
Master Thesis

Design and Implementation of a
Multi-Core Power and Performance

Emulation Platform

Michael Lackner

————————————–

Institute for Technical Informatics
Graz University of Technology

Head: O. Univ.-Prof. Dipl.-Ing. Dr. techn. Reinhold Weiß

Reviewer: Ass.Prof. Dipl.-Ing. Dr. techn. Christian Steger

Advisor: Ass.Prof. Dipl.-Ing. Dr. techn. Christian Steger
Dipl.-Ing. Christian Bachmann

Graz, October 2010

Kurzfassung

Während des Designprozesses eines System-on-Chip (SoC) muss eine Vielzahl an Design-
parametern beachtet werden. Dies sind zum Beispiel die Leistungsaufnahme, die Verar-
beitungsgeschwindigkeit sowie die Zeit für die Entwicklung. Diese Masterarbeit behan-
delt das Design und die Implementierung einer Leistungs- und Performance-Evaluierungs-
Plattform für Multiprozessoren. Mithilfe dieser Plattform ist es für Entwickler während
des Designprozesses eines neuen Chips möglich, diesen zu testen und, darauf aufbauend,
diesen zu optimieren. Es wurde dabei die Power-Emulations-Technik auf einem FPGA Ent-
wicklungsboard angewandt. Mithilfe dieser Technik ist es möglich, die Leistungsaufnahme
eines Chips zur Laufzeit des Systems zu bestimmen. Dies ermöglicht einen Geschwindig-
keitsgewinn bis zu einen Faktor von 100 gegenüber einer Software-Simulation. Zusätzlich
werden Performance-Statistiken wie Cache-Misses und Register-Zugriffe für jede CPU mit-
hilfe von Sniffer-Einheiten im Chip detektiert und gesammelt. Diese so erzeugten Power-
und Performance-Statistiken werden über die Ethernet-Schnittstelle zu einem Host-PC
geschickt. Eine Evaluierungssoftware, welche auf diesem läuft, empfängt die Daten und
stellt sie grafisch dar. Somit können Schwachstellen im Hardware- oder Softwaredesign
schon früh gefunden und verbessert werden.

Stichwörter: Power Estimation, Performance Estimation, Power Emulation, LEON3,
Multi-Core, FPGA, Ethernet

1

Abstract

Exploring the design space for System-on-Chip (SoC) designs is becoming more and more
complex. Performance requirements, time to market, power and thermal issues have to
be kept in mind. In this work the design and implementation of a power and performance
evaluation platform for multi-core systems is presented. With this platform it will be
possible to change hardware and software parameters during the design process and to
acquire fast feedback on the impact of these changes. We are using the power emulation
technique on a field programmable gate array (FPGA) onto which we synthesize a LEON3
multi-core system. With this technique we obtain power data during run-time for every
component which is up to 100 times faster than using software simulators. Additionally
performance statistics like cache misses and register write/read accesses for every CPU are
also collected by hardware sniffer units. The collected power and performance statistics
are sent by the Ethernet chip on the FPGA to a host computer. Evaluation software
running on the host visualizes the received power and performance data to quickly obtain
an overview of the bottlenecks of the current hard- and software design.

Keywords: Power Estimation, Performance Estimation, Power Emulation, LEON3, Multi-
Core, FPGA, Ethernet

2

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

.............................. ...
date (signature)

3

Danksagung

Zuerst möchte ich Ass.Prof. Dr.techn. Christian Steger, für die Betreuung und Begutach-
tung dieser Arbeit, danken. Weiters allen Beteiligten des POWERHOUSE Projekts welche
diese Arbeit ermöglicht haben. Speziell meinem Betreuer DI Christian Bachmann welcher
immer Zeit für Diskussionen und Hilfestellungen hatte. Besonders seine MatLab Kennt-
nisse für die Aufbereitung der gewonnen Daten waren sehr hilfreich. Weiters möchte ich
DI Andreas Genser für seine Unterstützung beim Adaptieren des Linux Kernels für das
Ansprechen meiner Hardware-Komponente danken. Weiters DI Armin Krieg für seine Zeit
beim Testen des Quad-Core-Systems. Weiters allen Mitstudenten am Institut dafür, dass
man nach einer gemeinsamen Kaffeepause wieder motiviert weiter arbeiten konnte.

Besonders möchte ich mich bei meiner Familie bedanken, welche mich während des
Studiums immer unterstützt hat.

Graz, Oktober 2010 Michael Lackner

4

Contents

1 Introduction 11
1.1 Motivation . 11
1.2 Main Goals of This Thesis . 13
1.3 Structure of This Work . 14

2 Related Work 15
2.1 Power Consumption in CMOS Circuits . 15

2.1.1 Introduction . 15
2.1.2 Dynamic Power Consumption . 15
2.1.3 Static Power Consumption . 17

2.2 Introduction to Power and Performance Profiling 17
2.2.1 Overview . 17
2.2.2 General Power Estimation . 18

2.3 Power Profiling . 20
2.3.1 Introduction . 20
2.3.2 Power Measurement . 21
2.3.3 Simulation . 22
2.3.4 Hardware-Accelerated . 25
2.3.5 Hybrid Power Estimation . 33

2.4 Performance Profiling . 34
2.4.1 Introduction . 34
2.4.2 Hardware-Accelerated . 35

3 Design of the Multi-Core Emulation Platform 38
3.1 Introduction . 38
3.2 Requirements . 38
3.3 PPDU Overview . 39
3.4 Performance Event Estimator . 39

3.4.1 Design Flow . 40
3.4.2 Event Types . 41
3.4.3 Event Detection Circuits . 41

3.5 Power Estimator . 42
3.5.1 Design Flow . 42

3.6 Performance Event and Power Collector . 43
3.7 PPDU I/O Communication . 44

5

3.7.1 Standard Communication Interfaces on FPGA Boards 45
3.7.2 Host to PPDU Communication . 45
3.7.3 PPDU to Host Communication . 46
3.7.4 Data Aggregation and Ethernet Frame Generation 47

3.8 Software Analysis Flow for a System with PPDU 48
3.9 Power and Performance Analyzing Software 48

3.9.1 Requirements . 49
3.9.2 Analyzing Software Parts . 49

4 Implementation of the Multi-Core Emulation Platform 51
4.1 Overview . 51
4.2 Used Tools . 52
4.3 GRLIB LEON3 IP Library . 54

4.3.1 IP Library Overview . 54
4.3.2 LEON3 Processor . 55

4.4 PPDU Hardware Implementation . 56
4.4.1 Introduction . 56
4.4.2 Controller Unit . 57
4.4.3 Performance Estimator Unit . 59
4.4.4 Ethernet Communication Functionality 61
4.4.5 PPDU System Integration . 63

4.5 Profiling Control . 64
4.5.1 Control of the PPDU by the Host PC Software 65
4.5.2 Control of the PPDU by Software 65

4.6 Analysis Software . 67

5 Results 71
5.1 Introduction . 71
5.2 Comparison of PPDU Emulation vs. RTL Simulation 71
5.3 Profiling of SW Optimizations . 71

5.3.1 Compiler Optimizations . 71
5.3.2 Manual Optimizations . 74
5.3.3 Power-Aware Waiting . 77

5.4 Operating System Profiling . 78
5.4.1 Process Profiling Single-Core . 78
5.4.2 Process Migration on Dual-Core LEON3 Multi-Core System 78
5.4.3 Process Migration on Quad-Core LEON3 Multi-Core System 80

5.5 PPDU FPGA Resource Utilization . 81
5.6 Simulation/Emulation Speed Comparisons 83

6 Conclusions and Outlook 84
6.1 Conclusions . 84
6.2 Future Work . 85

6

A Abbreviations and Symbols 87
A.1 Abbreviations . 87
A.2 Symbols . 88

B Code Examples 89
B.1 PPDU Interface Description . 89
B.2 Performance Event Detection Benchmarks 90

References 93

7

List of Figures

1.1 Design Complexity Trends . 11
1.2 Evolving Role of the High-level Design Phases 12
1.3 Design Space Exploration . 13

2.1 Dynamic Power Consumption . 16
2.2 Classification of Power/Performance Estimation Techniques. 18
2.3 Generic Power Estimation Tool Flow . 19
2.4 Generic Design Flow Including Power Estimation 20
2.5 PowerScope Architecture . 21
2.6 System-Level Architecture and Task Graph 23
2.7 Power Consumption vs. Operand Bit Switching 25
2.8 Macro Modeling Flow . 26
2.9 JD Co-Processor Overview . 27
2.10 Clipper Method Overview . 28
2.11 General Performance Counter Approach . 29
2.12 Power-Aware Scheduler . 30
2.13 RTL Design Extended With Power Emulation 32
2.14 Power Emulation Design Flow . 32
2.15 System-Level Power Emulation Architecture 33
2.16 Hybrid Power Estimation Architecture . 34
2.17 Emulation Based MPSoC Performance Extraction Framework 36
2.18 Event Sensing and Event Collecting Design 37
2.19 MPPA Implementation Overview . 37

3.1 Power and Performance Profiling Architecture 38
3.2 PPDU Design Overview . 40
3.3 Performance Estimator Creation Design Flow 41
3.4 Correlation Examples Between Events and Signals/Component States . . . 42
3.5 Event Detection Circuit Examples . 43
3.6 Power Estimator Creation Design Flow . 44
3.7 General Structure of a PPDU Frame . 46
3.8 Data Aggregation and Ethernet Frame Generation 48
3.9 Power and Performance Emulation Utilized Software Development Flow . . 49
3.10 Overview of the Host Evaluation Software 50

4.1 Integration of the PPDU Into the LEON3 Design 51
4.2 Used Tools During the Implementation . 52

8

4.3 Development Board GR-XC3S-2000 Block Diagram 53
4.4 LEON3 Template Design . 54
4.5 LEON3 Core Components . 55
4.6 Overview of the PPDU Implementation on the FPGA 56
4.7 PPDU Control Register . 58
4.8 PPDU Modes . 58
4.9 Implemented Performance Counters . 59
4.10 State Machine of the Ethernet Controller 62
4.11 PPDU Frames Embedded in an Ethernet Frame 63
4.12 PPDU System Integration . 64
4.13 Possibilities to Control the Profiling Process 65
4.14 Controlling the PPDU by User Space Methods 66
4.15 Implementation Overview of the Analysis Software 67
4.16 Interpreting the Data of a Two Core System 69
4.17 Analysis Software Thread Synchronization 69
4.18 Analysis Software GUI . 70

5.1 Coremark short: RT-level Simulation vs. PPDU Emulation 72
5.2 Coremark Profile without Compiler Optimization 73
5.3 Coremark Profile with Best Compiler Optimization 73
5.4 Pseudocode of Manual Optimization . 75
5.5 Array Manipulation Explanation . 75
5.6 Unoptimized Array Manipulation . 76
5.7 Optimized Array Manipulation with Loop Splitting 76
5.8 Power Down vs. Busy Waiting . 77
5.9 SnapGear Linux Boot Sequence . 78
5.10 Dhrystone Benchmark Running on Linux 79
5.11 Linux Task Migration on a Dual-Core LEON3 System 80
5.12 Linux Task Migration on a Four Core LEON3 System 81
5.13 PPDU Sub-Component LUTs Utilization on the FPGA 81
5.14 FPGA LUTs Utilization for a Varying Number of Processors 82

9

List of Tables

3.1 Connection Types on the Xilinx GR-XC3S-2000 FPGA 45
3.2 Counter Sizes For a Hypothetical PPDU Frame 47
3.3 Number of Averaged Clock Cycles for Multi-Core Systems 47

5.1 Comparison of Different Compiler Optimization Settings 72
5.2 Comparison of Manual Code Optimization 74
5.3 Code for Busy and Power Down Waiting . 77
5.4 FPGA LUTs Utilization of Different Designs 82
5.5 Speed Comparison PPDU vs. Software Simulators 83

10

Chapter 1

Introduction

1.1 Motivation

The first commercial 4-bit 4004 microprocessor from Intel in the year 1971 consisted of
2300 transistors and operated at a clock rate of 740kHz. Today’s microprocessors like
the Intel Core 2 DUO contain 100.000 times more transistors than the Intel 4004 and
run with a clock speed of three GHz. This dramatic speed increase was possible because
every new invented semiconductor manufacturing process, starting from feature sizes of
10µm in 1971 to 32nm today, decreased the power consumption and made higher clock
rates possible. When the semiconductor manufacturers reached the 130nm world this
correlation was getting weaker. Power consumption and temperature problems emerge
when the processing performance of the chip is increased by higher clock speed alone.
Chip designers dealt with this problem by increasing the System-on-Chip (SoC) design
speed through multi-core designs on a single chip [33, 29, 2].

Figure 1.1: Portable Design Complexity Trends [45]

11

Figure 1.2: Evolving Role of the High-level Design Phases [44]

Exploring the design space for these multi-core SoC designs is becoming more and more
complex. This is due to an expected exponential increase of processing engines (PEs) to
get the processing performance for future software. This growth from 63 PEs in the year
2009 to an estimated number of 3231 is shown in Figure 1.1. For the system designer it
will become increasingly difficult to handle this high number of sub components [45].

These trends will also lead to a growth of the power consumption of the SoC. This
fact will lead to more energy saving efforts during the design phase especially for mobile
devices because of the slow battery capacity development. To handle these challenges
more design effort has to be invested into the high-level design phase of SoC development.
Figure 1.2 shows the energy saving potential of the behavioral-level and architectural-level
which will increase from 40% to expected 80% in the year 2015. Design optimizations on
the physical-level will lead to little power savings reserves of 10% in the future. For this
reason an early high level evaluation platform will be necessary to observe required speed
and power constraints. Optimizing the software for the used hardware platform will be
one of the keypoints during SoC development. A late optimization of failing constraints
will lead to significant time to market delays and high costs [44].

Virtual platforms are a widely used tool for early power and performance assessment
analysis. They simulate a whole SoC on a host hardware to run software on it. With these
tools whole systems can be tested and developers can prove their software to make use
of all processors in the system by writing highly parallel applications. With these tools
software development and optimization is possible even if the hardware does not exist yet
in silicon. Using this technique the hardware dependent software development can start
at an earlier design stage which results in time saving as well as better optimized and
tested software. However if a physical system has an execution speed of 2000MIPs and is
simulated at the gate-level, the virtual hardware speed decreases to 0,002MIPS and at the
RT-level to 0,2MIPS. To avoid this speed bottlenecks power and performance emulation
on hardware prototyping platforms has been introduced and is used in this thesis [50].

12

FPGA

System
State

Design-Under-Test

Design-Under-Test

System Bus

CPUs

Peripherals

Testprogram.hex

Power and Performance
Debug Unit (PPDU)

Analyse Power and
Performance Data

Host PC

Po
w

er
 +

Pe

rf
or

m
an

ce
 D

at
a

Change Hardware and/or Software Parameters

Figure 1.3: Design Space Exploration

1.2 Main Goals of This Thesis

Previously defined requirements have to be kept in mind during the design phase of a SoC.
These include performance, time to market, power and thermal issues. In this work we
present the design and implementation of a power consumption and performance evalu-
ation platform for multi-core systems. The main goal of this thesis, which is part of the
POWERHOUSE 1 project, is creating a generic, noninvasive and transparent power and
performance evaluation platform. In detail our general approach and design should be
valid for different field programmable gate array (FPGA) boards and different multi-core
systems. Furthermore it shall be adaptable for any number of cores and should have no
impact on the run-time or estimated power consumption on the FPGA board. The power
estimation calculations shall be only dependent on the device-under-test. The last main
goal is that power and performance statistics should be observable from outside of the
FPGA.

The design space exploration, possible with our platform, is shown in Figure 1.3. With
this platform it will be possible to change hardware and software parameters during the
design process and acquire fast feedback on the impact of these changes. We are using the
power emulation technique on an FPGA onto which we synthesize a multi-core system.
The consumed power statistics are estimated during run-time from the switching activity of
different signal states of the design. With this technique we obtain power data during run-
time for every component which is up to 100 times faster than using software simulators.
Performance statistics like cache misses and register write/read accesses for every CPU
are also collected with sniffer units in hardware. The collected power and performance
statistics are sent by the Ethernet chip on the FPGA board to a host computer. Evaluation
software running on the host visualizes the received power and performance data to get a
fast overview of the bottlenecks of the current hard- and software design. A big advantage

1POWER-aware, Hardware-supported Operating system and Ubiquitous application Software develop-
ment Environment, funded by the Austrian Federal Ministry for Transport, Innovation, and Technology
under the FIT-IT contract FFG 815193.

13

of this platform is that developers at the operating system (OS) level get early feedback
about performance or power improvement potential. Before the first tape-out is physically
produced, developers can optimize software for the used hardware. Also different strategies
for a power-aware OS could be tested when the OS has access to the performance and
power statistics during run-time. Testing strategies for power-aware thread scheduling or
the compliance to maximum power limits for energy harvesting devices is easily possible
even with long test run-times at the OS-level.

1.3 Structure of This Work

In Chapter 2 the power consumption fundamentals of CMOS circuits are explained. Fur-
thermore a general overview of power and performance estimation techniques on different
abstraction levels is given. Chapter 3 presents the design overview of the power and perfor-
mance evaluation platform. Design flows show how the power and performance estimation
units are created. The implementation is presented in Chapter 4 based on the case study
of a LEON3 multi-core system. Also, an overview of used tools and of the analysis software
running on a host PC is given. The usage of the profiling architecture for SW and OS
benchmarking as well as optimization is shown in Chapter 5. In Chapter 6 a conclusion
of this thesis and ideas for future work are presented.

14

Chapter 2

Related Work

2.1 Power Consumption in CMOS Circuits

2.1.1 Introduction

In this section the power consumption fundamentals of CMOS circuits and equations for
their computation will be presented. The two main sources are [49]:

• Dynamic power consumption

• Static power consumption

2.1.2 Dynamic Power Consumption

2.1.2.1 Charging Capacitance

A predominant part of CMOS power consumption is the dynamic consumption. Dynamic
refers here to the charging and discharging process of capacitances. Always when a ca-
pacitance is charged over a resistor the same amount of energy that can be stored in the
electric field of the capacitance is converted into thermal energy.

Efield =
1

2
· Ck · V 2

dd (2.1)

Figure 2.1 shows how the current flows during the charge and discharge process of the
capacitance, equal to one clock cycle of a CMOS inverter. During the charge process the
energy of Equation 2.1 is loaded into the the capacitance and the same amount is converted
into heat. If the discharge happens the stored energy in the electric field of the capacitance
is also converted to thermal energy. In the end we have an energy consumption of:

Eclock = 2 · Efield = Ck · V 2
dd (2.2)

The equation for the dynamic power consumption is now:

Pdyn = Ck · V 2
dd · α · fclock (2.3)

Ck is the sum of different capacitance influences as defined by the characteristics of the
used transistors, wires and interconnects. Vdd is the voltage of the power source which

15

9.1 WHAT DOES ENERGY GET

INP OUP

VDD

VSS

Ck

a)

discharge

charge

+
--

0 → 1

1 → 0 0 → 1

1 → 0

b)

Fig. 9.1 Charge/discharge (a) and crossover currents (b) in a
Figure 2.1: Dynamic Power Consumption [32]

has a big influence on the consumed power because of its quadratic influence. During the
minimization of the semiconductor manufacturing process this voltage is getting smaller
and reduces the influence of the dynamic power consumption. α is the activity factor
which lies between 0 and 1. A strategy for reducing this linear factor is for example clock
gating which uncouples the clock tree of circuit parts when they are not in use. f is the
clock speed and has also a linear influence on the power consumption. If f is increased
also Vdd must be raised by the designers. If this is not done the circuit could get into
an undefined state. This is because a higher Vdd voltage can charge capacitances in the
circuit faster than a low Vdd voltage and reduces thereby the delay time until a steady
state is reached [32, 49].

2.1.2.2 Short Circuit

Another main factor for the power consumption is the short circuit current. This occurs
when in a CMOS gate the transistor switch to the other state and a conductive connection
between Vdd and Vss occurs. The Equation 2.4 is a model for this where β depends on the
characteristic of the transistor and τ is the delay of the gate [49, 40].

Psc =
β

12
· (Vdd − 2 · Vth)3 · τ

T
(2.4)

2.1.2.3 Glitches

If the result of a gate depends on different sub results unnecessary transitional switching
of the outputs of the gates could occur during transitions because of different delay times
of the logic signals. This additional switching activity consumes more power and must be
included into an estimation of the total consumed power [40].

16

(a) Trends for Power Consumption [49] (b) Semiconductor Diode as Switch [49]

2.1.3 Static Power Consumption

2.1.3.1 Leakage Power Consumption

In the last decades the dynamic power consumption was one of the main factors for the
power consumption in CMOS circuits. Nowadays the leakage consumption is rising and
accounts up to 20% - 40% of the total power consumption. In the future this factor
becomes even more important for energy-aware circuit design as shown in Figure 2.2(a).
A transistor does not resemble an ideal switch, meaning that when it is open it does not
exhibit infinite resistance and when it is closed the resistance is not zero. The leakage
power consumption comes from this non-ideal behavior of CMOS transistors. As shown
in Figure 2.2(b) a diode exhibits a leakage current even if the threshold voltage is not
reached. The total leakage power is calculated with the following equation:

Pleak = Vdd · Ileak (2.5)

The total leakage current Ileak has different sources. The two most important factors are
the subthreshold leakage Idsub which can be exponentially decreased with a rising threshold
voltage VT and the gate leakage current Igtun where electrons can pass through the gate
isolator because of quantum mechanic tunneling effects. The leakage power Pdsub can be
approximated by Equation 2.6. Is, n, W and L are technology and device parameters, Vt
is the thermal voltage and Vth is the threshold voltage [49, 54].

Pdsub = Vdd · Idsub = Is ·
W

L
· Vdd · e

−Vth
n·Vt (2.6)

2.2 Introduction to Power and Performance Profiling

2.2.1 Overview

An overview of different techniques for obtaining power and performance statistics from
an System-on-Chip (SoC) is shown in Figure 2.2. Performance statistics can be measured
on real hardware through performance counters implemented on most modern processors
described in Section 2.3.4.3 or with the help of software simulations. Performance statistics

17

correlate with the consumed power of a SoC. Thus synergies between power and perfor-
mance estimation architectures occur. This can be seen in [16] where the authors present
a profiling architecture with self defined performance counters. In their next work [6] they
expand the architecture with a power and thermal estimation platform based on these
performance statistics. From this point of view performance counters can be also used for
power estimation techniques. Based on this power information thermal estimation can be
performed.

The power consumption of a system can be estimated directly by measuring the power
supply. This method is presented in Section 2.3.2. Also software simulations on different
abstraction levels such as system-level, gate-level and register-transfer-level are feasible and
are discussed in Section 2.3.3. Unfortunately, software simulations exhibit long execution
times. Therefore hardware-accelerated power estimation was initially introduced. It can be
performed with a co-processor as described in Section 2.3.4.2 or with the help of an FPGA,
which is called power emulation, as discussed in Section 2.3.4.4. Also a combination of
software and hardware-accelerated power estimation exists which is introduced in Section
2.3.5.

Power + Energy Performance

Measurement MeasurementEstimation

Simulation Hybrid Hardware
Accelerated

Synergy

Figure 2.2: Classification of Power/Performance Estimation Techniques

2.2.2 General Power Estimation

2.2.2.1 Analysis Phase

The generic approach for obtaining power information using power estimation techniques
at various levels of abstraction is shown in Figure 2.3. The upper part of the sketch is
the analysis process that has to be undertaken if not all components and devices are yet
known or defined. For the initial power estimation the architecture and the floorplan must
be estimated. Furthermore, the signal activity of the components has to be estimated or
recorded by executing a benchmark. In general there are two intentions behind power
estimation which have different requirements for the estimation phase:

1. Absolute power estimation

2. Relative power estimation

Absolute Power Estimation In the first case we want to obtain a highly accurate
power estimate of the final implementation already during the design phase. For example

18

Power
calculator

Component
power models

Power reports

Activity
calculator

Testbench

Activity
estimator

Constraints

Architecture and/or
floorplan estimator

Pre-implementation
specification

Architecture
and

floorplan

Analysis

Estimation

Figure 2.3: Generic Power Estimation Tool Flow [40, with modifications]

when designing a digital circuit with an energy harvesting power source not all energy
harvesting devices could serve the current that is needed. Furthermore power spikes
during the run-time could lead to supply voltage drops and an undefined behavior of the
circuit. In this case an energy buffer must be inserted into the design, leading to extra
costs and perhaps leading also to different design decisions. Hence at an early stage of the
design phase the design space is narrowed down, leading to a reduction of redesigns and
an earlier completion of the final product [40].

Relative Power Estimation The second intention behind power estimation is the
comparison of different design solutions in terms of power consumption. This could be for
example the implementation of a sorting algorithm. If you look at the potential solutions
as black boxes, all algorithms will deliver the same results but their run-time and their
memory usage may vary. In this case a comparison of absolute power values is not im-
portant. It is much more important for a design decision to know that algorithm A needs
50% more power, time or RAM space than algorithm B [40].

2.2.2.2 Estimation Phase

In the lower part of Figure 2.3 the power estimation process is performed. The component
power models include the equations of Section 2.1 on different abstraction levels. For
example Ck in Equation 2.3 could be the total capacitance for all gates inside a system-
level module such as a CPU. Other inputs for the power calculation are constraints such
as the supply voltage Vdd or the clock frequency f . Also the activity of the components
during the execution of the testbench is estimated. With the help of all this information,

19

the architecture and floorplan specifications it is possible to calculate power reports for
each component or the whole system. The power estimation flow at different abstraction
levels is shown in Figure 2.4 [40].

Testbench Specification

Map to processing
elements

System
configuration

Activity
estimation

System-level
analysis

Ps, DSPs, memories,
busses, wire models

System-
level

Identify custom parts
Power
reports
Power
reports

Algorithm of
custom part

Estimate RT arch. and
floorplanActivity

estimation

Algorithm-level
analysis

Arithmetic operators,
memories, wire models

Algorithmic-
level

High-level
synthesis

RT-level architecture
Activity

estimation

RT-level analysis
Arithmetic components,

registers, memories,
wire models

RT-level

Gate-level
synthesis

Gate-level netlist
Activity

estimation

Gate-level analysis Gates, flip-flops, I/Os,
wire models

Gate-level

Place & route,
clocktree generation

Circuit-level netlist
Activity

estimation

Circuit-level analysis Transistor models, wire
models

Circuit-level

Activation Architecture Power analysis Component modelsAbstraction

Performance
reports

Power
reports
Power
reports

Performance
reports

Power
reports
Power
reports

Performance
reports

Power
reports
Power
reports

Performance
reports

Power
reports
Power
reports

Performance
reports

Figure 2.4: Generic Design Flow Including Power Estimation [40, with modifications]

2.3 Power Profiling

2.3.1 Introduction

With power estimation it is possible to explore the power-aware design space during the
development of a new hardware platform. For different design problems the best fitting
solution can be found during a hardware/software co-design approach. Calculations and
logic conditions are partitioned on different modules and decisions can be made on whether

20

d, we felt it insufficient to map
c processes — we also desired
re level.
was that our tool monitor the ac-
ting on a computer system. We
e activity of only a single pro-
on about total energy usage. For
ks frequently may expend large
creen, disk, and network when
hermore, asynchronous activity,
, can account for a significant
tion. An energy profiler which
y when a specific process is ex-
r the energy expended by these

t i i i th h d

Profiling
Computer

Data
Collection
Computer

System
Monitor

Energy
Monitor

Digital
Multimeter

Apps

Power

Source

HP-IB

Bus

Correlated
Current Levels

PC / PID
Samples

Trigger

(a) Data Collection

Profiling

(a) Data Collection

hermore, asynchronous activity,
, can account for a significant
tion. An energy profiler which
y when a specific process is ex-
r the energy expended by these

care to minimize the overhead
ofiler necessarily induces some
at it monitors. For an energy
th in additional CPU usage and
ded during execution. We have
ead.

of PowerScope, shown in Fig-
ling to profile the energy usage

Correlated
Current Levels

PC / PID
Samples

(a) Data Collection

Profiling
Computer

Energy
Analyzer

Correlated
Current Levels

PC / PID Samples Energy Profile

Symbol Tables

(b) Off-Line Analysis

This figure shows how PowerScope generates an energy profile. As
applications executeon the profiling computer, the SystemMonitor
samples system activity and the Energy Monitor samples power
consumption. Later, the Energy Analyzer uses this information to
generate an energy profile.

(b) Off-Line Analysis

Figure 2.5: PowerScope Architecture [19]

functionality is realized in software or in hardware by individually designed electronic
circuits.

2.3.2 Power Measurement

Power consumption measurement rely on an already available silicon implementation of
a SoC. In [19] this technique has been applied on a standard personal computer to get
information about the total run-time and energy consumption of processes during a bench-
mark run. The introduced method is so generic that it could be easily applied to SoC
designs. In Figure 2.5 an overview of the PowerScope architecture is shown. On a profiling
computer an operating system with a modified kernel and the test bench is running. The
kernel modifications implement a system monitor writing data about the current program
counter (PC), process identifier (PID) and other information into a buffer on the hard disc
of the profiling computer when a trigger impulse from the digital multimeter is received.
This trigger impulse is always activated when a new power measurement happens and the
power data is then transmitted to the energy monitor on the data collection computer.
The energy analysis tool combines power information and the correlated program infor-
mation such as PC and PID as well as run-time statistics for every process during the
benchmark. Unfortunately some drawbacks exist when performing power measurements
[19]:

• The chip-under-test has to physically exist before a first power measurement is pos-
sible. Thus it is an unsuitable method for exploring the power design space during
the development phase.

• Automatize power measurement has been developed for optimizing the power con-
sumption of software and not hardware.

• It is not possible to obtain information about subcomponents in the design. Only
the power information of the entire chip is available.

• Because of the additional interrupts and their evaluation by the profiling computer
during a benchmark the time and power behavior of the original design changes.

21

• The system-under-test has no run-time access to the power statistics. Therefore
run-time power-aware software (e.g., run-time power management) is not possible
[19].

2.3.3 Simulation

Power simulations can be performed at different levels of abstraction as shown in Figure
2.4. In this section power simulation techniques at various levels of abstraction will be
presented.

First, simulations at the system-level are discussed. Second, the algorithmic-level which
consists of source-code-level, instruction-level and functional-bus-model-level is presented.
Finally, the RT-level, gate-level and the lowest abstraction level which is the transistor-
level are discussed.

The reason for starting the power design space exploration at high abstraction levels
is that power saving techniques are very effective on higher levels. The power saving
options are less effective closer to the physical-level. Furthermore power optimizations
during late design phases will lead to significant time to market delays and high costs. It
is expected that the energy saving potential on the behavioral-level and architectural-level
will increase from 40% to expected 80% in the year 2015 as shown in Figure 1.2. Design
optimizations on the physical-level will lead to little power savings of 10% in the future
[44].

2.3.3.1 System-Level

At the system-level it is important to know the dependencies of different tasks for a given
application. These could be shown with the help of a task graph like in Figure 2.6(a)
where the data and the control flow is visualized at the system-level. Data dependencies
can be easily extracted with this technique. For example process two and three have to
be finished before task four can start. Another useful insight is that process one, two and
three can be executed in parallel because they do not share resources [40].

The specification can later be mapped to a system-level architecture where main com-
ponents like controllers or memories are used as shown in Figure 2.6(b). First power
management techniques can be developed at this abstraction level. It is important for
the overall power consumption that at the system-level a well power optimized architec-
ture is chosen from the available design space. Therefore great care must be taken of
the partitioning of tasks into hardware and software components to meet speed, power
consumption or space requirements [40].

2.3.3.2 Algorithmic-Level

At the algorithmic-level the tasks during power optimization are the partitioning of al-
gorithms in software or on user specific hardware. The software can be enhanced by
optimizing the control flow to gain a speed up in execution time. For example loop un-
rolling strategies can be employed. For software exploration the algorithmic-level can be
split into the following three sub levels [40]:

22

Start

P1 P2P3

P4P5

End
Dataflow
Controlflow

(a) Task Graph

-Controller

Caches

Memories

ASIC

Reconfigurable

DSP

Power
Management

I/O

(b) System-Level Architecture

Figure 2.6: System-Level Architecture and Task Graph [40, with modifications]

• Source-code-level

• Instruction-level

• Functional-bus-model-level

Source-Code-Level Within the source-code-level a fast first power estimation of spe-
cific algorithms can be undertaken. The consumed energy Etotal is calculated by adding the
needed execution time or clock cycles for every instruction and multiplying them with the
average power consumption Eproc of the processor for the given clock frequency. Equation
2.7 shows this fast approach [40].

Etotal = Texecution · Eproc · f (2.7)

Instruction-Level Instruction set simulators (ISS) can calculate the current power con-
sumption on the basis of executed instructions and used operands. The power model maps
every instruction to a specific energy value which was created before with characteriza-
tion benchmarks and measurements of the power supply [37, 53] or by power estimation
software tools at the circuit, gate or register-transfer-level [39].
Power Models From Power Supply Measurements: Initial works focused at creating an
instruction-level power model to obtain the power costs of any test program [53]. The
power model is created by writing characterization programs where the instruction-under-
test (IUD) is repeated over and over again. With the current measured by a digital
ammeter, the specific power, which is the so called base power cost for the IUD, could be
calculated. In real programs the power consumption of different instructions depends on
their operands and the changes in the circuit, the so called circuit state overhead costs.
The greater the changes of the logical states inside of a processor between the current
and the next instruction, more energy will be needed to get to the logical state of the
new instruction. Also different cache misses or pipeline stalls have an impact on the real
power consumption. The authors of the paper propose to write benchmarking programs

23

for all these cases. If a program has to be power estimated using this model, first the
base costs of all instructions are multiplied with the number of times the instructions are
executed. Afterwards the inter-instruction effects like the circuit state overhead costs are
added for each pair of consecutive instructions, multiplied with the number of times this
pair occurred during the program execution [53].
Power Models From Software Power Simulators: In [39] the power information for creating
the power model is derived from a gate-level power simulation. The system-under-test is
the LEON3 processor which is also used in our work, but only implemented as a single-core.
Research was also conducted on the correlation of register accesses and data switching with
power.

To estimate the energy consumed for a specific instruction the same technique as in
[53] was used to create two different power models. For the one-instruction-based model
the IUT was embedded into a sequence of 10 NOP instructions. This procedure has been
repeated 100 times. The reason for including the additional NOP instructions is that the
integer pipeline should exhibit no other activity than executing the IUT. A test sequence
for each instruction can be created in the following way [39]:

100 · (5 ·NOP, IUT, 5 ·NOP) (2.8)

The two-instruction-based power model tests around 6000 possible pairs of instructions to
get more accurate estimations. The sequence looks like this:

100 · (5 ·NOP, IUT1, IUT2, 5 ·NOP) (2.9)

Further research was conducted about the influence of data switching activity on the
add instruction. Therefore a test bench was written where every cycle more and more
switching activity at the operands of the instruction regd = regs1 + regs2 occurs. The
result was a strong correlation between switching bits and the consumed energy. If all 32
bits change, the power consumption is about three times higher than in the case of no bit
toggles shown in Figure 2.7. Also the impact of register correlation on an instruction pair
has been tested. Register correlation means that a register occurs as an operand in the
two tested instructions. An example where a high increment of the consumed power could
be detected is the ld− add pair with the following test operands:

ld operand→ reg3
add reg3 + reg4→ reg1

The add instruction uses the same register reg3 as input to which the ld instruction writes.
Because the add instruction can only be executed after the ld operation is done the pipeline
advantage can not be taken and no parallelization happens. Two additional instruction
unit cycles were added in comparison when no register correlation happens. Therefore the
total consumed energy has been doubled.

A power model which takes activity and register correlation into account can improve
the power estimation. However this improved model vastly increases the calculation.
Hence this improvement was not considered in the final LEON3 power model. It was
shown that this instruction-level power estimator design reaches a speedup of 1000 times
against commercial gate-level power simulators. The accuracy error was within 6% and
12%. The creation of the highly automated one-instruction-based model takes five hours
and for the two-instruction-based model 10 days of calculation time on a Xeon processor
with 2.5GHz.

24

Figure 3 and a typical value of 7.38. We use 7 as the average
number of bits that toggle simultaneously.

0 5 10 15 20 25 30
40

60

80

100

120

Number of switching bits

E
ne

rg
y

[p
J]

Fig. 2. Energy change vs. data switching activityFigure 2.7: Power Consumption vs. Operand Bit Switching [39]

Functional-Bus-Model-Level At this abstraction level the instruction simulator is
enhanced with a system bus model. This enables studying the transactions of different data
on the bus and finding bottlenecks during program execution. The power model has also
been extended to include hierarchical memory architectures to detect cache hit and misses
as well as processor specific power models for multi-threading and pipelining. Overall this
more accurate power model requires the highest calculation time at the algorithmic-level
[40].

2.3.3.3 RT-Level, Gate-Level and Circuit-Level

At the RT-level different commercial tools for power estimation, such as [51], exist. The
main parts on this abstraction level are arithmetic components, registers, memories, wire
models. The power models for these main parts are created based on macro modeling
which is shown in Figure 2.8. First, a set of model parameters Xi, i = 1, ...n are chosen
as input for the main part-under-test. Then different input vector pairs are chosen as a
training set for the characterization. During the characterization, which could be a gate
or circuit-level power simulation, the power values for every training set are calculated.
Based on these data the RT-level power model is created. The power model could be built
as an equation or as a table based model with Pmain part = P (X1, ..., Xn) [41].

At the gate-level the power consumption is calculated with power models for logic gates
like a NOR-Gate. A commercial power estimation tool at this level of abstraction is Prime
Time from Synopsys [52]. The gate-level models can be improved at the circuit-level by
calculating for example with transistor and wire models with the Spice simulation program
[48]. Power estimation at this level of abstraction has a high estimation accuracy. Every
power consumption estimation at a closer level of abstraction to the physical design level
requires more calculation time because more complicated power model equations must be
calculated.

2.3.4 Hardware-Accelerated

2.3.4.1 Introduction

Software power simulators at low abstraction levels such as the circuit or the gate-level
exhibit very long simulation times and are therefore not useful for long benchmark runs.
Hence, efficient tests of power saving strategies, like power-aware task switching at the
operating-system-level, are not feasible. To derive power information in real-time, hardware-

25

FIGURE 39.2 Summary of macro-modeling flow.

Choice of model parameters

Design of training set

Characterization

Model extraction

Parameters {X1,...,Xn}

Vector pairs
{W1,...,Wm}

Power samples
{P(W1),...,P(Wm)}

Power model
P(X1,...,Xn)

Figure 2.8: Macro Modeling Flow [41]

accelerated power estimation was introduced, where the power estimation model, including
the device-under-test, is transfered to an ASIC or an FPGA. The estimation model runs
at the same clock frequency as the device-under-test. Thus a speedup of up to 1000 times
compared to high accuracy simulation techniques can be reached. With this technique
software developers can optimize the software at early design stages without needing to
wait that the chip is available in silicon.

We will discuss three different types of hardware acceleration in this section. A co-
processor can be added to the design, estimating the power consumption based on macro
models [25, 26, 38]. The consumed power can be also derived from performance counters
[31, 15, 46]. Finally, the power emulation approach is presented [12, 10, 23, 8].

2.3.4.2 Additional Co-Processor

”Joule Doc” In [25, 26] a co-processor is added to the design to enable real-time power
analysis and monitoring of the electronic system-under-test. The JouleDoc (JD) co-
processor offers configuration and control instructions to obtain data from and to send
data to the co-processor. The main idea is shown in Figure 2.9(a) where after the ini-
tialization and starting of the co-processor the software code-under-test is being executed.
The estimated power sum can then be read out using another instruction [25, 26].

In Figure 2.9(b) the design of the co-processor is shown. The power estimation is
based on macro models as introduced in Chapter 2.3.3.3. Power models can be either
generated based on data sheets, simulations or test chip measurements. To obtain power
values over a long run-time, power values can be summed up during a test run and stored
in an accumulator register for later reat out over a controller. If a power model consists
of many JD energy sensors, therefore depends on many events, a fine estimation granu-
larity is feasible. If the co-processor should be implemented in silicon a trade-off between
estimation accuracy and chip size of the co-processor has to be made.

26

initJD()
startJDEstimation();
codeToEstimate();
stopJDEstimation();
getJDEstimation();

SoC-Under-Test

JD Co-Processor

E

t

(a) Power Estimation with
JD Co-Processor

Accumulator
Data Register
Status Register

Increment Value
Data Register
Temp. Value

JD Energy Sensor 1

C
on

tr
ol

Increment Value
Data Register
Temp. Value

JD Energy Sensor N

C
on

tr
ol

Control Logic

In
te

rf
ac

e

Event
Trigger

Event
Trigger

JD Co-Processor

(b) Block Diagram

Figure 2.9: JD Co-Processor Overview [25, 26, with modifications].

”Clipper” In [38] the Clipper framework is presented. A processor is enhanced with
event counters to enable dynamic power-aware software with the help of macro models.
This means that software is able to utilize a trade-off between calculation quality and
available energy during run-time. It could be shown that a processor enhanced with
the Clipper method consumes only slightly more energy but provides the possibilities for
accurate power estimation and power-aware software [38].

An overview of the Clipper method is shown in Figure 2.10. First a gate-level simula-
tion of the processor is performed from which the switching activity is extracted. Based
on these results a power analysis is made for the whole processor. To create a power
model, events have to be extracted looking at the correlation of control signal changes
and power simulations. Control signals with the highest correlation for each component
are kept. An optimization step is performed in which control signals with little impact
on the power consumption are removed. Afterwards a linear regression is performed to
reduce the number of events. Counters, composed of logic gates and flip flops for signal
detection, are added to the RT-level design which is synthesized on an FPGA board. The
counters are mapped to a memory mapped I/O space to access them during run-time.
The circuit area increase is 4.9% and the increased total power consumption is only 3%.
The power-aware software can now read out this performance counters and calculate the
consumed power, based on the counters and a power model, implemented in software.
The authors of this paper decided to make the power model in software because of the
overhead of a power model circuit in hardware. The execution of the power calculation in
software needs only 232 clock cycles. If this calculation repeats every 100.000 cycles an
additional power consumption of only about 0.23% occurs [38].

The Clipper method has been tested with a self written power-aware JPEG encoder
software. Dependent on the current power budget the encoding quality of the pictures is
adapted between 13 levels [38].

27

Figure 2.10: Clipper Method Overview [38]

2.3.4.3 Using Existing Performance Counters

Almost all modern microprocessors contain hardware performance counters to count spe-
cial events during the execution of a program, like cache misses, branch predictions or bus
transactions. Research has been conducted on how to obtain overall and per component
power information with the help of these counters. A problem in all papers is that the
simultaneous access to all counters is not possible during run-time. In [31] a single-core
CPU is used to test run-time power estimation. In [15] an off-line calculation is necessary
to obtain the power consumption estimate. A power model on a multi-core CPU and with
real-time power-aware task scheduling is implemented in [46].
Run-Time Single-Core Power Estimation: In [31] existing performance counters are used
to obtain run-time overall and per component power statistics of a CPU. However not for
every power relevant event a correlation to existing performance counters exists, therefore
heuristic methods are used to estimate the missing performance counters. Depending on
the inner structure of the CPU the heuristics combine measurable performance counter
data to generate a more accurate power profile [31].

The general approach is presented in Figure 2.11 and was tested on a Pentium Pro
running Linux 2.2.16. The scheduler inside of the Linux kernel was modified to log the
performance counters of interest during the run-time of the program-under-test. Thus
not all relevant performance counters could be read out at the same time, a multiplexing
algorithm was added to the scheduler to derive all relevant data. It could be shown that
smaller structures of the CPU, which are 24% of the total power, can not be estimated
with performance counters or heuristic methods at the Pentium Pro. Generally this work
shows the potential of power estimation at existing CPUs without hardware modifications
and little power and performance overhead [31].
Off-Line Single-Core Power Estimation: In [15] a linear power model was used to estimate
the consumed power of an Intel XScale processor with the help of hardware performance
counters. Five performance events with high power correlation were selected and used as

28

Counter ValuesProgram Data

CPU

Kernel

Power Model

C
ou

nt
er

s

Figure 2.11: General Approach for Performance Counter Based Power Estimation [31,
with modifications]

expressed in Equation 2.10 to model the total CPU power Powercpu [15].

Powercpu = α1(E1) + α2(E2) + α3(E3) + α4(E4) + α5(E5) +Kcpu (2.10)

E1 counts the number of instruction fetch misses, E2 counts data dependencies, E3

represents transaction lookaside buffer (TLB) misses, E4 counts instruction TLB misses,
E5 represents the number of executed instructions and Kcpu represents the constant power
value for the idle CPU. The linear parameters α1, α2, α3, α4 and α5 are determined
by various benchmarks and the use of linear algebra to minimize the estimation error.
Multiple runs are necessary to calculate the so called power weights α1 to α5 because
during the run-time of one benchmark only two counters can be read out. With this linear
model an easy adaption to different voltages or frequency configurations is possible by
modifying the power weights of the power model. The authors of this paper could show
that the average error is within 4% compared to real hardware measurements. To access
the performance counters during run-time the timer interrupt routines of the OS were
modified to store the counter values into a buffer every 10ms. The overall performance
overhead with the added code is only 2% and the difference to the power consumption of
an unmodified OS is less than 1% [15].

Research was also made for external memory power estimation. Due to the fact that
no performance counter directly shows memory transitions, a linear memory power model
has been developed. This model depends on instruction cache misses, data dependencies
and a constant idle factor to estimate the consumed SDRAM power. The results for this
memory estimation shows an average error of 70% and can be explained by the lack of
performance counters which indicate memory accesses directly.

In this work, compared to [31], no power-aware OS techniques are feasible during run-
time but the accuracy of the power estimation is much higher. Furthermore no hardware
details must be known because of the general usability of the linear power model for
different CPUs [15].
Real-Time Multi-Core Power Estimation: In [46] a power estimation on a chip multi-
processor (CMP) AMD Phenom CPU was performed. The main task was to perform run-
time power measurements and calculate the chip power consumption of different running

29

Function (CDF) plot
(y-axis) under a given

Suspend / Resume

Scheduler

Core 3Core 1 Core 2 Core 4

Counter ValuesCounter Values Counter Values Counter Values

Power Model

Per Core Power

Total System Power

Figure 10. Scheduler Setup and Use

To further test the robustness of our model, we exam-
ine system power estimates for a multi-programmed work-
load. Figure 11(d) shows system power consumption for ep
(NAS), art (SPEC-OMP), mcf and hmmer (SPEC 2006)

Figure 2.12: Power-Aware Scheduler [46]

software threads based on power models. The thread power information is used to perform
thread scheduling. Compared to [15] no off-line power computation is necessary. For
creating the power models four power counters were selected. The amount of usable
counters is limited because the AMD Phenom is not able to read out more than four of
them at the same time. Micro benchmarks were written to obtain data on their activity
and the correlation to power. After this a piece-wise linear power model was created with
the help of linear regression. Also the impact of temperature on the power consumption
was researched. The result shows that run-time temperature knowledge would lead to
more accurate models because of the increasing leakage current with temperature rises.
The impact was estimated to be an up to 10% higher power consumption. Due to the
lack of temperature per core sensors this feature was not built into the power model. To
test their per core power estimation a power-aware thread scheduler was written in C. On
the basis of a given power budget the scheduler suspends and resumes different threads
on the CPU with the help of the run-time power estimation shown in Figure 2.12. The
overall result was that the scheduler worked well for different thread programs and could
meet the given power envelope. The power estimation average error was reported to be
below 10% [46].

2.3.4.4 Power Emulation

Power emulation was introduced to speed up power estimation by using hardware pro-
totyping platforms. The main idea is to implement power estimation in hardware and
benefit from the amenities of parallel calculation and high clock rates in hardware. Com-
pared to software simulations a high power estimation speedup during the design of a
new electronic circuit is possible with power emulation. Tests of power-aware software
or the estimation of power consumption during the boot sequence of an OS are possible.
Research was also done to decrease the additional hardware overhead of power emulation
on the circuit-under-test like in [12]. In contrast to performance counters the chip does
not have to exist in silicon and therefore power emulation is a very good instrument for

30

fast and accurate power estimation during the design exploration.

RTL Power Emulation Power emulation at the RT-level was first introduced in [13].
This work has been advanced by the authors in [12] where some techniques were introduced
to decrease the high hardware overhead of power emulation at this relative low abstraction
level. In Figure 2.13 the additional components needed for power emulation are shown.
Every component of the original design is extended with a power model by connecting the
input signals of the RT-level components to the input of the power model. To synchronize
the power estimate creation of all power models the power strobe generator has been
inserted. Now the power aggregator sums up all estimated power values to a total power
estimate [12, 13].

The additional emulation circuits increase the original chip area by 18.2 times. Without
area optimization techniques, power emulation at the RT-level would be not applicable to
large designs like MPSoCs on a single FPGA board. To reduce this area consumption,
the authors of the paper advocated to combine several RT-level components to one power
model. Thus many power models are replaced by one simplified power model which leads
to less accuracy and a change of component granularity. Generally, every area reduction
method decreases the level of accuracy. Therefore a tradeoff has to be found. Another area
saving potential is the power correlation of components which means that the power of
component PX can be transformed by the function f to another power model PY with the
equation PY = f(PX). If the function f needs less area space than the power model PY , a
reduction of chip area occurs. Also the reuse of a power model for several components is
possible. A multiplexer at the input of the power model could select every clock another
component for power estimation. Other resource sharing techniques are feasible like using
a power estimate over more clock cycles leading to a lower sampling rate of the power
model. All this area saving techniques lead to a reduction of the emulation chip size from
18.2 times to an average of 3.1 times [12].

The general power emulation design flow can be seen in Figure 2.14. The RT-level
design-under-test is enhanced with the power model library. After an area and power esti-
mation optimization phase the design-under-test is synthesized to a hardware prototyping
platform. During the execution of the testbench a power profile is created by summing up
all power model results. In the end it can be shown that power emulation can achieve an
average speedup of over 500 times and an estimation error of 3.4% with an area increase
of 3.1 times [12].

High Level Power Emulation In [10] power emulation was used by adding self-defined
activity counters into a multi-core LEON3 system-under-test. These counters, read out
during a timer interrupt of the OS, feed a power model implemented in software. The
power information is used for power profiling and a power-aware scheduling algorithm to
prevent hot spots. In Figure 2.15 an overview of the architecture is shown. To avoid large
area consumption by the power emulation technique like [12] the authors of this paper
use the system-level. Power models for the integer pipeline, integer register file, caches
and AHB bus controller were created and 36 counters which identify events in those units
were added. This approach used only 3% of the available look up tables (LUT) of the
used FPGA. The counters were mapped into the memory space to calculate the consumed
power with Equation 2.11 for each component by means of software.

31

power value whenever triggered, (ii) a power strobe generator to trigger the
evaluation of the power models, and (iii) a power aggregator to accumulate
the power consumption of individual RTL components to compute the total
power consumption.

<< ==

reg_c0 reg_c1

<=<=

reg_c1

++

>> 1

reg_mid

+/-+/-

reg_first reg_last

FSM

reg_out

1

-1

first last value data

addr out

Controller

Functional
Units

Registers

Bus 1

Bus 2

Bus 3

Power
Strobe

Generator

Power
Aggregator

Power
Model

Power
Model

Power
Model

Power
Model

Power
Model

Power
Model

Power
Model �����

��
�

Total
Power

Figure 1: An example RTL circuit enhanced for power emulation

In this section, we discuss the performa
estimation for a large design and the benefi
accelerating this process. We also present th
of power emulation.

Let us consider an MPEG4 decoder that i
sets. The design consists of seven sub-desi
components. The sub-designs include an i
coefficients block (Dct coeff), a variabl
verse quantization block (Ispq), an inverse
tor block (Mv), and a motion compensation
the execution times for RTL power estimati
MPEG4 decoder, while decoding 4 frames of
power estimation, we report the time taken
estimation tool [6] and (b) PowerTheater [
UltraSparc-III workstation with 8GB RAM.
the results when we consider a target platfo
unlimited resources, clocked at the design’s
MHz. The results show that 524X (411X) sp
emulation with respect to NEC’s RTL power

Table 1: RTL power estimation vs. po

design

NEC-RTPower Power
Run Time 3300sec 258

However, the gains of power emulation ca
Figure 2.13: RTL Design Extended With Power Emulation [12]

5-input 7-input 9-input 11-input

OR Gate Width

gates

OR

ror

mates from a single wide OR macromodel com-
m a cascade of 2-input macromodels

Sharing Within Power Models
aring techniques can also be employed to make the

h power model area-efficient, by extending the power
ss multiple cycles, and sharing hardware across clock
e, the estimation error increases, since higher power
e to less frequent sampling of component inputs and
e area and estimation error for the Bubble Sort
the number of adders allowed per power model As

platform. The power model library has been optimized for area through re-
source sharing (based on a predfined adder limit per power model). For a
given RTL design, step 1 infers the power models needed for every compo-
nent in the design and inserts the necessary estimation code to produce the
enhanced RTL description. Step 2 then optimizes the power model enhanced
RTL description so that it can meet a target area budget (based on the capacity
of the emulation platform), while minimizing any loss in estimation accuracy.
The output of this step is an RTL description ready for power emulation that
can be fed to any FPGA synthesis, place and route tool flow (step 3). Fi-
nally, the netlist can be downloaded to the FPGA and executed with the given
testbench to produce the design’s power profile.

RTL
design

Power model
inference

and estimation
code generation

Power
model
library

Optimize for area
and

minimize error

FPGA
synthesis,

P&R

Download
to FPGA
& Execute

Power
Profile

Testbench

2
1

3 4

RTL
design

Power model
inference

and estimation
code generation

Power
model
library

Optimize for area
and

minimize error

FPGA
synthesis,

P&R

Download
to FPGA
& Execute

Power
Profile

Testbench

RTL
design

Power model
inference

and estimation
code generation

Power
model
library

Optimize for area
and

minimize error

FPGA
synthesis,

P&R

Download
to FPGA
& Execute

Power
Profile

Testbench

2
1

3 4

Figure 8: Power emulation flow
The key step in emulation is step 2 of Figure 8, which is described in detail

in Figure 9. The methodology takes as its input the power model enhanced
RTL design and its testbench, the power model library (which is automatically
pre-constructed for a given resource sharing and block memory configura-
tion) and various parameters including a target area constraint (target area)
and a clustering algorithm control factor (k). The output of the algorithm is
a power emulation ready RTL description that can meet the area constraint

i h i i l f i i S 2 1 i h l i h i

Figure 2.14: Power Emulation Design Flow [12]

Pcomponent = Pidle +
∑
i

(Ei · ni · f)

cycles
(2.11)

The total power Pcomponent is the idle power Pidle plus the sum of the energy per events
Ei multiplied with the event counter ni and the clock frequency f divided by the clock
cycles. The energy per events Ei were extracted by running micro-benchmarks in a gate-
level power estimation and calculating the correlation factor between counter activity and
component power consumption. To obtain a run-time power profile the Linux kernel has
been modified so that during the timer interrupt, i.e., every 10ms, the read out of the
counters and the power calculation based on the power models takes place. The power
values are stored in a buffer and can be transmitted over a RS-232 interface to a host PC.
To reset or start the counters during the program execution special commands were added
to the instruction set of the LEON3 core. The result of the power emulation profiling
compared with the gate-level simulation exhibits an estimation error of 10%. To test
power-aware task scheduling on a multi-core system the kernel was modified so that new
power values are only calculated every 100ms. It could be shown that task migration

32

used capacitance-
ays, CAMs, com-
imilarly, Skadron
ce by developing
he strengths and
omponent power

menting appropri-
unters. Further-
d within the sim-
simulation times,
snippets are em-
ng system effects

FPGA

Emulation Framework

Event
Counters

(VHDL)

I/O

Applications
(multiprogrammed
and multithreaded)

Linux 2.6 (with
knowledge of power
models)

2-core cache-coherent
CMP (VHDL)

Host PC

OS accesses counters
for migration policies

Track CMP activity

RS-232

Ethernet

Figure 1: Emulator consists of power models, emu
CMP, OS, applications, event counters and host PC

Figure 2.15: System-Level Power Emulation Architecture [10]

based on the consumed power works well with this power emulation technique. The
speedup against architecture-level software simulators is up to 35 times. A disadvantage
of this work is that it is not cycle-accurate because a new power value is calulated only
every 10ms. In general this paper is a further development of performance counter power
estimation discussed in Section 2.3.4.3. Self defined performance counters were added into
the design-under-test which makes this work usable for power estimation at early design
stages [10].

In [23] a power emulation architecture is introduced with its design flow, which makes
real-time power profiling possible. Also the power estimation unit is explained which is
based on a power model implemented in hardware on an FPGA prototyping platform. In a
case study power-critical Smart Card applications have been profiled and an relative error
less than 10% could be shown. In [8] research has been done how this power estimation
unit can be characterized to get an accurate power model. Also a software development
flow is introduced which different tools have to be used to get a power and functional trace
for designers at early design stages [23, 8].

2.3.5 Hybrid Power Estimation

In [24] hybrid power estimation is introduced which combines software simulation and
hardware-accelerated power emulation to get a fast and accurate power consumption feed-
back. The reason to combine these two techniques is that hardware components which
can be synthesized onto an FPGA are not always available at early design stages. On the
other hand power emulation for big designs needs large and therefore expensive FPGAs
to map the hardware description code onto them. For example at the RT-level power
emulation increases the chip area up to 3 times compared to the original design. Power
estimation using software simulators lacks the necessary simulation speed for fast design
exploration. This process can be accelerated by means of power emulation [24, 12].

An overview of hybrid power estimation is shown in Figure 2.16. Functional models
and their corresponding power models are fragmented onto an FPGA board and a soft-
ware simulation environment on a host PC. For example, the component A executes its
functional model and its power model at the host PC. In contrast the whole component C
is emulated on the FPGA board and component B has the power model on the host PC

33

Figure 2.16: Hybrid Power Estimation Architecture [24]

and the functional model on the FPGA board. For estimating power data all functional
models have to commit their current states to the power models. For this reason the
communication between host PC and FPGA board is established over the host peripheral
interface bus (e.g., PCI). Also the exchange of the calculated power values per component
to the software aggregator, which sums up all estimated power values, is made over this
bus. On the FPGA board, clock registers control the emulation clock frequency of differ-
ent components and can be set by the host PC. In the cycle based mode communication
between the host PC and the FPGA board is performed every simulated and emulated
clock cycle. This leads to a big communication overhead which is the main problem in
hybrid power estimation. This overhead can be reduced by adding data compression com-
ponents to the PCI interfaces. Another reduction possibility is that the communication
is only undertaken when an important event occurs in the design, like a transaction to
a component, which results in a state change of the respective component. Only when
such a state change happens the power model has to be updated instead of every cycle.
In an implementation of the frame-work a speedup between 56 and 332 times and no loss
of accuracy could be shown in comparison to system-level power simulations [24].

2.4 Performance Profiling

2.4.1 Introduction

The reasons for system designers to require performance statistics during the design pro-
cess are manifold. First, software architects want to find speed and other bottle necks
in software programs. This could be for example extensive I-cache or D-cache misses
or too heavy usage of internal bus with too little bandwidth. With the help of perfor-
mance statistics the software designer can optimize the software for the given platform. If

34

these tests are used early during design exploration of a new architecture, the hardware
designer has opportunities to optimize the hardware for the given software application.
At high abstraction levels these statistics can be extracted through C or C++ models.
Transaction-level models in SystemC are also available with more accuracy but less speed.
Furthermore, cycle-accurate frameworks in SystemC, VHDL or Verilog can be used. All
these simulation techniques exhibit the general drawback that they do not offer real-time
simulation speed which would be necessary for testing programs at the OS-level. Real-time
performance estimation is possible by reading out the hardware performance counters of
a given processor. This technique has been used in Section 2.3.4.3 where the state of the
system-under-test is derived from performance counters to generate a power profile. Also
hardware-accelerated performance estimation with an FPGA board is possible like in Sec-
tion 2.3.4.4 where performance counters are added to the design. Hardware-accelerated
power and performance extraction systems can take advantage of strong synergies because
power models can use the performance statistics as input to generate power estimation
statistics [16, 11].

2.4.2 Hardware-Accelerated

Off-Line Performance Statistic Access In [16] a design framework for architectural
cycle-accurate MPSoC design exploration on an FPGA board is presented. The perfor-
mance statistic evaluation is done on a host PC running a graphical user interface. With
this framework it is possible to evaluate different hardware configurations with varying
processor cores, memory architectures and interconnection mechanisms [16].

An overview of this framework is shown in Figure 2.17. Every subsystem is composed
of the three main modules which are the processing core, memory subsystem and inter-
connection mechanism. During the design exploration any processor can be used because
only the public instruction set processing part is required. One of the main advantages
of this architecture is the virtual platform clock manager (VPCM) which generates the
clocks for the cores and the memories of different sub systems. With the help of this
feature it is possible to virtually evaluate a system-under-test with virtual 200 MHz even
if the maximum emulation speed on the FPGA is 100 MHz for the core and the connected
memory has a maximum clock of 50 MHz. The VPCM always suppresses clock signals
for the core when the memory controller is not ready to return the request in the given
virtual clock time. When this occurs the internal states of the core are preserved until
the core clock resumes. The core clock signal starts again when the memory is ready. For
the core internally it looks as if itself and the memory would run with 200 MHz as well
because no additional wait cycles are needed [16].

For an easy extraction of statistic information from the design-under-test, sniffer units
with a predefined skeleton are available. With the help of this skeleton the designer only
has to indicate the ports or registers to monitor. The obtained performance statistics are
then sent with the help of a finite state machine (FSM) in the sniffer skeleton over the
dedicated statistics bus to the statistics manager. There the data is stored in a buffer
until the network dispatcher is ready to generate a MAC packet containing the statistic
data. The MAC packet is sent through the Ethernet port to a host PC where a graphical
evaluation software runs. With the help of the VPCM it is possible to stop the clocks of
all sub systems when the performance statistic extraction over the Ethernet occurs. Thus

35

event-logging, exhaustively logs all interesting events that occur in
the platform. The second type of sniffers, called count-logging, are
designed only to count events, such as cache misses, bus transactions,
memory accesses, etc.; Thus, generating more concise results, and
what tipically designers demand from cycle-accurate simulators to
test their systems. Our experimental results with real-life MPSoC
designs (see Section VI) indicate that, practically an unlimited
number of event-counting sniffers can be added to the design without
deteriorating at all the emulation speed. This establishes one of the
main differences with SW cycle-accurate simulation systems: the
inclusion of additional cores or analysis sniffers to the evaluated
MPSoC architecture does not slow down the emulation process.

Finally, as an example to see how much overhead in FPGA area
the statistics extraction subsystem represents, remark that the amount
of resources used by one event-logging sniffer is 0.1% (14 slices)
while for an event-counting sniffer is about 0.2% (31 out of 13.696
slices).

IV. VIRTUAL PLATFORM CLOCK MANAGER (VPCM)

Apart from the flexibility of the emulated MPSoC architecture, in
order to be able to effectively validate future manufactured versions
of MPSoC platforms working at various final frequencies and speeds,
our emulation framework includes an additional hardware element,
namely the Virtual Platform Clock Manager (VPCM), shown in
Figure 2. It is the HW element used in our framework to provide
multiple virtual clock domains. This module generates as output the
clock signals used in the emulated MPSoC subsystems (VIRTUAL

Fig. 2. HW architecture of the statistics extraction subsystem in the proposed
MPSoC emulation framework

microprocessor, memories and interconnection mechanisms. The
other one is for the memory controllers.

• Second, the virtual clock generated by the VPCM unit for each
f h i h l d MPS C b

DCIS 2006

Figure 2.17: Emulation Based MPSoC Performance Extraction Framework [16]

the behavior of the system-under-test does not change [16].
As a result it could be shown that software, running on the system-under-test, needs no

modifications to extract performance statistics during run-time. An evaluation speedup
could be reached at up to 1140 times compared to cycle-accurate software simulations [16].

Run-time Performance Statistic Access In [11] a profiling architecture for multi-
core SoCs is introduced. An implementation on a dual-core LEON3 system was shown to
proof the concept. During run-time the processors have access to the generated perfor-
mance statistics [11].

The authors of the paper split their MPPA architecture into the main parts event
sensing, where event sensors detect specific hardware events, and the event collecting part
where the accumulation of the detected events occur. This is shown in Figure 2.18. The
event sensors are integrated into the specific components where the events occur. It is
important that these sensors have no impact on the original design so that its behavior
does not change. The event counters are combined to a monitor module which gives the
processors the ability to start or stop the profiling and also to access all event counters.
With this approach it would be possible for processor A to access the performance statistics
of processor B. Using this knowledge A could schedule tasks, to execute on B, if B is in
idle mode [11].

This architecture has been implemented on a dual-core LEON3 system shown in Figure
2.19. The monitor module has been attached to the AMBA bus. Event sensors have been
integrated into the AMBA bus, I-Cache and D-Cache modules to extract statistics from
there. To enable access from the processors to the monitor module, a device driver has
been written for Linux. This enables the memory mapping of the event counters to the

36

event counts from the event sensing part.

Figure 1. Basic idea of proposed profiling architecture.

3.3
In o
guid
In t
wan
even
and
Afte
hard
read
imp
und
targ
the

Figure 2.18: Event Sensing and Event Collecting Design [11]
components [10].

Inside
Figure 2.19: MPPA Implementation Overview [11]

user address space [11].
The MPPA implementation increases the total gate count about 0.66%. With the

help of this architecture the speed of a software application has been optimized by a
factor of 1.228 times due to D-cache miss rate reduction techniques. This example shows
the potential of this work for fast software optimizations through performance statistic
evaluation [11].

37

Chapter 3

Design of the Multi-Core
Emulation Platform

3.1 Introduction

In this chapter we present the design of our power and performance profiling architecture
which consists of the multi-core system-under-test and an additional power and perfor-
mance debug unit (PPDU) on an FPGA as shown in Figure 3.1. Based on the switching
activity of the multi-core system the PPDU generates power and performance profiles and
sends them to a host PC where these statistics can be evaluated.

In the following sections we will explain the main requirements for our PPDU design.
An overview of the PPDU with its main parts is given in Section 3.3 and the communi-
cation interfaces to and from the host PC are introduced in Section 3.7.1. The software
which will be used for receiving and visualizing the statistics is introduced in Section 3.9.
In Section 3.8 a tool flow is illustrating how this profiling architecture can be used during
the design process of software or hardware to produce power and performance statistics.

3.2 Requirements

• The PPDU should profile power and performance statistics during the run-time of
a multi-core SoC.

Performance
Statistics

FPGA Board

D
at

a
A

gg
re

ga
tio

nCore 1

P
ow

er

Time
Host PC

Power
EstimatesCore N

...

Power Emulation

Perf. Monitoring

Power Emulation

Perf. Monitoring

...

Performance Indicators

V
al

ue

System-Under-Test

Figure 3.1: Power and Performance Profiling Architecture [9, with modifications]

38

• The emulation technique should be used which accelerates power and performance
estimation with the help of an FPGA board.

• The presence of the PPDU should neither modify nor disturb the functional behavior
and the execution of the multi-core design-under-test. Furthermore, the PPDU may
not introduce timing delays leading to changes in the execution time of a given
software application. Finally, the PPDU must not influence the power consumption
estimation for the system-under-test. For example if power and performance data
must be transfered, the normal bus should not be used because this would disturb
the normal data transfer by generating additional traffic on the bus.

• The framework is intended for the design space exploration, therefore chip area or
power consumption of the PPDU itself are only constrained by the used emulation
platform.

• Our design considerations should be platform and software independent. The chang-
ing of the FPGA board or using another operating system on the cores should be
easily feasible.

• The collected power and performance data and statistics should not be constricted
to the system or to a core respectively. The whole statistic data should be observable
by a host PC for data analyzing purposes.

• The whole design should be generic and general enough so that parts of the system
architecture such as the numbers of cores, can be easily adapted.

3.3 PPDU Overview

In Figure 3.2 an overview of the multi-core design-under-test with an additional event
sensing and power estimation unit is presented. Event sensors detect specific events on
the basis of the states of different components. The power estimation unit consists of a
power model which estimates the current power consumption based on the component
states. The power and performance data is then sent to an event and power collection
unit where counters store the number of occurred events and the consumed power. The
collected profiles are sent over the output interface to the host PC on which an evaluating
software runs. This software captures the data and visualizes the statistics. The host
PC communicates with the PPDU unit over the input communication interface and can
send control commands such as start or stop capturing instructions. All these parts of the
design are discussed in detail in the next sections.

3.4 Performance Event Estimator

As described in Section 2.4 the event estimator should detect different events such as
cache misses and processor stalls based on the component states of the system-under-test.
For this reason event sensors are integrated into the performance event estimator with
a specific detection circuit for every event. The types of events and the basic circuits
required to detect these events are described in the next sections. First, the design flow
for creating a performance estimator unit is explained.

39

Event Sensor

Performance Estimator
Power Model

Power Estimator

Device-Under-Test

Core 1…N

Output Controller

Host PC

Profiles Analysis

I/O Controller

Output
Interface

Performance Event and
Power Aggregation

Counter 1…N

Input
Interface

Component States

Performance
Event Detection

Power
Estimation

Collected
Profiles

Control DataProfile Data

FPGA

PPDU

Figure 3.2: PPDU Design Overview

3.4.1 Design Flow

An overview of the design flow for creating a performance sensor and the intermediate
steps are shown in Figure 3.3. First a test program has to be constructed which causes
the events which should be detected. In general any program language could be used for
which a compiler is available for the given platform. Programs written in C or assembler
offer the benefit of a hardware-oriented programming style. During the execution of the
programs the expected occurrence of an event like a D-Cache miss must be known. This
is easier without additional abstraction layers like, e.g., in Java. A good architectural
knowledge of the design-under-test is important to write benchmarks which cause the
desired event.

Further on, the whole device-under-test and the binary test programs are fed to a RTL
simulator where signals and events can be traced during the execution of the program.
The correlation between signals and events is being found by searching the input and
output signals of components for correlating signal transitions or logical states inside of a
state machine of the observed components. If a state is only a logical condition inside of

40

System (HDL)

Benchmarking
Suite

Device-Under-Test

Cause Events to
Detect

Functional
Simulation Waveforms PPDU (HDL)

Add Event
Detection Circuit

System (HDL)

Performance Related
Signal Routing

Binary Files

Detect Signals and
Event Correlation

System + PPDU
(HDL)

Add PPDU

Simulation System AdaptionPerformance Event
Sensor Creation

Architectural
Knowledge

Figure 3.3: Performance Estimator Creation Design Flow

a component but has no connection to outside devices, a digital circuit must be added to
the hardware description source file of the component. Knowledge of the design and the
source code must be present to identify the signals indicating the occurrence of an event.

If all performance relevant signals are detected inside the multi-core device-under-test
these signals must be routed through every component layer of the design to the event
sensor unit. There an event detection circuit is added which combines the information of
one or more relevant signals and indicates the occurrence of an event.

3.4.2 Event Types

There are different possibilities how signals or component states can correlate with per-
formance events as shown in Figure 3.4. The first example is an event correlation to the
positive edge of a signal. The next example is an enable signal where an event occurs
every clock cycle when the selected signal is high. The last example is the state machine
of a component where every time this state is reached a specific event occurs. Also a
combination of these examples is possible. For example, the event could only occur when
signal A exhibits a positive edge and the signal B is high.

3.4.3 Event Detection Circuits

The event detection can be achieved using different circuits. In Figure 3.5 three examples
are shown. First, an example for a positive edge detection circuit is shown. Two D flip-
flops A and B and a logical gate, which compares the output of the flip-flops, are needed
to build this event detection. Every clock cycle the flip-flop A stores the current input
signal and flip-flop B holds the one clock delayed state. When B holds logical zero ’0’ and
A has logical one ’1’ the edge detection circuit indicates ’1’ because this means that at
the input a positive edge occurred. In the next example three specific signal states must
occur to detect an event. To realize this function logic gates are wired together. The event
is detected in this example when all three input signals are ’1’. In the next example an
event correlates with a state inside of a FSM which is not visible from the outside. For
this reason a detection circuit must be inserted into the component with an additional

41

FSM State
Correlation

Edge
Correlation

Logical State
Correlation

Active InactiveInactive

Clock

State C

Signal A

Signal B

High

Low

EventEvent

Event Event

Event Event

Event

Figure 3.4: Correlation Examples Between Events and Signals/Component States

output signal. In this example, written in HDL pseudocode, the event and therefore the
output signal is ’1’ when the FSM state ”idle” is detected.

These circuit and code examples represent skeletons. For the implementation the event
detection circuits have to be implemented synchronously with the rest of the design. It is
also important that an event is detected only one time when it occurs and not multiple
times. For this purpose, combinations of these techniques can be used.

3.5 Power Estimator

To obtain power values during the run-time of the system the power estimation technique
is used as described in Section 2.2.2. The estimated power is calculated with the help of
a power model which uses the state of the multi-core system-under-test as input. In this
work the power estimator and the power model have not been created from scratch but
existing power estimator hardware was adapted and integrated. The component is given
as VHDL code created during the POWERHOUSE [42] research project, for a single-core
LEON3 system [23, 8, 7].

During this work the power estimator code was adapted for multi-core usage and its
integration into the newly designed PPDU was undertaken. The given power estimator
creates cycle-accurate power estimates for the entire system as well as for sub-components
during run-time.

3.5.1 Design Flow

An automatic design flow for creating the power estimation unit and integrating it into
the design-under-test is described in [7]. During the functional and the power simulation
different benchmarks are executed on the system-under-test. Based on the created trace
files the power model parameters are selected by different algorithms. First, a pattern
matching is carried out which selects specific signals based on user-supplied name patterns.
After this, signals which do not change their state during the benchmark or are redundant
in the design are removed. Now a cross-correlation based on the switching activity and the
power profiles is conducted. Signals with low correlation to power changes are removed.

42

Clk
Input Signal

Input Signal 1
Input Signal 2
Input Signal 3

Logical State Detection Circuit

Output
’High’ if event is detected

Output
’High’ if event is detected

Output
’High’ if event is detected

FSM State Detection

FSM
Idle: Next = Run
Run: Next = Idle

If (State == Idle)
Output = 'High'

Q

QSET

CLR

D

Q

QSET

CLR

D

Edge Detection Circuit

A B

Figure 3.5: Event Detection Circuit Examples

The power model, which is based on a non-negative linear regression, is then created. The
power estimation component with the power model can be integrated into the PPDU which
will be integrated into the system-under-test. In the end the power-related signals, based
on which the power model estimates power values, are routed from different hierarchical
levels to the PPDU. This design flow is presented in Figure 3.6 [7].

3.6 Performance Event and Power Collector

The storage space for power and performance statistics is limited on an FPGA board and
the storage space requirement is linearly increasing with the number of cores used in the
design-under-test. If a benchmark runs for 1s on a single-core system at a clock rate of
50MHz and generates every clock cycle an 8bit estimate of the total power consumption,
the data from the benchmark run has a size of 47,7Mbyte which can be seen in Equation
3.1. For achieving a cycle-accurate evaluation a connection to the host PC of around
381,5Mbit/s would be required.

DataSize = ClockCycles ·PowerBits = 50 · 106 · 8bit ≈ 48828kbyte ≈ 47, 7Mbyte. (3.1)

Note that 8 bit of data per clock cycle is a very low assumption for the amount of
generated statistic data. If the FPGA contains enough memory it would be possible to
store the power and performance statistics during run-time in the memory and send it to
the host PC after the benchmark has finished. However long benchmarks will also exceed

43

Functional Simulation

Power Simulation

Pattern Matching

Signal Correlation

Power & Signal Activity Filter

Non-Negative Linear Regression

Power Model

System (HDL)

Benchmarking
Suite

Device-Under-Test

Cause Events
to Detect

Binary Files PPDU (HDL) Add Power
Model

System (HDL)

Power Related
Signal Routing

System + PPDU
(HDL)

Add PPDU

Power Model CreationSimulation System Adaption

Figure 3.6: Power Estimator Creation Design Flow

the memory capacity of the largest FPGA device. For also being usable on FPGAs with no
storage extension, our design solution must send the statistics during run-time to the host
PC. Therefore an event and power collection unit has been added to the design which stores
the data for the transmission until the output device is ready to send the power information
to the host PC. The power and performance data between the transactions are added up
and stored in counters. This means that the design is able to handle different output
devices with varying baud rates. For every power or performance event which should be
counted, an own counter will be realized. For every additional bit we assign to a counter
we can double the number of samples that can be stored. The required counter width for
the last example with a 1s benchmark, 50MHz and 8bit/Hz would account to 34bit to sum
up all the 8bit samples which is shown in Equation 3.2. The needed communication speed
decreases from 384Mbit/s to 34bit/s. However this large data summation represents a
large quality degradation because all the dynamic information of the power consumption
during the benchmark execution gets lost. For this reason a tradeoff must be made between
transmission bandwidth and loss of dynamic information.

CounterWidth =
⌈
ld(ClockCycles · 2PowerBits)

⌉
= dld(ClockCycles) + PowerBitse =

ld(50 · 106) + 8 ≈ 26 + 8 = 34bit

(3.2)

3.7 PPDU I/O Communication

In this section we discuss the communication between the host PC and the FPGA board.
Our PPDU on the FPGA board should be configurable from a host computer or a user
program. This communication needs little bandwidth because control commands only
require some bytes and these instructions have to be sent only at the beginning and at the
end of a benchmark. On the other hand, the communication between the PPDU and the
host computer requires high-speed communication because a large amount of power and
performance statistics are generated and must be sent to the host PC.

44

Connection Type Connection Speed

JTAG 5Mbit/s

RS232 1Mbit/s

Ethernet 10/100Mbit/s

USB 2.0 480Mbit/s

Table 3.1: Connection Types on the Xilinx GR-XC3S-2000 FPGA

3.7.1 Standard Communication Interfaces on FPGA Boards

At the beginning of the design we know that we will implement our power and perfor-
mance emulation on a Xilinx GR-XC3S-2000 development FPGA board containing dif-
ferent communication interfaces. It offers an on-board JTAG, RS232, Ethernet and USB
2.0 communication interfaces. The corresponding PHY devices which handle the physical
layer of the OSI model are already integrated onto the board for Ethernet and USB 2.0.
The different types with their connection speeds are listed in Table 3.1. We have to choose
from these interfaces to create our I/O communication from the FPGA to the host PC.
This is illustrated in Section 3.7.2 and Section 3.7.3 [17].

3.7.2 Host to PPDU Communication

After the system is synthesized on the FPGA a configuration must still be possible. The
PPDU should be configurable by the user for every benchmark which runs on the FPGA
board. A selection should be possible which power component or performance counter
information is sent to the host PC. For this reason a control logic with control registers
has to be designed. To control these registers we need read and write access to registers
and memories of the LEON3 design running at the FPGA board. The bandwidth of the
communication interface can be very low because control commands only contain some
bytes and are only sent from time to time. Thus, the most important requirement for the
communication interface is that it can be easily integrated into our power and performance
evaluation platform.

The GRMON monitor from Gaisler Resarch makes debug access to the design-under-
test possible. This software is available for Windows and Linux and can establish a
connection to the board over the JTAG interface. It is possible to insert breakpoints for
debug reasons. Furthermore write and read access to the memory and registers of the
system on the FPGA is provided. It is not necessary to change any HDL code to enable
GRMON access over JTAG. For this reason the JTAG connection fulfills all requirements
for the host to FPGA communication [43].

Another possibility for controlling the PPDU is by software running at the emulated
system. This is achieved by mapping the control register into the memory space of the
test program. Thus every test program can for example start and stop the PPDU itself.
This technique was introduced in [38, 10] and will also be implemented in our PPDU.
Note that also test program transparent operation is available in our approach, allowing
the profiling of an application without modifications.

45

……..Counted
Clock Cycles

Power
Core 1

PPDU Frame

Performance
Core 1

Total
Power

Program
Counter Core 1

Power
Core N

Performance
Core N

Program
Counter Core N

Power + Performance
Data Core 1

Power + Performance
Data Core N

Whole System
Data

Figure 3.7: General Structure of a PPDU Frame

3.7.3 PPDU to Host Communication

For the communication from the PPDU to the host PC different communication interfaces
can be chosen as listed in Table 3.1. The requirements for the interface are twofold. First,
it should be as fast as possible so that we do not loose too much dynamics in the power and
performance profiles. Second, the receiving and statistic extraction module at the host PC
should be operating system independent and easy to implement. Thus, only the Ethernet
interface with 100Mbit/s and USB 2.0 with 480Mbit/s, with the highest connection speeds
at the FPGA board, remain as choices. To obtain an operating system indepent software
we chose to write our receiving host program in Java. Because of approved Ethernet APIs
and to avoid USB driver problems, we decided to create our FPGA to host communication
based on the Ethernet interface.

A PPDU frame, which consists of power and performance statistics data for every
core in the system-under-test, consists of the following parts as shown in Figure 3.7.
This frame has to be sent over the Ethernet connection to the host PC including the
power and performance statistics which are represented by counter values summed up
over some clock cycles. A general PPDU frame consists of the whole system data statistics
like the system clock cycle counter and the total power. Also specific core statistics are
included in a PPDU frame like the power per component, performance statistics and the
current program counter. With the program counter value an allocation of the power and
performance profiles to the source code is possible by the performance analyzing software.

To get a fast overview of how many clock cycles of the LEON3 system will be averaged
by adding up all power and performance values the following calculation was made with
an assumed number of statistics data for a hypothetical PPDU frame which is shown in
Table 3.2. This PPDU frame consists of the system clock counter and statistics for a single-
core system which are the current program counter value, the total core power and two
performance statistics. Altogether this hypothetical PPDU frame consists of 112 bit which
have to be transmitted over the Ethernet connection before the next PPDU frame can be
sent. Considering a single-core system operating at 50MHz and a 100Mbit/s Ethernet
connection, ignoring data overhead, we can transmit every clock two data bits. This
means that the host PC receives every 56 clock cycles power and performance statistics of
this time interval. For a multi-core system every core statistic is sent individually which
leads to a PPDU frame size of 208 bit for dual-core and 400 bit for a quad-core system.
The number of clock cycles which are averaged during multi-core usage are listed in Table
3.3.

When we use the 100Mbit/s Ethernet interface for our host to PC communication
power and performance statistics can be sent with a satisfying dynamic accuracy. Summed
up statistics can be sent for a time interval of 56 clock cycles for a single-core system and

46

Counter Name Counter Width

Counted System Clock Cycles 16 Bit

Core Program Counter 32 Bit

Core Total Power 32 Bit

Core Performance Statistic 1 16 Bit

Core Performance Statistic 2 16 Bit

Table 3.2: Counter Sizes For a Hypothetical PPDU Frame

Number of Cores PPDU Frame Length Averaged LEON3 Clock Cycles

1 112 Bit 56

2 208 Bit 104

4 400 Bit 200

Table 3.3: Number of Averaged Clock Cycles for Multi-Core Systems

200 clocks for a quad-core system which is short enough to make power and performance
optimization decisions based on the them.

3.7.4 Data Aggregation and Ethernet Frame Generation

To make the profiling architecture ready for multi-core usage a core multiplexer has been
added into the design which is shown in Figure 3.8. Now the processor statistic trans-
mission rotates through all processors in the design during the sending process over the
Ethernet interface. With the help of this multiplexer and a reset logic it is possible to
send the power and performance statistics for a variable number of cores via the Ethernet
interface. Hence we obtain a generic design which is able to profile an arbitrary number
of processors in the multi-core system-under-test. A larger number of cores in the design
result in more generated statistics data that must be sent over the Ethernet interface.
Thus every additional core results in a worse timely resolution because the accumulator
for every core has to sum up the statistics data over a longer time period until the data
can be sent.

Every core is sending power and performance statistics to its own aggregation unit. In
this unit one counter is implemented for every generated performance or power statistic.
The concatenation of all power and performance counter values of a processor forms a
PPDU frame. The output of each aggregation unit is connected to the input of the core
multiplexer which selects one of them for the output, connected to the Ethernet controller
unit. This frame is buffered by the Ethernet controller until the transmission over the
Ethernet interface can be carried out. After transmission the accumulator for the buffered
PPDU frame is reset and the core multiplexer selects the next PPDU frame to transmit.

An example where two processors send their power and performance statistics over
the Ethernet interface and the PPDU frame interleaving functionality is shown in Figure
3.8. All power and performance estimation units start generating statistic data at the
same time. When the Ethernet interface is ready to send data the statistic data of core
one is buffered and the accumulator unit of core one is reset. The Ethernet interface now
starts transmitting the buffered data to the host PC. During the transmission time the

47

Core 1 Core N

Power
Estimation

Performance
Estimation

Power
Estimation

Performance
Estimation

∑ ∑ ∑ ∑

Core
Multiplexer

Transmit
Data

Host PC

Ethernet Frame

Select Next
Core

Reset Core
AccumulatorE

th
er

ne
t

C
on

tro
lle

r

C
or

e
1

A
gg

re
ga

tio
n

C
or

e
N

A

gg
re

ga
tio

n

FPGA
…..

P
P

D
U

 F
ra

m
e

se
nt

Buffer Data

Ti
m

e

Pow/Perf
Statistic

Core 1 Core 2Ethernet
Frame

Ethernet Frame Data
Partitioning for Two Cores

Reset

Reset

Reset

Reset

Reset

Reset

PPDU Frame

PPDU Frame Core 1 PPDU Frame Core N

Pow/Perf
Statistic
Reset

Figure 3.8: Data Aggregation and Ethernet Frame Generation

accumulator units of both cores sum up the estimation data. When the PPDU frame
of core one is transmitted the statistic data of core two is buffered and the accumulator
unit of core two is reset. A larger number of processors in the design does not impact
the overall power or performance estimation during a benchmark run. Only the timely
resolution will get worse, resulting in a more coarse grained statistics data sampling.

3.8 Software Analysis Flow for a System with PPDU

This section illustrates how our profiling architecture can be used during the design process
to obtain power and performance statistics of software and hardware-under-test. In Figure
3.9 an overview of a software development flow including our PPDU design is shown. First
the software program which should be analyzed is compiled for the multi-core system and
machine code is generated. If the PPDU control registers are mapped into the memory
space of the test program an easy control of the PPDU tracing is possibly inside of the
test program. Also the netlist of the multi-core system with the PPDU is loaded onto the
FPGA board with the machine code of the software program to test. Now the power and
performance traces are transmitted over the Ethernet connection to the host PC where a
Java program receives the data and displays it.

3.9 Power and Performance Analyzing Software

In this section we will discuss the design of our analysis software running at the host PC.
Based on our previous design decisions the power and performance statistics from the

48

Application
(C Source Code)

Compiler

Assembler & Linker

Machine Code

PPDU Configuration
(C, Optional)

Emulation Platform

Power TraceFunctional Trace

PPDU + System
Netlist &

Configuration

Host PC Analysis

Performance Trace

Figure 3.9: Software Development Flow Utilizing Power and Performance Emulation [8,
with modifications]

PPDU on the FPGA will be sent over the Ethernet interface to the host PC.

3.9.1 Requirements

The main requirements for the host software are:

• Platform independent, runnable on Windows and Linux.

• Run-time Ethernet data capturing of all profile data with no data loss.

• Visualization of the power and performance profiles.

• Profiles should be exportable into a format for storage and post-processing.

• Software should be configurable for different PPDU settings with a configuration
file.

3.9.2 Analyzing Software Parts

An overview of our software and its main parts are shown in Figure 3.10. For achieving
a platform independent software design we decided to program the host software in Java
[28]. We use the free software library JPCAP [34] to receive the Ethernet packets which are
sent from our PPDU. The data is preprocessed by a data parser which can be configured
by a XML file. This configuration is necessary because the PPDU can be configured to
send different profile statistics to the host PC. The configuration file instructs the software
how to interpret the received data. The data parser component has to know how much
processors are in the design and which bits represent the content of a power or performance
counters. Generally the data parser component can be realized in Java and uses no special
libraries. The parsed data is then pre-processed which can be for example an averaging

49

FPGA

Design-Under-Test

Muti-Core
System

PPDU

JPCAP
Network
Library

Pre-Processing

JFreeChart
Library

Config File
XML Document

Network Capture Profiles Output

Java Code
Data Parser

CSV File

Java

12;32;43;
34;34;52;
45;45;34;

Ethernet
100Mbit/s

Host PC

PPDU Configuration

Po
st

-P
ro

ce
ss

in
g

PPDU
Frame

Figure 3.10: Overview of the Host Evaluation Software

step to reduce the amount of data. The pre-processed data can then be stored in a
CSV file. We decided to choose the CSV file format because this data format can be
easily imported by post-processing programs like MATLAB [35] which provides mighty
filtering and visualization methods. To obtain a fast overview of the received statistics
a visualization module with the help of the free software library JFreeChart [30] will be
implemented.

50

Chapter 4

Implementation of the Multi-Core
Emulation Platform

4.1 Overview

In this chapter a case study of our power and performance evaluation platform using a
LEON3 multi-core system is presented. The main parts of the implementation are:

• LEON3 IP library from Aeroflex Gaisler [21]

• SnapGear 2.6.21.1 embedded Linux distribution [20]

• Xilinx GR-XC3S-2000 development board [18]

An overview of the PPDU integration into the LEON3 design is shown in Figure 4.1.

AHB
Controller

UART

…...

Host PC

Ethernet Frames

AHB Bus

INTEL PHY
100BASE-TX

APB Bus

Timer I/O

Evaluation
Program

LEON3 Core 1 LEON3 Core N

AHB/APB
Bridge

Power and Performance
Debug Unit (PPDU)

Xilinx GR-XC3S-2000 Development Board

Snapgear Linux Snapgear Linux

Power
Estimator

Performance
Estimator

Power
Estimator

Performance
Estimator

PPDU
Control Logic

Figure 4.1: Integration of the PPDU Into the LEON3 Design

51

4.2 Used Tools

To prove the design a case study with the LEON3 IP library, provided from Aeroflex
Gaisler [21] under the GPL license, has been made. The components of the library are
implemented in the hardware description language VHDL. All sub-components and the
processors are connected over an AMBA bus inside the multi-core design. The LEON3
design supports symmetric multi processing (SMP) up to 16 cores. The library is fully
generic and synthesizable for an FPGA or a silicon implementation. An overview of
the software and hardware used during the implementation of the profiling architecture is
shown in Figure 4.2. The profiling architecture was added to the LEON3 design to generate
power and performance profiles, which are sent over the Ethernet interface to a host PC.
Therefore the PPDU is connected to the AMBA bus and different signals which indicate
the current state of the processor are routed from every core to the PPDU. To create
the performance estimation circuits inside the PPDU, first characterization benchmarks

Grlib IPLibrary

FPGA
1500
Spartan 3

FPGA

ModelSim

Xilinx ISE

Performance Estimator Creation Power Estimator Creation

Creation of the Program to Profile

Ethernet
Interface

BCC
Compiler

PPDU
Driver

LEON3 System
(VHDL)

LEON3 System +
PPDU (VHDL)

SnapGear
Linux

Add PPDU
Control

Commands

BCC
Compiler

uCLib
Compiler

Analysis
Software Java

Host PC

Performance
Estimation

Characterization
Work Done in the
POWERHOUSE

Project

GRMON

Synthese LEON3
System + PPDU

Characterisation
Benchmarks

C Program
to Profile

C Program
to Profile

Binary File

Binary File

Netlist

Power
Estimation

Power/Performance
Emulation

A
na

ly
se

 P
ow

er
/P

er
fo

rm
an

ce
 P

ro
fil

es

Power Model
(VHDL)

Event Detection
Circuit (VHDL)

Impact

Figure 4.2: Used Tools During the Implementation

52

�� �����	�
����
��	��	��

������� !���"���� ���������	
��� ������������#����� �$���������������!��$���$ �%�� � �&�
����������'(�)*�+ ������#����������%����� ����"�$��,������ ���"��� ��#����� ��������� �����
����"����+� $�����#�������� ���������� ����"�$�����&�'(�)���� !��,

�� ��#����� �$�������������� ������$�����%�"������������ ����"�$���"�� �-��������+��������
��"�+���������������,

����"���������"�������������	
���
������������������������"����+�.

� ����������������������������� !"#

� ������������������ ���+ ���/
0���+��� ����

' !����4�	.���������	
������$3�
 �!���

�
�)��
�)�

�	��
0	���
1
���

�1
��

-1����

1
��
���

1
-)- �2*(
��	
�)�
�1
-�3!&!
-�

�
���
3�1
���

���
��
��4�5-�
��

6	���

��
���

�1
��

-1����

< 1 1

1
-
��5

��0��

6���
,�

��,1�
�	��

6	���
��
�

��������
��5

��	
�)�

�
�'�
��	6��

2�
,

�
��
�)'

$�'
2000

+�

�

��
3

1
���	7�
��6�
�

1
���	7�
�,����
��

3�3��5
�$�
�
	��

��	
�
����1
-
���6��)

���

Figure 4.3: Development FPGA Board GR-XC3S-2000 Block Diagram [22, with modifi-
cations]

are written in C causing the events to be detected. These events are for example cache
misses or register write/read accesses. These benchmarks are compiled with the Bare-C
Cross Compilation (BCC) system. The binary benchmark files and the LEON3 multi-core
design are simulated in ModelSim SE 6.6b [3]. After the simulation process signals in the
design which correlate with the occurring events in the benchmark are manually identified.
These signals are routed from different hierarchical layers to the performance estimation
unit of the PPDU. For every event to be detected an own detection circuit is implemented
in VHDL.

The power estimation unit of the PPDU was created in the POWERHOUSE [42]
project for a single-core system. To obtain a generic design every processor is connected
to its own power and performance estimation instance. After this the whole design is
converted into a netlist for the FPGA by the Xilinx ISE 12.3 [1] tool which is a design
environment for FPGAs. The generated netlist is sent by the Xilinx Impact tool [1] over
the JTAG USB device onto the FPGA device.

The development board for the implementation of the profiling architecture is the GR-
XC3S-2000 board manufactured by Pender Electronic Design [18]. Important components
for the implementation on this board are the Xilinx Spartan3-2000 field programmable
gate array (FPGA), the 10/100Mbit/s Ethernet PHY chip from Intel [27] and a JTAG
FPGA programming interface. An overview of the development board is shown in Figure
4.3.

If a program shall be profiled without the OS, control commands which write to the
memory mapped registers of the PPDU are inserted into the code to start and stop the

53

connected through the AMBA AHB/APB buses.

Figure 1. LEON3 template design block diagram

Processor

AMBA AHB

Timers IrqCtrl

AMBA APB

I/O

8/32-bits memory bus

DSU3

SDRAM

LEON3
Serial

Dbg Link

PROM

AHB
Controller

Memory
Controller

AHB/APB
Bridge

I/O portUART

16-bit I/O port

JTAG
Dbg Link

RS232 JTAG

RS232

SpaceWire
Links

3x LVDS

Multi-core
CAN-2.0

2x CAN

WDOG

Ethernet
MAC

PHY

PS/2VGA

Video PS/2 IF

DAC

Figure 4.4: LEON3 Template Design by the GRLIB IP Library [4, with modifications]

profiling process. The program is then compiled with the BCC compiler which generates
a binary file. If the written program is a process in the Linux SnapGear OS the access
to the PPDU is performed through a Linux driver. With this driver a user program has
access to the PPDU registers which are otherwise not accessible. The Linux OS including
the user program was then compiled by the uCLib compiler. The binary file can now be
written by the GRMON tool onto the FPGA where it is executed by the emulated LEON3
system. The power and performance data of the cores are sent over the Ethernet interface
onto the host PC where a Java program receives, parses and displays these statistics.

4.3 GRLIB LEON3 IP Library

4.3.1 IP Library Overview

The GRLIB IP library is provided from Aeroflex Gaisler [21] under the GPL license. This
library consists of different hardware modules written in VHDL which can be connected
over an AMBA interface. This library is fully synthesizable and can therefore be used for
FPGA development or for silicon implementation. An overview of this template system is
shown in Figure 4.4. In this example a LEON3 processor is connected over the high-speed
AMBA AHB bus to peripheral components like the memory controller or the AHB/APB
bridge for the AMBA bus. All components which do not require high communication
bandwidth such as the RS232 interface, timers or the interrupt controller are connected
to the low speed AMBA APB bus. The control registers of the components are memory
mapped and can therefore be accessed over software, running on the LEON3 processor.

With the help of the JTAG interface and a debug module, designers have access to
the system during run-time. The extraction of different information like the integer reg-
isters or instruction cache entries is possible over the GRMON software debug tool [43].
This tool also enables the manipulation of registers inside the processor and can write

54

Integer pipeline

I-Cache D-Cache

3-Port Register File

AMBA AHB Master (32-bit)

AHB I/F

7-Stage

Interrupt controller

Co-Processor

HW MUL/DIV

IEEE-754 FPU Trace Buffer

Debug port

Interrupt port

Debug support unit

Local DRAMLocal IRAM

SRMMU DTLBITLB

Figure 4.5: LEON3 Core Components [5]

and read data to specific memory addresses over the debug support unit. The GRLIB
enables symmetric multi processing which means that up to 16 LEON3 processors can
be instantiated in the design, communicating over the AMBA bus. The processor cores
execute instructions independent from each other and do not share caches. To avoid in-
consistent data in the caches of the processors, when working with data from the main
memory, cache snooping should be enabled. The LEON3 implementation also supports a
power down mode. The template configuration implements an Ethernet MAC controller
which has been deactivated. This was necessary because only the PPDU should have
access to the Ethernet interface to avoid complex sharing logic. Parts of the design and
the processor can be modified over a configuration file or a configuration GUI, e.g., the
number of LEON3 cores or the cache sizes [5, 4].

4.3.2 LEON3 Processor

An overview of the LEON3 processor is shown in Figure 4.5. The LEON3 is a 32-bit Sparc
V8 processor and is therefore a reduced instruction set computer (RISC). Due to the fact
that the processor is a Harvard architecture the instruction and data memory is split, two
independent caches are implemented. One cache is responsible for caching instructions,
the other for storing the data words. The integer unit (IU) consists of 7 stages:

• Fetch: New instruction is fetched from the cache or loaded from the AMBA bus.

• Decode: Instruction is decoded and addresses are generated.

• Register access: The operands to execute the instruction are loaded from the
register file.

• Execute: The arithmetic logic unit (ALU) performs the instruction with the loaded
operands.

55

• Memory: Data is read/written from the main memory.

• Exception: If traps or interrupts occurred they are resolved in this stage.

• Write-back: The results of the ALU calculation are stored back into the register
file.

The IU can be stalled during execution by the I-cache and D-cache if operands or instruc-
tions cannot be provided. Therefore the IU is halted, no other operations are performed
and the missing data are loaded from the memory. This leads to extra wait clock cycles
during the execution of an instruction when a cache miss occurs. A program has only
access to specific registers which are defined in a register window. Generally there are in,
out, local and global registers for a register window. Due to the fact that the LEON3 is
part of the RISC processor family, all data manipulation like arithmetic/logical/shift are
done in registers and not in the main memory. To transfer data from the registers to/from
the memory the load/store instructions must be used [47, 4, 5].

4.4 PPDU Hardware Implementation

4.4.1 Introduction

An overview of the hardware implementation of the PPDU in the LEON3 design is shown
in Figure 4.6. Every LEON3 core is connected to its own power and performance estima-
tion unit.

Core 1

Power
Estimator

Performance
Estimator

Host PC

Control
Register

Component States

Intel Phy
100Base-TX

Counter Data
Multiplexer TX Controller

C
on

tr
ol

 P
PD

U

Power per
Component Data

Core
Multiplexer

Power
Estimator

Performance
Estimator

Component States LE
O

N
3

Sy
st

em
PP

D
U

FPGA

………………

PPDU
Frame

Counter Data

Counter Data
for One Core

Select Counters
to TransmitA

M
B

A
 IF

Controller

Performance
Data

SW Application 1
Core N

SW Application N

Ethernet Frames

Accumulator

...Power
Counter

Accumulator

...Power
Counter

Performance
Counter

Performance
Counter

Ethernet Controller

Ethernet Frame
Counter

AMBA BUS

Figure 4.6: Overview of the PPDU Implementation on the FPGA

56

• Power/Performance Estimation Units: These units create cycle accurate esti-
mations which are summed up in the accumulator unit by different counters. The
size of these counters are fully generic to make them easily adaptable to the data
they should monitor. For example a counter which sums up the occurrence of logical
instructions could be implemented using a smaller counter than a counter which
counts the total number of clock cycles.

• Multiplexer: A core multiplexer selects the core whose power and performance
counters are transmitted over the Ethernet interface. Due to the fact that the
transmission of all available counters would lead to a loss of dynamic information, a
second multiplexer selects only specific counters to transmit. With this multiplexer
it is possible to choose only the information to transmit that are important for the
analysis of the system. The reduced amount of data leads to a finer time resolution.
The selected power and performance counters form a PPDU frame which is sent to
the MAC controller unit.

• Controller Unit: The counter data multiplexer is controlled by the controller
unit which has an AMBA bus interface and three control registers. These memory
mapped 32-bit registers can be accessed by programs running at the cores and by
the GRMON tool. The control registers start and stop the profiling process and
select the counters for the PPDU frame.

• Ethernet Controller: The Ethernet controller is responsible for creating an Eth-
ernet frame and filling the Ethernet data field with PPDU frames. After every
transmitted PPDU frame the MAC controller resets the counters of the transmitted
core and the core multiplexer selects another core to transmit its power and perfor-
mance information. The Ethernet controller communicates with the TX controller,
which is part of the GRLIB library, over a 32-bit data interface and several control
ports.

• TX Controller: The TX controller is responsible for calculating the CRC checksum
and the preamble for every Ethernet frame. The TX controller communicates with
the Ethernet PHY chip on the development board over the standardized MII/RMII
interface. This chip represents the physical layer of the OSI network model. The
power and performance profiles of the PPDU are then transmitted over an Ethernet
cable with 100Mbit/s to a host PC.

4.4.2 Controller Unit

The controller unit holds the three control registers for the PPDU and is connected over the
AMBA bus to the whole LEON3 system. To enable the AMBA access the controller unit is
connected with the apbi : in apb_slv_in_type and apbo : out apb_slv_out_type
ports. Also the following VHDL code, shown in Listing 4.1, has been added to the con-
troller unit to register the PPDU component at the AMBA bus.

constant pcon f i g : apb con f i g type := (
0 => ahb dev i c e r eg (VENDOR PPDU, PPDU AMBA, 0 , 0 , 0) ,
1 => apb iobar (paddr , pmask)) ;

Listing 4.1: Add Component to AMBA Bus

57

The constants PPDU AMBA and VENDOR PPDU have been defined in the file gr-
lib\amba\devices.vhd and implement a unique identifier for the PPDU component con-
nected to the AMBA bus. The control registers are shown with their memory mapped
AMBA addresses in Figure 4.7. The ENABLE bit (31) enables starting and stopping
the transmission of power and performance profiles over the Ethernet interface. The 2-
bit field MODE (30:29) selects the power and performance counters for a PPDU frame.
Three different modes are currently implemented and shown in Figure 4.8. If mode 11 is
selected all power and performance counter are used to form a PPDU frame. Mode 01
selects the performance statistics D-cache stalls, I-cache stalls and register writes. Mode
10 selects one power consumption counter and one performance counter. These power
and performance counters are selected by the POWER SELECT and PERFORMANCE
SELECT registers. Every bit of the two selection registers represents a power or per-
formance counter, starting at the most significant bit of the registers. The mode 00 is
currently not implemented and can be used for creating a new mode in the the controller
unit. A code example in Listing 4.2 shows how the configuration of the PPDU in a C-file
can be easily achieved by using methods, configuration structure and defines implemented
in the course of this thesis. In this example the PPDU is configured to mode 10 and
additional to the main statistics in this mode, the I-cache hits and the power estimation

0x80000D00

0x80000D04

0x80000D08

031

POWER SELECT

031

PERFORMANCE SELECT

031

ENABLE MODE

2830 29

Not Used

Figure 4.7: PPDU Control Registers

Clock Cycle
Counter

Power
Sum

Program
Counter

Power
Component 1

Power
Component 32

M
O

D
E

=
11

…

Always
TransmittedM

O
D

E
=

10

Available Power and Performance Counters for a PPDU Frame

Performance
Event 1

Select with PERFORMANCE
SELECT register

Always
TransmittedM

O
D

E
=

01

Always
Transmitted

Performance
Event 32…

Select with POWER
SELECT register

Select with PERFORMANCE
SELECT register

Figure 4.8: PPDU Modes

58

Integer Pipeline

General
Clock Cycles
I-Cache Stall Cycles
D-Cache Stall Cycles
All Cache Stall Cycles

Execution Stage
Program Counter
Executed ADD Instructions
Executed LOGIC Instructions
Executed SHIFT Instructions
Executed MUL Instructions
Executed DIV Instructions

Register File

Register Write
Single Register Read
Double Register Read

Instruction Cache

I-Cache Read Hit
I-Cache Read Miss

Data Cache

D-Cache Write Hit
D-Cache Write Miss
D-Cache Read Hit
D-Cache Read Miss

Figure 4.9: Implemented Performance Counters

of the first subcomponent are profiled. The profiling process is started by calling our start
sub-routine start_ppdu(&ppdu_config) with the configuration structure as a parameter.
Afterwards the code which should be tested is called by the method code_to_test().
The profiling process is stopped by calling the stop_ppdu() function after the code to
test finishes execution.

struct ppdu con f i g t ppdu conf ig ;
ppdu conf ig . mode = MODE10;
ppdu conf ig . p e r f s e l e c t = I CACHE HIT ;
ppdu conf ig . pow se l e c t = SUB POWER 1;
s tar t ppdu(&ppdu conf ig) ;
c o d e t o t e s t () ;
stop ppdu () ;

Listing 4.2: Configuring PPDU for Profiling

4.4.3 Performance Estimator Unit

4.4.3.1 Performance Counter Types

For every performance indicator to be profiled a performance detection circuit has been
implemented which feeds a counter in the accumulator unit. All implemented performance
event counters are shown in Figure 4.9 and are extracted from four main components [5]:

• The integer unit consists of a 7 stage integer pipeline. Performance statistics col-
lected from this unit include the number of clock cycles of the last collection period
and the number of I-cache as well as D-cache stall cycles. Stall cycles always occur
when a pipeline stage in the integer unit needs data which is not available in the
cache and must be loaded from the instruction or data memory. Thus the integer
unit stops the execution and waits until the instructions or operands are loaded.

59

This hold event is signaled by the low active holdn : std_ulogic signal input
port of the integer unit and can be triggered by the I-cache and D-cache unit. Also
the number of executed instructions summarized in the five main groups ADD,
LOGIC, SHIFT, MUL and DIV are counted. These events are extracted from the
execution pipeline stage of the integer unit by adding additional output ports to
the component which show the current executed instruction. The MUL and DIV
instructions can only be used when the processor is configured to use an additional
hardware-accelerated multiplication/division unit.

• The register file unit in the LEON3 processor possesses two read interfaces and one
write interface, consisting of address, data and enable ports. Thus two different
register addresses can be read out at the same time. The write and read operations
to the registers are performed in one clock cycle after the enable signal is detected.
The ports which indicate access to the register files are for read operations the
high active re1,re2 : std_ulogic and for write operations the we : std_ulogic

enable ports.

• The cache system of the processor consists of an I-cache and D-cache unit. They are
fully configurable in cache size and replacement policy, e.g., strategy least-recently
used, least-recently-replaced or (pseudo-) random. The I-cache is used during the
instruction fetch procedure of the IU. The D-cache is accessed from the memory
stage. By means of an AMBA bus connection the caches can load missing operands
or instructions from the memory.

4.4.3.2 Benchmarks to Detect Cache Performance Events

For the purpose of causing performance events for the caches, six benchmarks have been
written which perform write/read hits/misses for every cache type in a loop as shown in
Appendix B.2. After creating the benchmarks in C and compiling them with the Bare-C
Cross Compilation (BCC) the binary files were simulated on a single-core LEON3 system.
The simulation software is ModelSim SE 6.5d [3] which operates at the RT-level and can
display the signal changes of the whole system in a graphical user interface.

Signal changes were identified that correlate with the events in the loop of the bench-
mark. An I-cache hit occurs always when the data of the address which should be loaded
is already buffered in the cache. This I-cache hit event can be caused repeatedly in a
loop program because in the loop the instructions are loaded from the same addresses.
To cause I-cache misses, the function sparc_leon23_icache_flush() was inserted into
the loop which clears the content of the cache and therefore produces cache misses during
the execution of the loop. D-cache read hits can be created by a software benchmark
by reading a variable, which is stored in the memory. After a first read miss, because
the data of the accessed address is not buffered in the cache at the first execution in
the loop, all other accesses should generate D-cache read hits. To avoid compiler opti-
mizations, which would for example optimize and therefore remove repetitive assignments
to a variable with the same data, the keyword volatile should be used for creating
the variables which are accessed. Read misses can be implemented by using the method
leonbare_leon3_loadnocache16(address) from the BCC. This method loads data from
an address and ignores the caches. The D-cache is implemented as a write-trough cache

60

which means that if a write hit occurs, the data changes are written into the cache and
the main memory. If a D-cache write miss occurs only the data in the main memory
changes and the data is not inserted into the D-cache. This cache characteristic is called
no-allocate. This means that a write hit can only occur when first a read operation has
been performed on the same address on which the write operation is performed. Therefore
there are no execution speed improvements of a D-cache write hit compared to a D-cache
write miss because the write process to the main memory needs more clock cycles than
writing to the cache [5].

4.4.4 Ethernet Communication Functionality

The Ethernet controller is implemented as a finite state machine and responsible for send-
ing as many PPDU frames as possible over a 100Mbit/s Ethernet interface to the host PC.
The Ethernet controller is connected with the TX controller which handles the Ethernet
frame header generation, CRC calculation and the communication with the PHY chip on
the development board. The software on the host PC itself has to process the received
Ethernet packets fast enough so that no packets are lost. This is important because we
send as many Ethernet packets as possible over the Ethernet interface and do not wait for
an acknowledge from the host PC.

The different states of the Ethernet controller unit are presented in Figure 4.10. In
general this unit is responsible for filling the data field of the Ethernet frame with PPDU
frames, transmitting these data to the TX controller and resetting the power and perfor-
mance counters at the accumulator unit. The TX controller is adopted from the GRLIB
library where it is used in the Gaisler Ethernet MAC component. The TX controller
receives its input clock from the PHY Ethernet chip which generates a 25MHz signal for
the 100Mbit/s Ethernet communication. By using the TX controller we do not have to
communicate directly with the Intel PHY chip [27] on the development board. Starting
a new Ethernet frame is done by setting the input port tx_en : std_ulogic of the TX
controller to high. The TX controller then starts generating a new Ethernet frame by
sending seven bytes 0xAA preamble data and the SFD byte 0xD5, generated for Ethernet
synchronization reasons. After sending these data the TX controller changes its output
port read which signals the Ethernet controller that it can send data to the TX controller.
These data are forwarded to the PHY chip and sent over the Ethernet interface. Before
the PPDU frames can be included into the Ethernet frame, the header data to obtain a
valid Ethernet frame must be transmitted. This header data are first the MAC destination
and source addresses, the Ethernet type field and after this, in the Ethernet data field,
the PPDU frames. The Ethernet type field defines how the data inside of the Ethernet
data field is interpreted by the next OSI layer. For example an Internet Protocol version
4 (IPv4) field is identified by the type field content 0x0800. The receiver of this Ethernet
packet parses the type field and knows that the data field has to be interpreted as an IPv4
packet which consists of a header with IP source and destination addresses. Our PPDU
type field content is 0x88AA which is unused by other protocols. The analysis software at
the host PC interprets the Ethernet data field now as a two byte Ethernet frame identifier
field and additional PPDU frames containing the power and performance statistics.

To avoid the data overhead which occurs by every new created Ethernet packet we
have decided to place as many PPDU frames into a single Ethernet frame as possible and

61

Transmit PPDU Frame
do / transmit buffered PPDU Frame
exit / increment PPDU bytes send
exit / increment Ethernet bytes send

Start New PPDU Frame
entry / buffer actual PPDU frame
entry / reset PPDU bytes counted
entry / reset power/performance counter
do / transmit Ethernet frame counter

[#Ethernet bytes sent] > MAX[#
P

P
D

U
 fr

am
e

by
te

s
se

nt
] >

 M
A

X

Start New Ethernet Frame
entry / reset Ethernet bytes counted
entry / increment Ethernet frame counter
do / wait TX controller ready

Transmit CRC
do / wait TX controller ready

Transmit Ethernet Frame Header
do / transmit MAC destination address
do / transmit MAC source address
do / transmit Typ field

PPDU ENABLE register = '1'

Idle

Figure 4.10: State Machine of the Ethernet Controller

start sending a new Ethernet frame directly when the old frame has been sent. Figure 4.11
shows how Ethernet frames look like if they are composed and filled with PPDU frames
and the Ethernet frame identifier by the Ethernet controller. The overall byte count for
the data field of a PPDU frame has to be below 1500 bytes which is the maximum specified
data length for a valid Ethernet frame. For the case that the host PC could not process
the received Ethernet packets quickly enough and has to drop packets, an Ethernet frame
counter has been implemented into the Ethernet controller which is incremented every
time a packet has been sent.

The power and performance data should be transmitted as fast as possible so that
the averaging effect of undersampling is decreased. With the help of the Ethernet frame
identifier the analysis software, running at the host PC, can detect missing packets from
the PPDU by comparing the Ethernet frame identifier value for every frame. If a missing
packet is detected the user can be informed. This information is important because in a
multi-core system, the PPDU frames do not contain a processor identifier and can only
be identified by their sequence in which they are received. If packets are missing, this

62

Preamble SFD Destination
Address

Source
Address Data CRC

PPDU
Frame ... PPDU

Frame

1500 Byte

Ether Type

Frame
Identifier

Clock Cycle
Counter

Power
Sum

Program
Counter

Power
Component

Power
Component… Performance

Event
Performance

Event…

... Ethernet
Frame

Ethernet
Frame Stop PPDUStart PPDUConfigure PPDU

Power Profile Performance ProfileGeneral Profile

Power and Performance Profiling of a Program

Program Under Test

Figure 4.11: PPDU Frames Embedded in an Ethernet Frame

sequence could get mixed up and the PPDU frames are assigned to wrong processors
during the parsing process of the software.

The communication between the Ethernet controller and the TX controller is imple-
mented using a handshake protocol over a 32-bit data interface. Always when the TX
controller has buffered the 32-bit input data the TX controller inverts the state of its read
port. The Ethernet controller detects this change and assigns the next data which should
be transmitted to the data port. To signal the TX controller that new data is ready for
buffering the Ethernet controller inverts the state of its output port read_ack.

After sending the Ethernet data field the TX controller automatically calculates the
CRC checksum over the transmitted data and places this checksum at the end of the
Ethernet frame. After the Ethernet frame has been completely sent, the TX controller
changes the state of its output port done to report the Ethernet controller that it is in idle
state and ready to start a new Ethernet packet. The TX controller communicates with the
PHY chip on the development board over a 4-bit data MII interface. The Ethernet PHY
chip on the FPGA represents the physical layer of the OSI network model and can detect
data collisions on the Ethernet wire. Due to the fact that we use a full-duplex Ethernet
configuration and a crossover cable we do not consider collisions during the sending of
data or that other network devices slow down the transmission speed. The only network
component which sends data over the Ethernet cable to the host PC is the development
board with the LEON3 system and our PPDU. The connection speed to the host PC is
100Mbit/s which is the highest network speed which is supported by the PHY chip.

4.4.5 PPDU System Integration

Our PPDU implementation sends and receives data from different units in the implemen-
tation as shown in Figure 4.12. In general, these units can be divided into two different

63

Design-Under-Test

AMBA Bus

LEON3 Cores

Peripherals

LXT971A
Ethernet PHY

OSC
25MHz

PPDU

TXD[3…0]

TX_EN

TX_CLK XFMR +
RJ45

APBI

APBO

Resetn

CLK

State_Core_1

State_Core_N

…

FPGA Emulated Hardware (VHDL) Chips on the Board (Silicon)

Ethernet
Interface

OSC
≤ 50Mhz

COL

CRS 10
0

M
bi

t/s

Figure 4.12: PPDU System Integration

types. First, emulated hardware units described in the hardware description language
VHDL and emulated on the FPGA. These are the GRLIB LEON3 system components
and our PPDU. Second, real chips implemented in silicon on the development board like
the Intel Ethernet PHY chip.

The PPDU is integrated into the given LEON3 system by routing the power and
performance relevant signals for every processor in our design-under-test to the PPDU.
These signals are used as input for the power models and the performance detection circuits
to create cycle accurate estimations. For the power estimation unit a tradeoff has to be
found between the number of power relevant signals to route from different levels of the
design to the PPDU and the estimation accuracy of the power model. A power model
which depends on more input signals has a higher accuracy but also needs more chip space
on the FPGA. The power relevant signals represent the current state of the processor and
are summarized by the PPDU input signals State_Core_1 to State_Core_N shown in
Figure 4.12. The synchronous implementation of the PPDU uses the same clock CLK as
the system-under-test and the negative reset input Resetn. The connection to the AMBA
bus, which enables the access to memory mapped control registers of the PPDU, is made
by the AMBA interface which consists of the input port APBI and the output port APBO. In
this implementation we do not use the ability to receive data over the Ethernet interface.
Therefore only these signals are used which are necessary for a communication with the
PHY chip to send Ethernet packets.

4.5 Profiling Control

In our implementation two control mechanisms for starting and stopping the profiling pro-
cess of an application of interest running at the emulated LEON3 system are available.
These possibilities are shown in Figure 4.13 and listed below:

64

• Control of the PPDU by the host PC analysis software.

• Control of the PPDU by software.

4.5.1 Control of the PPDU by the Host PC Software

By starting and stopping the analysis program on the host PC every code can be bench-
marked without the need of modifications. For this the ENABLE field of the control
register must be set from the default value ’0’ to ’1’ before the benchmark is executed.
This enables the profiling process on the PPDU and starts the sending of power and per-
formance statistics over the Ethernet connection. The register setting can be carried out
with the GRMON tool by writing to the AMBA bus address of the PPDU control registers.
If the PPDU should be enabled with mode 01, the following code must be executed:

Command: Address: Value:

wmem 0x80000D00 0xA0000000

This technique is beneficial if code, which has access to the control registers, can not be
directly inserted into the benchmark or if the source code is only available as a binary file.
Using this approach also the profiling of any section inside of an operating system such
as the boot process can be achieved. A disadvantage of this technique is that we can not
synchronize the start and stop of the profiling program on the host PC and the execution
of the code of interest in a benchmark. This could be a problem if only a short piece
of code of the benchmark should be profiled. However, our PPDU frame contains the
program counter so a correlation to code is generally possible if we know the instruction
memory address where the code to test is placed, e.g., by inspecting the memory map file.

4.5.2 Control of the PPDU by Software

When the benchmarking is started and stopped by software running on the emulated
system it is possible to profile only the specific benchmark running at the LEON3 system.
The control commands which start and stop the PPDU are inserted before and after the
code which should be profiled in the benchmark.

Code to Test

Start Stop

Code to TestStart PPDU Stop PPDUControl PPDU
by Software

Control by the
Host PC Software

Profiled Code

Profiled Code

C
on

tro
l A

na
ly

si
s

S
of

tw
ar

e
(H

os
t P

C
)

A
dd

iti
on

al

In
st

ru
ct

io
ns

Figure 4.13: Possibilities to Control the Profiling Process

65

start_ppdu();

code_to_test();

stop_ppdu();

With this technique we can synchronize the execution of the code to test and the resulting
power and performance profiles generated by the software running at the host PC. A dis-
advantage is that write access to the registers must be possible and that we slightly change
the run-time behavior of the benchmark because of the additional control code. However,
the additional control instructions lead to very few run-time characteristic changes which
can be generally ignored.

If the code of interest is running on an OS we need to get access to the memory
space of the PPDU control registers which are generally not available from a user program
running on the OS. In our implementation we use the SnapGear Linux for LEON3 [20]
and provide a PPDU Linux driver to access these registers over IO-control system calls
by a user program. An overview how to start the profiling by an user space program is
shown in Figure 4.14. The arguments, which are stored into the registers of the PPDU,
are committed from the user space over a system call interface to the kernel space which
holds the PPDU device driver. These driver has write and read access to the AMBA bus
to which the PPDU is connected.

U
se

r S
pa

ce
K

er
ne

l S
pa

ce

E
m

ul
at

ed
 L

E
O

N
3

S
ys

te
m

Li
nu

x
O

pe
ra

tin
g

S
ys

te
m

Driver

System Call

System Call
Interface

AMBA Bus

PPDU Control
RegistersH

ar
dw

ar
e

Start/Stop
PPDU

Start/Stop
Profiling Method

Figure 4.14: Controlling the PPDU by User Space Methods

66

G
U

I

JPCAPCaptor
opendevice()

PacketCapture

receivePacket()

PPDU

EthernetPacket

JPCAPWriter

writePacket()

storePacket()

JPCAPCaptor
openFile()

getPacket()

Normalization

Clock Cycles
X

Smoothing

Matlab

Display Text Fields

Dropped Ethernet Packets

Received Ethernet Packets

Actual Modes

Control-Buttons
Start/Stop Capturing

Control Pre-processing

Captured Files CSV File

Captured Files Plot

Frame Identifier
Check

Packet Parser

Clock = Data[0...15]
PC = Data[16...47]

…

GraphControl
addXYPoint()

Scripts

Set Data

XML Parser

C
on

fig
 F

ile
XM

L
D

oc
um

en
t

Set Control

Set Modes

B
in

ar
y

Fi
le

CSV File
12;32;43;
34;34;52;

Set Control

Read out
JPCAP Library

JFreeChart Library

Java Code

H
os

t P
C

FP
G

A System-Under-Test

Write To

Et
he

rn
et

 F
ra

m
e

Ethernet Frame

PPDU Frame

PPDU Frame

Power
Performance

Clock Cycles

Figure 4.15: Implementation Overview of the Analysis Software

4.6 Analysis Software

The power and performance statistics generated by the PPDU must be received, parsed,
pre-processed, displayed and stored for post-processing. The software providing this has
been implemented in Java to enable a platform-independent and portable profiling com-
puter program. The receiving process must be fast enough so that no data get lost because
no acknowledge mechanism is implemented in the PPDU. Thus the PPDU can not retrans-
mit an Ethernet packet to the host PC when a packet got lost or could not be processed
fast enough.

To obtain an overview of the received data a visualization of the power and performance
statistics has been implemented. Is is also possible to export the statistics to a comma
separated values file for post-processing. An overview of the implemented analysis software
components is shown in Figure 4.15.

To capture the Ethernet packets in Java the JPCAP library [34] has been used. This
library generally enables the sending and receiving of Ethernet packets. To receive packets
a new object of the JPCAPCaptor class was created and the Ethernet interface was opened

67

for packet capture using the openDevice() method. To receive only packets which have
been sent to the host PC from the PPDU, a packet filter was registered. The parameters for
the setFilter() method were set to ether proto 0x88aa. Hence only incoming Ethernet
frames with the type field 0x88aa, identifying the PPDU, are considered for capturing.
The receivePacket() method is implemented by the PacketCapture class. This method is
called every time when a new Ethernet packet, which passes the packet filter restrictions,
is captured. Our PPDU utilizes the maximum size of the data field of an Ethernet frame
and starts immediately sending a new frame when the last packet has been sent. Thus
the Java program has to process around 100Mbit/s of raw data. When this data would
be stored to the main memory of the PC long benchmark runs would not be possible
because the whole memory would be filled after short time. The profiling of a one minute
benchmark generates around 60s · 100Mbit ≈ 750Mbyte of data. To solve this storage
problem the Ethernet packets are first stored onto the hard disc (HDD) of the PC during
a profiling process. After the profiling is stopped, the captured packets from the HDD
can be read out and processed without real-time constraint. The read-out data is then
parsed, pre-processed and stored into a CSV file on the HDD or displayed in a graphical
user interface (GUI).

In the current implementation the Ethernet packets are first stored by the JPCAP-
Writer class to a binary file on the HDD. The getPacket() method, running in a loop,
extracts the Ethernet packets from the binary file after the capture is complete and passes
them to the frame identifier check method. Missing packets can be detected by the profil-
ing software because of an inconsistent frame identifier. The number of dropped packets is
displayed by the GUI. The verified packets are committed to the the packet parser where
the PPDU frames are extracted from the data field based on the PPDU made settings of
the XML configuration file. In the configuration file all information necessary to extract
the PPDU frames from the Ethernet data field is stored. Therefore the configuration of
the PPDU has to be the same as in the configuration file. Otherwise the packet parser of
the profiling software is not able to interpret the received data in the Ethernet frame data
field correctly. An example of a XML configuration for the PPDU mode 01 is shown in
Listing 4.3.

<mode>
<name>Mode 01</name>
<co r e s number=”2”></ co r e s>
< f i e l d l ength=”2”>Clock Cycles</ f i e l d>
< f i e l d l ength=”4”>Program Counter</ f i e l d>
< f i e l d l ength=”4”>Power Sum</ f i e l d>
< f i e l d l ength=”2”>I−Cache S t a l l s</ f i e l d>
< f i e l d l ength=”2”>D−Cache S t a l l s</ f i e l d>
< f i e l d l ength=”2”>Reg i s t e r Writes</ f i e l d>
</mode>

Listing 4.3: XML Analysis Software Configuration File Example

In this example the packet parser gets the information that two processors are sending their
power and performance statistics during the profiling process. Thus the PPDU frames,
which represent the statistics during a number of clock cycles are generated alternative

68

Frame
Identifier

Clock
Counter

Program
Counter

Ethernet Frame Field Data[0..1500] Byte

0 15 16 47 48 79 80

Power Sum D-Cache
Stalls

I-Cache
Stalls

Register
Writes

159

PPDU
Frame

PPDU
Frame

PPDU
Frame

PPDU
Frame

Frame
Identifier

PPDU
Frame

PPDU
Frame

PPDU
Frame

PPDU
Frame

C
or

e
1

C
or

e
2

111 112 127 128 143 144

Figure 4.16: Interpreting the Data of a Two Core LEON3 System and Selected PPDU
Mode 01

Network
Capture Pre-Processing GUIData

Buffer

Java Thread 1 Java Thread 2

E
th

er
ne

t
P

ac
ke

ts Read

Write

Read

Write

Analysis Software

Java Mutex
CSV File
Output

Figure 4.17: Analysis Software Thread Synchronization

by each core. This behavior is shown in Figure 4.16. In the XML file the name of the
mode, the interpretation order and the number of bytes for every statistic counter are
stored. For example the I-cache stall field is 16-bit wide and is at the position of bits 128
to 143. As described before, the number of averaged clock cycles varies between PPDU
frames. Different time intervals occur for example during the end and the start phase of
a new Ethernet frame due to the Ethernet header and trailer data. The normalization by
the number of clock cycles enables the comparison of two PPDU frames generated over
different time intervals.

After the normalization process the PPDU frames can be further averaged over a
user defined number of frames to decrease the amount of data. The processing of a big
number of PPDU frames and therefore the graph creation needs a lot of memory space
and processor time of the analysis PC. The averaging reduces the data points which must
be processed and therefore increases the analysis speed.

The smoothed statistics are then passed over to the GraphControl class which uses the
JFreeChart library [30] to create a visualization of the power and performance profiles.
This is done by calling the method AddXYPoint() which adds a new data point to the
graph. It is also possible to write the PPDU frames to a CSV-file on the HDD. Every row
in the CSV file represents one PPDU frame, starting with the first received frame. The
columns of the file, split by the semicolon, represent the PPDU power and performance
counter values in the order defined in the XML configuration file. With the help of the
CSV files data exchange with other programs is possible. Later post-processing of the
power and performance statistics stored in the CSV file can be performed , e.g., with
Matlab. It is now also possible to archive the power and performance statistics for every
benchmark easily in a CSV file for later use. For interacting with the analysis software a

69

Figure 4.18: Analysis Software GUI

graphical user interface (GUI) has been implemented which is shown in Figure 4.18.
The Java program was split into two independent threads for performance reasons

which is shown in Figure 4.17. Thread one processes the network capturing and the read
and write accesses to the binary Ethernet file on the HDD. In thread two runs the frame
ID check, parsing process, pre-processing and the GUI. The two threads communicate over
a data buffer variable with the Java synchronized statement. Only one thread can have
read or write access to the buffer variable by the Java mutex construct. Thus the problem
that two threads are working with different buffer data copies can not occur.

70

Chapter 5

Results

5.1 Introduction

To validate and test the usefulness of the PPDU different benchmarks were performed.
First the received data from the PPDU has been validated against results from a software
simulator. After this the PPDU has been tested for being employed during the hardware
and software design process to optimize a system for different constraints. For example
different automatic software optimization settings of a compiler and their influence on
power, execution time or binary file size have been tested. Software has also been manually
optimized, based on the received PPDU statistics. The great power consumption difference
between setting the processor into power down mode against busy waiting is also shown.
Furthermore the usefulness of the profiling architecture for long running benchmarks is
shown, e.g., the profiling of a boot or task migration process of an OS.

5.2 Comparison of PPDU Emulation vs. RTL Simulation

For validating the received profiles over the Ethernet link from the PPDU, we compared
benchmarks with the results of a RT-level simulation generated with ModelSim. These
power traces have been created by logging the power results from the power estimation
unit to disk during the simulation process. These cycle-accurate traces were then moving-
average filtered to simulate the averaging of the data over several clock cycles performed in
the PPDU. The comparison between RT-level simulation and PPDU emulation is shown
in Figure 5.1. The small differences between the two power profiles are due to the fact
that the moving average filter applied to the simulation data employs a fixed averaging
interval, while the PPDU sums up values over a varying number of clock cycles based on
the availability of the Ethernet interface for data transmission.

5.3 Profiling of SW Optimizations

5.3.1 Compiler Optimizations

Compilers typically offer different options to optimize the source code that should be trans-
formed into an executable binary file. We have tested different optimization settings with

71

0 1 2 3 4 5 6 7
x 104

0

10

20

30

40

Samples

P
ow

er
 [m

W
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

Time [ms]

P
ow

er
 [m

W
]

PPDU Profile:

RTL Simulation Profile (Moving Average Filtered):

Figure 5.1: Power Profile Results Comparison Between the RT-level Simulation and the
PPDU Emulation of the Coremark Benchmark

the LEON3 Bare-C Cross Compilation (BCC) system on our power and performance pro-
filing architecture running at 35MHz clock speed. The BCC offers the same optimization
options as the GNU Compiler Collection (GCC) [14] and therefore enables the compilation
with a trade-off between compiler-speed, execution-speed and binary file size. The Core-
mark benchmark has been tested with five different compiler flags. The profiling results
for all available compiler settings are presented in Table 5.1.

Compiler Setting: O0 O1 O2 Os O3

Consumed Energy: 190,46µJ 73,14µJ 66,54µJ 71,83µJ 65,82µJ

Energy Saved: 0% 61,61% 65,1% 62,29% 65,44%

Execution Time: 5,23ms 2,16ms 1,97ms 2,11ms 1,91ms

Binary File Size: 168kB 160kB 157kB 152kB 167kB

I-Cache Stall Cycles: 6394 2887 2794 2593 3189

D-Cache Stall Cycles : 10367 1436 1393 1473 1141

Number Register Writes: 61655 28533 24399 26046 24396

Table 5.1: Comparison of Different Compiler Optimization Settings

• -O0: With this setting no optimization techniques are applied during the compila-
tion. The resulting binary file has the highest power consumption, execution time
and binary file size. However the compilation time is reduced to a minimum. The
resulting power and performance profile with this setting is shown in Figure 5.2.

• -O1: If a program should be optimized without large compile time overhead this
setting can be used. All optimization techniques are enabled which only require little
additional compilation time. Compared to an unoptimized version the execution
time is halved and the energy saving potential is 61,61%.

72

• -O2: This option increases the compile time but also the execution speed. Special
functions like loop unrolling or inlining are not activated. The saved energy increases
to 65,1%.

• -Os: When the memory available on the target device is limited, this compiler
option can be used to reduce the binary file size to a minimum as compared to other
settings. All code optimization techniques are disabled that would increase the code
size, e.g., inlining. Compared to the lowest and the highest optimization setting the
binary file size can be reduced by approximately 10%.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 510
15
20
25
30
35
40
45

Time [ms]

Po
w

er
 [m

W
]

Power Core 1:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.2

0.4

0.6

0.8

1

Time [ms]

C
ou

nt
er

 [N
or

m
al

iz
ed

]

Performance Counter Values:
I_CACHE_STALLS
D_CACHE_STALLS
REG_WRITES

Figure 5.2: Coremark Profile without Compiler Optimization -O0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.810
15
20
25
30
35
40

Time [ms]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.80

0.2

0.4

0.6

0.8

1

Time [ms]

Power Core 1:

Performance Counter Values:

I_CACHE_STALLS
D_CACHE_STALLS
REG_WRITES

P
ow

er
 [m

W
]

C
ou

nt
er

 [N
or

m
al

iz
ed

]

Figure 5.3: Coremark Profile with the Highest Compiler Optimization Level -O3

• -O3: A profile of the benchmark compiled using this setting is shown in Figure 5.3.
Compared to the unoptimized version less D-cache misses occurred. Thus, the IU

73

does not have to wait until missing operands are loaded from the main memory.
Therefore the processor can execute the code much faster without stall cycles. This
compiler flag enables all optimization options resulting in the highest execution speed
and power savings but also in the longest compilation time. Due to the fact that
inlining is used, the code size, compared to O1, O2 and Os, increases. As a result
an energy saving of 65,44% and an execution speedup of 63,48% are obtained.

This example shows how our power and performance profiling architecture can be used by
a designer to quickly evaluate different compiler settings. The software can be optimized
for different requirements such as compilation speed, binary size, execution time or energy
consumption.

5.3.2 Manual Optimizations

In this example we demonstrate the benefits of using our profiling architecture during the
software optimization process. A self-written program which manipulates every element of
an array twice has been created, representing a manipulation from the field of digital signal
processing. The power and performance profile of this test program has been recorded
with the PPDU. Based on the collected statistics manual code optimizations have been
implemented. Pseudocode for the un-optimized and optimized code version are given in
Table 5.4 and illustrated in Figure 5.5. The PPDU generated statistics for all optimizations
are given in Table 5.2.

• No Optimization: Figure 5.6 shows the profile of this version. The program
generates many D-cache misses on our LEON3 system because the D-cache is limited
in size. After some time, cached addresses are overwritten by new entries based on
the implemented replacement policy. This leads to the problem that all buffered data
memory entries from loop 1.1 are not available for the second loop 1.2. This leads to
a time-consuming reloading of data from the main memory. Thus, more clock cycles
are needed during the execution, leading to a higher overall energy consumption.
In the profile it is possible to identify the starting point of the different loops by
looking at the I-Cache misses. During the execution of the loops no I-Cache misses
are occurring because the same instructions are executed. During the change from
loop 1.1 to 1.2 new code must be loaded from the instruction memory, generating
I-Cache misses, as shown in the performance profile. If this code profiling is done
at early design stages the designer of the system can explore the design space by

Self-Made Optimization: None Loop Splitting Loop Fusion

Consumed Energy: 68,21µJ 62,11µJ 50,78µJ

Energy Saved: 0% 8,95% 25,56%

Execution Time: 2,51ms 2,03ms 1,65ms

I-Cache Stall Cycles: 25 62 13

D-Cache Stall Cycles: 30288 15977 15314

Number Register Writes: 17163 17109 12862

Table 5.2: Comparison of Manual Code Optimization

74

varying hardware and software parameters. For example the D-cache size could be
incremented to make all array contents used in loop 1.1 storable. Thus loop 1.2
can quickly access all its data from the D-cache. The optimal D-cache size could be
found by trying different cache size settings with the help of our profiling system. Of
course this hardware optimization leads to higher hardware costs but enables a lower
energy consumption and an execution speed-up. Another improvement possibility is
optimizing the software by loop splitting or loop fusion.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.80
Time [ms]

C
o

Figure 5.3: Coremark Profile with the Highest Compiler Optimization Level 3 -O3

No Optimization Loop Splitting Loop Fusion

Loop1.1(i=0;i<SIZE;i++)

array[i]=array[i]+i;

Loop1.2(i=0;i<SIZE; i++)

array[i]=array[i]*2;

Loop2.1(i=0;i<SIZE/2;i++)

array[i]=array[i]+i;

Loop2.2(i=0;i<SIZE/2;i++)

array[i]=array[i]*2;

Loop2.3(i=SIZE/2;i<SIZE;i++)

array[i]=array[i]+i;

Loop2.4(i=SIZE/2;i<SIZE;i++)

array[i]=array[i]*2;

Loop3.1(i=0;i<SIZE;i++)

{

array[i]=array[i]+i;

array[i]=array[i]*2;

}

Table 5.2: Pseudo-Code of Self-Made Optimization

on the implemented replacement policy. This leads to the fact that all buffered
data memory entries from the loop 1.1 are not available in the second loop 1.2.
This leads to a time-consuming reloading of data from the main memory. Thus,
more clock cycles are needed during the execution which leads to a higher overall
energy consumption. In the profile it is possible to detect the starting point of the
different loops by looking at the I-Cache misses. During the execution of the loops
no I-Cache misses are occurring because always the same instructions are executed.
During the change from loop 1.1 to 1.2 new code must be loaded from the instruction
memory, which generates I-Cache misses, shown in the performance profile. If this

Figure 5.4: Pseudocode of Manual Optimization

Array[1]

Array[2]

.

.

.

Array[N-1]

Array[N]

Array[1]

Array[2]

.

.

.

Array[N-1]

Array[N]

Array[1]

Array[2]

.

.

Array[N-1]

Array[N]

No Optimization Loop Splitting Loop Fusion

Lo
op
2.
1

Lo
op
2.
2

Lo
op
2.
3

Lo
op
2.
4

Lo
op
1.
1

Lo
op
1.
2 Lo
op
3.
1

.

Figure 5.5: Array Manipulation Explanation

• Loop Splitting: In a first optimization step the processing of the array has been
split into two parts. First the upper and then the lower array indices are processed
twice. The resulting power and performance profiles are shown in Figure 5.7. All
operands which have been cached during the loops 2.1 and 2.3 are now available for
the loops 2.2 and 2.4. Therefore the register write activity is much higher because
the IU must not be halted in loop 2.2 and 2.4 until the data from the memory are
loaded. This leads to an increased power consumption of the chip during the phase
when the operands for the instruction can be loaded directly from the caches.

75

Due to the fact that the array manipulation instructions can be processed faster the
incremented power does not lead to a higher overall energy consumption. Instead
we obtain a speed-up of 19,12% and an energy consumption reduction of 8,95%.

• Loop Fusion: In a next optimization step we have tested loop fusion where all
instructions of the algorithm are executed in loop 3.1. This avoids the additional
instructions which have to be included in the code during the loop splitting opti-
mization to control four different loops. Hence the number of I-cache misses due to
controlling instructions for different loops is diminished. Also register accesses can
be reduced because of less loop control overhead. In the loop every cached operand
is used by the next instruction which results in no multiple loads of data from the

P
ow

er
 [m

W
]

Power Core 1:

C
ou

nt
er

 [N
or

m
al

iz
ed

]

Performance Counter Values:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 215

20

25

30

35

40

Time [ms]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.1

0.2

0.3

0.4

0.5

0.6

Time [ms]

Start of
Loop 1.2

I_CACHE_STALLS
D_CACHE_STALLS
REG_WRITES

Start of
Loop 1.1

Figure 5.6: Unoptimized Array Manipulation

Power Core 1:

Performance Counter Values:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.615

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

0.1

0.2

0.3

0.4

0.5

Time [ms]

0.6

Time [ms]

Start of
Loop 2.1

I_CACHE_STALLS
D_CACHE_STALLS
REG_WRITES

Start of
Loop 2.2

Start of
Loop 2.3

Start of
Loop 2.4

P
ow

er
 [m

W
]

Power Core 1:

C
ou

nt
er

 [N
or

m
al

iz
ed

]

Performance Counter Values:

Figure 5.7: Optimized Array Manipulation with Loop Splitting

76

Busy Waiting Power Down Waiting

for(i=0;i<1200;i++)

z=z+1;

startTimer(1000);

asm volatile("wr %g0, %asr19");

Table 5.3: Code for Busy and Power Down Waiting

0 0.1 0.2 0.3
0

10

20

30

40

Time [s]

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1

Time [ms]

I_CACHE_STALLS
REG_WRITES

Power Core 1:

Performance Counter Values:

P
ow

er
 [m

W
]

C
ou

nt
er

 [N
or

m
al

iz
ed

]

Busy Waiting Power Down Waiting

startTimer(1000);
powerDown():

for(i=0;i<1200;i++)
z=z+1;

Figure 5.8: Power Down vs. Busy Waiting

main memory. With this technique an energy saving of 25,56% could be reached
with a 34,26% faster code execution as compared to the un-optimized version.

5.3.3 Power-Aware Waiting

When a processor must wait for a specific time or for a specific condition to be true often
busy waiting is employed. This means that the processor repeatedly checks a variable
in the main memory or the registers until a condition is true. Due to the fact that the
processor is fully active during this time the power consumption is high. As shown in
Figure 5.8 the processor consumes during this time around 29mW and produces a lot of
register file accesses. The LEON3 processor offers now the possibility to activate a power-
down mode where the IU pipeline and the caches are halted until an interrupt occurs. In
this example the timer component has been started and the processor was set into the
power down mode by writing zero into the ASR19 register as shown in Table 5.3. The
processor is woken up by the timer interrupt when the predefined time has elapsed. During
the power-down mode the core only consumes 31% of the power which is needed during
busy wait which is around 9mW.

77

5.4 Operating System Profiling

The main advantage of the profiling architecture presented in this thesis is the speed-up
against software simulators. Thus the designer of a system has the advantage to be able
to test also long running benchmarks, e.g., an OS booting sequence as shown in Figure
5.9. In this chapter power and performance estimations of SnapGear Linux running on
one, two and four core LEON3 systems with additional PPDU are shown.

0 2 4 6 8 10
10
15
20
25
30
35
40

Time [s]

0 2 4 6 8 10
0

0.2
0.4
0.6
0.8

1

Time [s]

I_CACHE_STALLS
D_CACHE_STALLS
REG_WRITES

SnapGear Linux Boot Processs

Power Core 1:

Po
w

er
 [m

W
]

C
ou

nt
er

 [N
or

m
al

iz
ed

]

Performance Counter Values:

Figure 5.9: SnapGear Linux Boot Sequence

5.4.1 Process Profiling Single-Core

In Figure 5.10 a power and performance profile of a process being executed in the SnapGear
Linux is shown. The process executes the Dhrystone benchmark on a single-core system.
At the beginning of the Dhrystone benchmark a high number of I-cache misses occur which
indicate that the operating system has to load data from the instruction memory. These
are the starting routines for a new process in the Linux kernel and the machine code of the
Dhrystone benchmark. After around 10ms the execution continues without cache misses
which leads to a higher execution speed with more register write accesses and a higher
power consumption. During the whole time the SnapGear Linux scheduler is executed
every 10ms which can be seen in the graph as a negative peak in the power profile. A
more detailed power and performance profile of the scheduler execution is also shown on
the right side of Figure 5.10. Due to the fact that more cache misses occur during the
scheduler execution, the instruction unit is being halted during a larger number of clock
cycles. This leads to less register accesses and therefore a lower power consumption of the
processor during this phase as compared to regular Dhrystone execution.

5.4.2 Process Migration on Dual-Core LEON3 Multi-Core System

In this benchmark a process is profiled which migrates during its run-time between different
processors of the multi-core system. This benchmark is tested on a two core LEON3 system
including the PPDU on the GR-XC3S-2000 development board from Pender. A process

78

Linux Running Dhrystone ProcessLinux Linux

0.1 0.14 0.16 0.18 0.2 0.22 0.24
Time [s]

0.1 0.14 0.16 0.18 0.2 0.22 0.24
Time [s]

Linux Scheduler Active (≈ every 10ms)

0.26

Linux Scheduler

Power Core 1:

I_CACHE_STALLS
D_CACHE_STALLS
REG_WRITES

10
15
20
25
30
35
40

0.2

0.4

0.6

0.8

Po
w

er
 [m

W
]

C
ou

nt
er

 [N
or

m
al

iz
ed

]

0.12

0.12

Performance Counter
Values:

0.09
28

0.09
28

0 0.2
Time [ms]

0 0.2
Time [ms]

0

0.2

0.4

0.6

0.8

1

0.4

0.4

10
15
20
25
30
35
40
45

Po
w

er
 [m

W
]

C
ou

nt
er

 [N
or

m
al

iz
ed

]

0
0.26

Figure 5.10: Profile of the Dhrystone Benchmark Running as a Process on SnapGear Linux

is executed in SnapGear Linux which performs register operations during its execution
time. At the start-up of the benchmark code has been inserted to constrain the process
to run at processor one. This was done with the function sched_setaffinity() from the
sched.h library. A pseudo code example of the benchmark is shown in the Listing 5.1.

#inc lude <sched . h>

proce s s cpu = 1 ;
s c h e d s e t a f f i n i t y (proce s s cpu)
while (i = 0 ; i < LOOP; i++)

r e g i s t e r o p e r a t i o n () ;
p roce s s cpu = 2 ;
s c h e d s e t a f f i n i t y (proce s s cpu)
while (i = 0 ; i < LOOP; i++)

r e g i s t e r o p e r a t i o n () ;

Listing 5.1: Pseudo Code Process Migration on a Two Core System

After half the process execution time the process is migrated to processor two which is
shown in Figure 5.11. The migration process starts with executing on processor two which
is indicated by a short power peak. This shows that the Linux scheduler first selects this
processor based on its scheduling policies. This decision of the scheduler depends on
the current workload of the processors in the system at the time when a new process is
started. Therefore the Linux scheduler could select another core when other processes,
consuming more execution time, are running on processor two. As shown in the power and
performance profile D-cache misses occur at the beginning of the process which lead to a
power consumption reduction until all data is cached. The reduced power consumption
occurs because D-cache misses hold the integer unit of the core until missing operands
are loaded from the main memory. At the middle of the profile the task migration is
happening. With this benchmark the usage of our PPDU for observing OS migration

79

0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Time [ms]

P
ow

er
 [n

or
m

]

Core 1: Power
Core 2: Power

0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Time [ms]

V
al

ue
 [n

or
m

]

Core 1: I-Cache Stalls
Core 1: D-Cache Stalls
Core 1: Register Writes
Core 2: I-Cache Stalls
Core 2: D-Cache Stalls
Core 2: Register Writes

Power per Core:

Performance Counter Values:

Process Running on Core 1 Process Running on Core 2

Figure 5.11: Linux Task Migration on a Dual-Core LEON3 System

strategies has been shown.

5.4.3 Process Migration on Quad-Core LEON3 Multi-Core System

To prove the generic design of the profiling architecture the PPDU has also been tested on
the Xilinx ML507 [36] development board. At the GR-XC3S-2000 development board only
a two core system could be synthesized because of the limited size of the Spartan 3 FPGA
chip. On the ML507 board, a four core system could be synthesized which consumed 78%
of the available look up tables on the Xilinx Virtex5 FPGA chip. The design files, which
were originally derived for the Spartan 3, were changed to make the synthesis process
feasible for the other FPGA.

The porting of the PPDU to a four core system is easily accomplished by changing
the PPDU configuration file to the number of processors in the system. Due to the fact
that the design and the implementation of the PPDU were undertaken with great effort
to implement the PPDU as generic as possible for an arbitrary number of processors, all
internal changes are done automatically without the need of any manual code changes.
For the analysis software at the host PC the user has to change the XML configuration file
to consider a four core system so that the Ethernet data parser knows how to extract the
Ethernet data field and assign the data to the different cores. During the profiling process
the PPDU sends the power and performance statistics of all processors alternatingly. Due
to this fact, the time resolution is only the half as compared to a profiling process where
a dual-core system is traced.

The power and performance profile of the migration process of a task on a four core
system is shown in Figure 5.12. The Linux scheduler automatically allocates the new
process to processor four. The code used for migrating the process to other cores is
generally the same as explained in Section 5.4.2. The migration sequence in this example
is core one to core two and finally to core four. Due to D-cache misses at the beginning
of the execution the power consumption of the task is reduced. Later all data from the

80

1.1 1.2 1.3 1.4 1.5 1.6 1.70.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Time [ms]

Po
w

er
 [n

or
m

]

Core 1 Power
Core 2 Power
Core 3 Power
Core 4 Power

1.1 1.2 1.3 1.4 1.5 1.6 1.7
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Time [ms]

Va
lu

e
[n

or
m

] Core 1 D-Cache Stalls
Core 2 D-Cache Stalls
Core 3 D-Cache Stalls
Core 4 D-Cache Stalls

Power per Core:

Performance Counter Values:

Figure 5.12: Linux Task Migration on a Four Core LEON3 System

memory is cached which enables the integer unit to execute more instructions. This leads
to a higher power consumption of the processor where the process is currently running.

5.5 PPDU FPGA Resource Utilization

On the GR-XC3S-2000 development board, with the Spartan 3 FPGA, one and two core
systems have been synthesized. The two core system used 77% of the available look-up
tables (LUTs). On the ML507 board, with the Virtex 5 FPGA, a four core system could
be synthesized which used 78% of the LUTs. To enable the four core synthesis the ISE
optimization goal has been configured to size and the four core system has been reduced to
the essential components, e.g., reduction of the cache size. Different FPGA families utilize
different LUTs. Therefore a quantitative comparison between the number of Spartan 3
and Virtex 5 LUTs alone cannot be made. However, we have listed the needed number of
LUTs for all implemented design configurations in Table 5.4. In Figure 5.14 the overall
LUTs utilization of the components inside the multi-core design are shown. Compared to
the processors the PPDU size increases if additional cores are added. This is because more

28%

6%

16%

38%

12%
34%

5%

12%

30%

19%

Others

Controller + Counter Data
Multiplexer
TX Controller
Ethernet Controller
Power/Performance Estimator +
Accumulator

One Core System Two Core System

Figure 5.13: PPDU Sub-Component LUTs Utilization on the FPGA

81

48%

22%
2%

1%
3%

15%

10% 18%

22%

22%2%
1%
2%

19%

14% 12%

15%

15%
15%16%

2%
1%
3%

16%
5%

Unused LUTs
CPU 0
CPU 1
CPU 2
CPU 3
Timer
Interrupt Con.
AMBA Bus
PPDU
Others

One Core System Two Core System Four Core System

Figure 5.14: FPGA LUTs Utilization for a Varying Number of Processors 1

counters have to sum up all statistics generated by each core. To obtain these utilization
data for the Virtex 5 the LUTs inside the top design have been partitioned relative to the
size of all components. Figure 5.13 shows how different components of the PPDU increase
when the design changes from a one to a two core system on the Spartan 3. Due to
the fact that every processor possesses its own power and performance estimator with an
additional accumulator unit these components increase in size from 12% to 19%. The TX
and the Ethernet controller do not change if more cores are estimated. Hence, the relative
size decreases from 54% to 42%. Due to the fact that the Virtex 5 reuses many LUTs an
analysis of the components in the PPDU was not possible for the four core system.

Spartan 3 Virtex 5

One Core Two Core Four Core

Available LUTs: 40.960 40.960 44.800

Used LUTs: 21.583 33.685 35.232

Top Design: 1.084 2.030 27.401

+PPDU: 6.146 7.796 1.513

+Core 1: 9.063 9.066 1.356

++Integer Unit: 4.202 4.133 474

++D-Cache: 1.370 1.343 407

++I-Cache: 683 684 37

+Core 2: N.A. 9.105 1.318

+Core 3: N.A. N.A. 1.316

+Core 4: N.A. N.A. 1.388

+AMBA Bus: 1.067 965 303

+Timer Con.: 843 845 162

+Interrupt Con.: 198 362 69

+UART: 447 445 24

Table 5.4: FPGA LUTs Utilization of Different Designs

1Note: One and two core systems have been implemented on a Spartan 3 device while the four core
system has been implemented on a Virtex 5 FPGA.

82

5.6 Simulation/Emulation Speed Comparisons

In this section the speed-ups of our profiling architecture as compared to software (SW)
simulators is shown. One of the used tools is TSIM which is a high-level instruction-set
simulator and does not include power and performance estimation functionality. Another
one is ModelSim which operates at the RT-level and simulates the LEON3 system with
the PPDU. Both tools were running on an Intel Core2 CPU at 2.4GHz and with 2,0GiB
RAM. Also a gate-level simulation was made with a state-of-the-art server system, running
Mentor QuestaSim. Four benchmarks have been executed and the results are shown in
Table 5.5.

The emulated/simulated design is a single-core LEON3 system running at 45MHz
clock speed. Based on the average speedups of the test programs an interpolation of the
simulation speed for an 11s OS boot sequence has been made. On the PPDU, running
in real-time, 11s emulation time are required which is a speedup for the PPDU of 1,67x
against TSIM and 145.806 against ModelSim. This means that the simulation time on
TSIM is approximately 18s and ModelSim would have to run 18,5 days until the whole
boot process is done. In general power emulation speedup scales very well with more
processors because all processors can run in parallel implemented in hardware. This
is another advantage against software simulators where every additional core has to be
processed sequentially on the simulation computer.

Bitcount Coremark Basicmath Dhrystone OS Booting
Gate-Level Sim.1: 259s 1606s 2569s N.A. 129days
RT-Level Sim.2: 43s 233s 440s 1103s 18days
Instruction-Set Sim.3: 0,42ms 2,69ms 5,98ms 10,34ms 18,03s
PPDU Emulation4: 0,22ms 1,51ms 3,15ms 7,69ms 11s
PPDU4 vs. Gate-Level1 1.177.272x 1.063.576x 815.555x N.A. 1.018.801x
PPDU4 vs. RT-Level2: 195.454x 154.304x 139.682x 143.433x 145.806x
PPDU4 vs. ISS3: 1,90x 1,78x 1,90x 1,34x 1,67x

Table 5.5: Speed Comparison PPDU vs. Software Simulators

1Mentor QuestaSim: Gate-Level simulation on a state-of-the-art server system.
2ModelSim: RT-level simulation LEON3 and PPDU on Intel Core2 CPU at 2.4GHz, 2GiB RAM system.
3TSIM: High-level ISS, no power and performance estimation.
4Spartan 3 FPGA: 45MHz LEON3 and PPDU implementation.

83

Chapter 6

Conclusions and Outlook

6.1 Conclusions

Within this thesis, the design and implementation of a power and performance evaluation
platform for multi-core designs was illustrated. A LEON3 multi-core system has been
implemented including a power and performance debug unit (PPDU) which during run-
time generates statistics and sends them over a 100MBit/s Ethernet link to an analysis
software running on a host PC.

In a case study one, two and four core LEON3 systems have been realized. Due to
the fact that the PPDU is as generic as possible for an arbitrary number of processors,
all internal architectural changes are accomplished automatically if the number of pro-
cessors changes. The statistics for each core are estimated by each core’s own power
and performance estimation unit. The power estimation unit has been adapted from the
POWERHOUSE project to run in a multi-core system. The performance estimation unit
has been designed from scratch and includes different event detection circuits. These were
devised by finding correlations between events and signals while executing benchmarks
causing performance events. The cycle accurate data of both units are sent to an accu-
mulator unit consisting of counters to aggregate the information over a number of clock
cycles. The summed-up data are the input for different multiplexers which select the infor-
mation which is sent to the Ethernet controller. This controller is responsible for creating
and filling Ethernet frames by communicating with the PHY Ethernet chip over the TX
controller.

The PPDU can be started/stopped and set to different operation modes by memory
mapped control registers over the AMBA bus. Thus several software parts can be tested by
inserting start and stop instructions around the code to test. To control the PPDU over a
program in the user space of the SnapGear Linux, a driver has been created which enables
the communication to the kernel space from which the access to the PPDU registers is
possible. When the mode with the fewest information, which are the number of passed
clock cycles, program counter and overall power sum, is selected the time resolution is
around 35 clock cycles with the 100Mbit/s Ethernet connection. With the help of the
accumulator unit, a reset and control logic the PPDU supports different communication
speeds.

At the host PC a Java program is running which receives packets including the power

84

and performance statistics created by the PPDU. The program enables receiving, parsing
and pre-processing of the Ethernet frames and shows the statistics in a GUI. An export
function enables the post-processing with MatLab.

In benchmarking examples we demonstrate the advantage of the hardware-accelerated
profiling architecture during the software optimization process. Automatic as well as
manual code optimization techniques were tested to illustrate the use of the PPDU in
the design space exploration process of a new system. This includes, for example the
effectiveness of different compiler optimization settings where the best tradeoff between
code size, energy consumption or execution time can be found very fast. For example, a
benchmark compiled with the highest optimization setting consumes 65,44% less energy
compared to an unoptimized version. Also different possibilities where shown how self-
written software can be manually optimized, by hardware or software changes, based on
the statistics obtained by the PPDU. With the best manual software optimization 25,56%
of the energy could be saved and the execution time has been decreased by 34,26% in this
example.

In experiments, the large evaluation time decrease by using our power and perfor-
mance emulation architecture instead of software simulation tools could be shown. Av-
erage speedups of 145.806x against ModelSim working at the RT-level and 1,67x against
the instruction-set simulator TSIM were obtained. Also the run-time profiling of a 10s
Linux boot sequence has been successfully profiled which would need around 18 days of
simulation time in ModelSim.

6.2 Future Work

• Add Information to Eth. Frames: Information about the currently selected
PPDU mode and the number of processors in the design could be included in the
Ethernet frames. Thus, the analysis software at the host PC could read out the
information for the parsing process directly from the received packets, without the
need of a XML configuration file. However this would lead to a larger data overhead
for every frame.

• Gigabit Ethernet: With Gigabit Ethernet a finer time resolution could be en-
abled. At the PPDU the TX controller would need to be changed to make the
communication with a faster Ethernet PHY chip possible.

• Additional LEON3 Cores: Based on the generic design an implementation and
testing of a system with more than four cores could be undertaken.

• Thermal Estimation: The power estimation could be used as input for a thermal
model. This model could be included as a hardware part into the PPDU or into the
analysis software. With this estimation it would be possible to detect hot spots in the
design. Also an OS scheduling algorithm could be devised that migrates processes
from an overheating core to another one.

• Power-Aware OS: The advantage of the fast emulation speed of the PPDU could
be used to test power-aware OS task scheduling policies.

85

• Data Buffer: If a program sequence should be analyzed with very high accuracy
a RAM buffer could be included into the PPDU which enables the storing of the
cycle accurate statistics on the development board. After stopping the profiling
process the stored data could be sent to the host PC without real-time constrains
and therefore a higher time resolution could be enabled.

86

Appendix A

Abbreviations and Symbols

A.1 Abbreviations

Abbreviation Meaning

ALU Arithmetic Logic Unit

BCC Bare-C Cross Compilation

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

DUT Device-Under-Test

D-Cache Data Cache

FPGA Field Programmable Gate Array

FSM Finite State Machine

GUI Graphical User Interface

HDD Hard Disc

HDL Hardware Description Language

HW Hardware

IP Internet Protocol

ISS Instruction Set Simulator

IU Integer Unit

IUD Instruction-Under-Test

I-Cache Instruction Cache

JD JouleDoc

LUT Look Up Table

MIPS Million Instructions Per Second

MPSoC Multi-Processor System-on-Chip

OS Operating System

PC Personal Computer

PC Program Counter

PCI Peripheral Component Interconnect

PEs Processing Engines

PID Process Identifier

PPDU Power and Performance Debug Unit

87

Abbreviation Meaning

RAM Random Access Memory

RISC Reduced Instruction Set Computer

RTL Register-Transfer-Level

SMP Symmetric Multi Processing

SUT System-Under-Test

SW Software

SoC System-on-Chip

TLB Transaction Lookaside Buffer

VHDL Very-high-speed Integrated Circuit Hardware Descrip-
tion Language

VPCM Virtual Platform Clock Manager

A.2 Symbols

Abbreviation Meaning

C Capacitance

E Energy

fclk Clock Frequency

I Current

P Power

T Time Period

V Voltage

88

Appendix B

Code Examples

B.1 PPDU Interface Description

ppdu0 : POWER PERFORMANCE DEBUG UNIT
generic map(
SUB COMPONENTS NUM => SUB COMPONENTS NUM,
SUB COMPONENTS INPUT WIDTH => SUB COMPONENTS INPUT WIDTH,
SUB COMPONENTS COUNTER WIDTH => SUB COMPONENTS COUNTER WIDTH,
PC INPUT WIDTH => PC INPUT WIDTH,
CLOCK COUNTER WIDTH => CLOCK COUNTER WIDTH,
SUM POWER INPUT WIDTH => SUM POWER INPUT WIDTH,
SUM POWER COUNTER WIDTH => SUM POWER COUNTER WIDTH,
ETHERNET MAC DESTINATION => ETHERNET MAC DESTINATION,
ETHERNET MAC SOURCE => ETHERNET MAC SOURCE,
ETHERNET TYP => ETHERNET TYP
)
port map(
txd => etho . txd (3 downto 0) ,−−O: Data to PHY Eth .
tx en => etho . tx en ,−−O: Contro l to PHY Eth .
t x e r => etho . tx e r ,−−O: Contro l to the PHY Eth .
r x c o l => e t h i . r x co l ,−−I : Contro l from PHY Eth .
r x c r s => e t h i . r x c r s ,−−I : Contro l from PHY Eth .
c l k => clkm ,−−I : Clock f o r PPDU
r s t => rstn ,−−I : Negat ive r e s e t
t x c l k => e t h i . t x c l k ,−−I : Clock f o r TX c o n t r o l l e r
apbi => apbi ,−−I : AMBA bus connect ion
apbo => apbo (13) ,−−O: AMBA bus connect ion
re su l t sub comp => r e su l t su b co mp s i gn a l ,−−I : Power data
r e su l t pe sum => r e s u l t p e s u m s i g n a l ,−−I : Power data
p e r f o r m a n c e s i g n a l s i n => p e r f o r m a n c e s i g n a l s i n ,−−I : Perf . s i g n a l s
program counter => iu3 program counter −−I : Perf . s i g n a l s
) ;

Listing B.1: Example of a PPDU Instance in VHDL

89

B.2 Performance Event Detection Benchmarks

#include ” cache . h”
#include ”main . h”
#include <asm−l eon / l eon . h>
#include <asm−l eon /amba . h>
#include <s t d i o . h>

volat i le UINT16 ram var = 0xABCD;
volat i le UINT32 ram var 1 ;

// This f u n c t i o n g e n e r a t e s I−cache h i t s
void cacheFunction ()
{

UINT8 sum = 0 ;
UINT16 count ;
for (count =0; count < CACHE TEST CODE HIT ITERATIONS; count++)
{

sum+=count ;
}

}

// This f u n c t i o n g e n e r a t e s I−cache misses
void cacheFunctionMiss ()
{

register UINT16 sum = 0 ;
UINT16 count ;

for (count =0; count < CACHE TEST CODE MISS ITERATIONS; count++)
{

s p a r c l e o n 2 3 i c a c h e f l u s h () ;
sum+=count ;

}
}

// This f u n c t i o n g e n e r a t e s D−cache read h i t s
void cacheRAMReadDataHit ()
{

register UINT16 count ;
volat i le UINT16 de s t va r ;
register UINT16 d e s t r e g ;

for (count =0; count<CACHE TEST DATA HIT ITERATIONS; count++)
{

90

d e s t r e g = ram var ;
}

}

// This f u n c t i o n g e n e r a t e s D−cache read misses
void cacheRAMReadDataMiss ()
{

register UINT16 count ;
register UINT16 d e s t r e g ;

for (count =0; count<CACHE TEST DATA MISS ITERATIONS; count++)
{

d e s t r e g = (UINT16) l eonbare l eon3 loadnocache16 ((UINT32)&ram var) ;
}

}

// This f u n c t i o n g e n e r a t e s D−cache w r i t e misses
void cacheRAMWriteDataMiss ()
{

register UINT16 count ;

for (count =0; count<CACHE TEST DATA MISS ITERATIONS; count++)
{

ram var 1 = count ;
}

}

// This f u n c t i o n g e n e r a t e s D−cache w r i t e h i t s
void cacheRAMWriteDataHit ()
{

register UINT16 count ;

//To genera te a D−Cache w r i t e h i t the v a r i a b l e has to be in the cache .
// Therefore ram var 1 i s f i r s t loaded i n t o the cache wi th the
// f o l l o w i n g i n s t r u c t i o n .
count = ram var 1 ;
for (count =0; count<CACHE TEST DATA HIT ITERATIONS; count++)
{

ram var 1 = count ;
}

}

int main (void)

91

{
cacheFunction () ;
cacheFunctionMiss () ;
cacheRAMReadDataHit () ;
cacheRAMReadDataMiss () ;
cacheRAMWriteDataMiss () ;
cacheRAMWriteDataHit () ;
return 0 ;

}

Listing B.2: Benchmarks to Cause Cache Performance Events

92

Bibliography

[1] Xilinx ISE 12.3. http://www.xilinx.com/, (20 October, 2010).

[2] Intel 4004. http://www.intel.com/museum/archives/4004facts.htm, (20 October,
2010).

[3] ModelSim SE 6.6b. http://www.model.com/, (20 October, 2010).

[4] Aeroflex Gaisler. LEON3 GR-XC3S-1500 Template Design, October 2006.

[5] Aeroflex Gaisler. GRLIB IP Core Users Manual, version 1.0.21 edition, August 2009.

[6] D. Atienza, P.G. Del Valle, G. Paci, F. Poletti, L. Benini, G. De Micheli, and J.M.
Mendias. A fast hw/sw fpga-based thermal emulation framework for multi-processor
system-on-chip. Design Automation Conference, 2006 43rd ACM/IEEE, pages 618 –
623, 2006.

[7] C. Bachmann, A. Genser, J. Haid, C. Steger, and R. Weiss. Automated power char-
acterization for run-time power emulation of soc designs. DSD 2010.

[8] C. Bachmann, A. Genser, J. Haid, C. Steger, and R. Weiss. Accelerating embedded
software power profiling using run-time power emulation. Lecture Notes in Computer
Science, 2010, Volume 5953, pages 186–195, 2010.

[9] C. Bachmann, A. Genser, J. Haid, C. Steger, and R. Weiss. Power and performance
evaluation for multicore systems-on-chips. to be published.

[10] A. Bhattacharjee, G. Contreras, and M. Martonosi. Full-system chip multiprocessor
power evaluations using fpga-based emulation. Low Power Electronics and Design
(ISLPED), 2008 ACM/IEEE International Symposium on, pages 335 –340, 2008.

[11] Po-Hui Chen, Chung-Ta King, Yuan-Ying Chang, and Shau-Yin Tseng. Multiproces-
sor system-on-chip profiling architecture: Design and implementation. Parallel and
Distributed Systems (ICPADS), 2009 15th International Conference on, pages 519 –
526, dec. 2009.

[12] J. Coburn, S. Ravi, and A. Raghunathan. Power emulation: a new paradigm for
power estimation. Design Automation Conference, 2005. Proceedings. 42nd, pages
700 – 705, 2005.

[13] S. Raghunathan A. Coburn, J. Ravi. Hardware accelerated power estimation. Design,
Automation and Test in Europe, 2005. Proceedings, pages 528 – 529 Vol. 1, 2005.

93

[14] GNU Compiler Collection. http://gcc.gnu.org/, (20 October, 2010).

[15] G. Contreras and M. Martonosi. Power prediction for intel xscale processors using
performance monitoring unit events. ISLPED ’05: Proceedings of the 2005 interna-
tional symposium on Low power electronics and design, 2005.

[16] P.G. Del Valle, D. Atienza, I. Magan, J.G. Flores, E.A. Perez, J.M. Mendias,
L. Benini, and G. De Micheli. Architectural exploration of mpsoc designs based on
an fpga emulation framework. Proceedings of XXI Conference on Design of Circuits
and Integrated Systems (DCIS), pages 12–18, 2006.

[17] Pender Electronic Design. GR-XC3S-1500 Development Board User Manual.

[18] Pender Electronic Design. http://pender.ch/, (20 October, 2010).

[19] J. Flinn and M. Satyanarayanan. Powerscope: a tool for profiling the energy usage of
mobile applications. Mobile Computing Systems and Applications, 1999. Proceedings.
WMCSA ’99. Second IEEE Workshop on, pages 2 –10, feb. 1999.

[20] Snapgear Linux for LEON3. http://www.snapgear.org/, (20 October, 2010).

[21] Aeroflex Gaisler. http://www.gaisler.com/, (20 October, 2010).

[22] AEROFLEX GAISLER. User Manual GR-XC3S-1500 Development Board. Pender
Electronic Design, rev. 2.0 edition, 2008.

[23] A. Genser, C. Bachmann, J. Haid, C. Steger, and R. Weiss. An emulation-based real-
time power profiling unit for embedded software. Systems, Architectures, Modeling,
and Simulation, 2009. SAMOS ’09. International Symposium, pages 67 – 73, jul.
2009.

[24] M.A. Ghodrat, K. Lahiri, and A. Raghunathan. Accelerating system-on-chip power
analysis using hybrid power estimation. Design Automation Conference, 2007. DAC
’07. 44th ACM/IEEE, pages 883 – 886, jun. 2007.

[25] J. Haid, G. Kaefer, C. Steger, and R. Weiss. A co-processor for real-time energy
estimation of system-on-a-chip. Circuits and Systems, 2002. MWSCAS-2002. The
2002 45th Midwest Symposium on, pages II–99 – II–102 vol.2, aug. 2002.

[26] J. Haid, G. Kaefer, Ch. Steger, and R. Weiss. Run-time energy estimation in system-
on-a-chip designs. Design Automation Conference, 2003. Proceedings of the ASP-DAC
2003. Asia and South Pacific, pages 595 – 599, jan. 2003.

[27] Intel. LXT971A Single-Port 10/100 Mbps PHY Transceiver, October 2005. Document
Number: 249414-003.

[28] Java. http://www.java.com/, (20 October, 2010).

[29] A. Jerraya and W. Wolf. Multiprocessor Systems-On-Chips. MORGAN KAUFFMAN,
2005. ISBN: 0-12385-251-X.

[30] JFreeChart. http://www.jfree.org/jfreechart/, (20 October, 2010).

94

[31] R. Joseph and M. Martonosi. Run-time power estimation in high performance micro-
processors. Low Power Electronics and Design, International Symposium, pages 135
– 140, 2001.

[32] H. Kaeslin. The VLSI Handbook. Cambridge University Press,, 2 edition, 2008. ISBN
13: 978-0-521-88267-5.

[33] Steve Leibson. Designing SOCs with configured cores. Morgan Kaufmann, 2006. ISBN
13: 978-0-12-372498-4.

[34] JPCAP library. http://netresearch.ics.uci.edu/kfujii/jpcap/doc/index.html, (20 Oc-
tober, 2010).

[35] MATLAB. http://www.mathworks.de/, (20 October, 2010).

[36] Xilinx ML507. http://www.xilinx.com/, (20 October, 2010).

[37] S. Nikolaidis and T. Laopoulos. Instruction-level power consumption estimation of
embedded processors for low-power applications. Comput. Stand. Interfaces, 24:133–
137, 2002.

[38] J. Peddersen and S. Parameswaran. Clipper: Counter-based low impact processor
power estimation at run-time. Design Automation Conference, 2007. ASP-DAC ’07.
Asia and South Pacific, pages 890 – 895, jan. 2007.

[39] S. Penolazzi, L. Bolognino, and A. Hemani. Energy and performance model of a sparc
leon3 processor. Digital System Design, Architectures, Methods and Tools, 2009. DSD
’09. 12th Euromicro Conference on, pages 651–656, aug. 2009.

[40] C. Piguet. Low-Power Electronics Design, chapter High-Level Power Estimation And
Analysis. 2004.

[41] C. Piguet. Low-Power Electronics Design, chapter Power Macro-Models for High-
Level Power Estimation. 2004.

[42] POWERHOUSE. http://www.iti.tugraz.at, (5 November, 2010).

[43] Gaisler Research. GRMON Users Manual, 1.0.5 edition, 2004.

[44] INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS. De-
sign. Technical report, 2009.

[45] INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS. Sys-
tem drivers. Technical report, 2009.

[46] K. Singh, M. Bhadauria, and S. A. McKee. Real time power estimation and thread
scheduling via performance counters. SIGARCH Comput. Archit. News, 37, 2009.

[47] SPARC International, Inc. The SPARC Architecture Manual, version 8 edition. Re-
vision SAV080SI9308.

[48] Spice. http://bwrc.eecs.berkeley.edu/classes/icbook/spice/, (20 October, 2010).

95

[49] K. Stefanos and Margaret M. Computer architecture techniques for power-efficiency.
Morgan & Claypool Publishers, 2008. ISBN: 1598292080.

[50] J. Svennebring, J. Logan, J. Engblom, and P. Strmblad. Embedded Multicore: An
Introduction. Freescale Semiconductor, 2009.

[51] Synopsys. Powercompiler. Technical report, http://synopsys.com, August 2010.

[52] Synopsys Prime Time. http://synopsys.com, (20 October, 2010).

[53] V. Tiwari and M. Tien-Chien Lee. Power analysis of a 32-bit embedded micro-
controller. Design Automation Conference, 1995. Proceedings of the ASP-DAC
’95/CHDL ’95/VLSI ’95., IFIP International Conference on Hardware Description
Languages; IFIP International Conference on Very Large Scale Integration., Asian
and South Pacific, pages 141 –148, aug. 1995.

[54] Le Yan, Jiong Luo, and N.K. Jha. Combined dynamic voltage scaling and adaptive
body biasing for heterogeneous distributed real-time embedded systems. Computer
Aided Design, 2003. ICCAD-2003. International Conference on, pages 30 – 37, nov.
2003.

96

	Introduction
	Motivation
	Main Goals of This Thesis
	Structure of This Work

	Related Work
	Power Consumption in CMOS Circuits
	Introduction
	Dynamic Power Consumption
	Static Power Consumption

	Introduction to Power and Performance Profiling
	Overview
	General Power Estimation

	Power Profiling
	Introduction
	Power Measurement
	Simulation
	Hardware-Accelerated
	Hybrid Power Estimation

	Performance Profiling
	Introduction
	Hardware-Accelerated

	Design of the Multi-Core Emulation Platform
	Introduction
	Requirements
	PPDU Overview
	Performance Event Estimator
	Design Flow
	Event Types
	Event Detection Circuits

	Power Estimator
	Design Flow

	Performance Event and Power Collector
	PPDU I/O Communication
	Standard Communication Interfaces on FPGA Boards
	Host to PPDU Communication
	PPDU to Host Communication
	Data Aggregation and Ethernet Frame Generation

	Software Analysis Flow for a System with PPDU
	Power and Performance Analyzing Software
	Requirements
	Analyzing Software Parts

	Implementation of the Multi-Core Emulation Platform
	Overview
	Used Tools
	GRLIB LEON3 IP Library
	IP Library Overview
	LEON3 Processor

	PPDU Hardware Implementation
	Introduction
	Controller Unit
	Performance Estimator Unit
	Ethernet Communication Functionality
	PPDU System Integration

	Profiling Control
	Control of the PPDU by the Host PC Software
	Control of the PPDU by Software

	Analysis Software

	Results
	Introduction
	Comparison of PPDU Emulation vs. RTL Simulation
	Profiling of SW Optimizations
	Compiler Optimizations
	Manual Optimizations
	Power-Aware Waiting

	Operating System Profiling
	Process Profiling Single-Core
	Process Migration on Dual-Core LEON3 Multi-Core System
	Process Migration on Quad-Core LEON3 Multi-Core System

	PPDU FPGA Resource Utilization
	Simulation/Emulation Speed Comparisons

	Conclusions and Outlook
	Conclusions
	Future Work

	Abbreviations and Symbols
	Abbreviations
	Symbols

	Code Examples
	PPDU Interface Description
	Performance Event Detection Benchmarks

	References

