
Master's Thesis

Con�gurable User Pro�ling Service and

Simulation of User Behavior in

APOSDLE

Daniel Resanovic

dresanov@sbox.tugraz.at

January 25, 2010

Mentor: Dr. Stefanie Lindstaedt

Knowledge Management Institute (http://www.kmi.tugraz.at)

Graz University of Technology

Abstract: In a dynamical world of IT, adaptivity became one of the most important

features. To enable adaptivity features of a system there has to be an appropriate infras-

tructure. Each component should be able to support and contribute to the adaptivity of

such systems to a certain extent. How to design a system which is highly abstract and

ensures multi purposefulness on the one hand without losing the accuracy of recommen-

dation independent of application domain on the other hand? To overcome this problem

CUMULATE (user model component in Knowledge Tree system) introduced the usage

of intelligent inference agents responsible for updating a speci�c property of a user model

(e.g. motivation or knowledge level). This thesis introduced a similar approach with the

focus not on the property of a user model but on the circumstances under which the

user conducts his/her work. One way to achieve this is to have a number of di�erent

types of inference agents (user pro�le component con�gurations) prepared to work under

di�erent circumstances. These circumstances can be either new systems, domains, dif-

ferent states within the same system or domain, working or behavior patterns etc. If for

any reason the current con�guration is not su�cient we should be able to easily change

it with another con�guration which is more suitable for the given circumstances. The

obvious question at this point would be: how do we know which con�gurations are best

equipped to work under certain circumstances. We have to have some kind of proving

mechanism to answer this question. The proving mechanism this thesis presents is a

simulation framework specially developed for this purposes. The practical part of this

thesis was the implementation of the UPS Prototype 3 together with simulation frame-

work, and the simulation of the user behavior for calibrating the UPS component of the

APOSDLE system. Results of conducted simulations showed that we have to consider

the so called aging factor in our inference algorithms in order to have the best inferring

results. Using this results the number of possible con�gurations in system was reduced

from originally six to just two.

Kurzfassung: In der dynamischen Welt der IT entwickelte sich das Kennzeichen der

Adaptivität zu einem der wichtigsten. Um die Adaptivität eines Systems gewährleisten

zu können, muss eine entsprechende Infrastruktur sichergestellt sein. Jede Komponente

des Systems sollte die Adaptivität zu einem gewissen Grad unterstützen. Wie soll ein

System entworfen werden welches einerseits so weit wie möglich abstrahiert ist und ein

hohes Maÿ an Flexibilität bietet, andererseits jedoch die Genauigkeit der Recommenda-

tion nicht beein�usst? Um dieses Problem lösen zu können, haben andere Systeme wie

CUMULATE (Benutzermodel Komponente im KnowledgeTree System) so genannte in-

telligente Inferenz-Agenten vorgestellt. Diese Agenten waren jeweils für eine Eigenschaft

des Benutzers zuständig (z.B. Motivation oder Wissen des Benutzers). Die vorliegende

Arbeit hat ein ähnliches Konzept verfolgt. Anstatt auf die Eigenschaften des Nutzerpro-

�ls wird der Schwerpunkt auf die Umstände/Situationen in denen die Benutzer/Inenn

arbeiten gesetzt. Eine Möglichkeit wäre die zu Hilfenahme mehrerer Typen von Inferenz-

Agenten (Kon�guration der Benutzerpro�l-Komponente), welche für verschiedene Sit-

uationen vorkon�guriert sind. Unterschiedliche Situationen ergeben sich durch neue

Systeme, neue Domänen, unterschiedliche Domänenzustände sowie neue Arbeits- und

Verhaltensmuster. Sollte die aktuelle Kon�guration aus irgendeinem Grund nicht ausre-

ichend sein, so sollte sie relativ einfach durch eine besser angepasste Kon�guration ausge-

tauscht werden können. Das Problem dabei ist allerdings, dass nicht bekannt ist, welche

Kon�guration für die aktuelle Situation die passendste ist. Es muss demnach ein Über-

prüfungsmechanismus gefunden werden, welcher sich um diese Problematik kümmert.

Dieser Mechanismus wird als Simulation Framework in dieser Masterarbeit vorgestellt.

Den praktischen Teil dieser Masterarbeit stellt die Implementation des UPS Prototype

3 und des Simulation Framework dar, und darauf aufbauend die Simulationen von Be-

nutzerverhaltenweisen um die UPS Komponente des APOSDLE-Systems kalibrieren zu

können. Die Simulationen zeigen eindeutig, dass jene Algorithmen, welche den sogenan-

nten Aging Faktor berücksichtigen, die besten Ergebnisse erzielen. Mit dieser Erkenntnis

wurde die Anzahl der möglichen Kon�gurationen im System von ursprünglich sechs auf

letztendlich zwei reduziert.

3

Acknowledgments

I am indebted to a number of people for their support during the research, implementation

and writing of my master's thesis.

I would particularly like to thank to:

All APOSDLE team for making a great job on the APOSDLE project.

Special thanks to the User Pro�ling Service (UPS) team (Günter Beham, Mag. Bar-

bara Kump, DI Christin Seifert) who helped making the UPS Prototype 3 one of the

riches (regarding functionalities) and reliable components in the whole APOSDLE system

Günter Beham, the leader of the work package 04 which included UPS, for supporting

me throughout the whole process, from design and architecture, over implementation

and testing to evaluation of the UPS component. His experience from UPS Prototype 2

helped improving the quality of the UPS regarding functionalities, security, stability and

robustness.

Mag. Barbara Kump, for non-technical perspective which enhanced our vision of the

UPS. She was also the conceptual creator of the Knowledge Indicating Event approach,

which was one of the driving forces for the design of the UPS Prototype 3.

DI Christin Seifert, who came latter into project but provided terri�c job in testing

and documenting the code. She was also in charged into visualization of the user pro-

�le information with so called Experiences. This is the client component based on the

treemap visualization method.

Dr. Stefanie Lindstaedt, my mentor for the master's thesis and also scienti�c coor-

dinator for the APOSDLE project, for giving me opportunity to work on this exciting

project, and guiding me through my master's thesis.

I hereby certify that the work presented in this thesis is my own and that work

performed by others is appropriately cited

4

Contents

1 Introduction 9

1.1 Motivation . 9

1.2 Goals . 10

1.3 Results . 11

1.4 Structure and relationship between chapters (Organization of the work) . 11

2 User Modeling/Pro�ling 14

2.1 Stereotype Based Modeling . 15

2.2 Feature Based Modeling . 16

2.3 Overlay Model . 17

2.4 Bayesian Networks . 18

2.5 User Pro�le . 19

2.6 Acquisition Techniques . 20

2.6.1 Active or passive participation of user 21

2.6.2 Direct or indirect acquisition . 21

2.6.3 Automatic or user initialized acquisition 21

2.6.4 Explicit or implicit user feedback 21

2.6.5 Logic or probabilistic techniques 21

2.6.6 Online or o�ine acquisition techniques 22

2.7 Conclusion . 22

3 User Model based Systems (State of the Art) 23

3.1 DOPPELGÄNGER (1993) . 23

3.2 UMT (1994) . 24

3.3 TAGUS (1994) . 25

3.4 PROTUM (1995) . 25

3.5 BGP-MS (1995/1998) . 26

3.6 ELM-ART(2001) . 26

5

3.7 Knowledge Tree (2004) . 28

3.7.1 CUMULATE . 30

3.8 AHA! System(2000/2007) . 31

3.9 Conclusion . 32

4 Simulation 35

4.1 The Simulation Process . 35

4.1.1 De�ne/Formulate the Problem Space 37

4.1.2 Setting of objectives and overall project plan 37

4.1.3 Model conceptualization . 38

4.1.4 Data collection . 38

4.1.5 Construct Software Model (Model translation) 38

4.1.6 Verify, Validate and Accredit the Model 39

4.1.7 Design Experiments . 39

4.1.8 Execute Simulation . 40

4.1.9 Collect Output Data . 40

4.1.10 Analyze Data . 40

4.1.11 Documentation and Reporting . 40

4.1.12 Expand Model . 40

4.2 Simulation Tool-kits and Languages . 41

5 Con�gurability of UPS 44

5.1 Challenges . 44

5.1.1 APOSDLE System challenges . 45

5.1.2 Challenges for Con�gurability . 47

5.2 KIE (Knowledge Indicating Event) Approach 48

5.3 Chain Models (Mappings) . 49

5.4 Algorithms . 51

5.4.1 FREQUENCY . 53

5.4.2 WEIGHTING . 53

5.4.3 EVENT_WEIGHTING . 53

5.4.4 RECENT_NUMBER_OF_EXECUTIONS Algorithms 55

5.5 Examples of Con�guration . 56

6 Simulation results 58

6.1 Simulation steps . 59

6

6.2 Simulations with APOSDLE P3 User Pro�le Service 62

6.2.1 Di�erences in detecting the knowledge level between the percentage

of �normative behaviors� . 63

6.2.2 How many steps do algorithms need to converge to the right level . 64

6.2.3 Are there di�erences in detecting the right level within a sequence

by changing the level and how long does it take for di�erent con-

�gurations (algorithm plus chain model) to detect modi�cations in

the user level . 65

6.2.4 Di�erence between chain models in respect to inferring results . . . 65

6.2.5 Which algorithm shows the best results for the given chain model . 67

6.3 Conclusion . 68

7 APOSDLE technical view 70

7.1 Client Side Components . 70

7.2 User Pro�le Service (UPS) . 72

7.3 Retrieval Service (RS) . 72

7.4 Cooperation Service (CS) . 72

7.5 Knowledge Resources and Model Repository (KRMR) 72

8 Architecture and Components of UPS from Con�gurability perspective 74

8.1 UPS Services . 75

8.2 Data Model . 76

8.3 User Manager . 78

8.4 Event Chain Manager . 78

8.5 Inference Manager . 78

8.6 Data Flow . 79

8.7 Conclusion . 80

9 Simulation framework 81

9.1 Simulation framework design . 81

9.1.1 Input Handling . 81

9.1.2 Event (Pool) Creator . 83

9.1.3 Simulation Commands . 84

9.1.4 Writer . 84

9.2 Data Flow . 85

9.2.1 Initialization . 85

9.2.2 Event Pool Creation . 85

7

9.2.3 Simulation . 85

9.3 Evaluation Component . 85

9.4 Conclusion . 86

10 Outlook and Future Work 88

8

1 Introduction

Due to the increase of information growth as well as the information need, personalization

of software became one of the most important topics in recent years. Information has

to be tailored/adapted to each individual user. One di�erentiates between adaptive and

non adaptive systems, where adaptive systems are systems which are able to respond to

personalized needs of each user. We distinguish between Adaptive Hypermedia Systems,

Recommender Systems etc...

It is not just the information growth that causes the need for adaptivity. Computer

systems are not easy to learn and once learned it could be easily forgotten. The number

of computer systems the individual is exposed to, grows continuously and without adap-

tivity it would be very hard to keep pace with this development. Even the applications

from the same vendor tend to change signi�cantly over time. They are getting new fea-

tures which need to be learned. There are di�erent levels of adaptivity but all have the

same goal, to make it easier for a user to work with such systems.

1.1 Motivation

As mentioned there are di�erent levels of adaptivity. Brusilovsky [10] distinguished two

di�erent levels of hypermedia adaptation:

• Adaptive presentation (at content-level)

• Adaptive navigation support (at link-level)

Koch [22] extends these levels with one more, namely adaptation at presentation level.

The adaptation of the layout which does not a�ect the content but rather colors, fonts

etc. The �rst two are more content-based and the third classi�cation relies more on pre-

sentation e.g. how to present the information in a way that user �nds it very comfortable

to work with. Regardless of which level of adaptivity is chosen, there has to be a com-

ponent which is in charge for the adaptivity capabilities of a system. This component is

in many cases based on user model. This makes the user modeling and maintenance of

user models some of the most important features in such systems.

9

User Model tries to provide a model of the user which covers his preferences and needs.

Adaptive systems are using this model to make assumptions about the user and to adapt

themselves based upon these assumptions [41]. There are numerous application �elds for

such adaptive systems. Some of them are:

• In E-Commerce personalization is one of the most important tools for customer

loyalty. Amazon.com1 is one example of such personalization. For each purchased

item the Amazon gives the recommendation for similar products (�The users which

bought this item, bought also the following items as well ...�). Only with user

modeling is possible to recommend such user speci�c products.

• E-Learning is another �eld where the user personalization is very important factor.

In such systems it is crucial to consider previous knowledge of the user (learner) in

order to provide the right learning content.

There is a number of questions we have to answer when implementing user modeling

based systems. What kind of a system do we want to have? What kind of adaptivity

we would like our system to support? What is the domain or scope of our system? How

to have a generic system and still preserve the high quality of adaption? How do we get

the information relevant for adaptivity? Can we use our system in other domains as well

etc?

These are just some of the questions we need to answer before we begin implementing

such systems. Even when the system is �nished we have many open questions like:

are our presumption about user correct, or are our inference tools precise enough etc.

Therefore the evaluation of adaptivity is very important in such systems. There are no

guidelines which give the answers to all these questions. Thus we have to �nd out the

way to prove the correctness of our system.

1.2 Goals

The main goals of this thesis are to �nd a new �exible approach in designing and imple-

menting a user pro�ling component, and a way to prove the correctness of this approach

by conducting simulations on the inference mechanism of the user pro�ling component.

How to design a system which is highly abstract and ensures multi purposefulness on

the one hand without losing the accuracy of recommendation independent of application

domain on the other hand? One way to achieve this is to have a number of di�erent

1Amazon.com:http://www.amazon.com

10

types of inference agents (user pro�le component con�gurations) prepared to work un-

der di�erent circumstances. These circumstances can be either new system, domains,

di�erent states within the same system or domain, working or behavior patterns etc.

If for any reason the current con�guration is not su�cient we should be able to easily

change it with another con�guration which is more suitable for the given circumstances.

The obvious question at this point would be: how do we know which con�gurations are

best equipped to work under certain circumstances? Well, we have to have some kind of

proving mechanism to answer this question. The proving mechanism this theses presents

is a simulation framework specially developed for this purposes. This framework tries to

provide the system with real usage data. The intention is to use simulation of the user

behavior to determine which con�gurations are best suitable for the given circumstances.

As a result of such simulations within APOSDLE2 system (see chapter 7), certain con-

�gurations should stand out and be candidates for the �nal version of APOSDLE.

1.3 Results

The main results of this work are the infrastructure which supports the con�gurability as

a new approach in solving the �exibility issue, and the simulation framework. After ap-

plying the con�gurability approach, we conducted a series of simulations (benchmarking

between the di�erent con�gurations) to narrow down the number of possible con�gura-

tions in the system. These con�gurations were the candidates for the �nal version of

the APOSDLE. The results of these simulations showed that we have to consider the

knowledge aging factor when implementing the inferring algorithms. Aging factor in this

case means the number of user actions used for the inferring purposes. Not just that

simulation showed that such algorithms are having better performance but also provided

the number of the actions which should be taken into account. At the end we were able

to narrow down the number of the possible con�gurations from original six to just two.

1.4 Structure and relationship between chapters

(Organization of the work)

To achieve all de�ned goals, this work is divided into four major parts which are further-

more divided into chapters. The overall structure with associated chapters is shown in

(see Figure 1.1).

2APOSDLE system is the adaptive system relevant for this master theses. This system contains user
pro�ling service which is practical part of this theses. http://www.APOSDLE.tugraz.at/

11

Figure 1.1: Structure of this Master Thesis

The �rst part is the theory overview and is divided into three chapters. Chapter

one is dedicated to an overview over methods and techniques in user modeling. The

most popular and used techniques for the user modeling will be explained and partially

compared with each other, in order to justify our decision for the user modeling technique

used in APOSDLE. The second chapter will give us the overview over the state of the art

user model based systems over the past 15 years. The idea is to recognize the developing

trends, to identify some of the biggest challenges in such systems and to provide a relation

to the APOSDLE system. This chapter can be seen as related work as well. The third

and last chapter of the �rst part is theoretical overview over simulation process. The

user simulation is performed as a part of evaluation process (see chapter 6).

The second part is de�ning a concept of con�gurable and �exible approach as an

answer to the challenges described in the previous chapters. One of the major problems

in adapting systems is the incapability to satisfy the accuracy of recommendation on one

side and the portability to other domains on the other side. Usually these systems are

made for one domain and are not capable of being transported to on another domain (see

Chapter 3). Even when made for one domain it is very hard to prove the correctness

of inference algorithm3 in development phase. Usually there has to be some kind of

3Note that inference/inferencing algorithm is perhaps not the correct expression. Someone may argue

12

feedback from the user side, or analysis of an usage data in order to improve or con�rm

the correctness of present algorithms. At this point it is very expensive to introduce the

changes into the system. To reduce these reimplementation/reintegration costs we could

have several pre-con�gured inference agents waiting to be activated if necessary. This

concept is described in chapter Con�gurability of UPS (see chapter 5).

Third part is dedicated to a proof of concept. As mentioned it is hardly possible to

con�rm correctness of inference process in development phase, therefore we have to wait

for the �real data� to be available in order to perform analysis and evaluation. Usually the

result of such analysis has to be reintegrated in system. This can be very expensive. With

the con�gurable approach it is possible to have more than one solution/con�guration

already in system. When the real data are available all it is necessary is to activate the

right solution instead of implementing a new from scratch. Simulation of user behavior

provides us with such �real data� and can be helpful in reducing the number of possible

con�gurations in system. At the same time it proves the reasonability of this approach

by working with di�erent user pro�le con�gurations.

The fourth and last part is the technical part describing the general architecture of

the APOSDLE system (see chapter 7), design and implementation of the user pro�ling

service in APOSDLE from con�gurability perspective (see chapter 8) and the simulation

framework (see chapter 9). Therein are all relevant technical information starting with

which programming language is used, over which framework is used up to some detailed

development information.

that it is more heuristic than inference/inferencing but I'm using the inference/inferencing because
it is one of the important parts of the inference/inferencing process and therefore the name of the
algorithms should somehow incorporate their role in this process.

13

2 User Modeling/Pro�ling

A user model is representation of user knowledge and preferences which system believes

that user possesses. This information is used to provide adaptivity either by intervention

or by co-operative agreement with a user. The information in user model needs to be

accurate and actual in order for a system to provide the appropriate adaption [41].

User model consists of static data (long term data) such as birthday, favorite color etc.,

and dynamic data (short term data), data which are often changed such as user needs,

goals, interests etc[19].

Since 1996 adaptive systems are increasing the types of information they are using as

basis for their decisions. All these information are saved in user model, (for example goals,

knowledge, preferences, user interest, individual character traits)[3, 6]. Over the years

more information types are added to user models. The most important are the usage

data and usage environment. With these numerous information types it was possible to

create more accurate adaptive systems, which ware able to adapt them self to individual

needs of users [39].

The knowledge represented in the user model could be acquired either implicitly by

inferring about user or explicitly elicited from the user. The explicit knowledge may be

acquired with some co-operative behavior such as �lling the questionnaire, or from previ-

ously stored information about the user. On the other hand the implicit knowledge about

the user is acquired by making the inferences about users based on their interactions with

the system [42].

One of the major challenges in user modeling is so called Cold Start or Ramp Up

problem[12, 23]. The problem is in absence of information about the user in the early

phase of user life cycle in the system (initialization phase). This makes the system

incapable for adaptation and retrieval of personalized content, and it is speci�c for rec-

ommender systems [12].To overcome this problem, recommender systems have special

�ltering technique for information �ltering [12].

• Explicit, direct user questionnaire (see sub chapter2.6)

• Initial tests of user knowledge and cognition styles [51]

14

• Stereotype Based Modeling

Main goal of recommender systems is to recommend certain items (books, music, videos,

websites etc.) which are from special interest to a user. For example Amazon.com 1

recommends di�erent commodities to purchase based on their interests (books, Cd's,

DVDs), YouTube 2 recommends the videos etc.

Recommender systems compare the user pro�le with di�erent reference characteristics

in order to �nd the best match. There are two di�erent types of �ltering.

• Content based �ltering [45] compares the characteristics from user pro�le with the

one from items.

• Collaborative �ltering [26]compares the user pro�le with the social environment of

the user and tries to �nd out which items are at most interest for the users from

his social surrounding. This could be a group of users with similar interests

There are several approaches/techniques in user modeling. The most prominent are

stereotyping(see sub chapter 2.1), feature based modeling(see sub chapter 2.2)(overlay

model as special case of feature based modeling) and Bayesian networks (see sub chapter

2.4). The following sub chapters are describing these in detail as well as the di�erence

between terms user model and user pro�le. At the end of this chapter some acquisition

techniques (see sub chapter 2.6) are described.

2.1 Stereotype Based Modeling

Stereotype based modeling is one the oldest techniques used for user modeling [8]. The

notation of user stereotypes derives from the work of Elaine Rich[47]. She introduced this

approach in GRUNDY system and it is used since in numerous adaptive systems [37].

Stereotype could be de�ned as structured collection of characteristics or traits, stored as

facets mapped to a value, and optionally a con�dence-level. Some of the characteristics

are triggers which have the potential of �ring stereotypes or switching between them.

They can be used to �Provide a way of forming plausible inferences about yet unseen

things on the basis of things that have been observed � [48].

In stereotype based modeling the information acquired during acquisition phase (see

sub chapter 2.6) are mapped to adequate stereotype [8]. That means that most appropri-

ate stereotype should be �nd with best description of the user. The missing information

1Amazon.com: http://www.amazon.com
2YouTube: http://www.youtube.com

15

are replaced with the information from the stereotype so long until the new information

are acquired (see sub chapter 2.6). Users modeled by stereotype are hierarchically rep-

resented in a variety of dimensions and characteristics. At the top of the hierarchy is

�(any) person� stereotype which de�nes characteristics relevant to all users in the hier-

archy. The stereotypes lower in the hierarchy may inherit the characteristics from the

stereotypes above. The problem may occur if the number of stereotypes from which is

inherited is big and some of the inherited characteristics are in con�icted state. There

has to be set of pre-de�ned rules to resolve these con�icts. This is specially the case with

the stereotypes placed on the lower level in the hierarchy.

To maintain the adaptivity of the system, user model has to be actual, which means

that the changes of the user model have to be continuously evaluated. Based on the

trigger this can result in changing of the stereotype assigned to the user.

Although the stereotype based modeling technique for user modeling is one good ap-

proach (specially for solving the Cold Start) and it was used in many user model based

systems, the feature based modeling technique has recently become dominant technique

in user modeling based systems. The next sub chapter describes this technique.

2.2 Feature Based Modeling

As mentioned above (see sub chapter 2.1) feature based modeling has become dominant

user modeling technique [8]. Feature based modeling models the user information such

as knowledge, interests, goals etc. as so called features. During the interaction with

the system these features are continuously changing. For example in E-Learning sys-

tems user may forget something (knowledge aging) or can learn some new things. The

important thing is to keep the user model actual. Therefore main task of the feature

based modeling systems is to monitor user's attributes and to update them if neces-

sary. There are numerous feature types which can be modeled. Some of the most used

ones are (a)user knowledge, interests, goals and tasks, (b)background experiences and

(c)individual characteristics such as learning style, cognitive factors etc.

User knowledge as attribute tries to model the knowledge of the user over a particular

domain. This is especially important by e-learning systems [8]. The knowledge is very

dynamic and changeable attribute and has to be continuously monitored and updated.

During the interaction with the system, user can easily forget or learn new things. This

has to be appropriately represented in user model.

Over the last 10 years user interests became very important in adaptive systems.

Modeling this aspect of user was not so important in early days of user modeling, instead

16

only learning goals ware modeled. At the moment the importance of user interests

modeling surpass, in some cases, the importance of user knowledge modeling [8]. This

is primarily the case in systems with the high information density such as encyclopedia,

web kiosks, news systems etc.

Goals and tasks as attributes are trying to give a answer on question what the user

tries to achieve. These attributes are representing the purpose of user interaction with

the adaptive system. Depending on the type of system the goal can be learning goal

(e-learning systems), to satisfy information need (search engines) or particular working

goal [8, 53].

Background and user experiences attributes model the background information and

user experiences which are out of primarily knowledge domain. Therefore it is very similar

to user knowledge modeling with the di�erence (as just stated) that the knowledge which

is modeled is not part of primarily knowledge domain [8].

Individual characteristics attribute tries to model the individual user characteristics.

Such characteristics are: personal attributes like if the person is extrovert or introvert,

which learn style the user has etc. [8].

The individual characteristics, user experience and background are relatively stable

information. They change either rarely or not at all. For this reason they belong to

statical data. The rest are dynamical data. For APOSDLE system and specially for user

pro�ling service (UPS see chapter 7.2) the dynamical data are of more interest. UPS

works almost exclusively with dynamical data to maintain the user pro�le.

2.3 Overlay Model

Overlay models are very good for Intelligent Tutoring Systems (ITS) [41]. The knowledge

of the student (user) is represented as a subset of the knowledge which is overlaid on the

expert's knowledge of the domain. The knowledge which is present in expert model and

the user do not have it, stands out. The one present in user model is stored as estimation

by the overlay model.

In the early day's of overlay model, information contained in the user model, and

was related to expert knowledge, were saved in simpli�ed form as yes or no (Boolean).

The modern overlay models di�erentiate between the qualitative (god-average-poor) or

quantitative measure (probability that user is familiar with particular concept). The

problem with this approach is that the state of the user knowledge is never an exact

subset of expert knowledge. User may have di�erent perception of the domain as the

experts. There are some attempts to overcome this problem. Perturbation model [33]

17

tries to model this perception which is outside of the expert's view of the domain. To

model user misconceptions, Buggy model [13] and Mal rules [31] may be used. The value

of overlay models is often questioned and criticized[56, 50] but there are others [4]such as

Brusilovsky which thinks that overlay models are powerful and �exible as they measure

independently knowledge of the user on di�erent topics.

As we have seen above the most commonly used modeling approaches are stereotype

and feature based. Overlay model is derived from feature based model and is of special

interest for this thesis because the APOSDLE system use this modeling approach to

model the knowledge of the users (see chapter 5).

2.4 Bayesian Networks

In the last decade numerical techniques have become very popular for modeling user's

knowledge, goals and identifying the best action to be taken under uncertainty [22].

Bayesian network is one of these approaches.

A Bayesian network is a directed, acyclic graph. The nodes in graph correspond to

user properties and the edges to probabilistic in�uence relationships [1]. These properties

may be as well domain knowledge, background-knowledge and/or cognitive model. Each

node in graph represents the system's assumption about the possible values of the user

properties.

For example if there are two events which could cause a person to be tired, either work

or sport. And if the work has direct e�ect on the fact are we performing sport activity

or not (if somebody work he cannot do sport). This situation can be modeled with the

adjacent Bayesian network. All three variables have two possible values, true or false.

The names of variables are:

T- Person is tired

S- Sport activities

W-Work activities

Probability function looks like this.

P(T,S,W)=P(T|S,W)P(S|W)P(W)

Otherwise formulated we can say �What is the probability that the person has worked,

given the fact that he/she is tired�. A simple example is shown in picture (see Figure

2.1)

The next sub chapter tries to explain the di�erence of the user model and user pro�le.

Although this di�erence is not of great importance for APOSDLE systems it is necessary

to understand that these two terms are not the same.

18

Figure 2.1: Bayesian network

2.5 User Pro�le

User pro�le is often used as synonym for the user model. Sometimes they are distin-

guished to show that user pro�le is simpli�ed version of user model. Both can be used to

represent user's cognitive skills, intellectual abilities, learning styles or preferences etc.

One good way to show the relation between the user model and user pro�le is to take

a look into ITS3. There are three types of user knowledge which may be contained in

user model (see Figure 2.2)[41].

• Student model

• Psychological model

• User pro�le

Student models are explicit representations of a state of knowledge of a speci�c domain

and are directly created from the domain model. Domain independent data are either

psychological or pro�le data. Psychological data deals with cognitive traits and are stored

in psychological model. There are numerous experimental evidence that the quality of

user's interaction with the system depends on their cognitive skills and personality traits

[55, 24, 29]. Data concerning interests, background and general knowledge of user is

stored into user pro�le component. Both psychological and pro�le components needs to

be represented explicitly by using some modeling software [41].
3Intelligent Tutoring System's

19

Figure 2.2: Components of a user model [41]

It is important to know that although there is a di�erence between user model and

user pro�le, in APOSDLE system this di�erence is of no relevance. These two terms are

used as synonyms. The user model in APOSDLE contains student model component

and the user pro�le component or better said the mixture between those two, and it is

simply called user pro�le.

2.6 Acquisition Techniques

There are numerous techniques for acquisition of information about the user. These

techniques can be characterized over di�erent dimensions. The following points are de-

scribing these di�erent dimensions. Di�erent acquisition techniques are placed within

these dimensions. Often comes to overlapping and therefore it is very hard to draw the

clear line between them. Di�erent dimensions should be seen as di�erent points of view

on di�erent acquisition techniques and not as boundaries for them.

Acquisition techniques can be characterized over several orthogonal dimensions [22]:

1. Active or passive participation of user

2. Direct or indirect acquisition

3. Automatic or user initialized acquisition

4. Explicit or implicit user feedback

5. Logic or probabilistic techniques

6. Online or o�ine acquisition techniques

20

2.6.1 Active or passive participation of user

By the active user participation system interacts directly with the user (web interface...).

By passive techniques the user information are not acquired through direct user interac-

tion but over inferencing based on user observation. For example the user information

can be gathered trough analyzes of HTTP log �les, user behavior such as clicks on web

sites etc.

2.6.2 Direct or indirect acquisition

By direct acquisition, system collects user data directly from the user feedback. This

can happen through questionnaire �lled by the user. The questionnaire should be small

as possible. If the questionnaire is to long and/or to complex the users may loss their

interest for it. Direct acquisition techniques overlap with active user participation.

2.6.3 Automatic or user initialized acquisition

By automatic acquisition, adaptive systems initialize gathering of the user information.

User has no in�uence on this process and has no idea if and when he is observed by the

system. Otherwise if the acquisition is initialized from the user and if he can actively

participate on building his user pro�le than we speak about user initialized acquisition.

In this case user knows how to in�uence the user pro�le. This technique overlaps with

the active user participation technique. Both use direct user-system interaction with the

di�erence that in user initialize acquisition technique the user model is changed actively

and knowingly, and by direct participation technique user can change its user model

indirectly with his/hers behavior change.

2.6.4 Explicit or implicit user feedback

Explicit user feedback means the conscious and intentional information supply by user.

On the other hand by implicit user feedback are the information about user gathered

based on inconspicuous observation of the user behavior.

2.6.5 Logic or probabilistic techniques

Probabilistic techniques have to be able to deal with uncertainty factor of information

in user model. Bayesian networks are able to deal with this type of the user information

[17]. On the other hand the overlay model is a good example for a result from logical

acquisition technique.

21

2.6.6 Online or o�ine acquisition techniques

In online acquisition techniques the user data are directly gathered from active usage

of system by the user. An o�ine acquisition techniques gathers user information from

processing of special data bases (for example customer data base).

2.7 Conclusion

One of the �rst challenges in adaptive systems is the choice of right user modeling tech-

nique. Therefore this chapter gave us a short overview over the most popular and used

user modeling techniques such as stereotype, feature based and Bayesian networks. Some

advantages and disadvantages of these user modeling techniques are presented. Stereo-

types are very good in handling initialization of user models so called Cold Start problem.

On the other hand the feature based user modeling is very powerful in representing user

knowledge in system. It is also the dominant modeling technique in the recent years.

The Bayesian networks are very good if we have to deal with probabilistic data. Which

one of these modeling techniques to choose is very important and complex issue? The

decision is based on the nature of the system and domain in which system has to operate.

Sometimes certain forms of hybrid approaches are good solutions (for example stereo-

typing and feature based) and sometimes just partial aspects of modeling techniques are

enough to satisfy the needs of adaptive systems (for example just student model and not

all three see �gure 2.2). Sometimes is the choice of the proper modeling technique made

indirectly by the choice of the acquisition techniques used in system and vice verse. As we

have seen (see sub chapter 2.6) above there are di�erent acquisition techniques available.

This is the next big challenge in adaptive systems. How well is the user-system interac-

tion or how much does the system wants to molest user with the user feedback? These

are the important questions for making the right decision about the correct acquisition

techniques.

22

3 User Model based Systems (State of

the Art)

There is a great number of user model based adaptive systems. The user modeling

component are more as sub systems to be seen, that are integrated into system and

provide basis for the system adaptivity.

This chapter is dedicated in providing an overview over the �trend setters� among user

modeling systems over the past 15 years. It is out of scope of this thesis to describe all of

the systems present on the market. The idea is to try to identify the development trends

in such systems as well as the shared challenges which they all are confronted with. This

chapter should also provide an analysis of these systems (to prepare a background) in

order to be able to place APOSDLE system among them. The newest systems such

as KnowledgeTree or AHA! are described more detailed because of their relevance for

APOSDLE system. Others such as UMT, TAGUS or PROTUM are just super�cially

described in the points which are relevant for the development trends.

3.1 DOPPELGÄNGER (1993)

DOPPELGÄNGER is a User Modeling System design to be able to detect patterns

over actions made by users. The main goal of developing this system was to investigate

in�uence of the Machine Learning algorithms on user modeling systems[28]. The system

was originally developed to support personalization of daily newspaper.

Figure 3.1: The Architecture of the DOPPELGÄNGER[27]

23

DOPPELGÄNGER's architecture consist of two levels(see �gure 3.1). The �rst one

are the sensors which provides the system with the user related information. The second

level is the server which collects the information from the sensors, make the inferring

and place these inferred information at the disposal of external applications. Sensors

can be seen as the specialized unit implementing speci�c techniques for the information

extraction from user activities (e.g. sensor for collecting data about duration of the

computer use).

User model developers are using machine learning algorithms in order to generalize

sensor data. So made user models were accessible to the users for the inspection and

adjustment of their own models[35].

Another interesting feature of this system is the support of data exchange when many

DOPPELGÄNGER systems are running simultaneously. The data which are exchanged

are the user speci�c data or the data from a community e.g. teachers, students etc. A

user can belong to di�erent communities at the same time. Communities represent the

average of their member traits.

3.2 UMT (1994)

UMT1 is a stereotype based user modeling system. The user characteristics in stereotype

are de�ned as attribute-value pairs. The stereotypes can be formed in any hierarchical

order with inheritance capabilities. Each stereotype has a triggering condition, which

de�nes when a certain stereotype should/can be applied to a certain user. Moreover

UMT supports rule interpreter which regulates the contradictory inferencing [14].

The assertions made by system are saved/considered as premise or as retractable as-

sumptions (depending on reliableness). Stereotypes which ful�ll the activation condition

add new assumptions to user model. After each change of user model the inference ruling

mechanism infer over premises and assumptions and record the inferential dependencies

[34].

Through comparing possible stereotypes with user preferences the appropriate user

model will be selected. Presumptions made by UMT have more weight as one coming

from stereotype. All calculation steps from all possible stereotypes are saved, which

leaves the possibility to re-evaluate them in order to �nd new user models [34].

1UMT-User Modeling Tool

24

3.3 TAGUS (1994)

TAGUS was primarily developed to support two goals (a) as a framework to represent

models of users where meta-cognitive activities of an user were taken into account, and

(b) to capture some general mechanisms and techniques for user modeling in the form of

services[49].

Basic idea of TAGUS is to achieve some kind of workbench where some techniques of

user modeling are implemented and applied. It has a set of services which can be used

by persons to test methods or by applications using user models. TAGUS plays a role of

user model server.

The architecture of TAGUS is composed of[49]:

• User or Learner model (ULM)

• Maintenance functions

• Acquisition engine

• Reason maintenance system

• Meta-reasoner

• Two interfaces

The assumptions about the user are represented in �rst-order formulas with meta-operators

expressing the assumption types[36]. The system supports the stereotype hierarchy and

contains an inference mechanism, a truth maintenance system and diagnostic subsystem.

It also supports the user simulations and diagnosis of unexpected user behavior.

3.4 PROTUM (1995)

PROTUM the Prolog based Tool for User Modeling. As stated it is a system based on

the Prolog programming language. PROTUM supports the management of stereotype

hierarchies (support for multiple inheritances), a system based or prede�ned rules for

resolution of contradictions speci�c for multiple inheritance and the multiple activation

of stereotypes. For each stereotype the systems calculates the activation rate in order to

make assumption about the user or to resolve con�icts between inferred stereotypes. In

resolving the con�icts PROTUM uses further inferences on the recorded activation rate

of stereotypes [34].

25

Figure 3.2: BGP-MS User Modeling System [32]

User model in PROTUM is represented as a list of constants where each constant has

a type and con�dence factor. It is similar to UMT but with better stereotype retraction

system [38].

3.5 BGP-MS (1995/1998)

BGP-MS is customizable, application independent system which is able to operate with

other systems [38]. It is composed of several units/components with di�erent respon-

sibilities (for example: activation or deactivation of assigned stereotype is one such re-

sponsibility). In order to use this system in a speci�c application domain, appropriate

components need to be selected and �lled with the domain speci�c modeling knowledge.

BGP-MS includes mechanism for the knowledge representation of its assumption about

the user, the domain knowledge of the user and general knowledge of the application

domain. In Figure 3.2 is shown how the four core units of BGP-MS can communicate

with other applications over Functional Interface.

Representation System is the core unit in charge of creating stereotypes and individual

user models. The information in Representation System can be adapted if needed by user

model developer through the Graphical Interface.

3.6 ELM-ART(2001)

ELM-ART is an intelligent interactive educational system created to support learning

programming in LISP and as an answer to lack of versatility by actual adaptive and

intelligent Web-based educational systems (AIWBES). This absence of versatility made

26

them less competitive with course-ware management systems (CMS)[25].

The modern CMS are able to support almost any function of a teacher in the class-

room. The teachers could provide a hyperlinked course material, programming examples,

quizzes and programming problems to solve. Although completely static it was able to

support most of teacher's needs within one single system. Due the advantage of adaptive

and intelligent technologies the AIWBES systems were better in performing particular

functionalists, but didn't have integrated support for all of them. Therefore versatility

was the major driving force in developing the ELM-ART system[25].

ELM-ART provides online learning material in the form of adaptive interactive text-

book. The user model is a combination of an overlay model and an episodic student

model. ELM-ART uses the user model to provide navigation support, course sequenc-

ing, individualized diagnosis of the student solutions and example-based problem-solving

support[25].

The �rst version of ELM-ART was �nished in 1996 and was continuously developed

and enriched with new features and functionalities over the coming 5 years. One of the

�rst task was to make the system online capable. For that, it was necessary to transform

all materials into web compatible form. This was done by dividing the content into small

subsections and text pages that are associated with concepts to be learned[25]. These

concepts were interlinked to build a conceptual network. The following version of ELM-

ART added exercises and tests to the system. By processing the results of these tests

the system was able to assess the student's knowledge more carefully. The next version

added the multi-layered overlay model. The users were able to declare knowledge units

as already known. The system was able to hold not just information that was manually

changed by student but also the original state. The students were than able to switch

back to original state whenever they wanted without any loss of information[25]. Latest

version of the ELM-ART was the basis for the new authoring system NetCoach. With

this version the authors were able to create fully adaptive and interactive courses without

having to posses any programming skills.

All these upgrades made the ELM-ART intelligent. It can provide several kinds of

support usually reserved for the human teachers. The most important features of the

system are intelligent problem solving support and intelligent reminder selection. These

features are product of a years of research and made ELM-ART unique among other

educational systems in the area of programming[25]. Of course there are others intelli-

gent features in this system like capability to build the most relevant learning path for a

learner or to determine what the next best learning activity is. The system periodically

challenge the learner with a questions that are adapted to the learner's current level of

27

knowledge[25]. The learners are also able to edit their own �learning models� which im-

plicitly changes the navigation structure, sequence of examples and other personalization

made by system.

3.7 Knowledge Tree (2004)

KnowledgeTree system is more an architecture for adaptive E-Learning based on dis-

tributed intelligent learning activities. The goal is to introduce and use powerful but

underused technologies in intelligent tutoring and adaptive hypermedia[7].

Learning management systems (LMS) are dominating on the technology landscape of

modern E-Learning. These are powerful integrated systems which supports the variety of

activities performed by teachers and student in E-Learning process. LMS o�er so-called

�one size �ts all� service, which means that all learners get the same material regardless

of their knowledge, goals or interests. The personalization is not present in such systems

[7].

KnowledgeTree is a result of almost 8 years of research on adaptive E-Learning, and ef-

forts against the �one size �ts all� approach. It tries to introduce some impressive research

results [5] which shows that for every function of LMS there is a number of adaptive web

based educational systems (AWBES) which can perform much better. Although these

systems exist for over ten years, just a handful of them are actually used for the teaching

purposes. The major problem of these systems is not their performance but their archi-

tectural constraints. Even though they show impressive results in their function domains,

it is very hard if not impossible to integrate them. To cover the needs of Web-enhanced

education with AWBES, teacher would need a variety of di�erent AWBES [7].

After exploring several approaches of the component based architecture, the Knowl-

edgeTree was developed. KnowledgeTree is basically a distributed architecture based on

re-use of intelligent educational activities [7]. This architecture assumes the usage of at

least four types of servers (see �gure 3.3):

• Activity server

• Value-adding server

• Learning portals

• Student model

These servers represent the interests of three main stakeholders in E-Learning process:

content providers, course providers and learners [7].

28

Figure 3.3: Main components of the KnowledgeTree distributed architecture [7]

Learning portal represents the needs of the course providers such as universities or com-

panies. It provides a single-login point for the students to work with di�erent learning

tools and content relevant for their curses. It also allows the teachers to access the di�er-

ent content relevant for their courses and to structure them in the way they think is the

best for the current leaning purposes. The main di�erence to the LMS is an architectural

separation of the course structure and the reusable content elements [7]. KnowledgeTree

uses multiple distributed activity servers (services) to provide the learning content and

learning support services.

Activity server component play a role similar to an repository for the reusable lean-

ing content and service providers. The di�erence to the traditional learning repository

is that unlike traditional repositories, which are basically pools for storing simple and

static learning objects, an activity server host highly interactive and adaptive learning

content. It is also possible to host interactive learning services such as forums or shared

annotations. The duty of an activity server is to answer to the requests made by learning

portals or value-adding service for a speci�c activity. The concept of reusable activities

should encourage the content providers to produce advanced, interactive learning con-

tent and services. So delivered content and service activities can be intelligent and highly

adaptive. In particular, each activity can obtain information about the student from stu-

dent model server and provide a highly personalized learning experience. Activity server

also monitors the progress of the student, changes of the student goals, his knowledge

and interests, and then sends updates to the student model server[7].

Value-adding service combines the features of a portal and an activity server. It process

the content and services adding some valuable functionality to it such as annotation,

visualization or content integration. These services are course-neutral and therefore can

29

Figure 3.4: Centralized student modeling in CUMULATE [7]

be re-used in multiple courses[7].

The student model server represents the needs of the student in the E-Learning process

and allows distributed E-Learning to be highly personalized. It is maintained by a

university (provider) or by student themselves. The student model server collects data

from portals and activity servers and provides information about the student to the

di�erent adaptive portals and activity servers. They use this information for adapting

the learning content and services to the needs of the each individual student. It is very

important to have this component centralized for the whole system so that each learning

activity can get access to all student related information i.e. student progress. To ful�ll

these requirements KnowledgeTree has its own student model server called CUMULATE.

3.7.1 CUMULATE

The CUMULATE is a event-based centralized student modeling architecture [7]. The

idea of this server is to collect events about student learning activities from di�erent

servers and to process them into shareable set of student parameters(see �gure 3.4).

Each event is speci�ed by the activity server (i.e., page is read, question is answered).

Event is time-stamped and stored into event storage part which is normally implemented

as relational database. The �ow of events is than processed by di�erent internal and

external inference agents which than update the values in the inference model part of

the server. The updated information is either in the form of property-values pairs or

property-object-value triples. Each inference agent is responsible for updating a speci�c

property. One agent can for example process the event sequence trying to deduce the

current motivation level while a other inference agent may infer the knowledge level of

the student for each topic in the course. These inferencing agents do not have to reside

30

exclusively on the student model server side but also on the external servers within the

system. The current version of CUMULATE uses two di�erent inference agents[7].

A knowledge-inferring agent process events made by user a related to a topic. This

agent extracts information from di�erent learning activities and tries to deduce the cur-

rent student knowledge level of this topic[7].

A activity-inferring agent process learning activity related events. It counts the number

of visits and annotation for this activity and calculates activity levels[7].

Additionally CUMULATE provides a number of maintenance tools for administrators

as well tools for teachers and students to examine the content of student model[7].

3.8 AHA! System(2000/2007)

AHA!2 is an open source general-purpose system and was developed to support an on-line

course with some user guidance. Meanwhile the system has become numerous extensions

and tools that made AHA! into versatile adaptive hypermedia platform[20]. The devel-

opment started in year 2000 and continuously enhanced over the coming 7 years. The

latest version of AHA!3.03 was �nished in July 2007.

AHA! is based on overlay user model2.3 and exploits a model of user traits such as

goals, preferences and learning style for adaptive purposes. Domain model consist of

concepts and their relationships[21]. Each fragmented information presented in web-

page is related to the corresponding concept. The concept de�nition includes name,

resource (reference to the corresponding information (page) in information space) and

owns some prede�ned attributes[40]:

• Access - as an indicator to start the adaptation engine when a certain concept is

accessed

• Suitability - express if the page assigned to the concept is suitable for presentation

• Knowledge - an integer value which corresponds to the user's knowledge level of

particular concept

• Visited - the information which indicates if the user already visited resource related

to the concept

Beside these prede�ned attributes a user can de�ne his own attributes[40].

2The Adaptive Hypermedia Architecture
3http://aha.win.tue.nl/

31

Concepts are connected between each other through concept relationships de�ned an

form of adaptation rules such as (a) prerequisite, (b)knowledge propagation and (c)

knowledge update[40].

The adaptation model consists out of events and condition action rules and is re-

sponsible for adaptation of the knowledge represented in the adaptation model. The

condition is expressed as a Boolean value using concept's attributes and the action re-

lated to this event. The de�nition of the attribute in the domain model contains also

event-condition-action rules which de�ne how the values of the attributes in user model

should be updated[40]. When certain event occurs (i.e. page is shown) rules associated

with this attribute are activated and if the conditions related to this rule are ful�lled, a

certain actions are triggered. Action de�nes which value and how this value should be

changed resulting with a possible change of knowledge level of the user.

Depending of the knowledge level of the user certain information-fragments are (not)

shown. E.g. for beginners the information fragments such as hints should be showed,

on the other hand for student with expert skills this information may be redundant[40].

Estimation of the knowledge level is a complex task. It is done by making the student

perform various on-line tests. There is also a feedback mechanism which enables the

student to inform the system whether she/he understands presented information. This

will help the inferring mechanism to make better assumption about student's knowledge

level.

3.9 Conclusion

The previous sub chapters showed us that there are numerous user model-based systems

on the market. Each of them has its own approach in trying to improve their adaptivity.

There are some general challenges which they have to confront with like choosing the

appropriate user modeling technique, trying to make their architecture component-based

or to try to make the system more generic. Some of the trends in development are easy

to recognize the other not. For example it is clear that trend in user modeling techniques

moved from stereotype based onto overlay model(see �gure 3.5).

Since begin of the last decade the overlay model was used exclusively. This is one of

the reasons why this technique has been chosen for the APOSDLE system. The table

(see �gure 3.5) shows us that most of the systems are limited to certain domain but also

that most of the systems which are longer in use having trend toward generalization of

appliance �eld (see sub chapters 3.8 and 3.5).

On the other hand there are new creative approaches presented in the newest sys-

32

Figure 3.5: Comparison of User Model-based Systems

Figure 3.6: Relevance of di�erent systems to APOSDLE

33

tems which are really completely new approaches in solving adaptivity issues in user

model-based systems. It is obvious that the two newest systems KnowledgeTree (with

CUMULATE as student model server) and AHA! (see �gure 3.6) using the event-driven

approach, meaning that there are certain user actions which are de�ned as events and the

inferring mechanisms are processing these events trying to infer knowledge level of the

user. KnowledgeTree (and CUMULATE) is using a multiple inferring agents approach.

The developers of this system recognized that there is a need for more general approach

in inferring process. Therefore they introduced the possibility to have more inferencing

agents specialized for certain tasks. There is no limitation for the number of possible

inference agents. At the moment they are using two in CUMULATE system. This is

also of special interest to the APOSDLE system where the similar concept was used to

support the �exibility of the system.

34

4 Simulation

In general we can say that simulation is the imitation of real things, processes or state of

a�airs where the purpose of simulation is the representation of certain key characteristics

or behaviors of selected physical or abstract system over time[2]. Roger D. Smith gave

the de�nition of simulation as �Simulation is the process of designing a model of a real or

imagined system and conducting experiments with that model. The purpose of simulation

experiments is to understand the behavior of the system or evaluate strategies for the

operation of the system...�[52]. Mathematical algorithms and relationships are made to

describe assumptions made about the system. Thus the basis for a model is made which

can reveal how the system works. If the system is simple we can represent and solve this

model analytically but in most cases the problems of interest are much more complex

so that a simple mathematical model cannot represent them. In such cases the system

behavior can be estimated by means of simulation[52].

Simulation can be used in di�erent contexts such as modeling of natural or human

systems in order to better understand their functioning. There are also numerous other

contexts such as technology simulation for performance optimization, testing, education

and training. Basically the simulations are used to show the possible real e�ects of

alternative conditions and actions.

The following sub chapter 4.1 explains the process of simulation. The most important

steps in designing and running one simulation are explained. The sub chapter 4.2 pro-

vides an insight into most relevant simulation languages and tool-kits available for the

simulations.

4.1 The Simulation Process

In the last several decades the process of creation and operation of a simulation has

su�ered sever changes. In the beginning of simulation days this process was reserved

only for the experienced practitioners. Now days this process has evolved and there are

clearly de�ned steps for developing, validating, operating and analyzing the results of

simulations (see �gure 4.1). These steps are:

35

Figure 4.1: Simulation Development Process [52]

36

• De�ne/Formulate the Problem Space

• Setting of objectives and overall project plan

• Model conceptualization

• Data collection

• Construct Software Model (Model translation)

• Verify, Validate and Accredit the Model

• Design Experiments

• Execute Simulation

• Collect Output Data

• Analyze Data

• Documentation and Reporting

• Expand Model

4.1.1 De�ne/Formulate the Problem Space

First, the problem that needs to be modeled has to be de�ned. Also the goals and

requirements must be stated along with the desired accuracy of the results. The clear

boundaries have to be de�ned between the problem we are addressing and the surrounding

environment. In order to interact with external systems (beyond the boundaries of the

system) there should be clearly de�ned interfaces in the system[52].

4.1.2 Setting of objectives and overall project plan

Setting of objectives means identifying the questions which should be answered by the

simulation study. The project plan should include the various scenarios that should be in

investigated. It also includes the time, personnel, hardware and software requirements,

stages in the investigation, output at each stage and costs the simulation will bring[2].

37

4.1.3 Model conceptualization

After de�ning the problem one or more appropriate conceptual models can be de�ned.

Conceptual models are used to abstract the system under investigation. Such models

include the algorithms to be used for the simulation, required input data, and the gener-

ated output. This phase is also used for documentation of the assumptions made about

the system along with potential e�ects on the simulation result caused by these assump-

tions. Each limitation caused by model, data or assumptions must be clearly de�ned so

that the simulation can be properly determined[52][57].

It is recommended to begin simply and that the model should easily grow until the

appropriate complexity of the model has been reached[2].

Each conceptual model de�ned must include a description of the amount of time,

number of persons involved and equipment required to produce and operate the model.

Then all models need to be compared in order to �nd the single best solution which

meets the goals and requirements of the problem[57].

4.1.4 Data collection

After determining the solution space, the data needed to operate and de�ne the model

have to be collected. There is several data types required[52]:

• Information as input parameters

• Information as aid for development of algorithms

• Information which is used to evaluate the performance of the simulation runs

• Known behaviors of working systems

• Information on the statistical distributions of the random variates to be used

This phase is the most perceptible to error and misapplication, while collecting the correct

input data is one of the most di�cult (sub)processes in the simulation process.

4.1.5 Construct Software Model (Model translation)

Based on the solution de�ned and data collected, the simulation model is created. The

creation of the computer simulation follows the same process as developing of any other

software product[52].

38

Figure 4.2: Model Veri�cation[52]

4.1.6 Verify, Validate and Accredit the Model

One of the essential phases of simulation process is the phase where the problems for

which models where created are veri�ed, validated and accredited. This process ensures

that the model algorithms, input data and design assumptions are correct and are able

to solve the problem de�ned at the beginning of the process[52][18].

The simulation development process is divided into the problem space, conceptual

model and software model with de�ned relations between these phases in order to make

veri�cation, validation and accreditation phase easier to conduct (see �gure 4.2).

Validation is the process which should determine if the conceptual model correctly

addresses all issues stated in the problem space. It is also used to determine if the

software model consistently and correctly re�ects the real world. This is usually done by

comparison and experimentation with a know data set.

Veri�cation is the process where it determined if the software model accurately repre-

sents the conceptual model.

Accreditation is an o�cial process of accepting the software model as representative

model for the speci�ed purposes.

4.1.7 Design Experiments

This phase is used to identify the most productive, accurate and cost acceptable (if the

simulation runs are expensive) methods for the running of the simulation. To reduce

the number of runs there are statistical techniques which can be used[43]. For each

simulation scenario there are decisions to be made. They are concerning the length of

simulation run, the number of runs and the manner of initialization[2].

39

4.1.8 Execute Simulation

This is the phase where the simulation is actually executed. The simulation runs generate

the output data needed to answer the problems addressed by the model. In cases of

certain model such as Monte Carlo,1 a many hundreds or even thousands of runs may

be needed to achieve statistically relevant results[52][43].

4.1.9 Collect Output Data

Collection of output data is done parallel to the execution of the simulation. The output

data is collected, organized and stored for the further processing.

4.1.10 Analyze Data

Collection of simulation output data is a process that is distributed over time. Therefore

analyzes must be performed to recognize the long term trends and to provide answers

to the questions which motivated the construction of the simulation. This process can

produce information in di�erent forms for displaying purposes (tabular, graphics, map,

animation etc...)[52].

4.1.11 Documentation and Reporting

It is very important to document the results of the simulation study. The results have

to be divided to interested parties, which needs to identify the degree to which the sim-

ulation was able to give answers to speci�c questions for the possible improvements[52].

Documentation is also very important if the simulation model is going to be reused by

other parties, or if the model is going to be modi�ed. The reporting should be clear and

concise[2].

4.1.12 Expand Model

Creation of simulation models is a very expensive and di�cult process. Therefore we

need to reuse the present models on related projects if possible. The whole process will

be redone and adopted to new requirements[43].

These steps are some general guidelines to be used in creation of the simulations. The

following sub chapter describes some of the tools and languages used in/for simulations.

1The Beginning of the Monte Carlo Method (http://library.lanl.gov/cgi-bin/get�le?00326866.pdf)

40

4.2 Simulation Tool-kits and Languages

There are number of di�erent simulation languages and packages/tool kits developed

for simulation purposes. These languages are developed to serve speci�c domain prob-

lems, rather than support general purpose programming. The general programming

languages can be, and are widely used for programming simulations but in domains

for which simulation speci�c languages or packages do not yet exists or in cases where

there is no economical gain for developing one (for example by very speci�c and unique

problems)[52].

The most popular simulation languages are[46]:

1. Simula was the �rst simulation programming language and was developed by

O.J.Dahl from the Norwegian Computer Center in 1967. It is more of general

purpose programming language with some extensions to support simulations. It

was one of the �rst object-oriented languages and was used as motivation for the

later developed C++ language.

2. GPSS/H was developed at IBM in 1969. This language supports interactive debug-

ging, various trigonometric and statistical functions. It also automatically collects

the simulation output data[54].

3. SIMSCRIPT II.5 is an event and process-oriented programming language. It was

developed at the Rand Corporation in 1962. SIMSCRIPT can be used to support

di�erent types of simulation such as discrete-event, continuous and combination

simulations.

4. SIMAN/Cinema was developed by Systems Modeling and is a combination of simu-

lation and animation language. The models are design with the graphical interface

and then automatically converted into code.

5. SLAM II made by Pritsker Associates and is used for process-oriented simulations.

With some extensions can support also event-oriented simulation and combination

of these two. The models are represented in network form with nodes and branches,

which can be drawn by the developer and then converted into code.

6. MODSIM from CACI is an object-oriented programming language with powerful

graphic extensions, compiler and debugger.

7. ACSL (Advanced Continuous Simulation Language) was developed to support con-

tinuous simulations. It is used for modeling time-dependent, nonlinear equations

and transfer functions.

41

8. CSMP (Continuous System Modeling Program) is built on basis of the three gen-

eral types of statements: (a) structural to de�ne a model, (b) data to assign the

numerical values to parameters and (c) control to manage model execution.

Due the complex syntax the usage of these languages was not easy. They are in many

cases more complex then general purpose programming languages. This fact served as

motivation for developing more easy to use graphic packages and tool-kits. In time several

of those were developed[52][15]:

1. That interactive, visual simulation package for both discreet and continuous mod-

eling which allows users to build models using graphical interface design for this

purpose. It can be extended and �ne tuned by adding C or FORTRAN routines.

2. Workbench is simulation environment which allows building of complex models

using graphical visual interface. The models are speci�ed as a hierarchy of directed

graphs.

3. TAYLOR II is a graphic model building package using four fundamental entities

(elements, jobs, routines and products). These entities are manufacturing oriented.

4. COMNET III was made by CACI Products and was design to simulate communi-

cation networks.

5. BONeS Designer is used to model the protocol and messaging layers of computer

architectures and communication systems.

6. CSIM18 is a library used to describe di�erent activities and statistical distribution

of microprocessors, communications, transportation's and manufacturing systems.

7. SimPack was developed by University of Florida intending to support the develop-

ment various simulation programs.

8. CPSim provides an execution kernel that manages scheduling, deadlock prevention

and message passing.

9. VRLink is toolkit for interactive simulations. It is mainly used for distributed

military simulations.

10. ITEMS is also toolkit for interactive simulations and is used for construction of

virtual worlds and entities to populate them.

42

11. MultiGenII is used a 3D modeling tool for the visual representation of simulated

objects.

There are many di�erent languages and tool-kits used for simulation. To describe them

all in detail is not in scope of this thesis. The intention of this sub chapter is to attempt

to provide some insight into current situation in the simulation �eld.

43

5 Con�gurability of UPS

As stated in chapters two and three before implementing an User Model-based System

we have to confront several challenges. Some of them are more general nature and the

other ones are more domain speci�c. Regardless of type, we have to be able to deal

with them. This chapter describes the concept of a �exible approach in dealing with

some of these challenges. This �exible approach concept (con�gurability) brings not just

answers to the challenges just mentioned but also some open questions. To answer these

questions we need to have a mechanism to evaluate this approach.

The �rst sub chapter is divided into two parts. The �rst part summarize all chal-

lenges in developing of user model-based systems, and tries to argument the solutions

implemented in APOSDLE, where the second part tries to answer the challenges related

to the con�gurability approach itself. KIE Approach sub chapter explains the concept

of using the user's actions as events which indicates knowledge of the user in the given

context. This concept is the basis for the con�gurability of UPS in APOSDLE. Sub

chapters 5.3 and 5.4 are describing the two main factors in this con�gurability approach,

namely chain models and inferencing algorithms. Chain models are the representation

of the event-knowledge level mappings, and the algorithms are the core of the inferenc-

ing intelligent agents. The last sub chapter presents some of the possible con�guration

examples to better understand the underlying concept.

5.1 Challenges

Con�gurability as a new approach in UPS is presented as an answer to challenges related

to the general as well the APOSDLE speci�c issues. This approach also brings some open

questions itself. To make it easier to analyze and answer all these challenges/questions

it is necessary to divide them on two levels. The �rst level deals with the more general

issues such as challenges related to user modeling techniques or to user model based

systems. The second level tries to summarize the challenges related to con�gurability

approach.

44

5.1.1 APOSDLE System challenges

Based on the challenges related to the general as well APOSDLE speci�c issues, there

are four questions to be answered:

• Which user modeling technique should be used?

• How do we collect data about the user (acquisition technique)?

• What is the scope of our system (domain speci�c vs. generic)?

• What are the newest trends in the state-of-the-art systems?

These questions can be seen as four dimensions of a four dimensional space where each

dimension is somehow related and dependent to other three. For example, in order to

make the best decision on which user modeling technique to use, we should know the

scope of our systems, which acquisition techniques are used and the newest trends in

this area. For example the chapter about user modeling based systems (see chapter 3)

provide an overview over the various state of the art user modeling systems, where we

can identify several trends. First it is obvious that the overlay model technique became

dominant over the past several years. All systems build over past eight years are using

overlay model for the user modeling purposes (see sub chapter 3). It is also clear that

most of the systems are made for a speci�c domain and are not able to support more

generic approach. Some of the systems which are further developed are trying to surpass

this obstacle and to become generic. There is a trend to expand the scope of the user

modeling systems, from single domain to multi domain capable systems (see 3.8, 3.5 and

3.7).

APOSDLE answers to these questions/dimensions are:

User modeling technique: The user model in APOSDLE should represent the user

knowledge in the domain. As stated in chapter about user modeling techniques (see

chapter 2) the feature based modeling and specially the overlay model as a special case

of the feature based modeling, is the best suitable for this. Also as stated above there

is a clear trend in using this technique in the newest state of the art systems. Therefore

APOSDLE uses overlay model as representation of the user knowledge throughout the

system.

Acquisition technique: Considering the fact that some of the domains in APOSDLE

could have several hundreds of di�erent topics, it is very unpractical to conduct explicit

information acquisition. If questionnaire is used to test the user knowledge over the

domain, he/she would be probably forced to invest a lot of the time in answering them.

45

This way the usability of the system would be seriously damaged. Therefore the APOS-

DLE tries to collect the usage data implicitly and to reduce explicit data acquisition as

possible. By doing so, user can focus himself to exploit many features APOSDLE o�ers.

This is very important for the con�gurability approach while so implicitly collected data

(see KIE sub chapter 5.2) are representing the basis for the Chain Model de�nition and

therefore the backbone of the con�gurability.

Scope of the system: This is perhaps the most important issue and one of the greatest

challenges in implementing an user modeling system (see chapter 3). APOSDLE tries

to overcome the single domain problem and to become a generic system able to support

many di�erent domains. The scope of the APOSDLE system was always multi domain,

meaning as long there are working processes present in a company, APOSDLE should

be able to support the learning process during the work. The same nature of APOSDLE

is therefore generic. All APOSDLE needs in order to work over di�erent domains is

the underlying model of the company. The description of this modeling process is out of

scope for this thesis and therefore will not be elaborated. For more details see APOSDLE

Deliverable on modeling tools1.

In prototype 3 there is an attempt to extend this generic approach to user pro�ling

service. To provide generic capabilities of UPS we followed a so called con�gurability

approach. One con�guration consists (a) of a mapping of each KIE to a certain knowledge

level (in the system known as Chain Model) and (b) one inference algorithm.

There are two driving forces for the con�gurability approach. First as just mentioned

APOSDLE is a generic system and we have to provide a more generic approach for user

pro�ling. This means that di�erences between the domains could be re�ected on the

process of inferring. Even in the same domain, depending on the usage of the domain

(behavior pattern), it could be needed to have more �exible inferring mechanism in the

background. A mechanism able to detect this di�erence and apply the best suitable

inferring algorithm. Second, it was not possible to know what kind of the inferring

mechanism is the best for APOSDLE without having some kind of benchmarking between

di�erent inferring mechanisms. To do so we also need a real data to feed our inferring

algorithms. This second aspect was the dominant force in implementing the con�gurable

approach for the user pro�ling service (UPS) in APOSDLE P3. This means that the UPS

could be con�gured from outside and not directly from code (hard coded). All we have

to know are the con�guration parameters (chain model plus inference algorithm) and we

can switch between them as we �nd suitable. The challenges related to con�gurability

approach are described in sub chapter 5.1.2.

1APOSDLE Deliverable: http://www.aposdle.tugraz.at/media/multimedia/�les/third_prototype_aposdle

46

Trends: Some of the trends are all ready mentioned in this thesis, but there are some

new creative and unique approaches in the newest state of the art user modeling systems.

For example KnowledgeTree (see sub chapter 3.7) de�nes an user actions as so called

events to feed his inferring mechanism. The inferring mechanisms are called inferring

agents and they can be di�erent and work together to provide the best result. These

features could also to be found in AHA! (see sub chapter 3.8) system. This is important

while the APOSDLE systems uses similar concept for his UPS. The events as basic units

for inferring algorithm are something new in APOSDLE P3. More about these events

and their impact in the KIE sub chapter (see sub chapter 5.2).

5.1.2 Challenges for Con�gurability

Con�gurability o�ers some answers to the previously stated challenges. Specially if con-

sidering the scope issue of the system. But this approach raises some question itself:

• If there is a possibility to have multiple con�gurations in the system, where and

how to manage them?

• How to change between these con�gurations if needed?

• Which one to take if there are many?

• How to import new con�gurations if necessary?

Answering these questions requires new technical and conceptual solutions in APOSDLE

P3 (Prototype 3).

If there is a possibility to have multiple con�gurations in the system, where and how to

manage them? This is a technical question. To hold and manage multiple con�gurations

in the system we need to have �exible underlying infrastructure. Specially the data

model needs to be �exible and extendable (see sub chapter 8.2). One con�guration

consists out of the chain model (see sub chapter 5.3) and the algorithm (see sub chapter

5.4). Chain models are preserved in a data base and can be easily extended if necessary,

where the algorithms are programmatically implemented. The information about which

con�guration to use, meaning which combination of chain model and algorithm to use is

present in external con�guration �le. The application reads this con�guration �le in run

time and then activates the correct con�guration.

How to change between these con�gurations if needed? As just mentioned there is a

con�guration �le which holds the information which con�guration should be used. To

use di�erent con�guration all what is necessary is to change this con�guration �le to

47

points to other con�guration. This is one of the major advantages of this approach. It is

not necessary to change things programmatically. If the present con�guration does not

work properly, it is possible to change the used con�guration in con�guration �le in run

time. Meaning the application does not needs to be recompiled or stopped at all.

Which one to take if there are many? This is the most important and di�cult question.

To answer this question there has to be some kind of benchmarking present in the system.

To conduct benchmarking (comparison) between di�erent con�gurations two things are

needed.

First, the de�ned and mapped KIE to knowledge level as a part of Chain Model (see

sub chapters 5.2 and 5.3) and implemented algorithms (see sub chapter 5.4).

Second, the (real) data are necessary. The simulation framework is implemented to

provide the system with such data. Only after comparing di�erent con�gurations it is

possible to say which ones are the candidates for the �nal version of the APOSDLE.

How to import new con�gurations if necessary? As mentioned in the �rst ques-

tion/answer it is requirement to have �exible and extendable underlying infrastructure.

To import new con�guration means to import new chain model and algorithm. If these

are not already in the system, we need to import new chain models in data base and

implement new algorithm programmatically. Importing new chain models in data base

is a simple process of updating the data base. The implementation of the new algorithm

requires more e�ort. If the algorithm is implemented all we need is to add him to other

algorithms already implemented without having to change anything else in system. This

is possible due the usage of so called strategy design pattern2.

5.2 KIE (Knowledge Indicating Event) Approach

One of the most important issues in the user modeling systems is to keep the user pro�le

up-to-date. In order to do so APOSDLE collects data either implicitly by observing the

interactions of the user with the system, or explicitly by requesting feedback directly

from the user. APOSDLE tries to reduce the explicit acquisition and puts the focus

on implicit data acquisition. This is primarily done through observation of the user

activities. These activities are introduced as KIE (knowledge indicating events). The

number and their part in APOSDLE system changed or better said evolved during the

development phase. Originally there were 21 KIE which UPS used to infer the knowledge

level of the user. Meantime some of the KIE changed their status to di�erent type of

events, so called logging events. These are all those events which are important for the

2design pattern: http://www.javaworld.com/columns/jw-java-design-patterns-index.html

48

better understanding of user-system interaction but are very di�cult to map to certain

knowledge level. This is a needed condition for one event to be KIE.

The conceptual creator of the KIE approach is Mag. Barbara Kump. This concept is

similar to concept of events used in KnowledgeTree and his student model server CU-

MULATE (see sub chapters 3.7 and 3.7.1). Using this concept enables the �exible in

scalable approach in implementing user pro�ling services. Flexible while it is possible to

change or vary the event-knowledge level mapping and therefore try out di�erent map-

pings, and scalable while the number of KIE-s determine the complexity or preciseness

of the inferring process in the background.

KIE are the basis for the one of two factors important for the con�gurability of the

UPS in APOSDLE. The so called chain models used in APOSDLE are di�erent mappings

between the KIE or the combination (sequence) of KIE and their knowledge level they

are indicating. The next sub chapter is dedicated to explain the part of the chain models

and their mappings for the con�gurability of UPS.

5.3 Chain Models (Mappings)

As mentioned in the previous sub chapter, chain models are built from KIE or the

sequential combination of those. This means that we can map directly each KIE to a

particular knowledge level for example EditingAnAnnotaiton -> Expert3 or to map a

certain sequence of KIE to a knowledge level for example PerformingATask-SelectingLG-

ViewingAResource -> Advanced. The idea behind sequencing the events into a chain

(therefore chain model as name), is to implement certain system usage constraints direct

into the chain model and to try to reduce the �noise� (dirty data) used for the inferencing

purposes. This means that user needs to use the system in a prede�ned way (path) in

order for his/hers activities to be taken into account by the inferencing mechanism.

Unfortunately this second approach was not exploited enough because of the lack of

resources and time to test these chains in a �real world� situation(see sub chapter 6). For

the con�gurability approach only single event chain were used. Nevertheless the di�erent

mappings were used in order to test and prove this concept (see sub chapter 5.5).

There are basically two problems in de�ning a chain model.

• Is it possible at all to map a KIE (user activity) to a knowledge level? There are no

heuristics which proves that certain user action re�ects the knowledge of the user.

And if it is possible to map an action to a knowledge level then we have to answer

the following question.
3EditingAnAnnotation is a example of the KIE. The list of KIE is shown in �gure 5.1

49

Figure 5.1: The �rst proposal for the events

• To which level to map? The issue is similar as above. We can argue that certain

activities in a particular domain meaning a certain level of knowledge but there are

ho hard evidences to supports this hypothesis.

Exactly here, the �rst advantages of using con�gurability approach are getting obvious.

If we have several possible mappings we can try out each of them, and then based on the

result we become and the result we are expecting, determine the best possible mappings.

This is a simpli�ed version of con�gurability approach just to show how this approach

can be helpful.

The �rst chain model had 21 events (see Figure 5.1). It was obvious that some of the

KIE are not easy to map to a particular level and for some events was not even sure

if they are in fact the KIE. Therefore the �rst chain model was never actively used in

system but for testing purposes.

After analyzing the �rst KIE set used for the �rst chain model it became obvious that

some of the KIE in the list do not exist in the system. Due the technical restrictions

it was not possible to detect these events at all. Therefore the list was reduced to 17

events (see Figure 5.2). This process of changing the list of the KIE is a process which

evolved over time. After working with the system our knowledge and understanding of

the system became better which eventually result in changing the number of KIE as well

as the mappings to particular knowledge level.

As a consequence of this evolving process the �nal version of the chain models was

50

Figure 5.2: The evolution of event list

reduced to 14 and 9 KIE respectively (see Figure 5.3). These two chain models di�eren-

tiate from each other in number of the KIE and mappings to knowledge level as well, and

are candidates for the �nal chain model used in APOSDLE system. The decision which

of these two should be used was made after conducting simulations (see chapter 6). The

next sub chapter explains the second variable parameter relevant for the con�gurability

concept, namely inferring algorithms.

5.4 Algorithms

The inferring algorithms are not only the second (variable parameter) but also the most

important factor in con�gurability concept. Chain models are the underlying data struc-

tures upon the inferring intelligent algorithms are working, where the inferring algorithms

are the heart of so called inferring agents.

Basically there are no limitations of how many algorithms can reside in the system.

The problem is not just in implementing these inferring algorithms but also in validating

and testing them (see chapter 6).

Similar to CUMULATE (see sub chapter 3.7.1) the inference algorithms in APOSDLE

are based on di�erent approaches. Some like FREQUENCY are simple ad hoc math

where other like EVENT_WEIGHTING having Bayesian Networks[11] as an inspiring

idea[9]. Important to say is that due the con�gurability approach we have the freedom

of trying out di�erent types of algorithms like machine learning or algorithms used in

information retrieval (WEIGHTING).

51

Figure 5.3: Event-Mappings used for simulation

There are six inferring algorithms implemented in APOSDLE. They are di�erent in

logic and type. Logically there are only three di�erent algorithms and they are: FRE-

QUENCY, WEIGHTING, EVENT_WEIGHTING. Each of them has two types: DE-

FAULT meaning that all recorded events are taken into account by inferencing mecha-

nism, and RECENT_NUMBER_OF_EXECUTIONS meaning that only a prede�ned

number of the recorded events are taken into account by inferencing mechanism. Com-

bining these two elements we get the following six inferring algorithms:

• FREQUENCY

• WEIGHTING

• EVENT_WEIGHTING

• FREQUENCY_RECENT_NUMBER_OF_EXECUTIONS

• WEIGHTING_RECENT_NUMBER_OF_EXECUTIONS

• EVENT_WEIGHTING_RECENT_NUMBER_OF_EXECUTIONS

Although the UPS was a part of Prototype 2 (P2) the UPS in prototype 3 (P3) was com-

pletely new developed. The reason is that UPS P3 was based on the di�erent concepts.

The concept used as basis for the P3 UPS was new, namely KIE approach, which made

52

the inferring algorithm in P2 obsolete. Nevertheless I tried to import the basic idea of

P2 inferring algorithm into P3 UPS. This was the �rst inferring algorithm in P3.

5.4.1 FREQUENCY

This algorithm is the legacy algorithm from P2 and was the �rst implemented algorithm

in P3. Basic idea is to count the user activities in a particular topic based on their

knowledge level mapping. For example, if the user performs 10 activities in a particular

topic, the system converts these activities into KIE and the inferring algorithm counts

how many of these events are mapped to BEGINNER, ADVANCED or EXPERT knowl-

edge level respectively. The knowledge level assigned to the user for the topic is the

level in which the number of events was greatest. This algorithm was relatively simple

and easy to implement. The problem was the fact that the number of KIE-s mapped to

knowledge levels was quite di�erent. For example the chain model which uses 14 KIE-s in

total had following distribution over knowledge level: BEGINNER-7, ADVANCED-5 and

EXPERT-2. It seemed obvious that the BEGINNER-s events are having more chance to

be executed by the user than the other ones. This was the motivation to introduce the

second algorithm in system.

5.4.2 WEIGHTING

WEIGHTING algorithm tries to balance these unfavorable relations between knowledge

levels. Therefore each event belonging to di�erent knowledge level type was weighted

with the knowledge level type weight. For example if there are 7 events from totally

14 belonging to BEGINNER then each event from this type will be weighted with 1/7.

Respectfully for the ADVANCED the weight attached to these events would be 1/5,

and for EXPERT 1/2. This way the balance was made and statistically each KIE in

system had the equal impact on the inferring process. The idea for this algorithm came

from the Maximum tf Normalization algorithm used in information retrieval. Maximum

tf Normalization normalize the tf4 weights of all terms occurring in a document by the

maximum tf in that document [16].

5.4.3 EVENT_WEIGHTING

This algorithm was a result of a deeper analyzes of the system usage. Although some KIE

are apparently having more chance be executed then the others based on the knowledge

level type, it is not quite so. For example PerformingATask or PerformingATopic are

4tf: Term Frequency

53

members of ADVANCED knowledge level type and if used in WEIGHTING algorithm

are less weighted then some member of the BEGINNER knowledge level type. But in the

fact these two KIE are having far more better chance to be executed than for example

GettingLearningHints (from BEGINNER type) because the user is confronted with these

two activities right on the beginning/front of the APOSDLE interface. These two actions

are actually the entry points into system (if using APOSDLE Suggest see sub chapter

7), meaning if the user wishes to perform any other activity he/she has to perform one

of these two activities. This makes it obvious that the approach used for the WEIGHT-

ING algorithm was perhaps not the optimal one. The idea in EVENT_WEIGHTING

algorithm is to pursuit the weighting concept but on the more granular level, on the

KIE level. The obvious question at this point is how we can determine which weights

individual KIE-s should have. There are no heuristics supporting this. Therefore it was

necessary to analyze the usage of the system.

This algorithm was inspired by Bayesian Network algorithm [30] (see sub chapter 2.4).

The basic di�erence is that EVENT_WEIGHTING algorithm does not use probabilities

but the weights for labeling the nodes. Therefore the formula used for calculating the

weights is di�erent than the one for calculating probability by Bayesian network. But

the idea behind is similar. The weight of a node (KIE) is depending on the weight of

following nodes (in Bayesian Network depends on the predecessor Node).

The �rst step was to identify the usage paths present in the APOSDLE system (see

Figure 5.4). Secondly the weights for the actions based on the usage paths trough APOS-

DLE system needed to be derived.

To do so the graph approach was used. The paths are represented as a branches of a

graph (see Figure 5.5). For example if the user would like to Edit a Annotation (over

APOSDLE Suggests) he/she has to: Perform A Task -> Select LG -> View a Resource ->

Edit Annotation. Since Edit a Annotation KIE is present in fourth level of the graph the

user has to go through previous three levels to reach this event. This means although the

user intention was to annotate a certain part of a document he/she is forced to activate

other events along the path in order to do so. This increases the weight of these events.

Obviously there is direct relation between the weight and the level in which certain event

is placed. I introduced the following formula in order to re�ect this dependency.

Ni = (Numb. of level - (i-1)) + Sum(Outgoing Nodes)

For example for the VR - Viewing a Resource:

RT = (4 - (4-1)) = 1

EA = 1

GLH =1

54

Figure 5.4: APOSDLE System Usage Paths

SD = 1

VR = (4 - (3-1)) + RT + EA + GLH + SD

VR = 2 + 1+ 1 + 1 = 5

As we see the weight of leafs elements in fourth level is always 1. Therefore the weight

for the VR event is the sum of his level weight (in this case 2) and the weights of all

outgoing nodes 3x1=3. This was a simple example just to show how the weights are

calculated. The whole process of calculating weights is not �nished. There is also a

graph for the SEARCH usage path. This graph is not so complex but has impact on the

whole weighting. After calculating the weights for the SUGGEST usage we have to add

the weights from the SEARCH using the same formula. The complete formula looks like

this.

Complete Weight for KIE = 1/(Weight for Suggest for KIE + Weight for SEARCH

for KIE)

5.4.4 RECENT_NUMBER_OF_EXECUTIONS Algorithms

The last three algorithms are basically the same as these previously three with just

one di�erence. The previously described algorithms (FREQUENCY, WEIGHTING,

EVENT_WEIGHTING) are using the whole recorded history of user actions for the in-

55

Figure 5.5: Usage Paths through APOSDLE as graphs

ferring purposes where the other three (FREQUENCY_RECENT_NUMBER_OF_EXECUTIONS,

WEIGHTING_RECENT_NUMBER_OF_EXECUTIONS, EVENT_WEIGHTING_RECENT_NUMBER_OF_EXECUTIONS)

are using prede�ned number of these actions.

Expert systems which maintain the knowledge about certain topics across the time

period, must have an awareness of time. This awareness can be made by incorporating

time factor or so called knowledge aging in our algorithms[44].

The obvious problem was how many actions in the past should be taken into account.

If too many actions are taken into account the inferring process will be burdened by the

information which is not relevant any more. On the other hand if too few are taken

than valuable information are lost and the inferring process is not precise. We used the

simulations to �nd out the right answer to this question (see chapter 6). The simulations

showed that the optimal number of the actions to be taken into inferring process is

between 40 and 50. This result is then used to initialize these algorithms. And in

fact the algorithms of this type showed the best performance and are used as the �nal

candidates for the APOSDLE.

5.5 Examples of Con�guration

For better understanding of the con�gurability concept this sub chapter will try to de-

scribe couple of examples of how the chain models can be combined with the inferring

algorithms and what conclusion can be drown out of it. It is important to state that

56

the number and the nature of chain models and inferring algorithms are not restricted

by any means. This way we can really cover all individual needs of all possible domains.

APOSDLE system has two chain models and six inferring algorithms. That means that

there are twelve possible con�gurations in system. Each of this con�guration has it owns

advantages and disadvantages. The two of them are explained in order to get the �feeling�

about the approach.

Con�guration one:

14-Events Chain Model and the EVENT_WEIGHTING_RECENT_NUMBER_OF_EXECUTIONS

algorithm. This combination brings a very �ne tuned approach. Firstly the 14-Events

chain model is the model with more events than the other chain model (just 9 events)

meaning better sensitivity and more data for the inferring mechanism. Secondly the

inferring algorithm is designed for really �ne granular inferring purposes on the event

level. This algorithm is also good for the learning purposes due to inferring over the

restricted number of events made in the past. The impact of to old events is hereby

reduced and just the newer actions are taken into account. This is simpli�ed version of

dealing with the knowledge aging problem. The downside of this combination is that the

falsely weighted or mapped events are having more impact on the result. The mapping

and weighting process is extremely important. The inferring process in extreme cases

could have impact on the system performance.

Con�guration two:

9-Events Chain Model and the FREQUENCY algorithm. This combination is very

simple. The number of events used is small and the algorithm is primitive. Obvious

advantage is that user can easily understand underlying process and get more in touch

with the system. The downside is the disadvantage by determining the �ne tuned di�er-

ences. It is perhaps too robust for the actual usage. Impact on the system performance

is minimal due the simplicity of inferring process.

Working and benchmarking more of these combinations is described in following chap-

ter. The following chapter is about simulation experiment conducted for the evaluation

purposes of UPS.

57

6 Simulation results

The previous chapter describes the underlying concept of this thesis, namely con�gura-

bility of UPS. One con�guration consists (a) of a mapping of each KIE to a certain

knowledge level (in the system known as Chain Model) and (b) one inference algorithm.

Since there are multiple inference algorithms and chain models the goal is to �nd out

which of these combinations are best suited for the APOSDLE system. To do so �real�

usage data is needed which can be used to benchmark di�erent con�gurations. Because

we wanted to calibrate the UPS before real users were using it, we introduced a sim-

ulation framework with the goal to create/simulate the real usage data. Data should

always be simulated for one knowledge level (BEGINNER, ADVANCED or EXPERT).

Normative behavior was varied, that is, the extent to which a person showed KIEs that

were related to his or her knowledge level. For instance, if the behavior of an EXPERT

was simulated and 90% out of the simulated user actions (KIE) were �EXPERT actions�,

we speak about a simulation of an EXPERT with 90% normative behavior.

There are three simulation modes in simulation framework representing the degree of

system restrictions in creating data. They are:

• Random mode, meaning that events are generated randomly without any system

constraints at all.

• Simple constraint mode, meaning that some of system constraints are implemented

in process of creating events. This mode covers most of APOSDLE Search con-

straints (see sub chapter 7). Certain events cannot be executed without some pre-

conditioning events. For example user can not edit an annotation without opening

a document or snippet before.

• Complex constraint mode, meaning that APOSDLE system constraints are fully

considered. This mode covers entire APOSDLE Suggest constraints. Due the

complexity of these constraints it was not possible to implement them program-

matically. They have to be created manually.

The basic idea of increasing the degree of constraints is to see how important certain

system constraints are and what kind of impact does this have on simulation results.

58

Figure 6.1: Documentation of all simulation runs

The simulations are primarily used to evaluate the con�gurability concept and to

reduce the number of possible �nal candidates (con�gurations) for the APOSDLE system.

The �rst sub chapter 6.1 describes the steps needed to be conducted for the simula-

tion. The following sub chapter 6.2 reveals the results and �ndings of the conducted

simulations.

6.1 Simulation steps

To conduct a simulation we need to clearly de�ne all steps in the process of simulation.

These steps have been made based on the general description of the simulation process

(see sub chapter 4.1) and the system restriction made by APOSDLE system. Conjunction

of these two types of requirements resulted in following simulation steps:

1. Formulating a problem space we want to research

2. Drawing the simulation design

3. Creating a trial description (see Figure 6.1): this is a document which contains

overview over all simulation runs. It should include parameters relevant for a

simulation run:

• no (sim run): Number of simulation runs

• no (sim unit): Simulation unit is an one set of simulation parameters executed

by single user

• Chan model: Describes the used Chain model (chain model 1 is a 14 Event

chain model and chain model 2 is a 9 Event chain model)

59

• Problem topic (research question)

• n (personas): Number of persons within this simulation unit

• User-ID

• Number of events

• Percentage of normative behavior: Describe the amount of normative (=ex-

pected, right) behavior

• Input experience level: Input level of a person (BEGINNER, ADVANCED,

EXPERT)

• Selection mode event: The mode of simulation constraints in generating events

for the simulation (SIMULATION_COMMAND_RANDOM, SIMULATION_COMMAND_SIMPLE_CONSTRAINT

and SIMULATION_COMMAND_COMPLEX_CONSTRAINT)

• UPS Algorithm and Ups_Agentidenti�er where the Ups_Agentidenti�er is

the name of the con�guration of algorithm and chain model:

� FREQUENCY -> FrequencyModel

� FREQUENCY_RECENT_NUMBER_OF_EXECUTIONS ->FrequencyRecentNumExecutionModel

� WEIGHTING -> WeightingModel

� WEIGHTING__RECENT_NUMBER_OF_EXECUTIONS ->Weight-

ingRecentNumExecutionModel

� EVENT_WEGHTING -> EventWeightingModel

� EVENT_WEGHTING__RECENT_NUMBER_OF_EXECUTIONS -

> EventWeightingRecentNumExecutionModel

• simulationTerminator: This is a �ag which indicates the end of simulation run

• name (�le): De�nes the simulation �le name

4. Creating a CSV formatted input �le (see Figure 6.2)

5. Take notice of simulation constraints:

• Don't simulation more than 19 users per simulation run (technical constraint)

• When simulate a di�erent behavior within a person, write separate lines for

each behavior type (see Figure 6.3)

6. Starting the simulation run:

60

Figure 6.2: Input �le as CSV

Figure 6.3: Behavior modi�cation input �le as CSV

61

• Use the template for creating a input �le (input parameters draft)

• Save the �le in consideration of the following points:

� number of personas: �nxx �

� number of events:�eventxx �

� normative behavior:�nb70_80_90 �

� expertise level:�beg_adv_exp�

� selection mode:�sm1_2_3 �

� algorithm:�alg1_2_3_4_5 �

Example: n10_event40_nb70_80_beg_sm1_2_alg1

This means 10 persons, each with 40 events, normative behavior 79, 80 and 90%,

Beginner level, Selection mode 1 and 2, and using algorithm 1-FREQUENCY)

• Start the simulation framework (application) and select the input �le and the

folder where the generated output �le will be saved

7. Import the CSV-formatted output �le into SPSS1

After following these steps the result (output) should be in form of SPSS graphics. This

makes it easier to visually compare di�erent con�guration. The following sub chapter

describes some of the simulation conducted which had most impact on the decision

making process of which con�guration to use in APOSDLE.

6.2 Simulations with APOSDLE P3 User Pro�le Service

This sub chapter describes the most relevant parts of the simulation process. The inten-

tion of this thesis is not to present all simulation results but the ones which had most

impact on the decision, which con�guration to use in the current APOSDLE system.

First step in simulation process was to identify the problem space and determine the

research questions:

• Are there di�erences in detecting the knowledge level (BEGINNER, ADVANCED

or EXPERT2) between the percentages of normative behaviors3?
1SPSS http://www.SPSS.com/
2These are the levels which indicates the knowledge of the user in the system based on his/hers behavior
in the system. For example the BEGINNER persons are often requesting assistance from the system
or other knowledgeable persons in system. Such knowledgeable person would be EXPERT in this
case.

3Normative behavior means the extent to which simulated user behavior corresponds to the simulated

62

Figure 6.4: Di�erent amounts of Beginner normative behavior

• How many simulation steps (events) do algorithms need to identify the correct

(simulated) level?

• How long does it take for di�erent con�gurations (algorithm plus chain model) to

detect modi�cations in the user level?

• Is there a di�erence in the correctness of inferences when using di�erent chain

models (with the same algorithm) in the inferring process?

• Which algorithm shows the best results for the given chain model? In other words,

are there di�erences between di�erent algorithms when using the same chain model?

6.2.1 Di�erences in detecting the knowledge level between the

percentage of �normative behaviors�

After conducting a series of simulations with di�erent knowledge level types (see Beginner

example Figure 6.4) it was obvious that for the correct inferring, system needs at least 60

% of normative behavior regardless to chain model and algorithm (see Figure 6.5). This

means, if 60% of a user's activities are related to one of the three levels, APOSDLE will

be able to detect that level. This result was expected and con�rmation that our inferring

algorithms are doing their job correctly.

The results for the other two cases (Advanced and Expert) were very similar.

knowledge level

63

Figure 6.5: Result of simulation for the di�erent amount of Beginner normative behavior

Figure 6.6: Level detection for the EventWeightingAlgorithm

6.2.2 How many steps do algorithms need to converge to the right level

Simulations showed that, given 60% of normative behavior, on average, the algorithms

need 40-50 events to make a correct inference. The answer to the question of how many

steps do algorithms need to converge to the right level provides us with the answer to how

many recent executions do we need to have for the RECENT_NUMBER_OF_EXECUTIONS

type algorithms (see sub chapter 5.4): Because on average, the algorithms need 40-50

events to make a correct inference (see Figure 6.6), also the number of events that should

be the basis for the inference should be limited to the past 40-50 events.

64

Figure 6.7: Modi�cation of user behavior

6.2.3 Are there di�erences in detecting the right level within a sequence

by changing the level and how long does it take for di�erent

con�gurations (algorithm plus chain model) to detect modi�cations

in the user level

Here we tried to simulate the learning process of a user, meaning that the user actions are

changing over time as a consequence of learning (Beginner->Advance->Expert) or knowl-

edge aging (Expert->Advanced->Beginner) process (see Figure 6.7). The goal was to

compare the two types of the inferring algorithms (DEFAULT vs. RECENT_NUMBER_OF_EXECUTIONS).

It was obvious that the DEFAULT type algorithms are having trouble inferring cor-

rectly when the behavior of the user is changing over time (see Figure 6.8). The reason

for that was that the records about the previous behavior had too much in�uence on

the inferring algorithms. As the �gure 6.8 shows the EventWeighting Algorithm was not

able to recognize the ADVANCED level user behavior at all (the gap between 50 and

140 events) and had problems detecting the EXPERT level as well.

After applying the EVENT_WEIGHTING_RECENT_NUMBER_OF_EXECUTIONS

algorithm the problem was salved. This algorithm used last 40 events recorded for the

inferring purposes and provided very good result (see Figure 6.9). He needed about 35-40

events to infer correct knowledge level of the user.

6.2.4 Di�erence between chain models in respect to inferring results

Two di�erent chain models were used in simulations. The obvious question was which

one of those two is better suitable for the APOSDLE (see sub chapter 5.3). The �rst

model included 14 KIE whereas the second one comprised only 9. They were di�ering

not only in number of KIE but also in terms of their mapping to levels. The di�erence

65

Figure 6.8: EventWeighting algorithm with user behavior changing

Figure 6.9: EventWeightingRecnetNumberOfExecutions algorithm with user behavior
changing

66

Figure 6.10: Chain model comparison

Figure 6.11: Chain model comparison with Weighting algorithm

in mapping was relatively small and the main question was if the number of KIE could

be reduced so that the inferring process is simpli�ed, without losing the preciseness of

inferring (see Figure 6.10).

After conducting a simulation with the Weighting algorithm it was obvious that al-

though the reduced Chain model needed few extra steps to make correct inferring, it was

precise enough (see Figure6.11).

6.2.5 Which algorithm shows the best results for the given chain model

At the end there was only one question remaining. Which algorithms are best suitable

for the APOSDLE domains? After conducting a numerous simulations with di�erent

con�gurations we managed to narrow down the number of candidate con�guration (algo-

rithm plus chain model) for the UPS inference process. After seeing that DEFAULT type

67

Figure 6.12: Comparison between EventWeightingRecentNumberOfExecutions and Fre-
quencyRecentNumberOfExecutions

inferring algorithms are not good for inferring a user knowledge level in cases when user

changes his normative behavior, it was obvious that the �nal solution would be one of the

RECENT_NUMBER_OF_EXECUTIONS type algorithms. And indeed, we managed

to distinguish two of them. These are: FREQUENCY_RECENT_NUMBER_OF_EXECUTIONS

and EVENT_WEGHTING_RECENT_NUMBER_OF_EXECUTIONS algorithm (see

Figure 6.12).

With very small di�erences, both algorithms showed good results. Therefore these two

algorithms were seen as top candidates for the �nal solution.

6.3 Conclusion

The whole con�gurability concept was always threatening to explode in complexity.

Therefore one of the �rst principles in decision making process was to try to reduce

the complexity as much as possible.

The clear results of the simulations were four con�gurations. Both chain models showed

good results and the best algorithms are FREQUENCY and EVENT_WEIGHTING al-

gorithm from RECENT_NUMBER_OF_EXECUTIONS type. Led by our principle

of choosing the simplest solution, the 9-Event Chain model and the simplest algorithm,

namely FREQUENCY_RECENT_NUMBER_OF_EXECUTIONS was given the pref-

erence.

Even though the generalizability of the outcomes is limited by the fact that a simulation

can never replace a real user study, we still believe that the simulation provides us with

answers to the very basic issues. It is possible when the real usage data comes, that some

68

other (more complex) con�gurations may lead to better inferences.

This also should be seen as the �rst step in component evaluation of the UPS com-

ponent. The evaluation will be done in three phases: phase one simulation, phase two

labor experiment, and phase three the �eld experiment.

69

7 APOSDLE technical view

This chapter provides the general overview over the most important components of the

APOSDLE system. APOSDLE has a typical client-server architecture realized in java

technologies. The number of di�erent frameworks such as Spring1 , Hibernate2 , and

Axis23 were used to develop the software. The client communicates with di�erent ser-

vices provided by the APOSDLE Platform (see Figure 7.1). Services are comprised of

conceptually similar functions and are de�ned in WSDL format. The components on

the client side communicate with the APOSDLE platform using clearly de�ned inter-

face. APOSDLE is a highly complex system and the goal of this chapter is to explain

the most relevant services on the platform side which are directly accessed by the client

components. In the following, each of the APOSDLE Platform components and their

relationship to APOSDLE client components will be described. But �rst a short overview

over the most relevant client side components.

7.1 Client Side Components

There are di�erent types of Knowledge Resources accessible to the APOSDLE user:

Tasks, Topics, Learning Paths, Documents, Snippets, Cooperation Transcripts and Per-

sons. All these resources can be organized into so called Collections and shared through-

out the APOSDLE and thus may be considered as Knowledge Resources themselves.

The role of the client side components is to provide the access to the user to all these

knowledge resources. To do so user can use di�erent client components:

• APOSDLE Suggest and Search are basically the main entrance points where knowl-

edge resources can be accessed. Search uses the text based search capabilities for

retrieving the knowledge resources, while APOSDLE Suggest has more intelligent

approach, namely using the intelligent algorithms for retrieving the knowledge re-

sources relevant to the user's current context of work.

1Spring http://www.springsource.org/
2Hibernate https://www.hibernate.org/
3Axis2 http://ws.apache.org/axis2/

70

Figure 7.1: APOSDLE Client-Server Architecture

• Experiences is a direct access to the user related data. This is the visual represen-

tation in a treemap4 visualization method of the user pro�le in the system. The

user can see all topics and their mappings to the knowledge levels as well as the

action which led to this decision.

• Cooperation Wizard is a component which helps the users during their cooperation

processes. It makes the cooperation structure visible and provides the transcripts

of the cooperation.

• APOSDLE Reader is a central access to Snippets and Documents. It is based on

the ADOBE PDF viewer and a video player for all standard audiovisual formats.

In order to see the documents, APOSDLE converts them into .pdf �les. These

documents cannot be modi�ed. On the other hand the APOSDLE Reader o�ers

an innovative approach in annotating these documents and thus creating so called

snippets. The user can select the part of the document and relate him to a particular

topic. This snippet is later recognized as a resource in the APOSDLE system.

These are not all client components but the ones with the most impact in the system.

The next sub chapters are describing the components on the platform side, which are

supporting these client components and providing them the intelligence in the process of

retrieving the knowledge resources.

4treemap: http://www.cs.umd.edu/hcil/treemap/

71

7.2 User Pro�le Service (UPS)

The User Pro�le Service is responsible for the adaptivity of the system and is therefore

a central component in the system. Almost each component on the client side depends

directly or indirectly from this service. APOSDLE Suggest depends almost entirely on

UPS. The Task, Topic and Learning Paths are retrieved by the UPS. The UPS also ranks

the Learning Goals based on the learning gap of the user. Retrieval of the knowledge

content such as Snippets, Documents etc. is combined e�ort of UPS and RS. Experiences

is a visual representation of the User Pro�le and therefore directly dependent on UPS.

UPS provides the information not only about the current level of knowledge a user has

acquired for a particular Topic, but also the list of user activities used to infer this level.

Other services can make use of the data stored in the UPS and query this data for their

purposes.

7.3 Retrieval Service (RS)

The Retrieval Service is a general service responsible for retrieval of Knowledge Resources.

It is used by Search and APOSDLE Suggests component on the client side. APOSDLE

Search uses RS for full text search in a Lucene -based search engine. APOSDLE Sug-

gest on the other hand uses RS together with UPS and an associative network to �nd

Knowledge Resources similar to the current user's context.

7.4 Cooperation Service (CS)

The Cooperation Service is responsible for the cooperation activities within the APOS-

DLE system. This service also maintains the re�ections made by users about their

cooperation. CS uses UPS to provide the context for the cooperation and in return CS

provides the UPS with valuable data relevant for maintaining user pro�les. The Co-

operation Wizard client component uses the CS to initiate cooperation, share context

information, and create notes during a cooperation.

7.5 Knowledge Resources and Model Repository (KRMR)

The Knowledge Resources and Model Repository is a repository where di�erent data

models are maintained. It is a common interface, an abstraction layer to distributed

underlying (data) models. These models could be representation of working processes in

72

a company abstracted as ontology model, or access to di�erent resources such as snippets,

documents, and multimedia stored in di�erent data repositories. This service is used by

all other platform services and therefore indirectly by all client components. APOSDLE

Reader retrieves all Knowledge Resources directly from the KRMR to visualize them.

The following chapter describes the UPS components from con�gurability point of view

in more detail.

73

8 Architecture and Components of UPS

from Con�gurability perspective

This chapter describes the components as well as the architecture of the UPS P3 (User

Pro�ling Service Prototype 3) from con�gurability point of view. The User Pro�le Service

(UPS) is the software component, which maintains the user pro�les of APOSDLE users

and provides di�erent user related services (e.g., document recommender service, people

recommender service) to the other parts of APOSDLE (client and server). In a nutshell,

the UPS has two goals: First, the diagnosis of a user's knowledge level (beginner, AD-

VANCED, expert) in each topic in the learning domain, and second, the diagnosis of

changes in the knowledge level (maintenance).

First sub chapter 8.1 describes the UPS services in general. The intention is to get

a picture about the UPS as a bundle of services used by the rest of the system. The

chapter about APOSDLE (see chapter 7) shows that the UPS is a central and one of the

most important components of the APOSDLE system. UPS is also one of the biggest

and richest (in respect to functionalities) service throughout the whole system (not just

on the platform side). It is also the best documented and tested service in system. Due

the many dependencies to this service it was necessary to pay more attention on the

quality of the code during the design and developing phase. If the UPS does not work

properly the whole platform is not functional and therefore the APOSDLE system in

general. Con�gurability as underlying concept of the UPS is present in almost each of

the components. The following sub chapters are describing these components and their

relationship to the con�gurability approach. Due the importance and the central role of

UPS in the APOSDLE system this concept has a great impact on the whole system as

well.

The most important parts of the UPS are (see Figure 8.1):

• UPS Services (see sub chapter 8.1)

• Data Model (see sub chapter 8.2)

• User Manager (see sub chapter 8.3)

74

Figure 8.1: UPS Architecture simple view

• Event Chain Manager (see sub chapter 8.4)

• Inference Manger (see sub chapter 8.5)

All these parts are described in following sub chapters.

8.1 UPS Services

As shown in �gure 8.1 the UPS consist out of many services. They are providing the rest

of the system with personalized data prepared by the UPS. The con�gurability approach

is not present in these services explicitly but implicitly trough other components. These

components are providing the underlying infrastructure for the services to work upon

them. The services present in UPS are:

• WorkContextInformationService: provides the direct link to underlying ontology

models and returns the requested Task/Topics/Learning Paths/Learning Goals.

These resources are personalized if so needed. For example the returned list of the

Learning Goals is sorted/ranked based on the user pro�le.

• WorkContextLoggingService: is used to set the current context of user for the

further purposes. This context is used by various services like cooperation, Work-

ContextInformationService, UserPreferenceService etc...

75

• UserExperienceInformationService: is predominantly used by the Experiences com-

ponent on the client side. But also APOSDLE reader and Privacy Service are using

the information provided by this service. Experiences holds the entire user pro�le

for the visualization purposes. APOSDLE Reader and Privacy Service are inter-

ested in the last ten topics a particular user worked in.

• UserPreferenceService: as the name of the service says this service is responsible

for saving the users preferences. It also used by other services to keep track of the

documents uploaded by a user.

• PeopleRecommenderService: is a service called by the RetrievalService for recom-

mending users relevant for a particular topic. The relevant users are recommended

based on their user pro�les.

All above stated services are not just using the information prepared by UPS, but also

providing the valuable data for the personalization purposes. The UPS collects these

data and stores them in a very �exible underlying data model. The following sub chapter

describes this data model.

8.2 Data Model

Data model is very important for the whole con�gurability concept. Only if the data

model is �exible enough we can pursuit the �exible approach the con�gurability is of-

fering. In order to provide such data model I used hibernate top-down approach. The

newest trends and technologies in so called ORM approach are used to create the data

model represented as an object abstraction layer, and to create the data base schema

to support and persists the information contained in those objects. The advantage is

that the whole work in creating the data base schema is left for the Hibernate to deal

with. Therefore the focus could be shifted to some more important things such creating

a �exible, scalable and extendable data model. The objects and thus the data model

created is showed in �gure 8.2.

The lowest construct is the Event. The Event can have di�erent types. They are all

hierarchically ordered where the children are inheriting the parent properties. There are

numerous information saved in Event objects:

• The time stamp

• Topic (context) under this event is created

76

Figure 8.2: Data Model of the UPS

• The Id of the user which created this event

• And a lot of di�erent information relevant to the event type

The Event is used as a part of the Event Chains, or other formulated the Event Chains

are collection of Events.

Event Chains are used as a part of Usage Data and the Chain Constructs. Usage Data

are using the Event Chains for the fast access to user activities in system. The Usage

Data holds all data relevant to a user in UPS.

Chain Constructs are something like a constructs where the Event Chains are their

instances. Here is the structure of the Chain Models (see sub chapter 5.3) preserved.

The Chain Model object holds references to a di�erent Chain Constructs and maintains

the chain models present in the system.

Inference Manager Model holds the con�gurations present in the system. This object

has a reference to the Chain Model and the information about which Algorithms are

present in the system.

77

8.3 User Manager

User Manager has a duty to maintain the logged users in a system. If the user is not

logged-in this component restricts the access to UPS data. Just reduced set of user

data are allowed. Although seems simple, the activities of this component are very

complex. This component manages and synchronizes the multi threading in UPS and thus

preventing the common errors caused by multi threading. At moment the con�gurability

approach is not present in this component. But in time and further development it is

possible that this component has a control of which con�guration to switch based on the

user type. This �ne granular usage of the con�gurability is not yet present in the system.

8.4 Event Chain Manager

Event Chain Manager is a �rst intelligent component in the system. This component

deals with the creation of the events based on the policies de�ned for this purposes.

These policies are pre-de�ned by the Chain Models structure present in con�guration.

This component looks into data base for the right Chain Model structure and based on

that creates the policies used for the �ltering of the incoming events. The maintaining

the chain models, is also done by this component. It tracks the user activities and tries to

�lter the dirty data out of the system. The dirty data are all those user actions performed

without context and purpose (meaning just clicking around). After an Event had passed

all checks made by this component, he could be handed over to inferring mechanism and

persisted into data base. This component depends entirely on the preselected con�gura-

tion. If the con�guration for any reason is not pre selected, Event Chain Manager cannot

operate.

8.5 Inference Manager

Inference Manager is a second intelligent component in the system. After one Event had

passed all checks made by Event Chain Manager, the Inference Manager is sure that

the Events he gets are correct and ready for inferencing. Inference Manager holds the

right con�guration from Data Model and based upon this con�guration sets the right

inferring algorithm to be used for inferring purposes. After this process is �nished the

newly acquired information is persisted into usage data. Hence the user pro�le is updated

and ready for the exploitation. Again without information from con�guration, Inference

Manager cannot be initialized with the correct algorithm and therefore cannot proceed

78

Figure 8.3: Data �ow inferring process

with inferring activities.

8.6 Data Flow

As described in previous sub chapter the user pro�le is updated each time a user �res

an event in system. This way we can be sure that the user pro�le is up to date. What

exactly happens when one event comes in UPS is presented in �gure 8.3.

As �gure 8.3 shows the Event comes into UPS over KIE interface. This is the entry

gate for all incoming events. First the events need to be properly structured for the

UPS purposes. This is done by EventConverter. After Event object is made, he will be

turned over to the EventChainManager for the further processing. So far Event object

is nothing more but the hollow shell ready to be �lled in and having only information

about the resource from which this event was �red. EventChainManager sets the correct

chain model structure from con�guration and gives the Event to the EventChainHandler

which checks if this Event satis�es all pre conditions. If this is the case this event is

injected into EventChain. After EventChainHandlers informs the EventChainManger

that this Event had passed all checks he provides the Event with the context elements.

These are the Topic information which the underlying resource in event has relation to.

After this checks and enrichment is �nished the Event is given to the InferenceManager

for inferring. InferenceManager selects the appropriate Inferencing Algorithm out of the

con�guration and executes him over the recorded events. The result of this inferring

process will be persisted and user pro�le will be updated.

79

8.7 Conclusion

The UPS is one of the most complex and important components throughout the entire

APOSDLE architecture. The UPS itself is constructed in a very modular and maintain-

able way. Each of the components implemented and integrated into UPS is made with

respect to the most modern and important software engineering developing paradigm.

The con�gurability approach is present in almost each component of the UPS. Espe-

cially the components responsible for the intelligence such as Event Chain Manager or

Inference Manager are entirely dependent of this approach. These components are using

the information from con�guration to choose the right chain models structures and algo-

rithms, which are later used for the �ltering and inferring purposes. Extensive testing and

documentation made this service suitable for the further development and maintenance

purposes.

80

9 Simulation framework

One way to prove if the user pro�le service is correct is to perform simulations on UPS.

The goal is to try to �nd out the best combination or combinations of chain models and

algorithms, depending on domains and person behavior types(see chapter 6).

The �rst challenge was to extract the UPS out of APOSDLE system in order to conduct

simulations with this service. Although UPS stands for the User Pro�ling Service it is

not a service in a technical sense. This service is rather a component or a module on the

APOSDLE platform side than a real web service. Therefore it was necessary to adapt

this component in order to become a real autonomous service. After being extracted, the

UPS was wrapped and prepared to be used by external simulation framework developed

for the simulation purposes. The design and the components of this framework are

described in the sub chapter 9.1. The data �ow is described in the sub chapter 9.2. Sub

chapter 9.3 describes the component implemented for the evaluation purposes when the

real usage data comes.

9.1 Simulation framework design

The architecture of the simulation framework is shown in (see Figure 9.1). The most

distinguished parts are:

• Input Handling

• Event (Pool) Creator

• Simulation Commands

• Writer

These parts are explained in detail in following sub chapters.

9.1.1 Input Handling

Input Handling part deals with the di�erent input types. The intention was to have

di�erent input media possibilities such as the console, graphical user interface or the

81

Figure 9.1: Simulation framework architecture

82

Figure 9.2: Sequence Diagram for simulations

input �le (.csv �le type). This should make this component more �exible and extendable

for the di�erent usage scenarios. The requirement was to have �exible input media and

still not to invest to much resources in implementing this part. After analyzing the

requirements and the needs of the simulation the �nal decision was to use the input �le

in .csv format as s input media for user interface. This made it possible to de�ne and

run several simulation runs at the same time without having to start each simulation run

manually.

9.1.2 Event (Pool) Creator

Event (Pool) Creator is in charged for the creation of the prede�ned number of events

which are to be used in simulation. It is important to di�erentiate between Event Con-

structs and Events (instances). The number of Event Construct is limited where the

number of Events (instances) is unlimited. The process of creating the events for the

simulation is divided into two parts.

First the Event Constructs are extracted from the Chain Model (de�ned in con�gura-

tion). This means if the Chain Model is build from 14 Event Constructs this pool will hold

these 14 Event Constructs. After extracting the Event Constructs into Event Construct

Pool, the Pool Creator divide this pool into three smaller pools holding BEGINNER,

ADVANCED and EXPERT Event Constructs respectfully.

Secondly when the simulation is started, two things have to be de�ned: the number of

83

the events to be used in simulation, and the percent of the normative behavior. For exam-

ple if the number of the Events is set to 100 and the normative behavior for BEGINNER

is set to 70% then the 70 Events (instances) are created out of the BEGINNER Events

Construct Pool and the rest of the (30) events from the other two pools. So created

Events are than saved by the Simulation Command and used for the real simulation.

9.1.3 Simulation Commands

Simulation Commands are the implementation of the simulation runs based on the re-

striction level. There are random, simple constraint and complex constraint commands.

These commands are operating over the event pool and deciding which events in which

order should be taken into simulations. This ordering of the events depends from the

restriction level. For the random type it is not relevant at all, meaning that the events

are simply retrieved from the event pool and directly passed over to the UPS. In simple

constraint command the ordering is very important. This means that certain events are

having some precondition which have to be considered. For example if the user wants

to edit a snippet he has to open his resource viewer �rst. The complex constraint com-

mand does the retrieval of the Events not programmatically but uses the list of manually

compiled Events (for more details about the command restrictions see chapter 6).

Regardless of which way is used to retrieve Events, all these events are then passed to

the UPS service where the Simulation Command supervise the execution and the outcome

of the inferring process. The Simulation Commands are also in charge of creating the

output �les trough Writer.

9.1.4 Writer

The Writer creates the output �les in a prede�ned form. So generated �les are then

used by the SPSS application for the graphical representation of the simulation results.

Therefore the format of this �le very important (for more details about the format see

chapter 6). For the creation of the .csv �les I used the special library, namely supercsv1.

This library makes it possible to create complex and standardized .csv �les.

Writer optimizes the writing e�ort by trying to reduce the number of actual writings.

To do so he has to know when the simulation runs are �nished and then try to write

them at once in the .csv �le. If there are too many data to hold in memory he writes the

data in chunks and so optimize the writing actions.

1supercsv: http://supercsv.sourceforge.net/

84

9.2 Data Flow

The sequence diagram (see Figure 9.2) shows the sequence of the calls made during a

simulation run. There are basically three main steps in each simulation:

• Initialization

• Event Pool creation

• Simulation

9.2.1 Initialization

Initialization does the initialization of the framework, meaning that all relevant data

from the input �le are read and imported into framework for the further purposes. Such

data are: Number of Events (steps), User Id, Con�guration to use, Algorithm, Simulation

Command Type etc... The initialization process also extracts the events from the chain

models and creates the pool of the event constructs which are later used for the creation

of the events used in simulation. These are the steps from 1 to 7 in the sequence diagram

(see Figure 9.2).

9.2.2 Event Pool Creation

Event Pool creation in respect to the selected simulation command (restriction mode)

and the number of the events which should be used in simulation (de�ned in input �le),

creates the pool of the event objects (fully initialized). Steps from 8 to 14 (see Figure

9.2).

9.2.3 Simulation

Simulation is an actual simulation run. This is conducted by simulation command. It

uses the created pools of the events and start sending the events into UPS and observing

the inferring process. The output results are saved into output �le for further processing

by SPSS application.

9.3 Evaluation Component

The purpose of the simulation framework is to simulate the real usage data, in order

to calibrate the UPS before real user were using it. Simulations are also the �rst step

in UPS component evaluation process. After running the APOSDLE in the real world

85

Figure 9.3: Evaluation component sequence diagram showing the work�ow of the writing
the usage data into .csv �le

we should �nally have the real data in the UPS data base. This data also needs to

be evaluated. To conduct the evaluation with the real usage data there is a special

component in UPS, namely Data Evaluation Component. This component uses a lot

of infrastructure used by simulation framework. Same as simulation framework this

component operates in standalone mode, meaning it doesn't need the whole APOSDLE

system running to perform evaluations. Same as simulation framework only the UPS

and depended components are needed. Basically the only new thing in this component

was a special csv writer in charge in writing the results into .csv �le. This .csv �le will

be imported into SPSS application for the visual presentation of the data. This is also

very similar to the simulation framework, with the di�erence that the logging events are

also considered. Beside KIE this type of events is particularly valuable to the evaluation

purposes since they o�er a better picture of the whole user activities in APOSDLE.

For this reason it was needed to implement another writer especially designed for the

evaluation component. To better understand the work�ow of this component, see the

sequence diagram (Figure 9.3)

9.4 Conclusion

The creation of the simulation framework was not only signi�cant for the simulation

purposes but also for the future service extraction. Here is showed how this can be done.

Although the goal was not to create autonomous service, the creation of the simulation

framework had a autonomous service as a side e�ect. Such services can be later used in

di�erent applications. The simulation framework it self was developed in the spirit of

86

design patterns and therefore incorporating the best development practices.

87

10 Outlook and Future Work

This thesis describes the UPS Prototype 3 from con�gurability point of view and the

simulation framework as a part of evaluation of the UPS component. As we saw the UPS

Prototype 3 was completely re-implemented from scratch. The reason for not using the

legacy UPS Prototype 2 was that the Prototype 3 used a new concept in the background,

namely KIE. KIE concept opened a new perspective for the UPS. Suddenly it was possibly

to make a assumption about the user on the really �ne granular level. Each user action

has become meaningful and the source of information about the user knowledge. At

the same time we stand for a problem of interpreting this information. Apparently it

was very hard to determine to which extend a certain user actions were relevant for

the inferring purposes and how they should be interpreted. Another issue was if they

have the same meaning throughout the di�erent domains. Suddenly we face the fact of

not knowing these things in advance. Therefore we had to introduce the new approach

in developing the UPS namely con�gurability approach. This means having a number

of di�erent types of inference agents (user pro�le component con�gurations) prepared

to work under di�erent circumstances. These circumstances can be either new system,

domains, di�erent states within the same system or domain, working or behavior patterns

etc. If for any reason the current con�guration is not su�cient we should be able to easily

change it with another con�guration which is more suitable for the given circumstances.

The obvious question at this point would be: how do we know which con�gurations are

best equipped to work under certain circumstances? Well, we have to have some kind of

proving mechanism to answer this question. The proving mechanism this theses presents

is a simulation framework specially developed for this purposes. This framework tries to

provide the system with real usage data.

After applying the con�gurability approach, we conducted a series of simulations

(benchmarking between the di�erent con�gurations) to narrow down the number of pos-

sible con�gurations in the system. These con�gurations were the candidates for the �nal

version of the APOSDLE. The results of these simulations showed that we have to con-

sider the knowledge aging factor when implementing the inferring algorithms. Aging

factor in this case means the number of user actions used for the inferring purposes. Not

88

just that simulation showed that such algorithms are having better performance but also

provided the number of the actions which should be taken into account. At the end we

were able to narrow down the number of the possible con�gurations from original six to

just two.

The UPS was conceptually always considered as an autonomous service. This was not

the case from technical point of view. The Simulation Framework (see chapter 9) showed

that this is possible. The way how this was done was most probably not the optimal way

but had showed that there are technical means of doing it.

If considered as a autonomous service with the di�erent con�gurations possible, the

application �eld is practically unlimited. There are two possible scenarios how this service

can be further developed.

The �rst scenario tries to identify the user behavior types within one system and to

apply the individual user pro�ling for each of these types. This presumes the extensive

research in the area of the user behavior and usability of the intelligent adaptive systems.

As a result we could have the adaptive approach on the user behavior level. For example

there are users which tend to use one system on di�erent ways although they may have

the same knowledge level about the given topic. If the system is not able to di�erentiate

between user types it is likely that the system will have di�erent inferring results for

these users. This may led to di�erent and false outcomes in adaptation process.

The second scenario. We can imagine that there is a system which needs user pro�ling.

If there is a proper underlying model representation of the domain there are no technical

obstacles in using the UPS service for the user pro�ling purposes. We can go even further

in our contemplation. Why not having a real web service running in the Internet and

providing di�erent distributed systems with a homogeneous user pro�ling capabilities.

Today we have numerous social networking services (facebook, myspace, tagged etc.)

or online shopping systems (amazon, eBay) or many Google applications which can

provide such web service with the valuable data for the user pro�ling. In return all these

distributed systems can exploit the results of this user pro�ling web service for their own

purposes. Each one of these distributed systems can have his own (or more of his own)

con�guration de�ning the way how the UPS should work. The synergy created by using

such UPS with distributed heterogeneous systems is enormous.

No matter which of these scenarios to follow it is obvious that there is a lot of potential

for the con�gurability approach of the UPS.

89

List of Figures

1.1 Structure of this Master Thesis . 12

2.1 Bayesian network . 19

2.2 Components of a user model [41] . 20

3.1 The Architecture of the DOPPELGÄNGER[27] 23

3.2 BGP-MS User Modeling System [32] . 26

3.3 Main components of the KnowledgeTree distributed architecture [7] 29

3.4 Centralized student modeling in CUMULATE [7] 30

3.5 Comparison of User Model-based Systems 33

3.6 Relevance of di�erent systems to APOSDLE 33

4.1 Simulation Development Process [52] . 36

4.2 Model Veri�cation[52] . 39

5.1 The �rst proposal for the events . 50

5.2 The evolution of event list . 51

5.3 Event-Mappings used for simulation . 52

5.4 APOSDLE System Usage Paths . 55

5.5 Usage Paths through APOSDLE as graphs 56

6.1 Documentation of all simulation runs . 59

6.2 Input �le as CSV . 61

6.3 Behavior modi�cation input �le as CSV 61

6.4 Di�erent amounts of Beginner normative behavior 63

6.5 Result of simulation for the di�erent amount of Beginner normative be-

havior . 64

6.6 Level detection for the EventWeightingAlgorithm 64

6.7 Modi�cation of user behavior . 65

6.8 EventWeighting algorithm with user behavior changing 66

90

6.9 EventWeightingRecnetNumberOfExecutions algorithm with user behavior

changing . 66

6.10 Chain model comparison . 67

6.11 Chain model comparison with Weighting algorithm 67

6.12 Comparison between EventWeightingRecentNumberOfExecutions and Fre-

quencyRecentNumberOfExecutions . 68

7.1 APOSDLE Client-Server Architecture . 71

8.1 UPS Architecture simple view . 75

8.2 Data Model of the UPS . 77

8.3 Data �ow inferring process . 79

9.1 Simulation framework architecture . 82

9.2 Sequence Diagram for simulations . 83

9.3 Evaluation component sequence diagram showing the work�ow of the writ-

ing the usage data into .csv �le . 86

91

Bibliography

[1] Jameson A. User modeling: An integrative overview. tutorial abis98:workshop on

adaptivitiy and user modeling in interactive software systems, forwiss report. 1998.

[2] Jerry Banks. Introduction to simulation, proceedings of the 31st conference on winter

simulation: Simulation�a bridge to the future. In Winter Simulation Conference,

volume 1, pages 7�13, Phoenix, Arizona, United States, 1999.

[3] Peter Brusilovsky. Methods and techniques of adaptive hypermedia. In User Mod-

eling and User-Adapted Interaction, volume 6, pages 87�129, 1996.

[4] Peter Brusilovsky. Adaptive hipermedia: An attempt to analyze and general-

ize. In Conference on Multimedia, Hypermedia and Virtual Reality, pages 288�304.

Springer-Verlag, 1996a.

[5] Peter Brusilovsky. Adaptive and inteligent technologies for web-based education.

kÃ×nstliche intelligenz,. pages 19�25, 1999.

[6] Peter Brusilovsky. Adaptive hypermedia. User Modeling and User-Adapted Interac-

tion, 11(1):87�110, 2001.

[7] Peter Brusilovsky. Knowledgetree: a distributed architecture for adaptive e-learning.

proceedings of the 13th international world wide web conference on alternate track

papers and posters. In International World Wide Web Conference, New York, NY,

USA, 2004. ACM New York, NY, USA.

[8] Peter Brusilovsky and Eva MillÃ½n. User models for adaptive hypermedia and adap-

tive educational systems. In The Adaptive Web, pages 3�53. Springer-Verlag Berlin

Heidelberg, 2007.

[9] Peter Brusilovsky, Michael Yudelson, and Vladimir Zadorozhny. A user modeling

server for contemporary adaptive hypermedia: An evaluation of the push approach

to evidence propagation. In User Modeling 2007, volume Volume 4511/2009, pages

27�36. Springer Berlin / Heidelberg, 2007.

92

[10] Peter Schwarz E. Weber G. Brusilovsky. Elm-art: An inteligent tutoring system

on world wide web. In Springer Verlag, editor, Third International Conference on

Intelligent Tutoring Systems ITS-96, LNCS 1086, pages 261�269, 1996.

[11] Andrea Bunt and Cristina Conati. Probabilistic student modelling to improve ex-

ploratory behaviour. User Modeling and User-Adapted Interaction, 13(3):269�309,

2003.

[12] Robin Burke. Knowledge-based recommender systems. Encyclopedia of Library and

Information Systems, 69(32), 2000.

[13] R.R. Burton. Diagnosing bugs in a simple procedural skill. 1982.

[14] Brajnik G. C. and Tasso. A shell for developing non-monotonic user modeling

systems. International Journal of Human-Computer Studies, 40 Nr.1:31�62, 1994.

[15] Cassandras C. Discrete Event Systems. Asken Associates, Boston, 1993.

[16] Hinrich SchÃ×tze Christopher D. Manning, Prebhakar Raghvan. Introduction to

information retrieval. In Introduction to information retrieval, pages 116�117. Cam-

bridge University Press, 2008.

[17] Cristina Conati, Abigail Gertner, and Kurt VanLehn. Using bayesian networks to

manage uncertainty in student modeling. User Modeling and User-Adapted Interac-

tion, 12(4):371�417, 2002.

[18] Knapell P. Arangno D. Simulation Validation: A Con�dence Assessment Method-

ology. IEEE Press, Los Alamitos, 1993.

[19] Alberto DÃaz and Pablo GervÃ½s. Adaptive user modeling for personalization of

web contents. In Adaptive Hypermedia and Adaptive Web-Based Systems, pages

65�74. 2004.

[20] B. Berden B. De Lange B. Rousseau T. Santic S. Smiths N. Stash De Bra P., A. Aerts.

Aha! the daptive hypermedia architecture". In ACM Conference on Hypertext and

Hypermedia,, pages 81�84, Nottingham, UK, 2003. ACM.

[21] D. Smits De Bra P., N. Stash. Creating adaptive application with aha! pages 1�29,

2004.

[22] Nora Parcus De Koch. Software Engineering for Adaptive Hypermedia Systems.

PhD thesis, Faculty of Mathematics and Computer Science, Ludwig-Maximilians-

University Munich, 2000.

93

[23] Ronald Denaux, Lora Aroyo, and Vania Dimitrova. An approach for ontology-based

elicitation of user models to enable personalization on the semantic web. In Special

interest tracks and posters of the 14th international conference on World Wide Web,

pages 1170�1171, Chiba, Japan, 2005. ACM.

[24] D.E. Egan. Individual di�erences in Human-Computer Interaction. Elsevier Science

Publishers B.V., Amsterdam, 1988.

[25] Weber Gerhard and Peter Brusilovsky. Elm-art: An adaptive versatile system for

web-based instruction. International Journal of Arti�cial Intelligence in Education,

pages 351�384, 2001.

[26] Nicola Henze. Vorlesung aus personalisierung und benutzermodellierung, 2008.

http://www.kbs.uni-hannover.de/Lehre/pers08/index.xml, last visited at 2008-09-

29.

[27] Orwant J. Doppelgaenger goes to school: machine learning for user modeling. PhD

thesis, MIT, 1993.

[28] Orwant J. Heterogeneous learning in the doppelgaenger user modeling system. User

Modeling and User-Adapted Interaction, 4:107�130, 1995.

[29] F. Jennings and D.R. Benyon. Database systems: Di�erent interfaces for di�erent

users. 1992.

[30] Nielsen Thomas D. Jensen, Finn V. Bayesian Networks and Decision Graphs, volume

2nd of Information Science and Statistics. Springer New York, 2007.

[31] Sleeman J.S.Brown. Inteligent tutoring systems. 1981.

[32] Blank K. Benutzermodelierung fÃ×r Adaptive Interaktive Systeme: Architektur,

Methoden, Werkzeuge and Anwendungen. PhD thesis, University of Stuttgart, Ger-

many, 1996.

[33] R. Kass and T. Finin. The role of user models in co-operative interactive systems.

International Journal of Intelligent Sytems, 4(1), 1989.

[34] Alfred Kobsa. User modeling: Recent work, prospects and hazards; in adaptive user

interfaces: Priciples and practise; practise; schneider-hufschmidt, m., kÃ×hme, t.

malinowski� 1993.

94

[35] Alfred Kobsa. Generic user modeling systems. User Modeling and User-Adapted

Interaction, 11(1):49�63, 2001.

[36] Alfred Kobsa. Generic user modeling system. User Modeling and User-Adapted

Interaction, pages 51�52, 2004.

[37] Alfred Kobsa. Generic user modeling systems. In The Adaptive Web, pages 136�154.

2007.

[38] Alfred Kobsa and Pohl W. The user modeling system bgp-ms. User Modeling and

User-Adapted Interaction, 4(Volume 4, Number 2 / June, 1994):59�106, 1995.

[39] Alfred Kobsa, JÃ×rgen Koenemann, and Wolfgang Pohl. Personalised hypermedia

presentation techniques for improving online customer relationships. The Knowledge

Engineering Review, 16(2):111�155, 2001.

[40] Jaroslav Kuruc MÃ½ria BielikovÃ½ and Anton Andrejko. Learning programming

with adaptive web-based hypermedia system aha! 2005.

[41] David Benyon Murray and Dianne. Adaptive systems: from intelligent tutoring to

autonomous agents. pages 10�13, 1993.

[42] D.M Murray. Modeling for adaptivity. In Proceedings of 8th Interdisciplinary Work-

shop, Informatics and Psychology, Scharding, Austria, 1989.

[43] Fishwick P. Simulation Model Design and Execution. Prentice Hall, Englewood

Cli�s, NJ, 1995.

[44] Joseph C Pasquale. Decaying con�dence function for aging knowledge in expert

systems. Technical report, University of California at Berkeley Berkeley, CA, USA,

1987.

[45] Michael Pazzani and Daniel Billsus. Content-based recommendation systems. In

The Adaptive Web, pages 325�341. 2007.

[46] Nance R. "A History of Discrete Event Simulation Programming Languages". The

History of Programming Languages - II. Association of Computing Machinery, New

York, 1996.

[47] Elaine Rich. User modeling via stereotypes. Cognitive Science, 3(4):329�354, 1979.

[48] Elaine Rich. Users are individuals: individualising user models. I nternational

Journal of Man Machine Studies, 18, 1983.

95

[49] Ana Paiva Self and John. Tagus- a user and learner modeling workbench. User

Modeling and User-Adapted Interaction, 1995.

[50] John Self. Formal approaches to student modeling. Technical report ai-59, Lancaster

University, England, 1991.

[51] John Self, G. I. McCalla, and Jim Greer. Formal approaches to student modelling.

In Student Modelling: the key to individualized knowledge-based instruction, pages

295�352. Springer-Verlag Berlin Heidelberg, 1994.

[52] Roger D. Smith. Simulation article in "encyclopedia of computer science"

http://www.modelbenders.com/encyclopedia/encyclopedia.html, 1998.

[53] Markus Strohmaier, Mathias Lux, Michael Granitzer, Peter Scheir, Sotirios Liaskos,

and Eric Yu. How do users express goals on the web? - an exploration of intentional

structures in web search. In Web Information Systems Engineering, pages 67�78.

2007.

[54] Schriber T. An Introduction to Simulation Using GPSS/H. John Wiley, New York,

1991.

[55] G.C. van der Veer. Human-Computer Interaction. Learning, individual di�erences

and design recommendations. Alblasserdam, 1990.

[56] J. Vassileva. A classi�caition and synthesis of student modeling techniques in in-

telligent computer-assisted instruction. In ICCAL'90 Computer Assisted Learning,

pages 202�203. Springer-Verlag, 1990.

[57] Law A. Kelton W. Simulation Modeling and Analysis. McGraw Hill, New York,

1991.

96

