chapter.

2.1 A Denoising Model

Denoising is the task of reconstructing an image that was corrupted by some kind of noise. As many
high-level Computer Vision algorithms are sensitive to noise, the denoising ofan input image is an
important preprocessing step in image processing applications. A class of denoising algorithms that is
able to eliminate additive white Gaussian noise is developed in this section.

Let us assume, the image has been corrupted according to an additive degradation model:

f(x, y) = u(x, y) + n(x, y) (2.1)

wheref : D → R is the observed degraded image intensity,u : D → R is the original undegraded
image intensity andD is the discrete set of pixels in the rectangular image domain, i.e.:

D = {(xi, yj) = (ih, jh)|1 ≤ i ≤ N, 1 ≤ j ≤M} (2.2)

for some grid spacingh.

n : D → R denotes the degradation noise and is assumed to consist of identical and independently
distributed (i.i.d) samples from a white Gaussian distribution (i.e.n(x, y) ∼ N (0, σ2)).

A denoising model now aims at recovering the original imageu from a given observationf . This is
clearly an inverse problem since many clean images could have led to the same noisy image.

Noise is by definition a stochastic quantity. It is therefore very natural to consider a probabilistic ap-
proach:

Let us treat the imagesf andu from (2.1) as realizations of two random variablesU andF . Both
random variables have a probability density function (pdf)pU (u) andpF (f) attached, i.e.:pU (u) and

5



6 2. Optimization in Computer Vision

pF (f) describe the likelihood for a given realization ofu andf respectively to occur. For notational
simplicity, we will further omit the subscripts for pdfs and writep(u) andp(f) instead.

Using conditional probabilities and Bayes’ Theorem, the likelihood that an imageu is the undegraded
image in the context of the model, given an observationf can be expressed as

p(u|f) =
p(f |u)p(u)

p(f)
(2.3)

wherep(u|f) is called the posterior probability density function andp(f |u) denotes the probability that
f was generated fromu. We will further call this quantity the data term because it essentially encodes
the data generation model.p(u) is called the prior pdf and encodes prior knowledge about desirable
solutions. Note thatp(u) can in principle be freely chosen. Typical approaches for the derivation of a
prior pdf in image processing are based on distributions of spatial derivatives or responses to local filters.
It will become clear that certain choices for the prior term allow to capture properties of images better
than another.

Let us now derive explicit representations for the quantities in (2.3) for an image denoising model:

Given the linear degradation model in (2.1) and under the assumption that thenoise is white, Gaussian
and i.i.d., it is easy to derive an expression forp(f |u):

p(f |u) =
∏

x,y∈D

1√
2πσ2

exp−(f(x, y)− u(x, y))2

2σ2
(2.4)

whereσ2 denotes the variance of the noise.

While it was already noted that the priorp(u) can in principle be arbitrarily chosen, it turns out that it
is crucial for the quality of reconstruction. Huang and Mumford studied thestatistical relationships of
pixels in natural images in [Huang and Mumford, 1999]. They tried to fit probability density functions
to capture the inter-pixel relationship of directly neighboring pixels.

Let us denote the discrete approximation of the gradient operator, appliedto the imageu, by∇u. It turns
out that a generalized Laplacian distribution

p(u) =
1

Z

∏

x,y∈D

exp−|(∇u)(x, y)|p
β

(2.5)

with p = 0.55 results in a good fit to the spatial relationships of natural images. (2.5) is normalized by
some constantZ to ensure that

∫

p(u)du integrates to one and has a parameterβ that controls the spread
of the probability density function. Note that settingp = 1 yields a standard Laplacian distribution while
settingp = 2 results in a Gaussian distribution. Figure 2.1 shows a logarithmic plot of the generalized
Laplacian distribution for different values ofp for the one-dimensional case.

Putting everything together, one arrives at an explicit representation for the posterior probability density
function:

p(u|f) =
1

Z(f)

∏

x,y∈D

exp−(f(x, y)− u(x, y))2

2σ2

∏

x,y∈D

exp−|(∇u)(x, y)|p
β

(2.6)

where the functionZ(f), the partition function, gathersp(f) and all normalizing constant, in such a
way that

∫

p(u|f)du again integrates to one. Note that the product over the individual pixels can be
represented by a sum in the exponent:

p(u|f) =
1

Z(f)
exp−

∑

x,y∈D(f(x, y)− u(x, y))2

2σ2
+

∑

x,y∈D |(∇u)(x, y)|p
β

(2.7)
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Figure 2.1: Logarithmic plot of generalized Laplacian distribution for different values ofp and
fixedβ = 1.

(2.7) assigns a probability with respect to the model to every possible image. Anatural method to find
an imageu that very likely belongs to the observationf , is the Maximum-A-Posteriori estimation:

Find the imageu∗ that maximizes the posterior probabilityp(u|f). Formally, this can be stated as

u∗ = arg max
u

p(u|f)

which results, when applied to (2.7), in

u∗ = arg min
u

∑

x,y∈D

(f(x, y)− u(x, y))2 + λ
∑

x,y∈D

|(∇u)(x, y)|p (2.8)

where the parametersσ2 andβ have been accumulated to a single parameterλ = 2σ2

β .

While any actual implementation of an algorithm that solves (2.8) on a digital computer has to operate
in a discrete setting, it is advantageous to carry out an analysis of such functionals in continuous space.
The continuous representation allows a convenient analysis of properties of the model, like existence
and uniqueness of solutions. Moreover it is possible to postpone discretization to latter stages of the
algorithm design, which allows greater flexibility in the choice of a particular discretization scheme.

Recall the discrete image domain given in (2.2). By lettingh→ 0, (i.e. the spacing between two adjacent
pixels becomes infinitesimally small), we obtain a continuous image domainΩ ⊆ R. Consequently, one
has to replace sums by integrals. This leads to a continuous analog of (2.8):

u∗ = arg min
u

1

2

∫

Ω
(f − u)2dx + λ

∫

Ω
|∇u|pdx (2.9)

The solution of the model in (2.9) strongly depends on the actual choice of the parameterp. The optimal
choicep = 0.55 in terms of statistical relationships between pixels in natural images results in a non-
convex functional, which makes the optimization of the model very difficult. It istherefore a rather
uncommon choice.

The two popular choices arep = 2, resulting in the Tikhonov model [Tikhonov and Arsenin, 1977], and
p = 1, resulting in the ROF model [Rudin et al., 1992]. Both models are convex andtherefore relatively
simple to optimize. We will see however that the ROF model is clearly superior to theTikhonov model
in the context of image processing in the following section.
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2.2 Convex Optimization

An optimization problem in its most general mathematical form is given by:

Minimize f(x), x ∈ X ⊆ R
d

Subject to gi(x) ≤ 0, i = 1, . . . , n (2.10)

wheref : X → R is called the objective function and the functionsgi : X → R are called the constraint
functions.

Any x∗ that satisfiesf(x∗) ≤ f(x), ∀x ∈ X andgi(x
∗) ≤ 0, i = 1, . . . , n is called globally optimal

and is therefore a solution of (2.10).

Numerous algorithms for optimization are not able to reliably determine the global optimum of a prob-
lem. Such algorithms are called local optimization algorithms. Given that there arelocal optima, i.e.
optima that satisfyf(x∗) ≤ f(x) only in some neighborhood ofx∗, such algorithms can get stuck in
local optima depending on the initialization of the algorithm. To make things worse, one is not even able
to tell whether the optimum that was found is global or not. Local optimization algorithms are, however,
very fast compared to algorithms that guarantee to find the global optimum, which is the key to their
large popularity. Moreover, if all local optima are global optima, one can beconfident that any local
optimization algorithm is able to find a global optimum. The most general class of problems where all
local optima are global as well are convex problems.

Let us first formalize the notion of convexity:

Definition 1. ([Boyd and Vandenberghe, 2004]) A functionf : Xd → R is called convex, if it satisfies
for all x, y ∈ Xd and for anyα, β ∈ (0, 1) with α + β = 1:

f(αx + βy) ≤ αf(x) + βf(y)

andXd is a convex set. We call the function concave, if−f(x) is convex.

An optimization problem where the objective functionf(x) as well as all constraint functionsgi(x) are
convex is called a convex optimization problem.

The optimization of convex functionals is a sub-discipline of optimization that is very well developed.
There are numerous efficient algorithms to solve such problems and a multitudeof tools to approximate
non-convex problems by convex ones (see for example [Boyd and Vandenberghe, 2004] and [Nesterov,
2004]).

Let us now check for which values ofp the functional defined in (2.9) is convex. The energyE(u; λ, p)
is given by:

E(u; λ, p) =
1

2

∫

Ω
(f − u)2dx + λ

∫

Ω
|∇u|pdx (2.11)

Sums of convex functionals are again convex. It therefore suffices toshow convexity for the data term
and the prior individually.

It is easy to verify that the data term
∫

Ω(f − u)2dx is indeed convex with respect tou.

The prior resembles the p-th power of a p-norm, i.e.
∫

Ω |∇u|pdx = ‖∇u‖pp, where the p-norm is defined
as:

‖f(x)‖p =

(
∫

Ω
|f(x)|pdx

)
1
p

(2.12)

To see for which values of p (2.12) is convex (and therefore a true norm), consider the definition of
convexity (Definition 1). Using two test functionsf, g : R → R, whereg(x) = 0 for all x ∈ R, we can
derive the relation

‖αf + βg‖pp = αp‖f‖pp ≤ α‖f‖pp = α‖f‖pp + β‖g‖pp
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which is only true ifαp ≤ α. This is clearly only the case forp ≥ 1. Choosingp smaller than one
therefore always results in a non-convex functional.

Via Minkowski’s inequality, it can easily be seen that for the remaining casep ≥ 1 the functional is
always convex:

‖αf + βg‖pp ≤ ‖αf‖pp + ‖βf‖pp = αp‖f‖pp + βp‖g‖pp ≤ α‖f‖pp + β‖g‖pp
This shows the functional (2.11) is only convex forp ≥ 1 (and positiveλ).

The two popular choicesp = 1 andp = 2 are therefore both convex and can readily be optimized using
local optimization methods.

2.2.1 Tikhonov Regularization

The first important special case that is examined is (2.9) withp = 2, resulting in the well-known
Tikhonov model:

E(u; λ) =
1

2

∫

Ω
(f − u)2dx +

λ

2

∫

Ω
|∇u|2dx (2.13)

In order to minimize the energy given in (2.13), we need some means to describe the minimum of
the functional. Similar to the standard approach of vector-analysis, we arelooking for points where
the functional is stationary. The Euler-Lagrange equations provide a convenient tool to describe such
stationary points in functional analysis:

Given a functional of the form

E(u) =

∫

Ω
F (x, u,∇u)dx

the Euler-Lagrange equations allow us to describe the dynamics of any such functional at its stationary
points by a differential equation:

∂E(u)

∂u
=

∂F (x, u,∇u)

∂u
−∇

(

∂F (x, u,∇u)

∂(∇u)

)

= 0 (2.14)

(2.14) can be understood as the functional analog of gradients. It cantherefore be used to move “down-
hill” in a functional, within the framework of methods of steepest descent, i.e

ut+1 = ut − γ
∂E(u)

∂u

∣

∣

∣

u=ut

(2.15)

implies thatut+1 ≤ ut provided that0 < γ < 2
K , whereK denotes the Lipschitz constant of∂E(u)

∂u :

∣

∣

∣

∣

∣

∣

∣

∣

∂E(u)

∂u
− ∂E(v)

∂v

∣

∣

∣

∣

∣

∣

∣

∣

≤ K ||u− v||

Based on this relation, it can be shown that the optimal constant step-size is given byγ = 1
K ([Nesterov,

2004]).

Any stationary point in a convex functional coincides with a global optimum. This guarantees that the
gradient descent scheme in (2.15) yieldslimt→∞ ut = u∗.

Let us now turn to the optimization of the Tikhonov model. Application of (2.14) to (2.13) yields that
the minimumu∗ satisfies:

∂E(u)

∂u

∣

∣

∣

u∗
= (u∗ − f)− λdiv(∇u∗) = 0 (2.16)

Using (2.16) together with (2.15) provides a simple algorithm for the optimization of the Tikhonov
model.
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(a) Noisy image (b) λ = 10

(c) λ = 50 (d) λ = 100

Figure 2.2: Reconstruction of a noisy image using the Tikhonov model fordifferent values ofλ.
Noise disappears for largerλ, as do small-scale structures and edges.

Figure 2.2 shows results of the Tikhonov model applied to a noisy image for different values ofλ.
Higher values ofλ give stronger regularization of the noisy image. It is apparent, however, that for high
λ, image details become blurred too. To explain this effect, note that an explicit solution to (2.16) can be
computed:

u− λ(
∂2u

∂x2
+

∂2u

∂y2
) = f

Using the Fourier transform, we get

û + λ(4π2η2
xû + 4π2η2

y û) = f̂

whereĝ(ηx, ηy) denotes the Fourier transform of functiong(x, y), with spatial frequenciesηx andηy.
This relates the imageu to the inputf as:

û =
1

1 + 4π2λ(η2
x + η2

y)
f̂ = K̂(λ)f̂ (2.17)

in the Fourier domain.
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A fundamental property of the Fourier transform states that multiplication in theFourier domain is equiv-
alent to convolution in the spatial domain. This allows us to finally express the solution as

u = K(λ) ∗ f (2.18)

whereK(λ) is obtained from the inverse Fourier transform ofK̂(λ). (2.18) shows that the solution to the
Tikhonov model can be obtained by linear filtering of the input imagef by a convolution kernelK(λ).
(2.17) gives some insight into the nature of this operation. The Fourier transform of the convolution
kernelK(λ) is

K̂(λ) =
1

1 + 4π2λ(η2
x + η2

y)

which has the typical form of a low-pass filter (see Figure 2.3), explainingthe smoothing properties.
Note that the kernel does not depend on the imagef , which further explains the isotropic behavior of the
smoothing.

Figure 2.3: Minimization of the Tikhonov model is equivalent to low-pass filtering. The image
shows the Frequency response of the corresponding kernel.

Closed form solutions to the models defined by (2.9) are not generally available for p 6= 2 (especially
not for the very important casep = 1), the introduction of an optimization procedure is therefore well
justified.

The gradient descent scheme that has been described so far, suffers from some severe problems. First, the
algorithm is sensitive to the choice of the step-sizeγ. For some functionals, it may be hard to determine
the Lipschitz constant or worse it may not even exist. While the optimization procedure still works in
principle, the user is bound to choosing a step-size by guessing. While a step-size that is too large may
yield unsatisfactory results because the algorithm oscillates around the optimum, choosingγ too small
results in poor convergence time.

Moreover, the algorithm always moves into the direction of the steepest gradient with some fixed step-
size. This may result in a “zig-zag” movement for some functionals, which again results in poor conver-
gence time.

Below, we will therefore introduce an algorithm that is based on duality arguments and addresses these
problems. The algorithm will be applied to the ROF model, which is far better suitedin the context of
image processing than the Tikhonov model.
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2.2.2 The ROF Model

Consider the ROF energy:

E(u; λ) =
1

2

∫

Ω
(f − u)2dx + λ

∫

Ω
|∇u|dx (2.19)

with the corresponding Euler-Lagrange equation

(u∗ − f)− λ∇(
∇u∗

|∇u∗|) = 0 (2.20)

It is immediately obvious that (2.20) is not defined where|∇u| = 0. Moreover, we note that (2.19) is
only well defined if the gradient∇u exists and|∇u| is integrable in the domainΩ. More formally we
have that the energy is well defined for functionsu ∈ W 1,1(Ω), whereW 1,1(Ω) denotes the space of
absolutely continuous functions. As this is a rather strict regularity condition, this observation gives rise
to the question which classes of functions actually can be inputs to the functional (2.19) and consequently
can be solutions to the optimization problem.

Clearly, the prior dominates the space of functions for which (2.20) is well defined. The prior
∫

Ω |∇u|dx
is known as the Total Variation semi-normTV (u). Close inspection naturally yields two regularity
conditions foru:

1. u has to be continuously differentiable

2. The integral over∇u has to be bounded, in other wordsTV (u) <∞

The first condition is a rather strict regularity condition, effectively excluding images with sharp jumps
from the functional space. Fortunately, it is possible to eliminate this condition by using an alternative
definition of the Total Variation semi-norm that is based on duality properties of convex functionals:

The Fenchel-Legendre Transform of the 1-normf(z) = ‖z‖1 is given by

f∗(p) = sup
{

pT .z − ‖z‖1
}

=

{

0 if ‖p‖∞ ≤ 1

∞ else
(2.21)

For convex and lower semi-continuous functionals, the Legendre-Fenchel transform is its own inverse
[Boyd and Vandenberghe, 2004], thus successive application yieldsan alternative, so-called dual, defini-
tion of the Total Variation semi-norm:

TV (u) = TV ∗∗(p) = sup

{
∫

Ω
pT .∇udx, ‖p‖∞ ≤ 1

}

(2.22)

with p : Ω→ R
2.

By restrictingp to be continuously differentiable, integration by parts yields
∫

Ω
pT∇udx =

∫

Γ
updΓ−

∫

Ω
udivp dx (2.23)

whereΓ denotes the boundary ofΩ and the operator div denotes the divergence operator, i.e. for a
functiong(x) = (g1(x), g2(x))T we have

divg =
∂g1

∂x
+

∂g2

∂y

By further restrictingp to have compact support inΩ, the integration along the boundary ofΩ becomes
zero, which finally yields:
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TV (u) = sup

{

−
∫

Ω
udivp dx, ‖p‖∞ ≤ 1

}

(2.24)

This definition removes the need foru to be continuously differentiable, leveraging the set of possible
solutions to a set that incorporates sharp discontinuities, which is clearly advantageous for the denoising
of images (and Computer Vision applications in general). We call functions withTV (u) <∞ functions
of bounded variation. More formally, the space of functions with boundedvariation is given by

BV =
{

u ∈ L1(Ω) : TV (u) <∞
}

(2.25)

From (2.22), it is easy to see the nature of the functionp. To attain the supremum, one hasp(x) =
(∇u)(x)
|(∇u)(x)| if (∇u)(x) 6= 0. For the case∇u = 0, p(x) can be arbitrarily defined on the unit ballB1

0 ,
because the integrand in (2.22) is zero, independent ofp(x). Figure 2.4 shows a graphical depiction of
the relation between the primalu and the dualp in the ROF model for a single pixel.

Figure 2.4: Relationship of the dual variablep to the primal∇u for a single pixel if∇u 6= 0. p is
given by normalizing∇u to unit length.

We are now able to state the ROF functional in its primal-dual formulation

u∗ = min
u

max
‖p‖∞≤1

{

1

2

∫

Ω
(u− f)2dx + λ

∫

Ω
∇u· pdx

}

(2.26)

Note that the relaxation of regularity constraints turns the previously unconstrained minimization prob-
lem (2.19) into a constrained saddle point problem. An important theorem in convex analysis states that
the minimum and maximum operations in saddle point problems can be interchangedprovided that one
of the optimization operations is constrained to a compact set. As this is clearly thecase in (2.26), the
optimality condition with respect tou is given by

u = f + λdivp (2.27)

By substituting (2.27) into (2.26) and flipping the sign of the functional to turn the maximization problem
into a minimization, one arrives at the dual formulation of the ROF model:

p∗ = min
‖p‖∞≤1

{

λ

2

∫

Ω
(divp)2dx +

∫

Ω
fdivp dx

}

(2.28)
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where the minimizeru∗ can be recovered fromp∗ using (2.27).

Keeping all three proposed formulations of the ROF model in mind, we now turnto the optimization of
the model. An implementation of any optimization procedure on a digital computer hasto be carried out
in a discrete setting due to finite memory. A crucial first step in the optimization procedure is therefore
to provide a stable discretization scheme for the continuous model. Let us start with the discretization of
the image domainΩ.

It is again assumed that the image is defined on the rectangular grid of size MxN with equally spaced
pixel, as shown in (2.2).

The discrete analogs tou andp respectively can be expressed by the vectorsuh ∈ R
MN andph ∈ R

2MN ,
which result from lexicographical stacking of the rows of the images. Themost important part of the
discretization scheme is the definition of appropriate discrete differentiation operators. Let us stick to a
very simple definition based on finite forward and backward differences([Chambolle, 2004]):

Finite first-order forward differences in firstx andy direction are defined as

∂+
x uh

i,j =

{

uh
i+1,j−uh

i,j

h if 0 < i < M

0 else

∂+
y uh

i,j =

{

uh
i,j+1−uh

i,j

h if 0 < j < N

0 else

and the discrete gradient operator∇ can then be defined as

∇uh
i,j = (∂+

x uh
i,j , ∂

+
y uh

i,j)
T

The gradient operator is a linear mapping, hence the differentiation of the whole imageuh can be ex-
pressed as a matrix-vector product:

Let A be the matrix of size MNx2MN that, applied to a vector of lengthMN , yields the2MN -vector
containing the finite forward differences, then the discretized primal-dualROF model can be expressed
as:

E(uh) =
〈

Auh, ph
〉

+
1

2
‖uh − fh‖22 (2.29)

Using these basic definitions, it is possible to derive the discrete divergence operator:

(2.22) and (2.24) provide the identity
∫

Ω
p.∇udx = −

∫

Ω
udivp dx

which has to be reflected in the discretization scheme as well, i.e. we have to choose the matrixA∗ of
size 2MNxMN, representing the discrete divergence operator, such that

〈

Auh, ph
〉

=
〈

uh, A∗ph
〉

∀uh, ph

Generally speaking,A∗ is the hermitian adjoint operator toA, which is guaranteed to exist for any linear
mapping.

From the perspective of point-wise differentiation, it is easy to check thatgiven the backward differences

∂−
x uh

i,j =















uh
i,j−uh

i−1,j

h if 1 < i < M
uh

i,j

h if i = 1
−uh

i−1,j

h if i = M

∂−
y uh

i,j =















uh
i,j−uh

i,j−1

h if 1 < j < N
uh

i,j

h if j = 1
−uh

i,j−1

h if j = N
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we can define the discrete divergence operator as

−divph
i,j = ∂−

x p1
i,j + ∂−

y p2
i,j

to fulfill the requirement of adjointness.

To allow a clean notation and without loss of generality, it will be assumed for the remainder of this
section that the pixel spacingh is equal to one. We therefore writeu instead ofuh.

Based on [Zhu and Chan, 2008], the primal-dual formulation allows us to employ an efficient class
algorithms. The presented algorithm will later serve as gold-standard for MAP inference problems.

In its basic form, the primal-dual algorithm states that the generalized saddle point problem

min
u

max
p
〈p, Au〉+ G(u)− F ∗(p)

can be optimized using simultaneous gradient descent/ascent in the primal anddual variables respec-
tively, resulting in the following update scheme [Pock et al., 2009]:

pn+1 = (I + τd∂F ∗)−1(pn + τdAũn) (2.30)

un+1 = (I + τp∂G)−1(un − τpA
∗pn+1) (2.31)

ũn+1 = 2un+1 − un (2.32)

for some appropriate step-sizesτd andτp. Note that there exist several variants of this algorithm (see
[Chambolle and Pock, 2010] and [Esser, 2010]).

(I + τd∂F ∗)−1(pn+ 1
2 ) denotes the resolvent operator with respect to a functionF ∗ and is given by:

pn+1 = arg min
p

{

1

2τd
‖p− pn+ 1

2 ‖22 + F ∗(p)

}

For the dual variable in the primal-dual ROF model (2.26) the functionF ∗(p) captures the constraint
that any feasiblep has to be a member of the setK = {p : ‖p‖∞ ≤ 1}. This can be achieved using an
indicator functionF ∗(p) = IK(p), whereIK(p) = 0 if p ∈ K andIK(p) =∞ otherwise.

This yields the dual update rule
pn+1 = ProwK (pn + τdλ∇ũ)

where the operator ProjK(.) denotes an Euclidean projection onto the setK. This set is a relatively
simple convex set (i.e. the unit ball inR2), therefore the projection can be achieved by a point-wise
operation:

ProjK(p(x)) =
p(x)

max{1, ‖p(x)‖2}

For the primal variableG(u) is given by the data term, i.e.G(u) = 1
2‖u − f‖22. Application of the

resolvent operator yields the update rule for the primal variable:

un+1 =
un + τp(f + λdivpn+1)

1 + τp

The last step (2.32) facilitate a simple extrapolation based on the current andprevious iterates.

One problem in any optimization procedure is to decide when to stop the algorithm.A typical approach
is to stop when the distance between two consecutive updates is below some threshold. In primal-dual
algorithms it is convenient to measure the difference between the primal and dual energies [Zhu et al.,
2008]:
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The dual energy can be written as

E(p) =
1

2

(
∫

Ω
f2dx−

∫

Ω
(λdivp + f)2dx

)

and the gapE(u)− E(p) is then given by:

GAP(u, p) =

∫

Ω
λ(|∇u| − udivp)dx +

1

2

∫

Ω
(λdivp + f − u)2dx

Note that the second term in the expression above is always zero, becauseu is chosen according to (2.27).
From the same equation we have that

1

λ
‖u− u∗‖22 =

∫

Ω
(u− u∗)(divp− divp∗)dx

= −
∫

Ω
∇u· p +

∫

Ω
∇u· p∗ +

∫

Ω
∇u∗· p−

∫

Ω
∇u∗· p∗ (2.33)

With the relations|∇u∗| = ∇u∗p∗ and|∇u| ≥ ∇u· p, it is easy to see that the gap is a bound for the
distance to the minimizeru∗:

1

λ
‖u− u∗‖22 ≤ −

∫

Ω
∇u· p +

∫

Ω
|∇u| = 1

λ
G(u, p)

This shows that the Euclidean distance fromu to the global optimumu∗ is never larger than
√

GAP(u, p)
and justifies the use of the gap between the primal and dual energies as a stopping criterion.

Algorithm 1 summarizes the whole optimization procedure for the ROF model.

Algorithm 1 Primal-dual algorithm for the ROF model
1: Setn = 0
2: Setu0 = f , ũ0 = f
3: Setp0

i,j = 0 0 < i < M, 0 < j < N
4: while GAP(un, pn) < ǫ do
5: pn+1 ← ProjK (pn + τdλ∇ũ)

6: un+1 ← un+τp(f+div pn+1)
1+τp

7: ũn+1 ← 2un+1 − un

8: n← n + 1
9: end while

Figure 2.5 shows the results of the ROF model for different values ofλ. In contrast to the Tikhonov
model, edges are preserved and the overall result is visually much more appealing than the Tikhonov
model.

The figure also shows an interesting effect if one increases the value ofλ. As λ increases (i.e. more
denoising is applied to the image), the result looks more and more like a cartoon of the original image.
At closer observation, it turns out that solutions of the ROF model tend to becomposed of piecewise-
constant functions. This results in block-like artifacts that are, due to theirshape, called staircases.

The effect is most easily observed for one-dimensional signals. Figure2.6 shows a noisy one-dimensional
signal, superimposed with the original signal (dashed line), on the left. Thereconstruction is plotted on
the right. The solution is piecewise constant in most parts of the function, with occasional sharp jumps.

Theoretical results and explanations for the staircasing effect in the continuous ROF model can be found
in [Caselles et al., 2008] and [Ring, 2000].
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(a) Noisy image (b) λ = 0.1

(c) λ = 0.5 (d) λ = 1.0

Figure 2.5: Reconstruction of a noisy image using the ROF model for different values ofλ.

From a probabilistic point of view, the staircasing effect can be attributed tothe use of the Laplacian
prior together with MAP estimation, enforcing sparse solutions with respect tothe image gradients. To
remedy this effect, one has two choices in the construction of a model. First, one could replace the MAP
procedure by a better estimator (which is the focus of this thesis). Second,one could regularize the model
with a regularization term that better captures the statistics of the image (see forexample [Bredies et al.,
2009], [Chan et al., 2005], [Chan et al., 2007]).

2.3 Chapter Summary

In this chapter, we introduced a simple variational denoising model along with an algorithm to solve the
model. While the model itself is very simplistic, its derivation nonetheless highlights the connection to
Bayesian modeling and probabilistic methods.

In fact, a lot of models in Computer Vision are based on an optimization problem similar to (2.9), i.e.
they can be formulated as an energy minimization problemminu E(u). Consequently, such energies can
be treated in the context of probability density functions, inducing a posterior probability density that is
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(b) Denoised signal

Figure 2.6: Reconstruction of a one-dimensional signal using the ROF model. The staircasing
effect is clearly visible at the slopes of the function.

in general given by

p(u|.) =
1

Z
e−

E(u)
T

This allows us to use methods from stochastic estimation and Bayesian inference to solve the optimiza-
tion problem as well as to leverage the result by estimating other quantities than the MAP. The rest of
this thesis will be concerned with this probabilistic formulation and its advantagesover the deterministic
formulation.



Chapter 3

Estimation Theory

In the preceding chapter, a model for the reconstruction of noisy image was discussed. The proposed
method employed a probabilistic argument to construct a posterior probability densityp(u|f), which
assigns any possible imageu a probability according to the proposed image and noise model. The
question that arises is how to choose an image from this distribution that optimally accounts for the
model.

A very intuitive approach was already discussed: By choosing the image that maximizes the probability
p(u|f), we expect to get a good result (provided the model was well-designed beforehand). Formally,
we look for the imageu∗ that satisfies

u∗ = arg max
u

p(u|f)

This procedure is called Maximum-A-Posteriori estimation (MAP), ultimately leading to a deterministic
formulation of the initially stochastic problem. While it is somewhat intuitive to choosethe image
with the highest probability in the context of the model, there actually may exist images that would be
characterized as better solutions that have a lower probability.

In [Nikolova, 2007] it has been shown that MAP estimation has some severeshortcomings, even for
“perfect” models. MAP estimators may, depending on the actual form of the posterior, introduce distor-
tions:

1. For multimodal posteriors, the MAP estimate finds the mode with the largest peak, not taking into
account the probability mass around the estimate.

2. The resulting estimate does not follow the underlying model in most cases (ina statistical sense).

This chapter is concerned with the analysis of these problems as well as with the introduction of an
estimator that is able to eliminate these problems.

3.1 MAP-Distortions in High Dimensions

It was already shown in the previous section that the MAP estimate depends only on the height of the
maximal mode, not on the probability mass inside the mode. This behavior is especially problematic
when the distribution is high-dimensional. High-dimensional distributions tend to concentrate their mass
in a small area of their domain.

Katafygiotis and Zuev [2008] provide a notable example for such a concentration:

Consider the N-dimensional random vectorX = (X1, . . . , Xn)T where each component is independent
and identically distributed according to a standard Normal distribution, i.e.Xi ∼ N (0, 1), for all 0 <
i ≤ N .

19
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Then the Euclidean distanceR of the random variableX to the origin is given by

R =
√

〈X, X〉 =

√

√

√

√

N
∑

i=1

X2
i (3.1)

Note that the squared Euclidean distanceR2 leads to the definition of the Chi-square distribution withN
degrees of freedom, i.e.R2 ∼ χ2

N .

Canal [2005] and Fisher [1922] show that
√

2R can be approximated by a normal distribution with mean√
2N − 1 and unit variance, asN tends to infinity. A simple transformation shows that the Euclidean

distance to the origin is distributed according to

R ∼ N (
√

N − 1/2, 1/2) ≈ N (
√

N, 1/2)

This is a remarkable result as it states that a large amount of the total probability mass is concentrated
in a spherical ring around the origin, while the mode with maximal probability lies atthe origin. As the
number of dimensions rises, the sphere is pushed farther away from the origin. This implies that the
MAP estimate is a relatively uncommon realization of the underlying probability distribution.

The concentration of mass phenomenon can be observed in more complex models as well, which is a
hint that the MAP estimator may not be optimal in high-dimensional problems.

3.2 Distributions of MAP estimates

The previous chapter showed the emphasis on the modeling aspect in the design of variational models.
Starting from assumptions on the statistical properties of the noise and some prior knowledge that was
obtained from empirical observations, one derives a model that faithfullycaptures this information.

It seems to be a natural demand for an estimator that its estimates area distributedaccording to the given
model. For example estimatedu, is expected to be distributed according to the prior distribution (i.e.
Laplacian of its gradients for the ROF model) whileu − f should look like the noise distribution (i.e.
i.i.d. Gaussian). This rarely the case for MAP, however, which is anotherweakness of this type of
estimator.

Numerical examples and analytic results of such distortions in discrete models are provided by Nikolova
in [Nikolova, 2007]. Let us briefly recall the main results.

Consider the discrete one-dimensional ROF model

ROF (u; f, λ) = ‖u− f‖22 + λ

N
∑

i=1

|ui − ui+1| (3.2)

The single-pixel differences are distributed according to the pdf

f∇Ui(t) =
λ

2
exp{−λ|t|} (3.3)

and independent for all1 ≤ i ≤ N . The random variable∇Ui is given by∇Ui = Ui−Ui+1. We assume
thatUi ∈ R, therefore the pdf in (3.3) is continuous.

It was already noted that the ROF model suffers from the staircasing effect. It was not clear, whether this
effect should be attributed to the model (i.e. the Laplacian prior) or to the MAPestimation. Using (3.3),
the probability that the values of two neighboring pixels are equal, according to the prior model, is given
by:

Pr(Ui = Ui+1) = Pr(∇Ui = 0) = 0 (3.4)
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The result comes from the continuity of the pdf and the fact that∇Ui = 0 constitutes a single probability
event, which always has zero probability in a continuous probability space. This shows that the prior in
principle does not favor piecewise constant regions.

Nikolova [2007], however, proves that the probability that two neighboring pixels are equal in the MAP
estimate is non-zero . Let us briefly sketch the idea behind the proof:

Given the setJ of points where the finite differences of the strict local minimizeru∗ are zero, i.e.

J =
{

i ∈ 1, . . . , N : u∗
i − u∗

i+1 = 0
}

and the setKJ of signalsu which have finite differences equal to zero at the same points

KJ = {u ∈ R : ui − ui+1 = 0,∀i ∈ J}

[Nikolova, 2000] and [Nikolova, 2004] shows thatJ is nonempty and there exists an open neighborhood
OJ of f where for eacĥf ∈ OJ , the corresponding minimizer̂u∗ also exhibits finite differences equal to
zero at the same points , i.e.û∗ ∈ KJ . Now note that a MAP estimate giveny ∈ OJ results in solutions
that are actually a subset ofKJ . This establishes the relation

Pr(U∗ ∈ KJ) ≥ Pr(F ∈ OJ) =

∫

OJ

(
∫

RN

p(f |u)p(u)du

)

df > 0

which is a contradiction to the prior probability (3.4) because it shows that

Pr(U∗ ∈ KJ) = Pr(U∗
i = U∗

i+1,∀i ∈ KJ) > 0

Therefore, the distribution of the MAP estimate is not identical to the prior model.This result is not only
applicable for this particular one-dimensional example. In fact, it holds forany prior that is non-smooth
at zero in the context of MAP estimation.

The result is remarkable as it states that no matter how well a model fits the underlying data, there is no
hope of recovering a signal that fits the model using a MAP estimator. As longas one resorts to MAP
estimates, there will always be staircasing (or similar effects if priors basedon higher-order derivatives
are used).

Let us consider a numerical example to back up the theoretical results:

We construct a Laplacian random walk byxi+1 = xi +L where L is distributed according to a Laplacian
distribution with zero mean and varianceβ. It is easy to see that the differencesxi+1−xi are distributed
according to a Laplacian prior as well.

If i.i.d. Gaussian noise with zero mean and varianceσ2 is added to a realization of the random walk, we
get a noisy signal that perfectly fits the initial assumptions that led to the designof the ROF model. It is
even possible to calculate the regularization parameter which is simply given byλ = 2σ2

β .

Figure 3.1(a) shows a single realization of such a random walk (the dashed line shows the true signal,
whereas the solid line depicts the noisy signal). Figure 3.1(b) shows the reconstruction (solid), obtained
using Algorithm 1, superimposed with the original signal (dashed). Even though the ROF model is able
to perfectly model the signal, the MAP reconstruction still exhibits staircasing.

Figure 3.2 shows the empirical distribution of the differences of the true signal (3.2(a)) and the respective
distribution of the MAP reconstruction (3.2(b)). The reconstruction is strongly peaked at zero, reflecting
the many piecewise constant regions of the reconstruction. Figures 3.2(c) and 3.2(d) show the empirical
distributions of the true noise and the residuals of the MAP reconstruction. The residuals are not Gaus-
sian at all. Instead, with a strong peak at zero and the approximately exponential decay of the tails, it
resembles a Laplacian, leading [Nikolova, 2007] to the remarkable observation that this model is better
suited to remove impulse noise than Gaussian noise.
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(a) A single realization of a Laplacian random walk with
superimposed Gaussian noise. Dashed: Original signal.
Solid: Noisy signal
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(b) Reconstruction using MAP of ROF model. Dashed:
Original signal. Solid: MAP reconstruction

Figure 3.1: Reconstruction of a signal obtained from a noisy Laplacian random walk (σ2 = 0.5,
λ = 2). Even if the signal perfectly fits the model, MAP fails to provide a faithful
reconstruction

3.3 Bayesian Risk

The framework of Bayesian estimation provides us with tools to develop and analyze estimators based
on the risk of taking a wrong estimate. By introducing loss functions, it is possible to associate a “cost”
with an estimate, reflecting the regret of being a wrong estimate.

Consider the true imageu′ and an estimateu (we do not consider how this estimate was obtained in
the first place). Then a loss functionL : R

|Ω| x R
|Ω| → R. can be used to express one’s needs for the

reliability of an estimator.

Considering that the true valueu′ is unknown in general (ifu′ is known, the estimatoru is obsolete
in the first place) and that we are dealing with probabilistic measures, it is necessary to assign some
probabilistic measure to the loss function as well to make this notion useful. This can be achieved using
the concept of Bayesian Risk.

The Bayesian RiskR(u) associated with a loss functionL(u, u′), is defined as the expected value of the
loss function, with respect to the posterior distribution of the quantity of interest:

R(u) = Eu′|f{L(u, u′)} =

∫

R|Ω|

L(u, u′)p(u′|f)du′

By minimizing the Bayesian Risk, it is possible to derive an estimator that is optimal withrespect to a
given loss function and posterior distribution. Such estimators are called Bayesian estimators.

Formally, a Bayesian estimatoru∗ satisfies

u∗ = arg min
u

R(u) (3.5)

for some riskR(u).

Note that the definition of the Risk function gives rise to other (non-bayesian) estimators as well. One
popular example thereof is the so-called minimax estimator that minimizes the risk with respect to the
least favorable distributionp(u|f). This can be interpreted as the estimator that performs best in the
worst case of input data (i.e. the input data does not match the model).
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(d) Distribution of the residuals

Figure 3.2: True distributions (left) and distributions of MAP reconstruction (right). Neither the
the distribution of the differencesxi+1 − xi nor the residuals follows the original dis-
tributions.

A common and simple loss function is given by the hit-or-miss loss, which assignsthe same cost to every
wrong estimate:

L0(u, u′) =

{

0 if u = u′

1 else
(3.6)

For this type of loss, the Bayesian estimator is given by:

u∗ = arg min
u

{

Eu′|f{L0(u, u′)}
}

= arg min
u

{
∫

R|Ω|

L0(u, u′)p(u′|f)du′
}

= arg min
u

{
∫

u 6=u′

p(u′|f)du′
}

= arg min
u

{

1−
∫

u=u′

p(u′|f)du′
}

= arg min
u

{

−δ(u, u′)p(u′|f)
}

= arg max
u
{p(u|f)} (3.7)

whereδ(u, u′) denotes the dirac function, i.e.

δ(u, u′) =

{

∞ if u = u′

0 if u 6= u′
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(3.7) shows that the estimator minimizing the hit-or-miss loss is given by the MAP estimate. This deriva-
tion also shows that the MAP estimate is a point estimate (see the last line, involving diracs delta) that
inevitably fails to capture the information that is present in the posterior distribution.

Another popular choice for a loss function is given by the squared-error loss:

L2(u, u′) = ‖u− u′‖2 (3.8)

Unlike the hit-or-miss loss the squared-error loss assigns different “cost” to wrong estimates, depending
on the Euclidean distance to the true value. The Bayesian estimator for this kindof loss function is given
by

u∗ = arg min
u

R(u) = arg min
u

{
∫

R|Ω|

‖u− u′‖2p(u′|f)du′
}

(3.9)

and the minimum of this function is attained where

δR(u)

δu
= 2

(

u

∫

RΩ

p(u′|f)du′ −
∫

RΩ

u′p(u′|f)du′
)

= 0

which finally leads to

u∗ =

∫

RΩ

u′p(u′|f) = Eu|f{u}

i.e. the estimator minimizing the Bayesian risk defined by the squared-error lossis given by the expected
value of the posterior. We will further call this estimator the Least-Squares estimator, or short LSE. By
definition, the expected value is a summary statistic, effectively compressing the whole knowledge about
the posterior into a single estimate. Depending on the posterior distribution, such a summary may yield
better results than a single point estimate. Note that other, more sophisticated, loss functions are possible
(see for example [Rue and Hurn, 1997]), we will, however, focus on the LSE estimate.

The estimation of such a summary statistics is much more difficult than a simple point estimate. One has
to have complete knowledge of all possible outcomes of the underlying probability experiment to exactly
infer the estimate (as the integral in the expected value is taken over the whole problem domain).

Given typical problem spaces (consider a discrete binary image as small as 64 by 64 pixels, leading to
(64x64)2 ≈ 17x106 possible image configurations), it is not possible to exactly infer the expected value.
Instead, one has to rely on approximations. The next chapter will focus on such approximations.

Let us first turn to an evaluation of the two estimators. Bayesian estimation theory features some notions
to characterize the performance of an estimator. One common measure is the mean-bias of an estimator,
defined as

Bias(u) = E{u} − u′ = E{u− u′}
An estimator with Bias(u) = 0 is called unbiased. Loosely speaking one could say that an unbiased
estimator will, on average, yield the correct estimate. It is neither necessaryfor an estimator to be
unbiased nor does it automatically guarantee that it is the best among all estimators. Seeking for an
unbiased estimator is however a common starting point in the design phase.

Another important performance measure is given by the variance of an estimator:

Var(u) = E{‖u− E{u}‖2}

The variance of an estimator essentially captures how far the estimates are from the mean on average.

Last, we define the mean-squared error of an estimator as

MSE(u) = E{‖u− u′‖2} = Var(u)− ‖Bias(u)‖2

These measures are difficult to derive for the MAP estimator, as the relationof the data to the estimate are
only implicitly given (note that for certain functionals, one can derive an approximation even for implicit
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relations [Fessler, 1996]). We can, however, deduce some conclusions for the MAP estimate based on
the performance analysis of the LSE estimator:

The Bias of the LSE estimator is given via the law of iterated expectations:

Bias(uLSE) = E{uLSE} − u′ = E{E{u′|f}} − u′ = u′ − u′ = 0

uLSE is therefore an unbiased estimator. With any unbiased estimator, we have that

MSE(uLSE) = Var(uLSE)

Recall that the LSE estimator minimizes the expected value of the squared-error loss function, which
coincides with the mean-squared error. This implies that the LSE estimator is the estimator with minimal
variance among all unbiased estimators.

For the analysis of the MAP estimate, we can therefore conclude that

• if the MAP estimate coincides with with the LSE estimate, it is also unbiased and minimum vari-
ance. This case only happens if the posterior is both unimodal and symmetric.

• if, in contrast, the MAP estimate is different from the LSE estimate, it is biased.This is the general
and more interesting case in the context of variational methods.

To develop some intuition on when and why the LSE estimate can yield better outcomes than the MAP,
let us analyze some examples. Figure 3.3 shows simple one-dimensional examples for the outcome of a
MAP estimation (red) versus a LSE estimation (blue). For distributions that aresymmetric and unimodal
(Figure 3.3(a)), the MAP and LSE estimators yield the same result (as the center of mass and the maximal
mode are located at the same place). For unimodal non-symmetric distributions,the LSE estimator is
shifted towards the heavier tail of the distribution (as depicted in Figure 3.3(b)).

For multimodal distributions, the actual location depends on the distribution of the modes. Figure 3.3(c)
shows an example where the LSE estimator would clearly outperform the MAP estimate. While MAP is
located at the strongest mode (that actually captures little probability mass), theLSE estimate is located
near the peak of the mode with much larger probability mass (that has a nearly as large extremal value
as the MAP peak), giving much more support for this estimate in the context ofthe original model.

It should be noted that for multimodal posteriors, one cannot generally hope that the LSE estimate out-
performs the MAP estimate. Figure 3.3 shows an example where the expected value of the distribution
lies in between two strong modes. This estimate has a very low probability, which would make this
choice a risky one. The MAP estimate, however, has to arbitrarily choose from the 2 modes, as both have
equal probability.

3.4 Chapter Summary

This chapter tried to highlight problems that arise within the framework of MAP estimation. Using
Bayesian estimation theory, we developed an alternative estimator that in theory yields better results than
the MAP estimate.

Let us briefly summarize the insights gained so far:

• MAP estimation suffers from severe distortions whenever non-smooth priors are present in the
functional, as it is the case in most variational models in Computer Vision.

• The LSE estimator may yield better results depending on the shape of the posterior distribution.
Especially if the posterior is asymmetric and unimodal, it can be expected that a reconstruction by
the LSE estimator is superior to the MAP estimate.
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(a) (b)

(c) (d)

Figure 3.3: MAP (red) and LSE (blue) estimates for different probability densities. (a) Shows
an unimodal, symmetric distribution. The maximum and the center of mass coincide,
therefore MAP and LSE yield the same results. (b) Asymmetric, unimodal distribution.
The LSE is shifted towards the heavy tail of the distribution. (c) Bimodal distribution.
While MAP is located within the mode with highest probability, the LSE is located
near the peak of the mode with greater probability mass. (d) Symmetric, bimodal
distribution. The LSE estimate has very low probability. The MAP estimator has to
arbitrarily choose between the two modes as both have equal probability.

The ROF model is convex, which implies that the posterior is log-concave andtherefore by definition
unimodal. Furthermore, it is asymmetric in general (the pdf is symmetric iff is constant everywhere
in Ω). The ROF model is hence in principle well-suited for an LSE estimator. Figure3.4 visualizes the
shape of the distribution for a simple example involving only two pixels.

The Tikhonov model on the other hand defines a unimodal symmetric pdf, as depicted in Figure 3.5. The
LSE and the MAP coincide in this model and a modified estimation procedure therefore cannot enhance
the results.

Recall that the LSE estimator is given by

u∗ =

∫

R|Ω|

up(u|f)du (3.10)

The integral in (3.10) has to be taken over every possible image configuration of a given size|Ω|. It
is clearly impossible to exactly solve this integration, even for relatively small images. The following
chapter is therefore devoted to the development of a procedure that allows us to approximately solve
(3.10).
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(a) (b)

Figure 3.4: Logarithmic plot of the pdf of the ROF model for two adjacent pixels. The possible
values of a pixel was constrained to range [0,255] and the variance of the prior and
noise distribution was set toβ = 1 andσ2 = 100 respectively. The two “noisy” pixels
where set to the valuesf1 = 10 andf2 = 128. The resulting MAP reconstruction
yieldsu1 = u2 = 69, whereas the LSE reconstruction yieldsu1 = 68.19 andu2 =
68.80.

(a) (b)

Figure 3.5: Logarithmic plot of the pdf of the Tikhonov model for two adjacent pixels. The possi-
ble values of a pixel was constrained to range [0,255] and thevariance of the prior and
noise distribution was set toβ = 50 andσ2 = 50 respectively. The two “noisy” pixels
where set to the valuesf1 = 10 andf2 = 128. The resulting pdf is symmetric. The
LSE and the MAP reconstruction yieldu1 = 57 andu2 = 81.
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Chapter 4

Markov Chain Monte Carlo

The estimator (3.10) poses an extremely high-dimensional integral. Deterministicnumerical integra-
tion methods, such as the Newton-Cotes Formula or Simpson’s Rule, fail to approximate the integral
in such a scenario. Problems that involve high-dimensional integration arisein a variety of fields, in-
cluding physics, finance, statistics and computational biology. The development of efficient methods to
numerically solve such problems has therefore become an important research topic in mathematics (and
especially statistics).

To exemplify the shortcomings of deterministic numerical integration for high-dimensional problems,
we consider a simple example based on the rectangle rule [Arnold, 2001]:

Given a functionf : [a, b]→ R the area

I =

∫ b

a
f(x)dx

is approximated by partitioning the interval[a, b] in N equidistant sub-intervals of widthh = b−a
N :

∫ b

a
f(x)dx ≈

N
∑

i=0

f(a + hi)h

wherea + Ni = b.
Assuming thatf(x) is continuously differentiable on[a, b], the approximation error is given by

E =
f ′(ξ)
2N

(b− a)2 (4.1)

for someξ ∈ [a, b]. (4.1) states that the error linearly decreases as the number of sub-intervalsN grows.
By denotingO( 1

N ) as the error term, the exact integral then reads

∫ b

a
f(x)dx =

N
∑

i=0

f(a + hi)h + O(
1

N
)

Extension of one-dimensional numerical integration methods to multi-dimensionalintegrals is straight
forward:

Assume a function is defined on the d-dimensional hypercubeC : [a, b]d, i.e. f : C → R, then the
integral over this hypercube is given by:

∫

C
f(x)dx =

∫ b

a
. . .

∫ b

a
f(x)dx1 . . . dxd

29
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and repeated application of the rectangle rule yields

∫

C
f(x)dx ≈

N−1
∑

i1=0

· · ·
N−1
∑

id=0

f(a + hi1, . . . , a + hid)h (4.2)

The integrand in (4.2) is evaluatedn = (N + 1)d times, and since the error depends on the total number
of evaluations, the approximation error is of orderO(n−1/d). Thus, the error bound gets exponentially
worse with a rising number of dimensions. While the error may be substantially smaller for more so-
phisticated integration rules in the one-dimensional case, the statement that theerror grows exponentially
with the number of dimensions holds for all deterministic numerical integration methods.

The most common and general tool to tackle high-dimensional integration problems is known as the
Monte Carlo method. The term “Monte Carlo” refers to a class of algorithms that use repeated ran-
dom sampling of the possibly very large input domain (the integration domain in case of Monte Carlo
integration) to generate an output.

A multi-dimensional integral

I =

∫

Ω
f(x)dx

is approximated by randomly generating a set of N sample points{x̂1, . . . , x̂N}, x̂i ∈ Ω by uniform
sampling under the integration domain and evaluating

Î =
1

N

N
∑

i=1

f(x̂i)

Provided that sampling is done correctly (the whole integration domain is covered, no statistical patholo-
gies from pseudo-random number generators), the law of large numbers states that

lim
N→∞

1

N

N
∑

i=1

f(x̂i) = I

While it is not possible to give a deterministic error bound for Monte Carlo integration, a probabilistic
error bound can be obtained from the Central Limit Theorem:

lim
N→∞

Pr

(
∣

∣

∣

∣

∣

1

N

N
∑

i=1

f(xn)− I

∣

∣

∣

∣

∣

≤ z
σ(f)√

N

)

=
1√
2π

∫ z

−z
exp− t

2
dt

This is a remarkable result as it states that the error is independent of the number of dimensions. While
this justifies the use of Monte Carlo methods for high-dimensional integration, aconvergence rate of

1√
N

is, however, relatively slow (to half the error for a given N, one has to quadruple the number of
samples). Markov Chain Monte Carlo (MCMC) algorithms try to mitigate this slow rateof convergence
by exploiting the concentration of mass phenomenon that was already discussed in the preceding chapter.
Instead of uniform sampling under the integration domain and weighting the samples using the integrand,
MCMC algorithms sample areas that have a high contribution to the integral more densely than areas with
low contribution and do a uniform weighting of the samples.

The remainder of this chapter is organized as follows:

Section 4.1 introduces Markov Chains that are defined on uncountable state spaces and introduces the
most important properties of such chains that are needed for the construction of MCMC algorithms.

Section 4.2 introduces the two most important algorithms in MCMC theory, the Gibbssampler and
the Metropolis-Hastings algorithm, and combines ideas from both algorithms to a sampling procedure,
which is particularly appropriate for image processing tasks.

A procedure that allows the presented samplers to quickly converge without manual tuning of parameters,
is introduced in section 4.3.
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4.1 Markov Chains

Let Xt ∈ S denote the realization of a random variable defined on the state spaceS, at timet, i.e. the set
{Xt} defines a random process. We focus on discrete-time Markov chains, where t is an integer larger
than zero. A random process{Xt} is called a Markov Chain of order k, if the probability of visiting the
future stateXt+1 given the current stateXt does not depend on its past statesXt−n, n = k, . . . , t for
somek > 0.

Formally, this can be written as:

Pr(Xt = sj |X0 = s0, . . . , Xt−1 = si) = Pr(Xt = st|Xt−k = sl, . . . , Xt−1 = si) (4.3)

The number of past states the chain depends on is called the order of the chain. For the remainder of this
thesis, we stick to first-order Markov Chains, i.e. chains where the probability of visiting a particular
next state only depends on the current state. (4.3) then simplifies to:

P (i, j) = Pr(Xt = sj |X0 = s0, . . . , Xt−1 = si) = Pr(Xt = sj |Xt−1 = si) (4.4)

P (i, j), the probability of moving to statesj given statesi, is called the transition kernel of the chain.

This definition assumes a finite (i.e. countable) state spaceS. While any implementation of variational
models on a digital computer clearly involves finite state-spaces, the analysis of such models is typically
carried out in uncountable spaces. It is therefore advantageous to apply MCMC theory in an uncountable
state-space as well, so that no assumption on discretization of the underlyingvariational model has to be
made.

A straight-forward generalization of first-order Markov chains to uncountable state-spaces (further re-
ferred to as general state-spaces) is given by:

P (x, A) = Pr(Xt ∈ A|Xt−1 = x), A ∈ B(S) (4.5)

whereB(S) denotes the Borel set ofS.

The transition kernelP (x, A) can be interpreted as the probability density function of moving to sub-
spaceA from the current statex.

Note that the transition kernel can in principle be a function of the evolution timet. We limit the kernel
to be time invariant for now:

Pr(Xt ∈ A|Xt−1 = x) = Pr(Xt+m ∈ A|Xt+m−1), ∀m

Such a chain is also called time-homogeneous or stationary.

The evolution of{Xt} is fully governed by its transition kernel and its initializationX0. Using induction,
the probability thatXt ∈ A after n steps when starting atX0 = x can be calculated recursively:

P (x, A)(0) = δx(A)

P (x, A)(1) =

∫

S
P (x, dy)δy(A) = P (x, A)

P (x, A)(2) =

∫

S
P (x, dy){

∫

S
P (y, dz)δz(A)} =

∫

s
P (x, dy)P (y, A)(1)

...

P (x, A)(n) =

∫

S
P (x, dy)P (y, A)(n−1), x ∈ S, A ∈ B(S) (4.6)

whereδx(A) = 1 if x ∈ A and 0 otherwise.
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Markov Chains that fulfill certain regularity conditions eventually converge to a limiting distribution
π∗(.). MCMC algorithms exploit this fact by cleverly constructing a chain, so that itslimiting distribution
coincides with a desired target distribution. Definition 2 introduces two important concepts for such a
construction:

Definition 2. [Meyn and Tweedie, 1993] Let{Xt} be a Markov chain, defined on the general state-space
S. We call{Xt} φ-irreducible with respect to a measureφ, if for all A ∈ B(S)

φ(A) > 0⇒ P (x, A)(n) > 0, ∀x ∈ S

holds.

Furthermore, assume that a chain isφ-irreducible. Let us denote by

τA =
∞
∑

n=1

1{Xt ∈ A}

the number of times the chain visits the setA. Then a chain is said to be Harris-recurrent, if

Pr(τA =∞) = 1

for all setsA ⊆ S. Such a chain visits every state infinitely often, independent of the initialization.

The concept ofφ-irreducibility states that each relevant state with respect to a distributionφ is visited
with non-zero probability, regardless of the initial value. Recurrence onthe other guarantees that every
state is visited infinitely often. Any chain that isφ-irreducible and Harris-recurrent has a unique invariant
distributionπ. Moreover, this stationary distribution coincides withφ. Keeping in mind that the goal of
MCMC algorithms is to construct a chain with target invariant distributionπ, such a chain must therefore
beπ-irreducibly as well as Harris-recurrent.

Using these conditions, we are finally able to define the invariant distribution:

Definition 3. Letπ be a probability density function defined onS and{Xt} be the time-homogeneous,π-
irreducible, Harris-recurrent Markov chain with transition kernelP (., .), defined on the state-spaceS.

We callπ the invariant distribution of{Xt}, if π satisfies

lim
n→∞

P (x, A)(n) = π(A), ∀A ∈ B(S)

Definition 3 implies that the invariant distribution also satisfies:

π(A) =

∫

S
P (x, A)π(x)dx, ∀A ∈ B(S) (4.7)

Relation (4.7) is a condition to test whetherπ(.) is the invariant distribution of the chain with transition
kernelP (., .). To simulate from a given target distribution, this relation has to be inverted: For a given
π(.), find a transition kernelP (., .) so that (4.7) holds. It turns out that explicit construction of such a
transition kernel is difficult or even impossible (even for simpleπ).

A last restriction on the chain enables us to simulate a chain with a predetermined invariant distribution
without explicit construction of the transition kernel:

π(A)P (A, x) = π(x)P (x, A) (4.8)

(4.8) is called the detailed balance condition. It essentially states that the properties of the chain do not
change if the chain is run backwards in time. Thus, chains that maintain detailedbalance are also often
called reversible.
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Proposition 1. Any Harris-recurrent,π-irreducible Markov chain with transition kernelP (., .) that
fulfills condition(4.8)hasπ(.) as its unique invariant distribution.

Proof. Integrating both sites of (4.8) with respect to x yields

π(A)

∫

S
P (A, x)dx =

∫

S
π(x)P (x, A)dx

The integral on the left-hand site evaluates to one which shows the equivalence to (4.7).

So far, we have seen what properties a Markov chain has to fulfill in order to have an invariant distri-
bution. Recall that our initial motivation for the introduction of Markov Chainswas to approximate a
possibly very high-dimensional integral, by dense sampling of the integrandin areas with high contribu-
tions to the overall integral and sparser sampling in areas with low contributions. The following theorem
theoretically justifies such a procedure:

Theorem 1. [Meyn and Tweedie, 1993] Let{Xt} be a Markov chain, defined on the general state-space
S that has a unique invariant distributionπ and is Harris-recurrent. Then for any functiong ∈ L1

lim
n→∞

1

N

N
∑

k=1

g(Xn) =

∫

S
g(u)π(u)du = E{g(u)}

holds and we call the chain ergodic.

This theorem states that we can approximate an integral by uniformly weightingsamplesXn, as long as
those samples are distributed according toπ. A useful fact is that anyπ-irreducible and Harris-recurrent
chain is ergodic.

Proposition 1 together with (4.8) are the fundamental relations that are exploited by the algorithms in the
following section to sample from a target distribution. Note, however, that detailed balance and therefore
time-reversibility is a sufficient, not a necessary condition for the convergence of the chain to an invariant
distribution.

4.2 Samplers

As already mentioned in the preceding section, the goal of MCMC algorithms is toconstruct a Markov
Chain that has a desired invariant distributionπ(x). Once the chain is in its stationary regime, subsequent
samples are distributed according toπ(x).

The probably most important sampling algorithms are the Metropolis algorithm [Metropolis et al., 1953],
and its extension, the Metropolis-Hastings Algorithm [Hastings, 1970]. Thisalgorithm has some very
favorable properties. First, the algorithm does not impose any restrictionson the target distribution. This
is specifically important for variational methods in image processing considering the sheer amount of
different regularizers and fidelity terms. Second, the target distribution has to be known only up to a
normalizing constant, and therefore needs no evaluation of the partition function.

The algorithm basically generates a potential new state based on some (arbitrary) proposal distribution.
The proposed state is accepted to become the next state of the chain if it movesthe chain uphill in the
target distribution (i.e. to regions of higher probability). If this is not the case, the proposed state is
still accepted with a certain probability that is always non-zero. After a certain number of iterations, the
detailed balance condition is met and subsequent samples from the chain aredistributed according to the
desired target distribution.
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Formally, we have that given a statex, a new statey is proposed according to some proposal distribution
q(y|x) (note that an explicit dependence on the current statex is not necessary, i.e. a proposal distribution
could also be of the formq(y|x) = q(y)). The proposed statey is then accepted with probability

α(x, y) = min

{

π(y)q(x|y)

π(x)q(y|x)
, 1

}

and rejected with probability1− α(x, y), and the algorithm proceeds with the same procedure from the
new state.

Algorithm 2 Metropolis-Hastings Algorithm
1: Choose an initial stateX0

2: Choose a proposal distributionq
3: Setk = 0
4: loop {Metropolis-Hastings iteration}
5: Draw a new potential stateXk+1/2 ∼ q(Xk+1/2|Xk)

6: α⇐ π(Xk+1/2)q(Xk|Xk+1/2)

π(Xk)q(Xk+1/2|Xk)

7: Xk+1 ⇐ Xk+1/2 with probabilitymin(α, 1)
8: Xk+1 ⇐ Xk with probability1−min(α, 1)
9: k ⇐ k + 1

10: end loop

The basic iterations of the Metropolis-Hastings procedure are summarized inAlgorithm 2. Note that
each run of the loop in Algorithm 2 is called a Metropolis-Hastings iteration and generates one sample.

Proposition 2. For an appropriate proposal distributionq(y|x), Algorithm 2 converges to the target
distributionπ(x) ask →∞

Proof. First, consider the casex 6= y:

The transition kernel is then given by

P (x, y) = q(y|x)α(x, y)

It is easy to see that the proposal distribution has to meet

π(A) > 0⇒ q(A|x)(n) > 0, x ∈ S

to establishπ-irreducibility, i.e. the proposal distribution is able to reach all relevant areas of the target
distribution.

By substituting into (4.8), we get

π(x)q(y|x)α(x, y) = π(y)q(x|y)α(y, x)

Now assumeα(x, y) < 1, then it immediately follows thatα(y, x) = 1. Rearranging the equality then
leads to

α(x, y) =
π(y)q(x|y)

π(x)q(y|x)

which is true by construction and establishes detailed balance. The caseα(y, x) < 0 follows analogously
by symmetry.

The second case, the probability of remaining in a state, is given by

P (x, x) = 1−
∫

S/{x}
q(y|x)α(x, y)dy

The detailed balance condition is trivially met in this case. Summing up both cases,we see that the chain
is reversible andπ-reducible, which concludes the proof.
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The target distribution has to be known only up to a multiplicative normalizing constant in this algorithm
because state transition probabilities only depend on the ratio of the target distribution evaluated at two
states. This means that there is no need to evaluate the partition functionZ(f), which strongly enhances
the applicability of this algorithm.

Let us now focus on the proposal distributionq:

A simple example of the influence of the proposal distributionq(y|x) on π-irreducibility is depicted
in Figure 4.1. Both graphs assume that the Metropolis-Hastings algorithm wasinitialized within the
left segment of the target distributionf(x). A chain will eventually reach the right boundary of this
segment. Using a proposal distribution as shown in 4.1(a), the probability that the chain jumps to the
other segment is zero, and the algorithm fails to correctly sample from the target distribution. Running
the algorithm with a proposal distribution that allows larger jumps, as shown in 4.1(b), in contrast, results
in an f-irreducible chain, which enables the correct sampling of the target.

(a) f-reducible (b) f-irreducible

Figure 4.1: Influence of the proposal distribution on the convergence ofMetropolis-Hastings al-
gorithm. The area underf(x) that is to be approximated is depicted in gray. (a) The
proposals are too small. If the initialization lies within the left (larger) area, there is
zero probability that the right area will be hit. Conversely, if one starts the sampling
in the right area, the left area will never be hit. The chain therefore fails to sample the
targetf(x) correctly. (b) The proposal distribution is allowed to propose jumps that are
large enough so that there is a non-zero probability of hitting both areas, independent
of the initialization. The chain is therefore f-irreducible and can correctly sample the
targetf(x).

While the specific form of the proposal distribution can arbitrarily be chosen in principle (as long as
π-irreducibility can be established with it), it should be subject to some considerations to allow a good
performance of the algorithm. Typical runs of the algorithms involve hundreds of thousands of iterations
and therefore a proposal distribution that is easy and fast to simulate should be chosen. By contrast the
proposal distribution should be similar to the target distribution in order to explore the space of the target
distribution in reasonable time. Typical choices for proposal distributions are the uniform distribution or
the normal distribution, centered at the current state. Both distributions arefast to simulate. Furthermore
they are symmetric, which simplifies the computation of the update probabilities to

α⇐
π(Xk+1/2)q(Xk|Xk+1/2)

π(Xk)q(Xk+1/2|Xk)
=

π(Xk+1/2)

π(Xk)
(4.9)

We call the algorithm the Metropolis algorithm if the proposal distribution is symmetric, and the Metropolis-
Hastings algorithm if said distribution is asymmetric.
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4.2.1 Gibbs sampling

Another very popular sampler especially within the Computer Vision community is theGibbs sampler,
introduced by Geman and Geman [1993]. For this sampling procedure, oneassumes that while it is
infeasible to sample from the multivariate target distribution, it is easy to sample from the univariate
conditional distribution of a single component (where the distribution is conditioned on all remaining
components).

The Gibbs sampler proceeds as follows: Given a random vectorX = (x0, . . . , xd)
T of lengthd and a

target probability density functionπ(X), in each iteration a componentxj , with 0 ≤ j ≤ d is picked. A
proposal for the new statêxj of the component is generated according to

x̂j ∼ π(xj |x0, . . . , xj−1, xj+1, . . . , xd)

and accepted with probability equal to one. The same procedure is then repeatedd-times to produce a
single output of the algorithm.

Gibbs sampling is a special case of the Metropolis-Hastings algorithm with a proposal distribution that is
given by the conditional distributions of the target pdf and an acceptanceprobability that is always equal
to one.

To see this relation, let us denote bŷX = (xo, . . . , xj−1, x̂j , xj+1, . . . , xd)
T the state vector after an

update by the Gibbs sampler. Then the pdf of generatingX̂ from X is given by

q(X̂|X) = π(x̂j |x0, . . . , xj−1, xj+1, . . . , xd)

Conversely, the pdf of generatingX from X̂ is given by:

q(X|X̂) = π(xj |x̂0, . . . , x̂j−1, x̂j+1, . . . , x̂d)

Let us further denote the random vector that does not include the updated component as

X/j = (xo, . . . , xj−1, xj+1, . . . , xd)
T

Note thatX andX̂ only differ by the componentxj , thereforeX/j = X̂/j .

By substituting into the update probability of the Metropolis-Hastings algorithm, weget

α(X, X̂) =
π(X̂)

π(X)

q(X|X̂)

q(X̂|X)
=

π(X̂)

π(X)

π(xj |X̂/j)

π(x̂j |X/j)
=

π(x̂j |X̂/j)π(X̂/j)

π(xj |X/j)π(X/j)

π(xj |X̂/j)

π(x̂j |X/j)
= 1

Target pdfs that are in principle suited for the Gibbs sampler need to have aMarkovian neighborhood
structure, i.e. in the context of image processing, the pdf of a single pixel does only depend on pixels in
a local neighborhood. This ensures that the conditional pdfs are relatively simple.

Note that the Gibbs sampler is only applicable for multivariate distributions (whereas the Metropolis-
Hastings algorithm is also able to sample from univariate distributions).

Algorithm 3 summarizes the basic steps of the Gibbs sampler.

The indexj is typically chosen at random from an uniform distribution (referred to asrandom scan).
While this approach ensures reversibility of the chain, there are implementationscenarios (for example
GPU-based implementations) that may benefit from a systematic scan, i.e. where the indices are chosen
according to some predetermined order. While the systematic scan approachdoes not yield a reversible
chain, convergence to the distributionπ(.) is still guaranteed.
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Algorithm 3 Gibbs sampling

1: Choose an initial stateX0 = {x0
0, . . . , x

0
d}

2: Setk = 0
3: loop {Gibbs iteration}
4: Choose an index0 ≤ j ≤ d
5: Drawxk+1

j ∼ π(xj |xk
o , . . . , x

k
j−1, x

k
j+1, . . . , x

k
d)

6: k ⇐ k + 1
7: end loop

4.2.2 Metropolis-within-Gibbs

With focus on the sampling of variational energies that incorporate regularizers that are based on spatial
derivatives, it becomes clear that the Gibbs sampler is not directly applicable for most models, because
of the non-standard form of the conditionals. It is clear however that those models do have a Markovian
structure, and we can take advantage of the small spatial dependence ofa single pixel to its neigh-
boring pixels. We augment the scanning and update scheme of the Gibbs sampler with an additional
acceptance/reject-step. The resulting algorithm is called Metropolis-within-Gibbs and forms the basis
for sampling the variational energies covered in this thesis.

The algorithm is different from the classical Metropolis-Hastings algorithmin a simple detail. Assuming
a multivariate target distribution, only a single component of the state vector is updated, similar to the
Gibbs sampler. The update for the component is generated according to anarbitrary univariate proposal
distribution and accepted or rejected according to the usual Metropolis-Hastings acceptance/rejectence
probabilities.

Algorithm 4 formalizes the Metropolis-within-Gibbs sampler.

Algorithm 4 Metropolis-within-Gibbs
1: Choose an initial stateX0 = (x0, . . . , xd)
2: Choose a proposal distributionq
3: Setk = 0
4: Choose an oversampling ratioR > 0
5: loop {Metropolis-Hastings iteration}
6: for n = 1 . . . R do
7: Choose an index0 ≤ j ≤ d
8: Drawy ∼ q(.|xj)
9: Xk+1/2 ⇐ (x0, . . . , xj−1, y, xj+1, . . . , xd)

10: α⇐ π(Xk+1/2)q(Xk|Xk+1/2)

π(Xk)q(Xk+1/2|Xk)

11: Xk+1 ⇐ Xk+1/2 with probabilitymin(α, 1)
12: Xk+1 ⇐ Xk with probability1−min(α, 1)
13: end for
14: end loop

This modification, although small, heavily impacts the applicability of the algorithm forimage pro-
cessing applications. Especially in the context of models that are based on spatial derivatives (thus a
single pixel is connected only with pixels in a relatively small neighborhood),this formulation offers
tremendous benefits. In the standard version of the Metropolis-Hastings algorithm, each iteration needs
a proposal of full dimension (i.e. a random image the same size as the input imagehas to be generated).
It is relatively unlikely that such an update increases the probability of the pdf, if the proposal distribution
is not perfectly matched to the shape of target distribution, resulting in slow movement of the chain.

The Metropolis-within-Gibbs updates only a single pixel, which by itself has a relatively large probability
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of moving the distribution to higher values (even with proposals as simple as a uniform distribution). The
price for this simplicity is a very large correlation between two successive samples, which, however, can
be mitigated by taking only every R-th image as output of the algorithm. This is calledoversampling and
reflected by the constant R in Algorithm 4. While the oversampling ratio R can in principle arbitrarily
be chosen, we fix it toR = |Ω| for the remainder of this thesis.

The second advantage is given by the fact that if the target distribution is Markovian, large parts ofπ(.)
can be factored out, which allows the computation of the update probabilityα(x, y) for a single step
by evaluationπ(.) only in a small neighborhood. This strongly alleviates the evaluation of the update
probabilities. Moreover, such a scheme naturally lends itself to parallelizationas all pixels that are
conditionally independent can be updated at once (which of course is only practicable if the order in
which components are updated is chosen according to a systematic scan).

4.2.3 Metropolis-Adjusted Langevin Algorithm

All of the presented algorithms so far are agnostic to the local characteristics of the target distribution.
The movement of the Markov chain is dominated by the proposal distribution. It is possible, however,
to speed up the movement of the chain to regions of high probability by exploitingthe structure of the
target distribution.

In [Grenander and Miller, 1994], the idea of using a Langevin diffusionto steer the sampling process was
introduced. Langevin diffusions are a class of stochastic differential equations that come from physics
and were originally used to describe Brownian motion, i.e. the movement of particles in fluids due to
thermal noise.

The Langevin diffusion equation is given by

dXt = dBt +
1

2
∇ log(π(X))dt (4.10)

wheret ∈ R denotes the time,Bt ∈ R|MN | is a Wiener process andXt denotes the current state of the ,
now continuous in time, random process that is described by the equation.

Note that (4.10) describes a stochastic process due to the stochastic nature of the Wiener processBt. To
simulate this process, it is necessary to discretize (4.10). An Euler discretization [Roberts and Tweedie,
1996] with a time-step increment of∆t leads to

Xn+1 −Xn

∆t
= Bn+1 −Bn +

1

2
∇ log(π(Xn))

Rearranging with respect toXn+1 leads to

Xn+1 = Xn +
∆t

2
∇ log(π(Xn) + ∆t(Bn+1 −Bn) (4.11)

The differenceBn+1 − Bn of two successive realizations of a Wiener process is by definition normally
distributed with zero mean and unit variance, i.e

Bn+1 −Bn ∼ N (0, I)

This finally leads to the conclusion that the discrete-time approximation to the Langevin diffusion can be
simulated by a Normal distribution, according to

Xn+1 ∼ N (Xn +
∆t

2
∇ log(π(Xn)), (∆t)2I) (4.12)

The discrete Langevin diffusion (which is often referred to as “Unadjusted Langevin Algorithm” (ULA)
in the MCMC literature) obviously describes a Markov chain. Moreover, under certain circumstances, a
simulation of 4.12 will produce a Markov chain with invariant distributionπ(X).
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Roberts and Tweedie [1996] show conditions on when the continuous-time Langevin diffusion converges
to π(X): Apart from the obvious requirement thatlog(π(X)) has to be continuously differentiable, the
additional constraint

∇ log π(X)X ≤ a|X|2 + b, |X| > N

for someN, a, b <∞ ensures convergence to the target distributionπ.

Those results cannot simply be extended to the discrete approximation (4.12). The diffusion may or may
not converge toπ, depending on the actual properties ofπ, as the discretization perturbs the behavior of
the diffusion process.

To still allow convergence toπ, it is needed to add an additional Metropolis-Hastings accept-reject step
to the algorithm [Roberts and Tweedie, 1996], which finally results in the Metropolis-adjusted Langevin
Algorithm (MALA). Thus, in MALA, first a candidate update step is drawn according to the ULA update:

Xn+1/2 ∼ q(Xn+1/2|Xn) = N (Xn +
∆t

2
∇ log π(Xn), ∆t2I)

and accepted with probability

α(Xn, Xn+1/2) = min

{

π(Xn+1/2)q(Xn|Xn+1/2)

π(Xn)q(Xn+1/2|Xn)
, 1

}

or rejected with probability
1− α(Xn, Xn+1/2)

Due to the statistical independence of the individual components of the ULA proposal, this idea can
also be applied to Gibbs fields. By simply setting the proposal distribution in Algorithm 4 to the ULA
proposal distribution (4.12), we get the MALA-within-Gibbs algorithm.

4.3 Optimal Scaling

The scaling of the proposal distribution is a crucial factor in convergence speed. If the scaling is too
small, the chain is not able to explore the space in reasonable time. If the scalingis too large, the
chain will inevitably move into states that will be rejected too often. In both cases, the result is a poor
convergence time of the sampling algorithm.

Figure 4.2 shows the impact of the scaling of the proposal distribution on the convergence time of the
sampling algorithm (the example is due to [Louchet, 2008]). A bivariate normal distribution was sam-
pled using the Metropolis-Hastings algorithm (as presented in Algorithm 2) where the proposals were
generated according to a uniform distribution, with scalingα:

Xk+1/2 ∼ Xk + αU[−1,1]

Figures 4.2(b)-(d) show the first 10000 samples of the resulting chain for different values ofα. If α is too
small, most of the proposals are accepted, but the chain moves too slowly in space to explore the target
distribution in reasonable time (Figure 4.2(b)). Figure 4.2(c) shows the converse case: The proposals
are too large, hence most of the proposals are discarded. Only if the scaling is reasonably chosen (either
by an automatic procedure or by hand), a good approximation of the targetdistribution can be obtained
(Figure 4.2(d)).

Neal and Roberts analyze the convergence rates of Metropolis-Within-Gibbs and MALA-Within-Gibbs
in [Neal and Roberts, 2006]. Their analysis is based on the acceptancerateτaccept

τaccept =
# of accepted proposals

Total # of proposals



40 4. Markov Chain Monte Carlo

(a) Groundtruth
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(d) Optimal scaling

Figure 4.2: Sampling of a bivariate normal distribution (mean =(−0.5,−1), Cov =
(0.9, 0.4; 0.4, 0.5) with different proposal scalings. (a) Groundtruth. The area of the
ellipse covers approximately 86% of the total probability mass. (b)α = 0.01: The
proposals are too small, almost every proposal is accepted (≈ 99%). (c) α = 6: The
proposals are too large, only a small fraction of the proposals is accepted (≈ 4%). (d)
α = 0.6: Nearly optimal scaling, approximately70% of the proposals are accepted

of the algorithm.

They suggest that Metropolis-Within-Gibbs optimally converges ifτaccept ≈ 0.23. MALA-Within-Gibbs
allows for a higher acceptance rate where roughly half of the generatedproposals are actually accepted
(τaccept ≈ 0.57). Both results assume a Gaussian proposal distribution, but experiments show that these
results approximately hold for a uniform proposal distribution as well.

For many MCMC applications, it is feasible to hand tune the parameter to match the optimal acceptance
rate. This method is not applicable in the context of image processing, as it would need multiple runs
and hand-tuning of a parameter for every single image. We instead try to adapt the optimal scaling as the
chain evolves in time using a stochastic gradient descent algorithm.

The adaption procedure presented is largely motivated by [Atchadé, 2006] and [Haario et al., 2001] and
proceeds as follows:

Let us denote the current scaling byhk and the optimal acceptance rate asτopt. The proposal distribution
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is fixed to be Gaussian and for a single pixel is given by

Xk+1/2 ∼ N (f(Xk), hk)

wheref(x) = x for Metropolis-within-Gibbs andf(x) = x + ∆t
2 ∇ log π(x) for MALA-within-Gibbs.

Let us further introduce the expected acceptance rateτ(h) under the target distributionπ for a given
scale:

τ(h) = Eπ

{
∫

S
αh(x, y)qh(y|x)dy

}

=

∫

S
π(x)

∫

S
αh(x, y)qh(y|x)dydx

The difference ofτ(h) from its optimal value can be measured by(τopt− τ(h))2. This difference can be
minimized by a simple steepest gradient scheme, as it was presented in chapter2, which finally leads to
an iterative update procedure forh:

hk+1 = hk + γk(τ(hk)− τopt) (4.13)

whereγk > 0 controls the step-size of the update.

In most scenarios, it is clearly not possible to computeτ(h). We can, however, estimate this function for
a givenh:

Consider that the chain is in stateXk and an oversampling ratio R is used. The scaleh of the proposal
distribution is changed only afterR iterations. The transition kernel is therefore again constant inside the
oversampling iteration, and we can approximateτ(h) by

τ(h) ≈ 1

R

R
∑

i=1

α(Xk+i−1, Xk+i)q(Xk+i|Xk+i−1) ≈
a

R

wherea denotes the number of accepted proposals in the iteration. Using this estimate,hk is updated
after each oversampling iteration.

Note that (4.13) in principle is a stochastic procedure asτh is a random variable. Convergence ofh to
the optimal value is obvious but the procedure violates a fundamental assumption that had been made so
far: The time-invariance of the transition kernel of the overall chain. After each oversampling iteration,
the scaling of the proposal distribution, and therefore the transition kernel is modified. Hence neither
convergence of the chain to the target distributionπ nor ergodicity is guaranteed.

Roberts and Rosenthal [2007] show however that MCMC algorithms with a quite general class of time-
varying transition kernels can remainπ-irreducible and ergodic, provided some rather lax conditions
are met, which, to cite [Roberts and Rosenthal, 2009], “provide a hunting license to look for adaptive
MCMC algorithms”:

Let {Pγ}, γ ∈ Y denote the set of transition kernels that are produced by the adaption procedure (4.13).
Let furtherPΓn denote the transition kernel at time-stepn whereΓn is a random variable itself (repre-
senting the uncertainty in the update procedure). Then the adaptive MCMCalgorithm is ergodic with
stationary distributionπ if the following conditions are met:

Condition 1. ([Roberts and Rosenthal, 2007])
Let

||f1(x, .)− f2(x, .)||TV = sup
A∈B
|f1(x, A)− f2(x, A)|

denote the Total Variation distance between two probability measuresf1 andf2.

Then an adaptive MCMC algorithm is ergodic, if

a) (Diminishing Adaption:) The amount of adaption vanishes, asn goes to infinity:

lim
n→∞

sup
x∈X
||PΓn+1(x, .)− PΓn(x, .)||TV = 0
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b) (Simultaneous Uniform Ergodicity:) For allǫ > 0, there exists a timeN = N(ǫ) such that for all
x ∈ S andγ ∈ Y

||PN
γ (x, .)− π(.)||TV ≤ ǫ

The condition of diminishing adaption can be enforced in our adaption procedure by gradually reducing
the step size, for example by settingγk = C

k .

The second condition basically states that every kernel has to be ergodicwith stationary distributionπ,
i.e. every kernel for itself represents a valid MCMC procedure. Moreover, all kernels have to exhibit
the same convergence rate. Now note that in our adaption scheme merely the scaling of the proposal
distribution is modified. Using the assumption that the proposal distribution is a Gaussian and that the
target distribution is log-concave, this condition is always met.

4.4 Chapter Summary

Based on the need to solve a very high-dimensional integral, this chapter introduced some fundamental
aspects of Markov Chain Theory and several algorithms to generate Markov chains, which effectively
sample from a desired target distribution. The presented algorithms are bothsimple and general (in the
sense that only weak or no assumptions on the target distribution are made) and therefore perfectly suited
for the application to variational models.

LSE estimation can be carried out via the ergodicity theorem (1), which essentially states that the ex-
pected value of a target distribution can be approximated by averaging the output of a sampling algorithm.
While this approximation is very simple, the sampling algorithms themselves are usuallycomputation-
ally very demanding for high-dimensional problems. Moreover, there aresome parameters that have to
be tuned on a case-by-case basis, which lessens the real-world applicability of those algorithms. The
following chapters are therefore concerned with the refinement of the proposed sampling algorithms to
allow both optimal convergence speed and massive parallelization.



Chapter 5

From Samplers to Estimators

Now that we are able to construct a Markov Chain that samples from a target distribution, we concentrate
our attention again on our initial goal, the approximation of high dimensional integrals, to estimate the
expected value of a variational model. Recall again that the integral (i.e. theLSE estimator) that is to be
approximated is given by:

u∗ = E{u} =

∫

R|Ω|

up(u|f)du

And via Theorem 1, we can approximate this integral by

u∗ ≈ 1

N

N
∑

k=1

Uk (5.1)

provided that the samplesUk are distributed according top(u|f). So, to approximate the LSE estimator,
we can therefore run any feasible algorithm presented in the preceding chapter and simply compute the
arithmetic mean of the generated images. However, for an efficient implementation, two additional points
have to be considered:

• After starting the evolution of the chain, the samples are not immediately distributed according to
the target distribution. Therefore, the chain has to be run for some time before samples should be
incorporated into the arithmetic mean.

• A stopping criterion to assess convergence of (5.1) is needed.

Both problems cannot be tracked analytically and strongly depend on the target distribution. An algo-
rithm that heuristically tackles both problems simultaneously will be presented in section 5.1.

The sampling algorithms presented in the preceding chapter open up anotherpossibility: Via the sam-
pling procedure, we gain important insight into the target distribution, which can be used to find the
MAP estimate. Section 5.2 introduces a popular algorithm, called “Simulated Annealing”, which ex-
hibits asymptotic convergence to the global optimum, even in non-convex energies.

5.1 Burn-in and Convergence Control

After starting the evolution of the chain, samples are not immediately distributed according toπ(.),
except for the case where the initial imageU0 is drawn fromπ(.) itself.

The time needed to reach equilibrium is called the burn-in time. When estimating moments, one relies
on a set of samples from the target distribution. To obtain a reliable estimate, it istherefore crucial that

43
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samples that were not sampled from the invariant distribution are not incorporated into the estimate as
they would potentially distort the LSE estimate for a very long time.
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Figure 5.1: Comparison of the sampling of a standard normal distribution with and without burn-in.
The examples show the distribution of 10000 samples with a fitted normal distribution
superimposed (red). In both examples, the chain was initialized at a state with very low
probability (x = 20). (a) Without burn-in. The samples are not immediately distributed
according to a standard normal distribution, because the chain needs some time to
reach regions of higher probability. (b) With a burn-in (2000 samples). The resulting
distribution of the samples fits the target distribution.

Figure 5.1 illustrates this effect. A standard normal distributionN (0, 1) was sampled using a starting
value with low probability (x = 20). The chain needs some time to reach regions with larger probability,
which effectively distorts the LSE estimate (Figure 5.1(a)). If the first samples where the chain moves
towards regions of higher probability are discarded, the resulting distribution is much closer to the target
distribution (Figure 5.1(b)).

An estimator therefore needs to throw away the firstb samples. Unfortunately it is not possible to
determineb analytically or by just observing a single run of the chain. There are many approaches that
try to heuristically determine good values forb. One such approach is to run two or more chains (that were
initialized at different starting values) in parallel and compute the arithmetic means for different burn-in
values. As the chains reach equilibrium and the burn-in values increase,the averages will eventually
converge to the same value, indicating both an optimal burn-in value as well asconvergence of the LSE
estimate. Such a scheme, however, demands to either store every sample or todo a preliminary run to
determine the burn-in value before the actual LSE estimation is carried out. The first option is infeasible
in the context of image processing, and the second option is quite inefficient.

Louchet [2008] developed an algorithm that addresses these problems, which is reproduced in Algorithm
5. While the algorithm is largely based on heuristics, it actually performs well inpractice.

Let us briefly explain the idea behind the algorithm:

The algorithm runs two chains,{Un} and{Ûn}, that are generated using identical proposal distributions
and different starting values. The Metropolis-Hastings iteration (MH iteration) refers to a full scan of
length |Ω|, systematic or random, of either the Metropolis-within-Gibbs or the MALA-within-Gibbs
sampler. The acceptance rate of the first chain is used to infer the optimal scaling for both chains.

By taking into account the burn-in timeb, the LSE estimators for both chains are then given by

Sb
n =

1

n− b

n
∑

k=b+1

Uk Ŝb
n =

1

n− b

n
∑

k=b+1

Ûk
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First, note that by averaging both sums

Gb
n =

Sb
n + Ŝb

n

2
(5.2)

we obviously can get a better estimate than by considering a single sum alone because this is roughly
equivalent to running a single chain twice as long.

[Louchet, 2008] states, largely based on empirical results, that the distance of this refined estimate to the
true value can be approximated by the distance between the estimates of the individual chains:

‖Gb
n − u∗‖ ≈ 1

2
‖Sb

n − Ŝb
n‖ (5.3)

This leads to the stopping criterion:
‖Sb

n − Ŝb
n‖ ≤ 2ǫ

which ensures that the output (5.2) is roughly a distance ofǫ away from the true valueu∗. The consider-
ations so far assumed a known burn-in timeb, which could be computed for a fixed run-timen if u∗ was
known. Using (5.3) again, the optimal burn-in time can be approximated by:

b̂ = arg min
b∈{1,...,n}

‖Gb
n − u∗‖ ≈ arg min

b∈{1,...,n}
‖Sb

n − Ŝb
n‖ (5.4)

Now note the minimum in (5.4) involves the full lengthn of the chains. To find this minimum, this
would require to store each image generated by the sampling algorithm (or equivalently to store every
partial sum). This is of course impossible, considering that typically hundreds to thousands of images
are generated until the algorithm converges.

It is not necessary, however, to consider every index from1 . . . n as a potential burn-in candidate. If one
considers only a subset of those indices, the worst result would be a few wasted iterations, where the
algorithm keeps running even if the stopping criterion was already met.

Algorithm 5 LSE Estimation ([Louchet, 2008])
1: Setn = 0, λ = 1.2, α0 = 1
2: GenerateU0 andÛ0, with uniformly i.i.d. pixels
3: SetS0 = 0, Ŝ0 = 0
4: repeat
5: ComputeUn+1 andτn+1

{MH iteration with proposal distributionN (f(Un), αn)}
6: ComputeÛn+1

{MH iteration with proposal distributionN (f(Ûn), αn)}
7: Sn+1 ← Sn + Un+1

8: Ŝn+1 ← Ŝn + Ûn+1

9: if n ∈ ⌊λN⌋ then
10: StoreSn+1 andŜn+1

11: EraseSk andŜk with k < n/6

12: Setb̂ = arg minb∈⌊λN⌋‖
Sn−Sb̂

n−b̂
− Ŝn−Ŝb̂

n−b̂
‖

13: end if
14: αn+1 ← αn + 1

n+1(τn+1 − τopt)
15: n← n + 1

16: until ‖Sn−Sb̂

n−b̂
− Ŝn−Ŝb̂

n−b̂
‖ ≤ 2ǫ

17: return 1
2

Sn−Sb̂

n−b̂
+ 1

2

Ŝn−Ŝb̂

n−b̂

This idea is reflected in the algorithm by a geometric grid: The algorithm considers onlyb ∈ ⌊1.2N⌋ =
{⌊1.2k⌋, k ∈ N} as candidate for the burn-in parameter. Moreover, there is no need to actually store each
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image in this sequence. It suffices to examine only the images, whereb ≥ n/6 (again from empirical
arguments in [Louchet, 2008]). This results in at most 10 images that are stored per chain at any time,
totaling 20 images, which is tractable on most computers.

The initializationsU0 andÛ0 can in principle be arbitrarily generated as long as they are not too similar,
which would break the stopping criterion. Harris-recurrence andπ-irreducibility guarantee that the chain
forgets about its initial state in finite time. Experiments show that the chains approach each other very
rapidly (after 10-100 iterations) regardless of the specific initialization. The impact of the initialization
on the convergence speed is therefore negligible. For our specific implementation, we used a random
initialization with uniform, i.i.d. pixels.

5.2 Simulated Annealing

It has already been mentioned that a sampling algorithm could in principle also be used to infer the MAP
estimate. A naive approach would simply store the image with highest probability along the evolution.
If the sampling algorithm is run long enough, it is guaranteed that the image with highest probability in
the run is sufficiently near to the true MAP estimate. Such an approach would,however, need very long
runs for non-convex optimization problems (due to the tendency of the sampling algorithms to get stuck
in local optima for a long time) and would be of little value for convex optimization problems (due to the
availability of much faster algorithms).

Simulated Annealing [Kirkpatrick et al., 1983], a modification of the Metropolis-Hastings algorithm, is
able to considerably speed-up global MAP inference for non-convexenergies, compared to the naive
sampling approach.

In order to minimize an energyE(u), one can alternatively sample from the distribution

p(u) =
1

Z
exp−E(u)

T
(5.5)

whereT is gradually reduced. The maximum of the pdf then corresponds to the minimum of the energy
E(u). The parameterT is called the temperature due to the resemblance of (5.5) to the Boltzmann
distribution from thermodynamics where it denotes the temperature of a gas.

Recall again how the Metropolis-Hastings algorithm moves within a target distribution:

• If the proposed state has higher energy than the previous state, the stateis always accepted. Such
a move effectively brings the chain nearer to a, potentially local, maximum.

• Conversely, if the proposed state has lower energy than the previous state, the proposal is accepted
with non-zero probability. This probability is inversely proportional to the energy difference be-
tween the states. The algorithm can therefore move “downhill” in the pdf, which effectively allows
to escape local maxima.

Figure 5.2 depicts the influence of the temperature on the shape of a simple distribution. For high
temperatures, the resulting distribution becomes more uniform, resulting in smallerenergy differences
between jumps. This allows the Metropolis-Hastings algorithm to rapidly move around in the target
distribution and avoids being trapped in local optima. As the temperature decreases, the maxima of the
function become more and more peaked. Provided that the annealing schedule (i.e. the rate at which the
temperature is decreased) is slow enough, the sampler will become trapped inthe maximal mode. As
the temperatureT approaches zero, “downhill” movements become very unlikely, eventually leading the
sampler to the global maximum of the target distribution.

Algorithm 6 shows the full algorithm, with automatic tuning of the scaling of the proposal distribution.
The algorithm has several variables which have to be determined based onthe target distribution. The
cooling schedule is fixed to a logarithmic schedule, whereγ is nearly (but not equal to) one.
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Algorithm 6 Simulated Annealing
1: Setn = 0,
2: ChooseT0 > 0, α0 > 0, K > 0, 0 < γ < 1
3: GenerateU0

4: repeat
5: k = 0
6: while k < K do
7: ComputeUk+1 andτk+1

{MH iteration with targetexp{−E(u)/T} and proposal∼ N (f(Un), αk)}
8: αk+1 ← αk + 1

n+1(τk+1 − τopt)
9: k ← k + 1

10: end while
11: α0 ← αk

12: Tn+1 = γTn

13: n← n + 1
14: until Tn+1 < Tmin

15: return Un−1
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Figure 5.2: Logarithmic plot of the probability density induced by a quartic function (x4−16x2 +
5x) for different temperatures. For high temperatures, the distribution is nearly a uni-
form distribution. For smaller temperatures, the maxima become more and more pro-
nounced.

Bélisle [1992] gives conditions for the convergence of the Simulated Annealing algorithm in a continuous
setting:

Let Bǫ = {u ∈ S : E(u) ≤ E(u∗) + ǫ} be the ball with radiusǫ centered at the global optimumu∗.
Then the Simulated Annealing sequenceun converges in probability to the global optimum, i.e.

lim
n→∞

Pr(un ∈ Bǫ) = 1, ∀ǫ > 0

if the following conditions are met:

1. The time-variant Markov Chain has a transition kernel

R(x, A) =

∫

A
r(x, y)dy
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wherer(x, y) satisfiesinfx,y∈S r(x, y) > 0.

2. The setBǫ has positive Lebesgue measure.

3. For every open subsetG ∈ S, R(x, G) is continuous with respect tox.

4. For anyU0 andT0, the sequenceTn converges to zero with a probability equal to one.

The first condition states that every state can be reached with non-zero probability in a single step. This
means that the inner loop of Algorithm 6 has to be run long enough, or alternatively that the proposal
distribution has to assign a non-zero probability to every possible state. Thesecond condition states that
the ball around the optimum has to contain a probability mass with respect to the posterior distribution.
The third condition limits the influence of a small perturbation around the current state. The last condition
is surprisingly lax as it states that the annealing schedule only has to converge in probability towards zero.
This allows also adaptive annealing schedules, which however will not beexamined here.

From a practical point of view, the design of a robust Simulated Annealing schedule involves some trial-
and-error to find good parameters that ensure convergence (convergence in probability is a rather weak
result). Parameters for specific applications can be found in chapter 7.

In our implementation, we used the Metropolis-Within-Gibbs sampler with a Gaussian proposal distri-
bution. MALA can in principle be used, but has unfavorable convergence behavior, due to its strong
attraction to local optima.

5.3 Chapter Summary

In this chapter, the concept of LSE estimation based on MCMC methods was refined to a fully automatic
algorithm. We will use this algorithm exclusively for convex energies, however, because LSE estimates
seldom provide meaningful results in non-convex high-dimensional posteriors (see chapter 3).

For non-convex energies, a global optimization algorithm, based on the Metropolis-Hastings algorithm,
was presented. While only weak convergence results are available, the algorithm is useful nonetheless if
the parameters are carefully selected for a given problem.

Both algorithms are computationally very demanding. A single sweep (iteration) of the Metropolis-
Within-Gibbs or the MALA-Within-Gibbs samplers depends quadratically on thesize of the input image.
Typically, one needs hundreds to thousands of sweeps, resulting in very long run-times of the algorithms
if they are implemented as sequential procedures (i.e. each pixel is visited one at a time). The following
chapter is therefore concerned with a parallel implementation of the algorithms,which is able to shorten
the run-time from several minutes to a few seconds.



Chapter 6

GPU Implementation

The sampling algorithms presented so far are computationally very demanding.Given a moderately
sized image, even the simplest model, denoising using the ROF model, would take several minutes to
produce a result when executed on a modern consumer-level CPU.

Note, however, that the sampling algorithms do not need full knowledge of the entire image to compute
a single-pixel update probability. Only the neighborhood that is directly influenced by the pixel has to
be considered. Given the Total Variation prior, approximated with finite forward differences, it therefore
suffices to only look at two immediately neighboring pixels. Together with a systematic scan, this opens
the possibility for massive parallelization.

The widespread availability of cheap, high-performance graphics cards, which are in fact massively
parallel multiprocessing units, has recently spawned a trend in scientific computing: Instead of using
expensive, dedicated multiprocessor computers, one relies on the Graphics Processing Unit (GPU) that
is present in most desktop computers to perform general purpose computations (typically referred to as
“GPGPU”: General-Purpose computation on Graphics Processing Units).

GPUs are designed for the requirements of real-time 3D applications where large sets of data (i.e. vertices
and pixels) have to be processed. In such applications, each vertex orpixel is typically processed by the
same program. The architecture of GPUs reflects these requirements. They are designed for massive
data-parallelism with less emphasis on flow control and memory caching, compared to typical CPU
architectures (see Figure 6.1).

(a) CPU (b) GPU

Figure 6.1: Architecture of CPUs vs. architecture of GPUs [Nvidia, 2009]. In CPUs, a large
portion of the total transistors are dedicated to flow control and memory caching. GPUs
put less emphasis on flow control and caching but provide a large amount of ALUs for
massively data-parallel computations.
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To assist a programmer in the creation of GPGPU applications, three main frameworks have emerged:

• Nvidia CUDA1 (Compute Unified Device Architecture): A framework developed by Nvidia specif-
ically for their hardware platform.

• ATI FireStream2: The pendant to CUDA for AMD/ATI graphics hardware. Now superseded by
OpenCL.

• OpenCL3: An open, standardized GPGPU framework. Implementations are available for AMD/ATI,
Nvidia, as well as other, less common, hardware platforms.

Nvidia CUDA was the de facto standard for GPGPU computing in the last yearsand has a very mature
and stable implementation. We therefore chose the CUDA framework (Version2.3) for our implementa-
tion.

This chapter is organized as follows: Section 6.1 gives an overview of theCUDA framework. Section 6.2
describes some GPGPU-specific implementation details for the Metropolis-Within-Gibbs and MALA-
Within-Gibbs samplers and shows a speed comparison to a CPU-bound implementation. Section 6.3
finally concludes with a brief summary of this chapter.

6.1 Nvidia CUDA

In the Nvidia CUDA framework, small programs (called kernels) that are subject to parallel execution can
be coded using an extension to the C programming language. This allows to easily implement parallel
algorithms to anyone who is familiar with C or similar languages. To achieve optimal performance, it is
however necessary to consider the underlying programming model and device architecture as well:

When a kernel is called N threads execute the kernel in parallel. Those threads are, due to hardware
constraints, organized into execution units, called blocks [Nvidia, 2009].A number of blocks forms a
grid, the largest execution unit (see Figure 6.2).

Each thread has a private memory space in the form of fast registers andslow local memory (which is
mostly used for large automatic data structures that would consume too much register space). Threads
in the same block can exchange data via shared memory, which is guaranteedto have low latency. Both
memory types are volatile across kernel calls.

For data that needs to be persistent across kernel calls and has to be accessed by all threads, global
memory can be used. This type offers read- and write-access for all threads but exhibits high latency.
Access to global memory should therefore be kept at a minimum. Global memory can be bound to
texture units, providing a fast, cached read-only memory. This type of memory is optimized for 2D
spatial locality and offers special addressing modes for boundary handling and interpolation between
neighboring texels, which makes it especially useful for image processingapplications. Local and shared
memory are not visible to the CPU. Data exchange between the CPU and GPU is possible via global
memory and should again be kept at a minimum for optimal performance.

Both the block size (the number of threads per block) and the grid size (the number of blocks) can be
chosen by the programmer. Each thread of a block is executed on the same multiprocessing unit of the
GPU. This limits the number of possible threads in a block due to a limited amount of registers and shared
memory on a core. Typical block sizes are 128, 256 or 512 threads per block and should be in general
a multiple of two. The grid size is mainly governed by the size of the data that has tobe processed. For
imaging applications, typically one thread processes one pixels. The grid size therefore has to be chosen
in a way that at least the whole image is covered with threads.

1http://www.nvidia.com/cuda
2http://developer.amd.com
3http://www.khronos.org/opencl
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Figure 6.2: Memory hierarchy and thread grouping of the Nvidia CUDA platform [Nvidia, 2009].

6.2 Implementation Details

A striking characteristic of the Metropolis-Hastings algorithm is that no assumptions about the target
distribution have to be made. We exploited this generality to build a “plug-and-play” system, which
allows rapid implementation and testing of variational models.

Figure 6.3 shows a simplified UML diagram of the proposed system. It basically consists of a class that
implements the sampling algorithm (MH Sampler), which uses one or moreTerms, each representing
an additive term in the energy functional. Consider the ROF model as an example: To sample from this
model, one registers an instance ofTV Prior andL2 DataTerm to the sampler. If desired, each term
can additionally correct the proposal using an estimate of the gradient to make a MALA-Within-Gibbs
step instead of a standard Metropolis step.

To perform a single oversampling iteration, the instance ofMH Sampler generates a proposal and passes
the current state along with the proposal to the registeredTerm instances, which in turn generate a log-
probability of moving to the proposed state. The sampler then decides if the proposal for each pixel is
accepted or rejected according to the Metropolis-Hastings criterion and updates the state accordingly.

Finally, the classesLSE Estimator andMAP Estimator use the sampler to estimate statistics from
the sampled distribution according to the algorithms presented in the preceding chapter.

This system is very flexible: One can implement arbitrary algorithms that rely onsampling, new terms
can be added and one can form arbitrary combinations of terms to test different models.

Let us now identify parts of this system that are data-parallel, i.e. could benefit from an implementation
using CUDA:

• Computation of the update probabilities

• Generation of the proposals and the Accept/Reject step in the Metropolis-Hastings sampler

• Mixing of chains for convergence control of the LSE estimator
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Figure 6.3: UML diagram of the proposed implementation

The mixing of the chains only requires standard linear algebra and reduction operations, a parallel im-
plementation therefore is straightforward and will not be discussed here.

The generation of proposals and the corresponding update have to be subject to some considerations in
a GPU-bound implementation. The first issue is the influence of the scan order (more precisely which
pixels can be updated parallely). The second is the efficient generation of pseudo-random numbers on a
GPU. We will review both issues in more detail in the following.

6.2.1 Influence of the scan order

The simplest parallel systematic scan order is given by a simultaneous updateof all pixels. For each pixel
a proposal is made and accepted based on the full conditional probability of the current pixel to all other
pixels of the current state. Such a scheme is attractive due to its simplicity. Successive samples of such a
scheme are however strongly correlated, which slows down the convergence of the sampling algorithm.

We propose a simple modification to lower the correlation between successivesamples. Instead of up-
dating all pixels at once, two sequential sweeps are made for a single iteration: Let i andj denote the
coordinate of a pixel in the image. Then in the first sweep, all pixels wherei + j is even are updated. In
the second sweep, all pixels withi + j odd are updated, based on the conditionals of the previous sweep.
Such an ordering is typically referred to as “Red-Black” iteration in the literature .

Figure 6.4 depicts the Red-Black updating scheme. The pixels that influencethe probability of a single
pixel update when using a TV prior with forward differences are hinted ingray in this image. Note that
using a more sequential scanning strategy (i.e. updating only pixels that do not directly influence each
others conditional probabilities) further reduces correlation between samples. This, however, hinders
effective parallelization and does not increase performance in practice. Our experiments show that the
red-black scan reduces the number of iterations till convergence is reached in algorithm 5 by roughly
30%.

6.2.2 Pseudo-Random Number Generators

Due to the lack of sources of true randomness on digital computers, applications that rely on randomness
typically employ a Pseudo-Random Number Generator (PRNG). PRNGs arealgorithms that determin-
istically, based on an initial seed value, generate a sequence of numbers that shares some statistical
properties with true random numbers. In most algorithms the sequence is generated based on a recursive
function, i.e. given a seed valuex0, the next valuexn+1 can be computed as a function ofxn. Direct cal-
culation ofxn+1 is not possible in most algorithms (see [Blum et al., 1986] for an exception),rendering
such a procedure inherently sequential and therefore problematic for aGPU-based implementation.
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Figure 6.4: Red-Black updating scheme and single-pixel dependencies.In the first sweep, all red-
pixels are concurrently updated. In the second sweep, the black pixels are concurrently
updated. For a red update and a TV prior, the neighborhood dependencies for a single
pixel are hinted in gray.

Another problem of a GPU-based PRNGs is the lack of high-precision integer arithmetic on GPUs.
Typical PRNGs require computations with very large integers to allow a sufficiently long period of the
generated sequence (i.e. the length of the sequence before it starts to repeat itself). This problem plays a
larger role in cryptography applications than in Monte Carlo simulations. For simulations, we generally
do not need pseudo-random numbers of cryptographic quality, which alleviates this problem and allows
us to employ a simple and fast algorithm.

We chose an implementation that is based on the well-knownrand48()-function from the C standard
library. This function uses a Linear Congruential Generator (LCG) to generate a uniformly pseudo-
random sequence. A fast GPU-based implementation that was specifically developed for simulation
purposes is available at [van Meel and Amolf, 2010]. To generate Gaussian pseudo-random numbers
from this sequence, we used the well-known polar transform (see [Thomas et al., 2007] for an overview
of the generation of Gaussian random numbers).

Our experiments show that this implementation fits our needs, both in terms of speed and quality of
the generated sequence. Note, however, that while the implementation is indeed fast, it nonetheless
poses the biggest potential for optimization. Roughly 40% of the computation time of each Metropolis-
Hastings iteration is concerned with the generation of random numbers. However, there seems to be no
fast alternative for the parallel computation of pseudo-random numbersat the moment.

6.2.3 Speed comparison

A speed comparison shows the superiority of our GPU-based implementation toa sequential version.
We compared the run-time of 1000 successive Metropolis-Hastings iterations for different image sizes.
The sampled energy was the ROF model with parametersλ = 0.4 andσ = 0.01. All experiments were
carried out on an Intel Xeon CPU with 2.53 Ghz and 24GB of RAM. The GPUcode ran on a Nvidia
Tesla S1070 computing system.

Table 6.1 summarizes the execution times. The parallel version roughly speeds up the computations by
a factor of 35. Note that the LSE estimator seldom needs more than 2000 iterations for convergence
and typically even converges after a few hundred iterations (although theconvergence time is strongly
dependent on the spread of the pdf that has to be sampled), making this algorithm indeed useful for
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real-world applications, when run on a GPU.

Size GPU CPU Speedup

128x128 1.0 13.4 13.4
256x256 1.5 56.8 37.9
512x512 3.2 104.2 32.5

Table 6.1: Comparison of execution time in seconds between GPU and CPU implementation for
different image sizes. The test consisted of 1000 full-scanMetropolis-Hastings itera-
tions.

6.3 Chapter summary

In this chapter, the implementation of a Metropolis-Within-Gibbs algorithm for the sampling of varia-
tional models in image processing was outlined. Such algorithms are computationally very demanding
and are therefore implemented to run on Graphics Processing Hardware,which allows massive paral-
lelization of the proposed algorithms. We discussed problems and challengesthat arise for GPU-based
implementations of sampling algorithms and gave some hints on how those problems have been cir-
cumvented in our specific implementation. Finally, we showed a speed comparison of our GPU-based
implementation to a CPU-based implementation. Our experiments show that the GPU version outper-
forms the CPU version by a factor of 35.



Chapter 7

Variational Models

In the following chapter, we will present experimental results of our approach to variational models.

The chapter is organized as follows: Section 7.1 applies the LSE estimator to twodifferent denoising
models and compares the results to the respective MAP estimates. Section 7.2 is concerned with the
estimation of Optical Flow from images pairs. The examined models are non-convex and are usually
solved via a convex approximation combined with MAP estimation. We will employ the Simulated
Annealing procedure, introduced in chapter 5 to directly optimize those non-convex energies.

7.1 Denoising

In this section, the MAP estimator and the LSE estimator for different denoisingmodels are compared.
To quantitatively compare the denoising procedures, we chose the “Structural Similarity (SSIM) index”
[Wang et al., 2004] as error metric. Unlike simple MSE-based error metrics,SSIM is able to capture
visual differences between images better and is therefore more suitable for the comparison of recon-
struction algorithms. The test images consisted of 13 images from theDenoiseLab database [Lansel,
2007], which were degenerated by different levels of noise. All MAP estimates in this section were
obtained using the primal-dual algorithm that was presented in chapter 2.

7.1.1 The ROF Model

In section 3.2, it was shown that solutions of the ROF models do not follow the probability distribu-
tions that were initially assumed in the construction of the model. Let us first empirically check the
distributions that result from the LSE estimator of the ROF model.

Recall the random walk model introduced in section 3.2:

The Laplacian random walk is given by the sequencexi+1 = xi +L, where L is distributed according to
a zero-mean Laplacian distribution with varianceβ. The sequencexi+1 is then corrupted by zero-mean
additive white Gaussian noise with varianceσ2. It was already mentioned that this sort of input data is
in some sense the best-case input to the ROF model, as the data was generatedaccording to the laws that
form the basis of the denoising model. MAP estimates however, behave, poorly. Staircases emerge in
the denoised function and the distribution of the result neither resembles a Laplacian distribution nor do
the residuals resemble Gaussian noise (see Figures 3.1 and 3.2).

Figures 7.1 and 7.2 show the denoising of the Laplacian random walk using the LSE estimate of the ROF
model and their respective distributions. The denoising result is far better, there are no staircases present
in the reconstruction. Furthermore the distribution of the LSE estimate exhibits much more similarity
to the true distributions. The distribution of the differencesxi+1 − xi perfectly follows a Laplacian
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(a) A single realization of a Laplacian random walk with
superimposed Gaussian noise. Dashed: Original signal.
Solid: Noisy signal
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(b) Reconstruction using the LSE estimate of the ROF
model. Dashed: Original signal. Solid: LSE reconstruc-
tion

Figure 7.1: Reconstruction of a signal obtained from a noisy Laplacian random walk. The LSE
estimate does not suffer from artifacts.

distribution. The residuals, however, only vaguely resemble a Gaussian distribution. Compared to the
MAP results (Figure 3.2) , these result can still be considered as overallbetter.
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(a) Distribution of the differencesxi+1 − xi in the LSE
reconstruction
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(b) Distribution of the residuals

Figure 7.2: The distribution of the LSE estimate perfectly matches the desired Laplacian distri-
bution (left). The distribution of the residuals does not resemble the true distribution
that well (right). It is, however, more similar to the true distribution than the residual
distribution of the MAP estimate.

Evaluation

The first part of this evaluation is concerned with the influence of the parameters on the denoising results.

Consider again the general form of the pdf that is induced by a variational model:

p(u|f) =
1

Z
exp

{

−E(u; λ)

T

}
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(a) β = 0.5, σ2
= 0.1 (b) β = 0.5, σ2

= 0.05

(c) β = 0.5, σ2
= 0.03 (d) β = 0.5, σ2

= 0.0001

Figure 7.3: Results of LSE denoising using the ROF model for fixedβ and falling temperature.
The temperature is given by2σ2. As the temperature gets lower, the LSE denoiser
approaches the MAP result.

The parameterλ controls the amount of regularization that is applied. The parameterT , called the
temperature, controls the spread (variance) of the pdf. Let us examine the influence of this second
parameter in the context of the ROF model (note that the principle results also apply to all other models
that are considered in this thesis). In the ROF model, the temperature has a direct relation to the variance
of the data term and is given byT = 2σ2. Moreover, we use the regularization parameterβ = λ

T
to emphasize the explicit dependence of the regularization parameter on the temperature in the LSE
estimate.

Figure 7.3 shows how the denoising result changes for a fixed regularization parameterλ and different
temperatures. Figure 7.4 shows the case where the temperature is fixed andλ is changed. All results
were obtained from an image that was artificially degenerated by 10% Gaussian noise. From the first
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(a) β = 0.1, σ2
= 0.05 (b) β = 0.4, σ2

= 0.05

(c) β = 0.6, σ2
= 0.05 (d) β = 1.0, σ2

= 0.05

Figure 7.4: Results of LSE denoising using the ROF model for fixedσ2 and risingβ. The temper-
ature is given by2σ2. With risingβ, the result becomes blurred.

experiment it is obvious that the results resemble the MAP estimate more and more as the temperature
becomes lower. This can be attributed to the fact that asT becomes smaller, the variance of the proba-
bility distribution becomes smaller as well, which further leads to the effect that the maximal mode and
the expected value approach each other. Conversely, if the temperatureis held fixed, the LSE estimate
becomes smoother, without introducing staircases. Forλ very small orT very high the result approaches
a noisy image, with a variance that depends onT . When both values are high the results becomes a
blurred version of the cartoon that results from the MAP. Note that the temperature also influences the
run-time of the algorithm. For largerT , the two chains in Algorithm 5 have to make larger leaps in the
state space which results in a longer run-time.

Figures 7.5 and 7.6 shows a direct comparison of the denoising results of ROF-MAP and ROF-LSE
respectively. The LSE reconstruction does not fully remove the noise. Depending on the combination
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of parametersλ andσ2 there is always a noise residual in the reconstruction. In terms of visual quality,
results from the LSE estimate tend to look more natural. This can be largely attributed to the absence of
staircasing.

(a) Original (b) Noisy (10%)

(c) ROF-LSE (λ = 0.05, σ2
= 0.01) (d) ROF-MAP (λ = 0.05)

Figure 7.5: Denoising using ROF-LSE and ROF-MAP. ROF-LSE leaves some noise in the recon-
struction, but the overall result looks more natural due to the absence of staircasing.

For the quantitative comparison of ROF-MAP to ROF-LSE, we applied both denoisers with fixed param-
eters to the test images. The images where artificially degenerated by 4 different noise levels (5%, 10%
and 20% additive white Gaussian noise). Table 7.1 shows the average SSIM on the test set. The regular-
ization parameterλ is shown in parentheses. For the LSE denoiserσ2 was fixed to0.01. The quantitative
comparison shows that ROF-LSE slightly outperforms the MAP denoiser in terms of average SSIM.
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(a) Noisy (10%) (b) ROF-LSE (λ = 0.05, σ2
=

0.01)
(c) ROF-MAP (λ = 0.05)

(d) Noisy (10%) (e) ROF-LSE (λ = 0.05, σ2
=

0.01)
(f) ROF-MAP (λ = 0.05)

(g) Noisy (10%) (h) ROF-LSE (λ = 0.05, σ2
=

0.01)
(i) ROF-MAP (λ = 0.05)

Figure 7.6: Close-up of the denoised image. In the ROF-LSE reconstruction no staircases are
visible.

Noise: 5% (λ = 0.025) 10% (λ = 0.05) 20% (λ = 0.067) 25% (λ = 0.125)

ROF-LSE 0.9204 0.8581 0.7866 0.7303
ROF-MAP 0.8973 0.8279 0.7833 0.7062

Table 7.1: Quantitative comparison of ROF-MAP to ROF-LSE in terms of average SSIM.

7.1.2 The TV-L1 Model

TV-L1 is another simple and popular model that was initially developed for the reconstruction of images
that where degenerated by “Salt & Pepper” noise. The only difference to the ROF model is that the data
term is given by the L1 norm (which comes from the fact that “Salt & Pepper” noise can be modeled
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using a Laplacian distribution). The energy of this model is given by:

E(u; λ) =

∫

Ω
|u− f |dx + λ

∫

Ω
|∇u|dx (7.1)

TV-L1 can also be used for applications like structure-texture decomposition and shape denoising. More-
over the MAP estimate is contrast-invariant, which opens up the possibility to usethe model for scale-
driven feature selection [Pock, 2008].

Direct optimization of this model is problematic due to the fact that the absolute value is not continuously
differentiable at zero (see section 2.2.2). Furthermore duality principles can not be applied here because
the functional is only weakly convex. An approximation based on convex relaxation was proposed in
[Aujol et al., 2006].

Using a probabilistic approach, we can directly optimize this model. The model is also unimodal, allow-
ing us to employ the LSE estimator.

Evaluation

We again compare the denoising results of the MAP estimate (TV-L1-MAP) to theLSE estimate (TV-L1-
LSE) on the 13 test images that where artificially degenerated by “Salt & Pepper” noise. The regulariza-
tion parameter was fixed toλ = 1 for both models and all noise levels. For TV-L1-LSE the temperature
was fixed toT = 0.02.

Figure 7.7 shows a direct comparison of the denoising results on an image that was heavily degenerated.
Both denoisers are able to successfully reconstruct the image, despite thehigh level of noise. The differ-
ence between the results becomes more apparent in the close-up images thatare provided in Figure 7.8.
The LSE estimate successfully recovers details, where the MAP estimate fails.Moreover, similar effects
to the ROF model can be observed. The LSE estimate leaves some noise in the image and does not suffer
from staircasing artifacts.

Table 7.2 shows a quantitative comparison in terms of average SSIM, taken over all test images. The
LSE estimate outperforms MAP at all noise levels. The difference in terms of SSIM is larger for TV-L1
when compared to ROF. Moreover we observe that the LSE estimator of the TV-L1 model needs roughly
20% less iterations to reach convergence compared to its ROF pendant. We believe that this effect can be
attributed to the weak convexity of the model. Once both chains have reached the set of maximal points,
most samples have the same probability (excluding occasional samples outsidethis set). This leads to a
rapid convergence of the individual LSE estimates of the chains.

Noise: 5% 10% 20% 25%

TV-L1-LSE 0.8655 0.8534 0.8284 0.8144
TV-L1-MAP 0.8222 0.8112 0.7874 0.7752

Table 7.2: Quantitative comparison of TV-L1-MAP to TV-L1-LSE in termsof average SSIM.

Contrast invariance

The MAP estimate of the TV-L1 model exhibits an interesting feature [Chan andEsedoglu, 2005]: Given
an imagef and the corresponding result from MAP estimationu∗, for any contrast-adjusted imagec· f ,
with c scalar, it follows thatc·u∗ is a solution of the model for the contrast-adjusted image.

The effect can be used for scale-driven feature selection and is clarified in Figure 7.9, where for different
values of the regularization parameter features with different scales vanish, regardless of their contrast.
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(a) Original (b) Noisy (25%)

(c) TV-L1-LSE (λ = 1, T = 0.02) (d) TV-L1-MAP (λ = 1)

Figure 7.7: Denoising using TV-L1-LSE and TV-L1-MAP.

The contrast-invariance can be attributed to the dynamics of the model at a stationary point. The Euler-
Lagrange equation of the model is given by

u∗ − f

|u∗ − f | − λ∇(
∇u∗

|∇u∗|) = 0 (7.2)

Now consider the same image with changed contrastf̂ = c· f and the solution̂u∗ = c·u∗. Substituting
these relations into (7.2) clearly shows thatû∗ actually is a solution of the modified Euler-Lagrange
equation.

It seems considerably harder to obtain a similar analytic result for the LSE estimator. From our experi-
ments it seems, however, that the LSE estimator for the TV-L1 model is contrast-invariant as well.

Figure 7.10 shows the pdf for two pixels. For different scalingsc of the input data the LSE estimate
is scaled by the same factor. Figure 7.11 shows the LSE estimates on a test imagefor different values
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(a) Noisy (25%) (b) TV-L1-LSE (λ = 1, T =

0.02)
(c) TV-L1-MAP (λ = 1)

(d) Noisy (25%) (e) TV-L1-LSE (λ = 1, T =

0.02)
(f) TV-L1-MAP (λ = 1)

(g) Noisy (25%) (h) TV-L1-LSE (λ = 1, T =

0.02)
(i) TV-L1-MAP (λ = 1)

Figure 7.8: Close-up of the denoised image. Similar effects to the ROF model can be observed.
TV-L1-LSE produces no staircases and leaves some noise in the denoised image.

of λ. Similar to the MAP estimate shown in Figure 7.9, different features vanish depending on the size
of the feature, regardless of the specific contrast. Note, however, that larger features do not completely
vanish. This can be attributed to the fact, that the LSE estimator is only approximated. For smaller values
ǫ in Algorithm 5 the features tend to completely vanish. Note, however, that the effective run-time of
the algorithm is strongly influenced by this parameter. Choosingǫ too small results in a prohibitively
long run-time of the algorithm, which effectively lessens the usefulness of the TV-L1-LSE estimator for
scale-driven feature selection.
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(a) Original image (b) λ = 3.5 (c) λ = 12.0 (d) λ = 33.0

Figure 7.9: Scale-driven feature selection using TV-L1-MAP. With stronger regularization larger
features vanish, independent of their contrast.

(a) c = 1 (b) c = 2

Figure 7.10: Probability density function of the TV-L1 model for 2 pixels. The pixels were set
to f1 = 100· c andf2 = 50· c. The regularization parameterλ and the temperature
T were fixed to1. The resulting LSE estimates areu = (831

3
, 66 2

3
) for c = 1 and

u = (1662

3
, 133 1

3
) for c = 2.

(a) Original image (b) λ = 1.5 (c) λ = 2.0 (d) λ = 10.0

Figure 7.11: Scale-driven feature selection using TV-L1-LSE. With stronger regularization larger
features vanish, independent of their contrast. The temperature was fixed toT =
0.01.



7.2. Estimating Motion 65

7.2 Estimating Motion

Variational models have been successfully used as the base of high-level algrithms that need accurate
estimations of object motion between image frames.

From a low-level viewpoint the problem of motion estimation can be approached by estimating displace-
ments of pixels. Such a procedure is generally refered to as optical flow estimation. Figure 7.12 shows
an example along with the color-coded groundtruth flow field, where hue indicates the direction and
saturation indicates the magnitude of the flow field.

(a) First image (b) Second image (c) Optical flow (d) Encoding scheme

Figure 7.12: Example of optical flow estimation. The objective is to estimate pixel movement
between the first image (a) and the second image (b). (c) showsthe color-coded
groundtruth flow. (d) shows the encoding scheme. Hue encodesdirection while satu-
ration encodes magnitude of the flow field.

Let us state the general variational formulation of the optical flow problem:

Given an image pairI1, I2 and a flow fieldu = (ux, uy)
T : Ω→ R

2, the variational energy is given as

E(u) = R(u) +D(u; I1, I2)

where againR(u) is a regularizer andD(u; I1, I2), the data term, measures pixel similarity between the
displaced input imagesI1 andI2.

A simple data term is given by the so-called brightness-constancy assumption. We assume that a pixel
retains its intensity when a movement occurs. Such an assumption of course isnot robust with respect to
illumination changes between images. In a seminal paper Horn and Schunck [1981] proposed a quadratic
regularization of the gradients of the flow field together with a quadratic data term. This approach does
not allow steep discontinuities in the estimated flow field and cannot robustly handle occlusions.

A better model is given by a total variation-based prior together with a L1 dataterm [Zach et al., 2007].
The energy of this model is given by

E(u; λ) =

∫

Ω
|∇ux|ǫdx +

∫

Ω
|∇uy|ǫdx +

1

λ

∫

Ω
|I1(x + u)− I2|dx (7.3)

Note that the prior was sligthly modified. Instead of the usual L1 norm, the Huber norm

|q|ǫ =

{

q2

2ǫ if |q| ≤ ǫ

|q| − ǫ
2 else

is employed. This allows to penalize small variations in the gradient quadraticallyand avoids piecewise
constant solutions.ǫ was set to0.01 in all experiments.

The data term in (7.3) is non-convex, minimization of this model therefore is problematic. A typical
approach is to approximate (7.3) by linearizingIy(x + u(x)) around some initial displacementu0 using
a Taylor expansion:

I1(x + u) ≈ I1(x + u0) + 〈u− u0,∇I1〉 (7.4)
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By substituting (7.4) into the energy (7.3), a weakly convex approximation ofthe initial energy is
obtained. The linearization however poses a problem: It is only valid for small displacements aroundu0.
Optimization of the relaxed energy is therefore embedded within a multilevel warping scheme, where an
image pyramid is build from the input images and minimization is first carried out on the coarsest level
and subsequently propagated to the next level. This procedure is repeated until the base of the pyramid
(i.e. the original input images) has been reached.

7.2.1 Stereo Reconstruction

We first consider the simplified case, where the flow field has only one component, i.e.

u = (ux, 0)T

Given a rectified stereo image pair the estimated flowux is a 2.5D depthmap of the depicted scene.

Using the sampling-based MAP estimator (Algorithm 6), the energy (7.3) can be minimized directly.
No linearization is needed because the energy can be globally optimized. A multilevel approach is still
necessary, however, because the sampler tends to have low local acceptance rate in untextured regions.
Moreover a faster cooling schedule can be employed if a multilevel approach is used, because the sched-
ule is directly related to the the scanned disparity ranges.

To achieve results that do not get stuck in local minima, some considerations have to be made: First the
number of Metropolis-Hastings iterations per temperature stepK is crucial. If the number is too small
the algorithm gets stuck in local minima. If the value is too large, the algorithms takesa prohibitively
long runtime. Local optima are approached in the early stages of the algorithm,where the temperature
is still high. This is simply explained by the fact that sampler can make large jumps inthis stage (and
therefore the adapted varianceαk of the proposal distribution is large). The probability of hitting just
the right mode of the target distribution in only a few iterations is therefore relatively low. A simple
adaption of the parameterK has shown to provide stable results. We chooseK = ⌈2αk⌉ + 2, i.e. we
make the number of Metropolis-Hastings iterations explicitely dependent on thespread of the proposal
distribution. For low spread (which corresponds to low temperatures) we make at least 3 Metropolis-
Hastings steps. For high spread the sampler is allowed to make more moves before the temperature is
lowered.

Second, the initial temperature has to be high enough, to allow the sampler to movefreely in the early
stages of the algorithm. For all our experiments we choseT0 = 5. This has shown to provide good
results on the test dataset. Note that for scenarios with small disparities one can choose a lower initial
temperature to speed up the algorithm.

Last, the algorithm needs to run long enough to reach a sufficiently low temperature. This is crucial for
the quality of the results, as the small scale details are infered at low temperatures. We chose to stop
the algorithm if the energy change between 100 successive moves is small enough (≈ 1). This allows a
sufficiently low temperature at the later stages of the algorithm.

The proposed algorithm was evaluated on 4 image sequences from the Middlebury stereo evalution
database [Scharstein and Szeliski, 2003] and compared to the results from the respective linearization
approach (computed using the PDHG algorithm that was introduced in chapter 2). We will further refer
to the sampling-based approach as TV-L1-SA and the linearization approach as TV-L1-PD. To allow a
direct comparison, the regularization parameter was fixed toλ = 30 for all experiments.

Figure 7.13 shows the results of TV-L1-SA, along with the percentage of wrongly labeled pixels (i.e.
where the disparity error is larger than one). Figure 7.14 shows a directcomparison between the results
of TV-L1-SA and TV-L1-PD on the “Cones” sequence along with an error map (white = correct label,
black = error, gray = occlusion). The global optimization approach is ableto correctly infere small-scale
structure, where the linearized model fails.
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(a) Tsukuba (4.79) (b) Venus (2.05)

(c) Teddy (12.05) (d) Cones (6.91)

Figure 7.13: Stereo reconstruction using TV-L1-SA. The percentage of wrongly labeled pixels is
shown in parentheses

The similarity measure used so far is very simplistic and not very robust. The model can be refined by
replacing the data term with a more sophisticated similarity measure.

A more robust measure can be formulated, if similarity is based on patches of pixels instead of single
pixels. Werlberger et al. [2010] propose to use a truncated normalized crosscorrelation (TNCC) for the
similarity matching:

Let BW (x−y) denote a box filter of widthW and
∫

Ω Bw(z)dz = 1. Then the means of a patch centered
atx for the imageŝI1 = I1(x + u) andI2 are given by

µ1(x) =

∫

Ω
Î1(y)BW (x− y)dy µ2(x) =

∫

Ω
I2(y)BW (x− y)dy

and the variances of the patch are given by

σ1(x) =

∫

Ω
(Î1(y)− µ1(x))2BW (x− y)dy

σ2(x) =

∫

Ω
(I2(y)− µ2(x))2BW (x− y)dy

Using the definitions above, the normalized crosscorrelation between the imagesÎ1 andI2 at locationx
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(a) TV-L1-SA (b) TV-L1-PD

(c) Error (TV-L1-SA) (d) Error (TV-L1-PD)

Figure 7.14: Comparison of TV-L1-SA to TV-L1-PD on the “Cones” sequence.The error map
(white = correct, black = error, gray = occlusion) shows thatTV-L1-SA provides
better results than TV-L1-PD in regions where small-scale structure is present.

then reads

NCC(x, u)) =
1

√

σ1(x)σ2(x)
·
∫

Ω
(Î1(y)− µ1(x))(I2(y)− µ2(x))BW (x− y)dy

At last the NCC is truncated to only allow for positive correlations. This results in the following data
term:

D(u; I1, I2) =

∫

Ω
min(1, 1−NCC(x, u))dx (7.5)

The resulting functional is again non-convex and moreover highly nonlinear. Werlberger et al. [2010]
propose a second-order Taylor expansion to obtain a convex approximation of the TNCC data term
(further refered to as TV-NCC-PD). Using Simulated Annealing we can again directly solve the non-
convex optimization problem.

For the NCC data term, we observe an interesting effect: Smaller regularization is problematic, the
algorithm tends to produce bad results in strongly textured regions (i.e. in regions where the TNCC term
can be expected to be high). To get acceptable results the regularization has to be chosen higher. Slower
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annealing schedules or extending the multilevel procedure to coarser levels do not change this effect. We
therefore choseλ = 2 for all experiments.

Figure 7.15 shows the results that where obtained by the proposed algorithm. In the TV-NCC approach
the Tsukuba dataset is problematic due to a cluttered background.

Figure 7.15(e) shows a result of the TV-NCC-PD algorithm for the “Teddy” sequence for direct compar-
ison. Details like the teddy bear in the upper right corner are far better reconstructed by the proposed
algorithm.

Finally, a quantitative comparison is shown in Table 7.3. The numbers show that global optimization
has a huge potential. Even the simple TV-L1 model yields very good results when solved directly. The
TNCC data term further lowers the error.

Dataset: Tsukuba Venus Teddy Cones Average

TV-L1-SA 4.79 2.05 12.05 6.91 6.45
TV-L1-PD 5.97 3.69 16.4 9.10 8.79

TV-NCC-SA 5.31 1.41 8.36 5.43 5.13
TV-NCC-PD 5.80 1.77 14.2 8.42 7.55

Table 7.3: Quantitative comparison of the presented algorithms. The error is given as the per-
centage of wrongly labeled pixels. Simulated Annealing outperforms the respective PD
algorithms. Note that the simpler TV-L1 model even outperforms TV-NCC if it is solved
directly.

7.2.2 Optical Flow

In our last experiment, the total variation is replaced by a more sophisticated regularity measure. In
[Werlberger et al., 2010] a novel regularizer, called non-local total variation, was proposed. The idea of
this regularization is that pixel interactions are not constrained to direct neighbors, but also larger patches
of pixels are allowed to interact.

Non-local total variation is defined as follows:

R(u) =

∫

Ω

∫

Ω
w(x, y)(|ux(x)− ux(y)|ǫ) + |uy(x)− uy(y)|ǫ)dydx (7.6)

The termw(x, y) weights the influence between the motion vectors at the positionsx andy respectively
and is given by

w(x, y) = exp

(

−
(

∆c(x, y)

α
+

∆s(x, y)

β

))

In the original formulation,∆c(x, y) measures color similarity in the Lab colorspace between the pixels
at positionsx and y. Our implementation does not use color information, the similarity measure is
therefore simply given by the L1 norm of the illumination difference. The term∆s(x, y) measures the
Euclidean distance between pixels.α andβ can be used to tune the influence of both terms. Note that
(7.6) in principle allows interaction between every pixel in the image. To constrain the computational
complexity of the regularizer, Werlberger et al. [2010] recommend to havenon-zero weights only in a
window of size2β + 1 around a pixel. No essential information is lost with such a constraint, because
the proximity influence of pixels outside of this window vanishes.

The experiments were carried out on 8 image pairs from the Middlebury optical flow dataset [Baker
et al., 2007], were the images have flow components in both directions, i.e.u = (ux, uy)

T . For the
experiments the NCC similarity measure was used. We again compare the global optimization approach
(NLTV-NCC-SA) to the results from the convex second-order expansion that was obtained using a PDHG
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(a) Tsukuba (5.31) (b) Venus (1.41)

(c) Teddy (8.36) (d) Cones (5.43)

(e) Teddy: TV-NCC-PD

Figure 7.15: Stereo reconstruction using TV-NCC-SA. The percentage of wrongly labeled pixels
is shown in parentheses. (e) shows the reconstruction obtained from TV-NCC-PD.
Details like the teddy bear in the upper right corner are clearly better reconstructed
by the TV-NCC-SA algorithm.

algorithm (NLTV-NCC-PD). The parameters were fixed toα = 2, β = 5 andλ = 3. For the Simulated
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Annealing algorithm we again chose an initial temperatureT0 = 5. As error metric we report the average
endpoint error (AEPE) that measures the average Euclidean distance between the estimated flow field and
the ground truth.

Table 7.4 shows the quantitative results for both algorithms. Similar to the stereo case the global opti-
mization approach constantly yields better results.

Model: NLTV-NCC-PD NLTV-NCC-SA

RubberWhale 0.12 0.09
Dimetrodon 0.20 0.17
Hydrangea 0.18 0.15

Venus 0.29 0.28
Grove2 0.19 0.15
Grove3 0.75 0.64
Urban2 0.40 0.38
Urban3 0.66 0.62

Table 7.4: Quantitative comparison of NLTV-NCC-SA to NLTV-NCC-PD in terms of average end-
point error.

Finally, Figure 7.16 shows the obtained flow fields as color-coded images. It can again be observed that
the algorithm can successfully estimate flow, where small-scale features arepresent.



72 7. Variational Models

(a) RubberWhale (0.09) (b) Dimetrodon (0.17)

(c) Hydrangea (0.15) (d) Venus (0.28)

(e) Grove2 (0.15) (f) Grove3 (0.64)

(g) Urban2 (0.38) (h) Urban3 (0.62)

Figure 7.16: Estimated flow fields using NLTV-NCC-SA.



Chapter 8

Conclusion and Outlook

In this thesis, it was shown that an alternative approach to variational modelsin Computer Vision can
provide several advantages.

We have shown that the energy minimization approach is equivalent to a stochastic procedure, known as
MAP estimation. MAP is a simple point estimate in the posterior probability distribution, not taking into
account specific characteristics of the underlying pdf. The insufficient use of information in the posterior
distribution leads to distortions in the result, which are known in the context of image reconstruction as
staircases. Typical approaches to mitigate these distortions consist in the design of more complicated
priors.

The use of a simple summary statistic, the expected value, that compresses moreinformation about the
posterior distribution into a single estimate has shown to provide better results without modification of
the original model.

The estimation of such a summary statistic poses some computational challenges. Inference of the ex-
pected value in principle requires knowledge of all possible images along withtheir posterior probabili-
ties. Such a computation is infeasible even for small images.

To approximate the expected value, nonetheless, we have introduced MCMC algorithms, which are able
to sample arbitrary high-dimensional distributions. We introduced the readerto the theory of general state
space Markov Chains, which perfectly match the continuous paradigm thatis employed in variational
models. Different variations of MCMC sampling algorithms were discussed and led to a procedure which
is well adapted to the needs of image processing.

Not all models are directly suitable for such a modification to the estimation scheme.Non-convex models
tend to have an expected value that itself has very low probability in the model. Such an estimation
seldom yields satisfactory results. Note however that such non-convexenergies are even in the energy
minimization approach not solved directly. Typically, the non-convex model isapproximated by a convex
model. The probabilistic point of view can also provide some advantages in thisscenario. The use of
a sampler provides us with knowledge about the posterior distribution which can also be used for MAP
inference. Using a modified sampling scheme non-convex energies can bedirectly optimized without
going the often difficult route of a convex approximation.

Our experiments show that our approach indeed is viable. Using different denoising models, we demon-
strated the superiority of the LSE estimator over the usual MAP inference. The second application
demonstrated the use of sampling algorithms for MAP inference using different optical flow models.
Again this procedure has shown to be an alternative to the usual energy minimization approaches.

Last but not least we like to emphasize the generality of our approach. The presented Metropolis-
Hastings sampling algorithm is suited for any probability density function, allowing to implement a wide
range of models in a simple and fast way. While our approaches are not yet real-time capable (in contrast
to numerous energy minimization applications), we see its main advantage in the rapid prototyping and
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testing of new models.

8.1 Outlook

The idea to use Bayesian estimators in the context of variational models insteadof the usual energy
minimization approach is relatively young. Therefore, there are numerousdirections for further work.

From the viewpoint of estimation theory a lot of different loss functions arepossible. This thesis was
only concerned with “hit-or-miss” loss (for MAP inference) and a quadratic loss function (leading to the
LSE estimator). Both losses are simplistic and quite general, there is, however, no reason not to design
estimators based on more sophisticated loss functions. As an example we can consider non-convex
energies: An estimator that combines ideas from LSE estimation and MAP estimationcould be clearly
advantageous. Instead of estimating the largest mode or the center of mass of the whole pdf, one could
estimate the center of mass of the largest mode. If this mode has a heavy tail, such an estimate would
probably outperform the MAP estimate.

The algorithmic side of this thesis was solely concerned with a sampling based approach. The sampling
algorithms are generally known to be relatively slow. A speed-up could be achieved by using a proposal
distribution that better matches the target distribution. As a rule of thumb, the proposal distribution
should be as similar to the target distribution as possible (with the extremal value that both are equal).
A speed-up using approximations of the target pdf together with a sampling scheme seems therefore
possible. Algorithms which allow free form approximations, i.e. where no assumptions on the form of
the approximation have to be made, were developed in recent years, with its two most notable instances
Variational Bayes [Beal, 2003] and Expectation Propagation [Minka, 2001]. Both algorithms are general
enough to account for the variety of different variational models, and hence seem as a good starting point
for a refinement of the sampling scheme.

Another route would be to more closely examine Langevin diffusions (and similar stochastic differential
equations). Eventually, one could find a stable ULA scheme that does not require the intermediate
Metropolis-Hastings step. This approach seems promising for real-time applications.

Finally, the sampling algorithms could be subject to further optimization. Currentresearch for the
Metropolis-Hastings-based samplers seems to go into the direction of more sophisticated adaption schemes,
leading to more efficient samplers.
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