
New Trends in Elliptic Curve
Cryptography

Christian Hanser
chhanser@gmail.com

Institute for Applied Information
Processing and Communications (IAIK)

Graz University of Technology
Inffeldgasse 16a

8010 Graz, Austria

Master Thesis

Supervisor: Dipl.-Ing. Dr.techn. Mario Lamberger

April, 2010

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als
die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich
und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Graz, am
(Unterschrift)

i

Acknowledgements

First of all, I would like to thank my supervisor Mario Lamberger, who encouraged and
inspired me to grapple with elliptic curves. He did not only point out the right direction
but also had at any time a sympathetic ear for my concerns. I really enjoyed writing this
thesis and found pleasure in dealing with the theory of elliptic curves. I am very thankful
for the time and for the effort Mario spent on corrections and discussions, not to forget
the patience Mario showed for my questions and the problems that came up.

Secondly, I would like to express my sincere thanks to my parents, Franz and Maria
Hanser, who supported me in every possible way throughout the whole years of studying.
Special thanks go to my girlfriend, Marlies Bergmann, who has always been there for me
and has encouraged me as often as possible. Finally, I would like to thank my sister,
Eva Hanser, who gave me some important pieces of advice concerning English grammar,
especially concerning the sometimes tricky usage of tenses.

ii

Abstract

Elliptic curves are of great importance in present-day cryptography. In the past two
decades, much progress has been made to make elliptic curves ready for prime-time use.
Especially in the past few years a lot of research has been undertaken in order to find
alternative applications of elliptic curves and to make existing applications more efficient
by arithmetic speedups.

In this master thesis we are going to discuss the Elliptic Curve Only Hash (ECOH), a
hash algorithm based on elliptic curves, and Edwards curves, a new curve shape having
a fast and complete addition law. As for ECOH, we are going take a look at its security
properties, present mostly new attacks, which exploit ECOH’s algebraic structure, and
reveal the results of our memoryless version of the Ferguson-Halcrow second preimage
attack. Then, in the last part of this thesis we are going give an introduction to Edwards
curves. We are also going to analyze to which extent standardized elliptic curve can be
converted to Edwards shape.

Keywords: ECOH, elliptic curves, Edwards curves, hash functions

iii

Kurzfassung

Elliptische Kurven sind heutzutage ein wichtiger Bestandteil der Kryptografie. So wurden
in den letzten zwei Jahrzehnten große Fortschritte gemacht, um elliptische Kurven alltags-
tauglich zu machen. Speziell in den letzten Jahren konnten viele alternative Anwendungen
und arithmetische Geschwindigkeitsverbesserungen für elliptische Kurven gefunden wer-
den.

In dieser Masterarbeit betrachten wir den Hashalgorithmus Elliptic Curve Only Hash
(ECOH), welcher auf elliptischen Kurven basiert, als auch sogenannte Edwardskurven,
eine neue Kurvenart mit einem vollständigen und schnellen Additionsgesetz. Was ECOH
betrifft, so analysieren wir seine Sicherheit, stellen vorwiegend neue Attacken vor, welche
ECOH’s algebraische Struktur angreifen, und zeigen die Ergebnisse unserer speicherlo-
sen Version der Ferguson-Halcrow Attacke. Im letzten Teil der Arbeit geben wir eine
Einführung in die Theorie der Edwardskurven. Außerdem analysieren wir inwieweit sich
standardisierte Kurven in Edwardsform bringen lassen.

Stichwörter: ECOH, elliptische Kurven, Edwards Kurven, Hashfunktionen

iv

Contents

1 Introduction 1
1.1 Outline of this Thesis . 2

I Preliminaries 3

2 Introduction to Elliptic Curves 4
2.1 Basics of Group and Field Theory . 4

2.1.1 A Short Introduction to Group Theory 4
2.1.2 A Brief Glimpse into Field Theory 6
2.1.3 Finite Field Arithmetic . 8

2.2 The Affine and the Projective Space . 11
2.2.1 Relation between Affine and Projective Coordinates 11

2.3 Algebraic Curves . 11
2.3.1 Projectively Closed Curves . 12

2.4 Elliptic Curves . 13
2.4.1 Summation of Points and the Group Laws 13
2.4.2 The Discriminant and the j-Invariant 15
2.4.3 Simplified Curve Equations . 18
2.4.4 Mappings between Elliptic Curves 18
2.4.5 Alternative Curve Coordinates . 21

3 Background on Hash Functions 24
3.1 Cryptographic Hash Functions . 24
3.2 Floyd’s Cycle-Finding Algorithm . 25

3.2.1 The Idea behind Floyd’s Cycle-Finding Algorithm 25
3.2.2 Expected Cycle and Tail Lengths . 26
3.2.3 Concluding Remarks . 29

4 Elliptic Curves in Cryptography 30
4.1 Historical Background . 30
4.2 ECC versus RSA . 31
4.3 Elliptic Curves over Finite Fields . 32

4.3.1 Elliptic Curves over Binary Finite Fields 32
4.3.2 Elliptic Curves over Finite Fields with Characteristic > 3 32
4.3.3 The Group Order of Elliptic Curves over Finite Fields 32

4.4 The Elliptic Curve Discrete Logarithm Problem 33
4.4.1 Generic Attacks against the ECDLP 34

v

4.5 Choice of Curve Parameters . 35
4.5.1 Resistance against Generic Attacks 35
4.5.2 Weak Elliptic Curves . 35

4.6 State of the Art Attacks on Elliptic Curves 35
4.6.1 The Weil Pairing Attack . 36
4.6.2 The SSSA Attack . 38

4.7 Saving Space through Point Compression and Decompression 38
4.7.1 Point Compression and Decompression on Curves over Finite

Fields of Characteristics Greater than 3 38
4.7.2 Point Compression and Decompression on Non-Supersingular

Curves over Binary Finite Fields . 39

II Hash Functions Based on Elliptic Curves 40

5 The Elliptic Curve Only Hash (ECOH) 41
5.1 ECOH in Detail . 41

5.1.1 The Algorithm in Detail . 42
5.1.2 Implementations of ECOH . 42

5.2 MuHASH . 43
5.2.1 Properties . 43
5.2.2 Security . 44
5.2.3 ECOH’s Relation to MuHASH . 44

5.3 New Attacks against Simplified Versions of ECOH 44
5.3.1 Torsion Element Attacks . 45
5.3.2 A Quantum Attack against ECOH’s Prehash 46
5.3.3 A Timing Attack against ECOH’s Point Search 47

5.4 The Ferguson-Halcrow Second Preimage Attack 47
5.5 A Memoryless Implementation of the Ferguson-Halcrow Attack 48

5.5.1 Adapting Floyd’s Cycle-Finding Algorithm to Meet in the Middle
Attacks . 48

5.5.2 Expected Run Time . 49
5.5.3 Implementation Details . 49

5.6 ECOH2 . 52
5.6.1 The Representation of Elements of the Extension Fields 52
5.6.2 Curve Definitions in Detail . 53
5.6.3 Using the Twist . 53
5.6.4 A Word on ECOH2’s Efficiency . 53

III Arithmetic Speedups 55

6 Edwards Curves 56
6.1 Original Edwards Coordinates . 56
6.2 Edwards Coordinates according to Bernstein and Lange 57

6.2.1 Birational Equivalence . 57
6.2.2 The Addition Law . 58

6.3 Twisted Edwards Curves . 60
6.3.1 Montgomery Curves and Twisted Edwards Curves 60

vi

6.3.2 More Curves through Isogenies . 62
6.3.3 The Addition Law . 62

6.4 Binary Edwards Curves . 63
6.4.1 Birational Equivalence . 63
6.4.2 The Addition Law . 64

6.5 Converting Standardized Curves to Twisted Edwards Form 65
6.6 Arithmetical Performance of Edwards Curves 65

7 Conclusions 67

A Definitions 69
A.1 Abbreviations . 69
A.2 Used Symbols . 69

B Source Code 72

Bibliography 76

vii

Chapter 1

Introduction

In 1985, Neal Koblitz [Kob87] and Victor S. Miller [Mil85] both discovered independently
that elliptic curves over finite fields can be used for public key cryptography. They pub-
lished a Diffie-Hellman type protocol that relies on elliptic curve groups.

Both of these two groundbreaking works were inspired by a paper of Hendrik Lenstra,
who was the first who had found an application of elliptic curves in cryptography. In 1984,
he introduced a new integer factoring method based on elliptic curves [Len87].

The security of elliptic curve cryptography (ECC) is based on the associated discrete
logarithm problem (DLP). Due to the absence of a subexponential time algorithm for
calculating discrete logarithms on elliptic curves, it is assumed that this problem is harder
than the integer factorization problem (IFP), which is the foundation for other public key
methods like RSA.

The hardness of the elliptic curve discrete logarithm problem (ECDLP) allows us to use
shorter key lenghts compared to RSA. So, for example encryption with a 160 bit elliptic
curve key provides more or less the same security as an 1024 bit RSA encryption [LV99].

Due to the reduced key lengths elliptic curves are especially suitable for environments
with limited processing power and memory resources. Therefore they find application in
smart cards, cell phones, PDAs and the like.

However, in 1991 the Weil pairing attack [MOV91] was discovered, which allows an
efficient computation of the discrete logarithm on a certain type of curves, the so-called
supersingular curves. This was a major impact since these curves had been used very
often as they are easy to compute with.

This discovery and the failure of the closely related hyperelliptic curve cryptogra-
phy [Kob89, ADH94] shattered the trust in elliptic curve cryptography for almost a decade.
Additionally, this distrust was stirred up by the RSA fraction, who claimed that elliptic
curves were not ready for widespread use and did not have the same well studied mathe-
matical background that RSA had at that point of time.

At the end of the 1990s the trust in the security of elliptic curve cryptosystems could
slowly be re-established as no more security flaws had been discovered and industrial stan-
dards bodies supported ECC. A reason for this was also NSA’s support for ECC [KKM08].

Over time more and more cryptographic algorithms, such as DSA and El-Gamal were
adapted to work with elliptic curves and also new applications, such as pairing based
cryptography, which is a form of identity based cryptography, were found for it [SOK00,
Jou00].

In this master thesis we are going to deal with a new elliptic curve hashing algorithm,
the so-called Elliptic Curve Only Hash (ECOH) [BACS08], and with arithmetic speedups

1

CHAPTER 1. INTRODUCTION 2

that can be achieved through a new, special type of curves, called Edwards curves [Edw07].
Edwards curves provide a complete addition law, which means that the sum of two

arbitrary points always yields a point on the curve. This is an important advantage over
ordinary elliptic curves in Weierstrass form, where we have separate addition laws for the
sum of two distinct points and the double of a point. Furthermore, Edwards curves have
good arithmetic characteristics and outperform most other types of curves.

ECOH resembles in many ways Micciancio’s and Bellare’s MuHASH [BM97]. We are
going to analyze ECOH’s algorithm and its properties and since ECOH was participating
in NIST’s currently running SHA-3 contest, we are going to examine its security and
describe some new and some already known attacks against ECOH’s prehash. Thus, we
are going to investigate quantum attacks as well as ordinary attacks that amongst others
arise from various algebraic group properties.

1.1 Outline of this Thesis

Part I of this thesis is comprised of three chapters and is dedicated to give a comprehensive
introduction to both ECC and hash functions. Chapter 2 covers algebraic preliminaries,
the basic theory of algebraic curves and then develops the fundamental concepts of the
theory of elliptic curves on it. In Chapter 3 we are going to outline basic concepts of hash-
ing, deal with hash collision search techniques and sketch MuHASH. Chapter 4 extends
on Chapter 2 and introduces the reader to the usage of elliptic curves in cryptography.
Amongst others, it deals with the historical background of ECC, compares ECC with
its main competitor RSA, points out the security properties of different curve types and
sketches several state-of-the-art attacks against ECC.

Part II, which consists of Chapter 5, is devoted to the elliptic curve hashs ECOH
and ECOH2. We present several new attacks against ECOH as well as one sophisticated
second preimage attack for which ECOH is considered to be broken. Moreover, we are
going to show a memoryless variant of this attack and present two colliding preimages of
a weakened version of ECOH operating on a smaller curve.

Part III is comprised of Chapter 6 and deals with arithmetic speedups achieved through
Edwards curves. We take a deeper look at Edwards curves and twisted Edwards curves
over prime fields as well as at Edwards curves over binary fields. At last, we are going to
discuss the possibilities of converting standardized curves to Edwards form.

Finally, in Chapter 7 we summarize and conclude this thesis.

Part I

Preliminaries

3

Chapter 2

Introduction to Elliptic Curves

This chapter treats the mathematical fundamentals that are needed for the remainder of
this master thesis. It briefly discusses the basics of algebra, algebraic geometry and finally
it gives a short and general introduction to elliptic curves. The general parts of this chapter
are mainly based on lecture notes [TF03, Fri05, Let07]. The remainder relies on various
books [Sil92, BSS99, Eng99, CF05] and on some other works [Kop09, OKS00, Duq04].
You can safely skip this chapter, when you are already familiar with algebra and elliptic
curves.

2.1 Basics of Group and Field Theory

This section gives a short introduction into the basics of group theory and finite fields.
Both topics are connected and are a crucial part of ECC as well as public key cryptography
in general.

2.1.1 A Short Introduction to Group Theory

A group is a basic structure in both algebra and number theory. Groups are used to
abstract calculations with specific numbers and form the basis for many other algebraic
concepts.

Definition 2.1. A group (G, ·) is a set of elements G plus an arithmetic operation ·
satisfying the subsequent properties:

� The product of two elements x, y ∈ G: x · y yields always another element of G. In
other words, G is closed with respect to ·.

� For all elements x, y, z ∈ G holds: (x · y) · z = x · (y · z). (associativity)

� There is a neutral element e ∈ G, which means that x · e = e ·x = x for every x ∈ G.
(neutral element)

� For each x ∈ G there is an inverse element x−1, such that: x · x−1 = x−1 · x = e.
(inverse element)

A group (G, ·) is called abelian, if it is commutative:

∀x, y ∈ G : x · y = y · x

4

CHAPTER 2. INTRODUCTION TO ELLIPTIC CURVES 5

Groups can be also written in an additive way. Then, the operation · is replaced by
+. As we are going to see later, this is the case for elliptic curve groups.

Example 2.1. These two groups are often used in algebra:

� (Zm = {0, . . . ,m−1},+) forms an additive, abelian group. Addition is done modulo
m, 0 is the neutral element and each element x has the inverse −x.

� Let p be prime. Then, (Z∗p = {1, . . . , p − 1}, ·) is a multiplicative, abelian group
modulo p with neutral element 1.

Groups (G, ·) that allow every element y ∈ G to be expressed as a power of another
element g ∈ G (i.e. y = gk with k ∈ Z) are called cyclic and g is the so-called generator
of the group. In such a case we write G = 〈g〉. Similarly, we can write every element y of
a cyclic additive group (G′,+) with generator g as a multiple of g: y = k · g.

Example 2.2. The generators of the group (Z∗5, ·) are 2 and 3:

g = 2 g = 3
21 = 2 31 = 3
22 = 4 32 = 9 ≡ 4 mod 5
23 = 8 ≡ 3 mod 5 33 = 27 ≡ 2 mod 5
24 = 16 ≡ 1 mod 5 34 = 81 ≡ 1 mod 5

The order of an element x, denoted by ordG(x), is the smallest, positive integer k,
so that xk = e (or additively: k · x = e). If there is no such k, then x is said to have
infinite order. The order of generators equals the group’s cardinality, which is also called
the group order ord(G) or alternatively |G|.

Example 2.3. The order of 4 in (Z∗5, ·) is 2:

41 = 4, 42 = 16 ≡ 1 mod 5.

A subgroup (H, ·) of some group (G, ·) (denoted by (H, ·) ≤ (G, ·)) is itself a group
and H is a subset of G. Furthermore, there are some special kinds of subgroups, such as
torsion subgroups:

Definition 2.2. Provided that m|ord(G), (G[m], ·) is called torsion subgroup of order m
of the cyclic group (G, ·). It contains each element whose order divides m:

G[m] = {x ∈ G | xm = e}

Example 2.4. The torsion subgroup of order 2 of Z∗5 is Z∗5[2] = {1, 4}.

Group Homomorphisms

Generally speaking, a homomorphism is a linear, structure-preserving map between two
algebraic structures. In the context of groups, a homomorphism f between two groups
(G, ·) and (G′, ∗) is:

f : G→ G′

such that for all x, y ∈ G:
f(x · y) = f(x) ∗ f(y)

holds. f also preserves the identity element, i.e. f(eG) = eG′ .
A (group) homomorphism f : G→ G′ is called

CHAPTER 2. INTRODUCTION TO ELLIPTIC CURVES 6

� monomorphism if it is injective,

� endomorphism if it is surjective,

� isomorphism if it is bijective, and

� automorphism if it is bijective and G = G′.

Two groups G and G′ are said to be isomorphic, if an isomorphism between them
exists. This is denoted as G ' G′.

The Discrete Logarithm Problem

We already saw that in cyclic groups every element x can be expressed as a power of the
generator g: x = gk. When k is chosen to be the smallest, positive integer possible, it is
called the discrete logarithm (DL) or sometimes also index of x with respect to g, written
as logg(x).

Example 2.5. In (Z∗5, ·) we have log3(4) = 2.

Just like the ordinary logarithm, the discrete logarithm has some important features:

� logh(x) = logg(x) · logg(h), and

� logg(x · y) = logg(x) + logg(y),

where g and h are both generators of the same cyclic group G.

Definition 2.3 (DLP). Given a generator g of the cyclic group (G, ·) and an element x
in G, the difficulty of finding an integer k such that:

x = gk

is called the discrete logarithm problem (DLP).

Note that the hardness of the DLP depends on the group structure. So, for example
it is hard in groups of the type (Z∗p, ·) but not in groups of the shape (Zp,+).

2.1.2 A Brief Glimpse into Field Theory

The notion of fields can be built on top of the group concept. The big difference to a
group is that a field has got two distinct operations:

Definition 2.4 (Field). A field (K,+, ·) consists of a set of elements K and two operations
+ and ·, where

� (K,+) is an additive abelian group with neutral element 0,

� (K∗, ·) is a multiplicative abelian group with neutral element 1, and

� both groups are adjoined by distributivity:

– ∀x, y, z ∈ K : x · (y + z) = x · y + x · z (left-distributivity)

– ∀x, y, z ∈ K : (x+ y) · z = x · z + y · z (right-distributivity)

CHAPTER 2. INTRODUCTION TO ELLIPTIC CURVES 7

A field K is said to be finite, if it has only finitely many elements.

The characteristic of a field K, char(K), is defined as the smallest integer n ≥ 1 such
that n · 1 = 0. If there is no such n, the characteristic is defined to be 0. In general,
the characteristic is either 0 or a prime p. Furthermore, finite fields always have prime
characteristic.

Example 2.6. Commonly used fields are for example:

1. (R,+, ·) is the infinite field of real numbers.

2. For some prime p, (Zp,+, ·) is a finite field often used for cryptographic purposes.
In future we will write Fp for it.

Field Homomorphisms

In the context of fields, a homomorphism f between two fields K and K ′ is:

f : K → K ′

such that for all x, y ∈ K:
f(x+ y) = f(x) + f(y)

and
f(xy) = f(x) · f(y)

holds. Additionally, we have f(0K) = 0K′ , f(1K) = 1K′ and for all x 6= 0 we have
f(x−1) = f(x)−1.

Two fields K and K ′ are said to be isomorphic, when an isomorphism between them
exists. This is denoted as K ' K ′.

Polynomials over Fields

Let K be any field. Then, the following set

K[X1, . . . , Xn] :=

f(X1, . . . , Xn) =
∑

i1,...,in≥0

ci1,...,inX
i1
1 . . . Xin

n : ci1,...,in ∈ K


with only finitely many non-vanishing coefficients ci1,...,in is called the ring of polynomials
over K in n variables.

The total degree of each non-vanishing monomial Xi1
1 . . . Xin

n is i1 + . . . + in. The
maximum total degree is called the polynomial’s degree deg(f), if f 6= 0. Otherwise,
deg(f) is defined to be −∞. A polynomial f(X) = cnX

n + . . . + c1X + c0 ∈ K[X] is
said to be monic, if its leading coefficient cn = 1, reducible, if f(X) = g(X) · h(X) with
0 < max{deg(g),deg(h)} < deg(f) holds and irreducible, otherwise.

The Field of Rational Functions

The field of rational functions is a special case of a more general construction called the
field of fractions and is defined to be:

K(X1, . . . , Xn) :=
{
f · g−1 : f, g ∈ K[X1, . . . , Xn] with g 6= 0

}
,

where K is an arbitrary field.

CHAPTER 2. INTRODUCTION TO ELLIPTIC CURVES 8

Field Extensions and Finite Fields

An extension field L can be constructed from a base field K through the adjunction of
new elements. In order to acquire new elements the ring of polynomials over K is factored
by a monic, irreducible polynomial f(X):

L = K[X]/(f(X)) :=

{
n∑
i=0

ciX
i mod f(X) : ci ∈ K,n ≥ 0

}
The result is a new field L ⊃ K that is a vector space over K. This is denoted by L/K.
The degree of f(X) equals the degree of the field extension [L : K] and is the dimension
of the vector space.

A field L/K is said to be algebraically closed over K, if every non-constant polynomial
in one variable g ∈ K[X] \K has a root in L. L is then also called the algebraic closure
of K. Let α be a root of f(X), then L = K[X]/(f(X)) is isomorphic to

K(α) = K[α] =
{
cn−1α

n−1 + . . .+ c1α+ c0 : ci ∈ K
}

.

In further consequence this means that every element in L has a representation of the
form cn−1α

n−1 + . . . + c1α + c0, called polynomial representation. For elements of finite
fields this implies a second representation, aside from the representation as a power of
some generator. In order to speed up arithmetic operations the ordinary representation
can be used for multiplication and the polynomial representation for the addition of two
elements.

So far, the only finite fields we have considered were of the shape Fp = Zp. But actually
there is a finite field for every prime power:

Theorem 2.1. For every prime power q = pn with n ≥ 1, there exists exactly one finite
field Fq with q elements (up to isomorphism).

Every such finite field Fpn comprises the subfield Zp. Note also that the multiplicative
group (F∗q , ·) of any finite field Fq is always cyclic, and so every element in (F∗q , ·) is a power
of some generator g.

Definition 2.5. An element ξ ∈ Fq is called nth-root of unity, if ξn = 1 or in other words:
if its order divides n. It is a primitive root of unity, if ξk 6= 1 ∀k = 1, . . . , n − 1. The set
of all nth-roots of unity is a subgroup of (F∗q , ·) and is denoted by µn(Fq).

So, for instance every generator of (F∗q , ·) is a (primitive) root of unity.

Example 2.7. We are going to create the finite field F4. To do so we need a monic,
irreducible polynomial: f(X) = X2 + X + 1 ∈ F2[X]. Let α be a root of f(X), which
implies that

α2 = −(α+ 1) = α+ 1, α3 = α2 + α = 2α+ 1 = 1.

Hence, F4 = F2[α] = {0, α, α+ 1, 1} = {0, α, α2, α3}.

2.1.3 Finite Field Arithmetic

This subsection shows some identities and defines some crucial notions concerning finite
field arithmetics.

CHAPTER 2. INTRODUCTION TO ELLIPTIC CURVES 9

Fermat’s Little Theorem

Fermat’s little theorem states that for a prime p we have ap ≡ a mod p for all a ∈ Zp.
Likewise, its generalization to finite fields expresses that aq = a for all a ∈ Fq.

The Frobenius Homomorphism

Unlike in fields with characteristic zero, in fields with prime characteristic p the term
(x+ y)p evaluates to xp + yp:

Lemma 2.1 (Freshman’s dream). Fix a field K of prime characteristic p. Then, we have:

(x+ y)p = xp + yp

Proof. This holds as:

(x+ y)p =
p∑

k=0

(
p

k

)
xkyp−k =

p∑
k=0

p!
k!(p− k)!︸ ︷︷ ︸

(∗)

xkyp−k =

p divides the term (∗), except for the cases k = 0 and k = p, in which the numerator and
the denominator cancel each other out. This means that the following two terms remain:

= x0yp + xpy0 = xp + yp.

That is why the map φ : K → K satisfying φ(x) = xp is a field homomorphism, that
is

� φ(x+ y) = (x+ y)p = xp + yp = φ(x) + φ(y)

� φ(xy) = (xy)p = xpyp = φ(x) · φ(y)

φ is called Frobenius homomorphism. It is an automorphism if K is finite.

Legendre Symbol

The Legendre symbol signifies, whether some element a ∈ Fp is a square modulo p.

Definition 2.6 (Legendre symbol). Fix some prime p ≥ 3. Then, the Legendre symbol is
defined as follows:

(
a

p

)
=


0 if a ≡ 0 mod p,
1 if a 6≡ 0 mod p and ∃x : x2 ≡ a mod p,
−1 if there is no such x.

If (
a

p

)
=

{
1 a is called quadratic residue (mod p),
−1 a is called quadratic non-residue (mod p).

CHAPTER 2. INTRODUCTION TO ELLIPTIC CURVES 10

The congruence below shows how to evaluate its value:(
a

p

)
≡ a

p−1
2 mod p

There exist also several generalizations of the Legendre symbol. The one below works
for fields Fq with q = pn and n ∈ N.

χ(x) =


0 if x = 0,
1 if ∃y ∈ Fq : x = y2,
−1 otherwise.

The Trace Function

The trace function plays an important role when it comes to solving equations in binary
finite fields.

Definition 2.7 (Trace function). The trace function Tr : F2n → F2 is defined by

Tr(x) =
n−1∑
i=0

x2i .

Proposition 2.1 (Properties of the trace function). Let x, y ∈ F2n.

1. Tr(x+ y) = Tr(x) + Tr(y),

2. Tr(x) = Tr(x2) = Tr(x)2,

3. Tr(x) ∈ {0, 1}.

Proof. In F2n , the Frobenius homomorphism is φ : F2n → F2n with φ(x) = x2.

1. This is obviously true as the trace function can be rewritten as follows:

Tr(x) = x+ φ1(x) + φ2(x) + . . .+ φn−1(x)

and φk(x) = x2k in binary fields.

2. Clearly, Tr(x)2 = Tr(x2) = x2 + x4 + x8 + . . .+ x2n−1
+ x2n︸︷︷︸

x

= Tr(x).

3. This follows from Tr(x)2 = Tr(x).

Solving Quadratic Equations in F2n

In F2n , a quadratic equation has the shape

X2 + aX + b = 0, (2.1)

where we assume a 6= 0, because otherwise we would compute X2 = b whose only solution
is x0 =

√
b = b2

n−1
. Now, we apply the change of variables X ← X · a−1 and get the

equation
X2 +X = c with c = b · a−2.

CHAPTER 2. INTRODUCTION TO ELLIPTIC CURVES 11

This equation has solutions x1 and x1 + 1 if and only if Tr(c) = 0, where

x1 =


∑n−3

2
i=0 c

22i+1
if n is odd,∑n−1

i=0

(∑i
j=0 c

2j
)
y2i otherwise

with y ∈ F2n having trace 1. Apparently, a · x1 and a · (x1 + 1) are then solutions of
Equation (2.1).

2.2 The Affine and the Projective Space

When we are talking about elliptic curves and algebraic geometry in general it is essential
to know what is meant by the notions of the affine and the projective space.

Definition 2.8. Let K be an arbitrary field. Then, the affine space Kn over K is the set
of all n-tuples (x1, x2, . . . , xn) with xi ∈ K ∀i = 1, . . . , n.

Definition 2.9. Let K be an arbitrary field. The projective space Pn(K) over K is the
set of all (n + 1)-tuples (x1, x2, . . . , xn+1) 6= 0 with xi ∈ K ∀i = 1, . . . , n + 1. On these
(n+ 1)-tuples we have the following equivalence relation:

(x1, x2, . . . , xn+1) ≡ (x′1, x
′
2, . . . , x

′
n+1)

if there is a 0 6= λ ∈ K such that xi = λx′i ∀i = 1, . . . , n+ 1. We write (x1 : x2 : . . . : xn+1)
for projective points.

This means nothing more than identifying every line that goes through the origin with
a single projective point. In this way, an (n + 1)-dimensional affine space is scaled down
to n dimensions. The projective space has some major advantages over the affine space.
For our purposes it is important that we are able to define points at infinity and that
inversions of field elements can be avoided, which helps saving precious computation time.

2.2.1 Relation between Affine and Projective Coordinates

We can switch between affine and projective coordinates in the subsequent ways:

� In order to map an affine point (x1, . . . , xn) to its projective counterpart we take an
arbitrary point 0 6= z ∈ K and compute (x1z : x2z : . . . : xnz : z).

� Conversely, we map the projective point (x1 : x2 : . . . : xn : z) to the affine point
(x1/z, . . . , xn/z) provided that 0 6= z ∈ K.

In our future considerations we are mostly going to deal with the projective plane
P2(Fq).

2.3 Algebraic Curves

When we are talking about curves in analysis we usually define them through continu-
ous parametrizations. In algebraic geometry, however, neither continuous functions nor
parameterizations do exist. Therefore, we must choose another approach:

CHAPTER 2. INTRODUCTION TO ELLIPTIC CURVES 12

Definition 2.10. Let K be any field, K be an algebraic closure of K and let f be an
(irreducible) polynomial in K[X1, X2, . . . , Xn]. Then, an affine algebraic curve Cf (K) is
the set

{(x1, x2, . . . , xn) ∈ Kn : f(x1, x2, . . . , xn) = 0} .

We usually denote the curve Cf (K), which is a superset of Cf (K), by Cf .

This means that curves are defined by polynomials and can be written as equations in
n variables. The subsequent definitions are important with respect to algebraic curves:

Definition 2.11. Let K be any field and K be an algebraic closure of K. Furthermore,
let f =

∑
i1,...,in≥0 ci1,...,inX

i1
1 . . . Xin

n ∈ K[X1, . . . ,Kn] \ K be a polynomial and P =
(x1, . . . , xn) be an arbitrary point in Cf (K).

� The order of a curve Cf at point P is defined by:

ordP (Cf) = min{i1 + . . .+ in : c̃i1,...,in 6= 0}.

where the coefficients c̃i1,...,in ∈ K originate from the Taylor series of f evaluated at
point P : ∑

i1,...,in≥0

c̃i1,...,in(X1 − x1)i1 . . . (Xn − xn)in

� P is said to be regular if and only if ordP (Cf) = 1 and singular otherwise. Moreover,
a curve Cf containing only regular points is called smooth or regular.

� Let K ⊆ K̃ ⊆ K be a field. P is called K̃-rational, if x1, . . . , xn ∈ K̃.

� K[Cf] = K[X1, . . . , Xn]/(f) is called the coordinate ring of Cf and is defined as

{g mod f : g ∈ K[X1, . . . , Xn]} .

� If f is irreducible in K[X1, . . . , Xn], then K(Cf) = K(X1, . . . , Xn)/(f), which is
defined as{

(g mod f) · (h mod f)−1 : g, h ∈ K[X1, . . . , Xn] with h 6≡ 0 mod f
}

exists and is said to be the function field of Cf .

2.3.1 Projectively Closed Curves

Polynomials can be represented either affinely or projectively. Homogenization allows us
to switch a polynomial’s representation from affine to projective:

Definition 2.12. Let f be a polynomial of degree d. We split f into homogeneous poly-
nomials fi, such that every fi has total degree i: f(X1, . . . , Xn) =

∑d
i=1 fi(X1, . . . , Xn).

Now, we define the projective closure f̄ of f through homogenization:

f̄(X1, . . . , Xn, Z) =
d∑
i=1

fi(X1, . . . , Xn)Zd−i

CHAPTER 2. INTRODUCTION TO ELLIPTIC CURVES 13

The result is a polynomial comprising only monomials of total degree d. Moreover,
it turns out that each affine point (x, y) ∈ Cf is embedded into the projective curve Cf
by the point (x : y : 1). Since we have got an extra variable Z, this curve may contain
additional points.

This brings us to the following definitions:

Definition 2.13. We are given a polynomial f and its projective closure f .

1. The curve Cf is called the projective closure of Cf .

2. A point of the shape (x : y : 0) ∈ Cf is called point at infinity. The set of all those
points is named line at infinity.

Example 2.8. Let f(X,Y) = X3 + XY + Y ∈ Z3[X,Y]. After homogenization we
obtain a new polynomial f̄(X,Y, Z) = X3 + XY Z + Y Z2 ∈ Z3[X,Y, Z]. The curve
Cf (Z3) comprises the points (0, 0) and (1, 1), whereas Cf (Z3) consists of their projective
counterparts (0 : 0 : 1), (1 : 1 : 1) as well as several points at infinity, namely (0 : 0 : 0), (0 :
1 : 0) and (0 : 2 : 0).

2.4 Elliptic Curves

Now we are ready to introduce the notion of an elliptic curve:

Definition 2.14 (Elliptic curve). Let K be any field. An elliptic curve E over the field
K, denoted by E/K, is a plane, smooth curve described by the subsequent affine equation:

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 (2.2)

or alternatively by the equivalent projective equation:

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 (2.3)

where a1, . . . , a6 ∈ K. Equation (2.2) is called long Weierstrass equation. The set of all
points (x, y) ∈ K2 satisfying Equation (2.2) plus O = (0 : 1 : 0), the point at infinity, is
denoted by E(K).

Note that K is an arbitrary field, it can be either finite or infinite.

2.4.1 Summation of Points and the Group Laws

By now, it has not been quite obvious how elliptic curves can be utilized for data encryp-
tion. In order to perform computations on the set E(K) we have to define an arithmetic
operation +. Before we do so, we need to know the following facts:

Proposition 2.2. When we draw a line L through two distinct points P,Q ∈ E(K) this
line always intersects at a third point R ∈ E(K). The same holds, when we lay a tangent
L through a point P ∈ E(K). Then, this tangent also intersects at a third point R ∈ E(K)
(if we count P twice).

Proposition 2.3. The reflection P of a point P = (x, y) ∈ E(K) \ {O} on the curve is
given by P = (x,−y − a1x− a3).

CHAPTER 2. INTRODUCTION TO ELLIPTIC CURVES 14

Figure 2.1: Plot of the curve Y 2 = X3 −X + 100 over R

Figure 2.2: Plot of the curve Y 2 + Y = X3 −X over F457

CHAPTER 2. INTRODUCTION TO ELLIPTIC CURVES 15

For the addition law, we distinguish two different cases:

1. Let P,Q ∈ E(K) be two distinct points. In order to sum P and Q we lay a line
through both points. This line intersects at a third point R = (xR, yR) ∈ E(K).
Then, the sum P +Q is defined by R.

2. Let P ∈ E(K). For doubling P we draw a tangent through P , which usually
intersects at a third point R ∈ E(K). If this is not the case, we set R = O. Again,
we obtain 2P = P + P by reflecting R, i.e. 2P = R.

These two summation instructions are known as chord-method and tangent-method
and are valid for both finite and infinite fields K. The exact formulae are being detailed
by Algorithm 2.1. Note that these formulae simplify according to the type of curve and
the characteristics of the field K.

Together with the set E(K) the addition laws form an abelian group (E(K),+), which
means that the following group laws hold:

1. E(K) is closed under the operation +, which means that the sum of two arbitrary
points always yields a third point on the curve.

2. It is associative:

∀P,Q,R ∈ E(K) we have: (P +Q) +R = P + (Q+R)

3. It is commutative:
∀P,Q ∈ E(K) holds: P +Q = Q+ P

4. There exists a neutral element O, so that:

∀P ∈ E(K) : P +O = O + P = P

5. Every point P in E(K) has an inverse −P ∈ E(K), namely its reflection P = −P ,
such that

P + (−P) = (−P) + P = O

2.4.2 The Discriminant and the j-Invariant

The discriminant and the j-invariant are essential properties of an elliptic curve. They
are made up as follows:

Definition 2.15 (Discriminant and j-invariant). Let K be any field and E/K be an
elliptic curve and

� b2 = a2
1 + 4a2,

� b4 = 2a4 + a1a3,

� b6 = a2
3 + 4a6, and

� b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4.

CHAPTER 2. INTRODUCTION TO ELLIPTIC CURVES 16

Figure 2.3: The inversion of point P on the curve Y 2 = X3 − 25X over R

Figure 2.4: Addition of points P and Q on the curve Y 2 = X3 − 25X over R

CHAPTER 2. INTRODUCTION TO ELLIPTIC CURVES 17

Figure 2.5: Doubling of point P on the curve Y 2 = X3 − 25X over R

Algorithm 2.1 Addition of two points on an elliptic curve in Weierstrass form
Require: P,Q ∈ E(K)
Ensure: R ∈ E(K)
1: Check whether Q = −P . If this is the case P +Q equals O. Set R = O and go to 3.
2: Otherwise, compute P +Q = R = (x3, y3) ∈ E(K) \ {O}, where

� P = (x1, y1),

� Q = (x2, y2),

� x3 = λ2 + a1λ− a2 − x1 − x2, and

� y3 = −(λ+ a1)x3 − µ− a3.

So far, everything applies for both Q = P and Q 6= P . This distinction is contained
in the values λ and µ:

λ =

{
(y2 − y1)(x2 − x1)−1 if x1 6= x2,

(3x2
1 + 2a2x1 + a4 − a1y1)(2y1 + a1x1 + a3)−1 otherwise.

and

µ =

{
(y1x2 − y2x1)(x2 − x1)−1 if x1 6= x2,

(−x3
1 + a4x1 + 2a6 − a3y1)(2y1 + a1x1 + a3)−1 otherwise.

3: return R.

CHAPTER 2. INTRODUCTION TO ELLIPTIC CURVES 18

Then

� ∆(E) = −b22b8 − 8b34 − 27b26 + 9b2b4b6 is called discriminant, and

� j(E) = (b22 − 24b4) ·∆(E)−1 , for ∆(E) 6= 0 is called j-invariant.

The importance of the discriminant is that ∆(E) is non-zero if and only if the curve E
is non-singular. A non-zero discriminant ensures that the polynomial X3+a2X

2+a4X+a6

has no multiple roots inK and hence that any point on the curve has a uniquely determined
tangent line.

The definition of the j-invariant brings us to the subsection below.

2.4.3 Simplified Curve Equations

The curve equations simplify depending on the j-invariant and the characteristic of the
underlying field K:

Proposition 2.4. Let E/K be an elliptic curve in long Weierstrass form with coefficients
a1, . . . , a6. Under the assumptions below, there is a change of variables taking E into form
E′:

� If char(K) = 2:

– If j(E) = 0:

E′ : Y 2 + a3Y = X3 + a4X + a6 (2.4)

j(E′) = 0,∆(E′) = a3
4

– If j(E) 6= 0:

E′ : Y 2 +XY = X3 + a2X
2 + a6 (2.5)

j(E′) = a−1
6 ,∆(E′) = a6

� If char(K) /∈ {2, 3}:
E′ : Y 2 = X3 + a4X + a6 (2.6)

j(E′) = 1728 · 4a3
4 · (4a3

4 + 27a2
6)−1,∆(E′) = −16(4a3

4 + 27a2
6)

Proof. We refer to [Sil92, Proposition A.1.1].

E′ is called short Weierstrass form. For fields K with char(K) /∈ {2, 3} also the addi-
tion, doubling and point negation formulae simplify. They are summarized in Table 2.1.

2.4.4 Mappings between Elliptic Curves

In the subsequent chapters, we must be able to switch between different curve shapes
in order to speed up calculations. In the following we discuss several non-equivalent
approaches.

CHAPTER 2. INTRODUCTION TO ELLIPTIC CURVES 19

(x1, y1) + (x2, y2) x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

λ =

{
(y2 − y1)(x2 − x1)−1 P1 6= P2,

(3x2
1 + a4)(2y1)−1 otherwise.

−(x, y) (x,−y)

Table 2.1: Simplified addition formulae for char(K) /∈ {2, 3} and (x1, y1) 6= −(x2, y2)

Curve Isomorphisms and Twists

A curve isomorphism is a bijection between the sets of K-rational points E(K) and E′(K)
of the two different curves E and E′.

Definition 2.16 (Isomorphic curves). Two elliptic curves E : Y 2 + a1XY + a3Y =
X3 + a2X

2 + a4X + a6 and E′ : Y ′2 + a′1X
′Y ′ + a′3Y

′ = X ′3 + a′2X
′2 + a′4X

′ + a′6 defined
over the same field K are isomorphic if and only if there are constants u ∈ K∗ and
r, s, t ∈ K, such that the subsequent change of coordinates

X = u2X ′ + r and Y = u3Y ′ + su2X ′ + t

converts curve E into E′. This is denoted by E(K) ' E′(K).

Elliptic curve isomorphisms and the j-invariant are closely related:

Proposition 2.5. Two isomorphic elliptic curves E and E′ defined over the same field
K have the same j-invariants: j(E) = j(E′). Conversely, two curves having the same
j-invariant are isomorphic over the algebraic closure K of K.

Proof. See [Sil92, Proposition III.1.4].

In the other case E and E′ are named twists of each other:

Definition 2.17 (Twist). We are given two elliptic curves E and E′ over the field K. If
j(E) = j(E′), but E(K) 6' E′(K), then E and E′ are twists of each other.

A quadratic twist of a curve is defined in the following manner:

Definition 2.18 (Quadratic twist). Let E be an elliptic curve over some finite field K.
Its quadratic twist E′ is then:

� If char(K) = 2, E is of the shape Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 and

if d ∈ K has trace 1, then

E′ : Y 2 + a1XY + a3Y = X3 + (a2 + da2
1)X2 + a4X + a6 + da2

3.

� If char(K) /∈ {2, 3}, E is of the shape Y 2 = X3 + a4X + a6 and if d is not a square
in K∗, then

E′ : Y 2 = X3 + d2a4X + d3a6.

CHAPTER 2. INTRODUCTION TO ELLIPTIC CURVES 20

The quadratic twist is isomorphic to the original curve over the algebraic closure K
and is unique up to isomorphisms. In a similar way it is possible to specify cubic twists
and the like.

Example 2.9. Let E : Y 2 = X3 + X + 2 be an elliptic curve over F5. Since 3 is a
non-square in F5, we set d = 3. Then, the (quadratic) twist of E is

E′ : Y 2 = X3 + 4X + 4.

Birational Equivalences

There are certain classes of elliptic curves, called birational equivalence classes. Within
such a class any two curves are connected through two rational functions in the following
way:

Definition 2.19 (Birational Equivalence). Let K be any field. Two (affine) elliptic curves
E/K and E′/K are called birationally equivalent, if there are two rational functions φ =
(φ1, φ2) and ψ = (ψ1, ψ2) with φi ∈ K(E), ψi ∈ K(E′) for i = 1, 2 such that:

� φ : E 7→ E′,

� ψ : E′ 7→ E,

� φ ◦ ψ = idE′ , and

� ψ ◦ φ = idE .

This means that φ and ψ are inverse to each other and that we can use them to map
points between the two curves E and E′. Such an birational equivalence is almost as
powerful as a curve isomorphism. However, since the denominator of a rational function
has finitely many roots, both φ and ψ are undefined for a finite number of points. Such
points are said to be exceptional.

Curve Isogenies

Another notion we are going to use later, is the notion of an isogeny.

Definition 2.20 (Isogeny, isogeneous curves). An isogeny over K is a group homomor-
phism φ between two elliptic curves E,E′ over K sending the neutral element of E to the
neutral element of E′:

φ : E → E′

with φ(OE) = OE′ . Consequently, the two curves E,E′ are considered to be isogenous
over K if there exists a non-constant isogeny φ : E → E′ (that is φ(E) 6= {OE′}) over K.

To every isogeny φ : E → E′ belongs an isogeny φ′ : E′ → E called dual isogeny, such
that φ ◦ φ′ is the endomorphism of multiplication by m 6= 0. m is called the degree of φ,
written deg φ. An isogeny of degree m is called m-isogeny.

The next theorem has an impact on isogenies in connection with elliptic curves defined
over finite fields.

Theorem 2.2 (Tate). Two elliptic curves E,E′ are isogenous over Fq if and only if
|E(Fq)| = |E′(Fq)|.

Proof. We refer to [Tat66].

CHAPTER 2. INTRODUCTION TO ELLIPTIC CURVES 21

2.4.5 Alternative Curve Coordinates

The default addition law is inappropriate for many applications. Not only that it is vulner-
able to side-channel attacks but also because of its mediocre speed. The regular addition
formula of two points on Weierstrass curves takes one inversion as well as several multipli-
cations and squarings, where the field inversion is the most expensive part. It is estimated
that an inversion lasts about 9 to 40 times longer than a single field multiplication [CF05,
Section 13.2.1.d]. Switching to alternative curve coordinates may, to some extent, help
avoiding such costly field operations and can hence be beneficial.

This subsection presents the most important types of coordinates aside from Edwards
coordinates, which are the topic of Part III.

Projective Coordinates

The switch to projective coordinates allows us to omit the inconvenient inversion. The
projectively closed curve in the non-binary case is

Y 2Z = X3 + a4XZ
2 + a6Z

3.

In the binary case we restrict us to the curve equation

Y 2Z +XY Z = X3 + a2X
2Z + a6Z

3.

The point at infinity is then O = (0 : 1 : 0) and the projective point (x1 : x2 : x3)
corresponds to (x1/z, x2/z) provided that z 6= 0.

Projective Addition and Doubling Formulae In order to derive projective addition
formulae, we start with a conversion of the two addends P1 and P2 to affine points P ′1 and
P ′2. Next, P ′1 and P ′2 are plugged into the affine addition formula. Finally, the result P ′3
is reconverted to a projective point P3, where the z-coordinate P3 is chosen in such a way
that the denominators in the affine formula are being cleared. Analogously, it is possible
to derive projective doubling formulae:

Example 2.10 (Point doubling formula for projective coordinates). We derive the pro-
jective doubling formula for the projective curve

E : Y 2Z = X3 + a4XZ
2 + a6Z

3.

The affine counterpart of E is

E′ : Y 2 = X3 + a4X + a6.

Let P1 = (x1 : y1 : z1) ∈ E satisfying P1 6= −P1. Then, P ′1 = (x1/z1, y1/z1) ∈ E′. After
plugging P ′1 into the affine doubling formula we get P ′3 = (x′3, y

′
3) with:

x′3 = λ2 − 2(x1/z1),

y′3 = λ(x1/z1 − x′3)− y1/z1,

where λ = (3(x1/z1)2 + a4) · (2y1/z1)−1.
After simplifying the above results we obtain:

x′3 = ((3x2
1 + a4z

2
1)2 − 8X1y

2
1z1) · (4y2

1z
2
1)−1,

CHAPTER 2. INTRODUCTION TO ELLIPTIC CURVES 22

y′3 = ((3x2
1 + a4z

2
1) · (2y1z1)−1)2(x1/z1 − x′3)− y1/z1.

Evidently, choosing Z3 = 4Y 2
1 Z

2
1 clears the denominator when reconverting to projective

coordinates:
x3 = (3x2

1 + a4z
2
1)2 − 8x1y

2
1z1,

y3 = (3x2
1 + a4z

2
1)2(4x1y

2
1z1 − x3)− 4y3

1z1,

z3 = 4y2
1z

2
1 .

For a comprehensive listing of projective arithmetic formulae take a look at [CF05,
Section 13.2.1.b].

Jacobian Coordinates

Jacobian coordinates are a derivative of projective coordinates. Compared to projective
coordinates they offer amazingly fast doubling formulae at the expense of additional costs
for addition. Instead of associating a projective point (x : y : z) to an affine point
(x/z, y/z) we associate it to the point (x/z2, y/z3). Consequently, the Jacobian curve has
equation:

E : Y 2 = X3 + a4XZ
4 + a6Z

6

in the non-binary case, and

E′ : Y 2 +XY Z = X3 + a2X
2Z2 + a6Z

6

in the binary case with non-zero j-invariant. The point at infinity corresponds to (1 :
1 : 0) and the arithmetic formulae can be derived in the same fashion as for projective
coordinates. For a comprehensive listing of Jacobian arithmetic formulae please have
either a look at [CF05, Section 13.2.1.c] or at [HMV04, Algorithms 3.21 and 3.22].

Montgomery Curves

Montgomery-type elliptic curves were initially used in [Mon87] for special curves over fields
of large characteristic. Generalizations to other curves and to curves over binary fields do
exist [LD99].

An elliptic curve in Montgomery form over field K, char(K) /∈ {2, 3} is defined as:

EM,a,b : bY 2 = X3 + aX2 +X

where a, b ∈ K satisfying a 6= ±2, b 6= 0. The set of K-rational points of EM,a,b together
with the point at infinity O = (0 : 1 : 0) forms the group EM,a,b(K). Every Montgomery-
shape curve is isomorphic to a curve in short Weierstrass form, but not the other way
round. The subsequent proposition lists the conditions under which a Weierstrass curve
can be transformed to Montgomery form:

Proposition 2.6. Fix an arbitrary Weierstrass curve E : Y 2 = X3 + a4X + a6 over K.
Then, E is transformable to Montgomery shape if and only if

� the equation X3 + a4X + a6 = 0 has at least one solution α ∈ K, and

� the element 3α+ a4 is a square in K.

CHAPTER 2. INTRODUCTION TO ELLIPTIC CURVES 23

Proof. In [OKS00, Proposition 1] Katsuyuki Okeya, Hiroyuki Kurumatani and Kouichi
Sakurai mention and prove this statement for K = Fp. Yet, in the above setting the proof
remains valid for arbitrary fields K with char(K) > 3.

Please note that over finite fields of prime characteristic Fp every such curve’s group
order is divisible by 4. In contrast to the Weierstrass addition law the Montgomery
addition law resists side-channel attacks and features efficient computations solely based
on x-coordinates. For further information on the isomorphism, the group law et cetera we
either refer to [CF05, Section 13.2.3] or to the research papers [OKS00, Duq04].

Chapter 3

Background on Hash Functions

Hash functions play an important role in contemporary cryptography. They are widely
used to calculate “fingerprints” of messages, such that any change to a message, may it
be intentional or by accident, can be revealed.

This chapter provides background knowledge on hash functions in general taken from [Pra07],
on memoryless collision searches as discussed in [BB08, Saa04] and on a hashing algorithm
called MuHASH [BM97]. All of those techniques are necessary for a better understanding
of the following chapters.

3.1 Cryptographic Hash Functions

A cryptographic hash function H is an algorithm mapping a message of arbitrary length
to a bitstring of fixed size m, called hash value or sometimes also called message digest.
Famous examples for cryptographic hash functions are the algorithms MD5 [Riv92] and
SHA-1 [EJ01].

In mathematical notation H is written as:

H : {0, 1}∗ → {0, 1}m

For cryptographic purposes it is important that no two messages ever yield the same hash
value. Hence, an ideal hash function satisfies four main features:

1. H(M) is easy to compute for any given message M .

2. Collision resistance: it is computationally infeasible to find two distinct messages
M 6= M ′ with the same message digest, i.e. H(M) = H(M ′).

3. Preimage resistance: for a given hash value h, it is computationally infeasible to
compute a message M such that H(M) = h.

4. Second preimage resistance: for a given message M it is computationally infeasible
to compute another message M ′ such that H(M) = H(M ′).

Clearly, after evaluating more than 2m different messages, there must be at least one
collision. In fact, according to the birthday paradox we need not hash more than 2m

messages as we can expect a collision after trying about
√

2m messages:

24

CHAPTER 3. BACKGROUND ON HASH FUNCTIONS 25

Theorem 3.1 (Birthday Paradox). We are given an urn filled with n balls of different
colors. In every step we draw one ball and put another ball of the same color back into
the urn. Then, for larger n we can expect the first pair of coinciding balls after roughly√

nπ
2 ≈ 1.25

√
n steps.

Hence, a hash function is considered to be broken, if an exploit of its specific properties
allows collisions to be found in asymptotically less than

√
2m steps or preimages and second

preimages to be found in asymptotically less than 2m steps, respectively.
Originally, the label “birthday paradox” comes from a special case of Theorem 3.1,

which says that in a randomly chosen group of at least 23 people there are two people
born on the same day with probability greater than 1

2 . Attacks based on the birthday
problem are called birthday attacks. Birthday attacks are general attacks and as such they
are applicable to every hash function. In order to mount such an attack, the message
digests of the random messages are put in a hash table until a collision occurs. Hence,
such an attack does not only take O(

√
2m) computational steps, but also O(

√
2m) memory.

The next section provides a memory-sparing alternative to this approach.

3.2 Floyd’s Cycle-Finding Algorithm

In hash function analysis cycle-finding algorithms are widely used to perform memoryless
collision searches. One of the first such algorithms was Floyd’s cycle-finding algorithm,
also known as “tortoise and hare”-algorithm. It traces back to an algorithm proposed by
Robert W. Floyd that lists cycles in directed graphs [Flo67]. In further consequence this
algorithm was extended to detect collisions of hash functions. In 1969, Donald E. Knuth
was the first, who gave a description of how cycles can be found in functional graphs using
the “tortoise and hare”-algorithm [Knu69].

3.2.1 The Idea behind Floyd’s Cycle-Finding Algorithm

Now, let us take a look at the theoretical background of this algorithm. At first, we
consider a pseudorandom sequence generated followingly:

xi+1 = H(xi),

whereH : {0, 1}∗ → {0, 1}m is either a hash function or some other pseudorandom function
returning bitstrings of length m ∈ N. Since the range of H is limited, the sequence (xi)i≥0

is periodic and a collision must occur at some point. This means that there will be a pair
(xi1 , xi2), such that xi1 6= xi2 and H(xi1) = H(xi2). According to the birthday paradox
we can expect a collision after approximately

√
2m steps.

Definition 3.1. Assume that i′1 and i′2 are the smallest indices, such that xi′1 6= xi′2 and
H(xi′1) = H(xi′2). Then, µ = i′1 + 1 is called the tail length of the cycle and λ = i′2 − i1 is
called its cycle length.

Obviously, xi = xi+cλ holds for all i ≥ µ and for all c ∈ N. Thus, if index i attains the
value cλ, i.e. a multiple of the cycle length, we have

xi = xi+cλ = x2i.

From this it follows, that in order to determine such a multiple c′λ of λ it suffices to
look at pairs (xi, x2i) starting from (x0, x0).

CHAPTER 3. BACKGROUND ON HASH FUNCTIONS 26

x16

x15

x14

x13 x12

x11

x10

x9

x8

x7x6
x5

x4

x3

x2

x1

x0

Figure 3.1: Illustration of Floyd’s cycle finding algorithm (µ = 5, λ = 12)

Theorem 3.2 (Knuth). For every periodic sequence x0, x1, x2, . . . there is an index i > 0
such that xi = x2i holds. The smallest such i lies between µ ≤ i ≤ µ+ λ.

Proof. The former statement follows from the previous discussion. The latter statement
is obvious as, firstly, i must not be the index of a tail element (that is i ≥ µ) in order to
yield a collision and, secondly, a multiple of λ lies between µ and µ+ λ.

Next, we determine the sequence

(x0, xc′λ), (x1, xc′λ+1), . . . , (xµ, xc′λ+µ)

and stop as soon as H(xi) = H(xc′λ+i) to get the first collision (xµ−1, xµ+c′λ−1).
All in all, the first part of this algorithm takes 3c′λ invocations of H and c′λ com-

parisons, whereas the second part takes 2µ hash function invocations and µ comparisons.
Algorithm 3.1 details Floyd’s cycle finding algorithm in pseudocode.

3.2.2 Expected Cycle and Tail Lengths

This subsection deduces the expected tail and cycle lengths µ and λ. We start with the
probability distribution of λ + µ. In the ith step we can choose between all, except for
the already outputted elements, if we want to avoid duplicates. This means that we can
choose between n− i+ 1 out of n = 2m elements. Therefore, the probability that λ+ µ is
greater than k is given by:

P (λ+ µ > k) =
nk

nk

Now, we are going to deduce the expected number of steps before the first collision
occurs: E(λ + µ). For this purpose the probability measure of λ + µ is rather unhandy.
First of all, we derive a suitable approximation:

P (λ+ µ > k) =
n

n
· n− 1

n
· . . . · n− (k − 1)

n
=
(

1− 1
n

)
·
(

1− 2
n

)
· . . . ·

(
1− k − 1

n

)

CHAPTER 3. BACKGROUND ON HASH FUNCTIONS 27

Algorithm 3.1 Floyd’s cycle finding algorithm
Require: H : {0, 1}∗ → {0, 1}m to be a pseudorandom function, for some m ∈ N.
Ensure: x 6= y and H(x) = H(y)
1: xi = x0

2: x2i = x0

3: repeat {Find a repetition xi = x2i}
4: xi = H(xi) {Move with regular speed (tortoise step)}
5: x2i = H(H(x2i)) {Move twice as fast (hare step)}
6: until xi = x2i

7: x2i = xi
8: xi = x0

9: repeat {Determine the position of the first repetition}
10: x = xi {Store xi}
11: y = x2i {Store x2i}
12: xi = H(xi)
13: x2i = H(x2i)
14: until xi = x2i

15: return (x, y)

After applying the logarithm we get:

log(P (λ+ µ > k)) =
k−1∑
i=1

log
(

1− i

n

)
(3.1)

The logarithm has the following well-known power series:

log(1 + x) = x− x2

2
+
x3

3
− x4

4
+ . . . ,

which applied to Equation (3.1) yields:

log(P (λ+ µ > k)) =
k−1∑
i=1

log
(

1− i

n

)
=

=
k−1∑
i=1

(
− i
n
− i2

2n2
− i3

3n3
− i4

4n4
− . . .

)
=

When we assume k = O
(
n

1
2
+ε
)

, we have:

=
k−1∑
i=1

(
− i
n

+O
(
n−1+2ε

))
=

= − 1
n

k−1∑
i=1

i+O
(
n−

1
2
+3ε
)

=

= − 1
n

k(k − 1)
2

+O
(
n−

1
2
+3ε
)

=

= − k
2

2n
+O

(
n−

1
2
+3ε
)

︸ ︷︷ ︸
→0 as n→∞

CHAPTER 3. BACKGROUND ON HASH FUNCTIONS 28

As result we get:

P (λ+ µ > k) ≈ exp
(
− k

2

2n

)
for k = O(n

1
2
+ε). Now, we are able to calculate the mean value E(λ+ µ):

E(λ+ µ) =
∑
k≥0

k · P (λ+ µ = k) =
∑
k≥0

k · (P (λ+ µ > k − 1)− P (λ+ µ > k)) =

which simplifies to

=
∑
k≥0

P (λ+ µ > k) ≈
∑
k≥0

e−
k2

2n

In order to evaluate the limit of this series, we can approximate it using the Euler-
Maclaurin formula:

∑
k≥0

f(k) ≈ lim
l→∞

∫ l

0
f(k)dk +

f(0) + f(l)
2

+
l∑

j=1

B2j

(2j)!

(
f (2j−1)(l)− f (2j−1)(0)

)
Note that B2j stands for the Bernoulli numbers. After plugging in f(k) = e−

k2

2n we get:

∑
k≥0

e−
k2

2n ≈ lim
l→∞

∫ l

0
e−

k2

2ndk +
e0 + e−

l2

2n

2
+

l∑
j=1

B2j

(2j)!

(
f (2j−1)(l)− f (2j−1)(0)

) =

= lim
l→∞

∫ l

0
e−

k2

2ndk +
e0 + e−

l2

2n

2
+

l∑
j=1

B2j

(2j)!

(
− l
n

)2j−1

e−
l2

2n


where f (2j−1)(l) =

(
− l
n

)2j−1
e−

l2

2n .
It would be convenient, if only the integral remained. Fortunately, this is almost the

case, as

lim
l→∞

e0 + e−
l2

2n

2
=

1
2

and lim
l→∞

f (2j−1)(l) = 0.

Thus, the sum

l∑
j=1

B2j

(2j)!

(
− l
n

)2j−1

e−
l2

2n

vanishes and it is reasonable to approximate the mean value E(λ + µ) by the integral∫∞
0 e−

k2

2ndk. Finally, we solve the aforementioned integral and obtain an explicit formula:

E(λ+ µ) ≈
∫ ∞

0
e−

k2

2ndk =

We substitute x = k√
2n

and dk =
√

2ndx and get:

=
√

2n
∫ ∞

0
e−x

2
dx =

CHAPTER 3. BACKGROUND ON HASH FUNCTIONS 29

After substituting t = x2 and dx = 1
2
√
t
dt we have:

=
√
n

2

∫ ∞
0

t−
1
2 e−tdt =

√
n

2
· Γ
(

1
2

)
=
√
nπ

2

Thus, the expected value

E(λ+ µ) ≈
√
nπ

2
≈ 1.25

√
n (3.2)

The expected cycle and tail lengths E(λ) and E(µ) are both
√

nπ
8 [Har60].

3.2.3 Concluding Remarks

Next to Floyd’s cycle finding algorithm several alternative techniques do exist. Brent’s al-
gorithm [Bre80], for instance, requires only one hash computation per iteration in exchange
for three comparisons. Though, its expected runtime of 1.98

√
n iterations is rather high

compared to 1.25
√
n iterations of Floyd’s cycle finding algorithm, it is 25-30% faster if the

comparisons are cheap [BB08]. Other approaches sacrifice the memorylessness in order to
reduce the time complexity. Parallelized cycle-finding algorithms, like parallel variants of
Floyd’s algorithm (cf. [vOW94]), as well as a sequential algorithm by Nivash fall into this
category [Niv04]. Nivash’s algorithm uses a probabilistic logarithmic amount of memory
and is considered to be the fastest cycle-finding algorithm on single core computers [CF05].

Chapter 4

Elliptic Curves in Cryptography

Starting with a section on the historical background of public key cryptography and a
comparison between RSA and ECC this chapter takes a look at the usage of elliptic curves
in cryptography. It focusses on elliptic curves over finite fields and reviews the security
properties of different curve types. Moreover, it points out of what one has to be aware of
when selecting a specific curve and sketches some state-of-the-art attacks. Finally, it deals
with point compression and decompression, a technique that is used to save memory.

This chapter is mostly based on introductory lecture notes [TF03, OL08, Bir09a], on
an excellent essay by Neal Koblitz et al. [KKM08], a master thesis [Kop09] as well as on
several standard works [Sma09, CF05, HPS08, HMV04, Was08].

4.1 Historical Background

From ancient history until the 1970s cryptography had been solely based on symmetric
methods. This means that the involved parties had been required to share the same se-
cret in order to decipher the encrypted message. Such cryptographic secrets had been
exchanged via couriers or in direct meetings. These methods involved both a certain
amount of insecurity and trust into third parties. In 1976, Whitfield Diffie and Martin
E. Hellman revolutionized the cryptographic key exchange with the invention of the first
method that allowed the establishment of a shared secret over an unprotected commu-
nication channel [DH76]. The Diffie-Hellman key exchange is based on the difficulty of
solving the DLP in groups Zp modulo a large prime number p and was the originator of
all other forms of asymmetric cryptography.

Shortly afterwards, in 1977, Ronald L. Rivest, Adi Shamir and Leonard Adleman
introduced the RSA cryptosystem [RSA78], the first public key cryptosystem in history.
It is based on the difficulty of factoring large integers, called integer factorization problem
(IFP), and unlike the Diffie-Hellman method it can be directly used for data encryption.
One novelty introduced through RSA is the substitution of one secret cryptographic key
with one public key and one private key. Messages can be encrypted using a person’s
public key, whereas the private key is kept secret and can then be used to decrypt the
message. So, this approach does not involve the necessity of secure key exchanges.

In 1985, Neal Koblitz [Kob87] and Victor S. Miller [Mil85] both discovered indepen-
dently that elliptic curves over finite fields can be used for public key cryptography. Based
on the difficulty of the ECDLP, they published a Diffie-Hellman type protocol for elliptic
curves. Both of these two groundbreaking works were inspired by a paper of Hendrik

30

CHAPTER 4. ELLIPTIC CURVES IN CRYPTOGRAPHY 31

Lenstra, who had been the first who had found an application of elliptic curves in cryp-
tography. In 1984, Lenstra had introduced a new factoring method based on elliptic
curves [Len87], called elliptic curve method (ECM).

For some years it seemed that, although still not in widespread use, ECC had become a
powerful alternative to RSA. On the contrary, at the beginning of the 1990s, RSA became
well established and it was virtually the only public key cryptosystem in use. At the same
time new algorithms, such as the number field sieve, came up and forced the usage of
stronger RSA keys, as it has lowered the complexity of factoring an n-bit RSA modulus
from O(en

1/2+ε
) to O(en

1/3+ε
). In further consequence, the required RSA key sizes have

grown to lengths of thousand bits and more, which have rendered the RSA cryptosystem
almost unmanageable in constrained environments. Apparently, this would have been a
perfect opportunity for a break-through of ECC.

Then, however, in 1991 the Weil pairing attack [MOV91] was discovered, which allows
an efficient computation of the discrete logarithm on a certain type of curves, the so-called
supersingular curves. This was a major impact since these curves had been used very often
as they provide a fast addition law.

This discovery and the failure of the closely related hyperelliptic curve cryptogra-
phy [Kob89, ADH94] shattered the trust in elliptic curve cryptography for almost a decade.
Additionally, this distrust was stirred up by the RSA fraction, who claimed that elliptic
curves were not ready for prime-time use and did not have the same well studied mathe-
matical background that RSA had at that point of time.

At the end of the 1990s the trust in the security of elliptic curve cryptosystems could
slowly be re-established as no more security flaws had been discovered and industrial
standards bodies supported ECC. A reason for this was also NSA’s support for ECC.

Over time more and more cryptographic algorithms, such as DSA and El-Gamal were
adapted to work with elliptic curves and also new applications, such as pairing based
cryptography, which is a form of identity based cryptography, were found for it [SOK00,
Jou00].

In the past couple of years much effort has been put into improvements of ECC, mostly
into advances of the curve arithmetic. In 2007, Harold M. Edwards discovered a normal
form for elliptic curves [Edw07] over number fields, which was revisited by Bernstein and
Lange [BL07b]. Edwards’ normal form was groundbreaking as it features a complete and
also fast addition law. Bernstein and Lange adapted Edwards’ normal form to curves
over finite fields and soon found more and more extensions and appliances of the so-called
Edwards curves [BL07c, BLF08, BBJ+08, BL07a, Ber09].

4.2 ECC versus RSA

In this section we are going to compare the RSA cryptosystem with ECC cryptosystems.
As we have already heard in the former section, the security of RSA is based on the

difficulty of factoring large integers, called the integer factorization problem (IFP), whereas
the security of ECC cryptosystems relies on the difficulty of the DLP in elliptic curve
groups. For the IFP several subexponential algorithms are known. The most powerful
methods for factoring large integers are number field sieves, where the best number field
sieve algorithm allows an n-bit integer to be factored in O(en

1/3+ε
) time. Neither these

methods nor Lenstra’s ECM method with a running time of O(en
1/2+ε

) nor index calculus
algorithms, which can be used to determine the discrete logarithm in finite cyclic groups,

CHAPTER 4. ELLIPTIC CURVES IN CRYPTOGRAPHY 32

seem to be applicable to the ECDLP. Thus, no subexponential time algorithm solving the
ECDLP has been found so far and it is assumed that the ECDLP problem is much harder
than the IFP. Therefore, ECC algorithms can use smaller key sizes compared to RSA. By
way of comparison, a 160 bit elliptic curve key provides more or less the same security
as an 1024 bit RSA key [LV99], which yields a tremendous improvement in speed and
memory consumption. This circumstance makes ECC especially suitable for constrained
environments, like cell phones and smart cards.

4.3 Elliptic Curves over Finite Fields

For cryptographic purposes we focus on elliptic curves over finite fields Fq. It is quite
obvious that an elliptic curve group over the finite field Fq is itself finite. For each x-
coordinate there are at most two y-coordinates plus the point at infinity and thus the
number of elements is bounded by 2|Fq|+ 1.

4.3.1 Elliptic Curves over Binary Finite Fields

Elliptic curves over binary finite fields are given through the following affine Weierstrass
equation:

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 with ai ∈ F2n and ∆(E) 6= 0 (4.1)

In the binary case there are two different possible types of curves. Curves given by the
equation:

1. Y 2 + a3Y = X3 + a4X + a6 are said to be supersingular, whereas

2. Y 2 +XY = X3 + a2X
2 + a6 are called non-supersingular.

Note also that E defined over some field with characteristics 2 is supersingular if and only
if its j-invariant j(E) = 0. Subsections 4.5.2 and 4.6.1 explain why supersingular curves
should be avoided for safety’s sake.

4.3.2 Elliptic Curves over Finite Fields with Characteristic > 3

Elliptic curves over fields Fq of characteristic p greater than 3 are defined by a slightly
simpler affine equation:

E : Y 2 = X3 + a4X + a6 with ai ∈ Fp and ∆(E) 6= 0 (4.2)

Example 4.1. The curve Y 2 = X3 − X defined over F7 has the F7-rational points
(0, 0), (1, 0), (4, 2), (4, 5), (5, 1), (5, 6), (6, 0) plus O.

4.3.3 The Group Order of Elliptic Curves over Finite Fields

So far, all we know is that an elliptic curve consists of the points satisfying the affine
curve equation plus the point at infinity O. Counting the number of elements can be
accomplished in polynomial time.

The equation
|E(Fq)| = q + 1− t (4.3)

CHAPTER 4. ELLIPTIC CURVES IN CRYPTOGRAPHY 33

determines the cardinality of an elliptic curve group. t is called trace of Frobenius and is
an important curve parameter. Hasse’s theorem gives an upper bound for t:

Theorem 4.1 (Hasse). |t| ≤ 2
√
q.

Proof. See for instance [Was08, Theorem 4.1].

More exactly, the number of points on an elliptic curve E(Fp) with prime p > 3 and
equation y2 = f(x) is:

|E(Fp)| = 1︸︷︷︸
O

+
∑

x mod p

(
1 +

(
f(x)
p

))
︸ ︷︷ ︸

∈{0,1,2}

= 1 + p+
∑

x mod p

(
f(x)
p

)
, (4.4)

where
(
x
p

)
stands for the Legendre symbol. This is correct, because of point (x, y) being

counted once, if f(x) = 0, twice, if f(x) is a quadratic residue and never, if f(x) is a
quadratic non-residue. This result can be generalized to elliptic curves over arbitrary
finite fields with characteristic greater than 3. In place of the Legendre symbol, we use its
generalization:

|E(Fq)| = 1 +
∑
x∈Fq

(1 + χ(f(x))) = 1 + q +
∑
x∈Fq

(χ(f(x)))

Note that this method requires exponential running time in the bitsize of p and q,
respectively. In 1985, Rene Schoof published a deterministic polynomial-time algorithm
for counting points on elliptic curves over finite fields with p > 3 [Sch85]. This is crucial,
since the group order allows us to make a statement on the cryptographic properties of a
specific curve. Section 4.4 gives more details on that.

For reasons of safety one usually operates on a prime-order subgroup of an elliptic
curve generated by some generator G. The remaining factors of the group order E(Fq) =
h · ord(G) result in the so-called cofactor h.

Definition 4.1 (Cofactor). Let E/Fq be an elliptic curve and G be the generator of a
subgroup of E(Fq). Then

h =
|E(Fq)|
ord(G)

is an integer and is called the cofactor.

4.4 The Elliptic Curve Discrete Logarithm Problem

We have already covered the discrete logarithm and the DLP for groups in general in
Section 2.1.1. In this section we give the definition of the elliptic curve discrete logarithm
and the ECDLP.

Definition 4.2 (ECDL). Let G be a generator (also called base point) and P ∈ 〈G〉.
Then, the smallest, positive integer k: P = k · G =

∑k
i=1G is called the elliptic curve

discrete logarithm with respect to G.

This leads us directly to the definition of the elliptic curve discrete logarithm problem:

CHAPTER 4. ELLIPTIC CURVES IN CRYPTOGRAPHY 34

Definition 4.3 (ECDLP). Given a point G of (E(Fq),+) and a point P ∈ 〈G〉, the
problem of finding an integer k such that:

P = k ·G

is called the elliptic curve discrete logarithm problem (ECDLP).

Finding such an integer in general is assumed to be hard, since no subexponential
algorithm is known for this specific problem. Thus, the security of cryptographic elliptic
curve algorithms usually relies on the difficulty of this problem.

4.4.1 Generic Attacks against the ECDLP

There are several generic attacks on the DLP that can be used to solve the ECDLP,
but have nothing to do with the particular structure of elliptic curve groups. Generic
algorithms were the first ones that were applied to the ECDLP.

The Pohlig-Hellman Algorithm

The Pohlig-Hellman algorithm was initially designed to solve the DLP in finite fields. It is
the only known generic attack having implications on the choice of the curve parameters. It
solves the DLP in prime-order subgroups and makes use of the Chinese remainder theorem
to construct a solution for the original group. It is especially suitable, if the group order
contains small factors.

Pollard’s Rho Method

In 1975, John M. Pollard came up with a probabilistic algorithm for the DLP in generic
groups [Pol75], which is based on the idea of Floyd’s cycle finding algorithm (cf. Sec-
tion 3.2). It is named after the ρ-pattern emerging in the sequence graph as depicted
in Figure 3.1. In the same manner as Floyd’s algorithm, Pollard’s algorithm looks for
collisions in pseudorandom sequences. Pollard’s rho method fostered the development of
cycle finding techniques and is still the best available attack against the DLP. Note that
it can be applied to the IFP as well. In the following, we are going to discuss Pollard’s
rho method in its formulation for the ECDLP.

For a given a base point G and a point H ∈ 〈G〉, we want to determine the ECDL k
of H so that H = k ·G. In order to do so, we set

Pi = ai ·G+ bi ·H,

where (ai)i≥0, (bi)i≥0 are two integer sequences and the resulting sequence of points (Pi)i≥0

is pseudorandom. Again, we can find a collision by looking at pairs (ki, k2i) starting from
(k0, k0). If a collision Pi1 = Pi2 , i1 6= i2 occurs, we have

ai1 ·G+ bi1 ·H = ai2 ·G+ bi2 ·H

and hence we have found k:

k = (ai1 − ai2) · (bi2 − bi1)−1.

Obviously, also this algorithm has constant memory requirements and an expected runtime
of
√

nπ
2 steps.

CHAPTER 4. ELLIPTIC CURVES IN CRYPTOGRAPHY 35

4.5 Choice of Curve Parameters

Badly chosen curves can reduce the security of elliptic curve systems drastically, since
wrong chosen curve parameters can make the discrete logarithm calculable in subexpo-
nential or even polynomial time. Therefore, it is crucial to be aware of the main pitfalls,
before choosing a specific curve.

4.5.1 Resistance against Generic Attacks

As we have just seen, the Pohlig-Hellman algorithm makes use of small prime factors of
the group order. Therefore, it is essential to choose a base point G ∈ E(Fq) with fairly
large prime order n and |E(Fq)| to be prime or almost prime, that is, |E(Fq)| = hn with
1 ≤ h ≤ 4. This is the reason why elliptic curve standards, like [Nat00], [Int05] or [Sta00],
recommend curves with cofactor h ≤ 4 or even with h = 1.

4.5.2 Weak Elliptic Curves

The trace of Frobenius t indicates whether a curve can be considered cryptographically
weak or strong with respect to the curve’s discrete logarithm problem. This brings us to
the subsequent definition:

Definition 4.4. We are given a curve E(Fq) with q = pn and trace of Frobenius t.

� If t = 1, the curve is said to be anomalous. If additionally q = p holds the curve is
prime-field-anomalous and weak.

� When p divides t the curve is said to be supersingular and is weak as well.

Example 4.2. The curve E : Y 2 = X3−X defined over Fp is supersingular if p ≡ 3 mod 4.
As shown in Example 4.1, for p = 7 we have |E(F7)| = 8 = 7 + 1 − t. This implies that
the trace of Frobenius t equals 0. Obviously, we have 7|0 and so E is supersingular.

For safety’s sake such curves should be avoided in cryptographic applications. The
next section explains why.

4.6 State of the Art Attacks on Elliptic Curves

The first sub-exponential attack against the ECDLP, the MOV attack, was published
in 1991. It is named after its inventors Alfred J. Menezes, Tatsuaki Okamoto and Scott
Vanstone [MOV91] and is also known as Weil pairing attack. A generalization published by
Gerhard Frey, Hans-Georg Rück et al. applies to curves E/Fpn with group order |E(Fpn)|
coprime to p [FR94, FMR99]. Consequently, it seems handy to use for instance curves
with |E(Fq)| = q (i.e. curves with trace of Frobenius 1). However, as it turned out, the
ECDLP on such curves is even weaker since the SSSA attack [Sem98, SA98, Sma99], which
applies to q = p and its generalization by Hans-Georg Rück [Rue99] to arbitrary finite
fields, break it in polynomial time.

Section 4.6.1 deals with the MOV attack and Section 4.6.2 with the SSSA attack.

CHAPTER 4. ELLIPTIC CURVES IN CRYPTOGRAPHY 36

Algorithm 4.1 The MOV algorithm
Require: P,Q ∈ E[l], ord(P) = l and l ∈ P≥3

Ensure: Q = b · P
1: repeat
2: Pick a random point T ∈ E(Fpk).
3: Compute α = el(P, T).
4: until α 6= 1 {Ensure that P and T are independent}
5: Compute β = el(Q,T).
6: Use a subexponential algorithm to find b ∈ N such that β = αb. Then also Q = b ·P .
7: return b.

4.6.1 The Weil Pairing Attack

Supersingular curves can be attacked using the Weil pairing attack [MOV91]. This attack
was the first use of the Weil pairing in cryptography. It transfers the DLP of a supersin-
gular curve E(Fq) to the DLP of an extension field of Fq, where we can solve the latter
one in subexponential time using for instance index calculus.

The Weil Pairing

The Weil pairing is an efficiently computable non-degenerate bilinear mapping:

em : E[m]× E[m]→ µm(Fqk),

that is:

1. em(P +Q,R) = e(P,R) · e(Q,R)

2. em(P,Q+R) = e(P,Q) · e(P,R)

3. If em(P,Q) = 1 for all Q ∈ E[m] then P = O (non-degenerate)

Furthermore, the Weil pairing has some additional features:

1. em(P,Q)m = 1 for all P,Q ∈ E[m], which implies that em(P,Q) is an mth root of
unity.

2. It is alternating, i.e. em(P, P) = 1 for all P ∈ E[m].

Note that k is called the curve’s embedding degree. It is the smallest positive integer
such that firstly m divides (qk − 1) and secondly, Fqk is the smallest field comprising the
coordinates of all points in E[m].

Rationale

In order to mount the attack we assume a point P of prime order l ≥ 3 and the Weil
pairing el : E[l]× E[l]→ µl(Fqk). Now, we are able to compute the discrete logarithm of
Q with respect to P as shown in Algorithm 4.1.

In the first four steps the algorithm chooses a point T ∈ E[l], which is independent from
P , i.e. neither T is a multiple of P nor vice versa. This is crucial, since em is alternating
and otherwise we would get:

el(P, T) T=a·P= el(P, a · P) bilinear= el(P, P)a = 1a = 1

CHAPTER 4. ELLIPTIC CURVES IN CRYPTOGRAPHY 37

After computing the Weil pairing of Q and T in step 5, it uses a subexponential algorithm
such as index calculus to solve the DLP in the finite field Fqk .

Why does this attack work? We know that β = αb, that β = el(Q,T) and that Q is
a multiple of point P , let us say Q = a · P . What we have next is:

β = el(Q,T) = el(a · P, T) bilinear= e(P, T)a = αa

Now, we have obtained two different representations of β:

β = αb and β = αa.

From this it follows that:
α(b−a) = 1.

In other words (b− a) is a multiple of the order l of µl(Fqk)’, that is, l|(b− a). Since the
group order of E[l] is the same, we get:

(b− a) · P = O,

which implies
b · P = a · P = Q.

It is still to be clarified, why l has to be prime. The proposition below gives an answer
to that:

Proposition 4.1. Let l ∈ P≥3, E be an elliptic curve, P, T ∈ E[l] and consider E[l] =
Zl × Zl as vector space over the field Zl. Then the following statements are equivalent:

� P and T are a basis of E[l].

� P 6= O and T are independent of each other.

� el(P, T) ∈ µl(Fqk) is a primitive lth root of unity.

� el(P, T) 6= 1.

Proof. We refer to [HPS08, Proposition 5.49].

This proposition ensures that α = el(P, T) is a generator of µl(Fqk) if and only if P
and T are independent of each other. Hence, for all β ∈ µl(Fqk) there is an b ∈ N such
that β = αb.

The Role of the Embedding Degree

Before the Weil pairing attack was discovered in 1991 supersingular curves had been
widely used as they are easy to compute with. This had the effect that for some time it
was assumed that k should be fairly large, e.g. k ≥ 20 or even k ≥ (q − 1)/100. But as it
has turned out, this reaction was overdrawn. It seems that solving the DLP with current
means is still computationally infeasible, as long as k ≥ 6.

Nevertheless, the attack has had a major impact on the usage of supersingular curves,
since this curve type has embedding degree k ≤ 6. Except for some special appliances,

CHAPTER 4. ELLIPTIC CURVES IN CRYPTOGRAPHY 38

Algorithm 4.2 The SSSA algorithm
Require: G,P ∈ E(Fp) and φ(P) 6= 0
Ensure: P = l ·G
1: Compute a = φ(P) and b = φ(G).
2: Find l ∈ [0, p− 1] such that l ≡ ba−1 mod p using the extended Euclidean algorithm.

Then la ≡ b mod p and also P = l ·G.
3: return l.

like identity based cryptography, the use of supersingular curves is taboo. Fortunately,
curves with small embedding degree are rare. A randomly chosen non-supersingular curve
over Fp has probability O(p−1) of having delimited embedding degree (see [BK98]) and
the probability of selecting a supersingular curve at random is at most O(p−1/2). Also
note that the MOV attack is only reasonably fast, if the curve’s embedding degree is small
(see [Mil04]), namely k ≤ (ln p)2. For larger embedding degrees the DLP in the finite field
Fqk is in fact harder to solve than the ECDLP on the curve.

4.6.2 The SSSA Attack

The SSSA attack, as illustrated in Algorithm 4.2, determines the discrete logarithm of
some point P with respect to base point G by reducing the ECDLP of a prime-field-
anomalous curve E(Fp) to the DLP of the additive group (Zp,+) of integers modulo p. In
this group the DLP can be solved easily using the extended Euclidean algorithm. Note
that it only works for curves with prime group order p, because such curves are cyclic
and in further consequence they are isomorphic to (Zp,+). In 1997 such an isomorphism
φ : E(Fp)→ Fp was proposed independently by Smart [Sma99], Semaev [Sem98] as well as
by Satoh and Araki [SA98]. Since φ is efficiently computable, the whole attack is feasible.

4.7 Saving Space through Point Compression and Decom-
pression

Point compression reduces the space required to store a point but still keeps the same
amount of information. This method is essential in smart card As we know already, there
are at most two points with the same x-coordinate on each elliptic curve. So, for some
point P it suffices to use a single additional bit to determine whether P = P0 or P = −P0.

4.7.1 Point Compression and Decompression on Curves over Finite
Fields of Characteristics Greater than 3

For an elliptic curve E : Y 2 = X3 + a4X + a6 over Fq of odd characteristics p > 3, we
have P0 = (x0, y0) and −P0 = (x0,−y0). They are equal if and only if y0 = 0.

Compression

We save x0 as well as the least significant bit of coefficient c0 of the polynomial representa-
tion y0 =

∑n−1
i=0 ciα

i of y0, which we denote by b(y0). Since the least significant coefficient
of −y0 is p−c0 and p is an odd prime, the parity of b(−y0) is inverse to the parity of b(y0).
That is why this approach works well.

CHAPTER 4. ELLIPTIC CURVES IN CRYPTOGRAPHY 39

Decompression

In order to recover the y-coordinate of P0 from (x0, b(y0)), we calculate β = x3
0 +a4x0 +a6.

According to the curve equation Y 2 = X3 + a4X + a6 this element is a square in Fq and
yields y2

0. Now, taking the square root we obtain (+y0,−y0) and recover the appropriate
y-coordinate using b(y0).

4.7.2 Point Compression and Decompression on Non-Supersingular
Curves over Binary Finite Fields

We map a point P0 = (x0, y0) of some curve E : Y 2 + XY = X3 + a2X
2 + a6 over

F2n to its non-redundant shape (x0, b(y0)), where b(y0) is the bit distinguishing P0 from
−P0 = (x0, x0 + y0).

Just like [CF05, Section 13.3.7], we explain decompression first as this task is easier.

Decompression

We are given the compressed coordinates (x0, b(y0)) and plug x0 into the curve equation.
As result we get the quadratic equation Y 2 + x0Y = x3

0 + a2x
2
0 + a6.

Apparently, if x0 = 0, we have y0 =
√
a6 = a2n−1

6 . Otherwise, it has two solutions
because of x0 6= 0 being a valid x-coordinate. To calculate these, we compute the element
β = (x3

0 +a2x
2
0 +a6) ·x−2

0 ∈ F2n and solve the equation Y 2 +Y = β for y′0. This yields two
roots, namely y′0 and y′0 + 1. If the rightmost bit of y′0 equals b(y0), we take the solution
y′0 else we take y′0 + 1. The solution of the original equation is then: y0 = y′0 · x0.

Point Testing With regard to elliptic curve hash functions (cf. Chapter 5) we would
like to find valid points on curve E not only for compressed x-coordinates x0, but for any
x0 ∈ F2n . In order to determine whether some P ∈ E(F2n) can be recovered from x0,
we test whether Tr

(
(x3

0 + a2x
2
0 + a6) · x−2

0

)
= 0. If so, there is a P ∈ E(F2n) having x-

coordinate x0. If not, we still have the possibility to change the value of x0 in a prescribed
way and then test it again.

Compression

From the description above emerges that b(y0) is equal to the least significant bit of
y′0 = y0 · x−1

0 .

Part II

Hash Functions Based on Elliptic
Curves

40

Chapter 5

The Elliptic Curve Only Hash
(ECOH)

This chapter is dedicated to the so-called Elliptic Curve Only Hash (ECOH) [BACS08,
Bro08b]. ECOH was proposed by Daniel R. L. Brown et al. in 2008 and participated in
NIST’s SHA-3 contest. In April 2009, Niels Ferguson and Michael A. Halcrow were able
to find a second preimage attack against ECOH, which led to ECOH’s knock-out in the
first round of the SHA-3 competition [HF09]. Responding to this attack, Brown published
a hardened version called ECOH2 [Bro09].

This chapter starts with a comprehensive description of ECOH, points out its relation
to MuHASH and describes some fresh attacks against ECOH. Then, we proceed to the
aforementioned attack of Ferguson and Halcrow, detail our memoryless variant of it and
show two colliding preimages computed using ECOH on a smaller curve. At last, we are
going to discuss ECOH’s improved version ECOH2.

5.1 ECOH in Detail

ECOH is available in four different versions, namely ECOH-224, ECOH-256, ECOH-384
and ECOH-512. All those versions are based on the same generic algorithm, but differ in
their parameters. The parameters are the following:

n hash output length in bits,

E NIST-recommended elliptic curve (cf. [Nat00, Section D.1.3]),

G base point of E,

m bitsize of underlying field F2m ,

blen block bitlength,

ilen index bitlength, and

clen counter bitlength.

Table 5.1 gives a detailed listing of ECOH’s parameter values.

41

CHAPTER 5. THE ELLIPTIC CURVE ONLY HASH (ECOH) 42

Algorithm n E and G m blen ilen clen

ECOH-224 224 B-283 283 128 64 64
ECOH-256 256 B-283 283 128 64 64
ECOH-384 384 B-409 409 192 64 64
ECOH-512 512 B-571 571 256 128 128

Table 5.1: The four different versions of ECOH [BACS08, Table 4]

Algorithm 5.1 Generic ECOH pseudocode [BACS08, Table 5]
Require: Message M of maximum bitlength len(M) < 2ilen.
1: Set N = M ‖ 1 ‖ 0j with j chosen minimally, such that blen|len(N).
2: Split N into k blocks of bitlength blen: N0, . . . , Nk−1.
3: for i = 0 to i = k − 1 do
4: Index block Ni: Oi = Ni ‖ Ii, where Ii is the bit-representation of integer i of length

ilen bits.
5: end for
6: Compute the checksum block Ok =

(⊕k−1
i=0 Ni

)
‖ Ilen(M), where Ilen(M) stands for the

ilen-bit-representation of the message bitlength len(M).
7: for i = 0 to i = k do
8: Find bit string Xi =

(
0m−(blen+ilen+clen) ‖ Oi ‖ 0clen

)
⊕ Ci, where Ci is of length m

and chosen minimally such that Xi belongs to a valid x-coordinate xi of an element
of the elliptic curve group 〈G〉.

9: Decompress point P = (xi, yi) such that the leftmost bit of Ni equals the rightmost
bit of yi · x−1

i .
10: end for
11: Let Q =

∑k
i=0 Pi.

12: return n-bit representation of bxQ + bxQ/2cG)/2c mod 2n.

5.1.1 The Algorithm in Detail

Algorithm 5.1 shows a generic version of ECOH’s pseudocode. At first, ECOH pads an
arbitrary input message M and obtains a new message N , which is then split up into parts
N1, . . . , Nk−1, each of bitlength blen. In the third to fifth step it indexes each block and
acquires new blocks Oi. Next, it calculates a checksum block containing the exclusive-or
checksum of all blocks N1, . . . , Nk−1 and the length of M . Then, it tries to create valid
x-coordinates for each block Oi and decompresses each x-coordinate to get a point on the
curve. Note that this step is non-deterministic in the sense that Ci is being incremented
until a valid x-coordinate is obtained. Finally, those points are added up to get a prehash
value Q, which is then converted to an n-bit hash value in the last step.

5.1.2 Implementations of ECOH

The ECOH authors have submitted two different implementations of ECOH: a reference
implementation and an optimized implementation. According to them [Bro08a], ECOH’s
reference implementation has a throughput of about 0.14 MB/s on a reasonably recent
desktop and is as such almost 1000 times slower than SHA-1. However, they also emphasize
that the optimized implementation is about three times faster and suggest various speedup

CHAPTER 5. THE ELLIPTIC CURVE ONLY HASH (ECOH) 43

Algorithm Output
ECOH-224 A92F0BA8488EBD27FCE100018DEF5373DE9FB45CCDE13DD56EEF69F1

ECOH-256 4E3C9B90A92F0BA8488EBD27FCE100018DEF5373DE9FB45CCDE13DD56EEF69F1

ECOH-384 D2B6B236D5EB8FA256C6F7B819830F22E99D3A61028854235F968F041247CBD2 ‖
51FFBC3DF438C80A949ADF3C28686B76

ECOH-512 D537139E4061CB788993EAF801B108C7715C6EB34745332914B3069C975AA6D1 ‖
6D33FDE39F7C9D1ED7D40B27924F29059CE7DE6FA7F8BCF5120D741AA293863F

Table 5.2: Output of ECOH on input 3EF6C36F20

techniques, such as simultaneous inversion, multicore support and the like, which may lead
to a tremendous gain in speed. Finally, they also note that ECOH is incremental, which
leads to a speedup in case one hashes several similar messages at once.

Example 5.1. Table 5.2 shows the message digests of ECOH’s different versions on input
3EF6C36F20.

An Error in ECOH’s Reference Implementation

We came across a grievous error in ECOH’s reference implementation. As it turned out,
ECOH’s point decompression routine used to calculate

Tr(a6 · x−2)

instead of
Tr
(
(x3 + a2x

2 + a6) · x−2
)

in order to determine whether x corresponds to a valid x-coordinate. Hence, ECOH’s
reference implementation hardly ever returned valid message digests.

5.2 MuHASH

This section gives an overview of MuHASH, which is a multiplicative hash function that
served as a model for ECOH. MuHASH was proposed by Mihir Bellare and Daniele Mic-
ciancio in 1997 [BM97]. It is not a hash algorithm built from scratch but uses another
collision-free hash function h to map data blocks to elements of some multiplicative group
G where the DLP is hard. Those elements are then multiplied to obtain the hash result.

5.2.1 Properties

In its general construction, MuHASH is given by:

Hh
〈G〉(M) =

blen(M)∏
i=1

h(i ‖Mi)

where i ‖ Mi is the ith message block of M prepended with index i and blen(M) is
M ’s length in blocks. Typically, G = Z∗p with p being at least a 1024 bit prime and
multiplication modulo p. The size of the resulting hash is bounded by the bitlength of p.

CHAPTER 5. THE ELLIPTIC CURVE ONLY HASH (ECOH) 44

Owing to G’s associativity MuHASH is highly parallelizable and if G is chosen to
be commutative, H becomes an incremental hash function. Suppose we have already
computed the message digest of some message M and want to compute the digest of
message M ′, which is the same as M except for one block Mj that has changed. Instead of
reapplying MuHASH to the wholeM ′, incrementality allows us to updateH(M) efficiently:

H(M ′) = H(M) · h(j ‖Mj)−1 · h(j ‖M ′j)

5.2.2 Security

What is so special about MuHASH is that its security is provable. Bellare and Micciancio
were able to show that “as long as the discrete logarithm problem in G is hard and h is
ideal, MuHASH is collision-free” [BM97, Section 1.3]. This means that if there is a way
of finding collisions in MuHASH, then there must also be a way to solve the DLP of G
efficiently. So, there is no way to attack MuHASH as long as the DLP of G is hard. Thus,
it is not surprising that up to now no attack against MuHASH has been known. The
closest attack on MuHASH is an attack by Wagner [Wag02] against a similar algorithm
called AdHASH. AdHASH was introduced in one go with MuHASH but is much simpler
and also faster than MuHASH (see [BM97, Section 5]).

5.2.3 ECOH’s Relation to MuHASH

ECOH is based on the main ideas behind MuHASH and in this light it can be considered
as a porting of MuHASH to elliptic curve groups. Just like MuHASH, ECOH

� is incremental,

� is parallelizable,

� uses an algebraic operation to calculate the message (pre-)hash, and

� operates on a group with a hard DLP.

There is, however, one big difference between ECOH and MuHASH. Namely, for practical
reasons ECOH applies a padding function in place of an ideal hash function, which turned
out to be its weak spot. MuHASH is proven to be collision-resistant under the assumption
that the hash function, used by MuHASH to scramble the indexed data blocks, is ideal
(cf. [BM97, Section 1.3]). This requirement, however, can not be fulfilled by ECOH’s
padding function, which does not hash but only extend the data blocks. Section 5.4 shows
in which way this circumstance can be exploited.

5.3 New Attacks against Simplified Versions of ECOH

This section comprises algebraic and side-channel attacks on ECOH. Most of the algebraic
attacks are new to our knowledge and exploit generic algebraic properties, such as torsion
elements and the discrete logarithm, which becomes computable with the arrival of the
quantum computer.

CHAPTER 5. THE ELLIPTIC CURVE ONLY HASH (ECOH) 45

Algorithm 5.2 Computing torsion points
Require: 〈G〉 to be an elliptic curve group, N = ord(G) > 1 and N to be composite
Ensure: ord(P) = l
1: Factor N and obtain a factor l > 1.
2: Compute N

l ·G = P ∈ E[l].
3: return P .

5.3.1 Torsion Element Attacks

This subsection contains attacks on ECOH’s prehash. All of these attacks require a modi-
fied variant of ECOH that provides the points in the prehash sum. Modifying the algorithm
in such a way is, however, an easy task. Note that all of these results remain applicable to
the modified version ECOH2 [Bro09]. These attacks will be successful, if there is a way to
reconstruct preimage blocks of the points in the prehash sum, for the simple reason that
all of these attacks solve equations of the type

P0 + . . .+ Pk ±
(
(−P ′0) + . . .+ (−P ′k′)

)
= O.

Also note that if the previous requirements can be met, these attacks will allow an
adversary to create collisions and second preimages of arbitrary messages.

How to Compute a Torsion Element

Algorithm 5.2 shows how to compute torsion elements of the elliptic curve group. It factors
the group order N and computes a point of order l, for some l dividing N .

As for ECOH, N is sized between 283 and 571 bits. Hence, N can be factored in
O(elog2(N)1/3+ε) time using the number field sieve. This task becomes more difficult when
we want to determine torsion elements of the elliptic curve group used by ECOH2. In
context of ECOH2, the bitlength of N is 4 times larger than in ECOH, i.e. between 1132
and 2284 bits.

After N has been factored, the second step of Algorithm 5.2 can be achieved in
O(log N

l) time using for instance the square-and-multiply method (see [Knu69]).

Prehash Collision Attack

For all l > 1 with l|N , for every P ∈ E[l] and for every non-symmetric partition {l1, . . . , lk}
of l, i.e.

∑k
i=1 li = l, we can find two different ECOH prehashes, if we cut out the checksum

block and the block indices:

k1∑
i=1

li · P =
k∑

i=k1+1

li · (−P),

for all 1 ≤ k1 < k. This works, because of

k1∑
i=1

li · P +
k∑

i=k1+1

li · P =
k∑
i=1

li · P = l · P = O

CHAPTER 5. THE ELLIPTIC CURVE ONLY HASH (ECOH) 46

Another Prehash Collision Attack

The following attack will work, when we leave out the padding, the block indices as well
as the message length in the checksum block.

According to [HMV04, Theorem 3.18(iii)], |E(F2m)| is always even and divisible by 4
if the curve parameter a has trace 0. Thus, with the right choice of parameters, torsion
points of order 2 do exist. Let M be an arbitrary message with |M | ≤ blen, then its
prehash Q = PM + CM , where CM stands for the checksum point. Since we left out the
indexing and the message consists only of one block, we get CM = PM , i.e. Q = PM +PM .
Now, we assume one torsion point P ∈ E[2] and get:

Q = PM + PM = (PM + P)︸ ︷︷ ︸
P ′

+ (PM + P)︸ ︷︷ ︸
new checksum block

,

as 2P = O. If there is a way to recover the padding for new points, then the padding can
also be incorporated.

An Idea for Obtaining Another Preimage: When we choose M,P such that x(PM+
P) is either small or the lowest clen bits of x(PM +P) and x(PM +P)’s highest m−(blen+
ilen+ clen) bits are 0, then the variable Ci in step 5 will very likely also be chosen to be
small and we obtain another preimage M ′.

A Second Preimage Attack

The following attack will work, when we leave out the padding, the block indices as well
as the checksum block.

We are given the prehash QM = P1+. . .+Pk of some message M , where Pi corresponds
to message block i. We can find a second prehash QM ′ equal to QM by adding torsion
points P ∈ E[l] in the following manner, for instance:

QM = P1 + . . .+ Pk = (P1 + l′1P) + . . .+ (Pk + l′kP) + l′′1P + . . .+ l′′jP︸ ︷︷ ︸
new blocks

= QM ′ ,

where 0 ≤ l′ ≤ l, {l′1, . . . , l′k} is a partition of l′ and {l′′1 , . . . , l′′j } is a partition of l − l′.

5.3.2 A Quantum Attack against ECOH’s Prehash

A quantum system can be in a so-called superposition of states meaning that all states
possible can exist simultaneously. As for quantum computers this has the consequence
that they are able to compute all solutions of a specific problem in one go. Hence, they
operate non-deterministically, leading to an exponential speedup for many computational
problems. And so, it is not rather surprising that many cryptographic problems, which
are computationally infeasible for conventional deterministic computers, become solvable
in polynomial time on quantum computers. This is the case for both the IFP and the
DLP. In 1997, Peter W. Shor published polynomial-time quantum algorithms for both
problems [Sho97], where his algorithm for the IFP has become famous as Shor’s algorithm.

Thus, with a quantum computer an adversary might be able to calculate the discrete
logarithm k of the prehash value Q of some input message M , i.e. Q = k · G. Just like
in the previous subsections, it is possible to obtain a second preimage, if we are able to

CHAPTER 5. THE ELLIPTIC CURVE ONLY HASH (ECOH) 47

derive valid preimage blocks from G. In this way it may be possible to obtain another
preimage M ′.

5.3.3 A Timing Attack against ECOH’s Point Search

A timing attack utilizes the side-channel data, which is being exhibited through the timing
behavior of cryptographic devices, to derive information about the input or the crypto-
graphic key in use.

We are given an input message M consisting of k blocks, which is being padded and
split up into the k + 1 blocks N0 ‖ . . . ‖ Nk. Now, we suppose that an adversary is able
to mount a timing attack on an ECOH device. Then, in iteration i of the loop in line
7 of Algorithm 5.1, the adversary can observe how many times the counter Ci is being
increased. In order to obtain a distinct second preimage block, the counter value Ci must
affect the value of Ni embedded in Xi. Hence, we require l := len(Ci)− (clen+ ilen) > 0.
If we can observe a value Ci satisfying this property, there is a good chance to receive a
second preimage block N ′i by modifying the l least significant bits of block Ni, so that, if
interpreted as integers, Ni < N ′i ≤ Ni + Ci.

This approach is valid, since the point search routine returns the same point for the
value of Ni as for the Ci + 1 subsequent block values. Therefore, we have found a second
preimage M = N1 ‖ . . . ‖ Ni−1 ‖ N ′i ‖ Ni+1 ‖ . . . ‖ Nk.

5.4 The Ferguson-Halcrow Second Preimage Attack

The Ferguson-Halcrow attack tries to find a second preimage to an arbitrarily fixed pre-
hash value Q′. As ECOH’s padding function is weak compared to MuHASH’s ideal hash
function, this attack is able to exploit this specific difference. To be more specific, ECOH’s
padding function opens up the possibility to generate certain sequences of message blocks
having the same checksum and padding block.

For reasons of convenience the Ferguson-Halcrow attack works only for messages M
with blen|len(M), i.e. for messages with bitlength divisible by blen. Given k message
blocks M0, . . . ,Mk−1, we have the subsequent simplified characterization of ECOH:

X1 := P ′(n)

X2 := P

(
k−1⊕
i=0

Mi, n

)

Q :=
k−1∑
i=0

P (Mi, i) +X1 +X2,

where Q is the resulting prehash point, P (·, ·) is the padding function that maps a message
block and an indexing value to a point on E and P ′(·) is the padding function computing
the padding point X1 whose value depends solely on the message length.

This attack operates on two lists L1 and L2, each of size K. The first comprises points
of the shape P (M0, 0) +P (M1, 1) +P (M2, 2), whereas the second consists of points of the
form Q′ − (P (M3, 3) + P (M4, 4) + P (M5, 5) + X1 + X2). The messages M2 and M5 are
both made up of the two preceding messages: M2 = M0 ⊕M1 and M5 = M3 ⊕M4. This
has the advantage that the exclusive-or checksum of the message blocks M0,M1, . . . ,M5

yields 0 and that in further consequence the checksum point X2 does no longer depend on

CHAPTER 5. THE ELLIPTIC CURVE ONLY HASH (ECOH) 48

the message blocks and remains constant. Also note that X1 has been fixed too, since the
message length equals 6 · blen bits. If there is a match between L1 and L2 we obtain

2∑
i=0

P (Mi, i) = Q′ −X1 −X2 −
5∑
i=3

P (Mi, i), i.e.

Q′ =
5∑
i=0

P (Mi, i) +X1 +X2

Thus, we have found another preimage for the prehash value Q′, namely M0 ‖ . . . ‖M5.
According to the birthday paradox a match is expected if K is chosen to be greater

than
√
|〈G〉|. This attack requires 2K partial hash computations, which means that it has

time complexity 2d
m
2
e+1. For instance, in case of ECOH-224 it allows the computation of

second preimages in about 2143 steps. Clearly, this is a violation of the SHA-3 competition
guidelines that disallow second preimages to be found in less than 2n time.

It is quite obvious that such an attack has tremendous memory requirements. If, for
example, we try to attack the simplest version of ECOH, namely ECOH-224, which makes
use of a 283-bit elliptic curve, we must choose K to be at least 2142. Since there are two
lists, each of size K, this attack has memory requirements of 2143 ·2 ·

⌈
283
32

⌉
·4 = 2146 ·

⌈
283
32

⌉
bytes, where 2 ·

⌈
283
32

⌉
· 4 bytes are necessary for storing a point of a 283-bit curve on a 32

bit platform. Generally speaking, its space complexity is

2d
m
2
e+1 ·

⌈m
b

⌉
· b

8

bytes on a platform with b ∈ {32, 64} bits. Section 5.5 shows how to get rid of those vast
space requirements.

5.5 A Memoryless Implementation of the Ferguson-Halcrow
Attack

This section describes a memoryless variant of the Ferguson-Halcrow attack. It gets rid
of its tremendous memory requirements by using common cycle finding techniques, which
have already been discussed in Section 3.2, at a minimal expense in the running time.

5.5.1 Adapting Floyd’s Cycle-Finding Algorithm to Meet in the Middle
Attacks

By default, Floyd’s cycle-finding algorithm is not applicable to meet-in-the-middle at-
tacks, as the goal is to find collisions between two different functions. However, according
to [QD90] there is a way to handle meet-in-the-middle attacks with cycle-finding algo-
rithms. Given two pseudorandom functions f and g, we define another function h:

h(M) =

{
f(M) if d(M) = 0,
g(M) otherwise

where d(·) is a decision function outputting 0 or 1 with equal probability. Now, Floyd’s
algorithm can be applied to h(·) using a random initial value M ′. Each round has one of
the subsequent outcomes:

CHAPTER 5. THE ELLIPTIC CURVE ONLY HASH (ECOH) 49

1. (g(M), f (h(M))), (f(M), g (h(M))), or

2. (g(M), g (h(M))), (f(M), f (h(M)))

Intermediate results of both the first and the second type occur with probability 1
2 .

Collisions of the first type are desirable, as our goal is to find collisions between f and g,
whereas collisions of the second type are not useful. In such a case the algorithm must be
restarted with another random initial value M ′′.

5.5.2 Expected Run Time

We know already that Floyd’s cycle finding algorithm requires O(λ) invocations of the
hash function and O(λ) comparisons in its first loop and O(µ) hash invocations and O(µ)
comparisons inside the second loop. The additional evaluation of the decision function
adds an extra cost of O(len(x)) = O(1) per iteration.

All in all, we get an expected run time of:

O(λ) ·O(H) +O(λ) ·O(1)︸ ︷︷ ︸
loop 1

+O(µ) ·O(H) +O(µ) ·O(1)︸ ︷︷ ︸
loop 2

=

= O

(√
2mπ

8

)
·O(H) +O

(√
2mπ

8

)
+O

(√
2mπ

8

)
·O(H) +O

(√
2mπ

8

)
=

= O

(√
2mπ

8
·H

)
+O

(√
2mπ

8

)
= O

(√
2mπ

8
·H

)
,

where O(H) denotes the complexity of a partial prehash computation using three input
blocks.

5.5.3 Implementation Details

This subsection describes what we have done to implement a memoryless version of the
Ferguson-Halcrow attack.

The Attack in Pseudocode

Algorithm 5.3 sketches our implementation in pseudocode. It makes use of the following
auxiliary functions:

� x (M) = M0 ‖M1 ‖ (M0 ⊕M1), which supplements the exclusive-or block,

� the decision function d (M) =
⊕1

i=0 (Mi mod 2),

� the main function h(·, ·) based on the idea of Section 5.5.1:

h (M,Q) =

{∑2
i=0 P (Mi, i) if d (M) = 0,

Q−
(∑2

i=0 P (Mi, i+ 3) +X1 +X2

)
otherwise,

where P (Mi, j) maps the message block Mi and the index j to the appropriate curve
point, and

CHAPTER 5. THE ELLIPTIC CURVE ONLY HASH (ECOH) 50

Algorithm 5.3 Memoryless Version of the Ferguson-Halcrow Attack
Require: M = M0 ‖ M1 to be an initial random two-block message and Q′ to be the

prehash of an arbitrary message M ′

1: MT = MH = x (M) {The tortoise and the hare have the same initial value}
2: repeat
3: PT = h (MT , Q

′) {Compute the tortoise step}
4: PH = h (h (MH , Q

′) , Q′) {Compute the hare step}
5: MT = x (m (PT)) {Compute the message for the next tortoise step}
6: MH = x (m (PH)) {Compute the message for the next hare step}
7: until PT = PH
8: MH = MT {The hare starts from the tortoise’s position}
9: MT = x (M) {The tortoise starts from the beginning}

10: repeat
11: MT1 = MT {Store the current tortoise message}
12: MH1 = MH {Store the current hare message}
13: PT = h (MT , Q

′) {Compute the tortoise step}
14: PH = h (MH , Q

′) {Compute the hare step}
15: MT = x (m (PT)) {Compute the message for the next tortoise step}
16: MH = x (m (PH)) {Compute the message for the next hare step}
17: until PT = PH
18: if d (MT1) 6= d (MH1) then
19: if d (MT1) = 0 then
20: return M = MT1 ‖ MH1 {MT1 is the first block of the second preimage M to

message M ′}
21: else
22: return M = MH1 ‖ MT1 {MH1 is the first block of the second preimage M to

message M ′}
23: end if
24: end if

� the function m (P) = lblen (xp) ‖ lblen (yp), which creates a message from a point P
that is then used as input for the next invocation of h(·, ·), where the function lblen (x)
returns the bitstring of the blen least significant bits of the binary representation of
x ∈ Fqm .

First Attempt: An Implementation in C

In order to mount the memoryless Ferguson-Halcrow attack against ECOH, we altered
ECOH’s reference implementation and implemented an 80-bit version of ECOH, called
ECOH-80, using a 97-bit binary curve with equation:

E : Y 2 +XY = X3 +X2 + 1

over the binary field F297 . 97 bits were necessary to store away 32 counter bits, 32 index
bits and a data block of size 32 bits. This was the smallest curve size we were able to
embed into ECOH’s reference implementation without compromising it.

Unfortunately, it turned out that ECOH is far too slow for performing such an attack.
The evaluation of more than 232 tortoise and hare steps took about three weeks.

CHAPTER 5. THE ELLIPTIC CURVE ONLY HASH (ECOH) 51

Second Attempt: An Implementation in Sage

In order to gain more flexibility in choosing the elliptic curve we decided to implement the
attack and the necessary parts of ECOH using Sage, http://www.sagemath.org. Sage is
Python-based and as such its performance is really bad compared to programs written in
the C programming language. Hence, we have chosen blen = 16, ilen = 4, clen = 4 and
the subsequent curve

Y 2 +XY = X3 +X2 +
(
1 + g6 + g7

)
over the field F225 ' F2[X]/

(
X25 +X3 + 1

)
with g being a generator of F∗225 .

The reader can take a look at our implementation in Listing B.1

Technical Implementation Details As decision function we have chosen:

d (M) =
1⊕
i=0

(Mi mod 2) ,

where M is an array comprising two message blocks. d (·) decides whether we compute
P0 +P1 +P2 or Q− (P3 + P4 + P5 +X1 +X2). Due to the fact that each round outputs a
partial prehash value of size 2 ·25 bits and the next round’s input has to be the size of two
blocks (i.e. of size 2 · blen = 32 bits), we are feeding the lowest 16 bits of both coordinates
of the intermediate prehash point as input into the next round.

The Result of Our Attack One can run the attack using the above curve in the
following way:

1 # Construct a finite field instance

2 F1.<x> = GF(2) []
3 F.<g> = GF(2ˆ25 , name=’ g ’ , modulus=xˆ25 + xˆ3 + 1)
4 # Construct an elliptic curve instance

5 E = El l i p t i cCurve (F , [1 , 1 , 0 , 0 , 1+gˆ6+g ˆ7])
6 # Set ECOH’s parameters

7 blen , c len , i l e n = 16 , 4 , 4
8 # Construct an instance of ECOH

9 ecoh = ECOH(E, blen , c len , i l e n)
10 # The blocks out of which we create the prehash Q

11 msg blocks = [0x1D0C , 0x2147 , 0x2631]
12 # Create an instance of Attack

13 attack = Attack (ecoh , msg blocks)
14

15 # Start the attack using the initial message blocks [0x2345 , 0x9876]

16 attack . run ([0 x2345 , 0x9876])

This computation finishes with the subsequent result:
17 MATCH found
18 ([24475 , 50920] , [8433 , 51129])

The decision function d(·), which is implemented by Attack.chooseBranch(), returns
branch 1 for the two message blocks [24475, 50920] and branch 0 for the message blocks
[8433, 51129]. Therefore, we supplement the exclusive-or values yielding blocks 3 and
6 and gain the following second preimage to the message [0x1D0C, 0x2147, 0x2631]:

[8433, 51129, 59208, 24475, 50920, 39283]

which equals

[0x20F1, 0xC7B9, 0xE748, 0x5F9B, 0xC6E8, 0x9973]

in hexadecimal representation.

http://www.sagemath.org

CHAPTER 5. THE ELLIPTIC CURVE ONLY HASH (ECOH) 52

5.6 ECOH2

As already mentioned, the Ferguson-Halcrow attack gives rise to an updated version of
ECOH, namely ECOH2 [Bro09]. ECOH2 circumvents the previously discussed vulnera-
bility by switching to a curve of the form:

Y 2 +XY = X3 + a6 (5.1)

over the field F2d = F24m . With such quartic extension fields, the original ECOH pseu-
docode remains largely the same. Using quartic extension fields of the original field seems
to be quite unhandy. Instead, Brown et al. show a possibility of handling most operations
using two curves over quadratic extension fields.

Algorithm 5.4 sketches ECOH2 and Table 5.3 lists its updated parameters. Note that
compared to ECOH, lines 8 and 9 of the algorithm have changed and that parameters E
and G have been replaced by the finite field’s extension degree d.

5.6.1 The Representation of Elements of the Extension Fields

In order to represent elements of the extension fields by means of elements of F2m , we can
utilize so-called tower representations.

The Tower Representation in F22m

For F22m being an extension field of F2m , we are able to represent elements of it in the
following manner:

x = x0 + x1u,

where x0, x1 ∈ F22m are given in their polynomial representation

xi = c
(i)
m−1α

m−1 + . . .+ c
(i)
1 α1 + c

(i)
0 i ∈ {0, 1}

and u ∈ F4 such that u2 + u+ 1 = 0. This representation is called (a, u) tower represen-
tation. The bitstring representation of x is x0 ‖ x1, where the rightmost bit of x0 is said
to be the constant bit.

The Tower Representation in F24m

Likewise, for F24m being an extension field of F2m , we are able to represent elements of it
in the following manner:

x = (x10 + x11u)v + (x00 + x01u),

where x00, x01, x10, x11 ∈ F2m are given in their polynomial representation

xij = c
(ij)
m−1α

m−1 + . . .+ c
(ij)
1 α1 + c

(ij)
0 i, j ∈ {0, 1}

and both u ∈ F4 and v ∈ F16 satisfying the subsequent equations:

u2 + u+ 1 = 0
v2 + v + u = 0

This representation is called (α, u, v) tower representation. The bitstring representation
of x is x10 ‖ x11 ‖ x00 ‖ x01, where the rightmost bit of x00 is said to be the constant bit.

CHAPTER 5. THE ELLIPTIC CURVE ONLY HASH (ECOH) 53

5.6.2 Curve Definitions in Detail

It is beneficial with respect to the throughput of ECOH2 to implement ECOH2 using a
curve and its quadratic twist over F22m . Both of those curves can be seen as subgroups
of Curve 5.1 over the quartic extension field. This subsection lists these two equivalent
approaches.

The Curve over the Quartic Extension Field

The Curve 5.1 is chosen in such a way that it has 8rs F24m-rational points for two primes r
and s. The curve’s base point G is chosen to be F24m-rational, of order rs and for reasons
of performance lexicographically least with respect to its bitstring representation.

The Curve and its Twist over the Quadratic Extension Field

In order to tweak ECOH2’s performance we can also operate on the curve

Y 2 +XY = X3 + a6 (5.2)

over the quadratic extension field F22m and its quadratic twist over F22m given by

Y 2 +XY = X3 + uX2 + a6 (5.3)

with u ∈ F4, a6 = 1 + uw ∈ F22m , w ∈ F22m and the bitstring representation of a6 chosen
lexicographically least among the curves

� with Equation (5.2) having 4r rational points in F22m , where r ∈ P, and

� with twisted Equation (5.3) having 2s rational points in F22m , where s ∈ P.

5.6.3 Using the Twist

As [Bro09, Section 4.3] points out, for roughly one half of all x-coordinates in F22m there is
a valid y-coordinate in F22m . Consequently, in such a case we can avoid calculations in the
quartic extension field F24m . In all other cases the y-coordinate of some point P = (x0, y0)
is not an element of F22m . But, it is possible to remap P another point lying on the twist
and continue with our operations on this curve.

5.6.4 A Word on ECOH2’s Efficiency

The usage of larger finite fields suggests that ECOH2’s performance drops even more.
However, as [Bro09, Section 4] points out, most operations can be achieved over the
subfield F22m of F24m ’, except for the final two steps of Algorithm 5.4. One advantage over
ECOH seems to be its larger block length, which means that more amount of data can be
processed in each step. They come to the conclusion that ECOH2 should perform slightly
better than ECOH on long messages.

CHAPTER 5. THE ELLIPTIC CURVE ONLY HASH (ECOH) 54

Algorithm n d blen ilen clen

ECOH2-224 224 1132 384 64 64
ECOH2-256 256 1132 384 64 64
ECOH2-384 384 1636 640 64 64
ECOH2-512 512 2284 768 128 128

Table 5.3: The four different versions of ECOH2 [Bro09, Table 1]

Algorithm 5.4 Generic ECOH2 pseudocode [Bro09, Table 2]
Require: Message M of maximum bitlength len(M) ≤ 2ilen − 1.
1: Set N = M ‖ 1 ‖ 0j with j chosen minimally, such that blen|len(N).
2: Split N into k blocks of bitlength blen: N0, . . . , Nk−1.
3: for i = 0 to i = k − 1 do
4: Index block Ni: Oi = Ni ‖ Ii, where Ii is the bit-representation of integer i of length

ilen bits.
5: end for
6: Compute the checksum block Ok =

(⊕k−1
i=0 Ni

)
‖ Ilen(M), where Ilen(M) stands for the

ilen-bit-representation of the message bitlength len(M).
7: for i = 0 to i = k do
8: Find bit string Xi =

(
0d−(blen+ilen+clen) ‖ Oi ‖ 0clen

)
⊕ Ci, where Ci is of length d

and chosen minimally such that Xi belongs to a valid x-coordinate xi of an element
of the elliptic curve group 〈G〉.

9: Decompress point P = (xi, yi) such that the leftmost bit of Ni equals the constant
bit of yi · x−1

i .
10: end for
11: Let Q =

∑k
i=0 Pi.

12: return n-bit representation of bxQ + bxQ/2cG)/2c mod 2n.

Part III

Arithmetic Speedups

55

Chapter 6

Edwards Curves

One big disadvantage of conventional elliptic curves is the inconvenient addition law. On
the one hand its performance is quite bad and on the other hand it is unhandy as it
consists of two separate methods: the chord method and the tangent method. Recall that
the addition of two distinct points P,Q is performed via the chord method, whereas a point
P is doubled via the tangent method. In this way one always has to make a distinction
between doubling and adding, which does not only lower the overall performance but also
opens the way for side-channel attacks and requires more precious space on hardware
implementations.

Fortunately, in 2007 Harold M. Edwards had come up with a new approach, which
was later named Edwards curves and Edwards coordinates, respectively [Edw07]. Ed-
wards curves are birationally equivalent to ordinary Weierstrass curves. Moreover, the
addition law valid on Edwards curves is able to resolve both points of criticism mentioned
above. It is astonishingly fast and complete as well. The latter signifies that there is
a single summation formula applicable to all possible pairs of points including the point
at infinity. In particular this means that no distinction is drawn between doubling and
addition. Thereby, all the case differentiations in the ordinary Weierstrass addition (see
Algorithm 2.1) render obsolete. One drawback is, however, that only a fraction of all
Weierstrass curves can be captured by Edwards curves over the same field.

Since 2007 Daniel J. Bernstein and Tanja Lange have extended the theoretical back-
ground on Edwards coordinates [BL07a, BL07b, BL07c, BLF08, BBJ+08]. They found
various tweaks to improve the addition performance even more and were also able to iden-
tify an extended curve type called twisted Edwards curves [BBJ+08], which expands the
number of curves corresponding to Weierstrass curves. Furthermore, in 2008, Bernstein
introduced so-called binary Edwards curves [BLF08].

This chapter starts with an introduction to Edwards coordinates and then expands on
the theoretical extensions of this theory. We are also going to discuss Edwards curves over
binary fields as well as the generalized notion of twisted Edwards curves.

6.1 Original Edwards Coordinates

What Edwards showed in [Edw07] was that all elliptic curves over algebraic field extensions
of the rational numbers Q, so-called number fields, can be converted to the form:

X2 + Y 2 = c2(1 +X2Y 2) (6.1)

56

CHAPTER 6. EDWARDS CURVES 57

with neutral element (0, c) and a simple, symmetric addition law:

P +Q = (x1, y1) + (x2, y2) =(
(x1y2 + y1x2) · (c(1 + x1x2y1y2))−1 , (y1y2 − x1x2) · (c(1− x1x2y1y2))−1

)
The inverse of a point P = (x1, y1) on the curve is defined as −P = (−x1, y1). What is
important is that this addition instruction is complete. In other words, it can handle any
kinds of input points.

6.2 Edwards Coordinates according to Bernstein and Lange

In 2007, Bernstein and Lange were able to extend Edwards’ curve shape to finite fields Fq
with char(Fq) 6= {2, 3} [BL07b] and hence to make this notion relevant for cryptography.
This section explains this approach by means of a slightly extended curve form. Later we
are going to see, how curves over finite fields of characteristic 2 can also be brought to a
form having similar properties. Note, however, that although the following descriptions
can also be applied to curves over fields of characteristic 3, we omit this case since this
thesis does at no point deal with such curves. Also note that we are going to discuss
the following statements with respect to finite fields. Except for Theorem 6.1, all of the
following propositions remain valid for general fields with characteristic not 2. See [BL07b,
Theorem 2.1] for a full and generic version of Theorem 6.1.

In [BL07b], Bernstein and Lange suggest a minor modification of Equation (6.1) in
order to cover more Weierstrass curves over an arbitrary finite field Fq with char(Fq) 6=
{2, 3}:

EE,d : X2 + Y 2 = 1 + dX2Y 2 with d ∈ Fq \ {0, 1} (6.2)

If d = d′c′4 for d′ ∈ F∗q , this curve is isomorphic to:

EE,c
′,d′ : X ′2 + Y ′2 = c′2(1 + d′X ′2Y ′2) with X ′ = c′X and Y ′ = c′Y (6.3)

which resembles the original equation. Evidently, Edwards curves are symmetric. Hence,
if P = (x0, y0) is a valid point, P ′ = (y0, x0) also is.

Example 6.1. The curve X2 + Y 2 = 1 + 2X2Y 2 defined over F11 consists of the points
(0, 1), (0, 10), (1, 0), (3, 4), (3, 7), (4, 3), (4, 8), (7, 3), (7, 8), (8, 4), (8, 7), and (10, 0).

6.2.1 Birational Equivalence

Curve 6.2 is birationally equivalent over Fq to a quadratic twist of some Weierstrass curve
E. If, additionally, there is a unique point of order 2 on E, then the constant d ∈ Fq in
Equation (6.2) is a non-square. These facts are summarized in the theorem below.

Theorem 6.1 (Characterization of the birational equivalence). Let Fq be a finite field
having char(Fq) 6∈ {2, 3}, E/Fq be an elliptic curve such that E(Fq) comprises an element
of fourth order. If E(Fq) comprises exactly one element P with ord(P) = 2 then there is a
non-square d ∈ Fq such that E is birationally equivalent to the curve X2+Y 2 = 1+dX2Y 2

over Fq.

Proof. We refer to [BL07b, Theorem 2.1].

An explicit mapping rule between Montgomery-type elliptic curves and Edwards curves
is given in Theorem 6.3.

CHAPTER 6. EDWARDS CURVES 58

6.2.2 The Addition Law

This subsection presents and discusses the addition law belonging to Curve 6.3. Like
above, we are given a finite field Fq with char(Fq) 6∈ {2, 3}, two coefficients c, d ∈ F∗q with
dc4 6= 1. Then, the addition law on Curve 6.3 looks as follows:

P +Q = (x1, y1) + (x2, y2) =(
(x1y2 + y1x2) · (c(1 + dx1x2y1y2))−1 , (y1y2 − x1x2) · (c(1− dx1x2y1y2))−1

)
The inverse of some point P = (x0, y0) is −P = (−x0, y0) and the neutral element is (0, c).
The point (0,−c) has order 2 and (c, 0) as well as (−c, 0) have order 4. Note that these
results can be shown by simple calculations.

Example 6.2. We are given the curve from Example 6.1. Then, the elements (1, 0) and
(10, 0) have order 4 and are inverse to each other. Obviously, the neutral element is (0, 1)
and the point (0, 10) has order 2. Next, we are going to add the points (3, 4) and (4, 8):

x3 = 40 · 769−1 ≡ 7 · 10−1 mod 11 ≡ 4 mod 11
y3 = 20 · (−767)−1 ≡ 9 · 4 mod 11 ≡ 3 mod 11

and obtain the result (4, 3).

The theorem below ensures that the sum of two points is on the curve as long as the
denominator in both components does not vanish. That is, the term dx1x2y1y2 6= ±1.

Theorem 6.2 (Correctness, [BL07b, Theorem 3.1]). Let Fq be a finite field with char(Fq) 6∈
{2, 3}, c, d ∈ F∗q with dc4 6= 1 and P = (x1, y1), Q = (x2, y2) be points on Curve 6.3. Under
the assumption that dx1x2y1y2 6= ±1, P +Q = R = (x3, y3) lies on the curve.

Proof. What we want to show is that R = (x3, y3), which is determined through the
addition law, fulfills x2

3+y2
3 = c2(1+dx2

3y
2
3). To do so, we consider the term x2

3+y2
3−c2dx2

3y
2
3

and plug the addition law in:

x2
3 + y2

3 − c2dx2
3y

2
3 =

= (x1y2 + y1x2)2 (c(1 + dx1x2y1y2))−2 + (y1y2 − x1x2)2 (c(1− dx1x2y1y2))−2−
c2d (x1y2 + y1x2)2 (y1y2 − x1x2)2 (c(1 + dx1x2y1y2))−2 (c(1− dx1x2y1y2))−2 =

which simplifies to:

= (x2
1 + y2

1︸ ︷︷ ︸
c2(1+dx2

1y
2
1)

− (x2
2 + y2

2)dx2
1y

2
1︸ ︷︷ ︸

c2(1+dx2
2y

2
2)dx2

1y
2
1

)(x2
2 + y2

2︸ ︷︷ ︸
c2(1+dx2

2y
2
2)

− (x2
1 + y2

1)dx2
2y

2
2︸ ︷︷ ︸

c2(1+dx2
1y

2
1)dx2

2y
2
2

)
(
c(1− (dx1x2y1y2)2)

)−2 =

=
(
c2(1− (dx1x2y1y2)2)

)2 (
c(1− (dx1x2y1y2)2)

)−2 = c2

Hence, we have shown: x2
3 + y2

3 = c2
(
1 + dx2

3y
2
3

)
.

The next theorem makes sure that the above addition law corresponds to the addition
law on a birationally equivalent Weierstrass curve E.

CHAPTER 6. EDWARDS CURVES 59

Theorem 6.3 (Compliance with Weierstrass addition). Under the same assumptions as
in Theorem 6.2, we define the following elliptic curve (in Montgomery form):

EMe,f : eY 2 = X3 + fX2 +X

with parameters e = (1 − dc4)−1 and f = 4e − 2. Besides, we are given the following
birational equivalence between the Edwards curve EEc,d and EMe,f :

φ : EEc,d → EMe,f

(x0, y0) 7→ (α(y0), 2c · α(y0) · x0)

where α(x) = (c+ x)(c− x)−1, φ(0, c) = O and φ(0,−c) = (0, 0).
Then, for P,Q,R ∈ EEc,d(Fq) with P + Q = R we have φ(P), φ(Q) ∈ EMe,f (Fq) as

well as φ(P) + φ(Q) = φ(R) ∈ EMe,f (Fq).

Proof. See [BL07b, Theorem 3.2].

From this it follows that we can operate on an Edwards curve with extra costs of one
initial evaluation and one final inversion of the above point correspondence for each batch
operation.

Example 6.3. We are given the curve from Example 6.1. Then, e = (1−2)−1 = (−1)−1 ≡
10 mod 11 and f = 38 ≡ 5 mod 11. Hence, it is birationally equivalent to the Montgomery
curve 10Y 2 = X3 + 5X2 +X.

By now, we do not know under what conditions the addition law is valid. The next
theorem states that the addition law is defined as long as d is not a square. In other words
it is complete.

Theorem 6.4 (Completeness, [BL07b, Theorem 3.3]). Under the same conditions as in
Theorem 6.3, let d be a non-square and let P = (x1, y1), Q = (x2, y2) be points of the
Edwards Curve 6.3 with parameters c and d. Then, the denominator of the Edwards
addition formula is non-zero, meaning that dx1x2y1y2 6= ±1.

Proof. We prove this statement by contradiction. Suppose that d is a non-square and
that P = (x1, y1) and Q = (x2, y2) are two exceptional points, i.e. one denominator in
the addition law vanishes for P and Q, which can only be the case when ε = dx1x2y1y2 ∈
{±1}. This implies that x1, x2, y1, y2 6= 0. As the point Q fulfills Equation (6.3), we have
x2

2 + y2
2 = c2(1 + dx2

2y
2
2) and get

dx2
1y

2
1(x2

2 + y2
2) = c2(dx2

1y
2
1 + d2x2

2y
2
2x

2
1y

2
1) = c2(dx2

1y
2
1 + ε2) = c2(dx2

1y
2
1 + 1) = x2

1 + y2
1

through multiplication with dx2
1y

2
1. With this piece of information the term (x1 + εy1)2 =

x2
1 + y2

1 + 2εx1y1 can be transformed to dx2
1y

2
1(x2 + y2)2. Now, if x2 ± y2 6= 0, we get

d = ((x1±εy1)/(x1y1(x2±y2)))2. Thus, d is a square, which is a contradiction. Otherwise,
if (x2 + y2, x2 − y2) = (0, 0) we have (x2, y2) = (0, 0), contradiction.

From now on, we refer to Edwards curves with complete addition law as complete
Edwards curves.

Remark 6.1. Note that although Edwards curves feature a complete addition law, explicit
doubling formulas still exist for the simple reason that some field multiplications can be
replaced by squarings, which have smaller costs in general.

CHAPTER 6. EDWARDS CURVES 60

Example 6.4. The curve given in Example 6.1 is complete since 2 is a non-square in F11.

Note that for finite fields this curve type covers at least one fourth of all non-binary
Weierstrass curves. This amount of birationally equivalent ordinary curves over finite
fields is bounded because of the necessary existence of a point of order 4.

6.3 Twisted Edwards Curves

As we have heard already, there is one major drawback of ordinary complete Edwards
curves. Namely, the number of such curves is limited by the requirement for a Weierstrass
curve to have an element of order four in order to be convertible to Edwards form. Hence,
it is estimated that only about one quarter of all Weierstrass curves over finite fields Fq
with char(Fq) 6∈ {2, 3} have corresponding complete Edwards curves. Daniel J. Bernstein
et al. in [BBJ+08], introduced a generalization of Edwards curves, namely twisted Edwards
curves, to deal with that issue by using twists.

This section starts with a definition of twisted Edwards curves and then shows their
most important properties such as their correspondence with Montgomery curves. Al-
though, this section focusses on finite fields, all of the statements also apply for general
fields of characteristic not 2.

Definition 6.1 (Twisted Edwards curve). Let Fq be a finite field with char(Fq) 6∈ {2, 3}
and let a, d ∈ F∗q with a 6= d. Then, the twisted Edwards curve with coefficients a, d is
defined as:

EET ,a,d : aX2 + Y 2 = 1 + dX2Y 2 (6.4)

with j-invariant j(EET ,a,d) = 16(a2 + 14ad+ d2)3(ad(a− d)4)−1.

For a = 1 this coincides with the notion of ordinary non-binary Edwards curves.
Moreover, the curve EE,a,d is a quadratic twist of the curve

EE,1,da
−1

: X ′2 + Y ′2 = 1 + (da−1)X ′2Y ′2

over the field Fq(
√
a) defined through the isomorphism

(X ′, Y ′) 7→ (a−
1
2X ′, Y ′).

Note that Fq(
√
a) and Fq are the same in case that

√
a ∈ Fq.

6.3.1 Montgomery Curves and Twisted Edwards Curves

This section explains the reason why the notion of Montgomery curves and the notion
of twisted Edwards curves are the same. Recall that a Montgomery curve over Fq with
coefficients e, f ∈ Fq with e 6= ±2, f 6= 0 is defined by the equation:

EM,e,f : fY 2 = X3 + eX2 +X.

The next theorem states that both curve sets are the same.

Theorem 6.5. Let Fq be a finite field with char(Fq) 6∈ {2, 3}. Then the subsequent
statements hold:

CHAPTER 6. EDWARDS CURVES 61

Figure 6.1: Plot of the Edwards curve X2 + Y 2 = 1 + 3X2Y 2 over R

Figure 6.2: Plot of the Edwards curve X2 + Y 2 = 1− 100X2Y 2 over R

CHAPTER 6. EDWARDS CURVES 62

� Each twisted Edwards curve over Fq with coefficients a, d ∈ Fq, a 6= d is birationally
equivalent over Fq to some Montgomery curve. The birational equivalence is defined
by the map:

φ : EET ,a,d → EM,e,f

(x0, y0) 7→ (α(y0), x0 · α(y0))

with α(y) = (1 + y)(1 − y)−1 and coefficients a, d mapped to (e, f) = (2(a + d)(a −
d)−1, 4(a− d)−1).

� On the flipside, each Montgomery curve over Fq with coefficients e ∈ Fq \ {±2}
and f ∈ F∗q is birationally equivalent over Fq to some twisted Edwards curve. The
birational equivalence is defined by the inverse map φ−1:

φ−1 : EM,e,f → EET ,a,d

(x′0, y
′
0) 7→ (x′0y

′−1
0 , (x′0 − 1)(x′0 + 1)−1)

and the coefficients e, f are mapped to (a, d) = ((e+ 2)f−1, (e− 2)f−1).

Proof. See [BBJ+08, Theorem 3.2].

φ has two exceptional points (cf. Section 2.4.4), namely the point (0,−1) of order 2
and the neutral element (0, 1). Hence, the first corresponds to the second order point
(0, 0), which is part of any arbitrary Montgomery curve, whereas the latter corresponds
to O ∈ EM,e,f . For a comprehensive listing of all exceptional points of φ−1 take a look
at [BBJ+08, Section 3].

6.3.2 More Curves through Isogenies

If a Weierstrass curve is neither isomorphic to an Edwards curve nor to a twisted Ed-
wards curve, there is still the possibility that it is isogenous to a twisted Edwards curve.
In [BBJ+08] Bernstein and others show that each Weierstrass curve having three points
of order two is 2-isogenous to some curve in twisted Edwards form:

Theorem 6.6. Let Fq be a field with char(Fq) 6∈ {2, 3}. Each Weierstrass curve E/Fq
with three Fq-rational points of second order, namely (0, 0), (u1, 0), (u2, 0), is 2-isogenous
over Fq to the curve EET ,4u1,4u2 in twisted Edwards shape.

Proof. See [BBJ+08, Theorem 5.1].

6.3.3 The Addition Law

The addition law for twisted Edwards curves with parameters a and d over a finite field
Fq having char(Fq) 6∈ {2, 3} looks as follows:

P +Q = (x1, y1) + (x2, y2) =(
(x1y2 + y1x2) · (1 + dx1x2y1y2)−1 , (y1y2 − ax1x2) · (1− dx1x2y1y2)−1

)
This formula strongly resembles the formula valid on ordinary curves with short Equa-
tion (6.2). Just like in this case, the neutral element is (0, 1) and the inverse of P = (x0, y0)
is the point (−x0, y0). Suppose a ∈ Fq is a square. Then it follows that the twisted Ed-
wards curve EET ,a,d over Fq is isomorphic over Fq to an Edwards curve EE,1,da

−1
. Thus,

the results presented in Section 6.2 remain valid. This implies that the addition law for
twisted Edwards curves is complete if da−1 is a non-square, i.e. if d is a non-square.

CHAPTER 6. EDWARDS CURVES 63

6.4 Binary Edwards Curves

We are now interested in Edwards curves over binary fields. In [BLF08], Bernstein and
Lange describe a curve equation that allows us to expand the notion of Edwards curves
to base fields of characteristic 2. Unfortunately, unlike the addition law on non-binary
Edwards curves the group law on binary Edwards curves does not bring along new speed
records. Although, we have to point out that performance improvements, especially with
regard to doubling, coming very close to current speed records do exist. For further details
on that, we refer to the Explicit-Formulas Database, http://hyperelliptic.org/EFD.

In this section we deal with this new type of Edwards curves. Besides to discussing
the actual curve features, we take a look at its addition law, the birational equivalence
and the like. Note that we are going to discuss the following statements with respect to
finite fields of the type F2n . Except for Theorem 6.8, all of the subsequent propositions
remain valid for general fields with characteristic 2.

Definition 6.2 (Binary Edwards curve). We assume F2n to be a field of characteristic 2
and d1 6= 0, d2 to be elements of F2n with d2 6= d2

1 + d1. Then, the binary Edwards curve
with coefficients d1 and d2 is given by:

EEB ,d1,d2 : d1(X + Y) + d2(X2 + Y 2) = (X +X2)(Y + Y 2) (6.5)

In comparison with Equation (6.3) the new equation appears quite awkward. Nonethe-
less, both curve types have the same main properties in common. From Equation (6.3)
one can read that the curve is symmetric with respect to X and Y . Hence, if P = (x0, y0)
is a valid point of EEB , P ′ = (y0, x0) also is.

Also noteworthy is the subsequent statement:

Theorem 6.7 (Nonsingularity). Every binary Edwards curve is non-singular.

Proof. See [BLF08, Theorem 2.2].

6.4.1 Birational Equivalence

Curve 6.5 is birationally equivalent to the subsequent non-supersingular binary elliptic
curve:

E : Y ′2 +X ′Y ′ = X ′3 + a2X
′2 + a6

with coefficients a2 = d2
1 + d2 and a6 = d4

1(d4
1 + d2

1 + d2
2) and j-invariant j(E) = a−1

6 . The
birational equivalence is given by the map

φ : EEB ,d1,d2 → E
(x0, y0) 7→ (x′0, y

′
0)

with φ(0, 0) = O and

x′0 = d1α(x0 + y0)(x0y0 + d1(x0 + y0))−1,

y′0 = d1α(x0(x0y0 + d1(x0 + y0))−1 + d1 + 1)

otherwise; where α = d2
1 + d1 + d2. The inverse map φ−1 : (x′0, y

′
0) 7→ (x0, y0) is defined

followingly:
x0 = d1(x′0 + α)(x′0 + y′0 + αβ)−1,

y0 = d1(x′0 + α)(y′0 + αβ)−1

with φ−1(O) = (0, 0) and β = d2
1 + d1.

http://hyperelliptic.org/EFD

CHAPTER 6. EDWARDS CURVES 64

6.4.2 The Addition Law

This subsection is devoted to the addition law for binary Edwards curves and its main
properties.

The sum of two elements P = (x1, y1), Q = (x2, y2) ∈ EEB ,d1,d2 is defined as:

P +Q = (x1, y1) + (x2, y2) =(
(α+ β(x1, x2, y1, y2))(d1 + γ(x1)δ)−1 , (α+ β(y1, y2, x1, x2))(d1 + γ(y1)δ)−1

)
where

� α = d2(x1 + y1)δ,

� β(a, b, c, d) = d1(a+ b) + γ(a) (b (c+ d+ 1) + cd),

� γ(a) = a+ a2, and

� δ = x2 + y2.

This yields a valid point of the curve, when the denominators of both components do not
vanish.

From the addition formulae it follows that the neutral element is the point (0, 0) and
that (y0, x0) is inverse to (x0, y0). Another interesting property of the addition instruction
is that (x0, y0) + (1, 1) always yields (x0 + 1, y0 + 1). This implies that the point (1, 1) is
of order 2, meaning that (1, 1) + (1, 1) = (0, 0).

Theorem 6.8 (Compliance with Weierstrass addition). Let F2n be a finite field, d1 6=
0, d2 ∈ F2n with d2 6= d1 + d2

1 and EEB ,d1,d2 be a binary Edwards curve with coefficients
d1, d2. Let P,Q ∈ EEB ,d1,d2(F2n) and P + Q = R ∈ EEB ,d1,d2(F2n). Then, we have
φ(P) + φ(Q) = φ(R).

Proof. See [BLF08, Theorem 3.5].

The remainder of this subsection deals with the notion of completeness. We are going
to see that if d2 is not of the form t2 + t, the addition law is complete and that for almost
all n binary Weierstrass curves have complete binary Edwards counterparts.

Theorem 6.9 (Completeness). Fix a field F2n, d1 6= 0, d2 ∈ F2n and EEB ,d1,d2 a binary
Edwards curve with coefficients d1 and d2. In addition, we assume that there is no element
t ∈ F2n such that d2 = t2 + t. Given that, the addition law on EEB ,d1,d2(F2n) is complete.

Proof. See [BLF08, Theorem 4.1].

From now on, we call such curves complete binary Edwards curves.

Theorem 6.10. Fix n ∈ N>2. Then it follows that for every Weierstrass curve E/F2n

exists a birationally equivalent complete binary Edwards curve over F2n.

Proof. See [BLF08, Theorem 4.3].

This means that unlike complete Edwards curves over fields of prime characteristic,
complete binary Edwards curves cover all Weierstrass curves over binary fields F2n when
n > 2.

CHAPTER 6. EDWARDS CURVES 65

NIST curve d1 d2

B-163 0x04 0x6ac25b85badf8927593d21c366da89c03969f3494

B-233 0x02 0x61fe1589ee5e1d39d1fb8c781b5c72abba94bc8494f97e51b41876a448

B-283 0x08 0x6dcaf32715e4ac7afa0660c227edbe0d68bf48828c11093285f020ab85d10abb7a6eb70

Table 6.1: Edwards coefficients of some binary NIST curves in hexadecimal representation

6.5 Converting Standardized Curves to Twisted Edwards
Form

Recall that in order to transform a Weierstrass curve E to Edwards shape, E must have
a point of order four. For E being convertible to twisted Edwards form, still requires E
to have a point of second order, why the cofactor h of E must be divisible by two. For
safety’s sake, however, cofactors greater than four are deprecated. And so, our only chance
is to find standardized curves with h = 2 or h = 4.

There are several standards, like [Sta00], [Nat00] or [Int05], suggesting curves with
strong cryptographic properties. But, only the Standards for Efficient Cryptography 2
(SEC2) [Sta00] includes two curves, namely sec112r2 with p ≈ 2112 and sec128r2 with
p ≈ 2128, having cofactor h = 4. Unfortunately, also the SEC2 standard does not suggest
appropriate curves over larger prime fields and these curve sizes can already be considered
to be outdated. So, the only remaining way of converting curves with h = 1 to Edwards
form and twisted Edward form, respectively, is to replace the prime field Fp by an extension
field Fpn so that E(Fpn) comprises an element of order 4 and 2, respectively. Yet, we can
not recommend this approach as the increased field size renders the performance benefits
of Edwards curves void.

In contrast to prime field curves, any standardized binary curve can be transformed
to the binary Edwards shape. Note, however, that binary Edwards curves are not the
fastest binary curves available. Still, the possibility to beat off side-channel attacks and
the reduced space of hardware implementations may make them attractive.

Example 6.5. Table 6.1 shows the Edwards coefficients of the binary NIST-curves B-163,
B-233, B-283 (cf. [Nat00]) in hexadecimal representation. (Note that the appropriate field
elements d1 and d2 can be deduced by interpreting this representation as a series of binary
coefficients (bi)n−1

i=0 of the sum
∑n−1

i=0 big
i, where g is the generator of the corresponding

finite field F2n and n ∈ {163, 233, 283})

6.6 Arithmetical Performance of Edwards Curves

This section gives an overview of the arithmetic costs of Edwards curves and compares
the fastest variants of Edwards curves to several variants of Weierstrass curves.

As in Section 2.4.5 one can get the most performance out of Edwards curves by
switching to different types of projective coordinates, such as inverted Edwards curves
(see [BL07c]). Table 6.2 gives an overview of the arithmetic costs of different prime field
curves, where we denote the cost of each field multiplication by M, the cost of each field
squaring by S and the cost of a single multiplication with a curve parameter by D. The
parentheses next to the explicit performance costs, show the overall costs when we assume

CHAPTER 6. EDWARDS CURVES 66

Curve shape Double Add
Weierstrass, projective 5M+6S+1D (11M) 12M+2S (14M)
Jacobian 1M+8S+1D (9M) 11M+5S (16M)
Edwards, projective 3M+4S (7M) 10M+1S+1D (11M)
Twisted Edwards, projective 3M+4S+1D (7M) 10M+1S+2D (11M)
Inverted twisted Edwards 3M+4S+2D (7M) 9M+1S+2D (10M)
Inverted Edwards 3M+4S+1D (7M) 9M+1S+1D (10M)

Table 6.2: Performance chart comparing prime field curve shapes [BL07b, BBJ+08]

squarings and multiplications to be equally expensive. Note that the doubling costs of the
Edwards-type curves are accomplished through explicit doubling formulas.

Remark 6.2. For a comprehensive and up-to-date overview we refer the reader to the
Explicit-Formulas Database, http://www.hyperelliptic.org/EFD.

http://www.hyperelliptic.org/EFD

Chapter 7

Conclusions

In this thesis, we focused on elliptic curves in cryptography, in particular on the latest ap-
pliances of elliptic curves with regard to hash functions and on arithmetical improvements
achieved through alternative curve shapes.

Part I of this thesis was devoted to the preliminaries. It focused on a comprehensive
introduction to elliptic curves and hash functions as well as on the appliances of elliptic
curves in cryptography.

The remainder of this thesis was split into the two core parts. Part II was dedicated to
the topic of elliptic curve hashing, in which we investigated an elliptic curve hash algorithm
called ECOH. ECOH participated in NIST’s SHA-3 competition and hence we tried to
figure out new attacks against it. Our attacks against a simplified version of ECOH were
mainly based on algebraic ideas involving torsion points of ECOH’s elliptic curve group.
Unfortunately, Niels Ferguson and Michael A. Halcrow came up with a powerful attack
against ECOH, while we were in a very early stage of our research, which rendered our
efforts void [HF09]. Hence, we abandoned our attacks against ECOH and developed a
memoryless version of their man-in-the-middle attack. The results of this attack are listed
in Section 5.5.3.

Part III focused on a new curve shape called Edwards curves. Since elliptic curves have
become an indispensable part of contemporary cryptography, they are in widespread use
and hence arithmetical simplifications and speedups are of great significance. Arithmeti-
cal speedups are especially beneficial in environments with limited resources and in the
context of cryptographic protocols in order to decrease the workload of servers, whereas
arithmetical simplifications reduce the space required for hardware implementations and
lower the vulnerability to side side-channel attacks. In the past few years much research
has gone into finding new curve types according to these criteria. Edwards curves resolve
all those issues as they provide a complete and amazingly fast addition law. In Chapter 6
we did not only review the theory of Edwards curves, but also deal with extensions of
this theory, such as twisted Edwards curves and binary Edwards curves. The former al-
lows us to cover more Weierstrass curves, whereas the latter describes a similar shape for
binary fields. Finally, we considered to what extent standardized curves can be brought
to Edwards form. However, we must conclude that only two already outdated curves
over prime fields, which are part of the SEC2 standard [Sta00], have birationally equiva-
lent twisted Edwards curves. In contrast to this, every binary Weierstrass curve can be
transformed to Edwards shaped. Since in cryptographic appliances cofactors h lying in
the range 1 ≤ h ≤ 4 are allowed, we suggest that future curve standards should include
more curves having cofactor h ∈ {2, 4}. This simple measure would widen the range of

67

CHAPTER 7. CONCLUSIONS 68

standardized curves convertible to (twisted) Edwards shape.

Appendix A

Definitions

A.1 Abbreviations

DLP Discrete Logarithm Problem
DSA Digital Signature Algorithm
ECC Elliptic Curve Cryptography
ECDL Elliptic Curve Discrete Logarithm
ECDLP Elliptic Curve Discrete Logarithm Problem
ECM Elliptic Curve Method
ECOH Elliptic Curve Only Hash
ECOH2 Elliptic Curve Only Hash 2
IFP Integer Factorization Problem
MuHASH Multiplicative Hash
MOV Menezes-Okamoto-Vanstone algorithm
RSA Rivest Shamir Adleman Cryptosystem
SSSA Smart-Semaev-Satoh-Araki attack

A.2 Used Symbols

∃x existential quantifier
∀x universal quantifier
0j bit string consisting of j zero bits, e.g. 03 = 000
0x prefix for numbers written in hexadecimal notation
1 finite field element/integer/bit string of a single one bit
{0, 1}n the set of all bitstrings of length n
{0, 1}∗ the set of all bitstrings of arbitrary length
|a| absolute value of the real value a
bac largest integer not exceeding a, e.g. b1.2c = 1
dae smallest integer not less than a, e.g. d1.2e = 2√
a Square root of real value/finite field element a

a1, . . . , a6 Weierstrass coefficients
a ‖ b concatenation of two (bit) strings/vectors
a|b integer a divides b, e.g. 2|4
a+ b integer/group/finite field/polynomial addition

69

APPENDIX A. DEFINITIONS 70

a · b integer/group/finite field/polynomial multiplication
ab integer/finite field/polynomial exponentiation
a mod m remainder of a when divided by m
a⊕ b exclusive-or (XOR) of two vectors a and b(
a
p

)
Legendre symbol

C field of complex numbers
Cf algebraic curve defined through function f
Cf (K) set of K-rational points of curve Cf
char(K) characteristic of field K
χ(x) generalized Legendre symbol
∆(E) discriminant of curve E
E elliptic curve in affine/projective Weierstrass form
EE,c,d elliptic curve in Edwards form with coefficients c and d
EE,d elliptic curve in Edwards form with coefficient d and c = 1
EEB ,d1,d2 elliptic curve in binary Edwards form with coefficients d1 and d2

EET ,a,d elliptic curve in twisted Edwards form with coefficients a and d
E(K) set of points of curve E over field K plus the point at infinity
E/K elliptic curve E defined over field K
EM,a,b elliptic curve in Montgomery form with coefficients a and b
E(X) expected value of some random variable X
f ◦ g composition of functions f and g, i.e. f ◦ g(x) = f(g(x))
Fq finite field with q elements
∂f
∂X formal derivation of polynomial f with respect to X
〈g〉 group generated by some generator g
G[m] torsion subgroup of group G of order m
j(E) j-invariant of curve E
K a field variable
K∗ multiplicative group of field K

K algebraic closure of field K
k! factorial of (non-negative) integer k
Kn n-dimensional (affine) vector space over field K
K1 ' K2 group/ring/field K1 isomorphic to group/ring/field K2

K[α],K(α) extension field of field K obtained through adjunction element α
K(X1, . . . , Xn) field of rational functions in n variables over K
K[X1, . . . , Xn] ring of polynomials in n variables over K
K(Cf) function field of the algebraic curve Cf
K[Cf] coordinate ring of the algebraic curve Cf
len(M) bit length of some message M
L/K field extension of field K
[L : K] degree of field extension
log(a) natural logarithm of a ∈ R
log2(a) base 2 logarithm of a ∈ R
logb(a) discrete logarithm of a with respect to generator b
µn(K) set of nth-roots of unity of field K
N set of natural numbers(
n
k

)
binomial coefficient, i.e.

(
n
k

)
= n!

k!(n−k)!
nk falling factorial, i.e. nk = n(n− 1) . . . (n− k + 1)

APPENDIX A. DEFINITIONS 71

O point at infinity on an elliptic curve
O(·) big O-notation
ord(G) order of group G
ord(x) order of group element x
P (·) probability measure
P set of all primes
Pn n-dimensional projective space
Q field of rational numbers
R field of real numbers
R∗ group of units of ring R
|S| cardinality of set S
Tr(·) the trace function
xP , yP x-coordinate and y-coordinate of some point P , respectively
(x1, . . . , xn) n-dimensional affine vector
(x1 : . . . : xn) n-dimensional projective vector
Z ring of integers
Zm ring of integers modulo m, e.g. Z3 = {0, 1, 2}

Appendix B

Source Code

1 # Implements a simplified version of ECOH

2 #

3 # The main differences are that

4 # - it is only able to create preHash values

5 # - it expects message lengths to be a multiple of blen

6 #

7 class ECOH:
8

9 # Constructor

10 #

11 # Parameters:

12 # E ... elliptic curve

13 # F ... underlying finite field

14 # blen ... block bitlength

15 # clen ... counter bitlength

16 # ilen ... index bitlength

17 #

18 # Note that out of convenience len(msg_blocks) is assumed to be a

19 # multiple of blen

20 #

21 def i n i t (s e l f , E, blen , c len , i l e n) :
22 s e l f .E = E
23 s e l f .F = E. b a s e f i e l d ()
24 s e l f .V = s e l f .F . v e c t o r spac e ()
25 s e l f .m = s e l f .V. dimension ()
26 # the ybit is the topmost bit of the datablock

27 s e l f . yb i t = s e l f .m − 1
28 s e l f . c l en = c l en
29 s e l f . i l e n = i l e n
30 s e l f . b len = blen
31 # the padding block has the value 1||0^(blen - 1)

32 s e l f . padding block = 1 << (b len − 1)
33

34 # Computes the prehash of a message

35 #

36 # Parameters:

37 # msg_blocks ... message blocks

38 # Returns:

39 # point on self.E

40 #

41 def getPreHash (s e l f , msg blocks) :
42 Q = s e l f .E([0 , 1 , 0])
43 l ength = len (msg blocks)
44 xor = 0
45

46 # create points corresponding to the message blocks

47 for i in range (l ength) :
48 Q += s e l f . getPoint (msg blocks [i] , i)
49 xor = xor . x o r (msg blocks [i])

72

APPENDIX B. SOURCE CODE 73

50

51 # add the padding point

52 Q += s e l f . getPoint (s e l f . padding block , l ength)
53 # add the XOR -point

54 Q += s e l f . getPoint (xor , l ength * s e l f . b len)
55

56 return Q
57

58 # Helper method that converts an integer into a vector representing an element

59 # of self.F.vector_space () based on its bit -representation

60 #

61 # Parameters:

62 # x ... integer representing an element of self.F

63 # Returns:

64 # element of self.F.vector_space ()

65 #

66 def intToVector (s e l f , x) :
67 l x = x . b i t s ()
68 while l en (lx) < s e l f .m:
69 l x . append (0)
70 return s e l f .V(lx)
71

72 # Helper method that converts an integer into an element of self.F

73 # based on its bit -representation

74 #

75 # Parameters:

76 # x ... integer representing an element of self.F

77 # Returns:

78 # element of self.F

79 #

80 def intToFieldElem (s e l f , x) :
81 return s e l f .F(s e l f . intToVector (x))
82

83 # Helper method that determines whether an integers corresponds

84 # to a valid x-coordinate on self.E based on its bit -representation

85 #

86 # Parameters:

87 # x ... integer

88 # Returns:

89 # boolean

90 #

91 def isValidXCoord (s e l f , x) :
92 return s e l f .E . i s x c o o r d (s e l f . intToVector (x))
93

94 # Helper method that converts a field element to its integer representation

95 #

96 # Parameters:

97 # x ... field element

98 # Returns:

99 # integer

100 #

101 def f i e ldElemToInt (s e l f , x) :
102 v = x . v e c t o r ()
103 return sum ([v [i] . n () . i n t e g e r p a r t () << i for i in range (l en (v))])
104

105 # Decompresses a point from a message block and an index value

106 #

107 # Parameters:

108 # msg_block ... message block integer value

109 # index ... index counter of this block

110 # Returns:

111 # point on self.E

112 #

113 def getPoint (s e l f , msg block , index) :
114 x = (((msg block << s e l f . i l e n) + index) << s e l f . c l en) + 1
115

116 # find a valid x-coordinate

117 while s e l f . isValidXCoord (x) == False :

APPENDIX B. SOURCE CODE 74

118 x += 1
119

120 # get the ybit’s value

121 b = (x >> s e l f . yb i t) & 0x1
122 x0 = s e l f . intToFieldElem (x)
123 # get all the valid points

124 cand ida t e po in t s = s e l f .E . l i f t x (x0 , True)
125

126 # determine appropriate point according to the ybit

127 i f (cand ida t e po in t s [0] [1] * x0ˆ(−1)) . v e c t o r () [0] == b :
128 P = cand ida t e po in t s [0]
129 else :
130 P = cand ida t e po in t s [1]
131 return P
132

133 # Implements a memoryless version of the Ferguson -Halcrow attack

134 #

135 class Attack :
136

137 # Constructor

138 #

139 # Parameters:

140 # ecoh ... ECOH instance

141 # msg_blocks ... integer values for creation of prehash point

142 #

143 # Note that out of convenience len(msg_blocks) is assumed to be a

144 # multiple of blen

145 #

146 def i n i t (s e l f , ecoh , msg blocks) :
147 s e l f . ecoh = ecoh
148 # bitmask for fetching blen bits

149 s e l f . mask = (1 << ecoh . b len) − 1
150 # creating the prehash Q

151 s e l f .Q = ecoh . getPreHash (msg blocks)
152 # creating point X1, which is fixed

153 s e l f .X1 = ecoh . getPoint (ecoh . padding block , 6)
154 # creating point X2, which is also fixed

155 s e l f .X2 = ecoh . getPoint (0 , 96)
156 # small precomputation to save time

157 s e l f .QX = s e l f .Q − (s e l f .X1 + s e l f .X2)
158

159 # Helper method that determines the computation branch for some message

160 #

161 # Parameters:

162 # msg_blocks ... array of message block integer values

163 # Returns:

164 # integer

165 #

166 def chooseBranch (s e l f , msg blocks) :
167 r e s u l t = 0
168 for i in range (l en (msg blocks)) :
169 r e s u l t += Mod(msg blocks [i] , 2)
170 return r e s u l t
171

172 # Helper method that computes a single step of the attack returning the

173 # resulting point , new message blocks and the branch used

174 #

175 # Parameters:

176 # msg_blocks ... message blocks as integer values

177 # Returns:

178 # (point on self.E, new message blocks , used branch)

179 #

180 def computeStep (s e l f , msg blocks) :
181 # add XOR -block

182 mod msg blocks = [msg blocks [0] , msg blocks [1] , msg blocks [0] . x o r (
msg blocks [1])]

183 # choose the computation branch

184 branch = s e l f . chooseBranch (msg blocks)

APPENDIX B. SOURCE CODE 75

185

186 i f branch == 0 :
187 P0 = s e l f . ecoh . getPoint (mod msg blocks [0] , 0)
188 P1 = s e l f . ecoh . getPoint (mod msg blocks [1] , 1)
189 P2 = s e l f . ecoh . getPoint (mod msg blocks [2] , 2)
190

191 P = P0 + P1 + P2
192 else :
193 P3 = s e l f . ecoh . getPoint (mod msg blocks [0] , 3)
194 P4 = s e l f . ecoh . getPoint (mod msg blocks [1] , 4)
195 P5 = s e l f . ecoh . getPoint (mod msg blocks [2] , 5)
196 P = s e l f .QX − (P3 + P4 + P5)
197

198 Px = s e l f . ecoh . f i e ldElemToInt (P [0])
199 Py = s e l f . ecoh . f i e ldElemToInt (P [1])
200

201 return (P, [Px & s e l f . mask , Py & s e l f . mask] , branch)
202

203 # Implementation of Floyd’s cycle finding algorithm

204 #

205 # Parameters:

206 # msg_blocks ... message blocks as integer values

207 # Returns:

208 # if success: second preimage

209 # otherwise: False

210 #

211 def run (s e l f , msg blocks) :
212 t o r t o i s e msg b l o c k s = msg blocks
213 hare msg b locks = msg blocks
214 t o r t o i s e b r an ch = 0
215 hare branch = 0
216

217 while True :
218 (t o r t o i s e P , t o r t o i s e msg b l o ck s , t o r t o i s e b r an ch) = s e l f . computeStep (

t o r t o i s e msg b l o c k s)
219

220 (hare P , hare msg blocks , hare branch) = s e l f . computeStep (
hare msg b locks)

221 (hare P , hare msg blocks , hare branch) = s e l f . computeStep (
hare msg b locks)

222

223 i f (t o r t o i s e P == hare P) :
224 print ’MATCH found ’
225 break
226

227 t o r t o i s e msg b l o ck s , hare msg b locks = msg blocks , t o r t o i s e msg b l o c k s
228

229 while True :
230 # store message blocks of current round

231 t o r t o i s e o l d msg b l o c k s , ha r e o ld msg b lock s = to r t o i s e msg b l o ck s ,
hare msg b locks

232

233 (t o r t o i s e P , t o r t o i s e msg b l o ck s , t o r t o i s e b r an ch) = s e l f . computeStep (
t o r t o i s e msg b l o c k s)

234 (hare P , hare msg blocks , hare branch) = s e l f . computeStep (
hare msg b locks)

235

236 i f t o r t o i s e P == hare P :
237 i f (t o r t o i s e b r an ch == hare branch) :
238 print ’ unde s i r ab l e MATCH found − te rminat ing !\n ’
239 print ’ r e s t a r t with d i f f e r e n t message ! ’
240 return False
241 else :
242 return (t o r t o i s e o l d msg b l o c k s , ha r e o ld msg b lock s)

Listing B.1: Memoryless Implementation of the Ferguson-Halcrow Attack in Sage

Bibliography

[ADH94] Leonard M. Adleman, Jonathan DeMarrais, and Ming-Deh A. Huang. A
subexponential algorithm for discrete logarithms over the rational subgroup
of the jacobians of large genus hyperelliptic curves over finite fields. In ANTS-
I: Proceedings of the First International Symposium on Algorithmic Number
Theory, pages 28–40, London, UK, 1994. Springer-Verlag.

[ANS98] ANSI. ANSI X9.62-1998: Public Key Cryptography for the Financial Services
Industry, The Elliptic Curve Digital Signature Algorithm (ECDSA). American
National Standards Institute, 1430 Broadway, New York, NY 10018, USA,
1998.

[BACS08] Daniel R. L. Brown, Adrian Antipa, Matt Campagna, and Rene Struik.
ECOH: the elliptic curve only hash. Submission to NIST, October 2008.
http://ehash.iaik.tugraz.at/uploads/a/a5/Ecoh.pdf.

[BB08] Shi Bai and Richard P. Brent. On the efficiency of pollard’s rho method for
discrete logarithms. In CATS ’08: Proceedings of the fourteenth symposium on
Computing: the Australasian theory, pages 125–131, Darlinghurst, Australia,
Australia, 2008. Australian Computer Society, Inc.

[BBJ+08] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane
Peters. Progress in cryptology - africacrypt 2008, first international conference
on cryptology in africa, casablanca, morocco, june 11-14, 2008. proceedings.
In Serge Vaudenay, editor, AFRICACRYPT, volume 5023 of Lecture Notes in
Computer Science, pages 389–405. Springer, 2008.

[Ber09] Daniel J. Bernstein. Batch binary edwards. In CRYPTO ’09: Proceedings of
the 29th Annual International Cryptology Conference on Advances in Cryp-
tology, pages 317–336, Berlin, Heidelberg, 2009. Springer-Verlag.

[Bir09a] Peter Birkner. AK Kryptographie. Lecture Notes, 2009.

[Bir09b] Peter Birkner. Efficient arithmetic on low-genus curves. PhD thesis, Tech-
nische Universiteit Eindhoven, 2009. http://alexandria.tue.nl/extra2/
200910363.pdf.

[BK98] R. Balasubramanian and Neal Koblitz. The improbability that an elliptic
curve has subexponential discrete log problem under the Menezes-Okamoto-
Vanstone algorithm. Journal of Cryptology, 11:141–145, 1998.

76

http://ehash.iaik.tugraz.at/uploads/a/a5/Ecoh.pdf
http://alexandria.tue.nl/extra2/200910363.pdf
http://alexandria.tue.nl/extra2/200910363.pdf

BIBLIOGRAPHY 77

[BL07a] Daniel J. Bernstein and Tanja Lange. Analysis and optimization of
elliptic-curve single-scalar multiplication. Cryptology ePrint Archive, Report
2007/455, 2007. http://eprint.iacr.org/2007/455.

[BL07b] Daniel J. Bernstein and Tanja Lange. Faster addition and doubling on elliptic
curves. In ASIACRYPT, pages 29–50, 2007. http://dx.doi.org/10.1007/
978-3-540-76900-2_3.

[BL07c] Daniel J. Bernstein and Tanja Lange. Inverted Edwards coordinates. Cryp-
tology ePrint Archive, Report 2007/410, 2007. http://eprint.iacr.org/
2007/410.

[BLF08] Daniel J. Bernstein, Tanja Lange, and Reza Rezaeian Farashahi. Binary Ed-
wards curves. Cryptology ePrint Archive, Report 2008/171, 2008. http:
//eprint.iacr.org/2008/171.

[BM97] Mihir Bellare and Daniele Micciancio. A new paradigm for collision-free
hashing: Incrementality at reduced cost. In W. Fumy, editor, Advances
in Cryptology - EUROCRYPT ’97, number 1233 in Lecture Notes in Com-
puter Science, pages 163–192. Springer-Verlag, 1997. Full version: http:
//eprint.iacr.org/1997/001.

[Bre80] Richard P. Brent. An improved Monte Carlo factorization algorithm. Nordisk
Tidskrift for Informationsbehandling (BIT), 20(2):176–184, 1980.

[Bro08a] Daniel R. L. Brown. Elliptic curve hash (and sign), ECOH (and the 1-up
problem for ECDSA). Slides presented at ECC2008, September 2008.

[Bro08b] Daniel R. L. Brown. The encrypted elliptic curve hash. Cryptology ePrint
Archive, Report 2008/012, 2008. http://eprint.iacr.org/2008/012.

[Bro09] Daniel R. L. Brown. ECOH2, June 2009.

[BSS99] Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart. Elliptic curves in cryptog-
raphy. Cambridge University Press, New York, NY, USA, 1999.

[CF05] Henri Cohen and Gerhard Frey, editors. Handbook of Elliptic and Hyperelliptic
Curve Cryptography. CRC Press, 2005.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, IT-22(6):644–654, 1976.

[Duq04] Sylvain Duquesne. Montgomery scalar multiplication for genus 2 curves. In
ANTS-VI: Proceedings of the 6th International Symposium on Algorithmic
Number Theory, volume 3076 of Lecture Notes in Computer Science, pages
153–168, Burlington, VT, USA, June 2004. Springer Berlin / Heidelberg.

[Edw07] Harold M. Edwards. A normal form for elliptic curves. Bulletin of the Amer-
ican Mathematical Society, 44(3):393–422, July 2007. http://www.ams.org/
bull/2007-44-03/S0273-0979-07-01153-6/home.html.

[EJ01] Donald E. Eastlake and Paul E. Jones. Us secure hash algorithm 1
(sha1). http://www.ietf.org/rfc/rfc3174.txt?number=3174, September
2001. IETF RFC 3174.

http://eprint.iacr.org/2007/455
http://dx.doi.org/10.1007/978-3-540-76900-2_3
http://dx.doi.org/10.1007/978-3-540-76900-2_3
http://eprint.iacr.org/2007/410
http://eprint.iacr.org/2007/410
http://eprint.iacr.org/2008/171
http://eprint.iacr.org/2008/171
http://eprint.iacr.org/1997/001
http://eprint.iacr.org/1997/001
http://eprint.iacr.org/2008/012
http://www.ams.org/bull/2007-44-03/S0273-0979-07-01153-6/home.html
http://www.ams.org/bull/2007-44-03/S0273-0979-07-01153-6/home.html
http://www.ietf.org/rfc/rfc3174.txt?number=3174

BIBLIOGRAPHY 78

[Eng99] Andreas Enge. Elliptic curves and their applications to cryptography: an
introduction. Kluwer Academic Publishers, Norwell, MA, USA, 1999.

[Flo67] Robert W. Floyd. Nondeterministic algorithms. J. ACM, 14(4):636–644, 1967.

[FMR99] Gerhard Frey, Michael Mueller, and Hans-Georg Rueck. The tate pairing
and the discrete logarithm applied to elliptic curve cryptosystems. IEEE
Transactions on Information Theory, 45(5):1717–1719, 1999.

[FR94] Gerhard Frey and Hans-Georg Rueck. A remark concerning m-divisibility
and the discrete logarithm in the divisor class group of curves. Mathematics
of Computation, 62(206):865–874, 1994.

[Fri05] Sophie Frisch. Algebra. Lecture notes, October 2005.

[Har60] Bernard Harris. Probability distribution related to random mappings. The
Annals of Mathematical Statistics, 31(4):1045–1062, 1960.

[HF09] Michael A. Halcrow and Niels Ferguson. A second pre-image attack against el-
liptic curve only hash (ECOH). Cryptology ePrint Archive, Report 2009/168,
April 2009. http://eprint.iacr.org/2009/168.

[HMV04] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic
Curve Cryptography. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2004.

[HPS08] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. An Introduction
to Mathematical Cryptography. Springer Publishing Company, Incorporated,
2008.

[HWCD08] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson.
Twisted edwards curves revisited. Cryptology ePrint Archive, Report
2008/522, 2008. http://eprint.iacr.org/2008/522.

[Ica09] Thomas Icart. How to hash into elliptic curves. Cryptology ePrint Archive,
Report 2009/226, 2009. http://eprint.iacr.org/2009/226.

[Int05] Internet Engineering Task Force. ECC Brainpool Standard Curves and Curve
Generation, October 2005. http://www.ecc-brainpool.org/download/
Domain-parameters.pdf.

[Jou00] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In ANTS-
IV: Proceedings of the 4th International Symposium on Algorithmic Number
Theory, pages 385–394, London, UK, 2000. Springer-Verlag.

[KKM08] Ann H. Koblitz, Neal Koblitz, and Alfred J. Menezes. Elliptic curve cryptog-
raphy: The serpentine course of a paradigm shift. Cryptology ePrint Archive,
Report 2008/390, 2008. http://eprint.iacr.org/2008/390.

[KMW07] Anton Kargl, Bernd Meyer, and Susanne Wetzel. On the performance
of provably secure hashing with elliptic curves. International Journal of
Computer Science and Network Security, 7(10):1–7, October 2007. http:
//paper.ijcsns.org/07_book/200710/20071001.pdf.

http://eprint.iacr.org/2009/168
http://eprint.iacr.org/2008/522
http://eprint.iacr.org/2009/226
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://eprint.iacr.org/2008/390
http://paper.ijcsns.org/07_book/200710/20071001.pdf
http://paper.ijcsns.org/07_book/200710/20071001.pdf

BIBLIOGRAPHY 79

[Knu69] Donald E. Knuth. Art of Computer Programming, Volume 2: Seminumerical
Algorithms (3rd Edition) (Art of Computer Programming Volume 2). Addison-
Wesley Professional, first edition, 1969.

[Knu97] Donald E. Knuth. Art of Computer Programming, Volume 2: Seminumerical
Algorithms (3rd Edition) (Art of Computer Programming Volume 2). Addison-
Wesley Professional, third edition, November 1997.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. In Mathematics of Computation,
number 48, pages 203–209, 1987.

[Kob89] Neal Koblitz. Hyperelliptic cryptosystems. Journal of Cryptology, 1(3):139–
150, 1989. http://dx.doi.org/10.1007/BF02252872.

[Kop09] Clemens Koppensteiner. Mathematical foundations of elliptic curve cryptog-
raphy. Master’s thesis, Vienna University of Technology, May 2009.

[LD99] Julio López and Ricardo Dahab. Fast multiplication on elliptic curves over
GF(2m) without precomputation. In CHES ’99: Proceedings of the First
International Workshop on Cryptographic Hardware and Embedded Systems,
pages 316–327, London, UK, 1999. Springer-Verlag.

[Len87] Hendrik W. Lenstra, Jr. Factoring integers with elliptic curves. Annals of
Mathematics, 126:649–673, 1987.

[Let07] Guenter H. A. Lettl. Algebraische Kurven. Lecture notes, October 2007.

[LV99] Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key sizes.
Journal of Cryptology, 14:255–293, 1999.

[Mil85] Victor S. Miller. Use of elliptic curves in cryptography. In CRYPTO 85, 1985.

[Mil04] Victor S. Miller. The Weil pairing and its efficient calculation. Journal of
Cryptology, 17:235–261, 2004.

[Mon87] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of
factorization. Mathematics of Computation, 48:243–264, 1987.

[MOV91] Alfred J. Menezes, Tatsuaki Okamoto, and Scott Vanstone. Reducing elliptic
curve logarithms to logarithms in a finite field. In STOC ’91: Proceedings
of the twenty-third annual ACM symposium on Theory of computing, pages
80–89, New York, NY, USA, 1991. ACM. http://doi.acm.org/10.1145/
103418.103434.

[MvOV01] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Hand-
book of Applied Cryptography. CRC Press, 2001. http://www.cacr.math.
uwaterloo.ca/hac/.

[Nat00] National Institute of Standards and Technology. FIPS PUB 186-3: Digi-
tal Signature Standard (DSS). National Institute for Standards and Tech-
nology, Gaithersburg, MD, USA, January 2000. http://csrc.nist.gov/
publications/fips/fips186-3/fips_186-3.pdf.

http://dx.doi.org/10.1007/BF02252872
http://doi.acm.org/10.1145/103418.103434
http://doi.acm.org/10.1145/103418.103434
http://www.cacr.math.uwaterloo.ca/hac/
http://www.cacr.math.uwaterloo.ca/hac/
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

BIBLIOGRAPHY 80

[Niv04] Gabriel Nivasch. Cycle detection using a stack. Information Processing Let-
ters, 90(3):135 – 140, 2004.

[OKS00] Katsuyuki Okeya, Hiroyuki Kurumatani, and Kouichi Sakurai. Elliptic curves
with the montgomery-form and their cryptographic applications. In PKC ’00:
Proceedings of the Third International Workshop on Practice and Theory in
Public Key Cryptography, pages 238–257, London, UK, 2000. Springer-Verlag.

[OL08] Elisabeth Oswald and Mario Lamberger. Elliptic curve cryptography, an in-
troduction to ECC and its applications in practice. Lecture notes, 2008.

[Pol75] John M. Pollard. A monte carlo method for factorization. BIT Numerical
Mathematics, 15(3):331–334, 1975.

[Pra07] Norbert Pramstaller. Analysis and Design of Cryptographic Hash Functions.
PhD thesis, Graz University of Technology, October 2007.

[QD90] Jean-Jacques Quisquater and Jean-Paul Delescaille. How easy is collision
search. new results and applications to DES. In CRYPTO ’89: Proceedings
of the 9th Annual International Cryptology Conference on Advances in Cryp-
tology, pages 408–413, London, UK, 1990. Springer-Verlag.

[Riv92] Ronald L. Rivest. The md5 message-digest algorithm. http://www.ietf.
org/rfc/rfc1321.txt?number=1321, April 1992. IETF RFC 1321.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Communications
of the ACM, 21(2):120–126, 1978. http://doi.acm.org/10.1145/359340.
359342.

[Rue99] Hans-Georg Rueck. On the discrete logarithm in the divisor class group of
curves. Mathematics of Computation, 68(226):805–806, 1999.

[SA98] T. Satoh and K. Araki. Fermat quotients and the polynomial time discrete log
algorithm for anomalous elliptic curves. Commentarii Math. Univ. St. Pauli,
1998.

[Saa04] Markku-Juhani O. Saarinen. Lecture 4: Hashes and message digests. Lecture
Notes, February 2004. www.tcs.hut.fi/Studies/T-79.159/2004/slides/
L4.pdf.

[Sch85] Rene Schoof. Elliptic curves over finite fields and the computation of square
roots mod p. Mathematics of Computation, 44(170):483–494, 1985.

[Sem98] Igor A. Semaev. Evaluation of discrete logarithms in a group of p-torsion
points of an elliptic curve in characteristic p. Mathematics of Computation,
67:353–356, 1998.

[Ser98] Gadiel Seroussi. Table of low-weight binary irreducible polynomials. Tech-
nical Report HPL–98–135, Hewlett Packard Computer Systems Laboratories,
August 1998. http://www.hpl.hp.com/techreports/98/HPL-98-135.html.

http://www.ietf.org/rfc/rfc1321.txt?number=1321
http://www.ietf.org/rfc/rfc1321.txt?number=1321
http://doi.acm.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
www.tcs.hut.fi/Studies/T-79.159/2004/slides/L4.pdf
www.tcs.hut.fi/Studies/T-79.159/2004/slides/L4.pdf
http://www.hpl.hp.com/techreports/98/HPL-98-135.html

BIBLIOGRAPHY 81

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM Journal on Computation,
26(5):1484–1509, 1997.

[Sil92] Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Grad-
uate Texts in Mathematics. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, second edition, 1992.

[Sma99] Nigel P. Smart. The discrete logarithm problem on elliptic curves of trace one.
Journal of Cryptology, 12:193–196, 1999.

[Sma09] Nigel P. Smart. Cryptography. an introduction. E-book, January 2009. http:
//www.cs.bris.ac.uk/~nigel/Crypto_Book/.

[SOK00] Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryptosystems based
on pairings. In Proceedings of the 2000 Symposium on Cryptography and
Information Security (SCIS ’00), Okinawa, Japan, 2000.

[Sta00] Standards for Efficient Cryptography Group (SECG). SEC 2: Recommended
Elliptic Curve Domain Parameters, September 2000. http://www.secg.org/
download/aid-386/sec2_final.pdf.

[Tat66] John Tate. Endomorphisms of abelian varieties over finite fields. Invent.
Math., 2:134–144, 1966.

[TF03] Robert Tichy and Clemens Fuchs. Mathematische Grundlagen der Kryptogra-
phie. Lecture Notes, 2003.

[vOW94] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with
application to hash functions and discrete logarithms. In CCS ’94: Proceedings
of the 2nd ACM Conference on Computer and communications security, pages
210–218, New York, NY, USA, 1994. ACM.

[Wag02] David Wagner. A generalized birthday problem. In CRYPTO ’02: Proceed-
ings of the 22nd Annual International Cryptology Conference on Advances in
Cryptology, pages 288–303, London, UK, 2002. Springer-Verlag.

[Was08] Lawrence C. Washington. Elliptic Curves: Number Theory and Cryptography.
Discrete Mathematics and Its Applications. Chapman & Hall/CRC, second
edition, April 2008.

http://www.cs.bris.ac.uk/~nigel/Crypto_Book/
http://www.cs.bris.ac.uk/~nigel/Crypto_Book/
http://www.secg.org/download/aid-386/sec2_final.pdf
http://www.secg.org/download/aid-386/sec2_final.pdf

	Introduction
	Outline of this Thesis

	I Preliminaries
	Introduction to Elliptic Curves
	Basics of Group and Field Theory
	A Short Introduction to Group Theory
	A Brief Glimpse into Field Theory
	Finite Field Arithmetic

	The Affine and the Projective Space
	Relation between Affine and Projective Coordinates

	Algebraic Curves
	Projectively Closed Curves

	Elliptic Curves
	Summation of Points and the Group Laws
	The Discriminant and the j-Invariant
	Simplified Curve Equations
	Mappings between Elliptic Curves
	Alternative Curve Coordinates

	Background on Hash Functions
	Cryptographic Hash Functions
	Floyd's Cycle-Finding Algorithm
	The Idea behind Floyd's Cycle-Finding Algorithm
	Expected Cycle and Tail Lengths
	Concluding Remarks

	Elliptic Curves in Cryptography
	Historical Background
	ECC versus RSA
	Elliptic Curves over Finite Fields
	Elliptic Curves over Binary Finite Fields
	Elliptic Curves over Finite Fields with Characteristic > 3
	The Group Order of Elliptic Curves over Finite Fields

	The Elliptic Curve Discrete Logarithm Problem
	Generic Attacks against the ECDLP

	Choice of Curve Parameters
	Resistance against Generic Attacks
	Weak Elliptic Curves

	State of the Art Attacks on Elliptic Curves
	The Weil Pairing Attack
	The SSSA Attack

	Saving Space through Point Compression and Decompression
	Point Compression and Decompression on Curves over Finite Fields of Characteristics Greater than 3
	Point Compression and Decompression on Non-Supersingular Curves over Binary Finite Fields

	II Hash Functions Based on Elliptic Curves
	The Elliptic Curve Only Hash (ECOH)
	ECOH in Detail
	The Algorithm in Detail
	Implementations of ECOH

	MuHASH
	Properties
	Security
	ECOH's Relation to MuHASH

	New Attacks against Simplified Versions of ECOH
	Torsion Element Attacks
	A Quantum Attack against ECOH's Prehash
	A Timing Attack against ECOH's Point Search

	The Ferguson-Halcrow Second Preimage Attack
	A Memoryless Implementation of the Ferguson-Halcrow Attack
	Adapting Floyd's Cycle-Finding Algorithm to Meet in the Middle Attacks
	Expected Run Time
	Implementation Details

	ECOH2
	The Representation of Elements of the Extension Fields
	Curve Definitions in Detail
	Using the Twist
	A Word on ECOH2's Efficiency

	III Arithmetic Speedups
	Edwards Curves
	Original Edwards Coordinates
	Edwards Coordinates according to Bernstein and Lange
	Birational Equivalence
	The Addition Law

	Twisted Edwards Curves
	Montgomery Curves and Twisted Edwards Curves
	More Curves through Isogenies
	The Addition Law

	Binary Edwards Curves
	Birational Equivalence
	The Addition Law

	Converting Standardized Curves to Twisted Edwards Form
	Arithmetical Performance of Edwards Curves

	Conclusions
	Definitions
	Abbreviations
	Used Symbols

	Source Code
	Bibliography

