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Abstract

Variational models are among the most successful methods for low-levep@er Vision tasks today.
While such models can be derived and formulated in a completely deterministigs#tég nonetheless
have a deep connection to the probabilistic framework of Bayesian inferdinés thesis highlights this
connection and the advantages that a probabilistic approach to variatiettadds can have.

A fundamental question in variational models is the formulation of an appteprizage model. A
especially popular image model is given by the Total Variation prior due togfs preserving properties.
It will be shown that the usually employed energy minimization approach isthetta fully exploit the
properties of the underlying models if such an image prior is used. An ditezr@goproach that is based
on Bayesian estimation is introduced and the connections to energy minimizatibighlighted.

The proposed estimator is defined by a very high-dimensional integratdhatot be solved with de-
terministic numerical integration algorithms. To tackle this problem, the framewiokkadkov Chain
Monte Carlo (MCMC) integration is introduced and refined into an algorithr ithapecifically tai-
lored to the needs of image processing. To speed up the computationallaligation scheme and an
implementation on graphics processing hardware is proposed.

The advantages of the proposed algorithm over the energy minimizatiooaappare shown on convex
image reconstruction models. For non-convex models the MCMC apprdiaals #or global optimiza-
tion. Our experiments on different models for motion estimation and stereastaotion show that
such a global optimization approach is not only feasible but also provigesisr results.

Keywords: Variational Methods, Total Variation, Estimation Theory, MCMC, Optical Fl&tereo,
Denoising, GPGPU






Kurzfassung

Variationsmethoden géhnen zu den popérsten Verfahren zurdsung einer Reihe von low-level Pro-
blemen im Bereich Computer Vision. Solche Modelle werdblicherweise vollsindig deterministisch
formuliert. Bei genauer Betrachtung stellt sich heraus, dass Variatidheden eine Verbindung zur pro-
babilistischen Methode der bayes’schen Modellbildung und Deduktioarhdbiese Masterarbeit zeigt
diese Verbindung und Vorteile einer probabilistische Herangehensaugise

Ein fundamendaler Schritt in der Anwendung von Variationsmethodenieiddefinition eines passen-
den Bildmodells. Total Variation ist, aufgrund der kantenerhaltenden Eifaften, ein weit verbrei-
tetes Bildmodell. Es wird gezeigt, dass ein Energieminimierungsansatz dieptieskr Eigenschaften
von Modellen, die auf Total Variation basieren, nicht optimal nutzen k&imalternativer bayes’scher
Schatzer, der die Eigenschaften des Modells besser nutzt, und dessendueig zu Energieminimie-
rung, wird vorgestellt.

Der Sclatzer istiber ein sehr hochdimensionales Integral definiert, welches mit deternthestisnu-
merischen Integrationsverfahren nicht@stlwerden kann. Ein probabilistischer Ansatz zur hochdimen-
sionalen, numerischen Integration, bekannt als “Markov Chain Monte'Gategration (MCMC) wird
vorgestellt. MCMC-Algorithmen sind typischerweise sehr arfdig zu berechnen. Zur Beschleunigung
der Algorithmen wird eine GPU-basierte, parallele Implementierung vorgestellit.

Die Vorteile der vorgestellten Methode werden anhand konvexer ModatfeEntrauschen von Bildern
aufgezeigt. Br nichtkonvexe Modellednnen MCMC-Methoden zur globalen Optimierung benutzt wer-
den. Anhand von Modellen zur Stereorekonstruktion und deétgahg von Optical Flow wird gezeigt,
dass globale Optimierung déiblichen An&tzen qualitativiiberlegen ist.
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Chapter 1

Introduction

The optimization of variational models is an important subdiscipline of Computésrvisvany low-
level vision tasks, such as reconstruction, deconvolution, segmentatibogdical flow, all of them
inherently inverse and ill-posed problems, can be formulated as energy rmationiproblems. The de-
sign of such algorithms can be split in two main phases: First, an energy bagmpirical observations
and the task at hand, is formulated. Second, an appropriate optimizatioedpre is employed to find
a solution to the model. The first part is the most crucial part of the desagegure. The model has to
be powerful enough to capture all relevant properties of the probidéraral. However one cannot define
arbitrarily complicated models. Current mathematical theory of optimization typicdlyires a certain
form for the energy to have a solution that can be found in reasonabledimedven have a solution at
all).

Generally, a variational problem is given by an energy
E(u) = D(u) + R(u)

where one seeks for the imagéhat minimizes this energy. The energy consists of a dataT¥num and
aregularization terr®k (u). The data term models the actual data at hand and its form is therefore mainly
driven by the actual application of the model. The regularization term isechascording to some prior
knowledge about properties of desirable solutions. This knowledge icatiypobtained purely from
empirical observations or logical assumptions. Provided that the data texinbeiso model the input
data sufficiently enough, the quality of the results is mainly driven by thelaggation term. In the
context of Computer Vision and image processing, our prior knowledggists of some assumptions of
how a natural image looks. A simplistic assumption that is often made is that niaages consist of
regions of constant color that are separated by sharp jumps, called. eglgch an assumption is suitable
to be used in mathematical framework as there are convenient tools to mathemedgsalijpe constant
regions as well as sharp jumps.

An interesting property of such fully deterministic energy minimization problemsaisttiey allow an

alternative viewpoint. Both the data term and the regularization term can wedii the context of
probability density functions. In that sense, the data term is attached tbahility of a given observa-
tion to match the data, and the regularization term is attached to a prior probalslitthe probability

that an image matches the prior knowledge). Putting both probability densittidoa together via the
well-known Bayes theorem, one gets a posterior probability density funittidrassigns a probability to
every possible image in the context of the model:

p(u) =~ exp {—E:(r“) } (L.1)

The image minimizing the initial variational problem is then equivalent to the image mangrtize
posterior probability (1.1). The implications of such a viewpoint may seem nainfirst, it is however
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a well-known fact in the Bayesian practitioners community that the maximizer aitzapility function
is not the most typical candidate of the distribution under all circumstancesedver, this image often
does not exhibit the properties that were initially modeled, rendering the idiisign phase at least
guestionable.

This discrepancy between model and solution forms the basis of this thesisvilghow that in the
variational models that are employed in Computer Vision, the image that minimizes ted imondeed
not necessarily the “best” image. This opens up the possibility to enhaisteng@xmodels by chang-
ing the procedure to obtain a solution from the model. We will therefore ptesealternative solution
strategy that is based on the sampling of the probability density function (hdidzde images are gen-
erated according to the law defined by the posterior distribution). Suchplisg procedure enables
many opportunities: First, it is possible to compute summary statistics of the postistidbution. We
will show that a specific summary statistic, namely the expected value, offergex solution than the
image that maximizes the posterior probability. Second, also the initial optimizatdtepn can profit
from such a sampling based procedure. We will introduce a global optimmzalkiorithm that relaxes
some of the constraints that have to be typically imposed on the design of a mbdgirédsented sam-
pling algorithms fall under a class of algorithms that is called Markov Chaint¥@arlo algorithms,
or short MCMC. Such algorithms cleverly construct a Markov Chain teegate samples from an arbi-
trary probability density function. MCMC algorithms, however, are rel&igbow when compared to
optimization algorithms. We therefore propose an implementation on graphiossgiog hardware to
obtain solutions in reasonable time.

To show the viability of our approach, we will consider two applications: oik#ng of images and
estimation of motion. For both applications, a variety of data terms and reguta€exist, and we will

more closely examine the influence of those terms and provide a comparisersstits of the usually
employed energy minimization approaches.

1.1 Related Work

In the context of image processing, energy minimization methods have gaioisaf attention since the
publication of the ROF model by Rudin, Osher and Fatemi (see [Rudin et98R])1 The model was
developed for the denoising of images that were degenerated by addilieeGaussian noise and reads

ut = min/(u— f)2dz + )\/ |Vu|dx
v JQ Q

where(? is the image domainyf is the image to be denoised antlis the minimizer of the model. The
model is able to remove noise while steep edges are preserved. Thistprcgpebe attributed to the
regularizer [, |Vu|dz that is used in the model. The expression is known as the total variation semi-
norm and has extensively been used in numerous other image proceppliaations, like structure-
texture decomposition [Aujol et al., 2006], blind deconvolution [Chan arahdy 2002] and optical
flow estimation [Zach et al., 2007]. While the total variation is only defined far¢alued images,
extensions to account for vector valued images can be found in [Blonagweti€han, 1998] and [Aujol

and Kang, 2006].

The total variation regularizer is known to produce block-like artifacte\ikmas staircases) when used in
the context of energy minimization (we will later see that this is not the case inréiseqted approach).
Explanations for this behavior can be found in [Caselles et al., 2008¢hMfithe ongoing research was
devoted to the reduction of the staircasing artifacts (see for exampleg&aval Chen, 2006], [Chan
et al., 2007] and [Chan et al., 2005]). All of those methods change thdarzer in some way or
another and stay within the framework of energy minimization. Nikolova [260@}vs why such ad-hoc
modifications are not optimal. The main problem lies not within the regularizereomibdel itself but
instead in the inference procedure, i.e. the image minimizing the variationgjyetees not follow the
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initial properties that where explicitly modeled. No regularizer that is basespatial derivatives and
has properties that are desirable in image processing applications (i.es sfiawp jumps in the solution)
is able to exploit its full potential when used in the framework of energy minimiaatio

A probabilistic approach to total variation denoising was first published diychet [2008]. In this
thesis, a rigorous mathematical justification for the inference of the expeahee of the ROF model is
developed.

A very popular method that competes with Total variation based models ak@WBRandom Fields

(MRFs). Unlike variational models, the MRF based models are defined inceetiissetting. Spatial
relationships between cliques of pixels (i.e. neighboring pixels) are eithdelenb by hand or learned
by a machine learning algorithm. Such models are inherently probabilistic gsdtial selationships are
modeled as probability density functions. MRFs have a long history in Comyisien, dating back to

the first applications of the famous Ising model for the denoising of binarg@ésmaNotable algorithms
that fall into the MRF category are Fields of Experts [Roth and Black, P08 Gaussian Conditional
Random Fields [Tappen et al., 2007]. Fields of Experts was recentinpaedeto the inference of the
expected value with convincing results [Schmidt et al., 2010].

When viewing total variation based models in a discrete and probabilistic sedtitigse relationship

between the total variation norm and MRF based models becomes appafeatt.discretization the

total variation regularizer also models spatial relationships between direggiiroring pixels using a
probability density function. In some way, the discretization of variationalatgdan therefore also be
seen as a special case of MRF based models.

1.2 Organization of this Thesis

This thesis is organized as follows:

In chapter 2, a simple variational denoising model, based on probabilisticnargs, is introduced.
Standard techniques for the local optimization of this model and the importdra®rect modeling
of prior knowledge are demonstrated using two well-known instances girétsented model. Based
on the previous probabilistic derivation of the model, we show that the detistimioptimization of a
variational model can also be considered as a probabilistic estimation prddriemn as Maximum-A-
Posteriori estimation (MAP).

Chapter 3 shows problems and shortcomings of the MAP approach. Usipgavious stochastic deriva-
tion, we propose an alternative inference procedure that is knowastsdguares estimation in literature.
This inference procedure, however, is far more difficult to implement tharstandard MAP approach
because it relies on the integration of a very high-dimensional integral.

To solve said integral, we introduce a stochastic technique for approxingditellmensional integration
in chapter 4. This approach is based on the construction of Markov €twmgample probability density
functions and generally known as Markov Chain Monte Carlo (MCMC).pidide an introduction to

general state-space Markov Chains and present some of the most im@dgtaithms of the MCMC

family.

Chapter 5 is concerned with the development of efficient algorithms fosmerific applications. More-
over, we introduce a global optimization procedure that is also based @na¥ieusly introduced sam-
plers.

Details for the implementation of the algorithms on graphics processing hardweaprovided in chapter
6. Starting with an overview of general purpose computing on grapleicessing hardware, a simple
design along with the most outstanding obstacles for a parallel implementatidisemssed.

Chapter 7 shows applications and experimental evaluations of our appid#ferent denoising models
as well as the estimation of optical flow and stereo stereo reconstructiooameed.
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Finally, chapter 8 summarizes our findings and gives a conclusion andraaltlook on unsolved
problems.



Chapter 2

Optimization in Computer Vision

Optimization generally refers to a procedure of finding the best solution t@lEdgm among its set

of possible solutions. More precisely, optimization in mathematics refers toithigar that find the
extrema of a functiory(z) subject to some constraints. Many problems in Computer Vision, among
others Denoising, Blind Deconvolution, Stereo Reconstruction and Ojptical can be formulated as
energy minimization problems and are therefore subject to some optimizaticedprec

The chapter at hand is organized as follows: Section 2.1 introduces a silagdeof denoising model
based on probabilistic arguments, that will serve as an exemplar optimizatibtempr for the rest of
the chapter. Section 2.2 shows the optimization of two particular (convexnoesaf the previously
defined optimization problem. Finally, Section 2.3 gives a brief summary of theegbs developed in
this chapter.

2.1 A Denoising Model

Denoising is the task of reconstructing an image that was corrupted by sathefknoise. As many
high-level Computer Vision algorithms are sensitive to noise, the denoisig aiput image is an
important preprocessing step in image processing applications. A clasnoisthg algorithms that is
able to eliminate additive white Gaussian noise is developed in this section.

Let us assume, the image has been corrupted according to an additisdatem model:

f(z,y) = u(z,y) +n(z,y) (2.1)

wheref : D — R is the observed degraded image intensity, D — R is the original undegraded
image intensity and is the discrete set of pixels in the rectangular image domain, i.e.:

D = {(zs, ) = (ih, jh)[1 <i < N,1 < j < M} (2.2)

for some grid spacing.

n : D — R denotes the degradation noise and is assumed to consist of identical apénddntly
distributed (i.i.d) samples from a white Gaussian distribution {i(e., y) ~ A (0, 72)).

A denoising model now aims at recovering the original imageom a given observatiorf. This is
clearly an inverse problem since many clean images could have led to the ssyamage.

Noise is by definition a stochastic quantity. It is therefore very natural tsider a probabilistic ap-
proach:

Let us treat the imageg andu from (2.1) as realizations of two random variablésand F'. Both
random variables have a probability density function (pg@fju) andpg(f) attached, i.e.py(u) and
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pr(f) describe the likelihood for a given realization @fand f respectively to occur. For notational
simplicity, we will further omit the subscripts for pdfs and wrjté:) andp( f) instead.

Using conditional probabilities and Bayes’ Theorem, the likelihood that an imagehe undegraded
image in the context of the model, given an observafi@an be expressed as

_ p(flw)p(u)
p(ulf) = o) (2.3)

wherep(u|f) is called the posterior probability density function agf|«) denotes the probability that

f was generated from. We will further call this quantity the data term because it essentially encodes
the data generation modeh(u) is called the prior pdf and encodes prior knowledge about desirable
solutions. Note thap(u) can in principle be freely chosen. Typical approaches for the diemvaf a

prior pdf in image processing are based on distributions of spatial tieesar responses to local filters.

It will become clear that certain choices for the prior term allow to captubpgaties of images better
than another.

Let us now derive explicit representations for the quantities in (2.3)rfamage denoising model:

Given the linear degradation model in (2.1) and under the assumption thatitdeeis white, Gaussian
and i.i.d., it is easy to derive an expressionfiof|u):

p(flu) =

exp — (2.4)

1
H V2mo?

z,yeD

wheres? denotes the variance of the noise.

While it was already noted that the pripfu) can in principle be arbitrarily chosen, it turns out that it
is crucial for the quality of reconstruction. Huang and Mumford studiedsthgistical relationships of
pixels in natural images in [Huang and Mumford, 1999]. They tried to fibphdlity density functions
to capture the inter-pixel relationship of directly neighboring pixels.

Let us denote the discrete approximation of the gradient operator, apptieelimage., by Vu. It turns
out that a generalized Laplacian distribution

p(u) = 7 H exp—’ﬁ (2.5)

with p = 0.55 results in a good fit to the spatial relationships of natural images. (2.5)nsatiaed by
some constant to ensure thaf p(u)du integrates to one and has a paramgtérat controls the spread
of the probability density function. Note that setting= 1 yields a standard Laplacian distribution while
settingp = 2 results in a Gaussian distribution. Figure 2.1 shows a logarithmic plot of thergjered
Laplacian distribution for different values pffor the one-dimensional case.

Putting everything together, one arrives at an explicit representatidghdgosterior probability density
function:

202
x??JGD JJ,yED

xT — ul\r 2 u)\x
p(u’f>:Z(1f) H exp—(f( ,y) ( ,y)) H exp—|(v )( ’y)|p (26)

where the functiorZ(f), the partition function, gathers(f) and all normalizing constant, in such a
way that | p(u|f)du again integrates to one. Note that the product over the individual pixelbea
represented by a sum in the exponent:

ayen(f@y) —u(z,y)? 3, epl(Vu)(z,y)P
202 + I6]

ulf) = o5 e @7)
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Figure 2.1: Logarithmic plot of generalized Laplacian distributiorr fifferent values ofp and
fixed3 = 1.

(2.7) assigns a probability with respect to the model to every possible imagatufal method to find
an imageu that very likely belongs to the observatignis the Maximum-A-Posteriori estimation:

Find the image.* that maximizes the posterior probabilityu| f). Formally, this can be stated as
u* = arg max p(ul|f)
which results, when applied to (2.7), in

ut =argmin Y (f(z,y) —u(@ )’ + A Y [(Vu)(z,y)” (2.8)

z,yeD z,yeD

where the parameteeg andj3 have been accumulated to a single paramle'@er%.

While any actual implementation of an algorithm that solves (2.8) on a digital cmmpas to operate
in a discrete setting, it is advantageous to carry out an analysis of soictiofuals in continuous space.
The continuous representation allows a convenient analysis of prapeftibe model, like existence
and uniqueness of solutions. Moreover it is possible to postpone disti@tizo latter stages of the
algorithm design, which allows greater flexibility in the choice of a particularrdifzation scheme.

Recall the discrete image domain given in (2.2). By letting: 0, (i.e. the spacing between two adjacent
pixels becomes infinitesimally small), we obtain a continuous image dofhairR. Consequently, one
has to replace sums by integrals. This leads to a continuous analog of (2.8):

1
u* —argmin/(f—u)2d:c+/\/ |VulPdz (2.9)
u 2 Jo Q

The solution of the model in (2.9) strongly depends on the actual choice pittametep. The optimal
choicep = 0.55 in terms of statistical relationships between pixels in natural images results ima no
convex functional, which makes the optimization of the model very difficult. therefore a rather
uncommon choice.

The two popular choices age= 2, resulting in the Tikhonov model [Tikhonov and Arsenin, 1977], and
p = 1, resulting in the ROF model [Rudin et al., 1992]. Both models are convextemdfore relatively
simple to optimize. We will see however that the ROF model is clearly superior fiikhenov model

in the context of image processing in the following section.
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2.2 Convex Optimization

An optimization problem in its most general mathematical form is given by:

Minimize f(z), x¢€ X CR?
Subjectto g;(z) <0, i=1,...,n (2.10)

wheref : X — Ris called the objective function and the functigns X — R are called the constraint
functions.

Any z* that satisfiesf (z*) < f(z), Vo € X andg;(z*) <0, i = 1,...,nis called globally optimal
and is therefore a solution of (2.10).

Numerous algorithms for optimization are not able to reliably determine the globaiwp of a prob-
lem. Such algorithms are called local optimization algorithms. Given that theldecaieoptima, i.e.
optima that satisfyf(z*) < f(x) only in some neighborhood af*, such algorithms can get stuck in
local optima depending on the initialization of the algorithm. To make things wongeisaot even able
to tell whether the optimum that was found is global or not. Local optimizatiorrigigas are, however,
very fast compared to algorithms that guarantee to find the global optimumhghibe key to their
large popularity. Moreover, if all local optima are global optima, one candrdident that any local
optimization algorithm is able to find a global optimum. The most general clas®obfgms where all
local optima are global as well are convex problems.

Let us first formalize the notion of convexity:

Definition 1. ([Boyd and Vandenberghe, 2004]) A functign X¢ — R is called convex, if it satisfies
for all z,y € X% and for anya, 8 € (0,1) witha + 3 = 1:

flax + By) < af(z) + Bf(y)

and X is a convex set. We call the function concave; ffz) is convex.

An optimization problem where the objective functiffi) as well as all constraint functiong(x) are
convex is called a convex optimization problem.

The optimization of convex functionals is a sub-discipline of optimization thatng well developed.
There are numerous efficient algorithms to solve such problems and a muidifttatds to approximate
non-convex problems by convex ones (see for example [Boyd andeviiberghe, 2004] and [Nesterov,
2004)).

Let us now check for which values pfthe functional defined in (2.9) is convex. The enefgfy; A, p)
is given by:

E(u; \,p) = ;/Q(f—u)Qdm—i—)\/Q\Vu]pdx (2.11)

Sums of convex functionals are again convex. It therefore sufficeBdw convexity for the data term
and the prior individually.

It is easy to verify that the data term(f — u)%dx is indeed convex with respect to

The prior resembles the p-th power of a p-norm, j@|Vu[Pdz = || Vul;, where the p-norm is defined
as:

Il = ([ |f<x>|pdx);’ (2.12)

To see for which values of p (2.12) is convex (and therefore a trueyyaronsider the definition of
convexity (Definition 1). Using two test functionSg : R — R, whereg(xz) = 0 for all z € R, we can
derive the relation

leef + Bylly = ”ll £l < ellfIl; = ll 15 + Bllgliy
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which is only true ifa? < «. This is clearly only the case fgr > 1. Choosingp smaller than one
therefore always results in a non-convex functional.

Via Minkowski's inequality, it can easily be seen that for the remaining gase 1 the functional is
always convex:

leef + Bglly < lefllp + 18115 = ol fll; + B7Mlglly < el f1l5 + Bllgll;

This shows the functional (2.11) is only convex for 1 (and positive)).

The two popular choices = 1 andp = 2 are therefore both convex and can readily be optimized using
local optimization methods.

2.2.1 Tikhonov Regularization

The first important special case that is examined is (2.9) wite 2, resulting in the well-known
Tikhonov model:

2

In order to minimize the energy given in (2.13), we need some means to dedoeibminimum of
the functional. Similar to the standard approach of vector-analysis, wlekag for points where
the functional is stationary. The Euler-Lagrange equations providengeognt tool to describe such
stationary points in functional analysis:

E(u; \) = 1/(f—u)2d:c+;\/ |Vu|*dx (2.13)
Q Q

Given a functional of the form
E(u):/F(x,u,Vu)da:
?)

the Euler-Lagrange equations allow us to describe the dynamics of ahyusstional at its stationary
points by a differential equation:

(2.14)

OE(u) O0F(x,u,Vu) OF (z,u, Vu)
— _— = 0
ou ou

- d(Vu)

(2.14) can be understood as the functional analog of gradients. theeafore be used to move “down-
hill” in a functional, within the framework of methods of steepest descent, i.e

OE(u)
Ut41 = Ut — 7 ou

(2.15)

U=1ut

implies thatu; 1 < u; provided that) < v < % whereK denotes the Lipschitz constant%%%:

ou ov

HaE(u) OE(v)

<Kol

Based on this relation, it can be shown that the optimal constant step-sizensy~y = % ([Nesterov,
2004)).

Any stationary point in a convex functional coincides with a global optimunis gharantees that the
gradient descent scheme in (2.15) yidhas; . u; = u*.

Let us now turn to the optimization of the Tikhonov model. Application of (2.14pt4&J) yields that

the minimumu* satisfies:
OFE(u)

ou u*

Using (2.16) together with (2.15) provides a simple algorithm for the optimizatiaihe Tikhonov
model.

= (u* — f) = Mdiv(Vu*) =0 (2.16)
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(a) Noisy image

©) A = 50 (d) A = 100

Figure 2.2: Reconstruction of a noisy image using the Tikhonov modeUitierent values of\.
Noise disappears for largar as do small-scale structures and edges.

Figure 2.2 shows results of the Tikhonov model applied to a noisy image fleratit values of\.
Higher values of\ give stronger regularization of the noisy image. It is apparent, howtharfor high
A, image details become blurred too. To explain this effect, note that an explidgiios to (2.16) can be
computed:

0?u  0%u

“m Mo T o

8y2) =f

Using the Fourier transform, we get
U+ NAnn2a + dn’nla) = f

whereg(n,,n,) denotes the Fourier transform of functigfw, y), with spatial frequencies, andr,.
This relates the image to the inputf as:

1 I
v ng)f =K\ f (2.17)

U=

in the Fourier domain.
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A fundamental property of the Fourier transform states that multiplication iRdhéer domain is equiv-
alent to convolution in the spatial domain. This allows us to finally express themoas

uw=K(\)*f (2.18)

whereK ()\) is obtained from the inverse Fourier transform#f)). (2.18) shows that the solution to the
Tikhonov model can be obtained by linear filtering of the input im#d®y a convolution kernek ().
(2.17) gives some insight into the nature of this operation. The Fouriesftian of the convolution
kernel K ()\) is
- 1
K(\) =
() L+ 4m2\(n2 +n2)

which has the typical form of a low-pass filter (see Figure 2.3), explaitiiegsmoothing properties.
Note that the kernel does not depend on the imggehich further explains the isotropic behavior of the
smoothing.

Figure 2.3: Minimization of the Tikhonov model is equivalent to low-gafiitering. The image
shows the Frequency response of the corresponding kernel.

Closed form solutions to the models defined by (2.9) are not generally lateaftar p # 2 (especially
not for the very important cage = 1), the introduction of an optimization procedure is therefore well
justified.

The gradient descent scheme that has been described so fag Boffesome severe problems. First, the
algorithm is sensitive to the choice of the step-gjiz&or some functionals, it may be hard to determine
the Lipschitz constant or worse it may not even exist. While the optimizatioreguwe still works in
principle, the user is bound to choosing a step-size by guessing. Whilp-giztethat is too large may
yield unsatisfactory results because the algorithm oscillates around the ppttchaosingy too small
results in poor convergence time.

Moreover, the algorithm always moves into the direction of the steepeditgtavith some fixed step-
size. This may result in a “zig-zag” movement for some functionals, whialnagsults in poor conver-
gence time.

Below, we will therefore introduce an algorithm that is based on dualityraegiis and addresses these
problems. The algorithm will be applied to the ROF model, which is far better simtdth context of
image processing than the Tikhonov model.
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2.2.2 The ROF Model

Consider the ROF energy:

1
E(u; \) = /(f—u)2dac+)\/ \Vu|dx (2.19)
2 Ja Q
with the corresponding Euler-Lagrange equation
Vu*
— )= AV(=——=)=0 2.20
(" =) = MV (2.20)

It is immediately obvious that (2.20) is not defined whgve:| = 0. Moreover, we note that (2.19) is
only well defined if the gradien¥« exists andVu| is integrable in the domaife. More formally we
have that the energy is well defined for functianss W11(Q), whereW1(Q2) denotes the space of
absolutely continuous functions. As this is a rather strict regularity conditiimobservation gives rise
to the question which classes of functions actually can be inputs to the fualgt2oh9) and consequently
can be solutions to the optimization problem.

Clearly, the prior dominates the space of functions for which (2.20) is veéithed. The priorf,, |[Vu|dz
is known as the Total Variation semi-norfiV’(u). Close inspection naturally yields two regularity
conditions foru:

1. u has to be continuously differentiable

2. The integral oveKu has to be bounded, in other worfi$ (u) < oo

The first condition is a rather strict regularity condition, effectively edolg images with sharp jumps
from the functional space. Fortunately, it is possible to eliminate this conditiarsing an alternative
definition of the Total Variation semi-norm that is based on duality propertiesrivex functionals:

The Fenchel-Legendre Transform of the 1-ngffa) = | z||; is given by

if [[plloc <1

(2.21)
else

) =sup{p".z— 2|1} = {20

For convex and lower semi-continuous functionals, the LegendrehEeransform is its own inverse
[Boyd and Vandenberghe, 2004], thus successive application yieldiernative, so-called dual, defini-
tion of the Total Variation semi-norm:

TV (u) = TV**(p) = sup {/ Pl Vudz, ||plle < 1} (2.22)
Q
with p : Q@ — R2.
By restrictingp to be continuously differentiable, integration by parts yields
/ p! Vudr = / updl’ — / udivp dx (2.23)
Q r Q

whereI" denotes the boundary 6f and the operator div denotes the divergence operator, i.e. for a
functiong(z) = (g1(z), g2(x))” we have
L 0g1 | 0Oga
divg = ox + oy
By further restrictingy to have compact support in, the integration along the boundary@fbecomes
zero, which finally yields:
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TV (u) = sup {—/ udivp dzx, ||plle < 1} (2.24)
Q

This definition removes the need farto be continuously differentiable, leveraging the set of possible
solutions to a set that incorporates sharp discontinuities, which is cleady&djeous for the denoising
of images (and Computer Vision applications in general). We call functionsMitfu) < oo functions

of bounded variation. More formally, the space of functions with bounv@eition is given by

BV ={ue L'Q): TV (u) < oo} (2.25)

From (2.22), it is easy to see the nature of the funcgioriTo attain the supremum, one has:) =

gzggg‘ if (Vu)(x) # 0. For the cas&/u = 0, p(z) can be arbitrarily defined on the unit ba},

because the integrand in (2.22) is zero, independent:0f Figure 2.4 shows a graphical depiction of
the relation between the primaland the duap in the ROF model for a single pixel.

Figure 2.4: Relationship of the dual variab}eto the primalV for a single pixel ifVu # 0. p is
given by normalizingv to unit length.

We are now able to state the ROF functional in its primal-dual formulation

u* = min max {1 / (u — f)*dz + )\/ Vu'pdaz} (2.26)
v plle<t (2 Jo Q

Note that the relaxation of regularity constraints turns the previously wi@ned minimization prob-

lem (2.19) into a constrained saddle point problem. An important theorennireg@nalysis states that

the minimum and maximum operations in saddle point problems can be interchanogeted that one

of the optimization operations is constrained to a compact set. As this is cleadpdben (2.26), the

optimality condition with respect ta is given by

u= f+ Adivp (2.27)

By substituting (2.27) into (2.26) and flipping the sign of the functional to tuemtlaximization problem
into a minimization, one arrives at the dual formulation of the ROF model:

p* = min {/\/(din)2dx+/fdinda:} (2.28)
Ipllee<1 (2 Ja Q
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where the minimizer,* can be recovered fropi using (2.27).

Keeping all three proposed formulations of the ROF model in mind, we nowtdutre optimization of
the model. An implementation of any optimization procedure on a digital computéo bascarried out
in a discrete setting due to finite memory. A crucial first step in the optimizatioregwwe is therefore
to provide a stable discretization scheme for the continuous model. Let twighethe discretization of
the image domaif.

It is again assumed that the image is defined on the rectangular grid of sidenitlx equally spaced
pixel, as shown in (2.2).

The discrete analogs toandp respectively can be expressed by the vecibrs RMYN andp” € R2MN,
which result from lexicographical stacking of the rows of the images. mbst important part of the
discretization scheme is the definition of appropriate discrete differentigtierators. Let us stick to a
very simple definition based on finite forward and backward differe({€@sambolle, 2004]):

Finite first-order forward differences in firstandy direction are defined as

1L£L+17j—uﬁj f i M
6ju?j _ ——nif 0 < <
’ 0 else
wh. —uh. . .
orut = 7“”; oo jf0<j< N
y Yy T
0 else

and the discrete gradient opera¥dican then be defined as

Vuﬁj = (O ul;, o ul

T
1,70 Yy z,j)

The gradient operator is a linear mapping, hence the differentiation of iséevimageu” can be ex-
pressed as a matrix-vector product:

Let A be the matrix of size MNx2MN that, applied to a vector of lengthV, yields the2 A/ N-vector
containing the finite forward differences, then the discretized primaldd@d& model can be expressed
as:

Bty = (At ) + Sl — 713 (2.29)

Using these basic definitions, it is possible to derive the discrete divezggerator:
(2.22) and (2.24) provide the identity

/p.Vudx— —/ udivp dx
Q Q

which has to be reflected in the discretization scheme as well, i.e. we havedsecti® matrix4* of
size 2MNxMN, representing the discrete divergence operator, sath th

<Auh’ph> _ <uth*ph> vul ph
Generally speakingd* is the hermitian adjoint operator #, which is guaranteed to exist for any linear

mapping.
From the perspective of point-wise differentiation, it is easy to checlgiliah the backward differences

h b I

TRl i 1 <i< M ThTisl jf 1< j < N
h h
O ufy = q " if i=1 Oy ufy = M if j=1

TUeu i =M sl = N
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we can define the discrete divergence operator as
—divp}; = 9, pj; + 9,

to fulfill the requirement of adjointness.

To allow a clean notation and without loss of generality, it will be assumed foremainder of this
section that the pixel spacirigis equal to one. We therefore writeinstead ofu”.

Based on [Zhu and Chan, 2008], the primal-dual formulation allows us tdognam efficient class
algorithms. The presented algorithm will later serve as gold-standardA®t idference problems.

In its basic form, the primal-dual algorithm states that the generalized sanidtgopoblem

min max (p, Au) + G(u) — F*(p)
u p

can be optimized using simultaneous gradient descent/ascent in the primglianbriables respec-
tively, resulting in the following update scheme [Pock et al., 2009]:

p"+1 = (I+ TdﬁF*)_l(p” + TgAT") (2.30)
u"t = (T4 7,0G) " (u — T ATp" ) (2.31)
avtt = 2t — (2.32)

for some appropriate step-sizegandr,. Note that there exist several variants of this algorithm (see
[Chambolle and Pock, 2010] and [Esser, 2010]).

(I + TdaF*)—l(p”+%) denotes the resolvent operator with respect to a fundfiband is given by:
n+1 : 1 n+< 2 *
p"" =argmin< o—|[[p—p" 2[5+ F7(p)
p 27—d

For the dual variable in the primal-dual ROF model (2.26) the funchd(p) captures the constraint
that any feasible has to be a member of the d6t= {p : ||p||c < 1}. This can be achieved using an
indicator functiont™ (p) = I (p), wherelg (p) = 0if p € K andlg(p) = oo otherwise.

This yields the dual update rule
p" T = Prowg (p" + 74AV@)

where the operator Prgj.) denotes an Euclidean projection onto the Ket This set is a relatively
simple convex set (i.e. the unit ball iR?), therefore the projection can be achieved by a point-wise
operation:

- p(x)
Proj, (p(x)) =
) = L, o)
For the primal variable>(u) is given by the data term, i.eG(u) = 3|lu — f||3. Application of the

resolvent operator yields the update rule for the primal variable:

ot T £ Adivp™)
1+

The last step (2.32) facilitate a simple extrapolation based on the currept@ndus iterates.

One problem in any optimization procedure is to decide when to stop the algoAtkypical approach
is to stop when the distance between two consecutive updates is below sest®ttr In primal-dual
algorithms it is convenient to measure the difference between the primaluah@mergies [Zhu et al.,
2008]:
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The dual energy can be written as

_ 1 2 o : 2
Bp) = (/Qf dx /Q(/\dIVp—i-f) dx)
and the ga(u) — E(p) is then given by:
GAP(u,p) = /Q)\(|Vu| — udivp)dx + % /Q()\din + f —u)?dx

Note that the second term in the expression above is always zeroskedaghosen according to (2.27).
From the same equation we have that

Liw—wpz = /(u _ u*)(divp — divp*)da
A 0

= —/Vu'p—F/Vu'p*#—/Vu*‘p—/Vu*~p* (2.33)
Q Q Q Q

With the relationdVu*| = Vu*p* and|Vu| > Vu-p, it is easy to see that the gap is a bound for the
distance to the minimizer*:

1 . 1
Mu=wip< = [ Vups [ Vil =G
Q Q

This shows that the Euclidean distance frono the global optimum* is never larger thay/ GAP(u, p)
and justifies the use of the gap between the primal and dual energies ppiagititerion.

Algorithm 1 summarizes the whole optimization procedure for the ROF model.

Algorithm 1 Primal-dual algorithm for the ROF model
: Setn =0

2: Setu = f, 70 = f

3 Setp), =0 0<i<M, 0<j<N
4: while GAP(u™, p™) < e do

5. p"tl— Projg (p" + 7aAVQ)

6: utl w7, (f+divprtl)
7
8
9

[EnY

147
ﬂn—i-l — 2un+1 — "
o n+—n+1
: end while

Figure 2.5 shows the results of the ROF model for different values dh contrast to the Tikhonov
model, edges are preserved and the overall result is visually much mpealeyy than the Tikhonov
model.

The figure also shows an interesting effect if one increases the value A$ ) increases (i.e. more
denoising is applied to the image), the result looks more and more like a caftttom ariginal image.
At closer observation, it turns out that solutions of the ROF model tend tmbmposed of piecewise-
constant functions. This results in block-like artifacts that are, due toghaje, called staircases.

The effectis most easily observed for one-dimensional signals. F2gaishows a noisy one-dimensional
signal, superimposed with the original signal (dashed line), on the leftrédunstruction is plotted on
the right. The solution is piecewise constant in most parts of the function, wadis@mnal sharp jumps.

Theoretical results and explanations for the staircasing effect in thinaons ROF model can be found
in [Caselles et al., 2008] and [Ring, 2000].
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(a) Noisy image (b) A\ =0.1

© X=05 (d) \ = 1.0

Figure 2.5: Reconstruction of a noisy image using the ROF model for difievalues of\.

From a probabilistic point of view, the staircasing effect can be attributedetaise of the Laplacian
prior together with MAP estimation, enforcing sparse solutions with respabetonage gradients. To
remedy this effect, one has two choices in the construction of a model. Fiescauld replace the MAP
procedure by a better estimator (which is the focus of this thesis). Semoedpuld regularize the model
with a regularization term that better captures the statistics of the image (seafople [Bredies et al.,
2009], [Chan et al., 2005], [Chan et al., 2007]).

2.3 Chapter Summary

In this chapter, we introduced a simple variational denoising model along wittgarithm to solve the
model. While the model itself is very simplistic, its derivation nonetheless highligatsahnection to
Bayesian modeling and probabilistic methods.

In fact, a lot of models in Computer Vision are based on an optimization prokfeitasto (2.9), i.e.
they can be formulated as an energy minimization probhleém, £ (). Consequently, such energies can
be treated in the context of probability density functions, inducing a postaridability density that is
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Figure 2.6: Reconstruction of a one-dimensional signal using the ROBahoThe staircasing
effect is clearly visible at the slopes of the function.

in general given by
1 _Bw

plul) = e

This allows us to use methods from stochastic estimation and Bayesian irfeéoesmlve the optimiza-
tion problem as well as to leverage the result by estimating other quantities tn&hAR. The rest of
this thesis will be concerned with this probabilistic formulation and its advantagashe deterministic
formulation.




Chapter 3

Estimation Theory

In the preceding chapter, a model for the reconstruction of noisy imagealisaussed. The proposed
method employed a probabilistic argument to construct a posterior probalghitsitdp(u|f), which
assigns any possible imagea probability according to the proposed image and noise model. The
question that arises is how to choose an image from this distribution that optincatbhyats for the
model.

A very intuitive approach was already discussed: By choosing the imatjeniximizes the probability
p(ulf), we expect to get a good result (provided the model was well-desigefedebhand). Formally,
we look for the image:* that satisfies

u* = arg max p(u|f)

This procedure is called Maximum-A-Posteriori estimation (MAP), ultimately legatiira deterministic
formulation of the initially stochastic problem. While it is somewhat intuitive to chabseimage
with the highest probability in the context of the model, there actually may existasndmgit would be
characterized as better solutions that have a lower probability.

In [Nikolova, 2007] it has been shown that MAP estimation has some ssh@récomings, even for
“perfect” models. MAP estimators may, depending on the actual form ofdak&egor, introduce distor-
tions:

1. For multimodal posteriors, the MAP estimate finds the mode with the largestpmatking into
account the probability mass around the estimate.

2. The resulting estimate does not follow the underlying model in most casas{@tistical sense).

This chapter is concerned with the analysis of these problems as well as withtthduction of an
estimator that is able to eliminate these problems.

3.1 MAP-Distortions in High Dimensions

It was already shown in the previous section that the MAP estimate depatydsrothe height of the
maximal mode, not on the probability mass inside the mode. This behavior isiasppooblematic
when the distribution is high-dimensional. High-dimensional distributions tendrtoentrate their mass
in a small area of their domain.

Katafygiotis and Zuev [2008] provide a notable example for such a cdraten:

Consider the N-dimensional random vecior= (X1, ..., X,,)T where each component is independent
and identically distributed according to a standard Normal distribution X,e~ A(0, 1), for all 0 <
i <N.

19
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Then the Euclidean distandeof the random variabl& to the origin is given by

N
RG] = |3 X2 61

Note that the squared Euclidean distafi®deads to the definition of the Chi-square distribution with
degrees of freedom, i.&k? ~ x3:.

Canal [2005] and Fisher [1922] show th&2R can be approximated by a normal distribution with mean
v2N — 1 and unit variance, a&' tends to infinity. A simple transformation shows that the Euclidean
distance to the origin is distributed according to

R~N(/N—=1/2,1/2) ~ N(V'N,1/2)

This is a remarkable result as it states that a large amount of the total pitybabss is concentrated
in a spherical ring around the origin, while the mode with maximal probability li¢iseabrigin. As the

number of dimensions rises, the sphere is pushed farther away frommigive orhis implies that the
MAP estimate is a relatively uncommon realization of the underlying probabilityilolisiton.

The concentration of mass phenomenon can be observed in more complds awdell, which is a
hint that the MAP estimator may not be optimal in high-dimensional problems.

3.2 Distributions of MAP estimates

The previous chapter showed the emphasis on the modeling aspect inithe afegariational models.
Starting from assumptions on the statistical properties of the noise and smmknmwledge that was
obtained from empirical observations, one derives a model that faitidapyures this information.

It seems to be a natural demand for an estimator that its estimates area distidmaeting to the given
model. For example estimated is expected to be distributed according to the prior distribution (i.e.
Laplacian of its gradients for the ROF model) while- f should look like the noise distribution (i.e.
i.i.d. Gaussian). This rarely the case for MAP, however, which is anatleakness of this type of
estimator.

Numerical examples and analytic results of such distortions in discrete modegisaided by Nikolova

in [Nikolova, 2007]. Let us briefly recall the main results.

Consider the discrete one-dimensional ROF model

N
ROF (u; f,A) = |lu— fl[3 + A Jus — i1 (3.2)
=1

The single-pixel differences are distributed according to the pdf

Fow(t) = 5 exp{-Al} 33)

and independent for all < ¢ < N. The random variabl& U; is given byVU,; = U; — U,4+1. We assume
thatU; € R, therefore the pdfin (3.3) is continuous.

It was already noted that the ROF model suffers from the staircasiecteff was not clear, whether this
effect should be attributed to the model (i.e. the Laplacian prior) or to the Btiifhation. Using (3.3),
the probability that the values of two neighboring pixels are equal, acaptdithe prior model, is given
by:

PT(UZ' = Ui+1) = PT(VUZ = 0) =0 (34)
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The result comes from the continuity of the pdf and the fact¥h&} = 0 constitutes a single probability
event, which always has zero probability in a continuous probability spade shows that the prior in
principle does not favor piecewise constant regions.

Nikolova [2007], however, proves that the probability that two neighmgppixels are equal in the MAP
estimate is non-zero . Let us briefly sketch the idea behind the proof:

Given the set/ of points where the finite differences of the strict local minimizéare zero, i.e.
J={iel,...,N:uj —uj,, =0}
and the seK ; of signalsu which have finite differences equal to zero at the same points
Ky={ueR:u—uji1 =0,Vie J}

[Nikolova, 2000] and [Nikolova, 2004] shows thats nonempty and there exists an open neighborhood
O of f where for eaclf € Oy, the corresponding minimizer* also exhibits finite differences equal to
zero at the same points , i.2* € K ;. Now note that a MAP estimate givene O results in solutions
that are actually a subset &f;. This establishes the relation

Pr(U* € K;) > Pr(F € Oy) = /OJ (/RN p(f|u)p(u)du) df >0

which is a contradiction to the prior probability (3.4) because it shows that

Therefore, the distribution of the MAP estimate is not identical to the prior mddhés.result is not only
applicable for this particular one-dimensional example. In fact, it holdardigrprior that is non-smooth
at zero in the context of MAP estimation.

The result is remarkable as it states that no matter how well a model fits theyimglelata, there is no
hope of recovering a signal that fits the model using a MAP estimator. Asdsre resorts to MAP
estimates, there will always be staircasing (or similar effects if priors basddgher-order derivatives
are used).

Let us consider a numerical example to back up the theoretical results:

We construct a Laplacian random walk By, ; = x; + L where L is distributed according to a Laplacian
distribution with zero mean and variangelt is easy to see that the differences — x; are distributed
according to a Laplacian prior as well.

If i.i.d. Gaussian noise with zero mean and varianéés added to a realization of the random walk, we
get a noisy signal that perfectly fits the initial assumptions that led to the dektge ROF model. It is
even possible to calculate the regularization parameter which is simply glvbrtb%—.

Figure 3.1(a) shows a single realization of such a random walk (the didiskeshows the true signal,
whereas the solid line depicts the noisy signal). Figure 3.1(b) shows thesteaction (solid), obtained
using Algorithm 1, superimposed with the original signal (dashed). Evauigtinthe ROF model is able
to perfectly model the signal, the MAP reconstruction still exhibits staircasing.

Figure 3.2 shows the empirical distribution of the differences of the truak{gr2(a)) and the respective
distribution of the MAP reconstruction (3.2(b)). The reconstruction isxgiisopeaked at zero, reflecting
the many piecewise constant regions of the reconstruction. Figure$ 8m2{8.2(d) show the empirical
distributions of the true noise and the residuals of the MAP reconstructioarésiduals are not Gaus-
sian at all. Instead, with a strong peak at zero and the approximately exjrdecay of the tails, it

resembles a Laplacian, leading [Nikolova, 2007] to the remarkable aigerthat this model is better
suited to remove impulse noise than Gaussian noise.
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(a) A single realization of a Laplacian random walk with  (b) Reconstruction using MAP of ROF model. Dashed:

superimposed Gaussian noise. Dashed: Original signal. Original signal. Solid: MAP reconstruction
Solid: Noisy signal

Figure 3.1: Reconstruction of a signal obtained from a noisy Laplacadom walk §2 = 0.5,
A = 2). Even if the signal perfectly fits the model, MAP fails to pide a faithful
reconstruction

3.3 Bayesian Risk

The framework of Bayesian estimation provides us with tools to develop aalgzanestimators based
on the risk of taking a wrong estimate. By introducing loss functions, it isiplesto associate a “cost”
with an estimate, reflecting the regret of being a wrong estimate.

Consider the true image’ and an estimate (we do not consider how this estimate was obtained in
the first place). Then a loss functidn: Rl x RI¥l — R. can be used to express one’s needs for the
reliability of an estimator.

Considering that the true valué is unknown in general (if/’ is known, the estimaton is obsolete
in the first place) and that we are dealing with probabilistic measures, it easgaxy to assign some
probabilistic measure to the loss function as well to make this notion useful. dihisecachieved using
the concept of Bayesian Risk.

The Bayesian RislR(u) associated with a loss functidi(u, v’), is defined as the expected value of the
loss function, with respect to the posterior distribution of the quantity of istere

R(w) = Euy (L)} = [ Dlasyp(u'| )

RIQI

By minimizing the Bayesian Risk, it is possible to derive an estimator that is optimalrstect to a
given loss function and posterior distribution. Such estimators are callgesia estimators.

Formally, a Bayesian estimataf satisfies
u* = arg min R(u) (3.5)
u

for some riskR(u).

Note that the definition of the Risk function gives rise to other (non-baggsistimators as well. One
popular example thereof is the so-called minimax estimator that minimizes the risk sfi#cteto the
least favorable distributiop(u|f). This can be interpreted as the estimator that performs best in the
worst case of input data (i.e. the input data does not match the model).
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Figure 3.2: True distributions (left) and distributions of MAP reconattion (right). Neither the
the distribution of the differences,; — z; nor the residuals follows the original dis-
tributions.

A common and simple loss function is given by the hit-or-miss loss, which agigissime cost to every
wrong estimate:

0 if u=1u
LU(U7 u/) = {1 else (36)

For this type of loss, the Bayesian estimator is given by:

ut = arg muin {Euwf{Lo(u,u)}} = arg muin {/RQI Lg(u,u’)p(u’|f)du'}

= argm&n{/u#u,p(u |f)du } = argm&n{l - /u:u/p(u |f)du }
~ argmin {—3(u, w)p(u )} = arg max {p(ulf)} @7)

whered(u, u") denotes the dirac function, i.e.

Suul) =4 ° if u=
0 if u+#u
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(3.7) shows that the estimator minimizing the hit-or-miss loss is given by the MAP eéstifiais deriva-
tion also shows that the MAP estimate is a point estimate (see the last line, invoirang delta) that
inevitably fails to capture the information that is present in the posterior dititsibu

Another popular choice for a loss function is given by the squaremt-krss:

Lo(u,u') = |lu—o/|]? (3.8)

Unlike the hit-or-miss loss the squared-error loss assigns differeat™tmwrong estimates, depending
on the Euclidean distance to the true value. The Bayesian estimator for thisfhkass function is given

by
u* = arg min R(u) = arg min {/ |lu — u’\zp(u'f)du’} (3.9)
u u Rl

and the minimum of this function is attained where

SR <“ [ peinad = [ u’p<u’|f>du') =0

which finally leads to

w = [ upwlf) = Euplu)
RS2

i.e. the estimator minimizing the Bayesian risk defined by the squared-erras lgisen by the expected
value of the posterior. We will further call this estimator the Least-Squatana&tor, or short LSE. By

definition, the expected value is a summary statistic, effectively compressinghitie knowledge about
the posterior into a single estimate. Depending on the posterior distributidnassiommary may vyield

better results than a single point estimate. Note that other, more sophisticassirictions are possible
(see for example [Rue and Hurn, 1997]), we will, however, focus erLBE estimate.

The estimation of such a summary statistics is much more difficult than a simple piimhies One has
to have complete knowledge of all possible outcomes of the underlyinglutitypaxperiment to exactly
infer the estimate (as the integral in the expected value is taken over the wbblerp domain).

Given typical problem spaces (consider a discrete binary image as sv&lllay 64 pixels, leading to
(64x64)% ~ 17x10° possible image configurations), it is not possible to exactly infer the exppeateae.
Instead, one has to rely on approximations. The next chapter will fatgsch approximations.

Let us first turn to an evaluation of the two estimators. Bayesian estimatiorytfeedures some notions
to characterize the performance of an estimator. One common measure is thbiaweaf an estimator,
defined as

Bias(u) = E{u} — v’ = E{u — v’}

An estimator with Biat:) = 0 is called unbiased. Loosely speaking one could say that an unbiased
estimator will, on average, yield the correct estimate. It is neither neceksaan estimator to be
unbiased nor does it automatically guarantee that it is the best among all estim8eeking for an
unbiased estimator is however a common starting point in the design phase.

Another important performance measure is given by the variance otiamaés:
Var(u) = E{[lu — E{u}|*}

The variance of an estimator essentially captures how far the estimatesraréné& mean on average.
Last, we define the mean-squared error of an estimator as

MSE(u) = E{Ju — «/|"} = Var(u) — ||Bias(u)|

These measures are difficult to derive for the MAP estimator, as the retdtibe data to the estimate are
only implicitly given (note that for certain functionals, one can derive gr@gdmation even for implicit
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relations [Fessler, 1996]). We can, however, deduce some conwusinthe MAP estimate based on
the performance analysis of the LSE estimator:

The Bias of the LSE estimator is given via the law of iterated expectations:
Bias(ursg) = E{ursp} —u' = E{E{J/|f}} —v' =u —u' =0
ursg 1S therefore an unbiased estimator. With any unbiased estimator, we have that

MSE(ULSE) = Var(uLgE)

Recall that the LSE estimator minimizes the expected value of the squaredessdunction, which
coincides with the mean-squared error. This implies that the LSE estimator stitma&r with minimal
variance among all unbiased estimators.

For the analysis of the MAP estimate, we can therefore conclude that

« if the MAP estimate coincides with with the LSE estimate, it is also unbiased and minimdm v
ance. This case only happens if the posterior is both unimodal and symmetric.

« if, in contrast, the MAP estimate is different from the LSE estimate, it is biaBeid.is the general
and more interesting case in the context of variational methods.

To develop some intuition on when and why the LSE estimate can yield better osttioamsthe MAP,
let us analyze some examples. Figure 3.3 shows simple one-dimensionalexénphe outcome of a
MAP estimation (red) versus a LSE estimation (blue). For distributions thayamenetric and unimodal
(Figure 3.3(a)), the MAP and LSE estimators yield the same result (as ttex ofmass and the maximal
mode are located at the same place). For unimodal non-symmetric distribikierisSE estimator is
shifted towards the heavier tail of the distribution (as depicted in Figure)3.3(b

For multimodal distributions, the actual location depends on the distribution of tdesn&igure 3.3(c)
shows an example where the LSE estimator would clearly outperform the IgkRage. While MAP is

located at the strongest mode (that actually captures little probability masgfEhestimate is located
near the peak of the mode with much larger probability mass (that has a nedalga extremal value
as the MAP peak), giving much more support for this estimate in the contéix¢ afriginal model.

It should be noted that for multimodal posteriors, one cannot generghly tiat the LSE estimate out-
performs the MAP estimate. Figure 3.3 shows an example where the expatiiedfthe distribution
lies in between two strong modes. This estimate has a very low probability, witialdwnake this
choice a risky one. The MAP estimate, however, has to arbitrarily choosethe 2 modes, as both have
equal probability.

3.4 Chapter Summary

This chapter tried to highlight problems that arise within the framework of MAfmation. Using
Bayesian estimation theory, we developed an alternative estimator that iy ytelds better results than
the MAP estimate.

Let us briefly summarize the insights gained so far:

* MAP estimation suffers from severe distortions whenever non-smodathspare present in the
functional, as it is the case in most variational models in Computer Vision.

« The LSE estimator may yield better results depending on the shape of theqgodisribution.
Especially if the posterior is asymmetric and unimodal, it can be expected thedmstruction by
the LSE estimator is superior to the MAP estimate.
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Figure 3.3: MAP (red) and LSE (blue) estimates for different probapiliiensities. (a) Shows
an unimodal, symmetric distribution. The maximum and theteeof mass coincide,
therefore MAP and LSE yield the same results. (b) Asymmatrianodal distribution.
The LSE is shifted towards the heavy tail of the distributi@z) Bimodal distribution.
While MAP is located within the mode with highest probabilitie LSE is located
near the peak of the mode with greater probability mass. yretric, bimodal
distribution. The LSE estimate has very low probability. esTMAP estimator has to
arbitrarily choose between the two modes as both have eqpiability.

The ROF model is convex, which implies that the posterior is log-concavehamefore by definition
unimodal. Furthermore, it is asymmetric in general (the pdf is symmetrficisf constant everywhere
in Q). The ROF model is hence in principle well-suited for an LSE estimator. Figdrgisualizes the
shape of the distribution for a simple example involving only two pixels.

The Tikhonov model on the other hand defines a unimodal symmetric pdépasted in Figure 3.5. The
LSE and the MAP coincide in this model and a modified estimation procedurddreoannot enhance
the results.

Recall that the LSE estimator is given by
u* :/ up(u|f)du (3.10)
RIS

The integral in (3.10) has to be taken over every possible image corf@ucf a given sizg(|. It
is clearly impossible to exactly solve this integration, even for relatively small énadhe following
chapter is therefore devoted to the development of a procedure thasalkwo approximately solve
(3.10).
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Figure 3.4: Logarithmic plot of the pdf of the ROF model for two adjacemtgls. The possible
values of a pixel was constrained to range [0,255] and thavee of the prior and
noise distribution was set t& = 1 ando? = 100 respectively. The two “noisy” pixels
where set to the valueg = 10 and fo = 128. The resulting MAP reconstruction
yieldsu; = us = 69, whereas the LSE reconstruction yields = 68.19 anduy, =

68.80.
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Figure 3.5: Logarithmic plot of the pdf of the Tikhonov model for two ad@nt pixels. The possi-
ble values of a pixel was constrained to range [0,255] anddhiance of the prior and
noise distribution was set 16 = 50 ando? = 50 respectively. The two “noisy” pixels
where set to the value§ = 10 and fo = 128. The resulting pdf is symmetric. The
LSE and the MAP reconstruction yield = 57 andu, = 81.
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Chapter 4

Markov Chain Monte Carlo

The estimator (3.10) poses an extremely high-dimensional integral. Determmistierical integra-

tion methods, such as the Newton-Cotes Formula or Simpson’s Rule, fail toxapate the integral
in such a scenario. Problems that involve high-dimensional integrationiares&ariety of fields, in-

cluding physics, finance, statistics and computational biology. The dewelaipof efficient methods to
numerically solve such problems has therefore become an importantafesegic in mathematics (and
especially statistics).

To exemplify the shortcomings of deterministic numerical integration for high-da&meaal problems,
we consider a simple example based on the rectangle rule [Arnold, 2001]:

Given a functionf : [a,b] — R the area

I= /abf(x)d:z

is approximated by partitioning the interal 4] in N equidistant sub-intervals of width = b*T“:

b N
/ F@)dz = 3" fa+ hijh
a i=0

wherea + Ni = b.
Assuming thatf (x) is continuously differentiable ofa, b], the approximation error is given by

o f;(jf,)a) oy (4.1)

for someg € [a, b]. (4.1) states that the error linearly decreases as the number of sulaisiférgrows.
By denotingO(%) as the error term, the exact integral then reads

b N 1
/ flaydr =" flat hih+O(+)
@ i=0

Extension of one-dimensional numerical integration methods to multi-dimensidegtals is straight
forward:

Assume a function is defined on the d-dimensional hyperctibe[a, b]¢, i.e. f : C — R, then the
integral over this hypercube is given by:

/Cf(x)dx:/ab.../abf(x)d:rl...dﬂcd

29
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and repeated application of the rectangle rule yields

N—-1 N—-1
/f(x)dxw > > flat ity a+ hig)h (4.2)
c i1=0  iq=0

The integrand in (4.2) is evaluated= (N + 1)? times, and since the error depends on the total number
of evaluations, the approximation error is of ordgfn—'/%). Thus, the error bound gets exponentially
worse with a rising number of dimensions. While the error may be substantialljesrita more so-
phisticated integration rules in the one-dimensional case, the statement thiabtigrows exponentially
with the number of dimensions holds for all deterministic numerical integration mgtho

The most common and general tool to tackle high-dimensional integratioteprshis known as the
Monte Carlo method. The term “Monte Carlo” refers to a class of algorithmsuba repeated ran-
dom sampling of the possibly very large input domain (the integration domairsan@aMonte Carlo
integration) to generate an output.

A multi-dimensional integral

- /Q F(x)dx

is approximated by randomly generating a set of N sample pé#ats. .., xy}, %x; € Q by uniform
sampling under the integration domain and evaluating

N
IzN;ﬂfm

Provided that sampling is done correctly (the whole integration domain isexbwveo statistical patholo-
gies from pseudo-random number generators), the law of large narsiiages that

While it is not possible to give a deterministic error bound for Monte Carlo matéan, a probabilistic
error bound can be obtained from the Central Limit Theorem:

lim P Ly <20y L[ L

i Pr | 2 S lam) — 1| = 257 | = o= [ e

This is a remarkable result as it states that the error is independent afrtiteen of dimensions. While
this justifies the use of Monte Carlo methods for high-dimensional integrationnaergence rate of
\/% is, however, relatively slow (to half the error for a given N, one hasuadguple the number of
samples). Markov Chain Monte Carlo (MCMC) algorithms try to mitigate this slowobt®nvergence
by exploiting the concentration of mass phenomenon that was alreadysigdnghe preceding chapter.
Instead of uniform sampling under the integration domain and weighting thdesioging the integrand,
MCMC algorithms sample areas that have a high contribution to the integral moselg than areas with
low contribution and do a uniform weighting of the samples.

The remainder of this chapter is organized as follows:

Section 4.1 introduces Markov Chains that are defined on uncountatdesptices and introduces the
most important properties of such chains that are needed for the atitstraf MCMC algorithms.

Section 4.2 introduces the two most important algorithms in MCMC theory, the Gimpler and
the Metropolis-Hastings algorithm, and combines ideas from both algorithmsampliag procedure,
which is particularly appropriate for image processing tasks.

A procedure that allows the presented samplers to quickly converge wittemwal tuning of parameters,
is introduced in section 4.3.
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4.1 Markov Chains

Let X; € S denote the realization of a random variable defined on the state Spattmet, i.e. the set
{X:} defines a random process. We focus on discrete-time Markov chdiesewis an integer larger
than zero. A random proce$<; } is called a Markov Chain of order k, if the probability of visiting the
future stateX,,; given the current stat¥, does not depend on its past statés,,, n = k,...,t for
somek > 0.

Formally, this can be written as:
Pr(X; =sj|Xo=50,...,Xi—1=5;) = Pr(X; = | Xe—pp = s1,..., Xy—1 = 5)) (4.3)

The number of past states the chain depends on is called the order oathefetr the remainder of this
thesis, we stick to first-order Markov Chains, i.e. chains where the pililpaof visiting a particular
next state only depends on the current state. (4.3) then simplifies to:

P(l,j) = P?“(Xt = Sj’X() = S50y--- 7Xt—1 = Si) = P?“(Xt = Sj’Xt_l = Si) (44)

P(i,7), the probability of moving to state; given states;, is called the transition kernel of the chain.

This definition assumes a finite (i.e. countable) state sgad&hile any implementation of variational
models on a digital computer clearly involves finite state-spaces, the andlgsislomodels is typically
carried out in uncountable spaces. Itis therefore advantageouglyd\d@MC theory in an uncountable
state-space as well, so that no assumption on discretization of the undedyiatpnal model has to be
made.

A straight-forward generalization of first-order Markov chains to wmtable state-spaces (further re-
ferred to as general state-spaces) is given by:

P(z,A) = Pr(X; € A|Xi—1 = x), A e B(S) (4.5)

whereB(S) denotes the Borel set ¢f.

The transition kerneP(z, A) can be interpreted as the probability density function of moving to sub-
spaceA from the current state.

Note that the transition kernel can in principle be a function of the evolutionirkée limit the kernel
to be time invariant for now:

PT‘(Xt S A|Xt,1 = $) = PT‘(Xter S A|Xt+m,1), VYm

Such a chain is also called time-homogeneous or stationary.

The evolution off X, } is fully governed by its transition kernel and its initializatiaiy. Using induction,
the probability thatX; € A after n steps when starting &y = = can be calculated recursively:

Pz, A = §,(A)
Pla, A = / P(x, dy)s,(A) = Pz, A)
S

Pz, A)® = /S P, dy){ /S P(y,d2)3.(4)) = [ Pla,dy) Py, 4)

Pz, A = /P(x, dy)P(y, A"V, z eS8 AcB(S) (4.6)
S

wherej, (A) = 1if z € A and 0 otherwise.
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Markov Chains that fulfill certain regularity conditions eventually coneetg a limiting distribution
7*(.). MCMC algorithms exploit this fact by cleverly constructing a chain, so théitiising distribution
coincides with a desired target distribution. Definition 2 introduces two impoc@mcepts for such a
construction:

Definition 2. [Meyn and Tweedie, 1993] L¢1X, } be a Markov chain, defined on the general state-space
S. We call{ X,} ¢-irreducible with respect to a measugeiif for all A € B(S)

p(A) > 0= P(z,A)™ >0, Vzes
holds.

Furthermore, assume that a chaingsrreducible. Let us denote by

[e.o]

Ta=Y 1{X; € A}

n=1

the number of times the chain visits the defThen a chain is said to be Harris-recurrent, if
Pr(ta=o00)=1
for all setsA C S. Such a chain visits every state infinitely often, independent of the initialization.

The concept ofp-irreducibility states that each relevant state with respect to a distribgtisrvisited
with non-zero probability, regardless of the initial value. Recurrencthemther guarantees that every
state is visited infinitely often. Any chain thatgsirreducible and Harris-recurrent has a unique invariant
distribution7. Moreover, this stationary distribution coincides withKeeping in mind that the goal of
MCMC algorithms is to construct a chain with target invariant distributipauch a chain must therefore
be w-irreducibly as well as Harris-recurrent.

Using these conditions, we are finally able to define the invariant distribution:

Definition 3. Letr be a probability density function defined Srand{ X} be the time-homogeneous,
irreducible, Harris-recurrent Markov chain with transition kerngl ., .), defined on the state-spaSe
We callr the invariant distribution of X}, if = satisfies

lim P(z, A)™ =x(A), VAeB(S)

Definition 3 implies that the invariant distribution also satisfies:
m(A) = / P(z, A)r(x)dz, VA € B(S) 4.7)
s

Relation (4.7) is a condition to test wheths(.) is the invariant distribution of the chain with transition
kernel P(.,.). To simulate from a given target distribution, this relation has to be inverteda lgiven
7(.), find a transition kerneP(.,.) so that (4.7) holds. It turns out that explicit construction of such a
transition kernel is difficult or even impossible (even for simpje

A last restriction on the chain enables us to simulate a chain with a predetermiaeidin distribution
without explicit construction of the transition kernel:
m(A)P(A,z) = n(z)P(x, A) (4.8)

(4.8) is called the detailed balance condition. It essentially states that therfiespof the chain do not
change if the chain is run backwards in time. Thus, chains that maintain ddialkete are also often
called reversible.
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Proposition 1. Any Harris-recurrent,m-irreducible Markov chain with transition kerndP(.,.) that
fulfills condition(4.8) has~(.) as its unique invariant distribution.

Proof. Integrating both sites of (4.8) with respect to x yields

m(A) / P(A,x)dx = / m(x)P(x, A)dx
s S
The integral on the left-hand site evaluates to one which shows the eaquigate(4.7). O

So far, we have seen what properties a Markov chain has to fulfill iardalhave an invariant distri-
bution. Recall that our initial motivation for the introduction of Markov Chaives to approximate a
possibly very high-dimensional integral, by dense sampling of the integnaaréas with high contribu-
tions to the overall integral and sparser sampling in areas with low contrilsufidre following theorem
theoretically justifies such a procedure:

Theorem 1. [Meyn and Tweedie, 1993] LétX,; } be a Markov chain, defined on the general state-space
S that has a unique invariant distributiom and is Harris-recurrent. Then for any functigne L'

1 N
i 32006 = /S g(uym(u)du = E{g(u)}

holds and we call the chain ergodic.

This theorem states that we can approximate an integral by uniformly weigiginglesX,,, as long as
those samples are distributed according té\ useful fact is that anyt-irreducible and Harris-recurrent
chain is ergodic.

Proposition 1 together with (4.8) are the fundamental relations that aretexily the algorithms in the
following section to sample from a target distribution. Note, however, thaildd balance and therefore
time-reversibility is a sufficient, not a necessary condition for the coevergof the chain to an invariant
distribution.

4.2 Samplers

As already mentioned in the preceding section, the goal of MCMC algorithmsiststruct a Markov
Chain that has a desired invariant distributig). Once the chain is in its stationary regime, subsequent
samples are distributed accordingrtr).

The probably most important sampling algorithms are the Metropolis algorithrirgltais et al., 1953],
and its extension, the Metropolis-Hastings Algorithm [Hastings, 1970]. dlgisrithm has some very
favorable properties. First, the algorithm does not impose any restrictiotige target distribution. This
is specifically important for variational methods in image processing coirsigdre sheer amount of
different regularizers and fidelity terms. Second, the target distributientd be known only up to a
normalizing constant, and therefore needs no evaluation of the partitiotidan

The algorithm basically generates a potential new state based on someri@rpitbposal distribution.
The proposed state is accepted to become the next state of the chain if it imewdsin uphill in the
target distribution (i.e. to regions of higher probability). If this is not theecdke proposed state is
still accepted with a certain probability that is always non-zero. After itenumber of iterations, the
detailed balance condition is met and subsequent samples from the chdistadipeited according to the
desired target distribution.
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Formally, we have that given a statea new state is proposed according to some proposal distribution
q(y|z) (note that an explicit dependence on the current sté&@ot necessary, i.e. a proposal distribution
could also be of the form(y|x) = ¢(y)). The proposed statgis then accepted with probability

a(z,y) = min { m(y)alzly) 1}
m(2)q(y|z)
and rejected with probability — a(z, y), and the algorithm proceeds with the same procedure from the
new state.

Algorithm 2 Metropolis-Hastings Algorithm

: Choose an initial stat&

2: Choose a proposal distributign

3. Setk =0

4: loop {Metropolis-Hastings iteratign

5. Draw a new potential stat& ; /5 ~ q(Xj41/2/Xk)
6

7

8

9

[Eny

T(Xp11/2)3( Xk Xpt1/2)
@<= m(Xk)q(Xpy1/2|1Xk)

Xiy1 <= Xjp1/2 With probabilitymin(a, 1)
Xk+1 < X with probability 1 — min(a, 1)
o k<=k+1
10: end loop

The basic iterations of the Metropolis-Hastings procedure are summarizgddorithm 2. Note that
each run of the loop in Algorithm 2 is called a Metropolis-Hastings iteration aneigtes one sample.

Proposition 2. For an appropriate proposal distributiog(y|x), Algorithm 2 converges to the target
distributionn(z) ask — oo

Proof. First, consider the case+# y:
The transition kernel is then given by

P(z,y) = q(ylz)o(z, y)
It is easy to see that the proposal distribution has to meet
m(A) > 0 = q(Alz)™ > 0, reS
to establishr-irreducibility, i.e. the proposal distribution is able to reach all relevarasacd the target

distribution.
By substituting into (4.8), we get

m(z)q(y|z)e(z, y) = 7(y)q(z|y)aly, z)

Now assumex(z,y) < 1, then it immediately follows that(y,z) = 1. Rearranging the equality then

leads to
m(y)gq(z|y)

m(z)q(ylz)

which is true by construction and establishes detailed balance. The@ase < 0 follows analogously
by symmetry.

The second case, the probability of remaining in a state, is given by

P(z,a) =1 - /S . okt iy

az,y) =

The detailed balance condition is trivially met in this case. Summing up both easesge that the chain
is reversible ana-reducible, which concludes the proof. Ol
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The target distribution has to be known only up to a multiplicative normalizingtaahs this algorithm
because state transition probabilities only depend on the ratio of the targitutiisn evaluated at two
states. This means that there is no need to evaluate the partition fuactfonwhich strongly enhances
the applicability of this algorithm.

Let us now focus on the proposal distributign

A simple example of the influence of the proposal distributign|x) on 7-irreducibility is depicted
in Figure 4.1. Both graphs assume that the Metropolis-Hastings algorithninitiatized within the
left segment of the target distributiof{x). A chain will eventually reach the right boundary of this
segment. Using a proposal distribution as shown in 4.1(a), the probabilityha&hain jumps to the
other segment is zero, and the algorithm fails to correctly sample from theg @isgribution. Running
the algorithm with a proposal distribution that allows larger jumps, as showrd (b}4in contrast, results
in an f-irreducible chain, which enables the correct sampling of the target.

f(x) f(x)

(a) f-reducible (b) f-irreducible

Figure 4.1: Influence of the proposal distribution on the convergenckefropolis-Hastings al-
gorithm. The area undef(x) that is to be approximated is depicted in gray. (a) The
proposals are too small. If the initialization lies withimetleft (larger) area, there is
zero probability that the right area will be hit. Converséfyone starts the sampling
in the right area, the left area will never be hit. The chagréfore fails to sample the
targetf(z) correctly. (b) The proposal distribution is allowed to posp jumps that are
large enough so that there is a non-zero probability ofrigtboth areas, independent
of the initialization. The chain is therefore f-irredu@bdnd can correctly sample the

targetf(x).

While the specific form of the proposal distribution can arbitrarily be chaseprinciple (as long as
m-irreducibility can be established with it), it should be subject to some comgides to allow a good
performance of the algorithm. Typical runs of the algorithms involve hudsdoéthousands of iterations
and therefore a proposal distribution that is easy and fast to simulateldi®uohosen. By contrast the
proposal distribution should be similar to the target distribution in order to exfih@ space of the target
distribution in reasonable time. Typical choices for proposal distributioa$he uniform distribution or
the normal distribution, centered at the current state. Both distributiorfiasir® simulate. Furthermore
they are symmetric, which simplifies the computation of the update probabilities to

o W(Xk+1/2)Q(Xk’Xk+1/2) _ W(Xk+1/2> (4.9)
(X ) q(Xig1 /2| Xk) 7(Xk)

We call the algorithm the Metropolis algorithm if the proposal distribution is synmimeind the Metropolis-
Hastings algorithm if said distribution is asymmetric.
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4.2.1 Gibbs sampling

Another very popular sampler especially within the Computer Vision community iGiibles sampler,
introduced by Geman and Geman [1993]. For this sampling procedureassuienes that while it is
infeasible to sample from the multivariate target distribution, it is easy to sangie thie univariate
conditional distribution of a single component (where the distribution is comgitiaon all remaining
components).

The Gibbs sampler proceeds as follows: Given a random vétter (zo, ..., z4)” of lengthd and a
target probability density function(.X'), in each iteration a componenj, with 0 < j < d is picked. A
proposal for the new state; of the component is generated according to

&y ~m(zjlzo, ..., Tj—1,Tj41,- -, Td)

and accepted with probability equal to one. The same procedure is themtedg@-times to produce a
single output of the algorithm.

Gibbs sampling is a special case of the Metropolis-Hastings algorithm wittpagabdistribution that is
given by the conditional distributions of the target pdf and an accepfaobability that is always equal
to one.

To see this relation, let us denote IXS/ = (Toy. s Tje1, Tj, Tjg1s- -5 z4)" the state vector after an
update by the Gibbs sampler. Then the pdf of generatifgom X is given by

q(X‘X) = 7'['(@]'|:E0, sy L1, Tj41y - - - ,CCd)

Conversely, the pdf of generatidg from X is given by:

Q(X‘X) = 7T(ajj|i}0’ s 7i‘j717i’j+17 s 7$d)

Let us further denote the random vector that does not include the dgpdatgonent as

T
X/j = (Zoy .., Tj—1,Tjg1,-- -, Td)

Note thatX andX only differ by the component;, thereforeX ;; = X/;.
By substituting into the update probability of the Metropolis-Hastings algorithngete
r(X) q(X|X)  w(X)w(@i| X)) w5 X )m(X ) wl| X))

(X, X) = =

T gX|X) 7 7 @51X,,) - w(m X )m (X ) n@g Ky

Target pdfs that are in principle suited for the Gibbs sampler need to hisdgleovian neighborhood
structure, i.e. in the context of image processing, the pdf of a single pdesl dnly depend on pixels in
a local neighborhood. This ensures that the conditional pdfs arevedasimple.

Note that the Gibbs sampler is only applicable for multivariate distributions @esethe Metropolis-
Hastings algorithm is also able to sample from univariate distributions).

Algorithm 3 summarizes the basic steps of the Gibbs sampler.

The indexj is typically chosen at random from an uniform distribution (referred toaaslom scan).
While this approach ensures reversibility of the chain, there are implemensagoirios (for example
GPU-based implementations) that may benefit from a systematic scan, i.@ tveéndices are chosen
according to some predetermined order. While the systematic scan apdaexchot yield a reversible
chain, convergence to the distributief.) is still guaranteed.
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Algorithm 3 Gibbs sampling

1: Choose an initial stat& = {29, ..., 29}
2: Setk=0
3: loop {Gibbs iteratior
4: Chooseanindefi < j <d
k
5: DI'aW:Uj+1 ~W(mj\ac’g,...,xffl,xé?ﬂ,...,xfé)
6: k<k+1
7: end loop

4.2.2 Metropolis-within-Gibbs

With focus on the sampling of variational energies that incorporate reégeitathat are based on spatial
derivatives, it becomes clear that the Gibbs sampler is not directly aplgliftatmost models, because
of the non-standard form of the conditionals. It is clear however thaethwodels do have a Markovian
structure, and we can take advantage of the small spatial dependeacgngie pixel to its neigh-
boring pixels. We augment the scanning and update scheme of the Gibbs rsaitiplan additional
acceptance/reject-step. The resulting algorithm is called Metropolis-withibsGibd forms the basis
for sampling the variational energies covered in this thesis.

The algorithm is different from the classical Metropolis-Hastings algorithensimple detail. Assuming
a multivariate target distribution, only a single component of the state vect@deted, similar to the
Gibbs sampler. The update for the component is generated accordingutoitary univariate proposal
distribution and accepted or rejected according to the usual MetropddiiAga acceptance/rejectence
probabilities.

Algorithm 4 formalizes the Metropolis-within-Gibbs sampler.

Algorithm 4 Metropolis-within-Gibbs

1: Choose an initial stat&y = (zo, ..., zq)
2: Choose a proposal distributign
3 Setk =0

4. Choose an oversampling ratid > 0
5: loop {Metropolis-Hastings iteratign

6: forn=1...Rdo

7: Choose anindefi < j <d

8: Drawy ~ q(.|z;)

9: Xk_H/Q<:(xg,...,xj_l,y,xj+1,...,xd)
(X Xp|X

00 o SRR

11 Xky1 < Xjq1/2 With probabilitymin(a;, 1)

12: Xi+1 < X, with probability 1 — min(a, 1)

13:  end for

14: end loop

This modification, although small, heavily impacts the applicability of the algorithminfiage pro-
cessing applications. Especially in the context of models that are basquhtial slerivatives (thus a
single pixel is connected only with pixels in a relatively small neighborhothd$, formulation offers
tremendous benefits. In the standard version of the Metropolis-Hastgm#lam, each iteration needs
a proposal of full dimension (i.e. a random image the same size as the inputhasgebe generated).
Itis relatively unlikely that such an update increases the probability ofdhefphe proposal distribution
is not perfectly matched to the shape of target distribution, resulting in slovement of the chain.

The Metropolis-within-Gibbs updates only a single pixel, which by itself hatadively large probability
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of moving the distribution to higher values (even with proposals as simple @a®amuistribution). The
price for this simplicity is a very large correlation between two successiwples, which, however, can
be mitigated by taking only every R-th image as output of the algorithm. This is aalerdampling and
reflected by the constant R in Algorithm 4. While the oversampling ratio R canniple arbitrarily
be chosen, we fix it td&? = |(2| for the remainder of this thesis.

The second advantage is given by the fact that if the target distributioaikdvian, large parts of(.)
can be factored out, which allows the computation of the update probabilityy) for a single step
by evaluationr(.) only in a small neighborhood. This strongly alleviates the evaluation of thatepd
probabilities. Moreover, such a scheme naturally lends itself to parallelizaticall pixels that are
conditionally independent can be updated at once (which of coursdyigpracticable if the order in
which components are updated is chosen according to a systematic scan).

4.2.3 Metropolis-Adjusted Langevin Algorithm

All of the presented algorithms so far are agnostic to the local characteridtibe target distribution.
The movement of the Markov chain is dominated by the proposal distributids.pbssible, however,
to speed up the movement of the chain to regions of high probability by explditengtructure of the
target distribution.

In [Grenander and Miller, 1994], the idea of using a Langevin diffusiosteer the sampling process was
introduced. Langevin diffusions are a class of stochastic differergigtions that come from physics
and were originally used to describe Brownian motion, i.e. the movement ti€lparin fluids due to
thermal noise.

The Langevin diffusion equation is given by
1
dX; = dBy + §V10g(7r(X))dt (4.10)

wheret € R denotes the time3; ¢ RIMNIis a Wiener process ani; denotes the current state of the
now continuous in time, random process that is described by the equation.

Note that (4.10) describes a stochastic process due to the stochasticofdhe Wiener process;. To
simulate this process, it is necessary to discretize (4.10). An Euler disti@tifRoberts and Tweedie,
1996] with a time-step increment dft leads to

Xpi1— X, 1
AL Bpi1— Bn + §V10g(7r(Xn))

Rearranging with respect t8,, 1 leads to
g
2

X”'H = X” + VIOg(W(Xn) + At(Bn+1 - Bn) (4.11)

The differenceB,, .1 — B, of two successive realizations of a Wiener process is by definition normally
distributed with zero mean and unit variance, i.e
Bpi1— B ~ N(0,1)

This finally leads to the conclusion that the discrete-time approximation to thesizengjffusion can be
simulated by a Normal distribution, according to

Kot ~ N (X + 509 log(x(X). (A1) (4.12)

The discrete Langevin diffusion (which is often referred to as “Unddpitangevin Algorithm” (ULA)
in the MCMC literature) obviously describes a Markov chain. Moreoveden certain circumstances, a
simulation of 4.12 will produce a Markov chain with invariant distributiefY ).
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Roberts and Tweedie [1996] show conditions on when the continuous-amgel/in diffusion converges
to (X): Apart from the obvious requirement that; (7 (X)) has to be continuously differentiable, the
additional constraint

Viegn(X)X <a|X|?+b, |X|>N

for someN, a, b < oo ensures convergence to the target distribution

Those results cannot simply be extended to the discrete approximation (BhEjiffusion may or may
not converge tar, depending on the actual propertiesofas the discretization perturbs the behavior of
the diffusion process.

To still allow convergence ta, it is needed to add an additional Metropolis-Hastings accept-reject step
to the algorithm [Roberts and Tweedie, 1996], which finally results in thedpetis-adjusted Langevin
Algorithm (MALA). Thus, in MALA, first a candidate update step is dravacarding to the ULA update:

At
Xn+1/2 ~ q(Xn—l—l/Q‘Xn) - N(Xn + 7V10g W(Xn), AtQI)

and accepted with probability

7T(*XnJrl/Z)q<*Xn“Xn+1/2) 1}

a(X,, X, = min
( +1/2) { W(Xn)q(Xn+1/2’Xn)

or rejected with probability
1-— a(Xna Xn+1/2)

Due to the statistical independence of the individual components of the Wapopal, this idea can
also be applied to Gibbs fields. By simply setting the proposal distribution in Algorho the ULA
proposal distribution (4.12), we get the MALA-within-Gibbs algorithm.

4.3 Optimal Scaling

The scaling of the proposal distribution is a crucial factor in convergepeed. If the scaling is too
small, the chain is not able to explore the space in reasonable time. If the sicatimgy large, the

chain will inevitably move into states that will be rejected too often. In both ¢dlkegesult is a poor
convergence time of the sampling algorithm.

Figure 4.2 shows the impact of the scaling of the proposal distribution onotheergence time of the
sampling algorithm (the example is due to [Louchet, 2008]). A bivariate nodist@ibution was sam-

pled using the Metropolis-Hastings algorithm (as presented in Algorithm 2yevtihe proposals were
generated according to a uniform distribution, with scaling

Xpy1/2 ~ X+ aUj_q

Figures 4.2(b)-(d) show the first 10000 samples of the resulting chiaififferent values ok.. If « is too
small, most of the proposals are accepted, but the chain moves too slowhci tepexplore the target
distribution in reasonable time (Figure 4.2(b)). Figure 4.2(c) shows theecem case: The proposals
are too large, hence most of the proposals are discarded. Only if tireggsaeasonably chosen (either
by an automatic procedure or by hand), a good approximation of the tisgelbution can be obtained
(Figure 4.2(d)).

Neal and Roberts analyze the convergence rates of Metropolis-Withiss@nd MALA-Within-Gibbs
in [Neal and Roberts, 2006]. Their analysis is based on the accep&tBeg. ..

# of accepted proposals
Total # of proposals

Taccept —
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(a) Groundtruth (b) Scaling too small
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(c) Scaling too large (d) Optimal scaling

Figure 4.2: Sampling of a bivariate normal distribution (mean &-0.5,—1), Cov =
(0.9,0.4;0.4,0.5) with different proposal scalings. (a) Groundtruth. Theaaoéthe
ellipse covers approximately 86% of the total probabilitgss. (b)a = 0.01: The
proposals are too small, almost every proposal is accepteid{). (c) a = 6: The
proposals are too large, only a small fraction of the prolsasaaccepted= 4%). (d)
«a = 0.6: Nearly optimal scaling, approximate% of the proposals are accepted

of the algorithm.

They suggest that Metropolis-Within-Gibbs optimally converges.if.,; ~ 0.23. MALA-Within-Gibbs
allows for a higher acceptance rate where roughly half of the genguadpdsals are actually accepted
(Taccept = 0.57). Both results assume a Gaussian proposal distribution, but experirhemtsisat these
results approximately hold for a uniform proposal distribution as well.

For many MCMC applications, it is feasible to hand tune the parameter to matcptthebacceptance
rate. This method is not applicable in the context of image processing, asilid weed multiple runs
and hand-tuning of a parameter for every single image. We instead trypotadaoptimal scaling as the
chain evolves in time using a stochastic gradient descent algorithm.

The adaption procedure presented is largely motivated by [A&2@D6] and [Haario et al., 2001] and
proceeds as follows:

Let us denote the current scaling by and the optimal acceptance ratergs. The proposal distribution



4.3. Optimal Scaling 41

is fixed to be Gaussian and for a single pixel is given by
Xiy172 ~ N(f(Xk), hi)

wheref(z) = « for Metropolis-within-Gibbs and (z) = = + %V log 7(z) for MALA-within-Gibbs.
Let us further introduce the expected acceptancergig under the target distribution for a given
scale:

7(h) = Ex {/Sah(w,y)qh(yw)dy} —Lﬂ(w)/gah(w,y)qh(y\w)dydx

The difference of-(h) from its optimal value can be measured(by,: — 7(h))?. This difference can be
minimized by a simple steepest gradient scheme, as it was presented in éhaytarh finally leads to
an iterative update procedure flor

hrt1 = hg + "yk(r(hk) — Topt) (4.13)

where~; > 0 controls the step-size of the update.

In most scenarios, it is clearly not possible to compt(te). We can, however, estimate this function for

a givenh;

Consider that the chain is in stal§, and an oversampling ratio R is used. The séatd the proposal
distribution is changed only aftdt iterations. The transition kernel is therefore again constant inside the
oversampling iteration, and we can approximatg) by

T(h) ~ 5> o Xppict, Xpyi) (Ko Xpior) ~

=1

==
==

wherea denotes the number of accepted proposals in the iteration. Using this estipé&ea)pdated
after each oversampling iteration.

Note that (4.13) in principle is a stochastic procedure;as a random variable. Convergencefofo
the optimal value is obvious but the procedure violates a fundamental assoitiat had been made so
far: The time-invariance of the transition kernel of the overall chain. rAdsech oversampling iteration,
the scaling of the proposal distribution, and therefore the transition kisrmeodified. Hence neither
convergence of the chain to the target distributiomor ergodicity is guaranteed.

Roberts and Rosenthal [2007] show however that MCMC algorithms witlita general class of time-
varying transition kernels can remainirreducible and ergodic, provided some rather lax conditions
are met, which, to cite [Roberts and Rosenthal, 2009], “provide a huntiagdeto look for adaptive
MCMC algorithms”:

Let{P,}, v € Y denote the set of transition kernels that are produced by the adaptiwetpre (4.13).
Let further P, denote the transition kernel at time-stepvherel’,, is a random variable itself (repre-
senting the uncertainty in the update procedure). Then the adaptive Mal§d€ithm is ergodic with
stationary distributionr if the following conditions are met:

Condition 1. ([Roberts and Rosenthal, 2007])
Let

[f1(z,.) = fo(a, )llrv = sup | fi(z, A) — fa(z, A)|
AeB

denote the Total Variation distance between two probability meagiyraad f-.
Then an adaptive MCMC algorithm is ergodic, if
a) (Diminishing Adaption:) The amount of adaption vanishes; gses to infinity:

lim sup ||Pr, ,(z,.) = Pr,(2,.)||l7v =0

=00 pe X
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b) (Simultaneous Uniform Ergodicity:) For adl > 0, there exists a timé&V = N (e) such that for all
x € Sandy ey
1Py (,.) = 7 ()[rv < e

The condition of diminishing adaption can be enforced in our adaption gooedoy gradually reducing
the step size, for example by setting = %

The second condition basically states that every kernel has to be ewjtidistationary distributionr,
i.e. every kernel for itself represents a valid MCMC procedure. Mageall kernels have to exhibit
the same convergence rate. Now note that in our adaption scheme meretalihg sf the proposal
distribution is modified. Using the assumption that the proposal distribution isiasen and that the
target distribution is log-concave, this condition is always met.

4.4 Chapter Summary

Based on the need to solve a very high-dimensional integral, this chaptaftiotd some fundamental
aspects of Markov Chain Theory and several algorithms to generateMahains, which effectively

sample from a desired target distribution. The presented algorithms arsibyile and general (in the
sense that only weak or no assumptions on the target distribution are madbageefore perfectly suited
for the application to variational models.

LSE estimation can be carried out via the ergodicity theorem (1), whicmiglbe states that the ex-
pected value of a target distribution can be approximated by averagingtihg of a sampling algorithm.
While this approximation is very simple, the sampling algorithms themselves are usoaiputation-
ally very demanding for high-dimensional problems. Moreover, thers@mee parameters that have to
be tuned on a case-by-case basis, which lessens the real-world bitiplicd those algorithms. The
following chapters are therefore concerned with the refinement of toped sampling algorithms to
allow both optimal convergence speed and massive parallelization.



Chapter 5

From Samplers to Estimators

Now that we are able to construct a Markov Chain that samples from d thsgrgbution, we concentrate
our attention again on our initial goal, the approximation of high dimensionalraiego estimate the
expected value of a variational model. Recall again that the integral (i.eStBestimator) that is to be
approximated is given by:

u* = E{u} = /  up(ulf)du

And via Theorem 1, we can approximate this integral by
| N
u* =~ N 2 Uy (5.1)
k=1

provided that the samplég; are distributed according t(u|f). So, to approximate the LSE estimator,
we can therefore run any feasible algorithm presented in the preceuipgec and simply compute the
arithmetic mean of the generated images. However, for an efficient implemeantatmadditional points
have to be considered:

« After starting the evolution of the chain, the samples are not immediately disttibatmrding to
the target distribution. Therefore, the chain has to be run for some timeche&dinples should be
incorporated into the arithmetic mean.

* A stopping criterion to assess convergence of (5.1) is needed.

Both problems cannot be tracked analytically and strongly depend on tet tistribution. An algo-
rithm that heuristically tackles both problems simultaneously will be presentegtiios 5.1.

The sampling algorithms presented in the preceding chapter open up aposisdrility: Via the sam-
pling procedure, we gain important insight into the target distribution, whishlze used to find the
MAP estimate. Section 5.2 introduces a popular algorithm, called “Simulated Amgieavhich ex-
hibits asymptotic convergence to the global optimum, even in non-convegieser

5.1 Burn-in and Convergence Control

After starting the evolution of the chain, samples are not immediately distributaaidieg to(.),
except for the case where the initial imadgis drawn fromr (.) itself.

The time needed to reach equilibrium is called the burn-in time. When estimating momeatelies
on a set of samples from the target distribution. To obtain a reliable estimatéhdréfore crucial that

43
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samples that were not sampled from the invariant distribution are not im@dgal into the estimate as
they would potentially distort the LSE estimate for a very long time.
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(a) Without burn-in (b) With burn-in

Figure 5.1: Comparison of the sampling of a standard normal distriloutitth and without burn-in.
The examples show the distribution of 10000 samples withedfitormal distribution
superimposed (red). In both examples, the chain was iaitidiat a state with very low
probability (x = 20). (a) Without burn-in. The samples ar¢ inumediately distributed
according to a standard normal distribution, because tlanaimeeds some time to
reach regions of higher probability. (b) With a burn-in (B0famples). The resulting
distribution of the samples fits the target distribution.

Figure 5.1 illustrates this effect. A standard normal distribui(0, 1) was sampled using a starting
value with low probability ¢ = 20). The chain needs some time to reach regions with larger probability,
which effectively distorts the LSE estimate (Figure 5.1(a)). If the first daswwhere the chain moves
towards regions of higher probability are discarded, the resulting distibis much closer to the target
distribution (Figure 5.1(b)).

An estimator therefore needs to throw away the firslamples. Unfortunately it is not possible to
determineb analytically or by just observing a single run of the chain. There are mpproaches that

try to heuristically determine good values forOne such approach is to run two or more chains (that were
initialized at different starting values) in parallel and compute the arithmetic srfeaudlifferent burn-in
values. As the chains reach equilibrium and the burn-in values incréesayerages will eventually
converge to the same value, indicating both an optimal burn-in value as wahasrgence of the LSE
estimate. Such a scheme, however, demands to either store every sampde ar poeliminary run to
determine the burn-in value before the actual LSE estimation is carried cafirghoption is infeasible

in the context of image processing, and the second option is quite inefficient.

Louchet [2008] developed an algorithm that addresses these problbinhk is reproduced in Algorithm
5. While the algorithm is largely based on heuristics, it actually performs weldntice.

Let us briefly explain the idea behind the algorithm:

The algorithm runs two chaing{/,, } and{Un}, that are generated using identical proposal distributions
and different starting values. The Metropolis-Hastings iteration (MH itamatiefers to a full scan of
length 2|, systematic or random, of either the Metropolis-within-Gibbs or the MALA-wiBibbs
sampler. The acceptance rate of the first chain is used to infer the optialiabgsior both chains.

By taking into account the burn-in tinte the LSE estimators for both chains are then given by

1 . 1 LA
b __ b _
Sn=r—3 2. U Si= 2 Uk
k=b+1 k=b+1
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First, note that by averaging both sums

_ S+ S
2
we obviously can get a better estimate than by considering a single sum @&oaask this is roughly
equivalent to running a single chain twice as long.

[Louchet, 2008] states, largely based on empirical results, that the cistdithis refined estimate to the
true value can be approximated by the distance between the estimates ofvtltuaddihains:

G? (5.2)

* 1 _
G}, — w|| = §||52 | (5.3)

This leads to the stopping criterion:
155 = Syl < 2

which ensures that the output (5.2) is roughly a distaneeasfay from the true value*. The consider-
ations so far assumed a known burn-in timgrhich could be computed for a fixed run-timef «* was
known. Using (5.3) again, the optimal burn-in time can be approximated by:

~

b= Gb — | ~ sb— §b 5.4
arg, min }H u'|| ~ arg pemin | nll (5.4)

Now note the minimum in (5.4) involves the full lengthof the chains. To find this minimum, this

would require to store each image generated by the sampling algorithm (@alegtly to store every

partial sum). This is of course impossible, considering that typically husdeethousands of images

are generated until the algorithm converges.

It is not necessary, however, to consider every index ftom n as a potential burn-in candidate. If one

considers only a subset of those indices, the worst result would be wdsted iterations, where the
algorithm keeps running even if the stopping criterion was already met.

Algorithm 5 LSE Estimation ([Louchet, 2008])
1. Setn =0,A=12,00=1
2: Generatd/, andUj, with uniformly i.i.d. pixels
3: SetSy =0, S’o =0
4: repeat
5. Computel,,;1 and7,1
{MH iteration with proposal distributioN (f(U,,), )}
6: ComputeUnH
{MH iteration with proposal distribution/( f(U,,), )}
7 Sn+1 — Sp + Un+1
8: Sn—‘,—l — S + Un+1
9: if n€ [AN] then
10: StoreS,, 1 andSy41

11: EraseS), and.S;, with k& < n/6
Su=5; _ Sa=5; ”
n—b

12: Seth = arg min,, LAY ||
13:  endif
14: Qp41 < Qp + %H(Tn—&-l - Topt)

15 n«<n-+1
Sn S’ S -3

16: until || ——* b” < 2¢
. lS -5 lS" S
17: return 5 ——=> + 5 ——

This idea is reflected in the algorithm by a geometric grid: The algorithm canssioidy b € [1.2V] =
{|1.2%], k € N} as candidate for the burn-in parameter. Moreover, there is no neetlitdlpstore each



46 5. From Samplers to Estimators

image in this sequence. It suffices to examine only the images, where./6 (again from empirical
arguments in [Louchet, 2008]). This results in at most 10 images that aeslgier chain at any time,
totaling 20 images, which is tractable on most computers.

The initializationsly and, can in principle be arbitrarily generated as long as they are not too similar,
which would break the stopping criterion. Harris-recurrencesadrdeducibility guarantee that the chain
forgets about its initial state in finite time. Experiments show that the chainsagpeach other very
rapidly (after 10-100 iterations) regardless of the specific initializatiore ififpact of the initialization

on the convergence speed is therefore negligible. For our specific imputiatioa, we used a random
initialization with uniform, i.i.d. pixels.

5.2 Simulated Annealing

It has already been mentioned that a sampling algorithm could in principle alsedol to infer the MAP
estimate. A naive approach would simply store the image with highest probalhlity the evolution.
If the sampling algorithm is run long enough, it is guaranteed that the image igtilst probability in
the run is sufficiently near to the true MAP estimate. Such an approach wmvayver, need very long
runs for non-convex optimization problems (due to the tendency of the sapghjorithms to get stuck
in local optima for a long time) and would be of little value for convex optimizatiojenms (due to the
availability of much faster algorithms).

Simulated Annealing [Kirkpatrick et al., 1983], a modification of the Metropbléstings algorithm, is
able to considerably speed-up global MAP inference for non-coewexgies, compared to the naive
sampling approach.

In order to minimize an energy (u), one can alternatively sample from the distribution

1)

pu) = 7 &P ——

whereT is gradually reduced. The maximum of the pdf then corresponds to the minirfiira energy
E(u). The parametef’ is called the temperature due to the resemblance of (5.5) to the Boltzmann
distribution from thermodynamics where it denotes the temperature of a gas.

Recall again how the Metropolis-Hastings algorithm moves within a target disorh

(5.5)

« If the proposed state has higher energy than the previous state, this siatays accepted. Such
a move effectively brings the chain nearer to a, potentially local, maximum.

» Conversely, if the proposed state has lower energy than the prevatasthe proposal is accepted
with non-zero probability. This probability is inversely proportional to thergg difference be-
tween the states. The algorithm can therefore move “downhill” in the pdf jnéffectively allows
to escape local maxima.

Figure 5.2 depicts the influence of the temperature on the shape of a simpileutietr For high
temperatures, the resulting distribution becomes more uniform, resulting in seradlagy differences
between jumps. This allows the Metropolis-Hastings algorithm to rapidly mowendrin the target
distribution and avoids being trapped in local optima. As the temperatureadesighe maxima of the
function become more and more peaked. Provided that the annealingikctied the rate at which the
temperature is decreased) is slow enough, the sampler will become trapiednmaximal mode. As
the temperaturg&' approaches zero, “downhill” movements become very unlikely, eventualtiirig the
sampler to the global maximum of the target distribution.

Algorithm 6 shows the full algorithm, with automatic tuning of the scaling of the gsapdistribution.
The algorithm has several variables which have to be determined badbd target distribution. The
cooling schedule is fixed to a logarithmic schedule, wheienearly (but not equal to) one.



5.2. Simulated Annealing 47

Algorithm 6 Simulated Annealing
1: Setn =0,
2: Choos€ely > 0,00 >0, K >0,0< vy <1
3: Generatd/

4: repeat
5 k=0
6: while k < K do
7: ComputelU1 and7yq
{MH iteration with targetxp{—FE(u)/T} and proposal- N (f(U,), o)}
8: Q41 < O + %H(Tk-‘rl - 7_opt)
9: k—k+1

10: end while

11: o — O

122 Thv1 =91n

133 n<—n+1

14: until T11 < Thpin
15: return U, _1

A A~
LI | L VR B (1}
~NOoO O~ WNER

| I I
1 2 3

Figure 5.2: Logarithmic plot of the probability density induced by a gi@function @* — 1622 4
5x) for different temperatures. For high temperatures, tis&iution is nearly a uni-
form distribution. For smaller temperatures, the maximeolnee more and more pro-
nounced.

Bélisle [1992] gives conditions for the convergence of the Simulated Aimgeslgorithm in a continuous
setting:

Let B. = {u € S: E(u) < E(u*) + €} be the ball with radiug centered at the global optimunt.
Then the Simulated Annealing sequenggeconverges in probability to the global optimum, i.e.

lim Pr(u, € Be) =1, Ve >0
n—oo
if the following conditions are met:

1. The time-variant Markov Chain has a transition kernel

Rz, A) = /A r(z,y)dy
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wherer(z,y) satisfiesnf, ,cgr(x,y) > 0.
2. The setB, has positive Lebesgue measure.
3. For every open subsét € S, R(x,G) is continuous with respect ta

4. For anyU, andTj, the sequence,, converges to zero with a probability equal to one.

The first condition states that every state can be reached with non+odrabity in a single step. This
means that the inner loop of Algorithm 6 has to be run long enough, or ditestyathat the proposal
distribution has to assign a non-zero probability to every possible stateseCload condition states that
the ball around the optimum has to contain a probability mass with respect tostezipodistribution.
The third condition limits the influence of a small perturbation around the distate. The last condition
is surprisingly lax as it states that the annealing schedule only has to gerrgrobability towards zero.
This allows also adaptive annealing schedules, which however will nexdémined here.

From a practical point of view, the design of a robust Simulated Anneatingdle involves some trial-
and-error to find good parameters that ensure convergence fgencge in probability is a rather weak
result). Parameters for specific applications can be found in chapter 7.

In our implementation, we used the Metropolis-Within-Gibbs sampler with a Gaugsiposal distri-
bution. MALA can in principle be used, but has unfavorable convargdrehavior, due to its strong
attraction to local optima.

5.3 Chapter Summary

In this chapter, the concept of LSE estimation based on MCMC methods fiveereo a fully automatic
algorithm. We will use this algorithm exclusively for convex energies, hManedecause LSE estimates
seldom provide meaningful results in non-convex high-dimensional pastésee chapter 3).

For non-convex energies, a global optimization algorithm, based on thepdis-Hastings algorithm,
was presented. While only weak convergence results are availabldgtnighan is useful nonetheless if
the parameters are carefully selected for a given problem.

Both algorithms are computationally very demanding. A single sweep (iteratfotmedMetropolis-
Within-Gibbs or the MALA-Within-Gibbs samplers depends quadratically osideof the input image.
Typically, one needs hundreds to thousands of sweeps, resulting/itomgrrun-times of the algorithms
if they are implemented as sequential procedures (i.e. each pixel is visieat artime). The following
chapter is therefore concerned with a parallel implementation of the algoritimd) is able to shorten
the run-time from several minutes to a few seconds.



Chapter 6

GPU Implementation

The sampling algorithms presented so far are computationally very deman@ikgn a moderately
sized image, even the simplest model, denoising using the ROF model, wouldcetakal sninutes to
produce a result when executed on a modern consumer-level CPU.

Note, however, that the sampling algorithms do not need full knowledgeeddritire image to compute
a single-pixel update probability. Only the neighborhood that is directlyenfied by the pixel has to
be considered. Given the Total Variation prior, approximated with finitediod differences, it therefore
suffices to only look at two immediately neighboring pixels. Together with a s\aie scan, this opens
the possibility for massive parallelization.

The widespread availability of cheap, high-performance graphicscarbdich are in fact massively
parallel multiprocessing units, has recently spawned a trend in scientificutmgp Instead of using
expensive, dedicated multiprocessor computers, one relies on their&pbcessing Unit (GPU) that
is present in most desktop computers to perform general purpose taifops (typically referred to as
“GPGPU": General-Purpose computation on Graphics Processing Units)

GPUs are designed for the requirements of real-time 3D applications whgeeskts of data (i.e. vertices
and pixels) have to be processed. In such applications, each vepeebis typically processed by the
same program. The architecture of GPUs reflects these requirementg.arehdesigned for massive
data-parallelism with less emphasis on flow control and memory caching, cedpatypical CPU
architectures (see Figure 6.1).

WA =
Control =
AW AW s
|
|

_HI [
e e

(a) CPU (b) GPU

Figure 6.1: Architecture of CPUs vs. architecture of GPUs [Nvidia, Z00th CPUs, a large
portion of the total transistors are dedicated to flow cdratnol memory caching. GPUs
put less emphasis on flow control and caching but providege lamount of ALUs for
massively data-parallel computations.
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To assist a programmer in the creation of GPGPU applications, three mainmfoaksehave emerged:

« Nvidia CUDA! (Compute Unified Device Architecture): A framework developed by Nvigics-
ically for their hardware platform.

« ATI FireStreand: The pendant to CUDA for AMD/ATI graphics hardware. Now supdeskby
OpenCL.

« OpenClL3: An open, standardized GPGPU framework. Implementations are avaita\&D/ATI,
Nvidia, as well as other, less common, hardware platforms.

Nvidia CUDA was the de facto standard for GPGPU computing in the last yearfias a very mature
and stable implementation. We therefore chose the CUDA framework (Ve2s3difor our implementa-
tion.

This chapter is organized as follows: Section 6.1 gives an overview afthgA framework. Section 6.2
describes some GPGPU-specific implementation details for the Metropolis-Withbs@nd MALA-
Within-Gibbs samplers and shows a speed comparison to a CPU-bound imf@éorenSection 6.3
finally concludes with a brief summary of this chapter.

6.1 Nvidia CUDA

In the Nvidia CUDA framework, small programs (called kernels) that alogestito parallel execution can
be coded using an extension to the C programming language. This allowslyoirmatement parallel
algorithms to anyone who is familiar with C or similar languages. To achieve optienfdrmance, it is
however necessary to consider the underlying programming model sitd dechitecture as well:

When a kernel is called N threads execute the kernel in parallel. Thosadthare, due to hardware
constraints, organized into execution units, called blocks [Nvidia, 20839jumber of blocks forms a
grid, the largest execution unit (see Figure 6.2).

Each thread has a private memory space in the form of fast registesdantbcal memory (which is

mostly used for large automatic data structures that would consume too misterregace). Threads
in the same block can exchange data via shared memory, which is guarembee® low latency. Both

memory types are volatile across kernel calls.

For data that needs to be persistent across kernel calls and has toelssemcby all threads, global
memory can be used. This type offers read- and write-access for @dldbhibut exhibits high latency.
Access to global memory should therefore be kept at a minimum. Global meranrpec bound to
texture units, providing a fast, cached read-only memory. This type of nmyemaptimized for 2D
spatial locality and offers special addressing modes for boundamjlihngrand interpolation between
neighboring texels, which makes it especially useful for image proceapplgcations. Local and shared
memory are not visible to the CPU. Data exchange between the CPU and GBEkiblg via global
memory and should again be kept at a minimum for optimal performance.

Both the block size (the number of threads per block) and the grid size (thbear of blocks) can be
chosen by the programmer. Each thread of a block is executed on the sdiipeoressing unit of the
GPU. This limits the number of possible threads in a block due to a limited amounfistaes and shared
memory on a core. Typical block sizes are 128, 256 or 512 threaddqur dnd should be in general
a multiple of two. The grid size is mainly governed by the size of the data that Hespgmcessed. For
imaging applications, typically one thread processes one pixels. The ggithsiefore has to be chosen
in a way that at least the whole image is covered with threads.

http://www.nvidia.com/cuda
2http://developer.amd.com
Shttp://www.khronos.org/opencl
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Figure 6.2: Memory hierarchy and thread grouping of the Nvidia CUDA fdeh [Nvidia, 2009].

6.2 Implementation Details

A striking characteristic of the Metropolis-Hastings algorithm is that no asSanmgpabout the target
distribution have to be made. We exploited this generality to build a “plug-and-plestem, which
allows rapid implementation and testing of variational models.

Figure 6.3 shows a simplified UML diagram of the proposed system. It Bystcmsists of a class that
implements the sampling algorithrivil_Sanpl er ), which uses one or mofker s, each representing
an additive term in the energy functional. Consider the ROF model as ampéxaTo sample from this
model, one registers an instancel®™f Pr i or andL2_Dat aTer mto the sampler. If desired, each term
can additionally correct the proposal using an estimate of the gradient t® ansBALA-Within-Gibbs
step instead of a standard Metropolis step.

To perform a single oversampling iteration, the instanddtSanpl er generates a proposal and passes
the current state along with the proposal to the regist&ésrdminstances, which in turn generate a log-
probability of moving to the proposed state. The sampler then decides if thegaiofor each pixel is
accepted or rejected according to the Metropolis-Hastings criterion afategthe state accordingly.

Finally, the classesSE Est i mat or andMAP_Est i mat or use the sampler to estimate statistics from
the sampled distribution according to the algorithms presented in the precédipigic

This system is very flexible: One can implement arbitrary algorithms that resampling, new terms
can be added and one can form arbitrary combinations of terms to tesediffeodels.

Let us now identify parts of this system that are data-parallel, i.e. coulgfibéom an implementation
using CUDA:

< Computation of the update probabilities
« Generation of the proposals and the Accept/Reject step in the Metropasisagls sampler

» Mixing of chains for convergence control of the LSE estimator
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MH_Sampler
Term
1..% +sample()
+fact +getCurrentAcceptanceRate()
|tprobabilityMap _ { +setStepWidth()
+computeProbability() +setTemperature()
+computeGradient ()
2 1
LSE_Estimator MAP_Estimator
TV_Prior TGV_Prior s L1_DataTerm L2_DataTerm |+DeviceMemory: memory +memory: DeviceMemor
+run() +run() ()

Figure 6.3: UML diagram of the proposed implementation

The mixing of the chains only requires standard linear algebra and redwg&rations, a parallel im-
plementation therefore is straightforward and will not be discussed here.

The generation of proposals and the corresponding update have wbjpetso some considerations in
a GPU-bound implementation. The first issue is the influence of the scan(ardee precisely which
pixels can be updated parallely). The second is the efficient generdfis@wdo-random numbers on a
GPU. We will review both issues in more detail in the following.

6.2.1 Influence of the scan order

The simplest parallel systematic scan order is given by a simultaneous opdHfgixels. For each pixel
a proposal is made and accepted based on the full conditional probabtli current pixel to all other
pixels of the current state. Such a scheme is attractive due to its simplicitye v samples of such a
scheme are however strongly correlated, which slows down the came@f the sampling algorithm.

We propose a simple modification to lower the correlation between successiydes. Instead of up-
dating all pixels at once, two sequential sweeps are made for a single iteraéiti andj denote the
coordinate of a pixel in the image. Then in the first sweep, all pixels whergis even are updated. In

the second sweep, all pixels with- j odd are updated, based on the conditionals of the previous sweep.
Such an ordering is typically referred to as “Red-Black” iteration in the liteea.

Figure 6.4 depicts the Red-Black updating scheme. The pixels that infltlempeobability of a single

pixel update when using a TV prior with forward differences are hintegtay in this image. Note that
using a more sequential scanning strategy (i.e. updating only pixels thait directly influence each

others conditional probabilities) further reduces correlation betweeplea. This, however, hinders
effective parallelization and does not increase performance in pra@igeexperiments show that the
red-black scan reduces the number of iterations till convergence ise@aa algorithm 5 by roughly

30%.

6.2.2 Pseudo-Random Number Generators

Due to the lack of sources of true randomness on digital computers, ampigthat rely on randomness
typically employ a Pseudo-Random Number Generator (PRNG). PRNGagangthms that determin-
istically, based on an initial seed value, generate a sequence of numaeshdnes some statistical
properties with true random numbers. In most algorithms the sequenceeiagshbased on a recursive
function, i.e. given a seed valug, the next valuer,,.; can be computed as a functionagf. Direct cal-
culation ofx,,11 is not possible in most algorithms (see [Blum et al., 1986] for an exceptiemjlering
such a procedure inherently sequential and therefore problematicaBtabased implementation.
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Figure 6.4: Red-Black updating scheme and single-pixel dependeniciéke first sweep, all red-
pixels are concurrently updated. In the second sweep, #uk pixels are concurrently
updated. For a red update and a TV prior, the neighborhoodndksmcies for a single
pixel are hinted in gray.

Another problem of a GPU-based PRNGs is the lack of high-precisionantagthmetic on GPUs.
Typical PRNGs require computations with very large integers to allow a mufflg long period of the
generated sequence (i.e. the length of the sequence before it stapsabiteelf). This problem plays a
larger role in cryptography applications than in Monte Carlo simulations. iFarlgtions, we generally
do not need pseudo-random numbers of cryptographic quality, wheshades this problem and allows
us to employ a simple and fast algorithm.

We chose an implementation that is based on the well-krraand 4 8( ) -function from the C standard
library. This function uses a Linear Congruential Generator (LCG) tegge a uniformly pseudo-
random sequence. A fast GPU-based implementation that was specifieaiiopled for simulation
purposes is available at [van Meel and Amolf, 2010]. To generate SBaupseudo-random numbers
from this sequence, we used the well-known polar transform (seerjfdbet al., 2007] for an overview
of the generation of Gaussian random numbers).

Our experiments show that this implementation fits our needs, both in terms af apdejuality of
the generated sequence. Note, however, that while the implementation igl iladéeit nonetheless
poses the biggest potential for optimization. Roughly 40% of the computation fiesch Metropolis-
Hastings iteration is concerned with the generation of random numbersevudgowhere seems to be no
fast alternative for the parallel computation of pseudo-random nunalbéne moment.

6.2.3 Speed comparison

A speed comparison shows the superiority of our GPU-based implementatiosetguential version.
We compared the run-time of 1000 successive Metropolis-Hastings itesdtiodifferent image sizes.
The sampled energy was the ROF model with parametefs).4 ando = 0.01. All experiments were
carried out on an Intel Xeon CPU with 2.53 Ghz and 24GB of RAM. The @Btk ran on a Nvidia
Tesla S1070 computing system.

Table 6.1 summarizes the execution times. The parallel version roughlyssppéke computations by
a factor of 35. Note that the LSE estimator seldom needs more than 2000 iteriifoconvergence
and typically even converges after a few hundred iterations (althougtothargence time is strongly
dependent on the spread of the pdf that has to be sampled), making thishalgmdeed useful for
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real-world applications, when run on a GPU.

| Size | GPU | CPU | Speedup]
128x128( 1.0 13.4 13.4
256x256| 1.5 | 56.8 37.9
512x512| 3.2 | 104.2 32.5

Table 6.1: Comparison of execution time in seconds between GPU and @léimentation for
different image sizes. The test consisted of 1000 full-ddatropolis-Hastings itera-
tions.

6.3 Chapter summary

In this chapter, the implementation of a Metropolis-Within-Gibbs algorithm for &mepding of varia-
tional models in image processing was outlined. Such algorithms are computgtiamg demanding
and are therefore implemented to run on Graphics Processing Haromi@os, allows massive paral-
lelization of the proposed algorithms. We discussed problems and challivagesise for GPU-based
implementations of sampling algorithms and gave some hints on how those probleenbe®n cir-
cumvented in our specific implementation. Finally, we showed a speed compafisor GPU-based
implementation to a CPU-based implementation. Our experiments show that the G \@itper-
forms the CPU version by a factor of 35.



Chapter 7

Variational Models

In the following chapter, we will present experimental results of our @ggir to variational models.

The chapter is organized as follows: Section 7.1 applies the LSE estimator aifferent denoising
models and compares the results to the respective MAP estimates. Section ah2emed with the
estimation of Optical Flow from images pairs. The examined models are naecamd are usually
solved via a convex approximation combined with MAP estimation. We will employ thmulSted

Annealing procedure, introduced in chapter 5 to directly optimize thoseaovex energies.

7.1 Denoising

In this section, the MAP estimator and the LSE estimator for different denaisouels are compared.
To quantitatively compare the denoising procedures, we chose the ti8aLSimilarity (SSIM) index”
[Wang et al., 2004] as error metric. Unlike simple MSE-based error me8i8yl is able to capture
visual differences between images better and is therefore more suitaltfeefoomparison of recon-
struction algorithms. The test images consisted of 13 images froiethei selLab database [Lansel,
2007], which were degenerated by different levels of noise. All MABngates in this section were
obtained using the primal-dual algorithm that was presented in chapter 2.

7.1.1 The ROF Model

In section 3.2, it was shown that solutions of the ROF models do not follow riigapility distribu-
tions that were initially assumed in the construction of the model. Let us first malpircheck the
distributions that result from the LSE estimator of the ROF model.

Recall the random walk model introduced in section 3.2:

The Laplacian random walk is given by the sequencg = x; + L, where L is distributed according to
a zero-mean Laplacian distribution with varian¢eThe sequence; . is then corrupted by zero-mean
additive white Gaussian noise with variance It was already mentioned that this sort of input data is
in some sense the best-case input to the ROF model, as the data was gerta@ididg to the laws that
form the basis of the denoising model. MAP estimates however, behawdy.pStaircases emerge in
the denoised function and the distribution of the result neither resemblgsaclam distribution nor do
the residuals resemble Gaussian noise (see Figures 3.1 and 3.2).

Figures 7.1 and 7.2 show the denoising of the Laplacian random walk usihgth estimate of the ROF
model and their respective distributions. The denoising result is far piee are no staircases present
in the reconstruction. Furthermore the distribution of the LSE estimate exhibits mage similarity

to the true distributions. The distribution of the differenags; — x; perfectly follows a Laplacian
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~12 . . . . . . . . . . 2 . . . . . . . . . .
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(a) A single realization of a Laplacian random walk with  (b) Reconstruction using the LSE estimate of the ROF
superimposed Gaussian noise. Dashed: Original signal. model. Dashed: Original signal. Solid: LSE reconstruc-
Solid: Noisy signal tion

Figure 7.1: Reconstruction of a signal obtained from a noisy Laplacerdom walk. The LSE
estimate does not suffer from artifacts.

distribution. The residuals, however, only vaguely resemble a Gaussiaibution. Compared to the
MAP results (Figure 3.2) , these result can still be considered as obettat.

(a) Distribution of the differences; 1 — z; in the LSE (b) Distribution of the residuals
reconstruction

Figure 7.2: The distribution of the LSE estimate perfectly matches tésired Laplacian distri-
bution (left). The distribution of the residuals does natemble the true distribution

that well (right). It is, however, more similar to the truestdibution than the residual
distribution of the MAP estimate.

Evaluation

The first part of this evaluation is concerned with the influence of thewpaters on the denoising results.

Consider again the general form of the pdf that is induced by a varihtiocodel:

pulf) = ;eXp{_E@;sA)}
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(@ p=0502=0.1 (b) 8=0.5,0% =0.05
(€) 8 =0.50%=0.03 (d) 8=0.5,0% = 0.0001

Figure 7.3: Results of LSE denoising using the ROF model for fixednd falling temperature.
The temperature is given B2, As the temperature gets lower, the LSE denoiser
approaches the MAP result.

The parameten controls the amount of regularization that is applied. The paranfétealled the
temperature, controls the spread (variance) of the pdf. Let us examaniafthence of this second
parameter in the context of the ROF model (note that the principle resultspdbota all other models
that are considered in this thesis). In the ROF model, the temperature hastaelation to the variance
of the data term and is given i = 202. Moreover, we use the regularization parametes %
to emphasize the explicit dependence of the regularization parameter onrtherature in the LSE

estimate.

Figure 7.3 shows how the denoising result changes for a fixed reaqtlaripparametek and different
temperatures. Figure 7.4 shows the case where the temperature is fixadsadidanged. All results
were obtained from an image that was artificially degenerated by 10% i@aussise. From the first
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(@ B =0.1,0%=0.05 (b) B=0.4,0%=0.05

(€) #=0.6,0% =0.05 (d) 8=1.0,0%=0.05

Figure 7.4: Results of LSE denoising using the ROF model for fixédand risings. The temper-
ature is given byo2. With rising 3, the result becomes blurred.

experiment it is obvious that the results resemble the MAP estimate more and srtbeetamperature
becomes lower. This can be attributed to the fact thal &ecomes smaller, the variance of the proba-
bility distribution becomes smaller as well, which further leads to the effect teanhtiximal mode and
the expected value approach each other. Conversely, if the tempeasahaid fixed, the LSE estimate
becomes smoother, without introducing staircases Ak@ry small orI” very high the result approaches

a noisy image, with a variance that dependsionWhen both values are high the results becomes a
blurred version of the cartoon that results from the MAP. Note that the texryse also influences the
run-time of the algorithm. For largéF, the two chains in Algorithm 5 have to make larger leaps in the
state space which results in a longer run-time.

Figures 7.5 and 7.6 shows a direct comparison of the denoising resul®fMAP and ROF-LSE
respectively. The LSE reconstruction does not fully remove the noispebding on the combination
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of parameters\ ando? there is always a noise residual in the reconstruction. In terms of visiadityy
results from the LSE estimate tend to look more natural. This can be largely ttritouthe absence of
staircasing.

(a) Original (b) Noisy (10%)

(c) ROF-LSE ¢ = 0.05, 02 = 0.01) (d) ROF-MAP ( = 0.05)

Figure 7.5: Denoising using ROF-LSE and ROF-MAP. ROF-LSE leaves soneerin the recon-
struction, but the overall result looks more natural dudabsence of staircasing.

For the quantitative comparison of ROF-MAP to ROF-LSE, we applied batbiders with fixed param-
eters to the test images. The images where artificially degenerated by 4diffimise levels (5%, 10%
and 20% additive white Gaussian noise). Table 7.1 shows the averdgeo8$te test set. The regular-
ization parametex is shown in parentheses. For the LSE denaidewas fixed ta).01. The quantitative
comparison shows that ROF-LSE slightly outperforms the MAP denoisemirstef average SSIM.
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(a) Noisy (10%) (b) ROF-LSE f = 0.05, 0 = (c) ROF-MAP (A = 0.05)

0.01)
(d) Noisy (10%) (e) ROF-LSE § = 0.05, 0 = (f) ROF-MAP (A = 0.05)
0.01)

(g) Noisy (10%) (h) ROF-LSE @ = 0.05, 0 = (i) ROF-MAP (\ = 0.05)
0.01)

Figure 7.6: Close-up of the denoised image. In the ROF-LSE reconstmiaid staircases are
visible.

| Noise: |[| 5% (A =0.025) | 10% (A = 0.05) | 20% (A = 0.067) | 25% (A = 0.125) |
ROF-LSE 0.9204 0.8581 0.7866 0.7303
ROF-MAP 0.8973 0.8279 0.7833 0.7062

Table 7.1: Quantitative comparison of ROF-MAP to ROF-LSE in terms ddrage SSIM.

7.1.2 The TV-L1 Model

TV-L1 is another simple and popular model that was initially developed forgbenstruction of images
that where degenerated by “Salt & Pepper” noise. The only differémthe ROF model is that the data
term is given by the L1 norm (which comes from the fact that “Salt & P€eppeise can be modeled
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using a Laplacian distribution). The energy of this model is given by:

E(u; \) :/Q|u—f|dx—l—)\/Q]Vu|dx (7.1)

TV-L1 can also be used for applications like structure-texture decompositio shape denoising. More-
over the MAP estimate is contrast-invariant, which opens up the possibility tthesaodel for scale-
driven feature selection [Pock, 2008].

Direct optimization of this model is problematic due to the fact that the absolute igahot continuously
differentiable at zero (see section 2.2.2). Furthermore duality principlesat be applied here because
the functional is only weakly convex. An approximation based on conekxation was proposed in
[Aujol et al., 2006].

Using a probabilistic approach, we can directly optimize this model. The modsbisiaimodal, allow-
ing us to employ the LSE estimator.

Evaluation

We again compare the denoising results of the MAP estimate (TV-L1-MAP) toSEeestimate (TV-L1-
LSE) on the 13 test images that where artificially degenerated by “Salt gdPepoise. The regulariza-
tion parameter was fixed to = 1 for both models and all noise levels. For TV-L1-LSE the temperature
was fixed tdl’ = 0.02.

Figure 7.7 shows a direct comparison of the denoising results on an imageathheavily degenerated.
Both denoisers are able to successfully reconstruct the image, desgitgtitevel of noise. The differ-

ence between the results becomes more apparent in the close-up images gravided in Figure 7.8.
The LSE estimate successfully recovers details, where the MAP estimatd/faiisover, similar effects

to the ROF model can be observed. The LSE estimate leaves some noise in ta@aindalpes not suffer
from staircasing artifacts.

Table 7.2 shows a quantitative comparison in terms of average SSIM, takemlbtest images. The
LSE estimate outperforms MAP at all noise levels. The difference in termSidfl & larger for TV-L1
when compared to ROF. Moreover we observe that the LSE estimator o¥thé& imodel needs roughly
20% less iterations to reach convergence compared to its ROF pendardli&Ve that this effect can be
attributed to the weak convexity of the model. Once both chains have rea@hset thf maximal points,
most samples have the same probability (excluding occasional samples thisigkt). This leads to a
rapid convergence of the individual LSE estimates of the chains.

| Noise: | 5% [ 10% | 20% | 25% |
TV-L1-LSE | 0.8655] 0.8534] 0.8284[ 0.8144
TV-L1-MAP [/ 0.8222] 0.8112] 0.7874] 0.7752

Table 7.2: Quantitative comparison of TV-L1-MAP to TV-L1-LSE in term$average SSIM.

Contrast invariance

The MAP estimate of the TV-L1 model exhibits an interesting feature [Chaftaadoglu, 2005]: Given
an imagef and the corresponding result from MAP estimatidn for any contrast-adjusted imagef,
with ¢ scalar, it follows that- v* is a solution of the model for the contrast-adjusted image.

The effect can be used for scale-driven feature selection andifsedlan Figure 7.9, where for different
values of the regularization parameter features with different scaléshvaagardless of their contrast.
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(a) Original (b) Noisy (25%)

T

. oiy 2 |
Pig:.. TT—
I

-

(©) TV-L1-LSE (\ = 1, T = 0.02)

(d) TV-L1-MAP () _ 1)_

Figure 7.7: Denoising using TV-L1-LSE and TV-L1-MAP.

The contrast-invariance can be attributed to the dynamics of the model &baatg point. The Euler-
Lagrange equation of the model is given by
u* — f Vu*
—— = AV(=——) =0 (7.2)
=7 Ve
Now consider the same image with changed con[fastc- f and the solutior,* = ¢- v*. Substituting
these relations into (7.2) clearly shows thiétactually is a solution of the modified Euler-Lagrange
equation.
It seems considerably harder to obtain a similar analytic result for the Lisgadsr. From our experi-
ments it seems, however, that the LSE estimator for the TV-L1 model is ctirivasiant as well.

Figure 7.10 shows the pdf for two pixels. For different scalings the input data the LSE estimate
is scaled by the same factor. Figure 7.11 shows the LSE estimates on a tesfomdifferent values
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(a) Noisy (25%) (b) TV-LI-LSE(A = 1, T = (c) TV-L1-MAP (A = 1)

(d) Noisy (25%) () TV-LI-LSE(\ = 1, T = (f) TV-L1-MAP (A = 1)
0.02)

(g) Noisy (25%) (h) TV-LI-LSE (A = 1, T = (i) TV-L1-MAP (A = 1)
0.02)

Figure 7.8: Close-up of the denoised image. Similar effects to the ROBahoan be observed.
TV-L1-LSE produces no staircases and leaves some noise itetioised image.

of A. Similar to the MAP estimate shown in Figure 7.9, different features vanishrdi#pg on the size
of the feature, regardless of the specific contrast. Note, howevelathar features do not completely
vanish. This can be attributed to the fact, that the LSE estimator is only appttexinteor smaller values
e in Algorithm 5 the features tend to completely vanish. Note, however, thatfbetiee run-time of
the algorithm is strongly influenced by this parameter. Choosittgp small results in a prohibitively
long run-time of the algorithm, which effectively lessens the usefulnesseofVhL1-LSE estimator for
scale-driven feature selection.
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(a) Original image (b)y A=3.5 (c) A=12.0 (d) A =33.0

Figure 7.9: Scale-driven feature selection using TV-L1-MAP. With siger regularization larger
features vanish, independent of their contrast.

@c=1

(b)c=2
Figure 7.10: Probability density function of the TV-L1 model for 2 pixel§he pixels were set

to f1 = 100-c and fo = 50- c¢. The regularization parametarand the temperature
T were fixed tol. The resulting LSE estimates are= (833,663) for ¢ = 1 and
u=(1662,1331) for c = 2.

—
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(a) Original image

(b) A= 1.5 © A\ =20

(d) A= 10.0
Figure 7.11: Scale-driven feature selection using TV-L1-LSE. With sger regularization larger
features vanish, independent of their contrast. The teamtyer was fixed td" =
0.01.
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7.2 Estimating Motion

Variational models have been successfully used as the base of higlaignhnms that need accurate
estimations of object motion between image frames.

From a low-level viewpoint the problem of motion estimation can be appradapestimating displace-
ments of pixels. Such a procedure is generally refered to as optical $imvagion. Figure 7.12 shows
an example along with the color-coded groundtruth flow field, where hueates the direction and
saturation indicates the magnitude of the flow field.

(a) Firstimage (b) Second image (c) Optical flow (d) Encoding scheme

Figure 7.12: Example of optical flow estimation. The objective is to estienpixel movement
between the first image (a) and the second image (b). (c) stmvsolor-coded
groundtruth flow. (d) shows the encoding scheme. Hue endtidestion while satu-
ration encodes magnitude of the flow field.

Let us state the general variational formulation of the optical flow problem:

Given an image paif;, I> and a flow fieldu = (u.,u,)? : Q — R2, the variational energy is given as
E(u) = R(u) + ’D(u, 1, IQ)

where agaimR (u) is a regularizer an®(u; I1, I2), the data term, measures pixel similarity between the
displaced input imagef and/s.

A simple data term is given by the so-called brightness-constancy assumyt@émassume that a pixel
retains its intensity when a movement occurs. Such an assumption of conoseabust with respect to
illumination changes between images. In a seminal paper Horn and Sci®8d4 proposed a quadratic
regularization of the gradients of the flow field together with a quadratic data Ehis approach does
not allow steep discontinuities in the estimated flow field and cannot robusttifehaoclusions.

A better model is given by a total variation-based prior together with a L1tdata[Zach et al., 2007].
The energy of this model is given by

1
E(u; \) = / |Vug|edx —i—/ |Vuy|cdx + / |1 (z + u) — Ix|dx (7.3)
Q Q AlJa
Note that the prior was sligthly modified. Instead of the usual L1 norm, thesHutrm
% i Jg| < e
IQ|€ = €
la| — 5 else

is employed. This allows to penalize small variations in the gradient quadratirallavoids piecewise
constant solutions: was set td).01 in all experiments.

The data term in (7.3) is non-convex, minimization of this model therefore idgratic. A typical
approach is to approximate (7.3) by linearizifgx + «(x)) around some initial displacememg using
a Taylor expansion:

Ii(x +u) = Ii(x + uop) + (u —ug, VI1) (7.4)



66 7. Variational Models

By substituting (7.4) into the energy (7.3), a weakly convex approximatiothefinitial energy is
obtained. The linearization however poses a problem: Itis only valid foll sisplacements around,.
Optimization of the relaxed energy is therefore embedded within a multileveingaspheme, where an
image pyramid is build from the input images and minimization is first carried outendhrsest level
and subsequently propagated to the next level. This procedure idedpgdil the base of the pyramid
(i.e. the original input images) has been reached.

7.2.1 Stereo Reconstruction

We first consider the simplified case, where the flow field has only one coempa.e.
u = (ug,0)T

Given a rectified stereo image pair the estimated figvis a 2.5D depthmap of the depicted scene.

Using the sampling-based MAP estimator (Algorithm 6), the energy (7.3) eanibimized directly.
No linearization is needed because the energy can be globally optimized. A wellsifgporoach is still
necessary, however, because the sampler tends to have low logatieaoeerate in untextured regions.
Moreover a faster cooling schedule can be employed if a multilevel apgpisased, because the sched-
ule is directly related to the the scanned disparity ranges.

To achieve results that do not get stuck in local minima, some consideratisagdbe made: First the
number of Metropolis-Hastings iterations per temperature Kte crucial. If the number is too small
the algorithm gets stuck in local minima. If the value is too large, the algorithms ageshibitively
long runtime. Local optima are approached in the early stages of the algowtene the temperature
is still high. This is simply explained by the fact that sampler can make large juntpsgsistage (and
therefore the adapted varianag of the proposal distribution is large). The probability of hitting just
the right mode of the target distribution in only a few iterations is therefordivela low. A simple
adaption of the parametéf has shown to provide stable results. We cholise- [2ay| + 2, i.e. we
make the number of Metropolis-Hastings iterations explicitely dependent aptkead of the proposal
distribution. For low spread (which corresponds to low temperatures) vke aialeast 3 Metropolis-
Hastings steps. For high spread the sampler is allowed to make more movestheftemperature is
lowered.

Second, the initial temperature has to be high enough, to allow the sampler tdneelyen the early
stages of the algorithm. For all our experiments we cHise- 5. This has shown to provide good
results on the test dataset. Note that for scenarios with small disparitieaorhaose a lower initial
temperature to speed up the algorithm.

Last, the algorithm needs to run long enough to reach a sufficiently low temoper This is crucial for
the quality of the results, as the small scale details are infered at low tempsraille chose to stop
the algorithm if the energy change between 100 successive moves is emadhe 1). This allows a
sufficiently low temperature at the later stages of the algorithm.

The proposed algorithm was evaluated on 4 image sequences from th&eiMiddstereo evalution
database [Scharstein and Szeliski, 2003] and compared to the resoitthaespective linearization
approach (computed using the PDHG algorithm that was introduced in clZpt&/e will further refer
to the sampling-based approach as TV-L1-SA and the linearization agpasal V-L1-PD. To allow a
direct comparison, the regularization parameter was fixed=030 for all experiments.

Figure 7.13 shows the results of TV-L1-SA, along with the percentagerohgly labeled pixels (i.e.
where the disparity error is larger than one). Figure 7.14 shows a dwegbarison between the results
of TV-L1-SA and TV-L1-PD on the “Cones” sequence along with amemap (white = correct label,
black = error, gray = occlusion). The global optimization approach istaliterrectly infere small-scale
structure, where the linearized model fails.
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(a) Tsukuba (4.79) (b) Venus (2.05)

(c) Teddy (12.05) (d) Cones (6.91)

Figure 7.13: Stereo reconstruction using TV-L1-SA. The percentage oingly labeled pixels is
shown in parentheses

The similarity measure used so far is very simplistic and not very robust. Tkhelman be refined by
replacing the data term with a more sophisticated similarity measure.

A more robust measure can be formulated, if similarity is based on patchésets mstead of single
pixels. Werlberger et al. [2010] propose to use a truncated normalipedanrrelation (TNCC) for the
similarity matching:

Let By (z —y) denote a box filter of width?” and [, B,,(z)dz = 1. Then the means of a patch centered
atz for the imaged; = I;(z + u) and, are given by

(@) = [ 1) Bt = )y pa(e) = [ 1) Bt = )y
and the variances of the patch are given by
7i(@) = [ (1) = ()2 Buw (o = )y
7a(a) = [ (1ao) = o) P B (o = )y

Using the definitions above, the normalized crosscorrelation between thesjnﬁmdb at locationz
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(a) TV-L1-SA (b) TV-L1-PD
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(c) Error (TV-L1-SA) (d) Error (TV-L1-PD)

Figure 7.14: Comparison of TV-L1-SA to TV-L1-PD on the “Cones” sequendéhe error map
(white = correct, black = error, gray = occlusion) shows thgtL1-SA provides
better results than TV-L1-PD in regions where small-sctilgcture is present.

then reads
NCC(z,u)) = m /Q (F1(9) — 12 (2)) (Ia(y) — pa () B (& — )y

At last the NCC is truncated to only allow for positive correlations. Thisltesn the following data
term:

D(u; I, 1) = /Qmin(l, 1 - NCC(z,u))dx (7.5)

The resulting functional is again non-convex and moreover highly naalind/erlberger et al. [2010]
propose a second-order Taylor expansion to obtain a convex apption of the TNCC data term
(further refered to as TV-NCC-PD). Using Simulated Annealing we cainadirectly solve the non-
convex optimization problem.

For the NCC data term, we observe an interesting effect: Smaller regulamizatjiroblematic, the

algorithm tends to produce bad results in strongly textured regions (i.agionseewhere the TNCC term
can be expected to be high). To get acceptable results the regularizasiom e chosen higher. Slower
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annealing schedules or extending the multilevel procedure to coarsirdeveot change this effect. We
therefore chosa = 2 for all experiments.

Figure 7.15 shows the results that where obtained by the proposed aigoltithe TV-NCC approach
the Tsukuba dataset is problematic due to a cluttered background.

Figure 7.15(e) shows a result of the TV-NCC-PD algorithm for the “J8dequence for direct compar-
ison. Details like the teddy bear in the upper right corner are far bettensécicted by the proposed
algorithm.

Finally, a quantitative comparison is shown in Table 7.3. The numbers showltiel optimization
has a huge potential. Even the simple TV-L1 model yields very good resu#ts sdived directly. The
TNCC data term further lowers the error.

| Dataset: || Tsukuba| Venus| Teddy | Cones|| Average]
TV-L1-SA 4.79 2.05 | 12.05| 6.91 6.45
TV-L1-PD 5.97 3.69 16.4 9.10 8.79

TV-NCC-SA 5.31 141 | 8.36 | 543 5.13
TV-NCC-PD 5.80 177 | 142 | 842 7.55

Table 7.3: Quantitative comparison of the presented algorithms. Ther és given as the per-
centage of wrongly labeled pixels. Simulated Annealingpetforms the respective PD
algorithms. Note that the simpler TV-L1 model even outperf® TV-NCC if it is solved
directly.

7.2.2 Optical Flow

In our last experiment, the total variation is replaced by a more sophisticagedarity measure. In
[Werlberger et al., 2010] a novel regularizer, called non-local taaktion, was proposed. The idea of
this regularization is that pixel interactions are not constrained to direghiners, but also larger patches
of pixels are allowed to interact.

Non-local total variation is defined as follows:
R(u) = /Q /Q w(z,y) (e () — us(y)le) + [y () — 1y ()])dyde (7.6)

The termw(x, y) weights the influence between the motion vectors at the positi@msly respectively

and is given by
w(z,y) = exp <_ (Ac(j,w . As(g,y))>

In the original formulationA.(z, y) measures color similarity in the Lab colorspace between the pixels
at positionsz andy. Our implementation does not use color information, the similarity measure is
therefore simply given by the L1 norm of the illumination difference. The té&r, y) measures the
Euclidean distance between pixels.and 3 can be used to tune the influence of both terms. Note that
(7.6) in principle allows interaction between every pixel in the image. To cainsthe computational
complexity of the regularizer, Werlberger et al. [2010] recommend to hawezero weights only in a
window of size23 + 1 around a pixel. No essential information is lost with such a constraint, becau
the proximity influence of pixels outside of this window vanishes.

The experiments were carried out on 8 image pairs from the Middleburyabfithev dataset [Baker
et al., 2007], were the images have flow components in both directionsy i-e. (u,, u,)’. For the
experiments the NCC similarity measure was used. We again compare the gititvétation approach
(NLTV-NCC-SA) to the results from the convex second-order exiparthat was obtained using a PDHG
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(a) Tsukuba (5.31) (b) Venus (1.41)

(c) Teddy (8.36) (d) Cones (5.43)

(e) Teddy: TV-NCC-PD

Figure 7.15: Stereo reconstruction using TV-NCC-SA. The percentagerohgly labeled pixels
is shown in parentheses. (e) shows the reconstructionngatdiom TV-NCC-PD.

Details like the teddy bear in the upper right corner arertfdzetter reconstructed
by the TV-NCC-SA algorithm.

algorithm (NLTV-NCC-PD). The parameters were fixethte= 2, 5 = 5 and\ = 3. For the Simulated
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Annealing algorithm we again chose an initial temperafyre- 5. As error metric we report the average
endpoint error (AEPE) that measures the average Euclidean distetmaeein the estimated flow field and
the ground truth.

Table 7.4 shows the gquantitative results for both algorithms. Similar to the stesedle global opti-
mization approach constantly yields better results.

| Model: [ NLTV-NCC-PD | NLTV-NCC-SA |
RubberWhale 0.12 0.09
Dimetrodon 0.20 0.17
Hydrangea 0.18 0.15
Venus 0.29 0.28
Grove2 0.19 0.15
Grove3 0.75 0.64
Urban2 0.40 0.38
Urban3 0.66 0.62

Table 7.4: Quantitative comparison of NLTV-NCC-SA to NLTV-NCC-PD ierins of average end-
point error.

Finally, Figure 7.16 shows the obtained flow fields as color-coded imaesn hgain be observed that
the algorithm can successfully estimate flow, where small-scale featurpeeasnt.
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(a) RubberWhale (0.09) (b) Dimetrodon (0.17)

(c) Hydrangea (0.15)

(e) Grove2 (0.15) (6 Grove3 (0.64)

-

¢

(g) Urban2 (0.38) | (h) Urban3 (0.62)

Figure 7.16: Estimated flow fields using NLTV-NCC-SA.



Chapter 8

Conclusion and Outlook

In this thesis, it was shown that an alternative approach to variational miod€lsmputer Vision can
provide several advantages.

We have shown that the energy minimization approach is equivalent to astmgbrocedure, known as
MAP estimation. MAP is a simple point estimate in the posterior probability distributmtrtaking into
account specific characteristics of the underlying pdf. The insufficies of information in the posterior
distribution leads to distortions in the result, which are known in the context ajémeconstruction as
staircases. Typical approaches to mitigate these distortions consist insije dé more complicated
priors.

The use of a simple summary statistic, the expected value, that compressedaforonation about the
posterior distribution into a single estimate has shown to provide better resultautvittodification of
the original model.

The estimation of such a summary statistic poses some computational challerfgesnde of the ex-
pected value in principle requires knowledge of all possible images alongheithposterior probabili-
ties. Such a computation is infeasible even for small images.

To approximate the expected value, nonetheless, we have introduced\dgdrithms, which are able
to sample arbitrary high-dimensional distributions. We introduced the réathe theory of general state
space Markov Chains, which perfectly match the continuous paradignisteatployed in variational
models. Different variations of MCMC sampling algorithms were discussedkaito a procedure which
is well adapted to the needs of image processing.

Not all models are directly suitable for such a modification to the estimation scidoneconvex models
tend to have an expected value that itself has very low probability in the modeh & estimation
seldom yields satisfactory results. Note however that such non-c@megies are even in the energy
minimization approach not solved directly. Typically, the non-convex modgdpsoximated by a convex
model. The probabilistic point of view can also provide some advantages indigrio. The use of
a sampler provides us with knowledge about the posterior distribution whitlalso be used for MAP
inference. Using a modified sampling scheme non-convex energies adirebty optimized without
going the often difficult route of a convex approximation.

Our experiments show that our approach indeed is viable. Using difféesoising models, we demon-
strated the superiority of the LSE estimator over the usual MAP inference. s€bond application
demonstrated the use of sampling algorithms for MAP inference using ditfepgical flow models.
Again this procedure has shown to be an alternative to the usual enerigyizaition approaches.

Last but not least we like to emphasize the generality of our approacke. piésented Metropolis-
Hastings sampling algorithm is suited for any probability density function, allpegnmplement a wide
range of models in a simple and fast way. While our approaches aretretime capable (in contrast
to numerous energy minimization applications), we see its main advantage in ith@nmaotyping and
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testing of new models.

8.1 Outlook

The idea to use Bayesian estimators in the context of variational models irtdtétael usual energy
minimization approach is relatively young. Therefore, there are numelicetions for further work.

From the viewpoint of estimation theory a lot of different loss functionspargsible. This thesis was
only concerned with “hit-or-miss” loss (for MAP inference) and a ga#iddoss function (leading to the
LSE estimator). Both losses are simplistic and quite general, there is, howewsason not to design
estimators based on more sophisticated loss functions. As an example wensihec non-convex
energies: An estimator that combines ideas from LSE estimation and MAP estirpatilshbe clearly

advantageous. Instead of estimating the largest mode or the center offriifassvbole pdf, one could
estimate the center of mass of the largest mode. If this mode has a heavy tahrsastimate would
probably outperform the MAP estimate.

The algorithmic side of this thesis was solely concerned with a sampling bageshah. The sampling
algorithms are generally known to be relatively slow. A speed-up couldiezed by using a proposal
distribution that better matches the target distribution. As a rule of thumb, thmgmbdistribution
should be as similar to the target distribution as possible (with the extremal valuleatn are equal).
A speed-up using approximations of the target pdf together with a samplimgecseems therefore
possible. Algorithms which allow free form approximations, i.e. where naraptions on the form of
the approximation have to be made, were developed in recent years, with itsdst notable instances
Variational Bayes [Beal, 2003] and Expectation Propagation [Mink@1R®oth algorithms are general
enough to account for the variety of different variational models, @amté seem as a good starting point
for a refinement of the sampling scheme.

Another route would be to more closely examine Langevin diffusions (and sistdahastic differential
equations). Eventually, one could find a stable ULA scheme that doesqoire the intermediate
Metropolis-Hastings step. This approach seems promising for real-time a@jiqiis.

Finally, the sampling algorithms could be subject to further optimization. Curesdgarch for the
Metropolis-Hastings-based samplers seems to go into the direction of mabistggied adaption schemes,
leading to more efficient samplers.
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