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Introduction

Many physical phenomena, procedures and problems of different natures can be described
by partial differential equations and formulated as boundary value problems. Unfortu-
nately, there often is no possibility to calculate the solutions in an explicit way. Therefore,
numerical methods have been developed to obtain approximate solutions. The most com-
mon ones are the Finite Element Methods (FEM), see for example [2] and [16], and the
Boundary Element Methods (BEM), see [32] and [27]. The latter has been developed since
the 1950s, and has become more popular with the invention of electronic computers. The
full emergence of boundary element methods was then in the late 1970s [4]. They play
an important role to solve problems in such diverse topics as solid and fluid mechanics,
electromagnetics, fluid dynamics, heat transfer and elastostatics, to name just a few. In
this work we concentrate on the Laplace and Poisson equation as a model problem, where
applications can be found in subjects like perfect fluids, electromagnetism and gravitation
theory.
In FEM, the entire domain under consideration has to be discretised. The main advantage
of BEM is that only a discretisation of the surface of the domain is needed, instead of a
volume discretisation, so the element mesh is simpler. Furthermore, we do not necessarily
have to reorder the mesh for moving structures. Other advantages are in dealing with
exterior boundary value problems in unbounded domains, which is an important topic in
this work, and there are also advantages in the high accuracy of the approximate solutions.
Generally, once the problem has been solved with BEM, we are able to compute the
solution at any point of the considered domain. Last but not least, with BEM we calculate
the complete Cauchy data on the boundary explicitly. On the other way round, there
are some disadvantages. Since we have to know the fundamental solution of the partial
differential equation for Green’s third formula, the utilisation of BEM is mainly restricted
to partial differential equations with piecewise constant coefficients. Moreover, as far as
boundary integral operators are concerned, we have to deal with singular integrals. One
of the greatest drawbacks compared to FEM are the fully populated matrices, because of
which the memory requirements and computational costs grow at least quadratically in the
number of boundary elements when implementing BEM. This is why fast BEM have been
developed. Most of these techniques deal with a more efficient evaluation of the kernels of
the appearing potential operators. To name some of possible faster procedures, there are
multipole techniques [23], and there is panel clustering [12] as well as the Adaptive Cross
Approximation [26].
In what follows, we want to give a short overview about the theory of BEM. It is known
for a long time that boundary value problems for elliptic partial differential equations can
be formulated in terms of boundary integral equations. After discretising the derived vari-
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8 Introduction

ational formulations, the Cauchy data can be evaluated numerically. Afterwards, with the
representation formula basically derived from Green’s first and second formula, the solu-
tion of the original problem can be determined. This procedure is called direct approach,
see for example [5]. On the contrary, there exist indirect approaches. Since the single or
double layer potential operator solve the partial differential equations under consideration,
they can be used as a solution too. Since the calculated density functions have, in general,
no physical meaning, the approach is called indirect.
Undoubtedly, a proper stability and error analysis is important. On the one hand there are
the Galerkin formulations, on the other hand we may use collocation methods. Concerning
the former technique, the theoretical study is well established. Otherwise, the engineering
community often apply collocation procedures because of an easier and more practical
implementation. But, the theory about stability and error estimates is only known for
two-dimensional models [26]. Besides, the rate of convergence for Galerkin schemes is
often better. For some general informations about BEM and FEM see for example [32],
[34] and [20].
Another important topic, which can be formulated with BEM, are domain decomposition
methods (DDM), for general concepts see for example [25], as well as [3], [15], [18], [17], [13]
and [19]. They were originally developed to solve boundary value problems in complicated
domains. Here we mention the famous alternating Schwarz method [28] as the first work
on DDM. Thereafter, additive and multiplicative Schwarz methods have been developed.
Some information about these techniques can be taken from [10] and [9]. Since the idea is to
decompose a domain into substructures, DDM are well suited for the coupling of different
discretisation schemes as FEM and BEM, see for example [7], [18] and [29]. Thus, there is a
possibility to use the former method for an interior problem, and the latter technique for an
exterior, unbounded domain. Moreover, considering software implementations of numerical
procedures, DDM are a relatively simple possibility for parallel solutions, for instance
each CPU solves a partial differential equation in one subdomain. What is more, we can
compute different, non-conformal meshes, or use different trial spaces, for each subdomain.
Besides, DDM is also suitable for shapes which are combined with different materials, so
each subdomain covers different material parameters. Furthermore, the decomposition of
the domain is mostly due to the geometrical form of the domain under consideration, or
due to properties of the partial differential operator. Generally spoken, the main idea of
DDM is to reduce a complicated, global domain to simpler subdomains. In this work we
concentrate on geometry-based DDM, where a global boundary value problem is reduced to
local subproblems, linked via transmission conditions on the interface. Since the complete
Cauchy data have to be found on the skeleton, we formulate variational methods of these
coupling conditions. Therefore we use local Dirichlet-to-Neumann maps, derived from
the boundary integral equations. Applying standard discretisation techniques such as the
collocation scheme and the Galerkin method, we obtain local approximate solutions and
at the end the final global solution of the original problem.
The following chapters are organised as follows:
In Chapter 1, at first we state some preliminary examples for boundary value problems for
the two-dimensional case. After giving a motivation for different types of boundary value
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problems, we have to introduce suitable function spaces. Moreover, we provide an overview
of general variational formulations, which we apply to BEM afterwards. We introduce the
fundamental solution for exterior and interior domains and deal with diverse appearing
boundary integral operators. At the end we state the boundary integral equations of the
exterior and interior boundary value problems. Chapter 2 describes the different boundary
value problems treated in the course of this work, as well as an error and stability analysis
for each of them. Firstly, there are interior and exterior boundary value problems, and
therefore various solving techniques. Secondly, we discuss an interface problem, where we
introduce the transmission conditions which we need for domain decomposition methods
too. Chapter 3 is concerned with the concept of BEM. At the beginning, we formulate
discretisation schemes of variational methods, for which we need a suitable boundary dis-
cretisation and particularly two different trial spaces. Afterwards we solve the problems of
Chapter 2 with BEM. At last, in Chapter 4 we show a range of numerical examples for the
solution of boundary value and free space transmission problems as well as for domain de-
composition methods via BEM, developed with the C programming language. This work
ends with a short outlook about continuative themes, mainly concerning faster solution
methods.





1 Boundary Integral Equations

At the beginning, in Section 1.1 we want to introduce different examples of partial differ-
ential equations in general. Therefore, we also need some definitions, which are important
for the formulation of the boundary value and free space problems, as well as for domain
decomposition methods. Besides, we note that this work describes problems and their
solution procedures for the two-dimensional case only. However, this approach can also be
applied to related boundary value problems in three space dimensions.

1.1 Motivation

We state a self-adjoint linear partial differential operator of second order in two space
dimensions as

(Lu)(x) := −
2∑
i=1

2∑
j=1

∂

∂xj

[
aji(x)

∂

∂xi
u(x)

]
for x ∈ Ω ⊂ R2, (1.1)

with a scalar, real function u(x) mapping from R2 to R, and coefficients aji(x) = aij(x),
which define a symmetric matrix

A(x) = (aij(x))2
i,j=1. (1.2)

The differential operator L defined in (1.1) is called uniformly elliptic in the domain Ω,
if the two eigenvalues λk(x) of the matrix A(x) in (1.2) are greater than a lower positive
limit, i.e.

λk(x) ≥ λ0 > 0 for k = 1, 2 and for all x ∈ Ω.

In this work we mainly consider the Laplace equation

−∆u(x) = −
2∑
i=1

∂2

∂x2
i

u(x) = 0 for x ∈ Ω ⊂ R2, (1.3)

with the uniformly elliptic Laplace operator −∆, and a bounded, multiply or simply con-
nected domain Ω with Lipschitz boundary Γ = ∂Ω. Another important differential equation
is the Poisson equation

−∆u(x) = f(x) for x ∈ Ω ⊂ R2, (1.4)

with a function f(x) 6≡ 0 on the right hand side. To handle given data on the boundary, we
need to introduce some trace operators concerning an interior domain Ω and an exterior
domain Ωc = R2 \ Ω.

11



12 1 Boundary Integral Equations

Definition 1.1 (Trace operator). Let Ω be a bounded domain with the boundary Γ = ∂Ω.
Then the interior and exterior trace operator are defined as

γint0 u(x) = lim
x̃3Ω→x∈Γ

u(x̃) for x ∈ Γ (1.5)

and

γext0 u(x) = lim
x̃3Ωc→x∈Γ

u(x̃) for x ∈ Γ, (1.6)

respectively.

Definition 1.2 (Conormal derivative). Let Ω be a bounded domain with the boundary
Γ = ∂Ω. Then the interior and exterior conormal derivative are defined as

γint1 u(x) = lim
x̃3Ω→x∈Γ

(nx,∇x̃u(x̃)) for almost all x ∈ Γ (1.7)

and

γext1 u(x) = lim
x̃3Ωc→x∈Γ

(nx,∇x̃u(x̃)) for almost all x ∈ Γ, (1.8)

respectively, with nx as the outer normal vector.

Remark 1.1. Per convention, the normal vector nx is always directed out of the domain
Ω. Hence, the normal vectors of the exterior and interior conormal derivative have the
same direction.

Using the above introduced definitions, we can finally present the Dirichlet boundary value
problem

−∆u(x) = f(x) for x ∈ Ω ⊂ R2,

γint0 u(x) = g(x) for x ∈ Γ.
(1.9)

Besides the problems on interior domains, there are also boundary value problems on the
exterior domain Ωc = R2 \ Ω, e.g.

−∆u(x) = 0 for x ∈ Ωc,

γext0 u(x) = g(x) for x ∈ Γ = ∂Ω,
(1.10)

where u has to satisfy a radiation condition at infinity,

∃ a ∈ R : u(x) = a log |x|+ o(1) for |x| → ∞.

Finally, we introduce a combination of an interior and an exterior boundary value problem,
the so-called interface problem

−∆u1(x) = f(x) for x ∈ Ω,

−∆u2(x) = 0 for x ∈ Ωc.
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To solve an interface problem, the first step is to formulate suitable transmission conditions,
which will be done in Section 2.3.
Last but not least, as far as domain decomposition methods [13] are concerned, there is the
possibility to partition a given domain Ω into subdomains Ωi,

Ω =

p⋃
i=1

Ωi.

As a consequence, the Ωi have local subdomain boundaries Γi. We deal with boundary
value problems on each subdomain. Since we obtain local coupling boundaries

Γij = Γi ∩ Γj

on which we can formulate associated transmission conditions, the local problems are linked
and will be solved via these conditions. At the end we get a solution for the original problem
on the global domain Ω.

1.2 Function Spaces

In theanalytical and numerical theory about variational formulations, integral operators
and boundary element methods, we need appropriate function spaces and dedicated norms,
which we introduce in this section.
First of all, we start with some partial derivatives and their abbreviations. For a multi
index α = (α1, α2), αi ∈ N0, we define

Dαu(x) :=

(
∂

∂x1

)α1
(

∂

∂x2

)α2

u(x).

What is more,

Ck(Ω) := {u,Dαu exists and is continuous on Ω for |α| = α1 + α2 ≤ k}

for k ∈ N0. If u ∈ Ck(Ω) for all k = 0, 1, . . ., we have u ∈ C∞(Ω), where we will need
the closure of this function space afterwards for a definition more often used in this work.
Moreover,

C∞0 (Ω) := {u ∈ C∞(Ω) : supp u = {x ∈ Ω : u(x) 6= 0} ⊂ Ω}

defines the space of infinite times continuously differentiable functions with compact sup-
port.

Definition 1.3. The definition of the function space L2(Ω) of square integrable functions
is

L2(Ω) := {u :

∫
Ω

|u(x)|2dx <∞}.
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With the inner product

〈u, v〉L2(Ω) :=

∫
Ω

u(x)v(x)dx,

and therefore equipped with the L2-norm

‖u‖L2(Ω) :=

(∫
Ω

|u(x)|2dx)

)1/2

,

L2(Ω) is a Hilbert space.

Definition 1.4. We define the norm

‖u‖Wk
2 (Ω) :=

( ∑
|α|≤k

∫
Ω

|Dαu(x)|2dx
)1/2

(1.11)

=

( ∑
|α|≤k

‖Dαu‖2
L2(Ω)

)1/2

for k ∈ N0. (1.12)

For 0 < s ∈ R \ N0, we first separate the index s as s = k + κ, with κ ∈ (0, 1) and again
k ∈ N0. Then the Sobolev-Slobodeckii norm is defined as

‖u‖W s
2 (Ω) :=

(
‖u‖2

Wk
2 (Ω) + |u|2Wk

2 (Ω)

)1/2

,

with

|u|2Wk
2 (Ω) =

∑
|α|=k

∫
Ω

∫
Ω

|Dαu(x)−Dαu(y)|2

|x− y|2+2κ
dxdy.

The corresponding Sobolev space W k
2 (Ω) is defined as follows:

Definition 1.5.

W k
2 (Ω) := {u ∈ L2(Ω) : Dαu ∈ L2(Ω), |α| ≤ k}.

To go into more detail, for 0 ≤ s the Sobolev space W s
2 (Ω) is the closure of C∞(Ω) with

respect to the norm ‖ · ‖W s
2
, so we have

W s
2 (Ω) = C∞(Ω)

‖·‖Ws
2 (Ω)

.

In other words

∀u ∈ W s
2 (Ω) ∃{ϕj}j∈N ⊂ C∞(Ω) : lim

j→∞
‖u− ϕj‖W s

2 (Ω) = 0.

To treat the missing case s < 0 for the norm in W s
2 (Ω), we first need another definition:



1.2 Function Spaces 15

Definition 1.6. With respect to the ‖ · ‖W s
2 (Ω)-norm, the completion of C∞0 (Ω) implies the

Sobolev space

◦
W s

2 (Ω) := C∞0 (Ω)
‖·‖Ws

2 (Ω)
for s > 0.

In what follows, we can define the Sobolev space W s
2 (Ω) for indices s < 0:

Definition 1.7. For s < 0, the Sobolev space W s
2 (Ω) is the dual space of

◦
W−s

2 (Ω) with the
norm

‖f‖W s
2 (Ω) := sup

06=v∈
◦
W−s2 (Ω)

|〈f, v〉Ω|
‖v‖W−s2 (Ω)

,

with respect to the duality pairing

〈f, v〉Ω :=

∫
Ω

f(x)v(x)dx.

Correspondingly,

◦
W s

2 (Ω) =
[
W−s

2 (Ω)
]′
.

Adopting the approach for example of [35], we define Sobolev spaces by distributions, which
leads to the function space

Hs(R2) = W s
2 (R2) for all s ∈ R.

Definition 1.8. For a bounded domain Ω ⊂ R2 we have

Hs(Ω) :=
{
v = ṽ|Ω : ṽ ∈ Hs(R2)

}
,

equipped with the norm

‖v‖Hs(Ω) := inf
ṽ∈Hs(R2),ṽ|Ω=v

‖ṽ‖Hs(R2).

Theorem 1.9 ([35]). Let Ω ⊂ R2 be a Lipschitz domain and s ≥ 0. Then

W s
2 (Ω) = Hs(Ω).

More Sobolev spaces are defined by duality:

H̃s(Ω) =
[
H−s(Ω)

]′
, Hs(Ω) =

[
H̃−s(Ω)

]′
, for all s ∈ R.

The next point we want to discuss is the restriction of the function space Hs(Ω) onto the
boundary Γ = ∂Ω.
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Definition 1.10. For s = 0 we define

‖v‖L2(Γ) :=

(∫
Γ

|v(x)|2dsx
)1/2

.

For s ∈ (0, 1) the Sobolev-Slobodeckii norm is defined as

‖v‖Hs(Γ) :=

(
‖v‖2

L2(Γ) +

∫
Γ

∫
Γ

|v(x)− v(y)|2

|x− y|1+2s
dsxdsy

)1/2

.

As for the Sobolev spaces in the domain, the Hs-spaces on the boundary for negative
indices are defined via duality:

Definition 1.11. For s < 0 we define

Hs(Γ) :=
[
H−s(Γ)

]′
,

with the corresponding Hs-norm

‖v‖Hs(Γ) := sup
06=ṽ∈H−s(Γ)

〈v, ṽ〉Γ
‖ṽ‖H−s(Γ)

,

and with the duality pairing

〈v, ṽ〉Γ =

∫
Γ

v(x)ṽ(x)dsx.

What is more, we define a Sobolev space for some open boundary part Γ0 ⊂ Γ = ∂Ω,

Hs(Γ0) :=
{
v = ṽ|Γ0 : ṽ ∈ Hs(Γ)

}
,

for s ≥ 0, equipped with the norm

‖v‖Hs(Γ0) = inf
ṽ∈Hs(Γ):ṽ|Γ0

=v
‖ṽ‖Hs.(Γ)

Eventually, there is one more Sobolev space which we will need later on for discretisations.

Definition 1.12. For a piecewise smooth boundary

Γ =
N⋃
i=1

τ i, τi ∩ τj = ∅ for i 6= j,

the function space

Hs
pw(Γ) :=

{
v ∈ L2(Γ) : v|τi ∈ H

s(τi), i = 1, . . . , N
}

defines a Sobolev space for s ≥ 0, with the norm

‖v‖Hs
pw

(Γ) :=

( N∑
i=1

‖v|τi‖
2
Hs(τi)

)1/2

.

So these are the main function spaces we will need among others to formulate variational
formulations, for which we describe the general concept in the next section. Further theories
and applications of Sobolev spaces can be found in [20] and [32].



1.3 Variational Methods 17

1.3 Variational Methods

In this section we introduce the concept of variational methods in general, in order to
describe the variational formulations for the Laplace and Poisson equations. For this
purpose we need some assumptions of functional analysis:

X . . . Hilbert space

Inner product 〈·, ·〉X

Induced norm ‖ · ‖X =
√
〈·, ·〉X

X
′
. . . dual space of X

Duality pairing 〈·, ·〉 : X
′ ×X → R

It holds the representation

‖f‖X′ = sup
06=v∈X

|〈f, v〉|
‖v‖X

for all f ∈ X ′ . (1.13)

We also consider a bounded linear operator A : X → X
′
, mapping from the introduced

Hilbert space X to the dual space X ′, with

‖Av‖X′ ≤ cA2 ‖v‖X for all v ∈ X.

Additionally, A is assumed to be self-adjoint, i.e.

〈Au, v〉 = 〈u,Av〉 for all u, v ∈ X.

Now let u ∈ X be a solution of the operator equation

Au = f, (1.14)

for a given f ∈ X ′. Then the following statement is true:
The variational formulation to find u ∈ X, such that

〈Au, v〉 = 〈f, v〉 for all v ∈ X, (1.15)

is equivalent to the operator equation (1.14). This can be proven as follows: On the one
hand, for a solution u ∈ X of the operator equation (1.14), the variational formulation
(1.15) is obviously fulfilled. On the other hand, we now assume that u ∈ X is a solution of
the variational formulation (1.15). Inserting the difference into Definition (1.13), we have

‖Au− f‖X′ = sup
06=v∈X

|〈Au− f, v〉|
‖v‖X

= 0,
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and this means 0 = Au− f ∈ X ′, so u ∈ X is a solution of the operator equation (1.14).
Moreover, the operator A : X → X

′
induces a bilinear form

a(·, ·) : X ×X → R, (1.16)

a(u, v) := 〈Au, v〉 for all u, v ∈ X.

On the other way round, for each bilinear form (1.16) there is an operator A : X → X ′

[32, Lemma 3.1]. Besides the boundedness of the linear operator A, another assumption
is necessary to prove the unique solvability of the operator equation with the important
lemma of Lax-Milgram, see below.

Definition 1.13. An operator A : X → X ′ is called X-elliptic, if

〈Au, u〉 ≥ cA1 ‖u‖2
X for all u ∈ X,

with a positive constant cA1 .

The unique solvability of the operator equation (1.14) and the variational formulation
(1.15) can now be given by the following well-known theorem:

Theorem 1.14 (Lemma of Lax-Milgram). Let A : X → X ′ be a bounded and X-elliptic
operator. Then there is a unique solution u ∈ X of the operator equation (1.14) for any
f ∈ X ′, and it holds

‖u‖X ≤
1

cA1
‖f‖X′ .

For the proof, a Riesz operator is introduced, and the operator equation (1.14) is written
as an equivalent fix point equation, see for example [32].
As we have seen in the motivation in Section 1.1, the operator equation Au = f has to
be solved with an additional condition Bu = g in general. For that reason we need again
some functional analysis concepts:
Let Π be a Banach space and B : X → Π′ a bounded, linear operator. For the operator
equation

Bu = g (1.17)

we have to find a solution u ∈ X for a given g ∈ Π′. A necessary additional assumption is
the solvability condition

g ∈ ImXB := {Bv ∈ Π′, for all v ∈ X}.

Now let

Vg := {v ∈ X : Bv = g}
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be the solution manifold in X for a given g ∈ Π′. In particular,

V0 = ker B = {v ∈ X : Bv = 0}.

If f ∈ X ′ fulfills the solvability condition

f ∈ ImVgA := {Au ∈ X ′, for all u ∈ Vg},

we can reformulate the variational formulation (1.15) in the following way:
Find u ∈ Vg, such that

〈Au, v〉 = 〈f, v〉 for all v ∈ V0. (1.18)

The final theorem shows the unique solvability of the variational formulation (1.18):

Theorem 1.15. Let B : X → Π′ be a bounded operator, A : X → X ′ be bounded and
V0-elliptic, i.e.

〈Av, v〉 ≥ cA1 ‖v‖2
X for all v ∈ V0.

Then there exists a unique solution u ∈ X for the operator equation with an additional
condition,

Au = f,

Bu = g,

for f ∈ ImVqA and g ∈ ImXB.

For deeper discussions and more general concepts on variational methods, see for example
[1].

1.4 Representation Formulae

The aim of this section is to formulate at first the fundamental solution for the Poisson
equation. For this purpose, we have to introduce Green’s first and second formulae. With
the help of these equations, we can explain the representation formula for the solution of an
interior boundary value problem. Additionally, we also describe the representation formula
for the Laplace equation for an exterior domain.

1.4.1 Interior Boundary Value Problems

We multiply the Poisson equation (1.4) with a test function v, integrate over the domain
Ω and apply integration by parts. This procedure leads to Green’s first formula:∫

Ω

(−∆u(y))v(y)dy = a(u, v)−
∫

Γ

γint1 u(y)γint0 v(y)dsy, (1.19)
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with the symmetric bilinear form

a(u, v) =

∫
Ω

∇u(y)∇v(y)dy.

The symmetry a(u, v) = a(v, u) leads to Green’s second formula:∫
Ω

(−∆v(y))u(y)dy +

∫
Γ

γint1 v(y)γint0 u(y)dsy

=

∫
Ω

(−∆u(y))v(y)dy +

∫
Γ

γint1 u(y)γint0 v(y)dsy. (1.20)

For the test function v in Green’s second formula (1.20) we choose the fundamental solution

U∗(·, ·) : R2 × R2 → R,

U∗(x, y) = − 1

2π
log |x− y|,

satisfying ∫
Ω

(−∆yU
∗(x, y))u(y)dy = u(x) for x ∈ Ω,

see for example [20]. After rewriting, Green’s second formula (1.20) results in the repre-
sentation formula for the Poisson equation:

u(x) =

∫
Γ

U∗(x, y)γint1 u(y)dsy −
∫

Γ

γint1,yU
∗(x, y)g(y)dsy +

∫
Ω

U∗(x, y)f(y)dy (1.21)

for x ∈ Ω. Looking at the Dirichlet boundary value problem (1.9), the challenge is to
determine the unknown Neumann data γint1 u on the boundary Γ to gain the solution u on
the whole domain Ω.

1.4.2 Exterior Boundary Value Problems

In order to derive the representation formula for the exterior domain, we choose a point
x ∈ Ωc, a ball Br(x) and the radius r in such a way that the ball completely contains the
interior domain Ω, i.e. Ω ⊂ Br(x). The result is a domain Ωr = Br(x)\Ω, for which we can
use the representation formula (1.21) for the Laplace equation. By minding the algebraic
signs of the normal vectors, we have

u(x) = −
∫

Γ

U∗(x, y)γext1 u(y)dsy +

∫
Γ

γext1,yU
∗(x, y)γext0 u(y)dsy

+

∫
∂Br(x)

U∗(x, y)γint1 u(y)dsy −
∫
∂Br(x)

γint1,yU
∗(x, y)γint0 u(y)dsy.

(1.22)
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Our goal is to calculate the limit r → ∞, so we require a suitable radiation condition
to deal with the behavior of the solution u at infinity. As in McLean’s book [20] and
originally in the paper of Costabel and Dauge [6], there is a special approach in R2, namely
the radiation condition

∃ a ∈ R : u(x) = a log |x|+ o(1) = a log |x|+O
(

1

|x|

)
as |x| → ∞. (1.23)

Theorem 8.9 in [20] proves that if and only if the solution u satisfies the decay condition
(1.23), the last two integrals in equation (1.22) tend to zero as r →∞. Putting the above
together, we get the representation formula for the solution of the exterior boundary value
problem,

u(x) = −
∫

Γ

U∗(x, y)γext1 u(y)dsy +

∫
Γ

γext1,yU
∗(x, y)γext0 u(y)dsy for x ∈ Ωc. (1.24)

1.5 Boundary Integral Operators

In this section we introduce boundary integral operators, which we will need for the bound-
ary integral equations of the exterior and interior boundary value problems in the next two
sections. We describe the boundary and volume potentials of the introduced representation
formulae, as well as their interior and exterior traces and conormal derivatives, respectively.

1.5.1 Newton Potential

The first potential we are going to consider is a volume potential, namely the Newton
potential

(Ñ0f)(x) :=

∫
Ω

U∗(x, y)f(y)dy = − 1

2π

∫
Ω

log |x− y|f(y)dy for x ∈ Ω. (1.25)

It is a continuous mapping

Ñ0 : H̃−1(Ω)→ H1(Ω).

For the mapping properties of the Newton potentials, see for example [32].

Lemma 1.16. Since the interior trace operator γint0 maps from H1(Ω) to H1/2(Γ), we
obtain the linear and bounded operator

N0 := γint0 Ñ0 : H̃−1(Ω)→ H1/2(Γ),

with

‖N0f‖H1/2(Γ) ≤ cN0
2 ‖f‖H̃−1(Ω) for all f ∈ H̃−1(Ω).
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For f ∈ L∞(Ω) and x ∈ Γ the representation

(N0f)(x) = γint0 (Ñ0f)(x) =

∫
Ω

U∗(x, y)f(y)dy = − 1

2π

∫
Ω

log |x− y|f(y)dy

exists as a weakly singular domain integral.

Moreover, by applying the interior conormal derivative to the Newton potential (1.25)
defined above, there exists the continuous mapping

N1 := γint1 Ñ0 : H̃−1(Ω)→ H−1/2(Γ),

with

(N1f)(x) = γint1 (Ñ0f)(x) for x ∈ Γ,

and

‖N1f‖H−1/2(Γ) ≤ cN1
2 ‖f‖H̃−1(Ω) for all f ∈ H̃−1(Ω).

In what follows, we are going to describe boundary potentials in the next Subsections.

1.5.2 Single Layer Potential

The next potential we are discussing is the single layer potential

(Ṽ w)(x) :=

∫
Γ

U∗(x, y)w(y)dsy = − 1

2π

∫
Γ

log |x− y|w(y)dsy for x ∈ Ω, (1.26)

for a given density function w ∈ H−1/2(Γ). The potential (1.26) maps the density function

w on the boundary Γ to a function Ṽ w in the domain Ω. Particularly, it is a continuous
mapping

Ṽ : H−1/2(Γ)→ H1(Ω).

An important condition of the single layer potential is the weak solvability of the Laplace
equation (1.3), i.e.

−∆(Ṽ w)(x) = 0 for x ∈ Ω

for any function w ∈ H−1/2(Γ), which means that Ṽ w is a harmonic function. The bound-
ary integral operator

(V w)(x) := γint0 (Ṽ w)(x) =

∫
Γ

U∗(x, y)w(y)dsy

= − 1

2π

∫
Γ

log |x− y|w(y)dsy for x ∈ Γ
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exists as a weakly singular surface integral, with the mapping properties

V = γint0 Ṽ : H−1/2(Γ)→ H1/2(Γ),

with

‖V w‖H1/2(Γ) ≤ cV2 ‖w‖H−1/2(Γ) for all w ∈ H−1/2(Γ).

Remark 1.2. The representation of the operator V on the boundary Γ is still the same
when applying the exterior trace operator (1.6),

(V w)(x) = γext0 (Ṽ w)(x) for x ∈ Γ.

Regarding the solvability of variational formulations with the observed boundary integral
operator, and therefore in view of the lemma of Lax-Milgram 1.14, the following lemma is
important:

Lemma 1.17 ([32]). With the additional restriction to the domain Ω, diam(Ω) < 1, the
bounded single layer potential operator V is H−1/2(Γ)-elliptic, i.e.

〈V w,w〉 ≥ cV1 ‖w‖2
H−1/2(Γ) for all w ∈ H−1/2(Γ).

1.5.3 Double Layer Potential

The next potential we are looking at is the double layer potential

(Wv)(x) :=

∫
Γ

γint1,yU
∗(x, y)v(y)dsy

= − 1

2π

∫
Γ

γint1,y log |x− y|v(y)dsy

= − 1

2π

∫
Γ

(y − x, ny)
|x− y|2

v(y)dsy for x ∈ Ω. (1.27)

It is again a continuous map

W : H1/2(Γ)→ H1(Ω),

and the function Wv ∈ H1(Ω) is a weak solution of the Laplace equation (1.3), so

−∆(Wv)(x) = 0 for x ∈ Ω.

Applying the interior trace operator (1.5), we obtain the linear and bounded double layer
potential operator

γint0 W : H1/2(Γ)→ H1/2(Γ),

with

‖γint0 Wv‖H1/2(Γ) ≤ c
γint0 W
2 ‖v‖H1/2(Γ) for all v ∈ H1/2(Γ).
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Lemma 1.18 ([34]). For v ∈ H1/2(Γ) there holds

γint0 (Wv)(x) =
(
− 1 + σ(x)

)
v(x) + (Kv)(x) for x ∈ Γ,

with

σ(x) := lim
ε→0

1

2π

1

ε

∫
y∈Ω:|y−x|=ε

dsy for x ∈ Γ, (1.28)

and

(Kv)(x) := lim
ε→0

∫
y∈Γ:|y−x|≥ε

γint1,yU
∗(x, y)v(y)dsy

= − 1

2π
lim
ε→0

∫
y∈Γ:|y−x|≥ε

(y − x, ny)
|x− y|2

dsy for x ∈ Γ.

Analogously, there holds the following representation of the double layer potential operator
when we apply the exterior trace operator (1.6):

γext0 (Wv)(x) = σ(x)v(x) + (Kv)(x) for x ∈ Γ.

The next Remark 1.3 is about an easier representation of the function σ(x).

Remark 1.3. If the boundary Γ is smooth, i.e. at least differentiable, in the neighbourhood
U(x) ∩ Γ of the observed point x ∈ Γ, the description (1.28) of σ(x) is

σ(x) =
1

2
for almost all x ∈ Γ.

Since we have introduced the first three boundary integral operators up to now, the interior
representation formula (1.21) can be written in a more compact way,

u(x̃) = (Ṽ γint1 u)(x̃)− (Wγint0 )u(x̃) + (Ñ0f)(x̃) for x̃ ∈ Ω. (1.29)

Calculating the limit Ω 3 x̃ → x ∈ Γ, or rather applying the interior trace operator γint0 ,
we gain the first boundary integral equation

γint0 u(x) = (V γint1 u)(x) +
1

2
γint0 u(x)− (Kγint0 )u(x) + (N0f)(x) for x ∈ Γ. (1.30)

Analogously we have a compact formula for the exterior representation formula (1.24) for
the Laplace problem:

u(x̃) = −(Ṽ γext1 u)(x̃) + (Wγext0 )u(x̃) for x̃ ∈ Ωc. (1.31)

Again, the application of the exterior trace operator γext0 leads to the first integral equation
for an exterior problem,

γext0 u(x) = −(V γext1 u)(x) +
1

2
γext0 u(x) + (Kγext0 )u(x) for x ∈ Γ. (1.32)
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Remark 1.4. For a constant function v0 ≡ 1 it holds

(
1

2
I +K)v0(x) = 0 for x ∈ Γ.

Proof. Let us consider the introduced first boundary integral equation (1.30) for the Laplace
equation with f ≡ 0. For v0 ≡ 1 it holds

1 = (
1

2
I −K)1 + V γint1 1 = (

1

2
I −K)1.

Now the statement follows immediately.

The equation in Remark 1.4 is very useful. Thinking about software implementations of
discretized operators, the above given relation is an easy possibility to check if the double
layer potential is calculated in a right way. Looking at Table 4.2 in Subsection 4.2.1, we see
that this kernel property is still valid for the discretised scheme, which will be introduced
in Chapter 3.

1.5.4 Adjoint Double Layer Potential

For the corresponding boundary integral operators of the single and double layer potential,
we applied the interior trace operator γint0 so far. The interior conormal derivative (1.7)

with the mapping properties for the space H1(Ω,∆) =
{
v ∈ H1(Ω) : ∆v ∈ H̃−1(Ω)

}
,

γint1 : H1(Ω,∆)→ H−1/2(Γ)

yields another opportunity to define further boundary integral operators, which we describe
in the following and next section.

Lemma 1.19 ([32]). The interior conormal derivative of the single layer potential defines
a linear boundary integral operator

γint1 Ṽ : H−1/2(Γ)→ H−1/2(Γ),

which is bounded with

‖γint1 Ṽ w‖H−1/2(Γ) ≤ c
γint1 Ṽ
2 ‖w‖H−1/2(Γ) for all w ∈ H−1/2(Γ).

For w ∈ H−1/2(Γ) it holds

γint1 (Ṽ w)(x) = σ(x)w(x) + (K ′w)(x) for x ∈ Γ

in the sense of H−1/2(Γ), with

(K ′w)(x) := lim
ε→0

∫
y∈Γ:|y−x|≥ε

γint1,xU
∗(x, y)w(y)dsy

= − 1

2π
lim
ε→0

∫
y∈Γ:|y−x|≥ε

γint1,x log |x− y|w(y)dsy

= − 1

2π
lim
ε→0

∫
y∈Γ:|y−x|≥ε

(x− y, nx)
|x− y|2

w(y)dsy for x ∈ Γ.
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Again, there is a similar representation when applying the exterior conormal derivative
(1.8):

γext1 (Ṽ w)(x) =
(
σ(x)− 1

)
w(x) + (K ′w)(x) for x ∈ Γ

in the sense of H−1/2(Γ).

1.5.5 Hypersingular Integral Operator

The interior conormal derivative of the double layer potential (1.27) defines the last oper-
ator we want to introduce, the bounded hypersingular integral operator

D := −γint1 W : H1/2(Γ)→ H−1/2(Γ), (1.33)

with

‖Dv‖H−1/2(Γ) ≤ cD2 ‖v‖H1/2(Γ) for all v ∈ H1/2(Γ).

Basically, it holds

(Dv)(x) = −γint1 (Wv)(x) = − lim
x̃3Ω→x∈Γ

(nx,∇x̃(Wv)(x̃))

= − 1

2π
lim
ε→0

∫
y∈Γ:|y−x|≥ε

[
(nx, ny)

|x− y|2
− 2

(x− y, nx)(x− y, ny)
|x− y|4

]
v(y)dsy

for x ∈ Γ. Unfortunately, this integral does not exist as a Cauchy singular surface integral.
The outcome of this is the name as a hypersingular integral operator. For a useful explicit
representation of it, we need to do some regularisations.

Remark 1.5. For a constant function u0 ≡ 1, the hypersingular integral operator is zero,
i.e.

(Du0)(x) = 0 for x ∈ Γ.

Proof. Let us consider the representation formula (1.21) for the Laplace equation. Since
u0 ≡ 1 is a solution of −∆u0(x) = 0, we have

1 = −
∫

Γ

γint1,yU
∗(x̃, y)dsy for x̃ ∈ Ω.

As the derivative of constant functions is zero, after applying the gradient with respect to
x̃ ∈ Ω we receive

∇x̃(Wu0)(x̃) = 0 for x̃ ∈ Ω. (1.34)

Multiplying the equation with the outer normal vector of the domain Ω and calculating
the limit x̃ 3 Ω→ x ∈ Γ, relation (1.34) results in

(Du0)(x) = 0 for x ∈ Γ.
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Besides, as for the double layer potential, this relation is still valid for the discretised
scheme, see for instance the results in Table 4.2 in Subsection 4.2.1. Remark 1.5 can now
be used in the following way:

(Dv)(x) = − lim
x̃3Ω→x∈Γ

(nx,∇x̃(Wv)(x̃))

= − lim
x̃3Ω→x∈Γ

(nx,∇x̃

∫
Γ

γint1,yU
∗(x̃, y)v(y)dsy)

= − lim
x̃3Ω→x∈Γ

(nx,∇x̃

∫
Γ

γint1,yU
∗(x̃, y)

(
v(y)− v(x)

)
dsy). (1.35)

The integral (1.35) now exists as a Cauchy singular surface integral, and for a continuous
density function v ∈ H1/2(Γ) there are several possibilities of representations, one of them
given below:

(Dv)(x) = −γint1,x

∫
Γ

γint1,yU
∗(x, y)u(y)dsydsx for x ∈ Γ.

Moreover, we note that due to the induced bilinear form of the hypersingular integral
operator and integration by parts, an alternative representation can be reached, see [32].

Remark 1.6. Once more, we can apply the exterior conormal derivate to the double layer
potential W . This procedure makes no difference in the representation of the hypersingular
operator, hence it still holds

(Dv)(x) = −(γext1 Wv)(x) for x ∈ Γ.

As far as the ellipticity of the hypersingular integral operator is concerned, there is a
problem with the kernel condition (Du0)(x) = 0 with the eigensolution u0 ≡ 1 for x ∈ Γ
as noted in Remark 1.5. Hence there is no ellipticity of D on the whole space H1/2(Γ). For
the following lemma showing the special ellipticity properties of D, we define the function
space

H1/2
∗∗ (Γ) :=

{
v ∈ H1/2(Γ) : 〈v, 1〉Γ = 0

}
.

Lemma 1.20 ([32]). The hypersingular integral operator D defined as in (1.33) is H1/2(Γ)-
semi-elliptic, that is why it holds

〈Dv, v〉Γ ≥ |v|2H1/2(Γ) for all v ∈ H1/2(Γ).

For functions v ∈ H1/2
∗∗ (Γ), D is H

1/2
∗∗ (Γ)-elliptic, i.e.

〈Dv, v〉Γ ≥ ‖v‖2
H1/2(Γ) for all v ∈ H1/2

∗∗ (Γ).
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Since we can now apply the interior conormal derivative to the introduced operators too,
the interior representation formula (1.21) yields a second boundary integral equation

γint1 u(x) =
1

2
γint1 u(x) + (K ′γint1 u)(x) + (Dγint0 u)(x) + (N1f)(x) (1.36)

for x ∈ Γ. Again, the application of the exterior conormal derivative yields a second
boundary integral equation for the exterior problem,

γext1 u(x) =
1

2
γext1 u(x)− (K ′γext1 u)(x)− (Dγext0 u)(x) for x ∈ Γ. (1.37)

1.5.6 Mapping Properties

Finally, we want to summarise the mapping properties of the boundary integral operators
introduced in the sections above.

Lemma 1.21 ([5]). For the boundary Γ of the Lipschitz domain Ω, the boundary integral
operators

V : H−1/2+s(Γ) → H1/2+s(Γ),

D : H1/2+s(Γ) → H−1/2+s(Γ),

K : H1/2+s(Γ) → H1/2+s(Γ),

K
′

: H−1/2+s(Γ) → H−1/2+s(Γ)

are bounded for all s ∈ [−1
2
, 1

2
].

1.5.7 Steklov-Poincaré Operators

Looking ahead to domain decomposition methods, the operator we deal with in this sub-
section is very important. For this purpose, we consider the interior first boundary integral
equation (1.30) for the Laplace equation, i.e. f ≡ 0. The single layer potential V is invert-
ible when assuming diam(Ω) < 1, so we can solve the equation for the interior conormal
derivative

γint1 u(x) = V −1(
1

2
I +K)γint0 u(x) for x ∈ Γ.

Thus, the bounded interior Steklov-Poincaré operator

Sint := V −1(
1

2
I +K) : H1/2(Γ)→ H−1/2(Γ)

defines a Dirichlet to Neumann map for the interior Laplace equation. When inserting
γint1 u(x) = (Sintγint0 )u(x) into the second boundary integral equation (1.36), we obtain an
equivalent symmetric representation

γint1 u(x) = (Dγint0 u)(x) + (
1

2
I +K ′)γint1 u(x)

=
(
D + (

1

2
I +K ′)V −1(

1

2
I +K)

)
γint0 u(x),
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with

Sint := D + (
1

2
I +K ′)V −1(

1

2
I +K) : H1/2(Γ)→ H−1/2(Γ).

Remark 1.7. For a constant function v0 ≡ 1 it holds

(Sintv0)(x) = 0 for x ∈ Γ.

Proof. This relation follows from the kernel properties of the hypersingular integral oper-
ator and of (1

2
I +K), see Remarks 1.5 and 1.4, respectively.

For ellipticity discussions, we know that the inverse single layer potential is H1/2(Γ)-elliptic,
see [32, Lemma 3.3] for a general discussion. Hence,

〈Sintv, v〉Γ = 〈Dv, v〉Γ + 〈V −1(
1

2
I +K)v, (

1

2
I +K)v〉Γ

≥ 〈Dv, v〉Γ +
1

cV2
‖(1

2
I +K)v‖2

H1/2(Γ)

≥ 〈Dv, v〉Γ for all v ∈ H1/2(Γ).

Thus, S is spectrally equivalent to D, meaning that the Steklov-Poincaré operator has the
same semi-ellipticity conditions as the hypersingular integral operator, particularly

〈Sintv, v〉Γ ≥ cD1 |v|2H1/2(Γ) for all v ∈ H1/2(Γ).

Regarding the symmetric representation, we finally note that for software implementations
S is only given implicitly. Using boundary element methods, we describe an alternative
formulation of the Steklov-Poincaré operators in Section 2.3. Doing so, we then are able
to calculate these operators explicitly.
In the end, we also want to define the exterior Steklov-Poincaré operator. For this purpose,
we obtain from the first exterior boundary integral equation (1.32)

γext1 u(x) = −V −1(
1

2
I −K)γext0 u(x) for x ∈ Γ, (1.38)

which leads us to the definition

Sext := V −1(
1

2
I −K) : H1/2(Γ)→ H−1/2(Γ).

The second boundary integral equation (1.37) for the exterior problem is

γext1 u(x) = −(Dγext0 u)(x) + (
1

2
I −K ′)γext1 u(x).

Inserting now the exterior conormal derivative γext1 u(x) from (1.38), we get

γext1 u(x) = −
(
D + (

1

2
I −K ′)V −1(

1

2
I −K)

)
γext0 u(x).
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Thus, the symmetric representation is

Sext = D + (
1

2
I −K ′)V −1(

1

2
I −K) : H1/2(Γ)→ H−1/2(Γ).

The exterior Steklov-Poincaré operator is H1/2(Γ)-elliptic. For the proof, we shall adopt
the approach of [32], where

‖v‖V −1 :=
√
〈V −1v, v〉Γ for all v ∈ H1/2(Γ)

defines a norm on H1/2(Γ) equivalent to ‖ · ‖H1/2(Γ). So let us start with

〈Sextv, v〉Γ = 〈Dv, v〉Γ + 〈(1

2
I −K ′)V −1(

1

2
I −K)v, v〉Γ

≥ 〈V −1(
1

2
I −K)v, (

1

2
I −K)v〉Γ

= ‖(1

2
I −K)v‖2

V −1 .

For the next step, we need

‖v‖V −1 = ‖(1

2
I −K)v + (

1

2
I +K)v‖V −1

≤ ‖(1

2
I −K)v‖V −1 + ‖(1

2
I +K)v‖V −1

≤ ‖(1

2
I −K)v‖V −1 + cK‖v‖V −1 ,

with a contraction constant cK < 1 depending on the ellipticity constants of the single
layer operator and the hypersingular operator, see [32, Folgerung 6.6]. Hence, it follows

(1− cK) ‖v‖V −1 ≤ ‖(1

2
I −K)v‖V −1 ,

and since ‖ · ‖V −1 defines an equivalent norm, we finally get

〈Sextv, v〉Γ = (1− cK)2 ‖v‖2
V −1

≥ cS
ext

1 ‖v‖2
H1/2(Γ),

which completes the proof for the H1/2(Γ)-ellipticity of the exterior Steklov-Poincaré op-
erator Sext.

1.6 Interior Boundary Integral Equations

As already mentioned in Section 1.4, the goal is to find the unknown Neumann data γint1 u(x)
for x ∈ Γ. Then the solution of either the Poisson or the Laplace problem can be described
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by the representation formula (1.21). This can be done by the use of boundary integral
equations.
Let us start with the interior representation formula (1.29),

u(x̃) = (Ṽ γint1 u)(x̃)− (Wγint0 u)(x̃) + (Ñ0f)(x̃) for x̃ ∈ Ω.

The application of the interior trace operator γint0 and the interior conormal derivative γint1

yields the first boundary integral equation

γint0 u(x) = (V γint1 u)(x) +
1

2
γint0 u(x)− (Kγint0 )u(x) + (N0f)(x) for x ∈ Γ, (1.39)

and the second boundary integral equation

γint1 u(x) =
1

2
γint1 u(x) + (K ′γint1 u)(x) + (Dγint0 u)(x) + (N1f)(x) for x ∈ Γ,

respectively. With the help of the interior Calderon projector

Cint =

(
1
2
I −K V
D 1

2
I +K

′

)
,

these two relations can be written in a system of boundary integral equations(
γint0 u
γint1 u

)
=

(
1
2
I −K V
D 1

2
I +K

′

)(
γint0 u
γint1 u

)
+

(
N0f
N1f

)
(1.40)

on the boundary Γ. Since the Operator Cint is a projection operator, which means that
Cint = (Cint)2, we get the following relations:

Remark 1.8 ([32]).

V D = (
1

2
I +K)(

1

2
I −K),

DV = (
1

2
I +K ′)(

1

2
I −K ′),

V K ′ = KV,

K ′D = DK.

Moreover, the conormal derivative of the Newton potential can be expressed by the Newton
potential itself:

Lemma 1.22. For x ∈ Γ, the volume potential (N1f)(x) fulfills the equation

(N1f)(x) = (
1

2
I +K ′)V −1(N0f)(x).

Proof. The relation follows by inverting the single layer potential V in the first equation of
the system of boundary integral equations (1.40), and applying the result into the second
boundary integral equation.

Lemma 1.22 is very useful for software implementations of boundary element methods,
because we do not have to deal with the calculation of the operator N1f explicitly, but it
can be described by the other integral operators involved.
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1.7 Exterior Boundary Integral Equations

We can do the same procedure as in Section 1.6 above for an exterior boundary value
problem in Ωc. So we start with the representation formula (1.31) for the exterior problem,

u(x̃) = −(Ṽ γext1 u)(x̃) + (Wγext0 )u(x̃) for x̃ ∈ Ωc.

With the exterior operators γext0 and γext1 it follow the first exterior boundary integral
equation

γext0 u(x) = −(V γext1 u)(x) +
1

2
γext0 u(x) + (Kγext0 )u(x) for x ∈ Γ,

and the second exterior boundary integral equation

γext1 u(x) =
1

2
γext1 u(x)− (K ′γext1 u)(x)− (Dγext0 u)(x) for x ∈ Γ,

respectively. With the exterior Calderon projector

Cext =

(
1
2
I +K −V
−D 1

2
I −K ′

)
(1.41)

we obtain an alternative system of boundary integral equations for the exterior Laplace
problem, i.e. (

γext0 u
γext1 u

)
=

(
1
2
I +K −V
−D 1

2
I −K ′

)(
γext0 u
γext1 u

)
(1.42)

on Γ. Besides, the exterior Calderon projector Cext is a projection operator too, so it holds
Cext = (Cext)2.



2 Boundary Value and Free Space
Transmission Problems

In the following sections we state various models of partial differential equations for differ-
ent problems in physics. We start with the Laplace and Poisson equation and their different
solving approaches. Since boundary element methods are especially suitable for free space
problems, we handle an exterior Dirichlet boundary value problem. As a combination of
the previous problems we could see the interface problem, which considers two domains.
In the interior domain Ω1 we have given a Poisson equation, and for the exterior domain
Ω2 we use a Laplace problem. The transmission conditions on the boundary of Ω1, which
is equal to the boundary of Ω2 too, connect our two problems. Hence, there is no bound-
ary data given explicitly. The second main topic in this work are domain decomposition
methods. The idea is to divide a given domain into many subdomains. Hence, we obtain a
skeleton of subdomain boundaries, as well as local boundary value problems, linked on the
occurring coupled boundaries with Dirichlet and Neumann transmission conditions. Using
the Steklov-Poincaré operator S, we are able to describe variational formulations on the
skeleton to determine the missing data on the subdomain boundaries. Finally, we are able
to calculate the solution for the original, global problem in the usual way.

2.1 Interior Dirichlet Boundary Value Problems

We consider two common partial differential equations, namely the Laplace and Poisson
equation. As already mentioned in the introduction of this work, there exist two different
types of boundary integral approaches to solve the corresponding boundary value problems,
which will be shown for the Laplace problem. There is the indirect approach, where we use
the solvability properties of the single layer potential operator for the Laplace equation.
Concerning the direct approach, we apply the boundary integral equations of Section 1.6
to determine the solution with the help of the representation formula (1.21). At the end,
we state the direct approach for the Poisson problem too, and deal with the evaluation of
the Newton potential operator.

2.1.1 Approaches for the Laplace Problem

For a better overview, we state again the interior Dirichlet boundary value problem

−∆u(x) = 0 for x ∈ Ω ⊂ R2,

γint0 u(x) = g(x) for x ∈ Γ.
(2.1)

33
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Indirect Approach

As mentioned in Subsection 1.5.2,

u(x) = (Ṽ w)(x) for x ∈ Ω

is harmonic for w ∈ H−1/2(Γ). Using the interior trace operator, we obtain

(V w)(x) =

∫
Γ

U∗(x, y)w(y)dsy = γint0 u(x) = g(x) for x ∈ Γ, (2.2)

with the given Dirichlet datum g on the boundary. The goal is to determine the unknown
density function w. In this case, we know that the boundary integral equation (2.2) is
equivalent to the following variational formulation: Find w ∈ H−1/2(Γ), such that

〈V w, z〉Γ = 〈g, z〉Γ for all z ∈ H−1/2(Γ), (2.3)

or rather stated in integral notation

− 1

2π

∫
Γ

z(x)

∫
Γ

log |x− y|w(y)dsydsx =

∫
Γ

g(x)z(x)dsx.

Theorem 2.1. For a given boundary datum g ∈ H1/2(Γ), and assuming diam(Ω) < 1,
there exists a unique solution w ∈ H−1/2(Γ) of the variational formulation (2.3) with

‖w‖H−1/2(Γ) ≤
1

cV1
‖g‖H1/2(Γ).

Proof. Since the single layer potential V is bounded and elliptic for diam(Ω) < 1 according
to Lemma 1.17, the discussed variational formulation is uniquely solvable due to the lemma
of Lax-Milgram (Theorem 1.14), which yields the described inequality too. Therefore, the
main steps are

cV1 ‖w‖2
H−1/2(Γ) ≤ 〈V w,w〉Γ

(2.3)
= 〈g, w〉Γ.

Using the Cauchy-Schwarz inequality, we obtain

cV1 ‖w‖2
H−1/2(Γ) ≤ ‖g‖H1/2(Γ)‖w‖H−1/2(Γ),

and finally

‖w‖H−1/2(Γ) ≤
1

cV1
‖g‖H1/2(Γ).

The approach for solving the Dirichlet boundary value problem by the single layer potential
alone is called indirect. Apart from this, the density function w we are looking for has no
physical meaning in general.
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Direct Approach

Other than for the indirect approach, the solution of the boundary value problem (2.1) can
also be calculated on the whole domain Ω with the representation formula for the Laplace
equation given in Section 1.4,

u(x) =

∫
Γ

U∗(x, y)γint1 u(y)dsy −
∫

Γ

γint1,yU
∗(x, y)g(y)dsy for x ∈ Ω. (2.4)

Since the Dirichlet datum γint0 u = g is given on the boundary Γ, the intention is to deter-
mine the unknown Neumann datum γint1 u ∈ H−1/2(Γ). The retyped first boundary integral
equation in system (1.40) gives

(V γint1 u)(x) = (
1

2
I +K)g(x) for x ∈ Γ,

and accordingly

− 1

2π

∫
Γ

log |x− y|γint1 u(x)dsy =
1

2
g(x)− 1

2π

∫
Γ

(y − x, ny)
|x− y|2

g(y)dsy.

The equivalent variational problem reads as follows: Find γint1 u ∈ H−1/2(Γ), such that

〈V γint1 u, z〉Γ = 〈(1

2
I +K)g, z〉Γ (2.5)

is satisfied for all z ∈ H−1/2(Γ), and alternatively

− 1

2π

∫
Γ

z(x)

∫
Γ

log |x− y|t(y)dsydsx

=
1

2

∫
Γ

g(x)z(x)dsx −
1

2π

∫
Γ

z(x)

∫
Γ

(y − x, ny)
|x− y|2

g(y)dsydsx.

Theorem 2.2. Consider the given Dirichlet datum g ∈ H1/2(Γ). When we assume
diam(Ω) < 1, then there exists a uniquely determined Neumann datum γint1 u ∈ H−1/2(Γ)
as a solution of the variational formulation (2.5) of the direct approach, and it holds

‖γint1 u‖H−1/2(Γ) ≤
1

cV1

(
1 + c

γint0 W
2

)
‖g‖H1/2(Γ).

Proof. Once again, the lemma of Lax-Milgram (Theorem 1.14) yields the unique solvability,
since the difference to the indirect approach is just another definition of the right hand side.
As far as the estimate is concerned, we also have the inequality given by the Lax-Milgram
lemma for the first step:

‖γint1 u‖H−1/2(Γ) ≤
1

cV1
‖(1

2
I +K)g‖H1/2(Γ).

Secondly, as shown in Subsection 1.5.3, the double layer potential is bounded. With the
triangle inequality the asserted estimate can finally be proven:

‖γint1 u‖H−1/2(Γ) ≤
1

cV1
‖g + γint0 Wg‖H1/2(Γ) ≤

1

cV1

(
1 + c

γint0 W
2

)
‖g‖H1/2(Γ).
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2.1.2 Direct Approach for the Poisson Problem

At the beginning, let us state the interior Dirichlet boundary value problem for the Poisson
equation,

−∆u(x) = f(x) for x ∈ Ω ⊂ R2,

γint0 u(x) = g(x) for x ∈ Γ.
(2.6)

The difference to the Laplace problem (2.1) is in a given function f on the right hand side.
The solution u in the domain Ω is then given by the representation formula (1.21),

u(x) =

∫
Γ

U∗(x, y)γint1 u(y)dsy −
∫

Γ

γint1,yU
∗(x, y)g(y)dsy +

∫
Ω

U∗(x, y)f(y)dy.

To obtain the unknown Neumann datum γint1 u on the boundary Γ, the application of the
interior trace operator leads to the rewritten first boundary integral equation already given
in Section 1.6,

(V γint1 u)(x) = (
1

2
I +K)γint0 u(x)− (N0f)(x) for x ∈ Γ. (2.7)

Theorem 2.3. Let g ∈ H1/2(Γ) be the given Dirichlet datum, and f ∈ H̃−1(Ω) a given
function on the right hand side of the Poisson problem (2.6). Assuming diam(Ω) < 1,
there exists a unique solution γint1 u ∈ H−1/2(Γ) of the variational formulation

〈V γint1 u, z〉Γ = 〈(1

2
I +K)g, z〉Γ + 〈N0f, z〉Γ for all z ∈ H−1/2(Γ),

with

‖γint1 u‖H−1/2(Γ) ≤
1

cV1

(
1 + c

γint0 W
2

)
‖g‖H1/2(Γ) +

cN0
2

cV1
‖f‖H̃−1(Ω).

Proof. The unique solvability follows immediately as in the Theorems 2.1 and 2.2 for the
indirect and the direct approach for the Laplace problem respectively from the lemma of
Lax-Milgram (Theorem 1.14). As far as the stability analysis is concerned, similarly to the
estimate in Theorem 2.2 we have

‖γint1 u‖H−1/2(Γ) ≤
1

cV1

(
1 + c

γint0 W
2

)
‖g‖H1/2(Γ) +

1

cV1
‖N0f‖H1(Ω).

The boundedness of the Newton potential shown in Lemma 1.16 yields

‖γint1 u‖H−1/2(Γ) ≤
1

cV1

(
1 + c

γint0 W
2

)
‖g‖H1/2(Γ) +

cN0
2

cV1
‖f‖H̃−1(Ω),

and the proof is complete.

Remembering the direct approach for the Laplace equation in the Subsection 2.1.1 above,
we additionally have to deal with the Newton potential. There are several methods to do
so, intuitively one approach is a direct calculation. Nonetheless, we realise N0f by the aid
of a particular solution of the Poisson equation.
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Calculation of the Newton Potential

We start with the Poisson equation (2.6) for a particular solution up,

−∆up(x) = f(x) for x ∈ Ω ⊂ R2,

with the same f on the right hand side as in the Poisson problem (2.6). Again, the rewritten
first boundary integral equation gives

(V γint1 up)(x) = (
1

2
I +K)γint0 up(x)− (N0f)(x) for x ∈ Γ,

and therefore

(N0f)(x) = (
1

2
I +K)γint0 up(x)− (V γint1 up)(x) for x ∈ Γ. (2.8)

This means that we formulate the Newton potential by the surface potentials, namely the
single and double layer potential operator. We mind that we have to provide a particular
solution up. Finally, we have to solve the following equation for the Neumann datum γint1 u
on the boundary Γ:

(V γint1 u)(x) = (
1

2
I +K)γint0 u(x)− (

1

2
I +K)γint0 up(x) + (V γint1 up)(x) for x ∈ Γ.

Once the solution γint1 u is determined, it will be inserted into the representation formula.
For this purpose, let us consider the formula for the particular solution up of the Poisson
problem,

up(x) =

∫
Γ

U∗(x, y)γint1 up(y)dsy −
∫

Γ

γint1,yU
∗(x, y)γint0 up(y)dsy +

∫
Ω

U∗(x, y)f(y)dy

for x ∈ Ω. In the end, by subtraction of the representation formula (1.21) of the original
problem, we get the solution u of the Poisson problem (2.6) for x ∈ Ω:

u(x) = up(x) +

∫
Γ

U∗(x, y)γint1

(
u(y)− up(y)

)
dsy −

∫
Γ

γint1,yU
∗(x, y)

(
g(y)− γint0 up(y)

)
dsy,

or written in a more compact way,

u(x) = up(x) + (Ṽ γint1 u)(x)− (Ṽ γint1 up)(x)− (Wg)(x) + (Wγint0 up)(x).

2.2 Exterior Dirichlet Boundary Value Problem

Boundary integral equation methods and boundary element methods are particularly suit-
able for boundary value problems on the exterior domain Ωc. Once a computational pro-
gram for an interior boundary value problem is implemented, there is no big additional
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afford necessary to solve a similar exterior problem too. As a model problem, let us consider
the exterior Dirichlet boundary value problem (1.10),

−∆u(x) = 0 for x ∈ Ωc,

γext0 u(x) = g(x) for x ∈ Γ = ∂Ω,

with the radiation condition (1.23) for the behavior of u at infinity. The solution of this
problem is given by the representation formula (1.24),

u(x) = −
∫

Γ

U∗(x, y)γext1 u(y)dsy +

∫
Γ

γext1,yU
∗(x, y)γext0 u(y)dsy for x ∈ Ωc.

Calculating the limit x 3 Ωc → x ∈ Γ, from the exterior Calderon projector (1.41) we
obtain the first boundary integral equation to evaluate the missing exterior Neumann data
on the boundary for the representation formula,

(V γext1 u)(x) = (−1

2
I +K)g(x) for x ∈ Γ.

Multiplying with a test function z and integrating over the boundary Γ, we formulate the
corresponding variational formulation to find γext1 u ∈ H−1/2(Γ), such that

〈V γext1 u, z〉Γ = 〈(−1

2
I +K)g, z〉Γ for all z ∈ H−1/2(Γ).

Since there is no essential difference to the variational formulation of the interior Dirichlet
boundary value problem (2.5) as far as the unique solvability and the stability is concerned,
the hypothesis of Theorem 2.2 can be applied analogously to the exterior problem.

2.3 Interface Problem

When talking about an interface problem, we have given as example a Poisson problem in
the interior domain Ω and a Laplace problem in the exterior domain Ωc,

−α1∆u1(x) = f(x) for x ∈ Ω1 = Ω,

−α2∆u2(x) = 0 for x ∈ Ω2 = Ωc.

The function u2 has to satisfy the decay condition (1.23) for a = 0, so

u(x) = O
(

1

|x|

)
as |x| → ∞. (2.9)

We further note that there is no data explicitly given at the boundary. Moreover, for
the description of the continuity of the potential and the flux, we need some transmission
conditions on the interface boundary Γ = ∂Ω1 = ∂Ω2,

γint0 u1(x) = γext0 u2(x), α1γ
int
1 u1(x) = α2γ

ext
1 u2(x) for x ∈ Γ. (2.10)
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For the description of the exterior trace operator and the conormal derivative, see Definition
(1.6) and (1.8) respectively. As a side note, transmission conditions play an important role
in domain decomposition methods, which will be introduced in Section 2.4.
On the one hand, we already know that the solution u1 for the interior domain is given by
the representation formula (1.21),

u1(x) =

∫
Γ

U∗(x, y)γint1 u1(y)dsy −
∫

Γ

γint1,yU
∗(x, y)γint0 u1(y)dsy +

1

α1

∫
Ω1

U∗(x, y)f(y)dy

for x ∈ Ω1. On the other hand, there is the representation formula (1.24) for the exterior
domain:

u2(x) = −
∫

Γ

U∗(x, y)γext1 u2(y)dsy +

∫
Γ

γext1,yU
∗(x, y)γext0 u2(y)dsy for x ∈ Ω2.

There is now one important remark to be made as far as the given function f on the right
hand side of the Poisson problem is concerned. First of all, the far field condition (2.9) has
to be fulfilled. Therefore, the conormal derivative has to satisfy the scaling condition

α2

∫
Γ

γext1 u2(x)dsx = 0, (2.11)

see for example [34, Lemma 6.21]. Taking Green’s first formula (1.19) into consideration,
choosing as a test function v = 1, and combining the result with the transmission conditions
(2.10), we obtain

−α2

∫
Γ

γext1 u2(x)dsx =

∫
Ω1

f(x)dx.

So we see, if we want to ensure the scaling condition (2.11), the solvability condition∫
Ω1

f(x)dx = 0

has to be satisfied. Thus, adopting the approach of [29], we get the scaling condition

〈u1, weq〉Γ = 0

for a natural density weq = V −11. Therefore, we may introduce the space

H1/2
∗ :=

{
v ∈ H1/2(Γ) : 〈v, weq〉Γ = 0

}
.

Now let us turn to find a possibility to solve the interface problem. At first, we write down
the first kind boundary integral equation (2.7) for the Poisson problem of the interior
domain,

(V γint1 u1)(x) = (
1

2
I +K)γint0 u1(x)− 1

α1

(N0f)(x) for x ∈ Γ.
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Due to the invertibility of the single layer potential operator V , we obtain

γint1 u1(x) = V −1(
1

2
I +K)γint0 u1(x)− 1

α1

V −1(N0f)(x) for x ∈ Γ. (2.12)

As shown in Section 2.1.2, we can calculate the Newton potential operator N0f on the
boundary with the aid of a particular solution up of the Poisson equation −∆up(x) = f(x)
for x ∈ Ω1,

(N0f)(x) = (
1

2
I +K)γint0 up(x)− (V γint1 up)(x) for x ∈ Γ.

Inserting this representation into equation (2.12), we obtain

γint1 u1(x) = V −1(
1

2
I +K)γint0 u1(x)− 1

α1

V −1(
1

2
I +K)γint0 up(x) +

1

α1

γint1 up(x)

for x ∈ Γ. Using the interior Steklov-Poincaré operator Sint introduced in Subsection 1.5.7,
we get

γint1 u1(x) = (Sintγint0 u1)(x)− 1

α1

(Sintγint0 up)(x) +
1

α1

γint1 up(x) for x ∈ Γ.

As far as the exterior domain Ω2 is concerned, we have the rewritten boundary integral
equation (1.32) for the exterior Laplace problem,

(V γext1 u2)(x) = (−1

2
I +K)γext0 u2(x) for x ∈ Γ,

and correspondingly

γext1 u2(x) = −V −1(
1

2
I −K)γext0 u2(x) for x ∈ Γ.

By the use of the exterior Steklov-Poincaré operator Sext of Subsection 1.5.7, we obtain

γext1 u2(x) = −(Sextγext0 u2)(x) for x ∈ Γ.

To combine the exterior and interior problem, we rewrite the first transmission condition
(2.10) as

u = γint0 u1(x) = γext0 u2(x) for x ∈ Γ.

With the second transmission condition, and putting all known data to the right hand side,
we formulate our final interface problem:
Find u ∈ H1/2

∗ (Γ), such that

α1(Sintu)(x) + α2(Sextu)(x) = (Sintγint0 up)(x)− γint1 up(x) for all x ∈ Γ.

In the usual way, by multiplying with a test function v ∈ H1/2(Γ) and integrating over

the boundary Γ, it results in the equivalent variational formulation to find u ∈ H1/2
∗ (Γ),

satisfying〈
(α1S

int + α2S
ext)u, v

〉
Γ

=
〈
Sintγint0 up − γint1 up, v

〉
Γ

for all v ∈ H1/2(Γ). (2.13)
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Theorem 2.4. Let up ∈ H1(Γ) be given. Then there exists a unique solution u ∈ H1/2
∗ (Γ)

of the variational formulation (2.13) with

‖u‖H1/2(Γ) ≤ c ‖up‖H1(Ω).

Proof. Talking about unique solvability of the variational problem, firstly the interior
Dirichlet to Neumann map Sint fulfills the semi-ellipticity condition, and the exterior
Steklov-Poincaré operator is H1/2(Γ)-elliptic. Secondly, both operators are bounded. For

that reason, with the lemma of Lax-Milgram there exists a unique solution u ∈ H1/2
∗ (Γ).

As far as the error estimate is concerned, we get

‖u‖H1/2(Γ) ≤
1

min{α1, α2}
1

min{cD1 , cS
ext

1 }

(
cS2 ‖γint0 up‖H1/2(Γ) + ‖γint1 up‖H−1/2(Γ)

)
due to the constant cD1 of the ellipticity estimate of Sint and the constant cS

ext

1 of the
ellipticity estimate of the exterior Steklov-Poincaré operator. For the next step, we take
the square of the inequality above, and obtain for an alternative constant c̃

‖u‖2
H1/2(Γ) ≤ c̃

(
‖γint0 up‖H1/2(Γ) + ‖γint1 up‖H−1/2(Γ)

)2

≤ 2c̃
(
‖γint0 up‖2

H1/2(Γ) + ‖γint1 up‖2
H−1/2(Γ)

)
With a trace theorem [32, Theorem 2.9] and an inverse trace theorem [32, Theorem 2.10],
we get

‖u‖2
H1/2(Γ) ≤ ĉ

(
‖up‖2

H1(Ω) + |up|2H1(Ω)

)
.

Applying definition (1.11) concerning norms in H1(Ω), and taking the square root of the
finally obtained inequality, the theorem is proven.

2.4 Domain Decomposition Methods

In this work, for domain decomposition methods we consider the Dirichlet boundary value
problem

−∆u(x) = 0 for x ∈ Ω,

γint0 u(x) = g(x) for x ∈ Γ.
(2.14)

Now let us start with a subdivision of the bounded Lipschitz domain Ω into p non-
overlapping subdomains Ωi, i.e.

Ω =

p⋃
i=1

Ωi, Ωi ∩ Ωj = ∅ for i 6= j.
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Figure 2.1: Coupling boundaries

Firstly, each subdomain has a corresponding subdomain boundary Γi = ∂Ωi, assuming they
are Lipschitz again. Secondly, we get local interfaces between two neighboured subdomains,

Γij = Γi ∩ Γj for i, j = 1, . . . , p,

with Γi ∩ Γj = ∅ for all non-overlapping subdomain boundaries. The global interface is
then defined by

ΓI =
⋃
i,j

Γij.

Thirdly, the union of all local subdomain boundaries, or the global boundary and the global
interface, define the skeleton

Γs =

p⋃
i=1

Γi = Γ ∪ ΓI .

For the resulting decomposition of the boundary see Figure 2.1.
If we want to formulate the Laplace equation on each subdomain, we have to define local
solutions ui, i.e. ui(x) = u(x) for x ∈ Ωi, and we obtain

−∆ui(x) = 0 for x ∈ Ωi,

γint0 ui(x) = g(x) for x ∈ Γ ∩ Γi.
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These local problems are connected via transmission conditions on the interface:

γint0,i ui(x) = γint0,j uj(x) and γint1,i ui(x) = −γint1,j uj(x) for x ∈ Γij, (2.15)

where the second equation is due to the continuity of the flux. The next important step is
to replace the conormal derivative by local Dirichlet to Neumann maps

γint1,i ui(x) = (Siγ
int
0,i ui)(x) =

(
Di + (

1

2
I +K ′i)V

−1
i (

1

2
I +Ki)

)
γint0,i ui(x).

Henceforward, for domain decomposition methods we denote the used operators restricted
to subdomains Ωi and subdomain boundaries Γi with some indices i. Moreover, let u ∈
H1/2(ΓS) and ui(x) = u(x) for x ∈ Γi. That means the Dirichlet transmission condition is
automatically fulfilled point-wise. To sum up, for i = 1, . . . , p we want so solve the local
transmission problems

γint0,i ui(x) = g(x) for x ∈ Γ ∩ Γi,

(Siγ
int
0,i ui)(x) + (Sjγ

int
0,j uj)(x) = 0 for x ∈ Γij.

In what follows, we multiply the second transmission condition with a suitable test function
and integrate over the local interface Γij, which means that the Neumann coupling condition
will be formulated in a weak sense:∫

Γij

(
(Siγ

int
0,i ui)(x) + (Sjγ

int
0,j uj)(x)

)
v(x)dsx = 0 for all v ∈ H1/2(Γij).

We define the function space

H1/2(ΓS,Γ) :=
{
v ∈ H1/2(ΓS) : v(x) = 0 for x ∈ Γ

}
,

and after summering up over all coupling boundaries Γij, we obtain the variational formu-
lation to find u ∈ H1/2(ΓS) with u(x) = g(x) for x ∈ Γ and

p∑
i=1

∫
Γi

(Siu|Γi )(x)v|Γi (x)dsx = 0 for all v ∈ H1/2(ΓS,Γ).

Moreover, we define an arbitrary but fixed extension g̃ ∈ H1/2(ΓS) of the given Dirichlet
datum satisfying g̃ = g on the global boundary Γ, and accordingly u = ũ + g̃ ∈ H1/2(ΓS).
Then the final variational problem reads as follows:
Find ũ ∈ H1/2(ΓS,Γ), such that

p∑
i=1

∫
Γi

(Siũ|Γi )(x)v|Γi (x)dsx = −
p∑
i=1

∫
Γi

(Sig̃|Γi )(x)v|Γi (x)dsx (2.16)

for all v ∈ H1/2(ΓS,Γ).
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Theorem 2.5. ([15]) The left hand side in (2.16) defines a global boundary integral bilinear
form

a(u, v) =

p∑
i=1

∫
Γi

(Siu|Γi )(x)v|Γi (x)dsx,

which is bounded and H1/2(ΓS,Γ)- elliptic.

Due to the lemma of Lax-Milgram (Theorem 1.14), the finally considered variational for-
mulation (2.16) is uniquely solvable. On a second thought, we can not realise the Steklov-
Poincaré operator in a direct way, because we would have to know the inverse of the single
layer potential operator explicitly. That is why we have to deal with approximate operators,
which will be done in the course of discretisations.



3 Boundary Element Methods

If we want to use boundary element methods to solve the problems described in Chapter
2, we have to deal with numerical methods for variational problems in general at first.
After introducing convenient trial spaces, we write down discrete variational formulations
and their equivalent linear systems of equations. As we know from Section 2.1, there exist
indirect and direct approaches, which can be solved either by a collocation or a Galerkin
method. For given functions on the boundary, there are various approximation techniques,
mainly the piecewise constant and piecewise linear interpolation, as well as a L2 projection,
which all lead to different orders of convergence for the final error estimates.

3.1 Numerical Methods for Variational Problems

In this section we want to formulate general numerical procedures to solve variational
formulations as introduced in Section 1.3. For this purpose we introduce some trial spaces,
and we have to understand the relation between variational methods and resulting linear
systems of equations. We start with a sequence

XM := {ϕi}Mi=1 ⊂ X

of conformal trial spaces, with which a function uM can be represented as

uM :=
M∑
j=1

ujϕj ∈ XM .

Consequently, we rewrite the general variational formulation (1.15) to find u ∈ X, such
that

〈Au, v〉 = 〈f, v〉 for all v ∈ X,

to find an approximate solution uM ∈ XM of the Galerkin-Bubnov variational formulation

〈AuM , vM〉 = 〈f, vM〉 for all vM ∈ XM . (3.1)

If we choose the test function vM = ϕi, the Galerkin problem (3.1) reads as

M∑
j=1

uj〈Aϕj, ϕi〉 = 〈f, ϕi〉 for i = 1, . . . ,M.

45
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More specially, with the entries

AM [i, j] = 〈Aϕj, ϕi〉, fi = 〈f, ϕi〉

for i, j = 1, . . . ,M we obtain an equivalent linear system of equations

AMu = f

for a vector u ∈ RM . Furthermore, there exists a unique relation between an arbitrary

function vM =
M∑
j=1

vjϕj ∈ XM ⊂ X and a vector v ∈ RM . Since

(AMu, v) =
M∑
i=1

M∑
j=1

A[i, j]uivj =
M∑
i=1

M∑
j=1

〈Aϕj, ϕi〉uivj

= 〈A
M∑
i=1

ϕiui,
M∑
j=1

ϕjvj〉 = 〈AuM , vM〉,

we get two important properties of the matrix AM ∈ RM×M from the operator A : X → X ′.
Firstly, the positive definiteness of AM follows from the X-ellipticity of A,

(AMu, u) = 〈AuM , uM〉 ≥ cA1 ‖uM‖2
X .

Secondly, we gain the symmetry of the matrix with the help of the self-adjointness of the
operator A,

(AMu, v) = 〈AuM , vM〉 = 〈uM , AvM〉 = (u,AMv).

Theorem 3.1 (Cea’s lemma). Let XM ⊂ X and A : X → X ′ be a bounded operator with

‖Av‖X′ ≤ cA2 ‖v‖X for all v ∈ X.

Furthermore, we assume the X-ellipticity of A. Then there exists a unique solution uM ∈
XM of the discrete variational formulation (3.1), and it holds the stability estimate

‖uM‖X ≤
1

cA1
‖f‖X′

as well as the error estimate

‖u− uM‖X ≤
cA2
cA1

inf
vM∈XM

‖u− vM‖X .

Proof. As mentioned above, the X-ellipticity of A implies the positive definiteness of the
matrix AM . Hence it follows the unique solvability of the equivalent system of linear
equations. For the stability estimate we use the Cauchy-Schwarz inequality and the X-
ellipticity of A, whereas for the error estimate we need a so-called Galerkin orthogonality.
For an explicit proof see for example [32].
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Looking at the given error estimate in Cea’s lemma, for a convergence of the approximate
solution uM to u ∈ X, the trial space XM has to satisfy the approximation property

lim
M→∞

sup
v∈X

inf
vM∈XM

‖v − vM‖X = 0.

As far as the boundary elements are concerned, there exist approximation properties for
the corresponding local polynomial trial spaces, which will be shown in Section 3.2.

Approximation of the Right Hand Side

In this work, we nearly always use approximations of the linear form f of the right hand
side in equation (3.1). This is why we introduce an operator B : Y → X ′ with f = Bg for
a given function g ∈ Y , which is bounded with

‖Bg‖X′ ≤ cB2 ‖g‖Y for all g ∈ Y.

Inserting the representation f = Bg into the Galerkin-Bubnov variational formulation, we
have to evaluate the vector values

fi = 〈Bg, ϕi〉 for all i = 1, . . . ,M.

Now let

gN :=
N∑
l=1

glψl ∈ YN ⊂ Y

be an approximation of g. Then we have to solve the perturbed variational formulation to
find an approximate solution ũM ∈ XM in

〈AũM , vM〉 = 〈BgN , vM〉 for all vM ∈ XM , (3.2)

which is equivalent to the linear system

AM ũ = BNg =: f̃ . (3.3)

The matrix AM is the same as for the non-perturbed problem, and for BN we have

BN [i, l] = 〈Bψl, ϕi〉,

resulting from

f̃i = 〈BgN , ϕi〉 =
N∑
l=1

gl〈Bψl, ϕi〉.
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Theorem 3.2 (Strang-Lemma). Let A : X → X ′ be a bounded and X-elliptic operator.
Moreover, let u ∈ X be the unique solution of the continuous variational formulation (1.15)
and uM ∈ XM ⊂ X be the unique solution of the Galerkin-Bubnov problem (3.3). Then
ũM ∈ XM is the unique solution of the perturbed variational formulation (3.2), and it holds

‖u− ũM‖X ≤
1

cA1

(
cA2 inf

vM∈XM
‖u− vM‖X + cB2 ‖g − gN‖Y

)
.

Proof. For the unique solvability we have the same arguments as for Cea’s lemma, mainly
that the matrix AM is positive definite. For the proof of the error estimate, the first step
is the triangle inequality,

‖u− ũM‖X ≤ ‖u− uM‖X + ‖uM − ũM‖X .

The first term on the right hand side can be estimated with Cea’s lemma. For the resulting
error of the approximation of the linear form, see for example [32].

Approximate Operators

As we will see later on, we need some approximations of integral operators too, because
it may be too much effort to calculate the original operator directly. Instead of the usual
variational formulation (3.1) we consider the perturbed problem to find ûM ∈ XM , satis-
fying

〈ÃûM , vM〉 = 〈f, vM〉 for all vM ∈ XM , (3.4)

with the corresponding bounded approximate operator Ã : X → X
′
. Another variant of

the well known Strang lemma yields the unique solvability as well as a first error estimate.

Theorem 3.3 (Strang-Lemma). Let Ã be a bounded operator with

‖Ãv‖X′ ≤ cÃ2 ‖v‖X for all v ∈ X.

Moreover, we assume that Ã is XM -elliptic, i.e.

〈ÃvM , vM〉 ≥ cÃ1 ‖vM‖2
X for all vM ∈ XM .

Then the perturbed variational formulation (3.4) is uniquely solvable, and it holds

‖u− ûM‖X ≤ c1 inf
vM∈XM

‖u− vM‖X + c2 ‖(A− Ã)u‖X′ .

Proof. Since it is assumed that the approximate operator is bounded and XM -elliptic, Cea’s
lemma yields the unique solvability of (3.4). Furthermore, with the triangle inequality we
get

‖u− ûM‖X ≤ ‖u− uM‖X + ‖uM − ûM‖X .

For the first difference we have the error estimate given by Cea’s lemma. For the proof of
the second term in the estimate, see for example [32].
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3.2 Boundary Discretisation and Trial Spaces

Let Γ be a piecewise polygonal boundary, and let

Γ =
M⋃
i=1

τ i (3.5)

be a discretisation of the boundary with straight lines as boundary elements τi. The local
mesh size is

hi =

∫
τi

dsx.

With respect to the decomposition of Γ we introduce trial spaces of local polynomial
functions, mainly the space S0

h(Γ) of piecewise constant functions, and S1
h(Γ) as the space

of piecewise linear, globally continuous functions, respectively.
So let

S0
h(Γ) := {ϕ0

j}Mj=1 ⊂ H−1/2(Γ)

be the space of piecewise constant basis functions

ϕ0
j(x) =

{
1 for x ∈ τj,
0 elsewhere.

For this reason, an approximate solution zh(x) ∈ S0
h(Γ) can be written as

zh(x) =
M∑
j=1

zjϕ
0
j(x).

As fas as the approximation property of S0
h(Γ) is concerned, we introduce the L2 projection

Qhw ∈ S0
h(Γ) of w ∈ L2(Γ) as the unique solution of the variational problem to find Qhw,

with

〈Qhw, zh〉Γ = 〈w, zh〉Γ for all zh ∈ S0
h(Γ). (3.6)

To have a closer look at the variational formulation for the L2 projection, equation (3.6)
is equivalent to

M∑
j=1

wj〈ϕ0
j , ϕ

0
i 〉Γ = 〈w,ϕ0

i 〉Γ for i = 1, . . . ,M.

In this case, since

〈ϕ0
j , ϕ

0
i 〉Γ =

∫
τj

ϕ0
j(x)ϕ0

i (x)dsx =

{
hj for j = i,
0 for j 6= i,
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the components of the resulting coefficient vector are

wj =
1

hj

∫
τj

w(x)dsx for j = 1, . . . ,M.

We note that for the L2 projection Qhw the function w has to be given explicitly. For
convergence discussions, there is the important approximation property of the trial space
S0
h(Γ), see for example [26]:

Theorem 3.4. Let σ ∈ [−1, 0] and s ∈ [0, 1]. For w ∈ Hs
pw(Γ) there holds

inf
zh∈S0

h(Γ)
‖w − zh‖Hσ(Γ) ≤ c hs−σ |w|Hs

pw(Γ).

As already mentioned at the beginning of this section, we also introduce the trial space

S1
h(Γ) := {ϕ1

l }Nl=1 ⊂ H1/2(Γ).

Its basis functions are described in the nodes xl of the decomposition of the boundary (3.5),

ϕ1
l (x) =


1 for x = xl,
0 for x = xk 6= xl,
piecewise linear elsewhere.

Hence, a function vh ∈ S1
h(Γ) can be represented by

vh(x) =
N∑
l=1

vlϕ
1
l (x).

Again, to formulate the approximation property for S1
h(Γ), we explain the L2 projection

Qhu ∈ S1
h(Γ) of u ∈ L2(Γ) as the unique solution of the variational formulation

〈Qhu, vh〉Γ = 〈u, vh〉Γ for all vh ∈ S1
h(Γ).

At the end of this section we state the approximation property for piecewise linear, globally
continuous trial space S1

h(Γ), for example given in [32]:

Theorem 3.5. Let σ ∈ [0, 1] and s ∈ [σ, 2]. For a sufficiently smooth boundary Γ, there
holds

inf
vh∈S1

h(Γ)
‖u− vh‖Hσ(Γ) ≤ c hs−σ |u|Hs(Γ)

for u ∈ Hs(Γ).
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3.3 Interior Dirichlet Problem

In Section 2.1 we introduced two main approaches to solve an interior Dirichlet boundary
value problem. We begin with the indirect approach for the interior Laplace equation
and the different possibilities to solve the resulting problems, namely the collocation and
Galerkin method. Afterwards we will deal with the direct approach. All together, there
are several ways to calculate the given Dirichlet datum on the boundary. Apparently, if
a function is explicitly given on the boundary, we can use the exact evaluation in every
point on Γ. Nevertheless, there are approximations of the Dirichlet datum like a linear
interpolation and a L2 projection, which yield different convergence rates of the caused
error.

3.3.1 Solving with the Indirect Approach

Let us begin with the interior Laplace problem

−∆u(x) = 0 for x ∈ Ω,

γint0 u(x) = g(x) for x ∈ Γ.

Since the single layer potential is harmonic, we want to solve the integral equation

(V w)(x) = − 1

2π

∫
Γ

log |x− y|w(y)dsy = g(x) for x ∈ Γ. (3.7)

By using the trial space S0
h(Γ) introduced in Section 3.2, we replace the density function

w with the ansatz wh(x) =
M∑
j=1

wjϕ
0
j(x), which results in

− 1

2π

∫
Γ

log |x− y|wh(y)dsy ≈ g(x) for x ∈ Γ. (3.8)

Therefore, an approximate solution of the Laplace problem is given by

ũ(x) = − 1

2π

∫
Γ

log |x̃− y|wh(y)dsy for x ∈ Ω.

Hence, the solution is just an approximation, so we have to treat the resulting error
estimates afterwards. In this work, we are basically interested in the point-wise error
|u(x)− ũ(x)| for x in the domain Ω. We see that for deeper discussions it depends on how
the approximation ũ looks like.

Collocation Method

As far as the collocation method is concerned, equation (3.8) is considered just in the
centers of the boundary elements τi, namely in the collocation points x∗i . Accordingly, we
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have to find the solution wh ∈ S0
h(Γ) of

(V wh)(x
∗
i ) =

M∑
j=1

wj ·
(
− 1

2π

∫
τj

log |x∗i − y| dsy
)

= g(x∗i ) (3.9)

for i = 1, . . . ,M . This is equivalent to the linear system of equations

V C
h w = g

for vectors w, g ∈ RM and matrix entries

V C
h [i, j] = − 1

2π

∫
τj

log |x∗i − y|dsy for i, j = 1, . . . ,M.

Talking about an according error estimate for the collocation technique, by subtracting the
analytic representation formula from the approximated one, at first we have

|u(x)− ũ(x)| ≤ ‖U∗(x, ·)‖H−σ(Γ)‖w − wh‖Hσ(Γ).

Since the evaluation of the representation formula is done in the domain Ω, there is no
singularity in the fundamental solution. Thus, U∗(x, y) is infinitely differentiable, and as a
consequence U∗(x, ·) ∈ H−σ(Γ) for any σ ∈ R. That is why we consider ‖U∗(x, ·)‖H−σ(Γ) as
a constant term. Besides, this assumption is not true for the limiting case x ∈ Γ. All in all,
the main focus is on estimating ‖w − wh‖Hσ(Γ). Assuming the stability of the collocation
scheme (3.9), the quasi optimal error estimate in Cea’s lemma, Theorem 3.1, yields

‖w − wh‖H−1/2(Γ) ≤ c inf
vh∈S0

h(Γ)
‖w − vh‖H−1/2(Γ).

In the next step we can use the approximation property (3.4) for the trial space of piecewise
constant functions for σ = −1/2,

‖w − wh‖H−1/2(Γ) ≤ c hs+1/2 |w|Hs
pw(Γ),

with w ∈ Hs
pw(Γ) for some s ∈ [0, 1]. Applying the Aubin-Nitsche Trick [14], we obtain

‖w − wh‖Hσ(Γ) ≤ c hs−σ |w|Hs
pw(Γ),

when we still assume w ∈ Hs
pw(Γ) with s ∈ [0, 1], but σ ∈ [−1,−1/2]. By using the

collocation method, a lower value of σ is not possible [34]. All in all, that means we can
choose the lowest value σ = −1, and we have

|u(x)− ũ(x)| ≤ ‖U∗(x, ·)‖H−σ(Γ)‖w − wh‖Hσ(Γ) ≤ c hs+1 |w|Hs
pw(Γ).

If w ∈ H1
pw, e.g. the density function is sufficiently smooth, we get the final h2-convergence

of the error estimate by

|u(x)− ũ(x)| ≤ c h2 |w|H1
pw(Γ). (3.10)
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Galerkin Method

Using the Galerkin Bubnov method, we have to multiply the single layer equation (3.7)
with a test function ϕ0

i , integrate over the boundary Γ and insert the ansatz wh ∈ S0
h(Γ):

M∑
j=1

wj ·
(
− 1

2π

∫
τi

∫
τj

log |x− y|dsydsx
)

=

∫
τi

g(x)dsx for i = 1, . . . ,M,

which is equivalent to the linear system

V G
h w = g, (3.11)

with the matrix entries

V G
h [i, j] = 〈V ϕ0

j , ϕ
0
i 〉Γ = − 1

2π

∫
τi

∫
τj

log |x− y| dsy dsx (3.12)

for i, j = 1, . . . ,M . The matrix V G
h ∈ RM×M is symmetric and positive definite, so we use

the conjugate gradient scheme to calculate the uniquely defined solution vector w. As far
as the error analysis is concerned, we use the Aubin-Nitsche trick, where in its proof for
the Galerkin method the so-called Galerkin orthogonality can be used and we obtain

‖w − wh‖Hσ(Γ) ≤ c hs−σ|w|Hs
pw(Γ), (3.13)

if we assume w ∈ Hs
pw(Γ) for some s ∈ [0, 1], but now σ ∈ [−2,−1/2]. For the lowest value

σ = −2, we then get

|u(x)− ũ(x)| ≤ ‖U∗(x, ·)‖H−σ(Γ)‖w − wh‖Hσ(Γ) ≤ c hs+2 |w|Hs
pw(Γ), (3.14)

and finally for w ∈ H1
pw(Γ)

|u(x)− ũ(x)| ≤ c h3 |w|H1
pw(Γ).

Up to now, we have always assumed a given function g on the boundary. Essentially, more
often an approximation of the Dirichlet datum is applied. Let us begin by using a linear
interpolation gh ∈ S1

h(Γ) of g, i.e.

gh(x) =
N∑
l=1

g(xl)ϕ
1
l (x) for x ∈ Γ.

This results in a changed right hand side in system (3.11),∫
τi

gh(x) dsx =
N∑
l=1

g(xl)

∫
τi

ϕ1
l (x)dsx for i = 1, . . . ,M.
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We write the resulting perturbed system with the new solution vector w̃ as

V G
h w̃ = Mhg,

with the mass matrix Mh ∈ RM×N ,

Mh[i, l] =

∫
τi

ϕ1
l (x)dsx (3.15)

for i = 1, . . . ,M and l = 1, . . . , N .
The Strang lemma, Theorem 3.2, yields a corresponding estimate, where the caused error
of the approximated function g on the boundary is involved,

‖w − w̃h‖Hσ(Γ) ≤ c1 ‖w − wh‖Hσ(Γ) + c2 ‖g − gh‖Hσ+1(Γ),

for σ ∈ [−1, 0]. Combining the estimates for the non-perturbed formulation (3.13) and for
the interpolation in general, we get

‖w − w̃h‖Hσ(Γ) ≤ c hs−σ
(
|w|Hs

pw(Γ) + |g|Hs+1(Γ)

)
,

for s ∈ [0, 1] and assuming w ∈ Hs
pw(Γ) and g ∈ Hs+1(Γ), respectively. Hence, an optimal

error estimate can be reached by choosing s = 1, therefore w ∈ H1
pw(Γ) and g ∈ H2(Γ),

and σ = −1. Moreover, for the approximated solution of the Laplace problem

û(x) = − 1

2π

∫
Γ

log |x̃− y|w̃h(y)dsy for x ∈ Ω,

this results in a quadratic convergence of the point-wise error estimate

|u(x)− û(x)| ≤ ‖U∗(x, ·)‖H1(Γ)‖w − w̃h‖H−1(Γ)

≤ c h2
(
|w|H1

pw(Γ) + |g|H2(Γ)

)
.

Finally, another possibility for an approximation of the Dirichlet datum is a L2 projection

gh =
N∑
l=1

glϕ
1
l , satisfying

N∑
l=1

gl〈ϕ1
l , ϕ

1
k〉Γ = 〈g, ϕ1

k〉Γ for k = 1, . . . , N.

Therefore, we can choose σ = −2 for a best convergence rate in the Strang lemma, Theorem
3.2, yielding

|u(x)− û(x)| ≤ c h3
(
|w|H1

pw(Γ) + |g|H2(Γ)

)
,

if we assume w ∈ H1
pw(Γ) and g ∈ H2(Γ).
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3.3.2 Solving with the Direct Approach

For the direct approach, as a model problem we consider the Poisson equation

−∆u(x) = f(x) for x ∈ Ω,

γint0 u(x) = g(x) for x ∈ Γ.

The solution is given by the representation formula (1.21),

u(x) =

∫
Γ

U∗(x, y)γint1 u(y)dsy −
∫

Γ

γint1,yU
∗(x, y)g(y)dsy +

∫
Ω

U∗(x, y)f(y)dy

for x ∈ Ω. To determine the unknown Neumann data, we solve

(V γint1 u)(x) = (
1

2
I +K)g(x)− (N0f)(x) for x ∈ Γ.

Inserting the approximation th =
∑M

j=1 tjϕ
0
j ∈ S0

h(Γ) for the conormal derivative γint1 u, we
obtain

− 1

2π

∫
Γ

log |x− y|th(y)dsy

≈ 1

2
g(x)− 1

2π

∫
Γ

(y − x, ny)
|x− y|2

g(y)dsy +
1

2π

∫
Γ

log |x− y|f(y)dsy

for x ∈ Γ. Compared to the indirect approach, the main difference is in the right hand
side of the system to be solved. As shown for the Poisson equation in Subsection 2.1.2, we
calculate the Newton potential N0f via the approach with a particular solution gp = γint0 up
and its corresponding conormal derivative tp = γint1 up on the boundary, respectively. In
this work, we always use a L2 projection of both, i.e.

gp,h(x) =
N∑
l=1

gp,lϕ
1
l (x) ∈ S1

h(Γ) and tp,h(x) =
M∑
j=1

tp,jϕ
0
j(x) ∈ S0

h(Γ),

satisfying

〈gp,h, ϕ1
k〉Γ = 〈gp, ϕ1

k〉Γ for k = 1, . . . , N,

and

〈tp,h, ϕ0
i 〉Γ = 〈tp, ϕ1

i 〉Γ for i = 1, . . . ,M,

respectively. To sum up, the corresponding approximate boundary integral equation reads
as

− 1

2π

∫
Γ

log |x− y|th(y)dsy ≈
1

2
g(x)− 1

2π

∫
Γ

(y − x, ny)
|x− y|2

g(y)dsy

−

(
1

2
gp,h(x)− 1

2π

∫
Γ

(y − x, ny)
|x− y|2

gp,h(y)dsy +
1

2π

∫
Γ

log |x− y|tp,h(y)dsy

)
.

Moreover, we additionally describe the entries for the double layer matrix. Apart from
this, the procedures for building the different systems of equations and error estimates for
the collocation and Galerkin method are the same in principal.
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Collocation Method

The boundary integral equation is given in the collocation nodes,

(V th)(x
∗
i ) =

1

2
g(x∗i ) + (Kg)(x∗i )−

(1

2
gp,h(x

∗
i ) + (Kgp,h)(x

∗
i )− (V tp,h)(x

∗
i )
)
,

or rather

− 1

2π

∫
Γ

log |x∗i − y|th(y)dsy =
1

2
g(x∗i )−

1

2π

∫
Γ

(y − x∗i , ny)
|x∗i − y|2

g(y)dsy

−

(
1

2
gp,h(x

∗
i )−

1

2π

∫
Γ

(y − x∗i , ny)
|x∗i − y|2

gp,h(y)dsy +
1

2π

∫
Γ

log |x∗i − y|tp,h(y)dsy

)

for i = 1, . . . ,M . The matrix on the left hand side is the same as for the indirect method,
so the solution is uniquely determined. The difference compared to the indirect approach is
in another right hand side, firstly because of the double layer potential for the collocation
method,

(Kg)(x∗i ) = − 1

2π

∫
Γ

(y − x∗i , ny)
|x∗i − y|2

g(y)dsy.

Secondly we calculate the Newton potential by approximations too. The equivalent system
reads as

V C
h t =

1

2
g +KC

h g −
(1

2
g
p

+KC
h gp − V

C
h tp

)
,

with the double layer matrix entries for a piecewise linear ansatz

KC
h [i, l] = − 1

2π

∫
Γ

(y − x∗i , ny)
|x∗i − y|2

ϕ1
l (y)dsy

for i = 1, . . . ,M and l = 1, . . . , N . The approximate representation formula is

ũ(x) = up(x) + (Ṽ th)(x)− (Ṽ tp,h)(x)− (Wg)(x) + (Wgp,h)(x) for x ∈ Ω.

All in all, since we use L2 projections of the particular solution and its conormal derivative,
we end up in quadratic convergence as the best approximation for the point-wise error
estimate,

|u(x)− ũ(x)| ≤ c(x, t, tp, gp)h
2,

assuming t, tp ∈ H1
pw(Γ) and gp ∈ H2(Γ). For a greater overview, we only write a constant

and its dependencies on the involved functions. We further note that we may also use a
linear interpolation or a L2 projection instead of the exact evaluation of the Dirichlet datum
g, but there is no change in the h2 convergence for the best point-wise error estimate.
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Galerkin Method

The Galerkin-Bubnov formulation for the direct approach is to find the unique solution
th ∈ S0

h(Γ), such that

〈V th, ϕ0
i 〉Γ = 〈(1

2
I +K)g, ϕ0

i 〉Γ − 〈(
1

2
I +K)gp,h, ϕ

0
i 〉Γ + 〈V tp,h, ϕ0

i 〉Γ (3.16)

for i = 1, . . . ,M . The first possibility is to use a piecewise linear and continuous function

gh(x) =
N∑
l=1

g(xl)ϕ
1
l (x) ∈ S1

h(Γ) for the Dirichlet datum, which leads to the system of linear

equations

V G
h t = f.

The single layer matrix V G
h (3.12) is the same as for the indirect Galerkin approach. The

right hand side vector f ∈ RM is given by

f [i] =
1

2

N∑
l=1

g(xl)

∫
τi

ϕ1
l (x)dsx −

1

2π

N∑
l=1

g(xl)

∫
τi

∫
Γ

(y − x, ny)
|x− y|2

ϕ1
l (y)dsydsx

−1

2

N∑
l=1

gp(xl)

∫
τi

ϕ1
l (x)dsx +

1

2π

N∑
l=1

gp(xl)

∫
τi

∫
Γ

(y − x, ny)
|x− y|2

ϕ1
l (y)dsydsx

− 1

2π

M∑
j=1

tp(xj)

∫
τi

∫
τj

log |x− y|dsydsx

for i = 1, . . . ,M . Using matrix notation, this becomes

f = (
1

2
Mh +Kh)g − (

1

2
Mh +Kh)gp + V G

h tp,

with the mass matrix Mh (3.15) already known form the indirect approach, and the double
layer matrix

Kh[i, l] = − 1

2π

∫
τi

∫
Γ

(y − x, ny)
|x− y|2

ϕ1
l (y)dsydsx

for i = 1, . . . ,M and l = 1, . . . , N , Kh ∈ RM×N . Although the error estimates for the
L2 projected particular solution would yield cubic convergence in the best case, we only
obtain h2 convergence of the point-wise error of the approximated solution ũ because of the
influence of the linear interpolation of the given boundary datum. Eventually, the second

possibility for an approximation of the Dirichlet datum is a L2 projection gh =
N∑
l=1

glϕ
1
l ,

satisfying

N∑
l=1

gl〈ϕ1
l , ϕ

1
k〉Γ = 〈g, ϕ1

k〉Γ for k = 1, . . . , N.
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The advantage is in a faster convergence of the error ‖g − gh‖Hσ+1(Γ) in the Strang lemma
3.2. Thus, if t, tp ∈ H1

pw(Γ) and g, gp ∈ H2(Γ), in the end we have

|u(x)− û(x)| ≤ c(x, t, g, tp, gp)h
3. (3.17)

3.4 Exterior Dirichlet Problem

The exterior Dirichlet boundary value problem is

−∆u(x) = 0 for x ∈ Ωc,

γext0 u(x) = g(x) for x ∈ Γ,

with the radiation condition

u(x) = a log |x|+O
(

1

|x|

)
as |x| → ∞

for some a ∈ R. The solution is given by the exterior representation formula

u(x) = −
∫

Γ

U∗(x, y)γext1 u(y)dsy +

∫
Γ

γext1,yU
∗(x, y)g(y)dsy for x ∈ Ωc,

where the missing Neumann datum γext1 u ∈ H−1/2(Γ) can be determined by the first
exterior boundary integral equation

(V γext1 u)(x) = (−1

2
I +K)g(x) for x ∈ Γ.

We replace the Neumann datum on the boundary with the piecewise constant approxi-

mation th(x) =
M∑
j=1

t(xj)ϕ
0
j(x) ∈ S0

h(Γ), and therefore we have to determine the uniquely

defined solution th from the approximate boundary integral equation

− 1

2π

∫
Γ

log |x− y|th(y)dsy ≈ −
1

2
g(x)− 1

2π

∫
Γ

(y − x, ny)
|x− y|2

g(y)dsy.

The only difference to the interior problems is the slightly changed right hand side. Con-
sequently, we can use the already described direct and indirect approaches, with the exact,
linear approximated or L2 projected boundary datum, and we obtain the same correspond-
ing systems of equations and error estimates.
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3.5 Interface Problem

For the interface problem, we only use a direct approach and a corresponding Galerkin
method. The problem is generally given by

−α1∆u1(x) = f(x) for x ∈ Ω1 = Ω,

−α2∆u2(x) = 0 for x ∈ Ω2 = Ωc.

The solution u2 has to fulfill the radiation condition (2.9). Moreover, the two separated
domains and therefore the functions u1 and u2 are linked on the boundary via the trans-
mission conditions

γint0 u1(x) = γext0 u2(x) for x ∈ Γ,

α1γ
int
1 u1(x) = α2γ

ext
1 u2(x) for x ∈ Γ.

The first equation yields u(x) = γint0 u1(x) = γext0 u2(x) for x ∈ Γ. For the Galerkin
variational formulation we introduce the associated approximate function uh ∈ S1

h(Γ) as
well as L2 projections of the particular solution up,h ∈ S1

h(Γ) and its conormal derivative
tp,h ∈ S0

h(Γ), respectively:〈
(α1S

int + α2S
ext)uh, ϕ

1
k

〉
Γ

=
〈
Sintup,h − tp,h, ϕ1

k

〉
Γ

for k = 1, . . . , N.

This leads to the equivalent system of linear equations

Shu = f.

Generally, the matrix on the left hand side is

Sh[k, l] =
〈
(α1S

int + α2S
ext)ϕ1

l , ϕ
1
k

〉
Γ

for k, l = 1, . . . , N,

and we have f in components as

f [k] =
N∑
l=1

up,l〈Sintϕ1
l , ϕ

1
k〉Γ −

M∑
j=1

tp,j〈ϕ0
j , ϕ

1
k〉Γ for k = 1, . . . , N.

On the contrary, looking at the symmetric representation of the interior and exterior
Steklov-Poincaré operator, they can not be evaluated in a direct way because we do not
calculate the inverse of the single layer potential operator explicitely. Therefore, Sint and
Sext have to be evaluated much more over solving local variational formulations. So let us
start with

(Sintu)(x) =
(
D + (

1

2
I +K ′)V −1(

1

2
I +K)

)
u(x)

= (Du)(x) + (
1

2
I +K ′)t1(x) for x ∈ Γ,
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and

(Sextu)(x) =
(
D + (

1

2
I −K ′)V −1(

1

2
I −K)

)
u(x)

= (Du)(x) + (
1

2
I −K ′)t2(x) for x ∈ Γ,

where the Neumann data t1 ∈ H−1/2(Γ) is the unique solution of the interior variational
problem

〈V t1, z〉Γ = 〈(1

2
I +K)u, z〉Γ for all z ∈ H−1/2(Γ),

and t2 ∈ H−1/2(Γ) the unique solution of the exterior variational problem

〈V t2, z〉Γ = 〈(1

2
I −K)u, z〉Γ for all z ∈ H−1/2(Γ),

respectively. Using the above introduced discretisation techniques, we obtain the Galerkin
equation to determine t1,h ∈ S0

h(Γ) in

〈V t1,h, zh〉Γ = 〈(1

2
I +K)uh, zh〉Γ for all zh ∈ S0

h(Γ),

and t2,h ∈ S0
h(Γ) via

〈V t2,h, zh〉Γ = 〈(1

2
I −K)uh, zh〉Γ for all zh ∈ S0

h(Γ), (3.18)

respectively. Accordingly, we get changed approximations of the Steklov-Poincaré operators
defined by

(S̃intuh)(x) = (Duh)(x) + (
1

2
I +K ′)t1,h(x) for x ∈ Γ,

and

(S̃extuh)(x) = (Duh)(x) + (
1

2
I −K ′)t2,h(x) for x ∈ Γ.

For these approximate operators there holds the following theorem:

Theorem 3.6. The interior and exterior approximate operator S̃int and S̃ext, respectively,
are bounded. Furthermore, S̃int is elliptic on H

1/2
∗∗ (Γ) :=

{
v ∈ H1/2(Γ) : 〈v, 1〉Γ = 0

}
,

whereas S̃ext is H1/2(Γ)-ellpitic, so it holds

〈S̃intv, v〉Γ ≥ cS̃
int

1 ‖v‖2
H1/2(Γ) for all v ∈ H1/2

∗∗ (Γ),

〈S̃extv, v〉Γ ≥ cS̃
ext

1 ‖v‖2
H1/2(Γ) for all v ∈ H1/2(Γ).

Moreover, both approximate operators satisfy the quasi-optimal error estimates

‖(Sint − S̃int)v‖H−1/2(Γ) ≤ c inf
zh∈S0

h(Γ)
‖Sintv − zh‖H−1/2(Γ),

‖(Sext − S̃ext)v‖H−1/2(Γ) ≤ c inf
zh∈S0

h(Γ)
‖Sextv − zh‖H−1/2(Γ).
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Proof. Let us give a sketch of the proof. We begin with the boundedness of S̃ext with the
help of the variational formulation (3.18) and the ellipticity of the single layer potential
operator V :

cV1 ‖t2,h‖2
H−1/2(Γ) ≤ 〈V t2,h, t2,h〉Γ

(3.18)
= 〈(1

2
I −K)uh, t2,h〉Γ.

Since the double layer potential is bounded, with Cauchy-Schwarz inequality we obtain

cV1 ‖t2,h‖2
H−1/2(Γ) ≤ 〈(

1

2
I −K)uh, t2,h〉Γ ≤

(
1 + c

γext0 W
2

)
‖uh‖H1/2(Γ)‖t2,h‖H−1/2(Γ),

and finally arrive at

‖t2,h‖H−1/2(Γ) ≤
1

cV1

(
1 + c

γext0 W
2

)
‖uh‖H1/2(Γ). (3.19)

With the representation of S̃ext, the boundedness of the hypersingular operator as well as
with triangle inequality we conclude the corresponding stability estimate

‖S̃extuh‖H−1/2(Γ) ≤ ‖Duh‖H−1/2(Γ) + ‖(1

2
I −K ′)t2,h‖H−1/2(Γ)

≤ cD2 ‖uh‖H1/2(Γ) + c
γext1 Ṽ
2 ‖t2,h‖H−1/2(Γ)

(3.19)

≤ cD2 ‖uh‖H1/2(Γ) + c
γext1 Ṽ
2

1

cV1

(
1 + c

γext0 W
2

)
‖uh‖H1/2(Γ)

= c ‖uh‖H1/2(Γ).

As far as the boundedness of the interior approximate Steklov-Poincaré operator is con-
cerned, the proof works analogously. For proving the ellipticity of S̃int, we use again the
ellipticity property of V :

〈S̃intv, v〉Γ = 〈Dv, v〉Γ + 〈(1

2
I +K ′)t1,h, v〉Γ

= 〈Dv, v〉Γ + 〈t1,h, (
1

2
I +K)v〉Γ

(3.18)
= 〈Dv, v〉Γ + 〈V t1,h, t1,h〉Γ
≥ 〈Dv, v〉Γ.

Using the mapping properties of the assembled local hypersingular integral operator, we
conclude the ellipticity property for S̃int. For the H1/2(Γ)-ellipticity of the exterior Steklov-
Poincaré operator we refer to [24]. Eventually, see [33] for the quasi-optimal error estimates.

The corresponding unique solution ũh ∈ S1
h(Γ) may be evaluated by solving the perturbed

formulation〈
(α1S̃

int + α2S̃
ext)ũh, ϕ

1
k

〉
Γ

=
〈
S̃intup,h − tp,h, ϕ1

k

〉
Γ

for k = 1, . . . , N.
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The equivalent linear system of equations reads as

α1

(
Dhũ+ (

1

2
M>

h +K>h )t1

)
+ α2

(
Dhũ+ (

1

2
M>

h −K>h )t2

)
= Dhup + (

1

2
M>

h +K>h )t∗ −M>
h tp, (3.20)

satisfying the local systems

V G
h t1 = (

1

2
Mh +Kh)ũ,

V G
h t2 = (

1

2
Mh −Kh)ũ, (3.21)

V G
h t
∗ = (

1

2
Mh +Kh)up.

The matrices V G
h ∈ RM×M , Mh ∈ RM×N and Kh ∈ RM×N are all well known from the

previous sections. The only new one is the hypersingular matrix Dh ∈ RN×N with the
entries

Dh[k, l] = 〈Dϕ1
l , ϕ

1
k〉Γ for k, l = 1, . . . , N.

Nevertheless, with integration by parts, we can formulate Dh via the single layer matrix
Vh (for further discussions see [7] and [31]):

Dh[k, l] =
1

hl−1hk−1

〈V ϕ0
l−1, ϕ

0
k−1〉Γ −

1

hl−1hk
〈V ϕ0

l−1, ϕ
0
k〉Γ

− 1

hlhk−1

〈V ϕ0
l , ϕ

0
k−1〉Γ +

1

hlhk
〈V ϕ0

l , ϕ
0
k〉Γ

for k, l = 1, . . . , N and elements lengths hk. System (3.20), derived from the second
transmission condition, can now be computed in the following way: For each step in a
conjugate gradient scheme which solves the global system (3.20), the solutions of the local
systems (3.21) will be calculated by a Cholesky decomposition, since V G

h is symmetric and
positive definite.

As far as the point-wise error estimate is concerned, we have to deal with the solution
of a perturbed system at first. Triangle inequality and mainly the Strang lemma for
approximate operators, Theorem 3.3, yield

‖u− ũh‖H1/2(Γ) ≤ ‖u− uh‖H1/2(Γ) + ‖uh − ũh‖H1/2(Γ)

≤ c1 inf
vh∈S1

h(Γ)
‖u− vh‖H1/2(Γ) + c2 ‖(Sint − S̃int)u‖H−1/2(Γ)

+c3 ‖(Sext − S̃ext)u‖H−1/2(Γ).
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Using the quasi optimal error estimates for the approximation of Sint and Sext of Theorem
3.6, we obtain

‖u− ũh‖H1/2(Γ) ≤ c
(

inf
vh∈S1

h(Γ)
‖u− vh‖H1/2(Γ)

+ inf
wh∈S0

h(Γ)
‖Sintu− wh‖H−1/2(Γ)

+ inf
wh∈S0

h(Γ)
‖Sextu− wh‖H−1/2(Γ)

)
.

As we know from previous sections, the best approximation can be reached by assuming
u ∈ H2(Γ) and Sintu, Sextu ∈ H1

pw(Γ). The final estimate is due to the Aubin-Nitsche trick:

‖u− ũh‖L2(Γ) ≤ c(u)h2.

Once the solution ũh is found, we can calculate the missing Neumann data t1 and t2 with
the help of the Poisson problem in the interior domain, and the Laplace equation in the
exterior domain, respectively. Hence, the discussed techniques and error estimates for these
final problems are still valid. We end this section by noting that with the here described
methods there is no possibility to gain a better error analysis than a h2 estimate, compared
to the possible cubic convergence for the separated Poisson and Laplace problems. The
reason is due to the approximation property for S0

h(Γ), where the best order of convergence
for the approximation of the particular Neumann datum is quadratic.

3.6 Domain Decomposition Methods

In the analytical part of this work, we considered the local Dirichlet boundary value prob-
lems

−∆ui(x) = 0 for x ∈ Ωi,

γint0 ui(x) = g(x) for x ∈ Γ ∩ Γi,

involving appropriate coupling conditions

γint0,i ui(x) = γint0,j uj(x) and γint1,i ui(x) = −γint1,j uj(x) for x ∈ Γij.

With the aid of the local Dirichlet to Neumann maps Si we obtained the final Galerkin
variational formulation (2.16) to find ũ ∈ H1/2(ΓS,Γ), such that

p∑
i=1

∫
Γi

(Siũ|Γi )(x)v|Γi (x)dsx = −
p∑
i=1

∫
Γi

(Sig̃|Γi )(x)v|Γi (x)dsx (3.22)

for all v ∈ H1/2(ΓS,Γ). For our usual discretisation techniques, we need a trial space of
piecewise linear and continuous functions defined on the whole skeleton,

S1
h(ΓS) = {ϕ1

l }Nl=1 ⊂ H1/2(ΓS,Γ),
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as well as restrictions on the local subdomain boundaries,

S0
h(Γi) = {ϕ0

i,j}
Mi
j=1 ⊂ H−1/2(Γi),

S1
h(Γi) = {ϕ1

i,l}
Ni
l=1 ⊂ H1/2(Γi,Γ).

Furthermore, S1
h(Γ) denotes the restriction of the defined trial space S1

h(ΓS) onto the bound-
ary Γ of the domain Ω. With these preliminaries, we can formulate the Galerkin boundary
element discretisation of the variational problem (3.22):
Find ũh ∈ S1

h(ΓS), such that

p∑
i=1

∫
Γi

(Siũh|Γi)(x)vh|Γi(x)dsx = −
p∑
i=1

∫
Γi

(Sig̃|Γi)(x)vh|Γi(x)dsx

is satisfied for all functions vh ∈ S1
h(ΓS). The equivalent linear system of equations is

Shũh = f,

with the global matrix on the left hand side,

Sh[k, l] =

p∑
i=1

∫
Γi

(Siϕ
1
l )(x)ϕ1

k(x)dsx.

As we know, this matrix can not be calculated explicitly, because of the representation of
the Steklov-Poincaré operator. Since we nearly always use the symmetric formulation, at
first we have to solve the local variational problems

〈Viti,h, zh〉Γ = 〈(1

2
I +Ki)uh|Γi , zh〉Γ for all zh ∈ S0

h(Γi). (3.23)

Secondly, as in the case of an interface problem, we get approximate operators defined by

(S̃iuh|Γi)(x) = (Diuh|Γi)(x) + (
1

2
I +K ′i)ti,h(x) for x ∈ Γi.

In view of this, we now want to find a boundary element approximation ûh ∈ S1
h(ΓS) of

p∑
i=1

∫
Γi

(S̃iûh|Γi)(x)vh|Γi(x)dsx = −
p∑
i=1

∫
Γi

(S̃ig̃|Γi)(x)vh|Γi(x)dsx (3.24)

for all vh ∈ S1
h(ΓS).

Theorem 3.7. Let

ã(uh, vh) =

p∑
i=1

∫
Γi

(S̃iuh|Γi)(x)vh|Γi(x)dsx



3.6 Domain Decomposition Methods 65

be the bilinear form of the corresponding variational problem (3.24). Then ã(·, ·) is bounded
in H1/2(ΓS) and S1

h(ΓS)-elliptic. Hence there exists a unique solution ûh ∈ S1
h(ΓS), satis-

fying

‖ũ− ûh‖H1/2(ΓS) ≤ c

(
inf

vh∈S1
h(ΓS)

‖ũ− vh‖H1/2(ΓS) +

p∑
i=1

inf
wh∈S0

h(Γi)
‖Siũi − wi,h‖H−1/2(Γi)

)
.

Proof. Principally, the hypotheses of this theorem are due to the Strang lemma 3.3 for some
perturbation of an elliptic bilinear form. With Theorem 3.6, the mapping properties of the
local approximate Steklov-Poincaré operators as well as a summation over the subdomain
boundaries yield the boundedness of ã(·, ·). Secondly, as far as the ellipticity is concerned,
we have

〈S̃iv, v〉Γi = 〈Div, v〉Γi + 〈
(1

2
I +K

′

i

)
ti,h, v〉Γi

= 〈Div, v〉Γi + 〈Viti,h, ti,h〉Γi ≥ 〈Div, v〉Γi

for all v ∈ H1/2(ΓS,Γ). Thus, after summarising over all subdomain boundaries from 1
to p, and with the ellipticity properties of the local hypersingular integral operators we
obtain the ellipticity of the bilinear form. Thirdly, for the error analysis we start with the
estimate of the corresponding Strang lemma in combination with the triangle inequality in
the second term for the local subdomain boundaries Γi:

‖ũ− ûh‖H1/2(ΓS) ≤ c

(
inf

vh∈S1
h(ΓS)

‖ũ− vh‖H1/2(ΓS) +

p∑
i=1

‖(Si − S̃i)ũi‖H−1/2(Γi)

)
.

With the quasi-optimal error estimate of Theorem 3.6 for the local operators S̃i we get the
desired inequality.

Hence, this theorem yields an optimal error estimate in the following way: assuming Siũi ∈
H1
pw(Γi) and ũ ∈ H2(ΓS), and applying the approximation property (3.4) for the trial space

of piecewise constant functions, we obtain the best convergence rate by

‖ũ− ûh‖H1/2(ΓS) ≤ c(ũ)h3/2.

All in all, at the end we are interested in the final solution, namely the missing Neumann
data on the subdomain boundaries Γi and accordingly on the boundary Γ. But as for the
interface problem, once the solution uh is found, we have to solve the local boundary value
problems (3.23) and obtain the corresponding Neumann data. Again, the discussed solving
techniques and error estimates for the local problems are still valid, so our best order of
convergence is cubic.

The final point is to write down the according system to solve and its matrices. Firstly, we
know that an approximation vh ∈ S1

h(ΓS) results in a coefficient vector v ∈ RN . With the
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help of the connectivity matrix Ai, the local restriction vi,h ∈ S1
h(Γi) can be represented by

some transformations of a global vector v to its local one,

Ai : RN → RNi , (3.25)

vi = Aiv. (3.26)

Secondly, the Galerkin problem (3.24) is equivalent to the system of linear equations

S̃hû =

p∑
i=1

A>i S̃i,hAiû = −
p∑
i=1

A>i S̃i,hAig = −S̃hg, (3.27)

with the connectivity matrices Ai for Aiû = ûi. The local representations of S̃i,h are

S̃i,hûi = Di,hûi + (
1

2
M>

i,h +K>i,h)ti,

S̃i,hgi = Di,hgi + (
1

2
M>

i,h +K>i,h)t
∗
i ,

respectively, where the local systems

V G
i,hti = (

1

2
Mi,h +Ki,h)ûi,

V G
i,ht
∗
i = (

1

2
Mi,h +Ki,h)gi,

have to be solved. For a better overview, we write down the already known local stiffness
matrices

V G
i,h[s, t] = 〈V ϕ0

t , ϕ
0
s〉Γ, Mi,h[s, l] = 〈ϕ1

l , ϕ
0
s〉Γ,

Di,h[k, l] = 〈Dϕ1
l , ϕ

1
k〉Γ, Ki,h[s, l] = 〈Kϕ1

l , ϕ
0
s〉Γ,

for s, t = 1, . . . ,Mi and k, l = 1, . . . , Ni. The system matrix S̃h in (3.27) is positive definite
and symmetric, hence we use again a conjugate gradient scheme as a solution method.

3.6.1 Condition Numbers and Preconditioning

Generally, the condition number of a symmetric and positive definite matrix AM is the
division of the largest over the smallest eigenvalue, i.e.

κ2(AM) =
λmax(AM)

λmin(AM)
≥ 1.

On the whole, condition numbers of matrices for boundary element methods depend on
mesh parameters. To determine κ2(Vh), the condition number of the single layer matrix,
we first need spectral equivalent equations.
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Lemma 3.8 ([32], Lemma 12.2). The spectral equivalent equations for the single layer
matrix are given by

c1h
2‖w‖2

2 ≤ (Vhw,w) ≤ c2h‖w‖2
2

for all w ∈ RM ↔ wh ∈ S0
h(Γ) with a global uniform boundary discretisation.

Using the definition of the Raleigh quotient, we obtain

λmax(Vh) = max
x 6=0

(Vhx, x)

(x, x)
≤ c2h

and

λmin(Vh) = min
x 6=0

(Vhx, x)

(x, x)
≥ c1h

2,

respectively, and therefore an upper bound of the condition number of Vh by

κ2(Vh) ≤
c2 h

c1 h2
= c

1

h
.

Moreover, we get

κ2(Vh/2) ≈ 2κ2(Vh)

for one step of refinement. For further discussions about condition numbers for boundary
element methods, see for example [8].
Since the system matrices of the derived linear systems of equations in the previous sections
are symmetric and positive definite, we nearly always use a conjugate gradient scheme as a
solving method. Therefore we are able to describe the behavior of the increasing iteration
number, but at first we have to know the error estimate of the conjugate gradient scheme.

Theorem 3.9 ([30]). For a symmetric and positive definite matrix AM and the corre-
sponding uniquely determined solution u of the system AMu = f via the conjugate gradient
scheme, there holds

‖uk − u‖AM ≤
2qk

1 + q2k
‖u0 − u‖AM

for every initial solution u0, and with

q =

√
κ2(AM) + 1√
κ2(AM)− 1

> 1.

The norm ‖ · ‖AM :=
√

(AM ·, ·) is equivalent to the Euclidean norm in RM .
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Since it holds

‖uk − u‖AM ≤
2qk

1 + q2k
‖u0 − u‖AM ≤

2

qk
‖u0 − u‖AM ,

the order of convergence for the conjugate gradient scheme is proportional to
√
κ2(AM).

To sum up, we know that for boundary elements it holds
√
κ2(Vh) = O

(√1

h

)
and conse-

quently
√
κ2(Vh/2) =

√
2
√
κ2(Vh). This means that for a relative accuracy of ε = 10−10

for the conjugate gradient scheme, with one step of refinement the number of iterations
increases with the factor of

√
2.

Notes on Preconditioning

To gain constant iterations independent from the refinement level for the conjugate gradient
scheme, we may use a preconditioning of the system (3.27) for domain decomposition
methods. Hence we have to know about a preconditioning matrix for the Steklov-Poincaré
operator. In this work, we only give a short summary of possibilities. For deeper discussions
on preconditioning techniques for domain decomposition boundary element methods, see
for example [22] and [3].
Generally spoken, as shown in Remark 1.5, the hypersingular integral operator D has a
non-trivial kernel, so we may use a stabilisation D̃, see for example [32]. For that stabilised
operator, the following lemma shows the spectral equivalence for the inverse of the single
layer potential V : H1/2(Γ) → H−1/2(Γ) and the modified hypersingular integral operator

D̃ : H−1/2(Γ)→ H1/2(Γ).

Lemma 3.10 ([22]). For the single layer potential and the modified hypersingular integral
operator there hold the spectral equivalent inequalities

c1〈V −1v, v〉Γ ≤ 〈D̃v, v〉Γ ≤ c2〈V −1v, v〉Γ

for all functions v ∈ H1/2(Γ) and special positive constants c1 and c2, depending on the

ellipticity constants of V and D, as well as on the modification parameter of D̃.

Moreover, there is a relation between the inverse single layer potential and the Steklov-
Poincaré operator too.

Lemma 3.11 ([22]). For the single layer potential and the modified Steklov-Poincaré op-

erator S = D̃ + (
1

2
I +K

′
)V −1(

1

2
I +K), there hold the spectral equivalent inequalities

c̃1〈V −1v, v〉Γ ≤ 〈S̃v, v〉Γ ≤ c̃2〈V −1v, v〉Γ

for all functions v ∈ H1/2(Γ) and special constants c̃1 and c̃2, depending on the ellipticity

constants of V and D̃, as well as on the modification parameter of D̃.
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These two lemma show that the modified hypersingular integral operator is a suitable
preconditioner for the Steklov-Poincaré operator in general. Now as far as domain decom-
position methods are concerned, the Galerkin variational formulations are evaluated on
the coupling boundaries Γij. If we calculate S̃ only on Γij, no modification of the hyper-
singular integral operator is necessary. Hence, Di,h restricted on the coupling boundary is
a possible preconditioner for the resulted linear system of equations (3.27), which can be
solved efficiently with a preconditioned conjugate gradient scheme. See for example [21]
for further discussions about boundary element preconditioners for hypersingular integral
equations.





4 Numerical Implementation

Here the focus is on the results of the calculations with the developed computational
program. At first we deal with the explicit formulation of the potential operators for the
corresponding stiffness matrices. We know that the adjoint double layer potential operator
for the discrete scheme is the transposed matrix ofKh. Additionally, since the hypersingular
matrix entries will be described via the single layer matrix Vh, we only have to evaluate the
matrix entries of Vh andKh. Afterwards we show a range of numerical examples for different
boundary value and free space transmission problems as well as for domain decomposition
methods introduced in Chapter 2, computed with the C-programming language. Moreover,
we will see that the theoretical orders of convergence derived in Chapter 3 are reached for
the different problems.

4.1 Calculation of the Integral Operators

This section is about the explicit calculation of the single and double layer matrix for the
collocation and Galerkin method. For the latter one, we need the Gaussian quadrature,
which we will shortly introduce here.
The general idea of numerical integration is to approximate for a given function f(x) the
definite integral

I =

∫ b

a

f(x)dx

by the approach

In =
n∑
i=0

ωif(xi),

with weights ωi and nodes xi. In this work we use the Gauss-Legendre integration rule
given by ∫ 1

−1

f(x)dx =
n∑
i=0

ωif(xi) +
f (2n+2)(y)

(2n+ 2)!

∫ 1

−1

( n∏
i=0

(x− xi)
)2

dx (4.1)

with weights

ωi =

∫ 1

−1

∏
j 6=i

x− xj
xi − xj

dx for i = 1, . . . , n.

71
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The nodes xi are the roots of the Legendre polynomials

Pn+1(x) =
1

2n+1(n+ 1)!

dn+1

dxn+1
(x2 − 1)n+1.

If we cut off the last term in (4.1), we obtain the desired approximation In. As far as
boundary element methods are concerned, we need an approximation for an integration
over a boundary element τl with the initial node xl1 and the end node xl2 , i.e τl ∈ [xl1 , xl2 ].
Therefore, we perform the transformation x = xl1 + ξ(xl2 −xl1) with ξ ∈ [0, 1]. For a given
function f(x) on the boundary element we get

f [l] =

∫
τl

f(x)dsx =

∫ 1

0

f(ξ)|τl|dξ ≈ |τl|
p∑
j=1

ωjf(xl1 + xj(xl2 − xl1)),

with p Gauss points xj on the interval [0, 1]. For a deeper discussion of the Gaussian
quadrature and other numerical integration techniques, see for example [30].

4.1.1 Parametrisation

For calculations of the integral operators, we introduce the following parametrisation:

Γk = {y = xk + t · rk, t ∈ (0, hk), hk = |xk+1 − xk|, rk =
1

hk
(xk+1 − xk)}, (4.2)

with the normalized direction vector

rk =

(
rk,1
rk,2

)
,

and its normal

nk =

(
rk,2
−rk,1

)
,

respectively. Furthermore, xk is the initial node of the element τk. For the collocation node
there holds

x∗l = xk + tl · rk + sl · nk.

Since rk and nk are normal to each other, we calculate tl and sl by

tl = 〈x∗l − xk, rk〉,
sl = 〈x∗l − xk, nk〉,

respectively. Figure 4.1 shows the vectors of the local coordinate system.
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Figure 4.1: Local coordinate system for a first level circle with 4 elements
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4.1.2 Single Layer Matrix

We need to calculate the single layer matrix entries for the collocation method,

V C
h [l, k] = − 1

2π

∫
τl

log |x∗k − y|dsy for l, k = 1, . . . ,M,

where x∗k denotes the collocation point on the boundary element τk. Therefore we need a
formulation of the argument of the logarithm, represented by the local coordinate system:

y − x∗l = 0 + (t− tl) · rk − sl · nk,
|y − x∗l |2 = (t− tl)2 + s2

l .

Now the relation log |.|2 = 2 log |.| yields

V C
h [l, k] = − 1

2π

1

2

∫ hk

0

log ((t− tl)2 + s2
l ) dt = − 1

4π

(
F (hk)− F (0)

)
,

with the primitive

F (t) =

∫
log ((t− tl)2 + s2

l ) dt.

Due to the logarithm, F (t) has singularities for t = tl and simultaneously sl = 0. Integra-
tion by parts yields

F (t) = (t− tl) log ((t− tl)2 + s2
l )−

∫
(t− tl)2(t− tl)
(t− tl)2 + s2

l

ds.

With partial fraction expansion we obtain

F (t) = (t− tl) log ((t− tl)2 + s2
l )− 2

∫
(t− tl)2 + s2

l − s2
l

(t− tl)2 + s2
l

dt

= (t− tl) log ((t− tl)2 + s2
l )− 2t+ 2sl arctan

t− tl
sl

.

To sum up, this is the representation for the entries of the primitive to calculate the
stiffness matrix V C

h . Moreover, there are no singularities any more, because if t = tl, we

have (t− tl) log ((t− tl)2 + s2
l ) = 0, and if sl = 0, we obtain 2sl arctan

t− tl
sl

= 0. As far as

the Galerkin method is concerned, the matrix entries are

V G
h [l, k] = 〈V ϕ0

k, ϕ
0
l 〉Γ = − 1

2π

∫
τl

∫
τk

log |x− y| dsydsx

for l, k = 1, . . . ,M . We calculate the outer integral with Gaussian quadrature, and the
inner one exactly as for the collocation method. Instead of the collocation nodes x∗k, we
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evaluate the inner integral in the Gauss points. Hence, we obtain the representation

V G
h [l, k] = − 1

2π

∫
τl

∫
τk

log |x− y| dsydsx

≈ hl

p∑
j=1

wj

(
− 1

2π

∫
τk

log |xjl − y|dsy
)
,

with p Gauss points xjl on the element τl, Gauss weights wj and lengths hl.

4.1.3 Double Layer Matrix

Let us consider the double layer matrix entries for piecewise linear and continuous functions
for the collocation method,

KC
h [i, l] = − 1

2π

∫
Γ

(y − x∗i , ny)
|x∗i − y|2

ϕ1
l (y)dsy.

Here we shall adopt the approach of [31], and we just write down the resulting operations.
Since we use piecewise linear test functions, there are two main calculations for one matrix
entry, coming from the increasing and decreasing part of the test functions, denoting one
component by ’1+’ and the other one by ’1−’, respectively. Using the local parametrisation
(4.2), for si = 0 we obtain

KC,1+
h [i, l] = KC,1−

h [i, l] = 0,

due to the kernel representation of double layer potential. Furthermore, for si 6= 0, we get

KC,1+
h [i, l] =

1

2π

∫ tl+1

tl

si
s2
i + t2

t− tl
hl

dt

=
1

2πhl

(
F (tl+1; tl)− F (tl; tl)

)
,

KC,1−
h [i, l] =

1

2π

∫ tl+1

tl

si
s2
i + t2

tl+1 − t
hl

dt

=
1

2πhl

(
F (tl; tl+1)− F (tl+1; tl+1)

)
,

with element lengths hl and the primitive

F (t; t0) =

∫
si

s2
i + t2

(t− t0)dt =
1

2
si log(s2

i + t2)− t0 arctan
t

si
.

Concerning the Galerkin method, we know the double layer matrix entries are

Kh[i, l] = 〈Kϕ1
l , ϕ

0
i 〉Γ = − 1

2π

∫
τi

∫
Γ

(y − x, ny)
|x− y|2

ϕ1
l (y)dsydsx
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for i = 1, . . . ,M and l = 1, . . . , N . Analogously to the single layer matrix, we evaluate
the outer integral with Gaussian integration. The inner integral is calculated as for case
of collocation, but using Gauss points instead of collocation nodes x∗i . Thus, for p Gauss
points xji on the element τi, Gauss weights wj and lengths hi we get

Kh[i, l] = − 1

2π

∫
τi

∫
Γ

(y − x, ny)
|x− y|2

ϕ1
l (y)dsydsx

≈ hi

p∑
j=1

wj

(
− 1

2π

∫
Γ

(y − xji , ny)
|xji − y|2

ϕ1
l (y)dsy

)
.

4.2 Numerical Examples

Since we have presented the theory for interior and exterior boundary value problems,
interface problems as well as for domain decomposition methods in this work, we now want
to provide numerical results of a computational program for each of these topics. We solve
these partial differential equations for some simple domains, use particular solutions for the
Poisson problems and different boundary functions as Dirichlet data. At the beginning, we
state some additional information which is necessary for the calculations:

In domain decomposition methods, we solve the local boundary value problems with a
Cholesky decomposition.

All other problems will be solved with a conjugate gradient scheme with an epsilon ε =
10−8 as relative accuracy.

As far as the Gaussian quadrature is concerned, we always use 5 Gauss points.

Most of the time we are finally interested in the rate of convergence of the approximate
solution. Therefore we mostly evaluate the absolute value of the difference of the
exact and the approximate representation formula in a specific point in the domain.
To compare this point-wise error for finer meshes, we provide the experimental order
of convergence (eoc), which meshes the numerical order of convergence by comparing
computations on two sequenced meshes. It is defined as

eoc =
ln (Ei/E2i)

ln (2)
,

with Ei = |u(x)− ũ(x)| for x ∈ Ω, where i corresponds to the degrees of freedom. In
this work, each subsequent refinement level has twice as much boundary elements as
the level before, dividing one element into two equal parts.
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Figure 4.2: Domain Ω for the Poisson problem: Circle with radius r = 0.25

4.2.1 Interior Poisson Problem

The Poisson problem is given by

−∆u(x) = |x| − r

2
for x ∈ Ω,

γint0 u(x) = γint0 up(x) + γint0 uh(x) for x ∈ Γ, (4.3)

with

γint0 up(x) =
1

9
|x|3 − r

8
|x|2 for x ∈ Γ,

γint0 uh(x) = log |x0 − x| for x ∈ Γ and x0 =

(
1

1

)
,

so the Dirichlet datum is a combination of a homogeneous and a particular solution of
the Poisson problem. Additionally, we have the corresponding conormal derivative of the
particular solution

γint1 up(x) = (
1

3
|x| − r

4
)nx · x for x ∈ Γ.

The domain Ω is a circle, centered at the origin with radius r = 0.25 (see Fig. 4.2) to fulfill
the condition diam(Ω) < 1 for the ellipticity of the single layer potential operator.
To determine the unknown Neumann datum th ∈ S0

h(Γ) for the representation formula, we
use the direct approach as well as the ansatz of a particular solution to handle the Newton
potential, see Subsection 2.1.2. Hence we have to solve the Galerkin formulation (3.16)

〈V th, ϕ0
i 〉Γ = 〈(1

2
I +K)g, ϕ0

i 〉Γ − 〈(
1

2
I +K)gp,h, ϕ

0
i 〉Γ + 〈V tp,h, ϕ0

i 〉Γ
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Interpolation L2 projection
Elements Error1 eoc Error1 eoc

32 1,87E-05 1,78E-05
64 4,58E-06 2,03 2,01E-06 3,14

128 1,13E-06 2,01 2,36E-07 3,09
256 2,82E-07 2,01 2,95E-08 3,00
512 7,04E-08 2,00 3,60E-09 3,04

1024 1,76E-08 2,00 1,92E-10 4,23
Theory: 2 3

Table 4.1: Accuracy for the interior Poisson problem using piecewise linear approximation
and L2 projection for the given Dirichlet data

for i = 1, . . . ,M . This leads to the equivalent system

V G
h t = (

1

2
Mh +Kh)g − (

1

2
Mh +Kh)gp + V G

h tp,

using either a linear approximation of the boundary data g, or a L2 projection.
The resulting error for this boundary value problem is given in Table 4.1, using at first a
piecewise linear and continuous approximation of the given function (4.3) on the boundary,
which yields a quadratic convergence rate in theory.
The second column in Table 4.1 shows the point-wise error in a prescribed inner point,

Error1 = |u(x)− ũ(x)|, x = (0.1, 0.05)>,

where ũ(x) is the approximate representation formula

ũ(x) = up(x) + (Ṽ th)(x)− (Ṽ tp,h)(x)− (Wgh)(x) + (Wgp,h)(x) for x ∈ Ω.

If we use L2 projections of the particular solution, its conormal derivative and the ho-
mogenuous part of the Dirichlet function, we obtain cubic convergence, cf. (3.17), which
will be shown in the last two columns in Table 4.1 for a different homogeneous boundary
function

uh(x) = log |x0 − x| with x0 =

(
0.25

0.25

)
.

To sum up, Table 4.1 verifies the theoretical results concerning the error estimates. At
the end of this subsection we want to show that the kernel properties of the double layer
and the hypersingular integral operators are fulfilled in the discrete scheme too, see there-
fore Remarks 1.4 and 1.5, respectively. Representative for all calculations of the different
boundary value problems, we show these properties in Table 4.2 for this interior Poisson
problem.
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Elements (
1

2
Mh +Kh) · 1 Dh · 1

16 5,6E-16 3,8E-16
32 9,4E-16 7,4E-16
64 1,8E-15 1,1E-15

128 2,4E-15 2,1E-15
256 2,8E-15 4,5E-15
512 4,6E-15 9,3E-15

1024 7,1E-15 1,9E-14
Theory: 0.0 0.0

Table 4.2: Kernel properties

Figure 4.3: Domain Ωc for the exterior Laplace problem: Circle with radius r = 0.25

4.2.2 Exterior Laplace Problem

The purpose of this subsection is to verify the theoretical results for the exterior Laplace
problem

−∆u(x) = 0 for x ∈ Ωc,

γext0 u(x) = log |x0 − x| for x ∈ Γ and x0 =

(
0.01

0.01

)
.

The domain Ω is a circle, centered at the origin with radius r = 0.25 (see Fig. 4.3), so the
condition diam(Ω) < 1 is fulfilled.
Choosing a = 1 in

u(x) = a log |x|+O
(

1

|x|

)
as |x| → ∞,
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Interpolation L2 projection
Elements Error1 eoc Error1 eoc

32 3,48E-03 4,00E-05
64 8,75E-04 1,99 5,01E-06 3,00

128 2,19E-04 2,00 6,26E-07 3,00
256 5,49E-05 2,00 7,83E-08 3,00
512 1,37E-05 2,00 9,78E-09 3,00

1024 3,44E-06 2,00 1,22E-09 3,00
Theory: 2 3

Table 4.3: Accuracy for the exterior Laplace problem using piecewise linear approximation
and L2 projection for the given Dirichlet data

we see that the solution u satisfies the decay condition (1.23). For the Galerkin formulation
we have to find the uniquely determined function th ∈ S0

h(Γ) in

〈V th, ϕ0
i 〉Γ = 〈(−1

2
I +K)g, ϕ0

i 〉Γ

for i = 1, . . . ,M . The equivalent system to solve is

V G
h t = (−1

2
Mh +Kh)g.

The second and the fourth column in Table 4.3 show the absolute error

Error1 = |u(x)− ũ(x)|, x = (3, 3.5)>,

using linear interpolation of the Dirichlet datum, and in the second case we use a L2

projection, yielding quadratic and cubic convergence, respectively.

4.2.3 Interface Problem

The purpose of this subsection is to give three examples of interface problems.

Example with a Circle

We use a circle centered at the origin with radius r = 0.25 as a domain Ω for the interface
problem

−∆u1(x) = |x| − r

2
for x ∈ Ω1 = Ω,

−∆u2(x) = 0 for x ∈ Ω2 = Ωc,

(4.4)

with one boundary ΓC = ∂Ω1 = ∂Ω2, see Fig. 4.4.
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Figure 4.4: Domains for the first interface problem

The exterior solution u2 fulfills the radiation condition (2.9). Moreover, the condition
diam(Ω1) < 1 for the ellipticity of the single layer potential operator is fulfilled. From
Section 3.5 we know that the problems can be solved via the transmission conditions

u(x) = γint0 u1(x) = γext0 u2(x) for x ∈ ΓC ,

γint1 u1(x) = γext1 u2(x) for x ∈ ΓC .

The unique solution ũh ∈ S1
h(Γ) will be evaluated by solving the perturbed formulation〈

(α1S̃
int + α2S̃

ext)ũh, ϕ
1
k

〉
ΓC

=
〈
S̃intup,h − tp,h, ϕ1

k

〉
ΓC

(4.5)

for k = 1, . . . , N . The equivalent linear system of equations (3.20) reads as

α1

(
Dhũ+ (

1

2
M>

h +K>h )t1

)
+ α2

(
Dhũ+ (

1

2
M>

h −K>h )t2

)
= Dhup + (

1

2
M>

h +K>h )t∗ −M>
h tp, (4.6)

where the temporary vectors t1, t2 and t∗ will be calculated via the local systems (3.21),

V G
h t1 = (

1

2
Mh +Kh)ũ,

V G
h t2 = (

1

2
Mh −Kh)ũ, (4.7)

V G
h t
∗ = (

1

2
Mh +Kh)up,
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Interior domain Exterior domain
Level Elements û(x) Error1 eoc û(x) Error2 eoc

3 32 -0,00035569 5,75E-06 0,00023340 2,32E-06
4 64 -0,00036000 1,45E-06 1,99 0,00023514 5,81E-07 2,00
5 128 -0,00036108 3,61E-07 2,00 0,00023558 1,45E-07 2,00
6 256 -0,00036135 8,92E-08 2,02 0,00023568 3,58E-08 2,02
7 512 -0,00036142 2,12E-08 2,07 0,00023571 8,52E-09 2,07
8 1024 -0,00036144 4,25E-09 2,32 0,00023572 1,70E-09 2,32
9 2048 -0,00036144 0,00023572

Theory: 2 2

Table 4.4: Accuracy for the first interface problem with one circle boundary

on ΓC . After solving (4.6) with a modified conjugate gradient scheme, the missing Neumann
datum will be calculated with the first and the second line of the local systems (4.7).
Moreover, since there is no data given on the boundary, there is no analytic solution to
compare with. Thus, the approximate representation formula at level i will be compared
with the evaluated solution of the highest level 9, so

Error1 = |u9(x)− ûi(x)|, x = (0.1, 0.15)>

for the interior domain, and

Error2 = |u9(x)− ûi(x)|, x = (3, 3.5)>

for the exterior domain, respectively. The results of the computations, especially the
expected quadratic convergence of the point-wise error, are reported in Table 4.4.

Example with a Square

Additionally, we state the interface problem for a square (see Fig. 4.5):

−∆u1(x) = −6x1 − 2c for x ∈ Ω1 = Ω, c ∈ R,
−∆u2(x) = 0 for x ∈ Ω2 = Ωc,

(4.8)

where u2 fulfills the radiation condition (2.9).
The vertices of the domain are

(0, 0), (0.5, 0), (0.5, 0.5), (0, 0.5),

so Ω satisfies the condition diam(Ω1) < 1. The particular solution is

up(x) = x3
1 + cx2

1, (4.9)

for any constant c ∈ R. As shown in Section 2.3, the function on the right hand side of
the interior Poisson equation has to fulfill the solvability condition∫

Ω1

f(x)dx = 0.
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Figure 4.5: Domains for the second interface problem

Interior domain Exterior domain
Level Elements û(x) Error1 eoc û(x) Error2 eoc

3 32 0,01441931 5,61E-07 -0,00075675 1,67E-06
4 64 0,01441886 1,11E-07 2,34 -0,00075544 3,62E-07 2,20
5 128 0,01441877 1,56E-08 2,83 -0,00075515 7,36E-08 2,30
6 256 0,01441876 2,10E-09 2,90 -0,00075509 1,40E-08 2,40
7 512 0,01441875 4,14E-10 2,34 -0,00075508 2,20E-09 2,66
8 1024 0,01441875 -0,00075508

Theory: 2 2

Table 4.5: Accuracy for the second interface problem with one square boundary

Hence, we have to determine the constant c in (4.9) in such a way, that the solvability

condition is fulfilled. Using the square given above as the domain Ω1, we get c = −3

4
. The

resulting systems of linear equations are the same as for the previous interface problem.
The solutions and errors are given in Table 4.5.

Example with a Tire

Now we calculate an interface problem without any function f on the right hand side for a
tire, using two circles centered at the origin with radii r = 0.25 and r = 0.1, see Fig. 4.6.
Again, it holds diam(Ω) < 1.

Hence, domain Ω1 has two separated boundaries, namely an interior boundary ΓD and
an exterior boundary ΓC , which is simultaneously the boundary of the domain Ω2. The
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Figure 4.6: Domains for the third interface problem

changed interface problem then reads as

−∆u1(x) = 0 for x ∈ Ω1,

γint0 u1(x) = log |x0 − x| for x ∈ ΓD and x0 =

(
0.01

0.01

)
,

−∆u2(x) = 0 for x ∈ Ω2,

(4.10)

with the radiation condition (1.23), choosing a = 1, for the exterior solution u2. The
solution u1 is separated into two parts on the boundary ∂Ω1, namely the unknown function
on the coupled boundary ΓC , and the given Dirichlet datum on ΓD. Let us use a L2

projection

gh(x) =
N∑
l=1

glϕ
1
l (x) ∈ S1

h(ΓD)

for the given function on the Dirichlet boundary, satisfying

〈gh, ϕ1
k〉ΓD = 〈γint0 u, ϕ1

k〉ΓD for k = 1, . . . , ND.

Instead of the Newton potential in the variational formulation (4.5), we then have the
Dirichlet part on the right hand side, i.e.〈

(α1S̃
int + α2S̃

ext)ũh, ϕ
1
k

〉
ΓC

= −
〈
α1S̃

intgh, ϕ
1
k

〉
ΓC

for k = 1, . . . , NC .

Moreover, for the resulting system of linear equations we need a connectivity matrix A
similar as introduced in (3.25), but now transforming a vector on the coupled boundary
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Interior domain Exterior domain
Elements Error1 eoc Error1 eoc

32 1,04E-04 5,78E-04
64 1,50E-05 2,80 7,24E-05 3,00

128 1,93E-06 2,95 9,05E-06 3,00
256 2,45E-07 2,98 1,13E-06 3,00
512 3,08E-08 2,99 1,41E-07 3,00

1024 3,86E-09 3,00 1,77E-08 3,00
Theory: 3 3

Table 4.6: Accuracy for the third interface problem with two circles

ΓC to the entire boundary ∂Ω1 = ΓD ∪ ΓC :

α1

(
A>D1,hAũ+ A>(

1

2
M>

1,h +K>1,h)t1

)
+ α2

(
D2,hũ+ (

1

2
M>

2,h −K>2,h)t2
)

= −α1

(
A>D1,hAg + A>(

1

2
M>

1,h +K>1,h)t
∗
)
, (4.11)

with the temporary vectors t1 and t∗ from the local systems on the entire boundary ∂Ω1 =
ΓD ∪ ΓC ,

V G
1,ht1 = (

1

2
M1,h +K1,h)Aũ,

V G
1,ht
∗ = (

1

2
M1,h +K1,h)Ag,

(4.12)

and with t2 from the system given on the boundary ∂Ω2 = ΓC ,

V G
2,ht2 = (

1

2
M2,h −K2,h)ũ, (4.13)

respectively. Once the solution has been found by solving (4.11) with a modified conjugate
gradient scheme, the Neumann datum on the coupled boundary can be evaluated via the
local systems (4.12) and (4.13). On the contrary to the two interface problems (4.4) and
(4.8) above, now we are able to compare the approximate representation formula with an
analytic solution, since we provide a Dirichlet datum on the interior boundary. Denoting

Error1 = |u(x)− ũ(x)|, x = (0.15, 0.03)>,

as well as

Error2 = |u(x)− ũ(x)|, x = (3, 3.5)>,

respectively, and since we use a L2 projection of γint0 u, we expect cubic convergence of the
point-wise errors. Finally, the results of the computations are reported in Table 4.6.
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Figure 4.7: Rectangle for domain decomposition methods

4.2.4 Domain Decomposition Methods

We consider the local Dirichlet boundary value problems

−∆ui(x) = 0 for x ∈ Ωi,

γint0 ui(x) = log |x0 − x| for x ∈ Γ ∩ Γi and x0 =

(
0.25

0.25

)
,

for i = 1, 2. The domain Ω is a rectangle with coordinates

(−0.4,−0.2), (0.4, 0.2), (0.4, 0.2), (−0.4, 0.2),

separated into two squares Ω1 and Ω2, see Fig. 4.7, and it fulfills diam(Ω) < 1.
Via the transmission conditions

γint0,i ui(x) = γint0,j uj(x) and γint1,i ui(x) = −γint1,j uj(x) for x ∈ Γij,

and using approximate Steklov-Poincaré operators, we obtain the perturbed Galerkin for-
mulation (3.24) to find ûh ∈ S1

h(ΓS), such that

p∑
i=1

∫
Γi

(S̃iûh|Γi)(x)vh|Γi(x)dsx = −
p∑
i=1

∫
Γi

(S̃ig̃|Γi)(x)vh|Γi(x)dsx

for all vh ∈ S1
h(ΓS). The equivalent system of equations (3.27) reads as

S̃hû =

p∑
i=1

A>i S̃i,hAiû = −
p∑
i=1

A>i S̃i,hAig = −S̃hg,
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Left square Right square
Elements Error1 eoc Error1 eoc

16 5,60E-06 7,83E-03
32 1,45E-05 -1,37 3,07E-04 4,67
64 1,91E-06 2,92 3,33E-05 3,21

128 2,41E-07 2,99 3,82E-06 3,12
256 3,11E-08 2,96 4,56E-07 3,07
512 3,24E-09 3,26 5,47E-08 3,06

1024 9,27E-10 1,80 7,81E-09 2,81
Theory: 3 3

Table 4.7: Accuracy for domain decomposition methods for two squares

with connectivity matrices Ai for Aiû = ûi. Using a L2 projection of the Dirichlet function
on the global boundary Γ, we expect cubic convergence for the absolute error

Error1 = |u(x)− û(x)|, x = (−0.3, 0.1)>,

calculating the solution in the left square Ω1, as well as for

Error2 = |u(x)− û(x)|, x = (0.3, 0.1)>

for the approximate representation formula for the right square Ω2, respectively. We observe
the numerical results in Table 4.7.
For domain decomposition methods, we noted in Subsection 3.6.1 that there is a possibility
to use the inverse of the hypersingular operator D, evaluated on the coupled boundary,
as a preconditioner for the conjugate gradient scheme to obtain ûh of system (3.27) on
the coupled boundary. As we have seen in the remarks after Theorem 3.9, the number
of iterations for the conjugate gradient scheme increases with a factor of

√
2. Using the

preconditioning technique mentioned above, the iterations should be constant and therefore
independent of the refinement level. Besides, a preconditioned conjugate gradient scheme
has to be used. The results are presented in Table 4.8.

4.3 Outlook

As far as domain decomposition methods are concerned, a general theory was given in the
previous chapters. For software implementations we used a simple model, but the next
step would have been to solve these models in parallel. Looking ahead to computational
costs, parallel solvers are nowadays a very interesting and efficient technique.
Here we mainly used the conjugate gradient scheme to solve the resulting systems of linear
equations of the boundary value and free space transmission problems. We would need
suitable preconditioning methods to get constant numbers of iterations, independent of
the mesh size and therefore of the size of the system [3]. But what seems even more
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No precondition Precondition
Elements Coupled nodes Iterations Comparison Iterations

16 3 3 3
32 7 7 2,3 7
64 15 11 1,6 10

128 31 16 1,5 11
256 63 24 1,5 11
512 127 35 1,5 11

1024 255 50 1,4 11

Theory:
√

2 const

Table 4.8: CG-Iterations for (non-)preconditioned domain decomposition methods

important than that is to reduce the effort for the calculations of the boundary element
method matrices. As we know, for a standard scheme the computational costs as well as the
memory requirements grow at least quadratically in the number of boundary elements. For
this purpose, there exist fast boundary element methods with nearly linear effort, meaning
O(N logα (N)) for α ∈ N0. The main idea of these methods is to approximate the kernels of
the appearing potential operators, namely the fundamental solution U∗(x, y). Firstly, there
is panel clustering [12], where the fundamental solution will be approximated with Taylor
expansion. Secondly, in the fast multipole method (FMM) an alternative series expansion
of U∗(x, y) will be applied [23]. Thirdly, there is the adaptive cross approximation (ACA),
based on matrix entries [26]. Furthermore, we could deal with hierarchical matrices, where
the global matrix will be separated into smaller parts. Generally spoken, it is the idea to
partition a matrix hierarchically. Other interesting and applicable topics are H-matrices
and wavelets [11].
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