
Graz University of Technology

Institut for Computer Graphics and Vision

Master's Thesis

Large-Scale Robotic SLAM through

Visual Mapping

Christof Hoppe
Graz, Austria, November 2010

Thesis supervisors

Univ.-Prof. Dipl.-Ing. Dr.techn. Horst Bischof

Dipl.-Ing. Dr.techn. Matthias Rüther

Abstract

Simultaneous Localization and Mapping (SLAM) in a three-dimensional environment is an

essential requirement for autonomous mobile robots to accomplish high level tasks. An

emerging sensor for SLAM is the digital camera, because it is cheap, small, has low weight

and can be applied in many di�erent application areas like marine, aerial or land robotics.

Today's camera-based solutions, called visual SLAM, are limited to small environments

like desktop or o�ce scenes because of geometric error propagation and limited scalability.

In this master thesis, we developed a SLAM system that allows us to handle large-scale

environments using a stereo-camera mounted on a wheeled robot. Our approach extends

a keyframe-based method for augmented reality applications by adding appearance-based

loop detection and correction. Furthermore, we propose a method for incorperating other

sensor information like odometry into the visual SLAM framework. We are hereby able

to preserve connectivity between camera poses even if visual features are absent. To

maintain map accuracy without sacri�cing excessive computation time, we combine feature

descriptors of di�erent strength for data association.

In the experiments, we show that our approach is able to handle trajectories of several

hundred meters and containing several thousand visual features. The resulting three-

dimensional maps have correct metric scale. The absolute trajectory error is below one

percent. On a standardized benchmark dataset providing groundtruth trajectories, our

system outperforms other visual SLAM algorithms by a factor of two.

Keywords. visual SLAM, bundle adjustment, loop detection, stereo camera, vocabulary

tree, SURF features

iii

Kurzfassung

Für viele Aufgabenbereiche autonomer, mobiler Roboter ist die gleichzeitige Erstellung ein-

er dreidimensionalen Karte und die Lokalisierung in dieser (Simultaneous Localization and

Mapping (SLAM)) eine unerlässliche Voraussetzung um die ihnen übertragenen Aufgaben

zu lösen. Um eine dreidimensionale Rekonstruktion zu ermöglichen, werden als Sensoren

häu�g digitale Kameras verwendet, da sie billig, leicht und in vielen Einsatzbereichen wie

der Unterwasser- oder Luftfahrtrobotik einsetzbar sind. Heutige kamerabasierte SLAM

Verfahren sind, aufgrund von Fehlerfortp�anzung und geringer Skalierbarkeit, in der Lage

Karten nur von räumlich sehr begrenzten Bereichen zu erstellen.

In dieser Masterarbeit wurde ein SLAM Verfahren für ausgedehnte Bereiche entwickelt,

das die Bilder einer Stereokamera verwendet. Das in dieser Arbeit vorgestellte Verfahren

basiert auf einem Ansatz, der für die Positionsbestimmung einer Kamera in Augmented

Reality Programmen entwickelt wurde. Dieser wurde um eine Erkennung schon besuchter

Orte erweitert und ein Verfahren zur Reduktion der Fehlerfortp�anzung implementiert.

Ebenso wurde eine neuartige Methode zur Sensorfusion entwickelt, die Informationen an-

derer Sensoren in den visuellen Bereich transformiert. Somit kann eine Verbindung zwis-

chen verschiedenen Kamerapositionen erstellt werden, selbst wenn in Bildern keine visuellen

Features vorhanden sind. Um den Berechnungsaufwand trotz hoher Kartierungsgenauigkeit

gering zu halten, wurden unterschiedliche starke visuelle Features miteinander kombiniert.

Die Experimente zeigen, dass der hier präsentierte Ansatz in der Lage ist, mehrere

hundert Meter lange Trajektorien zu rekonstruieren. Die dabei erstellten maÿstabsgerecht-

en, dreidimensionalen Karte bestehen aus mehreren tausend visuellen Features. Der bei

der Rekonstruktion der Robotertrajektorie gemachte absolute Fehler lag bei unter einem

Prozent. Der hier entwickelte Ansatz erreichte, verglichen mit anderen visuellen SLAM

Verfahren, auf einem standardisierten Datensatz eine doppelt so hohe Genauigkeit.

v

Acknowledgments

First and foremost I want to thank my supervisors Prof. Dr. Horst Bischof, Dr. Matthias

Rüther and Katrin Pirker for continuously supporting me when facing problems, discussing

problems, and carefully proofreading my master thesis.

I feel obliged to thank all the colleagues from the RoboCup team in Graz and Kassel,

who awakened my interest in all kinds of robotics and on Computer Vision: Michael

Reip, Stephan Gspandl, Christof Rath, Christoph Zehentner, Roland Reichle, Theresa

Rienmüller, and Philipp A. Baer, who proofread my thesis and gave me a lot of hints to

this work.

Last but not least, I would like to thank my parents, my brothers and sister, and my

girlfriend Johanna. They gave me the possibility to study and showed understanding and

patience in times of intense work. Especially Johanna accompanied me through my ups

and downs during the master thesis and encouraged me to complete this work successfully.

This work was supported by the Austrian Research Promotion Agency (FFG) and Federal

Ministry of Economics, Family A�air and Youth (BMWFJ) within the Austrian research

Studio Machine Vision Meets Mobility.

vii

Contents

1 Introduction 1

2 Related Work 7

2.1 Probabilistic Approaches . 7

2.2 Geometric Approachs . 12

2.3 Summary . 16

3 Theory and Background 17

3.1 Multiview Geometry . 17

3.1.1 Rigid Body Motion . 18

3.1.2 Perspective Camera Model . 20

3.1.3 Relative Camera Calibration . 22

3.2 Salient Image Points . 23

3.2.1 Feature extraction . 23

3.2.2 Feature Matching . 25

3.3 Multiview Reconstruction . 26

3.3.1 Triangulation . 27

3.3.2 Bundle Adjustment . 28

3.3.3 Robust Bundle Adjustment . 34

4 Localization 39

4.1 Map . 40

4.2 Local Localization . 42

4.2.1 Prediction . 43

4.2.2 Correction . 44

4.2.2.1 Map Point Association . 44

4.2.2.2 Pose Correction . 44

4.3 Global Localization . 45

4.4 Discussion . 47

ix

x CONTENTS

5 Visual Map Building 51

5.1 SLAM Work�ow . 52

5.2 Map Initialization . 53

5.3 Iterative Map Building . 53

5.4 Loop Closing . 56

5.4.1 Loop Detection . 57

5.4.2 Loop Correction . 59

5.5 Sensor Fusion . 61

5.6 Discussion . 62

6 Experiments 65

6.1 Evaluation Metrics . 66

6.2 Datasets . 67

6.3 Evaluation of Stereo PTAM . 71

6.4 Evaluation of PTAM using SURF Features 74

6.5 Evaluation of PTAM with Loop Closing . 77

6.6 Comparison . 80

6.7 Processing Time . 81

6.8 Discussion . 83

7 Conclusions & Future work 87

Bibliography 91

List of Figures

1.1 Examples for Autonomous Robots . 1

1.2 Basic SLAM Problem . 3

1.3 PTAM Example . 5

2.1 Bayesian Network Problem Statement . 8

2.2 EKF - Inverse Depth Parameterization . 8

2.3 Comparison FastSLAM vs. EKF . 11

2.4 Non-metric SLAM - FAB-MAP . 11

2.5 PTAM Example . 13

2.6 Bundle Adjustment - Absolute and Relative Representation 14

2.7 Relative Bundle Adjustment . 15

3.1 Frame Transformation . 18

3.2 Pinhole Camera Model . 20

3.3 SIFT Feature . 24

3.4 SURF Descriptor . 25

3.5 Triangulation . 28

3.6 Idea of Bundle Adjustment . 29

3.7 Jacobian Structure of Bundle Adjustment 32

3.8 M-Estimator Work�ow . 36

3.9 M-Estimator . 38

4.1 Map Representation . 42

4.2 Localization Work�ow . 47

5.1 Flowchart SLAM algorithm . 52

5.2 Map Initialization . 53

5.3 Map Extension Strategie . 54

5.4 Map Point Creation . 55

5.5 Quality Check patch-based Correlation . 57

5.6 Uncorrected Loop . 58

5.7 Loop Detection - Nearest Neighbor Structure 58

xi

xii LIST OF FIGURES

5.8 Loop Detection - Nearest Neighbors . 59

5.9 Loop Closing Work�ow . 60

5.10 Corrected Loop . 61

5.11 Patch-based vs. SURF-based Map Building 64

6.1 Rawseeds Robot . 67

6.2 Rawseeds Sample Images . 68

6.3 Rawseeds Floorplan . 69

6.4 Floorplan ICG Dataset . 70

6.5 ICG Sample Images . 70

6.6 PTAM on the ICG Dataset - Trajectory . 72

6.7 PTAM on the ICG dataset - Map . 72

6.8 PTAM on the Rawseeds Dataset . 73

6.9 Error Distribution - Stereo PTAM . 73

6.10 Rawseeds - Trajectory using SURF PTAM 75

6.11 ICG - Trajectory using SURF PTAM . 75

6.12 ICG - Map using SURF PTAM . 76

6.13 Error Distribution - SURF PTAM . 76

6.14 ICG - Trajectory Before and After Loop Closing 77

6.15 ICG - Map After Loop Closing . 78

6.16 Rawseeds - Synthetic Map Points . 78

6.17 Rawseeds - Trajectory After Loop Closing 79

6.18 Error Distribution - Loop Closing . 80

6.19 Comparison of Results . 81

6.20 Processing Time - Localization . 82

6.21 Processing Time - Map Extension . 83

Chapter 1

Introduction

Today, the application areas of robots can be grouped into three classes: service robotics,

like lawn-mower or pool cleaner, autonomous moving vehicles, and special robots, like

unmanned planes or underwater robots. In the future, robots will be used in many more

areas to help the user in his every day life. In most applications, the robot will move

autonomously and interact with the environment. Three examples for autonomous mobile

robots are shown in Figure 1.1. Their application vary from personal assistant robots that

supports the user in his everyday live, autonomous moving cars up to unmanned airplanes

that are used for surveillance tasks.

A key problem for autonomously moving vehicles is the estimation of their position in

(a) (b) (c)

Figure 1.1: Three di�erent application areas of autonomous robots. (a) A personal assistant
robot developed by Fujitsu. It navigates autonomously and communicates with the user
taken from [12]. (b) A vehicle has to �nd a way from the desert to the city. (c) Autonomous
planes are used by the military for surveillance.

1

2 Chapter 1. Introduction

the environment within a given map. In many real applications maps are not available

at the outset or the existing maps are not compatible with the robot's sensor. Also, the

environment may change over time so that static maps become invalid and should be

updated autonomously. To use a robot in such environments it has to incrementally learn

the map while it is moving. In literature this problem is called Simultaneous Localization

And Mapping (SLAM). SLAM is more complex than localization, because map building

and localization has to be solved simultaneously. More than often this is a chicken-and-egg

problem: The robot requires a map to determine its pose in the world, whereas the pose

is also required for constructing the map.

SLAM has become an important research �eld in robotics in the last years, but it

has not been solved completely. In the past, research concentrated on SLAM in the two-

dimensional case as SLAM was mostly used by wheeled robots. A lot of methods have

been developed for di�erent kinds of sensors and they achieved reasonable results. In three

dimensions, SLAM is more complex and current methods are not able to build maps larger

than several hundred square meters. The accuracy of today`s SLAM methods is limited

and decreases while the map gets larger, because the computational e�ort grows at least

linearly in map size. Thus, the goal of this thesis is to develop a SLAM algorithm for

mapping large environments in three dimensions with high accuracy.

The underlying problem to be solved by SLAM algorithms is to handle noise that is

introduced by the sensors and actors of a robot. The problem is illustrated in Figure

1.2. The robot is given a signal to move straight forward along a corridor. Since the

motion is perturbed by noise, the exact new position cannot be calculated by odometry

measurements alone. The noise allows to determine the new position only in a probabilistic

sense. In the same way, the sensor data for environment reconstruction is also perturbed

by noise and therefore each measurement has also an uncertainty. However, if it is possible

to align the measurements and to �nd correspondences between di�erent measurements,

the pose of the robot can be corrected.

To create a three-dimensional map, the robot has to be equipped with a sensor system

that is able to perceive all three dimensions. Potential sensors are pan-tilt laser scanners

or time-of-�ight cameras. They directly provide range measurements of their surround-

ings, however, they are often expensive, large and heavy. Another sensor that is able to

reconstruct its environment are cameras. A camera has several advantages:

• widely-used and cheap

• low weight and small

3

Figure 1.2: Basic SLAM illustration. The robot (blue dot) is given the command to follow
the green, dashed path that is bordered by straight walls (gray dashed). The blue line
illustrates the path reconstructed by an internal movement sensor (e.g. odometry) and the
reconstructed environment with another sensor (e.g. laser scanner).

• insensitive to most external e�ects like vibrancy

• low power consumption

These characteristics allow to use cameras in a wide range of applications and products,

e.g. in today's mobile phones. Furthermore, camera systems are well-studied in computer

vision and used in many applications beside SLAM, like 3D reconstruction. Unfortunately,

image processing is a relatively complex task. Despite that, cameras are the state-of-

the-art sensors for three-dimensional SLAM applications. Algorithms based on camera

information are called visual SLAM.

The use of a camera as the sensor for SLAM involves a large number of challenges.

In contrast to other sensors, like a time-of �ight camera that directly produce three-

dimensional environment information, this information has to be calculated from at least

two images of the same object taken from di�erent points of view. In the reconstruction

step, these projections have to be localized in the images for calculating three-dimensional

information. This is known as the corresponding point problem and one of the basic prob-

lems in computer vision. Because today's corresponding point detectors generate outliers,

the visual SLAM algorithm has to cope with. Furthermore, reconstruction requires tex-

tured images. For example, if the camera faces a white wall, the three-dimensional pose

of the wall cannot be determined. In the opposite case of well-textured images, there can

be several hundred corresponding points. A reliable visual SLAM algorithm has to handle

both extreme cases.

Two classes of visual SLAM algorithms can be distinguished: Probabilistic and op-

4 Chapter 1. Introduction

timization based methods. Probabilistic algorithms, like Extended Kalmann Filters or

Particle Filters, achieve reasonable results in small environments. Their main disadvan-

tage is their high computational complexity, which grows at least linearly with the number

of measurements. This limits the application area to small environments with less mea-

surements. The second class formulates the SLAM problem as a geometric optimization

problem. Given a number of measurements of the same object and the positions the ob-

server locations, the algorithm optimizes measurements and locations simultaneously. In

computer vision, this method is known as bundle adjustment and formerly used in pho-

togrammetry. This method promises to work in large environments with several thousand

measurements and it is also able to handle outliers. Recent research showed that bundle

adjustment outperforms probabilistic approaches with respect to scalability, computational

complexity, and accuracy [36].

Our approach is based on the Parallel Tracking and Mapping (PTAM) software devel-

oped by Klein et al. [19] in 2007, which is used to estimate the pose of a single camera in

an unknown, arbitrary environment in real-time. In PTAM, bundle adjustment is applied

to solve the SLAM problem. Experiments showed highly accurate pose estimation while

the computational complexity is constant with respect to map size. Figure 2.5 shows an

example of PTAM for tracking a single camera in an o�ce environment. Since PTAM

is used for augmented reality, it is designed for a limited area and cannot be applied for

large scale SLAM directly. Because PTAM uses a monocular camera, the reconstructed

map does not have true scale, which is unacceptable for metric SLAM. Furthermore, the

strategy for map building is inadequate for large scale mapping and PTAM has no support

for loop closing.

In this thesis, we develop a true scale metric SLAM system based on PTAM. We

changed the monocular camera setup to a stereo camera rig that allows accurate three-

dimensional reconstruction. We replaced the identi�cation of corresponding image points

with patch-based correlation by the stronger SURF descriptor. We added an appearance-

based loop detection mechanism and perform loop closing using bundle adjustment. Fur-

thermore, we propose a method for preserving connectivity between frames, even if they

do not share visual image features.

We evaluate the accuracy and scalability of our system on two di�erent datasets. The

�rst dataset is a self-recorded trajectory and comprises four cycles of an indoor environ-

ment. The second image sequence is provided by the Rawseeds project. In three exper-

iments, we show our improvements with respect to PTAM. In the �rst experiment, we

5

changed PTAM from monocular camera into the stereo camera approach. Second, we

demonstrate the improvements in accuracy and scalability by using a more robust feature

descriptor. Last, we add loop closing to our system, which decreases the number of map

features while increasing accuracy. We evidence on the Rawseeds dataset that our approach

outperforms other stereo visual SLAM algorithms concerning accuracy. Furthermore, we

give a runtime analysis, that shows the ability to run our system in real-time.

This thesis is structured as follows. In Chapter 2, we give an overview of the state-of-the-

art in visual SLAM and explain the principles of PTAM in more detail. Chapter 3 deals

with underlying principles of our approach: the mathematical background of multiview

geometry, feature detection and multiview reconstruction. This chapter contains also the

theory of bundle adjustment and methods to speed up optimization. In Chapter 4, we

discuss the localization within a given map. In the following chapter, we present the

process of iterative map building, loop detection and correction, and a fall-back method

that is used, if visual SLAM is not possible due to less textured images. In Chapter 6,

we evaluate our approach and last, we outline the proposed method, discuss the results of

Chapter 6 and give an outlook on future work.

Figure 1.3: Example application of PTAM. PTAM is initialized on the right-top image.
Although the camera moves closer, the overlaid object is registered correctly.

Chapter 2

Related Work

Historically, the research of SLAM topic is studied in two �elds of computer vision, which

led to two di�erent notations. In photogrammetry, the problem is called structure from

motion (SfM) and focusses on building a map from the measurements of a moving sen-

sor. The trajectory of the sensor and the processing time is secondary. Since most SfM

algorithms are batch processes, the main focus does not lie on incremental map building.

For Simultaneous Localization and Mapping (SLAM), the incremental approach is clearly

required. This requires real-time algorithms and incremental approaches for map building.

With the help of increasing computational power, classical SfM approaches are adopted to

operate in an incremental manner.

In contrast to SfM methods, which rely on global optimization methods like bundle

adjustment, today's visual SLAM methods mostly describe the problem as a question of

probability theory.

2.1 Probabilistic Approaches

In this section we present approaches that formulate the SLAM problem in a probabilistic

manner. Given the measurements z and the robot control input u, we calculate

p(st,mt|zt, ut),

where p denotes the probability of a robot's pose s and a mapm at time t. The online SLAM

problem is to compute the maximum probability of all possible maps and poses, which can

be formulated as a Bayesian network. Figure 2.1 illustrates the network structure.

7

8 Chapter 2. Related Work

s
1

s
2

s
3

z
1

u
2

u
3

z
3

z
2

m

u
1

Figure 2.1: Bayesian network problem statement. In online SLAM, we estimate the prob-
ability of a robot's pose s along with the map m.

Extended Kalmann Filter SLAM

Davison and Kita [8] proposed a SLAM algorithm that makes use of the Extended Kalmann

Filter (EKF) [37]. The map consists of a number of local image features, that are encoded

as 3D positions in a global Euclidean coordinate system. The 6 Degrees of Freedom (DOF)

robot pose, as well as all map points are combined to a state vector x, whereas their

uncertainties are expressed as a covariance matrix. In each time step new features may be

Figure 2.2: Inverse Depth Parameterization. A point is expressed by a 6 tuple. This repre-
sentation leads to a more linear problem and can also handle points with large uncertainties
on the z-axis.

2.1. Probabilistic Approaches 9

added, which causes a growth of the state vector and the covariance matrix.

This approach has some limitations. Although SLAM in this formulation is highly

non-linear, the EKF linearizes the problem at the current state, which leads to a non

optimal solution. The error produced by the linearization also depends on the uncertainties

contained in the underlying data and grows with higher uncertainty. Furthermore, the

EKF requires estimates of process and measurement noise, which are sometimes di�cult

to appraise. Because the state vector as well as the covariance matrix may grow in each time

step, the computational complexity also increases and, hence, the algorithm is only able

to handle a limited amount of features. Furthermore, the algorithm is not robust against

outliers. A false measurement in�uences the whole �lter and it is impossible to correct

it afterwards. So, an e�cient outlier detection mechanism like a RANSAC [11] algorithm

has to be implemented to prevent defective measurement updates. An advantage of this

approach is that it can be easily implemented. This approach serves as basis for a large

number of enhancements.

Montiel et al. [25] tackled the problem of non-linearity by changing the representation

of map points. Instead of describing map points in a common Euclidean coordinate system,

they parameterize them by six parameters. Their representation is called Uni�ed Inverse

Depth Parameterization and promises to lead to a more linear problem, which can be

handled more adequately by the EKF. Furthermore, the inverse depth parametrization is

able to handle map points with large depth uncertainties, which is useful in the initialization

phase of the map when using only a single camera or if map points are generated by two

views with a small baseline. Figure 2.2 illustrates the parametrization of a map point. The

disadvantage of this representation is that each map point is represented by six parameters

and therefore state vector and covariance matrix are squared by size compared to the

Euclidean representation. The same authors showed in [5] that in many cases the Euclidean

representation is su�cient and they developed a classi�cation in which cases a map point

should be represented by the inverse depth representation instead of the Euclidean one.

A classical approach to deal with large maps is to split the global map into several local

ones. Each local map has a limited number of features, which reduces the computational

complexity of the EKF. Paz et al. [22] proposed a Divide and Conquer algorithm that

reduces the EKF SLAM computational complexity from O(n3) to O(n2). Their map

representation is based on the inverse depth representation [25].

10 Chapter 2. Related Work

Particle Filter SLAM

Another group of probabilistic SLAM algorithms is based on Rao-Blackwallized particle

�lters [9].

Montemerlo et al. [24] divided the SLAM problem in a robot localization part and a

part of feature estimation depending on the robot's pose. The robot pose is estimated by

a particle �lter, whereas each feature is tracked by a Kalmann �lter conditioned by the

robot pose. The combination of particle and Kalmann �lters is called Rao-Blackwallized

particle �lter. They demonstrated the performance of their system on a SLAM problem

using a laser scanner. Assuming a particle �lter with N particles and M landmarks, the

system consists of N ×M Kalman �lters which has complexity of O(M N) for an update

using a naive implementation. Montemerlo et al.[24] reduced the computational time to

O(M log N) by using a tree structure and they show that their approach is able to handle

up to 50,000 features using up to 100 particles. Figure 2.3 illustrates the accuracy of

Montemerlos method (called FastSLAM) compared to the standard EKF approach.

Sim et al. [33] adopted the idea of FastSLAM for the visual domain. They equipped

a robot with a stereo camera, extracted SIFT features and triangulated their 3D position.

SIFT descriptors are also used for data association. Their approach is not constrained to

a motion model based on odometry information, but the motion between two consecutive

frames is estimated by landmark-based visual odometry. Using this approach, they created

a map from two connected laboratory rooms with a total trajectory length of 67.5m. The

main disadvantage is the high computational cost. The mean processing time for each

frame was 11.9 s for a 4000 frame trajectory, which is far away from real-time. The same

authors extended their approach by changing the proposal distribution of the particle

�lter, which enables their SLAM algorithm to close large loops. They also reduced the

mean processing time per frame to 1.5 s.

In [40] Zhou et al. combined a time of �ight camera (TOF) and a conventional camera

in order to build a three-dimensional dense map. A Rao-blackwellized particle �lter was

used to estimate the robot's trajectory with utilizing SIFT based three-dimensonal image

points.

Non-metric SLAM

Another class of SLAM algorithms are appearance based methods that have a quite dif-

ferent map representation. All algorithms discussed before, present distinct image features

with their corresponding 3D coordinates, whereas appearance based methods store only

2.1. Probabilistic Approaches 11

(a) (b)

Figure 2.3: Comparison FastSLAM vs. EKF. Montemerlo [24] compared the FastSLAM to
the standard EKF algorithm on a simulated dataset. (a) shows the result of the FastSLAM,
whereas (b) is the outcome of the EKF using a laser scanner as input sensor. The dashed
line illustrates groundtruth, whereas the solid line shows the reconstructed trajectory.

plain images. Hence, the SLAM algorithm does not result in a full 6D pose estimate, but

in a probability, wether an observed place has been visited anytime before.

Cummins et al. [7] focus on the bag of words approach. They assume that each

picture is represented by visual words like SIFT descriptors. Given a set of features, the

(a) (b)

Figure 2.4: FAB-MAP Experiment. (a) The groundtruth of a large trajectory. Blue parts
of the trajectory are visited only once, whereas the red parts are visited at least two times.
(b) The detected loop closures are shown in blue taken from [7].

12 Chapter 2. Related Work

algorithm, called FAB-MAP, returns the probability that this set comes from a certain

location. They do not only learn the similarity between pictures, but they also take into

account that there is limited evidence if only non-distinctive features are in the sample set.

This is important for maps containing repetitive structures like corridors to reduce false-

positive matches. Their algorithm is linear in time and is therefore applicable for real-time

loop detection. In order to show the performance of their algorithm, they acquired 103,000

omni-directional images on a 1000 km trajectory. The location of the image was estimated

by a GPS sensor. Images that were acquired from the same trajectory on a second run,

were compared to the previously stored images. On the second run, they detected 2,819

loop closures, where six of them were false-positive matches. Figure 2.4 shows the result

of the 1000 km trajectory. The authors mention that large parts of the trajectory were

taken from highways that contain only few distinctive visual features.

2.2 Geometric Approachs

The second large class of SLAM algorithms is inspired by optimization methods formerly

used by structure from motion (SfM) systems. Here, the main idea is to reformulate the

SLAM problem as an optimization problem that can be solved by a least-square solver

(also known as bundle adjustment). Bundle adjustment optimizes the constructed 3D

structure and camera poses by minimizing the reprojection error. In the past years, bundle

adjustment became more and more important for SLAM due to the increased processing

power.

A very popular SLAM approach based on bundle adjustment was developed by Klein et

al. [19]. Their algorithm, called Parallel Tracking and Mapping (PTAM), was designed for

tracking a monocular camera in a small environment. They divided the SLAM problem into

two tasks: Tracking the cameras pose within the map and extending the map whenever the

camera explores new regions. To reduce computational complexity, the map is extended

only at certain points in time by so-called keyframes. A keyframe is an image linked to a

3D camera pose and is used to reconstruct distinctive image points by triangulation. As

triangulation requires at least two projections of the same object, corresponding points

have to be identi�ed in other keyframes by using patch-based correlation. In order to

enhance the accuracy of the map, a �xed number of keyframes is optimized by bundle

adjustment at each map extension.

The pose of the camera within the map is tracked by a visual odometry approach.

Map points that are already stored in the map are identi�ed in the current image using

2.2. Geometric Approachs 13

patch-based correlation. The pose is optimized by minimizing the reprojection error of the

recognized map points. Robust optimization methods based on M-Estimators are used to

reduce the in�uence of false matches.

Since map extension and camera tracking have di�erent computational requirements,

these tasks can be executed in two seperate threads. Tracking has to be performed in

real-time, whereas a map update may be much slower. So, the computationally expen-

sive bundle adjustment can be used to optimize both structure and motion, when a new

keyframe is added to the map. The bundle adjustment used in PTAM has a complexity of

O(N2M), where N is the number of keyframes and M is the number 3D points. To keep

real-time properties, only the n previously added keyframes are optimized. The authors

showed that their system is able to cope with maps that consist of several thousand map

points in real-time at a highly accurate level. Even large scale di�erences as shown in

Figure 2.5 can be handled.

Since feature extraction is based on corners, PTAM is prone to motion blur. The

authors extended their method by using lines as a second image feature [20] to be more

robust against this kind of distortions. Furthermore, they implemented a simple recovery

strategy that allows global localization if the tracking gets lost.

PTAM has shown that bundle adjustment can be used even in real-time systems to

improve the quality of a map. One of the major disadvantage is the data association by

using a patch-based approach, which produces large numbers of false associations. The im-

plementation of PTAM is highly optimized for small workspaces, where the camera moves

Figure 2.5: Example of a scene tracked by PTAM. PTAM is initialized on the upper right
image and is then moved closer and further from the initialized object (taken from [19]).

14 Chapter 2. Related Work

in an already explored region most of the time. In case of exploring new regions quickly

PTAM fails, because even local bundle adjustment is too time consuming. Furthermore,

PTAM has not implemented loop detection and loop closing, which is an important feature

for large scale SLAM applications.

Castle et al. [3] modi�ed PTAM for generating maps of large environments by adding

multimap support. The tracking and mapping is unchanged but the algorithm is extended

to switch between several maps.C. MEI et al.: CONSTANT-TIME STEREO SLAM 3

(a) Global (b) Robo-centric (c) Global Sub-
mapping

(d) Relative Sub-
mapping

(e) Continuous
relative representation
(CRR)

Figure 1: Different pose and landmark representations with m for landmarks, F for frames, T
for transforms and M for sub-maps where applicable. Dashed lines represent measurements.
Landmarks are connected to their base frames by filled lines. ’?’ indicates the difficulty in
sharing information between sub-maps.

2 Map management

2.1 World representations

The position of the robot in the world can be represented in different ways (Fig. 1):

Global coordinates. (Fig. 1(a)) This is the most common representation. An arbitrary
initial frame (usually set to be the identity transform) is chosen and all subsequent posi-
tion and landmark estimates are represented with respect to this frame.
Robo-centric coordinates. (Fig. 1(b)) This is similar to using global coordinates but
the initial frame is chosen to be the current robot position. The map has to be updated at
each new position estimate. This representation has been shown to improve consistency
for EKF SLAM estimation [3].
Relative representation. [2, 8, 10, 13]. (Fig. 1(d),1(e)) In this framework, each camera
position is connected by an edge transform to another position forming a graph struc-
ture. There is no privileged position and recovering landmark estimates requires a graph
traversal (eg breadth first search or shortest path computation).
Sub-maps. (Fig. 1(c), 1(d)) Sub-maps consist in representing a map by local frames
and can be used with any of the previously discussed map representations. There are
mainly two reasons for using sub-maps: reducing computation and improved consistency
(mainly in filtering frameworks to reduce the effect of propagating inconsistent statistics).

In this work, the robot position and map are represented in a continuous relative frame-
work (CRR) (Fig. 1(e)). This approach is beneficial for two reasons. First, it allows con-
stant time state-updates even when loop-closures are detected and relative bundle adjustment
(RBA) is applied [21]. Second, optimisation using CRR effectively handles problems inher-
ent in sub-mapping, such as map merging and splitting, data duplication and inconsistency.

2.2 Continuous Relative Representation (CRR)

A continuous relative representation (CRR) was chosen to represent the world as described
in Fig. 2. The continuous line between poses indicates estimated transforms obtained during
the exploration. We define an active region to be the set of poses within a given distance
in the graph to the current pose. In the example, an active region of size two was chosen.

C. MEI et al.: CONSTANT-TIME STEREO SLAM 3

(a) Global (b) Robo-centric (c) Global Sub-
mapping

(d) Relative Sub-
mapping

(e) Continuous
relative representation
(CRR)

Figure 1: Different pose and landmark representations with m for landmarks, F for frames, T
for transforms and M for sub-maps where applicable. Dashed lines represent measurements.
Landmarks are connected to their base frames by filled lines. ’?’ indicates the difficulty in
sharing information between sub-maps.

2 Map management

2.1 World representations

The position of the robot in the world can be represented in different ways (Fig. 1):

Global coordinates. (Fig. 1(a)) This is the most common representation. An arbitrary
initial frame (usually set to be the identity transform) is chosen and all subsequent posi-
tion and landmark estimates are represented with respect to this frame.
Robo-centric coordinates. (Fig. 1(b)) This is similar to using global coordinates but
the initial frame is chosen to be the current robot position. The map has to be updated at
each new position estimate. This representation has been shown to improve consistency
for EKF SLAM estimation [3].
Relative representation. [2, 8, 10, 13]. (Fig. 1(d),1(e)) In this framework, each camera
position is connected by an edge transform to another position forming a graph struc-
ture. There is no privileged position and recovering landmark estimates requires a graph
traversal (eg breadth first search or shortest path computation).
Sub-maps. (Fig. 1(c), 1(d)) Sub-maps consist in representing a map by local frames
and can be used with any of the previously discussed map representations. There are
mainly two reasons for using sub-maps: reducing computation and improved consistency
(mainly in filtering frameworks to reduce the effect of propagating inconsistent statistics).

In this work, the robot position and map are represented in a continuous relative frame-
work (CRR) (Fig. 1(e)). This approach is beneficial for two reasons. First, it allows con-
stant time state-updates even when loop-closures are detected and relative bundle adjustment
(RBA) is applied [21]. Second, optimisation using CRR effectively handles problems inher-
ent in sub-mapping, such as map merging and splitting, data duplication and inconsistency.

2.2 Continuous Relative Representation (CRR)

A continuous relative representation (CRR) was chosen to represent the world as described
in Fig. 2. The continuous line between poses indicates estimated transforms obtained during
the exploration. We define an active region to be the set of poses within a given distance
in the graph to the current pose. In the example, an active region of size two was chosen.

(a) (b)

Figure 2.6: Relative representation of positions and map points as proposed by [32]. Figure
(a) illustrates the orientation of cameras and features within a �xed coordinate system.
In Figure (b) a camera is represented relative to its previous pose. Map points are stored
relative to the camera pose of their �rst appearance.

Because of bundle adjustment's complexity, loop closures can not be calculated in real-

time. Sibley et al. [32] tackle this problem by changing the representation of keyframes

and map points. Instead of using a global world coordinate frame, all points and keyframes

are represented in a relative manner (see Figure 2.2). This description of poses and map

points prevents a propagation of large reprojection errors through the whole loop. Even

loops with a large displacement require only a few iterations to converge. One disadvan-

tage of the solution is that it cannot be transformed easily to an Euclidean representation.

Hence, calculations based on absolute positions like path planning are di�cult to perform

in this framework. Based on Sibley's relative bundle adjustment (RBA), Mei et al. [23]

used RBA in a high accurate stereo SLAM framework. They integrated relative bundle

adjustment together with the FAB-MAP [7] loop detection. Furthermore, they attached

great importance to corresponding point detection between the stereo images. They evalu-

ated their framework on a 2.26 km outdoor dataset containing 51,000 images. As shown in

Figure 2.2, relative bundle adjustment reduced the absolute position error of former 25m

to approx. 10 cm.

In 2009, Holmes et al. [17] replaced the representation of map points and cameras in

2.2. Geometric Approachs 15

PTAM from �xed Euclidean coordinates to a relative representation as proposed by Sibley

et al. [32]. Furthermore, they partitioned the RBA into a local and a global version. The

local version allows a fast optimization (O(n)) around the current camera pose in real-time,

whereas a global RBA is performed as a background task. This allows to add keyframes

in real-time and overcomes the problem of PTAM when exploring unknown environments

quickly. Unfortunately, extensive experiments have not been performed yet.

Konolige et al. [21] reduced the computational cost of large bundle adjustment by

reformulating the constraints of the optimization problem. In standard bundle adjustment

a camera pose and the reconstructed structure is optimized by minimizing the reprojection

error. In general, this involves several hundreds parameters and equations. They replaced

this large number of constraints by only a few constraints that nearly have the same

conditions like all constraints together. This led to an enormous reduction of parameters

and equations. They showed that the time for optimizing a loop of 370 meters took 35ms

compared to several seconds or minutes.

There exists also approaches that combine EKF and bundle adjustment. Eade and

Drummond [10] build a map of local submaps, in which multiple images share a nearly

linear observation model and combine them by a graph structure. On a global level, the

graph structure is then optimized by bundle adjustment, whereas the local submaps are

tracked by an EKF �lter. They showed that their map representation avoids inconsistency

in the EKF �lter and performs in real-time with several hundred landmarks. The accuracy

of their approach is near to o�ine bundle adjustment.

Strasdat et al. [36] compared the performance of EKF-based SLAM algorithms and8 C. MEI et al.: CONSTANT-TIME STEREO SLAM

−40 −30 −20 −10 0 10
−10

−5

0

5

10

15

20

25

30

35

x (m)

y
(m

)

(a) Begbroke top view

−200

−150

−100

−50

0

50−50 0 50 100 150 200 250

x (m)

y (m)

(b) New College without
loop closure

−140

−120

−100

−80

−60

−40

−20

0

20
−50 0 50 100 150 200 250

y (m)

x
(m

)

(c) New College top view
with loop closure

−30 −20 −10 0 10
−100102030

−0.5

0

0.5

1

1.5

2

x (m)y (m)

z
(m

)

(d) Begbrokde side view

−200 −150 −100 −50 0 50

−200

0

200

400
−5

0

5

10

15

x (m)
y (m)

z
(m

)

(e) New College side view
without loop closure

−200

−100

0

100

200

−100

0

100

200

300
−20

0

20

x (m)y (m)

z
(m

)

(f) New College side view
with loop closure

Figure 4: Estimated trajectories for the data sets detailed in Tab. 1. The trajectories are shown
processed with loop closure (red trajectory with crosses) and without (blue continuous line).

Begbroke New College
Distance Travelled 1.08 km 2.26 km
Frames Processed 23K 51K

Reprojection Error Min/Avg/Max 0.003 / 0.17 / 0.55 pixels 0.03 / 0.13 / 1.01 pixels
Accuracy without loop closure ∼1m in (x-y) plane, ∼1m in z ∼15-25m in (x-y) plane, ∼15m in z

Accuracy with loop closure ∼1cm in (x-y) plane, ∼1cm in z ∼10cm in (x-y) plane, ∼10cm in z
Table 1: Results for the Begbroke and New College data sets.

features created and simultaneously reducing drift (Fig. 2(c) illustrates this mechanism). The
metric for deciding when to connect poses is based on the distance (typically 1 m) and angle
(10 deg) between frames and a minimum number of tracked landmarks (typically 50%).

5 Experimental results
The full system was tested on numerous sequences of up to 2km. A total of 5km was tra-
versed and over 300K images processed. The system exhibits robustness to motion blur, fog,
lighting changes, lens flare and dynamic objects. In this work, the FABMAP vocabulary had
10000 words generated from a separate sequence of 11200 frames.

The performance on two specific sequences are detailed in Tab. 1 and the estimated
trajectory can be found in Fig. 43. No ground truth is available for these two sequences but
the robot was driven so that its trajectory would overlap. The accuracy reported in the table
was measured in the x-y plane and along the z-axis with and without loop closure. Even
without a global relaxation, the loop closure greatly improves the accuracy.

The average computation time on an Intel 2.40GHz Quad CPU with only one core run-
ning totals 27.5ms (∼36Hz). A typical breakdown is: Pre-processing 10ms; Tracking 5ms;
RANSAC 1.5ms; Localisation 4ms; Left-right matching 2ms; SIFT descriptors 5ms.

We found that the following components contribute to the overall performance:

3The New College dataset set is available online at www.robots.ox.ac.uk/NewCollegeData/ [23].

8 C. MEI et al.: CONSTANT-TIME STEREO SLAM

−40 −30 −20 −10 0 10
−10

−5

0

5

10

15

20

25

30

35

x (m)

y
(m

)

(a) Begbroke top view

−200

−150

−100

−50

0

50−50 0 50 100 150 200 250

x (m)

y (m)

(b) New College without
loop closure

−140

−120

−100

−80

−60

−40

−20

0

20
−50 0 50 100 150 200 250

y (m)

x
(m

)

(c) New College top view
with loop closure

−30 −20 −10 0 10
−100102030

−0.5

0

0.5

1

1.5

2

x (m)y (m)

z
(m

)

(d) Begbrokde side view

−200 −150 −100 −50 0 50

−200

0

200

400
−5

0

5

10

15

x (m)
y (m)

z
(m

)

(e) New College side view
without loop closure

−200

−100

0

100

200

−100

0

100

200

300
−20

0

20

x (m)y (m)

z
(m

)

(f) New College side view
with loop closure

Figure 4: Estimated trajectories for the data sets detailed in Tab. 1. The trajectories are shown
processed with loop closure (red trajectory with crosses) and without (blue continuous line).

Begbroke New College
Distance Travelled 1.08 km 2.26 km
Frames Processed 23K 51K

Reprojection Error Min/Avg/Max 0.003 / 0.17 / 0.55 pixels 0.03 / 0.13 / 1.01 pixels
Accuracy without loop closure ∼1m in (x-y) plane, ∼1m in z ∼15-25m in (x-y) plane, ∼15m in z

Accuracy with loop closure ∼1cm in (x-y) plane, ∼1cm in z ∼10cm in (x-y) plane, ∼10cm in z
Table 1: Results for the Begbroke and New College data sets.

features created and simultaneously reducing drift (Fig. 2(c) illustrates this mechanism). The
metric for deciding when to connect poses is based on the distance (typically 1 m) and angle
(10 deg) between frames and a minimum number of tracked landmarks (typically 50%).

5 Experimental results
The full system was tested on numerous sequences of up to 2km. A total of 5km was tra-
versed and over 300K images processed. The system exhibits robustness to motion blur, fog,
lighting changes, lens flare and dynamic objects. In this work, the FABMAP vocabulary had
10000 words generated from a separate sequence of 11200 frames.

The performance on two specific sequences are detailed in Tab. 1 and the estimated
trajectory can be found in Fig. 43. No ground truth is available for these two sequences but
the robot was driven so that its trajectory would overlap. The accuracy reported in the table
was measured in the x-y plane and along the z-axis with and without loop closure. Even
without a global relaxation, the loop closure greatly improves the accuracy.

The average computation time on an Intel 2.40GHz Quad CPU with only one core run-
ning totals 27.5ms (∼36Hz). A typical breakdown is: Pre-processing 10ms; Tracking 5ms;
RANSAC 1.5ms; Localisation 4ms; Left-right matching 2ms; SIFT descriptors 5ms.

We found that the following components contribute to the overall performance:

3The New College dataset set is available online at www.robots.ox.ac.uk/NewCollegeData/ [23].

(a) (b)

Figure 2.7: Results of SLAM system proposed by [23] using relative bundle adjustment.
(a) The trajectory produced by the stereo SLAM approach without loop detection and
correction. (b) The trajectory corrected with relative bundle adjustment.

16 Chapter 2. Related Work

methods that make use of bundle adjustment. They analyzed both approaches in simula-

tions, as well as on real image sequences, in terms of accuracy and computational costs.

They concluded that bundle adjustment approaches are predominant with regard to accu-

racy and therefore EKF-based methods have a niche �eld in systems with low processing

power.

2.3 Summary

In this chapter, we discussed di�erent approaches for solving the SLAM problem devel-

oped in the past. We focused on approaches based on EKF �lters and methods based on

geometric optimization, which became popular in the last years.

The SLAM methods implemented with EKF �lters are basically able to handle only a

limited area because the complexity increases drastically with the number of features. To

overcome this limitation, the idea of submaps has been developed [10] that are optimized

on a global level. Therfore, EKF-based algorithms for large scale SLAM problems consists

of at least two di�erent mechanism for map building.

In the recent years, methods based on geometric optimization became more and more

popular, because it turned out that they are able to handle large numbers of features

e�ciently. PTAM was one of the �rst systems that implemented bundle adjustment as

the underlying optimization method for map and pose estimation. Even though their

implementation is optimized for a limited area, the authors showed, PTAM is able to cope

with large numbers of visual features in realtime with very high accuracy. Con�rmed by

the results of Strasdat et al. [36], our approach presented in this master thesis therefore is

based on bundle adjustment.

To create a metric and accurate SLAM system, we extended PTAM in several ways.

Our systems uses a calibrated stereo camera pair which guarantees an accurate metric

reconstruction of the environment. Furthermore, it turned out that a more complex feature

descriptor enhances the accuracy of map building. Since PTAM is developed for tracking a

camera in unknown environments, it has no support for global localization. We solve this

problem by an appereance based method which is also applied for loop detection. Loop

detection and correction is essential for accurate mapping particular for large scale SLAM

and is carried out by bundle adjustment in our approach.

Chapter 3

Theory and Background

Contents

3.1 Multiview Geometry . 17

3.2 Salient Image Points . 23

3.3 Multiview Reconstruction . 26

The goal of a visual SLAM algorithm is to keep track of a robot's trajectory while

exploring an unknown environment and creating a visual map. A robot equipped with

one or more cameras observes its three-dimensional surrounding and maintains a three-

dimensional map. In this chapter, we outline the techniques and algorithms used in the

SLAM context. Section 3.1 introduces basic aspects of multiview geometry like frame

transformations, the perspective camera model, and camera calibration. In the following

deals with feature extraction and feature matching in di�erent images. Three-dimensional

reconstruction using two or more images is discussed in Chapter 3.3. We also introduce

the concept of Bundle Adjustment and explain the relevant mathematical background.

3.1 Multiview Geometry

This section elaborates on the mathematical background of frame transformations that is

important for tracking objects in three dimensions. Furthermore, we introduce the pinhole

camera model and show a basic method for estimating the relative orientation between

two cameras.

17

18 Chapter 3. Theory and Background

3.1.1 Rigid Body Motion

The tracking of an object in an Euclidean space can be seen as the estimation of the objects

coordinate system F with respect to a world coordinate frame W. In the following, we

elaborate on two mathematical concepts that describe the transformation from F to W.

Frame Transformation

Any orientation in 3D can be described by three consecutive rotations around three di�erent

axes. The three rotated angles refer to as the Euler angles. The resulting orientation

depends on the rotation axes order. A common ordering used in aviation is the ZYX

convention, i.e. the �rst rotation is performed around the Z-axis (yaw angle), the second

around the Y-axis (pitch angle), and the last around the X-axis (roll angle).

R, t

x

y

z

x'

z'

y'

W

F

Figure 3.1: Transformation between a coordinate frameW and a coordinate frame F . The
position of F can be expressed by a rotation matrix R and a translation vector t with
respect to the origin of W

Euler angles are often used to visualize orientations because they are easily understood

by humans. In order to transform the representation of a point PW to a point PF , the

Euler angles are transformed to a matrix representation. Any two dimensional rotation

around one of the three axes can be expressed by a 3 × 3 matrix, e.g. a rotation around

the z-axis by angle φ can be written as

Rz(α) =


cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1



3.1. Multiview Geometry 19

Since each orientation can be expressed by three consecutive two dimensional rotations,

an arbitrary orientation can be expressed by

Rx(γ)Rx(β)Rz(α) =


1 0 0

0 cos(γ) − sin(γ)

0 sin(γ) cos(γ)




cos(β) 0 sin(β)

0 1 0

− sinβ) 0 cos(β)




cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1


The rotation matrix has several useful properties:

R−1 = RT

det(R) = 1

‖Rv‖ = ‖v‖

As we will see later, the representation of the rotation as a matrix is convenient for coordi-

nate frame conversion. However, it is not the most memory e�cient method for encoding

a rotation due to its enormous redundancy: A rotation matrix has nine entries whereas a

rotation can be encoded by three parameters.

In the �eld of computer vision, another orientation description is used: Every rotation

can also be expressed by the rotation of angle Θ around an arbitrary rotation vector v with

‖v‖ = 1, which is called axis angle representation. Because ‖v‖ = 1, this representation

has only three parameters and is therefore a minimal representation of a rotation. The

conversion between the axis angle and the matrix representation is given by the Rodrigues

rotation formula [26].

As shown in Figure 3.1, coordinate frame F has a translation displacement that is

typically expressed by a 3× 1 translation vector t. t describes the origin of F with respect

to W:

t =


x

y

z


W

The whole coordinate transformation comprises the translation by vector t and the

rotation R. Denoting pW a point in the coordinate frame W and pF the same point

expressed in F , the transformation from frame F to frame W is calculated by

pW = RpF + t. (3.1)

20 Chapter 3. Theory and Background

The inverse operation from frame W to frame F is de�ned by

pF = RT pW −RT t. (3.2)

Equations 3.1 and 3.2 can be simpli�ed by the use of homogenous coordinates. In this

representation, a three-dimensional point ph is described by an arbitrary multiple of the

vector (X,Y, Z, 1), where X, Y , and Z are the Cartesian coordinates of ph. According to

Equation 3.1, the transformation of point pFh to the point pWh can by written as

pWh = MpFh ,

where M is a 4× 4 matrix constructed of R and t:

M =

[
R t

0 1

]

3.1.2 Perspective Camera Model

A camera describes the mapping between a 3D point X in a world coordinate frame C
and a 2D point x on an image plane. Several camera models exists, but in this thesis we

Figure 3.2: Pinhole camera model. A 3D point X is projected to the 2D point x in image
plane by ray that is going through the pinhole O. The focal length f is the distance
between the pinhole and the principal point P .

3.1. Multiview Geometry 21

concentrate on a standard pinhole camera that can be used to model a standard camera.

A pinhole camera de�nes the central projection of a 3D point X onto a 2D image plane,

resulting in point x. A central projection in general can be described as

x = PX,

where x is a homogenous 3 × 1 vector (u, v, w)T representing the image point and X is a

4 × 1 vector describing the world point in homogenous coordinates. P denotes the 3 × 4

projection matrix, which can be decomposed into two parts: extrinsic parameters (C) and

intrinsic camera parameters (K). The intrinsic parameters describe the camera's internal

con�guration and is represented by a 3× 3 matrix

K =


f s px

0 f py

0 0 1

 ,

where f is the focal length, s the skew factor, and px and py are the principal point

coordinates of the camera.

The extrinsic parameters C represent the external orientation and position of the cam-

era with respect to C. The orientation R is a 3× 3 rotation matrix and the translation T

is a 3× 1 vector. The matrix C is composed of

C = (R|t)

Multiplying K and C results in the projection matrix P

P = K[R|t]

This model is valid for an optimal pinhole camera. Practically all image devices are

equipped with a lens that produces so-called lens distortion, i.e. straight lines are not

depicted as straight lines in the image. The distorted pixel pd = (xd, yd) can be corrected

to the undistorted pixel pu = (xu, yu) by

pu =

(
xu

yu

)
=

(
px + L(r)(xd − px)

py + L(r)(yd − py)

)
,

where px und py denote the center of the radial distortion; typically the principal point of

22 Chapter 3. Theory and Background

the camera. The function L(r) is the radial distortion function that can be approximated

by a Taylor series:

L(r) = 1 + κ1r
2 + κ2r

3 + κ3r
4 + κ4r

5, (3.3)

where r is the Euclidean distance between the radial distortion center and the distorted

pixel pd.

Both, the intrinsic parametersK and the radial distortion parameters κi are determined

in a calibration process. A more detailed description of camera calibration techniques can

be found in [39].

3.1.3 Relative Camera Calibration

Assuming a robot equipped with more than a single camera, it is useful to estimate the rel-

ative orientation between the cameras. If all cameras are mounted on a rig, the calibration

process can be performed only once. Here, we present the calibration process between two

cameras Pl and Pr. The algorithm can be extended for an arbitrary number of cameras.

De�ning Pl as the reference camera, the pose of Pr is determined with respect to Pl as

follows: Given a planar calibration target that is at least partially visible in both cameras,

we extract the corresponding points Xl and Xr for a target point X. The transformation

Xr = R ·Xl + T (3.4)

describes the the pose of camera Pr relative to the reference camera Pl. R is 3×3 rotation

matrix and T a 3× 1 translation vector. This equation can be solved by 4 corresponding

non-collinear image points in Pl and Pr. The rotation and translation is stored in a

homography matrix

H = (R|T) . (3.5)

The projection matrix of the right camera is then altered by the homography:

Pr = Kr ·H, (3.6)

where Kr is the intrinsic camera parameter camera Pr. Since Pl is the reference camera it

de�nes the origin of the camera coordinate system and is set to the canonical pose.

3.2. Salient Image Points 23

3.2 Salient Image Points

The detection of corresponding points between two or more images is one of the key prob-

lems in computer vision and is not solved yet. Due to the importance and the complexity of

this problem, myriads of di�erent approaches exist. Most approaches are based on so called

keypoints: A keypoint is a image area that is stable under global and local perturbations

like noise, di�erent points of view, lighting conditions and so on. This should guarantee

that the same area is recognized in another image that is taken under di�erent conditions.

Furthermore, each salient point is connected to a feature descriptor that represents the

image patch around the salient point. In order to �nd corresponding points in di�erent

images, these feature descriptors are compared to each other.

3.2.1 Feature extraction

Two types of descriptors can be distinguished: patch-based and feature-based descriptors.

A patch-based descriptor uses the gray values of the keypoints neighborhood, whereas a

feature-based descriptor extracts advanced information like gradients around the keypoint.

In this section we present two feature-based and one patch-based descriptor.

Patch-based Descriptors

Initially, corner points are extracted from a gray-scale image. A common corner detector

is the Harris corner detector [15]. An improved approach is the FAST corner detector [30]

that signi�cantly reduces the computational costs. The descriptor of the keypoint is the

n×m image patch neighborhood.

This descriptor can be used in limited applications, because it is not invariant to view-

point and lightning changes. Furthermore, it is not robust against high-frequency image

noise and it has a weak discriminative property. Hence, the descriptor can be used in

applications where prior knowledge about the corresponding image position is available

and the viewpoint between both images varies only a little.

There are several extensions to this basic approach in order to be more robust against

viewpoint changes. These techniques �t a warped version of the image patch to a corre-

sponding keypoint [1].

24 Chapter 3. Theory and Background

Figure 3.3: Illustration of a SIFT feature. The red dot marks the position of the keypoint.
The vectors in the yellow grid show the gradients of all 16 images regions (zoomed).

Scale Invariant Feature Transform

The Scale Invariant Feature Transform (SIFT) combines a Di�erence of Gaussians (DOG)

based keypoint detector with a feature descriptor based on gradient histograms. The 16×16

neighborhood of the detected keypoint is subdivide in 4× 4 image patches and a gradient

histogram with 8 bins for each image patch is computed. Therefore, the neighborhood of

the keypoint is described by 16 gradient histograms of length 8. This results in a 128 byte

feature vector.

This state-of-the art descriptor is robust against lighting, rotation, scale, and viewpoint

changes. Hence, SIFT allows the identi�cation of corresponding image points in presence

of wide range image variations. Nevertheless, it is very distinctive and can be adopted

without geometric constraints.

The drawback of this descriptor is high computational cost for keypoint detection and

feature descriptor calculation.

Speeded-up robust features

The Speeded-Up Robust Features descriptor (SURF) [2] is partly inspired by the SIFT

descriptor and promises faster computation. Both algorithms make use of spatial distri-

bution of gradients. The algorithm proposed by Bay et al. combines a Harris keypoint

detector with a feature descriptor based on Haar wavelet coe�cients. In order to speed up

computation, they use integral images.

The keypoint detection is similar to SIFT performed in a scale space and the interest

3.2. Salient Image Points 25

points are identi�ed by a Harris corner detector. Furthermore, the dominant orientation of

each keypoint is detected. The neighborhood is described by responses of a Haar wavelet

�lter and results in a 64 byte feature descriptor for each keypoint. The authors show that

their approach is not only faster but also more robust against noise and some viewpoint

changes.

3.2.2 Feature Matching

Basically, all matching algorithms based on interest points can be described by the following

work�ow. Given two images P1 and P2, interest points of both images are extracted. Then,

each interest point is assigned a descriptor that expresses its local neighborhood. In the

matching step, the descriptors of P1 are compared to all descriptors in P2. If two are

similar, they are identi�ed as corresponding points.

There exist several measures that de�ne the similarity of keypoints. Here, we can also

distinguish between measures that are de�ned for patch-based descriptors and feature-

based descriptors.

The similarity measure for SIFT or SURF features is relatively simple. Since the de-

Figure 3.4: SURF Feature Descriptor. The center of the circle is the detected keypoint,
whereas the size of circle refer to the scale of the keypoint. The green line indicates the
dominant direction of the image patch.

26 Chapter 3. Theory and Background

scriptor itself is robust against viewpoint and lightening changes, the matching is carried

out by a nearest neighbor search in feature space. Typically, the Euclidean distance be-

tween two feature vectors are used as similarity measure. Because it cannot be guaranteed

that a certain feature is contained in the set of features, a threshold or another criteria has

to be de�ned to prevent false matches. Instead of a threshold on the absolute feature dis-

tance, Lowe et al. propose a threshold on the distance between the nearest and the second

nearest neighbor. If those two are too close, the match is discarded. This guarantees that

only distinct features are matched.

In the naive implementation, the computational cost for recovering m features in an-

other feature set containing n elements, is O(m · n). This prevents a real-time implemen-

tation if both m and n are large. Several approaches exist for reducing the computational

cost for matching, e.g. the bag-of-words method presented in [28] or a nearest neighbor

search in a k-dimensional-tree (KD-tree).

In order to compare the similarity of patch-based descriptors, many di�erent measures

have been developed. Given two image patches I and J , basically all measures somehow

calculate a pixel wise correlation. For example, the Sum of Absolute Di�erences (SAD) is

calculated as follows:

SAD =
∑
W

|I − J |,

where
∑

W I denotes the sum of all pixel inside the window around I. A measure that

is more robust against illumination changes is the Zero Mean Sum of Squared (ZMSSD)

distance and is de�ned as follows:

ZMSSD =
∑
W

((I − Ī)− (J − J̄))2, (3.7)

where Ī denotes the mean intensity of all pixel in patch I.

The advantage of the patch-based correlation is the low computation cost, because a

feature extraction step is not required. In applications that provide an approximate guess

for the corresponding patch location, ZMSSD can be a proper measure for corresponding

point identi�cation.

3.3 Multiview Reconstruction

One part of our SLAM algorithm is to reconstruct the environment by using one or more

images. In this chapter, we explain the triangulation of a 3D point given two corresponding

3.3. Multiview Reconstruction 27

image points. Furthermore, we discuss the bundle adjustment method that optimizes the

reconstructed 3D structure if a 3D point is visible in more than two images.

3.3.1 Triangulation

In Section 3.1.2, we explained the mapping of a 3D point X to a 2D image point x. This

section elaborates on the inverse problem, which is the reconstruction of a 3D point given

2D image points.

Given the image point x in homogenous coordinates x = w(u, v, 1) and splitting the

projection matrix P into rows, the formula x = P ·X can be rewritten as follows:

wu = P T1 X

wv = P T2 X

w = P T3 X,

where Pi denotes the i-th row of P . Replacing w in the �rst two equations leads to the

linear equation system

P T3 Xu− P T1 X = 0

P T3 Xv − P T2 X = 0

Since X is a 4× 1 vector, the equation system is under-determined and at least two image

points xl = (ul, vl, 1) and xr = (ur, vr, 1) taken from two di�erent images Pl, Pr are used

to solve this equation system. Hence, X is calculated by
P Tl,3ul − P Tl,1
P Tl,3vl − P Tl,2
P Tr,3ur − P Tr,1
P Tr,3vr − P Tr,2

X = 0 (3.8)

X is then the eigenvector corresponding to the smallest eigenvalue of the matrix.

Geometrically, Equation (3.8) are the mathematical solution of the intersection of two

rays going through the image points xl and the principal point of Pl, respectively xr and

Pr.

In real applications, the corresponding points in the image are disturbed by noise.

Equation (3.8) can only be solved by approximation. The accuracy of the solution depends

28 Chapter 3. Theory and Background

on the noise and the baseline between both cameras. Figure 3.5 shows, that especially the

uncertainty in z-direction highly depends on the baseline. So, a larger baseline allows a

more accurate reconstruction of three-dimensional points.

x x'

X

baseline

Figure 3.5: Geometrically, the triangulation is the intersection of two rays going through
the principal point and the image point xl, respectively xr. Assuming a small baseline
between both cameras, small changes in xr or xl results in a large variation in the recon-
structed point X.

3.3.2 Bundle Adjustment

The triangulation of a 3D point requires at least two projections taken from two di�erent

points of view. If more than two projections exist, the triangulation formula is overde-

termined and due to noisy corresponding point estimation, x = P ·X cannot be satis�ed

exactly. Furthermore, the triangulation algorithm requires precise camera poses, whereas

in many applications the poses cannot be estimated exactly. Hence, the accuracy of the

reconstructed 3D point depends on the noise introduced by inexact correspondences and

camera pose estimation.

In this chapter, we introduce the concept of bundle adjustment that optimizes the

camera poses and the reconstructed 3D points simultaneously. We also discuss the problem

of mismatched corresponding points (outliers) and some implementation details.

Consider a 3D point Xj that is visible in a set of cameras P i. xij denotes the image

point of the j-th 3D point seen∗ in the i-th camera. Bundle adjustment is de�ned as

the problem to �nd a set of camera matrices P i and 3D points Xj that minimizes the

∗A measurement denotes a point in image space that is identi�ed as the projection of a certain 3D
point. Typically, a 3D point is linked to an interest point that is used to identify a measurement.

3.3. Multiview Reconstruction 29

reprojection. Assuming Gaussian noise, the maximum Likelihood solution is given by

min
Xj ,P i

∑
ij

d(P̂ i · X̂j , x
i
j)

2, (3.9)

where d(x, y) denotes the Euclidean distance between x and y.

Typically, the minimization problem consists of a very large number of parameters to

be optimized, i.e. each projection matrix has 11 parameters and each 3D point has 3

DOF. Practically, a real-world bundle adjustment problem consists of several thousand 3D

points visible in some hundreds cameras. Hence, the optimization problem enfolds several

thousand parameters.

The problem can be reformulated to a standard non-linear least-squares optimization

problem. All projection matrices Pi and 3D points Xj are rearranged to a parameter vector

β = (β1, . . . , βn). The measurements xji are converted to a 1 ×m vector x. Given x, we

try to re�ne the parameters β such that the Euclidean distance between the reprojected

3D points and the measurement is minimal.

Due to the nonlinear relationship between the parameters and the measurements, a di-

rect solution of the problem cannot be formulated. Assuming the number of measurements

P
1 P

2
P3

P 4

X
1 X

2 X
3

X
4

X

Y

Z

X
1

P
1

P
2

P
3

P
4

X
2

X
3

X
4

Figure 3.6: Bundle Adjustment Problem. Four 3D points A, B, C and D are measured
by four cameras. Due to scene geometry or matching errors, not every point is visible in
every camera. The information which point is visible in which camera can be represented
in a connectivity matrix. If entry i/j is black, the point j is not visible in camera i. For
example, point D is visible in camera 2 and 4.

30 Chapter 3. Theory and Background

m is greater than the number of parameters n (m > n), we have to deal with an overde-

termined nonlinear system of equations. So, an iterative nonlinear least-squares solver is

used to estimate an optimal parameter vector β.

Let F (β) be the nonlinear vector model function called objective function,

F (β) =


f1(β)
...

fm(β)


where fm(β) : Rn → R computes the reprojection error of one 3D point Xj in a single

camera P i:

fm(β) = d(P i Xj , x
j
i)

2,

which are also known as residuals. In the following, we use fm instead of fm(β). In order

to optimize the parameter vector β, we minimize the squared Euclidean norm:

‖F (β)‖22 = F T (β)F (β) (3.10)

=
m∑
i=1

fi(β)2, (3.11)

describing a function from Rn → R.

Formally, the minimum of an objective function Rn → R is de�ned as follows: A

function f has a local minimum at point x∗, if f(x∗) ≤ f(x) and ‖x∗ − x‖< ε, ε > 0. A

point x∗ is called global minimum, if f(x∗) < f(x), ∀x.
A necessary but not su�cient condition for a minimum at x∗ of a di�erentiable function

f : R → R is that the gradient at x∗ is zero: f ′(x∗) = 0. This property can be extended

to a multidimensional function f : Rn → R by de�ning the gradient of f as follows:

∇f(x) = (
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn
)T .

Hence, a point x∗ may be a minimum of f , if the gradient vanishes:

∇f(x∗) = 0. (3.12)

Putting Equations (3.12) and (3.10) together, a minimum β̂ ∈ Rn of F (β) holds the

following equation:

∇(F T (β̂)F (β̂)) = 2JT (β̂)F (β̂) = 0, (3.13)

3.3. Multiview Reconstruction 31

where J(β̂) is the Jacobian:

J(β) =


∂f1(β)
∂β1

· · · ∂f1(β)
∂βn

...
...

∂fm(β)
∂β1

· · · ∂fm(β)
∂βn

 (3.14)

Basically, all nonlinear optimization methods work iteratively. Starting from an initial

guess β(0) = (β
(0)
1 , . . . , β

(0)
n), the parameter vector β is optimized iteratively:

β(k+1) = βk + ∆β, (3.15)

where ∆β is called shift vector.

There exist many di�erent methods for calculating the shift vector ∆β. The simplest

method is the gradient descent, which is de�ned as follows:

∆β = −λkJkF (β(k)), (3.16)

where λk is a positive step width that can be adjusted in each iteration. In order to

guarantee that this algorithm reaches a local minimum, λ has to be small, which leads to

slow convergence.

A common faster algorithm is the Gauss-Newton method. The shift vector ∆β can be

derived by solving

(JTk Jk)∆β = −JTk F (β(k)), (3.17)

where β(k) denotes the parameter vector at iteration k, and Jk the Jacobian matrix eval-

uated at β(k). This equation can be solved by Cholesky- or QR-decomposition. Here,

convergence behavior depends on the guess of β(0). If β(0) is close to a minimum, the algo-

rithm converges nearly quadratically, whereas a bad initial guess reduces the convergence

speed or it even diverges.

The Levenberg-Marquardt algorithm combines the Gauss-Newton and the gradient de-

scent method to overcome the divergence problem. The shift vector ∆β is calculated by:

∆β = −(JTk Jk + λI)−1JkF (β(k)), (3.18)

where λ is a damping factor adjusted in each iteration. If λ = 0, Equation (3.18) turns into

the Gauss-Newton method (3.17). If λ→∞, ∆β Equation (3.18) turns into the gradient

descent method as described in Equation (3.16).

32 Chapter 3. Theory and Background

At iteration k = 0, λ is set to a large value in order to start with the gradient descent

method. If it gets closer to a minimum, λ is set to smaller values so it behaves like the

Gauss-Newton method. The algorithm is repeated until a stopping criterion is reached,

such as a maximum number of iterations or ‖∆β‖ is below a threshold.

An issue of the Levenberg-Marquardt algorithm is the evaluation and the inversion of

the Jacobian matrix, because a typical bundle adjust problem consist of several thousand

parameters and equations. Since the Jacobian matrix of a bundle adjustment problem is

sparse, the inversion of JTJ can be avoided. Therefore, β is constructed by concatenation

of two vectors a and b

β = (aT |bT),

where a = (aT1 ,a
T
2 , . . . ,a

T
i) contains the parameters of the projection matrices Pi and

b = (bT1 , . . . ,b
T
j) is a vector containing the 3D point parameters Xj . Reordering the

parameters in that way leads to a block structured Jacobi matrix J = [A|B], where A and

B are the Jacobians of F with respect to a and b. Figure 3.7 shows the block structure of

Camera
parameter

Point
parameter

P
1

P
2

P
3

P
4

X
1

X
2

X
3

X
4

x1

j

x2

j

x3

j

x4

j

P
1

P
2

P
3

P
4

X
1

X
2

X
3

X
4

x1

j

x2

j

x3

j

x4

j

Camera
parameter

Point
parameter

Figure 3.7: Jacobian Structure of Bundle Adjustment. The left �gure shows the block-wise
structure of the Jacobian matrix. In this example, each map point Xj is visible in each
camera Pi. The right �gure is the Jacobian matrix of the example given in Figure 3.6. If
a map point is not visible in a certain camera, all entries in the Jacobians are zero.

3.3. Multiview Reconstruction 33

the rearranged Jocobian matrix. Equation (3.18) can be rewritten as[
ATA ATB

BTA BTB

](
∆βa

∆βb

)
+ λI =

(
ATF (β(k))

BTF (β(k))

)
, (3.19)

Adding the damping factor to the diagonal entries of ATA and BTB, alters them to

(ATA)∗ = U∗ and (BTB)∗ = V ∗. So, Equation (3.19) can be rewritten as[
U∗ W

W T V ∗

](
∆βa

∆βb

)
=

(
εA

εB

)
, (3.20)

where εA and εB rewrite of the right side of the equation only. In order to solve this system

of equations, both sides are left multiplied by[
I −WV ∗−1

0 I

]
.

This results in a system of equations where the top right block vanishes:[
U∗ −WV ∗−1W T 0

W T V ∗

](
∆βa

∆βb

)
=

(
εA −WV ∗−1εB

εB

)

The camera update parameters ∆βa can be computed by solving the top half of equations:

(U∗ −WV ∗−1W T)∆βa = εA −WV ∗−1εB

The point parameters are calculated by back-substition of ∆βa in

V ∗∆βa = εB −W T∆βa

A bundle adjustment problem often consists of thousands of parameters to be optimized.

The computational amount can be reduced by making use of the Jacobian's sparseness,

which stems from the fact that not every 3D point is visible in every camera. In an

optimized implementation, this reduces the computational amount as well as the memory

consumption. For more implementation details, we refer to the book Multiview Geometry

of Hartley & Zisserman [16].

34 Chapter 3. Theory and Background

3.3.3 Robust Bundle Adjustment

The standard bundle adjustment optimizes the reprojection error in a least-squares sense,

which is less robust in the presence of outliers. Outliers are image points identi�ed spuri-

ously as projections of a 3D point Xj . In many cases, these points produce large reprojec-

tion errors and therefore have strong in�uence on the optimization result. In this chapter,

we present several approaches to reduce the in�uence of outliers.

Random Sample Consensus

Random Sample Consensus (RANSAC) [11] is a common method for robust model �tting.

The idea is to create a hypothesis from a randomly selected subset of all measurements.

Then, the remaining measurements are tested, if they are represented by the model as well.

If they support the model, they are considered as inliers. The procedure of sampling and

testing is repeated several times. The model with the highest number of inliers is selected

as resulting model.

In case of bundle adjustment, the optimization problem is solved with the minimum

number of required measurements. Then the reprojection error of the remaining observed

3D points is calculated and the set of inliers is collected. A measurement is classi�ed as

inlier, if the reprojection error is below a certain threshold.

The RANSAC algorithm is still robust in presence of a large set of outliers. The

disadvantage is that no upper bound on the number of iterations can be given to achieve

a certain model quality. The computational amount of a RANSAC �tting depends on the

complexity of model �tting, which is relatively high in bundle adjustment. So, this limits

the use of RANSAC to small bundle adjustment problems with a few number of points

and views.

M-Estimator

The sensitivity to outliers in bundle adjustment arises from the quadratic error function.

Hence, the idea to limit the in�uence of outliers is to �nd a robust error weighting function.

In general, bundle adjustment can written as

min
∑
m

ρ(fm), (3.21)

where ρ : R → R is a symmetric, positive-de�nite function that has a unique minimum.

In case of the standard bundle adjustment formulation, ρ(·) is chosen as ρ = 1
2x

2, which

3.3. Multiview Reconstruction 35

results in Equation (3.9). In order to be robust against outliers, ρ(·) is replaced by a so-

called M-Estimator. The necessary condition for a minimum β̂ of the previously de�ned

error function is given by ∑
m

ψ(fm)
∂fm
∂βn

= 0, (3.22)

where ψ is de�ned as the derivative of ρ:

ψ(x) =
∂ρ(x)

∂x

and is called in�uence function of ρ. Based on the in�uence function, we de�ne a weighting

function w

w(x) =
ψ(x)

x
,

which guarantees that large residuals have less in�uence in the result. Equation (3.22)

turns into a system of equations of weighted gradients with respect to parameter β:

∑
m

w(fm)fm
∂fm
βn

= 0. (3.23)

This system of equations can also be solved by the Levenberg-Marquardt algorithm, where

the additional weights alters the equation of the shift vector update as follows:

∇β = −(JTk wkJk + λI)1wkJkF (β(k)) (3.24)

where wk is a diagonal weighting matrix depending on the residuals in the k-th iteration.

In Figure 3.9, two M-Estimators and the standard quadratic error function are shown.

Huber's M-Estimator [18] combines the standard squared error function with a linear

weighting and is de�ned as

ρ(x) =


x2

2 ‖x‖ < k

k(‖x‖ − k
2) ‖x‖ ≥ k

(3.25)

where k is a tuning factor that de�nes the change between the squared and the linear

portion of the M-Estimator. As shown in Figure 3.9, measurements with residuals smaller

than k get constant weight, whereas residuals greater than k have decaying in�uence. But

obviously, each measurement a�ects the optimization result.

In contrast, the M-Estimator designed by Tukey [38], is a so-called cut-o� estimator,

36 Chapter 3. Theory and Background

where the robust cost function is given by

ρ(x) =


k2

6 (1− [1− (x/k)2]3) if‖x‖ ≤ k
k2

6 if‖x‖ > k
. (3.26)

k is again a tuning factor that controls the in�uence of a measurement dependent on its

residual. If the residual is above k, the weighting function vanishes and does not in�uence

the result. Hence, the Tukey function binary classi�es measurements as in- and outliers.

Robust estimate
variance of residuals

Calculate weight of
each measurement

Calculate shift vector

Update parameter
vector & residuals

Repeat until
converged

Figure 3.8: Robust optimization process. First, the variance of the residuals are calculated,
followed by determining the weights for each measurement. Then, the shift vector is
calculated. At last, the parameter vector is updated and the new residuals computed.

Both M-Estimators require a constant k that is a threshold for outlier identi�cation and

therefore the estimation of this parameter is a critical part. In an iterative optimization

method, the residuals decrease typically with the number of iterations and setting k to

a constant value is not suitable. However, the expected percentage of outliers can be

speci�ed, which typically varies between 5% and 10%. Assuming F (β) can be modeled

by a zero mean Gaussian distribution with variance σ, 95% of residuals are accepted as

inliers, if k = 4.6851 σ for Tukey and k = 1.345 σ for Huber.

Due to the sensitivity to outliers, the residuals variance should not be calculated from

the dataset directly, but a robust variance estimator should be used. Rousseeuw [31]

3.3. Multiview Reconstruction 37

proposes the following variance estimator:

σ ≈ 1.4826(1 +
5

m− n)
√
x̃, (3.27)

where m is the length of X and n is the dimensionality of the residuals. The inner fraction
5

m−n compensates e�ects that occur if m is small. For a more detailed explanation of the

constants we refer to [31].

The complete work�ow for a robust optimization procedure is shown in Figure 3.8.

After estimating the variance of the residuals using Equation 3.27, the tuning factor based

on the variance is calculated and the individual weight for each residual is determined.

This step is followed by the calculation of the shift vector ∇β. At last, the parameter

vector β is updated and the new residuals are recalculated. All steps are repeated until a

stopping criteria like a maximum number of iterations is reached.

38 Chapter 3. Theory and Background

−10 −5 0 5 10
−5

0

5

−10 −5 0 5 10
0

5

10

15

20

25

30

35

−10 −5 0 5 10

0

0.2

0.4

0.6

0.8

1

Huber

−10 −5 0 5 10
0

20

40

60

80

100

−10 −5 0 5 10
−10

−5

0

5

10

−10 −5 0 5 10

0

0.2

0.4

0.6

0.8

1

Least Square

−10 −5 0 5 10
0

0.5

1

1.5

2

2.5

3

−10 −5 0 5 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−10 −5 0 5 10

0

0.2

0.4

0.6

0.8

1

Tukey

co
st

in
�u

en
ce

w
ei

gh
t

Figure 3.9: This �gure shows three di�erent error weighting functions. The weighting
function of the Least Squares function w (last row) is constant, which indicates that each
measurement has the same portion in the result. Huber and Tukey are two well-known
M-Estimators. Their weighting functions prefer measurements with small errors.

Chapter 4

Localization

Contents

4.1 Map . 40

4.2 Local Localization . 42

4.3 Global Localization . 45

4.4 Discussion . 47

Every SLAM algorithm comprises two parts: Building a map and localizing within an

existing map. In this chapter, we focus on the localization part and assume the map is

already known. Creation of the map is described later in Chapter 5.

Localization is the process of determining the robot pose within a given map. A pose

is a 6-tuple which describes the translational o�set (three parameters) and the orientation

(three parameter) with respect to the map origin. An accurate pose estimate is a key

component in many autonomous robot applications. If the robot does not know its position

in the environment, any high-level interaction task becomes di�cult. Some authors state

that the localization problem is one of the fundamental problems to provide a robot with

real autonomous capabilities.

The localization task has a number of di�erent instances of increasing di�culty:

• Local Localization

• Global Localization

• Kidnapped Robot

In the local localization, also called pose tracking, the robot knows its initial pose in the

map. The goal is to keep track of the pose while the robot navigates in its environment.

39

40 Chapter 4. Localization

This method is used whenever an initial pose is available.

A global localization is performed, if no initial pose is available. In the global localiza-

tion, also known as wake-up problem, the robot may be started anywhere on the map and

it has to localize itself from scratch.

A much harder issue is the Kidnapped robot problem. Here, the robot is localized

exactly within the map but then the robot gets blindfolded und moved (kidnapped) to a

new position. Hence, the robot also has to detect that circumstance and has to perform a

global localization.

Localization can be performed in two di�erent kinds of environment: Static and dy-

namic. In the static case, the environment at localization time is identical to the envi-

ronment at map creation time and the robot is the single moving object. Localization in

a dynamic environment is much harder due to other moving objects. The map and the

current environment di�er and therefore a robust localization is much more di�cult.

In this chapter, we discuss our approach for solving the local and global localization

in a static environment using one or more cameras. The chapter is organized as follows:

In Section 4.1, the structure of the given map is outlined. In Section 4.2, we describe the

pose tracking within a given map followed by the global localization method.

4.1 Map

Since the map is the fundamental data structure in a SLAM algorithm, its design is very

important. The requirements on the map are versatile and sometimes oppositional: a

representation of the map should be usable for many tasks like navigation, localization,

obstacle avoidance. Ideally, it is memory e�cient, detailed, and readable by humans. So,

often a tradeo� between the requirements has to be found. Its representation also depends

on the type of SLAM algorithm and vice versa.

The �rst idea for a map representation is a set of all acquired images, because they

are provided directly by the camera and no further treatment is required. However, the

appearance of the images depends on a large number of parameters, e.g. illumination or

view-point to name only a few. Furthermore, a map of images is not memory e�cient.

As known from other �elds in computer vision like object detection, local features as

described in Section 3.2 are often a su�cient way to encode image information. Using a

local feature descriptor like SIFT or SURF reduces the amount of memory required and

the in�uence of viewpoint and illumination. The drawback of a local feature based map is

the increased computational amount for feature extraction. However, they can be used to

4.1. Map 41

identify the same point in di�erent images, which is important for many pose estimation

algorithms.

Motivated by the visual odometry algorithm proposed by Nister et al. [27], who localizes

a robot against local features, in our approach a three-dimensional position is assigned to

each local feature. This enables us to identify three-dimensional points in the current image

and to calculate the pose and orientation of a image with respect to the given points.

Klein et al.[20] enhanced Nesters idea and introduced the keyframe concept. They

noticed that image sequences along a robot path contain a lot of redundant information.

Hence, they build a map from such images containing new information. The method

presented in this thesis is closely related to this approach.

Based on the idea of tracking a camera by visual local features, the map consist of

so-called keyframes, denoted by Kl:

Map = {K1, . . . ,Kl} (4.1)

Each keyframe Kl is a set of projection matrices Pi and map points Mj :

Kl =

Pi i = 1, . . . , I

Mj j = 1, . . . , J
(4.2)

The number of projection matrices as well as the number of map points may vary in each

keyframe.

A projection matrix Pi is de�ned as

Pi = Ki[Ri|ti], (4.3)

where the rotation matrix Ri and translation ti of the cameras are given with respect to a

global world coordinate frame C. Ki is the intrinsic camera calibration matrix. Pl,i denotes

the ith projection matrix in keyframe l. A map point Mj is de�ned as:

Mj =


Xj = triang(x, x′, P, P ′)

d(xi, Pi)

n(xi, Pi)

(4.4)

Xj denotes the triangulated 3D position of two corresponding image points x, x′ extracted

from images P and P ′ (P and P ′ are not necessarily two images of the same keyframe).

42 Chapter 4. Localization

P1
P2

M1

M2 M3

K1

Figure 4.1: Map representation. The map shows the trajectory of a moving robot (blue).
The green dots indicate the positions a new keyframe is added to the map. The display
detail illustrates a keyframe that consists of two images. Three map points (red) are
triangulated using both images.

d(x, P) describes a local interest point descriptor such as SIFT or SURF of x in image P

and n(x, P) is a local neighborhood around x in image P .

The keyframe concept is a tradeo� between memory consumption and accuracy of the

reconstructed environment. The di�culty in this concept is to �nd the correct frequency

of keyframes. In case of insu�cient keyframes, the structure of the environment under-

presented and localization gets impossible. On the other hand, if too many keyframes

are stored, the memory consumption increases drastically and only a limited area can be

mapped. In our implementation, we �gured out that an average distance of 40 cm is a

good tradeo� between accuracy and memory consumption. Figure 4.1 illustrates the map

representation.

The use of the map for localization is presented in the next section.

4.2 Local Localization

In local localization the task is to calculate the current pose given a single image and a

position estimate of the last taken image. To solve this task, we identify existing map

points Mj in the current image and orient the pose of the camera with respect to the

identi�ed map points.

A projection matrix at time t is de�ned as

Pt = K [Rt|tt]︸ ︷︷ ︸
Ct

, (4.5)

4.2. Local Localization 43

where K is the intrinsic camera matrix and Ct de�nes the pose with respect to C.
The localization comprises two steps:

• Predicting pose Ct based on Ct−1

• Re�ne pose Ct

The approximate pose Ct is predicted using Ct−1 and a velocity based motion model.

Second, the predicted camera pose is re�ned using known map points Mj .

4.2.1 Prediction

In order to predict the pose Ct of the robot, we make use of a decaying velocity model.The

current velocity vt is calculated using Ct−1 and Ct−2:

vt =
Ct−1 − Ct−2

1fps

In order to be robust against fast camera movements vt is smoothed over time:

vt = 0.5 · vt−1 + 0.5 · vt (4.6)

The prior position Ct is then estimated by the recursive function

Ct = Ct−1 + α · (vt · 1fps)

A disadvantage of this simple model is the assumption of a constant frame rate in equation

(4.2.1). Lacking frames are not considered and therefore a�ects the accuracy of the predic-

tion. A simple solution is the use of timestamps to get a more proper velocity estimation

in case of missing frames.

Another issue is the accuracy of the rotation estimation. A small error here accumulates

to a large global displacement after a certain time. Especially abrupt rotations with high

speed are not predicted well by this model. Therefore, the rotation of the camera is

determined in an additional step.

Klein et al. developed a simple and fast method performing that task. They sub-

sampled the original image to 40x30 pixel and applied a Gaussian blur of σ = 0.75 pixel.

This image is then aligned to the previous subsampled image by minimizing the sum-of-

squared distances. They use second-order minimization over three parameters in image

space: translation in x and y direction and rotation. At most 10 iterations are allowed for

44 Chapter 4. Localization

convergence. The resulting transformation is then converted to the best-�t 3D pose of the

camera. A more detailed description of this method can be found in [20].

4.2.2 Correction

The predicted pose of the robot is based on the motion model, which assumes smooth

movement between frames. This assumption does not hold if the robot increases or de-

creases its speed or starts to rotate. Therefore, the map information in conjunction with

the current camera image of the robot is used to optimize Ct.

The re�nement step can be divided in two parts: All map points Mj are determined

that are visible in Pt and their corresponding location in Pt is identi�ed. This 3D - 2D

correspondence is used to optimize pose Ct by minimizing the reprojection error of Mj in

the image Pt.

4.2.2.1 Map Point Association

In order to determine the corresponding image location of a map point Mj in image Pt,

all Xj are reprojected to the current frame:

x̂j = PtXj (4.7)

If x̂j is located within Pt, Mj is potentially visible. To identify the exact position of

the map point in the Pt, the neighborhood of x̂j is examined. All points of interest in

that area are compared to the neighborhood stored in Mj using zero mean sum of squared

di�erences (ZMSSD). If the di�erence is below a certain threshold, Mj is considered as

found in Pt. This results in a list of correspondences between map points Mj and their

corresponding image points xj in the current image.

4.2.2.2 Pose Correction

Using a set of 3D - 2D correspondences, we can estimate the pose of the frame with respect

to the map points.

Given is the set of map points Xj and their corresponding image coordinates xj . Both

quantities are represented in homogeneous coordinates. The pose Ct of the camera can be

computed by

xj = KCtXj , (4.8)

4.3. Global Localization 45

assuming the intrinsic camera matrixK is known a-priori and Ct has 6 DOF. The equation

system (4.8) can be solved with at least three 3D - 2D correspondences. If more correspond-

ing points exist, the equation is over-determined and it can be solved in a least-squares

sense. That means, the reprojection error is minimized:

ε(Ct) =
∑
j

d(xj ,KCtXj)
2 (4.9)

where d(.) denotes the Euclidean distance between two points in image space.

In a least-squares solution, outliers have great in�uence on the optimized frame position.

To be more robust against false 3D - 2D matches, a minimization of a M-Estimator weighted

distance is reasonable. So, equation (4.9) turns into the following objective function:

ε(Ct) =
∑
j

ρ(d(xj ,KCtXj)), (4.10)

where ρ(·) denotes the M-Estimator function. We decided to use Turkeys [38] function

and assumed that 5% of the measurements are outliers. So, k is de�ned as k = 4.6851σ,

where σ is the robustly determined variance of all measurements using Equation 3.27.

The minimum of (4.10) is found after at most ten iterations of a reweighted least squares

algorithm.

4.3 Global Localization

Localizing a robot within an existing map without an initial pose is a much harder task

than keeping track of a pose. A common approach for such a global localization problem is

a particle �lter that assumes that the robot is located at each point with same probability

at �rst. This probability distribution is updated after each new measurement. So, after a

certain time the distribtion should have changed towards one or more poses is much more

likely than all the others.

Our approach to solve the task is somewhat di�erent. As described in Section 4.1, our

map consist of keyframes that are taken periodically from the robots path. Hence, the

keyframes are a good representation of the environment. If the robot starts at an unknown

position, the idea is to compare the current image Pt to all keyframe images. If we �nd a

keyframe image that is similar to the current image, we use the pose of that keyframe to

initialize the pose tracking discussed in Section 4.2.

The detection of similar images is a well known task in computer vision. A su�cient but

46 Chapter 4. Localization

time consuming method is to compare strong local features of Pt and all keyframe images.

Such a solution is time consuming and grows exponentially with the number of projections.

Thus, it is not applicable on large-scale environments and for real-time applications.

A similar task is to match a certain image against a database of thousands of images.

Nister et al.[28] proposed an e�cient solution for this problem. The algorithm is divided

in three steps: An o�ine learning phase followed by an insertion and a query step. In

the learning phase, they extract local features of from large number of randomly selected

images and cluster them hierarchically with the k−Means algorithm, i.e. all features are

divided in k cells. Recursively, each cell of features is sub-divided in k cells again. The

number of recursions is de�ned by a �xed number L. The result is a tree of depth L whose

leafs contain the local descriptors. The cluster centers of each cell are the inner nodes of

the tree. At the end of training only the structure and the inner nodes of the tree are

stored. This tree is also called vocabulary tree.

To insert a new image in the database, all local features of this image are propagated

down in the generic tree. The path of the feature in the tree is presented as a single integer

and used later for scoring. Furthermore, each node in the tree that has been passed by a

feature stores a reference to the features image. This inverted �le structure is used in the

query step.

In a database query, the local features of the query image are also propagated down in

the tree. The similarity of two images can be expressed by the similarity of their feature

paths in the tree. The inverted �le structure speeds up the computation of the similarity

because only pictures have to be taken into account that are stored in the passing nodes.

Nister et al. show that the retrieval quality is improved by creating the quantization

tree from a large number of features. Therefore, the tree is computed o�-line from a large

number of randomly selected images. ETH Zurich's Computer Vision Group provides such

a pre-calculated quantization tree. They used SIFT features for representing local image

regions. Their implementation also provides an interface for insertion and retrieval. Given

one sample picture, a query results in a list of the n most similar images (nearest neighbors)

contained in the tree.

In our application, the vocabulary tree is �lled with all features taken from any

keyframe. On a global localization request, the tree is inquired for the most similar image

In. In order to verify the result, all local descriptors of Pt are matched against In. If

the number of matching descriptors exceeds a certain threshold, the pose of In is used

to initialize the tracking algorithm. Because the real pose of P0 may di�er from In,

4.4. Discussion 47

Pose Prediction

Associate image
with Map points

Local Localization

Pose refinement

Global Localization

Find next nearest
Images in Vocabulary

Tree

Filter outlier matchesFilter outlier matches

Initialize Local
 Localization with pose

of nearest neighboor

Figure 4.2: Localization work�ow. Given a predicted pose, the current image is associated
with map points using a similarity metric like ZMSSD. The pose is re�ned by minimizing
the reprojection error. If no initial pose is available, a global localization is performed.
The most similar images are requested from the vocabulary tree and outliers are �ltered
out. The pose that is connected to the most similar image is used for initializing the local
localization.

the ZMSSD map point association cannot be applied. Hence, we are using the SURF

descriptors stored in In to identify the image location of map points in Pt.

Figure 4.2 illustrates the work�ow the local and global localization.

4.4 Discussion

In this section, we discuss the advantages and limitations of our approach for local and

global localization. Local localization is based on the visual odometry approach, where an

image is matched against three-dimensional map points. The global localization is solved

by comparing the current image against the database created by all keyframe images.

The main advantage of our local localization approach is the very low computational

cost compared to other state-of-the-art approaches. Given an inital pose, the approximate

pose of the robot is calculated by a simple velocity estimation. This pose is then re�ned by

associating the current image with map points. Since we are using patch-based correlation

as feature descriptor for map points, the computational e�ort for data association is low.

Pose correction by minimizing the reprojection error is performed by at most 10 iterations

of a re-weighted least squares algorithm and the number 3D-2D correspondences is typical

between 50 and 300. Thus, the costs for optimization is negligible; on modern computers

48 Chapter 4. Localization

the local localization can be performed in realtime.

However, using patch-based correlation as a feature for data association introduces some

limitations. We compare the neighborhood n(.) of a map point Mj to the neighborhood

of the reprojected position rj . This presumes that the predicted pose of Pt is similar to

the real pose. Otherwise, the patch-based corresponding point detector would searche in

a wrong image area. Moreover, the patch-based �nder has low discriminative property. In

order to allow small lightening and viewpoint changes, the threshold used in the matching

step has to be set to a relatively high value. This may lead to a large number of outliers

and the erroneous 3D-2D association results in a wrong pose estimate, especially if the

predicted pose di�ers from the real pose.

To overcome this problem, we could use strong local image features like SURF or SIFT

for data association. In that case, the reprojected image position rj is only used to decide

if a map point may be visible in Pt. The function l(Mj , Pt) is then calculated by comparing

d(.) of Mj to all local interest point descriptors of Pt. Thus, the 3D-2D association is less

dependent on the prediction step. However, the computational cost is much higher than

the patch-based method, because local interest points have to be computed in each frame

Pt.

Furthermore, motion blur is a serious problem in images taken from a fast moving or

rotating camera. On images distorted by motion blur, map point association using the

presented methods fails. The patch-based algorithm fails because motion blur distorts the

image patches of Pt. The local interest point association also fails because the keypoint

detector extracts only a small number of keypoints and the their descriptors also di�er from

an unblurred image. Klein et al. propose in [20] a method to track blurred images. Their

map additionally exists of edges extracted from keyframes because edges are preserved in

images with motion blur. Hence, in the presence of motion blur, they use edgelets instead

of map points to associate the current image with the map.

Like all feature-based localization algorithms our approach requires textured images.

In un-textured images, the extraction of features is impossible and therefore the current

image cannot be associated with map points. The predicted pose can not be re�ned and

is only calculated by the motion model.

The global localization as described in this chapter was implemented as a proof of

concept. It is used in cases local localization fails and no knowledge about the robot's pose

is available.

The global localization approach based on the vocabulary tree assumes that each posi-

4.4. Discussion 49

tion of the mapped area has a unique appearance. This is not true for areas with self-similar

texture like corridors. Here, all keyframes are similar and it is di�cult to get a global pose

using only a single image. In that case, probability based methods like particle �lters are

useful to estimate the pose over time. The idea here is to query the n nearest neighbors of

P0 and each neighbor serves as a pose hypothesis. Another method is proposed by Cum-

mins et al. [7]. They also compare the similarity of images, but they take into account

that the query image has to contain features that are unique for a certain place.

Another issue arises from the quantization of the vocabulary tree. Typically, the num-

ber of false matches increases with the size of the database. In that case, a post processing

step has to be performed in order to detect false matches. A common method is to estimate

the fundamental matrix between the query image Pt and the most similar images using a

RANSAC [11] algorithm.

Chapter 5

Visual Map Building

Contents

5.1 SLAM Work�ow . 52

5.2 Map Initialization . 53

5.3 Iterative Map Building . 53

5.4 Loop Closing . 56

5.5 Sensor Fusion . 61

5.6 Discussion . 62

In the previous chapter, we discussed the localization of a robot within a given map.

Unfortunately, in many real world applications a map of the environment is not available.

Even in many indoor applications, a construction plan of the building is not su�cient for

navigation since most plans do not include information about furniture, other objects or

changes in the environment. Furthermore, a constructions plan of a building typically

does not contain the information needed for visual localization. Since navigation decisions

performed by an autonmous robot are based on the map, an outdated or inaccurate map

may cause unintended behavior of the robot. In order to guarantee an up-to-date map, it

is desirable to learn the map while navigating. Assuming a correctly localized robot pose,

the visual mapping task is relatively easy. When dealing with noisy robot positions and

inaccurate sensor information, however, localizing and mapping becomes di�cult. Thus,

the goal of a SLAM algorithm is to generate a map that, given noisy sensor information,

creates the most accurate map.

This chapter is structured as follows: The �rst section deals with the work�ow of our

SLAM system. Section 5.2 describes the map initialization using a stereo pair and the

51

52 Chapter 5. Visual Map Building

map extension strategy. The map update and optimization strategies are given in Section

5.3. In Section 5.4, we describe the loop detection and correction algorithm. In Section

5.5, we propose a sensor fusion method that preserves connectivity of keyframes even if

visual features are not available. Section 5.6 summarizes this chapter and discusses the

advantages and disadvantages of our approach.

5.1 SLAM Work�ow

The work�ow of our SLAM algorithm is shown in Figure 5.1. After initalizing the map with

a stereo image pair, a new image is aquired from a single camera. The pose of this camera is

then localized with respect to the existing map and the state of the robot is determined. If

it is exploring, the map is extended and checked for loop detection is triggered afterwards.

This process is started over by acquiring the next image.

Loop Detection &
Correction

Image Acquisition

Localization

Robot State

Map Extension

exploring

navigating

Map Initialization

Figure 5.1: Flowchart of our basic SLAM algorithm. After map initialization, the robot
grabs a new image from the camera and starts the localization. If the robot explores
unknown environment, the map is extended. Otherwise, the next image is captured and
the localization starts again.

The work�ow shows the advantage of seperating the localization process from the map

building process. Each time a new image is acquired, the pose of the robot has to be

determined, whereas the map only has to be updated, if the robot explores an unknown

environment. Assuming the robot explores a new environment with limited speed, the map

update process is invoked much less frequently than the localization process. Therefore,

the map update can be more expensive than the localization.

5.2. Map Initialization 53

5.2 Map Initialization

The initial map is constructed from two images aquired with a calibrated stereo rig. In

both images SURF features are extracted and matched. Since the relative orientation

between both cameras is known, the 3D position of the corrsponding image points can be

calculated as described in Section 3.3.1. The triangulated 3D points are stored along with

the SURF descriptors.

The two oriented cameras de�ne the world coordinate system C. The �rst view is the

origin of C, whereas the x and y coordinates of the map are parallel to the image plane.

The z coordinate indicates the depth of the scene. The orientation of the second view is

given with respect to the origin. Afterwards, both views are stored in a single keyframe.

−2 −1 0 1 2

0

1

2

3

4

5

X[m]

Z
[m

]

(a)

(b)

Figure 5.2: Map Initialization. In (a), the left camera represents the origin of the world
coordinate frame C, whereas the right camera pose is given with respect to the origin. (b)
shows the image taken frame the left camera with extracted SURF features.

5.3 Iterative Map Building

The initial map is su�cient for localization while the robot navigates in a very limited

area. The map has to be extended whenever the robot leaves the mapped area. In this

section, we explain the criteria for map extension, the mechanism of map extension itself,

and the map optimization using bundle adjustment.

54 Chapter 5. Visual Map Building

Figure 5.3: Map extension. The green marked recetangle illustrates the region that includes
all rediscovered map points during localization. If this area, compared to the image size,
is below a threshold and there are enough extracted keypoints (red), this frame is used to
extend the map.

The work�ow of the SLAM algorithm is outlined in Figure 5.1. The robot grabs new

images Pt,n from its cameras and starts the localization process followed by a check wether

the robot moves to a not yet mapped area. In that case, the map is extended. Otherwise

the next image for localization is acquired.

Map Extension

The map extension is triggered depending on the number of map points Mj recognized

at the localization phase. Accordingly, depending on the number and distribution of map

points rediscovered in the current image Pt, two states of the robot can be distinguished:

• Exploration

• Navigation

The state is determined as follows: The convex hull in image space of the reprojected map

points is calculated. If the area of the convex hull is below a certain threshold (e.g. 40% of

the image area), the number of salient image points outside the covered area is counted. If

there are enough keypoints, this image and its corresponding stereo image is used to extend

the map and stored as a new keyframe. Figure 5.3 shows a picture where the convex hull

of rediscovered map points covers 38% of the image and about 700 extracted keypoints are

outside the hull. Hence, this image is used for map extension. If the robot navigates in

an already mapped area, new keyframes and map points are created only if the robot has

moved a certain distance.

5.3. Iterative Map Building 55

A map update comprises two steps: storing of a new keyframe as well as the trian-

gulation of new map points, which is performed as follows: All existing map points are

reprojected to the current view Pt and matched using a patch-based descriptor (corre-

spondences identi�ed in the localization phase are re-used here). All keypoints that are

already represented by a map point and keypoints in their n × n neighborhood are not

used for creating new map points. This prevents clusters of map points and contributes

to a roughly uniform distribution of map points in the image. The remaining keypoints

are used to �nd corresponding points in the stereo image. Since the corresponding point

in the second image cannot be predicted precisely, we spend the SURF feature descriptor.

Afterwards, the 3D positions of the corresponding image points are calculated, transformed

to the global coordinate frame C, and stored in the map. Figure 5.4 illustrates the steps

of the map point creation process.

(a) (b) (c)

Figure 5.4: Map Point Creation. (a) shows the current camera image Pt with extracted
Harris keypoints. The green crosses in (b) mark all image locations that are already
represented by map points. (c) shows old measurements (green) and new image locations
(yellow) that are used for new map points. For each yellow marked image location, a
corresponding image patch in the stereo frame could be identi�ed.

Map Optimization

The accuracy of the reconstructed 3D points depends on the accuracy of the estimated

camera poses. As described in Chapter 3.3.2, the accuracy of the triangulation as well as

the pose estimation can by increased by bundle adjustment, if more than two image points

of the same 3D point are available.

Initially, a map point is triangulated from two corresponding image points. In order to

obtain more measurements, all subsequent keyframes are checked for corresponding image

locations for a certain map point. If a measurement could be identi�ed, the location within

56 Chapter 5. Visual Map Building

the keyframe is stored in the map point. This represents the connectivity matrix as shown

in Figure 3.6.

Since each map point consists of a SURF feature descriptor and an image patch, two

di�erent methods can be used for identi�cation of new measurements for existing map

points. The advantage of SURF features is their reliability, whereas the number of rec-

ognized map points is relativly low compared to the patch-based approach. Referring to

Chapter 4.4, the reliability of the patch-based method strongly depends on the accuracy

of the estimated pose, the image was taken from. To decouple the map optimization step

from the pose tracking, we decided to combine the SURF detector and the patch-based

method as follows.

Every time a new keyframe is stored, we search for corresponding points in this image

using SURF features as well as patch-based correlation. We assume that SURF matches

are more reliable and therefore, we compare the median SURF reprojection error to the

median reprojection error, calculated using patch-based correspondence detection. If both

reprojection errors are in the same range, the quality of corresponding image points found

by patch-based correlation is acceptable and they are used for optimization. Otherwise,

we apply the results of the SURF detector.

Since optimizing the complete map is computational demanding, we decided to optimize

only a subset of keyframes and map points. This set contains the last n keyframes and

all recognized map points. Furthermore, all keyframes that have measurements of the

recognized map points are also added to the optimization set. It turned out that n = 10

is su�cient for an accurate map.

This subset of the map is then optimized by robust bundle adjustment as described in

Section 3.3.3 using the Tukey M-Estimator error function. We parametrized the keyframe

pose by three Euler angles and the 3× 1 translation vector. The map point is represented

by its three Euclidean coordinates.

5.4 Loop Closing

Because map building and optimization is performed iteratively, small errors in pose es-

timation and reconstruction sum up and may cause large absolute errors. For example,

if the tracker makes a small rotational error and the robot moves several meters in this

direction, the resulting error gets large. Figure 5.6 shows the resulting map of a 70 m loop,

which contains a small displacement in X-direction. The only chance to detect and correct

this error is re-visiting an already explored region after an arbitrarily long excursion.

5.4. Loop Closing 57

Backproject map points
to P

t

Identify measurements
using SURF

Identify measurements
using patch-based

 correlation

median(RE
SURF

) median(RE
patch

)

median(RE
Surf

)

~
median(RE

patch
)

Store measurements

similar:
patch-based
measurements

dissimilar:
SURF

measurements

Figure 5.5: Quality check patch-based correlation. Assuming SURF features are more
reliable than patch-based correlation, we compare the median reprojection error of the
identi�ed correspondences. If both are in the same range, we use the patch-based corre-
spondences, otherwise the points detected by the SURF features.

This is known as `loop closing task' and can be split in two parts:

• Identi�cation of an already visited place

• Global map and trajectory correction using bundle adjustment

Because the absolute error made in map building can be arbitrary large, the pose of the

robot cannot constrain the search area for a loop detection and therefore loop detection is

similar to the global localization task.

Below, we discuss loop detection and explain the loop recti�cation method.

5.4.1 Loop Detection

In general, loop detection is similar to global localization. In order to recognize a loop,

the current image is compared to all keyframes stored in the map. The decision of a loop

detection is based on the structure of the most similar images.

In order to detect a loop closure, the robot inquires the vocabulary tree of keyframes

periodically (e.g. every 10th captured image) to identify the n most similar images as

58 Chapter 5. Visual Map Building

−5

0

5

10

−20−15−10−5051015202530

Z[m]

X[m
]

Figure 5.6: Uncorrected Loop. The resulting map of a 70 m trajectory shows a small
displacement in X-direction, although the robot returns to the same location.

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Current Keyframe

N
ea

re
st

 K
ey

fr
am

es

Figure 5.7: Typical structure of the nearest neighbors in a loop. Up to keyframe 95, the
nearest neighbors are located on the diagonal, which indicates that the current keyframe
is similar to quite recently stored keyframes. The o�-diagonal points are outliers. Starting
from keyframe 95, the structure changes in two parallel lines, which indicates a loop closure.

described in the global localization (Section 4.3). Dependending on the robot's trajectory,

two categories of the result can be identi�ed. If the robot has not yet �nished a loop, the

most similar images are typically keyframes that have been added to the map quite recently.

In contrast, if the robot �nished a loop, the result contains recently added keyframes as

well as keyframes stored a long time before. Due to quantization e�ects of the vocabulary

tree, the result may be polluted by outlier images.

Loop detection therefore consits of two parts: An outlier detection and a classi�cation

5.4. Loop Closing 59

102 101 2 1 3 0

Figure 5.8: Loop Detection. The �rst image is the query image. The other �ve images
are the nearest neighbors (NN) in ascending order. The numbers below the images denote
the corresponding keyframe number. The query image is keyframe 102 and the �rst NN
in image space is the keyframe quite recently stored. All other NN are stored a long time
before.

part. Outlier keyframes are removed by comparing each keyframe to the current frame

using SURF features. If there are only few corresponding points, the keyframe is removed

from the result. Next, the result is classi�ed into two sets: recently added keyframes and

old keyframes (KB). Some heuristics on the old keyframe set are performed to reduce the

probability of an erroneous loop detection, e.g. KB contains more than a certain number

of frames and these frames are located nearby. If all heuristics are full�lled, the current

frame is stored as a new keyframe KE and added to the map.

Figure 5.7 shows the typical nearest neighbor (NN) structure of a loop. The x-axis

denotes the most recent keyframe (query image) and the y-axis the number of the resulting

keyframes stored in the vocabulary tree. A point in a certain column means that the

corresponding keyframe is one of the nearest neighbors of the current keyframe. The

points on the diagonal show that images in spatial neighborhood are also related in image

space. Up to keyframe 95, a part of the nearest neighbors are randomly distributed over

all keyframes. These outliers are �ltered out as described above. Starting with keyframe

100, a more regular structure of the nearest neighbors gets visible: The query result is split

in two parallel lines. This indicates that the current keyframe is similar to recently stored

keyframes as well as old keyframes, which indicates a loop. Figure 5.8 shows the nearest

neighbors of an example keyframe.

5.4.2 Loop Correction

Before the trajectory can be recti�ed, duplicate 3D points have to be removed and the last

and the �rst frame of the loop have to be connected by common map points.

The �rst step is to merge duplicate map points. A duplicate map point is represented

by two distinct map points which correspond to the same world point. This is possible due

to keyframes at the end of the loop that have a relatively large absolute localization error

60 Chapter 5. Visual Map Building

a)

b)

c)

d)

e)

Figure 5.9: a) Situation before Loop Closing. Green map points are visible in keyframes at
the beginning of the loop and red points are visible only at keyframes at the end. b) Green
map points are identi�ed in the last keyframe using SURF. c) The pose of last keyframe is
optimized using only the green map points. This identi�es outlier measurements. d) The
last keyframe is reset to the old pose. e) Least squares bundle adjustment is performed on
all map points and measurements.

and therefore do not match to map points generated in the �rst keyframes of the loop.

Hence, the map contains two map points representing the same 3D point.

To remove duplicates, the SURF feature descriptors of all map points created in last i

keyframes are compared to all generated map points at the beginning of the loop. If two

points Ml and Mf are matched, all measurements of Ml are copied to the measurements

list of Mf , and Ml is deleted from the map.

The loop recti�cation is performed by the bundle adjustment algorithm. Due to robust

iterative map optimization, nearly all map points have a small reprojection error except

map points that are visible both at the end and at the beginning of the loop. To achieve fast

convergence, as many correspondences as possible between the �rst and the last keyframe

are identi�ed using the SURF features.

Now, the loop can be recti�ed by bundle adjustment. In contrast to iterative map

optimization, we are not using a robust error function but the standard least squares

function. Based on the fact that erroneous measurements are removed by the iterative

5.5. Sensor Fusion 61

optimization performed after each map update, we can assume that the measurements

inside the loop are free of outliers. Outlier measurements between the �rst and the last

keyframe of the loop are identi�ed by robustly localizing the last keyframe with respect to

the �rst keyframe of the loop. Removing these outlieres, we obtain a set of measurements

that is free of outliers and we can use the squared error function as an objectiv function.

Figure 5.10 shows the result of a loop that has been optimized by bundle adjustment.

−5

0

5

10

−20−15−10−5051015202530
Z[m]

X[m
]

Figure 5.10: Corrected Loop. The loop of Figure 5.6 corrected using bundle adjustment.

5.5 Sensor Fusion

In the previous sections, we explained a visual SLAM algorithm based solely on a stereo

camera rig. In real applications, a robot is equipped with additional sensors like odometers

or inertial measurement units, which can be also used for robot localization. In this chapter,

we present an idea of fusing di�erent sensor information using so-called synthetic visual

features. This approach enables us to use visual optimization methods for fusing non-

visual sensor information. Furthermore, we can use the idea of bundle adjustment for loop

optimization although visual features are missing.

We assume a robot that is equipped with a stereo camera rig and another sensor that

delivers information about the robot's movement, e.g. an odometer or an IMU. Without

loss of generality, we elaborate our approach using the stereo camera and the odometry

information of the robot.

Given an initial pose P0, the pose of the stereo camera rig in the next time step P1 can

be estimated in two ways:

• Visual SLAM

62 Chapter 5. Visual Map Building

• Shifting the camera using odometry information

To combine information from both sensors, we generate so-called synthetic map points at

time t = 0. Instead of a real map point, the 3D pose of a synthetic map point is not

triangulated using two corresponding image points, but their position is chosen randomly

in front of both images. The map point is reprojected to both images and these positions

are stored as measurements. The camera pose at time t = 1 is estimated using odometry

as well as visual odometry as described in Chapter 4. This results in two poses, namely

P1,C and P1,O. A new measurement for a synthetic map point Ms at t = 1 is generated by

reprojecting Ms to the camera image P1,O. The reprojected image position is then stored

as a measurement of Ms in P1,C . So, P1,C contains measurements of real map points and

synthetic map points. P1,O is no longer needed and therefore not stored in the map. To

calculate the fused pose P1, P1,C is optimized using bundle adjustment.

An important question not discussed in this thesis is how to model the uncertainty of

the sensor. The number of synthetic map points and their position with respect to the

camera obviously in�uence on the optimization result. Hence, an approach for modeling

the uncertainty could be to vary the number of synthetic map points or to correlate the

position of the synthetic map points with the uncertainty of the odometry.

Synthetic map points can also be used to solve another problem. Loop closing requires

each keyframe to be connected to other keyframes by sharing common map points. This

is a problem for keyframes, that are less textured and contain only projections of a few

map points. Normally, they produce a gap in the loop and prevent optimizing the loop

using bundle adjustment. To overcome this problem, we use synthetic features. If few map

points are visible in the current frame, the pose P1 is calculated by shifting the camera

pose by odometry. If the camera has moved a certain distance, a new keyframe is stored

in the map. In order to connect this keyframe to previous ones, we create synthetic map

points. A random position is assigned to each synthetic map point, so that the reprojected

position lies within the last two keyframes. Since a map point needs to be visible at least

in two cameras, we reproject this point to other, previously generated keyframes and store

the reprojected position as a new measurement for this map point.

5.6 Discussion

Each map point is constructed from a pair of corresponding image points x, x′ in the

images P, P ′. Typically, x and x′ are image locations identi�ed by a salient image point

5.6. Discussion 63

detector such as DOG keypoint detector (SIFT) or Harris Corners (SURF). This implies

that image locations, i.e. areas of the environment, with less texture are not represented

by map points. This leads to problems in less structured environments,such as corridors

with non-textured walls. A similar problem is motion blur in images. DOG keypoints and

Harris corners extract image locations with fast changes in x- and y-direction. In a blured

image, most of the corners disappear and therefore no map points are generated. Hence,

the number of potential map points depends on the number of extracted salient image

features.

In addition to the number of salient image points, the discriminative property of the

descriptor is responsible for the quantity and the quality of new map points. A strong

descriptor like SIFT or SURF produces few false matches and therefore achieves a high

reconstruction accuracy but the number of correspondences is relatively low. On the other

hand, a patch-based matcher �nds a lot of corresponding points but also a high number of

false positives. When �nding further correspondences for exiting map points, we combined

both methods to get more accurate matches. This makes the map building process more

independent of the local localization part. Especially scenes containing abrupt movement

changes are often handled incorrectly by the tracker. Figure 5.11 shows two maps of the

same environment where the 5.11(a) is constructed by using measurements identi�ed by

patch-based correlation and 5.11(b) is optimized by measurements extracted using SURF

features.

We decided to apply the SURF matcher because a strong feature descriptor increases

the accuracy of the trajectory and makes the map building process somewhat independent

from the local localization.

Loop closing consists of two subtasks: loop identi�cation and map optimization. The

detection of a loop is similar to the global localization task and therefore has similar

problems, e.g repetitive structure of the surrounding. This is a serious problem in the

following case: The robot moves along a corridor and turns into another corridor with

similar appearance. The query result of the vocabulary tree therefore consists of recently

added and older keyframes, which leads to a loop closing detection. It is very di�cult to

distinguish between a real loop and an erroneously detected loop. This problem could be

solved by a particle �lter, which tracks several hypotheses.

Some other issues arise directly from the bundle adjustment algorithm. Even highly

optimized implementations are not able to solve an equation system in realtime that con-

sists of several thousand equations. So, loop closing is a very expensive task and can take

64 Chapter 5. Visual Map Building

−5

0

5

10

−12−10−8−6−4−20246810

Z[m]

X[m
]

(a)

−5

0

5

10

−12−10−8−6−4−20246810

Z[m]

X[m
]

(b)

Figure 5.11: Comparison of Patch-based vs. SURF-based map building. Both maps are
the results of the same image sequence. In 5.11(a) we used the positions obtained by the
local localization process without checking them by SURF features. The positions in the
right map was corrected using SURF features as shown in Figure 5.5. The right map is
closer to the real trajectory.

up to several hours for large trajectories.

In this thesis, we present an approach for sensor fusion in image space. We use synthetic

image features in case real image features are not available. Instead of simply shifting the

camera by odometry, this allows us to perform loop closing, even with frames that contain

few image features.With this idea di�erent sensor information can be fused in a single

optimization step. However, for taking the uncertainty of the sensors into account, a

deeper mathematical inspection is required.

Chapter 6

Experiments

Contents

6.1 Evaluation Metrics . 66

6.2 Datasets . 67

6.3 Evaluation of Stereo PTAM . 71

6.4 Evaluation of PTAM using SURF Features 74

6.5 Evaluation of PTAM with Loop Closing 77

6.6 Comparison . 80

6.7 Processing Time . 81

6.8 Discussion . 83

The goal of this thesis is to develop a SLAM approach that maps large environments.

We evaluated our approach regarding robustness, accuracy, and scalability on two di�erent

datasets. The Rawseeds dataset [4] is a well-known benchmark and contains images of an

indoor and outdoor exploring robot. We decided to evaluate our approach on an indoor

trajectory of 774m. The second dataset is a self-recorded indoor image sequence and

contains a loop of about 69m length It is explored 4 times by the robot. The dataset

is recorded at the Institute of Computer Vision and Graphics (ICG) at the Technical

University of Graz. To show the accuracy of our approach, we compare our results to

groundtruth data that is provided by the datasets.

Our experiments are organized as follows: Since our approach is based on PTAM [19],

we evaluate each enhancement on both datasets separately. In our �rst experiment, we eval-

uate the PTAM approach that is extended by stereo camera support. This demonstrates

that PTAM is basically able to handle large scale environments. In the second experiment,

65

66 Chapter 6. Experiments

we replaced the original patch-based correlation feature detector by SURF features for

map building as described in Chapter 5.3. This experiment shows the increased robustness

against fast camera movements. In the following trial, we add sensor fusion support to our

software. This enables us to perform loop closing even if keyframes are not connected by

map points. We show that loop closing increases accuracy and reduces the number of map

points. Finally, we compare our method to results of other visual reconstruction methods

to demonstrate the accuracy of our method.

6.1 Evaluation Metrics

In order to show the accuracy and scalability of our approache, we de�ne several metrics.

Because groundtruth is given in 2D, we �t a plane to the camera centers and project

them on this plane. As an accuracy measure we use the Absolute Pose Error (ATE)

between the trajectory achieved by our approach and the provided groundtruth (GT).

ATE measures the Euclidean distance between the groundtruth position at time tj to the

estimated position at the same time. Since our trajectory is sampled only by the keyframe

poses, which is less frequent than groundtruth, we interpolate our trajectory such that a

corresponding pose estimate is available for each groundtruth value. It is also necessary

to align both trajectories, because of di�erent coordinate systems. Rawseeds proposes to

align both trajectories by minimizing the ATE in a least squares sense and the accuracy

of the reconstructed trajectory is then given by the mean of the remaining ATE errors.

A further accuracy measure is the length of the reconstructed trajectory compared to the

length of the groundtruth trajectory.

Since groundtruth is only provided for the Rawseeds dataset, we compare the trajectory

of the ICG sequence to a map constructed using a laser scanner that is also mounted on

the robot. The map and trajectory are recovered by the GMapping algorithm proposed

by Stachniss et al [35]. The implementation is provided by the openSLAM∗ project.

The precision of the reconstructed map is presented by overlaying the resulting visual

feature map with a 2D �oorplan. The scalability of the system is shown by the number of

visual feature points over time.

∗http://www.openSLAM.org

6.2. Datasets 67

6.2 Datasets

Rawseeds Dataset

Figure 6.1: Robot used to record the Rawseed datasets.

The goal of the Rawseeds Project is to generate benchmark datasets for SLAM algo-

rithms. Rawseeds provides sequences for static, dynamic, indoor, outdoor, natural, and

arti�cial lighting environments. All datasets are taken by a robot, which is equipped with

several sensors like laser scanners, cameras, inertial measurement unit (IMU), an odome-

ter, and GPS. The robot used for data acquisition is shown in Figure 6.1. Additional to

the sensor readings, all datasets come with groundtruth for the robots trajectory and a 2D

�oor plan of the environment.

In our experiments, we use two calibrated gray-scale cameras mounted at the front

of the robot and looking in direction of motion. In the last experiment, we additionally

use odometry information whenever visual SLAM is not possible due to absence of image

features. Along with the image sequences, the intrinsic and extrinsic camera calibration

parameters as well as the relative orientation between the robot coordinate frame and the

cameras are given. The baseline between of stereo setup is approximately 18 cm.

For evaluation, we selected the Bicocca 2009-02-25b dataset. It is a static indoor

sequence with arti�cial lighting. We decided to use this sequence because the outdoor

sequences contain a large number of frames over or underexposed. Furthermore, the se-

quences were taken from a relatively fast moving robot and so, especially at cornerings,

motion blur occurs. The dataset comprises a sequence of 26,000 images per camera taken

with a framerate of 15 Hz. The image size is 640x480 pixel and the robot moved with an

68 Chapter 6. Experiments

(a) (b) (c)

(d) (e) (f)

Figure 6.2: Six sample images of the Rawseeds Bicocca 2009-02-25b dataset, which has
a length of 774m. The robot starts at a wide hallway (a) and turns to a long corridor
(b). Images (c) and (d) show the turning point at the end of a corridor. In Image (e), the
robot is on the way back to the starting hallway. An image that is blurred because of fast
motion in the hallway is shown in (f).

average speed of 0.5m/s. The environment is a university building, that consists of long,

weakly textured corridors, wide and small hallways as well as a large library. The terrain

is relatively smooth with small ridges between the di�erent parts of the building. Figure

6.3 illustrates the �oor plan and the trajectory of the moving robot of the dataset.

A selection of images taken at di�erent points of the robots trajectory is shown in

Figure 6.2. The robot starts at a wide hallway (Figure 6.2 (a)) and turns then to a

narrow, weakly textured corridor (Figure 6.2 (b)). At the end of the corridor (Figure 6.2

(c) and (d)), visual odometry is not possible. Figure 6.2 (e) shows that most of the image

features in the corridor are far away from the robot, which is a problem for an accurate 3D

reconstruction. At the end of the trajectory, the robot turns quickly, which causes motion

blur (Figure 6.2 (f)).

Due to computational reasons and the similarity of most parts of the trajectory, we

decided to use only a small part of the whole trajectory for evaluation. This part starts in a

6.2. Datasets 69

Figure 6.3: Floorplan of Rawseeds dataset Bicocca 2009-02-25b. The red and the blue line
illustrate the approximate trajectory of the robot. The blue line is the part we evaluated
in our experiments.

wide hallway, directs to a loop of corridors and ends in the starting hallway. It has a length

of approx. 190m. Furthermore, the dataset contains some parts, we left out because they

are di�cult to handle for visual SLAM. The sequence is recorded at night under arti�cal

ligthing conditions and a part of the trajectory directs to a tunnel of glass. Here, a lot of

objects mirror in the glass and move simultaneously with the robot. However, this violates

our assumption of a static environment. The estimated time for calculating the whole

trajectory is about one hour and the consumed is about 4 GiB.

ICG Dataset

The ICG dataset is a self-recorded indoor sequence taken from a robot at the Institute

of Computer Vision and Graphics (ICG) at the Technical University of Graz. The robot

is endowed with a stereo camera rig, a SICK laser range scanner and an odometer. The

sequence is static and consists of a 69m loop that has been traversed four times. We

recorded 4600 images of 640x480 pixel at a framerate of 7.5 Hz. The baseline of the stereo

rig is 12 cm and the robots speed is 0.5m/s. The intrinsic and extrinsic camera calibration

is performed by the method proposed by Zhang [39].

The challenge of this dataset are tight curves, which cause small overlap between the

images. Some parts of the sequence consist of fast, non-smooth camera movements. Figure

70 Chapter 6. Experiments

Figure 6.4: Groundtruth of the ICG dataset generated by GMapping that uses laserscanner
data.

6.4 shows the �oor plan of this dataset. The red line is roughly the trajectory of the robot.

It is driven four times. Sample images are shown in Figure 6.5.

As reference, we used the trajectory created by the GMapping [13], which generates a

map using laser scanner data and is an extension of the FastSLAM method [14]. Figure

6.4 shows the resulting map and trajectory.

(a) (b) (c)

(d) (e) (f)

Figure 6.5: ICG sample images. The largest part of images shows long but well-textured
corridors. A short part of the trajectory (d) directs to a small classroom.

6.3. Evaluation of Stereo PTAM 71

6.3 Evaluation of Stereo PTAM

In the �rst test, we used the source code provided by Klein et al. [19] and modi�ed several

parts to get PTAM working on both datasets. Since our goal is to develop an accurate

metric SLAM algorithm, we added stereo camera support to PTAM as described in Section

5.3. To demonstrate the weakness of the patch-based correlation, we do not use SURF

features in this experiment. In case of a stereo camera, a keyframe exists of two images and

a new map point is triangulated from corresponding points of the stereo image pair. Point

correspondences are identi�ed by patch-based correlation using the epipolar constraint.

Furthermore, we changed the multithreaded implementation of PTAM to singlethreaded,

which guarantees reproducible results and assures that bundle adjustment is performed

after each map extension. Finally, we changed the map extension strategy as described

in Section 5.3. Otherwise, the map update rates are too slow and visual odometry is not

possible. The distance between two keyframes is about 0.40m, if the robot moves on a

straight line.

On the ICG dataset, the modi�ed PTAM version leads to poor results. The estimated

trajectory (Figure 6.6) di�ers fundamentally from the trajectory generated by GMapping

(Figure 6.4).

The reason is seen after 15m: Although the robot moves forward, the estimated camera

pose rests at the same position. Not before reaching the end of the �rst half of the loop, the

robot adds a new keyframe, and localization and map building continues. This situation

shows a disadvantage of PTAM, which follows from the patch-based correlation approach

for recognizing 3D points. To relate the current frame to existing map points, all map

points are reprojected to the assumed pose and are identi�ed in a small neighborhood by

comparing image patches. A false pose estimation before reprojection so results in wrong

map point measurements. The pose estimation in the next timestep is a�ected by the

erroneous map point association and therefore the calculated pose is wrong as well. This

shows that a single erroneous pose estimate may corrupt the whole trajectory. Furthermore,

keyframes are only added if the current cameras pose has at least a distance of 0.40m from

an existing keyframe. If the local localization detects spuriously no movement no keyframes

are added, which results in the e�ect seen after 15 m.

The resulting trajectory is far from being planar (Figure 6.6). This is why we omit an

evaluation of the accuracy. Accordingly, the constructed map (Figure 6.7) is distorted and

a comparison with groundtruth is useless. The whole map consists of 88,092 point features

and 1,042 keyframes.

72 Chapter 6. Experiments

−10 0 10 20 30
−30

−25

−20

−15

−10

−5

0

5

10

15

20

X[m]

Z[
m
]

(a)

−10 −5 0 5 10 15 20 25 30
−25

−20

−15

−10

−5

0

5

X[m]

Y[
m
]

(b)

Figure 6.6: Performance of the modi�ed PTAM on the ICG dataset. The blue triangle
marks the start of the trajectory. Plot (a) shows a top view of the trajectory (XZ-plane).
The sideview in Plot (b) illustrates that the estimated motion is far from beeing planar.

−30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

40

x [m]

y
[m

]

Figure 6.7: Resulting map of the ICG dataset generated by PTAM after 200 keyframes.
It consists of 32,000 map points. Due to erroneous pose estimation the map is distorted.

6.3. Evaluation of Stereo PTAM 73

−10 0 10 20 30 40 50 60
−20

−15

−10

−5

0

5

10

15

x [m]

y
[m

]

Rawseeds - Stereo PTAM

PTAM
Groundtruth

Figure 6.8: Trajectory generated by PTAM on the Rawseeds dataset. The light gray bold
dots indicate walls. Each black dot is a map point projected on the �tted plane. The
trajectory estimated by PTAM is similar to the groundtrouth and the reconstructed map
points are consistent with the �oor plan.

−0.5 0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

Position Error [m]

Fr
eq

ue
nc

y

Rawseeds - Stereo PTAM

 Mean

 −3σ +3σ

Figure 6.9: Error distribution of Stereo PTAM on the Rawseeds scene. The mean error is
0.88 m and the standard deviation 0.42 m. All errors lie within a 3 σ range.

74 Chapter 6. Experiments

As shown in Figure 6.8, PTAM performs much better on the Rawseeds dataset, because

of a very smooth robot motion. In contrast to the ICG dataset, the framerate is doubled

and therefore the distance between two frames is bisected and thus, the mean traveled

distance between two frames in the Rawseeds scene is 0.03m. As seen in Figure 6.2 (c),

at the end of the �rst corridor, the robot faces a white wall that contains no visual image

features. For that reason, visual odometry is not possible and mapping is stopped. The

mean error between groundtruth and the trajectory estimated by PTAM is 0.884 m with a

standard deviation of 0.42 m (see Figure 6.9). The error histogram shows a systematic error

of 0.40m, which is caused by the de�nition of the ATE error. Groundtruth and estimated

trajectory are aligned by a least-squares minimization. So, the histogram indicates a small

scale-drift of 0.40m of the estimated trajectory.

Summing up, PTAM can be used for map building when stereo cameras are used and

the entire trajectory is texture-rich. The ICG dataset shows the limitations of the original

PTAM implementation. Only smooth trajectories with high framerate can be processed

accurately. So, the most important task for real SLAM applications is to make the approach

more robust against fast and rough motion. Since the weakness is induced by the patch-

based correlation for feature matching we partly replaced it by the SURF descriptor as

described in Chapter 5 in the next experiment.

6.4 Evaluation of PTAM using SURF Features

In this experiment, we extend PTAM by using SURF features as a point correspondence

detector as described in Chapter 5. In order to show repeatability of the SURF PTAM, we

modi�ed the implementation in the local localization: Instead of associating all map points

to the current frame, we only use the map points generated in the last 20 keyframes. This

has the e�ect that map points generated during the last visit are not used for local localiza-

tion. Hence, each cycle is treated independently and processing time of local localization

is independent of map size.

As demonstrated on the ICG dataset, Stereo PTAM is not able to deal with sequences

that contain fast camera movements. Figure 6.11 illustrates the projected 2D trajectory

estimated by our approach. The squared mean distance between all camera centers and

the �tted plane, is 0.041m, which indicates planar motion. By visual inspection, one can

see that the estimated trajectory is very similar to the GMapping result. This is also

expressed by the ATE error of 0.23m and a standard deviation of 0.14m.

Figure 6.12 is the projected map generated by our approach overlaid by the gridmap

6.4. Evaluation of PTAM using SURF Features 75

−10 0 10 20 30 40 50 60
−20

−15

−10

−5

0

5

10

15

x [m]

y
[m

]

Rawseeds - SURF PTAM

Our approach
Groundtruth

Figure 6.10: Rawseeds Dataset processed by SURF PTAM. The trajectory is very similar
to groundtruth and the map is less dense compared to Stereo PTAM.

−10 −5 0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

x [m]

y
[m

]

ICG - SURF PTAM

Our approach
Groundtruth

Figure 6.11: Trajectory of the ICG Dataset estimated with our approach using SURF
features. The gray lines indicate the walls of the building generated by GMapping.

generated by GMapping. The basic structure of the building is visible, however some walls

are not represented in the map, e.g. the inner walls of the loop. Since we did not perform

loop closing, walls are added twice. Furthermore, this sequence shows the repeatability of

our approach. Although each loop is handled independently, the resulting map of all four

76 Chapter 6. Experiments

−10 −5 0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

x [m]

y
[m

]

ICG - SURF PTAM

15 20 25 30

Figure 6.12: Bird's eye view of the map created by SURF PTAM. The map generated by
GMapping (green) overlaid by map points (black) of our algorithm. The resulting map of
all four loops is consistent although all loops are treated independently. This shows the
repeatability of SURF PTAM.

−0.2 0 0.2 0.4 0.6 0.8
0

20

40

60

80

Position Error [m]

Fr
eq

ue
nc

y

ICG - SURF PTAM

 Mean

 −3σ +3σ

(a)

−0.5 0 0.5 1 1.5
0

10

20

30

40

Position Error [m]

Fr
eq

ue
nc

y

Rawseeds − SURF PTAM

 Mean

 −3σ +3σ

(b)

Figure 6.13: Error distribution of PTAM using SURF features. The largest ATE error on
the ICG dataset is smaller than 0.5m (a). In Histogram (b), the error distribution on the
Rawseeds dataset is given. The maximum error on this sequence amounts to 1.2m.

loops is consistent. It is also noticeable that the scale of the trajectory is constant over

time, which is a basic requirement for building large metric maps.

As presented in Section 6.3, PTAM performs quite well on the Rawseeds dataset. The

main disadvantage here is the enormous number of map points. Traveling about 83 m,

PTAM created 31,450 map points, where most of them are generated from false point

correspondences resulting in inaccurate 3D positions. These points are useless for local

localization as well as for map representation. Figure 6.10 shows the trajectory and the

6.5. Evaluation of PTAM with Loop Closing 77

map estimated by SURF PTAM. The trajectory has a better ATE while the map contains

only 9,749 map features. The ATE of the trajectory reduces to 0.54 m with a standard

deviation of 0.29 m. The estimated trajectory length is 77.91m (groundtruth 75.05m).

The traveled distance is similar to Stereo PTAM, because the SURF descriptor cannot

overcome the problem of little texture.

6.5 Evaluation of PTAM with Loop Closing

−10 −5 0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

x [m]

y
[m

]

ICG - Loop Closing

After Loop Closing
Groundtruth
Before Loop Closing

Figure 6.14: ICG-Trajectory before and after loop closing. The blue trajectory is the
result of the �rst cycle without loop detection and correction. The green trajectory is the
corrected on.

Due to the incremental nature of SLAM, small errors sum up to a large one at the end

of the trajectory. This error can be recognized if the robot visits a single place twice. The

method for loop detection and error correction is explained in Section 5.4. We tested the

performance of loop closing on the ICG as well as on the Rawseeds scene.

As shown in the last experiment, our approach without loop closing performs quite well

on the ICG dataset. Even after a trajectory of 70m, the error is relatively low and therefore

loop correction changes the trajectory only minimally. Figure 6.14 shows the trajectory

before and after loop closing compared to the GMapping trajectory. The optimized loop

is shortened and �ts better to the laser trajectory. The map of all four loops is plotted in

Figure 6.15. Since loop closing enables the reuse of map points created at a previous visit,

the map of the whole trajectory consists of 31,678 image features, which is a reduction

78 Chapter 6. Experiments

−10 −5 0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

x [m]

y
[m

]

ICG - Loop Closing

15 20 25 30
x [m]

Figure 6.15: ICG map after loop closing. Compared to Figure 6.12, the map is more
consistent.

of 30% compared to the map created without loop closing. The map also shows less

inconsistent features like walls that are represented twice.

−10 0 10 20 30 40 50 60
−30

−25

−20

−15

−10

−5

0

5

10

15

x [m]

y
[m

]

Rawseeds - Loop Closing

After Loop Closing
Groundtruth
Before Loop Closing

Figure 6.16: Map containing synthetic image features. The yellow lines mark the three
parts of the trajectory odometry is used for keeping track of the camera. The green dots
are synthetic map points, which are added for loop closing.

The Rawseeds dataset is more complex for loop closing. As shown in Section 6.2, the

scene includes frames that show little texture and therefore cannot be tracked by visual

6.5. Evaluation of PTAM with Loop Closing 79

−10 0 10 20 30 40 50 60
−30

−25

−20

−15

−10

−5

0

5

10

15

x [m]

y
[m

]

Rawseeds - Loop Closing

After Loop Closing
Groundtruth
Before Loop Closing

Figure 6.17: Trajectory before and after loop closing. After loop closing the error of the
last camera drops from 0.67m to 0.06m.

image features. In these cases we keep track of the camera by using odometry information

as described in Chapter 5.5. If a keyframe is added to the map that has less than 20 or no

image features, we generate up to 80 3D points in front of this keyframe, reproject them

back to the last 10 images, and store these positions as measurements for the synthetic

feature. This enables us to keep track of the camera using odometry and performing loop

closing even if there are frames without visual features.

Figure 6.16 demonstrates the parts which are tracked by odometry and displays the

synthetic map points (green dots) that connect keyframes without visual features to the

rest of the loop. We added 3,680 synthetic map points to connect 46 keyframes containing

less than 30 or no visual image features. It also displays the situation before loop closing.

The last tracked camera pose di�ers by 0.67m from the groundtruth data. After loop

closing, this decreases to 0.06m (Figure 6.17). The mean ATE decreases from 0.60m

before loop correction to 0.55m after optimization, which shows that loop correction is

able to achieve a higher precision. The error distribution is shown in Figure 6.18(a).

80 Chapter 6. Experiments

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0

20

40

60

80

Position Error [m]

Fr
eq

ue
nc

y

ICG - Loop Closing PTAM

 Mean

 −3σ +3σ

(a)

−0.5 0 0.5 1 1.5
0

10

20

30

40

50

60

Position Error [m]

Fr
eq

ue
nc

y

Rawseeds - Loop Closing PTAM

 Mean

 −3σ +3σ

(b)

Figure 6.18: Error distribution when loop detection and correction is implemented. (a)
shows the histogram of error of the ICG dataset and (b) the distribution on the Rawseeds
sequence.

6.6 Comparison

To show the accuracy of our method, we compare our results to two other visual SLAM

solutions that are provided by the Rawseeds project. Both methods, the CI-Stereo Graph

SLAM [29] as well as the Hierarchical Trinocular SLAM [34] system are EKF approaches

that reduce computational time by splitting the map into submaps. The main di�erences

between both methods are the applied image features, which are SURF points in the

CI-Stereo method, and straight lines in the Trinocular approach.

Since CI-Stereo Graph is based on SURF features, it has similar problems with less

structured images and also uses odometry. Furthermore, they implemented an appearance-

based loop detection system that is similar to ours. Since CI-Stereo Graph SLAM uses the

same image features and loop detection system, it is ideal to evaluate the performance of

the underlying optimization algorithm.

The Trinocular SLAMmethod extracts line segments as image features and triangulates

their 3D position. They also use submaps to limit processing time and stop uncertainty

propagation through the whole map.

For accuracy evaluation, we aligned all three trajectories in a least squares sense to

groundtruth and calculated the ATE for each. The results are shown in Table 6.1. The

Trinocular SLAM gets the worst trajectory error with an ATE of 2.55m followed by the

CI-Stereo Graph SLAM (1.12m). Our approach outperforms with an ATE of 0.55m.

Furthermore, our approach also has the minimal standard deviation of 0.30m.

6.7. Processing Time 81

−10 0 10 20 30 40 50 60
−30

−25

−20

−15

−10

−5

0

5

10

15

20

x [m]

y
[m

]

Rawseeds - Comparison

CI−Stereo

Groundtruth

Trinocular SLAM

Our approach

Figure 6.19: Reconstructed trajectory of H-Trinocular, CI-Stereo Graph, and our approach.
The H-Trinocular method has major di�culties to reconstruct the trajectory. The path
reconstructed by the CI-Stereo Graph [29] method is similar to our trajectory. The path
reconstructed by our approach is most similar to the groundtruth.

Algorithm mean ATE [m] std ATE [m]

H-Trinocular SLAM 2.55 1.14
CI-Stereo Graph 1.12 0.51
Our approach 0.55 0.30

Table 6.1: Our method compared to other visual SLAM methods. Our algorithm has the
best ATE followed by the CI-Stereo Graph SLAM. The Trinocular system is the worst
method on this dataset.

6.7 Processing Time

In this thesis, we focused on precise reconstruction of the environment and accurate trajec-

tory estimation, but we did not optimize our approach with respect to processing time. For

completeness, we analyze the computational costs on the Rawseeds dataset when applying

SURF PTAM with loop closing. Concerning runtime, our method can be split into two

82 Chapter 6. Experiments

parts:

• Local localization

• Map building and loop detection

PTAM uses the FAST corner algorithm for interest point extraction. This is very

fast, but results in too many corners. Because of this, we make use of the Harris corner

detector that is more complex but provides better repeatability. On a 3.33 GHz Intel

Core 2 Duo processor, the overall runtime for pose estimation of a single frame increases

from 40ms using FAST corners to 142ms (see Figure 6.20). Most of the time is spent

on interest point detection (120ms) and preprocessing, which includes loading and image

undistortion. The association of existing map points with the current image using patch-

based correlation took only 1ms. Pose re�nement by minimizing the reprojection error

�nally has a processing time of 2ms. These processing times demonstrate that most of the

time is spent on extracting interest points and the processing time for pose optimization

is negligible.

0

30

60

90

120

150 Pose Optimization

Feature Matching

Preprocessing

Interest Point Detection

tim
e[

m
s]

Figure 6.20: Time spent for local localization at a single frame. Most of the time is used
for preprocessing the frame and interest point detection (139ms). Feature matching using
patch-based correlation and pose optimization requires 3ms.

The map extension process is more expensive because not only interest points have to

be selected but also feature descriptors have to be extracted and compared. The average

time for generating the SURF descriptor is about 587ms for each stereo pair. Creating new

map points, rechecking corresponding image points using SURF, and performing bundle

adjustment on the last 10 keyframes requires 330ms, where most of the time is spent

on bundle adjustment (229ms). Apart from loop closing, this time is also constant with

respect to the map size. Only the number of extracted local image features in�uences the

time of map extension.

6.8. Discussion 83

Experiment GT length [m]
estimated mean ATE std ATE

map points
length [m] [m] [m]

Rawseeds PTAM 83.36 81.45 0.88 0.42 31,450
Rawseeds SURF 75.08 77.91 0.54 0.29 9,749
Rawseeds loop closing 186.17 181.50 0.55 0.29 31,678
ICG SURF 272.84 272.97 0.23 0.14 45,350
ICG loop closing 272.95 266.90 0.22 0.10 31,678

Table 6.2: Results of all experiments. The �rst two columns are the groundtruth length
(GT length) of the trajectory and the estimated length (Est. length). The third and fourth
show the mean ATE, resp. standard deviation of the ATE. The last column displays the
number of map points.

The third part of our approach deaks with loop detection and loop closing. Each time

a new keyframe is stored, the vocabulary tree is updated and a query for the nearest

neighbors is performed. In our implementation, this uses about 190ms.

0

200

400

600

800

1000

1200 Voctree Query

Bundle Adjustment

Map Point Creation

Tracker Feature Check

Feature Extractiontim
e[

m
s]

Figure 6.21: Processing time of map extension per keyframe.

Loop closing using bundle adjustment is the most time consuming part and heavily

depends on the map size. The complexity of bundle adjustment on the whole loop is

O(N3M), where N is the number of camera positions andM is the number of map points.

The loop of the Rawseeds dataset consist of 802 camera positions, 23,000 map points and

230,000 measurements. The full optimization for this dataset took approximately 4 hours.

6.8 Discussion

In our experiments, we compared the slightly modi�ed PTAM approach with our exten-

sions. Since we are interested in a precise metric SLAM algorithm, we extended PTAM by

adding stereo support. The �rst experiment illustrates the performance of this version. As

shown on the Rawseeds dataset on a smooth trajectory containing enough visual features,

PTAM produces acceptable results. The ICG datasets exhibits the problems introduced

84 Chapter 6. Experiments

by the weak patch-based feature matching. PTAM cannot deal with fast movements, low

framerate, and missing frames, which results in a distorted trajectory and map. Further-

more, the patch-based correlation approach generates a large number of map points, which

are contaminated by outliers. In order to be memory e�cient, it is appreciated to reduce

the number of map points.

In the second experiment, we used a stronger feature descriptor for map point initial-

ization and correspondence detection. This increases robustness against fast movements

and missing frames as well as accuracy. Using SURF features, the ICG dataset can be

processed successfully and a low ATE of 0.23 m compared to the GMapping result shows

the accuracy in this scene. Since we used a cell size of 0.1 m for building the map with

GMapping, our results are near to the quantization error. Furthermore, this experiment

shows the repeatability of our approach. Because we used only the map points generated

in last 20 keyframes for local localization, each loop is treated independently and neverthe-

less similar trajectories and maps are reconstructed. On the Rawseeds sequence, the main

advantages of the stronger feature descriptor is the reduced number of map points. This

drops from 31,450 features using patch-based correlation to 9,749 map points. Despite

the reduced number of map points the accuracy is increased by reducing the ATE error

from 0.88m to 0.54m. These results clarify that the use of a strong feature detector and

descriptor is reasonable for reducing the number of map points as well as for improving

accuracy.

In the last experiment, we tested our loop detection and correction approach. On

the ICG dataset, we achieved a very small ATE even without loop closing. Hence, loop

correction does not reduce the error drastically. The stronger e�ect is shown in the reduced

number of created map points. If we detect a loop, we use the map points created in the

20 nearest keyframes instead of the 20 last created keyframes for local localization. This

increases the number of recognized map points in a new keyframe and therefore the number

of newly created map points is reduced. Table 6.2 shows the di�erence in the number of

map points with and without loop detection. Instead of 45,350 map points treating all loops

independently, the map contains only 31,678 map features when reusing older keyframes.

To process the Rawseeds dataset that contains parts that cannot be tracked by visual

odometry, we added synthetic map features. This enables us to perform loop correction

although we use odometry information. We showed that synthetic map points are a possi-

bility to reconstitute the connectivity between keyframes that do not share common map

points. With this techniques we reached an ATE of 0.55m with a standard deviation of

6.8. Discussion 85

0.29m.

In order to asses the accuracy of our method, we compared our results to two other

visual SLAM solutions for the Rawseeds dataset. The CI-Stereo Graph uses the same

feature descriptor as well as the same method for loop detection, which enables us to eval-

uate the underlying optimization methods that are the EKF �lter and bundle adjustment,

respectively. Table 6.1 shows that our method achieved an ATE of 0.55m that is the half

of ATE gained by the CI-Stereo Graph method. Compared to the H-Trinocular SLAM ap-

proach, our results are �ve times better. This shows that this method has major problems

to process this sequence.

The results of the accuracy test show that our approach is capable of reconstructing

the environment with high metric precision and it outperforms EKF-based methods. The

processing time analysis showed that the bottlenecks of our approach are feature detection

and loop closing using bundle adjustment. The processing time for feature detection can

be drastically reduced by using an SURF detector implementation that is implemented on

a GPU. Cornelis et al. [6] presented an implementation that process about 100 640x480

pixel images per second. Feature detection and descriptor creation so would take less

than 10ms, which is su�cient for real-time application. Speeding up bundle adjustment is

more challenging, since the problem itself is computational demanding with a complexity

of O(N3). So there came up several ideas to reduce the number of 3D features and frames

in optimization. Sibley et al. [32] stated that they can perform loop closing with a �xed

number of keyframes and therefore are constant in time. This would be a large step for

performing SLAM on large scenes in real-time.

Finally, the performed experiments provide evidence that our approach is able to create

accurate metric maps and trajectories of a moving robot. Furthermore, apart from loop

correction, the presented method is constant in time with respect to map size. We are

able to deal with sequences that cannot be tracked by visual odometry and we outperform

other existing visual SLAM approaches.

Chapter 7

Conclusions & Future work

This thesis is concerned with the 3D reconstruction of the trajectory a moving robot

covered and its environment using a stereo camera system. As demonstrated in Chapter

6, we are able to generate maps of environments up to several hundred meters with high

accuracy using a calibrated stereo camera rig. In order to optimize the system behavior

when exploring the same area several times, we implemented a loop closing detection and

correction step. This increases accuracy and reduces the number of map points. Apart

from loop correction, our approach is constant in time regarding map size.

The proposed method can be distinguished in a localization and a map building part.

The localization part estimates the pose of a single camera with respect to a given map.

We identify map points in the current image and optimize the cameras pose by minimizing

the reprojection error of the map points. The feature matching is assumed by the method

proposed by Klein et al. [19] and based on patch-based correlation. This is a fast but

sometimes weak method, because it requires a good initial pose estimation. We solved this

problem by checking the quality of feature matches with a stronger feature descriptor from

time to time.

Since the goal was precise reconstruction of a map and a trajectory, we focused on the

map building part. The map consist of so-called keyframes and map points. A keyframe

consists of two images taken from the stereo cameras simultaneously. Corresponding image

points are identi�ed using the SURF feature descriptor and triangulated to a 3D map

point. Since the baseline between the cameras is small, the resulting 3D position for far

distant objects may be inaccurate. To optimize the 3D position, we recognize existing

map points in succeeding images and bundle adjustment optimizes camera poses and map

points. Because bundle adjustment is computationally demanding, we use a sliding window

87

88 Chapter 7. Conclusions & Future work

mechanism to optimize only the recently added keyframes.

Due to the incremental nature of SLAM methods, small errors may sum up and result

in an inaccurate map and trajectory. We compensate this problem by implementing an

appearance-based method for loop detection and correction. We correct the camera poses

and the map by performing bundle adjustment on the whole loop. The processing time for

loop correction is the only step in our algorithm that depends on the map size.

We demonstrated that our system performs very well and with high accuracy. This is

a good starting point for future research. In the following, we outline research challenges

and open questions that may lead to further improvements of our proposed approach.

In Chapter 6, we showed that the loop detection mechanism works for relatively small

scenes that have little repetitive texture. This method fails on long trajectories, where

parts of the trajectory have similar texture, e.g. corridors or highways. In this case, simi-

larity of images does not indicate that they are taken at the same place. A solution for this

problem is presented in [7]. The authors also compare images using a vocabulary tree but

additionally, they use only those features that are characteristic for a certain place. While

exploring the environment, their approach learns a distribution of features that are char-

acteristic and ignores features that do not allow inference for a certain place. This reduces

the number of false-positive loop detections signi�cantly. The authors demonstrate that

their approach is able to detect loops in trajectories of several hundred kilometers without

any false detection. Hence, this is might be a reasonable approach for loop detection for

large-scale SLAM systems.

Our experiments show that loop detection is also important for map size reduction.

Instead of 45,000 features generated when using no loop detection, the map contains only

30,000 features when reusing features generated in a previous cycle. After the �rst cycle,

when each place is visited for the �rst time, the map contains approx. 12,000 features.

In each further cycle, 6,000 new map points are generated. In an optimal solution, where

the environment does not change and the robot drives the same way, the number of map

points would stay constant over all four cycles. In our implementation, a new map point is

created from an interest point if no existing map point can be matched with this interest

point. Thus, the constant number of newly constructed map points indicates that a large

number of map points are not rediscovered in the later cycles. That means that map points

which do not account for localization in later cycles could be removed to decrease the map

size.

Our local localization approach mainly depends on camera information and uses odom-

89

etry information in exceptional cases when visual odometry is not possible. The accuracy

and robustness can be further increased by combining di�erent sensors in every localiza-

tion step. In Chapter 5.5, we presented an idea for fusing di�erent sensor information in

image space. We generate synthetic 3D points that indicate the estimated movement of a

single sensor. The idea is promising because di�erent sensors can be combined in a single

optimization step. Howecer, a deeper mathematical inspection is required for a reasonable

use of this idea. Another problem of local localization and map building is motion blur.

Since our method is based on local interest points, i.e. corners, motion blur prevents corner

detection. Klein et al. [20] demonstrated that lines can be extracted even if the image is

blurred by fast camera motion. Hence, constructing the map of interest points and lines

improves local localization in case of motion blur.

The processing time analyzed in Section 6.7 shows that most computational time is

used for feature detection, which prevents our implementation from being applicable under

real-time conditions. A solution for this problem could be the use of a GPU-accelerated

SURF implementation as presented in [6]. This approach is able to process more than 100

frames per second. This way localization and incremental map building can be performed

in real-time. However, this requires powerfull and energy consuming hardware. Because

of the today's limited energy density of battaries, a long running mobile robot with such

demanding hardware is not possible yet.

In order to run the application online on a robot, we also have to split localization

and map building into two parallel threads, so that map extension does not interfere

localization. The bottleneck of map building is loop correction. A full optimization of

the map may take several hours. To overcome this problem, Sibley et al. [32] presented

a solution for full loop closure in constant time. However, their algorithm requires a

largely di�erent representation of map points and keyframes than available in our approach.

Another interesting method is presented by Konolige et al.[21] who try to reduce the

number of features.

Originally, PTAM was developed for tracking a monocular camera in a unknown en-

vironment. We changed the implementation to a stereo setup for di�erent reasons: The

initialization of new map points requires a certain baseline between two camera poses to

achieve a precise reconstruction. Especially in indoor situations where the camera turns

without translation this is a serious problem. Datasets like the ICG scene for example with

tight curves, cannot be tracked by a monocular camera using our approach. The second

reason for using a stereo camera is map initialization: In order to build a true scale map,

90 Chapter 7. Conclusions & Future work

the distance between the �rst two images used for map initialization, has to be known.

This also points out a drawback of SLAM algorithms based on bundle adjustment: At each

time step they require fully initialized 3D map points. In contrast, EKF-based methods

are able to handle map points with unknown distance to the camera by using the inverse

depth representation [25]. Both, map initialization and small baseline between cameras

are a minor problem in the EKF framework. So, a challenging question is if the inverse

depth representation can be exploited by our approach.

We presented a method for a visual SLAM in the �eld of autonomous, wheeled robots

based on PTAM developed by Klein et al. We have shown that our method outperforms

other methods with respect to metric accuracy and map size using bundle adjustment as

underlying optimization method. In order to achieve these results, we proved that a strong

feature descriptor is essential, since accuracy of SLAM depends on the accuracy of feature

matching. Our proposed idea for sensor fusion allowed us to use bundle adjustment for

loop correction, even if parts of the sequence are tracked by odometry. We further showed

that a loop detection mechanism improves precision and reduces the map size when visiting

the same place several times. The results on the Rawseeds benchmark dataset con�rm the

conclusion stated by Strasdat et al. [36] that bundle adjustment is able to outperform

EKF-based visual SLAM algorithms.

BIBLIOGRAPHY 91

Bibliography

[1] Baker, S. and Matthews, I. (2001). Equivalence and e�ciency of image alignment

algorithms. In Proceedings of the 2001 IEEE Conference on Computer Vision and

Pattern Recognition, volume 1, pages 1090 � 1097.

[2] Bay, H., Ess, A., Tuytelaars, T., and Gool, L. V. (2008). Surf: Speeded up robust

features. Computer Vision and Image Understanding (CVIU), 110:346�359.

[3] Castle, R. O., Klein, G., and Murray, D. W. (2008). Video-rate localization in mul-

tiple maps for wearable augmented reality. In Proc 12th IEEE Int Symp on Wearable

Computers, Pittsburgh PA, Sept 28 - Oct 1, 2008, pages 15�22.

[4] Ceriani, S., Fontana, G., Giusti, A., Marzorati, D., Matteucci, M., Migliore, D., Rizzi,

D., Sorrenti, D. G., and Taddei, P. (2009). Rawseeds ground truth collection systems

for indoor self-localization and mapping. Auton. Robots, 27(4):353�371.

[5] Civera, J., Davison, A., and Montiel, J. (2007). Inverse Depth to Depth Conversion for

Monocular SLAM. In IEEE International Conference on Robotics and Automation.

[6] Cornelis, N. and Van Gool, L. (2008). Fast scale invariant feature detection and match-

ing on programmable graphics hardware. In Computer Vision and Pattern Recognition

Workshops, 2008. CVPRW �08. IEEE Computer Society Conference on, pages 1�8.

[7] Cummins, M. and Newman, P. (2009). Highly scalable appearance-only slam -fab-map

2.0. In Robotics Science and Systems (RSS), Seattle, USA.

[8] Davison, A. and Kita, N. (2001). Sequential localization and map-building for real-time

computer vision and robotics. RobAS, 36(4):171�183.

[9] Doucet, A., Freitas, N. d., Murphy, K. P., and Russell, S. J. (2000). Rao-blackwellised

particle �ltering for dynamic bayesian networks. In UAI '00: Proceedings of the 16th

Conference on Uncertainty in Arti�cial Intelligence, pages 176�183, San Francisco, CA,

USA. Morgan Kaufmann Publishers Inc.

[10] Eade, E. and Drummond, T. (2007). Monocular slam as a graph of coalesced ob-

servations. In Proc. 11th IEEE International Conference on Computer Vision, Rio de

Janeiro, Brazil.

92

[11] Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for

model �tting with applications to image analysis and automated cartography. Commun.

ACM, 24(6):381�395.

[12] Fujitsu Laboratories Ltd. (2010). Fujitsu begins limited sales of ser-

vice robot enon. http://www.fujitsu.com/global/news/pr/archives/month/2005/

20050913-01.html.

[13] Grisetti, G., Stachniss, C., and Burgard, W. (2005). Improving grid-based slam

with rao-blackwellized particle �lters by adaptive proposals and selective resampling.

In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA).

[14] Grisetti, G., Tipaldi, G. D., Stachniss, C., Burgard, W., and Nardi, D. (2007). Fast

and accurate slam with rao-blackwellized particle �lters. Robot. Auton. Syst., 55(1):30�

38.

[15] Harris, C. and Stephens, M. (1988). A combined corner and edge detector. In Pro-

ceedings of the 4th Alvey Vision Conference, pages 147�151.

[16] Hartley, R. I. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision.

Cambridge University Press, ISBN: 0521540518, second edition.

[17] Holmes, S., Sibley, G., Klein, G., and Murray, D. W. (2009). A relative frame repre-

sentation for �xed-time bundle adjustment in sfm. In ICRA'09: Proceedings of the 2009

IEEE international conference on Robotics and Automation, pages 2631�2636, Piscat-

away, NJ, USA. IEEE Press.

[18] Huber, P. (1974). Robust Statistics. Wiley, New York.

[19] Klein, G. and Murray, D. (2007). Parallel tracking and mapping for small AR

workspaces. In Proc. Sixth IEEE and ACM International Symposium on Mixed and

Augmented Reality (ISMAR'07), Nara, Japan.

[20] Klein, G. and Murray, D. (2008). Improving the agility of keyframe-based SLAM.

In Proc. 10th European Conference on Computer Vision (ECCV'08), pages 802�815,

Marseille.

[21] Konolige, K. and Agrawal, M. (2008). Frameslam: From bundle adjustment to real-

time visual mapping. IEEE Transactions on Robotics, 24(5):1066�1077.

http://www.fujitsu.com/global/news/pr/archives/month/2005/20050913-01.html
http://www.fujitsu.com/global/news/pr/archives/month/2005/20050913-01.html

BIBLIOGRAPHY 93

[22] Lina María Paz, Pedro Piniés, J. D. T. and Neira, J. (2008). Large scale 6dof slam

with stereo-in-hand. IEEE Transactions on Robotics, 24(5):946�957.

[23] Mei, C., Sibley, G., Cummins, M., Newman, P., and Reid, I. (2010). Rslam: A system

for large-scale mapping in constant-time using stereo. International Journal of Computer

Vision. Special issue of BMVC, accepted for publication.

[24] Montemerlo, M., Thrun, S., Koller, D., and Wegbreit, B. (2002). Fastslam: A factored

solution to the simultaneous localization and mapping problem. In In Proceedings of

the AAAI National Conference on Arti�cial Intelligence, pages 593�598. AAAI.

[25] Montiel, J., Civera, J., and Davison, A. (2006). Uni�ed inverse depth parametrization

for monocular slam. In Proceedings of Robotics: Science and Systems, Philadelphia,

USA.

[26] Murray, R. M., Sastry, S. S., and Zexiang, L. (1994). A Mathematical Introduction

to Robotic Manipulation. CRC Press, Inc., Boca Raton, FL, USA.

[27] Nister, D., Naroditsky, O., and Bergen, J. (2004). Visual odometry. Computer Vision

and Pattern Recognition, IEEE Computer Society Conference on, 1:652�659.

[28] Nister, D. and Stewenius, H. (2006). Scalable recognition with a vocabulary tree. In

CVPR06: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition, pages 2161�2168, Washington, DC, USA. IEEE Computer

Society.

[29] Pedro Piniés, L. M. P. and Tardós, J. D. (2009). In IEEE Int. Conf. Robotics and

Automation, pages 3913�3920, Kobe, Japan.

[30] Rosten, E. and Drummond, T. (2006). Machine learning for high-speed corner detec-

tion. In European Conference on Computer Vision, volume 1, pages 430�443.

[31] Rousseeuw, P. J. and Leroy, A. M. (1987). Robust regression and outlier detection.

John Wiley & Sons, Inc., New York, NY, USA.

[32] Sibley, G., Mei, C., Reid, I., and Newman, P. (2009). Adaptive relative bundle ad-

justment. In Robotics Science and Systems (RSS), Seattle, USA.

[33] Sim, R., Elinas, P., and Gri�n, M. (2005). Vision-based slam using the rao-

blackwellised particle �lter. In In IJCAI Workshop on Reasoning with Uncertainty

in Robotics.

94

[34] Sorrenti, D. G., Matteucci, M., Marzorati, D., and Furlan, A. (2009).

Benchmark solution to the stereo or trinocular slam - bicocca 2009-02-

25b bp http://www.rawseeds.org/rs/rawseeds/rs/assets/solutions_data/

4adc84637e0a0/BS_milan_Bicocca_25b.pdf.

[35] Stachniss, C., Grisetti, G., and Burgard, W. (2007). Analyzing gaussian proposal

distributions for mapping with rao-blackwellized particle �lters. In International Con-

ference on Intelligent Robots and Systems (IROS), San Diego, CA, USA.

[36] Strasdat, H., Montiel, J. M. M., and Davison, A. J. (2010). Real-time monocular

SLAM: Why �lter? In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), Anchorage, Alaska, US.

[37] Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics (Intelligent

Robotics and Autonomous Agents). The MIT Press.

[38] Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley.

[39] Zhang, Z. (1998). A �exible new technique for camera calibration. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 22:1330�1334.

[40] Zhou, W., Miró, J. V., and Dissanayake, G. (2008). Information-e�cient 3-d visual

slam for unstructured domains. IEEE Transactions on Robotics, 24(5):1078�1087.

http://www.rawseeds.org/rs/rawseeds/rs/assets/solutions_data/4adc84637e0a0/BS_milan_Bicocca_25b.pdf
http://www.rawseeds.org/rs/rawseeds/rs/assets/solutions_data/4adc84637e0a0/BS_milan_Bicocca_25b.pdf

BIBLIOGRAPHY 95

	Introduction
	Related Work
	Probabilistic Approaches
	Geometric Approachs
	Summary

	Theory and Background
	Multiview Geometry
	Rigid Body Motion
	Perspective Camera Model
	Relative Camera Calibration

	Salient Image Points
	Feature extraction
	Feature Matching

	Multiview Reconstruction
	Triangulation
	Bundle Adjustment
	Robust Bundle Adjustment

	Localization
	Map
	Local Localization
	Prediction
	Correction
	Map Point Association
	Pose Correction

	Global Localization
	Discussion

	Visual Map Building
	SLAM Workflow
	Map Initialization
	Iterative Map Building
	Loop Closing
	Loop Detection
	Loop Correction

	Sensor Fusion
	Discussion

	Experiments
	Evaluation Metrics
	Datasets
	Evaluation of Stereo PTAM
	Evaluation of PTAM using SURF Features
	Evaluation of PTAM with Loop Closing
	Comparison
	Processing Time
	Discussion

	Conclusions & Future work
	Bibliography

