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Abstract

In this thesis we consider degree sequences of triangulations of point sets in convex position
in the plane. This is equivalent to degree sequences of maximal outerplanar graphs. Utiliz-
ing basic properties and transformations of triangulations we develop su�cient and necessary
conditions for special cases of nonnegative integer sequences to be valid degree sequences of
a triangulation of a convex point set. Furthermore, we consider more general cases including
the case with more 'big nodes' (nodes with degree greater than 2) than nodes with degree 0.
Also for this case we present su�cient and necessary conditions for a sequence to be a degree
sequence. Additionally, we present a construction of a canonical triangulation for every dis-
cussed case.
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1 Introduction

In human history people always used graphs to present, discuss and realize their ideas and
plans. Although they mostly didn't know what a graph is about. With the rise of mathe-
matics, graph theory started to study graphs and their properties. Sometimes with real world
applications in mind (Figure 1.1) but often discussing abstract buildings with no possible
applications (at least at �rst sight).

Figure 1.1: Triangulation in geodesy [12]

These studies developed subclasses of graphs like simple graphs (no loops or double edges),
planar graphs (cross free embedding into the plane) or outerplanar graphs (planar with all
vertices incident to the same face).

One famous subclass of planar graphs are triangulations. The idea of a triangulation is an
often used concept in di�erent �elds like numerical mathematics, geodesy and even complete
other areas of science like social research [14] or psychology [1] (although these triangulations
have only little to do with our concept). Even the chocolate industry discovered the beauty
of triangulations (see Figure 1.2) with 540 kcal per 100g.

In the already famous class of triangulations, the probably best known and most often used
is the Delaunay triangulation. The Delaunay triangulation ful�lls a bunch of nice properties
(for an overview see [21]). For example, the criterion to be Delaunay is equivalent if tested
locally or on a global scope. For an arbitrary triangulation it's easy to show that one can
reach the Delaunay triangulation by �ipping O(n2) edges, which gives a nice proof that two
triangulations on the same point set can be transformed into each other by �ipping at most
O(n2) edges. It maximizes the minimal angle between two edges and the minimum spanning
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Figure 1.2: Triangulation of chocolate [19]

tree is always a subgraph of the Delaunay triangulation. Even the dual structure, the Voronoi
diagram is well studied [2] and very useful for many applications [5].

Looking at the degrees of nodes occurring in a graph the question about degree sets and degree
sequences arise. The degree set of a graph is the set containing all degrees occurring in the
graph. It is already known that for every set of nonnegative integers there exists a graph with
this degree set. Looking at special classes of graphs like trees, planar graphs or outerplanar
graphs, there are also results for the realizability of degree sets [9].

While degree sets ignore the multiplicity of a degree, degree sequences �x the number of
occurrences for each degree and even the number of vertices in the realizing graph (if there
is any). The question on the realizability of a given sequence of nonnegative integers as
a degree sequence of a simple graph is a classical problem in graph theory and theoretical
computer science. Some major results are even dating back to the work of Erd®s and Gallai [6].
They discovered su�cient and necessary conditions for a sequence to be graphical (meaning
realizable). Although there have been many results ([13], [15]) and di�erent criteria ([18], [20],
[7], [8]) for sequences to be graphical, they mostly consider only general simple graphs.

Focusing on the question of sequences to be realizable as a given class of graphs, like planar or
outerplanar, seems to be a much harder problem. For planar sequences (graphical sequences
that could be realized as a planar graph) only results for special sequences were obtained [17].
It seems that the only known cases until now are degree sequences of trees and 2-trees (which
is a super class of edgemaximal outerplanar graphs) [4]. This result is pretty interesting for
us, since regarding degree sequences there is no di�erence between triangulations of convex
point sets and edgemaximal outerplanar graphs.l now are degree sequences of trees and 2-trees
(which is a super class of edgemaximal outerplanar graphs) [4]. This result is pretty interesting
for us, since regarding degree sequences there is no di�erence between triangulations of convex
point sets and edgemaximal outerplanar graphs.

Relaxing from simple graphs to multi graphs opens the problem to many new applications
like the problem of isomers in organic chemistry. Fortunately there exist nice results for this
case [7].

In this thesis we are going to explore the properties of degree sequences of triangulations of
convex point sets. The main goal is to �nd su�cient and necessary conditions for integer
sequences to be degree sequences of triangulations of convex point sets. We also provide
canonical triangulations for integer sequences that ful�ll one of the conditions.

Some parts of this work were already presented in [10], but are included in this work for
reasons of self containment and to give the reader a complete view on the topic.
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2 Related Work

A graph is called simple if it has no multiple edges and no loops. We will now look at degrees
of nodes in simple, undirected graphs.

2.1 Degree Sets

The degree set DG of a graph G is the set containing all degrees of nodes in G.

Every degree set is a set of nonnegative integers. On the other hand the degree 0 means an
isolated node. Therefore a set of nonnegative integers S is a degree set if and only if S\{0} is
a degree set. So it is su�cient to consider sets of positive integers.

A graph G is said to realize the set S if S = DG. Because of the properties of a set, the degree
set provides no information on the multiplicity of a degree in the graph.

Regarding degree sets, there arise three important questions:

• Is every set of nonnegative integers realizable?

• What is the minimum number of nodes for such a realization?

• What about special classes of graphs like planar graphs, outerplanar graphs or trees?

We write
µ(S) = inf{|V | | G = (V,E) a graph with DG = S}

for the minimal number of nodes for a graph realizing the set S.

If S = {d1, . . . , dn} with d1 > . . . > dn we write µ(d1, . . . , dn) instead of µ(S).

2.1.1 Degree Sets for General Simple Graphs

In every simple, undirected graph with highest degree k there exists at least one node which
is adjacent to k other nodes. Therefore it's easy to see that

µ(d1, . . . , dn) ≥ d1 + 1

On the other hand Kapoor et al. [9, Theorem 1 and Corollary 1a] state that this necessary
condition is su�cient for a simple, undirected graph:

Theorem 2.1

For every set S = {d1, . . . , dn} of positive integers, with d1 > . . . > dn, there exists a connected

graph G such that DG = S and furthermore,

µ(d1, . . . , dn) = d1 + 1

So there exists full information on degree sets of general simple undirected graphs. Now we
look at a subclass of graphs.

3



2.1.2 Degree Sets for Trees

It is well known that every nontrivial tree contains at least two leaves. Every leaf is a node
with degree 1. This means that for every nontrivial tree T we know that 1 ∈ DT .

This necessary condition again proves to be su�cient, shown by Kapoor et al. [9, Theorem 2]:

Theorem 2.2

For every set S = {d1, . . . , dn} of positive integers there exists a nontrivial tree T with DT = S
if and only if 1 ∈ S.
Moreover if 1 ∈ S then the minimum number of vertices of such a tree is

∑n
i=1 (di − 1) + 2.

This means that we again have full information about degree sets of nontrivial trees. So we
look at a more general subclass of graphs.

2.1.3 Degree Sets for Planar Graphs

A graph is called planar if there exists a cross free embedding in the plane.

It is known that every simple connected planar graph ful�lls the Euler characteristic:

#Nodes−#Edges + #Faces = 2

A direct conclusion is that the minimal degree in every planar graph is less than 6. Again
Kapoor et al. [9, Theorem 3] shows that this simple necessary condition is already su�cient:

Theorem 2.3

For every set S = {d1, . . . , dn} of positive integers with d1 > d2 > . . . > dn there exists a

planar graph G with DG = S if and only if 1 ≤ dn ≤ 5.

Although we have full information on the realizability of a set as a planar graph, the question
regarding the minimum number of nodes for such a realization seems to be more di�cult.

For S = {d1, . . . , dn} the minimum number of nodes for a planar realization is called

µp(S) = µp(d1, . . . , dn)

In the simple case with n = 1 the value of µp(S) is well-known: µp(1) = 2 (two connected
nodes), µp(2) = 3 (a triangle), µp(3) = 4 (the tetrahedron), µp(4) = 6 (the octahedron) and
µp(5) = 12 (the icosahedron).

The only further information on the value of µp(S) is shown by Kapoor et al. [9, Theorem 4]
for the case n = 2:

Theorem 2.4

Let d1 and d2 be positive integers with d1 > d2. Then

µp(d1, d2) =

{
d1 + 1, for 1 ≤ d2 ≤ 3
d1 + 2, for d2 = 4

and

µp(d1, d2) ≤ 2d1 + 2 for d2 = 5

Finally we look at the degree sets of a more special subclass of planar graphs.
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2.1.4 Degree Sets for Outerplanar Graphs

A graph is called outerplanar if there exists a cross free embedding in the plane where every
node is incident to the outer face. It is easy to show that the minimal degree in an outerplanar
graph is less than 3. One more time Kapoor et al. [9, Theorem 5] proves that this necessary
condition is already su�cient:

Theorem 2.5

Let S = {d1, . . . , dn} be a set of positive integers with d1 > d2 > . . . > dn. Then there exists

an outerplanar graph G with DG = S if and only if 1 ≤ dn ≤ 2.

But again the minimal number of nodes for an outerplanar realization is a more complicated
question. For S = {d1, . . . , dn} the minimum number of nodes for an outerplanar realization
is called µo(S) = µo(d1, . . . , dn). In the case n = 1 the realizing graphs are the same as in the
planar case: µo(1) = 2 and µo(2) = 3.
For the case n = 2 Kapoor et al. [9, Theorem 6] provides full information:

Theorem 2.6

For d1 > 1, µo(d1, 1) = d1 + 1. For d1 > 2,

µo(d1, 2) =

{
d1 + 1, if d1 is even

2d1 − 2, if d1 is odd

2.2 Degree Sequences

The degree sequence of a simple, undirected graph G is the nonincreasing sequence of the
degrees of its nodes.
A nonincreasing sequence of positive integers S = (d1, . . . , dn) is called graphical if there exists
a simple, undirected graph G having S as its degree sequence. Since a sequence preserves the
multiplicity of a degree it even provides the number of nodes for a realizing graph (if there
exists one).
The handshaking lemma provides a simple necessary condition for a sequence to be graphical:

n∑
i=1

di = 2#{Edges}

This means that the sum of every degree sequence has to be even.
The interesting questions regarding degree sequences are:
• What kind of sequences are graphical?
• For which sequences exists a realizing graph that is planar, outerplanar or a tree?

Unfortunately these questions seem more di�cult than the questions regarding degree sets.
Because of the necessary condition we will now only consider nonincreasing sequences
S = (d1, . . . , dn) of positive integers with even sum.

2.2.1 Criteria for a Sequence to be Graphical

There exist a lot of di�erent equivalent criteria for sequences to be graphical, see [18] for an
overview and proof of the equivalence, but be aware of misprints.
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The Ryser Criterion

See Ryser [16]. A sequence (a1, . . . , ap; b1, . . . , bq) is called bipartite-graphic if and only if there
exists a simple bipartite graph such that one component has degree sequence (a1, . . . , ap) and
the other component has degree sequence (b1, . . . , bq).
Be f = max{i | di ≥ i} and d̃i = di + 1 if 1 ≤ i ≤ f and d̃i = di otherwise.
Then the criterion of Ryser states:

S is graphical ⇔ (d̃1, . . . , d̃n; d̃1, . . . , d̃n) is bipartite-graphic

The Berge Criterion

See Berge [3]. MS be the (0, 1)-Matrix, containing 1s exactly in the leading dk terms of the
k-th row except for the diagonal. We de�ne di as the i-th column sum of MS and receive the
sequence (d1, . . . , dn).
For example, for the sequence (3, 2, 2, 2, 1) we have d1 = 4, d2 = 3, d3 = 2, d4 = 1, d5 = 0 and

MS =


0 1 1 1 0
1 0 1 0 0
1 1 0 0 0
1 1 0 0 0
1 0 0 0 0


Now S is graphical if and only if

k∑
i=1

di ≤
k∑

i=1

di for 1 ≤ k ≤ n

The Erd®s-Gallai Criterion

See Erd®s and Gallai [6]. This criterion is probably one of the most famous criteria for
sequences to be graphical. Mainly because it was stated by Erd®s himself. Furthermore it
doesn't need any additional de�nition as the criteria before. The criterion is:
S is graphical if and only if

k∑
i=1

di ≤ k(k − 1) +
n∑

j=k+1

min{k, dj}

for 1 ≤ k ≤ n.

The Havel-Hakimi Criterion

This is another well known criterion for sequences to be graphical and was developed inde-
pendently by Havel [8] and Hakimi [7]. Other than the previous criterion it shows graphical
equivalence between two sequences.
Let (d1, . . . , dn) be a nonincreasing sequence of positive integers with even sum and
n − 1 ≥ d1 ≥ d2 ≥ . . . ≥ dn. Then the criterion states as follows:
(d1, . . . , dn) is graphical if and only if the sequence

(d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn)

is graphical.

6



2.2.2 The Kleitman-Wang Criterion

As a generalization of the Havel-Hakimi Criterion Kleitman and Wang [11] showed the follow-
ing criterion:
Let (d1, . . . , dn) be a nonincreasing sequence of positive integers with even sum and
n − 1 ≥ d1 ≥ d2 ≥ . . . ≥ dn. Si be the sequence obtained from S = (d1, . . . , dn) by
deleting the term di from S and decreasing the remaining di largest terms by 1.

Then the criterion of Kleitman and Wang states that S is graphical if and only if Si is graphical
for 1 ≤ i ≤ n.

2.2.3 Planar Graphical Sequences

A nonincreasing sequence S is called planar if it is realizable as a planar graph. Obviously
every planar sequence has to be graphical. This means we can use the full information for
sequences to be graphical as a necessary condition for sequences to be planar. A combination
of the handshaking lemma and the Euler characteristic provides another necessary condition.
Every planar sequence with n ≥ 3 ful�lls

n∑
i=1

di ≤ 6(n− 2)

A sequence ful�lling this condition is called Euler sequence. If the inequality is ful�lled with
equality, then the sequence is called maximal Euler sequence.
A sequence is called a k-sequence if d1 − dn = k, 0-sequences are called regular.
For an easier notation we write the sequence (d1, . . . , d1︸ ︷︷ ︸

e1

, d2, . . . , d2︸ ︷︷ ︸
e2

, . . . , dk, . . . , dk︸ ︷︷ ︸
ek

)

as
(
de1

1 , d
e2
2 , . . . , d

ek
k

)
Schmeichel and Hakimi [17] showed some information on planar graphical k-sequences. For
regular sequences and 1-sequences they provide full information:

Theorem 2.7 (see [17, Theorem 1])
Every regular, graphical Euler sequence is planar except for (47) and (514).

Theorem 2.8 (see [17, Theorem 2])
Every graphical Euler 1-sequence is planar graphical except for (510, 41), (512, 41), (61, 512) and
(61, 514).

For 2-sequences there are still some unresolved cases and the number of exceptions is rising.

Theorem 2.9 (see [17, Theorem 3])
Every graphical, maximal Euler 2-sequence is planar graphical except for

(51, 44, 31), (55, 42, 31), (61, 510, 41), (53, 33), (61, 52, 45), (71, 513),
(54, 41, 32), (57, 41, 31), (71, 61, 513), (61, 46), (59, 31),
and possibly the following unresolved cases:

(71, 62, 513),

(7k, 61, 5k+12) for k = 2, 3, 5, 7,

(7k, 5k+12) for k = 3, 5, 7, 9.

7



Theorem 2.10 (see [17, Theorem 4])
Every graphical, nonmaximal Euler 2-sequence is planar graphical except for

(45, 21), (511, 31), (6p−7, 47) for p > 7, (55, 33), (71, 515),
and possibly the following unresolved cases:

(513, 31), (71, 517), (73, 517).

Unfortunately there is still no further information on general planar sequences. The only
additional information is a more strict necessary condition:

Theorem 2.11 (see [17, Theorem 4])
Every graphical Euler sequence with d3 ≤ 3 is planar graphical.

Every planar graphical sequence with d3 > 3 ful�lls

n∑
i=1

di ≤ 6(n− 2)− 2n2 − 4n1

where ni denotes the number of times i occurs as an element of the sequence.

2.2.4 Degree Sequences of Trees

Let's look at a more special case of planar graphs: the trees.

It is widely known that every tree ful�lls #Edges = #Nodes − 1. Therefore every degree
sequence of a tree ful�lls

n∑
i=1

di = 2(n− 1).

Bose et al. [4] improve the characterization of degree sequences of trees with the following
lemma:

Lemma 2.12 ([4, Lemma 1])
A nonincreasing sequence of positive integers S = (d1, . . . , dn) is the degree sequence of a tree

if and only if
n∑

i=1

di = 2(n− 1)

Moreover, for any l, k ∈ S there exists a realizing tree of S in which a vertex of degree l is
adjacent to a vertex of degree k, unless n > 2 and l = k = 1.

This means that there exists full information on degree sequences of trees. Bose et al. further
looked at a generalization of trees, the k-trees.

A graph G is a k-tree if and only if one of the following conditions is true

• G is the complete graph on k + 1 vertices

• there exists a vertex v whose neighborhood is a clique of order k and G\v is a k-tree.

This means that 1-trees are trees where we already have full information. Now we look at
2-trees.
Every 2-tree T with degree sequence (d1, . . . , dn) ful�lls:
•
∑n

i=1 di = 4n− 6
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• dn = 2
• dn−1 = 2
• No two ears in T are adjacent unless T = K3

• T has no K4-minor

• T is 2-connected

For a proof of these properties look at [4, Lemma 2]. Furthermore Bose et al. provide full
information on the realizability of sequences as 2-trees:

Theorem 2.13 ([4, Theorem 1])
Let S = (d1, . . . , dn) be a nonincreasing sequence of positive integers, n2 be the multiplicity of

2 in S.
S is the degree sequence of a 2-tree if and only if the following conditions are ful�lled:

•
∑n

i=1 di = 4n− 6
• d1 ≤ n− 1
• dn = 2 and n2 ≥ 2
• S 6∈ {(2n−4, d4)|d ≥ 5}
• n2 ≥ n

3 + 1 if all degrees in S are even
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3 Notation and Basics

Everyone in the �eld of computational geometry is familiar with terms like triangulations,
nodes and degrees. When it comes to degree sequences, inner triangles and 'zigzags' there
exist di�erent papers with di�erent meanings for these terms. For this reason and because
of my inner hope that not only experts (and my parents) will read this thesis, we (re)state
de�nitions for the terms used in this thesis.

3.1 Notation of Parity Constraints

In this thesis we will often need to distinguish cases by the parity of two numbers. To avoid
too much writing (and to minimize your reading time) we will use this notation:

[x ≡ y mod 2] is denoted by
[
x

2≡ y
]
and [x 6≡ y mod 2] is denoted by

[
x

2
6≡ y
]
.

3.2 Geometric Graph and Convex Point Set

A geometric graph G = (V,E) is a pair of two sets. The �rst (V ) represents the points in the
Euclidean plane being the vertices of the graph. The second (E) contains subsets of V with
two elements, each subset representing an edge in the graph by connecting the two vertices
with a straight line. A geometric graph is called planar if no two edges intersect.

An object is called convex if for every two points within the object every point on the straight
line between them is again within the object.

A point set is called convex if there exists a convex set such that all points from the point set
are on the border of the convex set.

3.3 Triangulation

By de�nition a triangulation of a point set V is a maximal planar geometric graph which uses
all points of V as nodes. It is easy to see that m = 3n − nh − 3 where m is the number of
edges, n the number of points and nh the number of points on the convex hull.

In this thesis we will only look at triangulations on convex point sets. Setting nh = n in the
equation above leads to m = 2n− 3. To get the number of diagonals we subtract the n edges
on the convex hull:

#diagonals = n− 3 (3.1)

We refer to the degree of a node v as the number of diagonals incident to that node.

deg(v) = #{to v incident diagonals}
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Geometrically we delete the edges on the convex hull and look at the degrees in the resulting
graph.

Because of this we call two nodes connected if they are connected by an inner diagonal.

Further, we will often refer to the number of nodes with the same degree:

#i = #{v | v ∈ V, deg(v) = i}

Later on we will also need the number of nodes with a degree bigger than a given threshold.
Therefore we will use this notation:

#k+ =
∑
i≥k

#i

De�nition 3.1 (inner triangle)
In a triangulation of a convex point set an Inner Triangle is a triangle which consists of
diagonals, that is, it has no edge from the convex hull.
Geometrically all triangles that remain after deleting the edges on the convex hull are the
inner triangles.

3.4 The Dual Tree

Given a triangulation of a convex point set, we receive a tree by replacing the triangles by
vertices and connecting two vertices if and only if the corresponding triangles share an edge.
We call this tree the dual tree for the given triangulation.

In a triangulation every inner triangle yields an additional ear (a vertex of degree 0) and every
additional ear requires an additional inner triangle. This can be seen from the dual of the
triangulation. In the tree every vertex of degree 3 leads to an additional leaf and vice versa.
So we get the following equation:

#{inner triangles} = #0− 2 (3.2)

3.5 Illustrative Outlines

When drawing outlines of triangulations on a convex point set it is not important to draw the
points exactly in convex position. As long as all faces (except the outer face) are triangles and
all points are incident to the outer face, we are always able to move the points so that they
are in convex position and the graph stays planar.

3.6 Degree Sequence

De�nition 3.2 (degree sequence)
A degree sequence of a triangulation is a sequence of nonnegative integers, representing the
degrees of the nodes as de�ned above. Note that, since a degree sequence doesn't have an
order, we usually write it in descending order.
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De�nition 3.3 (degree vector)
The degree vector of a triangulation is a vector of nonnegative integers (#0,#1,#2, . . .),
representing the number of occurrences of degrees as de�ned above. For triangulations of
�nite convex point sets there always exists k so that ∀l ≥ k #l = 0, therefore we only write
the �rst k elements of the degree vector.

If we want to �nd a triangulation according to the degree sequence we need to know the degree
of each node.

De�nition 3.4 (ordered degree sequence)
A degree sequence, which has got an explicit order so that there exists an according triangu-
lation where the degrees of the nodes read clockwise, starting at the left most node, equals
the degree sequence, is called an ordered degree sequence.

For example, be n = 8 and consider #0 = 2,#1 = 3,#2 = 2,#3 = 1. This is equivalent to
the degree sequence {3, 2, 2, 1, 1, 1, 0, 0} and the degree vector (2, 3, 2, 1). This is the degree
vector for the triangulations in Figure 3.2, with ordered degree sequences [0, 2, 1, 2, 0, 1, 3, 1]
and [0, 3, 2, 0, 1, 2, 1, 1, 0].

3.6.1 From Triangulation to (Ordered) Degree Sequence and Back

For a given triangulation it is easy to see how we get an ordered degree sequence. We just
start at the left-most node and write down its degree, then we walk around the point set in
clockwise direction, writing down the degree of each node we pass by, till we get back to the
start node.

If we have an ordered degree sequence we reverse the procedure, starting at the left-most node
writing the �rst number from the sequence to the node. Then we walk around the point set,
writing the according number from the sequence to the node. Afterwards we start 'cutting of
the edges', that means we take a node with degree 0, connect its neighbors with an edge, and
decrease their degrees by 1. Iterating this procedure until no positive degrees are left yields
the wanted triangulation.

We can think of each step as deleting an ear (node with degree 0) from the point set. This
yields another (smaller) convex point set.

The original sequence is an ordered degree sequence if and only if the changed sequence on
the smaller point set is also an ordered degree sequence.

Lemma 3.5

Every triangulation on a convex point set has got at least 2 ears.

Proof. An ear in the triangulation is a leaf (node with degree 1) in the dual tree. If the dual
tree is a single node this means the triangulation is a single triangle having 3 ears. Otherwise
we start in a node with degree 1 (there has to be at least one because a tree is cycle free).
Then we walk through the tree till we get to another node with degree 1 (we get to the second
leaf because the tree is cycle free and �nite). Now we have 2 nodes with degree 1 and the
lemma is proven.

This means we always get at least two choices for the iteration step.
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3.6.2 Uniqueness

It is obvious that for every ordered degree sequence we can move the �rst number to the end,
which is geometrically equivalent to rotating the point set. Similarly we can read the ordered
degree sequence forward or backward, which geometrically means to re�ect the according tri-
angulation.
Once we have decided the direction and the mapping, the algorithm for drawing the triangula-
tion is unique. So we know that every ordered degree sequence yields an unique triangulation
except for rotation and re�ection.

For a degree sequence (with no order) we only know, that there exists at least one triangulation
with this degree sequence.

For n = 3, 4, 5 there exists only one triangulation except for re�ection and rotation, hence there
exists only one degree sequence which yields a unique triangulation. As shown in Figure 3.1,
for n = 6 there exist 3 di�erent triangulations with di�erent degree sequences, that is, each
of them yields an unique triangulation. For n = 7 there exist 4 di�erent triangulations, each
with a di�erent degree sequence.
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0 1

11

2 0
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2

2

2

2

2 4

33

Figure 3.1: The triangulations for 6 and 7 nodes

For n = 8 the degree vector (2, 3, 2, 1) yields two di�erent triangulations, shown in Figure 3.2.
It follows that for n ≥ 8 a degree sequence usually does not yield a unique triangulation.

3.7 Big Nodes, Wedges and the '1's

De�nition 3.6 (big node)
A node v is called a big node if deg(v) > 2. Nodes with degree 2 are called pseudo big nodes.
A (pseudo) big node is called isolated if it is not incident to an inner triangle.

A big node v is incident to an inner triangle or has connected '1's. These are the nodes with
only one incident diagonal. Nodes on inner triangles can also have connected '1's or multiple
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Figure 3.2: Two di�erent triangulations with same degree sequence

inner triangles etc.
If a (pseudo) big node has got no incident inner triangles the number of connected '1's is
deg(v)− 2. This equation holds if we de�ne the �rst '1' after an ear as an isolated '1'. From
now on, we call the '1's (except for the '1' which is next to an ear) connected to node v, the
'1s of v' (consider Figure 3.3).

De�nition 3.7 (wedge of a node)
Let's look at an arbitrary (pseudo) big node v (deg(v) ≥ 2) and the nodes connected to v.
After sorting these nodes by their angle between the connecting diagonal and the convex hull
we get {u1, . . . , udeg(v)}.
A wedge of v is a set {uk}i≤k≤j such that deg(uk) = 1 for i ≤ k ≤ j where i is either equal
to 1 or deg(ui−1) ≥ 2 and j is either equal to deg(v) or deg(uj+1) ≥ 2.

If either i = 1 or j = deg(v) we call it an unbounded wedge, otherwise it is called a bounded

wedge. ui−1 and/or uj+1 are called bounding nodes.

For two (pseudo) big nodes ul and ul+1, where the edge {ul, ul+1} is part of the convex hull,
the empty set of nodes with degree 1 between them is called an empty bounded wedge. If v is
incident to an ear without isolated '1', it has an unbounded empty wedge. See Figure 3.3 for
examples.

Remark 3.8 Isolated (pseudo) big nodes have exactly one wedge.

Lemma 3.9

For every triangulation T with big nodes, there exists a triangulation T with the same degree

sequence where all big nodes have got at most one non empty wedge.

Proof. Let's look at an arbitrary big node v. Assume that v got more than one non empty
wedge. We can easily move '1's from one wedge to another without changing the degree
sequence of the triangulation, so we move all '1's to an arbitrary chosen wedge.

Remark 3.10 If possible we always move the '1's into a bounded wedge.

De�nition 3.11 (zigzag)
In this thesis we de�ne a zigzag-triangulation as a triangulation where the dual tree is a path.
A zigzag in a triangulation is a partial triangulation where the dual tree is a path. This means
a zigzag is a concatenation of (pseudo) big nodes and their wedges.
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Figure 3.3: Example for wedge of v, inner '1's and isolated '1's

Remark 3.12 A triangulation with no inner triangle consists of exactly one zigzag. This
de�nition is quite unusual, but since we don't have to distinguish between isolated pseudo big
nodes and isolated big nodes it makes sense to de�ne a general way to combine nodes not
incident to inner triangles.

3.8 Common Transformations

3.8.1 Moving Isolated Big Nodes

Setting

Let T be a triangulation of a convex point set with more than one (pseudo) big node and an
arbitrary isolated (pseudo) big node v. If the wedge of v is a bounded one, then v is connected
to two (pseudo) big nodes u and w. Otherwise v is connected to one (pseudo) big node u and
an isolated '1' w. Let {r, s} be an edge which is not part of an inner triangle with r being a
(pseudo) big node and s being either a (pseudo) big node or an isolated '1' (see Figure 3.4).
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Target

We want to move v between r and s, meaning that after the transformation v is part of the
path on diagonals between r and s, without changing the degree sequence.

Procedure

We detach v from u and w, and r from s. After that we can move v with the connected
'1's into the free space between r and s so that, after attaching v to r, s to v and u to w,
we have a triangulation. Therefor we have to horizontally mirror the partially triangulation
which contains r and w and possibly the block containing v (see Figure 3.4).

u

w

s

r

v

w

u

v

r

s

Figure 3.4: Moving isolated big nodes

3.8.2 Swapping a Partial Triangulation

Setting

Let T be a triangulation of a convex point set and nodes u, v, w, r be either (pseudo) big
nodes or isolated '1's, where {u, v} and {w, r} are edges of the triangulation. Neither {u, v}
nor {w, r} are part of an inner triangle. If we draw a line g through the midpoint of {u, v}
(de�ning that point on g as midpoint of g) so that u and v lay on di�erent sides of g and
g intersects with no edge incident to u or v except {u, v} and the convex hull edges. Then
g splits the triangulation into two partial triangulations. Let tg be the part not containing
{w, r}. Repeat this for {w, r} with line f . tf is the part not containing {u, v}. Obviously the
intersection of tg, tf is empty.

Target

We want to swap tg and tf without changing the degree sequence of the triangulation.
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Procedure

First we detach tg and tf from the triangulation, which is easily done by cutting of the
corresponding edges on the convex hull and {u, v} or {w, r} respectively. Now we move tg and
tf such that g swaps place with f and the midpoint of f matches the midpoint of g. If the edge
{u, r} lays on the convex hull, we mirror tg at the normal on g going through the midpoint.
We repeat this procedure for tf . After that we can attach u to r and w to v. Maybe it's
necessary to rearrange the points to get a convex point set again, but such a transformation
does not modify the triangulation. Now we can insert the 4 missing edges on the convex hull
and so we get a triangulation where tg and tf swapped places. Looking at the degrees we
notice that the only changes were made at u, v, w, r. We detached an edge, moved the parts
and attached an edge. So after the transformation all degrees stay the same.

r

v

v

r

tg

tg

ft

ft

u

g

f

w

u

w

g f

Figure 3.5: Swapping two partial triangulations

3.8.3 Eliminating a Bounded Wedge

Setting

Let T be a triangulation of a convex point set, v be a node on a block of inner triangles t
with at least two bounded wedges, two of them not bounded by inner triangles incident to v.
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There also has to exist at least one isolated '1' somewhere in the triangulation.

Target

We want to transform the triangulation so that one of the two bounded wedges gets unbounded
and empty.

Procedure

If there is only one isolated '1' in the triangulation and one of the wedges leads to that isolated
'1' (when walking in the dual tree starting at v) we choose the other wedge, otherwise it's
not important which wedge we choose. We call the node which bounds the wedge we want
to eliminate w. Now we can �ip the partial triangulation starting at the edge {v, w} and the
isolated '1' with the incident ear as in 3.8.2. After the transformation the chosen wedge is
unbounded. Move all '1's from the unbounded into the bounded wedge. Because of 3.8.2 the
transformation leaves the degree sequence untouched.

3.8.4 Flipping a Partial Triangulation

Setting

Let T be a triangulation of a convex point set, v be a node on a block of inner triangles t with
a bounded wedge, u being the bounding node, {u, v} not being part of an inner triangle, and
in T exists an unbounded empty wedge.

Target

We want to �ip the partial triangulation starting at (and including) the bounded wedge with
the unbounded empty wedge.

Procedure

Figure 3.6 shows how the transformation is done.

v
v

0

0

Block of inner triangles
Block of inner triangles

Figure 3.6: Flipping two wedges of v
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3.9 Simple Constraints and Properties

3.9.1 Sums

As we have n nodes, each counting for one #i, i ≥ 0, we get

#0+ =
∑
i≥0

#i = n (3.3)

From (3.1) we know that the number of inner diagonals is n−3. According to the handshaking
lemma follows ∑

v∈V

deg(v) =
∑
i≥0

i#i = 2(n− 3) (3.4)

Since every triangulation ful�lls these equations, we can use them to sort out sequences which
cannot be degree sequences.
Further on we will often use a combination of these two:∑

i≥0

(i− 2)#i =
∑
i≥0

i#i− 2
∑
i≥0

#i = 2(n− 3)− 2n = −6 (3.5)

Let k be the number of nodes incident to an inner triangle, b the number of blocks of inner
triangles and w the number of wedges in the blocks.

Lemma 3.13

For a block of l inner triangles which is not a wedge-block the amount of nodes incident to the

block is l + 2.

Proof. We prove this by induction on l:
l = 1 means one triangle and 3 nodes incident to it.
l → l + 1: if we add an inner triangle to the block this means the new triangle shares one
edge (and therefore 2 nodes) with the block. This means every additional inner triangle yields
exactly one additional node incident to the block.

So we know that, if there are no wedge-blocks, k equals the number of inner triangles plus
two additional nodes for every block of inner triangles.

Observation 3.14 Every wedge in a block produces exactly one additional node incident to
the block.

Combining this with #{inner triangles} = #0− 2 we get:

k = (#0− 2) + 2b+ w

or if we want to know the number of blocks:

b =
k −#0− w

2
+ 1 (3.6)

and therefore every triangulation ful�lls

w
2≡ k −#0 (3.7)

Remark 3.15 When considering integers modulo 2, there is no di�erence between plus and

minus, which means that (3.7) is the same as
[
w

2≡ k + #0
]
.
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3.9.2 Inequalities

In an ordered degree sequence with more than 3 elements a positive degree follows after every
0. This leads to:

#0 ≤
⌊n

2

⌋
(3.8)

For #0 ≥ 3 Lemma 5.6 provides a more strict version of this inequality:

#0 ≤
⌊
n−#1

2

⌋
(3.9)

Remark 3.16 This inequality is equivalent to #0 ≤ #2+

Furthermore every triangulation on a �nite point set has got at least two ears.

#0 ≥ 2 (3.10)

In Lemma 5.4 we will further show that every degree sequence ful�lls

#1 + #2 ≥ 2 (3.11)
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4 Special Cases

We begin our investigation with some special cases where everything seems to be easy. We
present full information on this special cases. This provides us the freedom to skip the un-
wanted e�ects in this special cases later on, when we examine the more general sequences.

4.1 Two Ears (#0 = 2)

In the case #0 = 2 the according triangulation (if existing) is build in a zigzag way (see
Figure 4.1). This means the dual tree is a path. We can start with one of the ears and adjust
all big nodes with their wedges in a zigzag till we get to the second ear.

v
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k−3

v
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v
k−5

v
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v
k−7

v
7

v
6

Dual Path

Figure 4.1: Zigzag triangulation for #0=2

As there are no inner triangles we know that for every big node v the number of '1's in the
wedge of v is (deg(v)− 2) and there are two isolated '1's. Let's look at the number of '1's we
need for the construction: ∑

all big nodes v

(deg(v)− 2) + 2

If we take (3.5) and bring (1− 2)#1 and (0− 2)#0 to the other side we get∑
i≥2

(i− 2)#i = #1 + 2#0− 6 = #1− 2
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For #2 the terms in the sum are 0, therefore we �nally get∑
i>2

(i− 2)#i+ 2 =
∑
i≥2

(i− 2)#i+ 2 = #1

which is the exact number of '1's we need for the construction. This means that for every
sequence of nonnegative integers S where #0 = 2, which ful�lls the equations (3.3) and (3.4),
there exists a triangulation with degree sequence S.

On the other hand, for every triangulation the degree sequence has to ful�ll the simple equa-
tions (3.3) and (3.4).

We thus conclude:

Lemma 4.1

For every sequence of nonnegative integers with #0 = 2 which ful�lls (3.3) and (3.4) exists a
triangulation with the same degree sequence.

4.2 Three Ears (#0 = 3)

In the case #0 = 3 an according triangulation (if existing) consists of an inner triangle and
attached zigzags. The smallest example of such a triangulation is a single triangle with the
ordered degree sequence [0, 0, 0]. Now we consider sequences with #0+ > 3.

Lemma 4.2

Given a sequence of nonnegative integers S with #0 = 3 and #0+ > 3, there exists a trian-

gulation of a convex point set with the degree sequence S if and only if #2+ ≥ 3 and S ful�lls

(3.3), (3.4) and one of the following conditions

• #3+ = 0 and #2 = 3
• #3+ ≥ 1

Proof.

"⇒"
A triangulation with 3 ears has one inner triangle so #2+ ≥ 3 (every node on the inner triangle
having degree ≥ 2). If there are no big nodes the triangulation is the inner triangle with no
further nodes and the degree vector is (3,0,3).
"⇐"
Let S = {v1, . . . , vn} be a sequence of nonnegative integers (in decreasing order) with #0 = 3,
#2+ ≥ 3. If #3+ ≥ 1 and k ≥ 3 so that vk ≥ 2 and vk+1 < 2 we build the triangulation as
an inner triangle with an attached zigzag. v1, v2 and v3 are the nodes on the triangle, the
zigzag is attached to v1 (v1 ≥ 3). v4, . . . , vk form the zigzag. Let's look at the '1's we need for
this construction: v1 is connected to the inner triangle by two and to the zigzag by one edge,
so it needs (deg(v1) − 3) '1's in its wedge. v2 and v3 are not connected to a zigzag so they
need (deg − 2) '1's. Every node in the zigzag also needs (deg − 2) '1's (without the isolated
'1' at the end). If we add the isolated '1' to the '1's of v1, every (pseudo) big node v needs
(deg(v)− 2) '1's. From (3.5), which is a combination of (3.3) and (3.4), we get:∑

i≥2

(i− 2)#i = 2#0 + #1− 6
#0=3

= #1
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Figure 4.2: Canonical triangulation for #0 = 3

This means we get exactly the number of '1's that we need (see Figure 4.2 for better under-
standing).

In the case #3+ = 0 follows from (3.5)

#1
#0=3

=
∑
i≥2

(i− 2)#i
∑

i≥3 #i=0
= 0

and in combination with #2 = 3 the triangulation is an inner triangle with 3 incident ears
and no further nodes.

4.3 Four Ears (#0 = 4)

The case #0 = 4 is determined by the number of big nodes (#3+). We distinguish the sub
cases #3+ = 1, #3+ = 2 and #3+ ≥ 3. Every triangulation with 4 ears has 2 connected
inner triangles so there has to be at least one big node. The 3 sub cases are covered by the
following lemmata:

Lemma 4.3

Given a sequence of nonnegative integers S with #0 = 4 and #3+ = 1, there exists a triangu-

lation of a convex point set with the degree sequence S if and only if it ful�lls (3.3), (3.4) and
one of the following conditions:

• #2 = 4 and #4 = 1
• #5+ = 1 and #2 ≥ 4

Proof.

"⇒"
In every triangulation with 4 ears there are 2 inner triangles. These inner triangles have to
be connected. The only connection which produces only one big node is a wedge-block. That
means the two inner triangles share exactly one node v with deg(v) ≥ 4. The other nodes
on the inner triangle have got to be pseudo big nodes (which means #2 ≥ 4), so the only
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way to connect further nodes is to connect them to v. This means that either deg(v) ≥ 5 or
deg(v) = 4 ∧#2 = 4.
"⇐"
Case 1 produces the ordered degree sequence [0, 2, 0, 2, 2, 0, 2, 0, 4], obviously this is a legal
ordered degree sequence.
In case 2 we build a triangulation consisting of a wedge-block with a zigzag connected to the
big node. The zigzag only consists of pseudo big nodes with the isolated '1' at the end. So
the number of '1's we need for the construction is the degree of the big node minus 4. From
(3.5) we get:∑

i≥3

(i− 4)#i
#3+=1

=
∑
i≥3

(i− 2)#i− 2 = 2#0 + #1− 6− 2
#0=4

= #1

This means we have exactly the number of '1's we need (see Figure 4.3 for better understand-
ing).

Figure 4.3: Canonical triangulation for #0=4 with 1 big node

Lemma 4.4

Given a sequence of nonnegative integers S with #0 = 4 and #3+ = 2 there exists a triangu-

lation of a convex point set with the degree sequence S if and only if it ful�lls (3.3), (3.4) and
one of the following conditions:

• #2 ≥ 4
• #2 = 3 and #4+ ≥ 1
• #2 = 2

Proof.

"⇒"
There are 3 types of triangulations with 4 ears that produce exactly 2 big nodes:

• 2 separated inner triangles, each inner triangle producing one big node and 2 pseudo big
nodes ⇒ #2 ≥ 4
• 2 inner triangles sharing only one node (which has a degree ≥ 4). Only one of the four
remaining nodes on inner triangles is big ⇒ (#2 = 3 ∧#4+ ≥ 1)
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• The two inner triangles share an edge. Either #2 = 2 (no zigzag attached) or #2 ≥ 3
and the big node the zigzag is connected to has a degree ≥ 4 ⇒ (#2 ≥ 3∧#4+ ≥ 1) or
#2 = 2

"⇐"
Given a sequence of nonnegative integers S = {v1, . . . , vn} (in decreasing order) with #0 = 4
and #3+ = 2 we get three cases:

• #2 ≥ 4: We build the triangulation as two separated inner triangles with a zigzag of
the remaining pseudo big nodes between them. Each inner triangle has one big and
two pseudo big nodes. The zigzag is at each end connected to the big node of the
inner triangle. The number of '1's needed is

∑
i≥3 (i− 3)#i (see Figure 4.4 for better

understanding).

∑
i≥3

(i− 3)#i
#3+=2

=
∑
i≥3

(i− 2)#i− 2
(3.5)

= 2#0 + #1− 6− 2
#0=4

= #1 (4.1)

(a) #2 ≥ 4 (b) #2 = 3

Figure 4.4: Canonical triangulations for #0=4 with 2 big nodes

• #2 = 3 and #4+ ≥ 1: The triangulation consists of a block of two inner triangles with
a zigzag (containing only one pseudo big node) attached. Both big nodes are incident
to 3 edges from the block. One big node also has an edge leading to the zigzag which
ends in an isolated '1'. So the number of needed '1's is

∑
i≥3 (i− 3)#i. As before (3.5)

provides the required number of '1's (see Figure 4.4 for better understanding).

• #2 = 2: This leads to the ordered degree sequence:

[0, 2, 1, . . . , 1︸ ︷︷ ︸
v1−3

, 0, v1, 0, 2, 1, . . . , 1︸ ︷︷ ︸
v2−3

, 0, v2]

Again the number of needed '1's is provided due to (4.1).

Lemma 4.5

Given a sequence of nonnegative integers S with #0 = 4 and #3+ ≥ 3 there exists a triangu-

lation of a convex point set with the degree sequence S if and only if it ful�lls (3.3), (3.4) and
#2+ ≥ 4.
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Proof.

"⇒"
Every triangulation ful�lls (3.3) and (3.4). #0 = 4 means we have two inner triangles, so
there are at least 4 nodes on inner triangles and therefore #2+ ≥ 4.
"⇐"
Given a sequence of nonnegative integers S = {v1, . . . , vn} (in decreasing order) with #0 = 4
and #3+ ≥ 3 we build the triangulation as a block of two inner triangles with a zigzag
attached. Two big nodes (v1 and v2) are incident to 3 edges from the block, v3 is incident to
2 edges from the block and 1 edge is incident to the zigzag. The other (pseudo) big nodes
are either incident to 2 edges from the block or from the zigzag (treating the isolated '1' as a
node of the zigzag). Now we add the isolated '1' at the end of the zigzag to the '1's of the big
node connected to the zigzag and therefore get 2 nodes with (deg − 3) '1's and all the other
(pseudo) big nodes with (deg − 2) '1's.

∑
i≥2

(i− 2)#i− 2
(3.5)

= 2#0 + #1− 6− 2
#0=4

= #1

This means (3.5) (which is a combination of (3.3) and (3.4)) provides exactly the number of
'1's we need (see Figure 4.5 for better understanding).

Figure 4.5: Canonical triangulation for #0=4 with at least 3 big nodes

28



5 Separated Inner Triangles and Small
Blocks

5.1 Only Separated Inner Triangles

We now look at the general case where #0 ≥ 5. Let's start simple and look at triangulations
where all inner triangles are separated.

De�nition 5.1 (separated inner triangle)
An inner triangle which neither has a common edge nor a common node with another inner
triangle is called separated.

De�nition 5.2 (oriented inner triangles)
A separated inner triangle t is called oriented if all the nonempty wedges of the nodes of t
either point in clockwise or counterclockwise direction.

Figure 5.1: Oriented inner triangle vs. non-oriented

Lemma 5.3

Let T be a triangulation with separated inner triangles, t being a non-oriented inner triangle.

If there exists at least one ear with an incident node k with deg(k) = 1 (an isolated '1'), then

there exists a triangulation T ′ with the same degree sequence where t is oriented.

Proof. Let u, v, w be the nodes of the inner triangle t. t is nonoriented if a node of t has a
bounded wedge on each side of the triangle or if there are two nodes with di�erent directed
wedges. If a node has a bounded and an unbounded nonempty wedge we transform the
triangulation so that there is a bounded and an empty wedge (Lemma 3.9)
Case 1 Each node on the inner triangle has at most one bounded wedge. Two nodes, u and

v, have di�erent directed nonempty wedges.
This means that the edge {u, v} has to be incident to an ear. We can easily �ip the par-
tial triangulation starting at {w, u} with the ear at {u, v} (see Transformation 3.8.4).
Now all wedges point either in clockwise or counterclockwise direction.
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Case 2 A node u has two bounded wedges. Choose the bounding node of the wedge, which
destroys the orientation and call it l. Now we use Transformation 3.8.3 to eliminate
the wedge bounded by l. After that the triangle is oriented.

Lemma 5.4

In every triangulation with more than 3 nodes the sum of isolated '1's and nodes with degree

2 which are adjacent to two '0's is always at least 2.

Proof. In the dual tree an isolated '1' is a node with degree 2 which is adjacent to a leaf.

A node in the triangulation with degree 2, which is incident to two ears, corresponds to a
node in the dual tree with degree 3, which is incident to two leaves.

Case 1 There is no inner triangle, meaning #0 = 2
Every ear is incident to an isolated '1' and no isolated '1' corresponds to more than
one ear.

Case 2 3 ears and 6 nodes.
This means we have one inner triangle containing 3 nodes with degree 2, each of them
adjacent to two '0's.

Case 3 #0 ≥ 3 and more than 6 nodes.
Let's look at the dual tree. We start at an arbitrary inner node. If the node has
degree 2 and is adjacent to a leaf or it has degree 3 and is adjacent to two leaves,
we already have the �rst occurrence and our �rst step will be away from the leaves.
Otherwise we have at least 2 choices for the �rst step without stepping onto a leaf.
Now we start walking through the tree according to the following rules:

• If we arrive at a node with degree 2 adjacent to a leaf or at a node with degree 3
adjacent to 2 leaves, we stop.

• From a node with degree 2, we step to the adjacent node where we haven't been
yet.

• From a node with degree 3, we step to the adjacent node where we haven't been
yet and which is not a leaf. If we have two possibilities we choose the leftmost
one.

Since the dual tree is �nite and has no loops we stop after a �nite number of steps. If
we had a choice in the beginning, we started a walk in both directions. So in the end
we either started with one of the interesting nodes and stopped in one, or we walked
in di�erent directions and stopped at an occurrence of an interesting node for each
direction. This means we have at least two occurrences and the sum of isolated '1's
and nodes with degree 2 with two adjacent '0's is always at least 2.

Remark 5.5 Lemma 5.4 shows that #1 + #2 ≥ 2 for every degree sequence.

Lemma 5.6

Every triangulation with #0 ≥ 3 ful�lls

#0 ≤
⌊
n−#1

2

⌋
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Proof. #0 ≥ 3 means we have at least 1 inner triangle. We know that every node on an inner
triangle must have a degree of at least 2. Furthermore we know that the number of inner
triangles is #0− 2.

The number of nodes on inner triangles is minimal if we have only one big block where all
inner triangles share at least one edge. In this case there are exactly #0− 2 + 2 = #0 nodes
on inner triangles. So we know:

#0 ≤ {nodes on inner triangles}
≤ #2+

= n−#0−#1
2#0 ≤ n−#1

#0 ≤
⌊
n−#1

2

⌋

Lemma 5.7

Let T be a triangulation with separated inner triangles, where the nodes on the inner triangles

are not the nodes with highest degrees. Then there exists a triangulation with separated inner

triangles and the same degree sequence, where the nodes incident to the inner triangles do have

the highest degrees.

Proof. Let u be the node with minimum degree on an inner triangle and k an isolated big
node with highest degree. The remaining nodes on the inner triangle are v and w. If u is
not unique, choose the node with the most incident ears. deg(u) has to be less than deg(k),
otherwise there is nothing to show. Since u is incident to an inner triangle deg(u) has to be
at least 2 and therefore deg(k) ≥ 3. This means that k has at least one '1' in its wedge.

Case 1 u has a wedge (possibly empty). Then we can easily move deg(k) − deg(u) nodes
from the wedge of k to the wedge of u or to the incident ear respectively. After the
transformation we have deg(unew) = deg(kold) and deg(knew) = deg(uold).

Case 2 u has no wedge (not even an empty one), but {v, w} is incident to an ear.
Now we can use Transformation 3.8.4 to �ip the partial triangulation from {u, v} and
the ear incident to {v, w} therefore u has an incident ear and we are in Case 1.

Case 3 u has no wedge and the inner triangle has no incident ear. This splits up into 2 sub
cases:

• There exists an isolated '1' in the triangulation. Use Lemma 5.3 and go to the
triangulation where the inner triangle is oriented. Then v and w have only one
wedge with the same orientation therefore u is incident to an ear and we have
Case 1 again.

• There exists no isolated '1', use Lemma 5.4 to show that there exists at least one
inner triangle with 2 incident ears. This means the node between the ears has
degree 2 which is less or equal than deg(u) and is incident to more ears than u.
This would be a contradiction to the choice of u.

Iterate this for all isolated big nodes.
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Theorem 5.8

Let T be a triangulation with separated inner triangles which ful�lls #3+ ≥ 3(#0− 2). Then
there exists a triangulation T ′ with the same degree sequence and separated inner triangles,

where the nodes with highest degrees are incident to the inner triangles and the inner triangles

are oriented.

Proof. From Lemma 5.7 we know that there exists a triangulation T ′ where the biggest nodes
are on inner triangles. According to the number of big nodes this means that every node on
an inner triangle has a degree greater or equal to 3. So every node on an inner triangle has a
wedge. Therefore every inner triangle has to be oriented.

5.2 Explicit Construction for Separated Inner Triangles

Inspired from the previous section we now provide a construction for every sequence of non-

negative integers ful�lling 5 ≤ #0 ≤
⌊

n−#1
2

⌋
, #3+ ≥ 3(#0− 2), (3.3),(3.4), (3.8) and (3.10).

Let S = {v1, . . . , vn} be a sequence of nonnegative integers in decreasing order, ful�lling these
conditions, k = #0 − 2 and l so that vl ≥ 2 and vl+1 < 2, B = {v1, . . . , v3k} be a sequence
containing the 3k biggest nodes and P = {v3k+1, . . . , vl} be the sequence containing the
(pseudo) big nodes left (the sequences contain 'nodes' represented by their degrees). Partition
B into groups of 3 (|B| = 3k). Each group now represents an inner triangle.

Now B = {{v1
1, v

1
2, v

1
3}, {v2

1, v
2
2, v

2
3}, . . . , {vk

1 , v
k
2 , v

k
3}} and P = {ui |1 ≤ i ≤ l − 3k}.

Geometrically we arrange the inner triangles in a row, always connecting vi
2 and vi+1

1 for
1 ≤ i < k. Each node from B has its one wedge �lled with the needed '1's. At the end of the
row the big nodes, which are not contained in B, are positioned in a zigzag. The triangulation
starts with an ear at the leftmost node.
After the �rst ear we get k blocks

vi
1,

deg(vi
2)−3︷ ︸︸ ︷

1, . . . , 1 , for i = 1, . . . , k (5.1)

then the zigzag with the isolated big nodes appears:

If l
2≡ 3k:

u1,

deg(u2)−2︷ ︸︸ ︷
1, . . . , 1 , u3, . . . , ul−3k−1,

deg(ul−3k)−2︷ ︸︸ ︷
1, . . . , 1 , 1, 0, ul−3k, 1, . . . , 1︸ ︷︷ ︸

deg(ul−3k−1)−2

, ul−3k−2, . . . , u2, 1, . . . , 1︸ ︷︷ ︸
deg(u1)−2

,

(5.2)

If l
2
6≡ 3k:

u1,

deg(u2)−2︷ ︸︸ ︷
1, . . . , 1 , u3, . . . , ul−3k−2,

deg(ul−3k−1)−2︷ ︸︸ ︷
1, . . . , 1 , ul−3k, 0, 1, 1, . . . , 1︸ ︷︷ ︸

deg(ul−3k)−2

, ul−3k−1, . . . , u2, 1, . . . , 1︸ ︷︷ ︸
deg(u1)−2

,

(5.3)
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Going back to the �rst zero underneath the row we �nd these blocks:

vi
2, 1, . . . , 1︸ ︷︷ ︸

deg(vi
3)−3

, 1, 0, vi
3, 1, . . . , 1︸ ︷︷ ︸

deg(vi
1)−3

, for i = k down to 1 (5.4)

We add the last isolated '1' and are done. Finally we have an ordered degree sequence like
this:

[0, (5.1), (5.2) or (5.3), (5.4), 1]

Figure 5.2 shows a sample triangulation.

v
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v
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v
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2
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2v
3

2v
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1
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k
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v
k

2
v
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k

u
1

u
2

u
l−3k

0
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1

1

1

1

1

1

1
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1

1 1 1
1

1
1 1

1 1
1

1
1

1

1 1 1 1 1 1

1 1 1
1

1
1 1 1 1

1 11

1 1 1 1

Figure 5.2: Canonical triangulation for separated inner triangles

Proposition 5.9

The described sequence is an ordered degree sequence for S.

Proof. First we show that the given sequence is a legal ordered degree sequence.
There are two big parts in the resulting triangulation: the row of inner triangles (5.1) and
(5.4) and the zigzag from the nodes in S (5.2) or (5.3) respectively.

As in Figure 5.2 the inner triangles are arranged in a row where vi
2 and vi+1

1 are connected.
The sequence starts at the leftmost '0', then every instance of (5.1) describes the wedge of
the second node on the inner triangle. After that we are at the last node in the wedge of vk

2 .
vk
2 is connected to u1. Now the zigzag starts. Obviously this is a part of an ordered degree
sequence. It ends with the last '1' in the wedge of u1.

As u1 is connected to vk
2 we start with (5.4). Every instance of (5.4) describes the part on the

'base' of the inner triangles which means vi
2 followed by the wedge of vi

3, the isolated '1', the
according '0', vi

3 itself and the wedge of vi
1. At the end v

1
1 is missing one node, which is the

isolated '1' according to the �rst zero.

After that all nodes according to the inner triangle i have '�lled' wedges which means, they
have the expected degree. As 2 edges come from the inner triangle, one goes to the next
triangle or to an isolated '1' respectively and the rest is �lled with the (deg(vi

j) − 3) '1's in
the wedge. All other big nodes are in the zigzag where they obviously get the right degree.

Now we show that the constructed ordered degree sequence uses exactly the numbers from
the given sequence S. Let n be the length of the sequence, that is the number of nodes. From
the construction we know that #i has to be the same in the constructed degree sequence and
the given sequence ∀i ≥ 2. Also #0 is the same because of the construction. Let us count the
'1's in the constructed ordered degree sequence:
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from (5.1) and (5.4)
∑
v∈B

deg(v)− 3

from (5.2) or (5.3)
∑
v∈P

deg(v)− 2

the isolated '1's from (5.4) #0

this sums up to∑
v∈B

(deg(v)− 3) +
∑
v∈P

(deg(v)− 2) + #0 =
∑

v∈(B∪P )

(deg(v)− 2)− |B|+ #0

=
∑

v∈(B∪P )

(deg(v)− 2)− 3(#0− 2) + #0

=
∑

v∈(B∪P )

(deg(v)− 2)− 2#0 + 6

so
#1 =

∑
v∈(B∪P )

(deg(v)− 2)− 2#0 + 6

Since B ∪ P contain all (pseudo) big nodes this is exactly the constraint (3.5).

Therefore we can conclude:

Corollary 5.10

Given a sequence of nonnegative integers S = {v1, . . . , vn} with 5 ≤ #0 ≤
⌊

n−#1
2

⌋
and

#3+ ≥ 3(#0 − 2), there exists a triangulation with degree sequence S if and only if it ful�lls

the constraints (3.3) and (3.4). There also exists a triangulation which is build as a chain of

separated inner triangles.

Remark 5.11 If we allow v1
1,v

k
2 and all vi

3 to be equal to 2 we only have to move the zigzag
between the �rst two inner triangles, the rest of the construction works even with the lower
number of big nodes.

Therefore for every sequence with #0 ≥ 5 which ful�lls #3+ ≥ 2(#0− 3), #2+ ≥ 3(#0− 2)
and the simple constraints there exists a triangulation with that degree sequence.

5.3 Small Blocks of Inner Triangles

In this chapter we look at triangulations where inner triangles are either separated or have a
common edge (which means there are no inner triangles sharing only one node). We assume
that there are more big nodes than nodes on inner triangles. As all other cases are already
covered in the previous sections we assume #3+ < 3(#0− 2) and #0 ≥ 5.

De�nition 5.12 (block of inner triangles)
We call inner triangles joined through common edges a block of inner triangles.
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De�nition 5.13 (oriented block of inner triangles)
Analog to oriented separated inner triangles, we can de�ne oriented blocks of inner triangles

as blocks of inner triangles, where all the wedges of the nodes on the block either point in
clockwise or counterclockwise direction. Nodes with empty, unbounded wedges are ignored.

De�nition 5.14 (inner inner triangle)
If each edge of an inner triangle is shared with another inner triangle, we call it an inner inner

triangle. In the dual tree an inner inner triangle corresponds to a node with degree 3 whose
neighbours also have degree 3.

De�nition 5.15 (wedge-block)
A wedge-block of inner triangles is similar to a normal block of inner triangles, but this time
triangles can be connected through only a single node (such connections create inner wedges
within the block). A wedge-block can have more than one inner wedge.

Inspired from Lemma 5.7 we state:

Lemma 5.16

Let T be a triangulation with no two inner triangles sharing only one node. Then there exists

a triangulation T ′ with the same degree sequence as T , where the nodes with highest degrees

are on inner triangles.

Proof. Let u be the node with highest degree not on an inner triangle, and v the node with
lowest degree on an inner triangle (if not unique, choose the one with the greatest number of
incident ears), v being on a block of inner triangles B. Suppose deg(u) to be greater than
deg(v) (otherwise there is nothing to show). Since v is on an inner triangle deg(v) ≥ 2 so
deg(u) ≥ 3. This means u has a nonempty wedge. Let v = v1, v2, . . . , vk be the clockwise
ordered nodes on B.

Case 1 v already has a wedge, even an unbounded or empty one. Then we easily move
deg(u)−deg(v) nodes from the wedge of u to the wedge of v. After the transformation
we have have deg(unew) = deg(vold) and deg(vnew) = deg(uold).

Case 2 v has no wedge, B is incident to an ear. Let {vi, vi+1} be the edge incident to an ear
with the smallest index i.

• v2, . . . , vi each has only one wedge. Now we can �ip the parttriangulation starting
at the edge {vi−1, vi} with the ear on edge {vi, vi+1} as in Transformation 3.8.4.
This transformation leaves the degrees as they are, but moves the ear one node
closer to v. Iterate this procedure till v is incident to the ear which leads to Case
1.

• ∃vk, 1 < k < i so that vk has two bounded wedges. Till we reach vk we use the
same procedure as before. Because of Lemma 5.4 there exists either an isolated '1'
or an inner triangle incident to two ears.
If there exists an isolated '1' we use Transformation 3.8.3. This moves the ear
one node closer to v.
Otherwise there exists an inner triangle incident to two ears. On this triangle we
have a node v̄ with deg(v) ≥ deg(v̄) = 2. Since v has no incident ear, this is a
contradiction to the choice of v.
Iterate this procedure till either v has an incident ear or we reach the previous
subcase.
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Case 3 v has no wedge and B has no incident ear. There has to be at least one node w on B
with two wedges.

From Lemma 5.4 we know that there exists either an isolated '1' or an inner triangle
incident to two ears. If there exists an isolated '1' we use Transformation 3.8.3. After
the transformation B is incident to an ear and we can use Case 2.

Otherwise there exists an inner triangle incident to two ears. On this triangle we have
a node v̄ with deg(v) ≥ deg(v̄) = 2. Since v has no incident ear, this would be a
contradiction to the choice of v.

Iterate this procedure till T ′ is reached.

Lemma 5.17

For every triangulation T , where inner triangles are either separated or share an edge where

all blocks of inner triangles are �lled, there exists a triangulation T ′ with the same degree

sequence where the blocks are oriented.

Proof. Let B be a non oriented block.

Case 1 There exists a node v on B with two bounded wedges.
From Lemma 5.4 we know that there either exists an isolated '1' or an inner triangle
with two incident ears. An inner triangle with two incident ears means one of the
nodes on the triangle has degree 2. So in T there exists an isolated '1'. Use Trans-
formation 3.8.3 to eliminate one of the bounded wedges. Iterate this procedure for
all nodes with two bounded wedges on B (after the transformation all nodes on inner
triangles again have degree ≥ 3 so there once more exists an isolated '1'). After the
transformations we are either done or in Case 2.

Case 2 All nodes on B have only one bounded wedge.
Since the bounded wedges are not oriented there have to be incident ears. Choose
one direction and use Transformation 3.8.4 to �ip all nondirected wedges which are
adjacent to an ear. Iterate this procedure till all wedges are oriented.

Remark 5.18 This lemma is also true for triangulations where at most one node on inner
triangles has got degree 2.

Inspired by these lemmata we will now provide a triangulation for every sequence with
2(#0− 2) < #3+ < 3(#0− 2).

5.4 Explicit Construction for Small Blocks of Inner Triangles

Given a sequence of nonnegative integers S = {v1, . . . , vn} in decreasing order,

B = {vi | vi ≥ 3}, k = |B|, if k
2
6≡ #0 we take the smallest entry away from B and keep in

mind that maybe vk+1 ≥ 3 but vk+1 /∈ B. Because of the previous sections we can assume
k < 3(#0− 2) and #0 > 5.
Let us de�ne b = k−#0

2 + 1, d = #0− 2 and m such that deg(vm) ≥ 2 and deg(vm+1) < 2.
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We now look at the case d ≤ 2b:
In this case we have l = d − b blocks with two inner triangles, and 2b − d separated inner
triangles. First we partition the set of big nodes

B = {{v1
1, v

1
2, v

1
3, v

1
4}, . . . , {vl

1, v
l
2, v

l
3, v

l
4}, {vl+1

1 , vl+1
2 , vl+1

3 }, . . . , {v
b
1, v

b
2, v

b
3}}

Again we build the ordered sequence out of smaller blocks:
After the �rst ear we get for 1 ≤ i ≤ l:

vi
1,

deg(vi
2)−3︷ ︸︸ ︷

1, . . . , 1 , 0, vi
2,

deg(vi
3)−3︷ ︸︸ ︷

1, . . . , 1 (5.5)

if m
2≡ k:

vk+1, vk+3, . . . , vm−2, vm (5.6)

if m
2
6≡ k:

vk+1, vk+3, . . . , vm−3, vm−1 (5.7)

for l + 1 ≤ i ≤ b− 1

vi
1,

deg(vi
2)−3︷ ︸︸ ︷

1, . . . , 1 (5.8)

and for the end of the "upper side":

vb
1,

deg(vb
2)−2︷ ︸︸ ︷

1, . . . , 1 , 0 (5.9)

Going back on the "lower side" we get for i from b down to l + 1

vi
2, 1, . . . , 1︸ ︷︷ ︸

deg(vi
3)−2

, 0, vi
3, 1, . . . , 1︸ ︷︷ ︸

deg(vi
1)−3

(5.10)

if m
2≡ k:

vm−1, vm−3, . . . , vk+2, 1, . . . , 1︸ ︷︷ ︸
deg(vk+1)−2

(5.11)

if m
2
6≡ k:

vm, vm−2, . . . , vk+2, 1, . . . , 1︸ ︷︷ ︸
deg(vk+1)−2

(5.12)

for i from l down to 2:
vi
3, 1, . . . , 1︸ ︷︷ ︸

deg(vi
4)−3

, 0, vi
4, 1, . . . , 1︸ ︷︷ ︸

deg(vi
1)−3

(5.13)

Finally:
v1
3, 1, . . . , 1︸ ︷︷ ︸

deg(v1
4)−3

, 0, v1
4, 1, . . . , 1︸ ︷︷ ︸

deg(v1
1)−2

, 0 (5.14)
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Figure 5.3: Example for the construction with 2b > d

Theorem 5.19

Given a sequence of nonnegative integers S = {v1, . . . , vn} with 5 ≤ #0 ≤
⌊

n−#1
2

⌋
and

2(#0 − 2) < #3+, there exists a triangulation with degree sequence S if and only if it ful�lls

the constraints (3.3) and (3.4).

Proof. The case 3(#0− 2) ≤ #3+ is already covered by Corollary 5.10.

Let's look at the case 2(#0−2) < #3+ < 3(#0−2). If there exists a triangulation it obviously
ful�lls the constraints.

For the other direction we show that the sequence constructed above is a legal ordered degree
sequence and exactly uses the integers of S. The only constraint was d ≤ 2b and for the
construction we need l >= 1. d ≤ 2b evaluates to #0− 2 ≤ k −#0 + 2. For an easier way to

write the following, we introduce the value b and set b to 1 if #3+
2
6≡ #0 and zero otherwise.

Now we can write k = #3+ − b. So we need 2(#0 − 2) ≤ #3+ − b which is provided by
2(#0− 2) < #3+.

Look at the other constraint (l ≥ 1):

l = d− b

= #0− 2−
(
k −#0

2
+ 1
)

> #0− 2− 3(#0− 2)−#0
2

− 1

= #0− 2−#0 + 3− 1
= 0

This means our construction works for all sequences with 2(#0− 2) < #3+ < 3(#0− 2).

Figure 5.3 shows the constructed triangulation. We only use big nodes from the given se-
quence, and from the construction follows, that the number of used '0's is equal to #0. We
only have to prove that we have enough '1's.
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in block amount of needed '1's
(5.5) deg(vi

j)− 3 j ∈ {2, 3}, 1 ≤ i ≤ l
(5.8) deg(vi

2)− 3 l + 1 ≤ i ≤ b− 1
(5.9) deg(vb

2)− 2
(5.10) deg(vi

3)− 2 l + 1 ≤ i ≤ b
(5.10) deg(vi

1)− 3 l + 1 ≤ i ≤ b
(5.11) or (5.12) deg(vk+1)− 2

(5.13) deg(vi
j)− 3 j ∈ {1, 4}, 2 ≤ i ≤ l

(5.14) deg(v1
4)− 3

(5.14) deg(v1
1)− 2

The amount sums up to:

l∑
i=1

4∑
j=1

(deg(vi
j)− 3) +

b∑
i=l+1

3∑
j=1

(deg(vi
j)− 3) + 1 + (b− l) + 1 + deg(vk+1)− 3 + 1

=
k+1∑
i=1

(deg(vi)− 3) + b− l + 3

l=d−b=
k+1∑
i=1

(deg(vi)− 3) + 2b− d+ 3

=
k+1∑
i=1

(deg(vi)− 3) + k −#0 + 2−#0 + 2 + 3

=
k+1∑
i=1

(deg(vi)− 3) + (k + 1)− 1− 2#0 + 7

=
k+1∑
i=1

(deg(vi)− 2)− 2#0 + 6

=
∑
i≥2

(i− 2)#i− 2#0 + 6

which is exactly the number of '1's we get from constraint (3.5).

Remark 5.20 Again we are able to allow v1
1 and vl

4 to be equal to 2. Therefore for every
sequence with #0 ≥ 5 which ful�lls #3+ ≥ 2(#0 − 3), #2+ ≥ 2(#0 − 2) and the simple
constraints there exists a triangulation with this degree sequence.
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6 No Twos (#2 = 0)

In this chapter we will provide full information for the case #2 = 0. Every sequence in this
chapter is assumed to ful�ll the basic constraints (3.3), (3.4), (3.8) and (3.11) (which evaluates
to #1 ≥ 2 for #2 = 0).
Chapter 4 already provides full information for #0 ∈ {2, 3, 4} therefore only sequences with
#0 ≥ 5 are considered. Furthermore Theorem 5.19 proves that a triangulation exists for every
sequence ful�lling the basic constraints and the additional constraint #3+ > 2(#0−2). So we
only consider sequences ful�lling the basic constraints, #2 = 0, #0 ≥ 5 and #3+ ≤ 2(#0−2).
We will split it up into several sections, starting with the easy part and ending up with a
canonical triangulation.

6.1 (u,v,0) - Only Zeros and Ones

Proposition 6.1

There exists no triangulation with #0 ≥ 5 and #2+ = 0

Proof. From the basic constraints we know that −6 =
∑

i≥0 (i− 2)#i = −2#0−#1 and with
#0 ≥ 5 follows −6 = −2#0−#1 ≤ −12. Therefore there could be no such triangulation.

6.2 (u,v,0,r) - Zero, One, Three

Now we consider sequences where the highest degree is 3. From the previous section we know
that #3 > 0 for every valid sequence of this type.

Observation 6.2 Since the highest degree is 3, there could be no wedge-blocks in the triangu-
lation, because a wedge-block would always yield a node with degree ≥ 4.

Lemma 6.3

Let T be a triangulation with no wedge-blocks and k be the number of nodes on inner triangles.

Then k
2≡ #0.

Proof. We prove this by induction on #0.

For #0 = 2 there are no inner triangles and therefore 0
2≡ 2.

Now we assume #0 ≥ 2 and k
2≡ #0. Since we know that the number of inner triangles equals

#0 − 2 every new inner triangle yields an additional node with degree 0 and every new '0'
yields an additional inner triangle. Now we add an inner triangle to the triangulation and
receive T with #0 = #0 + 1. When adding an inner triangle there are two possibilities:

• the new inner triangle shares one edge with an old inner triangle. This results in 1
additional node on inner triangles (k = k + 1)
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• the new inner triangle is separated. Then we get 3 new nodes on inner triangles (k =
k + 3)

Both cases result in k
2≡ k + 1 and we can conclude

k
2≡ k + 1

2≡ #0 + 1
2≡ #0

Observation 6.4 Since we only consider sequences with #4+ = 0 and #2 = 0 all nodes on
inner triangles have degree 3.

Observation 6.5 If #3
2
6≡ #0 there exists at least one node with degree 3 which is not on an

inner triangle and therefore is connected to an additional node with degree 1 ⇒ #1 ≥ 3.

Lemma 6.6

Every triangulation with #2 = 0 and highest degree 3 ful�lls #3 ≥ 2(#0− 2)

Proof. We know that every such triangulation ful�lls

n = #0 + #1 + #3

and
2(n− 3) = #1 + 3#3

If we combine these two we get

#1 + 3#3 = 2(#0 + #1 + #3− 3)
#3 = 2#0 + #1− 6

= 2(#0− 2) + (#1− 2)
≥

(#1≥2)
2(#0− 2)

Observation 6.7 On the other hand, the proof shows that every sequence of the form (u, v, 0, r)
which ful�lls the basic constraints, ful�lls #3 ≥ 2(#0− 2).

Lemma 6.8

Every sequence of nonnegative integers with a degree vector of the form (u, v, 0, r) which ful�lls

the basic constraints, #3 = 2(#0− 2) and #0
2≡ #3 is a valid degree sequence.

Proof. Let's consider the case #3 = 2(#0−2) and #0
2≡ #3. To prevent the need of additional

'1's we build a triangulation with as few isolated big nodes as possible. This means that we
put all '3's on inner triangles. Equation (3.6) shows that this is possible (consider that there
are no wedge-blocks possible) and we get #0−2

2 blocks of inner triangles (this is an integer

because #0
2≡ #3 = 2(#0 − 2) which means it is even). Furthermore this equation tells us

that every block consists of exactly two inner triangles. The blocks are put into a row as in
Figure 6.1. Again the only thing which is left to show is that the basic constraints provide
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the correct #1. If we look at the triangulation we see that the construction needs exactly two
'1's. Looking at the basic constraints we get the following:

−6 =
∑
i≥0

(i− 2)#i

= −2#0−#1 + #3
= −2#0−#1 + 2(#0− 2)
= −#1− 4

#1 = 2

0

0

0

1

3

3

3

3

0

0

3

3

3

3

0

0

3

3

3

3

0

1

Figure 6.1: Triangulation for the case (u, v, 0, r)

Remark 6.9 The case #0
2
6≡ #3 and #3 > 2(#0− 2) is covered by Theorem 5.8 or Theorem

5.19 which proves that there always exists a triangulation for such sequences.

Lemma 6.10

There exists no triangulation with a degree vector of the form (u, v, 0, r) with #0
2
6≡ #3 and

#3 = 2(#0− 2)

Proof. From Lemma 6.3 we know that there exists at least 1 node with degree 3 which is not
incident to an inner triangle. Let k be the nodes incident to blocks of inner triangles, then
k ≤ 2(#0−2)−1. b being the amount of blocks of inner triangles we can conclude from (3.6):

b =
k −#0 + 2

2

≤ 2#0− 5−#0 + 2
2

=
#0− 3

2

Now we calculate the average amount of inner triangles per block:

amount inner triangles

amount blocks
≥ 2(#0− 2)

#0− 3
> 2

This means that there exists at least one block with at least 3 inner triangles. But such a block
can only exist if there are nodes with degree ≥ 4, a contradiction to the form (u, v, 0, r)
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Lemma 6.11

Every sequence with a degree vector of the form (u, v, 0, r) ful�lling the simple constraints

ful�lls

#1 ≥ 3⇔ #3 > 2(#0− 2)

Proof. Combining the simple constraints (3.3) and (3.4) we get:

#1 + 3#3 = 2(#0 + #1 + #3− 3)
#3 = 2#0 + #1− 6

= 2(#0− 2) + (#1− 2)
#3− 2(#0− 2) = #1− 2

Which directly leads to
#1 ≥ 3⇔ #3 > 2(#0− 2)

Theorem 6.12

A sequence with a degree vector of the form (u, v, 0, r) is a degree sequence if and only if it

ful�lls the basic constraints and

(
#3

2
6≡ #0

)
⇒ #1 ≥ 3

Proof. Let S be a sequence of the given form ful�lling the basic constraints. We have 2 cases:

Case 1 #3
2≡ #0 : The combination of Observation 6.7 and Lemma 6.8 proves that S is a

degree sequence.

Case 2 #3
2
6≡ #0 : If #1 ≥ 3 Lemma 6.11 provides #3 > 2(#0 − 2) and Theorem 5.8 and

Theorem 5.19 show that in this case S is a degree sequence.

Now consider a triangulation with a degree sequence S with a degree vector of the form
(u, v, 0, r). Since S ful�lls the basic constraints, Lemma 6.6, Lemma 6.10 and Lemma 6.11

provide that

(
#3

2
6≡ #0

)
⇒ #1 ≥ 3.

This means we have full information for sequences with degree vectors of the form (u, v, 0, r).

6.3 (u,v,0,r,0,. . . ,0,1) - The Big One

Now we go one step further and allow one node with degree ≥ 4. Since we already have full
information on degree vectors of the form (u, v, 0, r), we can assume that there is exactly one
node with degree ≥ 4. Let's call the number of wedges in blocks of inner triangles w.

Let i be the degree of the node with degree ≥ 4.

Lemma 6.13

Let S be a sequence with a degree vector of the form (u, v, 0, r, 0, . . . , 0, 1) with i the degree of

the big node. If S ful�lls the basic constraints it ful�lls #3 ≥ 2(#0− 1)− i
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Proof. S ful�lls the basic constraints which include

n = #0 + #1 + #3 + 1

and
2(n− 3) = #1 + 3#3 + i

combining these two we get:

2#0 + 2#1 + 2#3 + 2− 6 = #1 + 3#3 + i

(#1− 2) + 2(#0− 1) = #3 + i

#3 ≥ 2(#0− 1)− i

Remark 6.14 If #3 ≥ 2(#0 − 2) the number of big nodes is bigger than 2(#0 − 2) + 1 and
Chapter 5 already provides full information.

Lemma 6.15

For every valid degree sequence S with a degree vector of the form (u, v, 0, r, 0, . . . , 0, 1) with

u ≥ 5 there exists a triangulation with the biggest node incident to an inner triangle.

Proof. Since S is a valid degree sequence, there exists a triangulation T with degree sequence
S. Let a be the node in T with i = deg(a) ≥ 4. If a is incident to an inner triangle we are
done.

If a is a separated big node, it has at least i − 2 ones in his wedge. Since #0 ≥ 5 there are
inner triangles and every block has at least one incident node who has a wedge, let's call it b.
Because of the form of the sequence this node has degree 3 and we move i− 3 ones from the
wedge of a to the wedge of b. This transformation leaves the degree sequence untouched and
provides a triangulation where the biggest node is incident to an inner triangle.

6.3.1 Without a Wedge-Block

Let's consider sequences with n
2≡ #1. If we look at (3.7) we see that this means that there

is an even number of wedges in blocks of inner triangles.

We will now present a canonical triangulation for every sequence with a degree vector of the

form (u, v, 0, r, 0, . . . , 0, 1) with n
2≡ #1 and #3 < 2(#0 − 2) (because #3 ≥ 2(#0 − 2) is

already handled in Chapter 5). Of course we can only provide a triangulation for sequences
ful�lling the basic constraints.

Since we have so few big nodes, we put all of them on inner triangles. (3.7) tells us, that
the number of wedges in blocks of inner triangles equals #3 + 1 + #0 mod 2. Wedge-blocks
make things di�cult and for every double-wedge we would need an additional 1. Therefore

and because of n = #0 + #1 + #3 + 1 and n−#1
2≡ 0 we decide that there will be no wedge

in this triangulation. Figure 6.2 shows the triangulation we are building.

(3.6) tells us, that we can now calculate the number of blocks of inner triangles:

b =
#3 + 1−#0

2
+ 1
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Figure 6.2: Triangulation for the case (u, v, 0, r, 0, . . . , 0, 1) without the need of a wedge

To construct a valid triangulation, we have to ensure that b ≥ 1. This means that #3+1 ≥ #0
which is true for every sequence ful�lling the basic constraints including #0 ≤ n−#1

2 .

Let's look at the number of triangles per block. Using #3 < 2(#0 − 2) we can rewrite the
calculation of the blocks like this:

#3 + 1−#0
2

+ 1 <
2(#0− 2) + 1−#0 + 2

2

=
#0− 1

2

The number of triangles is #0−2 and therefore we have an average of more than two triangles
per block. We will construct one big block with the big node on it and the rest as blocks of 2
inner triangles per block.

Let's see what else is guaranteed by the basic constraints. Looking at (3.5) we see that

−6 = −2#0−#1 + #3 + (i− 2)
#3 = 2(#0− 2) + (#1− 2)− (i− 2) (6.1)

combining this again with the calculation for the amount of blocks we get

b =
2(#0− 2) + (#1− 2)− (i− 2) + 1−#0

2
+ 1

=
#0 + #1− i− 3

2
+ 1

According to our planned construction we have 2(b− 1) blocks with 2 triangles. This means
that the number of inner triangles on the big block can be calculated and written like this:

#0− 2− 2(b− 1) = #0− 2− 2
(

#0 + #1− i− 3
2

)
= i+ 1−#1
= 2 + (i− 3)− (#1− 2)

Now we look at this formula the right way and see, that this means that for every "missing" '1'
(to �ll the wedge of the big node) the big block has one additional inner triangle.

Since the number of blocks is calculated from the existing number of big nodes, we ensure to
have enough big nodes to "�ll" the inner triangles. Now the last question is if we have enough
'1's. Two are used for the beginning and the end of the row of blocks. The small blocks don't
need a '1' (there are only nodes with degree 3 on these blocks) and the big block is constructed
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in dependency of #1 which is ensured by the basic constraints. Therefore this construction
leads to a triangulation for every such sequence. #1 can't even be too big because of:

(#1− 2) = #3 + i− 2(#0− 1)
< 2(#0− 2) + i− 2(#0− 1)
= i− 2

(#1− 2) ≤ i− 3

Therefore we just proved:

Proposition 6.16

Every sequence with a degree vector of the form (u, v, 0, r, 0, . . . , 0, 1) with u ≥ 5, ful�lling the

basic constraints and n
2≡ #1 is a valid degree sequence.

6.3.2 With a Wedge-Block

Again we consider only sequences with #3 < 2(#0 − 2), this time with n
2
6≡ #1 which is

equivalent to #3
2≡ #0. Like before we construct a canonical triangulation where all big

nodes are on inner triangles. As before we put all big nodes on inner triangles. Looking at
(3.7) we see that this means that the number of wedges in blocks of inner triangles has to
be odd and therefore at least 1. Again we try to use as few wedge-blocks as possible, which
means one wedge-block in this case.

(3.6) tells us, that we have #3+1−#0−1
2 + 1 = #3−(#0−2)

2 blocks of inner triangles. To ensure
that our construction is possible the number of blocks has to be at least 1.

#3 + 1−#0− 1 ≥ 0
#3 ≥ #0

Since #0
2≡ #3 it's either #3 ≤ #0− 2 or #3 ≥ #0. The basic constraint #0 ≤ n−#1

2 leads
to:

#0 ≤ #0 + #3 + 1
2

2#0 ≤ #0 + #3 + 1
#0− 1 ≤ #3

Therefore we always have at least 1 block in our triangulation.

Since we have only one node with degree ≥ 4 all but one block cannot have more than 2 inner
triangles. Because of #2 = 0 a separated inner triangle would lead to an additional '1', so we
construct blocks with at least two inner triangles (meaning all but one block has exactly two
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inner triangles). Let's look at the inner triangles in the big block (which is a wedge-block):

#0− 2− 2
(

#3− (#0− 2)
2

− 1
)

= #0− 2− (#3− (#0− 2)) + 2

= #0−#3 + #0− 2
= 2#0−#3− 2
= 2#0− (2(#0− 2) + (#1− 2)− (i− 2))− 2
= 2#0− 2#0 + 4− (#1− 2) + (i− 2)− 2
= 2 + i−#1 (6.2)

≤ i

On the other hand with #3 < 2(#0− 2):

2#0−#3− 2 > 2#0− 2− (2(#0− 2))
= 2

So for l being the number of inner triangles in the big block we know 3 ≤ l ≤ i.
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Figure 6.3: Triangulation for the case (u, v, 0, r, 1)

As illustrated in Figure 6.3 the big block starts with two inner triangles on the one side of the
wedge. The other side of the wedge is either again an attached block with less or equal than
two inner triangles (if i −#1 ≤ 2) or a fan of inner triangles as in Figure 6.4. In the second
case we need an additional '1' (#1 ≥ 3) for the node next to the wedge.

In the case i = 4 the basic constraints guarantee that we have either 4 inner triangles on the
big block (in this case we don't need an additional '1') or #1 ≥ 3.

For the case i > 4 our construction needs #1 ≥ 3 (either to �ll the wedge of the big node or
for the '3' next to the wedge).

0 0

00

0

1

5+3

3 3

3

3

3

3

0

3113 1

0

0

0

1

3

3

3

333

0
1

Figure 6.4: Triangulation for the case (u, v, 0, r, 0, . . . , 0, 1) with a wedge needed and biggest
degree > 4
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Lemma 6.17

Every sequence of this form ful�lling the basic constraints and (i ≥ 5⇒ #1 ≥ 3) is a valid

degree sequence.

Proof. Again we have 2 cases:

Case 1 i = 4 : We look at the construction above. The number of blocks is calculated from
the number of existing big nodes, therefore the only thing we need to show is that we
have exactly the needed number of '1's.

We need two '1's at the beginning and the end of the row of blocks. The small blocks
don't need additional '1's. On the big block we need i− 2− (i−#1) = #1− 2 '1's to
�ll the degree of the big node (compare equation (6.2)).

Case 2 i ≥ 5 : (6.2) ensures that there are either enough inner triangles or '1's to �ll the degree
of the biggest node. The constraint #1 ≥ 3 is only needed to ensure the additional
'1' for the '3' next to the wedge. If there are less than i− 1 inner triangles on the big
node, this constraint is provided by the basic constraints.

Since we want full information, we now need to show that a sequence of this form with #4 = 0
and #1 = 2 is not a legal degree sequence, even if it ful�lls the basic constraints.

Lemma 6.18

In every triangulation with #2 = 0, n
2
6≡ #1 and #4 = 0 there exist at least 3 nodes with

degree 1.

Proof. Because of n
2
6≡ #1 there exists either an isolated big node (which directly leads to an

additional '1') or at least one wedge-block.

Let's look at one such wedge-block. Let a be the node connecting the two parts of the wedge.
Then deg(a) ≥ 4 and because of #4 = 0 it has degree ≥ 5. So there is either a diagonal from
outside of the block incident to a or at least one part of the wedge-block has more than 2
inner diagonals incident to a.

If there is a diagonal from outside the block incident to a, because of #2 = 0 this diagonal
leads to an additional '1'.

If there are more than 2 inner diagonals from one part incident to a, we have either the node
next to the wedge with an attached '1' (which is an additional '1'), or the inner triangle next
to the wedge is an inner-inner-triangle and therefore leads to an additional '1'.

If there is more than one wedge incident to a, the part between two of the wedges again leads
to an additional '1'.

So in every case we get #1 ≥ 3.

Therefore every valid degree sequence of this form ful�lls our constraints, and if a sequence
ful�lls the constraints we can provide a canonical triangulation. So �nally we have full infor-
mation on sequences with degree vectors of the form (u, v, 0, r, 0, . . . , 0, 1).
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6.3.3 An Example for the Need of our Constraint

Let's consider the sequence (10, 2, 0, 10, 0, 0, 0, 0, 1). n = 23
2
6≡ #1 which means we are in

the second case and our constraint claims #1 ≥ 3 which is not true for this sequence. Since
we didn't get an additional '1' we need to put all big nodes on inner triangles (otherwise it
wouldn't be a valid triangulation). Looking at the number of blocks we get 11−8−w

2 = 3−w
2

where w is the number of wedge-blocks. The number of blocks is at least 1 and therefore the

number of wedge-blocks is ≤ 1. We also know that w
2≡ (11− 10) and therefore has to be 1.

The big node (with degree 8) has to be incident to the wedge. Since there are no additional
'1's, all slots of the biggest node need to be �lled by inner triangles. At least at one side of
the wedge there need to be more than 2 inner triangles. The node on that side next to the
wedge has either degree 2 or we need an additional '1'. Neither is possible and therefore no
triangulation is possible.

6.4 The General Case

In this section we reduce our constraints to #2 = 0, but since some sub cases are already
handled by the previous sections, we consider only sequences with #4+ ≥ 2 and #3+ ≤
2(#0− 2). Of course the basic constraints must still be ful�lled.

As before we will present canonical triangulations where all big nodes are incident to inner
triangles with one big block of inner triangles and the remaining blocks with 2 inner triangles.
The number of wedge-blocks is called w ∈ {0, 1}, b the number of blocks and #bB is the
number of nodes incident to the big block.

Let's recall some formulas:

b =
#3+ −#0− w

2
+ 1

#bB = #3+ − 4(b− 1)
= #3+ − 2#3+ + 2#0 + 2w
= 2#0−#3+ + 2w

w
2≡ #3+ −#0
2≡ n−#1

6.4.1 Without a Wedge-Block

Again we start with the easier part where we don't need a wedge-block to put all big nodes
on inner triangles. As said above, the triangulation will consist of 1 big block and as much
blocks with 2 inner triangles, as needed. The big nodes will be distributed over the blocks in
descending order, where the big block is the leftmost block (see Figure 6.5).

Now we need to show that this triangulation can be build from every sequence which ful�lls
our constraints.

First we have to check if the number of blocks is guaranteed to be at least 1. From (3.9) we

know that #3+ ≥ #0 therefore #3+−#0
2 + 1 ≥ 1.
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Figure 6.5: Triangulation for the case #2 = 0 with no wedge needed

Now we look closer on the big block. The internal structure of the block is a zigzag between
big nodes with degree ≥ 4. Let B = {b1, . . . , b#bB} be the set with the #bB biggest nodes
in descending order. We start the block with b#bB as the ear of the block. Then we start
the zigzag with b#bB−1 as "isolated '1'". The �rst big node in the internal zigzag is b1 whose
"wedge" (in the internal zigzag) is �lled with the deg(b1) − 4 smallest remaining nodes from
B. The next big node in the zigzag (now on the lower side) is b2 �lled with the deg(b2) − 4
smallest remaining nodes from B. We continue like that till we �nish with an "isolated '1'"
in the internal zigzag and the other ear of the inner block.

If deg(b#bB) ≥ 4 everything is �ne, otherwise we need to show that we have enough nodes
with degree ≥ 4 for the zigzag. This means the number of nodes with degree 3 on the big
block must be less or equal to

∑
i≥4 (i− 4)#i + 4. If the number of nodes with degree 3 is

exactly that amount, every node on the zigzag is �lled and we cannot extend the zigzag. If
it's smaller some of the nodes on the zigzag need additional '1's and eventually some "�lling
'3's" are nodes with degree greater than 3. Let's calculate the number of '3's on the big block
(we still assume that all nodes with degree ≥ 4 are on the big block):

#{3s on the big block} = #3− 4(b− 1)
= #3− 2#3+ + 2#0
= 2#0− 2(n−#0−#1) + #3
= 2#0− 2n+ 2#0 + 2#1 + #3
= 4#0 + 2#1 + #3− 2n

Now we need to reformulate the upper bound for the allowed number of '3's:∑
i≥4

(i− 4)#i+ 4 =
∑
i≥4

i#i− 4(n−#0−#1−#3) + 4

= 2(n− 3)−#1− 3#3− 4n+ 4#0 + 4#1 + 4#3 + 4
= 4#0 + 3#1 + #3− 2n− 2

So our constraint is:

4#0 + 2#1 + #3− 2n ≤ 4#0 + 3#1 + #3− 2n− 2
0 ≤ #1− 2

2 ≤ #1
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but this is already a basic constraint (#1 + #2 ≥ 2) and therefore we don't need a further
constraint to make our big block construction work.

At last we look at the needed amount of '1's. To know how much '1's we need, we �rst have
to calculate how much of the degrees of the big nodes are already �lled from diagonals in the
blocks and between them. Every small block has 5 diagonals in the block and 1 connecting
diagonal per block. Which means we have

(5 + 1)(b− 1) = 3(#3+ −#0)

degrees from the small blocks (the isolated '1' from the end is included in this calculation).

Looking at the big block we have 2#bB−3 diagonals in the big block, one connecting diagonal
and the diagonal to the isolated '1'. Combined we get

3(#3+ −#0) + 2#bB − 3 + 2 = 3#3+ − 3#0− 1 + 2(2#0−#3+)
= #3+ + #0− 1

We know that every triangulation has n− 3 inner diagonals. Subtracting all diagonals which
connect two big nodes, we receive the needed amount of '1's. In our calculation we included
the diagonals to the two isolated '1's, therefore we should receive #1− 2

#1− 2 != (n− 3)− (#3+ + #0− 1)
!= #0 + #1 + #3+ − 3−#3+ −#0 + 1

= #1− 2 (6.3)

So we conclude that our construction works for every sequence with a degree vector of the

form (u, v, 0, r, . . .) ful�lling the basic constraints, #0 ≥ 5, n
2≡ #1 and #3+ ≤ 2(#0− 2).

6.4.2 In Need of a Wedge-Block

Let's look at the case where we need a wedge-block to put all big nodes on inner triangles.

This means we look at sequences with n
2
6≡ #1 which is equivalent to #3+

2
6≡ #0.

Again we present a canonical triangulation with 1 big block and as much blocks with two
inner triangles as needed. As in section 6.3.2 the big block is a wedge-block and has two
inner triangles on the left side of the wedge and the remaining inner triangles on the right
side. Starting with the wedge-node (the node connecting the two parts of the wedge-block)
we again build a zigzag of nodes with degree ≥ 4.

This time we have to separate two more sub cases: #4 = 0 and #4 > 0. Let's recall some
basic formulas (keep in mind that w the number of wedge-blocks is 1).

b =
#3+ −#0− 1

2
+ 1

#bB = 2#0−#3+ + 2
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The Case #4 > 0

Let B = {b1, . . . , b#bB} be the nodes on the big block where deg(b#bB) = 4 and b1, . . . , b#bB−1

are the biggest remaining nodes in the sequence in descending order. The big block is
build as shown in Figure 6.6. Starting with 2 inner triangles on the left on which we put
b#bB−1, . . . , b#bB−3. b#bB is our wedge-node and starts the internal zigzag in the big block.
The next node on the zigzag is b#bB−4 because we don't need a high degree here and want
to claim as few high degrees as possible. After that, the zigzag is �lled starting with b1.
The wedges of the zigzag-nodes are always �lled with the smallest remaining nodes from
B. The remaining degrees (after building the blocks of inner triangles) are �lled with the
remaining '1's.

4+ 3+ 3+ 3+ 4+

3+3+3+4+3+
00000 0

3+3+

0000

0 0

33

0

1

3
3

0

3

33

3

0

3+

00

0

0

0

1

3+

3+

3+

0

3+

0 0

3+4 3+ 3+

3+

Figure 6.6: Triangulation for the case #2 = 0 with wedge and #4 > 0

Again we have to show that we have enough nodes and everything is possible. We start with
the number of blocks. To build a valid triangulation we need at least 1 block guaranteed

from the sequence. We know that #3+ ≥ #0 and in combination with #3+
2
6≡ #0 follows

#3+ > #0

b =
#3+ −#0− 1

2
+ 1

>
#3+ −#3+ + 1

2
≥ 0

For the big block we need at least 3 inner triangles on that block. Using #3+ ≤ 2(#0− 2) we
see:

b ≤ 2(#0− 2)−#0 + 1
2

=
#0− 3

2
#0− 2

b
≥ 2(#0− 2)

#0− 3
> 2

Since all other blocks consist of exactly 2 inner triangles, the big block is provided with at
least 3 inner triangles.

What about the number of '3's? If we have more nodes with degree ≥ 4 than nodes on the
big block, everything is �ne. So let's assume all nodes on other blocks have degree 3. So again
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the number of '3's on the big block is calculated similar to (6.3)

#{3s on the big block} = #3− 4(b− 1)
= #3− 2#3+ + 2#0 + 2
= 2#0− 2(#3 + #4+) + #3 + 2
= 2#0−#3− 2#4+ + 2

This number has to be less than the amount of slots on the big block where we don't need a
degree ≥ 4. This means the 3 nodes at the left part, the "small" node next to the wedge of
the block, the '3' at the end of the block (the "ear" in the internal zigzag), the "isolated '1'"
in the internal zigzag and all the nodes in wedges of the internal zigzag (for every node on the
zigzag there are at most deg(v)− 4 slots).

6 +
∑
i≥4

(i− 4)#i =
∑
i≥4

i#i− 4#4+ + 6

= 2(n− 3)−#1− 3#3− 4#4+ + 6
= 2(#0 + #1 + #3 + #4+)−#1− 3#3− 4#4+

= 2#0 + #1−#3− 2#4+

now we only have to check this inequality:

2#0−#3− 2#4+ + 2
!
≤ 2#0 + #1−#3− 2#4+ (6.4)

2 ≤ #1 (6.5)

which is provided by the basic constraints.
The last question concerns the number of '1's. Again we calculate the remaining number of
diagonals in our triangulation and see if we have enough '1's provided to �ll them. As before
we get 6(b−1) diagonals from the small blocks. The wedge block is a little more complicated:
The left part is similar to a normal small block and gives 5 diagonals from the block and one
to the isolated '1'. The right part of the block contains 2#{nodes on the part} − 3 inner
diagonals and one connecting diagonal. So the number of diagonals connecting two big nodes
or an isolated '1' with a big node can be calculated like this:

6(b− 1) + 6 + 2(#bB − 3)− 3 + 1 = 6(
#3+ −#0− 1

2
+ 1) + 2(2#0−#3+ − 1)− 2

= 3#3+ − 3#0− 3 + 6 + 4#0− 2#3+ − 2− 2
= #3+ + #0− 1 (6.6)

The number of remaining diagonals should now be equal to #1− 2

#1− 2 != (n− 3)− (#3+ + #0− 1)
!= #0 + #1 + #3+ − 3−#3+ −#0 + 1

= #1− 2 (6.7)

So we can conclude that we have enough blocks of inner triangles, enough nodes with degree
≥ 4 for the zigzag in the big block and enough '1's to �ll the remaining degrees. Since the
construction doesn't need further constraints, we now know that there exists a triangulation

for every sequence ful�lling the basic constraints, #0 ≥ 5, #2 = 0, n
2
6≡ #1 and #4 > 0.
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The Case #4 = 0

As we saw in section 6.3.2 we need the additional constraint #1 ≥ 3. The canonical triangula-
tion is similar to the case #4 > 0. The only di�erence is that this time the wedge-node is the
biggest node and the internal zigzag starts directly from there (see Figure 6.7 for clari�cation).
The calculation of the number of blocks and nodes on the big block is exactly the same as in
the case #4 > 0 so we directly look at the number of '3's on the big block. Again we assume
that all nodes with degree ≥ 4 are on the big block, because otherwise everything is �ne. The
number of '3's on the big block is the same as before but what happens to the upper bound
for the slots where these nodes can be put in?
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Figure 6.7: Triangulation for the case #2 = 0 with a wedge needed and #4 = 0

The left part of the wedge-block again provides 3 slots. The right part provides the end of
the zigzag, the "isolated '1'" in the internal zigzag and deg(v)− 4 slots for every node on the
internal zigzag (meaning every node with degree ≥ 4).

5 +
∑
i≥4

(i− 4)#i =
∑
i≥4

i#i− 4#4+ + 5

= 2(n− 3)−#1− 3#3− 4#4+ + 5
= 2(#0 + #1 + #3 + #4+)−#1− 3#3− 4#4+ − 1
= 2#0 + #1−#3− 2#4+ − 1

and the inequality this time evaluates to

2#0−#3− 2#4+ + 2
!
≤ 2#0 + #1−#3− 2#4+ − 1

3 ≤ #1

which is our additional constraint.

Again there is only the number of '1's left. This calculation is exactly the same as in (6.6)
and (6.7) and therefore the construction works for every sequence with #2 = 0, #0 ≥ 5,

#3+ ≤ 2(#0− 2), n
2
6≡ #1, #4 = 0 and #1 ≥ 3.

Lemma 6.18 already showed that the constraint #1 ≥ 3 is always ful�lled for such triangula-
tions.

Therefore we can conclude the following theorem which provides full information for the case
#2 = 0.
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Theorem 6.19

A sequence with #0 ≥ 5 and #2 = 0 is a degree sequence if and only if it ful�lls the basic

constraints and

[((
#3+

2
6≡ #1

)
∧ [#4 = 0]

)
⇒ (#1 ≥ 3)

]
As an example for a sequence ful�lling the basic constraints but not being a degree sequence,
the reader may try to �nd a triangulation for (9, 2, 0, 8, 0, 2). Consider that this sequence does
not �t into the constraint of the theorem and therefore is no degree sequence.

6.5 Explicit Construction of the Ordered Degree Sequence

In this section we will present in an algorithmic way how to construct an ordered degree
sequence for a sequence of nonnegative integers that ful�ll our constraints. The way from the
ordered degree sequence to the triangulation is easy and described generally in section 3.6.1.

Again we stick to the notation b being the number of blocks, k the number of nodes on inner
triangles, #bB the number of nodes on the big block and w the number of wedge-blocks in
the triangulation.

6.5.1 Without a Wedge-Block

Let's start with the easy part again. Let S be a sequence of non-negative integers ful�lling the

basic constraints, #0 ≥ 5, #2 = 0 and #3+ 2≡ #0. As shown in the previous sections there
exists a triangulation with the degree sequence S if and only if S ful�lls the basic constraints.
At �rst we calculate the number of blocks of inner triangles and the number of nodes on the

big block. Keep in mind that because of #3+ 2≡ #0 we know that w = 0.

k = #3+

b =
#3+ −#0

2
+ 1

#bB = #3+ − 4(b− 1)
= #3+ − 2#3+ + 2#0
= 2#0−#3+

Let B = {b1, . . . , b#3+} be the multiset with the degrees of the big nodes in decreasing order,
bB the subset of B containing the #bB �rst elements from B (meaning the nodes for the big
block) and sB = {u1, . . . , u4(b−1)} the multiset containing the remaining big nodes. We parti-

tion sB into subsets of cardinality 4: sB = {{u1
1, u

1
2, u

1
3, u

1
4}, . . . , {u

(b−1)
1 , u

(b−1)
2 , u

(b−1)
3 , u

(b−1)
4 }}

each subset representing a small block of inner triangles.

For a more convenient way to build the ordered degree sequence, we will always start at the
leftmost node and build the sequence parallel on the upper and lower side. This means we
build it simultaneous from the beginning and the end. Every time we add a big node from bB
or sB to the ordered degree sequence we remove it from the multiset.

The ordered degree sequence starts with a zero. Then we have (b#bB − 3) '1's on the lower
side and b#bB on the upper side. This is the ear of the big block. Next we have the isolated '1'
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from the big block: Again on the upper side we add (b#bB−1 − 3) '1's, the '0' and b#bB−1

itself.

Now the beginning is made and we build the inner zigzag from the big block until only 1 node
remains in bB:

Let l be the highest remaining degree in bB. We add l and a '0' to the lower side, then we add
the (l − 4) smallest remaining nodes in bB to the upper side including their wedge with the
necessary '1's and a '0' for each one. If we don't have enough nodes left, we �ll the remaining
slots with '1's at the lower side. Then the upper and lower side switch places (that is the
biggest remaining node is now placed on the opposite side of the previous). We iterate this
till only 1 node is left in bB.

The last node in bB is always added to the lower side of the triangulation because we need
to ensure the orientation of the wedges. Let l be the degree of the last node. We add l to the
lower side and (l − 3) '1's to the upper side.

So the big block is �nished and we build the small blocks as already shown before:

For every 1 ≤ i ≤ b− 1 we add

uk
1, 1, . . . , 1︸ ︷︷ ︸

uk
2−3

, 0, uk
2, 1, . . . , 1︸ ︷︷ ︸

uk
3−3

to the upper side and
1, . . . , 1︸ ︷︷ ︸

uk
1−3

, uk
4, 0, 1, . . . , 1︸ ︷︷ ︸

uk
4−3

, uk
3

to the lower side.

Since we don't have any further nodes left, we �nish with a '1' and a '0' on the upper side.

Now we don't have any nodes left and therefore we are done.

6.5.2 In Need of a Wedge-Block

Again S is a sequence of nonnegative integers ful�lling the basic constraints, this time with

#0 ≥ 5, #2 = 0 and #3+
2
6≡ #0. Theorem 6.19 shows that for every degree sequence of this

form we either have #4 > 0 or #1 ≥ 3.

Again we calculate the number of blocks of inner triangles and the number of nodes on the

big block. This time w = 1 because #3+
2
6≡ #0 forces us to add a wedge-block.

k = #3+

b =
#3+ −#0− 1

2
+ 1

#bB = #3+ − 4(b− 1)
= #3+ − 2#3+ + 2#0 + 2
= 2#0−#3+ + 2

As before B = {b1, . . . , b#3+} being the multiset of the degrees of the big nodes in decreasing
order. The subset bB needs to be adapted to the additional constraint. We again have
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the subset bB = {v1, . . . , v#bB} but this time it's not always �lled with the biggest de-
grees. If #4 > 0 we set v1 = 4, remove one '4' from B and set vi = bi−1 for 2 ≤ i ≤
#bB. If #4 = 0 we simply set vi = bi for 1 ≤ i ≤ #bB. In both cases the remaining
big nodes are stored into the subset sB which we again partition into subsets of 4 nodes:
sB = {{u1

1, u
1
2, u

1
3, u

1
4}, . . . , {u

(b−1)
1 , u

(b−1)
2 , u

(b−1)
3 , u

(b−1)
4 }}. Again, every time we add a node

to the ordered degree sequence, we remove it from bB.
The ordered degree sequence again starts with a '0' on the upper side and a '1' on the lower
side. Then we build the �rst part of the wedge-block consisting of 2 inner triangles by adding

v#bB, 1, . . . , 1︸ ︷︷ ︸
v(#bB−1)−3

, 0, v(#bB−1)

to the upper side and
1, . . . , 1︸ ︷︷ ︸
v#bB−3

, v(#bB−2), 0, 1, . . . , 1︸ ︷︷ ︸
v(#bB−2)−3

, v1

to the lower side.
If #bB = 6, meaning we have exactly 3 inner triangles on the big block, we add

1, . . . , 1︸ ︷︷ ︸
v1−4

, v2

to the upper side and
1, . . . , 1︸ ︷︷ ︸

v3−2

, 0, v3, 1, . . . , 1︸ ︷︷ ︸
v2−3

to the lower side. In this case the wedge-block is done.
Otherwise set l = max(v1 − (#bB − 2), 0) and add l '1's to the upper side (these are the '1's
within the wedge of the wedge-block). If v1 > 4 we add

v(#bB−3), 0, 1, . . . , 1︸ ︷︷ ︸
v(#bB−3)−2

, v(#bB−4), 0, 1, . . . , 1︸ ︷︷ ︸
v(#bB−4)−3

, . . . , v(#bB−4), 0, 1, . . . , 1︸ ︷︷ ︸
v(#bB−v1+l+2)−3

to the upper side and then add the internal zigzag of the right part of the block as before in
the no-wedge case, but this time we start at the upper side.
Until only 1 node remains in bB we do the following:
Let m be the highest remaining degree in bB. We add m and a '0' to the upper side, then
we add the (m − 4) smallest remaining nodes in bB to the lower side including their wedge
with the necessary '1's and a '0' for each one. If we don't have enough nodes left, we �ll the
remaining slots by adding '1's to the lower side. Then the upper and lower side switch places
(that is the biggest remaining node is now placed on the opposite side of the previous). We
iterate this till only 1 node is left in bB.
Now we only need to add the last node to the big block. Because of the orientation in the
wedge-case the last node is always added to the upper side. Let l be the degree of the last
remaining node. We add l to the upper side and (l − 3) '1's to the lower side.
So the big block is �nished and we build the small blocks as already shown before:
For every 1 ≤ i ≤ b− 1 we add

uk
1, 1, . . . , 1︸ ︷︷ ︸

uk
2−3

, 0, uk
2, 1, . . . , 1︸ ︷︷ ︸

uk
3−3
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to the upper side and
1, . . . , 1︸ ︷︷ ︸

uk
1−3

, uk
4, 0, 1, . . . , 1︸ ︷︷ ︸

uk
4−3

, uk
3

to the lower side.

Since we don't have any further nodes left, we �nish with a '1' and a '0' on the upper side.

Now we don't have any nodes left and therefore we are done.
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7 At Least as Many Big Nodes as Zeros

Now we want to extend the result from Theorem 6.19 to a more general case.

If we look at an arbitrary triangulation with isolated '1's it's easy to see that we can add an
arbitrary amount of '2's to the triangulation by inserting them at one of the isolated '1's. The
other way around we can easily remove such isolated '2's from a triangulation. If we get no
'1's things may get more di�cult.

Looking at the basic constraints we see that only the constraints #1+#2 ≥ 2 and #0 ≤ n−#1
2

may become invalid when we remove a '2'. To ensure the validity of #0 ≤ n−#1
2 even after

removing up to all '2's, we claim #3+ ≥ #0. This constraint should now apply to all sequences
in this chapter.

7.1 At Least one '1' (#1 > 0)

In the case #2 = 0 the only additional constraint was in the case #3+
2
6≡ #0. Since the case

#2 = 0 is complete, we will now consider only sequences with #2 > 0. If #3+
2
6≡ #0 we

simply "convert" a '2' to a '3' by adding an additional '1' to the sequence. More formally:

Let S be a sequence of nonnegative integers with #3+
2
6≡ #0 and #2 > 0. We construct S as

follows:

#i = #i ∀i 6∈ {1, 2, 3}
#1 = #1 + 1

#2 = #2− 1

#3 = #3 + 1

So #3+ = #3+ + 1
2≡ #0 = #0. If #1 ≥ 1 we can always transform a triangulation for S to

a triangulation of S by removing the added '1' from the additional '3'.

Obviously S ful�lls the basic constraints as soon as S ful�lls the basic constraints. The
following lemma uses this idea to provide full information on the case #1 ≥ 1.

Lemma 7.1

Every sequence with #2 > 1 ful�lling the basic constraints, #3+ ≥ #0 and #1 ≥ 1 is a valid

degree sequence.

Proof. We prove this by using the information from Theorem 6.19. Therefor we need to
convert the sequence to �t into the constraints of the theorem and then convert the resulting
triangulation.
Let S be our sequence.
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If #1 = 1 we convert S to S by adding an additional '1' and transforming a '2' to a '3':

#i = #i ∀i 6∈ {1, 2, 3}
#1 = #1 + 1

#2 = #2− 1

#3 = #3 + 1

Claim: S ful�lls the basic constraints as soon as S ful�lls the basic constraints.

Proof of the Claim. We �rst look at the constraint for the inner diagonals:∑
i≥0

i#i = 2(n− 3)

∑
i≥0

i#i+ 1− 2 + 3 = 2((n+ 1)− 3)

∑
i≥0

i#i+ 2 = 2(n− 3) + 2

Now we check #0 ≤ n−#1
2 :

#0 = #0 ≤ n−#1
2

=
n− 1− (#1− 1)

2
=
n−#1

2

#1 + #2 ≥ 2 is obviously ful�lled.

If#1 > 1 we set S = S. Therefore we know that #1 ≥ 2 and #2 ≥ 1.

If #3+
2
6≡ #0 we need to transform S to S̃ by converting another '2':

#̃i = #i ∀i 6∈ {1, 2, 3}

#̃1 = #1 + 1

#̃2 = #2− 1

#̃3 = #3 + 1

As before S̃ ful�lls the basic constraints as soon as S ful�lls them (and therefore as soon as S
ful�lls them). As the transformation leaves the '0's untouched but adds a big node, we now

have #̃3+
2≡ #̃0. If #3+

2≡ #0 we set S̃ = S.

So now we have a sequence S̃ ful�lling the basic constraints, #̃1 ≥ 2 and #̃3+
2≡ #̃0. Addi-

tionally we know that S ful�lled #3+ ≥ #0 and as the transformations only add big nodes
but don't change #0 we still have #̃3+ ≥ #̃0. This means we can remove all remaining '2's
and receive a sequence Ŝ, which ful�lls the basic constraints and #̂2 = 0.

Finally we got Ŝ ful�lling the basic constraints, #̂2 = 0 and #̂3+
2≡ #̂0. Therefore Theo-

rem 6.19 shows that Ŝ is a valid degree sequence.
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If #̂1 ≤ #1 + 1 we append the #̃2 '2's at the leftmost isolated '1'. Otherwise we increased
the number of big nodes (which is the number of nodes on inner triangles) by 2. If we look at
(3.6) we see:

b =
#3+ + 2−#0

2
+ 1

≥
(#3+≥#0)

2

Therefore we can always insert the additional '2's between the block of inner triangles. This
was the transformation back to S̃.

Now we remove #̃1−#1 isolated '1's which are connected to ears of blocks of inner triangles.
If the ear on the big block was a node with degree greater than 3, we move the excessive
'1's to the wedge of an other '3' somewhere in the triangulation (such a '3' exists because of
the construction). Therefore we just transformed the triangulation so that it has the degree
sequence S.

The case #2 = 1 is a bit more complicated. If #1 ≥ 2, or #1 = 1 and #2+ 2≡ #0 the

transformation of the previous proof still works. But if #1 = 1 and #2+
2
6≡ #0 we would need

another '2' to prevent the additional constraint from Theorem 6.19. Since we won't be able
to totally avoid this constraint, we provide a more general version:

Lemma 7.2

There exists no triangulation with #2+
2
6≡ #0, #4 = 0 and #1 + #2 = 2.

Proof. Let's try to build such a triangulation.

We know that every triangulation has at least 2 nodes which are either isolated '1's or has
degree 2 with two adjacent '0's. Because of #1 + #2 = 2 this means that all '2's (if there are
any) have to be on inner triangles.

Every separated big node would lead to an additional '1' (in the wedge of the big node), but
all '1's (if there are any) are already used for the isolated '1's. Therefore all big nodes have
to be incident to an inner triangle.

Because of #2+
2
6≡ #0, (3.7) tells us that there has to be an odd number of wedge-blocks.

Similar to the proof of Lemma 6.18 we now show that the combination of #4 = 0 and a
wedge-block leads to an additional node with degree 1 or 2:

First assume that there is one wedge in the block. The big node incident to the wedge, call it
v, has degree > 4. If there are less than deg(v) diagonals from inside the block incident to v,
v either has connected '1's (which would be an additional '1' and therefore #1 + #2 > 2) or a
diagonal incident to v connects the wedge-block with another block (as shown in Figure 7.1).
The wedge-block already has two ears which are di�erent to v, so the connection to another
block again leads to an additional '1' or '2'.

Now assume that there are deg(v) diagonals from inside the block incident to v. This means
that on at least one part of the wedge-block there have to be more than 2 diagonals be incident
to v. On this part, the node next to the wedge has either degree 2 (an additional '2') or leads
to another block of inner triangles (additional '1' or '2' as before) or directly to an additional
'1' (as shown in Figure 7.2).
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leads to additional 1 or 2

leads to a 1 or 2 leads to a 1 or 2

Figure 7.1: A wedge-block with #4 = 0 and 4 diagonals from inside the block leads to an
additional '1' or '2'

leads to a 1 or 2 leads to a 1 or 2

Degree 2 or this leads to additional 1 or 2

Figure 7.2: A wedge-block with #4 = 0 and more than 4 diagonals from inside the block leads
to an additional '1' or '2'

Now consider more than one wedge (in a block of inner triangles) incident to v. The part
between two of the wedges directly leads to an additional '1' or '2' (as shown in Figure 7.3).

Therefore we can conclude that every triangulation with #3+
2
6≡ #0 and #4 = 0 ful�lls

#1 + #2 > 2

Coming back to our situation before, we now know that #1 = 1, #2 = 1 and #2+
2
6≡ #0

means that there have to be #4 > 0 (otherwise there exists no such triangulation). Therefore
we can convert the '2' into a '3' as above and the new sequence �ts into the constraint of
Theorem 6.19. After building the triangulation for the modi�ed sequence, we simply delete
the isolated '1' at the end with degree '3' and add the remaining '2's at the other isolated '1'.

7.2 No '1's (#1 = 0)

Finally we look at the case where we have no '1' in the triangulation. Again we try to use
the results and triangulations from the previous chapter, but unfortunately it won't work in
every case.

Let's start easy:

Lemma 7.3

Every nonnegative integer sequence ful�lling the basic constraints with #3+ ≥ #0, #3+ 2≡ #0
and #1 = 0 is a degree sequence.

Proof. Let S be such a sequence. As in Lemma 7.1 we simply convert two of the '2's (there
are at least two because of (3.11)) to '3's and delete the remaining '2's. Let S be the sequence

64



leads to additional 1 or 2

leads to a 1 or 2
leads to a 1 or 2

Figure 7.3: A wedge-block with #4 = 0 and more than one wedge leads to an additional '1'
or '2'

after the transformation. S still ful�lls #3+
2≡ #0 and Theorem 6.19 provides a triangulation

for this sequence.

Now we need to transform the triangulation so that it �ts the original sequence. The two '3's
are easily transformed back by removing the two isolated '1's from the triangulation as before.
Now we need at least two blocks guaranteed, so we are able to add the remaining '2's between
these blocks.

The number of blocks is calculated as follows.

#3+ −#0
2

+ 1 =
#3+ + 2−#0

2
+ 1

≥ #3+ −#0
2

+ 2

≥
(#3+≥#0)

2

This means we always have at least two blocks and are able to add the additional '2's.

But what happens if the parity constraint (#3+ 2≡ #0) is not ful�lled? Let's look at an easy
subcase where we have at least one '4'.

Lemma 7.4

Every sequence of nonnegative integers ful�lling the basic constraints with #3+ ≥ #0,

#3+
2
6≡ #0, #1 = 0 and #4 > 0 is a degree sequence.

Proof. Let S be such a sequence. As before, we convert the guaranteed two '2's into '3's
and remove the remaining '2's receiving S. Because of #4 > 0 S �ts into the constraints of
Theorem 6.19 which provides a triangulation for S. Again #3+ ≥ #0 guarantees at least two
blocks and we are able to transform the triangulation to �t S.

Now let's get to the more di�cult part, the case #3+
2
6≡ #0 and #4 = 0. Lemma 7.2 provides

at least three '2's for this case, but if we convert only two into '3's and delete the remaining
'2's, Theorem 6.19 claims three '1's (when we have only two). If we convert three '2's into

'3's we would �t into the constraints of the theorem, but because of #3+
2≡ #0 we would not

be able to convert the triangulation back to �t the original sequence. Therefore we need to
present a new triangulation for this case.

65



Lemma 7.5

Every sequence of nonnegative integers ful�lling the basic constraints, #3+ ≥ #0,

#3+
2
6≡ #0, #1 = 0 and #2 ≥ 3 is a degree sequence.

Proof. Let S be such a sequence. The triangulation we are building is similar to the case

(#2 = 0) ∧
(

#3+ 2≡ #0
)
. The only di�erence will be that the rightmost block is a separated

inner triangle with two incident '2's and the big block starts with a '2'. Figure 7.4 shows the
triangulation we want to build, but let's look at it in detail.

3+ 4+ 3+ 3+ 3+ 3+ 4+

3+3+4+3+

0

000000

3+3+

000000

3+3+

0

3+4+

0

3+

0

2
2

3

0

0

3+

0

3

3

3

0

3

0

2

Figure 7.4: Triangulation for the case 2(#0− 2) ≥ #3+ ≥ #0, #3+
2
6≡ #0 and #1 = 0

As in the mentioned case we put all big nodes on inner triangles. Additionally we put the
three guaranteed '2's on inner triangles. So the number of nodes on inner triangles equals

#3+ + 3. Because of #3+ + 3
2≡ #0 we don't need a wedge-block and therefore don't use it.

Again b is the number of blocks and #bB is the number of nodes incident to the big block.

#3 ≥ #0 in combination with #3
2
6≡ #0 guarantees #3+ ≥ #0 + 1.

Let's recall some formulas:

b =
#3+ + 3−#0

2
+ 1

=
#3+ − (#0 + 1)

2
+ 3

≥ 3
#bB = #3+ + 3− 4(b− 2)− 3

= #3+ + 3− 2#3+ − 2 + 2#0− 3
= 2#0−#3+ − 2

So we know we have at least 3 blocks. This is good because later it will be easy to add the
remaining '2's between them. Because of #3+ ≤ 2(#0 − 2) (otherwise this case is already
covered in Theorem 5.19) the number of nodes on the big block is at least 2.

Now we look closer at the big block. The internal structure of the block is a zigzag between big
nodes with degree ≥ 4. Let bB = {b1, . . . , b#bB} be the set with the nodes for the big block,
b1 = 2 and b2, . . . , b#bB the biggest nodes in descending order. The big block starts with b1 as
ear of the block. Then the internal zigzag starts with b#bB as "isolated '1'". The �rst big node
is b2 whose "wedge" (in the internal zigzag) is �lled with the deg(b2) − 4 smallest remaining
nodes from bB. The next in the zigzag (now on the lower side) is b3 �lled with the deg(b3)−4
smallest remaining nodes from bB. We iterate this till we �nish with an "isolated '1'" in the
internal zigzag.
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We now need to show that we have the right amount of nodes with degree ≥ 4 for the
zigzag. This means the number of nodes with degree 3 on the big block must be equal∑

i≥4 (i− 4)#i+ 3 (don't forget the '2' at the beginning). If the number of nodes with degree
3 is exactly that amount every node on the zigzag is �lled and we don't need any '1's. If it
would be smaller, some of the nodes on the zigzag would need additional '1's and maybe some
"�lling '3's" are nodes with degree greater than 3 which again needs additional '1's which we
don't have. Let's calculate the number of '3's on the big block (nodes with degree ≥ 4 are on
the big block). Keep in mind that the last triangle contains only one '3' and #1 = 0.

#{'3's on the big block} = #3− 4(b− 2)− 1
= #3− 2#3+ − 2 + 2#0− 1
= 2#0− 2(n−#0−#2) + #3− 3
= 2#0− 2n+ 2#0 + 2#2 + #3− 3
= 4#0 + 2#2 + #3− 2n− 3

Now we reformulate the upper bound for the allowed number of '3's:∑
i≥4

(i− 4)#i+ 3 =
∑
i≥4

i#i− 4(n−#0−#2−#3) + 3

= 2(n− 3)− 2#2− 3#3− 4n+ 4#0 + 4#2 + 4#3 + 3
= 4#0 + 2#2 + #3− 2n− 3

So our constraint is:

4#0 + 2#2 + #3− 2n− 3 ?= 4#0 + 2#2 + #3− 2n− 3
0 = 0

This means that the amount of '3's is always exactly the amount needed to �ll the wedges in
the internal zigzag of the big block. Because of #1 = 0 we don't have '1's to �ll any remaining
spot and this is the only way the triangulation would work.

So we conclude that our construction works for every sequence with #3+ ≥ #0, #3+
2
6≡ #0

and #1 = 0.

Theorem 7.6

A sequence S with #3+ ≥ #0 is a degree sequence if and only if it ful�lls the basic constraints

and [((
#2+

2
6≡ #0

)
∧ (#4 = 0)

)
⇒ (#1 + #2 ≥ 3)

]
Proof. For any given triangulation Lemma 7.2 shows that the additional constraint is always
ful�lled.

If #3+ > 2(#0− 2) Theorem 5.19 shows that there always exist a triangulation. The remain-
ing part splits up into several cases:

Case 1 #2 = 0 : Theorem 6.19 already proves that S is a degree sequence if and only if it

ful�lls the basic constraints and

[((
#3+

2
6≡ #0

)
∧ (#4 = 0)

)
⇒ (#1 ≥ 3)

]
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Case 2 #1 = 0: Lemma 7.3, Lemma 7.4 and Lemma 7.5 prove that there always exists a
triangulation with such a degree sequence.

Case 3 (#1 ≥ 1) ∧ (#2 > 1) : In this case Lemma 7.1 shows that S is a degree sequence if
and only if it ful�lls the basic constraints.

Case 4 (#1 ≥ 1) ∧ (#2 = 1) : Lemma 7.2 shows that S can't be a degree sequence if

#2+
2
6≡ #0, #4 = 0 and #1 + #2 = 2.

If #1 ≥ 2 we can easily convert the '2' into a '3' by adding an additional '1'. Now we
are in the case (#2 = 0) ∧ (#1 ≥ 3) which �ts into the constraints of Theorem 6.19.
S is a degree sequence as soon as it ful�lls the basic constraints.

If #1 = 1 and #2+ 2≡ #0 we again convert the '2' to a '3'. And again S �ts into
Theorem 6.19 and is a degree sequence. By removing an isolated '1' which is incident
to a '3', we receive a triangulation with degree sequence S.

In the case #2+
2
6≡ #0 we assume #4 > 0 (because otherwise we know that there can't

be a triangulation). Once again we convert the '2' to a '3' and build the triangulation
from Theorem 6.19 (which is possible because of #4 > 0). Then we convert back by
removing an isolated '1' and receive a triangulation with degree sequence S.

7.3 Construction of the Ordered Degree Sequence

The proof of Lemma 7.1 motivates an easy way to build the ordered degree sequence. First
we build the ordered degree sequence for the transformed sequence as described for the case
#2 = 0.
If we have to transform a '2' into a '3', the last big node in the transformed sequence, and
therefore the node on the rightmost ear, has degree 3 and a connected '1' (which is an iso-
lated '1'). We remove this '1' and get back to the original '2'. If we have to transform two
'2's, we just have to ensure, that the second '3' is on the other ear (the leftmost big node)
which again can easily be transformed back.

The last question is how to deal with possible additional '2's. Because of #3+ ≥ #0 we either
have an isolated '1' (which would be the leftmost node in our construction) or we have more
than one block after the transformation.

In the �rst case we easily add the additional '2's at the isolated '1'. More precisely, l being
the amount of additional '2's, we insert

⌊
l
2

⌋
on the upper side directly after the �rst '0', and⌈

l
2

⌉
on the lower side directly after the �rst '1'. If l

2≡ 1 we then switch the �rst '0' on the
upper side with the �rst '1' on the lower side.

If #1 = 0 we insert this zigzag of '2's before the last block of inner triangles.
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8 Conclusion

8.1 Summary

In this thesis we presented full information on sequences with "enough" big nodes, that is, for
all sequences ful�lling #3+ ≥ #0.
We developed some basic constraints which have to be ful�lled by every degree sequence:

• 2 ≤ #0 ≤
⌊

#0+

2

⌋
• #0 ≤ #2+ (for #0 ≥ 3)
• #1 + #2 ≥ 2
•
∑

i≥0 i#i = 2(#0+ − 3)
For the special cases with #0 ∈ {2, 3, 4} we showed necessary and su�cient criteria for a
sequence to be a degree sequence. These criteria are summarized in Table 8.1.

The general case with #0 ≥ 5 was divided into sub cases distinguished by the relation between
#3+ and #0:
• 3(#0− 2) ≤ #3+

The easy part, where all inner triangles could be separated and aligned in a row. Theo-
rem 5.8 proves that in this case every sequence ful�lling the basic constraints is a degree
sequence.

• 2(#0− 2) < #3+ < 3(#0− 2)
Things started to be tricky. There are not enough big nodes for separated triangles but
we managed to present a triangulation with small blocks of inner triangles aligned in
a row. Theorem 5.19 proves that in this case again every sequence ful�lling the basic
constraints is a degree sequence.

• #0 ≤ #3+ ≤ 2(#0− 2)
The tough part. In this case we needed to put all big nodes on inner triangles and deal
with the need of wedge-blocks. By examining the special case #2 = 0 we slowly got a
feeling how to solve this case. After developing the canonical triangulation for #2 = 0 it
was a short step to the generalization and �nally Theorem 7.6 provides full information.

The essential (and only) additional constraint for the general case is, that every degree se-
quence has to ful�ll [((

#2+
2
6≡ #0

)
∧ [#4 = 0]

)
⇒ (#1 + #2 ≥ 3)

]
The best part of this constraint is that it has to be ful�lled for every degree sequence (by
Lemma 7.2).
In the case #3+ > 2(#0 − 2) this constraint is already guaranteed by the basic constraints
(more speci�c by (3.4)).
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#0 #3+ additional condition(s) to the basic constraints Section

= 2 no further condition 4.1

= 3 no further condition 4.2

= 4
= 1

#2 = 4 and #4 = 1

4.3
#2 ≥ 4 and #5+ = 1

= 2 #2 = 3⇒ #4+ ≥ 1

≥ 3 no further condition

≥ 5
> 2(#0− 2) no further condition 5

2(#0− 2) ≥ #3+ ≥ #0
[((

#2+
2
6≡ #0

)
∧ [#4 = 0]

)
⇒ (#1 + #2 ≥ 3)

]
7

Table 8.1: Known cases covered by this thesis. The columns are connected through logical
'and'

8.2 Outlook

From the basic constraint we know #0 ≤ #2+. So the only open problem regarding degree
sequences of triangulations of convex point sets is the case #2+ ≥ #0 > #3+. In this case we
are forced to put (#0−#3+) '2's onto inner triangles even if we got more than two '1's. But
every additional '2' on an inner triangle leads to an additional ear in the corresponding block
of inner triangles. With more than two ears on one block we get inner inner triangles ("inner
triangles" within a block of inner triangles) and the nice approach of the big block with an
internal zigzag doesn't work anymore.

Even the approach to split some separated inner triangles from the block to put a '2' on each
one doesn't work in general because it may use too many pseudo big nodes.

In [4] it is shown that every degree sequence, where all degrees are even, have to ful�ll #0 ≥
n
3 + 1. This means that in the case #1 = 0 we may get an additional constraint. But in fact
we don't know if this constraint has any real e�ect.

Therefore this part is left for the reader to solve. If you do so, don't hesitate to contact me.
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Glossary

#k+ the number of nodes with degree of at least k 12

2≡ short form for congruence modulo 2 11
2
6≡ short form for incongruence modulo 2 11

big node a node with degree of at least 3 14

degree sequence sequence of nonnegative integers representing the de-
grees of nodes in a graph

12

degree vector vector of nonnegative integers representing the occur-
rences of degrees in the according degree sequence

13

dual tree the tree with nodes for every triangle in the triangu-
lation. Two nodes in the dual tree are connected i�
the corresponding triangles share one edge

12

inner inner triangle an inner triangle where all edges leads to another in-
ner triangle

35

inner triangle a triangle within the triangulation where all edges are
inner diagonals

12

isolated '1' a node with degree 1 which is adjacent to a node with
degree 0

15

pseudo big node a node with degree 2 14

wedge of a node maximal adjacent list of '1's connected to the node 15
wedge-block a block of inner triangles which can be separated into

at least two parts connected only through one node
35

zigzag a (part) triangulation where the dual tree is a path 15
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