
Master’s Thesis

Smart assistive script breakdown and its
integration into business processes on the

example of film production

Karl Heinz Struggl, BSc

Institute for Information Systems and Computer Media (IICM),
Graz University of Technology

Supervisor: Assoc. Prof. Dr. Andreas Holzinger, PhD, MSc, MPh, BEng, CEng, DipEd,

MBCS

Graz, December 2010

This page intentionally left blank

Masterarbeit
(Diese Arbeit ist in englischer Sprache verfasst)

Intelligente Unterstützung bei der
Aufgliederung von Manuskripten und

ihre Integration in Geschäftsprozesse am
Beispiel der Filmproduktion

Karl Heinz Struggl, BSc

Institut für Informationssysteme und Computer Medien (IICM),
Technische Universität Graz

Betreuer: Univ.-Doz. Ing. Mag. Mag. Dr. Andreas Holzinger

Graz, December 2010

This page intentionally left blank

Abstract

The process behind the production of a motion picture, be it a documentary, an
action movie or an animation film, consists of a number of cascaded phases and
steps. As such, it can be viewed upon from various angles, each with its own
characteristics and important aspects, like the perspectives of the creative minds
behind the production, or from the position of a financially accountable manager.
One important task for the latter group, especially at the beginning of the planning
and budgeting phase, is breaking down all elements and aspects of the script and
creating a solid estimate of production costs.

Established industry standards pertain to this phase, and the first goal of the
work at hand is analyzing how the inherent processes can be improved and accel-
erated with the assistance of expert applications, as well as finding out whether,
and to what extent, existing software solutions provide such help. As a result of
these findings, this work will then suggest an improved solution reflecting these ob-
servations, as well as present a working prototype as proof of concept, that will be
developed with a strong focus on Usability Engineering.

Keywords
film production, script breakdown, nlp, software architecture, usability study

ÖSTAT classification
1108 40%, 1109 30%, 1157 15%, 1161 15%

ACM classification
D.2.11, D.3.3, H.1.2, H.5.2, I.2.7, K.4.3

A

This page intentionally left blank

B

Kurzfassung

Der Prozess hinter einer Filmproduktion, sei es eine Dokumentation, ein Actionfilm
oder eine Animation, besteht aus einer Vielzahl verschachtelter Phasen und Schritte.
Dabei entstehen verschiedene Blickwinkel auf das Projekt, mit jeweils unterschiedli-
chen Charakteristiken und Aspekten, wie zum Beispiel die Perspektive der kreativen
Köpfe, oder die Sicht der für die Finanzierung verantwortlichen Manager. Zu deren
Hauptaufgaben, vor allem in den frühen Planungs- und Budgetierungsphasen, gehört
das Herunterbrechen der verschiedenen Elemente des Manuskripts. Dieser Schritt ist
essentiell für eine erste, aussagekräftige Kostenabschätzung und damit entscheidend
für den möglichen weiteren Verlauf der Produktion.

In dieser Phase kommen etablierte Industriestandards und Normen zum Tragen.
Das erste Ziel dieser Arbeit ist es dabei, die darin enthaltenen Prozesse und Vor-
gehensweisen zu analysieren und Möglichkeiten zu finden, diese mittels Expertenlö-
sungen zu verbessern und beschleunigen, sowie aufzuklären, inwieweit dies bereits
von bestehenden Branchenlösungen umgesetzt wird. Als Ergebnis dieser Untersu-
chungen wird schließlich eine verbesserte Lösung präsentiert, deren Konzept und
Umsetzbarkeit anhand eines Prototypen gezeigt werden. Bei der Entwicklung dieses
Prototypen außerdem wird ein starker Fokus auf Usability gelegt werden.

Schlüsselwörter
filmproduktion, script breakdown, nlp, softwarearchitektur, usability studie

ÖSTAT Klassifikation
1108 40%, 1109 30%, 1157 15%, 1161 15%

ACM Klassifikation
D.2.11, D.3.3, H.1.2, H.5.2, I.2.7, K.4.3

C

This page intentionally left blank

D

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other
than the declared sources / resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

Graz, December 3rd, 2010
Karl Heinz Struggl

E

This page intentionally left blank

F

Acknowledgements

First and foremost I would like to express my sincerest gratitude to my family and
close friends for their patience and their seemingly never-ending support towards
me, my work and my studies.

I feel deeply indebted to my advisor, Andreas Holzinger, who imparted ines-
timable knowledge and insights onto me over the course of the last few years, for
which I am truly grateful.

I would also like to thank my fellow students and colleagues, especially Mar-
tin, Martin and Martin of Nimblo, for many inspiring discussions and both their
amicability and professionalism.

Of the many as yet unmentioned people who certainly endorsed this work in
various other ways, I would like to thank Helen Ashton for revising the written
thesis, as well as everyone who helped with conducting the usability study and all
who participated in it.

Karl Heinz Struggl
Graz, December 2010

G

This page intentionally left blank

H

Table of Contents

1 Introduction and Motivation for Research 1

2 Theoretical Background 5

2.1 The production manager . 5

2.2 The four phases of film production 6

2.3 Script breakdown . 8

2.4 Scheduling . 11

2.4.1 Production Strip Board . 11

2.4.2 Shooting Schedule . 11

2.5 Budgeting . 12

2.5.1 The Planning Budget . 12

2.5.2 The Working Budget . 13

3 Related Work 15

3.1 Classification of software solutions in film production 15

3.2 Model-View-Controller (MVC) in research and business applications . 16

3.2.1 Advantages of MVC . 18

3.2.2 Disadvantages of MVC and alternatives 19

3.2.3 Conclusion . 22

3.3 Text recognition in natural language 22

3.3.1 Part-of-speech tagging . 23

3.3.2 Lexical databases . 25

I

3.3.3 Text Mining . 28

3.3.4 Stop word filtering . 30

3.3.5 Conclusion . 31

3.4 Usability engineering (UE) . 32

3.4.1 Location and synchronicity in usability evaluation 33

3.4.2 System usability scale (SUS) 34

4 Current System 37

4.1 State of the art . 37

4.1.1 CeltX . 38

4.1.2 Final Draft and Final Draft Tagger 40

4.1.3 Mindstar Cinergy . 42

4.1.4 Movie Magic Scheduling and Budgeting 43

4.1.5 Movie Magic Screenwriter . 45

4.1.6 Conclusion . 46

4.2 Making a business case for smart script breakdown software 48

4.2.1 Potential process improvements 48

4.2.2 Cost and risk assessment . 49

4.2.3 Outlook and application spectrum 51

4.2.4 Conclusion . 53

5 Materials and Methods 55

5.1 Use cases . 55

5.2 Tagging interfaces . 56

5.3 Auto-advancing shortkey (AAS) tagging 59

5.4 Category management . 61

5.5 Scene and scope management . 61

5.6 Breakdown data management . 62

5.7 Conclusion . 62

J

6 Results 63

6.1 Prototype Application . 63

6.1.1 Target system . 63

6.1.2 Software architecture and design 64

6.1.3 Implementation . 69

6.1.4 Conclusion . 82

6.2 Usability Evaluation . 84

6.2.1 Methodology . 84

6.2.2 Test setup . 85

6.2.3 User demographics . 92

6.2.4 Results . 93

6.2.5 Discussion . 95

6.2.6 Conclusion . 98

7 Discussion and Lessons Learned 99

8 Conclusions 101

9 Future Work 103

A SUS Feedback Sheet 105

List of Figures 107

List of Tables 109

References 111

K

L

1. Introduction and Motivation for Re-
search

The implementation of audio-visual (AV) projects has become an increasingly software-
assisted process over the last few years and decades (Singleton, 1996, 1991). While
there is an astonishingly wide range of types and genres, the majority of these pro-
ductions - from film students’ graduation pieces to extensively produced hollywood
blockbusters - follow some specific schemes and rules.

Among these conventions, there are ideas and patterns that have proven suitable
in dealing with certain circumstances of such projects. One such convention of
particular importance deals with the need to find ways of enabling creative minds
(such as authors of screenplays, directors, costume designers) and people carrying
out positions of financial (among others) responsibilities to communicate.

In order to establish such an interface, one central point of communication, as
well as documentation, has been identified: the script (Clevé, 2005). It not only
describes all scenes including their locations, but also hints at how specific roles
should be cast, what special effects may be needed and much more. This data,
however, first needs to be filtered, structured, amended and supplemented by various
project members with different amounts of experience and insights. The resulting
set of mostly formal information represents the very foundation of the project and
is used as a basis for carrying out scheduling and budgeting tasks.

In this fundamentally important step, which is called the Script Breakdown, the
script is read through and elements of specific importance and relevance to certain
categories are marked accordingly, for example all speaking roles may be highlighted
in red, make-up/hair elements are marked with asterisks and so on. The result
is a structured set of data defining exactly which kinds of elements each scene is

1

comprised of. In another step following this breaking down of elements, additional
information is gathered and estimations about the required number of shooting days
and overall costs are given (Clevé, 2005).

As hinted before, this task is usually re-iterated several times by various team
members who are experts in differing fields of production. What is more, as the
project progresses in production, there are inevitably frequent changes in various
parts of the script and therefore also in the scenes. This often causes a need to
repeatedly revise the breakdown in order to reflect said changes, which furthermore
brings along the necessity to update all derived documents as well, for instance to
re-assess, print and distribute breakdown sheets.

It is obvious at this point that several aspects of this process are well suited
for automation and assistance by software, especially considering large scripts with
several dozens of scenes containing recurring elements. In practice, however, script
breakdown is still most often carried out using highlighters on printouts of the scripts
and later transferring the data manually into sometimes decades-old software with
numerous deficiencies ranging from lacking functionality to inadequate usability.

This thesis presents an approach aiming to assist professionals in a number of
tasks pertaining to the breaking down of scripts and using the gathered data to
rapidly communicate information among various groups of specialists in the project
team, as well as create estimations on production time and costs. In addition to the
theoretical work described herein, a prototype application will be implemented and
presented as well. It will act as a proof of concept to demonstrate the practicality
and usability of the devised ideas.

The first part of this thesis will establish a fundamental understanding of the
theoretical background (Chapter 2) and provide an overview of works related to the
topics presented thereby (Chapter 3). An observation of the methods and systems
currently employed (Chapter 4) concludes these first three chapters.

A presentation of concepts and ideas on how to improve the process of script
breakdown will then follow (Chapter 2.3) and lead into the practical installation
thereof. A detailed report on the implementation and testing of the prototype

2

application as well as the usability study and its evaluation (Chapters 6.1 and 6.2
respectively) complement the second part.

Finally, a discussion of the findings of this thesis (Chapter 7), the lessons learned
from designing, implementing and evaluating the presented prototype (Chapter 8)
as well as an outlook into possible future work (Chapter 9) will close this work.

3

4

2. Theoretical Background

In order to better understand some special requirements and intricate details about
several aspects discussed in later chapters, this section will provide a brief introduc-
tion of the film production process, starting with one of its most important staff
members, the production manager.

The four phases of a film production project, as well as the task of script break-
down and its importance for the rest of production will then be discussed in more
detail, whereas film scheduling and budgeting will be summed up briefly as the later
chapters will provide required detailed information as necessary.

A discussion of the economical value of a smart script breakdown application,
its potential for process improvement and an assessment of the associated risks will
then be presented in the form of a business case.

2.1 The production manager

According to Clevé (2005), the role of a production manager (PM) is one of the
most essential appointments in the production of a film, because the PM is one
of the few members of the whole production staff that is involved in most (if not
all) production phases. As such, the PM is not only an up-to-date, central point
of information about the most various aspects of the production for the other staff
members, but also a mediator and balancing factor in human conflicts.

Depending on the size of production, the exact areas of responsibility and au-
thority, as well as the distinction of job titles (PM, unit production manager or
UPM, line producer, producer), can become imprecise and overlap, but the general
idea of the PM is as pointed out. The Directors Guild of America (DGA) provides
a formal job description for the role of unit production manager, stating that the

5

UPM:

“[. . .] is required to coordinate, facilitate and oversee the preparation
of the production unit or units [. . .] assigned to him or her, all off-set
logistics, day-to-day production decisions, locations, budget schedules and
personnel.” (Directors Guild of America, Inc, 2005)

It also clearly points out that supervision and participation in breakdown, prelimi-
nary shooting schedule and preparation and coordination of the budget are among
their main duties. These latter points will be discussed in the next sections, after
the differing features and aspects of the four phases of film production have been
established.

For a better understanding of the organizational structure in film production
and how the PM is embedded in the role’s hierarchical and functional context, see
figure 2.1.

2.2 The four phases of film production

As previously noted, the film production process is segmented into four phases that
are usually traversed consecutively with the possibility of small overlaps, and differ
in their staff requirements and outcomes. The four phases, as characterized by Clevé
(2005), are:

1. Development
In this phase, the producer conceives ideas for movies, considering a number
of possible sources like novels, real-life stories and screenplays or movies which
already exist. The producer needs to clear required rights and permits for use
of the screenplay or the screenplay adaption of the source before proceeding
to find attractive Name talents, such as actors, directors and similar. This
package will then be presented to possible production companies and studios
for further negotiation on a production.

At this point, a PM can be assigned by the producer to conduct a first break-
down of the screenplay and create preliminary cost estimations in the form of
rudimentary budgets.

6

Producer

Production
Manager

Assistant UPM

Production Secretary

Director

1st Asisstant
Director

Director of
Photography Sound Mixer Art Director

… … … …

Figure 2.1: Organizational chart (excerpt) of a motion picture production
team in the preproduction and production phases (adapted from
(Clevé, 2005)).

2. Preproduction
Once the project has been green-lighted, a number of tasks in preparation of
the actual production have to be carried out, namely a more thorough break-
down of the screenplay and its elements, as well as the construction of reliable
shooting schedules and an obligatory budget. This requires organizational
work carried out by the PM in a number of areas, including location scouting,
casting, hiring of staff and crew, equipment rental, insurance and much more.

This phase, especially the breakdown of the screenplay along with providing
mechanisms for enabling efficient integration into scheduling and budgeting,
will be the main focus of all discussions in the sections following this chapter.

3. Production
This phase, also known as principal photography, represents the actual produc-
tion of the movie. The responsibilities of the PM herein are the organization

7

and coordination of all staff members, actors, equipment and other elements
to guarantee efficient and glitch-free shooting.

As depicted in 2.1, the PM communicates mostly with the assistant directors
(AD) in order to supervise production units. How exactly shooting on set is
carried out depends strongly on the kind of motion picture and the scene itself.

4. Postproduction
Once production has been completed, the produced material is edited and
extended with additional material at this stage. This includes the classical
editing of the film, sound mastering, creation of visual effects and computer
generated (CG) content.

Due to the fact that a number of these tasks have to be considered beforehand
in shooting, the PM will already have made preparations for many of these
postproduction elements in the production and preproduction phases.

The organizational chart in 2.1 focuses on the preproduction and production
phases. In development and postproduction, some chains of responsibility change
and less people are usually involved throughout these phases, resulting in variations
of the organizational charts, as detailled in (Clevé, 2005).

2.3 Script breakdown

One of the first tasks for a PM upon entering a film production is to read through the
screenplay script thoroughly and start to analyze it. This allows for an estimation
of the production’s size and scope. Following this, the PM conducts a very in-
depth analysis of the script by employing the established industry standard of script
breakdown (Singleton, 1996).

Clevé (2005) points out that thorough and correct script breakdown and break-
down sheet generation is one of the single most important factors of the whole
film production, as the provided information is used (and is relied upon) in many
other tasks within the production process. This includes preproduction steps such
as the writing of the shooting schedule and therefore its sub-tasks like scheduling
staff availability times, trips, equipment leasing, and thus also the preliminary and
planning budgets of the production.

8

What is more, it also greatly affects the production itself, not only because
flawed schedules might cause missed delivery dates and budgets could be wrongly
estimated, but also because elements missing in the breakdown sheets will also very
likely be missing on the shooting location. This affects a vast number of other formal
and informal aspects like shooting efficiency, emotional stress and even the resulting
film’s quality.

The process of script breakdown itself can be broken down into the following
steps (Singleton, 1991; Clevé, 2005):

1. All scenes are identified by their scene headings or sluglines, i.e., lines stating
name, location, whether shooting is interior (INT) or exterior (EXT), as well
as the scene’s time of day, for which the most common classifiers are DAY and
NIGHT (Clevé, 2005; Singleton, 1991).

2. Found scenes are then numbered consecutively and measured by their length.
The length indicator used is the relative height of the scene on one page,
expressed by so-called 1/8s which equal approximately 1 inch of height on the
page. Hence, a scene with a length of 4/8 is about half a page or 4 inches.

3. For every scene, all relevant elements (such as cast, props and equipment)
are highlighted, usually in the script, using different colors and other ways
of formatting. Additionally, any scene and shooting information (including
dates, 1/8s, day/night, interior/exterior shooting) is noted.

4. The information gathered this way is then reviewed and, if necessary, comple-
mented, for instance speaking roles are ordered by the number of scenes they
appear in, teachers for minors may be added and other production details
might be reconsidered and noted.

5. One breakdown sheet per scene is produced, listing all the information ob-
tained in the previous steps. Usually, a predefined form or template is used
for breakdown sheets, to ensure uniformity and completeness. An example for
a typical breakdown sheet template is shown in figure 2.2.

The PM often creates additional breakdown sheets for aid in his own organi-
zational tasks, for example a breakdown of all scenes which a certain actor is
in or in a given shooting location.

9

Script
Breakdown Sheet

! ! ! ! !
PRODUCTION COMPANTY! ! PRODUCTION TITLE/NO.! ! BREAKDOWN PAGE NO.
! ! ! ! !
SCENE NO.! ! SCENE NAME! ! INT OR EXT
! ! ! ! !
DESCRIPTION! ! ! ! DAY OR NIGHT
! ! ! ! !
! ! ! ! PAGE COUNT

CAST
Red (1301-2-3)

STUNTS
Orange (1304-5)

EXTRAS/ATMOSPHERE
Green (2120)

CAST
Red (1301-2-3)

EXTRAS/SILENT BITS
Yellow (2120)

SECURITY/TEACHERS

SPECIAL EFFECTS
Blue (2700)

PROPS
Violet (2500)

VEHICLES/ANIMALS
Pink (2600/4500)

WARDROBE
Circle (3400)

EST. NO. OF SETUPS EST. PROD. TIME

SPECIAL EQUIPMENT
Box

PRODUCTION NOTESPRODUCTION NOTES

Day Ext - Yellow
Night Ext - Green
Day Int - White
Night Int - Blue
Numbers refer to
budget categories

!
DATE

Figure 2.2: Template of a typical script breakdown sheet, showing elements
for a scene grouped by categories (adapted from (Clevé, 2005)).

10

Singleton (1991) and Clevé (2005) provide comprehensive discussion on the most
commonly used element categories, their special characteristics and possible legal
and other requirements that are relevant in breakdown and scheduling.

2.4 Scheduling

In the film production process, scheduling produces two of the most important
documents concerning the actual shooting and, later on, the budgeting of the film:
the production strip board and the eventual shooting schedule.

2.4.1 Production Strip Board

Singleton (1991) notes that in film history, production strip boards were embodied
using multitudes of paper or cardboard cutouts, each representing its correspond-
ing scene’s breakdown sheet. Since shooting costs greatly depend on a variety of
scheduling factors (including travel costs, holding days for actors and the number
of setups needed for shooting locations), these so-called production strips were then
arranged on the production strip board and continuously regrouped and reordered
so as to find more cost-efficient shooting schedules.

In recent years, an increasing number of software applications providing schedul-
ing features include dynamic and interactive creation of production strip boards. See
sections 3.1 and 4.1 for more information on scheduling software for film production.

2.4.2 Shooting Schedule

According to Singleton (1991), the shooting schedule represents the most current
version of the production strip board in a more concise and structured form. It is
usually printed out for all staff members for reference and communication purposes.

As with the production strip board, a shooting scheduling feature is a main
component of every modern film scheduling software.

11

2.5 Budgeting

Once an initial shooting schedule has been produced and agreed upon by the re-
sponsible personnel, a planning budget is created by the production manager. Cost
estimations required prior to having a set shooting schedule and thus relying on
incomplete data, as is needed in development and preproduction, are not budgets
in this sense. Therefore, until all details and contractual variables are set in stone,
this budget is considered to be preliminary.

Film production budgets, like their counterparts in other business areas, are
complex and demand high degrees of knowledge, research and experience. The
budget must cover all factors attributing to production costs as well as considering
any ways of covering and minimizing them.

Therefore, a film production budget usually also accounts for fringe costs for per-
sonnel, buyout costs for the intellectual rights of creative staff, insurance of equip-
ment, grants given by public and private institutes including possible requirements
for fulfillment as well as numerous other factors. Whether or not some of these are
relevant for a production strongly depends on the type of production. Literature
on the topic covers these factors in great detail; see, for example (Singleton, 1996;
Clevé, 2005).

Similar to other areas of economics, a film budget makes use of an account
system and budget forms, grouping together similar and related cost positions and
assigning them numbers and titles. Due to differing demands between different types
of productions, production countries and their laws, among others, there is no fully
standardized account system, but there are some established guidelines and common
rules. In recent years, some film budgeting software applications (see section 4.1)
have garnered enough popularity in certain regions and areas to be able to influence
how accounts are set up.

2.5.1 The Planning Budget

In order to set up a budget, the production manager accounts for all elements
pointed out in the breakdown data (after it has been consolidated with unit pro-
duction managers, creatives and other involved personnel), creating all necessary

12

calculation positions for them and assigning estimated costs (allowances). To assist
in the process of finding prices, the PM can make use of price lists and so-called
rate books, provided by institutes supplying equipment, staff and services to film
production companies (for example camera and film manufactures, actor guilds and
other unions).

2.5.2 The Working Budget

As the production transcends from preproduction to the actual shooting, the plan-
ning budget is also transitioned into the working budget. Over the course of produc-
tion, all incurred costs are considered and constantly evaluated in terms of allowed
costs with fixed periods for intermediate settlement of accounts (e.g. per month)
and often using additional means for analyzing the current financial situation (such
as cash flow charts). Once all effective costs have been determined, the budget is
finalized and signed off by all responsible staff, which at least includes the PM and
the producer.

13

14

3. Related Work

This chapter will first establish a simple taxonomy of software solutions in the
area of film production, which will serve as a means of classification of evaluated
applications in chapter 4. An overview of text recognition techniques for natural
language will then be provided in order to support scientific and technical decisions
and implementation details of the prototype, as will be discussed in chapter 6.1. A
complementary observation of relevant literature on usability engineering will also
be conducted, with consideration of remote and asynchronous methods.

3.1 Classification of software solutions in film pro-

duction

It has been established that the production of a motion picture is a complex, cas-
caded process with a number of different points of view and demands on both the
project members and the associated software applications. It seems, therefore, ad-
visable to exploit this inherent quality of the observed software products, which is
the affiliation with certain aspects of film production.

Following this principle, the discussion and evaluation of existing software so-
lutions in the next sections will categorize the samples (i.e., applications) by their
belonging to one or more of the following groups:

Screenwriting software is mainly used by authors for writing and editing scripts
for different genres of motion picture. Frequently provided features include
the creation of certain printouts for genre-specific kinds of script and sum-
mary sheets. Applications in this group may support exporting of data for
scheduling software and sometimes provide rudimentary tools for conducting

15

script breakdown.

Scheduling software provides both general and film-proprietary project manage-
ment functions, usually including interfaces for planning the shooting se-
quences for scenes, depending on various factors like the location and the
required availability of staff (for instance the main actor). Therefore, schedul-
ing applications benefit strongly from being able to directly read such script-
related breakdown information and sometimes provide the means to import
and breakdown script data.

Budgeting software represents the accounting side of film projects. It may incor-
porate modules for planning the funding of a project, the calculation of both
budgeted and incurred costs, as well as other more in-detail features such as,
for example, a human resources module. Budgeting software is thus typically
required to incorporate information directly from script breakdown, as well as
the scheduling software and possibly external sources, such as catalogs con-
taining staff wages and equipment rates.

This list is not exhaustive. Script authors, for example, may also use standard
software word processors for writing, similar to the way in which certain PDF appli-
cations may be used to mark elements within scripts. For the context of this work,
however, these are exceptions and are to be considered as influenced by, rather than
affecting, the status quo of professional expert software in this field.

It is also to note that some of the optional, more specialized features mentioned
in the list above may be implemented by self-contained applications as well. Still,
they usually share the same characteristics as the respective categories they are
listed in above and will not be considered separately from here on.

3.2 Model-View-Controller (MVC) in research and

business applications

Model-View-Controller (MVC) is a software design pattern which was created by
Trygve Reenskaug in 1979 (Reenskaug, 1979a,b) while working for Xerox PARC.

16

It is considered to be an architectural design pattern and it divides an interactive
application into three separate components, as described in Buschmann et al. (1996):

The Model represents the underlying data representation as well as the core func-
tionality of the system. The Model collaborates with View and Controller
through a change-propagation mechanism operating on a registry of depen-
dencies, i.e., the Model informs dependent views about its own state changes.

The View is responsible for displaying information to the user. The change-
propagation mechanism is meant for keeping the View in sync with the Model.
There is usually a 1:1 relationship between View and Controller and a View
can provide additional functions to the Controller that are independent of the
Model, for example for scrolling lists or similar.

The Controller handles user input as events which can include invoking requests
and changes on the Model and/or the associated View. The Controller, sim-
ilarly to the View, can request to be notified about updates to the Model.
View and Controller together form the actual user interface and implement
interactivity.

User

Tool

Controller

View

1
*

Model

Class

Class

Class

* *

mental
model

computer
model

Figure 3.1: Basic design of a MVC-based architecture according to Reenskaug
(2009).

17

MVC has become a widely known and used pattern for varieties of software
systems, from interactive graphical user interface (GUI) frameworks like Apple’s
Cocoa1 and Cocoa Touch2 for Mac OSX and iOS Devices (iPhone, iPod Touch,
iPad) respectively, to web presentation and interface frameworks like Ruby on Rails3.
Figure 3.1 shows the basic concept of the MVC architecture, as devised by Reenskaug
(2009).

3.2.1 Advantages of MVC

Fowler (2002) states that MVC’s most fundamental benefit is the strong separation
of the presentation layer from the underlying domain-specific Model. The author
also adds that restricting the Model to a collection of nonvisual objects makes it
easier to cover the software’s functionality with automated tests, thus allowing for
efficient unit testing, as discussed by Zhu et al. (1997). The author, in accordance
with Buschmann et al. (1996), therefore states that MVC is mostly recommendable
in systems where the separation of presentation and model is an important concern,
and where nonvisual logic and workflows would otherwise clutter the Model and
make it less reusable.

MVC has been adopted in a wide range of application domains, apart from web
presentation and GUI applications. For example, the Medical Imaging Interaction
Toolkit (MITK, Wolf et al. (2005)) aims at providing frameworks and tools to ef-
ficiently develop highly interactive software for medical imaging and visualization.
The toolkit was designed with a model in mind that places medical need at the
beginning of the development of tools for medical imaging and interaction. The
need invokes development of a data model and of algorithms able to fulfill this need,
leading to the design and implementation of the actual visualization and interaction.
Practical use in clinical processes triggers refinement of the created components,
which often results in iterative improvement. In this development model, the data
and algorithms relate to MVC’s Model, while the visualization and the interaction
components match View and Controller respectively. Consequently, the implemen-
tation of MITK is strongly concerned with graphical representation of data and user

1http://developer.apple.com/technologies/mac/cocoa.html, last access 11/2011
2http://developer.apple.com/technologies/ios/cocoa-touch.html, last access 11/2011
3http://rubyonrails.org/documentation, last access 11/2011

18

http://developer.apple.com/technologies/mac/cocoa.html
http://developer.apple.com/technologies/ios/cocoa-touch.html
http://rubyonrails.org/documentation

interaction and was therefore based on MVC.

Another example of how diversely MVC has been applied throughout the last
few decades is the patent invented by Flores et al. (1998). It describes a system
component called Workflow Application Builder as part of a complex, interactive
system made to analyze, design and document business processes and their inherent
workflows as well as create workflow-oriented applications based on these definitions.
The system architecture is separated into a presentation (GUI) tool set providing
graphical tools and a definition part allowing the specification of business processes
and their attributes and characteristics. The workflow application builder allows
business process designers to specify business processes along with their network of
workflows and to automatically or semi-automatically generate an application with
graphical interfaces (forms and views) to create, manipulate and ensure persistence
of underlying data. Concerning the software design and implementation, the inven-
tors therefore based the system’s architecture on MVC. The reasoning behind this
decision is based on two main advantages: First, to ensure separation the applica-
tion logic (i.e., Controller) from the Model and therefore making “the application
more portable, the design more understandable and the implementation extendible”
(Flores et al., 1998). Second, the isolation of the View from the Controller was
deemed beneficial for the ability to port the application’s back-end to other GUI
frameworks.

3.2.2 Disadvantages of MVC and alternatives

MVC is often criticized for being inefficient in system designs where the Model
itself is required to implement large amounts of functionality, or where separation
between View and Controller is either difficult to implement (for instance due to
limitations of underlying frameworks or similar) or unnecessary (Buschmann et al.,
1996; Fowler, 2002).

Another of MVC’s characteristics that is attracting increasing amounts of crit-
icism is its strong adherence to principles of classical object oriented programming
(OOP). This is, as pointed out in numerous recent works such as (Schärli et al., 2003,
2002; Reenskaug and Coplien, 2009; Reenskaug, 2009; Coplien and Bjørnvig, 2010),
due to OOP’s limited ability to reflect and model system behavior, which results

19

from its strong focus on creating a static model of object classes and their relation-
ships (Booch et al., 2007). In terms of designing a software system in concordance
with MVC, this means that business processes and system-global workflows need to
be either the responsibility of a Controller, and therefore designed separately from
the actual Model, or be a part of the Model objects they pertain to (for example a
bank transaction could be part of an Account class).

In the first case, a lot of functionality will not be reusable, as Controller imple-
mentations are typically very application-dependent. The alternative means that
logic will generally be reusable, but at the cost of the Model becoming bigger and
increasingly filled with functionality, which will be both harder to maintain and port,
and more difficult to extend due to limitations of OOP’s static class inheritance, as
pointed out by Schärli et al. (2002).

The inheritance problem is a result of the static nature of how OOP is used
to model systems - a Model class (and therefore its instances, or objects) either
implements a certain functionality (self or through inheritance), or it does not,
there is no dynamic model. Combined with well-known disadvantages of single
and multi-inheritance, as well as mix-ins, this often results in compromises to the
system design incurred by copying and pasting code or introducing deeply nested
class hierarchies (Schärli et al., 2003, 2002; Coplien and Bjørnvig, 2010).

An alternative way of reusing functionality in OOP systems is object composi-
tion. Gamma et al. (1994) define it as a technique of assembling (or composing)
functionality to create more powerful objects. Composition requires interfaces to be
designed for the composed objects resulting in dynamically created, concrete objects
implementing sets of interfaces. While this requires more effort in creating inter-
faces, it also results in less dependency between objects, flat hierarchies and better
reusability. Gamma et al. (1994) clearly state that object composition should be
favored to class inheritance if possible. However, inheritance has become a much
more widely used mechanism for class reuse, which is likely attributable to the way
OOP captures functionality, as reasoned above.

In recent years, the concept of object composition has repeatedly been adopted
in publications proposing new software design architecture and patterns, like Traits
(Schärli et al., 2003; Schärli, 2005) and DCI (Data-Context-Interactions or Data-
Collaborations-Interactions, Reenskaug and Coplien (2009)).

20

The traits formal model, as defined by Schärli et al. (2003), defines traits as a
means of adding implemented behavior to classes without changing the state or the
meaning of the class. Traits define both a set of implemented (provided) behavior
and a set of required behavior, allow composition and nesting, and inheritance which,
contrary to class inheritance, do not result in trait hierarchies but remain flattened.
This ability to nest and combine traits is what sets this model apart from aspect-
oriented approaches, where specific functionality without clearly defined interfaces
is superimposed onto existing classes to reduce the need to duplicate code and ease
adding specific parts of behavior to objects (Elrad et al., 2001). A class is thus
composed by its own state (i.e., its instance variables), a set of traits the class
features and additional code to fulfill the interface requirements of the provided
traits, for example by granting access to instance variables (Schärli, 2005).

Native support for traits is highly limited in current programming languages and
few implementations of the Traits model have been published as yet4.

DCI’s development is based on the assumption that modeling system state in
conjunction with system behavior is beneficial in creating a system design that better
reflects the user’s mental model of software (Reenskaug and Coplien, 2009).

Similar to traits, DCI introduces the concept of roles as a means of defining
sets of object behaviors that are logically coherent. This design was motivated
by the observation that object boundaries are seldom congruent with behavioral
boundaries, as most typical workflows and business processes involve more than one
type of object. Roles are subdivided into methodless roles, also called role interfaces,
and methodful roles, which provide generic implementation of such interfaces. An
important difference of DCI compared to traits is the inclusion of a central Context
object. The Context is responsible for knowing which object classes are able to take
on certain roles, and implementing the according object composition by applying
such a methodful role to a class object (Coplien and Bjørnvig, 2010).

DCI roles can be implemented by incorporating traits, or by using runtime
method injection techniques provided by a number of programming languages and
environments.

4http://scg.unibe.ch/research/traits?_n&17 A list of traits implementations. Last access
11/2011.

21

http://scg.unibe.ch/research/traits?_n&17

3.2.3 Conclusion

MVC offers a clearly defined and widely known and accepted way of designing
the architecture of interactive and GUI-driven software by separating the concerns
of Model, View and Controller where possible. It also describes how these three
isolated components should interact with each other and how change propagation
can be implemented.

It has been proven that MVC exhibits weaknesses in terms of modeling system
behavior, which is directly related to the static class model of OOP. In this respect,
alternative models of architecture and patterns follow promising ideas of integrating
object composition into system design and implementation.

However, in the current state, most popular programming languages are largely
incapable of supporting design-driven object composition techniques, such as traits.
What is more, current application frameworks are very often based on MVC or other
architectural design principles and do not adequately support superimposing other
complex design paradigms onto them.

It seems, therefore, reasonable to adhere to MVC principles in systems and
development environments that are already founded on MVC. On the other hand,
design patterns incorporating object composition are recommendable for further
research and can prove valuable for future programming language implementations
and the understanding of how to model dynamic behavior in software design.

3.3 Text recognition in natural language

As shown previously, script breakdown requires the producer to read through the
script, understand the linguistic syntax as well as the semantics of the text, and
categorize its elements into fitting groups while considering numerous factors. These
factors include, for example, the part-of-speech the text fragments belong to, which
is indirectly related to another factor of whether certain elements are important for
the scheduling, setup or shooting of the script’s scenes.

This chapter is dedicated to research and work concerned with automatic and
semi-automatic recognition of the said factors with the use of a software applica-

22

tion. It will further try to assess whether existing techniques can be adopted in the
implementation of a script breakdown software that will help a user in carrying out
tagging.

Different fields of research are concerned with the recognition of texts and their
constituent parts, their semantics and syntactical structure. In general, the con-
tributed solutions and systems are devised in order to provide (semi-)automatic
extraction of information on a given text, which partly correlates to the act of script
breakdown, where script-specific features are to be discovered and correctly classi-
fied into categories. However, there are no rules defining which kinds of words or
word groups are relevant for script breakdown, which makes automated recognition
difficult and requires flexible solutions for text recognition.

The fact that recognition of parts of natural language is not trivial, but rather
demanding, is expressed aptly by the following statement found in Wilks and Steven-
son (1998):

“It is no answer to the question ‘What is a noun in German?’ to answer
that it is the part-of-speech that is regularly capitalised!”

It efficiently describes the main problem of lexical ambiguity that text recognition
in natural speech encounters. A prominent example of an English sentence that can
be difficult to analyze even for native speakers, as mentioned by Church (1988), is
the famous:

“The horse raced past the barn fell.”

In order to establish a context for the topic, the following sections examine
related work in various areas of text recognition. They will also provide reasoning
about whether or not the discussed techniques can and should be adopted for the
implementation of script breakdown prototype presented later herein.

3.3.1 Part-of-speech tagging

Part-of-speech (POS) is dependent on context, because lexical analysis of words in
a text is context sensitive and therefore often ambiguous, as noted before. Part-of-
speech tagging is a technique and an area of scientific research concerned with this

23

problem in order to provide methods to improve numerous real-world applications,
such as spell checkers, screen readers and others.

Early work on automated POS tagging brought forth systems and prototypes
based on statistical measures, assigning words and word groups their most likely
tags. Church (1988), for example, proposed a POS tagger that parses natural lan-
guage text and uses statistical heuristics describing which word is most likely (or
often) a certain part-of-speech, e.g. a proper noun. The parser then reiterates dif-
ferent possible combinations to find the best solution. The statistical model is built
on tagged natural language text corpora and additional dictionary data. The parser
also takes into account probabilities of certain part-of-speech sequences starting and
ending noun phrases.

Apart from stochastic methods, rule-based parsers have been implemented, like,
for instance, described by Brill (1992). In this work, a rule based POS tagger is
conceived that is able to improve and extend its set of rules from a very basic set,
by dynamically creating patch templates. These patch templates represent rules
inferred by errors the parser detects by testing its learned model on a tagged text
corpus. A similar concept for grammar induction is proposed by Brill (1993), where
a naive implementation is iteratively improved by applying a set of eight possible
transformations on tagged and bracketed sentences and determining the best fitting
one.

Brill and Marcus (1992) describe a method designed to build a part-of-speech
tagger for a completely unknown language, using untagged text corpora and minimal
supervision by an informant knowledgeable of the language. A text parser first
scans the corpus for the 300 most frequent words and tries to find similarity pairs,
as determined by their distributional divergence. The pairs are then merged into
a limited set of tag classes and presented to the informant who then points out
the most important classes (the so called tag set). The informant is then asked to
enumerate example words that represent the classes well, starting with those classes
where the informant can most easily name all examples. Using this distributional
fingerprint, the system then tags words into their most likely classes, again as per
their distributional divergence.

More recent research in this field is presented, for example, by Smith et al. (2004),
who apply a stochastic part-of-speech tagging on a database containing publications

24

in health sciences and related fields. Another even more recent publication (Snyder
et al., 2009) investigates the possibilities of improving unsupervised part-of-speech
tagging through the use of unannotated multilingual text corpora. The concept is
based on the idea that lingual ambiguities vary between languages and that having
access to parallel text data in other languages can mitigate the ambiguity problem.
This work is especially interesting as it may provide multilingual part-of-speech
tagging, which has been a difficult issue with POS tagging since the beginning. The
authors show that results improve with the number of languages available.

Relevance for this work

While the promise of being able to recognize nouns and names (the parts of speech
most likely to be relevant for tagging in script breakdown) seems most interesting,
its use for this work is, at of the time of writing, difficult to evaluate.

This is partly due to the fact that no efficient language-independent solution
has been presented yet, and while the system proposed by Snyder et al. (2009) is
promising, the building and employment of POS taggers with reasonably low error-
rates is highly complex. Given the fact that part-of-speech tagging by itself does not
solve the task of tagging script elements into semantic, structural or organizational
categories, the possible benefits do not justify the effort and compromises of building
a specialized POS tagger at this time.

On the other hand, various concepts and approaches adopted for or developed in
the process of engineering POS taggers, such as lookup in dictionaries or rule-based
heuristics, present sound ideas and valuable input for script breakdown. What is
more, incorporating pre-built multilingual POS taggers into a breakdown software
at a later time seems a reasonable and promising outlook.

3.3.2 Lexical databases

Lexical databases are human-maintained, language-specific reference systems allow-
ing external systems to look up information on given words. WordNet5 (Princeton
University, 2010) is an example of a lexical database for the English language. It is
described and summarized by Miller et al. (1993) as:

5copyright Princeton University

25

“[. . .] an on-line lexical reference system whose design is inspired by cur-
rent psycholinguistic theories of human lexical memory. English nouns,
verbs, and adjectives are organized into synonym sets, each represent-
ing one underlying lexical concept. Different relations link the synonym
sets.”

In lexical databases, these relations between words are most commonly defined
by the following types (Miller et al., 1993):

Synonymy means, as the name implies, similar meaning, thus one expression
(word) in a context can be replaced by the other without changing the seman-
tics of the context. Synonymy is a lexical relation between word forms.

Antonymy means that one word expresses the opposite of another word. As
synonymy, it describes a lexical relation between word forms.

Hyponymy is a semantic relationship between word meanings, contrary to syn-
onymy and antonymy. It expresses a connection between word meanings where
one word superordinates another, like tree is a hyponym of plant. Consequen-
tially, hyponymy relationships put word meanings into a hierarchical struc-
ture. The inverse of hyponymy is hypernymy. In technical terms, hyponymy
describes an is-a relation between entities.

Meronymy is a more abstract concept describing part-whole relations between
words, like finger being a meronym of hand. The inverse of meronymy is
called holonymy. In technical terms, meronymy is expressed by has-a relations
between entities.

Exploiting semantic and lexical relationships is widely used in research and prac-
tical implementations. Budanitsky and Hirst (2006) provide a survey of techniques
and implementations of similarity measures based on WordNet. Based upon this
foundation, frameworks for measuring similarities between concepts (such as word
groups, parts of speech) have been created, for example WordNet::Similarity (Ped-
ersen et al., 2004), a freely available perl implementation.

As with WordNet, lexical databases have been created for various other lan-
guages, with different licensing models that usually distinguish between commercial

26

and non-commercial use. Sophisticated and well-developed lexical databases pro-
vide extensive application programming interfaces (APIs) with sets of functions to
access and generate data. Most databases are available via online queries as well as
downloadable text repositories and databases.

There are, and have been, projects concerned with providing multilingual and
interlingual lexical database access:

EuroWordNet 6 contains seven European languages (Dutch, Italian, Spanish, Ger-
man, French, Czech and Estonian) and is aligned in structure with Princeton’s
WordNet.

MultiWordNet 7 is a lexical database for Italian and provides WordNet-aligned
access to lexical databases in five more languages (Spanish, Portuguese, He-
brew, Romanian and Latin) (Pianta et al., 2002).

Global WordNet 8 connects Spanish and Catalan to the Princeton WordNet.

At the time of writing, the core language definitions of these databases have reached
completion. Through common interfaces (for example by following the WordNet
structure), these databases can be connected and interlingual queries are subject to
being made available (Vossen, 2002).

Relevance for this work

Lexical databases have been founded to provide fundamental information on text
segments, which is strongly in line with the context of this work. Due to the size
of the respective databases, many of the systems currently working with lexical
databases are not distributed software suites, but rather online services providing
web interfaces to said databases, such as synonym search engines.

A number of scientific projects operating in the field of computational linguis-
tics and natural language processing use lexical databases, which are often stored
and accessed locally. This is a practical solution only in research projects where
distribution to end users is negligible.

6http://www.illc.uva.nl/EuroWordNet/, last access 11/2010
7http://multiwordnet.fbk.eu, last access 07/2010
8http://www.globalwordnet.org, last access 07/2010

27

http://www.illc.uva.nl/EuroWordNet/
http://multiwordnet.fbk.eu
http://www.globalwordnet.org

In the context of a commercial, end-user oriented software application, distribu-
tion of such databases is impractical, especially if multilingual processing is required.
Querying interlingual lexical databases online using an internet connection can pro-
vide a solution to this. However, online-querying of information on hundreds of
words is subject to data bandwidth and transmission latencies.

3.3.3 Text Mining

Text mining, as noted by Tan (1999), is the act of extracting relevant and non-trivial
patterns, knowledge or other information from text documents. A survey of text
mining techniques presented by Hotho et al. (2005) also notes that text mining can
be described as a new form of data mining that applies methods of text recognition
and refining methods (from research areas concerned with parsing and recognition
of text and its elements) on unstructured text documents.

Similarly, Hearst (2003) states that the key to text mining is the combination of
higher-level, extracted information in order to discover new knowledge, whereas sci-
entific advances in computational linguistics (or natural language processing, NLP),
information retrieval (IR) and other research areas provide new means to segment
text and analyze its compounding elements.

According to Tan (1999), systems implementing text mining can be defined by
an abstract system architecture that separates the actual process of text mining into
two parts:

1. Text refining translates arbitrary text documents into an intermediate for-
mat (IF) that is usable by the components of the system. Current systems
usually use document-based or concept-based IF structures.

2. Knowledge distillation derives concepts and knowledge from the now struc-
tured data in the IF, for instance by classifying or clustering documents into
two- or multi-dimensional spaces. Afterwards, these spaces are frequently vi-
sualized using methods of information visualization.

By using other documents’ IFs as input for the text refining of a corpus of docu-
ments, the resulting IFs will convey less document-based and more concept-based
information. The results from carrying out knowledge distillation on IFs depend on

28

the nature of the IFs, as well as the used text mining functions, and can range from
information extraction for document space visualization to textual summarizations
of the underlying documents.

Tan (1999) states that multilingual text refining is an open issue in text min-
ing that will considerable potential in the future due to the possibility of applying
text mining on whole new information collections written in languages other than
English. Cross-language text classification, as examined, for example, by Shi et al.
(2010), is subject to current research projects.

Another important research topic is applying text mining in the bio-medical
context. Cohen and Hersh (2005) expect high potential in making huge amounts
of existing unstructured text from medical documents available for researchers and
practitioners in this field. The work surveys a number of publications and concepts
regarding different aspects of bio-medical text mining. They conclude by stating
that the major challenge in bio-medical text mining for the next 5-10 years will be
creating tools for medical researchers and practitioners to use.

This notion is shared by Holzinger et al. (2008), who propose a system imple-
menting statistical text mining to analyze expert comments on magnetic resonance
images (MRI). The application is able to calculate co-occurences of mentions of
anatomic structures and pathologic expressions found in the diagnoses’ reports.
This method relates to the technique of relationship extraction found in (Cohen
and Hersh, 2005). Furthermore, synonym and abbreviation extraction, as suggested
by Cohen and Hersh (2005), has been applied, to some extent, with the recommen-
dation of creating more thorough synonym databases for pathological terms.

While no attempt at (automatic) hypothesis generation (Cohen and Hersh, 2005)
was made, the interface provided by the system in (Holzinger et al., 2008) allows
querying of the database of indexed documents, as well as the visualization of the
findings so as to allow researchers to find and prove correlations and deduce other
information, such as new hypotheses.

Relevance for this work

The focus and main point of application of text mining lies, beyond the recognition
of text parts and individual semantics, on the categorization and clustering of doc-

29

uments within an information domain (or across several), as described, for example,
by Larsen and Aone (1999).

Text mining applies various text recognition techniques to extract information
on the topic and other representative data from text documents. Its focus lies
on documents and their places in information space, rather than text components.
Hence its text recognition and concept extraction operate on a more abstract level
than is required in script breakdown.

3.3.4 Stop word filtering

Stop word filtering is a technique used in computational linguistics, natural language
processing (NLP) and information retrieval (IR), among others. It describes the
usage of lists of so-called stop words that are to be filtered out of text in pre or
post-processing steps in order to improve results of text recognition and language
processing tasks (Manning et al., 2008).

Depending on the context, stop word lists can be limited mainly to articles of
speech and link words, such as the, a or and, which most likely convey no factual
information on the topic, but are used to build intelligible sentences.

Other applications, for example in information retrieval, where domain-specific
information can be relevant, may incorporate lists of stop words that are auto-
matically constructed by the use of predefined heuristics, such as when querying a
certain information domain for specific search terms, where most documents share
some common keywords relevant for the domain. In such a case, these keywords
may be ignored using stop word filtering.

Relevance for this work

Stop word filtering is becoming less important in certain areas of research and ap-
plication, for instance in IR where more sophisticated retrieval methods implicitly
incorporate statistical heuristics to filter out extremely common words.

For script breakdown, however, it presents an efficient approach to provide a basic
means of predicting relevance of certain parts of (multilingual) text. It is also flexibly
applicable in many situations and can be well combined with other techniques of

30

text recognition. The main drawback of the method is the dependency of a stop
word list on the particular language it is constructed for. This is simply remedied
by providing separate lists per supported language, which are far less complex and
demanding to create than POS taggers, for example. This strategy, however, brings
along the requirement of being able to automatically recognize the language of the
text it is to be used on.

3.3.5 Conclusion

Table 3.1 summarizes the findings presented above. It shows that stop word filtering
provides an easily and efficiently applicable method for providing basic assistance
in script break down by conducting simple text recognition. It is also easily cus-
tomizable, enabling script breakdown software to provide the user with means to
configure its behavior.

Technique Scope Relevance Complexity
Part-of-speech tagging words, word

groups
medium medium

Lexical databases words, word
groups

medium medium

Text mining documents,
document
collections

low high

Stop word filtering words medium-high low

Table 3.1: Overview of observed text recognition techniques and their rele-
vance for this work.

Part-of-speech tagging and lexical databases are more sophisticated and more
complex to employ in an end-user compatible and distributable software. Both
methods operate on the same scope and, while using different concepts, give similar
results. Multilingual systems are topics of recent and current research. Text mining,
as established above, operates on a higher, more abstract level and therefore turned
out to be of less value to script breakdown than the text recognition methods it is
based upon.

31

3.4 Usability engineering (UE)

Usability Engineering is the branch within the process of technological development
that aims at ensuring ease of use and acceptability of the resulting solutions, proto-
types and products, as pointed out by Bevan and Macleod (1994). Ease of use in this
context relates, according to Holzinger (2005), to the (positive) degree of achievable
user performance and satisfaction, while acceptability, as the name implies, is the
deciding factor of whether the system is actually used.

One of the prime findings of human-computer-interaction (HCI), the correspond-
ing field of research, is that usability can not (or only with tremendous effort) be
applied to existing systems or finished designs. Rather it must be considered be-
fore and throughout the complete software development cycle. Besides being aware
of commonly established guidelines and recommendation concerning usability and
user-centered design (see, for example, Nielsen (1994a); Andrews (2010)), there are
a number of usability evaluation methods that can be applied in order to assess the
state of usability of the system at a certain point in development.

These usability evaluation methods are generally divided into the groups of In-
spection methods and Test methods, as shown in table 3.2. The main difference
between these groups is that inspection methods do not involve the participation of
end users, whereas test methods do, to varying degrees (Nielsen, 1994b).

Other distinguishing features, independent of which group the respective tech-
niques belong to, include the development phase(s) they can be applied in and the
amount of required personnel, equipment and the evaluators’ experience. Some of
these methods are well suited to being combined (for instance conducting a Field
Observation with test users and having them fill in a questionnaire afterwards) and
usually a combination of techniques is able do yield improved results (Holzinger,
2005).

From another point of view, usability evaluation methods can be distinguished by
considering whether the results or answers are related directly to the system (direct
methods) or not (indirect methods, such as questionnaires), and how frequently they
need to be conducted and reiterated. In this context, questionnaires are commonly
considered to be suited to frequent usability testing and monitoring of results, in

32

Inspection
Methods

Heuristic
Evaluation

Cognitive
Walkthrough

Action
Analysis

Phases all all design
Intrusive - - -
Requirements

Time low medium high
Users - - -
Evaluators 3+ 3+ 1-2
Expertise medium high high
Equipment low low low

(a) Inspection Methods in Usability Evaluation

Test Methods Thinking
Aloud

Field
Observation

Questionnaire

Phases design final testing all
Intrusive yes yes no
Requirements

Time high medium low
Users 3+ 20+ 30+
Evaluators 1 1+ 1
Expertise medium high low
Equipment high medium low

(b) Test Methods in Usability Evaluation

Table 3.2: Comparison of Usability Evaluation techniques: Inspection Meth-
ods (a) and Test Methods (b) (adapted from (Holzinger, 2005)).

order to be able to quickly estimate the outcome and possible other implications of
usability measures invoked in the development process.

3.4.1 Location and synchronicity in usability evaluation

In recent years, usability engineering has adopted means to expand usability eval-
uation to de-centralized and asynchronous environments and a number of articles
have been published, examining the feasibility and suitability of such techniques for
the evaluation of systems ranging from websites to desktop software.

Andreasen et al. (2007) provide an empirical study of three remote usability eval-
uation and inspection methods employed in both synchronous and asynchronous en-
vironments. They present various measures, like average number of severe/unique
usability problems found per methodology, and conclude that, while synchronous
methods show promising results, asynchronous methods seem to be unreliable, which

33

is attributed to the low numbers of test users (six per methodology). At the same
time, asynchronous methods are deemed worthwhile due to their flexibility in dis-
tributing and evaluating test runs, making it feasible to collect larger amounts of
data than with, for example, classical local thinking aloud tests.

Bruun et al. (2009) present a more in-depth analysis of asynchronous remote
usability test methods, stating that, while they tend to discover less usability prob-
lems than a classical local lab-approach, they also take far less time to carry out
and analyze. As with Andreasen et al. (2007), the number of test users in this work
is also rather limited (ten per methodology).

Other interesting concepts in this field concern (semi-)automatic analysis of usage
and usability data through various means and sources, such as a user’s interaction
with the software (Hilbert and Redmiles, 2000). Moreover, particular types of in-
teraction are interesting, like backtracking/undo actions, which, in the context of
software usability tests, can be interpreted as indicators of errors or other problems
(Akers, 2009).

3.4.2 System usability scale (SUS)

With the knowledge of how important frequent and iterative usability assessments
are in the software development process, it becomes more desirable to establish
efficient, low-cost evaluation methods that can be repeated quickly and as necessary.
SUS (Brooke, 1996) is a usability measurement that was conceived to suit this
purpose by defining a simple standardized questionnaire and a heuristic to generate
a usability score from the answers given.

The questionnaire (see A) consists of ten questions that are to be answered on
a Likert-scale with coded values of 1..5. The resulting score is determined by a
heuristic in the following way:

1. Calculate the sum of the decoded scores of all questions:

• For every odd question (1, 3, 5, 7, 9) the decoded score is score − 1
(positive questions)

• For every even question (2, 4, 6, 8, 10) the decoded score is 5 − score
(negative questions)

34

2. Multiply the sum with 2.5 to make it reflect a percentage such that 0 6 score 6

100 with 0 being the lowest and 100 being the highest (best) achievable score.

3. Repeat these steps for every test person and aggregate an average value that
will be considered as a reference value in the next test run.

Following this heuristic, a concrete SUS usability score can be identified as per the
corresponding development state of the system. By repeating the test and mon-
itoring and comparing both the aggregate scores and all sub-scores of particular
questions, SUS represents a meaningful indicator of how recent usability-related
measures and other changes to the system have improved (or deteriorated) the sys-
tem’s usability rating.

35

36

4. Current System

In order to better understand why there is need for improvement, one has to eval-
uate and analyze the deficiencies of the current processes and tools. The following
sections will therefore describe the findings of observations conducted on film pro-
duction management and the adoption of standard and expert software. Strengths,
weaknesses and opportunities for improvement will be pointed out.

4.1 State of the art

As has already been stated, a great number of film production professionals still
resort to using highlighters and script printouts or, slightly more software aided,
highlighting text manually using annotation tools in certain PDF (Portable Docu-
ment Format, Adobe Systems Incorporated (2010)) applications.

This consequently creates the need to manually transfer the marked elements
into a number of places within scheduling and budgeting, which themselves may
or may not be covered by software aided processes, depending on the project, the
production company or individual preferences and experience. In addition to the
obvious increase in manual work, such steps of transition are much more error-prone
than automated or semi-automated software aided processes.

In the context of script breakdown, there are some reasons why production man-
agers or the directors of certain scenes can benefit from working through the scripts
thoroughly and iteratively. As Clevé (2005) states, such direct interaction with the
script may create a more pronounced understanding of the scenes and their require-
ments. It is, however, to be questioned whether the repeated manual breaking down
of script elements is the actual benefiting factor, or whether such deeper involve-
ment with the script can be gained in other ways, for example during inter-team

37

conferences and rehearsal sessions, aided, for example, by printouts of automated
breakdown sheets as a basis for discussion.

Leaving this thought aside in order to concentrate on the focus of this work,
another question at hand demands an answer: it is essential to know if the software
which is currently available is adequate to complete the tasks inherent in the process
observed herein, in terms of both functionality and usability.

The following sections will present a number of popular, relevant software ap-
plications. Depending on which platforms the respective software is available for,
all observations and tests were conducted on Apple Mac OS X 10.6+, Microsoft
Windows XP with Service Pack 3, and Microsoft Windows 7, where applicable.

4.1.1 CeltX

CeltX1 is a freely available, open source software application with a focus on media
pre-production. It is intended to serve as an all in one solution for pre-production
tasks, providing interfaces for authoring scripts and storyboards, breaking down
elements, scheduling and generating reports.

The software is based on Mozilla2 and released under the CeltX Public License3.
It is available on multiple platforms and extensible through downloadable add-on
programs. It is also continuously enhanced and updated by the developers.

In addition to the freely distributed client software, CeltX supports the forming
of collaboration teams, so called CeltX Studios, with prices depending on numbers
of team members, known as users. Studios can be accessed from the CeltX home
page and are also integrated directly into the client software. They provide shared
access to project files created with CeltX, as well as a set of collaboration functions
like team-chats and optional mutually exclusive access for writing and deleting doc-
uments.

At the time of writing, version 2.5.1 was available on Windows, Mac OS X 10.4+
and Linux. CeltX 2.5.1 was tested on Windows 7 and Mac OS X 10.6.

1http://www.CeltX.com CeltX home page, last access 09/2010
2http://www.mozilla.org Mozilla software project, last access 09/2010
3http://CeltX.com/CePL/ CeltX Public License Version 1.3, last access 09/2010

38

http://www.CeltX.com
http://www.mozilla.org
http://CeltX.com/CePL/

Script breakdown

CeltX features script breakdown by tagging elements and includes the generation of
reports of data. The breakdown interface only supports one way of tagging elements,
which is shown in figure 4.1.

Figure 4.1: Script breakdown interface in CeltX.

In order to tag an element, the user first marks the corresponding text within
the script (by mouse or keyboard), then selects the appropriate category from the
list on the upper right hand side and confirms by pressing the Add-button below.

The set of tagged elements in the currently selected scene is outlined in the lower
right box, which can also be used to un-tag elements. Tagged elements are visualized
in the script by certain font colors associated with the category they are tagged in.

Conclusion

While CeltX offers an extensive set of features for pre-production, its breakdown
functionality shows a number of deficiencies, such as the lack of simpler alternative
ways to tag elements, like using keyboard shortcuts or context menus.

39

Moreover, some aspects of the software lack flexibility. For example, the list of
breakdown categories can not be customized per project, but only for the whole
application, which can result in confusion and errors if a project that has elements
tagged in categories that are were set unavailable from within another project is
opened. What is more, the colors associated with those categories are neither cus-
tomizable, nor visible anywhere in the software.

The reports dialogue is able to filter generated scene breakdown sheets per cat-
egory and element. It does not, however, support generating location breakdown
sheets or cast breakdown sheets. In addition, the layout of the generated reports is
not customizable.

One positive aspect of the breakdown function is the direct integration with the
project catalog and the scheduling part of the software.

4.1.2 Final Draft and Final Draft Tagger

Final Draft4 is commercial screenwriting software by Final Draft, Inc.. Besides a
set of functions and interfaces for authoring scripts, it also provides a standalone
application for script breakdown, called Final Draft Tagger. The software is well
known and is one of the most important screenwriting products in the US.

At the time of writing, Final Draft 8 and Final Draft Tagger 2 were available for
Microsoft Windows and Apple Mac OS X and were tested on Windows 7 and Mac
OS X 10.6.

Script breakdown

Tagger allows the opening of Final Draft document files for breakdown. Its main
window, as depicted in figure 4.2, consists of a list of scenes, a text view of the current
script portion, and a breakdown interface containing lists of categories, elements
and contents. Tagging of elements is accomplished by selecting the respective text
in the script view and either hitting the right mouse button, or by pressing the Add
Element button. In the following dialog, the element text and the category can
be changed and upon hitting one of the OK buttons, the element is tagged for the

4http://www.finaldraft.com/products/final-draft/ Final Draft product page, last access
08/2010

40

http://www.finaldraft.com/products/final-draft/

Figure 4.2: Script breakdown interface in Final Draft Tagger.

current scene. The resulting breakdown data can be printed out (scene and element
report) and exported into a scheduling file format.

Conclusion

Serving the sole purpose of providing breakdown functionality for existing Final
Draft documents, the importing capabilities are limited to this file format.

The main interface shows some specialization for the task, for instance by pro-
viding a useful list of recognized scenes. Tagging itself is cumbersome due to the
imperative step through the Add Element dialog and the lack of hotkeys or simi-
lar instruments. In addition, no global (script-wide) tagging is available. Category
management is sufficient, but editing categories is only accessible through double
clicking the right mouse button. This feature was discovered in testing simply by
accident.

The software’s printing capabilities are limited due to a lack of customization
features and breakdown page layouts differing from industry standards. Data export
is only available in a single, proprietary format and is thus very inflexible.

41

4.1.3 Mindstar Cinergy

Cinergy 2000 Motion Picture Production System (MPPS) Version 55 is a commercial
suite of software by Mindstar Productions that covers several aspects of the film
production process, including budgeting, scheduling and labor rate integration.

According to the product homepage, there has not been a new version of the
software since 2004. Furthermore, the software is only available for Windows op-
erating systems. Cinergy 2000 MPPS 5 was tested on Windows XP and Windows
7.

Script breakdown

The suite’s scheduling module supports the breaking down of scripts for the creation
of script breakdown sheets as well as using the data for scheduling and budgeting
tasks. The script breakdown editor also supports to import scripts from a number of
file types, including proprietary formats, and providing various options, for example
custom category mappings and formatting.

Tagging of elements can be done by means of two different interfaces. The
first (shown in figure 4.3a) contains a view of the script and supports tagging by
several means, including: selecting text and pressing the category button, selecting
text and dragging/dropping it onto the category button, selecting text and tagging
per context menu. The second interface (depicted in figure 4.3b) is laid out like a
breakdown sheet and supports the direct editing of elements from within the table’s
category cells.

Data integration

Breakdown information is automatically integrated and synchronized with the on-
the-set module for the purpose of keeping scheduling consistent and informing re-
sponsible personnel.

5http://www.mindstarprods.com/cinergy/overview.html Mindstar Productions Cinergy
2000 MPPS Product Information, last access 08/2010

42

http://www.mindstarprods.com/cinergy/overview.html

(a) Script View, showing tagging per dialog (b) Full Breakdown View (truncated)

Figure 4.3: Two breakdown interfaces in Mindstar Cinergy: Script View (a)
and Full Breakdown View (b).

Conclusion

The script breakdown module provides a surprisingly extensive set of tagging abili-
ties that are suitably implemented, but show some usability issues. The fact that the
full breakdown interface, once its window is visible, renders the script view interface
unable to interact with, diminishes its value greatly.

Customizable importing of various script formats is done well, whereas export
and printing functions lack flexibility, particularly in terms of customizable layouts.
Data integration is limited with no ability to directly use breakdown data for creating
calculation positions with the aid of the built-in rate labor browser.

4.1.4 Movie Magic Scheduling and Budgeting

Movie Magic Scheduling (MMS) and Movie Magic Budgeting (MMB) are two mod-
ules of a film production software suite by Entertainment Partners (EP)6 which also
includes specialized applications for accounting, labor rates and online collaboration.
The suite does not include screenwriting software.

MMS and MMB are rebranded and functionally extended versions of the well-
6http://www.entertainmentpartners.com Entertainment Partners home page, last access

08/2010

43

http://www.entertainmentpartners.com

known EP Scheduling and EP Budgeting applications, which themselves are rooted
in a Movie Magic Scheduling/Budgeting suite that EP bought in 1999. The Movie
Magic Screenwriter application presented in section 4.1.5 was part of this original
Movie Magic suite too, but was not sold with the rest of the suite and remained
with the inventors, Write Brothers Inc., as discussed below.

MMS 5 and MMB 7 are available both for Windows and Mac OS X systems and
were tested on Windows XP, Windows 7 and Mac OS X 10.6.

Script breakdown

While there is no support for screenwriting from within MMS, MMB or any other
part of the suite, existing scripts can be imported from a limited number of supported
formats. Additionally, MMS supports the manual entering of breakdown elements
for scenes either via a quick entry dialog or by entering elements directly in the
breakdown outline (shown in figure 4.4). Both features only work locally. Breakdown

Figure 4.4: Script breakdown interface in Movie Magic Scheduling.

data can be exported in a number of sheet formats that can also be customized by
the user.

44

Data integration

Elements created in an MMS 5 project can be exported into an MMB 7 library file.
Users of MMB 7 can import and use these library files as catalogs for their budgeting
tasks.

Conclusion

The Scheduling and Budgeting applications of the suite offer a wide range of func-
tionality with limited capabilities in script breakdown and data integration. Export
functions are extensive with good customization and layouting options, whereas the
recently refreshed user interfaces still lack polish (mainly in the Mac version) and
suffer from unintuitive workflows.

4.1.5 Movie Magic Screenwriter

Movie Magic Screenwriter by Write Brothers Inc.7 is a screenwriting software for
Windows and Mac OS systems supporting script breakdown and the generating and
printing of reports. Screenwriter 6 was tested on Windows 7 and Mac OS X 10.6.

Script breakdown

The software provides a tagging mode which, when activated, allows the tagging of
selected text into breakdown categories by using a small category list window that
opens whenever text is selected in the script view (see figure 4.5). Categories in this
window can be selected by clicking on them or by pressing the associated short-key
on the keyboard (keys from a to z).

This window also allows un-tagging, as well as local (only for the current scene)
and global (for all scenes) tagging. In addition to this, elements can be tagged
globally via a dedicated dialog window. The list and names of categories can be
managed and the page layout of generated breakdown sheets can be customized to
some extent. Breakdown data can also be exported for scheduling in one proprietary
file format.

7http://www.write-bros.com Write Brothers Inc. home page, last access 08/2010

45

http://www.write-bros.com

Figure 4.5: Script breakdown interface in Movie Magic Screenwriter.

Conclusion

Tagging works effectively, especially when using shortcuts for specifying categories.
The highlighting of tagged elements, on the other hand, is too low-key, with only a
textual indicator as a prefix for the respective element. Category list management
lacks flexibility, as does the data export for scheduling. Printing is solid with a
number of low-impact options.

4.1.6 Conclusion

The previous sections intended to give an impression of the qualities and possible
deficiencies of state of the art film production management software. Table 4.1
presents a summary of the findings, broken down into the most important features
relevant for this work.

The most extensive set of features in terms of breakdown and integration is pro-

46

Software W S B Breakdown Integration
CeltX Yes Yes Limited (no data

export)
Limited (central
master catalog, no

budgeting)

Final Draft +
Tagger

Yes Yes (Tagger) Limited (only with
scheduling)

Cinergy MPPS Yes Yes Yes Yes Limited (only with
scheduling)

MMS / MMB Yes Yes Limited (import,
manual input with

MMS)

Limited (element
library, not
automated)

MM
Screenwriter

Yes Yes

Table 4.1: Comparison of film production software by key features.

vided by Mindstar Cinergy. However, the software is not maintained anymore and is
only available on Microsoft Windows platforms. All other applications support in-
terfaces for tagging, importing or manually entering breakdown data, most of which
lack task-specific features, as discussed.

This indirectly relates to the fact that none of the observed applications provide
any assistance or indication to the user as to what parts of the text represent likely
important/unimportant elements of the script. For example, there are no features
which use text recognition to aid the user.

A number of the observed software suites make an effort to provide features for
importing and exporting data, but again all those efforts only provide limited use
with little to no automation or direct integration with budgeting tasks.

The second important aspect of this chapter, besides discussing sophistication
and feature extensiveness, was to make a statement about the softwares’ usability
in terms of the factors described and established in 3.4. Again, the observed soft-
ware products fall short in various aspects, most importantly in the intuitiveness
of workflows and simplicity of interfaces. This is reflected commonly by tagging
mechanisms that do not follow the natural and intuitive flow of actions, but rather
present separate tagging dialogs and other superfluous prompts.

47

4.2 Making a business case for smart script break-

down software

Chapter 2 provided an overview of the organizational context the film production
process is embedded in. It also noted how the script breakdown acts as a basis
for cost estimations and budget negotiations, provides essential data for creating
and optimizing production schedules and represents a central communication device
through breakdown sheet reports.

The findings of chapter 4 show that current software solutions for script break-
down do not satisfy high standards in software usability and often do not implement
specialized or smart interfaces which are adequate for the task. While some of the
studied software suites allow exporting and importing of proprietary file formats,
the data exchange is often limited to specific applications and certain parts of data.

Therefore, a smart script breakdown software (like will be described in more
detail in the following chapters) has to offer benefits in a number of areas to film
production companies using currently available software products for script break-
down and even more so to companies where producers and production assistants
still carry out breakdown manually using a pen and paper or standard software like
word processors or PDF annotation tools.

4.2.1 Potential process improvements

Using script breakdown applications can be beneficial for a number of independent,
essential tasks in film productions. What is more, well-integrated and smart script
breakdown software can enable the improvement of whole processes, both along the
four film production phases and across organizational processes.

Tables 4.2 and 4.3 demonstrate the potential for the budgeting and scheduling
processes, respectively, with a number of concrete examples. Table 4.4 adds to this
how various organizational processes across and outside of current film production
can be improved.

48

Process Improvement Effect
Budgeting - Phase: Preparation
Assets and Results: initial breakdown, cost estimation
Better interface for faster (and more en-
joyable) task completion

More cost-efficient, earlier cost estima-
tions, earlier decisions (green light), less
change latency

Smart features (global tagging, scene
selection, rate book integration) for
more accurate data

Better cost estimations, more accurate
data for preliminary budget, more ac-
curate data for scheduling

Budgeting - Phase: Pre-Production
Assets and Results: preliminary budget
Import of breakdown data for quick and
error-free data exchange

More cost-efficient, less errors, more ac-
curate/complete budget data

Table 4.2: Potential improvements of the budgeting processes in the context
of filmproduction by employing smart script breakdown software.

4.2.2 Cost and risk assessment

The total costs associated with introducing new software into existing business pro-
cesses and workflows comprise numerous factors, such as licensing fees, internal/ex-
ternal development costs, hardware expenses, training and education and integration
into the process environment.

In the case of acquisition of an existing solution, the development costs are
negligible, but integration demands thorough risk assessment. The commission of
a system to an external developer or assigning internal resources to development
brings along higher development costs, but allows for continuous integration of the
solution into the running system. This can greatly reduce adoption risk and delays
in productivity.

Software Process Improvement (SPI)

An important aspect of internal software development is continuous improvement
of the software development process, also referred to as SPI (software process im-
provement). Dybå (2005) notes that SPI’s origins lie in quality management and
that it is closely related to organizational learning.

Harrison et al. (1999) state that conducting SPI is expected to benefit a company
in various ways, including improved cost efficiency through reduced development

49

Process Improvement Effect
Scheduling - Phase: Pre-Production
Assets and Results: initial shooting schedule
Import of breakdown data for quick and
error-free data exchange

More cost-efficient, less errors, more ac-
curate shooting schedule

Collaborative work on schedule with
creatives, location managers and other
team members

Better communication across divisions,
integrate team in scheduling process,
find errors early

Scheduling - Phase: Production
Assets and Results: shooting (not immanent)
Automatic/standardized reporting to
keep staff informed

Standardized breakdown sheets im-
prove intuitiveness, automatic change
propagation and task delegation, less
communication overhead, common un-
derstanding

Table 4.3: Potential improvements of scheduling processes in the context of
filmproduction by employing smart script breakdown software.

times and lower error and bug rates, higher customer satisfaction, less expenses on
support, and many more. The authors show how economically sound estimations
of investment into SPI can be made by employing proven financial measures, and
consequentially how investments can be justified economically. The authors recom-
mend Net Present Value (NPV) as a key indicator for SPI investments and provide
reasoning on how implementation time, costs and risks can be considered in NPV
calculations and comparative investment evaluation.

As a result of an empirical investigation of success factors in SPI, Dybå (2005)
finds that the two most important key factors are business orientation, i.e., how
thoroughly SPI goals are set in accordance with the company’s business orienta-
tion, and employee participation, which is defined by considering how extensively
employees use their knowledge and experience to act for the good of SPI.

These findings, expressing the importance of business decisions being aligned
with internal software development processes, are in concordance with the reasoning
provided by Abrahamsson et al. (2005), who suggest agile project management and
test driven development (TDD) as potential safeguards against development risks.

50

Process Improvement Effect
Documentation - Phases: All
Assets and Results: version protocols, other documentation
Versioning and reporting mechanisms
create automatic project history

Protocol of project (script, schedul-
ing) changes, keep documentation after
project was finished, compare project
histories

Communication - Phases: All
Assets and Results: reporting, information distribution
Ensure and improve common under-
standing through reporting

Less communication overhead across di-
visions and processes

Escalation - Phases: Pre-Production, Production
Assets and Results: adapted breakdown version, reporting
Allow fast re-assessment of breakdown
to react to budgeting or scheduling
changes

Re-establish budget or scheduling
quickly, automatically inform team
members

Controlling - Phases: Production, Post-Production
Assets and Results: version protocols, change documentation
Breakdown data provides documented
data source for cost estimations and
budgets

Better knowledge of cost structures, im-
proved traceability of irregularities and
errors

Table 4.4: Potential improvements of organizational processes in the context
of filmproduction by employing smart script breakdown software.

4.2.3 Outlook and application spectrum

Once an integrated software solution for script breakdown has been put into place,
further development to automate and improve processes, as well as ensure quality,
can be attempted. For example, direct integration with scheduling and budgeting
solutions to enable automated change propagation and data updates, as well as ad-
ditional controlling mechanisms, and distributed collaboration features via internet
connection and across hardware platforms, as shown in figure 4.6, are recommend-
able.

Besides the main area of application, the concepts and interfaces devised for
script breakdown can also be transferred to other areas. One example is the work
of stage and set designers, who, similarly to a film production manager, need to
analyze scripts for stage or film productions in order to create cost estimations and

51

Figure 4.6: Mock-up showing a possible interface of a script breakdown ap-
plication running on an Apple iPad.

52

budgets. In later phases, breakdown data is analogously required to provide the
basis for negotiations and to design and compose adequate, persuasive backdrops
and other stage props.

Another interesting idea is integration as part of a personal learning system,
where the application would provide tools and mechanisms to mark important defi-
nitions, key dates, names and similar. The application could then be used to create
automated reports with summarizations of the tagged context, possibly enriched
with data and information from online resources selected by the user.

In the scientific field, the tagging of free text is also often a requirement, for ex-
ample to create annotated free text corpuses for the training of learning algorithms.

4.2.4 Conclusion

Adopting and integrating new software into existing business processes bears certain
risks and costs, especially if existing solutions are to be replaced. Careful evaluation
and consideration of quality-ensuring measures, such as continuous integration, can
help mitigate negative influence factors.

On the other hand, task and process improvements can account for saved costs,
employee motivation and increased process knowledge drawn from better communi-
cation and documentation. These are important factors for learning organizations.

53

54

5. Materials and Methods

The discussion of film production software in the previous chapters has shown that
most of the applications providing mechanisms for script breakdown lack suitable
tagging interfaces and provide little means of data pre-processing, export and inter-
changeability.

This chapter aims at creating a concept for a more efficient and satisfying script
breakdown application supporting suitable, specialized tagging interfaces while strongly
considering particular requirements such as script pre-processing, category manage-
ment, global/local tagging and export of breakdown data.

5.1 Use cases

Use case diagrams have been constructed in order to summarize and depict the
main use case scenarios of an application for script breakdown. Figure 5.1 describes
the most general, abstract use case scenarios like script breakdown, export to other
software and generating (printed) reports. In most cases, the Production Manager
(PM) or Assistant Production Manager (PMA) is responsible for carrying out script
breakdown and providing according reports. The Producer is also an important
user who requires the software for assistance in calculating cost estimations and
transferring the data into scheduling and budgeting applications.

Other members of production staff requiring data from script breakdown include
Unit Production Managers (UPM), Location Managers (LM), Set Designers and
many more. This corresponds, to a certain degree, to the fact that the script (and
therefore its broken down elements) is a strong and important asset in communica-
tion between project members.

The use cases shown in figure 5.2 pertain to the breakdown subsystem of the

55

Breakdown

PM(A)

Break down
script

Print Break
down sheets

Export to
other

software

UPM

LM

...Get Break
down sheets

<uses>

Export data

<uses>

<extends>

<extends>

Create cost
estimation

<uses>

Open/Import
script<uses>

based on
location, actor,
scene or other

rtf, doc, pdf,
other proprietery
formats/software

e.g. scheduling
or budgeting

software

various other
members of

production staff

Producer

Figure 5.1: General use cases of the breakdown application.

software. It includes the tagging of elements, as well as category management and
the ability to navigate and/or filter by scene, which is also required for scene-local
tagging of elements.

The Tag elements use case also acts as a basis and common descriptor of a va-
riety of tagging interfaces, such as Shortcut tagging, Button tagging and Mouse

tagging. It also defines that tagging interfaces can incorporate pre-selection heuris-
tics.

5.2 Tagging interfaces

For easier reference, the act of identifying relevant elements of a scene and assigning
them to a breakdown category is called tagging (sometimes also referred to as high-
lighting or marking). In order to present such tagging functionality to the user, there
are numerous possible graphical interfaces that can be employed, some of which were
already shown in 4.1.

Table 5.1 presents the main types of tagging interface identified from the obser-

56

Break down script (subsystem)

PM(A)

Manage
categories

Tag
elements

define, save,
load categories
w/ formatting
and shortcuts

Shortcut
tagging
(AAS)

Button
tagging

Mouse
tagging

Pre-
selection
heuristics

<extends>

uses text
recognition

mechanisms

Navigate/
filter scenes

<extends> for global/local
tagging

automatic
scene

recognition
<uses>

Figure 5.2: Specific use cases of the script breakdown subsystem of the break-
down application.

vations in 4.1. It explains the typical tagging sequences and gives an estimation on
their respective complexity (lower values meaning less complexity). The complexity
estimation used in table 5.1 takes into consideration the number of actions required
from the user to tag one element as well as particular circumstances that greatly
affect user experience and performance. Examples include missing script context or
the necessity to switch between contexts (for instance from script view to a separate
dialog window), as well as other complex actions like manually filling in text fields.

One factor that all these methods have in common is that they require the user to
select or enter the element text they want to tag. While this does not pose problems
concerning intuitiveness of the interface, the act of repeatedly highlighting text using
the mouse or keyboard can become very tedious and error-prone, especially when the
script is broken down for the first time and therefore worked through sequentially
in its entirety.

The discrepancy between time and effort required for selecting the text and the
actual tagging becomes especially evident in the case of shortkey tagging, where

57

Type Sequence Complexity Remarks
Manual tagging
4.1

type or select text,
select category, con-
firm

3-4 standard interface,
can provide options
for local/global tag-
ging etc., little con-
text

Manual tagging
with dialog 4.2
4.3a 4.4 4.5

type or select text
and open dialog, se-
lect category, con-
firm

4-5 as above, but less
context

Add-to-category
button 4.3a

select category, se-
lect text, press but-
ton

3 very tedious in
initial breakdown,
more suitable for
corrections

Context menu
tagging 4.3a 4.5

select text, open
context menu,
confirm category

2 good context, intu-
itive for many user
groups

Drag and drop
tagging 4.3a

select text, drag
onto category

2 good context, intu-
itive for many user
groups

Category
shortkeys 4.5

select text, press
shortkey

2 good context, fast
but requires memo-
rizing of keys

Direct
manipulation of
BDS 4.3b 4.4

start editing, type
text, confirm

2-3 provides less context
than script inter-
action, only scene-
local changes

Table 5.1: Classification of tagging interfaces by action sequence and com-
plexity.

58

the tagging action takes just a fraction of the time necessary to select the text.
This observation also recommends the usage of shortkey tagging in combination
with assisted text selecting in order to create a specialized, more effective tagging
interface for script breakdown.

5.3 Auto-advancing shortkey (AAS) tagging

This proposed tagging method aims at providing a streamlined tagging interface
using shortkeys for tagging, and requiring no mouse interaction at all. It is based on
the assumption that the user knows about breakdown categories and has memorized
their corresponding shortcut keys.

To support this, flexible category management including free assignment of short-
cut keys is required. It was deemed recommendable to define ranges of keys usable
for categories and to pre-assign control keys for navigation and manual text selection,
similar to the scheme in table 5.2.

Keys Usage
a-z, A-Z shortcut keys, tag selected text and advance

(freely assignable, for instance c for cast and
p for props; case-sensitivity optional)

<left>, <right> go to previous or advance to next word or word
group

<shift+left>, <shift+right> add previous/next word to selection (such as for
multiword-elements)

<up>, <down> jump one line up or down

<backspace>, <delete> un-tag text

<space>, <tab> un-tag text and advance

Table 5.2: AAS shortcut assignment schema for categories and control keys.

As discussed previously, the act of repeatedly selecting text for tagging is tedious
work for the user, especially when the script is being broken down for the first time,
from start to finish, in sequential order. AAS tagging mitigates this negative effect by
auto-advancing after an element has been tagged, and pre-selecting the range of text

59

that is likely to be tagged next. Using AAS does, however, not limit the application
to this tagging interface in any way. Providing additional, mouse-controlled tagging
mechanisms to complement it, for example for punctual corrections or similar, is
encouraged.

AAS benefits strongly from the smartness of the pre-selection heuristics, which
can be improved by implementing general text recognition and language processing
mechanisms (such word boundary finding, skipping of stop words or looking up
lexical databases for word types, as discussed in 3.3), as well as application and
context-sensitive features like the pre-processing of sluglines, recognizing compound
tokens and skipping tagged elements.

Figure 5.3 shows the first mock-up of a possible script breakdown application
prototype using AAS tagging. The mock-up shows a small excerpt of the script for
a screenplay of Frank L. Baum’s The Wizard of Oz (Langley et al., 1939).

Figure 5.3: First mock-up screenshot of a script breakdown interface using
AAS tagging.

The mock-up in figure 5.3 shows the state in which the elements DOROTHY and
TIN MAN have already been tagged (and are therefore rendered underlined) and

60

SCARECROW is currently being tagged. At this point, pre-processing will already have
recognized the scene’s slugline EXT.FOREST.DAY and the pre-selection heuristic has
determined the pre-selection ranges of text to the left and right of the currently
selected text, as reflected by the two text labels at the bottom of the screen.

Note that even though TIN MAN consists of two words, it will have been recognized
as a previously tagged compound token. Moreover, the word and to the right of the
currently selected text will have been considered a stop-word resulting in it being
skipped and TOTO being shown in the preview label.

5.4 Category management

The simple and flexible management of breakdown categories is essential in order to
be able to accommodate for the needs of differing types of scripts and productions,
but often neglected by the software applications observed in section 4.1. With the
introduction of AAS, it is even more important due to the need to easily and freely
assign shortcut keys to categories. The minimum set of features required includes
the following:

• add, remove and rename categories

• change the highlighting format of categories (color, underlining) and automat-
ically reflect changes in the script view; provide a formatting preview

• assign/remove shortcut keys to/from categories

• remove assigned elements from categories and automatically reflect changes in
the script view

Additionally, means to save and load category presets (including formats and as-
signed keys) are suggestible and recommended for real-world use of a script break-
down software.

5.5 Scene and scope management

Scenes should be recognized as per their sluglines in the pre-processing phase when
the opened script is first analyzed by the application. Scene management itself

61

should be limited to controlling the tagging scope, i.e., limiting tagging actions to
certain or all scenes. Changing names or other attributes of scenes is not desired in
the script breakdown phase.

Tagging elements globally prevents the user from having to re-tag recurring ele-
ments in all scenes they appear in, which means greatly reduced effort in the case
of the main actor, for example.

Breakdown sheets usually also incorporate additional information about scenes,
including scene length in 1/8s (as discussed in section 2), estimations on required
numbers of shooting days and setups, as well as further production notes. Where
possible, this data should be calculated automatically (for instance, scene lengths
can be derived from the number of lines they take), else the PM should be provided
with an interface to add such information.

5.6 Breakdown data management

Collected breakdown data is used for various communication and scheduling pur-
poses throughout production, thus printing and exporting functions are essential.

For data export, and more generally data transfer, XML (Extensible Markup
Language, World Wide Web Consortium (W3C) (2010b)) provides a platform-
independent, universally known and supported document format for data exchange.
An equally well accepted file format for transferring printable documents is the
aforementioned PDF.

5.7 Conclusion

AAS tries to improve the script breakdown process by emphasizing streamlined
tagging actions and keeping the user’s attention on the tagged elements and their
context within the script. Flexible category management and unobtrusive scene
handling, as well as means to transfer and print breakdown data in suitable formats,
support the efficient application of AAS.

62

6. Results

This chapter will first provide an insight into the conception, design and implemen-
tation of the prototype software developed for this thesis, based on the observations
and results of the previous chapters. It will also account for problems encountered
during the work on the prototype.

The second part of this chapter is dedicated to presenting the methodology,
execution and analysis of the usability evaluation that was conducted with the goal
of assessing the acceptance and efficiency of various tagging interfaces provided by
the prototype.

6.1 Prototype Application

The main concepts described in chapter 2.3 have been implemented into a proto-
type application. The following chapters will explain how the prototype itself was
designed and developed in accordance with established requirements and provide an
account of problems, solutions and lessons learned in the process.

6.1.1 Target system

Throughout the research conducted for this thesis, a number of goals and formal
requirements were noted and established. These included:

• Focus on usability in terms of issues discussed in sections 3.4 and 4.1.

• Streamline the process from script breakdown to the first cost estimation,
especially by the smart tagging of elements and semi-automatic management
of scenes and categories.

63

• Ensure re-usability of data by providing data exports in a universally usable
format. Moreover, support printing of breakdown data, for instance break-
down sheets for scenes, actors and locations.

In addition to these demands, the following technical requirements were added to
the specification:

• The target operating system is Mac OS X 10.5 and higher.

• Interfaces must be designed and implemented to be suitable for resolutions of
1280x800 pixels and higher.

• Tagging must be efficient enough to be capable of global-tagging multiword
elements in reasonably long scripts (>10,000 words) in a timely fashion (<1

second).

• Saving/loading of project files (including script with formattings, elements,
categories and scenes) and category configurations must be supported.

6.1.2 Software architecture and design

The prototype’s architecture was designed around three principles of software en-
gineering: object-orientation, modularity and the model-view-controller design pat-
tern.

Object-oriented programming (OOP) is a software engineering paradigm that
abstracts the real-world context of a software into a model of objects which are
instances of classes representing said real-world entities. Booch et al. (2007)
define OOP as

“[. . .] a method of implementation in which programs are organized
as cooperative collections of objects, each of which represents an in-
stance of some class, and whose classes are all members of a hier-
archy of classes united via inheritance relationships.”

The prototype application will, in accordance with OOP principles, create an
abstraction model around classes that represent real-world entities, such as
the script, breakdown categories, elements, scenes and more.

64

Modularity means that the separation of concerns (one of the main OOP prin-
ciples) is ensured throughout the whole scope of the software design in this
context. Classes that are logically related and adhesive are coupled within
modules, and communication interfaces between self-contained modules are
defined.

Model-view-controller as described in chapter 3.2, is an architectural software
design pattern dividing the implementation in three separate layers of model,
view and controller. As the native application programming interfaces (API)
on current Apple Mac OSX systems are thoroughly MVC-oriented, the proto-
type’s implementation can be built seamlessly onto this basis.

System architecture

In the context of this work, the aforementioned principles meant that the prototype’s
system architecture was to be constructed of internally adhesive modules consist-
ing of intrinsically tied controller and model classes. Initial analyses of real-world
circumstances yielded a likely reasonable segmentation of responsibilities in a break-
down module, a printing and export module and, later on, a module that handles
integration into calculation.

In addition to these modules, a text parsing module consisting of service classes
for the breakdown module, such as a text tokenizer, and a module responsible for
handling usability engineering interfaces and workflows were considered in the design
phase as well.

Based on these responsibilities, modules were then analyzed more thoroughly
in their context, in order to find a suitable data model for the representation of
real-world entities and interfaces between the controllers and the modules. Figure
6.1 shows how the finalized prototype-architecture was set up.

Breakdown The breakdown module provides and implements interfaces for cate-
gory and element management, scene management and the script breakdown. There-
fore, it includes two controllers pertaining to each of the views (document or script
view, category view).

This module also defines the data model representing the real-world entities of

65

Breakdown

<script management>
<document management>
<tagging>
<navigation>

script
document

Document Controller

<category management>
<scene management>
<data export>

categories
 - elements
scenes

Categories Controller

Printing

<create PDF>
<print>

Print Controller

Parsing

<recognize tokens>
<recognize language>

Tokenizer

Usability Evaluation

<evaluation workflow>

usage data
results data
feedback data

Usability Evaluation
Controller

tutorial
document

test
document

<log user interaction>
<create usage stats>

Usage Logger

Figure 6.1: Simplified module/controller architecture of the breakdown pro-
totype including responsibilities.

66

document (including the script), category, entry and scene. The controllers use and
apply this data model to implement script breakdown.

The breakdown module also implements methods preparing the export of gener-
ated data into a structured, application-independent data format that can be used
for tasks like printing or importing into other applications.

Parsing This module provides a multilanguage-compatible tokenizer capable of
performing a wide range of atomic tasks concerning text recognition and parsing,
for example word-boundary scanning or recognition of the most likely language of a
given text.

This module is meant to be extended with more service routines and text recog-
nition features as required by the main breakdown module.

Printing Printing implements methods for laying out and printing data provided
by the main breakdown modules. Using a layout and template engine, this module
renders given data to legible formats in order to create PDF report printouts from
templates that are written in HTML (Hypertext Markup Language (World Wide
Web Consortium (W3C), 2010c)).

The breakdown module is responsible for providing templates for script break-
down sheets per scene, location and actor. In future development, the integration
module can provide templates for reports about created calculation entries or similar,
but such reports are not relevant for this work and will therefore not be implemented.

Usability Evaluation This module provides mechanisms and interfaces required
for usability evaluations. Most importantly, it implements methods to start and end
the usability evaluation workflow, which includes showing and validating forms and
feedback questionnaires and sending collected results to a receiving script that is
hosted on a server reachable through a normal internet connection.

A second aspect of this module is the automatic collection of usage data and
creation of simple usage statistics. This will be discussed thoroughly in section 6.2.

67

Data model

With the exception of the printing module, which is unaware of the exact structure
of the data it processes and applies to the given templates, all controllers must
have knowledge about the underlying data model. This is especially true for the
breakdown module, as it directly applies its class hierarchies and interfaces to model
and store script breakdown data.

Figure 6.2 depicts a diagram of the data model as defined by the breakdown
module. Category and Entry share a common super-class from which they inherit

Page 1 of 1

Untitled 07.09.10 17:34

Category
Attributes

attributes
isHighlight
shortcut
Relationships

entries

Entry
Attributes
Relationships

category
children
scenes

Scene
Attributes

eights
epd
number
range
slugline
Relationships

document
entries

Document
Attributes

script
useStopwords
Relationships

scenes

ManagedOutlineElement
Attributes

name
Relationships

ChildEntry
Attributes
Relationships

parent

Figure 6.2: Data model of the breakdown prototype.

attributes and methods they both need to implement, for example a name prop-
erty. Among other things, Category additionally administers a relationship to its
elements (for instance Entry objects representing text added to this category) and
on how they are formatted in the script view. Entry, on the other hand, knows
which Category it belongs to, and in which Scenes its specific text is tagged.

In order to model a recursive, hierarchical relation between entries, ChildEntry

serves as an intermediate model entity specifically representing entries that belong
to a parent entry. This is used in the prototype to enable the user to define entries

68

that are derived from others, and can not exist without them; for instance, animal
trainers must be on set for shooting scenes with animals.

In the script pre-processing phase, objects of the Scene class are created for each
recognized slugline in the script. Therefore, the Document encapsulates both the
script as text, and the list of scenes found therein.

Further details about the employment of MVC in the design and implementation
of this prototype, along with a discussion of results and lessons learned are presented
by Holzinger et al. (2010).

6.1.3 Implementation

Tools and materials

The prototype was developed mainly on a 13.3" Apple MacBook (for details, see
technical specifications in table 6.1) using Apple Xcode 3.21 as an integrated de-
velopment environment (IDE). Of the extensive set of tools provided by Xcode,
mainly the source code editor and debugger, the interface designer (called Interface
Builder, see figure 6.4) and the data model editor (figure 6.2 is a screenshot of the
tool’s data model view) were used. Since platform-independence was not included
in the prototype’s requirements, all code has been written in Objective-C 2.0 us-
ing application programming interfaces (APIs) natively provided by Mac OSX and
Xcode. Analogously, all user interfaces were therefore constructed of graphical user
interface elements native to Mac OSX.

Hardware

The development system’s specifications (see table 6.1) in terms of computing power
and display size and resolution are ranked at the lower end of the specifications es-
tablished in section 6.1.1. The prototype’s performance running on the development
system was therefore considered an indicator for whether the prototype meets the
set requirements.

1http://developer.apple.com/tools/xcode/ Xcode development environment, last access
08/2010

69

http://developer.apple.com/tools/xcode/

Figure 6.3: Main window of Apple Xcode 3.2 showing the project outline on
the left and the code editing view.

Graphical user interfaces

Interface Builder was used to design the prototype’s user interfaces and to set up
connections (so called outlets) between the controller classes and the interface. The
combination of views and controllers represents the implementation of the inter-
activity of the software. The user interfaces were created with general usability
and interface design considerations in mind, including the usage of known controls
and icons for known purposes, the grouping of elements that belong together, and
similar.

Component Specification
Operating system Mac OS X 10.6.2

CPU Intel Core 2 Duo T7300 2 Ghz
Memory 4 GB DDR2
Display 13.3" widescreen LCD

Native resolution 1280x800
Hard disk 120 GB 5400 RPM SATA

Table 6.1: Technical specifications of the development system.

70

Figure 6.4: Designing the interface of the breakdown prototype with Interface
Builder.

Breakdown module

Main window The breakdown module consists of two windows. The first one is
the main window, including the script view and navigation/tag buttons and pre-
views. In addition, there is a list view of all defined categories and entries. The
second window is the category management panel which is dependent on, but de-
tached from, the main window and can be shown on demand using a button in the
main view. Figure 6.5 shows the main window of the prototype. This window mainly
consists of the script view showing the current part of the script with highlighted or
underlined tagged elements. Below the script view, the most important functions
are available at the press of a button and grouped logically. Less frequently used
functions are available from the application’s main menu and from context menus
to keep the interface unobtrusive.

The right hand side of the main view shows all defined categories, along with
the entries already tagged into them. It also incorporates a shortkey indicator and
a textual preview of the respective category’s formatting, similar to the category
management view, as will be described below.

71

Figure 6.5: Main window of the breakdown prototype application.

Category management view Breakdown categories, elements and scenes are
managed in this window, which is toggled by a button in the main view. Figure 6.6
shows its layout. At the top of this view, a scene selection menu (which is generated
automatically from the scenes recognized in the script while pre-processing) allows
global tagging (All Scenes), local context-sensitive tagging (Current Scene) and
scene-restricted tagging by clicking on a scene name.

Selecting a particular scene also scrolls the script view in the main window and
positions the cursor to the start of the scene. Additionally, AAS pre-selection is
restricted to the selected scene, thus it does not traverse to the next scene but
wraps around to the current scene’s start.

The scene selection panel also displays the length (in eighths) of the currently
selected scene or scenes, as well as an estimation of the production time required to
shoot the scenes.

72

Figure 6.6: Category management window of the breakdown prototype ap-
plication.

Below the scene selection, an outline showing the configured breakdown cate-
gories (including assigned hotkeys and a preview of their elements’ formatting in
the script view) is presented. Any tagged elements are listed directly within the
groups they belong to. This outline view can be manipulated using the buttons at
the bottom of the window.

The category configuration (again including hotkeys and formatting) can be
stored into a file and loaded later on, allowing to the definition and reusal of default
templates for certain production types.

Script pre-processing The prototype supports the pasting of text directly into
the script view. Once text has been pasted, the script view is immediately write-
protected and pre-preocessing is started, scanning the script for scenes.

As previously noted, scene beginnings are indicated by sluglines which commonly
follow a general pattern. For the purpose of efficient and flexible scanning for such
sluglines, the following basic regular expression is used:

(?i)(EXT|INT).*(DAY|NIGHT)

73

Using this regular expression, the pre-processing algorithm searches case-insensitively
(indicated by ?i) for any text enclosed by EXT or INT on the left and DAY or NIGHT on
the right. Every found scene is stored along with its slugline and the range (location
and length) of the scene within the script.

This is advantageous compared to normal text-searching because it is far more
efficient to compute, and enables the software to easily incorporate options set by
the user, for example for making the operation case-sensitive or adding daytime-
elements like AFTERNOON via a list interface.

Word boundaries scanning In section 5.3, it was stated that AAS requires
robust and smart pre-selection heuristics to work properly and be beneficial for the
user. The main responsibility of these heuristics is finding word boundaries. Figure
6.7 shows the segmentation of an English sentence by its words (or tokens).

Figure 6.7: Segmentation of an English sentence by word boundaries. Origi-
nal sentence at the top, extracted version at the bottom (Davis,
2009).

There are several trivial and non-trivial solutions for this, including manually
implementing a text segmentation by a defined set of delimiter-characters (such as
space, tabulator, line break, punctuation marks, quotation marks), but they suf-
fer from drawbacks concerning computing efficiency and flexibility. What is more,
the solution implemented should be able not only to work with English or Ger-
man scripts, but also with text written in other languages, which sometimes use
very different means of separating words, or do not separate them at all. Davis
(2009) provides an impression of how complex and diverse demands for language-
independent word boundary finding are.

Based on these observations, using an existing library, be it an external suite or
integrated into the Mac OSX API, was found to be the most suitable solution. After
thorough research on this topic, a class of the Mac OSX Core Foundation library2

2http://developer.apple.com/corefoundation/ Apple Core Foundation documentation,

74

http://developer.apple.com/corefoundation/

for interlingual string management was found and incorporated into the prototype
due to recommendations by both independent developers and Apple.

This class, called CFStringTokenizer, supports not only the tokenizing of strings,
which means segmenting text by its atomic words, but also recognizing types of to-
kens, de-compounding of German compound words and finding Latin transcriptions
for tokens. It can also identify the language a given text was most likely written in,
which can be used to great effect for incorporating language-specific processing like
stop word-filtering and the use of syntactical databases.

In order to make use of the low-level CFStringTokenizer implementation, a
string tokenizer class was created encapsulating the management of a
CFStringTokenizerReference and providing an efficient interface for the break-
down controller classes.

Pre-selection heuristics By using the aforementioned text tokenization module,
a set of methods for navigating by token and word boundaries was implemented.
These methods are used by the pre-selection heuristics to determine which word or
word groups to select after tagging via mouse and in accordance with the shortcut-
key assignment schema defined in section 5.3.

Additionally, a number of extensions to token-based pre-selection have been im-
plemented. One of them is compound token-based pre-selection, which means
that groups of words that have already been tagged together as a breakdown ele-
ment are pre-selected as a whole. In figure 6.8, the word is is currently selected. To

Figure 6.8: Compound token-based pre-selection of text.

last access 10/2010. Core Foundation is a low-level framework implementing base functional-
ity which high-level classes of the Mac OSX Cocoa API, such as interface elements and controllers,
are built upon.

75

its left, a tagged compound token The Emerald City has already been identified.
This is reflected at the bottom of the breakdown view, where the pre-selection pre-
view shows The Emerald City as the text that will be selected if the user navigates
left.

This functionality is implemented in one atomic method that is used by both
the pre-selection heuristics to determine the range of text to be selected, and the
tagging mechanism to check whether a given occurrence of the tagged text is part
of an already tagged super-tag. A simplified illustration of the underlying algorithm
in pseudo-code is shown in algorithm 1.

Algorithm 1 Pattern-matching of supertags for pre-selection heuristics and smart
tagging.
1 t← selectedText()
2 s← supertags(t)
3 for all s ordered by s.name.length descending do
4 for all occurrences of t in s.name do
5 if pattern p of s.name around t in script matches then
6 return p.range
7 end if
8 end for
9 end for

10 return NotFoundRange

While this algorithm is implemented with two cascading for-loops, it has to be
considered that both loops are traversed very infrequently. The outer loop is only
passed through for every tagged element that has the selected text in it (like for
emerald as part of The Emerald City). The inner loop is then passed through for
every occurrence of the selected text in the super-tag, which is highly unlikely to be
more than one or two times, but has to be considered.

An alternative implementation might store the range of every occurrence of
a tagged element in the data model and use this information instead of pattern-
matching in the script. While this might improve performance slightly with very
little additional memory cost, it renders the system less flexible to changes of text
and tagging, and requires more frequent updates to the data model.

Due to the fact that this method presents a central point for checking compound
token ranges and is invoked by both the pre-selection and the tagging algorithms,
it can be used to easily employ additional language processing. This has already

76

been done in the prototype to incorporate language-dependent stop word-filtering,
for example.

Tagging algorithm Tagging itself builds upon the token- and compound token-
based interfaces provided by the string tokenizer and the pre-selection heuristics
to find and tag occurrences of given text in particular categories. Therefore, it is
a connector and controller between the category module, the data model and the
string based mechanisms.

The process of tagging via shortcut key representing a given category can be
illustrated in simplified pseudo-code as shown in algorithm 2. Since the script is

Algorithm 2 Tagging algorithm using supertag pattern-matching and compound
token ranges.
1 t← selectedText()
2 e← newEntry(t)
3 c← category(shortkey)
4 for all occurrences o of t in script do
5 r ← compoundTokenRange(o)
6 if supertags(r) == NotFoundRange then
7 merge(r.format, c.format)
8 s← sceneForRange(r)
9 e.scenes.add(s)
10 end if
11 end for

scanned for t using text-based methods, the algorithm has to expand all found
occurrences to whole words, that is, their compound token range, by using methods
that are aware of word boundaries. This range is defined as the range from the start
of the token enclosing the start of the occurrence-range, to the end of the token
enclosing the end of the occurrence-range.

For example, assume the user selected e Emerald Ci and an occurrence of this
exact text was found in the script due to the existence of the phrase The Emerald

City. In this case, the token enclosing the start of the range would be The and
its starting location would be the index of the character T. Analogously, the token
enclosing the end of the range would be City and its last index the position of the
character y in the text. Therefore, the resulting compound token range would span
the complete string The Emerald City.

77

For every occurrence found that is not masked by a supertag (which is checked
using algorithm 1), the corresponding text in the script is formatted accordingly,
merging the category’s layout set by the user with existing formatting. Moreover, the
scene enclosing the occurrence is stored in the entry’s bi-directional scene relation.

Other tagging interfaces To complement AAS tagging, three other means of
tagging (as discussed in section 5.2) were implemented:

• Drag-and-drop tagging

• Manual tagging by double-clicking on the desired category

• Context menu-based tagging both in the script view, as shown in figure 6.9,
and directly in the category outline view.

Figure 6.9: Context menu tagging in the prototype’s main window.

The context menu contains all available categories ordered alphabetically by their
name, and lists them along with their shortcut-key. Note that the Untag menu item
is only shown if precisely one tagged element is selected in the text in order to reduce
user confusion. The supertag pattern-matching method was used for this check.

78

It is also to note that both the tag-button and the context menu incorporate
auto-advancing, therefore tagging using these interfaces also triggers pre-selection
of the next suitable range of text.

Stop word filtering In order to improve pre-selection heuristics, stop word fil-
tering was implemented to mark and skip elements of natural language that are, in
most cases, of no significance to the factual content of the script and therefore its
broken down elements.

Using the method of language detection mentioned in 6.1.3, the most likely
language of the loaded script is determined in the pre-processing phase and stop
word filtering is activated if an appropriate stop word list for the language is found.
Basic stop word lists for English and German are included in the prototype. The lists
are provided as XML/Plist compatible text files which are loaded by the document
controller and applied on demand by the pre-selection heuristics.

The English stop word list was derived and adapted from the built-in list of stop
words for the English language used by the popular database software MySQL (Or-
acle Corporation, 2010). The list of German stop words was compiled from various
sources, including guidelines for optimizing the performance of search algorithms
and search engine optimization (SEO), and adapted for use in this context.

The prototype currently also provides the option to enable or disable stop word
filtering. If it is activated by the software and enabled by the user, all found stop
words are indicated in the script view by rendering them in a lighter gray text color,
so as to help the user anticipate and intuitively understand when and why certain
words are skipped due to them being stop words. Figure 6.10 illustrates the effect
of this visualization.

Figure 6.10: Preview of stop words in the breakdown script view. Stop words
are rendered in gray text color.

79

Data export Exporting breakdown data via XML as a data transaction file format
is implemented using means of the Mac OSX API. First, all required data (scenes,
categories, elements) is retrieved using queries on the underlying data model or
using existing relations of the document-entity and the model object hierarchy. Af-
terwards, an NSDictionary, a dictionary-like data structure containing keys and
values (which can be objects of any kind, including arrays of data and other, nested
dictionaries), is created and continuously filled with breakdown data.

Depending on the purpose and destination of the export data, the dictionary
may be written to an XML-compatible file and stored using safe file management
functions of the API, or for example, for printing, directly forwarded to other soft-
ware components and modules. Listing 6.1 shows a short excerpt of an example
XML file resulting from writing an export dictionary to file. Note that in this case,

1 ...
2 <key >scenes </key >
3 <array >
4 <dict >
5 <key >categories </key >
6 <array >
7 <dict >
8 <key >name</key >
9 <string >Actors </ string >
10 <key >entries </key >
11 <array >
12 <string >DOROTHY </ string >
13 <string >SCARECROW </ string >
14 <string >TIN MAN</ string >
15 </array >
16 ...
17 </dict >
18 ...
19 </array >
20 <key >number </key >
21 <string >1</ string >
22 <key >slugline </key >
23 <string >EXT.FOREST.DAY</ string >
24 </dict >
25 </array >
26 ...

Listing 6.1: Shortened example of an XML-compatible breakdown data
export using PLIST-syntax.

80

the data is grouped by scene and then by categories, in order to simplify data access
for the generation of breakdown sheets, which itself groups data by scenes. Other
ways of structuring, for instance a completely flat list of all data objects, are possible
and easily implemented using this method.

Printing module

The printing module accepts structured data (such as a breakdown data dictionary
or XML file) and applies a layout template to it to create printable PDF data. A
layout template is comprised of three components:

• A base template definition stored in a property list file (template.plist).
It contains layout information such as paper dimension and orientation, as
well as information on how the corresponding data should be structured and
interpreted in terms of sheets (collections of pages with similar layout) and
boxes (layout elements that are used to compose pages).

• HTML-template-files following a predefined naming convention for each
sheet-box-combination. The format is <sheet>_<box>.html, therefore
cover_footer.html defines the layout of a footer box on the cover sheet.
These files define the overall layout of the boxes using markers and filters
provided by the underlying template engine (see below). Listing 6.2 is an
excerpt of a possible HTML template for printing categories and their entries
into an HTML table.

• A style definition expressed in CSS (Cascading Style Sheet, (World Wide
Web Consortium (W3C), 2010a)) file. The styles defined in this file (style.css)
are applied upon rendering the processed HTML code into PDF.

As noted, the printing module uses a text-based template engine which is able
to evaluate special expressions within the HTML templates to create more sophis-
ticated and flexible templates. The main purpose of such expressions is to define
placeholders in the template which, upon processing, are replaced by their corre-
sponding actual values from the data dictionary. See, for example, line 5 in listing
6.2, where {{category.name}} defines a placeholder for category names. The tem-
plate engine also supports conditional expressions (line 12) and loops (line 3).

81

1 ...
2 <tr>
3 {% for category in categories %}
4 <td style=" border :1px solid gray;">
5 <h3>{{ category.name}}</h3>
6
7 {% for entryName in category.entries %}
8 {{ entryName }}
9 {% /for %}
10
11 </td>
12 {% if category.index % 3 %}
13 {% else %}
14 </tr>
15 <tr>
16 {% /if %}
17 {% /for %}
18 </tr>
19 ...

Listing 6.2: Shortened example of an HTML-based export template file using
template engine markups to layout tables of breakdown categories
and their respective elements.

The template engine implemented for the prototype is adapted from a template
engine for Cocoa that is freely available and usable for commercial and other use,
and was written by Gemmell (2008).

6.1.4 Conclusion

The prototype software presented in this chapter is a working proof of the concept
and the design established in previous sections. It is implemented in accordance with
guidelines for clean software design and architecture and with strong consideration
of general usability recommendations. Required functionality, including the load-
ing and automatic pre-processing of text, script breakdown, category management,
export and printing, was implemented.

The prototype implements different mechanisms for tagging elements into cate-
gories, allowing users to mix and match mouse (drag and drop, context menus) and
keyboard (AAS) input as preferred. While pre-selection heuristics were originally
implemented for AAS, they can also be combined with traditional input interfaces.

82

Recommended topics for further research and development are the possible im-
provement of pre-selection heuristics by adopting more sophisticated text recognition
techniques and direct integration with scheduling and budgeting solutions.

The following chapter presents the methodology, technical background and find-
ings of a usability evaluation conducted in order to assess user acceptance and sat-
isfaction towards the various tagging mechanisms.

83

6.2 Usability Evaluation

In order to assess whether the system and its various aspects satisfies usability re-
quirements such as joy of use and efficiency, a thorough usability evaluation was
conducted. This section will clearly present the methods and methodologies in-
corporated in the evaluation, describe how tests were set up and carried out, and
provide and discuss results gathered from the analyses of various test runs.

6.2.1 Methodology

When deciding about the methodology, a number of factors were considered. First
of all, due to the user-centered nature of the prototype and script breakdown being a
rather atomic task, it was deemed suitable to employ usability testing with end users,
rather than using inspection methods (as described in section 3.4). Furthermore,
a focus was set on finding out whether certain tagging interfaces provided by the
software were usable and deemed efficient by the test users. This led to several
preliminary assumptions and decisions about both the test methodology and setup:

• User-centered usability testing

• Simple test protocol (“break down this script” or “tag the words in their
respective categories” instead of task-lists) with automated workflow

• Unintrusive test-environment

• Gather usage-statistics and other context information in background

• Combination of direct and indirect methods

In order to fulfill these requirements and findings, a combination of various ap-
proaches was devised:

• Remote testing
Several of the above factors benefit remote usability testing, like keeping the
test protocol simple and enabling the user to work in a comfortable, natural
environment.

84

• Asynchronous testing
In combination with remote testing, asynchronous testing, as was established
before, increases the possibility to acquire larger amounts of data (in terms of
completed result sets) that are efficient to analyze and evaluate.

• Usage data
Data about the user’s interaction with the software (mouse-clicks, key presses)
can be collected automatically, also allowing for various degrees of automated
data analyzation and creation of usage statistics.

• Results data
The data the user creates in the test procedure can be logged and compared,
for example, to sample solutions in order to assess task completion and error
rates.

• Feedback data
The user’s feedback about various aspects of the tested system provides mean-
ingful information about subjective software quality. This can greatly improve
the overall quality of findings of a usability evaluation while providing easily
comparable usability measures on its own.

In summary, a remote/asynchronous, user-centered and self-conducted usability
evaluation based on a simple test protocol was conducted. Besides general de-
mographic data (age, sex, native language, education, among others), three types
of results data were collected, analyzed and included in evaluation to cover a wide
range of possible problem areas and aspects.

6.2.2 Test setup

In order to ensure problem-free user-conducted tests, the created prototype was
extended in a number of ways. Some functions were made invisible or inaccessible
in the usability prototype (UP), such as category management, pre-selection and
stop word options and other features inappropriate for the test. On the other hand,
a number of interfaces and forms for entering demographic data, giving ratings on
the SUS scale as well as a tutorial project were added.

85

Test process

As discussed in chapter 2, the target end user group of a script breakdown software
consists of film students and producers. From personal experience of talking with
professionals working in this field, as well as a number of standard books on the
topic, it was deemed safe to assume that such users at the very least look back on a
few years of experience working with computers and have a solid understanding of
office software and frequently of expert software for film calculation.

However, in order to ensure a large enough number of test results available, and
to broaden the range of user types, the usability test was extended to test users
without any film-specific educational or professional background. In the follow-
ing considerations, these groups will be called filmers (F) and non-filmers (NF),
respectively. To give an impression of how the tests worked and looked, a short
walkthrough will now be provided.

1. Background
The first dialog that is presented to the user is the first of two background
information forms. These forms contain 4-5 questions each about the user’s
demographics, possible sight impairments, educational level and area as well
as experience working with computers and operating systems.

As shown in figure 6.11, these forms are implemented as application windows,
rather than separate documents like PDF forms. This simplifies the test work-
flow for the user and at the same time allows for automated collecting of data.

2. Tutorial
After filling in answers to the background questions, a tutorial document (as
shown in figure 6.12) is opened, which was designed to give the user a quick
introduction to the most important parts of the test.

Two different tutorial documents were created to reflect the different knowledge
backgrounds of the two groups. First, a short tutorial for filmers who are
assumed to know about script breakdown, merely explaining the different ways
to tag elements. Second, a more general tutorial for the group of non-filmers,
explaining what tagging in the context of the test means and showing concisely
the available ways to actually do tagging. Note that no time limit is defined

86

(a) Background information form, page one

(b) Background information form, page two

Figure 6.11: Background information form, pages one (6.11a) and two
(6.11b), as used in the usability evaluation.

87

Figure 6.12: Tutorial document for filmers, as used in the usability evaluation.

for the completion of the tutorial screen. However, the button for continuing
to the next step of the test remains disabled until certain requirements are
fulfilled. In the non-filmers version, for example, the user is supposed to tag
at least three words into the only available category, so as to make sure the
tutorial screen is not just skipped altogether.

3. Test
The test document is shown after the user has completed the tutorial. As
with the tutorial document, two test documents pertaining two each of the
test groups were created.

In the filmers-version, a short excerpt of the script to the popular movie adap-
tion of “The Wizard of Oz” (Langley et al., 1939) is used. Additionally, a
typical list of script breakdown categories (adapted from Singleton (1991);
Clevé (2005)) is provided alongside the script.

88

The test-document for non-filmers, on the other hand, is based on theWikipedia
article for Elvis Presley3 and adapted slightly for the test. The list of cate-
gories for tagging consisted of more general items like Names and Persons,
Locations, Musical genres and similar. The test-document for non-filmers is
shown in figure 6.13.

Figure 6.13: Test document for non-filmers, as used in the usability evalua-
tion.

4. Feedback
A page incorporating a SUS feedback form concludes the test workflow. The
answers given by the users are, as with the background forms and all other
data, collected automatically and included in the results set. Figure 6.14 shows
the SUS feedback form.

3http://en.wikipedia.org/wiki/Elvis_presley English Wikipedia article on Elvis Presley,
last access 11/2010

89

http://en.wikipedia.org/wiki/Elvis_presley

Figure 6.14: SUS feedback form, as used in the usability evaluation.

Language support

Language support was limited to English and German, and divided into the gen-
eral interface language of the prototype, and the language for the tutorial and test
documents used within the test.

Language selection for the interface (including background forms and SUS feed-
back questionnaire) was based upon the user’s locale settings, which is the default
behavior for all software on Mac OS computers. This meant that the software itself
was in either English or German, depending on which language was ranked higher
in the list of the user’s personally preferred languages, as set in the Mac OS system
preferences. This was also one of the benefits from allowing the users to run the test
on their own computers.

On the other hand, language selection for the documents presented to the user
throughout the test was based primarily on the user’s native language, which was
queried by a question on the first page of the background forms. The available

90

answers were English, German, and other (with a suggestion to note which other
language). If the user selected either English or German, the respective language
was used for the documents, thus allowing users on an English operating system
to work on the German documents if it was their native language, for example.
Otherwise, the user’s locale setting was again used to determine the document lan-
guage, analogous to the user interface language. An exception to this was the test
document for the filmers group, which was only provided in English.

Result sets - data generation and statistics

It has already been mentioned that throughout the evaluation process, a number of
different types of information and data were collected from various sources. These
data were stored in memory for the duration of the test and sent to a script on a
server which was written to receive the results and store them appropriately. Table
6.2 provides a general definition of the structure these result sets followed.

Section Notes Type
comment comments the user added to the results text

project data breakdown data created throughout the test hierarchy
e.g. Locations (Tupelo, Memphis), Musical genres (Blues, Rock)

usability data data from background and SUS feedback
forms

key-value pairs

e.g. age = 23, language = English, SUS question 1 = 3

usage protocol chronological list of interactions with times-
tamps

list of text

e.g. 2010-09-03 13:23:17 - tagging “Elvis“ into “Names“

usage statistics statistics automatically generated from in-
teraction

key-value pairs

e.g. AAS Tagging = 17, Untag = 3, BACKSPACE = 7

Table 6.2: The structure of a result set received from a completed usability
test with example values.

While some of this data was gathered directly from values the user entered
(comment, project and usability data), the usage data was generated indirectly from
the user’s interaction with the software. Since these interactions mostly consisted
of mouse clicks and keyboard presses, and logging and evaluating these interactions

91

should not require any alterations to the software design and implementation, an
aspect-oriented approach (Elrad et al., 2001) was used.

Using several mechanisms of the Objective-C 4 runtime environment, specific
methods responsible for handling user interaction were replaced by slightly altered
implementations during runtime. These altered implementations added some func-
tionality to log user interaction and, if applicable, calculate and update statistical
values. After this, they invoked the original implementations in order to guarantee
absolute transparency and seamless integration of usage logging.

Example If the user presses a key associated with a category to tag the currently
selected text, the method responsible for handling key presses is keyDown:, imple-
mented by the DocumentController. This method will have been replaced by an
aspect method logging this specific event textually into the usage log and delegating
the actual handling of the event to the original method.

This original method will at some point trigger tagging of the selected text into
the category by invoking tagSelectedTextIntoCategory: on DocumentController.
Again, this method will have been replaced by an aspect method which will first in-
crease the number of tagging actions issued via keyboard shortcut (i.e. AAS-tagging)
and then delegate tagging to the original implementation.

6.2.3 User demographics

As was noted, all test users were asked to enter some basic demographic informa-
tion. Tables 6.3 and 6.4 present these data for both test groups. The columns
correspond to sex, age, experience with computers, most used operating system,
visual impairments (VI) and highest attained education.

In the filmers group, 20% of the testers were female and all participants most
commonly used the Apple OSX operating system. In the non-filmers group, 45%
were female and most commonly used operating systems were Apple OSX (two
thirds) and Microsoft Windows (one third).

4http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/
ObjectiveC/ Apple’s Introduction to the Objective-C Programming Language, last access
11/2010

92

http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/ObjectiveC/
http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/ObjectiveC/

Sex Age Exp OS VI Edu
TP1F M 25 10 OSX - University
TP2F M 22 13 OSX - Secondary school
TP3F M 24 12 OSX - Secondary school
TP4F F 25 13 OSX Contact lenses Secondary school
TP5F M 30 17 OSX Glasses University
Average - 25.20 13.00 - - -
Minimum - 22 10 - - -
Maximum - 30 17 - - -
Median - 25 13 - - -
Std.Dev. - 2.95 2.55 - - -

Table 6.3: Demographic data of the test participants in the filmers group.

For the filmers group, invitations to participate in the study were issued in three
mailing lists of German film academies with several hundred recipients each, as well
as in a Facebook group of Austrian and German film producers with more than 1000
members. Additionally, invitations were sent directly to several film producers and
lectors in Germany.

After separate pre-tests, a total of 21 people participated in the usability eval-
uation. All participants were asked to add verbal comments before sending the
corresponding results. Three participants in the non-filmers group were briefly in-
terviewed after the test.

6.2.4 Results

Tables 6.5 and 6.6 present statistical results and calculated SUS results of both test
groups.

Adoption rate is the ratio between the number of users who adopted a particular
tagging mechanism as their main tagging interface against the total number of users
in the group. A user was counted towards a particular tagging interface if it was
used to tag more entries than all other interfaces combined. It is to note that this
approach yielded an absolute preferred method for all users in the study.

The aspect that backtracking events can indicate usability problems, as men-
tioned in chapter 3.4.1, was considered by calculating the ratio between the average
number of tagged entries versus the average number of untagged entries for each user.
This ratio is reflected by the untagging rate and calculated towards the respective

93

Sex Age Exp OS VI Edu
TP1NF M 27 20 OSX - University
TP2NF F 25 10 OSX - University
TP3NF M 30 20 OSX Glasses Secondary school
TP4NF F 27 12 OSX - Secondary school
TP5NF F 50 12 OSX Contact lenses Secondary school
TP6NF M 27 15 OSX - University
TP7NF F 25 15 OSX - Secondary school
TP8NF M 30 17 Win - Secondary school
TP9NF M 29 13 Win Glasses University
TP10NF M 33 25 OSX Glasses Secondary school
TP11NF M 30 18 OSX - Secondary school
TP12NF M 28 17 OSX Glasses University
TP13NF M 29 20 OSX Glasses University
TP14NF F 30 20 OSX Other * University
TP15NF M 27 16 Win Contact lenses University
TP16NF M 29 17 Win Glasses Secondary school
Average - 29.75 13.00 - - -
Minimum - 25 10 - - -
Maximum - 50 17 - - -
Median - 29 13 - - -
Std.Dev. - 5.78 2.55 - - -

Table 6.4: Demographic data of the test participants in the non-filmers group.
* Red-green color blindness

user’s preferred tagging method.

Similar to the untagging rate, the navigation rates describe which methods of
input were used mainly for scrolling through and selecting text. The tree methods
were keyboard navigation using cursor keys, button navigation using the next and
previous buttons and mouse navigation using the mouse for scrolling and selecting
text. All these methods inherently use pre-selection heuristics. For cross-examining
the data with the corresponding preferred tagging mechanisms, these values have
been produced for each of the tagging methods separately.

The SUS scores were calculated according to section 3.4.2. Table 6.7 shows
detailed results of the SUS score evaluation, including individual scores per question,
for both test groups. Individual SUS scores for questions range from 0.00 (lowest
rating) to 4.00 (highest rating). Values below or equal 2.50 are in bold. The overall
score is a percent value, thus its possible range is 0.00 (lowest score) to 100.00
(highest score). The overall SUS score of all users for this evaluation was 71.55.

94

AAS Context Menu Button Overall
Adoption rate .750 .250 .000 1.000
Untagging rate .113 .000 - -
Keyboard nav. .500 .000 - -
Button nav. .000 1.000 - -
Mouse nav. .500 .000 - -
SUS score 70.00 87.50 - 73.50
Minimum 7.50* 87.50 - 7.50
Maximum 97.50 87.50 - 97.50
Median 87.50 87.50 - 87.50
Std.Dev. 42.38 - - 37.52

Table 6.5: Statistics concerning the test results of the filmers group by tag-
ging interface.
* Irregularity in results potentially caused by the user misunder-
standing the SUS scale. Average SUS score of non-filmers group
excluding this score is 90.

AAS Context Menu Button Overall
Adoption rate .625 .250 .125 1.000
Untagging rate .020 .028 .053 -
Keyboard rate .600 1.000 .000 -
Button rate .100 .000 .500 -
Mouse rate .300 .000 .500 -
SUS score 71.50 73.75 62.50 70.94
Minimum 30.00 60.00 57.50 30.00
Maximum 90.00 85.00 67.50 90.00
Median 78.75 75.00 62.50 75.00
Std.Dev. 19.97 10.50 7.07 16.63

Table 6.6: Statistics concerning the test results of the non-filmers group by
tagging interface.

6.2.5 Discussion

Tables 6.5 and 6.6 show high adoption rates for AAS tagging with 75% and 62.5% of
users mainly using AAS for breakdown. This is surprising because it uses a concept
that is less popular and well-known than the other tagging interfaces. More than
half of the users preferring AAS for tagging used the keyboard to navigate and
select text as well. This makes AAS + keyboard navigation by far the most used
combination of input methods in the test.

Untagging rates in the non-filmers group indicate that users preferring button
tagging made about twice as many corrections as other test participants. Untagging

95

Filmers (5 results) Non-Filmers (16 results)
Average Median Std.Dev. Average Median Std.Dev.

1 3.40 4.00 1.34 2.00 2.50 1.46
2 3.20 4.00 1.79 3.13 3.00 1.02
3 3.20 4.00 1.79 2.38 3.00 1.31
4 3.20 4.00 1.79 3.56 4.00 1.03
5 2.00 1.00 1.41 2.81 3.00 1.05
6 3.00 4.00 1.73 3.00 3.00 1.10
7 2.40 3.00 1.34 3.38 3.50 0.81
8 3.20 4.00 1.79 2.38 3.00 1.15
9 3.20 4.00 1.30 2.25 2.00 1.29
10 2.60 3.00 1.67 3.50 4.00 0.73

Overall 73.50 87.50 37.52 70.94 75.00 16.63

Table 6.7: SUS score details with individual SUS scores per question for the
filmers and non-filmers groups.

rates in the filmers group bear no meaningful information due to the low adoption
rate of tagging methods other than AAS. Comparing both groups shows that filmers
corrected many more entries than non-filmers, which is likely to be related to the
different types of test documents and a more professional approach from participants
in the filmers group.

A comparison of SUS scores reveals that users favoring AAS and context menu
tagging were generally more satisfied with the software than those mainly using
interface buttons for tagging. While average AAS SUS scores are lower than context
menu scores, the standard deviation is also much higher, which is related to a higher
adoption rate. Accordingly, median values for AAS are better than those for context
menu, as it smoothes out extreme values such as those shown in the minimum SUS
score for AAS tagging in table 6.5.

Overall SUS scores of 73.50 in the filmers group and 70.94 in the non-filmers
group are satisfying for an initial usability test of the prototype. Context menu
tagging received slightly better ratings than AAS tagging, whereas button tagging
suffered from low adoption and worse ratings.

Aspects related to the lowest ranked SUS questions, which are shown in tables
6.8 and 6.9, are recommended for improvement prior to the next usability evaluation.
All questions with a score (average rating) or a median rating of 2.50 or below are
considered.

96

Ranked Question Average Median Std.Dev.
F.1 I found the various functions in this sys-

tem were well integrated.
2.00 1.00 1.41

F.2 I would imagine that most people would
learn to use this system very quickly.

2.40 3.00 1.34

Table 6.8: SUS questions for the filmers group ranked by SUS score (average
rating), median rating and standard deviation.

Ranked Question Average Median Std.Dev.
NF.1 I think that I would like to use this

system frequently.
2.00 2.50 1.46

NF.2 I felt very confident using the system. 2.25 2.00 1.29

NF.3 I found the system very cumbersome
to use.

2.38 3.00 1.15

NF.4 I thought the system was easy to use. 2.38 3.00 1.31

Table 6.9: SUS questions for the non-filmers group ranked by SUS score (av-
erage rating), median rating and standard deviation.

It was noted that all test participants were also asked to add feedback before
sending in the result data. The following list presents the most frequently issued
negative comments:

C.1 I had problems selecting the right words. (6 NF)

C.2 It was unclear which words to tag into which categories. (3 NF)

C.3 The list of categories or keywords does not fit on screen. (2 NF)

C.4 The mixing of English GUI and German documents was irritating. (1 NF)

These results show that participants in the filmers group were generally more
satisfied with the software, which is reflected by the higher overall SUS scores as
discussed above. F.1 can be interpreted to mean that the feature-reduced usability
prototype provided too little functionality for professionals in film production. In
the pre-test phase, this notion was verbalized by one film producer and therefore
according information was included in the correspondence to potential test partic-
ipants of this group. A more general interpretation of F.1 is that filmers were

97

unsure which of the tagging methods to use. Further investigation into this problem
is recommended.

F.2, NF.1 and NF.2 are closely related to the fact that the software is tailored
to the task of script breakdown. While the evaluation documents for the non-filmers
group were adapted thoroughly, some irritation remained, as can also be seen by
some of the non-filmers’ negative comments. For future tests it is recommendable to
re-assess the test documents or, if possible, intensify tests with filmers. NF.3 and
NF.4 are problems that can also be associated with the issues above, but suggest
further improvement of the user interface and tweaking of parameters in the pre-
selection heuristics, as indicated by C.1 and C.3.

6.2.6 Conclusion

The usability evaluation of the breakdown prototype showed that test participants
with a professional background in film production could work well with the software
and were generally satisfied by how usable it was. Further work is recommended to
investigate F.1.

Members of the other test group without education or experience in film produc-
tion adapted well to the inherent task of tagging elements of free text into categories,
but some irritation remained which is partly rooted in the prototype implementation
and interface and subject for further work to make the software more accessible for
users without film production education or experience.

Further work on the prototype must therefore involve improvements of the men-
tioned problems with continuous integration of film production professionals and
usability evaluations. In this regard, the results of this first rather extensive de-
velopment iteration are very promising with a good overall SUS score of 71.55 and
highly valuable user feedback.

98

7. Discussion and Lessons Learned

At the start of this project, currently available software for script breakdown was
neither enjoyable nor efficient to use, lacked intuitive workflows and basic features
and was hardly integrated into film production processes. In investigating these
issues, a number of research topics in different scientific fields have been covered.
For instance, four important techniques and methods in natural language processing
(NLP) have been researched and evaluated according to key factors for this work.

The outcome was that, for the time being, stop word filtering provides a simple
but efficient means of conducting basic text recognition in movie scripts and similar
types of natural language text. According to the findings of the usability evaluation,
the resulting filtering technique was well accepted by the test participants. The cor-
responding implementation of pre-selection heuristics (PSH) was also well received
by the filmers test group, whereas the non-filmers encountered some problems with
the Wikipedia article. This suggests that some of the mechanisms used in PSH and
AAS work differently for film scripts and other free texts and that future usability
evaluations must take this into account even more.

Another research and design topic in this work was concerned with software
design patterns for architectural software design. The well-known MVC pattern
was thoroughly discussed and compared to new patterns and paradigms like DCI
and Traits. It was discussed that MVC has deficiencies in modeling system behavior
that are mitigated by other techniques, but that MVC is widely used and therefore
recommendable for systems interacting with APIs and frameworks that are based
on MVC, as is the case in this work.

Basing the prototype’s software design on MVC proved most reasonable as it
allowed the clear separation of the concerns of data modeling and persistence, pre-
sentation and interface as well as user interaction and workflows. For instance,

99

the algorithms and methods used for PSH are invoked by all three tagging mecha-
nisms transparently on a controller. The prototype can therefore easily be extended
with new tagging interfaces or differently parameterized PSH algorithms. This also
greatly widens the possibilities of adapting the user interface to future requirements
or suggestions derived from future usability evaluations.

One of the most important aspects of this work is that the prototype is fully
prepared for direct integration into various business workflows. The prototype is
currently able to import a number of text formats directly via copy and paste, while
adding specialized import mechanisms for proprietary formats can easily be done.
For data export, the prototype already implements the generation of XML data of
the project, also with the possibility of easily adding other ways of structuring the
data. This allows for direct integration into scheduling or budgeting software, which
offers great potential for faster and earlier cost estimations, overall work time saving,
improved correctness of schedules and budgets, and much more.

100

8. Conclusions

As was pointed out in the previous chapter, current software solutions for script
breakdown do not meet the demands of professional film productions. A result of this
is that many producers and production assistants still carry out script breakdown
manually on printouts and with highlighters. These methods are clearly not well
integrated into the production processes.

To improve on this situation, the prototype developed for and presented in this
work was expected to meet a number of technical and formal requirements stated
in section 6.1. An observation of how well and to what extent these goals were met
will now follow:

• The target operating system is Mac OS X 10.5 and higher.
The prototype was partly developed and thoroughly tested on Mac OS X 10.5.

• Interfaces must be designed and implemented to be suitable for res-
olutions of 1280x800 pixels and higher.
The prototype was mainly developed on a MacBook with a display resolution
of 1280x800 (see table 6.1).

• Tagging must be efficient enough to be capable of global-tagging
multiword elements in reasonably long scripts (>10,000 words) in a
timely fashion (<1 second).
On the development machine (see table 6.1), tagging of differently structured
entries (single words, word groups, sub-tokens) in a script with 21,840 words
with enabled stop word filtering and usability data gathering takes at the
most 0.7015s. Note that these are the results of a standardized benchmark
with typical data.

101

• Saving/loading of project files (including script with formattings,
elements, categories and scenes) and category configurations must
be supported.
This feature complex has been fully implemented and was used in the usability
evaluation to distribute and automatically load appropriate test documents for
both test groups and different language versions.

• Focus on usability in terms of issues discussed in sections 3.4 and
4.1.
Where not enforced by the development tools used to create the user inter-
faces, this requirement was adhered to by careful design and evaluated in the
usability study. The study showed that test participants were pleased with the
GUI and that testers with a background in film production quickly adopted
keyboard tagging and navigation.

• Streamline the process from script breakdown to the first cost es-
timation, especially by the smart tagging of elements and semi-
automatic management of scenes and categories.
Auto-advancing shortkey tagging (AAS) in combination with pre-selection
heuristics (PSH) was implemented in order to improve efficiency and ease
of conducting script breakdown. Automatic scene recognition and flexible cat-
egory management complement the streamlined process.

• Ensure re-usability of data by providing data exports in a univer-
sally usable format. Moreover, support printing of breakdown data,
for instance breakdown sheets for scenes, actors and locations.
An XML-based data interface for exporting and printing data was imple-
mented. Printing is further improved by employing a text-based template
engine allowing to easily extend the set of provided reports and breakdown
sheets by creating new templates which require no client programming.

This work thus shows how issues identified in existing software solutions for script
breakdown were remedied or avoided altogether, and what was done to further ensure
joy of use, overall software quality and better integration into existing business
processes.

102

9. Future Work

There are some concrete recommendations for future work on the prototype to fur-
ther increase its value in practical application. For example, more templates for
breakdown sheet prints and more customization options are suggestible.

An investigation of the possibilities for adopting more sophisticated pre-processing
and text recognition techniques is also recommended. For instance, automatic recog-
nition of dialogue text in the script can significantly reduce workload for the user as
it often conveys no factual information about the scene not already present outside
the dialog. Moreover, pre-selection heuristics could still be improved by using part-
of-speech tagging or lexical databases, for example. In this regard, further research
on interlingual techniques are recommended or language-specific limitations could
be introduced as a trade-off for improved functionality.

The aspect promising most potential for further work is the ability to integrate
script breakdown more directly into the information processes in film productions.
This includes direct interaction with scriptwriting software to receive script data,
possibly enriched or annotated by the authors, that can be utilized directly, as well
as immediate communication with scheduling and budgeting software, for instance
to update scene structure in schedules or amend budgeting data with newly tagged
elements. The potential of such integration is enormous and the range of possi-
ble benefits includes overall workload reduction, time saving, better time and cost
estimations, improved correctness of budgets and schedules and much more.

In addition to these concepts, a widening of the application spectrum is also
suggestible, which can include the adaption of the system for annotating text for
a number of other purposes. For instance, adaptations could be used in creating
annotated text corpuses for scientific research in natural language processing, or
as part of a personal learning suite to annotate important elements of a text and

103

generate automatic summarizations of the highlighted passages. On the other hand,
the concept can also be translated to work on other platforms with different input
hardware, such as the Apple iPad using a touch screen. In this context, the metaphor
of tagging words on printouts with text highlighters could be used to great effect.

104

A. SUS Feedback Sheet

! strongly! strongly
! disagree! agree

1 2 3 4 5

I think that I would like to use this system fre-
quently

I found the system unnecessarily complex

I thought the system was easy to use

I think that I would need the support of a
technical person to be able to use this system

I found the various functions in this system
were well integrated

I thought there was too much inconsistency
in this system

I would imagine that most people would learn
to use this system very quickly

I found the system very cumbersome to use

I felt very confident using the system

I needed to learn a lot of things before I could
get going with this system

Figure A.1: SUS evaluation questionnaire consisting of ten questions on
Likert-scale (adapted from (Brooke, 1996)).

105

106

List of Figures

2.1 Organizational chart of a film production team 7

2.2 Breakdown sheet template . 10

3.1 The Model-View-Controller (MVC) architecture 17

4.1 Script breakdown in CeltX . 39

4.2 Script breakdown in Final Draft Tagger 41

4.3 Script breakdown in Cinergy . 43

4.4 Script breakdown in Movie Magic Scheduling 44

4.5 Script breakdown in Movie Magic Screenwriter 46

4.6 Mockup of a script breakdown application for iPad 52

5.1 Breakdown Use Cases . 56

5.2 Breakdown Use Cases - Script breakdown subsystem 57

5.3 First mockup of AAS tagging . 60

6.1 Prototype module architecture . 66

6.2 Prototype data model . 68

6.3 Xcode 3.2 project outline and code editor 70

6.4 Prototype interface design . 71

6.5 Prototype main window . 72

6.6 Prototype category management window 73

6.7 Text segmentation by word boundaries 74

6.8 Compound token-based pre-selection of text 75

107

6.9 Context menu tagging with the prototype 78

6.10 Stop word filtering preview . 79

6.11 Usability Evaluation, background forms 87

6.12 Usability Evaluation, tutorial document for filmers 88

6.13 Usability Evaluation, test document for non-filmers 89

6.14 Usability Evaluation, SUS feedback form 90

A.1 SUS evaluation questionnaire . 105

108

List of Tables

3.1 Overview of text recognition techniques 31

3.2 Usability Evaluation methods . 33

4.1 Film production software comparison 47

4.2 Potential budgeting process improvements 49

4.3 Potential scheduling process improvements 50

4.4 Potential organizational process improvements 51

5.1 Classification of tagging interfaces . 58

5.2 AAS shortcut assignment schema . 59

6.1 Technical specifications of the development system 70

6.2 Result set structure of usability test results 91

6.3 Demographics of filmers test group 93

6.4 Demographics of non-filmers test group 94

6.5 Statistic results of filmers test group 95

6.6 Statistic results of non-filmers test group 95

6.7 SUS score details for both test groups 96

6.8 Lowest ranked SUS questions for the filmers group 97

6.9 Lowest ranked SUS questions for the non-filmers group 97

109

110

References

Abrahamsson, Pekka, Antti Hanhineva, and Juho Jäälinoja [2005]. Improving Busi-
ness Agility Through Technical Solutions: A Case Study on Test-Driven Develop-
ment in Mobile Software Development. In Baskerville, Richard, Lars Mathiassen,
Jan Pries-Heje, and Janice DeGross (Editors), Business Agility and Information
Technology Diffusion, IFIP International Federation for Information Processing,
volume 180, pages 227–243. Springer Boston. doi:10.1007/0-387-25590-7_14.
http://www.springerlink.com/content/w27pj02827064404/.

Adobe Systems Incorporated [2010]. PDF Reference and Adobe Extensions to the
PDF Specification. http://www.adobe.com/devnet/pdf/pdf_reference.html.
Last access 09/2010.

Akers, David [2009]. Backtracking Events as Indicators of Software Usability
Problems. PHD dissertation, Stanford University. http://www.math.ups.edu/

~dakers/papers/dakers_dissertation_1s.pdf. Last access 09/2010.

Andreasen, Morten Sieker, Henrik Villemann Nielsen, Simon Ormholt Schrøder,
and Jan Stage [2007]. What happened to remote usability testing?: an empirical
study of three methods. In CHI ’07: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 1405–1414. ACM, New York, NY,
USA. ISBN 9781595935939. doi:10.1145/1240624.1240838. http://portal.acm.

org/citation.cfm?doid=1240624.1240838.

Andrews, Keith [2010]. Lecture Notes on Human-Computer Interaction. Graz Uni-
versity of Technology, Austria. http://courses.iicm.tugraz.at/hci/hci.pdf.
Last access 09/2010.

Bevan, Nigel and Miles Macleod [1994]. Usability measurement in context. Behaviour

111

http://www.springerlink.com/content/w27pj02827064404/
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.math.ups.edu/~dakers/papers/dakers_dissertation_1s.pdf
http://www.math.ups.edu/~dakers/papers/dakers_dissertation_1s.pdf
http://portal.acm.org/citation.cfm?doid=1240624.1240838
http://portal.acm.org/citation.cfm?doid=1240624.1240838
http://courses.iicm.tugraz.at/hci/hci.pdf

& Information Technology, 13(1&2), pages 132–145. ISSN 13623001. doi:10.1080/
01449299408914592. http://www.informaworld.com/index/773461629.pdf.

Booch, Grady, Robert Maksimchuk, Michael Engle, Bobbi J. Young, Jim Conallen,
and Kelli A. Houston [2007]. Object-oriented analysis and design with applications.
Third Edition. Addison-Wesley Professional. ISBN 020189551X. http://portal.

acm.org/citation.cfm?id=1407387.

Brill, Eric [1992]. A simple rule-based part of speech tagger. In Proceedings of the third
conference on Applied natural language processing, pages 152–155. Association for
Computational Linguistics (ACL), Morristown, NJ, USA. doi:10.3115/974499.
974526. http://portal.acm.org/citation.cfm?id=974526.

Brill, Eric [1993]. Automatic grammar induction and parsing free text: a
transformation-based approach. In HLT ’93: Proceedings of the workshop on Hu-
man Language Technology, pages 237–242. Association for Computational Lin-
guistics, Morristown, NJ, USA. ISBN 1558603247. doi:10.3115/1075671.1075726.
http://portal.acm.org/citation.cfm?doid=1075671.1075726.

Brill, Eric and Mitch Marcus [1992]. Tagging an Unfamiliar Text With Minimal
Human Supervision. In AAAI Fall Symposium Series: Probabilistic Approaches
to Natural Language (Working Notes), pages 10–16. Press. http://www.aaai.

org/Papers/Symposia/Fall/1992/FS-92-04/FS92-04-002.pdf.

Brooke, John [1996]. SUS: A quick and dirty usability scale. http://www.

usabilitynet.org/trump/documents/Suschapt.doc. Last access 09/2010.

Bruun, Anders, Peter Gull, Lene Hofmeister, and Jan Stage [2009]. Let your users
do the testing: a comparison of three remote asynchronous usability testing meth-
ods. In CHI ’09: Proceedings of the 27th international conference on Human
factors in computing systems, pages 1619–1628. ACM, New York, NY, USA.
ISBN 9781605582467. doi:10.1145/1518701.1518948. http://portal.acm.org/

citation.cfm?doid=1518701.1518948.

Budanitsky, Alexander and Graeme Hirst [2006]. Evaluating WordNet-based Mea-
sures of Lexical Semantic Relatedness. Computational Linguistics, 32(1), pages

112

http://www.informaworld.com/index/773461629.pdf
http://portal.acm.org/citation.cfm?id=1407387
http://portal.acm.org/citation.cfm?id=1407387
http://portal.acm.org/citation.cfm?id=974526
http://portal.acm.org/citation.cfm?doid=1075671.1075726
http://www.aaai.org/Papers/Symposia/Fall/1992/FS-92-04/FS92-04-002.pdf
http://www.aaai.org/Papers/Symposia/Fall/1992/FS-92-04/FS92-04-002.pdf
http://www.usabilitynet.org/trump/documents/Suschapt.doc
http://www.usabilitynet.org/trump/documents/Suschapt.doc
http://portal.acm.org/citation.cfm?doid=1518701.1518948
http://portal.acm.org/citation.cfm?doid=1518701.1518948

13–47. doi:10.1162/coli.2006.32.1.13. http://www.mitpressjournals.org/doi/

abs/10.1162/coli.2006.32.1.13.

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal [1996]. Pattern-Oriented Software Architecture, Volume 1, A System of Pat-
terns. John Wiley & Sons, Inc. ISBN 0471958697. http://eu.wiley.com/

WileyCDA/WileyTitle/productCd-0471958697.html. Last access 09/2010.

Church, Kenneth Ward [1988]. A stochastic parts program and noun
phrase parser for unrestricted text. In Proceedings of the second con-
ference on Applied natural language processing, pages 136–143. Association
for Computational Linguistics, Morristown, NJ, USA. doi:10.3115/974235.
974260. http://www.aclweb.org/anthology-new/A/A88/A88-1019.pdf#url.

dl&CFID=96615029&CFTOKEN=74268930.

Clevé, Bastian [2005]. Film Production Management. Third Edition. Focal Press.
ISBN 0240806956. http://focalpress.com/Book.aspx?id=6558. Last access
09/2010.

Cohen, Aaron M. and William R. Hersh [2005]. A survey of current work in biomed-
ical text mining. Brief Bioinform, 6(1), pages 57–71. ISSN 14675463. doi:10.1093/
bib/6.1.57. http://bib.oxfordjournals.org/cgi/content/abstract/6/1/57.

Coplien, James O. and Gertrud Bjørnvig [2010]. Lean Architecture: for Agile Soft-
ware Development. John Wiley & Sons, Inc. ISBN 9780470684207. http://

eu.wiley.com/WileyCDA/WileyTitle/productCd-0470684208.html. Last ac-
cess 11/2010.

Davis, Mark [2009]. Unicode Technical Reports: UAX 29 Unicode Text Segmentation.
http://www.unicode.org/reports/tr29/. Last access 09/2010.

Directors Guild of America, Inc [2005]. Basic Agreement of 2005, Article 1: Recog-
nition and Guild Shop. http://www.dga.org/contracts/ba2005-finalpdfs/

03-ba2005-1.pdf. Last access 09/2010.

Dybå, Tore [2005]. An Empirical Investigation of the Key Factors for Success in
Software Process Improvement. IEEE Transactions on Software Engineering, 31,

113

http://www.mitpressjournals.org/doi/abs/10.1162/coli.2006.32.1.13
http://www.mitpressjournals.org/doi/abs/10.1162/coli.2006.32.1.13
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471958697.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471958697.html
http://www.aclweb.org/anthology-new/A/A88/A88-1019.pdf#url.dl&CFID=96615029&CFTOKEN=74268930
http://www.aclweb.org/anthology-new/A/A88/A88-1019.pdf#url.dl&CFID=96615029&CFTOKEN=74268930
http://focalpress.com/Book.aspx?id=6558
http://bib.oxfordjournals.org/cgi/content/abstract/6/1/57
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470684208.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470684208.html
http://www.unicode.org/reports/tr29/
http://www.dga.org/contracts/ba2005-finalpdfs/03-ba2005-1.pdf
http://www.dga.org/contracts/ba2005-finalpdfs/03-ba2005-1.pdf

pages 410–424. ISSN 00985589. doi:10.1109/TSE.2005.53. http://ieeexplore.

ieee.org/xpls/abs_all.jsp?arnumber=1438376&tag=1.

Elrad, Tzilla, Robert E. Filman, and Atef Bader [2001]. Aspect-oriented program-
ming: Introduction. Communications of the ACM, 44(10), pages 29–32. ISSN
00010782. doi:10.1145/383845.383853. http://portal.acm.org/citation.cfm?

doid=383845.383853.

Flores, Pablo A., Rodrigo F. Flores, Raul Medina-Mora Icaza, Jaime Garza Vasquez,
John A. McAfee, Manoj Kumar, Manuel Jasso Nunez, Terry Allen Winograd,
Harry K. T. Wong, and Roy I. Gift [1998]. Method and apparatus for building
business process applications in terms of its workflows. http://v3.espacenet.

com/publicationDetails/biblio?CC=US&NR=5734837A&FT=D.

Fowler, Martin [2002]. Patterns of Enterprise Application Architecture. First Edi-
tion. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. ISBN
0321127420. http://portal.acm.org/citation.cfm?id=579257.

Gamma, Erich, Richard Helm, Ralph Johnson, and John M. Vlissides [1994]. De-
sign Patterns: Elements of Reusable Object-Oriented Software. First Edition.
Addison-Wesley Professional. ISBN 0201633612. http://c2.com/cgi/wiki?

DesignPatternsBook. Last access 11/2010.

Gemmell, Matt [2008]. MGTemplateEngine - Templates with Cocoa. http:

//mattgemmell.com/2008/05/20/mgtemplateengine-templates-with-cocoa.
Last access 09/2010.

Harrison, Warren, David Raffo, John Settle, and Nancy Eickelmann [1999]. Tech-
nology Review: Adapting Financial Measures: Making a Business Case for Soft-
ware Process Improvement. Software Quality Control, 8, pages 211–231. ISSN
09639314. doi:10.1023/A:1008971726703. http://portal.acm.org/citation.

cfm?id=599120.599184.

Hearst, Marti [2003]. What Is Text Mining? http://people.ischool.berkeley.

edu/~hearst/text-mining.html. Last access 09/2010.

Hilbert, David M. and David F. Redmiles [2000]. Extracting usability informa-
tion from user interface events. ACM Computing Surveys (CSUR), 32(4), pages

114

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1438376&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1438376&tag=1
http://portal.acm.org/citation.cfm?doid=383845.383853
http://portal.acm.org/citation.cfm?doid=383845.383853
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=5734837A&FT=D
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=5734837A&FT=D
http://portal.acm.org/citation.cfm?id=579257
http://c2.com/cgi/wiki?DesignPatternsBook
http://c2.com/cgi/wiki?DesignPatternsBook
http://mattgemmell.com/2008/05/20/mgtemplateengine-templates-with-cocoa
http://mattgemmell.com/2008/05/20/mgtemplateengine-templates-with-cocoa
http://portal.acm.org/citation.cfm?id=599120.599184
http://portal.acm.org/citation.cfm?id=599120.599184
http://people.ischool.berkeley.edu/~hearst/text-mining.html
http://people.ischool.berkeley.edu/~hearst/text-mining.html

384–421. ISSN 03600300. doi:10.1145/371578.371593. http://portal.acm.org/

citation.cfm?doid=371578.371593.

Holzinger, Andreas [2005]. Usability engineering methods for software devel-
opers. Communications of the ACM, 48(1), pages 71–74. ISSN 00010782.
doi:10.1145/1039539.1039541. http://portal.acm.org/citation.cfm?doid=

1039539.1039541.

Holzinger, Andreas, Regina Geierhofer, Felix Mödritscher, and Roland Tatzl [2008].
Semantic Information in Medical Information Systems: Utilization of Text Mining
Techniques to Analyze Medical Diagnoses. Journal of Universal Computer Sci-
ence, 14(22), pages 3781–3795. http://www.jucs.org/jucs_14_22/semantic_

information_in_medical.

Holzinger, Andreas, Karl Heinz Struggl, and Matjaz Debevc [2010]. Applying Model-
View-Controller (MVC) in Design and Development of Information Systems: An
example of smart assistive script breakdown in an e-Business Application. In
ICE-B 2010 - Proceedings of the International Conference on e-Business, Athens,
Greece, pages 63–68. ISBN 978989674.

Hotho, Andreas, Andreas Nürnberger, and Gerhard Paaß [2005]. A brief survey
of text mining. LDV Forum - GLDV Journal for Computational Linguistics and
Language Technology, 20, pages 19–62. http://www.kde.cs.uni-kassel.de/

hotho/pub/2005/hotho05TextMining.pdf.

Langley, Noel, Florence Ryerson, and Edgar Allen Woolf [1939]. The Wizard of Oz,
movie script, based on the book by L. Frank Baum. http://sfy.ru/?script=

wizard_of_oz_1939. Last access 09/2010.

Larsen, Bjornar and Chinatsu Aone [1999]. Fast and effective text mining using
linear-time document clustering. In KDD ’99: Proceedings of the fifth ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
16–22. ACM, New York, NY, USA. ISBN 1581131437. doi:10.1145/312129.312186.
http://portal.acm.org/citation.cfm?doid=312129.312186.

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze [2008].
Introduction to Information Retrieval. Cambridge University Press, New

115

http://portal.acm.org/citation.cfm?doid=371578.371593
http://portal.acm.org/citation.cfm?doid=371578.371593
http://portal.acm.org/citation.cfm?doid=1039539.1039541
http://portal.acm.org/citation.cfm?doid=1039539.1039541
http://www.jucs.org/jucs_14_22/semantic_information_in_medical
http://www.jucs.org/jucs_14_22/semantic_information_in_medical
http://www.kde.cs.uni-kassel.de/hotho/pub/2005/hotho05TextMining.pdf
http://www.kde.cs.uni-kassel.de/hotho/pub/2005/hotho05TextMining.pdf
http://sfy.ru/?script=wizard_of_oz_1939
http://sfy.ru/?script=wizard_of_oz_1939
http://portal.acm.org/citation.cfm?doid=312129.312186

York, NY, USA. ISBN 0521865719. http://nlp.stanford.edu/IR-book/

information-retrieval-book.html. Last access 09/2010.

Miller, George A., Richard Beckwith, Christiane Fellbaum, Derek Gross, and
Katherine Miller [1993]. Introduction to WordNet: An On-line Lexical Database.
http://wordnetcode.princeton.edu/5papers.pdf. Last access 09/2010.

Nielsen, Jakob [1994a]. Usability Engineering. Morgan Kaufmann. ISBN
0125184069. http://www.useit.com/jakob/useengbook.html. Last access
09/2010.

Nielsen, Jakob [1994b]. Usability inspection methods. In CHI ’94: Conference com-
panion on Human factors in computing systems, pages 413–414. ACM, New York,
NY, USA. ISBN 0897916514. doi:10.1145/259963.260531. http://portal.acm.

org/citation.cfm?doid=259963.260531.

Oracle Corporation [2010]. MySQL 5.6 Manual: Full-Text Stopwords. http:

//dev.mysql.com/doc/refman/5.6/en/fulltext-stopwords.html. Last access
09/2010.

Pedersen, Ted, Siddharth Patwardhan, and Jason Michelizzi [2004]. Word-
Net::Similarity: measuring the relatedness of concepts. In Demonstration Papers
at HLT-NAACL 2004, pages 38–41. HLT-NAACL ’04, Association for Computa-
tional Linguistics, Morristown, NJ, USA. http://portal.acm.org/citation.

cfm?id=1614025.1614037.

Pianta, Emanuele, Luisa Bentivogli, and Christian Girardi [2002]. MultiWordNet:
developing an aligned multilingual database. In Proceedings of the First Inter-
national Conference on Global WordNet. http://multiwordnet.fbk.eu/paper/

MWN-India-published.pdf.

Princeton University [2010]. WordNet. Department of Computer Science, Prince-
ton, New Jersey, United States. http://wordnet.princeton.edu. Last access
09/2010.

Reenskaug, Trygve [1979a]. Models-Views-Controllers. Xerox PARC. http://heim.

ifi.uio.no/~trygver/1979/mvc-2/1979-12-MVC.pdf. Last access 11/2010.

116

http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://wordnetcode.princeton.edu/5papers.pdf
http://www.useit.com/jakob/useengbook.html
http://portal.acm.org/citation.cfm?doid=259963.260531
http://portal.acm.org/citation.cfm?doid=259963.260531
http://dev.mysql.com/doc/refman/5.6/en/fulltext-stopwords.html
http://dev.mysql.com/doc/refman/5.6/en/fulltext-stopwords.html
http://portal.acm.org/citation.cfm?id=1614025.1614037
http://portal.acm.org/citation.cfm?id=1614025.1614037
http://multiwordnet.fbk.eu/paper/MWN-India-published.pdf
http://multiwordnet.fbk.eu/paper/MWN-India-published.pdf
http://wordnet.princeton.edu
http://heim.ifi.uio.no/~trygver/1979/mvc-2/1979-12-MVC.pdf
http://heim.ifi.uio.no/~trygver/1979/mvc-2/1979-12-MVC.pdf

Reenskaug, Trygve [1979b]. THING-MODEL-VIEW-EDITOR - an Example from
a planningsystem. Xerox PARC. http://heim.ifi.uio.no/~trygver/1979/

mvc-1/1979-05-MVC.pdf. Last access 11/2010.

Reenskaug, Trygve [2009]. The Common Sense of Object Orientated Programming.
Department of Informatics, University of Oslo, Norway. http://folk.uio.no/

trygver/2009/commonsense.pdf. Last access 09/2010.

Reenskaug, Trygve and James O. Coplien [2009]. The DCI Architecture: A New
Vision of Object-Oriented Programming. http://www.artima.com/articles/

dci_vision.html. Last access 11/2010.

Schärli, Nathanael [2005]. Traits - Composing Classes from Behavioral Building
Blocks. PHD dissertation, Universität Bern. http://scg.unibe.ch/archive/

phd/schaerli-phd.pdf. Last access 11/2010.

Schärli, Nathanael, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P. Black
[2002]. Traits: The Formal Model. Technical Report CSE-02-013, OGI School of
Science & Engineering, Oregon Health & Science University. doi:10.1.1.13.7151.
http://scg.unibe.ch/archive/papers/Scha02cTraitsModel.pdf.

Schärli, Nathanael, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P. Black
[2003]. Traits: Composable units of behaviour. In ECOOP 2003 – Object-
Oriented Programming, Lecture Notes in Computer Science (LNCS), volume
2743, pages 327–339. Springer Berlin / Heidelberg. ISBN 9783540405313.
doi:10.1007/978-3-540-45070-2_12. http://www.springerlink.com/content/

169mbraepn4gmyd2/.

Shi, Lei, Rada Mihalcea, and Mingjun Tian [2010]. Cross language text classification
by model translation and semi-supervised learning. In Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing, pages 1057–
1067. EMNLP ’10, Association for Computational Linguistics, Morristown, NJ,
USA. http://portal.acm.org/citation.cfm?id=1870658.1870761.

Singleton, Ralph S. [1991]. Film Scheduling, or, How Long Will It Take To Shoot
Your Movie? Second Edition. Lone Eagle Publishing. ISBN 0943728398.

117

http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pdf
http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pdf
http://folk.uio.no/trygver/2009/commonsense.pdf
http://folk.uio.no/trygver/2009/commonsense.pdf
http://www.artima.com/articles/dci_vision.html
http://www.artima.com/articles/dci_vision.html
http://scg.unibe.ch/archive/phd/schaerli-phd.pdf
http://scg.unibe.ch/archive/phd/schaerli-phd.pdf
http://scg.unibe.ch/archive/papers/Scha02cTraitsModel.pdf
http://www.springerlink.com/content/169mbraepn4gmyd2/
http://www.springerlink.com/content/169mbraepn4gmyd2/
http://portal.acm.org/citation.cfm?id=1870658.1870761

Singleton, Ralph S. [1996]. Film Budgeting, or, How Much Will It Cost To Shoot
Your Movie? Lone Eagle Publishing. ISBN 0943728657.

Smith, Larry, Thomas C. Rindflesch, and W. John Wilbur [2004]. MedPost: a part-
of-speech tagger for bioMedical text. Bioinformatics, 20(14), pages 2320–2321.
doi:10.1093/bioinformatics/bth227. http://bioinformatics.oxfordjournals.

org/content/20/14/2320.abstract.

Snyder, Benjamin, Tahira Naseem, Jacob Eisenstein, and Regina Barzilay [2009].
Adding more languages improves unsupervised multilingual part-of-speech tagging:
a Bayesian non-parametric approach. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pages 83–91. NAACL ’09, Associa-
tion for Computational Linguistics, Morristown, NJ, USA. ISBN 9781932432411.
http://portal.acm.org/citation.cfm?id=1620754.1620767.

Tan, Ah-hwee [1999]. Text Mining: The state of the art and the challenges. In Pro-
ceedings of the PAKDD 1999 Workshop on Knowledge Disocovery from Advanced
Databases, pages 65–70. doi:10.1.1.132.6973. http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.132.6973.

Vossen, Piek [2002]. WordNet, EuroWordNet and Global WordNet. Re-
vue française de linguistique appliquée, 7, pages 27–38. www.cairn.info/

revue-francaise-de-linguistique-appliquee-2002-1-page-27.htm.

Wilks, Yorick and Mark Stevenson [1998]. The grammar of sense:
Using part-of-speech tags as a first step in semantic disambiguation.
Natural Language Engineering, 4(2), pages 135–143. ISSN 13513249.
doi:10.1017/S1351324998001946. http://journals.cambridge.org/action/

displayAbstract?fromPage=online&aid=48443.

Wolf, Ivo, Marcus Vetter, Ingmar Wegner, Thomas Böttger, Marco Nolden,
Max Schöbinger, Mark Hastenteufel, Tobias Kunert, and Hans-Peter Meinzer
[2005]. The Medical Imaging Interaction Toolkit. Medical Image Anal-
ysis, 9(6), pages 594–604. ISSN 13618415. doi:10.1016/j.media.2005.04.
005. http://www.sciencedirect.com/science/article/B6W6Y-4G65CGY-2/2/

55782e220f18fa8603eae0a33194371f.

118

http://bioinformatics.oxfordjournals.org/content/20/14/2320.abstract
http://bioinformatics.oxfordjournals.org/content/20/14/2320.abstract
http://portal.acm.org/citation.cfm?id=1620754.1620767
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.6973
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.6973
www.cairn.info/revue-francaise-de-linguistique-appliquee-2002-1-page-27.htm
www.cairn.info/revue-francaise-de-linguistique-appliquee-2002-1-page-27.htm
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=48443
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=48443
http://www.sciencedirect.com/science/article/B6W6Y-4G65CGY-2/2/55782e220f18fa8603eae0a33194371f
http://www.sciencedirect.com/science/article/B6W6Y-4G65CGY-2/2/55782e220f18fa8603eae0a33194371f

World Wide Web Consortium (W3C) [2010a]. Cascading Style Sheets (CSS). http:

//www.w3.org/Style/CSS/. Last access 09/2010.

World Wide Web Consortium (W3C) [2010b]. Extensible Markup Language (XML).
http://www.w3.org/XML/. Last access 09/2010.

World Wide Web Consortium (W3C) [2010c]. Hypertext Markup Language (HTML).
http://www.w3.org/HTML/. Last access 09/2010.

Zhu, Hong, Patrick A. V. Hall, and John H. R. May [1997]. Software unit test cov-
erage and adequacy. ACM Computing Surveys (CSUR), 29, pages 366–427. ISSN
03600300. doi:10.1145/267580.267590. http://doi.acm.org/10.1145/267580.

267590.

119

http://www.w3.org/Style/CSS/
http://www.w3.org/Style/CSS/
http://www.w3.org/XML/
http://www.w3.org/HTML/
http://doi.acm.org/10.1145/267580.267590
http://doi.acm.org/10.1145/267580.267590

	Introduction and Motivation for Research
	Theoretical Background
	The production manager
	The four phases of film production
	Script breakdown
	Scheduling
	Production Strip Board
	Shooting Schedule

	Budgeting
	The Planning Budget
	The Working Budget

	Related Work
	Classification of software solutions in film production
	Model-View-Controller (MVC) in research and business applications
	Advantages of MVC
	Disadvantages of MVC and alternatives
	Conclusion

	Text recognition in natural language
	Part-of-speech tagging
	Lexical databases
	Text Mining
	Stop word filtering
	Conclusion

	Usability engineering (UE)
	Location and synchronicity in usability evaluation
	System usability scale (SUS)

	Current System
	State of the art
	CeltX
	Final Draft and Final Draft Tagger
	Mindstar Cinergy
	Movie Magic Scheduling and Budgeting
	Movie Magic Screenwriter
	Conclusion

	Making a business case for smart script breakdown software
	Potential process improvements
	Cost and risk assessment
	Outlook and application spectrum
	Conclusion

	Materials and Methods
	Use cases
	Tagging interfaces
	Auto-advancing shortkey (AAS) tagging
	Category management
	Scene and scope management
	Breakdown data management
	Conclusion

	Results
	Prototype Application
	Target system
	Software architecture and design
	Implementation
	Conclusion

	Usability Evaluation
	Methodology
	Test setup
	User demographics
	Results
	Discussion
	Conclusion

	Discussion and Lessons Learned
	Conclusions
	Future Work
	SUS Feedback Sheet
	List of Figures
	List of Tables
	References

