
Master’s Thesis

Test Data Generation using

Static Call Sequence Analysis and

Design by Contract™ Specifications

Thomas Quaritsch
t.quaritsch@student.tugraz.at

Graz University of Technology

Institute for Softwaretechnology
Graz University of Technology

Supervisor: Univ.-Prof. Dipl-Ing. Dr. techn. Franz Wotawa
Assistant Supervisor: Dipl.-Ing. Stefan J. Galler

February 2011



STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

Graz, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(date) (signature)

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, an-
dere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten
Quellen wörtlich und inhaltlich entnommene Stellen als solche kenntlich gemacht
habe.

Graz, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Datum) (Unterschrift)

ii



Abstract

Software testing is a state-of-the-art technique for assessing and raising the correct-

ness of programs. While most tests in the industry are still being written by hand,

a current research topic is the automated generation of test cases. Test data gener-

ation is one aspect of automated testing that focuses on input data generation for

methods.

This thesis presents TESSAN, a test data generation approach for Java programs en-

hanced by Design by Contract™ specifications. It tries to generate test input data

such that potential mismatches between the actual implementation and the Design

by Contract™ specification are revealed. These mismatches may arise between two

method preconditions when method M1 passes one of its arguments a to method

M2 and does not ensure that M2’s precondition is fulfilled for all possible inputs.

TESSAN is a static analysis approach that uses a system dependence graph (SDG) of

the program to extract sequences of modifying instance method calls on parameter

a in method M1 before a is passed to M2. Both method preconditions and the call

sequences are then used to construct an SMT (satsifiability modulo theories) formula

that is satisfiable if a precondition mismatch is feasible. From the SMT solver results,

a test case is generated which demonstrates the error to the programmer.

The approach has been implemented in the jConTest test data generation frame-

work using IBM WALA and Joana for SDG generation and the yices SMT solver as

backend. The well-known jUnit tool and SYNTHIA fake objects are used in the ex-

ported test cases.

The applicability of the TESSAN approach is shown using three different implemen-

tations of a small example program.



Zusammenfassung

Software Testen ist eine der wichtigsten und verbreitetsten Techniken um die Kor-

rektheit von Programmen zu überprüfen und zu verbessern. Während allerdings in

der Industrie die meisten Tests noch händisch erstellt werden, ist die automatische

Erstellung von Testfällen ein aktuelles Thema in der Forschung. Ein Aspekt beim

automatischen Generieren von Testfällen ist die Erzeugung von Testdaten als Input

für Methodenaufrufe.

In dieser Arbeit wird der TESSAN Ansatz zur Testdatenerzeugung für Java-Programme

mit Design by Contract™ Spezifikationen vorgestellt. In diesem Ansatz wird ver-

sucht, potentielle Unstimmigkeiten zwischen Implementierung und Spezifikation

von Methoden zu finden. Diese Unstimmigkeiten entstehen wenn eine Methode M1

eines ihrer Argumente a an eine Methode M2 übergibt und nicht sicherstellt, dass

die Design by Contract™ Vorbedingung in jedem Fall erfüllt ist.

TESSAN ist ein statischer Analyse-Ansatz der mit Hilfe eines system dependence graph

(SDG) Methoden-Aufruf-Sequenzen aus der Methode M1 extrahiert, welche a verän-

dern bevor es an die Methode M2 übergeben wird. Aus den Vorbedingungen der

beiden Methoden und den Aufruf-Sequenzen wird eine SMT (satisfiability modulo

theories) Formel erstellt, die genau dann erfüllbar ist, wenn solch eine Unstimmig-

keit möglich ist. Aus dem Ergebnis des SMT Solvers wird ein Testfall erzeugt um das

Problem für den Programmierer zu veranschaulichen.

Der Ansatz wurde im jConTest Testdatengenerierungs-Framework mit Hilfe von

IBM WALA und Joana zur Erzeugung des SDG sowie dem SMT solver yices imple-

mentiert. Die exportierten Testfälle verwenden das bekannte jUnit Testframework

und SYNTHIA fake Objekte.

The Anwendbarkeit des TESSAN Ansatzes wird an drei verschiedenen Implementie-

rungen eines kleinen Beispielprogramms gezeigt.



Acknowledgments

This work has been conducted during the winter semester 2010/2011 at the Insti-

tute of Software Technology and I would like to thank Prof. Dr. Franz Wotawa for

giving me this opportunity. I would also like to thank all colleagues at the IST for

giving me a warm welcome, but this work would not have been possible without

my advisor Stefan J. Galler. I owe my deepest gratitude to him for providing me a

working place, his generous guidance and support throughout the last year as well

as endless hours of valuable discussions. I would also like to thank my family for

the great support during my studies.

I dedicate this work to the memory of my dear mother Prof. Mag. Martha Quaritsch.

Thomas

v



Table of Contents

1 Motivation 1

1.1 Software and its Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Software Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Formal Software Verification . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Combining Testing and Verification . . . . . . . . . . . . . . . . . . . . 3

1.2 Automated Test Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Elements of a Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 The Test Generation Pyramid . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Problems in Automated Test Generation . . . . . . . . . . . . . . . . . 6

1.2.4 Automated Test Data Generation . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 The Precondition Mismatch Problem . . . . . . . . . . . . . . . . . . . 10

1.3.2 Mutation Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.3 Test Case Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Running Example 15

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Java Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Preliminaries 19

3.1 The Design by Contract™ concept . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.2 Runtime Assertion Checking . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.3 Behavioral (Interface) Specification Languages . . . . . . . . . . . . . 21

3.1.4 Further Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 System Dependence Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 SMT solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 SYNTHIA Fake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vi



4 Related Work 29

5 Approach 36

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Common Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Generating the system dependence graph . . . . . . . . . . . . . . . . . . . . 46

5.5 Extracting Mutation Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5.1 Relevant Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5.2 Control Flow Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5.3 Path Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Creating and Solving the SMT Problem . . . . . . . . . . . . . . . . . . . . . . 56

5.7 Exporting Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.8 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Implementation 62

6.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2.1 IBM WALA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2.2 jSDG/Joana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2.3 jConTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2.4 jConTest-Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 TESSAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3.1 Visitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3.2 SDG Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3.3 Important Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3.4 Class Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Evaluation 73

7.1 Running Example — Version 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Running Example — Version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3 Running Example — Version 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8 Conclusion 93

8.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

vii



List of Figures

1.1 Automatic Test Generation Pyramid . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 The process of automated test generation and execution. . . . . . . . . . 6

1.3 Object state space constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Visual representation of the precondition mismatch problem . . . . . . . 12

1.5 Different possible control flow structures in the mutation sequence. . . . 13

2.1 UML class diagram of the running example. . . . . . . . . . . . . . . . . . . 15

3.1 The Design by Contract™ principle . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Dependence graph of the program in Listing 3.3 . . . . . . . . . . . . . . . 24

3.3 System dependence graph of the program in Listing 3.4. . . . . . . . . . . 26

3.4 Behavior of a SYNTHIA fake object of the Stack class from Listing 3.5 . . . 28

5.1 Formal method under test structure in the TESSAN approach. . . . . . . . . 36

5.2 Process overview of the TESSAN approach. . . . . . . . . . . . . . . . . . . . . 37

5.3 Different node and edge types in a system dependence graph. . . . . . . 50

5.4 Excerpt of a system dependence graph showing parameter passing. . . . 51

5.5 system dependence graph featuring a control flow cycle. . . . . . . . . . . 55

6.1 Conceptual dependency layers of the TESSAN implementation. . . . . . . . 62

6.2 Information flow through the system implementing the TESSAN approach. 65

6.3 UML class diagram of Tessan and its dependencies. . . . . . . . . . . . . . . 69

6.4 UML class diagram of SDGVisitor. . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.5 UML class diagram of SDGPath and its components. . . . . . . . . . . . . . . 71

7.1 SDG of the first processMessage implementation. . . . . . . . . . . . . . . . . 76

7.2 SDG of the main method of the running example. . . . . . . . . . . . . . . . 77

7.3 SDG of the second processMessage implementation. . . . . . . . . . . . . . . 83

7.4 SDG of the third processMessage implementation. . . . . . . . . . . . . . . . 89

7.5 SDG of the prepareMessages method. . . . . . . . . . . . . . . . . . . . . . . . 90

viii



List of Listings

1.1 Class demonstrating the hidden state problem. . . . . . . . . . . . . . . . . 7

1.2 Simple method under test isSquare to demonstrate test data generation. 7

1.3 Specification added to the isSquare method. . . . . . . . . . . . . . . . . . . 9

1.4 Test case for the isSquare method. . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Simple class to demonstrate object state space. . . . . . . . . . . . . . . . . 9

1.6 Principal structure of the precondition mismatch problem. . . . . . . . . . 10

1.7 Principal structure of the precondition mismatch problem with

specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.8 Unit Test showing the specification mismatch problem . . . . . . . . . . . 12

2.1 Java source of the Message class. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Java source of the Packet class. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Java source of the MessageDataExtractor class. . . . . . . . . . . . . . . . . . 18

2.4 Java source of the MessageProcessor class. . . . . . . . . . . . . . . . . . . . . 18

3.1 Commonly used Modern Jass annotations . . . . . . . . . . . . . . . . . . . . 21

3.2 Example of a model field declaration in Modern Jass. . . . . . . . . . . . . 23

3.3 Small program to demonstrate dependence graphs. . . . . . . . . . . . . . 25

3.4 Example program demonstrating method calls in system dependence

graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Example Stack class for a SYNTHIA fake object . . . . . . . . . . . . . . . . . 28

4.1 Object instantiation benchmark for Pex . . . . . . . . . . . . . . . . . . . . . 33

4.2 Pex generated test for customStack method in Listing 4.1 . . . . . . . . . . 33

5.1 Pseudocode of the TESSAN approach. . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Simple implementation of the processMessage method. . . . . . . . . . . . . 51

5.3 More complex implementation of the processMessage method. . . . . . . . 52

5.4 Implementation of the processMessage method with branches. . . . . . . . 55

5.5 Test case exported by TESSAN . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

ix



List of Listings List of Listings

6.1 Abstract SDGVisitor class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Interfaces for edge and node predicates. . . . . . . . . . . . . . . . . . . . . 65

6.3 Example visitor implementation. . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1 First implementation of the processMessage method for the evaluation. . . 74

7.2 Java source of the MessageDataExtractor class. . . . . . . . . . . . . . . . . . 74

7.3 Exported test case using the calculated initial state for version 1 of the

running example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.4 Second implementation of the processMessage method for the evaluation. 82

7.5 Third implementation of the processMessage method for the evaluation. . 87

x



1 Motivation

1.1 Software and its Quality

Despite its long history and more than fifty years of advancements, software en-

gineering is still not an exact science today. Writing good software is a complex,

non-trivial and highly error-prone task, even for simple programs. Some of this

complexity, of course, lies in the very own nature of programming itself because the

programs themselves can do arbitrarily complex tasks, but also the enormous speed

of change in technology plays its part. Thus, a programmer can never be sure if the

program she wrote does what was intended and needs to verify it in some way.

Seeing it in a more abstract way, in software engineering projects we need mecha-

nisms to assess and verify the quality of a software artifact. While there are many

other reasons for software projects to fail, for example, management errors, wrong

or unclear specifications, social problems in the development team, . . . , bad quality

software (that is, software not behaving according to the specification) is still an

issue. [Wal01]

While there are many more aspects of software quality, like maintainability, relia-

bility, security, efficiency, usability or portability, we focus on the correctness of a

software artifact. In order to ensure software correctness, there are two common

approaches: (i) software testing, and (ii) formal software verification.

1.1.1 Software Testing

Software testing is the first and most natural way of assessing the quality of a pro-

gram: supply some input and compare its output to the expected one. Over the

years, a large number of methods and techniques have been developed [AO08] to

1



1 Motivation 1.1 Software and its Quality

systematically create tests and find as much bugs and flaws as possible. The pro-

cess of testing has been well-defined as a “process of executing a program with the

intent of finding errors” [MSBT04]. If a tester has established a good suite of tests

and cannot think of any other useful cases she might want to test and all tests pass,

the program is seen as “correct”, even if it still contains hundreds or thousands of

bugs.

Writing test suites manually is a cumbersome work, because there might be a lot of

test cases necessary before a certain quality level of the program under test can be

established. Note that testing is, for most programs, incomplete, that is, due to the

infinite number of possible inputs, not all cases can be explicitly tested. As a result,

a recent topic of interest along many researches is the automatic generation of tests

for a given program. Having a mechanism to automatically create a comprehen-

sive test suite for a program or software artifact would relieve programmers/testers

from the burden of writing tests and enable them to focus on the implementation

of the program.1

1.1.2 Formal Software Verification

Another approach to ensure the quality of a program, is formal verification. While

any test suite can only make conclusions about a limited number of execution paths,

namely those that were excited in the limited number of test cases, formal verifica-

tion tries to reason about all possible execution paths of a program. This reasoning

takes additional specifications, sometimes also called assertions, as input and as

a result, decides whether all specifications are met for all possible program execu-

tions. [SKW08]

For small programs, this is usually possible manually using Hoare logic [Hoa69], but

for any real world program automated approaches are needed, for example, model

checking [BCC+03] or static checking.

Model Checking. Model checking verifies that a given system meets a given spec-

ification – the model – by checking the specification in every possible state, which

is easy for systems with a limited number of states, like hardware systems. For

1Yes, there are programming methodologies such as eXtreme Programming (XP) or Scrum, which
incorporate testing as a central activity that is not seen as an activity which is done after pro-
gramming a feature but actually before. In those cases, testing is also considered a part of the
design phase, that is, thinking about a good test case involves thinking about the design of the
feature or artifact that is going to be implemented. Of course, automated test generation does
not make any sense with this style of programming, but not all programs are developed that way
and often enough software already exists and needs to be tested afterwards.

2



1 Motivation 1.1 Software and its Quality

programs, there is the problem of the so-called state space explosion, that is, the

number of states is extremely high. If you consider a simple program using just a

single 32-bit integer variable, the number of possible states at one stroke raises to

232, that is, more than four billion. [SKW08]

Static Checking. Static Checking2 exhibits the original idea from C. A. R. Hoare

to prove the consistency and correctness of a program using automatic theorem

provers. As a starting point, the programmer usually has to add assertions to

the program using a behavioral interface specification language, that is a language

to add semantic information to methods using simple constructs from predicate

logic.

Unfortunately, also all approaches to software verification have their limitations,

because static analysis in general is known to be undecidable [Lan92]. In particular,

problems such as aliasing, that is, multiple references to the same memory location

in a program, make analyses hard [Ram94].

1.1.3 Combining Testing and Verification

As seen before, neither testing nor verification will fix all our software correctness

problems today, so it makes sense to combine both of them in order to find as

many bugs as possible. Particularly, for system tests, that is, tests including the

environment of a program such as databases and network connections, program

verification will never be an alternative.

Even more interestingly, the borders between testing and verification are blurry and

will continue blurring. On the one hand, specifications are used for runtime verifi-

cation, and on the other hand, methods from verification are used to produce test

cases and test data. The approach presented here takes the same line by using static

analysis to generate test data that will show an incorrectness of the program under

test.

2Static checking is sometimes also called Static Analysis or Modular Analysis, where the former is
usually seen as a general term for all methods that analyze programs without executing.

3



1 Motivation 1.2 Automated Test Generation

1.2 Automated Test Generation

1.2.1 Elements of a Test

As mentioned above, software tests are pieces of code that exercise, depending on

the aim of the test, smaller or larger portions of a software system with a defined

input and compare the actual reaction of the system with its intended reaction.

Unit tests focus on very small portions of the system, usually at method level. The

method currently in focus is then called “method under test”.

A single unit test usually comprises of

• a sequence of constructor and method calls to instantiate and configure an

object where the method under test is called on,

• a sequence of constructor and method calls to create input data for the method

under test,

• the call of the method under test itself, and

• one or more assertions on output data of the method under test. [GWKU08]

Running the test shows whether the system passes (that is, all assertions are ful-

filled) or fails (one ore more assertion is violated).

1.2.2 The Test Generation Pyramid

When trying to automate the generation of software tests, all these elements have

to be derived automatically from the source code. This leads to several tasks that,

conceptually, can be arranged like levels in a pyramid, called the “test generation

pyramid”3 [Gal11], which is depicted in Figure 1.1. It consists of four levels: (i) base

technologies, (ii) test data generation, (iii) test case generation, and (iii) test suite

generation.

Base Technologies. At the very bottom, we need base technologies such as tools

for executing tests, generating reports, or decoupling software from its environ-

ment. Usually, these tools already exist as they are already used for manual testing

and can be used for automated tests as well.

3Note that there are many more pyramid figures in software testing, but this one only focuses on
the problem of generating software tests completely automatically.

4



1 Motivation 1.2 Automated Test Generation

Basic Technologies and Tools

Test Data Generation

Test Case 

Test Suite

Level 1

Level 2

Level 3

Level 4

10110011110

Generation

Generation
1

2

3

4
5

Figure 1.1: Automatic Test Generation Pyramid

Test Data Generation. At the next level, we need input data for the method under

test. For example, if you consider a method boolean calculate(int a, int b, int

c), there must be an algorithm to determine which integers a, b, and c should be

fed into the method. There exist a large number of approaches, from the simplest

being a random number generator to complex algorithms targeted on uncovering

specific programming errors. As the approach presented in this work also focuses

on test data generation, this topic will be discussed in-depth later with a focus on

complex data types, in particular, object types.

Test Case Generation. Once we are able to generate meaningful input data for a

method, we can think of different ways of organizing a test case, that is, which meth-

ods to call in which sequence, in order to find bugs arising from special situations

(object states).

Test Suite Generation. When the problem of creating test cases is solved, we need

to select the cases we want to keep, based on a certain testing criterion, for example,

a coverage criterion which may specify that all source lines must be executed at least

once in a set of tests. This set of tests is then called a test suite and is the result

of the whole test generation procedure. It is typically written into files that can be

presented to the programmer and executed in order to evaluate the program under

test.

When looking closely at the last three stages, each stage can be divided further into

two steps from a scientific point of view: (i) creating any input data/test case/test

suite that fulfills a certain criterion, and (ii) creating an optimized input datum/test

case/test suite with respect to a certain criterion. For example, an optimized test

5



1 Motivation 1.2 Automated Test Generation

suite may achieve a certain coverage level on the source program while still mini-

mizing the number of test cases needed. Another example would be an optimized

version of a test case that shows the same error as the unoptimized version while

minimizing the number of method calls needed to show the error and thus making

it easier for the programmer to understand it.

1.2.3 Problems in Automated Test Generation

Figure 1.2 shows the process of automated test generation and execution. A test

generator uses the system under test to create test cases, usually in the form of

source files. These test cases are then executed by the test runner. A test oracle

compares the actual output of the test run with the intended output as specified in

the test and produces the test verdict (success or failure).

Test 
Generator

Test Case

Test 
Runner

Test 
Outcome

Test 
Oracle

Test 
Verdict

Source

Specification

Figure 1.2: The process of automated test generation and execution, adopted from [GWKU08]

In this process, approaches for automated test generation are facing the following

additional problems: [GWKU08]

The oracle problem. Deciding if the test outcome matches the intended behavior

of the system is only possible if this behavior is known. Normally, the tester

has a mental model of the system under test from which he derives the test

oracle. Automated test generation approaches often rely on additional system

specification in the form of Design by Contract™. Design by Contract™ adds

semantic information to methods and classes, see section 3.1 for details.

The hidden state problem. When creating objects to be used as test input, setting

the state of these objects automatically can be difficult if it cannot be accessed

directly from the outside. Imagine, an instance of the class Counter shown in

Listing 1.1 with getCount()==7 is needed as test input. Due to the member

6



1 Motivation 1.2 Automated Test Generation

count being protected, an object with getCount()==7 can only be created by

calling countUp() seven times in a row.

1 public class Counter {
2 protected int count = 0;
3 public void countUp() { count++; }
4 public void countDown() { count--; }
5 public int getCount() { return count; }
6 }

Listing 1.1: Class demonstrating the hidden state problem.

The state explosion problem. While ideally one would like to test all possible com-

binations of method inputs, this is usually not possible because there are sim-

ply too many combinations. As a result, more intelligent approaches are nec-

essary, for example by finding input regions where the method behaves iden-

tically.

Method sequence feasibility. When executing a sequence of methods, for example

by choosing methods randomly, it is unknown if this sequence is allowed by

the mental model behind a class. Probably this sequence will never occur in

the application or is prohibited by the documentation. This problem can also

be tackled using Design by Contract™, which allows to specify preconditions

for method calls.

Redundancy. As mentioned, a method may behave identically for different inputs

and therefore, randomly chosen test cases may be redundant.

1.2.4 Automated Test Data Generation

As mentioned above, the task in test data generation is to find an approach or al-

gorithm that is capable of generating meaningful data that can be used as method

input in a test case. Usually, this data is to be constructed in a way such that certain

parts of the method are executed in order to compare its actual output against the

expected output for this case. Consider, for example, the following method that

classifies square and non-square rectangles:

1 public boolean isSquare(double length, double height) {
2 if (Math.abs(length - height) < 0.01) {
3 return true;
4 } else {
5 return false;
6 }
7 }

Listing 1.2: Simple method under test isSquare to demonstrate test data generation.

7



1 Motivation 1.2 Automated Test Generation

For this method, there are at least two obvious cases that should be tested:

• |length− height| < 0.01, and

• |length− height| >= 0.01

In a black box view, that is, without knowing the implementation, and without any

other additional information, this problem could be tackled using a random number

generator for double values. However, there are two problems:

• Depending on the random number generator, the probability for hitting the

case |length − height| < 0.01 may be very low, thus only one of the two cases

may be tested.

• There is no automatic method of determining whether the result of isSquare

is actually correct.

To overcome these problems, constraints for input can be extracted using the source

code. In this example, if length has been generated, constraints for height can be

extracted from the branch in line 2:

• For length−0.01 < height < length+0.01, the then branch is executed and the

method returns false,

• For height ≤ length − 0.01 and height ≥ length + 0.01, the else branch is

executed and the method returns false.

Using an automatic constraint solver, we could now produce double values for all

three cases systematically and feed them into the method, for example, MathUtils.

isSquare(50.0, 50.005).

However, we still do not know whether the result is correct. To decide this, we need

an additional specification for the method:

isSquare(length,height) =
true if |length− height| < 0.01

false if |length− height| >= 0.01

This specification can be added directly to the method source using a behavioral

interface specification language. In this case the Modern Jass syntax is used. The

concept of annotating a program using such specifications is also called Design by

Contract™ (see Section 3.1 below for details).

8



1 Motivation 1.2 Automated Test Generation

1 @Also({
2 @SpecCase(pre="Math.abs(length-height)<0.01", post="true"),
3 @SpecCase(pre="Math.abs(length-height)>=0.01", post="false")
4 })
5 public boolean isSquare(double length, double height) {
6 ...
7 }

Listing 1.3: Specification added to the isSquare method.

Note that for this simple case, the specification seems like a re-implementation of

the whole method, but this is not the case once the methods are bigger. Specifica-

tions always describe what a method does, while the implementation describes how

it is done.

The expected result for each case can now be extracted from the specification, which

is taken for granted, and used as a test oracle in the test case:

1 @Test
2 public void testIsSquare1() {
3 ...
4 boolean expected = true;
5 boolean found = MathUtils.isSquare(50.0, 50.005);
6 assertEquals(expected, found);
7 }

Listing 1.4: Test case for the isSquare method.

Object Types. As we are dealing with object-oriented programs nowadays, we also

need to consider object types as arguments to methods. An object, in this case,

encapsulates multiple data fields which could have primitive types or object types

again.

Compared to primitive types, where the state space is typically one-dimensional,

for object types with more than one data field, the state space becomes multi-

dimensional. As an example, consider the following simple class ClosedInterval.

1 public class ClosedInterval {
2 protected int minValue;
3 protected int maxValue;
4 ...
5 }

Listing 1.5: Simple class to demonstrate object state space.

The state space for an object of type ClosedInterval can be depicted in a two-

dimensional graph, where any constraint on it can be drawn as an area. An example

is shown in Figure 1.3.

9



1 Motivation 1.3 Problem Description

maxValue

minValue

1

1 5 10

5

10

15

15

20

constraint on state space, e.g.
minValue ≥ −2∧minValue ≤ 10∧
maxValue ≥ −2∧maxValue ≤ 16

Figure 1.3: State space for an object of type ClosedInterval with an examplary constraint.

Note that even the state space of a string object can be seen as an N-dimensional

discrete space, where N is the number of characters in the string.

1.3 Problem Description

1.3.1 The Precondition Mismatch Problem

Consider the following common structure of a method implementation:

1 public void methodUnderTest(SomeClass anObject, OtherClass ...) {
2 ...
3 anObject.doSomething1();
4 anObject.doSomething2();
5 ...
6 otherMethod(anObject);
7 ...
8 }

Listing 1.6: Principal structure of the precondition mismatch problem.

The method receives an object as a parameter, then mutates4 the object and passes

it on to another method. Now assume that both the caller method (methodUnderTest)

4The term mutation is used in this document for a sequence of accesses to an object that modify
the object state. A mutator may be a public method call, a public member access or any other
technique to modify the object. Mutation in this document has nothing to do with mutation
testing, that is, modifying the program under test on the source level.

10



1 Motivation 1.3 Problem Description

and the called method (otherMethod) have some requirements on their argument

anObject:

1 @Pre("anObject.getSomething() > 42")
2 public void methodUnderTest(SomeClass anObject, OtherClass ...) {
3 ...
4 anObject.doSomething1();
5 anObject.doSomething2();
6 ...
7 otherMethod(anObject);
8 ...
9 }

10

11 @Pre("anObject.getSomething() > 45")
12 public void otherMethod(SomeClass anObject) {
13 ...
14 }

Listing 1.7: Principal structure of the precondition mismatch problem with specifications.

The caller method requires the object to be in a particular state at the beginning and

then mutates this object and thus its state in the method body. The called method

also requires its parameter to be in a particular state. Depending on the specifica-

tions of these two methods and the mutation of the object before the call, there may

be situations where anObject fulfills the precondition of the caller method, but not

of the called method.

Figure 1.4 symbolically depicts the state space described by both method precon-

ditions and the mutation done in the caller method for three fictive input objects.

For the last object, the mutation transforms the object into a state where it is not

accepted by the precondition of the called method anymore. This means that either

(i) the precondition of the caller method is too weak, (ii) the precondition of the

called method is too strong, or (iii) the mutation drives the object state away from

what was originally intended. Of course, the behavior of the mutators of anObject

also has to be specified correctly.

The specification mismatch reveals a possible bug in the program. Although it might

never occur at runtime that the specification of the called method is not met, be-

cause the objects passed to the caller method actually conform to a stronger spec-

ification than formally given in the method’s precondition, a violation of the speci-

fication is possible when the method is called at another point or used by another

programmer. The program contains a hidden error, that is, an error which is not

currently apparent but may be exhibited at a later time.

This thesis presents an approach called TESSAN, which tries to uncover such hidden

errors in programs. For each precondition mismatch found in a program, a test

case is generated exhibiting a situation revealing the hidden error. By inspecting the

11



1 Motivation 1.3 Problem Description

Object State
Dimension 1

Object State
Dimension 2

1 2 3

1' 2' 3'

Precondition of 
the MUT

Precondition of 
the callee

Figure 1.4: Visual representation of the precondition mismatch problem. Objects passed to the
method under test fulfill its precondition (green, hatched area), but after mutation (blue
arrows), some may not fulfill the precondition of the called method (red, crosshatched
area).

test case, the programmer is now able to decide how to handle the situation, either

modifying one of the preconditions of the caller or called methods or specifying the

behavior of the mutation sequence more precisely.

As an example, assume that the methods doSomething1() and doSomething2() from

Listing 1.7 increase the return value of getSomething() by one. Then an object

having getSomething() returning 43 would, when passed to methodUnderTest, result

in a precondition violation of otherMethod, because it requires getSomething()> 45

while it is only equal to 45.

This situation can be shown to the programmer by generating a failing unit test like

shown in Listing 1.8.

1 @Test
2 public void testMethodUnderTest() {
3 SomeClass anObject = new SomeClass();
4 anObject.setSomething(43);
5 methodUnderTest(anObject);
6 }

Listing 1.8: Unit Test showing the specification mismatch in the methodUnderTest from Listing 1.7

When executing this unit test with runtime assertion checking enabled (that is, all

Design by Contract™ specifications are checked during the actual execution of the

program, see Section 3.1.2), it results in a precondition violation and shows the

programmer a situation he might not have thought of.

12



1 Motivation 1.3 Problem Description

1.3.2 Mutation Sequences

To tackle the specification mismatch problem correctly, it is essential to handle all

possible mutation sequences which are possible in the method under test. As this is

just an ordinary method, all common control structures can be placed there by the

programmer. But while programming languages support various control structures

in different variants, like if/else, switch, for, while or do/while, these control

structures can be classified into three common cases:

• The linear case, that is, the mutation sequence is a linear sequence of mutators

without any control structures,

• The branching case, that is, the mutation sequence at most features state-

ments where an alternative execution path is taken, and

• The looping case, that is, the mutation sequence features repeated statements.

Figure 1.5 shows those three cases depicted in the form of control flow graphs as

commonly used in software modeling.

anObject.doSomething1()

anObject.doSomething2()

otherMethod(anObject)

(a) Linear case

anObject.doSomething1() anObject.doSomething2()

otherMethod(anObject)

i < 10

(b) Branching case

anObject.doSomething1() anObject.doSomething2()

otherMethod(anObject)

i < 10

i = i + 1

(c) Looping case

Figure 1.5: Different possible control flow structures in the mutation sequence.

Note that while for the linear case the handling is trivial, a sequence containing b
branches already requires 2b different sequences to be handled. It is generally un-

decidable which branches are actually taken on program execution, as it is the case

with many other questions in the field of static program analysis [Lan92, Ram94].

Therefore, all possible paths have to be taken into account, with the possibility of

presenting the user a test case featuring an infeasible path.

Because of the same reason branching is undecidable, also the number of loop iter-

ations is undecidable. These are the same problems model checking approaches are

facing, so a bounded loop unrolling will be used, similar to bounded model check-

ing.

13



1 Motivation 1.4 Thesis Statement

1.3.3 Test Case Generation

When generating a test case for the programmer to show the specification mismatch

using a counterexample, we need to instantiate an object with three properties:

1. It must be an instance of the method under test’s parameter type or of a sub-

type of this type.

2. It must be initializable to the “values” found when generating the counterex-

ample.

3. It must behave like other objects of method under test’s parameter type.

It is usually not feasible (or even possible) to simply call the constructor of a class

implementing the required type, because (i) the constructor may require additional

arguments, either of primitive or object types, which would require a tree of objects

that have to be instantiated in turn. Even if this would be possible, (ii) the class may

not have public methods required to set the values needed, or the corresponding

methods cannot be identified easily. This suggest using a mocking library instead of

the original implementation of the class, but brings another problem: (iii) the return

value of all methods of a mock object has to be pre-configured separately for all

valid invocations.

1.4 Thesis Statement

Certain types of bugs in Design by Contract™ programs can be found directly us-

ing static analysis methods. The TESSAN approach presented in this thesis reveals

hidden mismatches between the Design by Contract™ specification and the actual

implementation of a method.

The main advantages of the TESSAN approach are:

• TESSAN reveals hidden errors that are probably not apparent in the current

program version but may be exhibited once the implementation changes.

• By creating failing test cases, the found problems are illustrated to the pro-

grammer in a familiar way.

• Due to the high level of abstraction and selection of the underlying tools, the

approach is applicable to different source and specification languages.

14



2 Running Example

2.1 Overview

The TESSAN approach will be explained and demonstrated using a small example

used throughout this thesis. The example consists of four classes mimicking a sys-

tem handling messages and packets. Figure 2.1 shows the UML class diagram of

all classes involved and their relations. A Message object consists of a list of Pack-

ets and has various methods to modify this list. A MessageProcessor consumes a

Message and returns its data using the MessageDataExtractor.

+ Packet(type: int, content: String)
+ getContent() : String
+ getType() : int

+ START = 1 : int
+ INTERIM = 2 : int
+ END = 3 : int
# type : int
# content : String

Packet

+ Message()
+ getPackets() : List<Packet>
+ addPacket(p: Packet)
+ size() : int
+ getPacketType(i: int) : int
+ getLastPacketType() : int
+ getFirstPacketType() : int
+ removePacket(i: int)
+ removeFirstPacket()
+ removeLastPacket()
+ isValid() : boolean

Message

*
# packets

1

+ processMessage(message: Message) : String
+ processPacket(packet: Packet) : String

MessageProcessor

<<use>>

+ extractData(Message message) : String
MessageDataExtractor

<<call>>

Figure 2.1: UML class diagram of the running example.

15



2 Running Example 2.2 Java Source

2.2 Java Source

Listing 2.1, 2.2, 2.3, and 2.4 show the Java source code of those classes.

1 import jass.modern.Post;
2 import jass.modern.Pre;
3 import jass.modern.Pure;
4 import java.util.ArrayList;
5 import java.util.List;
6

7 public class Message {
8

9 protected List<Packet> packets = new ArrayList<Packet>();
10

11 @Pure
12 public List<Packet> getPackets() {
13 return packets;
14 }
15

16 @Post("size() == @Old(size())+1")
17 public void addPacket(Packet e) {
18 packets.add(e);
19 }
20

21 @Pure
22 public int size() {
23 return packets.size();
24 }
25

26 @Pure
27 @Post("@Return == (getFirstPacketType() == Packet.START && getLastPacketType() ==

Packet.END)")
28 public boolean isValid() {
29 return getFirstPacketType() == Packet.START && getLastPacketType() == Packet.END;
30 }
31

32 @Pure
33 public int getFirstPacketType() {
34 if(packets.size() > 0) {
35 return packets.get(0).getType();
36 } else {
37 return 0;
38 }
39 }
40

41 @Pure
42 public int getLastPacketType() {
43 if(packets.size() > 0) {
44 return packets.get(packets.size()-1).getType();
45 } else {
46 return 0;
47 }
48 }
49

50 @Pre("size() > 0")

16



2 Running Example 2.2 Java Source

51 @Post("size() == @Old(size()) - 1")
52 public void removeFirstPacket() {
53 packets.remove(0);
54 }
55

56 @Pre("size() > 0")
57 @Post("size() == @Old(size()) - 1")
58 public void removeLastPacket() {
59 packets.remove(packets.size()-1);
60 }
61

62 }

Listing 2.1: Java source of the Message class.

1 import jass.modern.Invariant;
2

3 public class Packet {
4

5 public static final int START = 1;
6 public static final int INTERIM = 2;
7 public static final int END = 3;
8

9 @Invariant("type >=1 && type <= 3")
10 protected int type;
11

12 @Invariant("content.length() <= 8")
13 protected String content;
14

15 public Packet(int type, String content) {
16 this.type = type;
17 this.content = content;
18 }
19

20 public String getContent() {
21 return content;
22 }
23

24 public int getType() {
25 return type;
26 }
27

28 }

Listing 2.2: Java source of the Packet class.

17



2 Running Example 2.2 Java Source

1 import jass.modern.Pre;
2

3 public class MessageDataExtractor {
4

5 @Pre("message.size() > 0")
6 public String extractData(Message message) {
7 StringBuffer data = new StringBuffer();
8 for(Packet p : message.getPackets()) {
9 data.append(p.getContent());

10 }
11 return data.toString();
12 }
13

14 }

Listing 2.3: Java source of the MessageDataExtractor class.

1 import jass.modern.Pre;
2

3 public class MessageProcessor {
4

5 @Pre("...")
6 public String processMessage(Message message) {
7

8 ...
9

10 String messageData = new MessageDataExtractor().extractData(message);
11 return messageData;
12 }
13

14 public String processPacket(Packet p) {
15 return p.getContent();
16 }
17

18 }

Listing 2.4: Java source of the MessageProcessor class. The processMessage method is not fully

implemented because different implementations will be discussed later.

18



3 Preliminaries

3.1 The Design by Contract™ concept

3.1.1 Basic Principles

Design by Contract™ is a software design approach made popular by Bertrand Meyer

with the design of the programming language Eiffel [Mey97]. It is based on the

metaphor of business contracts between two parties, where both agree on certain

obligations and as a result receive some benefits. In software development, the two

parties are methods, one has the role of the client (the caller method) and the other

one is the supplier (the called method, also called callee). Obligations and benefits

translate into so-called preconditions and postconditions, assertions usually writ-

ten in predicate logic. If a method is called with its precondition established, it is

guaranteed that after method execution its postcondition will be established.

More formally, for a method M , precondition P and postcondition Q this can be

written in Hoare logic notation as

{P}M{Q},

which means, “any execution of M starting in a state where P holds, terminates in a

state where Q holds” [Mey97].

Figure 3.1 shows the Design by Contract™ principle using two simple methods. The

callee specifies that whenever its parameter a is greater than eight, the return value

of the function will be greater than ten.

19



3 Preliminaries 3.1 The Design by Contract™ concept

...

public void caller() {

   int x = 9;

   int y = callee(x);

   ...

}

...

...

public int callee(int a) {

   return a + 5;

}

...

Precondition:  a > 8

Postcondition:  return value > 10

y > 10

Figure 3.1: The Design by Contract™ principle: Methods declare their pre- and postconditions and
may only be called if the precondition is fulfilled and in turn ensure that at the end the
postcondition is fulfilled.

3.1.2 Runtime Assertion Checking

While the specification1 of the callee(...) method in Figure 3.1 was just added in-

formally to the source snippet, usually it is written in a formal specification language

and added directly to the source code. As a result, the specification can be turned

into executable code and thus pre- and postconditions can be actually checked to

hold at runtime. This is called runtime assertion checking (RAC) and most specifica-

tion languages are accompanied by tools for RAC.

As a result, neither in the caller nor in the callee the programmer needs to check

if the preconditions of the callee is satisfied. Similarly, the caller does not need to

check if the result of the callee is correct. This not only lets the programmer focus

on the actual implementation but also completely eliminates duplicate checks that

often arise from a very defensive programming style. [Mey92]

What happens if an assertion is violated at runtime depends on the specific tool

used, but usually an exception mechanism is used to handle the error. RAC can

also be disabled easily if needed, for example, if the program did not produce any

runtime violations in the testing and beta phase, it may be reasonable to disable the

checking in production for a speedup. [Mey92]

1The term specification is used here to summarize all Design by Contract™ assertions for a certain
artifact, for example, method, class or program.

20



3 Preliminaries 3.1 The Design by Contract™ concept

3.1.3 Behavioral (Interface) Specification Languages

As mentioned above, specifications must be encoded in the program source using

Behavioral Interface Specification Languages (BISL), sometimes also only called Be-

havioral Specification Languages or just Specification Languages, because some of

them have more features than just describing the behavior of interfaces using pre-

/postconditions and invariants.

The most popular and versatile language is the Java Modeling Language (JML) [LBR99].

Galler et al. [GWP07] list and compare more approaches, including Jass, Contract4J5,

jContractor, Jcontract, J@va, iContract, AOTDL, and Handshake.

The tools implementing the TESSAN approach however use the Modern Jass [Rie07]

syntax. Modern Jass uses Java 5 annotations to place specifications in the source

code. You have already seen pre- and postconditions earlier in this document. List-

ing 3.1 briefly shows the annotations commonly used in this thesis.

1 @Invariant("type >=1 && type <= 3")
2 protected int type;
3

4 ...
5

6 @Pre("size() > 0")
7 @Post("size() == @Old(size()) - 1")
8 public void removeLastPacket() {
9

10 ...
11

12 @Also({
13 @SpecCase(pre="input_string.length() == 0", post="@Return == false"),
14 @SpecCase(pre="input_string.length() > 0", post="@Return == true")
15 })
16 public boolean isDouble(String input_string) {
17 ...
18

19 @Pure
20 public int size() {
21 ...

Listing 3.1: Commonly used Modern Jass annotations

Line 1 defines an invariant on a member int type.2 The specification itself is writ-

ten in Java expression syntax with a few special keywords (also starting with the @

symbol) inside a string literal.

Line 6 and 7 show a pre- and postcondition specification on a method. In Line 7 also

the @Old expression is shown, which is used to access the state of variables before

the method was executed (also called pre-state access).

2Note that invariants can be either placed at members or at the class declaration.

21



3 Preliminaries 3.1 The Design by Contract™ concept

Line 12 through Line 15 show how multiple method behaviors can be defined using

the @SpecCase annotation comprised of one pre-/postcondition pair and the @Also

container annotation.

Finally, on Line 19 a method is marked as pure, which means it is side-effect free

and cannot modify the object/program state.

3.1.4 Further Concepts

Invariants. Like business contracts are accompanied by law, software contracts

can be accompanied by invariants. Class invariants are specifications that must hold

during the whole life-time of any object of this class. For example, a class Rectangle

may specify that its width and height always have to be positive. Usually, invariants

may be violated during the execution of a method and can be seen as an implicit

extension of the pre- and postcondition of all methods. If we reconsider a method

M and its pre- and postconditions P and Q, respectively, as well as an invariant INV

of the surrounding class, the actual semantics of the method is

{P ∧ INV }M{Q∧ INV }.

Multiple Method Behaviors. Similar to the piecewise definition of a mathematical

function, the behavior of a method may be different for different input values. For

a single pre-/postcondition pair (P,Q), the behavior of a method may be described

as

P =⇒ Q,

that is, if P holds at the beginning Q holds at the end, if P does not hold at the

beginning the behavior is undefined.

Most specification languages support the definition of multiple pre-/postcondition

pairs (P1,Q1), (P2,Q2), . . . , (Pn,Qn) with the semantics

(P1 =⇒ Q1)∧ (P2 =⇒ Q2)∧ · · · ∧ (Pn =⇒ Qn).

Note that it is usually undefined what happens if P1, P2, . . . , Pn do not describe

disjunct areas in the state space.

22



3 Preliminaries 3.1 The Design by Contract™ concept

Model Fields. Model fields are fields (class members) only accessible from the

specification. Model fields describe properties of the class in a more abstract way

than the actual implementation. For example, a property of a Stack class could be

isEmpty. If this property is defined as a boolean model field, (i) the specification

does not need to reference the (probably protected) stack content directly, for ex-

ample by calling content.isEmpty() (ii) helper methods like isEmpty(), which are

only needed in the specification need not be added to the class interface, and (iii) the

specification can also be used in abstract types like interfaces that have no member

fields.

To allow runtime assertion checking, a model field also needs a representation, that

is, a way to obtain its value from the actual implementation. Listing 3.2 shows how

model fields and model field representations are declared in Modern Jass.

1 @Model(name="isEmpty", type=Boolean.class)
2 @Represents(name="isEmpty", by="content.isEmpty()")
3 public class Stack<T> {
4 protected ArrayList<T> content;
5 ...
6 }

Listing 3.2: Example of a model field declaration in Modern Jass.

Behavioral Subtyping. The commonly used Liskov Substitution Principle (LSP) [LW94]

says that any object of type T in a program may be replaced by an object of type S,

which is a subtype of T , without modifying the essential functioning of the program.

Type systems therefore impose restrictions on the types when overriding a method

in a subclass, for example allowing only “wider” data types in method arguments

and “narrower” data types for return values.

When using Design by Contract™, the LSP implies that

• Method preconditions can only be weakened in subtypes, that is, the precon-

dition of an overriding method may only allow more values as its input but

never fewer.

• Method postconditions can only be strengthened in subtypes, that is, the post-

condition of an overriding method may only allow fewer values for its output

but never more.

• Class invariants of the base type must also be established by the derived type.

23



3 Preliminaries 3.2 System Dependence Graphs

Design by Contract™ tools therefore often combine preconditions of base types and

subtypes using disjunction and postconditions using conjunction. For example, in

Modern Jass, the effective precondition of an overriding method is

Peffective = Pbase type ∨ Psubtype,

while the effective postcondition would be

Qeffective = (Pbase type =⇒ Qbase type)∧ (Psubtype =⇒ Qsubtype). [Rie07]

3.2 System Dependence Graphs

The origins of dependence graphs are in the field of compiler optimization [KKP+81,

FOW87], for example to exploit vectorization and parallel processing of indepen-

dent code sections. Dependence graphs are directed graphs where nodes represent

program components (for example, statements) and edges represent dependencies

between those components (for example, data dependencies or control dependen-

cies).

Example. Figure 3.2 shows a dependence graph of a small program which can be

seen in Listing 3.3. A control dependence edge from node ni to nj means that the

execution of nj depends on ni, for example, the node labeled r = r + 1 is only

executed if the condition in node if(A[i]==1) evaluates to true. A data dependence

edge from node nk to node nl means that some variable in the statement nl depends

on a variable from statement nk, for example, the value of i in write(i) depends

on the initialization i = 0 and the incrementation done in i = i + 1.

ENTRY

r = 0 i = 0 while(i<n) write(i)

if(A[i]==1) i = i + 1 n = n - 1

r = r + 1

Figure 3.2: Dependence graph of the program in Listing 3.3, adopted from [WH09]. Black solid arcs
denote control dependencies, blue dashed arcs denote data dependencies.

24



3 Preliminaries 3.2 System Dependence Graphs

1 r = 0;
2 i = 0;
3 while(i<n) {
4 if(A[i] == 1) {
5 r = r + 1;
6 }
7 i = i + 1;
8 n = n - 1 ;
9 }

10 write(i);

Listing 3.3: Small program to demonstrate dependence graphs, adopted from [WH09].

Slicing. The most popular application of dependence graphs is static slicing. Slicing

is a program transformation that deletes all statements from a program which are

not relevant to compute the value of a given variable at a given execution point.

For example, the static slice of the program given in Listing 3.3 with respect to the

value of i in line 10 would contain only lines 2, 3, 7, and 8. While there are other

algorithms using flow-propagation [WH09], static slicing using dependence graphs

can be done by simply applying a graph reachability algorithm. In the example

above, the set {2, 3, 7, 8} can also be obtained by recursively following back all edges

beginning from the node write(i) in Figure 3.2.

System Dependence Graphs. While early dependence graphs were only applica-

ble for monolithic programs containing just one function, Horwitz and others ex-

tended [HRB90] the notion of dependence graphs to programs with procedures and

called the resulting graph a System Dependence Graph (SDG). An SDG consists of

multiple, linked Procedure Dependence Graphs (PDG), one for each procedure in the

program.

To handle procedure calls in SDGs, the new node types call, formal-in (FI), actual-in

(AI), formal-out (FO), and actual-out (AO) are added. These are linked using new

edges of type call (CL), parameter-in (PI), and parameter-out (PO). Listing 3.4 and

Figure 3.3 depict the mechanism using a small example program.

1 void main() {
2 int a = 5;
3 int b = 7;
4 int c = add(a, b);
5 }
6 int add(int x, int y) {
7 return x + y;
8 }

Listing 3.4: Example program demonstrating method calls in system dependence graphs.

25



3 Preliminaries 3.3 SMT solvers

ENTRY
main

EXPR
int a = 5;

EXPR
int b = 7;

CALL
add

ENTRY
add

FI
int x

FI
int y

FO
int return

EXPR
return x + y;

CLAI
param 1

AI
param 2

AO
return

PI PI PO

Figure 3.3: System dependence graph of the program in Listing 3.4.

Information Flow Control. Another application of SDGs is information flow con-

trol. By calculating static slices it is possible to determine whether a given vari-

able containing confidential information (i) will influence the program at certain

execution points and thus allows conclusions about the variable content, (ii) will

leak its content to an insecure output port, or (iii) can be influenced from the out-

side. [HS09]

3.3 SMT solvers

A Satisfiability Modulo Theories (SMT) problem is the question whether a logic for-

mula containing more than just boolean variables is satisfiable or not. This is an

extension of the Boolean Satisfiability Problem (SAT) where the formula only con-

sists of boolean literals, conjunctions, disjunctions and negations, for example

(A∨ B)∧ (C ∨D)∧ E ∧ (¬A∨¬D ∨¬E).

The result of feeding this formula into a SAT solver could be “satisfiable with A =
true, C = true, E = true,D = false”.

While the SAT problem is generally NP-complete, there are many algorithms being

able to approximate the problem efficiently, even for huge number of clauses and

26



3 Preliminaries 3.4 SYNTHIA Fake

variables.

When including clauses with non-boolean variables, for example, x + y ≥ 10 with

x and y being integer variables, this is called an SMT problem. While this problem

could be reduced to a boolean problem by modeling each bit of the integer as a

boolean variable and the arithmetic operations as logic operations, this approach

quickly results in extremely large problems for easy facts such as x+y = y+x and

is limited to fixed-with data types (for example, 32-bit integers). Therefore, special

theories and decision algorithms have been developed that support, for example,

integer arithmetics or real arithmetics.

Today, there are numerous SMT solvers available, including, but not limited to,

Yices [DdM06], Z3 [dMB08], and Simplify [DNS05]. Yices, which will be used in

the presented tool, features linear arithmetic over integers and reals, uninterpreted

functions3, bit vectors, arrays, and recursive data types (this list is not exhaus-

tive). [DdM06]

The annual SMT solver competition, SMT-COMP4 [BdMS05] and the application of

SMT solvers in various areas such as bounded model checking, predicate abstraction,

planning, symbolic simulation and test case generation leads to continuous advance-

ments in this field. [dM07, DdM06]

3.4 SYNTHIA Fake

SYNTHIA fake objects are objects whose behavior is automatically synthesized from

the Design by Contract™ specifications of the underlying class. [GWW10]

Note that there is no common sense on the semantics of fake objects, mock objects,

and stub objects. In this thesis, mock objects are defined as objects that always

return the same value for a successive calls of the same method once they have

been configured, usually by the programmer. In contrast, fake objects simulate the

behavior of the class without using the real implementation and thus may return

different values on successive calls of the same method.

For SYNTHIA fakes, this behavior is synthesized from the Design by Contract™ speci-

fications of the class that give semantic information about the changes each method

applies to the objects state. Therefore, the state of an object is defined as the set of

all publicly observable fields, method return values and Design by Contract™ model

fields. [GWW10]

3Uninterpreted functions are functions only defined by axioms such as f(f(i, v)) = f(i, v) but
without any real definition or implementation.

4http://www.smt-comp.org

27

http://www.smt-comp.org


3 Preliminaries 3.4 SYNTHIA Fake

Listing 3.5 shows a small Stack class with two state variables: size() and peek().

Figure 3.4 depicts the state space of a Stack object and the effect of method calls to

the state of the object.

1 public class Stack {
2 @Post("size() == @Old(size()) + 1 && peek() == @Old(d)")
3 public void push(Double d) { ... }
4

5 @Pure
6 @Pre("size() > 0")
7 public Double peek() { ... }
8

9 @Pure
10 public int size() { ... }
11

12 @Pre("size() > 0")
13 @Post("size() == @Old(size()) - 1")
14 public void pop() { ... }
15 }

Listing 3.5: Example Stack class for a SYNTHIA fake object

size()

peek()

push(2.7)

push(3.5)

push(5.0)

1 2 3 4

peek()

size()

Figure 3.4: Behavior of a SYNTHIA fake object of the Stack class from Listing 3.5. While a call to a
pure method like size() and peek() does not alter the state, a call to push(..) brings
the object to a new point in its state space, affecting the return values of method calls.

The initial values of a SYNTHIA fake object can be set arbitrarily so that the object

can be configured to a state needed in a test case.

Using SYNTHIA fake objects, the dependencies of objects on the environment (for

example, files, databases, or network connections) can be eliminated. Furthermore,

SYNTHIA fakes allow the testing of one specific method implementation isolated by

faking all other parameters needed in the test case. As they are synthesized auto-

matically, they also perfectly fit automatic test generation.

28



4 Related Work

This section gives an overview of other fully automated approaches that are capable

of generating objects that can be used as test data, ideally satisfying the precondi-

tion of a method under test.

Test data generation approaches can be categorized into

• random-based (generating sequences of constructor and method calls and

storing them in a pool for reuse [MCLL07, PLEB07, BDS06], sometimes opti-

mized with heuristics [WGOM10, CLOM08, CLOM06, Par10a, Par10b]),

• search-based (formulating the problem as an optimization problem and as-

sessing a solution using mathematical function [McM04], for example, evolu-

tionary approaches [Ton04] using genetic algorithms),

• constraint-based (finding a set of constraints on the data, often by combining

information from static analysis with actual executions, and then solving the

constraint set [SMA05, GKS05, TD08, CGP+08, GQWW11]), or

• AI-based (using AI approaches such as planning to find proper generation se-

quences [LB05, DFQ07, Zeh10])

The following paragraphs briefly describe promising approaches that work with

specifications.

Bertrand Meyer, inventor of the programming language Eiffel, co-authored a tool

named AutoTest [MCLL07] which is capable of generating unit tests for programs

written in Eiffel. As Eiffel has support for contracts built into the language, the tool

relies on contracts as test oracles.

For the generation of objects as test input, a pool is maintained where all generated

objects are stored. If no object for a requested type is present, a new object is

29



4 Related Work 4 Related Work

constructed by choosing a constructor randomly. Any needed arguments are also

created randomly; primitives values are chosen from a set of predefined values (for

example, 0, MIN, MAX, ±1, ±2, ±10, . . . for integer variables), objects are created by

calling the algorithm recursively. Afterwards, the object is modified with a certain

probability by applying mutators.

To diversify the pool, existing objects are also mutated with a certain probability be-

fore being reused. Furthermore, the Adaptive Random Testing (ART) approach [CLM04]

is integrated [CLOM08], trying to place objects more evenly in the state space. To

quantify the term “evenly”, an object distance has been defined [CLOM06].

If a test input triggers a failure (for example, a postcondition violation), AutoTest

attempts to minimize the generation sequence to make the test case easier to un-

derstand for the programmer. This minimization is done using a heuristic which

removes all calls not related to the input of the erroneous method.

AutoTest has already found several bugs in real-world software, but according to

the authors these are mostly missing non null clauses in preconditions.

Wei et al. extended [WGOM10] AutoTest’s object selection algorithm to improve

the method coverage in “hard cases”. These are those cases where the precondition

of a method requires its parameters to be in a certain state or even having a certain

relationship which is very unlikely to be randomly chosen from the pool of available

objects.

Therefore, Wei et al. additionally store information about which objects satisfy

which precondition clauses, and if the object selection algorithm has a hard time

finding appropriate objects randomly, it is guided by this information to choose

promising object combinations. Wei et al. took special care that their extension

does not impose great overhead on the general performance of AutoTest.

Pacheco et al. developed a guided random test data generation approach [PLEB07]

for object-oriented programs and implemented it in a tool called RANDOOP. The

generation process uses the well-known concept of method call sequences which

can be combined and extended to form new call sequences.

The algorithm works by incorporating feedback from an on-line execution phase of

sequences where they are classified as legal or illegal (that is, sequences that throw

unexpected exceptions) and checked for redundancy (two sequences are redundant

if they produce the same code modulo variable names).

30



4 Related Work 4 Related Work

New test input is generated by selecting a method m(T1 p1, T2 p2, . . . , Tk pk) from

the code base and randomly using a sequence from the pool of valid sequences that

generates an object of type Ti to produce each parameter pi of the method m. For

primitive types, values from a predefined set are chosen.

Sequences are classified as error-detecting whenever a contract is violated during

the execution. Note that the term contract here references a set of general rules

like “method throws no NullPointerException” instead of method-specific Design by

Contract™-like contracts. By default, there are just a few more rules like “throws

no assertion error”, “o.equals(o) returns true”, “o.equals(o) throws no exception” or

“o.hashCode() throws no exception”.

Furthermore, a set of filters stop sequences from being reused and combined to

new sequences, for example if a sequences produces the same object as another

sequences and thus result1.equals(result2) returns true.

A case-study [PLB08] where the tool was used by a test team at Microsoft to test

an already very well-tested core component of the .NET framework showed that the

approach is capable of finding errors that neither humans nor other tools were able

to find in reasonable time. In this case, RANDOOP found 30 previously-unknown

errors in the component.

Boshernitsan, Doong, and Savoia describe [BDS06] a commercial tool named Agi-

tarOne that helps programmers in the creation of unit tests by automatically creat-

ing test input for existing code and inferring assertions based on that input. Agitar

Technologies coins the term agitation for the whole process which is not fully auto-

mated but lets the user choose the right assertions eventually.

AgitarOne uses static and dynamic analysis of Java byte code to generate input

data for a method under test. For example, it extracts a control flow graph for

the method, unrolling loops and recursions up to a defined limit, and then uses

constraint solvers and execution traces to exercise all code paths. Several heuristics

and approximations are used to speed up the whole process.

The technique for inferring assertions is similar to the approach used by the popu-

lar tool Daikon [ECGN99] with the difference that AgitarOne does not try to infer

them from after collecting many execution traces but starts with a set of relation-

ships between variables found in the source code and created by heuristics and

removes those that are violated during execution. AgitarOne does not support

any special Design by Contract™ languages but outputs assertions as boolean Java

expressions.

31



4 Related Work 4 Related Work

For test data generation of primitives values and Strings, AgitarOne uses random

values as well as literals found in the original source code. Specialized constraint

solvers are used to solve, for example, constraints on strings imposed by Java library

calls such as myString.matches("[a-zA-Z]+"). For objects, a random constructor

and a number of mutators are called with recursively generated arguments. Addi-

tionally, objects that are instantiated during the dynamic execution phase of the

method are captured. All objects are stored in a pool for a later reuse. For complex

objects, AgitarOne supports user-defined factories for generating test input.

Tillman and de Halleux present [TD08] Pex, a white-box testing tool developed by

Microsoft Research. Pex uses dynamic symbolic execution of the .NET intermediate

language to explore reachable states of parameterized unit tests.

Dynamic symbolic execution (sometimes also called concolic execution, which stands

for concrete + symbolic execution) was first used by DART [GKS05] and is a tech-

nique where a program is, as the name says, executed both symbolically and con-

cretely. Symbolic execution is used to reason about the program for all possible

inputs by using symbolic representations for the inputs. Replacing all statements

by operations on these inputs results in symbolic formulas for all program variables.

For example, a statement sequence z = x + y; w = z * 5; with x and y being input

parameters would result in a formula mult(add(x,y),5) for w. On each branch,

symbolic execution follows both paths and builds up so-called path conditions using

the conjunction of all branch conditions along the path.

The dynamic part comes in whenever it is not possible to reason about a variable

using the source code alone, for example, when external libraries or programs are

called. In this case, the program execution is steered to the right path by solving the

path condition using a constraint solver and information about the actual value of a

program variable is obtained.

Pex uses the obtained formulas to generate test inputs when applied to a param-

eterized unit test, that is, a unit test where the actual input values are still left as

parameters, only the method call sequence is fixed. This works together with Mi-

crosoft Code Contracts [Bar10], a Design by Contract™ implementation on the .NET

platform, whose preconditions are interpreted as additional branch conditions.

The approach works perfectly for primitive data types. In a recent survey [GA10]

Pex and AgitarOne were the only tools which were able to generate input data

for all conducted tests. Further evaluations, however, showed that Pex is not able to

create objects, whose state cannot be set directly1, without manual intervention. For

1This is due to the hidden state problem, see section 1.2.3.

32



4 Related Work 4 Related Work

example, Pex was not able to create an instance of the MyStack class from Listing 4.1

satisfying the specification getSize()>=2 in line 27.

1 public class MyStack
2 {
3 protected int size = 0;
4 [Pure]
5 public int getSize()
6 {
7 return size;
8 }
9 public void push()

10 {
11 Contract.Requires(true);
12 Contract.Ensures(getSize() == Contract.OldValue(getSize()) + 1);
13 size++;
14 }
15 public void pop()
16 {
17 Contract.Requires(getSize() > 0);
18 Contract.Ensures(getSize() == Contract.OldValue(getSize()) - 1);
19 size--;
20 }
21 }
22

23 public class Benchmark
24 {
25 public bool customStack(MyStack s)
26 {
27 Contract.Requires(s != null && s.getSize() >= 2);
28 return true;
29 }
30 }

Listing 4.1: Object instantiation benchmark for Pex

In this case, Pex calls a constructor of the class and one public interface method

randomly (line 7 of Listing 4.2), but suggests to provide a custom factory for the

type.

1 public void customStackThrowsContractException670()
2 {
3 ...
4 MyStack myStack;
5 bool b;
6 myStack = new MyStack();
7 myStack.pop();
8 Benchmark s0 = new Benchmark();
9 b = this.customStackMember(s0, myStack);

10 ...
11 }

Listing 4.2: Pex generated test for customStack method in Listing 4.1

33



4 Related Work 4 Related Work

Galler et al. directly address the hidden state problem (creating objects whose

state cannot be set directly) in the IntiSa approach [GQWW11]. IntiSa uses the pre-

condition of the method under test and descriptions of method behaviors by means

of Design by Contract™ to find sequences of method calls, which create objects sat-

isfying the precondition of the method under test. The approach thus calculates

the initial states (that is, the state in which objects are passed to the method under

test) of input objects and guarantees that these states are also reachable using their

interface.

IntiSa uses SMT solver-based bounded model checking by modeling the problem

with Kripke structures. A Kripke structure is a type of state machine whose nodes

define the reachable states of a system and whose edges define possible transitions.

Additionally, for each state, a labeling function maps each node to a set of properties

that hold in this state. IntiSa defines Kripke structures for the objects involved by

interpreting the Design by Contract™ behavior of constructors and methods of a

class as possible transitions and using the precondition of the method under test as

a goal property.

The Kripke structures for all objects involved (that is, by dependencies or method

return values) are then encoded to SMT problems and fed into an SMT solver, which

finds a combination of object states where the goal property holds, that is, the

precondition of the method under test is satisfied. By proper SMT encoding, the

solver also returns the sequence of method calls that would be necessary to reach

this states. Therefore, the calculated states could both be used with the real imple-

mentation, by calling the methods directly, or by mock objects, for example Syn-

thia [GWW10].

IntiSa is implemented in the jConTest [Qua10] framework and has been tested on

two case studies where it showed that the approach can generate test input much

faster than pure random approaches and results in a higher method coverage (that

is, the number of methods that can be successfully tested), especially the more

complex the preconditions get.

Galler et al. also tried [GZW10] a different approach by using an AI planner as the

backend for test data generation. AIana claims to be the first approach using AI

planning that supports non-boolean variables as well.

To find a method call sequence that creates and configures an object as required

by the method under test, AIana translates its Design by Contract™ specifications

into the Planning Domain Description Language (PDDL) [GHK+98]. For the planning

domain file, the method behaviors of an object’s methods are used to create PDDL

34



4 Related Work 4 Related Work

actions, where the Design by Contract™ preconditions are used as action precondi-

tions and the Design by Contract™ postconditions are translated to action effects.

The PDDL goal file is created from the method under test’s precondition by select-

ing those clauses talking about the current object. After running the planner on

these files, the resulting plan is translated back into Java method calls. Dependent

objects are created by calling the algorithm recursively, random values are used for

primitive-type arguments.

Galler et al. mention two main limitations of the approach. First, PDDL does not sup-

port any quantifiers and therefore Design by Contract™ specifications using quanti-

fiers cannot be handled at all, and second, the approach only works if the Design by

Contract™ postconditions are calculation rules like “size == @Old(size)+ 1” rather

than descriptive like “size % 2 == 0”. While the former limitation could be circum-

vented by some engineering work on the planner backend, the latter one is probably

more intrinsic to the approach itself. It may also explain why other approaches fo-

cus on boolean programs only as the number of operations on boolean variables is

very limited.

35



5 Approach

5.1 Overview

The TESSAN approach aims to generate test data for a given method under test and

one of its parameters (sometimes also called parameter under test later on) showing

a precondition mismatch problem as described in Section 1.3. This is the case if the

method under test passes the parameter on to another method (the callee method)

after some mutations, and while the precondition of the method under test was

satisfied, that of the callee is not.

The basic idea is to construct a propositional logic formula from the preconditions

and the mutation sequence, that, when fed into an SMT solver, can be used to sys-

tematically construct a parameter object exhibiting exactly one such situation.

Figure 5.1 shows the structure of the method under test we consider for the ap-

proach and defines symbolic names for the relevant elements.

@Pre("...") = 
public void methodUnderTest(SomeClass anObject) {

   

     
     someVar.otherMethod(anObject)
}

@Pre("...") = 
public void otherMethod(SomeClass a) 
{

    ...

}

Pre1

s0
s1
s2
. . .
sn

Pre2

Figure 5.1: Formal structure of the method under test where the TESSAN approach is applicable.

36



5 Approach 5.1 Overview

Pre1 is the precondition of the method under test which shall be fulfilled by the

generated object for the first method parameter, s0, s1, s2, . . ., sn is the mutation se-

quence applied to anObject, and Pre2 is the precondition of the called method, which

shall not be fulfilled by the generated object.

For each mutation sequence s0, s1, s2, . . ., sn (as already mentioned, there may be

multiple sequences due to multiple program paths), TESSAN constructs a formula

M= Pre1; s0; s1; s2; . . . ; sn;¬Pre2

where ; denotes the sequential composition operator from the Unifying Theories

of Programming (UTP) [HH98] to model the sequential execution of program state-

ments (cf. Section 5.3).

IfM is satisfiable,

• the sequence s0, s1, s2, . . ., sn reveals a precondition mismatch problem, that is,

there are objects satisfying Pre1 but not Pre2 when going through this mutation

sequence, and

• the values of the variables at the beginning of the sequence (that is, before s0)

can be used to extract the initial state for the parameter object and fed into

the SYNTHIA fake object to create an actual test case revealing the problem.

The latter is also called initial state problem from now on, and requires proper for-

mulation of the mutation sequence in order to be solved.

Figure 5.2 shows a general overview of the test data generation process in TESSAN.

Program

jConTest/TESSAN

SDG

public static void main(String[] args) {
A a = new A();
a.a1();
for(int i = 0; i < 10; i++) {

a.a2();
}
a.a3();

}

CallSequenceMutation
Sequence

A a = new A()
a.a1()
a.a2()
a.a3()

A a = new A(4)
A.a1("Foo")
B b = new B()
A.a2(b)
A.a3()

A a = new A()

Formula
Pre2Pre1

SMT
Solver

CallSequenceModel Test Case

size = 2
getFirstPacketType = 1
getLastPacketType = 3
isValid = true

; s0; s1; s2; . . . ; sn

public class MessageProcessor$Test {
    @Test(timeout=0)
    public void testProcessMessage() {
        ...
    }
}

¬;

Figure 5.2: Process overview of the TESSAN approach.

Listing 5.1 shows a pseudo code containing the necessary steps in the TESSAN ap-

proach.

37



5 Approach 5.2 Categorization

1 TESSAN(Method, Parameter) : {InitialState}

2 SDG ← createSDG()

3 MUT ← findMethod(Method, SDG)

4 for all Method Calls c in MUT do

5 {RO} ← findRelevantObjects(SDG, c, Parameter)

6 {Path} ← findControlFlowPaths(SDG, c, {RO})

7 {CS} ← createCallSequences(SDG, c, {RO}, {Paths})

8 end for

9 for all Call Sequences s in {CS} do

10 SMTProblem ← createSMTProblem(s)
11 InitialState ← solveSMTProblem(SMTProblem)

12 end for

13 return all unique InitialStates

14 end

Listing 5.1: Pseudocode of the TESSAN approach. Variables in curly braces denote sets.

The following sections describe all involved steps in more detail, but before the in-

depth description starts, a self-categorization is given for the reader’s orientation.

5.2 Categorization

Static. TESSAN is an approach which analyzes a program statically, that is, the pro-

gram itself is never executed during the process of finding test data. In contrast

to that, there are dynamic approaches which are based on execution runs of the

program under test. This basic decision has several consequences:

• On the one hand, static analyses have the principal problem that most ques-

tions about a program are undecidable [Lan92], for example, code reachability:

it cannot be decided statically if a certain code line will ever be executed for a

given input. Similar to that is the aliasing problem, that is, the question which

references point to a certain memory location at a given point in the program,

which is also undecidable [Ram94]. Other problems such as the type inference

problem, that is, deciding which concrete type a given variable has at a point

in the program, are proven to be NP-hard [LH96, PR94].

On the other hand, dynamic approaches have the problem that all of their re-

sults are based on a limited number of program executions whose inputs have

38



5 Approach 5.2 Categorization

to be carefully chosen for any substantial reasoning about the program. Un-

fortunately, dynamic approaches might still fail to exercise important behavior

cases of the program.

• Static analyses have to face unfeasible program paths [ABL02], which is a con-

sequence of the problems mentioned above. It is undecidable, which branches

are taken or will ever be taken and therefore, some of the results will be use-

less. Dynamic approaches will never include unfeasible paths, but in contrast

may miss some important paths.

• For a static analysis, the program source must be available, which is not the

case when executing the program. While this might be a problem in some

cases, static approaches have the advantage that they may be able to deal

with incomplete programs or programs with missing dependencies [XP06] and

there is no need to setup up an execution environment for the program, which

must be done manually in most cases [SYFP08]. Furthermore, when dealing

with Java programs, often the compiled byte code can still be seen as “source

code”, because analysis tools can use byte code as their input.

TESSAN aims to find bugs that might actually never occur in any run of a program

but are only possibly exhibited in the future, for example, due to program changes

or reuse of modules. Therefore, despite all mentioned problems, a static approach

was chosen using good approximations for difficult questions. Of course, using a

combined version of static and dynamic analysis (a so-called hybrid approach), as

done by Pex [TD08], might be able to combine the best of both worlds.

Constraint-based. TESSAN is a constraint-based algorithm, which means that it

does not use random, AI or search methods but builds a set of logic constraints

from the Design by Contract™ specifications and uses an SMT solver to find solu-

tions fulfilling these constraints. Therefore, TESSAN either finds a certain test datum

on the first try or never.

Specification usage. TESSAN uses the program’s Design by Contract™ specification

both as an oracle as well as for test data generation. Using the specification as an

oracle means that the generated test cases rely on runtime assertion checking to

throw an exception if a method’s specification is violated resulting in a failing test

case. Other than that, of course, the specification is used to even find the input

cases that will violate this precondition.

39



5 Approach 5.3 Common Definitions

Source availability. The TESSAN implementation uses Java byte code as its input

language, so the original source is not needed. In addition to that, the used libraries

are also able to work directly on the Java source.

Source usage. When thinking in terms of black box and white box testing [Wal01],

the TESSAN approach is clearly in between and might be categorized into gray box

testing. Gray box testing uses some knowledge of the program’s internals (for ex-

ample, specifications, method call sequences, . . . ), but treats the system as black

box otherwise (the test cases exported by TESSAN just supply input to existing meth-

ods).

Aim. While many testing approaches focus on optimizing a coverage criterion (for

example, exhibiting all method branches at least once), TESSAN looks for potential

programming “errors” matching a specific pattern. Therefore, TESSAN will never be

usable as a stand-alone test data generation method but instead is an approach that

could be implemented into a more full-featured tool.

5.3 Common Definitions

This section is based on [GWW10] and [GQWW11] and presents definitions that are

used throughout the presentation of the TESSAN approach.

To formally reason about specifications, TESSAN uses predicates similar to those

used in the Unified Theories of programming (UTP) [HH98]. Predicates may con-

tain primed variables denoting final observations and unprimed variables denoting

initial observations. This corresponds to Design by Contract™ specifications such

that preconditions are given in terms of unprimed variables and postconditions in

primed variables, where by the use of the @Old keyword one can refer to unprimed

variables in postconditions too (also called pre-state access).

Example I: The Design by Contract™ specification of the method

1 @Pre("size() < MAXSIZE")
2 @Post("size()==@Old(size(),int)+1 && peek() == value")
3 public Double push(Double value) {
4 return stack.push(value);
5 }

40



5 Approach 5.3 Common Definitions

translates into the following precondition P and postcondition Q:

Ppush = (size < MAXSIZE)

Qpush = (size′ = size+ 1∧ peek′ = value′)

Definition 1 (Sequential Composition). For given program statements P(v,v′) and

Q(v,v′), where v represents the set of unprimed variables and v′ the set of primed

variables, respectively, the sequential composition of P and Q is given by

P(v,v′);Q(v,v′) =df ∃v0 • P(v,v0)∧Q(v0, v′),

which means that the output state of P serves as the input state of Q.

Example II: Let P = (size′ = 0) and Q = (size′ = size+ 1), then the sequential
composition is

P(size, size′);Q(size, size′) = ∃size0 • size0 = 0∧ size′ = size0 + 1

If program statements are interpreted as predicates, the sequential composition of

two predicates corresponds to the consecutive execution of the respective program

statements.

Definition 2 (Input State Space). For a given method or constructor with multiple pre-

/postcondition pairs (P1,Q1), (P2,Q2), . . . , (Pn,Qn), its input state space IS defines

all possible input values on which the method or constructor is defined:

IS =df P1 ∨ P2 ∨ · · · ∨ Pn

In the case of subtyping, that is, the method overrides a method in a base type, Pi
denotes the effective precondition as defined in section 3.1.4.

To formally reason about methods with Design by Contract™ specifications, a defi-

nition for the behavior of a method is needed. As already stated in the introduction,

a common interpretation of a pre-/postcondition pair is

P =⇒ Q

For Automated Test Data Generation, test input that does not satisfy P is discarded,

in which case the actual semantics is reduced to the conjunction of pre- and post-

condition, which can be used to define the semantics of a method:

Definition 3 (Method Behavior). For a given method or constructor with multiple pre-

/postcondition pairs (P1,Q1), (P2,Q2), . . . , (Pn,Qn), the method behavior MB defines

41



5 Approach 5.3 Common Definitions

the Design by Contract™ semantics as

MB =df (P1 ∧Q1)∨ (P2 ∧Q2)∨ · · · ∨ (Pn ∧Qn)

Again, in the case of subtyping, Pi andQi denote the effective pre- and postconditions,

respectively.

As TESSAN is an approach for object-oriented languages, there must be a definition

of a class.

Definition 4 (Class). A class C is a triple

C = 〈c, f ,m〉 ,
where c is a non-empty set of constructors represented by the n-tuple

〈
cid,vis, p1, . . . , pn

〉
,

f = f pub∪f prot∪f priv is the union of public (f pub), protected (f prot) and private (f priv)

fields, andm is a set of methods represented by the m-tuple
〈
mid,vis, ret, p1, . . . , pm

〉
.

cid and mid are unique identifiers for constructors and methods, respectively, vis ∈{
public,protected,private

}
specifies the visibility, ret ∈ {void,nvoid} distinguishes be-

tween void and non-void return types, where nvoid ∈ {prim,nprim
}

further classifies

primitive from non-primitive return types, and pi denotes the i-th parameter type of

a method or constructor.

Furthermore, the Design by Contract™ specifications of a class is represented for-

mally as follows:

Definition 5 (Design by Contract™ Specification). For a class C , the Design by Con-

tract™ specification DbC(C) is given by the triple

DbC(C) = 〈mf, inv,pp
〉
,

where mf is a set of model fields represented by a tuple
〈
tmfi ,mfidi

〉
denoting the

type and unique identifier for model field i, respectively, inv is a set of invariants and

pp is a set of sets where each pmi ∈ pp is the set of pre-/postcondition pairs for the

method mi ∈m.

TESSAN tries to find initial states for objects that show a precondition mismatch

problem, and therefore needs a definition of the state of a class. As it deals with

Design by Contract™-augmented classes, the state needs to incorporate model fields

from the specification. This new state is called virtual state.

Definition 6 (Virtual State). The virtual state of a class C is given by

VS(C) = f pub ∪mpub
nvoid ∪mf

42



5 Approach 5.3 Common Definitions

where f pub are all public fields of class C , mpub
nvoid are all public non-void methods

of class C and mf are all model fields from the Design by Contract™ specification

DbC(C).

Example III: Consider the following class with Design by Contract™ annota-
tions:

1 @Model(name = "mSize", type=Integer.class)
2 @Represents(name = "mSize", by = "packets.size()")
3 public class Message {
4 protected List<Packet> packets;
5 @Post("mSize == 0")
6 public Message() {
7 packets = new ArrayList<Packet>();
8 }
9

10 @Post("size() == @Old(size())+1")
11 public void addPacket(Packet e) {
12 packets.add(e);
13 }
14

15 @Pure
16 @Post("@Return == mSize")
17 public int size() {
18 return packets.size();
19 }
20

21 @Pure
22 public int getFirstPacketType() { ... }
23

24 @Pure
25 public int getLastPacketType() { ... }
26

27 @Pre("size() > 0")
28 @Post("size() == @Old(size()) - 1")
29 public void removeFirstPacket() { ... }
30

31 @Pre("size() > 0")
32 @Post("size() == @Old(size()) - 1")
33 public void removeLastPacket() { ... }
34 }

The class has no public fields, one model field (mSize), and three public
non-void methods (size(), getFirstPacketType() and getLastPacketType()).
Thus the virtual state of this class C is given by

VS(C) = {size(), getFirstPacketType(), getLastPacketType(), mSize
}

For every state variable that is not “assigned” a new value in a postcondition there

are two possible interpretations: (a) the value of variable is undefined, or (b) the

43



5 Approach 5.3 Common Definitions

value of the variable is unchanged. Design by Contract™ does not define which in-

terpretation is correct, so TESSAN uses the latter one, that is, omitting a state variable

v′ in a postcondition is a shortcut for v′ = v . Thus, TESSAN completes the specifi-

cation by adding these predicates; the resulting method behavior is called framed

method behavior.

Definition 7 (Framed Method Behavior). Given a method and its method behavior

MB, the framed method behavior is defined as

MB =df MB∧ (∀v ∈ un(MB) • v′ = v),

where un(MB) is the list of all unassigned state variables in MB.

Example IV: For the class shown in Example III, the framed method behavior
of getFirstPacketType() would be

MB =(size′ = size∧ getFirstPacketType′ = getFirstPacketType

∧ getLastPacketType′ = getLastPacketType∧mSize′ =mSize)

Any method call (in syntactic sense, for example, push(4.6)) in a program is called

a method reference.

Definition 8 (Method Reference). Every use of a methodm in the program source or

in a specification is a distinct method reference MR, because its argument may differ.

A method reference is a n-tuple

MR = 〈m,arg1, . . . ,argi
〉
,

where m is the associated method and argi are the actual method arguments in the

order of their occurrence.

Constructing the method behavior for a method reference is called instantiation,

where the method parameters are replaced by their actual arguments and the @Return

keyword is replaced by a unique identifier.

Definition 9 (Instantiated Method Reference). The effective method behavior of a

given method reference MR is the instantiated method reference [MR] defined as

[MR] =df MB


uid(MR)/@Return

arg1/p1

. . .
argn/pn

 ,

44



5 Approach 5.3 Common Definitions

where MB is the method behavior of the respective method and uid( ·) is a labeling

function, which assigns a unique identifier for the method reference.

Example V: For a method

1 @Pre("true")
2 @Post("size()==@Old(size(),int)+1 && peek() == value && @Return == value")
3 public Double push(Double value) {
4 return stack.push(value);
5 }

the instantiated method reference for a call to push(4.7) is given by

[MR] = true∧ (size′ = size+ 1∧ peek′ = 4.7∧ push$Double$4_7$′ = 4.7)

The specification of a method may call other pure methods in both pre- and post-

state. When using runtime assertion checking, these methods would be executed

before and after the actual method. To simulate this behavior and gain additional

information from the specification of these called pure methods, the specifications

of methods called in the pre-state are prepended to the actual specification and

the specifications of methods called in the post-state are appended to the actual

specification. This is done using the sequential composition operator; the resulting

specification is then called a chained specification.

Definition 10 (Chained Specification). Given a specification R containing method

references MR1, . . .MRm, and MRn, . . .MRz in terms of undecorated and decorated

variables in R, respectively, the chained specification R◦◦ is given by

R◦◦ =df µ •



[MR1]◦◦; . . . ; [MRm]◦◦;

R


uid(MR1)/MR1

. . .
uid(MRz)/MRz

 ;

[MRn]◦◦; . . . ; [MRz]◦◦

 ,

where uid( ·) is a labeling function, which assigns a unique name for the method

reference, the same name as in Definition 9.

Example VI: Continuing Example V, which uses the methods size() and peek

() in the specification for push(4.7) given as

[MRsize] = true∧ size ≥ 0 and[
MRpeek

]
= (size > 0),

45



5 Approach 5.4 Generating the system dependence graph

the chained specification of push(Double) is given by

Rpush(4.7)
◦◦ = true∧ size ≥ 0︸ ︷︷ ︸

size() call in pre-state

; true∧ (size′ = size+ 1∧ peek′ = 4.7∧

push$Double$4_7$′ = 4.7); true∧ size ≥ 0︸ ︷︷ ︸
size() call in post-state

;

size > 0︸ ︷︷ ︸
peek() call in post-state

5.4 Generating the system dependence graph

The graph used in TESSAN is a combination of a system dependence graph and a con-

trol flow graph. Usually, a system dependence graph “is a transformation of a con-

trol flow graph where the control flow edges have been removed and two other kinds

of edges have been inserted: control dependencies and data dependencies.” [Kri03]

The graph SDG used here still contains the control flow edges, because they are

needed to extract control flow paths later.

Definition 11 (System Dependence Graph). A system dependence graph SDG is

a directed, attributed, node and edge-labeled multigraph. That is, a graph were all

nodes and edges are uniquely identifiable, both nodes and edges have attributes like a

type, there can be multiple edges between a pair of nodes, and edges have a direction.

It is defined as

SDG = G(N,E,ns , µ, ν)

where N is the set of nodes, E is the set of edges, ns ∈ N is the start node, and

µ and ν are mapping functions that map each node and edge to their attributes,

respectively.

µ(n) = (tN(n), v(n))
ν(e) = tE(e)

tN : N → TN ={ACTI, ACTO, CALL, ENTR, EXIT,

EXPR, FRMI, FRMO, NORM, PRED}
tE : E → TE ={CD, CE, CF, CL, DD, PI, PO, SU, UN, VD}

46



5 Approach 5.4 Generating the system dependence graph

The attribute v(n) is the value of a node, which is, loosely speaking, a textual repre-

sentation of the corresponding intermediate code line. Because this graph is created

by third-party libraries which lack any formal description, the construction process

will be described informally and by the use of examples.

The node types TN are defined as follows:

ACTI Actual-in nodes are created for each actual parameter (i.e., argument) passed

to a method call. An actual-in node is linked by a DD edge to the value

used for this parameter, to the corresponding formal-in node in the called

method by a PI edge and to the call node it belongs to by a CE edge. The

value of an actual-in node is either “this” (obviously for the this parameter

of a method), or “param i”, where i is the number of the parameter as in the

method signature.

ACTO Actual-out nodes are created for each return value of a method call, similar

to the actual-in nodes above. An actual-out node is linked to the corre-

sponding exit node in the called method by a PO edge and to the call node it

belongs to by a CE edge. Since a Java method has at most one return value,

each call node is associated with zero or one actual-out nodes. The value of

an actual-out node is irrelevant.

CALL Call nodes are placed for each method call in the program. They are linked

with the corresponding method’s entry node by a CL edge, their value is the

full-qualified name of the called method.

ENTR Entry nodes mark the entry point of a method like START nodes in a tra-

ditional system dependence graph and have control dependencies (CD, CE,

UN) edges to the statements in the method body.

EXIT Exit nodes mark the end of a method. Because the SDG also contains the

control flow, exit points must be available where the control flow returns to

the calling method.

EXPR Expression nodes are created for all statements which are not conditional

statements, method calls, or throw/return statements. DD edges are used

to link all nodes containing the definitions of the variables used in this

expression. The value of an expression node is the corresponding line from

the intermediate representation.

FRMI Formal-in nodes represent the formal parameters of a method. Similar to

actual-in nodes their value is either “this” or “param i”. They are used inside

the method body by DD edges whenever parameters are accessed.

47



5 Approach 5.4 Generating the system dependence graph

FRMO Formal-out nodes represent the “return values” of a method. In contrast

to classical system dependence graphs as presented in Section 3.2, formal-

out nodes are here used for all object fields modified by a method and the

return value is represented by the exit node.

NORM Normal nodes are created for any node not having a special type, in partic-

ular, throw and return statements.

PRED Predicate nodes are created for all conditional statements (which are re-

duced to if and switch, because the byte code and intermediate code trans-

form all other conditional statements like loops to if constructs.)

As mentioned, there are two categories of edge types, control dependencies and

data dependencies.

Control Dependencies. “Control dependence between two statement nodes exists

if one statement controls the execution of the other.” [Kri03] More formally, control

dependence is usually defined in terms of post-dominators [Kri03, WH09] , but for

simple programs without break, goto or continue statements, control dependen-

cies can be easily derived from the syntax tree: all statements are directly control

dependent on their enclosing loop predicate or method start node. [Kri03]

The following types of control dependence edges are used in SDG:

CD Normal control dependence is established between control dependent nodes

as described above.

CE Expression control-dependence is established between control dependent nodes

if they are from the same source expression. According to Krinke [Kri03], this

is necessary because for most languages the execution order of expression sub-

parts is undefined. For this application, CE edges can be handled like normal

control dependencies.

UN Unconditional control dependencies are unused for this application.

Data Dependencies. “Data dependence between two statement nodes exists if a

definition of a variable at one statement might read the usage of the same variable

at another statement.” [Kri03] More formally, data dependence is often defined in

terms of def and ref sets for each statement, containing the defined and used (ref-

erenced) variables, respectively. “A node m is called data dependent on node n,

if

1. there is a path p from n to m in the CFG (n ?⇀m)

48



5 Approach 5.4 Generating the system dependence graph

2. there is a variable v , with v ∈ def(n) and v ∈ ref(m), and

3. for all nodes k ≠ n of path p, v ∉ def(k) holds.” [Kri03]

”The following types of data dependencies are used in SDG:

DD Normal data dependency edges are created between definitions and uses of

variables as described above.

PI Parameter-in edges connect actual-in and formal-in nodes of method calls.

PO Parameter-out edges connect exit and parameter-out nodes of method calls.

SU Summary edges describe dependencies from actual-in to actual-out nodes for

individual call sites. A summary edge means that the value of the actual-out

node depends on the value of the connected actual-in node.

VD Value dependency edges (or virtual dependency edges) are data dependency

edges where the value computed at the source node is needed at the target

node. These edges are usually inserted for the “this” actual-in parameters of

method calls, because the selection of the correct method in environments fea-

turing polymorphism depends on the actual value (type) of the receiver. [Kri03]

Two types of edges have been omitted up to now, as they are neither control nor

data dependencies:

CF Control-flow edges represent the original control flow graph as a subgraph

of the system dependence graph. Predicate (PRED) nodes representing if or

switch statements can have more than one outgoing CF edge, exit (EXIT) nodes

have no outgoing CF edges, all other nodes have exactly one outgoing CF edge.

CL Call edges represent method calls and always point from a call site (a CALL

node) to method entry (ENTR) nodes. As already mentioned ACTI/ACTO and

EXIT/FRMI edges as well as their links through PI and PO edges always accom-

pany method calls.

Figure 5.3 and Figure 5.4 show parts of the system dependence graph used in the

running example. While the former shows a complete system dependence graph of

one method, the latter shows the parameter passing mechanism using PI and PO

edges between ACTI/FRMI and EXIT/ACTO nodes.

49



5 Approach 5.4 Generating the system dependence graph

223 ENTR 
 branch.Message.getLastPacketType()

224 EXIT 
 branch.Message.getLastPacketType()

CF

225 EXPR 
 v3 = v1.packets

226 CALL 
 java.util.List.size()

227 PRED 
 if v5 <= #0

230 CALL 
 java.util.List.size()

232 CALL 
 java.util.List.get(int)

234 CALL 
 branch.Packet.getType()

237 FRMI 
 this

CF

238 ACTI 
 this

CF

DD

239 ACTO 
 java.util.List.size()

CF

228 EXPR 
 v7 = v1.packets

CF

229 EXPR 
 v8 = v1.packets

231 EXPR 
 v12 = OPER sub(v10, #1)

233 EXPR 
 v15 = CHECKCAST v14

235 NORM 
 return v17

236 NORM 
 return #0

CF

240 ACTI 
 this

241 ACTO 
 java.util.List.size()CF

242 ACTI 
 this

243 ACTI 
 primitive param 1

244 ACTO 
 java.util.List.get(int)

CF

245 ACTI 
 this

246 ACTO 
 branch.Packet.getType()

CF

DD

CF

DD

DD

CF

VD

CF

SU
DD

CF

CF

DD

CF
DD

CF DD

CF

DD

DD
CF

DDCF

VD

CF

SU

DD
CF

VD

CF

SU

CF

SU

DD

CF

VD

CF

SU
DD

CF

UN

UN

UN

UN

CE

CD

CD

CD

CE

CE
CE

CD

CD

CD

CD
CD

CD

CD

CD

CD

CE

CE

CE

CE CE

CE
CE

CDCD

Figure 5.3: Excerpt of a system dependence graph showing the nodes and edges corresponding to
the method body of Message.getLastPacketType() from the running example.

50



5 Approach 5.5 Extracting Mutation Sequences

223 ENTR 
 branch.Message.getLastPacketType()

224 EXIT 
 branch.Message.getLastPacketType()

230 CALL 
 java.util.List.size()

240 ACTI 
 this

241 ACTO 
 java.util.List.size()CF

VD

CF

SU

CE

CE

....

....

401 ENTR 
 java.util.ArrayList.size()

402 EXIT 
 java.util.ArrayList.size()

404 NORM 
 return v3

405 FRMI 
 this

CECF

DD

CD

CF

....

PI

PO

CL

Figure 5.4: Excerpt of a system dependence graph showing parameter passing. Blue frames denote
method boundaries.

5.5 Extracting Mutation Sequences

5.5.1 Relevant Objects

Listing 5.2 shows a possible implementation of the MessageProcessor.processMessage

(Message) method from the running example presented in Section 2, which is now

considered as the method under test.

1 @Pre("message.size() >= 2 && message.isValid() == true")
2 public String processMessage(Message message) {
3 message.removeFirstPacket();
4 message.removeLastPacket();
5 return new MessageDataExtractor().extractData(message);
6 }

Listing 5.2: Simple implementation of the MessageProcessor.processMessage(Message) method

of the running example.

In this case, the mutation sequence is obvious: it just contains the calls to the

removeFirstPacket() and removeLastPacket() methods. The extraction of this se-

quence from the system dependence graph is easy, because the this parameter of

51



5 Approach 5.5 Extracting Mutation Sequences

those calls has a data dependency to the formal-in node of the parameter message.

However, the situation gets more complex as soon as

• the method under test passes the message object on to another method cur-

rently not considered as the callee (that is, the method where the mutation

sequence ends),

• the message object is stored into an array or collection and at a later point calls

methods on its members1,

• the method under test contains branches or loops.

As an example, consider the implementation shown in Listing 5.3.

1 @Pre("message.size() >= 2")
2 public String processMessage(Message message) {
3 List<Message> msgs = new ArrayList<Message>();
4 msgs.add(message);
5 prepareMessages(msgs);
6 return new MessageDataExtractor().extractData(message);
7 }
8

9 public void prepareMessages(List<Message> msgs) {
10 for(int i = 0; i < msgs.size(); i++) {
11 Message m = msgs.get(i);
12 if(m.isValid()) {
13 m.removeFirstPacket();
14 m.removeLastPacket();
15 }
16 }
17 }

Listing 5.3: More complex implementation of the MessageProcessor.processMessage(Message)

method from the running example.

This implementation uses all of the features mentioned above, but eventually ap-

plies exactly the same mutation sequence to the object: removeFirstPacket();

removeLastPacket(). In order to extract the correct sequence in such situations,

relevant objects are introduced.

Definition 12 (Relevant Objects). The set of relevant objects RO with respect to a

node q in SDG G is

RO(q,G) = µ • RO(q,G)∪ RO∗(RO(q,G),G)

that is, a set where new elements are added by RO∗ until it does not change any

more. RO∗ is a function which uses the current set of relevant objects R and yields

1Note that a simple additional alias such as Message m2 = message; is already eliminated during
byte-code-to-SDG translation.

52



5 Approach 5.5 Extracting Mutation Sequences

new relevant objects:

RO∗(R,G) =
{
r
∣∣∣r = Def(q)∧

[(
q ∈ Params(m)∧m ∈ Mutators(R,G)

)
∨
(
q = ThisParam(m,G)∧ (∃p|p ∈ Params(m,G)∧Def(p,G) ∈ R))]}

The definition Def(q,G) of a node q in SDG G is the node where the object is instan-

tiated or returned from a method:

Def(q,G) = n|n ∗⇀data q ∧ (n ∈ NewExprNodes(G)∨n ∈ ActOutNodes(G)),

that is, an instantiating EXPR node or an ACTO node with a transitive data depen-

dence edge to q.

The following definitions complete the functions used above:

Mutators(R,G) =
⋃
r∈R

Mutators(r ,G)

Mutators(r ,G) =
{
n
∣∣∣q = Def(r)∧[(

n ∈ CallNodes(G)∧ (q = ThisParam(n,G)∨ q ∈ OutParams(n,G)
))∨(

n ∈ MemberAccessNodes(g,G)∧ q ∈ Params(n,G)
)]}

NewExprNodes(G) = {n ∈ G|tN(n) = EXPR∧ v(n) =~/v[0-9]+ = new (.*)/}

CallNodes(G) = {n ∈ G|tN(n) = CALL}

OutParams(m,G) = {n ∈ G|m⇀CE n∧ tN(n) = ACTO}

InParams(m,G) = {n ∈ G|m⇀CE n∧ tN(n) = ACTI}

Params(m,G) = InParams(m,G)∪OutParams(m,G)

ThisParam(m,G) = {n ∈ G|m⇀CE n∧ tN(n) = ACTI∧ v(n) = "this"}
MemberAccessNodes(m,G) = {n ∈ G|tN(n) = EXPR∧

v(n) =~/v[0-9]+ = v[0-9]+(̇.*)/}

Loosely speaking, definitions of parameters of mutators of relevant objects are new

relevant objects, for example, a call like

1 existingRO.mutator(newRO1, newRO2, ...)

where existingRO is already in RO, will result in the objects newRO1, newRO2, . . . to be

added to RO too. Also, definitions of objects with method calls where the definition

53



5 Approach 5.5 Extracting Mutation Sequences

of an argument is a relevant object are new relevant objects, for example, a call

like

1 newRO.method(existingRO, ...)

where existingRO is already in RO, will result in newRO to be added to RO too. Direct

accesses to public members can also be seen as mutators of an object and can be

handled similarly.

In the TESSAN approach, RO(Def(p)) gives the set of relevant objects for the ACTI

node p representing the parameter of a call to the method under test.

The process of generating the set of relevant objects will be demonstrated in more

detail in Section 7.

5.5.2 Control Flow Paths

As already mentioned, TESSAN reasons about different control flow paths through

the method under test separately. A control flow path Π is a list of edges

Π = 〈e0, e1, . . . , ek〉

where all edges must be adjacent to each other, that is, ei = 〈ni, ni+1〉 and ei+1 =
〈ni+1, ni+2〉 ∀i ∈ {0, . . . , k− 1}, n0 is always the ENTR node of the method under

test, and nk+1 is the last node before the call to the callee method.

Loop Unrolling. If a method contains loops (for example, while, for, do/while),

these are also translated to if/else decisions in the intermediate representation

and the control flow graph becomes a cyclic graph. As the number of iterations for

any loop is unknown in static analysis, TESSAN unrolls the loop code up to a given

bound K.

Example VII: Figure 5.5 shows an excerpt of a system dependence graph con-
taining a cycle due to a loop in the method’s source.

For a bound of K = 2, the extracted list of paths would include

• 226-CF->227, 227-CF->229,

• 226-CF->227, 227-CF->228, 228-CF->231, 231-CF->227, 227-CF->229,

• 226-CF->227, 227-CF->228, 228-CF->231, 231-CF->227,

227-CF->228, 228-CF->231, 231-CF->227, 227-CF->229.

54



5 Approach 5.5 Extracting Mutation Sequences

As indicated by the framed sections, these paths contain the loop body zero,
one and two times, respectively.

227 PRED 
 if v5 <= #0

228 EXPR 
 v7 = v1.packets

CF

CF

226 CALL 
 java.util.List.size()

CF

229 EXPR 
 v8 = v1.packets

CF

231 EXPR 
 v12 = OPER sub(v10, #1)

CF

Figure 5.5: Excerpt from an SDG containing a control flow path cycle due to a loop in the method’s
source.

The number of control flow paths that have to be considered is bound by

#P = 2b ·
∏
ci · (K + 1)l,

where b is the number of branches, ci is the number of cases for the switch state-

ment i and l is the number of loops contained in a method.

Control flow paths also follow call (CL) edges to other methods, except for those

who have a relevant object as their this parameter because those calls are mutators

which will eventually be part of the mutation sequence.

5.5.3 Path Conditions

Consider another implementation of the processMessage method as shown in List-

ing 5.4.

1 @Pre("message.size() >= 2")
2 public String processMessage(Message message) {
3 if(message.getFirstPacketType() == Packet.START) {
4 message.removeFirstPacket();
5 }
6 if(message.getLastPacketType() == Packet.END) {
7 message.removeLastPacket();
8 }
9 return new MessageDataExtractor().extractData(message);

10 }

Listing 5.4: Implementation of the MessageProcessor.processMessage(Message) method of the

running example with branches.

55



5 Approach 5.6 Creating and Solving the SMT Problem

In this case, the programmer implemented the method in a more flexible way.

In contrast to Listing 5.2, the clause message.isValid()==true is now missing in

the method’s precondition. Thus, it does not fully specify the initial state for

the message object any longer, but parts of the specification have been moved

to the method body. Nevertheless, TESSAN shall be able to calculate a valid ini-

tial state for the mutation sequence getFirstPacketType();removeFirstPacket()

;getLastPacketType();removeLastPacket() that actually reveals the precondition

mismatch. The calculated initial state shall drive the program down the analyzed

path in the exported test case.

The branch conditions message.getFirstPacketType()==Packet.START and message

.getLastPacketType()==Packet.END represent the conditions for the execution of

the removeFirstPacket() and removeLastPacket() statements, respectively. There-

fore, they are so-called path conditions for those statements, which can help TESSAN

to find the correct initial state by defining a mutation step si as

si = πi ∧ µi,

where πi is the path condition for this step, and µi is the actual mutation step.

Example VIII: For the branch following both true paths in the example pro-
gram from Listing 5.4 above, this would result in a formula for M which
is

M= s ≥ 2;f = 1∧ s′ = s − 1; l = 3∧ s′ = s − 1;¬(s > 0)

where s, f , and l are shorthand notations for the state variables size(),
getFirstPacketType(), and getLastPacketType(), respectively. Also the con-
crete values for the constants PacketType.START and PacketType.END have
been used, which are 1 and 3, respectively.

5.6 Creating and Solving the SMT Problem

From each control flow path extracted from the system dependence graph, a muta-

tion sequence µ0, µ1, . . . µn is extracted by considering all CALL nodes whose “this”

parameter is contained in the set of relevant objects. Each path condition πi is cre-

ated by building the conjunction of all predicates from the beginning of the path to

the call µi.

56



5 Approach 5.6 Creating and Solving the SMT Problem

Each mutation step represents a method reference as defined in Section 5.3. These

method references are instantiated, framed and chained as explained in Section 5.3

to extract as much information as possible from the contained specifications.

Combining all these considerations result in the following formula forM:

M= IS1
◦◦

;π0 ∧
[
MRµ0

]◦◦
;π1 ∧

[
MRµ1

]◦◦
; . . . ;πn ∧

[
MRµn

]◦◦
;πIS2 ∧¬IS2

◦◦

The operation R
◦◦

in this formula represents a combined pure framing and chaining

process. These steps cannot be separated clearly as every method added due to

chaining also needs to be framed as it is added.

Every mutation step si is represented by its path condition πi conjuncted with a

method reference MRµi , that needs to be instantiated, framed and chained.

For the method under test’s precondition (formerly denoted as Pre1 and the called

method’s precondition (formerly Pre2) the full input spaces IS1 and IS2, respectively,

have to be considered in case there are multiple pre-/postcondition pairs defined

for those methods.

Still, there are a few aspects to consider:

• Chaining and Path Conditions. When conjuncting a predicateπ with a chained

predicate R◦◦, multiple sequential composition steps may emerge from the

chaining process:

π ∧ (R1;R;R2).

As the parentheses indicate, the path condition π applies to all steps, so this

can be rewritten as

π ∧ R1;π ∧ R;π ∧ R2.

• Path Condition of the Callee. The input space IS2, which shall not be reached

for the generated object, is evaluated at the program point where the callee

method is invoked. Thus, also IS2 needs its own path condition πIS2 , generated

by conjuncting all branch conditions up to the program point, where this call

takes place.

• Method Calls in Conditionals. When path conditions contain the result of

method calls, for example, as in

57



5 Approach 5.6 Creating and Solving the SMT Problem

1 ...
2 if(message.getFirstPacketType() == Packet.START) {
3 ...
4 }

this method call needs to be evaluated only once, but its return value may be

used several times by path conditions in the SMT formula. This is important,

because (i) the method’s return value may change between successive calls, and

(ii) the method itself may modify objects (that is, it may be non-pure), which

would result in wrong results. Therefore, the return value of all method calls

is stored in temporary variables τ , which are set once and never modified. For

the example above, this would lead to a formula containing the sequence

M= . . . ; τ1 = getFirstPacketType ; τ1 = Packet.START∧ . . . ,

which corresponds to the the program source

1 ...
2 int τ1 = message.getFirstPacketType();
3 if(τ1 == Packet.START) {
4 ...
5 }

which is also the way this program would be actually represented in the system

dependence graph.

After constructing the formula it is converted to yices assertions using the yices

interface of jConTest. During this conversion, the Java data types have to be trans-

lated to yices data types using the following mapping:

Java Type → yices Type

boolean → bool

byte

char

int → int

short

long

String
→

uninterpreted

array function

The yices SMT solver returns if the formula is satisfiable or not. In case it is satisfi-

able, it also provides a model, that is, a value for each variable used in the formula.

58



5 Approach 5.7 Exporting Test Cases

Extracting the Initial State. The model of the SMT solver is used to extract the

initial state for the parameter object. A state variable may be used in more than one

step of the mutation sequence. When resolving the sequential composition operator

according to its definition (see Definition 1), a separate SMT variable is created for

each step. The SMT variable representing the earliest value of the respective state

variable, defines its initial value.

Example IX: Continuing Example VIII, after resolving the sequential composi-
tion operator, the formula becomes

M= s0 ≥ 2∧ f0 = 1∧ s1 = s0 − 1∧ l0 = 3∧ s2 = s2 − 1∧¬(s2 > 0)

which is satisfiable for s0 = 2, f0 = 1, s1 = 1, l0 = 3, and s2 = 0. By using the
values with the lowest index, the correct initial state s0 = 2, f0 = 1, and l0 = 3

can be extracted.

5.7 Exporting Test Cases

For every initial state calculated by TESSAN, which reveals a precondition mismatch

problem, a jUnit test case is exported. As multiple control flow paths may emerge

from one method/parameter combination, also multiple test cases may be exported,

which are grouped into one test class.

The body of a test case consists of four steps:

1. Instantiation of the receiver object (the object where the method under test is

invoked on).

2. Creation of the SYNTHIA fake object for the parameter of the method under

test.

3. Configuration of the SYNTHIA fake according to the calculated initial state.

4. Invocation of the method under test using the SYNTHIA fake object.

The jConTest framework and the jConTest-Extensions project already provide

all necessary classes to create the jUnit code from an initial state, for example

the SynthiaFakeConfigurator and the SynthiaJUnit4CodeGeneratorVisitor. List-

ing 5.5 shows an example jUnit test class containing one such test case.

59



5 Approach 5.7 Exporting Test Cases

1 import org.junit.Test;
2 import linear.Message;
3 import linear.MessageProcessor;
4 import java.util.List;
5 import java.util.ArrayList;
6 import at.tugraz.ist.jcontest.extensions.synthiamock.Synthia;
7 import at.tugraz.ist.jcontest.extensions.types.JavaVariable;
8 import at.tugraz.ist.jcontest.extensions.types.IntegerJavaVariable;
9 import at.tugraz.ist.jcontest.extensions.types.BooleanJavaVariable;

10

11 public class linearMessageDataExtractorTests {
12 @Test(timeout=0)
13 public void testProcessMessage() throws Throwable {
14 MessageProcessor var0 = new MessageProcessor();
15 Message var1 = Synthia.createMock(linear.Message.class, new Object[]{ });
16 List<JavaVariable> var2 = new ArrayList<JavaVariable>();
17 JavaVariable var3 = new IntegerJavaVariable("getFirstPacketType");
18 var3.setValue(1);
19 var2.add(var3);
20 JavaVariable var4 = new IntegerJavaVariable("getLastPacketType");
21 var4.setValue(3);
22 var2.add(var4);
23 JavaVariable var5 = new BooleanJavaVariable("isValid");
24 var5.setValue(true);
25 var2.add(var5);
26 JavaVariable var6 = new IntegerJavaVariable("size");
27 var6.setValue(2);
28 var2.add(var6);
29 Synthia.setInitial(var1, var2);
30 var0.processMessage(var1);
31 }
32 }

Listing 5.5: Exported test case using the calculated initial state to configure a SYNTHIA fake object

and pass it as the argument to the method under test.

When running this unit test, jUnit reports a failure due to the precondition violation

in the MessageDataExtractor.extractData(Message) method. The programmer can

then inspect the problem and correct either the implementation or one of the pre-

conditions.

60



5 Approach 5.8 Limitations

5.8 Limitations

TESSAN has a few limitations, some of which are intrinsic to the approach itself, some

can be possibly fixed and others arise from the limited scope of this thesis.

• First, TESSAN only considers methods conforming to a very special structure,

where the the method must have an argument and passes this argument on

to other methods. This is due to the fact that exporting a black-box test is

only possible if the generated test data can be fed into the method. Unfortu-

nately, there are several other structures that should be considered, for exam-

ple, methods where the object that is passed to the callee has been instantiated

in the method itself. This brings the problem of how the possible precondition

violation can be shown to the programmer.

• Similarly, TESSAN does not handle methods where the mutation sequence in-

duces dependencies to other method parameters. In this case, multiple objects

have to be generated for the test case, in a way that satisfies their dependen-

cies.

• The initial state calculated by the TESSAN approach may not be reachable by

means of the public interface methods of the class. The problem of reachable

initial state calculation is tackled by IntiSa [GQWW11], which uses very similar

methods that could be integrated in to TESSAN as well.

• The calculation of the set of relevant objects is not precise in the sense that

only whole objects are marked as relevant. Actually, in many cases only single

fields of objects are really relevant, for example, when an object is stored into

an ArrayList object, only the elementData field of this list should be marked as

relevant object. This impreciseness can lead to incorrect mutation sequences,

which result in either an unsatisfiable SMT formula (no test case can be gener-

ated) or test cases which are meaningless to the programmer (that is, they do

not fail). An improved version of the relevant object calculation depends on

implementing a deeper understanding of the expression nodes in the system

dependence graph.

• In the generated test cases, the receiver object of the method under test is

created by selecting an arbitrary constructor (and generating constructor ar-

guments randomly if necessary). Unfortunately, this does not guarantee that

the receiver object is in a proper state so that the method under test can actu-

ally be called.

61



6 Implementation

6.1 System Overview

The TESSAN approach is implemented in the jConTest [Qua10] framework and uses

jSDG/Joana [HS09] to generate the system dependence graph. It uses also some

features from the jConTest-Extensions project, for example, framing, chaining, the

yices interface and SYNTHIA fake. jSDG/Joana in turn are based on IBM’s WALA

framework. The conceptual dependencies among these projects and framework are

also depicted in Figure 6.1.

Joana jConTest-
Extensions

SYNTHIA

TESSAN

yices
interface yices

jConTest
IBM WALA

jSDG

Figure 6.1: Conceptual dependency layers of the TESSAN implementation.

The following section (6.2) briefly describes all involved components. Section 6.3

then presents implementation details of the TESSAN algorithm itself.

62



6 Implementation 6.2 Components

6.2 Components

6.2.1 IBM WALA

The T.J. Watson Libraries for Analysis (WALA) is a library for static analysis of

programs. [SD10] It has been developed at the Thomas J. Watson Research Cen-

ter in 2006 and has been made Open Source (under the Eclipse Public License)

at http://wala.sf.net. WALA includes various analysis algorithms, including a

context-sensitive slicer based on system dependence graphs. Therefore, it also in-

cludes algorithms needed to build such graphs, for example pointer analysis and

data flow analysis algorithms. Unfortunately, the system dependence graph created

by WALA has been found to have several drawbacks:

• Graph edges are not typed, that is, there is no way to distinguish between

control and data dependence edges. This is not necessary to implement a

slicing algorithm, but it is for the TESSAN approach.

• The graph does not contain control flow edges (it is a pure dependence graph),

which is again unnecessary for slicing but essential for TESSAN.

• Additionally, during analysis the graph was found to be imprecise (or unpracti-

cal) when a method contains loops and exceptions, because in this cases there

are some excessive and some missing edges.

WALA features multiple front-ends (input methods), including Java byte code, Java

source code, .NET byte code, JavaScript source code, X101, PHP source code (par-

tially), and ABAP2. Internally, programs are translated into an intermediate repre-

sentation which is then used as input for the analysis algorithms.

6.2.2 jSDG/Joana

The team around Christian Hammer and Gregor Snelting at the programming para-

digms group at Karlsruhe Institute of Technology3 has been working on informa-

tion flow control since 2004 [HS04, HS09]. They also use system dependence graphs

for their analysis. After developing their own SDG construction algorithm, they

switched over to using WALA because of its more precise system dependence graph

creation algorithm and also extended these algorithms for even more precision. The

1A type-safe parallel object-oriented language also developed at T.J. Watson Research Center, see
http://x10.codehaus.org/.

2A high-level business application language developed by SAP, see http://www.sdn.sap.com/
irj/sdn/abap.

3http://http://pp.info.uni-karlsruhe.de/

63

http://wala.sf.net
http://x10.codehaus.org/
http://www.sdn.sap.com/irj/sdn/abap
http://www.sdn.sap.com/irj/sdn/abap
http://http://pp.info.uni-karlsruhe.de/


6 Implementation 6.3 TESSAN

team also created a converter to their previously used data format for system depen-

dence graphs, called Joana-style SDG. The advantage of this extensions (contained

in the jSDG project) and the Joana-style SDG format is that it now differentiates vari-

ous edge types and includes a control flow graph. The resulting system dependence

graph has been described throughout this thesis.

6.2.3 jConTest

jConTest [Qua10] is a test data generation framework which represents the pro-

gram under test using an object graph. It supports most Java 1.5 and Design by

Contract™ annotations via Modern Jass. Similar to Java reflection, classes and

interfaces, methods and constructors, fields, parameters, and modifiers are repre-

sented via linked objects. Additionally, all specification expressions are parsed and

represented as object trees to allow the easier implementation of test data gen-

eration algorithms which use these specifications. jConTest also provides infras-

tructure for test case generation. By constructing a tree of object instances and

implementing a so-called configuration algorithm, jUnit test cases can be created

easily.

6.2.4 jConTest-Extensions

jConTest-Extensions mainly provides operations on specification like pure fram-

ing, chaining and sequential composition. It also includes an interface to the SMT

solver yices [DdM06] that allows the creation of an SMT problem using jConTest

expressions, invoking the SMT solver, and retrieving a resulting model. jConTest-

Extensions also includes the SYNTHIA fake implementation.

Figure 6.2 again depicts the information flow from the input program to the gener-

ated test case on a more detailed level.

6.3 TESSAN

6.3.1 Visitors

After building the system dependence graph, the main work of the TESSAN imple-

mentation is to navigate through the graph and find certain nodes. Therefore, the

visitor design pattern was used by defining a generic abstract SDGVisitor class.

64



6 Implementation 6.3 TESSAN

Java Source

Java 
Bytecode

Shrike

WALA Core

CAst to IR
Translator

Bytecode to IR
Translator

WALA Framework

WALA IR 
(interm. 
repr.)

Call 
Graph

Pointer 
Analysis

WALA 
SDG jSDG

Joana 
SDG

jSDG

Object 
Tree

Object 
Tree

Object 
Tree

Pointer 
Analysis

Object 
Tree

Object 
TreePDG

TESSAN

TESSAN
CallSequenceInitial State

jConTest / -Extensions

Test Case 
Generation

jUnit Test 
Source

Object 
Tree

Object 
Tree

Relevant
Object

public class MessageProcessor {
  @Pre("message.size() >= 2 && message.isValid()")
  public String processMessage(Message message) {
    message.removeFirstPacket();
    message.removeLastPacket();
    return MessageDataExtractor().extractData(message);
  }
}

Object 
Tree

Object 
Tree

Mutation 
Sequence

SYNTHIA Fake

size = 2
getFirstPacketType = 1
getLastPacketType = 3
isValid = true

public class MessageProcessor$Test {
    @Test(timeout=0)
    public void testProcessMessage() {
        ...
    }
}

Figure 6.2: Information flow through the system implementing the TESSAN approach.

1 public abstract class SDGVisitor<R, P> extends Visitor<R,P> {
2

3 protected EdgePredicate edgePredicate;
4 protected NodePredicate nodePredicate;
5

6 public SDGVisitor(EdgePredicate e, NodePredicate n) {
7 ...
8 }
9

10 public R scan(SDG sdg, SDGNode root) {
11 ...
12 }
13 ...
14 }

Listing 6.1: Abstract SDGVisitor class.

An SDGVisitor instance has two important properties: the edge predicate and the

node predicate, which have to be specified upon instantiation. These predicates

decide which edges and nodes are followed when navigating through the system

dependence graph in order to make the visitor implementation easier and faster.

A visitor can be applied by invoking the scan(...) method, passing in the system

dependence graph and a start (root) node.

1 public interface EdgePredicate {
2 public boolean followEdge(SDGVisitor<?,?> v, SDGEdge e, SDGPath currentPath,

EdgeDirection dir);
3 }
4 public interface NodePredicate {
5 public boolean visitNode(SDGNode n);
6 }

Listing 6.2: Interfaces for edge and node predicates.

Custom predicates can be created by implementing the interfaces EdgePredicate

and NodePredicate shown in Listing 6.2. Some common predicates are predefined,

65



6 Implementation 6.3 TESSAN

for example, the EdgeSetOutEdgePredicate can be used to follow all outgoing edges

of a node which have a certain edge type.

There are two SDGVisitor variants for navigating the graph in breadth-first and

depth-first style (BreadthFirstSDGVisitor and DepthFirstSDGVisitor). The type

parameters R and P are used as the return type and as the second parameter type of

the visit methods.

Listing 6.3 shows the implementation of IgnoreNodesFinder which collects all nodes

inside a method body which appear after the given start node (this is used to ignore

all nodes not belonging to the mutation sequences, which are all nodes starting from

the call node to the method under test).

1 public class IgnoreNodesFinder extends BreadthFirstSDGVisitor<Void, Set<SDGNode>> {
2

3 public IgnoreNodesFinder() {
4 super(new EdgeSetOutEdgePredicate(EnumSet.of(SDGEdge.Kind.CONTROL_FLOW, SDGEdge.

Kind.CONTROL_DEP_COND)), allNodeTypes());
5 }
6

7 public void visit(SDGNode node, Set<SDGNode> ignoreCalls) {
8 ignoreCalls.add(node);
9 if(node.getKind().equals(SDGNode.Kind.CALL)) {

10 ignoreCalls.addAll(getSDG().getParametersFor(node));
11 }
12 }
13

14 }

Listing 6.3: Example visitor implementation.

6.3.2 SDG Paths

Every visitor can not only access the current system dependence graph, for example,

to use it as input to other visitors, using the getSDG() method, it can also obtain the

path through the system dependence graph that led to the current node using the

getCurrentPath() method. It returns an SDGPath instance, which is a list of tuples〈
SDGEdge,EdgeDirection

〉
, where the edge direction denotes if the corresponding

edge was followed forward or backwards. For example, a textual representation of

an SDGPath could be 1-CL->2, 2<-PI-3, 3-DD->6, which indicates that we reached

node 6 by starting from node 1, following a call edge in forward direction to node

2, then following a parameter-in edge in backward direction to node 3, and finally a

data dependence edge in forward direction to node 6.

66



6 Implementation 6.3 TESSAN

6.3.3 Important Classes

RelevantObjectFinder. The RelevantObjectFinder is a BreadthFirstSDGVisitor

and is used to implement Definition 12. It is used by starting at the root node of

the SDG and providing the parameter under test in the Set<RelevantObject>. A

RelevantObject consists of a node (the definition point of the relevant object) and

a scope, which is an SDGPath object. The scope is necessary to distinguish relevant

objects on different call paths, because when visiting methods, their nodes are not

actually inlined as described above (that would require copying parts of the SDG,

which is difficult). Therefore, the scope path consists of CL edges (or more exactly,

a CL-edge filtered view of an SDGPath) and makes it possible to mark an object as

relevant for one call of a method but not for all others.

The edge predicate used in the RelevantObjectFinder follows all edges except PI

(parameter-in), PO (parameter-out) and HE (help) edges, because doing so would be

redundant for PI and PO edges as the CL edge points to the same method, and

HE edges just exist for SDG drawing. Call (CL) edges are only followed if the this

parameter of the call is not already contained in the set of relevant objects.

Furthermore, nodes contained in the ignoreNodes set are not visited. This is used to

ignore nodes that lie beyond the call site of the callee method in the method under

test as they cannot be part of the mutation sequence.

DefineExprFinder. The DefineExprFinder is used to implement the Def(q) expres-

sion from Definition 12, that is, finding the definition point of a variable used at an

arbitrary node. This is done by following back DD edges until an EXPR node with

a value like “v15 = new package.Class” or an ACTO node defining the variable is

reached. Special care has to be taken for objects passed to a method, which are

linked by PI edges. As a method can be called from different call sites it is im-

portant to follow back the correct PI edge. Therefore, the DefineExprFinder uses

the objectFinderPath input, which is an SDGPath defining which path was followed

when encountering the node q. The DefineExprFinder uses the CL edges contained

in this path to follow PI edges back to the correct call sites.

The result of the DefineExprFinder consists of the SDGNode of the definition point

and a scope for this node, similar to those used for relevant objects as explained

above.

67



6 Implementation 6.3 TESSAN

PathFinder. The PathFinder is used to extract control flow paths as described in

Section 5.5.2. It takes the set of relevant objects and a set of nodes to ignore as

input:

1 public PathFinder(Set<RelevantObject> relevantObjects, Set<SDGNode> ignoreNodes) {
2 ...
3 }

The set relevantObjects is used to ignore CL edges for calls where the definition

of the this parameter is a relevant object. The set ignoreNodes is used to stop

extracting paths as soon as the call site of the callee method in the method under

test is reached.

Loop unrolling is done by letting the edge predicate follow edges multiple times

(that is, even if it has already been followed) and counting the number of previous

occurrences of the current edge in the current path. If the number of occurrences is

equal to K, the edge is not followed. This way, the extracted SDGPaths contain loop

iteration counts from 0 to K automatically.

CallSequenceCreator. The CallSequenceCreator creates the final mutation sequen-

ces using the previously obtained set of relevant objects and control flow paths. The

only task left is to record all method calls along the control flow paths that use a rel-

evant object as their this parameter. The ModelCallSequenceCreator creates a list

of ModelActionReferences which can be used for further processing in jConTest.

6.3.4 Class Diagrams

Figure 6.3, 6.4, and 6.5 show some details of the TESSAN implementation using UML

class diagrams.

68



6 Implementation 6.3 TESSAN

Tessan
(tessan)

DefineExprFinder
(finders)

MethodFinder
(finders)

IgnoreNodesFinder
(finders)

ParamInFinder
(finders)

PathFinder
(finders)

RelevantObjectFinder
(finders)

ThisParamFinder
(finders)

ParamOutFinder
(finders)

CallSiteFinder
(finders)

BreadthFirstSDGVisitor
(sdg)

DepthFirstSDGVisitor
(sdg)

SDGVisitor
(sdg)

R
P

R
P

R
P

ModelCallSequenceCreator
(tessan)

CallSequenceCreator
(tessan)

S : »result.Sequence
<<Inter face>>
Sequence

(result)

ActionSequence
(result)

InitialState
(tessan)

<< re tu rn>>

<<re tu rn>>

< < u s e > >

< < u s e > >

< < u s e > >

< < u s e > >

< < u s e > >

< < u s e > >

< < u s e > >

< < u s e > >

< < u s e > >

< < u s e > >

< < u s e > >

< < u s e > >

< < u s e > >

Visual Paradigm for UML Standard Edition(Graz University of Technology)

Figure 6.3: UML class diagram showing the dependencies between the classes used by the Tessan
main class.

69



6 Implementation 6.3 TESSAN

SDGVisitor
(at::tugraz::ist::tessan::sdg)

R
P

<<Inter face>>
EdgePredicate

(at::tugraz::ist::tessan::sdg::SDGVisitor)
<<Inter face>>
NodePredicate

(at::tugraz::ist::tessan::sdg::SDGVisitor)

NonLoopingEdgePredicate
(at::tugraz::ist::tessan::sdg::SDGVisitor)

UniqueEdgePredicate
(at::tugraz::ist::tessan::sdg::SDGVisitor)

EdgeSetEdgePredicate
(at::tugraz::ist::tessan::sdg::SDGVisitor)

EdgeSetOutEdgePredicate
(at::tugraz::ist::tessan::sdg::SDGVisitor)

EdgeSetInEdgePredicate
(at::tugraz::ist::tessan::sdg::SDGVisitor)

UniqueNodePredicate
(at::tugraz::ist::tessan::sdg::SDGVisitor)

NodeSetNodePredicate
(at::tugraz::ist::tessan::sdg::SDGVisitor)

Visual Paradigm for UML Standard Edition(Graz University of Technology)

Figure 6.4: UML class diagram showing the basic structure of the SDGVisitor base type.

70



6 Implementation 6.3 TESSAN

SDGPath
(at::tugraz::ist::tessan::sdg)

AbstractSDGPathIterator
(at::tugraz::ist::tessan::sdg::SDGPath)

SDGPathEntryIterator
(at::tugraz::ist::tessan::sdg::SDGPath)

EdgeIterator
(at::tugraz::ist::tessan::sdg::SDGPath)

<<Inter face>>
ISDGPathEntry

(at::tugraz::ist::tessan::sdg)

SDGPathEntry
(at::tugraz::ist::tessan::sdg)

SDGEdge
(joana::sdg)

SDGEdgeComparator
(joana::sdg::SDGEdge)

< < E n u m > >
Kind

(joana::sdg::SDGEdge)

< < E n u m > >
EdgeDirection

(at::tugraz::ist::tessan::sdg)

FilteredSDGPath
(at::tugraz::ist::tessan::sdg)

AbstractFilteredSDGPathIterator
(at::tugraz::ist::tessan::sdg::FilteredSDGPath)

FilteredSDGPathEdgeIterator
(at::tugraz::ist::tessan::sdg::FilteredSDGPath)

FilteredSDGPathEntryIterator
(at::tugraz::ist::tessan::sdg::FilteredSDGPath)

nextItem

decoratee

entries

*

Visual Paradigm for UML Standard Edition(Graz University of Technology)

Figure 6.5: UML class diagram showing the structure of an SDGPath used by the visitors.

71



6 Implementation 6.3 TESSAN

6.3.5 Limitations

In addition to the limitations of the TESSAN approach itself, also the current imple-

mentation has some drawbacks, partly due limitations of the system dependence

graph used.

• Although jConTest supports Java generics in principal, the use of generics

still leads to problems in the TESSAN implementation due to the long chain of

processing applied to classes and methods. Generics are also mostly unavail-

able to the system dependence graph generation because of Java type erasure

during the compilation to byte code.

• jConTest and the interface to the yices SMT solver do not support many types

of Design by Contract™ specification features such as the instanceof operator,

complete string and array handling, quantifiers and such.

• The system dependence graph generated by Joana does not contain true/false

labels for edges originating from predicate nodes. This leads to the problem

that in fact path conditions cannot be built correctly. Adding this information

requires changes deep inside the WALA and Joana frameworks.

72



7 Evaluation

Due to the special method structure required for the applicability of the TESSAN

approach it is difficult to find good case studies that could be used for the empirical

evaluation. Therefore it was decided to evaluate the approach on a small number of

specially constructed implementations of the relevant part of the running example,

which is the MessageProcessor.processMessage(Message) method. This method is

used as method under test throughout this section. For every implementation, all

necessary steps involved in generating meaningful input data are shown in detail,

thus summarizing and demonstrating the explained concepts.

The following sections show three implementations, whose “complexity” slowly

raises, and for each implementation shows the following parts:

A. Implementation source code of the MessageProcessor class.

B. Relevant parts of the system dependence graph.

C. Construction of the set of relevant objects.

D. Control flow paths of the method under test.

E. Construction of the SMT formula.

F. Solution of the SMT formula (found initial state).

G. Exported test case.

73



7 Evaluation 7.1 Running Example — Version 1

7.1 Running Example — Version 1

The first version is very simple and parts of it have already been shown throughout

the thesis. The processMessage implementation consists of one branch only and

the precondition of the method under test fully specifies a valid initial state for the

Message object to be generated.

A. Source Code

Listing 7.1 shows the implementation of the method under test in this version.

1 import jass.modern.Pre;
2

3 public class MessageProcessor {
4

5 @Pre("message.size() >= 2 && message.isValid() == true")
6 public String processMessage(Message message) {
7 message.removeFirstPacket();
8 message.removeLastPacket();
9 String messageData = new MessageDataExtractor().extractData(message);

10 return messageData;
11 }
12

13 public String processPacket(Packet p) {
14 return p.getContent();
15 }
16

17 }

Listing 7.1: First implementation of the MessageProcessor.processMessage(Message) method of

the running example.

Listing 7.2 recaps the callee method used by the method under test.

1 import jass.modern.Pre;
2

3 public class MessageDataExtractor {
4

5 @Pre("message.size() > 0")
6 public String extractData(Message message) {
7 ...
8 }
9

10 }

Listing 7.2: Java source of the MessageDataExtractor class.

The method under test passes its parameter message to one method, namely the

extractData(Message) method of a MessageDataExtractor instance, so this method

will be considered as the callee.

74



7 Evaluation 7.1 Running Example — Version 1

B. System Dependence Graph

Figure 7.1 shows the system dependence graph of the first implementation of the

MessageProcessor.processMessage(Message) method of the running example.

Figure 7.2 shows the system dependence graph of the Main.main(String[]) method

of the running example.

Due to the high number of nodes (in this example the system dependence graph

contains 2060 nodes) it is not possible to show the complete graph. Therefore, only

the relevant parts are shown; transitive edges (dashed lines) indicate that nodes

have been left out.

C. Relevant Objects

The set of relevant objects starts with the definition of the parameter under test

(first parameter, node 128) with all fields marked as relevant. By following back

48-PI->128 and 6-DD->48 in Figure 7.2 one can see that the definition point of this

parameter is node 6.

Def(q) = Def(128) = 6

Thus the set of relevant objects is

RO = {6}

at the beginning.

The set of call nodes is

CallNodes(G) = {21,22,121,122,124,125}

(only the parts of the system dependence graph shown in Figure 7.1 and 7.2 are

considered).

The set of mutators of the relevant objects is

Mutators({6} , G) = {121,122} ,

because there are no direct member accesses and only those two method calls use

the relevant object 6 as their “this” parameter. The parameters of those mutators

75



7 Evaluation 7.1 Running Example — Version 1

119 ENTR 
 linear.MessageProcessor.processMessage(linear.Message)

120 EXIT 
 linear.MessageProcessor.processMessage(linear.Message)

CF CE
121 CALL 

 linear.Message.removeFirstPacket()

UN

CD

122 CALL 
 linear.Message.removeLastPacket()

CD
UN

123 EXPR 
 v6 = new linear.MessageDataExtractor

CD

124 CALL 
 linear.MessageDataExtractor.<init>()

CD

UN

125 CALL 
 linear.MessageDataExtractor.extractData(linear.Message)

UN

CD

126 NORM 
 return v9

CD

127 FRMI 
 this

CFCE

128 FRMI 
 param 1

CE

129 ACTI 
 this

CE

130 ACTI 
 this

CF

CF

CE

131 ACTI 
 this

DD CF

132 ACTI 
 this

DD

CE

133 ACTI 
 param 1

CF

CE

CE

134 ACTO 
 linear.MessageDataExtractor.extractData(linear.Message)

CF CE

CD DD CF

CF

CF

DD

CF DD

DD

VD
CF

VD
CF

VD
CF

VD CF

CF

DD
CF

Figure 7.1: System dependence graph of the first implementation of the MessageProcessor.
processMessage(Message) method of the running example.

76



7 Evaluation 7.1 Running Example — Version 1

4 ENTR 
 linear.Main.main(java.lang.String[])

5 EXIT 
 void linear.Main.main(java.lang.String[])

6 EXPR 
 v3 = new linear.Message

CD

20 EXPR 
 v23 = new linear.MessageProcessor

21 CALL 
 linear.MessageProcessor.<init>()

22 CALL 
 linear.MessageProcessor.processMessage(linear.Message)

23 NORM 
 return

24 FRMI 
 param 0

CF
CE

48 ACTI 
 param 1

DD

46 ACTI 
 this

DDCF

47 ACTI 
 this

DDCE

CF

CE

CE

49 ACTO 
 linear.MessageProcessor.processMessage(linear.Message)

CE CF

CF

CF

CF

VDCF

VDCF

CF

119 ENTR 
 linear.MessageProcessor.processMessage(linear.Message)

127 FRMI 
 this

CF

CE

128 FRMI 
 param 1

CE

CLPI

CF

PI

PO 120 EXIT 
 linear.MessageProcessor.processMessage(linear.Message)

CF

Figure 7.2: Excerpt of the system dependence graph of the Main.main(String[]) method of the
running example. Dashed edges denote transitive edges, that is, some nodes have been
left out in between.

77



7 Evaluation 7.1 Running Example — Version 1

are Params(121) = {129} and Params(122) = {130}, respectively. As Def(129) = 6

and Def(130) = 6, the set of new relevant objects is still

RO∗({6} , G) = {6}

Thus, the set of relevant objects is unchanged and remains as

RO(6, G) = {6} .

D. Control Flow Paths

As the method under test in this example does not contain any branches or loops,

there is only one control flow path, which is

119-CF->127,127-CF->128,128-CF->129,129-CF->121,121-CF->130,130-CF->122,

122-CF->123,123-CF->131,131-CF->124,124-CL->186,...

It starts at the ENTR node of the method under test and ends in the constructor call

of the MessageDataExtractor class (the path above is truncated because it contin-

ues up to the constructor of java.lang.Object, which is not shown in the system

dependence graph anyway.)

The control flow path contains the nodes 121 and 122, which are mutators of the

message parameter as seen above.

Starting from the node which represents the call to the callee method, all nodes

in the control flow are ignored (including their parameters). In this case these are

nodes 133, 132, 125, 134, 126, and 120.

E. SMT Formula

Going through all nodes of the computed control flow path and extracting all muta-

tors of the relevant object 6 results in the following mutation steps:

µ0 = removeFirstPacket()

µ1 = removeLastPacket()

As there are not branches or loops in the method under test, all path conditions are

simply true:

π0 = true

78



7 Evaluation 7.1 Running Example — Version 1

π1 = true

πIS2 = true

This results in the SMT formula

M= IS1
◦◦

;π0 ∧
[
MRµ0

]◦◦
;π1 ∧

[
MRµ1

]◦◦
;πIS2 ∧¬IS2

◦◦

= size() ≥ 2∧ isValid() = true
◦◦

; true∧ [removeFirstPacket()]
◦◦

;

true∧ [removeLastPacket()]
◦◦

; true∧¬(size() > 0)◦◦

= size() ≥ 2∧ isValid() = true
◦◦

; [removeFirstPacket()]
◦◦

;

[removeLastPacket()]
◦◦

; true∧¬(size() > 0)◦◦

First, method references are instantiated, which is easy because the references do

not have parameters.

M= size() ≥ 2∧ isValid() = true
◦◦

; size()′ = size()− 1
◦◦

;

size()′ = size()− 1
◦◦

; true∧¬(size() > 0)◦◦

Then all steps are chained:

M= true∧ true ; isValid() = (getFirstPacketType() = Packet.START∧
getLastPacketType() = Packet.END

)
; size() ≥ 2∧ isValid() = true ;

true∧ true ; size()′ = size()− 1 ; true∧ true ; true∧ true ;

size()′ = size()− 1 ; true∧ true ; true∧ true ; true∧¬(size() > 0)

Obviously, all true ∧ true steps can be omitted. As expressions get quite long once

they are framed, some abbreviations are introduced:

v =df isValid()

f =df getFirstPacketType()

l =df getLastPacketType()

s =df size()

Also, the values for Packet.START and Packet.END are inserted, which are 1 and 3,

respectively.

M= v = (f = 1∧ l = 3) ; s ≥ 2∧ v = true ; s′ = s − 1 ; s′ = s − 1 ; ¬(s > 0)

79



7 Evaluation 7.1 Running Example — Version 1

All methods except removeFirstPacket() and removeLastPacket() are pure, so the

framing adds the predicate x′ = x for all state variables (v, f , l, and s).

M= v = (f = 1∧ l = 3)∧ v′ = v ∧ f ′ = f ∧ l′ = l∧ s′ = s ; s ≥ 2∧ v = true

∧v′ = v ∧ f ′ = f ∧ l′ = l∧ s′ = s ; s′ = s − 1∧ f ′ = f ∧ l′ = l∧ v′ = v ;

s′ = s − 1∧ f ′ = f ∧ l′ = l∧ v′ = v ; ¬(s > 0)

Now the sequential composition operator has to be resolved. For this application

this can be done by introducing new variables in each step.

M= v0 = (f0 = 1∧ l0 = 3)∧ v1 = v0 ∧ f1 = f0 ∧ l1 = l0 ∧ s1 = s0 ∧ s1 ≥ 2∧
v1 = true∧ v2 = v1 ∧ f2 = f1 ∧ l2 = l1 ∧ s2 = s1 ∧ s3 = s2 − 1f3 = f2

l3 = l2 ∧ v3 = v2 ∧ s4 = s3 − 1∧ f4 = f3 ∧ l4 = l3 ∧ v4 = v3 ∧¬(s4 > 0)

This formula is satisfiable; the model returned from the SMT solver is

v0 = true, f0 = 1, l0 = 3, s0 = 2,

v1 = true, f1 = 1, l1 = 3, s1 = 2,

v2 = true, f2 = 1, l2 = 3, s2 = 2,

v3 = true, f3 = 1, l3 = 3, s3 = 1,

v4 = true, f4 = 1, l4 = 3, s4 = 0.

F. Initial State

From the variables with the lowest index from the SMT model above, the initial state

can be extracted:

v0 = true that is, isValid() returns true

f0 = 1 that is, getFirstPacketType() returns 1

l0 = 3 that is, getLastPacketType() returns 3

s0 = 2 that is, size() returns 2

G. Test Case

Listing 7.3 shows the test case as created by the TESSAN implementation.

80



7 Evaluation 7.1 Running Example — Version 1

1 import org.junit.Test;
2 import linear.Message;
3 import linear.MessageProcessor;
4 import java.util.List;
5 import java.util.ArrayList;
6 import at.tugraz.ist.jcontest.extensions.synthiamock.Synthia;
7 import at.tugraz.ist.jcontest.extensions.types.JavaVariable;
8 import at.tugraz.ist.jcontest.extensions.types.IntegerJavaVariable;
9 import at.tugraz.ist.jcontest.extensions.types.BooleanJavaVariable;

10

11 public class linearMessageDataExtractorTests {
12 @Test(timeout=0)
13 public void testProcessMessage() throws Throwable {
14 MessageProcessor var0 = new MessageProcessor();
15 Message var1 = Synthia.createMock(linear.Message.class, new Object[]{ });
16 List<JavaVariable> var2 = new ArrayList<JavaVariable>();
17 JavaVariable var3 = new IntegerJavaVariable("getFirstPacketType");
18 var3.setValue(1);
19 var2.add(var3);
20 JavaVariable var4 = new IntegerJavaVariable("getLastPacketType");
21 var4.setValue(3);
22 var2.add(var4);
23 JavaVariable var5 = new BooleanJavaVariable("isValid");
24 var5.setValue(true);
25 var2.add(var5);
26 JavaVariable var6 = new IntegerJavaVariable("size");
27 var6.setValue(2);
28 var2.add(var6);
29 Synthia.setInitial(var1, var2);
30 var0.processMessage(var1);
31 }
32 }

Listing 7.3: Exported test case using the calculated initial state for version 1 of the running example.

81



7 Evaluation 7.2 Running Example — Version 2

7.2 Running Example — Version 2

The second implementation demonstrates the concept of path conditions. The pro-

grammer has decided to check parts of the requirements on the message object in

the method body. Still, TESSAN is able to compute the same initial state as in the

previous version by incorporating the conditions contained in the if statements as

described above.

A. Source Code

Listing 7.4 shows the implementation of the method under test in this version.

The Main.main(String[]) method and the MessageDataExtractor class remain un-

changed.

1 import jass.modern.Pre;
2

3 public class MessageProcessor {
4

5 @Pre("message.size() >= 2")
6 public String processMessage(Message message) {
7 if(message.getFirstPacketType() == Packet.START) {
8 message.removeFirstPacket();
9 if(message.getLastPacketType() == Packet.END) {

10 message.removeLastPacket();
11 return new MessageDataExtractor().extractData(message);
12 }
13 }
14 return "";
15 }
16

17 }

Listing 7.4: Second implementation of the MessageProcessor.processMessage(Message) method

of the running example.

B. System Dependence Graph

Figure 7.1 shows the system dependence graph of the first implementation of the

MessageProcessor.processMessage(Message) method of the running example.

82



7 Evaluation 7.2 Running Example — Version 2

119 ENTR 
 branch.MessageProcessor.processMessage(branch.Message)

120 EXIT 
 branch.MessageProcessor.processMessage(branch.Message)

CF

CE

121 CALL 
 branch.Message.getFirstPacketType()

UN

CD

122 PRED 
 if v5 != #1

CD

123 CALL 
 branch.Message.removeFirstPacket()

UN

124 CALL 
 branch.Message.getLastPacketType()

UN

126 CALL 
 branch.Message.removeLastPacket()

UN

128 CALL 
 branch.MessageDataExtractor.<init>()

UN

129 CALL 
 branch.MessageDataExtractor.extractData(branch.Message)

UN

132 FRMI 
 this

CE
CF

133 FRMI 
 param 1

CE

134 ACTI 
 this

CE

135 ACTO 
 branch.Message.getFirstPacketType()

CE
CF

CD

CD

125 PRED 
 if v9 != #3

CD

131 NORM 
 return #

CF

CD
136 ACTI 

 this

CF

CE

137 ACTI 
 this

CF

CE

138 ACTO 
 branch.Message.getLastPacketType()

CECF

127 EXPR 
 v13 = new branch.MessageDataExtractor

CF

139 ACTI 
 this

CE

140 ACTI 
 this

CE

142 ACTI 
 param 1

CF

141 ACTI 
 this

CE

CE

143 ACTO 
 branch.MessageDataExtractor.extractData(branch.Message)

CF
CE

CF

CF

DD

CF

DD

DD

DD

DD

VD CF

SU

DD
CF

CD

CD

CD

CD

130 NORM 
 return v16

CD

CD

CF

CF

CDDD CF

VDCF

VDCF

SU

DD
CF

CF
DD

DD

VD
CF

VDCF

CF

VDCF

DD

CF

CD DD

CF

T

F

T
F

Figure 7.3: System dependence graph of the second implementation of the MessageProcessor.
processMessage(Message) method of the running example.

83



7 Evaluation 7.2 Running Example — Version 2

C. Relevant Objects

Again, one starts with RO(6, G) = {6} and uses RO∗({6} , G) to find new relevant

objects

RO∗{6} , G = {6,135,138} ,

because

Mutators(6, G) = {121,123,124,126,128}

with

Def(Params(121)) = {6,135}
Def(Params(124)) = {6,138}
Def(Params(123)) = Def(Params(126)) = Def(Params(128)) = {6}

Thus the final set RO is

RO(6, G) = {6,135,138} .

D. Control Flow Paths

The method under test contains two if statements and therefore the following three

control flow paths have to be considered:

• 119-CF->132,132-CF->133,133-CF->134,134-CF->121,121-CF->135,

135-CF->122,122-CF->131,131-CF->120

• 119-CF->132,132-CF->133,133-CF->134,134-CF->121,121-CF->135,

135-CF->122,122-CF->136,136-CF->123,123-CF->137,137-CF->124,

124-CF->138,138-CF->125,125-CF->131,131-CF->120

• 119-CF->132,132-CF->133,133-CF->134,134-CF->121,121-CF->135,

135-CF->122,122-CF->136,136-CF->123,123-CF->137,137-CF->124,

124-CF->138,138-CF->125,125-CF->139,139-CF->126,126-CF->127,

127-CF->140,140-CF->128,128-CF->142

These paths are also indicated in Figure 7.3. Nonetheless, only the third one reaches

the callee method, for the first and second path the method terminates without

calling the MessageDataExtractor.extractData(Message) method. Thus, only the

last path is considered in the following discussion.

84



7 Evaluation 7.2 Running Example — Version 2

E. SMT Formula

For the control flow path found above the following mutation steps are extracted:

µ0 = getFirstPacketType()

µ1 = removeFirstPacket()

µ2 = getLastPacketType()

µ3 = removeLastPacket()

The path conditions for these steps are constructed by building the conjunction of

all predicates along the path, for example,

π3 = ¬(v5 ≠ 1)∧¬(v9 ≠ 3)

= ¬(getFirstPacketType() ≠ 1)∧¬(getLastPacketType() ≠ 3)

= getFirstPacketType() = 1∧ getLastPacketType() = 3

Similarly, the other path conditions are obtained as

π0 = true

π1 = getFirstPacketType() = Packet.START

π2 = getFirstPacketType() = Packet.START

πIS2 = getFirstPacketType() = Packet.START∧ getLastPacketType() = Packet.END

In addition to the abbreviations used above the following formulas also use

rF =df removeFirstPacket()

rL =df removeLastPacket()

All obtained parts can now be combined to the following SMT formula. In this ex-

ample also two temporary variables τ1 and τ2 are needed for results of the method

calls in the conditionals, according to Section 5.6.

M= IS1
◦◦

;π0 ∧
[
MRµ0

]◦◦
;π1 ∧

[
MRµ1

]◦◦
;πIS2 ∧¬IS2

◦◦

= s ≥ 2
◦◦

; true∧ [f ]
◦◦

; τ1 = f ; τ1 = 1∧ [rF]
◦◦

; τ1 = 1∧ [l]◦◦ ;

τ2 = l ; τ1 = 1∧ τ2 = 3∧ [rL]◦◦ ; τ1 = 1∧ τ2 = 3∧¬(s > 0)◦◦

85



7 Evaluation 7.2 Running Example — Version 2

= true∧ true ; s ≥ 2 ; τ1 = f ; τ1 = 1∧
(

true∧ true ; s′ = s − 1 ;

true∧ true
)

; τ2 = l ; τ1 = 1∧ τ2 = 3∧
(

true∧ true ; s′ = s − 1 ;

true∧ true
)

; τ1 = 1∧ τ2 = 3∧
(

true∧ true ; ¬(s > 0)
)

Again, the framing operations are resolved. Note that in this example the state

variable isValid() has been omitted for clarity, because its value is not of interest in

the implementation.

M= s ≥ 2∧ f ′ = f ∧ l′ = l∧ s′ = s ; τ1 = f ∧ s′ = s ∧ f ′ = f ∧ l′ = l ;

τ1 = 1∧ s′ = s − 1∧ f ′ = f ∧ l′ = lτ2 = l∧ f ′ = f ∧ l′ = l∧ s′ = s ;

τ1 = 1∧ τ2 = 3∧ s′ = s − 1∧ f ′ = f ∧ l′ = l ; τ1 = 1∧ τ2 = 3∧¬(s > 0)

= s0 ≥ 2∧ f1 = f0 ∧ l1 = l0 ∧ s1 = s0 ∧ τ1 = f1 ∧ s2 = s1 ∧ f2 = f1 ∧ l2 = l1∧
τ1 = 1∧ s3 = s2 − 1∧ f3 = f2 ∧ l3 = l2 ∧ τ2 = l2 ∧ s4 = s3 ∧ f4 = f3∧
l4 = l3 ∧ τ1 = 1∧ τ2 = 3∧ s5 = s4 − 1∧ f5 = f4 ∧ l5 = l4 ∧ τ1 = 1∧
τ2 = 3∧¬(s5 > 0)

FeedingM into the SMT solver shows that it is satisfiable and TESSAN uncovered the

precondition mismatch.

F. Initial State

Similarly to the first version, the initial state is extracted from the SMT solver

model.

f0 = 1 that is, getFirstPacketType() returns 1

l0 = 3 that is, getLastPacketType() returns 3

s0 = 2 that is, size() returns 2

G. Test Case

As the initial state is the same, also the generated test case is identical to the one

presented in the first version and is therefore not printed again.

86



7 Evaluation 7.3 Running Example — Version 3

7.3 Running Example — Version 3

The third implementations demonstrates the relevant object calculation when the

input object is stored and passed to other methods, as well as the loop handling in

control flow paths.

A. Source Code

Listing 7.5 shows the implementation of the method under test in this version.

1 import jass.modern.Pre;
2

3 public class MessageProcessor {
4

5 @Pre("message.size() >= 2")
6 public String processMessage(Message message) {
7 List msgs = new List();
8 msgs.add(message);
9 prepareMessages(msgs);

10 return new MessageDataExtractor().extractData(message);
11 }
12

13 public void prepareMessages(List msgs) {
14 for(int i = 0; i < msgs.size(); i++) {
15 Message m = msgs.get(i);
16 if(m.isValid()) {
17 m.removeFirstPacket();
18 m.removeLastPacket();
19 }
20 }
21 }
22

23 }

Listing 7.5: Third implementation of the MessageProcessor.processMessage(Message) method

of the running example.

In this implementation the message object is added to a List, which is a custom list

implementation which is necessary because the TESSAN implementation does not

fully support Java generics. Otherwise it behaves like the standard Java ArrayList

class and is also unannotated.

B. System Dependence Graph

Figure 7.4 shows the system dependence graph of the third implementation of the

MessageProcessor.processMessage(Message) method of the running example. Fig-

87



7 Evaluation 7.3 Running Example — Version 3

ure 7.5 shows the MessageProcessor.prepareMessages(List) method used in this

implementation.

C. Relevant Objects

Instead of calculating the set of relevant objects formally, this section illustrates

the process using the system dependence graph in Figure 7.4. The numbers of the

following list correspond to the annotations in the Figure.~1 We start from the call site of the method under test and its parameter param 1.~2 We follow back the data dependency edge to obtain the definition point of

the parameter. This is the starting point for the relevant object calculation:

RO(6, G) = {6}.~3 We follow the call edge to the entry point of the processMessage method. The

first call node in the control flow is the List constructor.~4 The (this) parameter of the List constructor is not a relevant object.

RO(6, G) = {6}~5 The next method call (List.add) uses the formal parameter of the processMessage

method as its first argument.~6 The definition of the first formal parameter is in the main method and can be

found by following back the PI edge.~7 Node 6 is a relevant object, thus the other parameters of the List.add call are

becoming relevant objects too.~8 The this parameter of the List.add call is the list itself, so its definition is

added to RO: RO(6, G) = {6,113}.~9 The MessageProcessor.prepareMessages(List) call uses a relevant object (113)

as a non-this argument. Thus we follow the call edge to the method entry (not

printed) and continue in Figure 7.5.~10 The first method call in this method is List.size(), which uses the formal

parameter 206 as its this argument. This is a relevant object (the edge 127-PI

->206 is not shown).~11 Therefore, the output node 215 becomes relevant: RO(6, G) = {6,113,215}.~12 Similarly, the call to List.get(int) uses 206 FRMI as this parameter.~13 Therefore, the output node 209 becomes relevant: RO(6, G) = {6,113,215,209}.

88



7 Evaluation 7.3 Running Example — Version 3

111 ENTR 
 complex.MessageProcessor.processMessage(complex.Message)

112 EXIT 
 complex.MessageProcessor.processMessage(complex.Message)

113 EXPR 
 v4 = new complex.List

CD

114 CALL 
 complex.List.<init>()

UN

CD

115 CALL 
 complex.List.add(complex.Message)

CD

UN

120 NORM 
 return v11

121 FRMI 
 this

CF
CE

122 FRMI 
 param 1

CE

123 ACTI 
 this

CF
DD

124 ACTI 
 this

DD

CE

125 ACTI 
 param 1

CF

CE

CE

CD
DD

CF

CF

CF

DD

VDCF

VD
CF

CF

CF

4 ENTR 
 complex.Main.main(java.lang.String[])

5 EXIT 
 void complex.Main.main(java.lang.String[])

6 EXPR 
 v3 = new complex.Message

CD

7 CALL 
 complex.Message.<init>()

16 CALL 
 complex.MessageProcessor.processMessage(complex.Message)

UN
CD

20 NORM 
 return

CD

21 FRMI 
 param 0

CECF

37 FRMI 
 java.lang.System.out

CE

22 ACTI 
 this

CF DD

35 ACTI 
 param 1

DD
CE

CE

36 ACTO 
 complex.MessageProcessor.processMessage(complex.Message)

CF CE

CF

CF

CF

CF

VD
CF

CF

CF

CF

PI

PO

1

2

3

4

5

6

7

8
CL

116 CALL 
 complex.MessageProcessor.prepareMessages(complex.List)

CD

UN

127 ACTI 
 param 1

DD

CF

126 ACTI 
 this

CE

CE

DD

CF

VDCF

9

117 EXPR 
 v8 = new complex.MessageDataExtractor

118 CALL 
 complex.MessageDataExtractor.<init>()

CD

UN

128 ACTI 
 this

DD

CEVD
CF

CF

CF

Figure 7.4: System dependence graph of the third implementation of the MessageProcessor.
processMessage(Message) method of the running example. The step numbers are used
in the relevant object calculation in step C.

89



7 Evaluation 7.3 Running Example — Version 3

193 ENTR 
 complex.MessageProcessor.prepareMessages(complex.List)

194 EXIT 
 void complex.MessageProcessor.prepareMessages(complex.List)

CE

CF
195 CALL 

 complex.List.get(int)

UN

196 CALL 
 complex.Message.isValid()

UN

198 CALL 
 complex.Message.removeFirstPacket()

UN

199 CALL 
 complex.Message.removeLastPacket()

UN

201 CALL 
 complex.List.size()

UN

CD

202 PRED 
 if v15 < v6

CD

203 NORM 
 return

CD

204 EXPR 
 phi v15 = #0 (v4)

UN
CF

205 FRMI 
 this

CF
CE

206 FRMI 
 param 1

CE

207 ACTI 
 this

CE

208 ACTI 
 primitive param 1

CE

209 ACTO 
 complex.List.get(int)

CECF

210 ACTI 
 this

CE

211 ACTO 
 complex.Message.isValid()

CE
CF

212 ACTI 
 this

CE

213 ACTI 
 this

CF

200 EXPR 
 v14 = OPER add(v15, #1)

CF

CE

214 ACTI 
 this

CE

215 ACTO 
 complex.List.size()

CF

CE

CD

CD

197 PRED 
 if v10 == #0

CD

CD

CD

CF

CF

CF

DD

DD

CF

CF

CF

DD

CF
DD

VD

CF

SU

CF

SU

CF
DD

DD

DD

VD
CF

SU

DD
CF

VD
CF

VDCF

DD
DD

CF

VD
CF

SU

DD

CF

CD

CD

CF

CF

10

12

13

14

15

16

17

11

Figure 7.5: System dependence graph of MessageProcessor.prepareMessages(List) used in the
third implementation of the running example. The step numbers are used in the relevant
object calculation in step C.

90



7 Evaluation 7.3 Running Example — Version 3

~14 Next, the call to Message.isValid() uses a relevant object as its this parameter

(209).~15 Therefore, the output node 211 becomes relevant:

RO(6, G) = {6,113,215,209,211}.~16 The call to Message.removeFirstPacket() uses a relevant object as its this

parameter (209), thus its call edge is not followed.~17 The call to Message.removeLastPacket() uses a relevant object as its this pa-

rameter (209), thus its call edge is not followed.

As there are no further mutators in these methods and thus the relevant object

calculation is finished: RO(6, G) = {6,113,215,209,211}.

D. Control Flow Paths

As this implementation is fairly large, printing the whole control flow paths makes

no sense. In addition, it contains a large loop and a conditional. Therefore, we only

inspect the mutation sequences that are extracted from these paths grouped by the

number of loop iterations:

Zero iterations:

• size()

One iteration:

• size(), isValid(), size()

• size(), isValid(), removeFirstPacket(), removeLastPacket(), size()

Two iterations:

• size(), isValid(), size(), isValid(), size()

• size(), isValid(), removeFirstPacket(), removeLastPacket(), size(), isValid(), size()

• size(), isValid(), isValid(), removeFirstPacket(), removeLastPacket(), size()

• size(), isValid(), removeFirstPacket(), removeLastPacket(), size(), isValid(), re-

moveFirstPacket(), removeLastPacket(), size()

91



7 Evaluation 7.3 Running Example — Version 3

E. SMT Formula

Three of the sequences above contain the subsequence

isValid(), removeFirstPacket(), removeLastPacket()

and just pure methods besides these. This is the same sequence as shown in the

first implementation and therefore one can see that those three mutation sequences

will give the same result.

Other sequences like

isValid()

are unsatisfiable, produce no valid initial states and thus do not uncover the pre-

condition mismatch.

F. Initial State

As already stated above, for some sequences the calculated initial state is identical

to the initial state shown in the first implementation.

G. Test Case

For identical initial states, also the generated test case is identical to the one pre-

sented in the first version and is therefore not printed again.

92



8 Conclusion

This thesis presents a test data generation approach called TESSAN, which aims to

reveal precondition mismatch errors in Java programs using Design by Contract™

specifications written in Modern Jass syntax. These precondition mismatch can oc-

cur whenever a method under test passes one of its arguments to another method

(the callee method) after possibly mutating this argument using a sequence of in-

stance method calls on the argument. Both methods, the method under test and the

callee may have specifications on their parameters, requiring them to be in a certain

state. However, if these specifications are not carefully chosen, there might be ob-

jects that satisfy the precondition of the method under test, but after the mutations

in the method under test, no longer satisfy the precondition of the callee. Addition-

ally, these situations may not occur in actual executions of the current version of a

program but arise later upon program change or module reuse.

TESSAN finds such hidden precondition mismatch errors and generates an executable

test case which demonstrates the possible problem to the programmer. This is

accomplished by first building the system dependence graph of the program from

the Java byte code using the WALA [SD10] and Joana libraries. System dependence

graphs are a popular tool in static program slicing [HRB90, HS04] and information

flow control [HS09]. In the next step, TESSAN builds an SMT formula from the Design

by Contract™ specifications of the method under test, the mutation sequence and

the precondition of the callee such that the formula is satisfiable if there is a possible

precondition mismatch between those two methods. The formula is solved using the

yices SMT solver [DdM06] and from the returned SMT model — containing values for

all variables used in the formula — the initial state, that is, the state at the beginning

of the method under test, is extracted. This initial state is then used to configure a

SYNTHIA [GWW10] fake object and exported to a jUnit test case.

93



8 Conclusion 8.1 Approach

8.1 Approach

TESSAN tries to find latent bugs in programs, that is, bugs that might not be apparent

right now, and therefore is a static program analysis approach. Unfortunately, all

static approaches have to deal with problems which have been shown to be unde-

cidable or NP-hard, for example, code reachability [Lan92], aliasing [Ram94] or type

inference [LH96, PR94]. As a consequence, for example, the number of loop itera-

tions in the program cannot be determined by TESSAN and the mutation sequence

must be approximated using bounded loop unrolling.

Many other test data generation approaches for Design by Contract™ annotated

programs stop at method signature level, that is, they only use Design by Contract™

specifications and structural information about classes, methods and types. In con-

trast to that, TESSAN uses the actual implementations of methods (the method body)

to extract further information. Unfortunately, TESSAN only considers methods with

a very special structure as the method under test, while many other possible cases

are not handled currently.

Many of the bugs that TESSAN finds will also be detected by the popular static check-

ing framework ESC/Java, but TESSAN is a very different approach in multiple senses.

ESC/Java is a verification tool which tries to prove the correctness of a complete

Java program with JML annotations. Therefore, it requires a completely specified

program and profound knowledge about every possible Java statement. If a pro-

gram cannot be verified, ESC/Java does not create any test case or a set of values

showing the problem.

The evaluation section showed that TESSAN is applicable for the small running ex-

ample presented at the beginning of the thesis. For three very different implementa-

tions of the method under test, TESSAN is able to reveal the precondition mismatch

problem. The approach was not applied to a larger case study because it is not

a general test data generation approach but targets only a very specific group of

methods. Thus, comparing a coverage metric to any other approach would not be

conclusive at all.

8.2 Implementation

For the type of analysis that TESSAN does, it is necessary to examine dependencies

upon program statements. Therefore, a pure structural parsing of the Java source

code is not enough, a dependency graph is needed. Building such a dependency

94



8 Conclusion 8.3 Future Work

graph is easy in theory but hard for real languages. As a consequence, the construc-

tion process of the system dependence graph used in the TESSAN implementation

not only needs large amounts of code but also takes quite a lot of time even for

small programs (about 15 seconds for the running example). The chosen libraries,

WALA and Joana, always analyze the whole program and cannot be applied to parts

of it. Furthermore, the analyzed program has to contain a public static void

main(String[] args) method where the SDG generation must be started.

Unfortunately the system dependence graph delivered by Joana still misses some

desirable features. For example, edges originating from predicate nodes do not

contain true/false labels, graph nodes of expressions still only contain a textual

representation of some intermediate code. For a more precise analysis, one would

have to parse this representation and find out how its variables can be associated

with dependency edges.

One advantage of using the system dependence graph is that it is built from the

compiled Java byte code and therefore the source code of the program and its de-

pendent libraries is not needed for the analysis.

8.3 Future Work

The presented approach, and in particular its implementation, is clearly not in-

tended for end-users. Therefore, there is a lot of room for improvements both on

the theoretical part and on the practical implementation.

For the approach itself, it would be desirable to consider other structures of the

method under test as well while still being able to present the result to the pro-

grammer in a good way. Furthermore, dependencies of the mutation sequence upon

multiple method parameters should be considered.

For the implementation, an improved version of the underlying system dependence

graph could help the preciseness of the relevant object calculation a lot. Also

the processing chain in jConTest could be improved in terms of support for Java

generics and more Design by Contract™ specification expressions (for example, the

instanceof operator, which is often used by developers, string and array support

as well as Design by Contract™ quantifiers).

Last but not least, the approach should be tested more extensively using larger case

studies and probably integrated with other test data generation approaches into an

end-user friendly tool.

95



Bibliography

[ABL02] Glenn Ammons, Rastislav Bodík, and James R. Larus. Mining specifica-

tions. In 29th SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, pages 4–16, 2002.

[AO08] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cam-

bridge University Press, 2008.

[Bar10] Mike Barnett. Code Contracts for .NET: Runtime Verification and So Much

More, volume 6418 of Lecture Notes in Computer Science, pages 16–17.

2010.

[BCC+03] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:117–148, 2003.

[BdMS05] Clark Barrett, Leonardo de Moura, and Aaron Stump. SMT-COMP: Satis-

fiability Modulo Theories Competition. 3576:20–23, 2005.

[BDS06] Marat Boshernitsan, Roongko Doong, and Alberto Savoia. From Daikon

to Agitator: Lessons and Challenges in Building a Commercial Tool for

Developer Testing. In International Symposium on Software Testing and

Analysis, pages 169–180, 2006.

[CGP+08] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Daw-

son R. Engler. EXE: Automatically Generating Inputs of Death. In 13th

ACM Conference on Computer and Communications Security, pages 322–

335, 2008.

[CLM04] T. Y. Chen, H. Leung, and I. K. Mak. Adaptive Random Testing, volume

3321 of Lecture Notes in Computer Science, pages 320–329. 2004.

[CLOM06] Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer. Ob-

ject distance and its application to adaptive random testing of object-

oriented programs. In 1st International Workshop on Random Testing,

pages 55–63, 2006.

96



Bibliography Bibliography

[CLOM08] Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer. AR-

TOO: Adaptive Random Testing for Object-Oriented Software. In 30th

International Conference on Software Engineering, pages 71–80, 2008.

[DdM06] Bruno Dutertre and Leonardo de Moura. The YICES SMT Solver. Techni-

cal report, Computer Science Laboratory, SRI International, 2006.

[DFQ07] Eddie Dingels, Timothy Fraser, and Alexander Quinn. Generating Java

Unit Tests with AI Planning. In 1st ACM International Workshop on Em-

pirical Assessment of Software Engineering Languages and Technologies,

pages 2–6, 2007.

[dM07] Leonardo de Moura. SMT Solvers: Introduction & Applica-

tions. Presentation, http://research.microsoft.com/en-us/um/

redmond/projects/z3/cambridge07-slides.pdf, 2007.

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In

14th International Conference on Tools and Algorithms for the Construc-

tion and Analysis of Systems, pages 337–340, 2008.

[DNS05] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem

prover for program checking. Journal of the ACM, 52(3):365–473, 2005.

[ECGN99] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin.

Dynamically Discovering Likely Program Invariants to Support Program

Evolution. In 21st Internaitonal Conference on Software Engineering,

pages 213–222, 1999.

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program

dependence graph and its use in optimization. ACM Transactions on

Programming Languages and Systems, 9(3):319–349, 1987.

[GA10] Stefan J. Galler and Bernhard K. Aichernig. Survey: State-of-the-Art of

Test Data Generation Tools. Software Tools for Technology Transfer,

2010.

[Gal11] Stefan J. Galler. Automatic Test Case Generation of Java Programs with

Design by Contract™ Specification. PhD thesis, Graz University of Tech-

nology, 2011.

[GHK+98] Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDermott, Ashwin

Ram, Manuela Veloso, Daniel Weld, and David Wilkins. PDDL — The

Planning Domain Definition Language. Technical report, Yale Center for

Computational Vision and Control, 1998.

97

http://research.microsoft.com/en-us/um/redmond/projects/z3/cambridge07-slides.pdf
http://research.microsoft.com/en-us/um/redmond/projects/z3/cambridge07-slides.pdf


Bibliography Bibliography

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed Auto-

mated Random Testing. In ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 213–223, 2005.

[GQWW11] Stefan J. Galler, Thomas Quaritsch, Martin Weiglhofer, and Franz

Wotawa. The IntiSa approach: Test Input Data Generation for Non-

Primitive Data Types by means of SMT solver based Bounded Model

Checking. In 11th International Conference on Quality Software. (sub-

mitted), 2011.

[GWKU08] Stefan J. Galler, Franz Wotawa, Robert Königshofer, and Robert Unter-

berger. Automatic Test Generation Tools for Java based on Design-by-

Contract: A survey. Technical report, SoftNet Austria, 2008.

[GWP07] Stefan J. Galler, Franz Wotawa, and Bernhard Peischl. Formal Specifi-

cation Languages for Design-by-Contract in Java: A survey. Technical

report, SoftNet Austria, 2007.

[GWW10] Stefan J. Galler, Martin Weiglhofer, and Franz Wotawa. Synthesize it:

from Design by Contract™ to Meaningful Test Input Data. In 8th Inter-

national Conference on Software Engineering and Formal Methods, 2010.

[GZW10] Stefan J. Galler, Christoph Zehentner, and Franz Wotawa. AIana: An AI

Planning System for Test Data Generation. In 1st Workshop on Testing

Object-Oriented Software Systems, pages 30–37, 2010.

[HH98] C. A. R. Hoare and Jifeng He. Unifying Theories of Programming. Prentice

Hall, Upper Saddle River, NJ, USA, 1998.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commu-

nications of the ACM, 12(10):576–580, 1969.

[HRB90] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slic-

ing using dependence graphs. In ACM SIGPLAN 1988 Conference on

Programming Language design and Implementation, pages 35–46, 1990.

[HS04] Christian Hammer and Gregor Snelting. An improved slicer for Java. In

5th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software

Tools and Engineering, pages 17–22, 2004.

[HS09] Christian Hammer and Gregor Snelting. Flow-sensitive, context-

sensitive, and object-sensitive information flow control based on pro-

gram dependence graphs. International Journal of Information Security,

8(6):399–422, 2009.

98



Bibliography Bibliography

[KKP+81] David J. Kuck, Robert Henry Kuhn, D. A. Padua, B. Leasure, and M. Wolfe.

Dependence graphs and compiler optimizations. In 8th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages

207–218, 1981.

[Kri03] J. Krinke. Advanced slicing of sequential and concurrent programs. PhD

thesis, Universität Passau, 2003.

[Lan92] William Landi. Undecidability of static analysis. ACM Letters on Pro-

gramming Languages and Systems, 1(4):323–337, 1992.

[LB05] Andreas Leitner and Roderick Bloem. Automatic Testing through Plan-

ning. Technical report, Technical Report ETH Zürich/Graz University of

Technology, 2005.

[LBR99] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A Notation for De-

tailed Design. Behavioral Specifications of Businesses and Systems, pages

175–188, 1999.

[LH96] Loren Larsen and Mary Jean Harrold. Slicing object-oriented software. In

18th International Conference on Software Engineering, pages 495–505,

1996.

[LW94] Barbara H. Liskov and Jeanette M. Wing. A Behavioral Notion of Sub-

typing. ACM Transactions on Programming Languages and Systems,

16(6):1811–1841, 1994.

[MCLL07] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, and Lisa Liu. Auto-

matic Testing of Object-Oriented Software. Lecture Notes in Com-

puter Science - SOFSEM 2007: Theory and Practice of Computer Science,

4362/2007:114–129, 2007.

[McM04] Phil McMinn. Search-based Software Test Data Generation: A Survey.

Software Testing, Verification and Reliability, 14(2):105–156, 2004.

[Mey92] Bertrand Meyer. Applying Design by Contract. Computer, 25(10):40–51,

1992.

[Mey97] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall,

1997.

[MSBT04] Glenford J. Myers, Corey Sandler, Tom Badgett, and Todd M. Thomas.

The Art of Software Testing. Wiley, 2nd edition, 2004.

[Par10a] Parasoft. Parasoft C++test User’s Guide, 2010.

[Par10b] Parasoft. Parasoft Jtest 8.0 User’s Guide, 2010.

99



Bibliography Bibliography

[PLB08] Carlos Pacheco, Shuvendu K. Lahiri, and Thomas Ball. Finding Errors in

.NET with Feedback-Directed Random Testing. In International Sympo-

sium on Software Testing and Analysis, pages 87–96, 2008.

[PLEB07] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball.

Feedback-directed Random Test Generation. In 29th International Con-

ference on Software Engineering, pages 75–84, 2007.

[PR94] Hemant D. Pande and Barbara G. Ryder. Static Type Determination for

C++. In 6th C++ Technical Conference, 1994.

[Qua10] Thomas Quaritsch. jConTest: Describing Test Data Dependencies and

Design by Contract Specifications for Automatic Test Data Generation.

Technical report, SoftNet Austria, 2010.

[Ram94] Ganesan Ramalingam. The Undecidability of Aliasing. ACM Transactions

on Programming Languages and Systems, 16(5):1467–1471, 1994.

[Rie07] Johannes Rieken. Design By Contract for Java - Revised. Master’s thesis,

Oldenburg University, April 2007.

[SD10] Manu Sridharan and Julian Dolby. Static and Dynamic Analysis of Pro-

grams using WALA (T.J. Watson Libraries for Analysis). PLDI2010 Tuto-

rial, http://wala.sourceforge.net/files/PLDI_WALA_Tutorial.

pdf, 2010.

[SKW08] Vijay D. Silva, Daniel Kroening, and Georg Weissenbacher. A Survey of

Automated Techniques for Formal Software Verification. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems,

27(7):1165–1178, 2008.

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A Concolic Unit Test-

ing Engine for C. In 10th European Software Engineering Conference,

pages 263–272, 2005.

[SYFP08] Sharon Shoham, Eran Yahav, Stephen J. Fink, and Marco Pistoia. Static

Specification Mining Using Automata-Based Abstractions. IEEE Transac-

tions on Software Engineering, 34(5):651–666, 2008.

[TD08] Nikolai Tillmann and J. De Halleux. Pex-White Box Test Generation for

.NET. In 2nd International Conference on Tests and Proofs, pages 134–

153, 2008.

[Ton04] Paolo Tonella. Evolutionary testing of classes. In ACM SIGSOFT Inter-

national Symposium on Software Testing and Analysis, pages 119–128,

2004.

100

http://wala.sourceforge.net/files/PLDI_WALA_Tutorial.pdf
http://wala.sourceforge.net/files/PLDI_WALA_Tutorial.pdf


Bibliography Bibliography

[Wal01] Ernest Wallmüller. Software-Qualitätsmanagement in der Praxis. Carl

Hanser Verlag, Wien, 2nd edition, 2001.

[WGOM10] Yi Wei, Serge Gebhardt, Manual Oriol, and Bertrand Meyer. Satisfying

Test Preconditions through Guided Object Selection. In 3rd International

Conference on Software Testing, Verification and Validation, 2010.

[WH09] Franz Wotawa and Birgit Hofer. Software-Maintenance Lecture Notes,

Graz University of Technology, 2009.

[XP06] Tao Xie and Jian Pei. MAPO: Mining API Usages from Open Source Repos-

itories. In International Workshop on Mining Software Repositories, pages

54–57, 2006.

[Zeh10] Christoph Zehentner. Planning4ObjectCreation: An AI-Planning System

for Test Data Generation. Master’s thesis, Graz University of Technology,

2010.

101


	Motivation
	Software and its Quality
	Software Testing
	Formal Software Verification
	Combining Testing and Verification

	Automated Test Generation
	Elements of a Test
	The Test Generation Pyramid
	Problems in Automated Test Generation
	Automated Test Data Generation

	Problem Description
	The Precondition Mismatch Problem
	Mutation Sequences
	Test Case Generation

	Thesis Statement

	Running Example
	Overview
	Java Source

	Preliminaries
	The Design by Contract™ concept
	Basic Principles
	Runtime Assertion Checking
	Behavioral (Interface) Specification Languages
	Further Concepts

	System Dependence Graphs
	SMT solvers
	SYNTHIA Fake

	Related Work
	Approach
	Overview
	Categorization
	Common Definitions
	Generating the system dependence graph
	Extracting Mutation Sequences
	Relevant Objects
	Control Flow Paths
	Path Conditions

	Creating and Solving the SMT Problem
	Exporting Test Cases
	Limitations

	Implementation
	System Overview
	Components
	IBM WALA
	jSDG/Joana
	jConTest
	jConTest-Extensions

	TESSAN
	Visitors
	SDG Paths
	Important Classes
	Class Diagrams
	Limitations


	Evaluation
	Running Example — Version 1
	Running Example — Version 2
	Running Example — Version 3

	Conclusion
	Approach
	Implementation
	Future Work


