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Abstract

This thesis describes the development of an advanced CPU Sub-System for a Low Fre-
quency Transmitter IC. The integration of a powerful microcontroller offers the possibility
to perform complex operations without the use of additional microcontrollers in the final
application. The herein presented CPU Sub-System is based on an 8-bit 8051 micro-
processor core including memories, I/O ports, diagnostic units and a memory control
unit. Before the design was integrated into the Low Frequency Transmitter IC it had
been tested on a Xilinx Spartan 3 FPGA. This approach allows testing the developed
hardware as well as starting software development for the final ASIC at an early stage
in the design process. The CPU Sub-System is conceptualised to be very flexible and
configurable for future use. The system has been verified during all development phases
by the execution of testcases in simulation, on the FPGA and finally on the ASIC.

Keywords: System-on-a-Chip, ASIC, Low Frequency Transmitter IC, FPGA, CPU
Sub-System, 8051 microcontroller core, memory mapping

Kurzfassung

Diese Arbeit beschäftigt sich mit der Entwicklung eines CPU-Subsystems für einen Nieder-
frequenz Sende-IC. Die Verwendung eines leistungsstarken Mikrocontrollers erlaubt es,
komplexe Berechnungen in der Anwendung durchzuführen, für die man ansonsten auf
zusätzliche Bausteine angewiesen wäre. Das hier vorgestellte CPU-Subsystem basiert auf
einem 8-bit 8051 Mikroprozessor inklusive Speichermodulen, I/O Ports, Diagnoseblöcke
und einer Speichermanagementeinheit. Das System wurde in VHDL beschrieben und vor
der Integration in den ASIC auf einem Xilinx Spartan 3 FPGA getestet. Durch die Im-
plementierung in einem FPGA kann die entwickelte Schaltung sehr früh im Entwicklungs-
prozess getestet werden. Zusätzlich ermöglicht diese Vorgehensweise einen frühen Start
der Softwareentwicklung für den ASIC auf realer Hardware. Das Design des CPU-
Subsystems ist flexibel und konfigurierbar um zukünftigen Anforderungen gerecht zu
werden. Das System wurde während aller Entwicklungsphasen durch Ausführen von
Testfällen in Simulation, am FPGA und letztendlich auch am ASIC verifiziert.

Stichworte: System-on-a-Chip, ASIC, Niederfrequenz Sende IC, CPU-Subsystem,
FPGA, 8051 Mikrocontroller, Speichermanagement
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Chapter 1

Introduction

This thesis deals with the development of an 8051 based CPU Sub-System for a Low Fre-
quency (LF) Transmitter Integrated Circuit (IC). SensorDynamics (SD) developed the
LF series for applications requiring high transmission reliability, low standby current and
fast reaction time. Nowadays it is common to integrate microcontrollers to such a System-
on-a-Chip (SoC) to control transmissions and to provide an interface to the environment.
The behaviour of such systems can easily be changed or improved by modifying the em-
bedded software. So the system can be adapted very quickly to implement new features
or to improve existing functions. These LF Transmitter ICs are used in applications like
remote sensing, as active wide range identification tags or in keyless entry/keyless go
systems. Besides the interfaces to control up to five external antennas for data transmis-
sion also seven sensor input pins are available. For each antenna a diagnostic input is
also available to check if the antennas are working correctly. To perform operations like
antenna diagnostics in time it is important to implement an efficient algorithm, and to
execute it on a fast microcontroller.

In previous projects developed by SD an 8051 microcontroller core has been integrated
into those systems. Several applications have shown that the processing power of the used
core is inadequate to compete with future requirements. Besides the computing power,
testability and controllability of the executed program during development have also be-
come important topics. For example, the recently used core did not offer the possibility
to stop the execution of code at a certain point and to resume it afterwards. Those
debugging features are important criteria for customers nowadays because they decrease
code development time and improve fault diagnostics capability. So it has been decided
for future projects like the LF Transmitter IC a more powerful microcontroller core has
to be integrated within the IC.

The main aim of this thesis is the integration of a new microcontroller core into Sen-
sorDynamics’ Intellectual Property (IP) structure, to develop a CPU Sub-System based
on that core, and to verify its functionality. Verification of the design is performed by
simulation and integration of the whole digital design into a Field Programmable Gate
Array (FPGA).
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In the following the thesis’ outline is presented. First basic principles in SoC design
and the features of the 8051 microcontroller are discussed. Its drawbacks are also outlined
and a comparison with a newer core is provided. Subsequently the system requirements to
the core are presented and the selection process between different options is outlined. In
Chapter 3 a general overview about the system is provided which is thereafter refined to
delineate the interaction between the CPU Sub-System and the other parts of the system.
Afterwards the integration of the new core into the CPU Sub-System is explained in detail.
Modules like the memory mapper and the parity check block are presented as well as the
architecture and the design of the complete CPU Sub-System. Chapter 4 deals with
the implementation details of the presented design. Also system integration topics like
interrupt and register assignments are covered within this chapter. At the end of this
chapter two implementation flows are presented: the first one which targets an FPGA
and the second one describes the creation of a physical block for use in an Application
Specific Integrated Circuit (ASIC). Chapter 5 presents the verification methods used to
check if the design meets its requirements. Also a short overview about the evaluation
process of the final ASIC is provided. The last chapter deals with the achieved results
and suggestions for future work.
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Chapter 2

Basic Principles and State of the Art

2.1 System-on-a-Chip

The technical advance in the last years within semiconductor industries made it possible to
integrate very complex systems onto a single chip. Those systems are often referred to as
System-on-a-Chip (SoC). Such a system generally combines analogue, digital and mixed
signal blocks. Depending on the application, radio frequency or high voltage blocks are
also integrated onto the same substrate. Most of those systems include a microcontroller
or a control unit to process measured data or provide an interface for setup and data
transmission. As shown in Figure 2.1 the complexity of ICs is increasing year by year.
On the other hand shortening time to market is as necessary as reducing size to be
competitive. New design philosophies have been introduced to handle more complexity
in a shorter time. One of those philosophies is the ”Design for Reuse” (also ”Design and
Reuse”) paradigm.

In the early 1990’s reuse became a very popular topic. Since the end of the last
decade usage of virtual components (IP modules) is daily business for designers (cf. [19]).
IP modules are previously developed hardware blocks which have been tested and/or used
in products before. This approach offers various advantages:

• Cost saving (if the module is used several times)

• Shorter verification time

• Possibility to obtain blocks from IP suppliers

• Improved reliability for new products

• Modules are checked and improved with every use

• Existing hardware could be used as reference

On the other hand there are only a few disadvantages:

• Increased effort to implement modules in a flexible way

• Administrative effort to manage the IP pool

3



������������	�

�
�
�

�
�
��
�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�
�
�

�

��

���

����

�����

��	� ��	� ��
� ��
� ���� ���� ���� ���� ����


���

�
��
�
�
��
��
��
�	
�
��

�
�

�������������


�
�
�

�


�

�
	
�
�

�
��

�
��

�
�
��

�
�
�
� �
	
�
� �
�
�
� �
�
�
�
�

�

��

���

����

�����

������

��	� ��	� ��
� ��
� ���� ���� ���� ���� ����


���

��
�
�
�
�

�


��
�
�
	
�

����������������������������

�

�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�



�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�

��

���

����

�����

������

�������

��������

��	� ��	� ��
� ��
� ���� ���� ���� ���� ����


���

��
�

�
��
��
��
��
�
��

��
�
�

�������������������

�
��
�
�
�
�
�
�
�
�

�
��
�
�
�
�
�
�
�

�
��
�
�
�
�
�
�

�
��
�
�
�
�
�
�

�
��
�
�
�
�
�

�
��
�
�
�
�

�
��
�
�

�
��
�

����

����

���


���	

����

����

������

�����

����

���

��	� ��	� ��
� ��
� ���� ���� ���� ���� ����


���

�
��
�
�
��
�
�

Figure 2.1: complexity of integrated circuits

The reuse of IP modules in different manufacturing technologies requires a hardware
independent description of the circuit. To describe a digital circuit a Hardware Description
Language (HDL) is used. The translation process between circuit description (algorithmic
specification) and integrated circuit is done by software tools. Usually there are more levels
of abstraction within a design. The translation from one abstraction level to another level
is termed synthesis. To meet design constraints like timing, area and power consumption
this process is computationally intensive and complex. Also the behaviour of the circuit
needs to be verified and simulated. The combination of tools needed to create a design
and to transform it into a fabricable electronic circuit is called design flow. This also
includes verification at each abstraction level. In Figure 2.2 an example of a digital
design flow is shown. The design flow is divided into two methodologies: frontend and
backend methodology. Frontend summarizes all necessary actions to implement, create
and simulate a Register Transfer Level (RTL) description of the design to implement. The
result is a gate level netlist description of the circuit which is the entry point of backend.
All processes needed to create a physical implementation from the gate level netlist are
assigned to backend. After each important step in the design flow the circuit is simulated
and the correct behaviour (e.g. timing) is checked. If the circuit does not pass this check
a re-design has to be done. At the end of the backend technology checks are performed
to verify the generated circuit meets also all technology restrictions.
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Figure 2.2: digital design flow

The following languages are very common in IC design:

• Very High Speed Integrated Circuit Hardware Description Language (VHDL), re-
leased in 1987 on the request of the US Department of Defense (DoD)

• Verilog, released in 1985, introduced by Gateway Design Automation

Those two languages are supported by many Electronic Design Automation (EDA)
tools because the language definitions have been released early as Institute of Electrical
and Electronics Engineers (IEEE) standard. VHDL was released in 1988 as IEEE 1076-
1988 and Verilog in 1996 as IEEE 1364-1995. Additional to the language specification
there are also standards regulating waveform and vector exchange formats and synthe-
sis. Aside from the widely-used languages mentioned above there are a few other HDLs
which are not very popular because they are out-dated, limited in function or for special
purposes.
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To deal with new challenges like modeling the interrelation between hardware and
software, formalising the specification of circuits and providing automatically generated
testbenches new languages and methods have been developed. SystemC is one example
which is very powerful. There are also compilers to translate circuit descriptions from
SystemC to Verilog or VHDL like the Synopsys CoCentricR© Design Compiler (cf. [21]).

HDLs dealing with analog and mixed signal descriptions are mostly named after their
origin with Analog and Mixed Signal (AMS) as extension. Also Verilog and VHDL
have been extended with AMS language elements. Those languages are referred to as
Verilog-AMS and VHDL-AMS. In [16] a comparison of those two languages is presented
by modeling the same system in each language. The VHDL-AMS extension originally was
a strict superset (IEEE 1076.1-1999) of the above mentioned digital VHDL IEEE 1076-
1993 standard. The combination of those standards is colloquially termed as VHDL-AMS.

Nowadays tools on analogue and mixed signal synthesis are not very popular but the
number of tools which take VHDL-AMS as input code to generate some type of ana-
logue electronic implementation is increasing in recent years (cf. [2]). High-level analogue
synthesis includes (according to [7]):

• Architecture generation

• Performance model generation

• Parameter optimization

It seems that synthesis of analogue and mixed signal circuits is at a similar stage as
digital synthesis was around the year 1984. At the moment those languages are used to
simplify and accelerate mixed signal simulations (cf. [15]). A comparison of simulation
cycles between VHDL-AMS, Verilog-AMS and SystemC-AMS circuit descriptions has
been performed in [12]. The results have been compared with a simulation done by
Synopsys’ Simulation Program with Integrated Circuit Emphasis (SPICE) simulator. It
has been shown that simulations of models written in AMS languages are simulated faster
than the SPICE models. However, for analogue synthesis the most important problem to
address is identifying the type of language constructs that can be converted into electronic
circuits.

In digital synthesis this process is less complex because the number of basic circuits
(e.g. logic gates) and macro cells (e.g. memory blocks) is limited. Those basic circuits are
delivered as digital libraries by ASIC manufacturers. This also ensures the basic blocks
are optimised for the used manufacturing process. In [13] a Dual Tone Multiple Frequency
(DTMF) decoder has been synthesised with a similar approach also in the analogue do-
main.

6



In general the modification of an existing circuit design itself is not necessary if a
digital IP module is reused for another process. It has only to be re-synthesised with the
correct digital library and constraints for the applicable production process. There are
several ways to obtain IPs from external providers (cf. [17]):

Soft IP Modules are RTL or higher level descriptions. Their advantages are flexibility,
portability and reusability. On the other hand timing and power characteristics are
regulated by the setup of the synthesis tool and the target technology.

Hard IP Modules are already physically implemented blocks and highly optimised for
an application in a specific process. The biggest disadvantage is the limited area
of application followed by the lack of portability. But there are also benefits like
predictable performance and area consumption. Usually Hard IP Modules are pre-
qualified (tested on silicon).

Firm IP Modules are provided as parameterised circuit descriptions. So they can be
optimised for specific design needs. Firm IP Modules are more flexible and portable
than Hard IP Modules. They are also more predictable regarding timing and power
characteristics than Soft IP Modules. Their drawback is the limited area of appli-
cation.

The microcontroller integrated within this thesis has been obtained as s Soft IP Mod-
ule. The range of microcontrollers used in SoC reaches from very cheap and simple designs
like OKIs 4-bit microcontroller OLMS63K up to very powerful and complex 32-bit con-
trollers like ARMs Cortex-M3. Since there is a wide range of microcontroller IPs it is
very important to know the demands made to the microcontroller by the system. Even
though it seems that powerful 32-bit controllers are getting more common in SoCs it has
been decided to use an improved 8051 microcontroller core. This decision was also made
with respect to reuse existing IP Modules designed for the previously used 8051 core.
In Section 2.3 a comparison of the appropriate 8051 cores is shown. The next section
provides a deeper look onto the 8051 architecture and its features.

2.2 The Microcontroller 8051

The 8051 was introduced in 1980 by Intel as one device in the MCS-51 family. At that
time only two other members belonged to that family: The 8031 and the 8751. They
are all based on an 8-bit Complex Instruction Set Computing (CISC) core with Har-
vard architecture. This means program storage and Random Access Memory (RAM)
are separated. The only difference between the devices mentioned above is their type
of program storage. The 8051 used a mask programmable internal Read-Only Memory
(ROM), while the 8751 contained an internal Erasable Programmable Read-Only Mem-
ory (EPROM). For the 8031 the memory had to be connected externally. The instruction
set of the MCU-51 family includes 255 Operation Codes (opcodes). In the original 8051
most instructions are executed within one or two machine cycles. Only divide and mul-
tiply operations take four machine cycles. A machine cycle (fmac) lasts 12 clock cycles.
The system clock (fosc) is generated by the internal oscillator based on an external crystal.
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Due to the licensing policies of Intel the 8051 architecture became very popular and
more than 400 variants (cf. [20]) of the controller have been developed. The enhanced
version of the 8051 was the 8052 microcontroller. Apart from a bigger Internal Random
Access Memory (IRAM) (256 Bytes instead of 128 Bytes) and an additional timer/counter
module the 8052 has the same features as the original 8051.

All versions of the MCS-51 family have the following common properties (cf. [22]):

• 8 bit Central Processing Unit (CPU)

• 128 Byte IRAM (also called Internal Data Memory (IDATA)); 8052: 256 Byte

• 16 bit address bus (up to 64 kB memory)

• Separated External Data Memory (XDATA) and Program Storage Read Only Mem-
ory (PSROM) (up to 64 kB each via separate control lines)

• Two timers/counters (8052: three timers/counters)

• 32 input/output (I/O) pins

• Integrated Universal Asynchronous Receiver Transmitter (UART) interface

• Two external interrupts with two priority levels

• Boolean processor for fast boolean operations

• Internal clock generation

Figure 2.3 shows a block diagram of the 8051 microcontroller. The 32 I/O pins are
grouped into four ports (P0, P1, P2 and P3). P0 and P2 can be used as address and
data lines for external memory. The address and data bus is shared between program and
data storage. P0 serves as lower address bus as well as data bus. For this reason time
multiplexing is used. This means the lower address byte output by P0 has to be stored
into a latch, while the upper address byte is output directly from P2. The Address Latch
Enable (ALE) pin is the control pin for the address latch. It indicates that the current
value at P0 is part of the next address to access. If the address is applied to a program
storage memory the Program Store Enable (PSEN) signal (active low) indicates the read
has to be performed. If data memory is accessed the additional write and read strobes
are provided by P3 (P3.6 write strobe, P3.7 read strobe).
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Figure 2.3: 8051 microcontroller block diagram (adapted from [8])

Some lines of P3 are also used for the serial interface (P3.0 receive/transmit data,
P3.1 transmit data or clock), as external interrupt source (P3.2 for interrupt 0, P3.3 for
interrupt 1) and as count input for Timer 0 (P3.4) and Timer 1 (P3.5). The switching be-
tween external data and program access is done automatically by evaluating the executed
instruction in the timing and control unit. Since the number of pins in SoC is limited most
of the integrated 8051 controllers do not provide the external memory interface to their
users. This interface is used internally and the external memory is on chip. Accessing
the external memory space is in general seven times slower than accessing the internal
memory.
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Figure 2.4: internal memory addressing scheme

Figure 2.4 shows the internal memory addressing scheme. The internal register banks
are located between address 0x00 and 0x1F. Each of the four register banks holds eight
general purpose registers: R0 to R7. Those registers are used as intermediate storage
when manipulating data or moving data between different memory locations. If an in-
struction stores a value in R0, the real address where R0 points to depends on the setting
of the Program Status Word (PSW) Special Function Register (SFR). The bit address-
able memory follows the registers with a size of 16 bytes (addresses: 0x20-0x2F). Each
bit has its own address (0x00-0x7F) where the Least Significant Bit (LSB) of each byte is
the first in the right-most position. Those bits can be manipulated with the bit-oriented
instructions of the 8051 (e.g. SETB, CLR).

User RAM and stack space are located between the bit addressable memory and the
SFR memory space. The stack is a memory which provides a Last In - First Out (LIFO)
functionality. Putting a variable onto the stack is called push, getting the last added
element from the stack is called pop. The stack is used if functions are called to store
the current working registers and the address to jump back after the function has been
executed. The stack is controlled by the Stack Pointer (SP) SFR which holds the current
end address of the stack. The SP is initialized on reset to 0x07 which points to the last
register of register bank 0. So the stack memory space starts at address 0x08. This means
if one of the other register banks or the bit addressable memory space are used within
the program the SP register has to be modified at startup. If the program is not written
in assembler the compiler is aware of this behaviour. After the 80 bytes of user memory
space the SFR memory space is placed. For the 8052 and the 8032 there are also 128
bytes of user memory space parallel to the SFR space. Accessing this user memory space
is done via indirect addressing. This means R0 or R1 holds the address which points to
the data.

10



Figure 2.5: Special Function Register (SFR) address map

As its name suggests this memory space addresses special functions of the 8051 like
setting the baud rate of the serial port or accessing the four I/O ports. The SFR is not
part of the internal memory but is addressed like it would be part of it. In reality the
registers addressed via the SFR memory space are distributed registers located in the
hardware blocks which function they control. The registers are connected to the core via
the SFR bus. This bus consists of the internal address bus, the internal data bus (output
and input lines separated), the SFR write strobe and the SFR read strobe. So for 8051
IP cores it is possible to attach custom hardware via the SFR bus. Intels’ 8051 used
only 26 of the 128 available SFR registers. In Figure 2.5 the SFR map of the original
8051 is shown. The registers with addresses dividable by eight (e.g. 0x80, 0x88,...) are
bit addressable. If the corresponding hardware is implemented (e.g. Timer 0) in general
all vendors use the standard register (e.g. T0CON) to provide compatibility with existing
software tools. Custom hardware is controlled via SFRs which are not used in the original
core. Below a short description of each standard SFR register is presented:

Port 0 (P0): As mentioned above P0 is used to control the lower address byte and data
bus for the external memory. If no external memory is used P0 could also be used
as general input/output port. Port 0 is the only true bidirectional port. This means
external pull-up resistors have to be applied if the port is used.

SP Register: Pointer to the last element of the actual stack memory.

Data Pointer (DPTR) Register: 16 bit width data pointer, which is accessed via
Data Pointer Low Byte (DPL) and Data Pointer High Byte (DPH) SFR registers.
The data pointer is used in operations accessing external memories.
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Power Control (PCON) Register: Controls the power saving modes of the 8051.
There are two modes: The idle and the power down mode. The Most Signifi-
cant Bit (MSB) of this register doubles the baud rate of the serial interface if it is
set.

Timer Control (TCON): Control SFR of the internal timers: Timer 0 and Timer 1.
It also controls the handling of the two external interrupt sources.

Timer Mode (TMOD): This register serves to configure the two internal timers: They
can be configured separately either as timer or as counter in several modes. In
counter mode the falling edge of the dedicated timer input (on P3) increases the
counter value. In timer mode the timer modules are counting with the internal
clock. By setting the prescaler within the according bits of this register the clock
frequency of the timer could be configured. For each timer two bits are configurable
within this register setting the timers mode.

• Mode 0: Configures the timer as 13 bit timer.

• Mode 1: Configures the timer as 16 bit timer.

• Mode 2: The timer is used as 8 bit timer with auto load facility.

• Mode 3: The timer is configured as two independent 8 bit timers.

Timer 0 (TMR0): 16 bit register, divided into Timer 0 Low Byte (TL0) and Timer 0
High Byte (TH0) register. This register holds the actual counting value of Timer 0
depending on the mode. In mode 0 TL0 counts from 0 to 31. Then it increments
TH0. In mode 1 the 16 bit counting value is hold in TH0 and TL0. In mode 2 the
TL0 register holds the 8 bit counting value, while the TH0 holds the value to reload
the timer. In mode 3 the TL0 register holds the 8 bit counting value of one 8 bit
timer and TH0 holds the value of the other 8 bit timer.

Timer 1 (TMR1): 16 bit register, divided into Timer 1 Low Byte (TL1) and Timer 1
High Byte (TH1) register. This register provides the same functionality for Timer
1 as TMR0 for Timer 0.

Port 1 (P1): This port is used as general I/O port. Writing a one to a bit of this register
sets the corresponding output to high, setting the same bit to zero drives it low. If
the pin should be read it must be set to one. The port has internal pull-up resistors
and does not provide any other functionality.

Serial Control (SCON): This register controls the behaviour of the serial interface.
The serial interface usually uses one of the timers described above to establish the
serial ports baud rate. The SCON register also holds the receive and transmit
flags. Those are needed because there is only one interrupt for the serial interface
connected to the CPU. If such an interrupt occurs the application has to evaluate
the SCON register to check if a receive or transmit process has been finished. This
register also holds two mode selection bits for the serial port. So four modes could
be selected:

• Mode 0: Synchronous mode, 8 bit data, fixed baud rate (fosc

12
)

• Mode 1: Asynchronous mode, 8 bit data, variable baud rate
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• Mode 2: Asynchronous mode, 9 bit data, fixed baud rate (fosc

32
or fosc

64
)

• Mode 3: Asynchronous mode, 9 bit data, variable baud rate

Serial Buffer (SBUF): This register is the data register of the serial interface. Data
received could be read by this register. If data is sent via the serial interface it has
to be written to this register.

Port 2 (P2): Could be used like P1 as general I/O port. It is also used as higher address
byte for external memory access. If external memory is used the port can not serve
as general port any more. The port has internal pull-up resistors.

Interrupt Enable (IE): This SFR is used to enable or disable interrupts. The MSB of
this register is a global interrupt enable bit. The lower bits are used as bit mask for
the according interrupts. Writing a one to the according bit enables the interrupt,
setting it to zero disables it. The register is organised as followed:

IE.0 External interrupt 0

IE.1 Timer 0 interrupt

IE.2 External interrupt 1

IE.3 Timer 1 interrupt

IE.4 Serial interface interrupt

IE.5 Timer 2 interrupts (8052 only)

Port 3 (P3): This port could be used like P1 as general I/O port. As mentioned above
some of the port pins have a second function (e.g. external interrupt source). The
port has internal pull-up resistors.

Interrupt Priority (IP) Register: The register defines the priority of the according
interrupts. It is organised like the IE register. Setting the according bit to one
defines the interrupt as higher priority interrupt, clearing the bit defines it as lower
prior.

Timer 2 Control (T2CON): Control SFR of Timer 2 (8052 only). Timer 2 can be
configured via this register for several modes:

• Auto reload mode: Timer 2 is reloaded with the values in the Timer 2 Capture
Reload (RCAP2) register. Timer 2 is the only timer providing full 16-bit
counting and pre-loading.

• Capture mode: If a falling edge occurs on the second pin of P1 (P1.1) the
counting value is moved to the RCAP2 register.

• Baud rate generator mode: Timer 2 is used as baud rate generator for the
serial interface.

Timer 2 (TMR2): 16 bit register, divided into Timer 2 Low Byte (TL2) and Timer 2
High Byte (TH2) register. This register holds the actual counting value of Timer 2.

PSW: This SFR contains a number of important bits: parity flag (even parity), overflow
flag, register bank selection (2 bits), zero flag, auxiliary carry flag (subtraction,
addition) and the carry flag (used by arithmetic and logical instructions).
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Accumulator (ACC): The accumulator holds the source variable and the result is writ-
ten back to this register. Some instructions can only be executed on this register
(e.g. rotate).

B Register: This SFR is used like the ACC register in multiplication and division op-
erations.

As shown in Figure 2.3 there are also some hardware registers which are not directly
accessible by the user:

Program Address Register (PAR): This register addresses the ROM. If an address
is accessed which is higher than the size of the internal ROM the code bytes are
automatically fetched from external program memory. By setting the !EA (External
Access) pin to high the microprocessor starts executing the program stored in the
internal program memory. If it is tied low code from the external program memory
is executed.

RAM Address Register (RAMADDR): This register is used to access the internal
RAM.

Program Counter (PC): The 16-bit register holds the address of the next instruction
to be executed. The PC always starts at address 0x0000. Since some instructions
are two or three bytes in length, the PC is not always incremented by one. In these
cases the register is incremented by two or three. Accessing this register directly
is not possible. It is automatically set to a new address if a jump instruction is
executed.

The last item to be discussed here is the behaviour of the microcontroller if it is reset.
To reset the device an active high pulse (duration: at least two machine cycles) has to be
applied to the reset input of the microcontroller. This initialises following registers:

• PC is set to 0x0000.

• SFR memory space is set to default values: P0 to P3: 0xFF, SP: 0x07, others to
0x00.

• The user memory space is not initialised. This has to be done via software.

After releasing the reset line the 8051 starts executing the program at address 0x0000.
The next section deals with the extended versions of 8051 architectures and presents useful
add-ons.
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2.2.1 Current 8051 Implementations

Years of development lead the 8051 to higher clock frequencies, additional on-chip periph-
eral modules and more sophisticated instruction execution. At the moment fast versions
of the 8051 execute one machine cycle in one clock cycle. This improvement on its own
makes new versions of the controller several times faster than the original microprocessor.
Cores like the R8051XC2 implement features that speed up the core by a factor of 12
in comparison to the original 8051 (depending on the executed instructions). In some
derivates also the EPROM is replaced by a FLASH memory.

A rough overview of additional available hardware modules is given below:

• SPI-Port (Serial Peripheral Interface)

• CAN-BUS interface (Controller Area Network)

• Universal Serial Bus (USB)

• Inter Integrated Circuit Bus (I2C)

• Infrared Data Association Interface (IrDA)

• Analog/Digital Converter (ADC) and Digital/Analog Converter (DAC)

• Enhanced interrupt module: adds more external interrupts and/or more interrupt
priority levels

• Internal baud rate generator for the serial interface

• Watchdog timer: A timer which resets the chip if the timer is not cleared within a
certain time

• Additional data pointers

• Extended address space (up to 16 MB of memory addressable)

• Arithmetic co-processors

There are also variants of the 8051 designed for low power applications. Also in
modern wireless communication ICs many 8051 cores are used to provide a flexible and
fast interface for the user. Also SensorDynamics has integrated an 8051 microprocessor
to control the analog part of the former version of the LF Transmitter IC. Since the
used core was the bottleneck in some applications it has been decided that its successor
product should integrate a faster core. In former projects an 8051 IP core developed
in 1998 at the Johannes Kepler University was used. Within this document it will be
referred to as DDC8051. The next section analyses the requirements to be met by the
new microcontroller core. Afterwards a comparison between suitable microcontrollers is
done. The DDC8051 is used to provide a common base for the comparision with faster
8051 cores in in Section 2.3.
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2.3 Comparison between different Microprocessor Cores

This section provides an overview about requirements to be met by the new microprocessor
core. Later on a comparison between available cores for the LF Transmitter IC is made.
Finally a detailed list comparing different features of the two selected possibilities and the
currently used core is presented.

2.3.1 Requirements

Based on the output of projects using the DDC8051 a list of requirements has been
generated:

• Possibility to reuse existing SD IPs

• Performance (perform calculations faster than the DDC8051)

• Power consumption

• Code compatibility to the DDC8051 (at C Level)

• Synchronous design

• Area size of the implementation

• Tool support (compilers, simulators, models)

• Debugging interfaces (hardware break points, debugging interfaces)

• Implementation and evaluation effort

• Overall costs (design cost, training, unit costs)

• Support

• Design already used in automotive products

A list of cores fulfilling most of the requirements above has been created.
Table 2.1 shows the supplier, the Instruction Set Architecture (ISA) and the features of
the respective core. The architecture of the presented cores has not been considered - so
not only 8051 architectures are compared.

16



Supplier Core name ISA Architecture Features

Evatronix
LTD

R8051XC2 8 bit 8051 Single cycle execution, ad-
ditional DPTR, co-processor
(MDU), DPTR hardware
arithmetics, 256 Byte IRAM,
PSROM write capability,
On-Chip Debugging Support
(OCDS), up to 18 external
interrupts with four priority
levels

Oregano MC8051 8 bit 8051 Single cycle execution, co-
processor, up to 255 timers and
serial interfaces

Digital Core
Design

DP8051 8 bit 8051 Four clocks per machine cycle,
co-processor, Serial Peripheral
Interface (SPI), serial interfaces,
power management module, one
hardware breakpoint, six exter-
nal interrupts

Handshake
Solutions

HT80C51 8 bit 8051 Single cycle execution, up to
eight hardware breakpoints,
asynchronous low power design

Cambridge
Consultants

XAP4a 16 bit XAP AMBA bus, JTAG debug inter-
face, GNU Compiler Collection
(GCC) based tool chain

ARM Cortex-M0 3 2/16 bit ARM 32 interrupts, context saving
done in hardware, JTAG debug-
ging interface, fast, low power

ARC 601 32/16 bit ARC fast, low power, small, no addi-
tional features

Cortus APS3 32/16 bit Cortus JTAG debugging interface, fast
memory access, bus bridges
available, SystemC cycle accu-
rate model

Beyond
Semicon-
ductor

BA22 32 bit BA Software controlled clock fre-
quency, 32 external interrupt
sources, power management unit

MIP32 m4k 32 bit MIP JTAG debug interface, software
controlled clock divider, memory
management unit, low power

Table 2.1: supplier and microcontroller key features

Although the 16/32 bit instruction set architectures are not code compatible with the
8051 they have been considered in table 2.1 to provide an overview of commonly used
microcontrollers in SoC. Section 2.3.2 shows the advantages of 16/32 bit architectures in
comparison to the 8051 architecture using the example of ARMs Cortex-M0.
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It had been decided that the new 8051 core has to execute one machine cycle within one
clock cycle to achieve a noticeable speed improvement. So the DP8051 from Digital Core
Design was not an option any more. Since a synchronous design is a major criteria for
the core also the HT80C51 from Handshake Solutions is not an alternative. Now only two
cores are left: The R8051XC2 developed by Evatronix and Oreganos MC8051. A detailed
comparison of those two cores with the DDC8051 as reference is presented in Section 2.3.3.

2.3.2 Comparing an 8051 Architecture with an ARM Cortex-M0

In general ARM is a 32-bit Reduced Instruction Set Computing (RISC) ISA developed by
ARM Holdings. The company sells IP modules but does not produce microcontrollers with
their IPs. ARM also provides a complete tool chain for their processors. The ARM Cortex
family is based on the very popular ARM7 processor with improved power efficiency and
speed. The ARM Cortex family is divided into three groups: Cortex-A for applications,
Cortex-R for real-time requirements and the Cortex-M targets microcontroller. The lowest
power and smallest ARM processor is the ARM Cortex-M0. It consumes only 85 µW/MHz
and its area is only 12000 gates (numbers based on an ultra low power 0.18 µm process).
In Figure 2.6 a basic block diagram of the ARM Cortex-M0 is shown.

The instruction set of the Cortex core contains only 56 instructions: the instruction set
(named thumb) extended by the so called thumb2 instruction set. All ARM cores starting
from ARM7T support the 16 bit thumb instruction set. All versions of the Cortex family
additionally support the thumb2 instruction set extension. The smaller code bit width
leads to a smaller program size which reduces the amount of necessary program memory.
All registers and data paths within the Cortex-M0 are 32 bit. The processor is able to
address 4 GB of memory. All instructions have a dedicated execution time:

• Data processing (e.g. sub) take one cycle

• Data transfers (e.g. load) take two cycles

• Branches take three cycles (if taken)

Figure 2.6: ARM Cortex-M0 block diagram (based on [1])
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The most interesting features of the ARM Cortex-M0 core are listed below (cf. [1]):

• Integrated sleep modes

• Hardware multiplier (optional: single cycle multiplier)

• High-performance interrupt handling for time-critical applications via the Nested
Vectored Interrupt Controller (NVIC) module

• Debug interface (serial or Joint Test Action Group (JTAG) interface)

• Selectable features: endianness, number of interrupts, number of breakpoints, halt-
ing debug support

Interrupts are processed by the ARM core as exceptions. ARM uses the term excep-
tion as an umbrella term for maskable interrupt sources, resets, Non Maskable Interrupt
(NMI) sources, hard faults and the SysTick event which is caused by an additional timer.
Also some exceptions for Operating System (OS) support are addressed by this term. If
an exception occurs the processor automatically saves its state. The state is restored on
exception exit with no instruction overhead. This means the user does not have to care
about context saving for interrupts and the exception is handled with low (and fixed)
latency of 16 cycles.

The NVIC module offers the possibility to apply up to 32 external interrupts with
programmable priority levels. Also the level and pulse detection is programmable via
this block. Also one NMI could be used by external peripherals. The NVIC registers are
always little-endian independent of the core’s selected endianness. The Wakeup Interrupt
Controller (WIC) module could be obtained optionally. It is only connected to the NVIC
and provides the possibility to enter a deep sleep mode so the power management unit
within the core can power down most of the processors hardware. If the WIC receives an
interrupt it causes the system to wake up and processes the interrupt after the context is
restored. This implies increasing the interrupt latency time.

The bus matrix serves to coordinate the memory access of the processor core and the
optional debug module. Memory access of the processor is always more highly prioritised
than debugger access to ensure that debugging is non-intrusive. To interface peripherals
on chip an Advanced Microcontroller Bus Architecture (AMBA) interface is available at
the core. It implements the Advanced High-performance Bus (AHB) specification of this
bus architecture. The debugger can either be interfaced via serial wire interface or JTAG
interface. It connects to the processor slave port to provide full system-level debug access.
Besides the observation of core registers execution breakpoints can also be set as well as
data watchpoints.

Table 2.2 provides a comparison between ARMs Cortex-M0 architecture and the 8051
architecture. To represent the 8051 architecture the R8051XC2 of Evatronix LTD is
used. The data presented in table 2.2 represent the cores without debug capability. The
Evatronix core is assumed to provide 23 bit addresses. The ARM Cortex-M0 comes in its
basic configuration without any additional hardware (e.g: power management unit).
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Feature ARM Cortex M0 R8051XC2

Architecture Von Neumann Harvard
ISA RISC CISC

Instruction width 16 bit 8 bit
Data width 32 bit 8 bit

Address width 32 bit 23 bit
Area 12k gates 8.5k gates

Power consumption 85 µW/MHz 80 µW/MHz
Performance (Dhrystone

benchmark)
0.9 DMIPs/MHz 0.088 DMIPs/MHz

Memory size 4 GB 32 MB

Memory map linear, divided into regions
distributed (IDATA, SFR,

XDATA, PSROM ,...)
Peripherals memory mapped SFR mapped

External interrupts 32 13
Interrupt priorities 4 4

Interrupt context saving
automatically by hardware

(16 cycles)
by software (48 cycles)

Sleep modes sleep mode Idle and stop mode

Table 2.2: comparison between Cortex-M0 and 8051

From table 2.2 it can be reasoned that the ARM Cortex-M0 provides a ten times
higher calculation performance than the R8051XC2 from Evatronix. But in terms of area
the 8051 performs better than the ARM. So it depends on the specific requirements of
a project to determine which core fits better. For the LF Transmitter IC it has been
decided to use an 8051 core to provide reusability of IP modules which are connected to
the core via the SFR bus.

2.3.3 Comparison between DDC8051, R8051XC2 and MC8051

A detailed comparison between the two cores left with the DDC8051 as reference is given.
Table 2.4 provides a comparison between single features for each core. The area compar-
ison is based on the unit gates which describes the area a NAND gate occupies. This
allows the area comparison to be done without knowledge of the fabrication process. The
power consumption also depends on the used firmware/software as well as on the optimi-
sations done by the synthesis tool. Also the library used for synthesis has a big impact
to the performance of the created circuit. So the power consumption was estimated by
the power report generated by the synthesis tool. The current drain of the DDC8051 was
confirmed by basic measurements of an existing product.
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Feature DDC8051 MC8051 R8051XC2

ISA 8051 (8 bit) 8051 (8 bit) 8051 (8 bit)
External buses IDATA, XDATA,

SFR
IDATA, XDATA IDATA, XDATA,

SFR with wait
states, synchronous
and combinational
external memory
interface available
(with wait states)

Area 5k gates 8.5k gates 7.5k gates (11.5k
with OCDS)

Current consumption 19 µW/MHz 100 µW/MHz 80 µW/MHz
Performance (Dhrys-
tone benchmark)

0.02 DMIPS/MHz 0.08 DMIPS/MHz 0.088 DMIPs/MHz

Number of clock cy-
cles to execute one
machine cycle

6 1 1

External Interrupts 6 2 13
Interrupt priorities 2 2 4
Maximum external
memory size

2x 16 kB 2x 16 kB 2x 16 kB, (option-
ally 2x 16 MB )

Debug features Keil In-System De-
bugger 51 (ISD51)
and one breakpoint
register (optionally)

Keil ISD51 JTAG OCDS, Keil
ISD51

IDATA size 256 Byte 128 Byte 256 Byte
Additional options Hardware divider/-

multiplier, up to 255
timers and UARTs

Multiplication Divi-
sion Unit (MDU),
DPTR arithmetics,
Direct Memory Ac-
cess (DMA) unit,
timers

Table 2.4: comparison between DDC8051, R8051XC2 and MC8051

The result of this comparison was the decision that the Evatronix R8051XC2 core will
be used for future products. The modifications needed to fit the requirements listed in
Section 2.3.1 for the Oregano core are too huge. Only 128 Bytes of IDATA memory are
available. The SFR interface must be added to the cores top interface. Also a necessary
hardware breakpoint for debugging would have to be designed in. The IP would have
had to be extended to handle more external interrupts. In terms of energy saving power
cosumption could also be manually reduced by 40% (as shown in [9]). In summary,
adaption of the MC8051 to fit SensorDynamics’ requirements would have caused too
much effort.
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Chapter 3

Design and Architecture

3.1 Design Methodologies

According to Webster’s dictionary [5] design means ”To create or execute in an artistic
or highly skilled manner” as well as the ”invention and disposition of the forms, parts, or
details of something according to a plan.”. In engineering this is the creation or invention
of a system possessing a desired set of properties. In general those properties are defined
by the system specification. To handle complex IC designs using a top-down approach is
common. This means the system is defined on a high abstraction level (functionality of
the IC) and is refined by splitting it into smaller blocks (e.g. powersupply block of the IC).
Each sub-block itself is again split up into smaller fragments until the lowest abstraction
level (transistor level) is reached. Based on this approach principle design methodologies
have been introduced. In the following an overview of these methodologies is given as
they are necessary to understand the design decisions afterwards. The list is based on the
methodologies presented in [4]:

Design Environment Methodology: A design team has to deal with many files of
different types in all project phases. There are source files like HDL files as well
as simulation testbenches, constraint files, stimuli files and so on. The design envi-
ronment ensures that multiple designers can share and modify design files without
loosing integrity or consistency of the data. The following objectives have to be
addressed by the design environment:

• Design data organisation (e.g. hierarchy of the design is modeled via a directory
hierarchy)

• Source control (tools like Concurrent Version System (CVS) or Subversion
(SVN))

• Automated processes (e.g. execution of tasks like simulation via Shell or Perl
scripts)

• Revision control (could also be done via CVS or SVN)

• Project/issue tracking (e.g. Mantis, Bugzilla)
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Design Capture Methodology: This methodology describes the partitioning of the
system within a top-down design approach. Designers create system models and
refine them after the current abstraction level has been validated. Therefore two
major steps are necessary:

• System decomposition: Determination of the high-level system resources (e.g.
buses, memories).

• Functional unit partitioning: Assignment of system functions to modules.

Within this approach models with different abstraction levels are implemented.
Those models are organized hierarchically (starting with the highest abstraction
level):

• System models: Defining the design concept or system intent.

• Implementation models: Models written in HDLs. These models can be imple-
mented as behavioural model, functional model, structural model or gate level
model.

• Gate level models: Created by the designer using a schematic editor.

This methodology ensures the system performs according to the operations defined
on system level. Models at this abstraction layer are block diagrams, system speci-
fications or analytic models (e.g. MATLABR© models).

Design for Test Methodology: Design for Test (DFT) describes methods making test-
ing the design itself easier and faster. A good DFT strategy addresses testing at
all levels of abstraction and provides a good test coverage of the design. Essential
concepts of DFT are controllability and observability: Controllability is the ability
to set or clear each single node within the design while observability constitutes
the ability to observe every node. In the following the common test techniques for
digital circuits are presented:

• Internal scan: This technique describes the queuing of all internal flip-flops or
latches onto a scan chain. With an additional multiplexer for each element
in the chain an alternative input can be selected. The chain works like a
shift register if the test mode signal is asserted. This method allows complete
access to all register elements and reduces the complexity of testing a complex
sequential circuit by testing a large combinational circuit. The creation of test
patterns by Automatic Test Pattern Generation (ATPG) tools is much easier
for combinational circuits.

• Boundary scan: Boundary scan is the enhancement of the internal scan path
method to support board level interconnect testing. The standard IEEE 1149.1
(commonly named JTAG) defines the mandatory architecture to control bound-
ary scan chains. It defines the interface (Test Access Port (TAP)) and the
boundary scan controller (TAP Controller).

• Test access collar: This technique describes the disconnection of a sub-block
in the IC from the system to test the block on its own. Therefore the block
interface is connected to certain I/O pins of the IC where the test patterns are
applied and the outputs are evaluated.
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• Built-In Self-Test (BIST): BIST describes a method to test memories. An
internal scan chain to test memories would cause too much overhead. The
result of this test would only be the information if it passes or fails. To provide
BIST functionality a BIST controller has to be added to the design. This
controller is connected to the data input, data output and address lines of the
memory under test. After starting a BIST the memory is disconnected from
the system and a special data pattern is written to it. Afterwards the memory
is read and compared with the expected data. If the data is read correctly the
test is passed and the memory is connected to the system again.
BIST is also possible for ROM memories: At a certain point of the memory
(e.g. the last two bytes in the memory) a checksum of the ROMs content is
stored. After starting the test the BIST controller calculates the checksum
of the memories content. Afterwards the result is compared with the stored
checksum.

• IDDQ test: This method is based on measuring the supply current (Idd) to find
manufacturing faults. Iddq describes the supply current in the quiescent state.
This means the circuit is not switching and the inputs are held at static levels.
In this state Iddq is usually within nanoampere (nA) range. At the start of the
test a certain vector is applied to put the Device Under Test (DUT) into a
known state. After the switching currents have been settled Iddq is measured.
If the circuit is damaged the measured Iddq is at least thousand times higher
than the current measured for a unbroken circuit.

• Delay Fault Testing: This method is used to detect timing violations along a
path. An input transition with a known output transition is applied and the
time between applying the signal to receiving the expected answer is measured.
Exceeding the specified time indicates manufacturing defects (e.g. increased
metal resistance).

Design Verification Methodology: Design Verification describes the process verifying
the design at each abstraction level versus requirements. Verification of a design is
a very complex and time consuming process. A strategy has to be chosen which
discovers all possible design errors. There are two major points to cover:

Validation of the system concept: This task has to be performed before imple-
mentation starts. It includes a detailed system analysis to verify that the design
meets all requirements. Also the partitioning of the system into hardware and
software is done within this design step as well as the rating and selection of
algorithms used by the system.

Verification of the system implementation: From a general point of view the
more accurate a simulation is the more time consuming it is (e.g. gate level
simulation). Most of the time should be spent simulating at a high abstraction
level (RTL). Changes there have the biggest impact on the systems perfor-
mance. Very important points within this step are the development of a com-
plete verification test plan, the usage of structured testbenches and the design
of automated regression tests.

The impulse to automate handling of the points above lead to the development
of so called formal verification tools. They are used to verify the equivalence of
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circuit descriptions mathematically. Since these tools are not able to determine if
the design meets the system requirements simulation is still a necessary task.
Also the usage of emulation and hardware prototypes is a way to test if the system
or parts of it are working correctly before the system itself is produced. FPGAs
make it nowadays very easy to do a kind of physical verification before the chip has
been taped out (brought into production).

Most of the principles explained above will appear within the next chapters which are
dealing with the system architecture, the implementation and verification of the developed
blocks.
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3.2 System Architecture

The system is an LF Base Station Antenna Driver IC mainly for the use in automotive key-
less entry and key-less go applications. It integrates five interfaces to doorhandle sensors
in addition to drivers and diagnostic interfaces for up to five LF antennas. Doorhandle
sensors are integrated into the doorhandles of a car to check if a person wants to open
a door. Those sensors are touch-sensitive capacitive sensors and communicate with the
IC via a serial protocol. Multiple antennas are necessary to be able to determine the
location of the receiver within the ignition key. In Figure 3.1 a basic block diagram of the
microchip is shown.
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Figure 3.1: block diagram of the LF Transmitter IC adapted from [18]

The colors mark different power domains in the IC. The microchip is designed to
operate on a Supply Voltage (VDD) up to 28 V. Blocks powered by this power domain
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are colored red, as well as the blocks operating at the Doorhandle Supply Voltage (HVDD)
which is limited to 16 V or to VDD if that is below that level. The yellow blocks are
supplied by the Analog Supply Voltage (AVDD), the green ones by the Digital Supply
Voltage (DVDD). Besides the power domains shown in Figure 3.1 there is also a Weak
Digital Supply Voltage (UVDD) power domain. This power domain supplies the necessary
digital parts in sleep mode (e.g. Power-On and Wake-Up Unit). In this mode the more
powerful DVDD regulator which supplies the whole digital part can be switched off to
save power. Besides the separation implicitly done via the different power domains the
chip is also divided into two clock domains:

Watchdog RC-Oscillator (WRCO) clock domain: Oscillator working at 1 MHz
which serves to provide a clock source for the watchdog timer as well as for the
event timers of the doorhandle interfaces.

System clock domain: This is the main system clock for the digital part (sys clk).
There are two clock sources for this signal:

• System RC-Oscillator (RCO): Clock source running at 16 MHz. This signal
is the clock source for the system if the external crystal is not yet ready or
available.

• External Crystal (XTAL): System clock source running at 32 MHz. If the
crystal frequency is stable the system automatically switches from RCO to
XTAL.

Each antenna port consists of three pins to control three external FETs: Positive
Channel FET (P-FET) labeled as Px, Negative Channel FET (N-FET) marked as Nx and
Modulation FET (M-FET) denoted as Mx. To provide an antenna diagnostic function
each port provides also an additional input labeled DSx. To reduce the number of pins,
antenna port number four has an additional function: It serves as antenna port as well as
JTAG debug interface for the OCDS of the Evatronix CPU core. The mapping between
JTAG interface and antenna port is illustrated in Table 3.1. Since the antenna port
interface partially works on VDD external level shifters to convert all levels to 3.3 V
signals are necessary to connect the Debug-Pod.

JTAG signal Antenna port 4
TDO P4

TDI DS4

TCLK N4

TMS M4

Table 3.1: mapping between JTAG interface and antenna port 4

The doorhandle interfaces are connected to the chip via the doorhandle pins. Door-
handle communication is done via a protocol operating in idle state at HVDD. The infor-
mation is passed to the IC by a current loop with configurable thresholds. The built-in
short protection switches off the doorhandle interface if a certain low time of the signal
is exceeded.
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All doorhandle blocks are connected to one doorhandle interrupt line and one door-
handle short interrupt line to communicate with the CPU. By evaluating the according
status register using software it can be determined which doorhandle interface caused an
interrupt.

The ADC 1 input pin serves as current measurement input for all antennas. The
current is measured by the potential difference over a shunt resistor (100 mΩ). The pin
ADC 2 serves as an additional sensing input pin.

The communication interfaces are the Single Wire Interface (SWI) and the Three Wire
Interface (3WI). The SWI is a UART interface with a single data line operating in half
duplex mode. As shown in the block diagram the interface works at VDD. The 3WI
interface is a modified SPI interface using a single data line (DIO). Besides the data line
a clock line (SCLK) and a chip select line (SCSE) are necessary. This interface works
between 3.3 and 5 V. The 3WI is supplied by the SCSE pin which determines the high
level of the interface. Besides the above mentioned interfaces there are four additional
General Purpose Input/Output (GPIO) pins and five system pins:

GPIO5 works at 5 V. If this pin is configured as input and the corresponding function
is enabled it serves as wake-up event for the system. In sleep mode this pin does
not keep its output level. Internally a pull down resistor can be enabled.

GPIO12 is an open drain pin which is supposed to work at VDD. The output state of
this pin keeps its level in sleep mode.

IRQ is an open drain output pin. It is used as synchronisation signal for the 3WI in the
bootloader as well as in the final application.

ClkOut is also an open drain pin which works at 5 V. Additional to the programmable
pull down functionality also internal clocks can be routed to this pin as well as a
Pulse Width Modulation (PWM) output signal.

Mode is an 5 V input pin. A logic one at this pin loads the bootloader on start up,
logic zero executes the program stored in Program Storage Random Access Memory
(PSRAM).

Reset causes a system reset if a 5 V level is applied for a minimum of 100  s.

Test is a pin used for internal test purposes.

XTin and XTout are used to connect the external 32 MHz crystal.

One of the main functions of the IC is the communication with an ignition key via LF
wireless data transfer. The communication is based on a 21.858 kHz carrier frequency.
Three types of modulation are supported: Amplitude Shift Keying (ASK), Binary Phase
Shift Keying (BPSK) and Quadrature Phase Shift Keying (QPSK). By controlling an
external antenna driver circuit a current causing a magnetic field is generated in the
transmit resonant circuit. An amplitude or phase modulation propagates with the settling
time of this circuit. This time depends on the quality factor Q. So the data rate C is
limited by the transmit frequency ftx and the quality factor Qtx (Equation 3.1).
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C ≈
ftx

2 · max(Qtx)
(3.1)

To improve the data rate of the system a special modulation method is used which
turns off the transmission current in its negative period. Phase Shift Keying (PSK) is
performed by turning off the current in the negative period and turning it on after a certain
delay. Therefore a zero crossing detector is required which is implemented in the Digital
Signal Processing (DSP) part of the system. This part is named Digital Measurement
Signal Processing Unit (DMSP) and controls with the antenna control block the antennas
in automatic and semi-automatic mode. So the according interrupt signals depending on
the current measured at the ADC 1 pin and the states of the transmit state machine are
generated. The system supports three methods to generate a modulation:

Automatic modulation: In this mode the user only has to set up the modulation type
(e.g. BPSK with 5.461 kbit s−1) and write the data into the transmit data buffer.
The transmission is started if the according bit is set. None of the generated inter-
rupts have to be used - everything is handled automatically.

Semi-Automatic modulation: This mode partially uses the interrupts offered by the
DSP block. The modulation or parts of it are done in software.

Manual modulation: In this mode everything is controlled manually. The carrier is
generated by controlling the P-FET and N-FET control signals. The modulation
is performed via switching the M-FET. All FET control signals are accessible via
SFR registers. In this mode also higher carrier frequencies can be generated since
switching the FETs is supposed to be implemented within the Interrupt Service
Routine (ISR) of a system timer.

The DMSP is attached to the CPU via Advanced Peripheral Bus (APB), SFR and
interrupt lines. The input of this part is the output bitstream of the Sigma-Delta ADC.
There are two input paths to the ADC: the Alternating Current (AC) path and the Direct
Current (DC) path. Each path owns a Multiplexer (MUX) (ACMUX, DCMUX) where
different input signals can be selected. Via the DCMUX a number of internal voltage
levels as well as the voltage level at the ADC 2 input can be selected. Also the voltage
applied to the doorhandle inputs (divided by 10) can be multiplexed to the output with
the DCMUX. The ACMUX is used to select either the signal applied on pin ADC 1 or
the signal at pin ADC 2. If the AC path is selected two interrupts are generated in the
signal analysis block:

Positive Zero Crossing Interrupt: This interrupt indicates that the signal crosses
zero starting from a negative value to a positive.

Negative Zero Crossing Interrupt: This interrupt indicates that the signal crosses
zero turning from a positive to a negative value.
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The LF digital processing block generates the control signals of the P-, N- and M-FET
depending on the internal PWM unit. This block generates interrupts based on the values
of the PWM counter:

PWM min interrupt: If the PWM counter reaches zero.

PWM max interrupt: If the PWM counter reaches the set maximum.

MSynch interrupt: If the PWM counter value is equal to the duty cycle setting this
interrupt signal is generated. The LF digital processing block ensures that the
M-FET control signal is only switched in the negative period of the signal.

The digital part of the chip consists of the CPU, memories, peripherals and the DSP
part. Section 3.2.1 deals with the design details of the digital top architecture.

3.2.1 Digital Top Architecture

The digital part of the system serves to generate and process the antenna signals as well as
to provide an interface to control the system and to communicate with the world outside.
As shown in Figure 3.1 the CPU is attached to a number of different memories. The first
version of the IC is an Emulator Version (EMU). This means in addition to the PSROM
there is also a PSRAM where a program could be downloaded to. In the PSROM a boot-
loader resides which offers a communication protocol via the 3WI interface to download
code into PSRAM. After downloading the code, the PSROM is mapped to the end of
PSRAM and the code is fetched from there instead. To provide this kind of function a
memory mapper has been developed within this project which is able to map different
memories to the buses attached to the CPU. Section 3.2.2 deals with the detailed design
of all developed blocks.

The digital top itself is an IP block (dig top) where all digital sub-blocks are connected
together. This block offers the interfaces to the analog part as well as to the padring which
provides the off chip ports. Besides the hierarchical function within this IP also the low-
level drivers are created and managed. The next section provides an overview about the
hierarchical parts of this block.

3.2.1.1 Overview

As already mentioned there are two power domains in the digital part: The UVDD and
the DVDD power domain. For this reason the digital part is divided into two blocks:

uvdd power: This block contains the parts of the digital design which are active in sleep
mode: the 28 bit watchdog timer and the power on and wake up unit. Also the
system SFRs are located within this power domain. The following signals serve as
wake up event if the system is in sleep mode:

• Reset pulse

• Doorhandle interface activity or short
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• Watchdog timer overrun

• SWI event

• 3WI activity

• GPIO5 event

dvdd power: This module contains all blocks operating in normal mode:

• CPU Sub-System (sd cpu8051f top) including configurable memories (with op-
tional BIST and parity check blocks).

• CPU peripherals like timers, 3WI and SWI interfaces.

• Clock divider and multiplexer block.

• DSP part of the system: The DMSP and the driver pulse generator (ant control).

To separate the two power domains an isolation layer has been introduced in the
UVDD power domain. In Figure 3.2 the separation and the hierarchy of the digital part
is shown.
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Figure 3.2: partitioning and hierarchy of the digital top IP

The next section deals with the details of the CPU Sub-System architecture and its
design.
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3.2.2 CPU Sub-System Architecture

The top level of the CPU Sub-System is the sd cpu8051f top IP. This block serves to
configure features of the CPU Sub-System like used memories and their sizes. Each of the
three CPU cores presented in Section 2.3.3 can be used within this block. To support this
feature a CPU wrapper block has been developed (sd cpu8051 wrapper) which is used
to select one of those cores and to map the different I/O lines to a common interface.
Since the timing of the cores is also different it has been decided to create additional CPU
specific ILayers in the hierarchy block above (sd cpu8051f top).

As shown in Figure 3.3 this block integrates following sub-blocks:

• CPU wrapper block: The sd cpu8051 wrapper block is used to provide a com-
mon interface for all of the selectable cores. The interfaces of the Evatronix core
(R8051XC2) is used as interface template for this block.

• Memory mapper block: The sd mem mapper block serves to map different memories
to the program memory bus of the core. To provide a correct switching between the
memories the timing has to be considered. The memory mapper itself is controlled
by the CPU wrapper block via P3. This port delays the switching command in
the core by a number of cycles. Within this time setting the program counter to
zero must be done. To ensure the execution of this mechanism is done in time the
switching command is called by assembler code. In Section 4.5 an overview on the
developed and modified firmware structure is provided.

• Memories: Each memory block can optionally be connected to a BIST block and
a parity check block. The following memories can be used within the CPU Sub-
System:

– IDATA: internal RAM block

– PSROM: read only program storage memory

– PSRAM: RAM which could be used as alternative program storage memory

– XDATA: external RAM

• FLASH and FLASH controller: To provide backwards compatibility the FLASH
and its controller have also been integrated. Since the timing of these blocks is tied
to the timing of the DDC8051 core this feature can not be used with any of the
other cores without additional modifications.

• Additional I/O ports: Implemented with sd extra ports. This block is attached to
the core via the SFR bus and offers additional 8 bit I/O ports.

• Cache block: The sd 8051 cache block implements a feature designed originally
for the DDC8051: Via this block code could be downloaded directly to the core.
Therefore a PSRAM (1 kB) block is used as cache and the code is received via a
serial data line. If the cache functionality is not used the additional memory can be
used as additional XDATA memory.
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Figure 3.3: CPU Sub-System: sd cpu8051f top

The following interfaces are offered by the sd cpu8051f top IP:

• Interrupts (irq n): The number of interrupts and interrupt priorities is different for
each core (see Table 2.4).

• SFR Bus Interface: This interface is the same for all cores. Only the Evatronix core
has an additional acknowledge input (sfr ack) which is used to access slower blocks.
If this feature is not used this input has to be tied high.
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• External memory interfaces: If one of the following memories is not generated within
the sd cpu8051f top block but its size is set bigger than zero the memory has to be
connected externally. In this context external could mean on a higher hierarchy
level or off-chip. For each memory a separate interface is provided:

– PSROM interface,

– PSRAM interface and

– XDATA interface

• FLASH and FLASH controller interface: This interface allows to attach the FLASH
memory externally if the FLASH controller is implemented. Also the FLASH test
interface is attached to this interface.

• Cache interface: Provides the data lines needed to download code via the sd 8051 cache
block.

• JTAG interface: This port is only used by the Evatronix R8051XC2 debugger. The
other cores do not provide such a feature.

• Serial port interface: Used for UART. All cores offer at least one internal UART
interface.

• Parallel port interface: Within this IP six ports are implemented: P0 to P5. Only
P1 is supported by this block as I/O because P0 and P2 are used for external
memory access, P3 is used to control the memory mapper block, P4 controls the
parity check blocks and P5 is used to control the simulation messenger block.

• Additional ports: Some ports are CPU specific and provide functions like a RS485
interface (DDC8051) or a hold interface (R8051XC2) which could be used by an
additional DMA controller.

The implementation details of the sd cpu8051f top and the sd cpu8051 wrapper are
presented in Section 4.1.

As shown above the architecture of the CPU Sub-System is very flexible and many fea-
tures are selectable. Modern HDLs offer methods to define variables to control properties
of a design. In VHDL such parameters are passed as generic elements to the design. The
parameters can be used for example to define the bit width of a bus. In the design of the
sd cpu8051f top IP and the sd cpu8051 wrapper generics are used to provide following
functions:

• Define the size of memories and address bus width

• Determine if blocks are implemented or not (via generate statements)

• Implementation of different signal paths depending on the value of a generic

As mentioned above the sd cpu8051 wrapper block offers a common interface for all
selectable cores. The core can be selected by defining a generic. Figure 3.4 presents the
design integrated within this block. To offer the same features for all cores additional
blocks are integrated.
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The minimum peripheral setup for each core is:

• One serial interface: Oreganos MC8051 is able to generate and use up to 255 UART
modules and Evatronix’ R8051XC2 also has two serial interfaces integrated. Only
for the DDC8051 an additional UART block has to be integrated.

• Four I/O ports: P0 to P3, where P3 offers the possibility to delay the signal by a
number of cycles (memory mapping control interface). For the R8051XC2 this is
integrated via a separate block.
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Figure 3.4: CPU core wrapper block

As shown in Figure 3.4 each core is isolated from the wrapper I/O lines via an Inter-
connection Layer (ILayer). This layer is only generated if the according core is chosen.
It serves to define the state of wrapper signals which are not used by the selected core
and to allow the conversion of signals. This means for example the memory enable signal
of the DDC8051 is active low, but the memory enable signal of the R8051XC2 is active
high. The inversion of this signal is done within the according ILayer. Shared modules
are placed outside the interconnection layers and are used by all cores (e.g. delay of P3).
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The wrapper block is the main item of the CPU Sub-System (sd cpu8051f top). The
generic used in this block to select a core specific ILayer is the same generic which is
passed to the wrapper to determine which core to use. Figure 3.5 illustrates the design
of a peripheral block and its Interconnection Layers (ILayer).

Figure 3.5: sub-block interface design in the sd cpu8051f top

This approach is necessary because the timing of the CPU cores differ and due to this
additional modules or signals have to be generated for some blocks. This approach also
offers additional advantages:

• If a new core is integrated into the wrapper none of the peripherals are connected
to this core until the according layer is added for each peripheral block.

• A new peripheral block can only be attached to the cores for those the ILayer has
been defined.

Disadvantages are the increased development time and the number of tests to ensure
every feature is working properly in each possible configuration. Due to the time schedule
the design has only been tested and verified with the Evatronix R8051XC2 (see Section 5).

As discussed above the EMU version of the ASIC supports two memory layouts illus-
trated in Figure 3.6:

Mode 0, Bootloader mode: In this mode the bootloader stored in the PSROM is ex-
ecuted. Via the 3WI interface a new application is downloaded to PSRAM.
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Mode 1, Application mode: In this mode the application stored in PSRAM is exe-
cuted. This only works if a program has been downloaded to the PSRAM. If a
reset is applied to the IC the data stored in PSRAM is lost. Data in PSROM could
be accessed by adding the offset of the PSRAM memory size to the address which
should be read.

The block implementing this feature is the sd mem mapper block within the sd cpu8051f top
IP. At the moment only the presented configurations are supported but the block is de-
signed in a way that new configurations can be added very easily.
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Figure 3.6: memory configurations

The sizes of the memories used are passed as generic parameters to the memory map-
ping block as well as the information whether the block itself should be generated or
not. If it is decided not to integrate the block a bypass path is created which causes no
overhead in synthesis. The size of the memories are used to define the maximum ad-
dressable space for program and data memory so that stacking two memories one after
another without any empty space between is possible. This feature simplifies the setup
of different compilers. The memory mapper also checks if the applied address is valid in
the current configuration. If not a signal is generated (illegal address) which is connected
to the system control block. Depending on the setup of this block (configurable by SFR)
the signal either resets the digital part of the IC or causes a system interrupt.

All memories except the IDATA are connected to the CPU via the sd mem mapper
block. The ILayers pictured above are also implemented for the memories control signals.
Besides the memory unit itself also a BIST and a parity check block can be created
(selectable by generic). In Figure 3.7 an example of a memory block with BIST and
parity check block is shown.
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Figure 3.7: memory unit integration design

BIST and parity check blocks can also be created if there is no memory implemented
within this hierarchy to provide those features for external memories as well. To test the
detectability of errors each parity check block implements an error injection feature which
is controlled by P4. For each BIST block there are four signals: reset bist n, do bist,
bist status and bist result. A BIST is performed if the do bist signal is active. After
BIST has finished the bist status line is active and the bist result line indicates if the test
has passed or failed. The reset bist n signal serves to reset the BIST controller. If a BIST
or parity block is not generated the according structure is replaced by a bypass structure
which is removed during the synthesis process.

The next chapter deals with the basic implementation of the design shown above in
VHDL as well as with the integration of the CPU Sub-System into the system. Also the
integration of the digital part into an FPGA and the final synthesis of the design for the
usage in the IC is discussed. The structure of the firmware and the necessary firmware
drivers are also covered at the end of the following chapter.
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Chapter 4

Implementation

4.1 Implementation of the CPU Sub-System

4.1.1 Implementation Basics

This section provides a short overview of the necessary basics of VHDL and the RTL
synthesis design flow used to implement the design described in Section 3. A VHDL
design entity consists of a file which models a hardware block. The file consists of a
general part, an entity block and an architecture block. It is possible to use multiple
architectures in one file but then also a configuration declaration block is necessary to
determine which architecture to use.

The general part defines which libraries and packages are imported. The entity block
is used to define the interface and the generics of the block. The architecture block is the
part where the behaviour of the hardware is defined. In Listing 4.1 the code of a QUAD
AND gate written VHDL is shown. At the top of the code the necessary IEEE standard
packages are included. In those files (also written in VHDL) the necessary data types and
operations are defined. Some tools are delivered with their own libraries providing similar
functions which are more powerful than the IEEE functions. The problem with these li-
braries is the reduced portability if other tools are used. The first declaration in Listing 4.1
after including the standard libraries is including a custom library and its package. If a
module is reused it has to be declared as component before it can be used (instantiated).
The component definitions for a library (common represents an IP) are defined within a
package. The code presented in Listing 4.1 in line 6 would make all components defined
within the exist pkg package available in the current source file. Besides the definition of
components also constants, functions and type definitions can be defined within a package.

After including the libraries the definition of the entity follows. The entity declaration
defines the black box properties of the design. As shown in the example a generic could
be used to define the bus width of ports.
After the entity declaration the architecture of the design is defined. This is a very short
example which only integrates a binary AND of each input signal (a, b) and puts the
result to the according output (y).
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1 l ibrary IEEE ;
2 use IEEE . std_logic_1164 . a l l ;
3 use IEEE . numeric_std . a l l ;
4

5 l ibrary exist_lib ;
6 use exist_lib . exist_pkg . a l l ;
7

8 entity module i s

9 generic (
10 g_bus_size : integer := 4
11 ) ;
12 port (
13 a : std_logic_vector ( g_bus_size−1 downto 0) ;
14 b : std_logic_vector ( g_bus_size−1 downto 0) ;
15 y : std_logic_vector ( g_bus_size−1 downto 0)
16 ) ;
17 end module ;
18

19 architecture str of module i s

20 begin

21 y <= a and b ;
22 end architecture rtl ;

Listing 4.1: sample VHDL code (QUAD AND Gate)

To support readability and maintainability of VHDL code following digital design rules
have been defined in [14]:

• One file per entity with the same name. File names of packages have to end with
’ pkg’, libraries with ’ lib’.

• Usage of the SensorDynamics’ naming convention for VHDL code elements:

– Generics have to start with ’g ’. Only generics of the type integer are allowed.

– Constants have to be marked with ’c ’ as prefix. They can be defined either in
a package or before the begin statement of an architecture. Constants are for
example used in packages to define addresses for an IP.

– Instances are labeled with ’i ’. An instance is a particular implementation of
an entity used in another architecture of a block. The interconnection between
instances is done via lines called signals.

– Processes should be named with ’p ’ as first characters. Since everything in
VHDL is executed in parallel processes provide an environment for sequential
statements.

• Architectures should be named after their type: str for a structural, beh for a be-
havioural or rtl for an RTL architecture.

• Ports must be of type std logic or std logic vector.
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• Registers must use an asynchronous active low reset.

Besides the improvement of readability, the guidelines above serve also to improve the
creation of synthesiseable code. Since VHDL is a very powerful language not every design
which could be described can be synthesised. The IEEE standard 1076.6-04 describes
the standard syntax and semantics for VHDL RTL synthesis. From a tool point of view
the steps needed to create a real physical block from a design are divided into two major
parts:

Front End: This term describes all processes needed to create and verify a gate level
netlist from a system level description. The system level design could be done for
example in MATLAB. The output of this model are the test vectors (e.g. stimuli
files) which are reused to verify the RTL design done in VHDL or Verilog of the
system or its blocks. The designed hardware is checked within a testbench using
a simulator. After the design is verified at this abstraction level it is passed to
synthesis and netlist generation. The netlist is usually the input for Back End.

Back End: All steps needed to create a physical implementation (layout) from the netlist
are summarised as Back End. Usually following steps are needed to create a physical
design of a netlist:

1. Floorplanning

2. Place and route

3. Clock tree synthesis

4. Layout

5. Design Rule Check (DRC), Electrical Rule Check (ERC) and Layout Versus
Schematic (LVS) check

6. Parasitics Extraction (RCX) of the design for simulation

The steps described above are usually visualised as design flow (e.g. Figure 2.2). The
tools used within the SD design flow are controlled by scripts. If a block within an IP
is created only the correct file names and locations have to be added to the execution
script. To perform an RTL level simulation of a design the following tasks are have to be
executed by the script:

Compilation: The syntax and semantic of design files is checked. The Compiler analyses
each design unit separately and stores it into the appropriate library.

Elaboration: Flattening the design. If instances in a design unit are used those elements
are expanded recursively. The result of the elaboration is a flat design consisting of
signals and processes.

Simulation: The simulator executes the extracted processes as a discrete event based
simulation. This means a process is sensitive to its inputs - if an input changes an
event is created and the process is evaluated. If an output signal of a process is
different from the current value a new event is generated. The signal update and
the process execution are two different phases of the simulation. The initialisation
phase assigns the initial signal values, sets the current simulation time (Tc) to zero
and calculates the first simulation cycle (Tn).
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Afterwards the simulator performs the following simplified algorithm until simula-
tion is finished:

1. Set the simulation time Tc to the next transaction time Tn.

2. Update all active signals with their new values and generate events if the
according signal value changes.

3. Processes are executed if they are sensitive to changed signals or if the process
is scheduled to resume at Ts. The process is evaluated until it suspends (if it
suspends). It is important to note that the execution order is not defined. The
processes generate the future values for the signals.

4. The next transaction time Tn is evaluated: It is set to the next time a signal is
scheduled to be active or a process resumes. The next simulation cycle will be
a delta cycle (δ) if Tn is equal to Tc. The delta cycle is necessary to simulate
delay less models. Between two simulation cycles there is an arbitrary number
of delta cycles.

To test modules usually a testbench written in VHDL is created which instantiates the
block under test and applies signals based on stimuli data generated by a model. VHDL
offers the possibility to access files to read stimuli data and to log result data. Often also
the outputs of the block under test are evaluated immediately and the result of the test
is a pass or fail information. The simulation setup used to verify the CPU Sub-System
implemented within this thesis is presented in Chapter 5. The next sections deal with the
implementation details of the CPU Sub-System.

4.1.2 CPU Wrapper

As presented in Chapter 3 the sd cpu8051 wrapper provides an easy change between
different 8051 CPU cores. The block is part of the sd cpu8051f top IP. At the moment
three cores are supported: DDC8051, MC8051 and R8051XC2. The core is selectable by
setting the generic g select cpu to one of the follwing values:

DDC8051: g select cpu = c use cpu8051 pi core

MC8051: g select cpu = c use cpu8051 oregano core

R8051XC2: g select cpu = c use cpu8051 evatronix core

The constants to select the correct core are defined in the sd cpu8051f top pkg package.
Figure 4.1 shows the interface and the all available generics of the sd cpu8051 wrapper
block. The function of the used generics is illustrated in Table 4.2. For each of them a
default value is defined. Only generics which are different to the default value have to be
set if an instance of the sd cpu8051 wrapper block is created.
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Figure 4.1: wrapper interface and generics

Generic Description

g select cpu Selects the core to be instantiated. Use
one of the constants defined in the
sd cpu8051f top pkg to select the core.

g num of serial interfaces Sets the number of serial interfaces to use.
The R8051XC2 and the DDC8051 provide
only one serial interface, the MC8051 sup-
ports up to 255.

g asic Generic to switch between FPGA imple-
mentation and ASIC implementation. This
generic is for future use and has no influence
on the current implementation.

g no of ext interrupts Sets the number of external interrupts.
g delay cycles p3 P3 is always implemented. This generic de-

fines the number of delay cycles between as-
sertion of a value to P3 and passing it to the
output.
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Generic Description

g memaddr length Defines the memory address width.
DDC8051 and MC8051 only support 16
bits. The R8051XC2 supports up to 23 bits.

g external memory interface data width Combinational databus width is always 8 bit
(R8051XC2 only). This generic is imple-
mented to be prepared for future improve-
ments.

g synch ext memory interface data width Synchronous databus width is always 8 (used
for all cores). This generic is implemented to
be prepared for future improvements.

Table 4.2: wrapper generics

Incorrect generic settings are prohibited by assertion based checks. Those checks are
only implemented if the appropriate structure is generated. Assertions are non synthe-
siseable VHDL constructs raising a simulation error if the according condition evaluates
to false. For example if the R8051XC2 is used, the generic which selects the number of
serial interfaces (g num of serial interfaces) has to be set to ’1’. Any other value for this
generic is prohibited if the Evatronix core is used. The code presented in Listing 4.2
checks if the correct value has been used. If an incorrect setup is done the string defined
in the report statement is displayed. The severity statement selects if the simulation is
stopped (severity level: error or failure) or continued (severity level: note or warning).

1 assert g_num_of_serial_interfaces = 1
2 report ” [ERROR] [ cpu8051 evatron ix ] number o f s e r i a l

i n t e r f a c e s must be 1 , i s : ”&integer ’ image (
g_num_of_serial_interfaces )

3 severity error ;

Listing 4.2: assertion based generic check in VHDL

Table 4.4 shows the interface differences between the selectable cores. The wrapper
in principle is based on the Evatronix R8051XC2 core interface. Additional to these
ports also useful features of the other cores have been made available (e.g. PCON register
interface of the DDC8051) if the appropriate core is implemented. If the core does not
support the feature the appendant line is set to its inactive state. As an additional feature
the freeze input pin has been added. This input is used as clock gating signal for all clock
lines.
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Wrapper Dir. # R8051XC2 DDC8051 MC8051

Clock and reset signals
clkcpu in 1 clkcpu zuluclka i clk

clkcpuen out 1 clkcpuen not available not available
clkper in 1 clkper zuluclkb i not available

clkperen out 1 clkperen not available not available
reset n in 1 reset syncreset i reset

ro out 1 ro not available not available

I/O Ports
port0i in 8 ext. block ext. block p0 i
port0o out 8 ext. block ext. block p1 i
port1i in 8 ext. block ext. block p2 i
port1o out 8 ext. block ext. block p3 i
port2i in 8 ext. block ext. block p0 o
port2o out 8 ext. block ext. block p1 o
port3i in 8 ext. block ext. block p2 o
port3o out 8 ext. block ext. block p3 o

Interrupt lines
irq in gen. int0 to int12 irq lines i (6) int0 i, int1 i (i)

Serial interfaces
rxd0i in 1 rxd0i ext. block all rxd i
rxd1 in 1 rxd1 ext. block all rxd i
txd0 out 1 txd0 ext. block all txd o
txd1 out 1 txd1 ext. block all rxdwr o
rxd0 out 1 rxd0 ext. block all rxdwr o

Memory interfaces
mempsack in 1 mempsack not available not available
memack in 1 memack not available not available

memdatai in 8 memdatai ext rddata i rom data i
memdatao out 8 memdatao Uses ext wrdata dataxo
memaddr out gen. memaddr (n) reg extaddr o (15) rom adr o (15)
mempswr out 1 mempswr not available not available
mempsrd out 1 mempsrd psen o not available
memwr out 1 memwr wrstrobe extram o wrx o
memrd out 1 memrd rdstrobe extram o not available

waitstaten out 1 waitstaten not available not available

Combinational memory interfaces
memdatao comb out 8 memdatao comb not available not available
memaddr comn out gen. memaddr comn not available not available
mempswr comb out 1 mempswr comb not available not available
mempsrd comb out 1 mempsrd comb not available not available
memwr comb out 1 memwr comb not available not available
memrd comb out 1 memrd comb not available not available

IDATA memory interface
ramdatai in 8 ramdatai int rddata i ram data i
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Wrapper Dir. # R8051XC2 DDC8051 MC8051
ramdatao out 8 ramdatao reg wrdata o ram data o
ramadr out 8 ramadr reg intaddr o ram adr o (6)
ramwe out 1 ramwe wrstrobe intram o ram wr o
ramoe out 1 ramoe rdstrobe intram o ram en o

SFR interface
sfrack in 1 sfrack not available not available

sfrdatai in 8 sfrdatai sfr rddata i not available
sfrdatao out 8 sfrdatao Uses reg wrdata not available
sfraddr out 8 sfraddr (6) Uses reg intaddr not available
sfrwe out 1 sfrwe wrstrobe sfr o not available
sfroe out 1 sfroe rdstrobe sfr o not available

OCDS interface
trst in 1 trst not available not available
tck in 1 tck not available not available
tms in 1 tms not available not available
tdi in 1 tdi not available not available
tdo out 1 tdo not available not available

tdoenable out 1 tdoenable not available not available

Additional interfaces
freeze in 1 ext. clock gating ext. clock gating ext. clock gating
hold in 1 hold not available not available
holda out 1 holda not available not available

intoccour out 1 intoccour not available not available
reg pcon o out 8 not available reg pcon o not available
cfg pwr o out 1 not available cfg pwr o not available
gen ale o out 1 not available gen ale o not available

rs485 tx en out 1 not available rs485 tx en not available
all rxdwr o out gen. not available not available all rxdwr o

adrx o out gen. not available not available adrx o

Table 4.4: wrapper mapping and interface overview

As described in Section 3.2.2 it is necessary to add additional blocks for each core to
provide the minimum requested function set. The following list shows which blocks are
created if the appropriate core is generated:

DDC8051 core: Besides the core IP (cpu51) only the sfrs pi IP is used. This block adds
four ports (P0, P1, P2, P3) and a serial interface to the core.

MC8051 core: No additional hardware blocks are necessary to use the MC8051. If the
core is used, be aware that it has to be adapted to support a SFR interface and
external interrupts.
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R8051XC2 core: The serial interface is implemented by the core. Only the parallel I/O
ports have to be added. Therefore the module sd internal ports has been created.
This modules map SFR addresses to the according ports. The addresses of the
ports are defined in the sfrs config pkg. Usually these registers are mapped to the
addresses of the original 8051.

In addition to the blocks created on demand of the selected core a block to delay P3
is always implemented. The module is named sd delay. In Figure 4.2 the implemented
structure of the sd cpu8051 wrapper is shown if the R8051XC2 core is selected.
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Figure 4.2: wrapper implementation with the Evatronix R8051XC2 core

Figure 4.2 also shows the connection of unused output signals to defined values
(Hi - logic one, Lo - logic zero). The generate block is the element which differs for each
core. In Listing 4.3 the VHDL code of the generate statement is presented. Generate
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blocks can be used to generate instances, connections and signal assignments depending
on a generic. Such generate blocks are also used in the CPU Sub-System IP to generate
different ILayers.

1 gen_core : i f ( g_select_cpu=c_use_evatronix ) generate

2 −− Put b l o c k i n s t a n t i a t i o n s , s i g n a l ass ignments
3 −− and/or connect ion mappings here
4 end generate gen_core ;

Listing 4.3: VHDL generate statement

In Figure 4.2 a process block is shown which generates an enable signal (en) for the
sd delay block. This process enables the delay block if a value is written to P3. This is
done by comparing the SFR address bus with the address of P3. If a write occurs, the
enable signal of the sd delay block is active. This signal starts the counter implemented
within this block. If a certain value (selectable by g delay cycles p3) is reached, the signal
at port port i is forwarded to the according output port port o. Also the delayed signal
becomes active and is passed back to the process. There the enable signal is set inactive.
P3 is used to control the memory mapping block in the sd cpu8051f top. The next section
illustrates the implementation details of this block.

4.1.3 CPU Sub-System

In Figure 4.3 the interface of the sd cpu8051f top is shown. The figure also illustrates
the names of the available generics. Ports are labeled with an ”[ ]” after their name. All
other signals are single lines.

Generics in general are named after the function they are controlling. Since in this
module there are many sub-blocks using the same generic names they are named after
the according block and their function. XDATA and PSRAM for example use the same
memory IP (sd spram). The generic to define the memory address width (which defines
indirectly its memory size: 2address width) is called ADDR SIZE. Since this is not compliant
with the SD design guidelines it has been decided to use generics containing the memory
size. So the generic g psram size defines the size used for PSRAM, the g xdata size does
the same for XDATA. The mapping between memory size (e.g. 4 kB) and address bus
width is done via the function f log2 z. This function is located in the sd cpu8051f top pkg
and performs a modified logarithm to the base two (log2). The algorithm was modified
to return x = 0 if its parameter is 0: x = log2(0). Table 4.6 provides an overview on the
appropriate generics and their functions.
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Figure 4.3: black box view of the CPU Sub-System

Generic Description

Global generics
g asic Generic to switch between FPGA imple-

mentation and ASIC implementation. This
generic is for future use and has no influence
on the current implementation.

g local sd target tech Defines the target technology to use for mem-
ories.
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Generic Description

g select cpu Select core: Use c use cpu8051 constants
from sd cpu8051f top pkg. Switch between
DDC8051, MC8051 or R8051XC2 core in the
sd cpu8051 wrapper.

g n irqs Defines the number of external interrupts
g idata size Defines the size of IDATA. DDC8051 and

R8051XC2: 256 bytes, MC8051: 128 bytes.
g gen mem mapper If set (’1’) the sd mem mapper is generated.

IDATA generics
g idata bist is dummy If zero the BIST module for IDATA is gen-

erated.
g idata memory clk gating Defines if clock gating for IDATA should be

implemented.
g idata gen par check If set (’1’) the parity check module for

IDATA is implemented.

PSROM generics
g psrom ext If zero, PSROM is implemented within

sd cpu8051f top, otherwise it is to be con-
nected externally.

g psrom gen par check If set to ’1’, the parity check module for
PSROM is generated.

g psrom size Defines the size of the implemented (or ex-
ternally attached) PSROM.

g psrom bist is dummy If zero, BIST for PSROM is generated.
g psrom use init file If set, code.bin is used as PSROM content,

otherwise nothing is loaded to PSROM. This
is used by the simulation model of the mem-
ory.

XDATA generics
g xdata ext If zero, XDATA is implemented in

sd cpu8051f top, otherwise it is to be
connected externally.

g xdata gen par check If set, parity check for XDATA is generated.
g xdata bist is dummy If zero BIST for XDATA is generated, other-

wise BIST is not generated.
g xdata size Defines the size of the implemented (or ex-

ternally attached) XDATA memory.
g xdata memory clk gating If zero, clock gating for XDATA is not im-

plemented.

PSRAM generics
g psram ext If zero, PSRAM is implemented in

sd cpu8051f top, otherwise it is to be
connected externally.

g psram gen par check If set, parity check for PSRAM is generated.
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Generic Description

g psram size Defines the size of the implemented (or ex-
ternally attached) PSRAM.

g psram use init file If set, the PSRAM init file (code psram.bin)
is loaded to PSRAM.

g psram bist is dummy If zero, BIST for PSRAM is generated.
g psram memory clk gating If zero, clock gating is disabled.

FLASH generics
g flash addr width FLASH address bus with.
g flash bist bytes Number of BIST bytes.
g flash bist is dummy If zero BIST for FLASH is generated.
g flash data width FLASH data bus width.
g flash ext If ’0’, FLASH memory is implemented exter-

nally (but flash controller is created).
g flash impl dynamic end address If set dynamic BIST end address is imple-

mented.
g flash lock bit addr Defines the address of the lock bit.
g flash max burst size width Maximum BIST size width.
g flash num pages Number of pages in the FLASH.
g flash paddr width FLASH page address bus width.
g flash page size FLASH page size.
g flash program size ptr Pointer to memory location of program size
g flash size Defines the size of the FLASH (at the mo-

ment only 32kB + 256 Byte are supported).
g flash use ext en External FLASH memory enable (implement

FLASH controller).
g flash xadr width Flash x address bus width.
g flash yadr width Flash y address bus width.
g test type Defines FLASH test type.

sd 8051 cache generics
g sd 8051 cache impl If set, the cache block is implemented.
g sd 8051 cache addr width Cache address width.
g sd 8051 cache bist is dummy If zero BIST is generated.
g sd 8051 cache psram start address PSRAM start address (PSRAM dimension).

Additional generics
g external ports ext If set, the external ports (P4 / P5) are not

created.
g memaddr length Memory address bus size (default: 16).
g delay cycles p3 Number of cycles to delay after switching

memory configuration via P3.

Table 4.6: CPU Sub-System generics

Most of the generics presented are used to control generate statements or to define
functionality used by memories (e.g. BIST). All memories except IDATA can be connected
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externally without losing any functionality (parity check, BIST or memory mapping)
provided by that IP. For each memory, that could be connected externally a separate
interface exists. In Table 4.8 all ports of this block is presented.

Interface Dir # Description

Clock and reset signals
sys clk in 1 System clock input
reset n in 1 Asynchronous active low system reset
reset output out 1 Reset indicator (active if a reset has been ap-

plied)
clkcpuen out 1 External control for clkcpu (if active apply

clock)
clkperen out 1 External control for clkper (if active apply

clock)

External interrupts and error indicators
irq n in gen Active low external interrupt bus. Some in-

terrupt polarities may be configurable in the
core

illegal address out 1 Indicates that an illegal address was accessed
via the memory mapper

parity alarm out 8 Indicates parity errors

I/O ports
port1i in 8 Port 1 input bus
port1o out 8 Port 1 output bus

Serial port interface
rxd i in 1 Serial 0 receive data line
rxd o out 1 Serial 0 transmit data line
txd o out 1 Serial 0 receive clock output in mode
rs485 tx en out 1 RS485 transmit enable signal

SFR interface
sfr addr out 8 SFR address bus (the highest bit is tied high)
sfr data in in 8 SFR data bus input
sfr data out out 8 SFR data bus output
sfr rd strobe out 1 SFR read strobe (active high)
sfr wr strobe out 1 SFR write strobe (active high)
sfr ack in 1 SFR acknowledge (active high, Evatronix

only)

PSROM interface
psrom addr out gen External PSROM address bus
psrom dout in 8 External PSROM data bus input
psrom en out 1 External PSROM enable signal (polarity de-

pends on CPU sd mem mapper constant)

XDATA interface
xdata addr out gen External XDATA address bus
xdata din out 8 External XDATA data bus output

52



Interface Dir # Description

xdata dout in 8 External XDATA data bus input
xdata en out 1 External XDATA enable signal
xdata we out 1 External XDATA write enable signal

PSRAM interface
psram addr out gen External PSRAM address bus
psram din out 1 External PSRAM data bus output
psram dout in 1 External PSRAM data bus input
psram en out 1 External PSRAM enable signal
psram we out 1 External PSRAM write enable signal

OCDS JTAG interface
tck in 1 JTAG Interface clock input
tdi in 1 JTAG Interface test data input
tdo out 1 JTAG Interface test data output
tdoenable out 1 JTAG Interface test data output enable
tms in 1 JTAG Interface test mode select input
trst in 1 JTAG Interface reset

Test interface
atpg mode in 1 ATPG mode control signal
bist reset n in 1 BIST reset signal, active low
do test bist in 8 BIST start signal
test result bist out 8 BIST result value
test status bist out 8 BIST status value

FLASH interface
flash din o out 8 External FLASH data bus output to FLASH

memory
flash dout i in 8 External FLASH data bus input from

FLASH memory
flash erase o out 1 External FLASH define erase cycle
flash ifren o out 1 External FLASH information page access en-

able
flash irq o out 1 Interrupt request, flash controller
flash mas1 o out 1 External FLASH define mass erase cycle
flash nvstr o out 1 External FLASH define non volatile store cy-

cle
flash prog o out 1 External FLASH define program cycle
flash se o out 1 External FLASH sense amplifier enable sig-

nal
flash tm data i in 8 FLASH Controller test mode input
flash tm din addr i in gen FLASH Controller test mode input
flash tm dle i in 1 FLASH Controller test mode input
flash tm dout o out 8 FLASH Controller test mode input
flash tm dout oen o out FLASH Controller test mode input
flash tm en i in 1 External FLASH test multiplexer switch
flash tm erase i in 1 FLASH Controller test mode input
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Interface Dir # Description

flash tm ifren i in 1 FLASH Controller test mode input
flash tm mas1 i in 1 FLASH Controller test mode input
flash tm nvstr i in 1 FLASH Controller test mode input
flash tm prog i in 1 FLASH Controller test mode input
flash tm se i in 1 FLASH Controller test mode input
flash tm sel i in 3 FLASH Controller test mode input
flash tm tmr i in 1 External FLASH interface test mode reset in-

put
flash tm tmr o out 1 External FLASH interface test mode reset,

for user mode ’1’
flash tm xale i in 1 FLASH Controller test mode input
flash tm xe i in 1 FLASH Controller test mode input
flash tm yale i in 1 FLASH Controller test mode input
flash tm ye i in 1 FLASH Controller test mode input
flash xaddr o out gen External FLASH x address input to select

row
flash xe o out 1 External FLASH x address enable signal
flash yaddr o out gen External FLASH y address input to select a

byte within a row
flash ye o out 1 External FLASH y address enable signal

Cache interface
sdm ip in 1 sd 8051 cache serial input data
sdm oe n out 1 sd 8051 cache serial output data enable
sdm op out 1 sd 8051 cache serial output data

Optional DMA ports
hold in 1 Hold mode (R8051XC2 only - optional)
intoccur out 1 IRQ occurred in hold mode (R8051XC2 only

- optional)
holda out 1 Hold mode acknowledge signal (R8051XC2

only - optional)
waitstate n out 1 Active low, when CPU performs a wait cycle

(R8051XC2 only - optional)

Table 4.8: CPU Sub-System interface overview

The CPU Sub-System also uses generate statements if blocks are not created to tie the
appropriate outputs to defined levels. This means for example that if no PSRAM is used
that the according parity and BIST information bits are set to their inactive levels. The
structure of the sd cpu8051f top is based on necessary instances (e.g. sd cpu8051 wrapper)
and optional generate blocks (e.g. gen psram).
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The following list explains the structure of the CPU Sub-System based on the existing
instances (i ) and generate blocks (gen ):

i sd cpu8051 wrapper: This is the instance of the wrapper block described in Section
4.1.2. It is the main element of the CPU Sub-System.

i messenger: The messenger block is a module used in simulation to pass messages from
firmware to the simulation environment. Therefore the messenger is connected to
the core via a parallel port (P5). The firmware implements a function called
messenger(”STRING”, MSG INFO) which writes the parameters to P5. The mes-
senger block decodes the received data and generates an assertion with the received
string. The second parameter sets the severity of the assert message.

i sd extra ports: This block connects two additional parallel ports (P4 and P5) to the
SFR bus. As described above, P5 is used to control the messenger block. P4 is used
to control the force parity functionality of the memories with implemented parity
check.

gen idata: The IDATA memory is the only memory that can not be generated externally.
The IDATA itself is an instance of the sd spram block. This block is part of the
sd tech IP. The modules within this IP are used to provide the instantiation of the
selected memory for a certain technology (e.g. FPGA or TSMC 0.18 µm). Besides
the memory itself also the according BIST block (i idata sd bist sram) and the
parity check block (i idata sd parity check) are created. Depending on the according
generics (g idata gen par check, g idata bist is dummy) the blocks are functional or
bypassed.

gen mem mapper: This generate statement instantiates the memory mapping block
(i sd mem mapper) if the according generic (g gen mem mapper) is set to any other
value than ’0’. Otherwise this generate statement is not evaluated and the
gen no mem mapper statement is implemented. In this case only the generation of
PSROM and XDATA is allowed.

gen psrom: Generate statement which instantiates the selectable features for PSROM
memory. The memory itself (sd psrom) is a wrapper module in the sd cpu8051f top
IP. It instantiates the correct sd sprom block from the sd tech IP with the selected
memories size. At the moment only the following sizes are supported: 1 kB, 4 kB,
8 kB or 16 kB. The number of data bits is selectable (8 or 9) for each of them. It is
also possible to assign a file to the model which could be loaded in simulation into
the memory.

gen xdata: Within this statement the memory (sd spram) used as XDATA is instanti-
ated. Also the according BIST and parity check blocks are instantiated. Depending
on the according generics they are bypassed or implemented.

gen psram: For the PSRAM also an instance of the sd spram is created. Depending
on the selected mode the memory mapper assigns the PSRAM to different memory
locations. The creation of BIST and parity check blocks is handled as in the XDATA
generate block. If the PSRAM contains a program it is not allowed to perform a
BIST check because this would overwrite the memory contents. Also for this memory
an initialisation file could be defined for simulation.
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gen flash: This statement adds a FLASH memory which can only be used if the DDC8051
is used. Within this generate block a BIST module is generated for the FLASH as
well as the FLASH controller itself (sd flash control). If the memory is defined to
be integrated within the sd cpu8051f top (g flash ext=’0’) an instance of sd flash is
created. At the moment only 32 kB + 256 Byte size is supported.

gen cache: If the g sd 8051 cache impl generic is set this block creates an instance of
the sd 8051 cache module. The module must be used with the DDC8051.

Finally a closer look at the implementation of the sd mem mapper block is provided.
The memory mapper is configurable via generics for obvious configurations like memory
sizes. There is also a generic (g dont assert addressing errors) which defines whether as-
sertions have to be raised if an illegal address is applied. It is necessary to be able to
switch off this behaviour because simulations are usually stopped if an illegal address error
is detected. To test if those errors are recognised correctly the simulation must not stop.

An additional feature of the memory mapper is the conversion of memory enable
signals for each attached memory. The CPU only provides a program storage memory
enable (mem ps en) and a data storage memory enable (mem en). In the configuration
package of the memory mapper (sd mem mapper config pkg) constants defining the ac-
tive and inactive levels for each memory are defined as well as the levels provided by
the core. The final mapping between core enable and memory enable is implemented in
the sd mem mapper block depending on the constants defined within the configuration
package.

To provide linear addressing for gap-less arrangement of different memories two func-
tions have been created:

Function f mem idx cal: This function takes three input parameters (s1, s2 and subtr)
and returns an integer. The result (ret) is calculated with the formula shown in
Equation 4.1.

ret(s1, s2, subtr) =

{

log2(s1 + s2) − subtr, if log2(s1 + s2) > substr

0, else
(4.1)

This function is used to calculate the upper border of address lines for two memories
arranged after each other. The memory sizes are passed as parameter s1 and s2 to
the function. The parameter substr is set to 1 if the upper limit is used to define
a bus width. Lets assume following configuration: s1=1024 byte, s2=512 byte and
substr=1. The function calculates a logarithm to the basis two of 1024 + 512 and
rounds the result up to an integer number (11). So we need 11 bits to address those
two memories. The function returns 10 because the parameter substr is set to 1.
This is done because indexing in VHDL usually starts at zero (11 ≡ 10...0).

Function f or reduce: This function takes a std logic vector as input and ors the single
elements. If one of the lines is active also the result (std logic) is active.
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The following example explains how the memory mapper works: Let’s assume a system
using 32 kB PSROM and 16 kB PSRAM. So the output of f mem idx cal(32768, 16384, 1)
is 15. We need to use 16 lines of the address bus. If we are in memory mode 1, PSRAM
is mapped to the program memory space before PSROM. This means if we access any
address above 16 kB the data should be loaded from PSROM. To address the PSRAM
only log2(16384) = 14 address lines are necessary. So control signals, data and address
bus are routed to PSRAM if f or reduce(address(15 downto 14)) is inactive. If one of
these lines becomes active those signals are multiplexed to PSROM instead. This is done
in hardware so the firmware does not have to care about switching between memories
(e.g. access of address 34231).

If an address exceeds the possible address space in the current configuration an illegal
address error is reported. The active level for this signal is defined in the memory mapper
configuration package. This signal is connected to the interface of the sd cpu8051f top
module and has to be evaluated externally. The integration of the CPU Sub-System into
the system is described in the next section.

4.2 CPU Sub-System Integration

This section describes the connection of the CPU Sub-System with the other parts of
the system. As shown in Figure 3.2 parts of the system communicate with the CPU
Sub-System with at least one of the following methods:

• SFR bus

• APB bus

• Interrupts

The APB bus interface is provided by the sd apb bridge IP which is controlled by
SFRs. The APB interface is bus system with 32 bit data (read and write separated) and
16 bit address width. So the APB bridge occupies twelve SFR registers:

• One control register (OPCODE)

• One monitor register (MONCFG)

• Two address registers (PADDR)

• Four data read registers (PRDATA)

• Four data write registers (PWDATA)

Within the APB bridge there are drivers implemented which are used by the IP mod-
ules offering an APB interface. The relative addresses of those modules are defined in
the according IP. In the system for each IP an offset is defined so that the addresses
are unique within the system. For example the local address of the SPI IP of the RBR
register is 0x0008. The address offset within the SPI IP for APB is defined to be 0x0200.
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So the RBR can be accessed via APB by using address 0x0208. This method provides the
necessary flexibility to reuse IP modules controlled by APB. To simplify handling those
modules this functionality is abstracted by firmware macros.

The disadvantage of connecting peripherals via APB is the time consuming communi-
cation. Only the required SFR register access makes accessing an APB interfaced module
seven times slower than accessing a module mapped directly to a SFR. So most of the pe-
ripherals are attached to the CPU Sub-System as SFRs. In Figure 4.4 the SFR mapping
of the complete system is shown.
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Figure 4.4: system SFR map

Because the R8051XC2 core has no integrated timer two timer IP modules have been
attached to the system: Timer 0 and Timer 1. Timer 0 is a general purpose 16-bit coun-
ter/timer. It can be used as timer using the internal clock or as counter using and external
clock. Additionally a capture and compare unit is available. This allows the capture of
external events, and the generation of external events based on register compare values.
Timer 1 is a general purpose 16-bit timer with integrated PWM unit. The timers are
connected to the CPU Sub-System by the SFR bus. Additionally each timer is attached
to the CPU via one interrupt line.

The R8051XC2 offers 13 interrupt lines with 4 interrupt priority levels. The priorities
of the interrupts are defined by default and can be changed by writing the according
SFR registers (IP0 and IP1). The interrupts are organised in six groups. Each group is
allocated to two bits (one in IP0 and one in IP1). In Table 4.9 the default interrupt group
assignment is shown.
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Group Highest priority <— Lowest priority IP.# bit

Group 0 EXT INT 0 EXT INT 7 0
Group 1 EXT INT 8 EXT INT 2 1
Group 2 EXT INT 1 EXT INT 9 EXT INT 3 2
Group 3 EXT INT 10 EXT INT 4 3
Group 4 SER INT 0 EXT INT 11 EXT INT 5 4
Group 5 EXT INT 12 EXT INT 6 5

Table 4.9: Evatronix R8051XC2 interrupt arrangement

Group 0 is the group with the highest priority, group 6 the one with the lowest. Within
a group the priority decreases from left to right. The assignment of system interrupts to
the R8051XC2 interrupt lines shown in Table 4.10 was done in respect to the system
requirements and use cases. The interrupts have been assigned in a way that in general
no additional configuration of the IPx registers is necessary. The following interrupts exist
within the system:

• Timer 0 Interrupt: Since this interrupt can have several sources the T0 isr has to
be evaluated. The value of this register indicates if a timer event, a capture event
or a compare event caused the interrupt. The counting value is stored in the SFRs:
T0 cnt upper and T0 cnt lower.

• Timer 1 Interrupt: The source for this interrupt is Timer 1. There are no alternative
functions within this unit to cause an interrupt.

• System Interrupt: This interrupt can have several sources. To evaluate which event
caused the interrupt the sys irq register has to be evaluated. All interrupt sources
are maskable by clearing the according bit in the sys ien register. Following events
can cause a System Interrupt:

– A rising edge at GPIO5

– A parity error has been detected (alternatively this causes a system reset)

– A rising edge at CLKOUT

– An illegal address error has been detected (alternative: system reset)

– A falling edge at GPIO12

– An over temperature event occurred

– A rising edge of the XTAL RDY signal (this signal indicates that the system
has switched to the external crystal)

• Doorhandle Interrupt: Indicates an event at the doorhandle interface. Source for
this event could be the reception of data at the according doorhandle pin (S0 ... S4)
or if the doorhandles are configured as timers a timer overrun of one of those timers.
The register dh irq indicates which doorhandle interface caused the interrupt. To
read the value of the received pulse the according doorhandle has to be selected in
the dhX sel register and the value could be read from the registers dhX width upper
and dhX width lower. If the mode of the according doorhandle should be changed
the new mode has to be written to the dhX csr SFR.
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• Doorhandle Short Interrupt: If a pulse at a doorhandle pin exceeds the maximum
width set up in register dh sh th0 or dh sh th1 the according module is disabled and
a Doorhandle Short interrupt is generated.

• Negative Zerocrossing (PNZC) Interrupt: The DMSP block analyses the signal at
pin ADC 1. This pin has an offset of 1.5 V. If a signal drops from a level higher
than the offset value to a level below this threshold this interrupt is generated.

• Positive Zerocrossing (NPZC) Interrupt: This signal causes an interrupt if the
ADC 1 offset is crossed from a lower level to a level above the offset.

• PWM Max Interrupt: This interrupt is caused by the PWM unit of the antenna
control IP. The PWM unit is a counter which increases its count until its maximum
value is reached. Then the counter is decreased until it reaches zero. If the maximum
value is reached the PWMmax interrupt is generated. The value of the PWM
counter can be read from the ant pwm cnt register. Via the ant pwm comp register
the duty cycle of the P-FET and the N-FET signals is controlled. This is used to
define the power used for the transmission.

• PWM Min Interrupt: If the PWM counter of the antenna control unit reaches zero
this interrupt is internally processed. The interrupt increases a counter. Only if
this counter is equal to the value set in the SFR ant pwm min cnt the interrupt is
passed to the CPU.

• M-Sync Interrupt: If in automatic modulation mode this interrupt is asserted when-
ever the value of the M-FET is updated. This ensures the M-FET is only switched
in the negative half-wave of the generated waveform.

• TX Buffer Empty Interrupt: The transmit data buffer can only hold 64 Bytes. If
a data packet exceeds this size the TX Buffer Empty Interrupt is used to indicate
that there is only one byte left in the data buffer. So the remaining bytes of the
packet to transmit can be written to the data buffer if this interrupt occurs. To fill
the data buffer the packet data only has to be written to the dbuf cpu wr. If the
autoincrement bit in the dbuf ctrl register is set the address of the data buffer (stored
in dbuf addr) is incremented after each access. This address points to the location
in the data buffer where the data is written to or read from (via dbuf cpu rd).
The current write and read pointers are also available via SFR access: dbuf tx ptr,
dbuf rx ptr.

• TX Complete Interrupt: This interrupt marks the end of an LF transmission in
automatic transmission mode.

• 3WI Interrupt: This interrupt is caused by the SPI IP. To provide a fast reaction
on events the interrupt and status register of this block could be accessed directly
via the f spi isr SFR. Configuration of the IP and data exchange is done via APB
register access.

• SWI Interrupt: The internal UART interface is used as SWI interface. The accord-
ing interrupt line is directly attached to the core and indicates the occurrence of an
SWI event.
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Some interrupts shown above are generated by multiple sources (e.g. Timer 0). If
this is the case there exists a second register to indicate which source caused the shared
interrupt. In such a case not only the interrupt register within the CPU Sub-System has
to be cleared but also the according interrupt status register of the module has to be
cleared. In Table 4.10 the most important use cases requiring interrupts are shown.
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Timer 0 10 5 10 10 5 10 50
Timer 1 10 5 10 10 5 10 50

3WI 7 8 7 7 8 7 7 8 7 7 8 7 88
NPZC 1 5 1 10 5 10 10 1 10 1 5 1 60
PNZC 1 5 1 10 5 10 10 1 10 1 5 1 60

TX Buffer Empty 8 2 8 1 0 1 1 0 1 1 0 1 24
TX Complete 5 1 5 1 0 1 1 0 1 1 0 1 17
PWM Min 1 4 1 10 0 10 10 4 10 10 4 10 74
PWM Max 1 6 1 10 0 10 10 6 10 10 6 10 80
MSYNC 1 4 1 1 0 1 1 4 1 10 4 10 38
sys irq 0

doorhandle short 0
doorhandle 0

Table 4.10: system use cases and interrupt priority assignment
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According to these use cases the interrupts have been evaluated and assigned. The
interrupts are rated by three criteria:

Latency: Defines the importance of reacting on this interrupt. A number between one
and ten is assigned to this value. One means the timing is not important as long as
the interrupt is handled. Ten means the interrupt has to be processed immediately.

Likelihood: This defines the probability of the occurrence of the respective interrupt in
the presented use case. If an interrupt is not generated a value of zero is assigned
to it. A value of ten indicates that the interrupt occours very often in this use case.

Priority: The value in this column defines if this interrupt is important for the current
use case (10) or not (1).

The sum of the criteria for all use cases of an interrupt defines its default priority.
It has been decided to assign the highest priority to the Timer 0 interrupt because this
could be also used as system tick for an operating system (OS). To keep the flexibility
of the system high the Timer 1 interrupt has been assigned to the next lower priority
group. The other interrupts have been assigned appropriate to the values presented in
Table 4.10. The doorhandle and system interrupts have not been considered in the table
because they are not relevant for the analysed use cases. The final interrupt assignment
is presented in Table 4.11 which allows the user to use the system in almost all use cases
without changing interrupt priorities.

Group Highest priority <— Lowest priority IP.# bit

Group 0 Timer 0 3WI 0
Group 1 Timer 1 System 1
Group 2 PWM Max PWM Min MSYNC 2
Group 3 NPZC PNZC 3
Group 4 SWI TX Buffer Empty Doorhandle Short 4
Group 5 TX Complete Doorhandle Event 5

Table 4.11: interrupt assignment

If an interrupt occurs context depending registers are pushed to the stack by the core.
The rest of the context saving has to be manually done by the user (in assembler) or
the compiler does it (in C). Since there are different C compilers it may happen that the
context is saved in different ways. So the time from interrupt indication to the first com-
mand executed in the interrupt service routine varies between the same code generated by
different compilers. The second disadvantage of automatic context saving is that it is not
always obvious which registers are necessary to save and which optimisations the compiler
does. For example if in an ISR only a port is toggled no additional context saving may be
necessary. But if a calculation is executed at least the according calculation registers have
to be stored. If the compiler optimises the context saving for each interrupt separately the
time between interrupt indication and first executed command differs for both routines.
For real time applications it is always necessary to have a look at the generated assembler
code to verify the ISR is executed in time. If an interrupt service routine can be inter-
rupted by a higher priorised interrupt the interrupt priorities have to be set appropriately.
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The integrated R8051XC2 is able to to nest up to four interrupt service routines. By
disabling all interrupts with a higher priority (or all interrupts) it is possible to avoid
the interruption of an ISR. Since some of the interrupts (NPZC, PNZC and MSYNC)
rely on the output of the ADC they can not be tested on the FPGA. For this reason
a digital stimuli unit has been added to the FPGA containing a pattern where number
and timing of interrupts is known. So all interrupt sources could be tested and used in
the FPGA implementation. The digital part of the system (with some modifications) has
been synthesised and tested on a Xilinx Spartan 3 FPGA Starter Kit. The next section
deals with FPGA implementation of the digital part.

4.3 FPGA Prototype

To target the FPGA a slightly simplified version of the digital part has been used. The
following modifications have been made:

• Smaller XDATA memory: 256 Bytes instead of 512 Bytes

• Selectable serial interface: UART or SWI interface

• Watchdog is not connected to reset

• System Clock: 16 MHz instead of 32 MHz

• Simplified Clocking scheme

• Additional block: Simulation SINC to simulate waveforms converted by the ADC

• Mapping of P1 output to a seven-segment display

• Connection of the Dual In-Line Package Switch (DIP Switch) row to the input of
P1 (7 bits) and to the MODE pin

The Simulation SINC is necessary to feed the DMSP with real data to generate the
necessary interrupt signals for automodulation and to test the connection of those inter-
rupts to the core. The output of this module is exactly the same as the output of the
real one except the value of the amplitude. Due to the design of the CPU Sub-System
and the limitations of the used FPGA it was not possible to synthesise a version working
at 32 MHz system clock. The host system is connected to the Xilinx Spartan 3 FPGA
Starter Kit board via a UART interface and Evatronix’ OCDS Debug Pod.

Since the used FPGA is not able to store its configuration (the digital design) if it
is not supplied there are two additional Platform FLASH (PROM) memories on board.
They are connected to the FPGA by a JTAG interface. The FPGA is configured to load
its configuration automatically from the PROMs on startup. The output of the design
flow (shown in Figure 4.5) is a bitfile containing the digital design ready for the selected
FPGA. The second part of the design flow (shown in Figure 4.6) is needed to add an
application to this bit file. The resulting ”.mcs” files can be downloaded directly to the
according PROM memories using XilinxR©’ Platform Cable and a tool called iMPACT.
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Figure 4.5: FPGA design flow

All tools targeting the FPGA are provided by the XilinxR© ISE R© (Integrated Synthesis
Environment). This tool suite on its own is able to generate the FPGA configuration
files out of HDL sources. In the presented design flow only the tools needed to generate
”.mcs”-files from an existing design are shown. With the ISE tool suite also several other
tools are shipped which are not used by the presented design flow (e.g. FPGA editor).

A user constraint file (”.ucf”) is specified to determine the routing of signals from the
design to FPGA pins. Some of the FPGA pins are already connected (e.g. to the seven-
segment display) and can only be used for that purpose. The I/O pins are configured to
work at 3.3 V levels. If the current into the pin is limited they are 5 V input tolerant. To
generate output signals at this level additional hardware has to be used.
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The principal advantage of testing a design in an FPGA is that every signal within
the design can be observed by routing it to a pin. This mechanism was also used to verify
the correct reading from PSROM by the core. The design has been simulated containing
a certain program. The signals of data and address bus have been logged to a file. After-
wards the design has been downloaded to the FPGA containing the same program. Data
and address bus have been routed to pins and recorded with a digital signal analyser.
The created file has been compared with the log file written in simulation to verify the
correctness of the read process.

In general an FPGA consists of three block types: Macrocells, Block RAM units and
I/O cells. Block RAM units are combined to form PSRAM, PSROM, XDATA and IDATA
memory for the design of the digital part. This means the program executed by the CPU
is part of the FPGA configuration file. In Figure 4.6 the creation of a configuration file
containing a program (hex-file) is shown.
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Figure 4.6: FPGA configuration file creation

The file design fpga par.bit file contains the digital design. The assignment of mem-
ories to FPGA Block RAM units is defined within the sd psrom.bmm file. The creation
and downloading process of the configuration files is time consuming. Since a bootloader
for the ASIC had been developed anyway this bootloader has been integrated as PSROM
content into the configuration file. So the digital part acts like the real ASIC on startup.
On startup the bootloader checks if the MODE pin is high (selectable by a DIP Switch).
If it is active the bootloader resumes, otherwise the bootloader switches to the program
stored in PSRAM and starts its execution. If the bootloader resumes an application can
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be downloaded via the bootloader host program (sd boot). This program controls a USB-
to-Serial interface to download the content of a ”.hex”-file via 3WI interface. The data
sent by the host program can also be stored into a file. This file can be used to simulate
the functionality of the bootloader by a 3WI stimuli block (see Section 5.1). Also the
execution of the downloaded program in simulation is possible.

On the FPGA the debug capability of the R8051XC2 could also be used. The debug
environment is called Evatronix Application Debugging Support Environment (EASE)
and includes the following modules (cf. [11]):

• Evatronix Debug Pod (EDP): Hardware USB-to-JTAG Interface connected via
JTAG interface to the OCDS unit of the R8051XC2.

• Keil
TM

µVision R© debug interface plug-in (EDIk51-3).

• EDIServer: Server software translating between EDIk51-3 and EDP.

The EDIServer runs on the computer connected via the EDP to the FPGA. The
debugging itself is done by the Keil

TM

µVision R© debug interface. The communication
between Keil

TM

µVision R© and the EDIServer is done via Ethernet. This is a useful
feature if the debugging environment runs for example on a terminal server. In Figure 4.7
the debugging setup using EASE is shown.

Figure 4.7: EASE setup (based on [11])

The debugging environment offers following debug features:

• Program execution control: ”run”, ”halt” and ”reset” functionality. Also break-
points can be defined directly within the code displayed in the user interface. The
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core has two hardware breakpoints which can be set during execution. This serves
to implement features like the ”run until” function. If this function is chosen the
code is executed until the code line selected in the editor is reached. With hardware
breakpoints also interrupt service routines can be stopped and debugged.

• Full access to IDATA, PSROM and XDATA memory spaces (includes also PSRAM).

• Partial access to internal processor registers (also the PC register).

With EASE debugging applications is easily operated. The decoupling between user
interface and EDP via Ethernet offers various advantages if only one debugging setup is
available for several developers. To use the debugging feature on the ASIC the IC has to
be in the bootloader mode (MODE pin high) or the according bit in the sys ctrl register
has to be set. This is necessary to use antenna port 4 as debug interface.

4.4 ASIC Implementation

Similar to the FPGA design flow there is also an ASIC design flow to create a layout
(physical implementation) of HDL files. In Figure 4.8 the design flow is shown.

�����

����	
���	�

����

	���	��

����
	�

��
�������	���	

	
�����

	�����

�����	
���	�

����������

����	


���	��	�

�

��	�����	����

����	�����

�������

�����	�����

��	��	�����

 !���	����

 !���	

�����	��

�"�

#������

�����

$�!���

�


���
	�

�������

"��%�����&� ��

��#�"�������

����	


���	��	�

�

'��	��

�&��	�

�#�

"�(���

�����


���
	�

"��%�����&�

#�	�

'��	��

&�	%���

���#�

"�(���

"�(���

����
	�

'�
���	���

Figure 4.8: digital ASIC design flow

The output of the digital design flow is a Graphic Database System II (GDSII) file.
It consists of geometric shapes and other information (e.g. labels) about the layout in
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hierarchical form. So the design can be imported and checked in the analog design do-
main. Also the extracted netlist is imported so a LVS check of the whole system (digital
and analog) can be performed. Before the LVS a DRC is done to check if all physical
constraints are kept. In Figure 4.9 the layout of the whole digital part is shown.

Figure 4.9: digital top IP layout

The back annotation of the developed design via the mapped netlist and the according
timing information (Standard Delay Format (SDF) file) is very important to verify the
correct functionality of the physical design. Since not every function of the implemented
CPU Sub-System can be verified by using only hardware stimuli the next section provides
a short introduction into the firmware architecture.
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4.5 Software Development

In general low level drivers for SensorDynamics products are created as library. The
library is shipped within a Software Development Kit (SDK) which also contains the
necessary documentation. For the presented project two compilers are supported: The
Keil

TM

C51 and the Small Device C Compiler (SDCC). For each compiler a separate li-
brary has to be generated.

The creation of the SDCC drivers library is controlled via Makefiles. The setup of the
Keil

TM

µVision R© project to generate the according library is done manually. All necessary
driver files from the IP modules are linked automatically by a script to the library gen-
eration location. Since only one 8051 core has been used up to now the drivers structure
did not offer the possibility to support different cores. Within the driver structure the
most important file is the sd plattform const.h. In this file the most relevant definitions
are set for the whole project. It also includes all necessary header files. In this file a
certain keyword indicating the used core has to be defined (USE SD core IP).

When compiling the driver files this keyword is evaluated and the correct statements
and files for the defined core are used. To improve code compatibility between differ-
ent cores a common header file defining the standard 8051 SFR registers has been in-
troduced (sd 8051 sfrs.h). The core specific register defines (e.g. for the R8051XC2:
sd evatronix sfrs.h) have been moved to the according IPs drivers directory. In Figure 4.10
the sources of the defines are shown.
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Figure 4.10: CPU core specific driver files source
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In the sd plattform const.h compiler depended defines are also set up. Both compilers
are able to generate executables from C-files. But there are differences in not standardised
C-constructs like the definition of interrupt service routines or the macro which defines the
usage of inline assembler within a source file. Each compiler defines a certain value which
can be evaluated in the code. This feature is used to map compiler specific functions to
general functions which are used in the code.
Besides the standard SFR register mappings also project depending registers and macros
have to be introduced. Therefore the file lftx sfrs.h exists. In this file the assignment
of project dependent register names to SFR addresses is done. Also all driver header
files from the sub-blocks are included here. This allows the same firmware macros to be
reused in different projects if the according IP module is integrated into the design. If
the user wants to implement software there are two different approaches depending on
the environment used:

1. Keil
TM

µVision R©: A project file with a standard development folder structure is
created by the SDK. The user only has to add his files to the project and to define
a name for the output file. After compilation of the source the hex-file can be
downloaded. This approach is very simple but the user has to own a license.

2. SDCC: The user has to decide if he wants to use the compiler with an Integrated
Development Environment (IDE) or via the command line. Alternatively he could
also use Makefiles. The drawback of using SDCC is that the user has to define
certain properties of the system (e.g. memory sizes) which could have a big impact
on the systems performance. The advantage of this approach is that the environment
is very flexible and free of charge.

For testing the digital part of the system firmware functions are also necessary. There-
fore an approach using SDCC called via a script is used. Depending on the selected test-
case the according C file is compiled and a hex-file is generated. This file is converted to
a bin-file which is linked to the init file defined for the PSROM VHDL model. Testing
the digital design is covered in detail by the next chapter.
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Chapter 5

Verification

Test and verification are important topics in IC design. Testing covers all actions needed
to measure the performance of an IC and to compare it with specification parameters or
simulation results. Verification ensures the equivalence between different descriptions of
the system, for example if the design matches its specification. Figure 5.1 shows the top-
down design approach of an ASIC on the left side, the verification and implementation
steps of the design are represented on the right side. The biggest advantage of a V-Model
based approach is that discovering errors occours at the same level as they have been
caused on the design side.

Figure 5.1: design verification V-Model

Verification techniques can be divided into two groups (cf. [10]):

Formal verification: These methods are also known as static verification. The equiva-
lence between different models is proven mathematically.

Non-formal verification: This technique is also referred to as dynamic verification.
Models are compared by applying a certain pattern (stimuli) and comparing the
output of the designs. This approach needs a verification environment for each
model (testbench and stimuli patterns).
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Static verification is for example used to verify that the RTL model of the system
behaves like the gate level netlist after synthesis or layout. Verification of the CPU Sub-
System has been done by dynamic verification. The next section provides a closer look
at the simulation topic.

5.1 Simulation

Within the SensorDynamics’ Verification Flow the following simulation and test levels are
defined to verify the IP is working as specified:

Sim0: A testbench checks internal signals of the block to verify that it works as intended.
At the end of development the tests have to be self checking. This means the decision
is done within the testbench if all specifications are met.

Sim1: A testbench is created which compares the IP with its high-level model. This
testbench is intrinsically self checking.

Sim2: The developed IP is integrated into the system and tested via the according
firmware drivers. The firmware tests are self checking based on data coherency.

Sim3: The system is mapped onto silicon or into an FPGA. The created firmware tests
from Sim2 are reused to verify the functionality of the according IP and the system.

Sim0 and Sim1 are related only to the IP under test. Sim0 testbenches are also used
to check complex sub-modules of the IP (e.g. sd mem mapper). Sim1 checks if the whole
IP block works as intended. The testbenches at level Sim0 and Sim1 are located within
the IP. Simulations performed on level Sim2 or executed tests on Sim3 are used to check
if the IP block implements the desired functionality within the system. For simulations
Cadence R© Incisive (also known as NC Sim) is used.

Input for the simulator is a snapshot image generated by the elaborator from HDL
libraries. This design flow allows the implementation of design and testbench in VHDL,
Verilog or SystemC. Also mixing Verilog and VHDL is possible. The complete simulation
process can be controlled by scripts written in Tool Command Language (TCL). Those
scripts can also be used to force or observe signals within the design (or testbench). This
feature makes it possible to apply external signals to a simulation (e.g. simulate APB
register access of the CPU).

For system level verification a data structure is used which holds the according scripts
and firmware files needed for each testcase. Besides the simulation of a testcase on its
own it is also possible to run all testcases as regression tests. The output of the testcases
is standardised, so all results can be summarised to obtain a pass/fail indication. For the
CPU Sub-System the following modules have been tested at level Sim0:

• Module sd cpu8051 wrapper: Two testbenches have been created for the wrapper
module. A general testbench which is able to test each core via TCL stimuli and a
special testbench using the Evatronix R8051XC2 core. This approach is necessary
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to reuse existing testcases for the R8051XC2. With the above mentioned force and
observe functions of the simulator the detectability of errors can also be tested (e.g.
by error injection). For each test the results are written into a separate file. A
summary containing the results of the executed tests is also generated.

• Module sd parity checker: The created testbench checks if the parity bit is cal-
culated correctly and if the applied data is the same before and after the block.
Besides checking if recognising data containing wrong parity bits works the error
injection feature of this module to cause a parity error is also tested. The testbench
is assertion based and shows as result a ”[Success]” message if all tests are passed.
If one or more tests result in wrong or unexpected values a ”[Failed]” message is
shown and the detected error is described.

• Module sd mem mapper: Since the functionality of this block is critical for the
system a separate testbench has been created to verify this block. This testbench
is described below as example for simulations at level Sim0 .

The VHDL testbench used to check the memory mapper module is shown in Figure 5.2.
The stimulus and also the corresponding output compare values are generated internally.

Figure 5.2: testbench of the sd mem mapper module

The testbench performs several tests for each configuration. Each of them shows
information about its initial state. Printing messages is done via assertion statements.
During the tests only errors are reported. After all tests are finished a global pass/fail
information is shown. The stimulus block serves to provide values for address, data and
control lines of the memories and the core according to the mode set up by the testbench
control block. This block is configured by an array holding all necessary values to set
up the module under test. All possible configurations for the actual memory mapper are
again part of an array. This array is the main setup for the testbench control block. This
easily allows adding of new configurations if the memory mapper block is extended.
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The according outputs are calculated on the values stored within the array. If the
calculated values do not fit the output of the module under test the according error is
shown and the next test is executed. The following tests are performed by the testbench
(for each configuration):

• Address range: Addresses the complete range of each memory type (program or
data memory).

• Illegal address: Determines if invalid addresses are recognized correctly (program
and data memory).

• Prohibited memory control signals: Processes running parallel to all other tests
to check if only valid memory signals are applied at the same time (data memory
enable signal and program memory enable signal are never allowed to be active at
the same time).

• Configuration range: Memory setups which are valid (e.g. no PSRAM) but not
allowed in certain configuration (e.g. Mode 1, PSRAM as program memory) are
tested to verify if the sd mem mapper block rises the correct assertions.

With that kind of test setup all important modules within an IP are checked. Simula-
tion at level Sim1 work similar at IP level. Since IP blocks cover more complex functions
the stimuli and result data are not created within the testbench anymore. The data is
rather imported from a high-level model. For example to verify the functionality of the
SINC IP within the DSP part of the system a MatlabR© model of the complete Sigma-
Delta ADC is used. The output bitstream of the ADC is written to a file as well as
the output of the SINC filter. The testbench used to verify the implementation of the
SINC-filter imports the bitstream and applies it to the module under test. The output of
the filter described in Matlab is compared with the output of the VHDL description. If
the outputs are matching the test passes. This approach highly depends on the quality
of the MatlabR© model.

For the complete CPU Sub-System no high-level model exists but the Evatronix
R8051XC2 IP is shipped with a behavioural model used for its testbench. In order to
reuse this model and to verify the additional functions of the CPU Sub-System three Sim1
testbenches have been created:

tb sd cpu8051f top: Basic testbench which can be used for all cores. Within this test-
bench only clock and reset signals are created. All cores can run a selected program
loaded into the PSROM. Additional stimuli can be created via TCL scripts or using
the command line of the simulator.

tb sd cpu8051f top eva: This testbench reuses some of the verification modules used
in the testbench of the R8051XC2. Basically a behavioural model of the 8051 is
instantiated with models of the according memories. The models of the memories
are also connected to the sd cpu8051f top (all memories are connected externally).
So both models are executing the same code. A comparator block compares the
output of the model with the output of the CPU Sub-System. The signals which
are compared by the comparator but not available at the top of the sd cpu8051f top
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are analysed using the nc mirror function of the simulator. This function is available
in VHDL by including the ncutils package and connecting signals in the hierarchy
with signals at another level. So also the correct internal behaviour can be verified.
Also the assignment of values to signals in the hierarchy is possible (via the nc force
function). In Figure 5.3 the structure of this testbench is outlined. The functions
mentioned above are also available in the command line of the simulator. This allows
for example error injections to check if the testbench covers all possible faults.

tb sd cpu8051f top func: This testbench instantiates the module under test with the
configuration used in the EMU version of the ASIC. At startup of the testbench
BIST is started and the result is checked. Also an additional test module has been
added which can be controlled via P1. The test module is connected to the interrupt
lines of the sd cpu8051f top. By writing commands to port P1 single interrupt lines
can be activated as well as all lines at the same time. This allows checking the
interrupt functionality by firmware only. This testbench also checks the behaviour
of the core if interrupts occur at the same time.

A different setup is necessary if the Evatronix testcases should be executed. Therefore
two additional simulation execution scripts have been created (one for the wrapper module
and one for the CPU Sub-System). The parameters to control those scripts are:

• -testpath: Sets the path to the according Evatronix testcase and result directory.

• -input: Defines the TCL-file which determines the tests to execute.
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Figure 5.3: Sim1 testbench of the CPU Sub-System
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Since all Sim0 and Sim1 level testcases are located within the IP the simulation ex-
ecution script (run sim.csh) has also been adapted to make the testbench to execute
selectable. The following parameters can be passed to the script:

• -rom /path/to/file: The given path points to the file which should be loaded into
PSROM (default: code.bin). Those files are created by a script from given hex-files.

• -flash /path/to/file: This path defines the file containing the FLASH memory con-
tent (default: sd flash init.mif).

• -psram /path/to/file: The selected path defines the file containing the content to be
loaded into PSRAM (default: code psram.bin).

• -sim mod ”modulename”: Defines the module to be simulated. This allows the
selection of the testbench to use for all Sim1 and Sim2 level simulations described
above.

Verification at level Sim1 ensures that the IP works as expected. They do not nec-
essarily ensure the correct working of the IP within the system. Therefore simulations
at system level (Sim2) and verification of an physical implementation (Sim3) have to be
performed. Since Sim2 and Sim3 level verification operates on self-checking firmware tests
it makes sense that the same data source is used for both levels. In Figure 5.4 the basic
architecture of the Sim2 testbench written in Verilog is shown.

Figure 5.4: digital top Sim2 testbench
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The testbench is written in Verilog because it easily allows to switch between different
implementations of the design (FPGA, ROM version and EMU version). The stimuli
blocks allow to perform different checks:

3WI Bootloader Stimuli-Block: This block can be used to virtually download soft-
ware into PSRAM via the bootloader. It implements the same functionality as
the USB-to-Serial converter used to download programs to the FPGA. This block
was also used to verify the correct functionality of the bootloader firmware during
development.

Analog Interface Models: This block covers all inputs and outputs of the analog part
of the system. It creates stimuli patterns for example the output bitstream of
the ADC. So the digital signal processing path of the DMSP can be tested. The
associated firmware checks if the interrupts generated by the DMSP are recognized
correctly.

Period Check: This block checks if the associated input (CLKOUT, IRQ, GPIO12,
GPIO5 or MODE) toggles with the correct period. Toggling the pin is done via
firmware.

SWI Driver: This module writes and reads certain patterns from the SWI. It is self-
checking and shows pass or fail on exit. The module has to be enabled if the test
should be performed.

3WI Driver: This block is also connected to the 3WI interface of the digital part. It is
used to verify correct functionality of the interface. Again, this testmodule is self
checking and has to be enabled.

JLCC: This block performs a JTAG Like Control Chain (JLCC) integrity check on the
according digital JLCC chains and multiplexer. This module is self-checking and
must be enabled.

Clock and Reset Generator: This module is used to provide clock and reset signals
to the digital part.

Besides the test modules shown in Figure 5.4 no other stimuli modules are necessary.
Everything else is checked in firmware with optional TCL-files. Therefore a hash table
assigning a testcase name to a firmware source file and TCL-file (if necessary) exists. With
the simulation execution script (run sim.csh) the following choices can be made:

• Testcase to execute

• Design selection: FPGA-, EMU- or ROM version

• Simulation level: RTL, pre- or post-layout gate level simulation

A separate list holds the names of testcases to be executed if a regression test has to be
performed. Therefore the simulations are started in batch mode (run sim batch.csh) and
the output of each testcase is defined. So all results can be parsed and a global pass/fail
indication can be made. The next section deals with running the testcases on an FPGA
board.
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5.2 FPGA Verification

As mentioned above testcases at level Sim2 are reused to test the FPGA implementation
of the design. The external circuit within the simulation is emulated by forcing signals via
TCL commands. Those signals have also to be applied at the according FPGA inputs.
For example to start the bootloader the MODE pin must be held high. At level Sim2
this is simply done by defining force MODE {1b’1’} after 0 ns in the TCL script. On
the FPGA board the mode pin has to be routed to a controllable input. For the FPGA
design this input is routed to a DIP Switch which is able to apply a logic one to start the
bootloader. To execute all testcases implemented for Sim2 the patterns defined by TCL
commands have to be applied as signals to the respective ports of the FPGA.

Also the firmware used by the testcases has to be compiled again. This is necessary
because the messenger subroutine has to be mapped from the simulation-only messenger
block to the UART interface. So all messages can be received by a terminal program.
Additional to the tests defined at level Sim2 some tests have been added to check if im-
portant functions are working correctly (e.g. 3WI interface). Some of the additionally
developed testcases used outputs of the design (e.g. GPIO5, CLKOUT) to stimulate in-
puts (e.g. S0). So the ability of the design to measure the duration of doorhandle low
pulses could be tested as well as the doorhandle short recognition. The results of those
measurements have been sent via the SWI. Since the SWI operates at 3.3 V on the FPGA
a UART-to-RS232 converter has to be used. For this reason a MAX3232 converter is used.
Three versions of the FPGA design have been released during the development phase.

At the very beginning only the CPU Sub-System and its peripherals were integrated.
This version was also used to check and verify the bootloader. Version two and three of
the design included nearly the complete digital part (variations are listed in Section 4.3).

The FPGA design also served as development platform for the evaluation Graphical
User Interface (GUI). This graphical user front end written in LabviewR© is used in com-
bination with the evaluation firmware to access SFR and APB registers as well as JLCC
chains. The firmware and the user interface communicate via the 3WI interface. It is also
possible to add functions to the firmware. By reading the compiler functions mapping file
they can be executed via the GUI by setting the function pointer to a certain address.
Parameters and results of the executed functions are also controlled via the user interface.
The evaluation GUI is used to check if register settings are working. If the applied setting
is correct the register values are used to define the internal configuration of the ASIC for a
certain testcase. For example with the user interface the analog antenna driver blocks can
be enabled via JLCC. The according SFR (ant n fet ctrl) is used to switch the N-FET on
and off. At the according Nx pin the voltage can be measured. On the FPGA the high
level of this pin would be 3.3 V, on the ASIC this parameter ranges from 4 to 5 V. This
internal setup is used to implement automatically executed testcases for the ASIC. The
parameters which have to be measured by those testcases are defined within the Design
Verification Matrix (DV Matrix). The next section deals with the tests performed to
verify the correct functionality of the ASIC.
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5.3 ASIC Verification

Although FPGA and ASIC implement nearly the same digital part there are important
differences between the designs:

• Interfaces are working on different levels

• The ASIC system clock runs at 32 MHz (external crystal required)

• Analog blocks are integrated: So they have to be configured correctly if the FPGA
testcases are to be repeated

• Additional analog stimuli signals are needed to check all integrated functions

Due to those reasons an Evaluation Printed Circuit Board (PCB) is used to convert
interface signals to lower levels (e.g. SWI from VDD to 5 V) and to provide the creation
of analog signals. Evaluation describes the determination of fundamental electrical char-
acteristics of an IC. The board is designed to be connected to a National Instruments
PCI eXtensions for Instrumentation (PXI). This is a platform offering the possibility to
measure and control analogue and digital signals via boards attached to the computer by
the Peripheral Component Interconnect Bus (PCI Bus). Besides the connection to the
PXI it is also possible to connect the PCB via a USB-to-Serial converter and the SWI
interface to a computer. This is necessary to rerun existing testcases. Some of them
have to be modified because the configuration of analog blocks had not been implemented
before. This means for example if the testcase which checks if the recognition of a short
to ground at a doorhandle pin works should be executed on the ASIC the appropriate
analogue blocks have to be configured correctly. If for example the signal is not processed
by the digital part because the analog part is switched off the testcase will not finish
successfully. Configuring this part of the system is for example done via an additional
JLCC configuration. The existing testcases can be modified because setting up the ana-
log blocks does not affect the results in simulation or on the FPGA (as long as they only
belong to analog blocks). Reusing testcases starting from the first simulations to the final
ASIC ensures the specified functionality defined in the specification has been met by the
implementation.

Besides checking if all existing testcases are working on the ASIC it is also necessary
to evaluate the IC. It has to be checked if all important parameters of the circuit meet
their specifications in all specified operating conditions. To do so a lot of signals have
to be generated and measured. For this reason the Evaluation PCB is connected to the
PXI. The measurements are controlled by the General Verification Platform Environment
implemented in Labview R©. The environment allows the execution of testcases (also imple-
mented in Labview R©) defined within the DV Matrix. As mentioned above all important
parameters to be checked are defined within the DV Matrix. Also the tolerance of those
parameters is specified there. So the measured values can be immediately compared with
their specification and a pass/fail information is evaluated. The detailed results of the
measurements are stored in a log file. The framework also offers the possibility to execute
the testcases at defined temperatures. So all parameters are tested at the corners of the
defined operating temperature of the ASIC (-40 to 85 ◦C) too.
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Finally it is to say that verification and evaluation of an ASIC causes a lot of effort
and usually consumes more time than its implementation. FPGA prototyping makes
testing digital designs easier but also adds additional complexity to the design flow. The
digital design has to be implemented in a portable way and a good knowledge of the
implementation is necessary to avoid common design failures.
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Chapter 6

Conclusion

This chapter presents achieved results, open items and provides suggestions for future
work. The obtained 8051 core has been modified to fit into the SensorDynamics IP mod-
ule structure. All necessary compile and simulation scripts have been adapted to allow
the use of the new core without additional effort in all projects based on the existing
design flow. Furthermore the CPU Sub-System developed herein has been integrated
into the SensorDynamics’ LF Transmitter IC. The engineering samples of the ASIC have
already been produced and evaluated. It has been shown that the functionality proven
by simulation and on the FPGA fits the final ASIC implementation. Also the bootloader
and the evaluation firmware are working on the IC as expected although they have been
developed and tested at the FPGA implementation of the design. The ASIC also passed
all verification testcases created during the design phase and for the FPGA without major
problems because the necessary signal level shifting has been considered in the design of
the Evaluation PCB.

Due to the performance increase the Evatronix R8051XC2 is going to be used in future
projects. It offers an easy way to gain performance with a minimum effort in changing
existing firmware procedures and development flows. Although the integration of the
CPU Sub-System for the presented project has been successfully finished there are some
major points to cover if the design is reused in other projects. First of all it is important
to support also FLASH memories. This means the FLASH controller has to be modified
to access the memory within a single cycle so that it could by used by the R8051XC2.
That fact has also to be considered for the cache block. The further improvement of the
functionality of the memory mapper is also an interesting topic. Following additional
memory configurations could be useful to extend the existing modes:

Mode 2, Different interrupt service routines: In this mode XDATA memory re-
places the first part of the program memory. This allows on line mapping of in-
terrupt vectors to different interrupt service routines in ROM versions of an IC.

Mode 3, Variable interrupt service routines: This mode allows the placement of
PSRAM after the PSROM. If the interrupt vectors in PSROM are pointing to
PSRAM addresses the interrupt service routines could be changed on line.
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Mode 4, Program memory only: Map all memories to the program memory space:
XDATA before PSROM followed by PSRAM. This has the advantage that inter-
rupt service routines could be remapped (setting the target address in XDATA) or
replaced (modifying the code in PSRAM).

An important topic is the verification of the functionality of the CPU Sub-System if
the DDC8051 is selected. Due to the tight time schedule this task could not be performed
during development. The main question is whether the core is relevant for future projects
or not. If not, the wrapper generally should be replaced by the R8051XC2. Since this
scenario has been considered at the very beginning of the work this would not cause that
much effort. Also the implemented firmware functions and macros for the R8051XC2 are
not complete and should be extended.

From a digital point of view, it has been demonstrated that a working and well per-
forming IC is based on a detailed and sophisticated design as well as on the verification
of the implemented hardware in simulation and on an FPGA.
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Appendix A

Appendix

A.1 Standards

1076-87 IEEE 1076-1987 IEEE Standard VHDL Language References Manual
Superseded by 1076-1993 Edition

1076-93 IEEE 1076-1993 IEEE Standard VHDL Language References Manual
Superseded by 1076, 2000 Edition

1076-00 IEEE 1076-2000 IEEE Standard VHDL Language References Manual
Superseded by 1076, 2002 Edition

1076-02 IEEE 1076-2002 IEEE Standard VHDL Language References Manual

1076.1-07 IEEE Std 1076.1-2007 - IEEE Standard VHDL Analog and Mixed-Signal
Extensions

1076.2-96 IEEE 1076.2-1996 IEEE Standard VHDL Mathematical Packages

1076.6-04 IEEE 1076.6-2004 IEEE Standard for VHDL Register Transfer Level (RTL)
Synthesis

1149.1-01 IEEE 1149.1-2001 - IEEE Standard Test Access Port and Boundary-Scan
Architecture
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