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Abstract

In the worldwide e�ort to mitigate human induced climate change, Reducing
Emissions from Deforestation and Forest Degradation (REDD) represents an
instrument of avoiding, monitoring and quantifying cutting activities in tropi-
cal rain forests. According to Deforestation and Forest Degradation around 17
% of all greenhouse gases are emitted to the atmosphere. REDD o�ers �nan-
cial compensation for countries willing and able to avoid emissions through
wood cutting. For these payments carbon quanti�cation based on remote sens-
ing data sets is needed. On the one hand there is deforestation which is de-
tectable since decades, on the other hand the development of methodologies for
degradation monitoring is still quite young. This diploma thesis investigates
the capacity of the NASA satellites of MODIS (Moderate-resolution Imaging
Spectroradiometer) within a REDD project area in the North of the Republic
of Congo. MODIS provides coarse resolution data sets in a high temporal
resolution. Therefore, mainly methods of Time Series Analysis are investi-
gated. Landsat images serve as visual groundtruth. This study has shown
that it is impossible to detect Selective Logging patterns within MODIS data
sets. Although the data sets are daily available, it proved impossible to ex-
ctract enough pixels without cloud, cloudshadow or aerosol obtruction. The
study failed on this fact, which is common in tropical rainforests, with high
moisture levels throughout the year.
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Chapter 1

Introduction

1.1 Background

According to the fourth Assessment Report of the United Nations Intergov-
ernmental Panel on Climate Change (IPCC) [23] deforestation and forest
degradation contributes around 17 % of all global greenhouse gas emissions,
which is more than the transport sector. Number one in producing green-
house gases is global energy production with 25 %, number two the whole
industrial sector. Tropical forests cover around 15 % of the earth's surface
and contain around 25 % of all carbon in the terrestrial biosphere. About
13 million hectare of forest are cut down every year. This is equivalent to
an area twice the size of France. Mainly forest is converted to agricultural
land or used for human infrastructure [13]. Forests are the worlds biggest
CO2 storage on the land surface. Photosynthesis is a biochemical process,
which converts carbon dioxide with the aid of water into di�erent types of
sugars. This process is driven by the power of sunlight. One of these sugars
is cellulose, which is the main structural component for the cell walls of all
green plants. Cellulose is the most common organic compound in the world.
Carbon dioxide is considered to be the primary cause of human induced cli-
mate change. If a forest is degraded by �re-clearing, the CO2 is emitted
immediately into the atmosphere. In comparison, other uses of wood tend to
emit CO2 more slowly. A lot of carbon dioxide is stored in the soil of forests.
This CO2 mitigates to the atmosphere as well. Microorganisms convert this
CO2 and release it to the atmosphere. This process is accelerated by direct
solar radiation after tree removal [1].
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Figure 1.1.1: Spreading of tropical rain forest
Map source:

http://upload.wikimedia.org/wikipedia/commons/0/06/TropischeRegenwaelder.png

1.2 The REDD initiative

REDD is an acronym for Reducing Emissions from Deforestation and Degra-
dation [32]. It is embedded into the United Nations Framework Convention
on Climate Change (UNFCCC). The idea behind REDD is the creation of
rules and mechanisms for developing countries to protect their forests and
promote sustainable use of their forest resources. This is done in the context
of the e�ort against human induced climate change. The aim is to make it
more valuable in a monetary sense to leave forests untouched rather than
to cut them down. This is done by creating a �nancial value for carbon
stored in the trees. After quantifying the stored carbon, the �nal phase of
REDD involves developed countries paying developing countries for leaving
their forests intact. Norway is the �rst and largest �nancial donor of the
UN-REDD Programme haveing contributed more than 80 million US dollar
between 2008-2010. Of course many other countries have also contributed to
the initiative. REDD �eld works take place in forests around the globe.

Monitoring systems are necessary to quantify deforestation as well as re-
generation of rainforests. From these quanti�cations, CO2 magnitudes of
certain areas or forest cuts are derived. In addition to the carbon storage,
which plays a role in climate change, forests contribute in many other ways
to the living conditions on the earth. Healthy forests store water and pro-
tect the soil from excess sun. They provide habitat for animals and plants
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domiciled there.

1.3 De�nition of Forest Degradation

Forest degradation is any decrease of canopy cover or biomass density in
a forest through a given time period [19]. The Marrakesh Accords of the
Kyoto Protocol [38] provide an agreement on the de�nition of �forest�. Parties
should select a single value of crown area, on tree height and area to de�ne a
forest within their national boundaries. The values have to be chosen within
the following ranges, acccording to the Marrakesh Accords [38]:

� Minimum forest area: 0.05 to 1 ha

� Potential to reach a minimum height at maturity in situ of 2-5m

� Minimum tree crown cover (or equivalent stocking level): 10 to 30 %

However, this is a wide de�nition making anything from 10 - 100 % tree cover
a forest. To build up a monitoring system for degradation, the causes as well
as the impact on the local forest ecosystem has to be known [3]:

� Selective logging

� Degradation for living purposes of local people (�rewood, timber, con-
version to agricultural land)

� Forest �res

1.3.1 Selective logging

This is a commercial timber cutting practice done by international tim-
ber companies. Only high quality timbers are harvested. The timbers are
brought to rich import countries like many European countries. It needs
infrastructure, like logging roads and logging decks in the forest of interest.
Sometimes, local sawmills are constructed as well as big transport routes to
connect the logging area to the public road or river network. This is necessary
in order to be able to transport the logged timber to the next international
harbor for export, either by lorry or by the rivers. The special logging pro-
cedure of helicopter logging is not very common, but shell be mentioned at
this point for the reason of completeness.

Forests degraded by selective logging can be detected by various combina-
tions of three environment types [35]:
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� areas of undisturbed forest, which are not degraded at all, either due
to a lack of expensive timber species or because of di�cult and costly
access conditions resulting from the local topography or transport in-
frastructure

� cleared forests for logging roads and logging decks, needed for the move-
ment of the heavy equipment, for collecting and cleaning the wood and
for transporting the timber on trucks

� forests with canopy gaps, as a result of selective tree-felling and extrac-
tion during logging operations

Selectively logged forests recover quickly, which leads to a limited timespan,
in which the detection of such activities is possible through methods of remote
sensing. However, even though the canopy gap of an old tropical tree is closed
in the course of a few years, it takes decades or even centuries until the pre-
logging status of timber amount and biodiversity is recovered at all. Certain
tree species disappear forever, if they are removed systematically from a
certain area of forest by selective logging.

1.3.2 Degradation for living purpose of local people

In contrast to the highly organized, mechanized and industrial degradation
of selective logging, the degradation done by local people take place on a
much smaller scale. In the surroundings of settlements, the populations need
the forests for collecting wood for cooking, for construction purposes or for
the production of charcoal. Sometimes forest is degraded to gain new areas
for planting crops or feed animals. Most of these activities are limited to a
few kilometers around the local settlements due to the fact that most african
farmers do not have motorized vehicles to reach the forests and to bring the
collected wood back home. Areas of forest are also clear-cut, to gain new
and fertile grounds for cultivating crops or feeding animals. If a nearby forest
has been recently commercially logged, the degradation by the local people is
facilitated. Due to over-population even such small-scale degradation often
exceeds the regenerative capacity of the forest, leading to a slow degradation
process [24]. After the over-exploitation for fuel wood or other local uses of
wood, the regeneration of the forests is often prevented by continuous animal
grazing. However, these people do not degrade the forest for commercial
purposes but only to get very basic materials for daily life.
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1.3.3 Forest �res

This kind of degradation mainly happens during the recovery of commer-
cial logged forests. An intact tropical forest shows a high rate of moisture
throughout the year. The dense and closed canopy of an intact forests pro-
tects the surface below from drying. A constant level of water is stored in
the forest through the whole year making the forest resistant to �re. Once
the canopy is opened by selective logging, the soil as well as the plants which
grow near to the surface are exposed to much higher rates of sunlight, possi-
bly drying them out and making them more vulnerable to forest �res. Thus,
these �res may open up gaps of selective logging and convert biomass to
Greenhouse Gases [36].

1.3.4 Conclusion

For establishment of a monitoring system, which aims to map any kind of
forest degradation, the main degradation type of interest is commercial selec-
tive logging. It leaves typical patterns of road networks and logging decks in
previously untouched rainforests. In comparison to the degradation for liv-
ing purpose of local people, the patterns of selective logging are large scale.
As mentioned before, degradation by forest �res is a major consequence of
commercial selective logging.

1.4 Hot Spot Mapping in REDD

The implementation of hot spot mapping in to the REDD framework should
help to establish a worldwide monitoring system. Starting with coarse reso-
lution data sets, containing only a low level of detail, the investigation of a
certain area of interest is then continued with higher resolution data sets and
may be �nished with �eldworks to �nd out or validate the exact amount of
degradation and CO2 emission. The use of coarse resolution data sets brings
several advantages in this context. These data sets cover larger areas than
images of �ner resolution, they are generally free of charge and also have
high temporal resolution. An order of data sets for hot spot mapping in the
context of REDD proposed by [3] is shown in table 1.1.

The question which arises in the context of MODIS and the present work is,
whether degradation patterns in a tropical forest are detectable in MODIS
data sets. In a second phase this area can be investigated in more detail by
using other data sets of higher spatial resolution.

14



Sensor &
resolution

Current
missions

Costs Utility for forest
monitoring

Coarse
(250 - 1
km)

MODIS,
MERIS,

SPOT-VGT

low or free annual monitoring to
locate hotspots for
further analysis

Medium
(10-60 m)

Landsat, SPOT,
IRS

from
$0.02/km2 to
$0.5/km2

primary input to map
and estimate area

change
Fine (<5

m)
Ikonos,

Quickbird,
aerial photos

high
$2-30/km2

validation of results,
training, and detailed

analysis

Table 1.1: Approach of Hot Spot Mapping

1.5 Objectives of the Present Thesis

Monitoring systems need frequent and reliable data input. For global appli-
cations, data sets from satellites are very common due to their capacity of
measuring the whole globe in very short periods of time. The coarse resolu-
tion data sets of MODIS (Moderate-resolution Imaging Spectroradiometer)
presented in chapter 3, a remote sensing mission of NASA, are investigated
in the present thesis. In general, MODIS data are designed for monitor-
ing whole countries or even continents. Especially short time dynamics of
natural processes have been investiaged with MODIS data by the scienti�c
community. [8] [12] [45] The applicability of the data sets for detecting and
mapping selective logging in tropical rain forests is assessed. This is done in
a project area in the north of the Republic of Congo in Central Africa. The
present thesis aims to contribute to future operational REDD monitoring
and is part of the Global Monitoring for Environment and Security (GSE)
Forest Monitoring (FM) REDD extension programm of the European Space
Agency (ESA). The basic aspects of this thesis are listed below:

� Description of the MODIS mission

� Preprocessing steps and MODIS data products

� State of the Art analysis

� Di�erent temporal approaches of investigation

� Special focus on time series analysis
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Chapter 2

Logging in the Republic of Congo

2.1 Geography and Project Area

The project area investigated in this work is located in the North of the
Republic of Congo. The geographic situation is shown in �gure 2.1.1. The
project area is marked by the white polygon in the satellite picture of the
�gure. Its spatial extension is around 80x80 km.

Around 3,7 million people are living in the country. The country's area
is around 342.000 km2, at which 60 % is covered by rain forests. In com-
parison, the size of Austria is around 84.000km2 and 47 % are covered by
forest.

2.2 Climate

Due to the geographic location at the equator, a daytime climate is found in
the country. A daytime climate is characterized by low temperature varia-
tions between the months and seasons of a year and by larger temperature
variations within every single day. The length of day is quite stable through-
out the whole year. An alternation of two dry seasons and two rainy season
determines the climatic conditions through the year. During the rainy sea-
sons obstruction of the surface by clouds is much more frequent than during
the dry season. Therefore all studies shown in this work are based on satellite
images taken during dry seasons. The primary dry season is from July to
August, the secondary dry season from December to February. However, the
images with least cloud obstruction have been made during the secondary
dry season. This will be explained in detail in the chapter of results. It is
well known that some tropical regions of Africa have been stongly a�ected
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Equator

Figure 2.1.1: Geographic Situation,
Map source (edited):

http://en.wikipedia.org/wiki/Republic_of_the_Congo, www.transafrika.org and Goggle Earth
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by the global climatic change in the last years [22]. Every forest is part of a
local water cycle, which serves, for example, as water storage. Especially in
forest regions which have been clear cut, or logged within in the last years,
these disturbances can cause tremendous changes on the local climate. It
is possible that the project area is also a�ected by climatic changes, which
might explain the comparatively unobstructed images in the secondary dry
season.

2.3 Commercial Logging in RB Congo

In the Republic of Congo, timber export represents the second major source
of export after oil. The forestry sector provides 10 percent of formal employ-
ment. In the second half of the 1980s, timber production grew consistently,
attaining a total amount of 883,000 cubic meters in 1990 [15].
For better understanding, in Austria the annual amount of harvested wood
is 20,000,000 cubic meters (www.proholz.at). Around 30,000,000 cubic me-
ters grow back each year, leading to in fact total increase of living wood.
However, the consequences for the local people and for the local biodiversity
cannot be compared. In the Republic of Congo, logging is done in primeval
forest. In Austria, there is no such untouched forest, all logging take place in
planted, mostly monocultural forests. The primeval forests of Austria have
already been cut in earlier times. However, in Austria it is possible to cul-
tivate primeval-like forests. In tropical regions this is not possible. After
removing an area of forest, the soil degrades very quickly, through intensive
sun radiation and heavy rain. Once the soil is removed it is impossible to
recultivate the original situation. The soil in Austria stays fertile, even if it
is not protected by trees.

Especially the method of selective logging has signi�cant impact on the local
ecosystem. Roads are cut into primeval forests, and only certain tree species
of commercial interest are cut out of the forest. The amount of harvested
timber does not equal the amount of impact on the whole forest system, be-
cause large areas are a�ected by road construction and by the whole activity
of wood working. Roads open the forest to animal hunters. Local people,
like the Pygmies, who rely on the forest for game, other food and raw ma-
terials are threatened by these activities (on 'their' wood, where they never
gave permission to). In some areas the trees are carried away by helicopters,
which reduces the amount of logging roads.

After years of political wars (1995 - 2002), in which the timber production
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decreased, the government began to actively court multinational logging com-
panies in order to accelerate the exploitation of the forests. After years of
war, the country's infrastructure was too weak to produce the same amounts
of timber as before the civil war. The European Union is the primary desti-
nation of the timber exports of Congo, with France, Germany, Italy, Portugal
and Spain being the main importers. Outside the EU, the most important
importer is Japan [15].

2.4 Logging Companies in the Project Area

For logging, the forests are divided into concession areas, which are sold to
international companies for a number of years. A map of the concessions in
the North of the country is given in �gure 2.4.1. Concession areas number
11 and 13 are part of the project area of this thesis.

� Company of concession 13 (right area, red in the map): Congolaise
Industrielle des bois (CIB), period of permission 1996 - 2011

� Company of concession 11 (left area, green in the map): Société Indus-
trielle Forestière de Ouesso (IFO), period of permission 1999 - 2014

2.4.1 Congolaise Industrielle des Bois (CIB)

CIB is a subsidiary of Feldmeyer. Feldmeyer is a German timber company.
Three concessions in the North of the country belong to CIB. The company
exports around 100.000 cubic meters of logs each year. Before the civil wars
CIB used to �oat its logs down to Brazzaville. It was then transported to
the Atlantic coast per rail, from where it was shipped to Europe. When
this railway connection was destroyed in the civil wars, CIB constructed a
150 kilometer road to connect with road network of Cameroon. Again, the
logs are transported to the coast at Cameron and then shipped to Europe.
Although the company is considered to be one of the more sustainable and
economically working ones in Central Africa, the construction of the road
to Cameroon founded some serious problems. Workers of CIB where found
to be involved in illegal bushmeat and timber trade. Illegal goods can be
transported to Cameroon easily in the absence of rigorous border controls
[2].
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Logging Concessions 

in the Project Area

Figure 2.4.1: Logging concessions,Map source (edited) www.forestmonitor.org/congo.html
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2.4.2 Société Industrielle Forestière de Ouesso(IFO)

IFO is a subsidiary of the Danzer Group. This group is a global timber
business, held by a Swiss holding company. The principal operations of
the company are done in Germany, in Austria, in Belgium, in France and
in the United Kingdom. Danzer is one of the world biggest producers of
veneers. Around 10 percent of the group's veneer sales are derived from
tropical timbers, mainly harvested in Africa [2]. The company's involvement
in the Republic of Congo is limited to the North of the country. The company
is much more strongly involved in the neighboring Democratic Republic of
Congo, where it was responsible for 40 percent of all commercial timber
production in the 1990's. Currently the company has stopped logging in this
country due to political instability of the region.
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Chapter 3

MODIS Mission - Concept and

Preprocessing

3.1 Concept

The earth is a highly dynamic system. To monitor the temporal variety
and the short-time dynamics of the earth, the National Aeronautics and
Space Administration (NASA) of the United States of America developed
two Earth Observation (EO) satellites. The �rst satellite is named Terra and
was launched in 1999. The second satellite is named Aqua and was launched
in 2002. Both satellites use the Moderate Resolution Imaging Spectrora-
diometer (MODIS), which measures electromagnetic radiations of the earth
in 36 channels. This is done every day due to the coarse ground resolution
of the satellites. The MODIS detectors for all 36 bands are grouped on four
focal planes. The earth is scanned in across-track lines. The electromagnetic
radiation re�ected or emitted from the earth reaches the satellite and is re-
�ected by a rotating mirror at constant speed to the detection units. The
observations are taken at equal time intervals and the scan angle of the mirror
is calculated through electro-opticall calculations. The MODIS point-spread
function is triangular in the across-track scan direction and rectangular in
the track direction. Especially short time dynamics within one season or
even one month can be investigated with these data sets. The channels are
designed for all kind of environmental applications. A 48 bit information for
each pixel is given, with detailed quality informations. A detailed description
of the MODIS bands is given in table 3.1 on the following page. All kind of
MODIS data products are available at no charge.

(https://lpdaac.usgs.gov/lpdaac/get_data/data_pool)
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Primary Use Band Band with Spatial resolution
Land/ Cloud 1 0.62 - 0.67 mm 250 m
Aerosols 2 0.84 - 0.87 mm 250 m

3 0.46 - 0.48 mm 500 m
4 0.54 - 0.56 mm 500 m
5 1.23 - 1.25 mm 500 m
6 1.63 - 1.65 mm 500 m
7 2.10 - 2.15 mm 500 m

Ocean Color 8 0.40 - 0.43 mm 1000 m
Phytoplankton 9 0.44 - 0.45 mm 1000 m

10 0.48 - 0.49 mm 1000 m
11 0.52 - 0.53 mm 1000 m
12 0.54 - 0.55 mm 1000 m
13 0.66 - 0.67 mm 1000 m
14 0.67 - 0.68 mm 1000 m
15 0.74 - 0.75 mm 1000 m
16 0.86 - 0.88 mm 1000 m

Atmospheric 17 0.89 - 0.92 mm 1000 m
Water Vapor 18 0.93 - 0.94 mm 1000 m

Cloud 19 0.91 - 0.96 mm 1000 m
Thermal Bands 20 3.66 - 3.84 mm 1000 m

21 3.93 - 3.99 mm 1000 m
22 3.93 - 3.99 mm 1000 m
23 4.02 - 4.08 mm 1000 m
24 4.43 - 4.49 mm 1000 m
25 4.48 - 4.54 mm 1000 m
26 1.36 - 1.39 mm 1000 m
27 6.53 - 6.89 mm 1000 m
28 7.17 - 7.47 mm 1000 m
29 8.40 - 8.70 mm 1000 m
30 9.58 - 9.88 mm 1000 m
31 10.78 - 11.28 mm 1000 m

Thermal Bands 32 11.77 - 12.27 mm 1000 m
Cloud Height&Fraction 33 13.18 - 13.48 mm 1000 m

34 13.48 - 13.78 mm 1000 m
35 13.78 - 14.08 mm 1000 m
36 14.08 - 14.38 mm 1000 m

Table 3.1: MODIS bands
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3.2 Preprocessing

Before the MODIS products are ready to be downloaded, several e�ects are
edited in the raw data sets. Usually all MODIS data are available for down-
load only a few days after acquisition. These preprocessing steps in�uence
the results of all applications carried out with MODIS products. In the
following sections a brief summary of these preprocessing steps is given. A
general grasp of these steps is necessary to be able to use MODIS data sets in
a scienti�c context. Nevertheless no detailed algorithm description is given,
just a brief summary to get an overview of preprocessing steps.

There is a hierarchy of processing levels in the generation of the products.
The raw Level 0 data sets are received on the earth. Processing at Level
1 involves unpacking and verifying the raw datasets, organizing and stor-
ing them into a standard data-format (HDF), adding metadata information
like ephemeries, calculating earth locations parameters and processing radio-
metric calibration. Level 2 processing uses the cloud mask algorithm. The
results of this algorithm are attached to MODIS data sets like the surface re-
�ectance (MOD09). Level 3 processings like the BRDF algorithm (MOD43)
or the preprocessed Vegetation Indices (VI) are based on level 2 data. A �ow
diagram is given in �gure 3.2.1. It contains only the data sets concerning
this work.

3.2.1 MODIS Earth Location

The MODIS earth location algorithm is part of the level 1A processing sys-
tem. A complete description is given in the Algorithm Theoretical Basis
Document (ATBD) [30]. This system converts the raw data sets received
from the satellites into scan oriented data structures. It generates the earth
location system and adds further other meta data information. The eight
earth location data �elds are geodetic latitude and longitude, height above
the Earth ellipsoid, satellite zenith angle, satellite azimuth, range to the satel-
lite, solar zenith angle and solar azimuth. Of course, accurate information
of earth location is one of the basic requirements for all satellite data sets in
order to perform multi-temporal analysis and to be able to relate these data
sets to other spatially referenced data sets. Several ancillary input data are
needed for the earth location algorithm:

� Digital Elevation Model (DEM)

� Instrument constants
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Level 0
• Raw data packages

Level 1
• Unpacking, verifying
• Standard data format (HDF)
• Adding metadata
• Earth location
• Radiometric calibration

Level 2
• Cloud mask
• Surface Reflectance (MOD09)

Level 3
• BRDF products (MOD43)
• VI indices (MOD13)

Figure 3.2.1: MODIS processing, diagram
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� Ground control points

� Orbital ephemeris

� Spacecraft's attitude

The DEM is derived from a global database of terrain information provided
by the EOS project. No detailed information on the DEM could be found
in the corresponding MODIS document [30]. Three di�erent types of instru-
ment constants are required. The �rst type includes the focal plane, band
and detector location. The second type includes di�erent optical parameters,
like focal lengths, the relationship between the optical axis and the instru-
ment alignment axes and some others. Basically it is required to transform
the Focal Plane Coordinate System into the Instrument Coordinate System.
The third type of constants describes the spatial relationship between the
MODIS instrument alignment axes and the EOS spacecraft. The ground
control points are used to validate the performance of the algorithm. Al-
though they are referred to as constants, these values can be intentionally
adjusted, change with time or may be updated as better knowledge of their
true values becomes available. They are constant when generating a par-
ticular data product. It consists of image windows containing well-de�ned
features with known ground locations.

3.2.1.1 Accuracy and Details of MODIS Earth Location Algo-
rithm

In the following section a brief description of geometric correction of the
MODIS data sets is provided. All details are taken from the ATBD [30] and
from a paper by Wolfe [40]. The pre-launch accuracy speci�cation, which
is needed for higher MODIS products is opposed to the real achieved accu-
racy, validated by error analysis, including several ground validation points,
distributed over the globe. Perturbations in the motion of the sensor, the
curvature of the Earth, surface relief and the instruments sensing geometry
make geometric corrections necessary. Improvements of the interior satellite
parameters after launch improved the geolocation accuracy tremendous.

For a hypothetical ideal band 0, the MODIS geolocation calculation is per-
formed. From this band the positions of the other four bands are calculated
by adding prede�ned o�sets. The exterior orientation is estimated from star
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tracker and inertial gyro, the interior orientation is de�nded prior to launch.
The geolocation is a sequence of transformations as listed below:

� A line of sight vector for the center of each detection unit is generated
in the focal plane coordinate system

� This vector is rotated to the telescope coordinate system and to the
instrument coordinate system

� A key element is the mirror model due to the impossibility of manu-
facturing a perfectly two sided mirror with parallel sides and perfect
alignment with the mirror rotation axis. So the mirror is modeled by
three angles to de�ne the normal to the mirror surface, needed for the
transformations

� Satellite position and velocity are de�ned in the Earth Centered Inertial
(ECI) coordinate system and the satellite attitude is de�ned in the
spacecraft reference frame

� The line of sight vector is rotated though the spacecraft, orbital and
ECI coordinate system to the Earth Centered Rotating (ECR) coordi-
nate system.

� The line of sight vectorand the satellite position in the ECR system
are intersected with the terrain surface represented by a Digital Ele-
vation Model (DEM). This is done in an iterative process. In a �rst
approximation, the earth is represented as a unit sphere, followed by
more detailed models.

� The result are eight parameters: height over ellipsoid, geodetic latitude
and longitude, slant range to the sensor, sensor zenith angle, sensor
azimuth, solar zenith angle and solar azimuth angle.

Considering errors in all of these transformations, as well as in the DEM,
leads to a one sigma geolocation error of 117 m at nadir, increasing to 385
m at maximum 55° scan angle. The geolocation algorithm does not model
refraction or aberration of the signal. To improve these errors, ground con-
trol points from Landsat scenes are used. According the NASA informations,
the accuracy of geocoded Landsat-data is known to 30 - 50 m, using precise
ephemeris for caculating the position of the satellite. These ground control
points are represented by image windows, which are down sampled to the
MODIS spatial resolutions of 250 m2 to 1000 m2. Using correlation tech-
niques the MODIS scenes are matched to the ground control points. With a
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least square adjustment the sensor orientation parameters are recalculated.
This is necessary due to the strong forces the sensor is exposed to on its jour-
ney from the earth to its orbit and which changed some pre-launch de�ned
geometric properties of the satellite. This parameter update was done three
times, leading to a mean along-track residual of 18 m and a mean along-scan
residual of 4 m. Corresponding standard deviations are around 38 m and 40
m (1sv). So the MODIS geolocation goal of 50 m (1sv) at nadir is successfully
met.

3.2.2 Radiometric calibration and atmosphere

Corrections for atmospheric e�ects are part of the Level 1B processing sys-
tem. Earth observation-satellites aim to get pure signals from the earth's
surface. Therefore, e�ects of the atmosphere on the signal have to be taken
in account. Every signal measured by the satellite is a�ected by it. The
MODIS atmospheric correction consist of several parts:

� One part is responsible for real atmospheric correction describing the
actual constitution of several important parameters of the atmosphere
and converting them into a correct scattering and absorption model

� Another feature is atmospheric point spread function

� And one part couples the surface BRDF with atmosphere a�ects.

The MODIS atmospheric correction scheme covers e�ects caused by thin cir-
rus clouds, gases and aerosols. Many other MODIS products are based on
its results, like the Vegetation Indices (MOD13) or BRDF data (MCD43).

3.2.2.1 Real Atmospheric Correction [39]:

� Rayleigh scattering: It describes the scattering of electromagnetic waves
by particles which are small in relation to the wavelength l. Scattering
through the atmosphere depends on the wavelength of the radiation,
air pressure and temperature pro�les. These pro�les are known for
di�erent regions and seasons on the earth. In addition, surface alti-
tude information for each pixel is needed. This is taken from a digital
elevation model at the resolution of 5 minutes (ETOPO5).

� Tropospheric aerosol: These particles strongly in�uence the quality
of surface re�ectance. The algorithm treating this e�ect makes use
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of the MODIS aerosol product. This product provides daily informa-
tions about the aerosol thickness and the aerosol size over the whole
globe [10]. These data enable the MODIS team to make corrections for
aerosol loading directly for a speci�c day and location.

� Stratospheric aerosol: The stratosphere can have heavy aerosol load
due to volcanic eruption, which may persist for years. Of course, more
common aerosol sources like any kind of smoke, pollen and dust in�u-
ence the aerosol content of the stratosphere as well. The actual aerosol
thickness is determined from MODIS algorithms using the 1,38 mm
Band (MODIS band NR. 26)

� Gaseous absorption: Some gases in the atmosphere absorb radiation of
certain wavelengths. These gases are O2, O3, CO2 and water vapor
transmission. These e�ects are well-established. As inputs for the
corrections serve special MODIS gas and water vapor products.

� Cirrus correction: This correction also relies on MODIS band Nr. 26.
This correction is uniformly applied to all all surface re�ectance bands.

3.2.2.2 Point spread function:

The signal of a target pixel, as received by the satellite, is a combination of
the signal of the desired pixel and of the signal of the surrounding pixels.
This e�ect is minimized by the point spread function. Physically, the signal
at the top of the atmosphere is treated as a uniform Lambertian surface. A
Lambertian Surface is isotropic, therefore it does not matter at which angle
of view a certain point is viewed. The surrounding pixels of a target pixel
are weighted according to their distance from the target [11]. Another name
for this e�ect is adjacency. In addition, the in�uence of the angle of view is
taken into account, because the signal as well as the adjacency e�ect vary in
relation to view angles. The adjacency a�ect correction is possible up to a
distance of 10 pixels in the case of MODIS.

3.2.2.3 BRDF atmosphere coupling correction:

In reality we are not dealing with Lambertian surfaces. Therefore the point
spread function is inexact because of coupling e�ects between the surface
BRDF and atmosphere BRDF, which the equation does not take into account
due to its assumption of a Lambertian surface. The anisotropy of target on
the surface leads to four di�erent e�ects on top of the atmosphere:
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� Photons are directly re�ected form the target to the sensor.

� Photons are scattered by the atmosphere before being re�ected by the
target.

� Photons are scattered by the atmosphere after being re�ected by the
target. .

� Photons are scattered by the atmosphere before as well as after being
re�ected by the target. This is probably the most common case

3.2.3 Cloud and Cloud Shadow Masking

This paragraph is based on the Algorithm Theoretical Basis Document (ATBD)
[29]. Clouds have generally higher re�ectance and lower temperature than
the underlying surface of the earth. Thus cloud detection algorithms work
with di�erent threshold approaches. The detection of clouds above ice and
snow, as well as the detection of thin cirrus clouds require more sophisticated
approaches. The cloud mask algorithm uses 20 of the 36 MODIS bands listed
in table 3.1 and produces one 48 bit information for each 1km pixel, also con-
taining cloud masks for the 16 included 250 m pixels. The 48 bit information
for each pixel gives much more detailed information on the cloud conditions
than a simple yes/no cloud mask. Many applications use this product. For
some of them, more detailed information is needed. Therefore the 48 bit
cloud mask output also includes results from certain cloud detection tests.
However, bit number 2 represents a single bit cloud mask with a yes/no
statement. The following data sets serve as input for this algorithm:

� Calibrated re�ectance data with corrections for atmospheric e�ects

� Geolocation data sets including height above mean sea level

� Land/water map

� Daily snow/ice map

� Weekly surface temperature map from NOAA

� Mean NDVI maps

The cloud masking algorithm is divided in several individual tests optimized
for certain types of clouds. Depending on the height of the clouds, the thick-
ness and the type of surface below, speci�c tests are used for cloud detection.
All tests rely on thresholds for re�ected and emitted energy which make use of
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certain MODIS bands. Di�erent bands have di�erent detection qualities for
certain types of clouds. The approaches are explained in detail in the ATBD.

After the cloud detection, the �lter for pixels containing cloud shadows is
performed. Areas of water and areas of clouds are excluded from the �lter.
The remaining pixels, adjacent to cloudy pixels are compared to a clear sky
image. If the re�ectance of the investigated pixels is beyond 80% of the clear
sky pixel, the pixel is �agged as a pixel of cloud shadow.

In the MODIS surface re�ectance data set MOD09, the cloud informations
is included as an additional layer. The MOD09 data set serves as primary
input for the MODIS BRDF (MCD43) product, which has also been used
for this thesis. The BRDF algorithm uses only cloud free observation for its
calculations. Therefore, it requires the cloud information layer of MOD09.

3.2.4 BRDF

Land surface albedo is related to land surface re�ectance and its directional
integration. The bidirectional re�ectance distribution function (BRDF) de-
scribes how the re�ectance depends on the two directions of solar and view
angles. Albedo is the re�ecting power of a surface. It is de�ned as the ra-
tio between the re�ected radiation of a surface and the incoming radiation.
In passiv remote sensing systems, the incoming radiation comes, of course,
from the sun. BRDF and albedo are determined by optical properties and
the structure of land surface. For example surface structure in�uences the
BRDF by shadow-casting and the spatial distribution of vegetation elements.
Surface optical characteristics in�uence the BRDF, for example, through op-
tical attributes of certain canopy elements. In consequence, the land surface
as seen in BRDF re�ects a variety of natural and human in�uences on the
surface that are of interest to global change research. The phenological cycle
of vegetation or deforestation are two examples of in�uences on the surface.

The BRDF consists of a linear combination of terms (the so-called kernels)
characterizing di�erent scattering modes of the surface. It is semi-empirical.
It is based on physical models of re�ectance and the coe�cients are calcu-
lated empirically. The linearity of the model is a big advantage in large-scale
operational data processing and analysis. The down-welling radiative �ux
from the sun to the earth's surface can be described as the sum of a direct
and a di�use component. The so-called Black-sky albedo is the direct albedo
in absence of the di�use component and is a function of solar zenith angle.
White-sky albedo refers to only the di�use component and it is constant.
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Figure 3.2.2: Isotropic scattering

Black-sky and white-sky albedo mark the extreme cases of completely direct
and completely di�use illumination of the surface. Actual albedo is interpo-
lated between these two, depending on the aerosol optical depth.

The BRDF Algorithm details are provided in the Algorithm Theoretical Ba-
sis Document of MODIS. [37] The BRDF model of MODIS, which converts
multiangular re�ectances to albedos, includes three kernels, representing ba-
sic scattering types:

� isotropic scattering

� volumetric scattering

� geometric-optical scattering

There is a fundamental di�erence between isotropic and anisotropic scat-
tering, illustrated in �gures 3.2.2 and 3.2.3. Isotropic scattering is equal in
all directions. In the context of remote sensing, it is therefore called hemi-
spherical scattering. Anisotropic scattering is di�erent in all directions. It is
therefore called directional hemispherical.

The volumetric-scattering term was described by Roujean [33]. The
model consists of a Lambertian background and a layer of small scatter-
ers with uniform leaf angle distribution. In the case of re�ectance of forest,
it expresses the e�ects of small inter-leaf gaps in a canopy. The mathematical
idea is given by J. Ross. The kernel is therefore called Ross-Thick kernel. It
assumes a dense leaf canopy. The geometric-optical term was described by
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Figure 3.2.3: Anisotropic scattering

Li and Strahler [27]. In this context, it is referred to as the Li-Sparse kernel
for its assumption of a sparse ensemble of surface objects casting shadows on
a background, which is assumed to be Lambertian. It expresses the e�ects
caused by larger inter-crown gaps in the forest. A Lambertian background
is a surface with equal density of re�ection in all directions. The power
of re�ection only decreases with lower angles of re�ection. The direction
of maximum re�ection is the normal direction to the Lambertian surface.
The surface objects of the Li-Sparse kernel are modeled by randomly located
spheroids. The combination of the Ross-Thick and the Li-Sparse kernel is
called Ross-Li BRDF model in this context.

This algorithm has been intensively validated. It is also summarized in the
work of Strahler[37]. For a wide variety of situations, including barren and
densely vegetated cases, the Ross-Li BRDF albedo values were compared to
�eld-measured albedo data sets. The residual deviation between modeled
and observed albedos was between 15 and 20 percent in all bands and for
white sky-albedos as well as for black-sky albedos. This result is not as exact
as desired, but due to the simple form of the model and its linearity, which
makes it easy to use, the result is satisfactory. So this simple BRDF model
is capable of representing all kind of naturally occurring BRDFs, without
adapting the algorithm for di�erent types of landcover.
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3.3 Products

The MODIS team provides a huge number of data products, which are pro-
cessed out of the 36 channels. Some products are normal surface re�ectances
in di�erent bands, correct for several e�ects. In addition, precalculated Veg-
etation Indices (EVI, NDVI) in di�erent spatial resolutions are provided, as
well as the very often used MODIS BRDF product. It will be explained in
one of the following sections. All these products can be downloaded for free.
As mentioned before, the MODIS mission involves two satellites, Terra and
Aqua. Data sets are available for both of them. Data from Terra are named
with the pre�x MOD- and data from Aqua use the pre�x MYD-. Some
products like the BRDF re�ectance make use of both, Terra and Aqua data.
These data sets are named with the pre�x MCD-. In the following section of
product descriptions, the pre�x MOD- stands for both Terra and Aqua data,
and the pre�x MCD- stands for combined data, using Terra and Aqua.

3.3.1 MOD09

This group of products provide surface re�ectances for the bands 1-7 for each
of the two satellites. Data sets are available in di�erent spatial resolutions
and also in di�erent temporal distances. In principle, the re�ectances are
measured daily by the satellites and they are also provided daily. An 8-day
product is calculated, which assembles for each pixel the value of best quality
within the 8-day period to one image. An example of the product is given in
�gure 3.3.1. It represents an area of 220 x 220 km around the village Ouesso.
This settlement is situated in the project area of this work, in the North of
the Republic of Congo. Date of acquisition is December 29, 2009.

3.3.2 MOD13

Vegetation Indices (VI) are computed by simple transformations of at least
two spectral bands. The VI products of MODIS aim to provide data sets
for temporally and spatially consistent comparisons of global vegetation [21].
MOD13 data product includes two VIs, the normalized di�erence vegeta-
tion index (NDVI) and the enhanced vegetation index (EVI). The NDVI is
designed for chlorophyll sensitivity whereas EVI is better suited for canopy
structural variations [17]. The two Vegetation Indices are produced at 500 m
and 1 km resolutions in a 16 day composition period. Again the VIs are cal-
culated separately for Aqua and Terra. Furthermore, the data sets of the two
satellites are shifted by 8 days. Thus in an interval of 8 days, preprocessed
VIs are available, each representing a composition period of 16 days. The VIs
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MYD09 500m daily Surface Reflectance

Bands 3,2,1  (Red, NIR, Blue)

Figure 3.3.1: MOD09 example
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MYD13 250m 16-day Vegetation Indices

EVI preprocessed

Figure 3.3.2: MOD13 EVI example

are calculated for each day of the 16 day period. For the 16 day product, the
values of best quality within that period are picked out and assembled. The
quality is mainly in�uenced by the cloud and aerosol conditions of each day.
However, this information is available and attached to each data product.
A visual example is given in �gure 3.3.2. It shows preprocessed EVI of the
same area and date than as example of MOD09.

3.3.3 MCD43

The MODIS BRDF product combines multidate, multiband and atmospher-
ically corrected surface re�ectance from Terra and Aqua to �t a Bidirectional
Re�ectance Distribution Function (BRDF) in seven spectral bands at 500m
spatial resolution on a 16-day cycle. The algorithm performs an angular
integration to derive real land surface albedos for each spectral band. The
BRDF algorithm is explained in section 3.2.4. A visual example is given in
�gure 3.3.3. It shows the same area and date as the examples of MOD09 and
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MCD43 500m NBAR Surface Reflectance

EVI selfprocessed

Figure 3.3.3: MCD43 EVI example

MOD13.

3.4 Conclusion

The MODIS BRDF product MCD43 is the only ready-to-use product of the
satellites processing team. Bad quality pixels, caused by clouds, aerosols as
well as view angle e�ects are minimized. It only provides data sets of highest
quality. The BRDF needs at least seven cloud-free observations within the 16
day period for the full algorithm. If this is impossible, the concerning pixel in
the image is empty, marked by a �ll-value. The deviation between modeled
BRDF albedos and observed ones is 15 - 20%. It is unknown if the di�erence
between the BRDF values of logged and unlogged forests disappear in this
deviation. The present thesis shell investigate wether there are di�erences or
not. If there are no di�erences, this deviation of 15 - 20% may be a reason
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for it. The other data packages (MOD09, MOD13) contain, in most of the
cases, clouds, through common tropical weather conditions. One would have
to detect and mask the clouds or use the metadata product of MODIS to
eliminate these e�ects. Several studies have declared the MCD43 data sets
as very suitable for several scienti�c applications. This will be demonstrated
in chapter 4.
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Chapter 4

State of the Art

4.1 Introduction

For the theoretical background at this work several works on tropical forest,
degradation and the general use of MODIS data have been analyzed. In the
following chapter a summary of the most relevant studies is given. For better
understanding, the reviewed works are grouped into three di�erent temporal
approaches too. Afterwards, a summary of the reviewed studies is provided.
There is only a very small number of studies using MODIS data in the context
of deforestation and degradation of tropical forest. To give a basic idea of
the general use and possibilities of MODIS data, studies from very di�erent
application �elds are reviewed and summarized in this chapter. As the use
of Vegetation Indices (VI) is very common when analyzing di�erent types of
vegetation with remote sensing methods, �rst of all a brief introduction to
VIs is given in the following section.

4.2 Vegetation Indices

Vegetation Indices are remote sensing techniques to amplify certain charac-
teristics within image bands. This is done by combining di�erent bands of a
satellite. The result is a one-dimensional band, which is suitable for a certain
application. Generally, the re�ectance of vegetation is negatively correlated
in the red and in the NIR channel. Healthy vegetation tries to absorb red
light, it is needed for photosynthesis. Therefore, the absorption rate is high
and re�ectance is small. In the band of near-infrared (NIR), the re�ectance
of light is signi�cantly higher, whereas the absorption rate is lower. This is
illustrated in �gure 4.2.1. Green vegetation is characterized by an increase
of re�ectance at the boundary of red and NIR radiation. Red light shows
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Figure 4.2.1: Spectral signature,
�gure source: http://speclab.cr.usgs.gov/PAPERS.re�-mrs/re�4.html#section4.3

a bandwith from 650 to 750 [nm], whereas near-infrared light shows wave-
lengths from 750 up to 1400 [nm]. In comparison to this, the re�ectance of
soil and dry vegetation reacts di�erent. There is no rapid increase of the rate
of re�ection between the band of red light and the band near-infrared light.

4.2.1 Enhanced Vegetation Index (EVI)

The basic idea of this index is the ampli�cation of the re�ectance di�erence
between red and NIR light. Furthermore, EVI is designed to optimize the
vegetation signal in high biomass regions. It has improved sensitivity in high
biomass regions and has been developed for vegetation monitoring through a
de-coupling of the canopy background signal and a reduction of atmosphere
in�uence. This is achieved by introducing the aerosol sensitive blue band
into the equation of the EVI [21]. EVI is responsive to canopy structural
variations, canopy type and canopy architecture analysis [17]. The formula
of the EVI is given in equation 4.2.1.

EV I = 2.5 ∗ (NIR−Red)

(NIR + 6 ∗RED − 7.5 ∗Blue+ 1)
(4.2.1)
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4.2.2 Normalized Di�erence Vegetation Index (NDVI)

The idea of NDVI is basically the same as of EVI. Chlorophyll strongly
absorbs visible light, especially red light, and the cell structures of leaves
strongly re�ect near-infrared light. If there is more re�ected radiation in
near-infrared wavelengths than in visible wavelengths, vegetation is likely to
be dense. If there is only little or no di�erence in the intensity of the two
bands, the vegetation is sparse and old, or may probably consist of other
vegetation types like desert or tundra. The result is a quanti�cation of plant
growth. NDVI values can range from -1 to 1. High values, close to 1, indicate
a high density of green leaves, low values, down to zero, indicate areas of little
or no leaf coverage. The formula of NDVI is given in equation 4.2.2.

NDV I =
NIR−Red

NIR +Red
(4.2.2)

4.3 Review of methods and temporal approaches

When using MODIS data, the main advantage in comparison to other satel-
lite data sets is the high temporal availability. For this reason, the structure
of this work is thought to be a comparison of di�erent temporal approaches
in the use of satellite data. Consequentely, the reviewed studies are also
grouped according to these approaches. The �rst approach is monotemporal
approach, investigating processes at one date. The second one is multitem-
poral approach, comparing circumstances between two dates and the third
one is the approach of time series analysis, working with several consecutive
data sets to observe the dynamic and short time behavior of a certain pro-
cess. Some of the studies, described below, are more related to the present
thesis due to their thematic content and some studies due to their methodical
approach. However, this cannot be separated totally.

4.3.1 Monotemporal

De�nition:

This refers to studies observing a process at exactly one date, with no com-
parison to other dates. An example for this is the classi�cation of a forest
into several wood classes.
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For mapping degradation in tropical rain forests, monotemporal approaches
are not very common. The question of how much area has been degraded in
what period of time cannot be answered with this approach. The spectral
mixture analysis (SMA) can be applied in a monotemporal approach. The
idea behind this algorithm is that every pixel re�ectance cannot only be in-
terpreted as one single cover type. In fact, it represents a mixture of di�erent
cover types, the so called endmembers. The inputs for SMA are the spec-
tral signatures of each endmember. The outputs of the SMA are basically
gray scale images representing a percentage of appearance for each endmem-
ber. Common endmembers in the �eld of tropical forest applications are soil,
shadow, green vegetation (GV) and non-photosynthetic vegetation (NPV).
When rainforests are disturbed by selective logging, bare soil remains at the
former places of powerful trees. Because of that, the endmember soil can be
associated with the amount of disturbance due to logging. Thus, the result
of SMA applied to a logging area of tropical forest is a percentage of logging
areas in relation to the total area of forest. In comparison to analyzing a
forest with common Vegetation Indices, the SMA method has advantages.

Field studies by Gregory Asner [5] have shown, that a single forest struc-
tural pattern, like soil through logging gaps, cannot be extracted directly
from VI maps. From SMA features this can be deduced. In addition SMA
can give a quanti�cation of the amount of soil within an area, leading to
direct information of degradation intensity. Je�rey Gerwing [18] did a com-
prehensive �eld study in the region of Paragominas, Brazil, which is in the
Amazon basin. On several study plots, he investigated the amount of above
ground biomass in a plot of intact forest by counting and measuring all trees
within the plot. In comparison to this, he analyzed the reduction of biomass
in plots of di�erent logging intensity. Post-logging forest �res arised as a
serious problem for this study. Opening up the canopy and removing the
natural protection of the surface drys out the vegetation and soil leading to
an increased risk of �re. The study proposes four years for a logged forest to
regain its �re resistance. Fire in moderately logged forests result in a total
biomass reduction equal to intensive logging.

A study from Jieying Xiao [41] uses MODIS data in a monotemporal ap-
proach. This work used a mosaic of MOD 43 data sets for one date. The
topsoil grain size index (GSI) was developed as a result of laboratory analysis
and �eld studies. The spatial distribution of the grain size was correlated
with the re�ectance of topsoil data sets, and the correlation proved highly
signi�cant. The result of this work was a deserti�cation map of a certain
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date for Central Asia, including the countries China, Mongolia, Kazakhstan,
Uzbek, Turkmen, Afghan, Pakistan, Tajikistan and Kyrgyzstan. The deser-
ti�cation was divided into several classes. However, data gaps within the
used MODIS MCD43 images were found. This is normal due to excess cloud
obstruction within the 16-day processing period of the data set. The BRDF
algorithm needs at least 7 cloud-free observations within 16 days to be fully
applied 3.2.4. These data gaps were excluded from the study. The next step
of this work could be a multitemporal approach of observing the change of
deserti�cation between several points of time.

4.3.2 Multitemporal

De�nition:

This is the approach of studies, which observe a certain a process at two
or more points in time. Comparisons and analyses of what occurred be-
tween these dates are conducted. The change of forest classes from one year
to another is an example. Also common feature space analyses between
two dates belong to this approach. Mathematical instruments used in this
approach can be several separability techniques like the Je�rey Matusita
distance. The remote sensing software ERDAS, used for the present thesis
supports three separability techniques: Divergence, Transformed Divergence
and Je�rey Matusita distance. According to a well known book on digital
image processing by Jensen [25] these techniques perform quite similar. So
for the present thesis the Je�rey Matusita distance is chosen.

Several multitemporal approaches dealing with deforestation and degrada-
tion can be found in the scienti�c literature. When the public and the sci-
enti�c community started to recognize the amount of selective logging, �rst
visual approaches were performed by Stone and Lefebvre [36]. They quan-
ti�ed selective logging by digitizing Landsat images. The logging patterns
proved much more di�cult to detect than normal deforestation patterns.
Stone and Lefebvre detected that logging reduces the total amount of forest
by more than 10% in certain areas of the Amazon basin. Furthermore, they
made a comparison between logging areas in 1986 and logging areas in 1991.
There was not a single overlap between the areas of these two points in time,
separated by around seven years. This means that selective logging can only
be detected for a few years out of medium resolution satellite data, although
it disturbs the forest for a much longer time.

Again, a team around Gregory Asner [6] applied the method of SMA to
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Year Author Application Data set Time
span

Method

2002 Je�rey
Gerwing
[18]

Degradation
of forests
through
logging
and �re in
the eastern
Brazilian
Amazon

Field
study

2000 Building
up �eld
inventories
in intact
and
degraded
forests.
Degrada-
tion by
logging
and post-
harvest
�res.

2003 Gregory
Asner [5]

Per-pixel
analysis of
forest
structure:
Spectral
Mixture
analysis.

Landsat SMA in
logged
forests, in
compari-
son to
common
VIs

2005 Jieying
Xiao et al.

[41]

Mapping
soil degra-
dation

MODIS
MCD43

2004 Calculating
Grain Size
Index
(GSI) for
Central
Asia,
leading to
a deserti�-
cation
map

Table 4.1: Reviewed studies: Monotemporal
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Landsat images in the Amazon basin in a multitemporal approach. For the
years 1999 � 2002 they calculated the percentage of Soil endmember, which
is associated with the amount of logging. Having this value for every year
available, they showed the logging rates for every year for several states in the
Amazon basin. The automated Carnegie Landsat analysis system (CLAS) is
introduced. Based on the SMA method, it provides measurements of forest-
canopy damage at Landsats spatial resolution of 30m x 30 m. It does so over
millions of square kilometers of forest. CLAS was applied to several states
of the Amazon basin. The result was that selective logging doubles previous
estimates of the total amount of foreset degradation. The approach of SMA
for logging quanti�cation was also applied in Joanneum research's framework
on REDD in Cameroon [20].

Douglas Morton [31] made a comprehensive work with di�erent MODIS data
sets. With reference of Landsat images, annual deforestation mapping was
investigated by using four di�erent change detection algorithms:

� Two-date image di�erencing, values exceeded certain thresholds classi-
�ed as deforestation

� Single-date image threshold

� Combined single-date threshold

� NDVI di�erence with NDVI threshold

These algorithms were applied to the following MODIS data sets: MOD09
and MOD13. The algorithms performed di�erently in detecting a minimal
size of deforestation. Non-ideal MODIS pixels were eliminated by MODIS
quality informations. The NDVI di�erences performed best, detecting 60 %
of the deforestation clusters of 3 ha (30.000 m2), which is half the size of
one MODIS pixel of 250m x 250m. More than 90% correct detections could
be performed with all four methods for deforestation clusters >20 ha. This
area is a few times bigger than a single MODIS pixel. The study proposes
MODIS data sets for the rapid identi�cation of the location of deforestation.
But the MODIS data sets are no replacement for high-resolution analysis
that estimate the exact area of deforestation.

4.3.3 Time Series Analysis

De�nition:
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Year Author Application Data set Time
span

Method

1998 T.A. Stone
et al. [36]

Quanti�cation
of logging
in amazon
rainforest

Landsat 1986 -
1991

Digitizing
Landsat
images

2005 Asner et
al. [6]

Carnegie
Landsat
Analysis
System
(CLAS) in
Amazon
basin

Landsat 1999 -
2002

CLAS for
quanti�ca-
tion of
logging

2009 Stefan
Haas [20]

Forest
Degrada-
tion for
REDD in
Cameroon

Landsat 1990 -
2005

SMA

2005 Douglas
Morton
[31]

MODIS
and defor-
estation in
Amazon
basin

MODIS
MOD09,
MOD13

2001 -
2002

Change
detection
algo-
rithms,
Landsat
groundtruth

Table 4.2: Reviewed studies: Multitemporal
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This refers to studies which use sequences of consecutive data sets with con-
stant temporal spacing. Data sets are taken daily or weekly, long-time or
short-time dynamics are displayed and can be investigated. An example
of this approach would be the phenological curve of a certain forest class
through a year. Data sets based on this approach can be analyzed using
various mathematical techniques. For example mean values, standard devi-
ations and regression lines can be calculated and used.

This capability for time series analysis is one of the main advantages of
MODIS data sets, due to the high temporal resolution. A lot of studies use
MODIS images in this way. However, only one study was found which maps
forest degradation with MODIS data sets. The vegetation phenology in parts
of North America was monitored by Xiaoyang Zhang [45]. He used MODIS
NBAR data sets at a ground resolution of 1 km x 1 km. EVI was computed
and a logistic model was �t to the time series. The study aimed to iden-
tify four key phenological transition dates: green-up, maturity (plant green
maximum), senescence (date of rapidly decreasing photosynthetic activity),
dormancy (no physiological activity of the plant). These four dates were
derived from maximum and minimum rates of change of the phenological
curves. This was done for each pixel. The date of green-up and dormancy
was correlated with the geographic latitude of the pixel. It could be shown
that green up started later in the season at more northern latitudes, as well as
dormancy started earlier in more northern areas. However, no comparisons
have been made between ground observations and the remote sensing-based
results.

An extension of this work was done six years later [44]. The same four
transition dates were tried to calculate. In addition, typical land-cover types
for North America were introduced and compared. From daily MODIS09
surface re�ectances, EVI was calculated. The data sets showed big varia-
tions due to residual clouds, shadows and view angle e�ects. So the work
was continued with MODIS NBAR data sets. The MODIS NBAR algorithm
needs 7 cloudfree observation during the 16-day observation period. If these
7 observations are not available, due to frequent cloud obstruction, for exam-
ple, the MODIS NBAR algorithm can not be executed. In fact some pixels
showed too frequent cloud obstruction, so missing data points arised as a
problem. The whole study based on one pixel of full data availability for
each vegetation. Again the four transition dates green-up, maturity, senes-
cence and dormancy were calculated. The study was done with pixel of full
data availability. Several other pixel have missing data values in the time
series of MODIS NBAR data, because of too less cloud free observations. For
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these incomplete time series, the four transition dates were calculated as well
and the di�erence to the complete time series was investigated.

A similar study uses another MODIS data set, MOD15 Leaf Area Index
(LAI) [8]. Time series of di�erent land-cover types were modelled and it was
attempted to make a prediction about future LAI values. Another study by
Xiangming Xiao [42] investigated the amount of gross primary production
(GPP) in a tropical rainforest, especially during the dry seasons. GPP is the
rate at which plants capture and store chemical energy, derived from CO2, as
biomass in a certain length of time. Vegetation indices were calculated from
MODIS NBAR data sets. NDVI time series of the rainforest showed signif-
icantly di�erent seasonal dynamics in comparison to EVI. Obviously NDVI
does not re�ect the subtle changes in leaf and canopy structure of tropical
evergreen forests. Working with MOD13 data sets, Swedish scientists tried
to map insect defoliation in Norwegian pine forests [12]. Smoothed time se-
ries of NDVI during spring and summer were taken. These values represent
the growing period of pine trees. A regression line was calculated for these
points and the slope of these lines were compared between the observed sea-
sons. The slope dropped signi�cantly in a year of insect defoliation.

Among the reviewed studies, the one most closely related to the present
thesis is the one by Alexander Koltunov [26]. His work tries to characterize
the phenology of a regenerating forest, after a selective logging event. The
study takes place in the Brazilian Amazon basin and works with a time series
approach using MODIS data at a spatial scale of 1 km2. As Groundtruth the
Area-Integrated Gap Fraction (AIGF) derived from Spectral Mixture Analy-
sis (SMA) using Landsat Scenes was used. The AIGF is representative index
for the intensity of selective logging because represents the percentage of the
SMA � endmember Soil within a certain area. High AIGF values indicate
larger areas of bare soil in a forest and thus greater disturbances by selective
logging activities. Koltunov used a AIGF map for the year 2000 to discover
the amount of logging. In addition, he knew the areas of logging in the
period of 2000 � 2002. The corresponding maps are provided by the INPE
PRODES (Program for Monitoring Deforestation in the Brazilian Amazon).
Areas which were logged after the reference year 2000 were excluded from
the study because Koltunov only investigated the regeneration of selective
logging disturbance over several years. Therefore, new logging events, af-
ter the initial logging events in 2000 would disturb the analysis. The AIGF
show the selective logging disturbance from 0 - 100 %, where as 100% indi-
cated deforestation. The values were split into nine disjoint groups, the �rst
class concerns disturbance from 5 - 10 %, the second from 10 - 20 % and so
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on. For each pixel (which will not be disturbed within two years) the En-
hanced Vegetation Index (EVI) and the Normalized Di�erence Water Index
(NDWI) is calculated out of MODIS NBAR data. Di�erences between the
measured re�ectance value of the disturbed forest and the estimated value
of the undisturbed forest were calculated. This di�erences were considered
instead of the VI themselves. There are two ways to estimate the undis-
turbed forest re�ectance value for an actually disturbed forest at a certain
point in time. The �rst one is to consider earlier re�ectance measurements
for this place, when the forest was still undisturbed. This was not possible
in this case, because of missing MODIS data. MODIS data are not available
before 2000. The second one is to take surrounding undisturbed re�ectance
values for the same point in time, to calculate a mean value and use it as an
estimation of undisturbed forest re�ectance. Investigating impacts instead
of vegetation indices should minimize confounding e�ects of environmental
factors, which are only caused by the geographic location. Then the im-
pact time series are parametrized with orthogonal polynomials, leading to
two coe�cients for EVI and NDWI time series. For MODIS EVI, they are
called Intra-Seasonal Greenness Impact (SGI) and Intra-Seasonal Greenness
Impact Trend (SGIT). For MODIS NDWI times series they are called Intra-
Seasonal Moisture Impact (SMI) and Intra-Seasonal Moisture Impact Trend
(SMIT). For unlogged forests, these impact parameters are expected to be
zero. Forest phenology is strongly varying with time. To minimize this e�ect,
the same interval is taken for each dry season from 2000 � 2002. It is assumed
that the forest phenology is similar in dry seasons and therefore comparable
at same intra-annual dates in di�erent years. This assumption will be also
made in the present thesis. Due to frequent clouding during the wet season,
only the dry seasons were analyzed. Further on, only pixels which were not
clouded or had missing values in any of the NBAR images of the seasonal
interval were tested. Therefore, many pixels are excluded from the study.
With statistical analyses, it was con�rmed that SGI, SGIT, SMI and SMIT
of selectively logged forests are signi�cantly di�erent to those of unlogged
forests. The greenness impact parameters are signi�cant even up to the 5 �
10% disturbance class level, and up to the third year after selective logging.
Within this time period the regeneration of tropical forests, after a selective
logging event, can be separated from intact forests.

4.4 Conclusion

Douglas Morton [31] suggested the use of MODIS data sets for the rapid
detection of deforestation clusters. This is comparable to the hot spot map-
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ping approach of REDD described in 1.4. Degradation normally a�ects ar-
eas smaller than one MODIS pixel, however, the practicability of MODIS
data sets for hot spot mapping of degradation shall be investigated in this
study. The most promising method was employed by Alexander Koltunov
[26]. Koltunov introduced a great number of pixels to the analysis and ex-
cluded automatically missing NBAR values. This will not be possible in the
present study, because the project area in the north of republic Congo is quite
small with only a limited amount of logged pixels. According to the satisfying
results of several studies [43, 41, 26, 42, 34] with MODIS MCD43 data sets,
this kind of MODIS data will be also used for the present thesis. According
to Xiangmin Xiao [42] as well as Koltunov [26] the EVI index will be used
for the present application. Landsat images will be used as groundtruth, as
proposed by several studies [6, 7, 20, 31, 26].
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Chapter 5

Satellite data

5.1 Reason for selecting MODIS

MODIS data sets are used because of the high temporal resolution. The
decision to use MODIS MCD43 data product was made after investigating
the di�erent MODIS data sets and reviewing scienti�c work on this subject.
MCD43 is the most stable and accurate product of MODIS and was used
in lot of studies related to the present study. This has been described in
detail in the preceding chapters. Every study on remote sensing data needs
some kind of ground truth. Fieldstudies are suitable for this, or data from
other, more accurate sensors, like Landsat. Since 2008, Landsat scenes can
be downloaded at no charge from the internet (http://glovis.usgs.gov). Each
scene is available in intervals of 16 days. The spatial resolution of 30m can
be perfectly used for visual detection of logging patterns.

5.2 General Information

The primary focus of this study lies on the MODIS data sets, and the Landsat
data sets serve as a visual groundtruth for all investigations done in this
work. Details on MODIS data are given in chapter 3, details for Landsat
and comparison between these two missions are given in the present section.
Technical speci�cations of the missions are given in table 5.1.

5.3 Landsat for Ground Truth

This mission of the United States is the longest serving earth observation
mission in the world. It started in 1972 and is now in its 7th generation. The
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Satellitemission MODIS Landsat

Sensor MODIS Enhanced Thematic
Mapper (ETM+) at

Landsat 7
Operator NASA NASA
Launch 1999 (Terra), 2002

(Aqua)
1999 (Landsat7), 1972

(Landsat 1)
Orbit Sun-sync. Sun-sync.

Altitude [km] 705 705
Spacial resolution

[m]
250, 500, 1000 30

Swath width [km] 2330 185
Repeat orbit

[days]
1 - 2 16

Table 5.1: MODIS and Landsat speci�cations

images are distributed at no charge on the internet (http://glovis.usgs.gov).
A description of Landsat bands is given in table 5.2. The main instrument
of the current 7th generation Landsat satellite is the Enhanced Thematic
Mapper Plus (ETM+). According to the Landsat Internet Platform, the
geometric accuracy of the images is around 40m.

5.4 Table of Data Sets

All cloud-free Landsat scenes from 2006 to the end of 2010 were ordered
and downloaded from the download portal for NASA's satellite images, . In
addition, some cloud-free scenes from 2000 - 2005 were used. An overview of
the scenes can be seen before ordering, so the cloud-status is known. For the
MODIS scenes, the cloud-status is unknown before downloading. Therefore,
all data sets within the dry season of interest have been downloaded and
compiled. A detailed list is given in �gure 5.4.
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Band Bandwidth Spatial
Resolu-
tion

Nr. of
comparable
MODIS Band

MODIS
Bandwidth

1 Blue 0.45 - 0.52 mm 30 m 3 0.46 - 0.48 mm
2 Green 0.52 - 0.60 mm 30 m 4 0.54 - 0.56 mm
3 Red 0.63 - 0.69 mm 30 m 1 0.62 - 0.67 mm
4 NIR 0.77 - 0.90 mm 30 m 2 0.84 - 0.87 mm
5

SWIRa
1.55 - 1.75 mm 30 m 6 1.63 - 1.65 mm

6
Thermal

10.40 - 12.50
mm

60 m 31, 32 10.78 - 11.28
mm, 11.77 -
12.27 mm

7
SWIRb

1.08 - 2.35 mm 30 m no SWIR channel with that bandwidth

8 PAN 0.52 - 0.90 mm 15 m no panchromatic MODIS channel

Table 5.2: Landsat bands in comparison to MODIS

54



Landsat 2000: 18. Sept
2001: 02. Sept, 08. Nov
2002: 01. April, 13. Dec, 29. Dec
2003: 15. Feb
2004: 21. March, 18. Dec
2006: 07. Feb, 15. June, 01. July, 24. Dec
2007: 09. Jan, 25. Jan, 18. June, 11. Dec, 27.
Dec
2008: 13. Feb, 29. Feb, 24. Oct, 13. Dec
2009: 14. Jan, 30. Nov, 30. Dec
2010: 01. Jan, 31. Jan, 18. Feb, 04. March

MODIS
MCD43

dry season 2006/07 (Nov. - Feb.) 8 images, 16day
interval
dry season 2007/08 (Nov. - Feb.) 8 images, 16day
interval
dry season 2008/09 (Nov. - Feb.) 8 images, 16day
interval
dry season 2009/10 (Nov. - Feb.) 8 images, 16day
interval

dry season 2000/01 (Nov. - Feb.) 8 images, 16day
interval (results not shown in this work)
dry season 2001/02 (Nov. - Feb.) 8 images, 16day
interval (results not shown in this work)
dry season 2002/03 (Nov. - Feb.) 8 images, 16day
interval (results not shown in this work)
dry season 2003/04 (Nov. - Feb.) 8 images, 16day
interval (results not shown in this work)
dry season 2004/05 (Nov. - Feb.) 8 images, 16day
interval (results not shown in this work)

Table 5.3: Table of data sets used for this study
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Chapter 6

Methodology

The methodology for this thesis is explained in the present chapter, the meth-
ods as well as the reasons for using speci�c kind of satellite data sets have
been extracted from the State of the Art analysis summarized in section 4.4.
The results are discussed in the following chapter. The investigations are
divided into three groups:

� Preliminary studies: Monotemporal

� Preliminary studies: Multitemporal

� Time Series Analysis

6.1 Preliminary studies: Monotemporal

There are two intentions in a monotemporal context for this work.

First, Landsat scenes of the project area are interpreted visually for log-
ging activities. If such activities are found, they serve as reference for the
following MODIS analysis, which is the central concern of this study. The
MODIS satellites Terra and Aqua are producing data since 2000. Therefore,
Landsat scenes, from 2000 up to February 2010 have been prepared to serve
as ground truth for the logging activities within that time span. Searching
for logging patterns in Landsat scenes can be done fast, cheap and unambigu-
ously. For better understanding, a visual example of typical logging patterns
in Landsat data is given in �gure 6.1.1 on the next page. The most impor-
tant pattern is the one of logging roads. By investigating satellite scenes in
a chronological way they can be detected very easily and clearly. First, there
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Figure 6.1.1: Logging Example: Subset of Landsat scene P182R059
08/11/2001 Bands 432

is an area of homogeneous forest and in the next scene logging roads are cut
into the forest. The bare soil of these roads re�ects in a very di�erent way
than the surrounding forest.

The main intention concerns the MODIS data sets. They are analyzed in
order to �nd out whether clear logging patterns are also detectable visually
in the optical bands of MODIS at all. In addition a basic correlation test for
a MODIS scene from 26/02/2010 between red and NIR band is performed.

6.2 Preliminary studies: Multitemporal

According to the de�nition of the multitemporal approach, relations between
two points in time are shown. If a certain forest area is degraded by selective
logging from one point to another, the separability of this logged forest in
comparison to an unlogged forest is investigated. This is done by a simple
separability test within the feature space between two scenes. With support
of the remote sensing software ERDAS this can be done.
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6.2.1 Extraction of logged and unlogged Pixel

Logged and unlogged areas within the period of two certain dates found in
the visual monotemporal approach are saved as by Area of Interests (*.aoi).
This means that the UTM coordinates of a certain area are stored in such
a �le. Due to the uniform coordinate system of Landsat and MODIS data
sets (Projection: UTM, Zone 33N; Ellipsoid: WGS 84) areas of interest
can be transferred directly from Landsat to MODIS and vice versus. The
optical bands of Landsat have a ground resolution of 30m, the same bands
of MODIS have a ground resolution of 500m, which means that there are
many Landsat pixels within one MODIS pixel. This fact is paid attention
to when transforming an area of interest from Landsat to MODIS. 5 x 5 km
may be considered as normal size of a logged forest. Such an area includes
around 28.000 Landsat pixels, but only 100 MODIS pixels. When de�ning
an area of interest, it is unavoidable that the surrounding polygon intersects
pixels. To exclude these border pixels, only pixels completely inside the Area
of Interest are de�ned by Points of Interest and introduced to feature space
analysis.

6.2.2 Feature Space and Je�rey Matusita Distance (JM)

A feature space analysis is a standard method in remote sensing. In the case
of the present thesis it is 2-dimensional, because one channel of MODIS is
analyzed at two dates. Each axis represents one date. For example, it can be
used to Analise the separability of two land cover types. Area of interests,
representing the two land cover types are located within the feature space
according to its re�ectance values at the two observed dates. In the result-
ing diagram, the re�ectance values of these land cover types form clusters.
Now the separability of these clusters can be investigated with certain math-
ematic methods. The result is evidence about separability of two observed
land cover types in one satellite channel at two dates. In the feature space
analysis of the present thesis, the separability between logged and intact for-
est is investigated.

The Je�rey Matusita distance (JM) is used to make a mathematical valid
deposition concerning the separability of the features. To compute their sep-
arability, it uses the Battacharyya (B) distance [16] between two features,
calculated from the mean vectors as well as from the standard deviation of
the single samples within one feature. JM has a range from 0 to »2, whereas
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0 means �not separable� and »2 means �separable�. The JM formula is given
below.

JM =
√
2(1− e−B) (6.2.1)

B =
1

8
(µ1 − µ2)

2 2

σ2
1 + σ2

2

+
1

2
ln

(
σ2
1 + σ2

2

2σ1σ2

)
(6.2.2)

6.3 Time Series Analysis

The main advantage of MODIS data is its high temporal resolution. This
allows the introduction of several methods of time series analysis into the
�eld of logging detection. Re�ectance di�erences between total deforestation
and intact forest are supposed to be obvious, even more obvious than the dif-
ferences between logged and intact forest. First the scenario of deforestation
is investigated in detail. Afterwards selective logging, which still leaves some
trees is discussed. This is done in the way proposed by Alexander Koltunov
[26]. He describes two characteristics to separate logged and unlogged forest.
These are temporal di�erences and spatial di�erences. A fundamental fact
is that single pixels values are treated when working with di�erences. No
area features are introduced to this analysis. The reason for this is the huge
surface area of 500 x 500 m which is represented by one MODIS pixel.

Time series analyses in the present thesis are only conducted during the
dry season of each year. In tropical rain forests, there is usually a periodical
transmission between rainy seasons and dry seasons. During rainy seasons,
clouds prohibit ground re�ectance measurements most of the time. For every
time series analysis, data sets without gaps are desired. Scanning visually
through data sets over one year in the project area, it has become obvious
that the best data sets are available from November to February. Therefore,
only these periods at each year are analysed.

6.3.1 Preliminary study: Deforestation

There is no deforestation within the project area in the Republic of Congo.
Deforestation occurred in the south of Cameroon between 2000-2004. Defor-
estation can be made in short periods for large areas using heavy machines.
Deforestation can also be made in long periods for small areas using small
machines or even hand tools. This type of slow deforestation is investigated
in the present thesis. The area is located in the surrounding of a small village.
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The two vegetation indices NDVI and EVI are used. Comparisons are done
between areas of deforestation and areas which remained unchanged within
the period of investigation.

6.3.2 Time Series of Spatial Di�erences - Selective Log-
ging

A spatial di�erence in the context of the present thesis is a di�erence between
the re�ectance value of a logged pixel and the re�ectance value of an intact,
unlogged pixel. This di�erence is calculated with re�ectance values of the
same date. The logging areas are known from the visual search in Landsat
scenes. For calculating the spatial di�erences, the nearest piece of forest,
representing the same forest type than the logged one is taken. This piece
of forest was also found in a visual search in Landsat scenes and transferred
to the investigated MODIS scenes. The mean re�ectance of all unlogged
pixels is calculated and subtracted from each logged pixel. This approach
is called spatial di�erence in the present thesis. It is applied to each logged
pixel. This is done at several consecutive dates for all pixels, resulting in time
series of spatial di�erences. If the date of logging is known for a certain pixel
and the spatial di�erences are calculated before and after this logging event,
this logging event should be visible in the di�erences. Before the logging
event the observed pixels are still intact, therefore the di�erence to the mean
re�ectance value of a nearby area of the same forest type should be around
zero. After the logging event the di�erences are assumed to be unlike zero.
The idea of this approach was found in the study by Alexander Koltunov
[26] as described in section 4.3.3.

6.3.3 Time Series of Temporal Di�erences - Selective
Logging

Basically, logged pixels and unlogged pixels are compared. A temporal dif-
ference of one pixel is calculated by subtracting its value at a certain intra
annual date from its value at the same intra annual date but in a di�erent
year. The basic assumption for using same intra annual dates is, that the
forest phenology is the same in each year. Therefore, the temporal di�er-
ence should be free from phenological e�ects. If there are logging activities
in the area of a certain pixel and a di�erence is calculated with one value
before the logging event and another value after the logging event, this log-
ging activity should be visible in this di�erence. This di�erence, representing
logged forests, is then compared to a di�erence representing unlogged forests.
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Of course, the di�erence of unlogged forests is calculated in the same man-
ner and with the same dates of observation, only using pixels which remain
unlogged during the observation period. Consequently, this comparison is
scienti�cally valid. According to the de�nition of time series, the comparison
of these two di�erences is made for several consecutive dates.
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Chapter 7

Results and discussion

7.1 Preliminary studies: Monotemporal

First, the results of the visual scan for logging areas in Landsat scenes are
shown. They later serve as ground truth input for the MODIS time series
analysis. Second the comparison between Landsat and MODIS is shown,
investigating the question if logging patterns are visually seen in MODIS
data sets. Further on, a correlation test between two MODIS bands is shown.
This is important to evaluate the usability of vegetation indices, which are
necessary for the purpose of the present study.

7.1.1 Landsat Logging Areas

Scanning visually through landsat scenes of the project area (Landsat ID:
P182R059) from 2000-2010 revealed several logging areas. The chronose-
quence of one of these areas shown in �gure 7.1.1 is used for further analysis.
It shows very clear logging patterns within the time span of a few months.
With visual analyses of Landsat data it can be detected, that at the end
(2009/01/14) of the dry season from November 2008 to February 2009 the
forest is still unlogged, whereas to the beginning (2009/11/30) of the dry
season from November 2009 to February 2010 the forest is de�nitely logged.
This means that this logging event is represented for sure in the MODIS
data sets of the fourth dry season and may also be represented in the last
two scenes of the dry seasons from November 2008 to February 2009. The
black&white dashed line in the pictures marks the borders of the area of
interest. It is necessary in the software ERDAS to mark and de�ne certain
areas. The size of the marked logging area is approximately 8 x 4 km. One
MODIS pixel represents 500 x 500m of surface re�ectance. Due to its form,
the area contains around 30 - 40 MODIS pixels. For the visual landsat anal-
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ysis, band 4 is assigned to the red channel, band 3 to the green channel and
band 2 to the blue channel. This band combination works well for visual
vegetation analysis.

Figure 7.1.1: Chronosequence of a logging area in Landsat
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7.1.2 MODIS Logging Areas vs. Landsat Logging Areas

Subsets of MODIS images are compared visually to a Landsat subset of
logged forest in �gure 7.1.2. All subsets show exactly the same area. Its size
is approximately 11 x 10 km. The Landsat scene is from 28/02/2010 and the
MODIS scene is from 26/02/2010. This di�erence of two days between the
images does not prohibit a brief and correct visual comparison. Two days
is a very short time in logging, and the large-scale patterns are not changed
distinctly in such a short period of time.

The logging patterns of roads and equally distributed holes in the canopy
are clearly visible in the Landsat image. In none of the MODIS bands sub-
sets these pattern are visible. Even the distribution of brightness within the
MODIS subsets does not correlate with the distribution of logging in the
MODIS subsets. The central logging road, as seen in Landsat, may correlate
with the light area seen in the NIR band of MODIS. But in this band subset
the complete area in the lower right corner is very bright aswell, although
this represents an area of unchanged forest, as seen in Landsat. Thus logging
is not visually detectable in MODIS. The white pixel in the blue MODIS
subset marks a missing value in the MCD43 data set. These relations are
shown in �gure 7.1.3.
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Figure 7.1.2: Comparison Landsat vs. MODIS

7.1.3 Correlation Test MODIS Bands

For the MODIS NBAR scene from 26/02/2010, a feature space for the bands
1 (red) and 2 (NIR) is presented. Pixels with logging (marked by a red cross)
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Missing MODIS pixel

Bright MODIS pixels vs. intact forest

Bright MODIS pixels vs. logged forest

Figure 7.1.3: Detailed Comparison Landsat vs. MODIS
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and pixels which remain unchanged (marked by a green cross) are drawn into
the feature space. This is shown in �gure 7.1.4. Logged and unlogged pixels
show high re�ectances in the NIR channel and low re�ectances respectively
high absorption in red channel. The reasons are given in section 4.2. The
Je�rey Matusita distance between these two types of pixel is 492. This is low
value of separability making it di�cult to distinguish them in monotemporal
analyses. This circumstance will be dealed with in the following sections.

7.1.4 Discussion

The preliminary studies in a monotemporal approach delivered good results
for the present thesis. Several instances of logging could be found through
the visual scan of Landsat scenes. However, these logging areas could not be
detected visually in MODIS MCD43 images. In none of the single bands, log-
ging patterns could be identi�ed. After the correlation test, MODIS channels
red and NIR will be used later for VI calculations.

7.2 Preliminary studies: Multitemporal

After the detection of the logging areas, the separability of logged and un-
logged pixels between two points in time is investigated. All analyses are
based on the Enhanced Vegetation Index (EVI) as proposed by [42]. Pixels
of logged forest and pixels of intact forest are plotted in multi-temporal fea-
ture spaces between the EVI images of two dates. The question is, whether
change and no-change pixels can be separated with this kind of separability
analysis.

7.2.1 Feature space Tests

The Phenology of a tropical rain forest has very dynamic intra-seasonal be-
havior. To minimize these e�ects, feature space tests are only done between
images of the same intra-seasonal date. For example, a comparison between
December 2009 and December 2010. MODIS NBAR images are available for
the same dates each year, so it is possible to have an exact congruence of date.
Pixels from the logging area presented in the monotemporal visual studies
shown in �gure 7.1.1 are used. The forest was degraded between 2009/01/14
and 2009/11/30 in this area. A nearby area of unchanged forest of the same
type than the logged one, is used as a reference area. In this context, forests
of the same type are forests with same re�ections before the logging event.
The variations in re�ectance are caused from the moisture level and from
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Figure 7.1.4: Feature space MODIS red and NIR
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Date of �rst scene Date of second scene JM distance Shown in �gure

2007/02/26 2010/02/26 413 7.2.1
2006/12/27 2009/12/27 426 7.2.2
2007/12/27 2009/12/27 489 7.2.3
2008/01/25 2010/01/25 472 7.2.4

Table 7.1: Multi-date feature space analyses

the kind of tree species within an area of forest. Through analysing di�erent
bands of Landsat and also di�erent band combinations, forerst of the same
type can be detected. If one uses an area of forest of another type than
the observed logged one, the pre-logging natural di�erence in re�ectance will
disturb all investigations.

This kind of multi-date preliminary study at equal intra-annual dates in
di�erent years was investigated exemplary. The separability between logged
and unlogged pixels is tested. Therefore, all multi-date investigations of this
section include one scene before and one scene after the observed logging
activity from February 2009 to November 2009. An overview of these inves-
tigations, including the corresponding Je�rey Matusita (JM) separability as
well as the link to the related �gure is given in table 7.1.

The JM separabilities are very low in all four cases. This can also be seen in
the corresponding multi-date feature spaces.

7.2.2 Discussion

The preliminary studies in a multitemporal approach, have not been suc-
cessful in this case. The investigated forest degradation by selective logging
show too small or almost no changes in the MODIS EVI re�ectance. One
reason may be the deviation between modeled and observed BRDF values
as described in section 3.2.4. These are unfavorable precondition for the
outstanding approach of time series analysis which is basically a sequence of
analyses between two dates as shown in this section. However, all prelimi-
nary studies in a multitemporal approach took place in the second part of
the dryseasons. In addition, mathematical analysis techniques for time se-
ries, like the standard deviation will be introduced, to gain other possibilities
of separability.
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Figure 7.2.1: MODIS feature space 2007/02/26 and 2010/02/26
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Figure 7.2.2: MODIS EVI feature space 2006/12/27 - 2009/12/27
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Figure 7.2.3: MODIS EVI feature space 2007/12/27 - 2009/12/27
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Figure 7.2.4: MODIS EVI feature space 2008/01/25 - 2010/01/25
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Number Period of time

First Nov 2006 - Feb 2007
Second Nov 2007 - Feb 2008
Third Nov 2008 - Feb 2009
Fourth Nov 2009 - Feb 2010

Table 7.2: Investigated dry seasons

7.3 Time Series Analysis

First, time series of deforestation are shown. The selected case is the most
extreme case of forest degradation, which is supposed to produce signi�cant
patterns. This is done with EVI and NDVI. Working on the detection of
selective logging, the two di�erences described by Koltunov [26], temporal
and spatial di�erences, are calculated. The analysis is concerned with data
from four consecutive dry seasons from 2006 to 2010. Each dry season is
represented by 8 MCD43 images at an interval of 16 days. The dry seasons
are numbered and named according to table 7.2.

7.3.1 Preliminary study: Deforestation

The phenology of intact forests and deforested areas can be seen. If the
separability in this case should prove low, the separability of small-scale
degradation activities will be even more di�cult.

7.3.1.1 EVI

A comparison of intact forest pixels and pixels of continuous deforestation
within the period of 4 years is shown in �gure 7.3.1. MODIS data sets of the
four dryseasons listed in table 7.2 are introduced. At the end of these 4 years,
all change pixels are deforestated. This statement is based on visual investi-
gations of Landsat scenes with a spatial resolution of 30m x 30m. Therefore,
no evidence is given wether some trees are left or not in these areas. The
result of the visual interpretation was a clear change of re�ectance within
the observed four years. Pixels which showed re�ectance values of forests
changed to pixels with very di�erent re�ectance values. It is obvious that
the two kinds of pixels can be separated very well in the last dry season as
seen in �gure 7.3.1. In the �rst two seasons, some pixels can be separated
and some not. The reason is the di�erent date of deforestation. Some pixels
are still intact after the �rst dry season In the subplot below the Je�rey Ma-
tusita distance between all unchanged pixels and all changed pixels is plotted
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for each date.

The high variance of EVI within the speci�c years is attributed to the emer-
gence of new leaves and to the fall of old leaves [42]. Generally, old leaves
have less chlorophyll and water content in comparison with old leaves. The
last dry season shows an especially interesting pattern between pixels of de-
forestation and unchanged pixels. At the beginning of the dry season, the
deforested pixels show higher EVI values the unchanged ones. Due to the
warm and humid climate, central Africa has a very fertile soils. In these
climatic conditions, a piece of bare soil will be completely covered with all
kinds of plants within a few weeks during the humid season. These plants
may have a higher chlorophyll and water content than young leaves at the top
of a tropical tree at the beginning of the dry seasons. Thus the EVI value of
these pixels is higher than of pixels of unchanged forest. in addition, some of
these plants may be crops, which are harvested after a certain time, changing
a vegetated area of land into an area of bare soil. In this period, changed
and unchanged pixels cannot be separated by JM distance at a single date.
Later on in the dry season, the crop plants at the former places of clear cut
trees are mostly harvested. The changes the area to bare soil, and leads to
extreme variations in the values of Vegetation Indices. Intact tropical rain
forest have evolved mechanisms to store water for the dry seasons. Deep root
systems provide access to water and the dense canopy protects the ground
from direct sun radiation. Without the canopy, the ground dries up very
fast. Around the equator, the sun shines to the ground at an angle of around
90° at its zenith.

7.3.1.2 NDVI

A comparison between intact forest pixels and pixels of continuous defor-
estation within the period of 4 years is shown in �gure 7.3.2. The result is
similar to that based on EVI data. Again separability works best in the last
dry season when deforestation reached its maximum extent in the observed
period. As detected in EVI, also working with NDVI, the forest shows the
ability to store water through the dry season. The young and fresh plants at
former places of tropical forest do not have this ability. Because of this, the
JM separability increases with the progressing dry season. It is also possible
that the deforested areas are used for planting crops, which may be harvested
in the dry season. This leads to bare soil and low NDVI values. A low water
content of leaves is correlated with low NDVI values, this context is well
known and is presented in detail in [9].
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Figure 7.3.1: Deforestation EVI
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Figure 7.3.2: Deforestation NDVI
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7.3.2 Selective Logging - Absolute Time Series

All analysis with absolute time series as well as spatial and temporal dif-
ferences takes place in the logging area shown in �gure 7.1.1. Again EVI
index, calculated from MODIS BRDF data sets is used. This changing area
is compared to a nearby unchanged area. Again, logging occurs in the fourth
dry season from November 2009 to February 2010, possibly also in the last
two dates of the previous, third dry season of the study. 30 pixels of logged
forest and 15 pixels of intact forest are considered in this analysis, shown in
�gure 7.3.3. The number of intact forest pixels is smaller because no more
pixels of the same type could be found. Each dot in the �gure represents one
pixel at one date. Unchanged and changed pixels behave similarly through
the �rest three dry seasons, most obviously in the �rst dry season. The
fourth dry season is di�erent because the change pixel show especially larger
variations than in the dry seasons before. As described in section 3.3.3 the
MODIS BRDF algorithm needs 7 unobstructed observations within 16 days
to be completely calculated. Many data sets are missing. For example at
the beginning of the third dry season there are almost no data values within
three consecutive dates.

7.3.3 Selective Logging - Time Series of Spatial Di�er-
ences

For each date a mean value of all unchanged pixels is calculated. This mean
value serves as reference and is subtracted from each change pixel. The
resulting di�erence should be around zero in the �rst three dry seasons, where
there is no logging. In the fourth dry season, the di�erence is expected to
not be zero due to the logging which is represented by these di�erences. The
result is shown in �gure 7.3.4. In the top subplot, the di�erences are plotted,
in the subplots below, the standard deviation of the di�erences for each date
and also the number of valid pixel for each date. There is logging in the fourth
dry season. Either a clear o�set from zero in this dry season or a di�erence
from the �rst three dry seasons, or higher standard deviations in the fourth
dry season could serve as mathematical instruments of separability. Missing
data values make continuous analysis impossible, which is especially in the
case of time series studies quite obstructive. The standard deviations are
higher in the fourth dry season, but in the third dry season there is no single
data value at some dates, which would enable comparisons and clear results.
Therefore the only result for spatial di�erences is the assumption that in
case of full data availability, logging pixels are separable by higher standard
deviations.
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Figure 7.3.3: Change - No Change Absolute Time Series
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7.3.4 Selective Logging - Time Series of Temporal Dif-
ferences

All temporal di�erences are made with reference to the fourth dry season,
which is the season where logging occurs. Di�erences are calculated between
the fourth and the third, between the fourth and the second and between the
fourth and the �rst dry season. Thus, the logging activity of the fourth dry
seasons is included in all three di�erences. As described in the chapter on
methodology, di�erences are calculated pixel-wise, at the same Intra-annual
dates. Regarding the result shown in �gure 7.3.5, the biggest problem of
this kind of analysis is obvious. It is again the lack of continuous data.
For temporal di�erences, one needs two valid data sets from the same intra-
annual dates to get one resulting data value. Applying this technique to a
data sets with many gaps, the result will have even more gaps. However,
this problem arises in all application of remote sensing, regarding changes
between two points of time. As a result in the case of temporal di�erences,
not even an assumption about the utility of the method can be made in a
scienti�c sense. Too many data sets are missing.

7.3.5 Other Logging Areas

The Time Series analysis of the most promising logging area has been not
successful. With visual analysis, several other logging areas have been de-
tected. This has already been mentioned in chapter 7.1.1. Furtheron, The
data of another logging event between 2000 - 2004 was evaluated as shown
before. But again, the lack of data was a problem. Even more data sets were
missing. The only conclusion is, that MODIS data sets are not useful for
these purposes.

7.3.6 Discussion

The most problematic fact that emerged in the course of this study is the low
data quality of the MODIS MCD43 data sets. Seven cloud-free observations
within a 16-day period are needed to perform the full NBAR algorithm which
operates behind MCD43 data sets. In rainforests, which have high moisture
levels through the whole year, it is normal and natural that the surface is
frequently obstructed by clouds. Too many data gaps were found equally
distributed over the investigated dry seasons between 2006 and 2010. These
gaps make solid time series analysis impossible. In addition, the logging areas
of this study are much smaller than logging areas in the Amazon basin. If
logging areas with a similar size to the areas in the Amazon basin would have
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served as project areas, one could probably have found pixels of good quality
for the whole observation period. In that case, the suggested methods of this
work could have been tested and maybe proved. However, for an operable
REDD monitoring system, even if it is only used as the �rst step of a hot spot
approach, comprehensive data sets of good quality are needed. One MCD43
pixel represents 500 m x 500 m of surface. It is therefore not possible to just
exclude one pixel of missing observations from the whole monitoring process.

Even the MODIS team notes the problems of numerous data gaps in MCD43
data sets [34]. In case of clouds obstructing the surface, making re�ectance
measurements impossible, the scientist suggest the use of a prior knowledge of
the likely surface re�ectances, which could serve as an input for the MCD43
processing algorithm. Including these data sets into the monitoring system
would falsify the whole process, because the main interest of a monitoring
system is the status of the surface right at a certain point of time. This
can not be provided by a prior estimation of the re�ectance. In the work of
Koltunov [26], which is the most closely related the present study from the
reviewed works, no advice was found concerning how many data sets these
scientists had to exclude due to low data quality. It is only mentioned that
merely data sets of good quality are used, the exact number is not given.
However, this work used an area of 65 MODIS scenes, testing thousands of
logged pixels. Therefore pixels with complete time series of good quality
must have been found.
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Chapter 8

Conclusion and Outlook

8.1 Conclusion

The present thesis could not bene�t from the main advantage of MODIS data
sets, its high temporal resolution. Working with optical light, the well-known
cloud obstruction of tropical forests has proved too limiting for acceptable
results. Therefore, MODIS cannot serve as an adequate input for degradation
mapping in an hot spot mapping approach, even on a �rst coarse level. In
addition the design life time of the two MODIS satellites is 6 years. Both
satellites are working at current date (March 2011) beyond their designated
life time. Terra is operating since 1999 and Aqua since 2002. So for future
operable REDD monitoring system, sensors are needed with ensured lifetimes
of at least 5 years.

8.2 Requirements for Hot Spot Mapping

The ideal data set for the �rst level of hot spot mapping is void of data
gaps. For an area of interest, a data set of comprehensive and good quality is
needed for at least one date per year. For the �rst level of hot spot mapping,
this data sets needs to have the capability to identify changes of degradation.
Measuring and mapping the amount of this degradation can be done with
other data sets of medium or �ne spatial resolution.
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8.3 Evolving Technologies

8.3.1 Synthetic Aperture Radar (SAR)

Radar is an active remote sensing system. This is its fundamental di�erence
to optical remote sensors, which are passiv sensors measuring re�ected or
re�ected electromagnetic energy of the earth. Radar sensors operate in the
microwave region (l = 3 - 70 cm). This fact is one of the main advantages
of theses sensors, its autonomy of weather conditions for obtaining good
measuring results. The microwaves penetrate through surface-obstructing
features (aerosols, clouds, smoke), which are especially common above trop-
ical forests. In the case of measuring a forest with radar sensors, di�erent
radar bands provide di�erent useful information on the the forest structures.
Longer radar wavelengths are scattered by forest structures deeper inside
whereas the scattering of shorter radar wavelengths is more dependent on
canopy features such as top crown leaves. The amount of backscattered en-
ergy gives information on the di�erent forest structures like leaves, branches,
stems and the underlying soil. Due to advancements in SAR technologies, an
increasing number of SAR sensors has been recently built and sent to space
[19]. With the intention of producing globally-consistent radar image data
sets the Kyoto and Carbon Science Team was formed. It is originally
a Japanese initiative, however other space agencies, like JAXA, ESA and
NASA plan to contribute and cooporate with their radar data sets to ensure
and develop a long-time and worldwide coverage of radar data sets. Once
established, this may be a used for REDD monitoring, especially through its
independence of atmospheric conditions. Maybe it can serve as global input
for REDD hot spot monitoring. However, the information content in SAR
data sets is much lower than in optical data sets. This circumstance may
limit degradation mapping.

8.3.2 Light Detection and Ranging (LIDAR)

This is an active measurement system which can be carried on an aircraft.
In the case of a forest, �rst pulse measurements provides information about
the canopy properties, whereas last pulse measurements provide information
about the underlying topography. For estimations of biophysical parameters,
these data sets have been found to be similarly or even more accurate than
corresponding �eld-based methods. GLAS is a LIDAR sensor on board of the
satellite ICESat. This satellite provides data sets from over the whole globe.
A recent study used these data sets for estimating biomass and carbon stocks
for the Canadian province of Quebec [19]. The only spaceborne laser, GLAS
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on board of ICESat is currently out of work. There are e�orts to restart the
system. The United States are developing three other spaceborne LIDAR
systems. However, there are bound to be data gaps between the missions.
But future missions promise to give data samples at 5 m ground resolution,
which may serve as input for the whole REDD carbons stocks estimations,
making the hot spot approach with di�erent types of data sets unnecessary.

8.3.3 MERIS

MERIS stands for Medium Resolution Image Spectroradiometer. This sensor
is on on board of ESA satellite ENVISAT and o�ers 12 channels between 390
and 1040 nm at a ground resolution of 300m x 300m. MERIS data sets have
been used for global applications like GLOBCOVER. Especially the spatial
resolution is seen as an improvement in comparison to the use of MODIS
data [4]. These data sets may serve in the �rst coarse level, for mapping
forest degradation in an hot spot approach.
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